

--- ------ - ---- ---= - -;§~§: System I 36

Concepts and Programmer's Guide

Program Numbers 5727-SS1
5727-SS6

File Number
S36-30

Order Number
SC21-9019-5

Sixth Edition (June 1987)

This major revision makes obsolete SC21-9019-4.

This edition applies to Release 5, Modification Level 1, of IBM System/36 System Support Program
Product (Program 5727-SSl for 5360 and 5362 System Units and Program 5727-SS6 for the 5364 System
Unit), and to all subsequent releases and modifications until otherwise indicated. Also, this
publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

References in this publication to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's licensed program may
be used. Any functionally equivalent program may be used instead.

The numbers at the bottom right of illustrations are publishing control numbers and are not part of
the technical content of this manual.

Publications are not stocked at the address below. Requests for IBM publications should be made to
vour IBM representative or to your IBM-approved remarketer.

This publication could contain technical inaccuracies or typographical errors. A form for readers'
comments is provided at the back of this publication to make comments about this publication. If the
form has been removed, comments may be addressed to IBM Corporation, Information Development,
Department 245, Rochester, Minnesota, U.S.A. 55901. IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1985, 1986 1987

When You Are:

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

Planning for and
Adding New
Programming
Support

Using Your IBM
PC with the
System/36

Managing Your
System/36
Office

Doing
Office
Tasks

'-

You Can Find Information In:

Using System/36 Communications
Communications and Systems Management Guide
Distributed Data Management Guide
Advanced Peer-to-Peer Networking (APPN) Guide
Remote Operation/Support Facility Guide
MSRJE Guide
3270 Device Emulation Guide
SSP-ICF Guide and Examples
Interactive Communications Feature: Base Subsystems Reference
Interactive Communications Feature: Finance Subsystem Reference
Interactive Communications Feature: Upline Subsystems Reference
Interactive Communications Feature: Programming for Subsystems and
Intra Subsystem Reference
Using the Asynchronous Communications Support
(message manuals)

(message manuals)
System Problem Determination
(online problem determination)

Planning for New Devices and Programming Available at Release 5
(new program product manuals)
Changing Your System Configuration

5250 Emulation Program User's Guide
El)hanced 5250 Emulation Program User's Guide
PC Support/36 Technical Reference
PC Support/36 User's Guide
PC Support/36 Organizer

System/36 in the Office
Planning Your System/36 Office
Setting Up Your System/36 Office
Administering Your System/36 Office
Planning for System/36 Office in a Network
Administering Personal Services/36 in the Office

r Getting Started with Interactive Data Definition Utility
Getting Started with Query/36
Getting Started with Personal Services/36
Getting Started with DisplayWrite/36
Business Graphics Utilities/36 User's Guide
Practicing with DisplayWrite/36
Practicing with Personal Services/36
Practicing with Query/36
Practicing with Interactive Data Definition Utility
Using DisplayWrite/36
Online Information:

Query/36
Personal Services/36
DisplayWrite/36

'- Interactive Data Definition Utility
59015015-9

When You Are:

Planning to
Install Your
Computer

Getting Your
Computer
Ready to Use

Operating
Your
Computer

Programming
Your
Computer

r

You Can Find Information In:

What to Do before Your Computer Arrives
Converting from System/34 to system/36
System/34 to System/36 Migration Aid

'- Planning for New Devices and Programming Available at Release 5

Setting Up Your Computer
Installing Your New Features
Performing the First System Configuration
System Security Guide
Updating to a New Release

r Le(lrning About Your Computer
Operating Your System
Development Support Utility Guide
Source Entry Utility Guide
Data File Utility Guide
Work Station Utility Guide
Changing Your System Configuration
Using and Progrnmming the 1255 Magnetic Character Reader

'- Using Your Display Station

r
(language manuals)
(message manuals)
Concepts and Programmer's Guide
System Reference

{ RPG II, BASIC, COBOL
FORTRAN IV, Assembler

Getting Started with Interactive Data Definition Utility
Development Support Utility Guide
Source Entry Utility Guide
Creating Displays: Screen Design Aid and System Support Program
Data File Utility Guide
Sort Guide
Functions Reference
Overlay Linkage Editor Guide
System Measurement Facility Guide
Character Generator Utility Guide

'- Ideographic Sort Guide

$9015001-9

Contents

About This Manual xix
Who should use this manual . . . xix
How this manual is arranged . . . xix
How this manual has changed . . . xx
What you should know . . . xxi
If you want more information . . . xxi

Chapter 1. Introduction 1-1
Programming on Your System 1-1

Programming Tools 1-3
System Support Program 1-4

1-5
1-5

Utilities Program Product
Development Support Utility
Business Graphics Utilities/36
OFFICE/36 Program Products
PC Support/36 Program Product
Programming Languages 1-7

System Productivity Aids 1-8
System Overview 1-9

Main Storage 1-11
Main. Storage Processor 1-12

Control Storage 1-13

1-5
1-6

1-7

Control Storage Processor 1-14
Data Channel 1-15

Buffer Areas and Controllers 1-16
Disk Storage 1-16
Diskette Storage 1-17
Tape Storage 1-19
Display Stations 1-21
Work Station Data Management 1-23
Data Communications 1-24
Printers 1-25
Printer Data Management 1-26
Spooling 1-26

Security 1-27
Physical Security 1-27
Data Security 1-27

Application Overview 1-28
Printed Output 1-29
Menus 1-29
Application Displays 1-30
Programs 1-31
Files 1-31
Libraries 1-32

Contents V

vi

Folders 1-33
Procedures, Jobs, and Job Steps 1-34
Messages and Message Members 1-35

Chapter Review 1-35

Chapter 2. Application Design Steps 2-1
Application Design Steps 2-1
Objectives of Application Design 2-3
Step 1. Definition 2-5

Identify What the Users Do 2-5
Define the Information Processed 2-8
Identify What the Application Should Do 2-10
Define the Application Functions 2-10
Make a Preliminary Schedule 2-11
Review Your Work with the Users 2-11
Document Your Work 2-11

Step 2. General Design 2-12
Step 3. Detailed Design 2-14

Designing Printed Output 2-14
Designing Files and Records 2-14
Designing Displays 2-14
Designing Application Controls 2-14

Examples of Input Controls 2-14
Examples of Processing Controls 2-14
Examples of Output Controls 2-15

Documenting the Detailed Design 2-15
Step 4. Program Design 2-18

Documenting Programs 2-18
Step 5. Testing 2-20

Allow Time for Testing 2-20
Divide the Test into Manageable Tasks 2-20
Let Users Define Test Cases 2-21
Use Realistic Test Data 2-21

Normal and Expected Conditions
Error and Unexpected Conditions

Use Sufficient Amounts of Test Data
Document the Test 2-22

2-21
2-21
2-22

Step 6. Conversion and Installation 2-23
Step 7. Operation 2-24
Chapter Review 2-25
Using the Remaining Chapters 2-25

Chapter 3. Printed Output 3-1
How the System Handles Printer Output 3-2

Printer Data Management Output 3-3
System List Output 3-4

Print Spooling 3-5
Advantages 3-5
How To Select Print Spooling 3-6
Control of Print Spooling 3-6
How Print Spooling Works 3-6

Spool Intercept Routine 3-8
Spool Intercept Buffer 3-9
Spool File 3-9

Spool Writer Program 3-11
Separator Pages 3-12

Designing Printed Output for Your Programs 3-13
Printed Output Considerations 3-13
Designing Your Printed Reports 3-14
Printer Performance Considerations 3-16

Considerations for Dot Matrix Printers 3-16
Considerations for Character Printers 3-17
Considerations for Line Printers 3-20

Assigning Forms Numbers 3-20
Printer Control Guidelines 3-21

Changing the Session Printer 3-21
Changing the System List Device 3-21
Changing the Print Key Printer 3-22
Changing the Printer Configuration Information 3-22
Changing Printer Information in a Procedure 3-22
Controlling or Displaying Print Spooling Information 3-23
Controlling Printed Output with the Print Queue Manager 3-24
Copying and Displaying Spool File Output 3-26
Printing Output by Forms Number 3-27
Combining Several Print Files in One Job 3-27
Assigning the Deferred Status to Printed Output 3-29
Assigning Priorities to Printed Output 3-29
Controlling Printer Functions from Your Applications Program 3-29
Merging Text and Graphics 3-30
Creating Graphics Files 3-30
Merging a Graphics File with Text 3-31
Printing a Graphics File 3-32

Programming Considerations 3-32

Chapter 4. Disk Storage 4-1
Disk Storage Concepts 4-2

Physical Organization 4-6
Sectors 4-6
Blocks 4-6

Disk Capacities 4-7
What Is Stored on Disk 4-8
System Area Contents 4-9

Control Storage Library 4-9
System Library (#LIBRARY) 4-9
System Work Files 4-9
Task Work Area 4-9
History File 4-10
Service Log 4-12

User Area Contents 4-12
Spool File 4-12
Job Queue 4-12
Trace Files 4-12
Dump Files 4-13
User ID File 4-13
Resource Security File 4-13
System Message File (#MESSAGE) 4-13
Program Product Libraries 4-13
User Files 4-14
User Libraries 4-14

Contents vii

User Folders 4-14
Programming Guidelines for Disk 4-15

Placing User Files and User Libraries on Disk 4-15
Automatic Placement on Disk 4-15
Placement By Spindle Preference 4-17
Placement By Block Number Location 4-18

Reorganizing Disk Space 4-21
Disk Cache 4-23

Disk Cache Considerations 4-23
Programming Guidelines for Disk Storage 4-24

Listing the Disk Volume Table of Contents 4-24
Measuring Disk Activity 4-24
Changing the Size of System Files 4-24
Service Log Procedures 4-24
Listing, Copying, or Erasing History File Entries 4-25
Automatic Copying of History File 4-25 ·

Example of HISTCOPY Procedure 4-25

Chapter 5. Diskette Storage 5-1
Uses of Diskettes 5-1
Diskette Types and Storage Capacities 5-1
Diskette Exchange Formats 5-2

Basic Data Exchange Format 5-3
H-Data Exchange Format 5-3
I-Data Exchange Format 5-4
Special E-Format 5-4

How Information Is Stored on Diskette 5-5
Types of Diskette Files 5-6

SA VEFLDR Files on Diskette 5-7
Diskette Data Compression 5-8
Diskette File Expiration Dates 5-9

Programming Guidelines for Diskette Processing 5-10
Preparing Diskettes 5-10
Copying, Saving or Restoring Information 5-11

Copying Information 5-11
Saving Information 5-11
Restoring Information 5-13

Listing Information from Diskette 5-13
Removing Information from Diskette 5-13
Allocating the Diskette Drive to a Job 5-14
Creating a Sequential Set of Files on Diskette 5-15
Changing the AUTO/NOAUTO Settings for Procedures 5-16

Chapter 6. Magnetic Tape Storage 6-1
Using Tape Storage 6-1
Tape Lengths and Storage Capacities 6-2

Tape Formats 6-3
Tape Format for 8809 Tape Drive 6-3
Tape Format for IBM 6157 Tape Drive 6-3

How Information Is Stored on Standard Labeled Tapes 6-3
How Information Is Stored on Nonlabeled Tapes 6-4

Tape Files 6-5
Exchanging Tape Files with other Systems 6-6
Tape File Expiration Dates 6-7

viii

Securing Tapes: Write-Enable Ring and Write-Protect Plug 6-7
Security on Standard Labeled Tapes 6-8
Programming Guidelines for Tape Processing 6-8

Preparing Tapes 6-8.
Copying, Saving, or Restoring Information 6-9
Listing Information from Tape 6-11
Removing Information from Tape 6-11
Allocating the Tape Drive to a Job 6-12
Creating a Sequential Set of Files on Tape 6-13

Chapter 7. Designing Records
Identifying Required Fields
Naming Fields 7-1
Numeric Fields 7-3

7-1
7-1

Zoned Decimal Format 7-3
Packed Decimal Format 7-5
Binary Format 7-7
Floating-Point Format 7-8

Alphameric Fields 7-9
Key Length and Placement 7.:.9
Providing for Deletion of Records 7-9
Field Sizes 7 -10

7-10
7-10

7-11

Defining Record Length
Allowing for New Fields

Documenting Record Layout

Chapter 8. Files 8-1
Introduction to Files 8-1

Using Files in General 8-1
File Organizations and Access Methods 8-2
File Attributes 8-3
Blocking of Records and Indexes 8-3
File Sharing 8-4

Using Files 8-4
Creating a File 8-5
Naming a File 8-6

File Dates 8-7
Group Files 8-7
Files in a Group Resource 8-8
Renaming a File 8-8

Specifying a File in a Program 8-9
Placing Data in Files 8-10
Printing or Displaying Files 8-11
Reorganizing Disk Space 8-11
Securing Files 8-12
Removing a File from Disk or Diskette 8-13

File Organizations 8-13
Sequential File Organization 8-13
Direct File Organization 8-15
Indexed File Organization 8-17

Structure of the Index 8-19
Keysorting 8-20

Multiple Indexes for a File 8-21
Rules for Index Keys 8-22
Storage Index 8-25

Contents IX

Duplicate Keys 8-27
Performance Considerations for Indexed Files 8-29

Accessing Files 8-32
Current Record Pointer 8-32
Nonkeyed and Keyed Processing 8-33

Nonkeyed Processing 8-33
Keyed Processing 8-34

File Access Methods 8-35
Consecutive Access Method 8-36
Sequential Access by Key 8-37
Random Access by Relative Record Number 8-39
Random Access by Key 8-40
Generalized Access Method 8-41

Choosing a File Organization 8-43
File Usage 8-43

Master File 8-43
Transaction File 8-44
Access Method 8-4 7
Application 8-4 7

Volatility of the File 8-48
Activity of the File 8-49
Disk Space 8-49
Processing Speed 8-49

File Attributes 8-50
Scratch Files 8-50
Job Files 8-51

Reserving Space for Scratch and Job Files 8-52
Resident Files 8-52

Using Resident Files from One Job Step to Another 8-52
Extendable Files 8-55

Specifying an Extendable File 8-55
Automatic File Extension 8-56
What Happens When Extendable Files Become Full 8-57

Delete-Capable Files 8-57
Creating a Delete-Capable File 8-58
Deleting Records from a Delete-Capable File 8-58
Processing a File Containing Deleted Records 8-59
Adding Records to a Delete-Capable File 8-59
Using DFU with Delete-Capable Files 8-60
Using WSU with Delete-Capable Files 8-60

Blocking Records and Index Entries 8-60
Blocking Records 8-60

Considerations for Efficient Record Blocking 8-60
Blocking Index Entries 8-62

Considerations When Specifying the !BLOCK Parameter 8-63
Using Record Blocking and Index Blocking 8-63
Storage Space Required for a Program 8-64

Calculating Storage Space Required for Disk Buffers and Control
Blocks 8-64

Allocating Storage for Buffers and Control Blocks 8-67
Program Processing Size 8-69

Physical and Logical Input/Output Operations 8-70
Record Blocking 8-70
Access Method 8-70

x

Delayed File Operations 8-70
Delayed Input Operations 8-71
Delayed Output Operations 8-71
Delaying Maintenance of Indexes 8-72
Delaying Maintenance for Unused Alternative Indexes 8-72
Delaying Maintenance for Batch Adds 8-72

Sharing Files 8-73
File Sharing Considerations 8-73
Levels of File Sharing 8-7 4
Waiting for Files to Become Available 8-75

Using the WAIT Parameter 8-76
Record Protection 8-78
File Deadlock Conditions 8-84
Releasing Locked Records 8-86
File Update Programming Considerations 8-87

Possible Errors 8-87
Avoiding These Errors 8-88

Using One File As Two Or More Logical Files 8-89

Chapter 9. Libraries 9-1
Library Concepts and Uses 9-1

Types of Libraries on the System 9-1
Library Naming Conventions 9-1

Group Libraries 9-2
Libraries in a Group Resource 9-3

Types of Library Members 9-3
Library Member Subtypes 9-4
Library Member Naming Conventions 9-5
Uses of Libraries 9-5
Sign-On, Current, Session, and Job Library 9-6
Library Format 9-7
Library Size 9-9
Reorganizing Library Space 9-10
Library Extension 9-11
Library Sharing Restrictions 9-12
Changing Libraries in a Job 9-12
Securing Libraries 9-13
Backup and Recovery Considerations 9-14
Library Sector-Mode and Record-Mode Files 9-15

Sector-Mode Files 9-15
Record-Mode Files 9-15

Programming Guidelines for Libraries 9-16
Creating Libraries 9-16
Creating and Changing Members 9-16
Listing Members and Library Information 9-16
Saving and Restoring Libraries 9-17
Copying Libraries and Library Members 9-17
Changing Library or Directory Size 9-1 7
Condensing a Library 9-17
Securing a Library 9-1 7
Renaming a Library or Library Member 9-17
Removing a Library or Library Members 9-17

Chapter 10. Folders 10-1
Folder Concepts and Uses 10-1

Contents xi

xii

Types of Folders and Folder Members 10-1
Uses of Folders 10-2
Folder Naming Conventions

Folders in a Group Resource
Folder Layout 10-3
Folder Size 10-4

10-2
10-2

Reorganizing Folder Space 10-5
Folder Considerations for DisplayWrite/36 10-6

Folder Sharing Restrictions 10-7
Securing Folders 10-7

Access Levels for Folders 10-8
Access Levels for Folder Members 10-10

Backup and Recovery Considerations 10-11
Working with Folders in General 10-12

Changing Folder Size 10-13
Creating a Folder 10-13
Displaying or Printing Folder Members 10-13
Listing Folder Information 10-13
Listing Archived Folder Member Information 10-13
Removing a Folder 10-14
Renaming a Folder 10-14
Reorganizing a Folder 10-14
Saving and Restoring Folders 10-14
Saving and Restoring Folder Members 10-14
Securing a Folder 10-14

Chapter 11. Subdirectories 11-1
Subdirectory Concepts and Uses 11-1

Shared Folder Facility 11-1
Using Subdirectories 11-2
Managing Subdirectories 11-2

Organization and Identification 11-2
Terms Used with Subdirectories 11-3

Root (System) Directory 11-4
Subdirectory 11-4
Current Directory 11-5

Naming Conventions 11-6
Folder Layout with Subdirectories 11-8
Securing a Subdirectory 11-10

Access Levels for Subdirectories 11-10
Backup and Recovery Considerations 11-11

Working with Subdirectories 11-12
Assigning a Drive to a Folder 11-13
Changing the Current Directory 11-13
Creating a Subdirectory 11-14
Specifying a Path to a File or Folder Member 11-15
Listing Subdirectories 11-15
Listing Members in a Subdirectory 11-16
Saving Folder Members in a Subdirectory 11-16
Restoring Members to a Subdirectory 11-16
Deleting a Subdirectory 11-16
Reorganizing Subdirectory Space at the Folder Level 11-17
Securing Subdirectories 11-17

Chapter 12. Menus and Menu Design 12-1
Benefits of Menus 12-3
Using Menus 12-3
Using Menu Security 12-4
Menu Formats 12-5

Fixed-Format Menus 12-5
Free-Format Menus 12-6

Designing Menus 12-7
Creating and Updating Menus 12-10

Using SDA to Create a Menu 12-11
Using the BLDMENU Procedure to Create a Menu 12-11

Creating and Displaying Help Text for Menus 12-12
Creating Menu Help Text 12-12
Displaying Menu Help Text 12-13

Using Color or Highlighting on Your Menus 12-15

Chapter 13. Displays 13-1
Benefits of Displays and Display Formats 13-2
Work Station Data Management 13-3

Work Station Data Management Operations 13-3
Output Operations and Output Fields 13-4
Input Operations and Input Fields 13-5

Input/ Output Fields 13-6
Data Types 13-7
Attributes 13-8
Special Work Station Data Management Operations 13-9

Erase Input Fields Operation 13-9
Override Fields Operation 13-10
Suppress Input Operation 13-10

Display Design Considerations 13-11
General Display Design Guidelines 13-12

Additional Display Design Guidelines 13-13
Choosing the Appropriate Form for Your Display 13-13

Fixed Form Displays 13-13
Adjacent Form Displays 13-14
Free Form Displays 13-14
Menu Form Displays 13-15
Code Link Form Displays 13-16

Using Color to Highlight Data 13-16
Designing Multiple Formats 13-18
Designing Displays for Remote Display Stations 13-19
Using Message Members with Your Display Formats 13-22
Using Self-Check Digits 13-23

Programming Considerations 13-24
Creating Display Formats 13-24

Using SDA to Create a Display Format 13-25
Using the FORMAT Procedure to Create a Display Format 13-26

Creating Help Text for Your Displays 13-27
Using SDA Application Help Support to Create Help Text 13-27

Using Display Formats with the Programming Languages 13-28
Using Display Formats with RPG II 13-29
Using Display Formats with COBOL 13-29
Using Display Formats with BASIC 13-30
Using Display Formats with FORTRAN IV 13-30

Contents xiii

xiv

Using Display Formats with Assembler
Using Display Formats within a Procedure

Using the Read-Under-Format Technique

13-31
13-32

13-33

Chapter 14. Messages and Message Members 14-1
Message Concepts 14-1
Message Member Concepts 14-2

First-Level Message Members 14-3
Second-Level Message Members 14-3

Designing Message Members 14-4
Providing Automatic Responses for Messages 14-4

Considerations for Automatic Responses to Messages 14-7
Unattended System Operation 14-8

Programming Guidelines for Message Members 14-9
Creating or Changing Message Members 14-9
Assigning Automatic Responses and Severity Levels 14-10
Specifying a Message Member to Be Used within a Procedure 14-11
Displaying Messages from Procedures 14-11

I I * (Informational Message) Statement 14-11
// ** (System Console Message) Statement 14-11
Displaying Your Messages in the Same Format as System Messages 14-12
Ensuring That Required Parameters Are Entered 14-12

Using Messages with Programs 14-12
Using Messages with Displays 14-12
Inserting Variable Data into Displayed Messages 14-13

Chapter 15. Main Storage 15-1
Main Storage Concepts 15-1
System Area (Nucleus) of Main Storage 15-2

Expansion and Contraction of the Nucleus 15-2
Fixed-Sized Portion of the Nucleus 15-3
Variable-Sized Portion of the Nucleus 15-3

Nonswappable System Routines 15-4
Assign/Free Area 15-5

User Area of Main Storage 15-6
Organization of the User Area 15-6
Transient System Routines 15-7

Buffers Used by Programs 15-8
Buffer Allocation 15-8

System-Assigned Program Attributes 15-9
Main Storage Processor 15-10

Chapter 16. Programs 16-1
Program Concepts 16-1

Batch Programs 16-2
Interactive Programs 16-2
Typical Uses of Interactive and Batch Programs 16-3
Program Size 16-4
Number of Users That Can Communicate with a Program 16-4

One-User Programs 16-4
Multiple-User Programs 16-5
No-User Programs 16-5

Number of Users That Can Request a Program 16-5
Single-Requester-Terminal Programs 16-5

Multiple-Requester-Terminal Programs 16-6
Nonrequester-Terminal Programs 16-8
Comparison of Program Types 16-8
Summary Table of Users and Requesters 16-9

Designing Applications 16-10
Batch versus Interactive Programs 16-11
Application Structure 16-11

One Large Program for Each User 16-12
One Large Program Shared by All Users 16-12
Several Small Programs, Each User Having a Separate Copy of the

Programs 16-13
Several Small Programs, All Users Sharing One Copy of the

Programs 16-14
A Mixture of the Two Preceding Possibilities
Number of Users of Each Program 16-15

16-14

Number of Requesters and Acquired Display Stations 16-16
Summary of Differences between SRT and MRT Programs 16-17

Program Attributes 16-19
Never-Ending Programs 16-19
Inquiry 16-20

Programming Considerations 16-21
Programming Considerations for Any Program 16-21

Acquiring a Display Station 16-22
Releasing a Display Station 16-23
File Sharing 16-23
Transaction File Design 16-24
Memo Updating 16-25
Printed Output 16-28
Inquiry Menu Options
Calling the Program
Read under Format
External Switches
Local Data Areas

16-29
16-30
16-30

16-31
16-32

Programming Considerations for Multiple-User Programs 16-33
Creating a Table of Separate Variables 16-33
Sequential Processing of Multiple Records with Duplicate Keys 16-35
Changing a One-User Program to a Multiple-User Program 16-35
Response Time 16-36

Programming Considerations for MRT Programs 16-36
Job Stream 16-37
Modular Applications 16-39
MRTMAX Value 16-41
Indicating the Run Time of MRTMAX 16-42
Limiting the Number of Users 16-43
First-Requester Considerations 16-43
Summary of MRT Program Considerations 16-43

Chapter 17. Jobs and Job Processing 17-1
Jobs and Job Steps 17-1
Starting and Ending Jobs 17-2

How Jobs Are Started 17-2
How the System Assigns Job Names
Overview of How the System Runs Jobs
Command Processor 17-6
Initiator 17-6

17-2
17-3

Contents XV

XVl

How the System Processes OCL Statements and Procedure Control
Expressions 1 7 -7

System Input Processing Example 17-8
How the System Ends Jobs 17-10

Normal Termination 17-10
Abnormal Termination 17-11

Job Management and Job Scheduling 17-12
Processing Priorities 17-12

Processing Priority Considerations 17-13
Job Queue 17-14

Job Queue Priority Levels 17-14
Processing Priority of Jobs on the Job Queue 17-16

Print Queue Manager 17-17
Dispatching and Swapping of Programs in Main Storage 17-17

Swapping 17-19
Automatic Priority Adjustment of Programs 17-22
Job Scheduling Guidelines 17-23

Control Storage Considerations 17-24
Control Store Relocatable Area Usage Rules 17-25
Job-Related Information Contained in the History File 17-29

Evoking Other Jobs 17-30
Submitting Jobs to be Run Later 17-31

Job Queue 17-31
WAIT OCL Statement 17-32

Changing the Position of a Job in the Job Queue 17-33
Submitting Jobs by Security Classification 17-33
Preventing Jobs from Being Canceled or Interrupted

Preventing Canceled Jobs 17-34
Preventing Interrupted Jobs 17-34

Preventing Informational Messages from Displaying
Running Jobs During Initial Program Load (IPL)

#STRTUPl Procedure 17-35
#STRTUP2 Procedure 17-35

Running Jobs Without Operators
End-of-Day Processing 17-37

Chapter 18. Procedures 18-1
Procedure Concepts 18-1

What a Procedure Can Contain
Advantages of Using Procedures
Procedure Parameters 18-3

17-36

18-2
18-2

Using Procedures with Menus 18-4

17-34

17-34
17-35

Calling a Procedure from Another Procedure 18-4
Considerations for Multiple-Requester-Terminal Procedures 18-4

Designing Procedures 18-6
Naming a Procedure 18-6
Procedure Performance Tips and Coding Techniques 18-6

Programming Guidelines for Procedures 18-8
Creating or Changing Procedures 18-8
Listing Procedures 18-8
Controlling How a Procedure Runs 18-9
Debugging Procedures 18-11
History File and Procedure Processing 18-12
Calling Multiple-Requester-Terminal Procedures 18-13

Chapter 19. Error Prevention, Detection, and Recovery 19-1
Types of Errors and Failures 19-1

System Failure 19-1
Power Failures 19-1
Equipment Failures 19-2
Programming Errors 19-2
System Operator Errors 19-2
Operator Errors 19-2

Error Prevention 19-3
Using the Automatic Response Facility 19-3
Preventing Job Cancellation 19-3
Program Testing and Debugging 19-3
Extending the Size of a Library 19-4
Extending the Size of a File 19-5
Extending the Size of a Folder 19-6
Using the WAIT and FILE OCL Statements 19-6
Allocating the Diskette or Tape Drive to a Job 19-6

Error Detection in Programs and Procedures 19-7
Error Detection in Assembler 19-8
Error Detection in BASIC 19-8
Error Detection in COBOL 19-8
Error Detection in FORTRAN IV 19-8
Error Detection in RPG II 19-8
Error Detection for MRT Programs
User-Coded Error Detection Routines
Checking Return Codes in Procedures

Backup and Recovery 19-10
Equipment Backup 19-10
Data Backup and Recovery 19-11

Historical Data 19-12
Master Files 19-12

19-9
19-9
19-9

Data Processed but Not Distributed 19-13
Data Logged but Not Processed 19-13
Data Received but Not Logged 19-13
Loss of Transaction File Data 19-13

Printing the Configuration Member 19-14
IPL File-Rebuild Function 19-14
Backup and Recovery Methods 19-15

Method 1 19-15
Method 2 19-17
Method 3 19-18

Service Aids Procedures 19-19
SERVICE Procedure 19-19
AP AR Procedure 19-20
DFA Procedure 19-20
DUMP Procedure 19-20
ERAP Procedure 19-20
PATCH Procedure 19-20
PTF Procedure 19-20
SETDUMP Procedure 19-20
TRACE Procedure 19-20

Remote Operation/Support Facility 19-21

Chapter 20. Ideographic Data Concepts and Considerations 20-1

Contents xvii

Ideographic Data Concepts 20-1
Shift-out and Shift-in Characters 20-2
Ideographic Character Sets 20-3
Hex Representation of Ideographic Characters 20-4
Ideographic Number 20-6
Dual Language Support 20-7

Ideographic Sessions 20-7
Programming Considerations 20-7

Processing Extended Characters 20-8
Displayed Output 20-8
Printed Output 20-8

Programming Guidelines for Ideographic Data 20-9
Creating Ideographic Characters 20-9
Creating Ideographic Message Members 20-9
Creating Ideographic Display Formats 20-10
Sorting Ideographic Characters 20-10
Manipulating Bytes of Ideographic Data 20-10

Truncating Ideographic Data 20-10
Concatenating Ideographic Data 20-11
Separating Ideographic Data 20-12

Chapter 21. Summary of Design Considerations 21-1
Application Design Steps 21-1
Printed Output 21-2
Disk Storage 21-3
Diskette Storage 21-3
Tape Storage 21-4
Records 21-4
Files 21-5
Libraries 21-6
Folders 21-6
Subdirectories 21-7
Menus 21-7
Displays 21-8
Messages and Message Members 21-9
Programs 21-9
Jobs and Job Processing 21-10
Procedures 21-10

Appendix A. Access Algorithms for Direct Files A-1
Choosing an Access Algorithm A-2
Handling Synonym Records A-3
Examples of Access Algorithms A-4

Example 1 A-4
Example 2 A-9
Example 3 A-12

Glossary G-1

Index X-1

xviii

About This Manual

Who should use this manual ...

This manual provides programmers with information needed to design and develop
application programs for System/36. It also describes the system components and
how (in general terms) the system works.

How this manual is arranged ...

This manual contains the following chapters.

Chapter 1 does the following:

Defines applications and programs.

• Introduces the system's productivity aids and programming tools.

• Provides a simple explanation of how the system works and what its
components are.

• Provides brief explanations of the application components that the
manual will help you design and develop.

Chapter 2 provides an overview of the application design process. It also describes
each step of the process in moderate detail.

Chapters 3 through 19 provide concepts, design guidelines, and programming
guidelines for the various application and system components.

Chapter 20 describes ideographic character concepts and considerations for the
ideographic version of the SSP.

Chapter 21 provides a summary of the major considerations presented in the
manual.

About This Manual xix

Appendix A describes access algorithms that can be used with direct files.

Glossary provides definitions of terms used in this manual.

So, if you are about to design and program your first application, read Chapter 1
and Chapter 2 before you begin, then refer to Chapters 3 through 19 as you need
them.

If you are an experienced application programmer, you can get right into the details
presented in Chapters 3 through 19.

Note: This manual follows the convention that he means he or she.

How this manual has changed ...

xx

The major changes are described below.

Information about restricting users from creating folders when using IDDU or
DisplayWrite/36 was added to Chapter 10, "Folders."

Information about restricting the size of folders created when using
DisplayWrite/36 was added to Chapter 10, "Folders."

Note: This manual may refer to products that are announced, but are not yet
available. Such information is for planning purposes only and is subject to
change be/ ore general availability.

What you should know ...

Before you read this manual, you should be familiar with data processing concepts
(such as disk storage, files, and members) and with the system and its display
stations.

In this manual, personal computer means one or all of the following:

• IBM 5150 Personal Computer

• IBM 5160 PERSONAL COMPUTER XT1

• IBM 5170 PERSONAL COMPUTER AT®

H you want more information ...

If you want more information on a topic while you are using this manual, refer to
the Guide to Publications, GC21-9015. System/36 PC users should refer to the
Guide to Optional Information, GX21-9817, for related publications.

Trademark of IBM

About This Manual :xxi

xxii

Chapter 1. Introduction

Welcome to application programming on System/36! Whether you are ready to
design and program your first application or you have designed and programmed
applications before, this manual has useful information for you.

An application is a group of programs that· apply to a particular business function,
like accounts receivable or inventory control. Because there are countless types of
applications and because each one can be unique, this manual cannot provide all
the details for the application you might have in mind. What this manual can do,
however, is:

• Describe how the system works (not all the details; but the important ones for
programming the system).

• Describe the steps that application programmers follow when they design and
program applications.

• Describe how to design and program the various parts of an application
(printed reports, records, files, libraries, menus, displays, message members,
programs, jobs, and procedures).

This introductory chapter describes programming on the system, productivity aids,
the system in general, and applications in general.

Programming on Your System

Do you see anything missing from this picture?

Chapter 1. Introduction 1-1

1-2

Of course, there are no people in it; and that is where you come in. You bring the
system to life by providing application programs for the users.

You translate users' requests into reliable, easy-to-use programs that make the
system work. Your programs must help people do their work naturally, quickly,
and accurately, or they will not be satisfied with the system. You have quite a job:
to see that the system helps people do their jobs better.

Programming Tools

The system has several programming tools that you can use to do your work:

• System Support Program Product (SSP)

• Utilities Program Product

• Development Support Utility

• Business Graphics Utilities/36

• OFFICE/36 Program Products

• PC Support/36 Program Product

• Programming languages

Most programmers use the SSP, Utilities Program Product, and at least one
programming language to do their work. It pays to know the capabilities of each
tool, because choosing the right one for the job at hand can help you be more
productive.

Chapter 1. Introduction 1-3

System Support Program

l-4

The System Support Program provides the procedures, operation control language
statements, utility control statements, and control commands that you use to:

• Create and maintain disk files

• Sort disk files

• Create and maintain libraries

• Create and maintain folders

• Process information on diskettes

• Create and maintain display formats, menus, and message members

• Create and maintain procedures

• Run programs and procedures

• Create and maintain ideographic characters using the character generator
utility (CGU).

You need not code your own procedures and programs to do these typical tasks.

The SSP also includes IDDU (the interactive data definition utility), which provides
you the support to define interactively the characteristics of data and the contents
of files stored on your system. IDDU is used to define disk files which are to be
used with DW /36 (Display Write/36) and Query /36; it is used to define
communications files, which are used with advanced program-to-program
communications (APPC).

You use IDDU to define the contents of fields, records, and files. You also use
IDDU to define such characteristics of the fields as how large they are, the type of
data they contain, and how fields are arranged in a record format. Once you have
defined the files externally, DW /36, Query /36, and APPC can use the file
description instead of defining the file in a program.

Getting Started with IDDUhas more information about IDDU.

Utilities Program Product

The Utilities Program Product offers a variety of useful functions for creating and
maintaining the parts of applications that you work with day in and day out. It
consists of:

• Source entry utility (SEU): for creating and maintaining procedures and
source programs.

• Screen design aid (SDA): for creating and maintaining displays and menus.

• Data file utility (DFU): for creating and maintaining simple data entry
programs, file update programs, file inquiry programs, and report printing
programs. DFU is a way for you to interactively create and maintain programs.
Using DFU may be faster than coding a program (in RPG II, COBOL, ...) to
do the same job.

• Work station utility (WSU): for creating data entry programs, file update
programs, and file inquiry programs.

Development Support Utility

The Development Support Utility (DSU), like SEU, is used to create and maintain
procedures and source programs. Unlike SEU, DSU contains a full screen editor
that allows you to edit a full screen of statements in a member rather than edit one
statement at a time. DSU can coexist with SEU and requires no conversion of
data. The Development Support Utility (DSU) is not a part of the Utilities
Program Product.

DSU is easy to use whether you are a new or an experienced user.

Business Graphics Utilities/36

The Business Graphics Utilities/36 (BGU/36) is an interactive utility that allows
you to design simple business and scientific graphs quickly. You can also design
chart pages containing up to eight graphs on a page.

BGU/36 also supplies a procedure that allows you to design a graph using data in a
report that was created by your application.

Chapter 1. Introduction 1-5

OFFICE/36 Program Products

1-6

The OFFICE/36 program products include the following: DW /36
(DisplayWrite/36), Personal Services/36, and Query /36.

DisplayWrite/36: DW /36 is a word processing program. You can use DW /36 to
do the following:

• Create documents (letters, memos, reports, and so on)

• Create help text for application programs

The Getting Started with DisplayWrite/36 manual has more information about
DW/36.

Personal Seniecr/36: The Personal Services/36 program product is a group of
programs that provides automated ways to handle everyday office tasks. This
includes electronic mail handling, a way of logging and doing searches for hard
copy mail, calendar management, directory support, group processing, message
handling, and administrative support. The Getting Started with Personal
Services/36 manual has more information about Personal Services/36.

flllt!l'YI 36 Program Prodllct: The Query /36 program product allows you to request
a variety of reports based on information in your files, even if you have little or no
programming experience.

Query /36 prompts you, through a series of displays, to specify which information
you want included in your report, whether you want to print or display the report
or store the query data in a disk file, and how you want the report to look.

The data entry facility part of Query /36 allows you to put data into your files.

Once a query is created, you can save it in a library. You can then revise your
saved queries, copy them, or delete them from the library.

The Getting Started with Query/36 manual has more information about Query/36.

PC Support/36 Program Product

Programming Languages

The PC Support/36 program product lets you use a personal computer as a work
station attached to your System/36. Working from your personal computer, you
can take advantage of several System/36 functions. The following are included in
PC Support/36:

• Virtual disk support lets you use the storage on System/36 as if it were attached
to your personal computer.

• Virtual printer support lets you use printers attached to System/36 as if they
were attached to your personal computer.

• Transfer facility support lets you transfer System/36 source members,
procedure members, and files to the personal computer; it also lets you transfer
personal computer files to System/36.

The PC Support/36 User's Guide and the PC Support/36 Technical Reference
manuals have more information about PC Support/36.

Although the System Support Program Product, Development Support Utility, and
Utilities Program Product offer a variety of programming functions, a programming
language provides more flexibility and control.

The programming languages available on the system are:

• Assembler

• BASIC

• COBOL

• FORTRANN

• RPGil

When you use a programming language, you control how information appears on
the users' displays, how the information appears on printed reports, and what
processing the program does.

Chapter 1. Introduction 1-7

System Productivity Aids

1-8

In addition to the programming tools, several productivity aids are available to you.

You can do much of your work from a display station. The menus, displays,
procedures, and commands you see and use have been designed to simplify your
work. In addition, the following types of assistance called help support are available
to make your job easier:

• Help menus lead you to the command or procedure to do the task you have in
mind. You start with a menu called MAIN and type in the number of the task
you want to do. If you choose not to use these menus, you can always enter
command or procedure names directly.

• Help text for menus and displays lets you see explanations at the touch of the
Help key.

• Help text for commands and parameters lets you see explanations at the touch
of the Help key. It is as if someone put part of the System Reference manual
inside your system.

• Help text for status displays lets you see explanations, again at the touch of the
Help key or by command key 8.

Using the help support is quite simple. If you want more information about it,
press command key 12 (when you have signed on a display station), and you will
see a series of displays that explain how to use help.

System Overview

To design and program applications on the system, you should know some (but, of
course, not all) of the details about how the system works. Figure 1-1 shows the
important parts of System/36 with the 5360 System Unit (the 5362 System Unit is
similar). The sections that follow describe the important parts of the System/36.

System Unit

LJ
'\

Data or Instructions

Disk

Control Storage

,------ - -----.
1 Control Storage 1

: Program 1

~-----------...!
,-- ----------.
1 Control Storage
: Processor
~-----------...!

Controller 0

Tape

Data Channel

Diskette

Controller

Display
Station

Main Storage ,-- - -- ---- -- -.
1 System Support 1

: Programs 1 ____________ J

,--- --- --- - --.
I I
1 User Programs 1 !_ ___________ _!

,- - - - - - --- - - -.
I I
1 Data 1 !_ _____ _____ _!

Main Storage
Processor

Controller Controller

Data
Printer Communications

•This controller is present only when the magnetic tape units are installed. If the tape units are not installed,
the disk and diskette buffers are attached directly to the data channel. 59019001-1

Figure 1-1. System/36 Overview

Chapter 1. Introduction 1-9

1-10

Figure 1-2 shows the important parts of a System/36 PC.

System Unit

Personal
Computer

SH

Disk

.------ ------
1 Work Station :

L __ ~~n!ro~:r ___ J

Control Storage .-------- - - --,
1 Control Storage 1

: Program 1

-------------' .--- ---- - -- --,
1 Control Storage
: Processor ____________ ...}

Controller

D~
Diskette

Figure 1-2. System/36 PC Overview

Data Channel

Printer

Main Storage
.------------,
1 System Support 1

: Programs 1 ____________ J

.- -- - --------,
I I
1 User Programs 1 !_ ___________ .J

,- - - - - - - - - - - - I
I I
1 Data 1
!_ _____ _____ .J

Main Storage
Processor

59019130-C

Main Storage

Main storage is the heart of the system -where the action is.

System Unit

LJ
"'

Data or Instructions

Control Storage ,- - - - - - - -- - - -,
1 Control Storage 1
1 Program 1

~------------' ,- - - - - - - - - - - - ,
1 Control Storage
: Processor
~-----------..!

Main Storage ,- - - - - - - - - - - - ,
1 System Support 1

: Programs 1

~-----------..! ,- - - - - - - - - - - -,
I I
1 User Programs 1

~------------'
,--- - - -- ---- -,
I I
1 Data 1
~----- _____ _!

Main Storage
Processor

Data Channel

Controller

Disk Tape Diskette

Controller

Display
Station

Controller

Printer

Controller

Data
Communications

59019002·1

Chapter 1. Introduction 1-11

Main Storage Processor

1-12

Main storage has:

• User programs and system programs-while they run

• User program data-as the user programs need it

Instructions used by the system to process jobs

• Work areas, called buffers, used by the system to process jobs

Chapter 15, "Main Storage," has more information about main storage.
_

The main storage processor processes application program instructions and system
commands. The system is designed so that the main storage processor can devote
full time to processing instructions; it does not have to do other things such as get
data for programs or control input and output; the control storage processor takes
care of those things.

Control Storage

Control storage, as its name implies, controls important system activities. Control
storage contains system programs that do input/ output and supervisory functions.
Because the system has a separate area for these functions, more of main storage
can be used by application programs.

For more information about control storage, see "Control Storage Considerations"
in Chapter 1 7, "Jobs and Job Processing."

System Unit

LJ
'\

Main Storage

Data or Instructions
,-- - - - - - - - - - -.
1 System Support 1

Control Storage
,------ - -- ---.
1 Control Storage 1
1 Program 1

~------------' ,- -- - -- ------.
1 Control Storage
: Processor
~------------'

Controller

Disk Tape

Data Channel

Diskette
Display
Station

: Programs 1

~------------' ,- - - - -- - - - - - -.
I I
1 User Programs 1

~------ ------' ,- - - - - - - - - - - -.
I I
1 Data 1

~----- ------'

Main Storage
Processor

Data
Printer Communications

59019003-1

Chapter 1. Introduction 1-13

Control Storage Processor

1-14

Just as main storage has its own processor, so does control storage: the control
storage processor. This processor controls input and output and does supervisory
functions, which allows the main storage processor to devote its time to processing
application program instructions. The control storage processor:

• Allocates main storage for application programs

• Handles data input and output for programs

• Diagnoses and recovers from errors

• Manages system resources

• Controls the main storage processor

• Allows use of the scientific instruction set for BASIC and FORTRAN IV

There are several types of control storage processors:

• Control storage processor (CSP) stage 1 (CSP 1.3) has 32K-words and is 1.3
times faster than System/34.

• Control storage processors (CSP) stage 2 and 2.1(CSP1.8) have 64K-words
and are 1.8 times faster than System/34.

Control storage processor (CSP) stage 3 (CSP 2.3) has 64K-words and is
approximately 2.99 times faster than System/34. It is also 2.3 times faster
than stage 1.

Note: 1 K-word is 2K-bytes long.

I Data Channel

A data channel controls the flow of data between control storage and the input and
output devices. The data channel is like a pipeline between control storage and the
devices.

System Unit

LJ
\.

Data or Instructions

Control Storage .- ---- -- - ----,
1 Control Storage 1

: Program 1

~-----------...!
,- - - - - - - - - - - - I
1 Control Storage
: Processor ____________ _]

Main Storage .-- - - - --- ----,
1 System Support 1

: Programs 1 ____________ _!

.--- - --------,
I I
1 User Programs 1 !_ ___________ _.!

.---- --------,
I I
1 Data 1 !_ _____ _____ _.!

Main Storage
Processor

Data Channel

Controller

Disk Tape Diskette

Controller

Display
Station

Controller Controller

Data
Printer Communications

59019004-1

Chapter 1. Introduction 1-15

Buffer Areas and Controllers

Disk Storage

1-16

The data channel uses an input/ output controller and work areas called buffers to
store data that comes from or goes to disk, diskette, or tape. (Other devices don't
have buffers.) The buffers allow the devices to be used at the same time without
slowing the performance of the system.

The data channel is shared by all the system devices.

Other input/ output controllers process data going to or from the other devices used
by the system, such as display stations and printers. Because controllers handle
input and output requests from the data channel, the control storage processor
need not bother with the requests.

Main storage and control storage are used primarily to process information; they
are not intended to store all of your information. Nearly all of your programs, files,
and libraries are stored on disk (you probably put your infrequently used
information on diskette). The system programs, files, and library are also stored on
disk.

Several sizes of disk storage are available. The smallest disk holds 30 megabytes of
information; the largest disk holds 358 megabytes of information.

In comparison, the smallest main storage size is 128K bytes and the largest size is 7
megabytes, much less storage than is available on disk.

The system unit can have one to four internal disks. These disks are not removable.
Two disks can be externally attached depending on the system unit.

]

Chapter 4, "Disk Storage," contains more information about disk storage.

Diskette Storage

A diskette is a thin, round, flexible plate that looks very much like a 45 rpm record.
To help prevent damage that might result from handling, a protective jacket
permanently encloses a diskette.

r;J[l--1
d
0

Diskette

---- [[] --

Chapter 1. Introduction 1-1 7

1-18

You can store files and libraries on diskette rather than on disk. Diskette storage is
called off-line storage because you can take the diskette out of the system and store
it in a safe place. (In order for information to be used by a program, the
information must be on disk.)

Information is stored on diskette for several good reasons:

• To create a backup copy of the information so that it is in two places at the
same time: on disk and on diskette

• To free disk storage for oi:her information

• To exchange information between systems

The system unit has a diskette drive, which is the mechanism that reads data from
and writes data to diskette. The system has either a diskette drive that can hold
one diskette, or a diskette magazine drive that can hold three individual diskettes as
well as two diskette magazines.

A diskette magazine is a container that holds up to 10 diskettes. Diskette
magazines are handy for saving and restoring files and libraries that won't fit on a
single diskette.

Diskettes have several formats, types, and storage capacities.
Chapter 5, "Diskette Storage," has more information about them.

Tape Storage

You can also use magnetic tape on reel or cartridge, depending on your system
unit, to store your files and libraries.

Figure 1-3. Tape on Reel

Chapter 1. Introduction 1-1 9

l-20

Figure 1-4. Tape on Cartridge

Tapes are handy for saving and restoring files and libraries because:

• Large amounts of information can be read from or written to tape faster than it
can for diskette.

• More information can be stored on a tape than on a diskette.

Tapes have several formats and storage capacities. Chapter 6, "Magnetic Tape
Storage," has more information about them.

Display Stations

Display stations are extremely important devices on the system because they bring
the computer to the users. Each person using a display station can feel that he has
the complete system to himself.

Display stations allow the system to operate in an interactive environment. This
environment puts the power of the computer on the desks of the users. Many users
(but only those you want) have simultaneous access to current information, and
data is entered by the people who use it. Users in this environment enter data
before or while a program runs, request to see the latest information in the files,
start jobs, and receive the output.

Chapter 1. Introduction 1-21

1-22

l

The interactive environment makes your job extremely important because you
design the displays so that the workers can easily use them, design the files so that
users can have simultaneous access to the information, and design the programs so
that several people can use them simultaneously.

Several display stations are available on the system. Each display station can be
attached locally or remotely to the system. Local display stations are near the
system, within 1524 meters (5000 feet), and cabled into the system unit. Remote
display stations can be farther away from the system and are connected to the
system unit using a communications line and a controller.

Whether the display station is local or remote is not significant to the user; he sees
the same information and uses the display station the same way. For you, however,
there are programming considerations for remote displays. These considerations
are described in Chapter 13, "Displays."

When your system was configured:

• One display station was designated as the system console, from which an
operator controls the entire operation of the system.

• One or more of the display stations may have been designated as subconsoles,
which means that they can control (for example, start and stop) one or more
printers.

• One or more display stations may have been designated as command display
stations, from which users (including programmers) do their work. Rather than
control the entire system, each user controls his own work.

• One or more display stations may have been designated as data display
stations, which are always under program control.

From the programmer's view, a display station can request (start) a job or can be
acquired by a job that has already been started. A requesting display station starts
an interactive program. The display station may be used later for data input and
output. An acquired display station does not start an interactive program; it is
acquired by the program after the program begins. The acquired data display
station is used for input and output of data.

Work Station Data Management

Work station data management is a system function that allows programs (and,
therefore, display station users) to use display stations as they would any
input/ output device. Work station data management allows your programs to treat
a display station as any other file; the display station becomes another way to read
data into the system and display output from the system.

The programs you code that use display stations are called interactive programs.
Work station data management communicates with your interactive programs by
using display formats, which define what information should be displayed or read
from the display station. You design the displays (what the users see on their
display stations), create the display formats, then design and code your programs to
use the display formats. When your interactive program runs, work station data
management brings your data and display formats together, showing your
information to your users. Chapter 13, "Displays," provides more information
about how you design and code displays. It also provides more details about work
station data management.

Chapter 1. Introduction 1-23

Data Communications

1-24

Using data communications, System/36 can send and receive information from a
wide range of devices and systems. System/36 can act as a host system to remote
work stations, act as a secondary station to a remote host system, or communicate
with another system as a peer. Programming support for System/36
communications consists of the following:

• Base SSP

Remote work station support (RWS)

Batch binary synchronous communications

3270 remote attachment

• Communications feature

Base support for all communications features

Autocall support

X.25 support

Basic conversation support for advanced program-to-program
communications (APPC)

Asynchronous communications feature

Intra

• SSP-ICF Finance

• · APPC, BSCEL, CCP, and Peer Subsystems

• Multiple Session Remote Job Entry (MSRJE)

• CICS, IMS, SNUF Subsystems

• 3270 Device Emulation

• Distributed Data Management (DDM)

• Communications and Systems Management (C & SM)

Alert support

Distributed Host Command Facility (DHCF)

Distributed Systems Node Executive (DSNX)

Printers

• S/36-S/38 Display Station Pass-Through

• SNA/ Advanced Peer-to-Peer Networking (SNA/ APPN)

• IBM Token-Ring Network

Information about using communications can be found in the manuals for the
individual features. These manuals are listed in the Guide to Publication or Guide to
Optional Information

Like display stations, printers can be installed in the users' departments.
Frequently, a display station and printer are side by side so that the printed
information is readily available to the users.

Several printers are available on the system. They provide an assortment of speeds,
character sets and other options. Like display stations, printers can be attached
directly or remotely to the system depending on your system unit.

Chapter 1. Introduction 1-25

Printer Data Management

Spooling

1-26

Just as work station data management is the system function that allows your
programs to use display stations, printer data management is the system function
that allows your programs to use printers.

When producing reports, your programs create a print file that contains print
records. Printer data management ensures that the information is printed.
Chapter 3, "Printed Output," contains more information about printer data
management.

Spooling is a system function that saves printer output on disk for later printing.
Even though printers can print at very high speeds, the processing unit can work
much faster than a printer. If the processing unit could not start another job until a
printer finished the output for the current job, the system would run very
inefficiently.

The system can save output from one or more programs on a queue on disk (the
queue is called a spool file) while the printer is printing other output. The system
then processes the next job while the printer works at its own speed, taking the first
job's output from the queue and printing it, then printing the next job's output, and
so on down the spool file.

The spooling function is requested when the system is configured. Thereafter,
spooling occurs automatically. Chapter 3, "Printed Output," has more
information about spooling.

Security

Physical Security

Data Security

Security is the protection of data, system operation, and system devices from
accidental or intentional damage or exposure. What follows is an overview of the
two types of security: physical and data.

Physical security involves protecting devices against damage and protecting the
entire system from being used by people who are not supposed to use it. Ways of
ensuring physical security are:

• Put the system unit in a locked room.

• Use the keylock on the system control panel.

• Put a keylock feature on the display stations.

• Copy programs and data onto diskettes and put them in a safe place (for
example, an off-site location).

• Print listings of programs and files and put them in a safe place.

As a programmer, you would most likely be involved with the last two items in the
list.

Ways of protecting data in the system are:

• Password security. A user must enter an identifier and a password to sign on a
display station.

• Badge security (display stations must be configured with badge readers). A
user must enter an identifier, a password, and move a badge through the badge
reader.

• Menu security. The user is restricted to one menu (a default menu that
appears when the user signs on) or to other menus that the user can display
from the default menu.

• Resource security. Files, libraries, folders, subdirectories, folder members, and
groups are used only by those who are supposed to use them.

• Communications security. A remote location must identify itself with a remote
location name and location password before it can run programs on your
system.

As a programmer, you would most likely be involved with menu security and
resource security.

Chapter 1. Introduction 1-27

Application Overview

1-28

As defined at the beginning of this chapter, an application is a group of programs
that apply to a particular business function, like accounts receivable or inventory
control.

Although there are many different types of applications, most of them are made up
of the components shown in the following diagram. You design and create these
components so tfo1t the application users get the results they want from the system.

APPLICATION USERS

Programs
Procedures/ Jobs
Manus
Display Formats
Message Members

The sections that follow present an overview of each component.

0

Printed Output

Menus

Printed output consists of the reports and listings that the users need. Examples of
printed output are paychecks, inventory status reports, inventory reorder reports,
picking lists, and customer master file lists.

Chapter 3, "Printed Output," has information about designing and programming
printed output.

A menu is a displayed list of items from which an application user can make a
selection. For example, here is a menu a user might see to begin a billing
application:

MAIN BILLING MENU

1. Enter or change orders
2. Release orders
3. Print picking slips
4. Print invoices
5. Go to inquiry

24. Sign oft

Enter option number:

1-!!!::'.:'..~.':::!.~-.:!?..::.:·-, ... cl ~~~
-· F...E::; =:-.:FZ.

Menus can simplify work for the applications users if you design the menus with
the users and their jobs in mind. Chapter 12, "Menus and Menu Design," has
more information about designing and creating menus.

Chapter 1. Introduction 1-29

Application Displays

1-30

Application displays are working displays from which users enter, request, and
update information. Menus usually lead to application displays. For example, the
following is a display on which a user entered a customer's order:

OllOEREtlTRY

Orllerlulll:ler: 111000

SOLDTO: CDllnely'sMDtl!I SllIPTO: connely'sllotel
3741511Entl!"11riHDrive 3741SllEnterpr1seDrlve
c.denton JllO 65020 C1111cl1mton JllO 65020

Custa.er PO: S11Hllln: 12079

Line ltellllo. Qty Deser1ptllhl Price '-aunt
01 20000100 l Executheswhel 250.00 250.00
02 10000600 1 S1ngltP1ddesk 100.00 100.00

03 !0000300 2 Sflcretar1ill ch1ir 99.00 198.00

Cad2·Endorder,surtnewarder Cllld7·Endarderentry
CllllB·P19ethroughorders Clldl9·C1nctlordel' Help-Assistance

Like menus, application displays can simplify things if you design them with the
users and their jobs in mind. Chapter 13, "Displays," has information about
designing and creating displays.

Programs

Files

You can code programs in Assembler, BASIC, COBOL, FORTRAN IV, RPG II
and WSU; or you can create programs with DFU. Regardless of the language or
utility you choose, programs do the work that the users request. Providing all the
functions of an application may take dozens, even hundreds, of programs.

Applications usually have a mixture of interactive and batch programs. Interactive
programs communicate with one or more display stations; batch programs do not
have this interaction. Interactive programs are generally used for data entry,
inquiry, and file update. Batch programs are generally used for printing reports and
applying a batch of transactions to a master file.

Chapter 16, "Programs," has information about designing and coding programs.

A file is a set of related records treated as a unit. Three main types of business
files are transaction, master, and history.

Transaction files are rather temporary in the sense that they do not remain
unchanged for very long. They contain data to be transferred to other files or used
by other processes. A file holding the day's orders is a transaction file; once the
data from it is processed, the orders are probably transferred to another file.

Master files are more permanent; the records within them contain frequently
referenced information that reflects current status. A customer master file, for
example, might contain the name, address, telephone number, and account number
of each customer you do business with. An inventory master file might contain
prices and descriptions of items for sale.

History files are almost never referenced, but may be retained for a period of time
for legal or security reasons. A file containing all orders received over the past
three years filed in chronological order would be a history file. The transaction file
of daily orders would be added to the history file after the orders had been
processed.

Deciding what files you need, what information they should contain, how they
should be organized, and how they should be processed are some of the design
decisions you make.

Chapter 7, "Designing Records," describes how to design records.

Chapter 8, "Files," has the information to help you make the best decisions.

Chapter 1. Introduction 1-31

Libraries

1-32

A library.is a named area on disk that can contain programs and related
information (not files). Libraries can contain the elements of an application. For
example, all the menus, displays, programs, procedures, and message members for
an accounts receivable application could be in one library.

In addition to grouping components of an application, you can use separate
libraries for:

• A particular user

• A particular display station

The system can contain the following types of libraries:

• The system library (named #LIBRARY). This library contains most of the
IBM-supplied programming support.

• Program product libraries. These libraries contain the IBM-supplied
programming support for the Utilities Program Product, Development Support
Utility, the OFFICE/36 Program Products, the PC Support/36 Program
Product, and the programming languages.

• Your user libraries. These are the libraries that you and others create. These
libraries contain your programs, menus, displays, procedures, and message
members.

Four types of members can be in a library:

• Source members contain (1) the program statements that are used by a
language compiler or the BASIC interpreter and (2) statements used by the
system to create display formats, menus, message members, and help text.

• Procedure members contain the statements necessary to run a program or a
group of programs.

• Load members contain information in a form that the system can use directly.
Examples of load members are compiled programs, display formats, menus,
and message members.

• Subroutine members are members that must be link-edited (using a system
program called the overlay linkage editor) before the system can run them.
Link-edit means to combine a program with one or more subroutines to create
a single load member. BASIC and DFU programs can be stored as subroutine
members as well.

Chapter 9, "Libraries," has more information about creating, maintaining, and
using libraries.

Folders

A folder is a named area on disk that can contain members created by IDDU,
DW /36, Personal Services/36, and PC Support/36.

You can group folders in various ways, and each folder can contain multiple
members of the same type. Folders are often grouped in the following ways:

• By user (each user automatically is assigned his own folder)

• By projects, using resource security to allow only certain users to access them

Some of the types of folders you might use on your system are as follows:

• Document folders created by OW /36 or PC Support/36

• Data dictionaries created by IDDU

• Mail folders created by Personal Services/36

• Mail log folders created by Personal Services/36

Some of the member types kept in folders are as follows:

• Text in document folders

• Letters in mail folders

• Field, format, and file definitions in data dictionary folders

Chapter 10, "Folders" has more information about creating, maintaining, and
using folders.

Chapter 1. Introduction 1-33

Procedures, Jobs, and Job Steps

1-34

A procedure is a collection of statements that cause one or more programs to run.
Procedures eliminate the need to enter frequently used statements each time they
are required. The procedure statements are in a library member called a procedure
member.

The purpose of a procedure is to run a job. Jobs can have one or more job steps; a
job step is a unit of work done by one program. A job step begins with the LOAD
OCL statement and ends with the RUN OCL statement.

To run a procedure, you can enter a procedure command, which is simply the name
of the procedure member in the library. Procedure commands are usually entered
with information that tells the procedure what to do. The information is in the
form of parameters.

Your application users generally don't know (and don't need to know) the
procedure's name or parameters because you will provide menus for them. The
user selects an option from a menu, and the system runs the appropriate procedure:
the one you told it to run when you created the menu. The procedure, in turn,
loads and runs the program to do the task the application user specified.

Many procedures are supplied as part of the SSP and the Utilities Program Product.
For example, the SSP procedures allow you to create data files, create libraries, and
copy data files; the Utilities Program Product procedures and the Development
Support Utility procedures (DSU), allow you to create and change library
members.

In addition to using the SSP and Utilities Program Product procedures and DSU
procedures, you can design and create your own procedures.

Chapter 17, "Jobs and Job Processing," in this manual has information about jobs
and job steps.

Chapter 18, "Procedures," in this manual and a chapter in the System Reference
manual have information to help you design and create procedures.

Messages and Message Members

Chapter Review

The system uses messages to communicate with you. Messages can inform you,
request information from you, or notify you of errors that have occurred. Your
programs also use messages to communicate with the application users.

A message member is a place in a library in which you can store messages. You
need not use message members, but their advantages are fairly obvious; your
messages are in one place, and can be referenced by a number called a message
identification code (MIC) from several places: from programs, procedures, and
display formats.

Message members ensure that your application users will not see the same message
worded in several ways, and they save you time because you can code a message
number rather than the message text.

Chapter 14, "Messages and Message Members," has information about messages
and message members.

This chapter provided (1) an introduction to programming the system, (2) an
overview of the system's components, and (3) an overview of application
components.

If you want a description of the application design process, you can read
Chapter 2, "Application Design Steps." Otherwise, you are ready to use Chapters
3 through 19 to design and develop applications.

Chapter 1. Introduction 1-3 5

1-36

Chapter 2. Application Design Steps

Chapter 1 provided an overview of the system and application components. This
chapter introduces the steps that programmers generally follow to design their
applications. It is a good chapter to read if you are about to design your first
application. Although it does not describe a particular design method, structured or
otherwise, the chapter should help you:

• Realize the importance of application design

• Define, organize, and document your application design work

As defined in Chapter 1, an application is a group of programs (and associated
displays, files, procedures, libraries, folders, data dictionaries, and menus) that
allow users to do a particular business function, such as accounts receivable or
order entry.

Application design is the integration of the application components, personnel, and
system devices to accomplish a business function. Application design begins with a
request for system support; it ends with installed, operational programs that meet
the users' needs. When you design an application, you coordinate many
interrelated activities rather than just one activity.

Application Design Steps

The application design steps are shown in Figure 2-1. As you can see, you and the
application users participate throughout the project.

This chapter does not provide a lot of details about any one step. Its purpose is to
help you structure your application design work by describing what an application
designer does and the general order in which he does his work. The steps, of
course, can overlap. For example, you could design a display while you design the
program that uses the display.

Chapter 2. Application Design Steps 2-1

Step Application Users Application Designer

Step 1. Definition Explain current methods. Provide Identifies what users do. Defines
complete examples of input and output input and output. Identifies what the
for current methods. Explain sources application should do. Defines
and destinations of information. application functions. Makes
Describe desired methods for existing preliminary schedule. Reviews work
and additional application functions. with users. Documents the definition.

Step 2. General Design Help define the application functions. Specifies the input, processing, and
Review the design. output for the application in general.

Step 3. Detailed Design Review and agree upon displays and Designs printed output, files, and
reports. displays.

Step 4. Program Design Help define the sequence and Designs programs and then codes
frequency of functions. Identify them.
deadlines and constraints.

Step 5. Testing Help define test cases, test the Codes test cases. Ensures that each
application, and check the results. program and all application functions

work.

Step 6. Conversion and Help convert information. Trains application users. Ensures all
Installation existing information is converted to a

form usable by the new application.
Loads the application components
onto the system.

Step 7. Operation Use the application. Turns the application and
documentation over to the users.

Figure 2-1. Application Design Steps

2-2

Objectives of Application Design

Why should you take time to follow the application design steps? Because if you
don't, here are some things that can go wrong:

• The application might not do what the users want.

• It might make the users drastically change the way (sequence in which) they do
their work.

• It might be difficult to test, debug, and install.

• It might be difficult to maintain.

• As the company grows (bigger inventory, more customers), it might not be
able to handle the growth.

• Items might be overlooked.

• Data might not be available when it is needed.

As you can see, poor planning can be costly. So resist the urge to say, "Let's start
coding. We can work out problems as they occur."

Planning an application is similar to planning your home. Before workers pour
cement and begin building, you consult an architect who:

1. Identifies what you want.

2. Sketches plans based on what you want.

3. Prepares a general schedule of what happens and when.

4. Draws a blueprint for your review.

5. Writes initial specifications for your review.

6. Provides a final blueprint, a detailed specification, and a final schedule to the
contractor and workers.

Chapter 2. Application Design Steps 2-3

2-4

The planning time is difficult to endure because you are eager to get started, but it
pays off. There should be few mistakes and delays. You should have a home that
is completed on time, costs what you expect, and suits your needs.

As an application designer, your objectives are much the same as an architect's.
You prepare and document a plan for developing an application that will be:

• What the users want

• Completed on time with the expected effort

• Easy to use

• Easy to maintain

The application design steps described in this chapter can help you meet these
objectives.

Step 1. Definition

The definition step is one of the most important steps in application design. The
careful work you do during definition will pay off in the remaining steps. For this
step you:

• Identify what the users do

• Define the information they process

• Identify what the application should do

• Define the major application functions

• Make a preliminary schedule

• Review your work with the users

• Document your work

Identify What the Users Do

Talking to the application users is the best way to identify and understand what the
users do. To help you organize your notes and observations, you might make a
work flow diagram. On it, you can indicate:

• What jobs are done

• Who does them

• In what order they do them

• What main steps are involved in each job

• Who provides or collects input

• What happens to the input

• Who receives output

• What management decisions are based on the output

• When are the busiest times during the day, month, and year

• When are the slack times

• What deadlines must be met daily, weekly, monthly, and yearly

• How people would change their jobs to do them better

Chapter 2. Application Design Steps 2-5

Figure 2-2 shows an example.

Deliveries

Mail Room 85 Orders a Day

G 25 Phone Orders

~a Day

1 Customer Services
Customers Department

Customer
records
file

Product
catalog

Figure 2-2. Work Flow Diagram

2-6

Orders in
any form

Prepare orders
for processing

Look up
customer
- -credit check

Verify item
numbers and
descriptions

Route orders
to inventory
check

Bad

No

Orders
control
slip

Order control

10 Per
Day

Rejected
orders

To Inventory Check

Customer
order form

89019008.Q

The work flow diagram is like an architect's initial blueprint. It is your
interpretation and documentation of the current methods of doing work. It is a
good document on which to center your discussions with the application users.

Notice that the work flow diagram can also show information flow. You can
indicate what the input is, who (person or department) provides it, what the output
is, and who receives it.

In addition to analyzing and documenting the work flow, you should collect
documents, forms, written procedures, training manuals, and other items that
workers use to do their jobs.

The work flow diagram and the material you collect will later help you:

• Determine your application's input, processing, and output

• Develop documentation to help people use the application

Chapter 2. Application Design Steps 2-7

Def me the Inf onnation Processed

2-8

To design the application's files, displays, and printed output, you need to know the
characteristics of the data that is processed by the present methods. For example,
as you answer the following questions, you can list the important pieces of
information (and the characteristics of each) that are used as input to the
application or produced by the application. (Figure 2-3 shows an example.)
These items will be the fields in your files, on your displays, and on your reports.

• What information is processed or produced?

A customer order?

A monthly sales report?

A list of items that need reordering?

• What items of information are processed or produced?

Customer name?

Customer number?

Item number?

Item description?

• What attributes does each item have?

All numbers?

All letters?

How many?

• What ways do people find, sort, or report information?

By customer number?

By item number?

By sales region?

By department?

• How much information is processed?

One hundred orders a day?

One thousand orders a day?

• How much information is stored?

One hundred items?

One thousand items?

• What form is the information in?

A telephone call?

A mailed order?

A price list in a filing cabinet?

• What information can be seen or handled only by certain people?

• Who maintains information?

FILE DESCRIPTION
PAGE OF

APPLICATION l DATE

FILE DOCUMENT NAME PREPARED BY

TYPE
FIELD NUMBER OF C CHARACTER REV

NUMBER FIELD NAME CHARACTERS N NUMERIC FIELD SOURCE COMMENTS

-
59019007

Figure 2-3. Information Characteristics

Chapter 2. Application Design Steps 2-9

Identify What the Application Should Do

Talking to the application users is the best way to identify and understand what the
application should do. This seems obvious, but many programmers assume what
users want and discover too late that the application does not do what the users
expected it to do.

Keep in mind that the new application need not do the functions in the same way
as the current methods do them. For example, you might replace some printed
reports with displayed information.

Your discussions can be very informal, but it is a good idea to take notes for future
reference.

Define the Application Functions

2-10

After you understand what the users want, what they do, and what information
they process, you should be able to list the main functions that your application
provides. Items you would list on the application menus are probably the main
application functions. For example:

• Display customer information

• Maintain (update, add, or remove) customer information

• Print customer information

• Print mailing labels

• Save and restore customer information

When you list the functions, you might see some things that only certain people
should be allowed to do. If so, you should consider designing the application to
take advantage of the security features the system has. The System Security Guide
has information about security.

Make a Preliminary Schedule

At this time, your schedule should specify:

• Dates on which you plan to begin and end each of the application design steps.
You can schedule activities to avoid problems (such as converting to the new
application during an extremely busy time of the year).

• Dates when users have time to discuss what they do and what the application
should do.

• Dates when you demonstrate and review application functions with the users.

• Dates when you and management review the application design progress.

Review Your Work with the Users

Document Your Work

You should discuss the definition with those who requested your application and
those who will use it. This review can ensure that you correctly analyzed what they
want.

As you can see, the definition step is a fact-finding step. You organize your
findings, present them to others, get agreement on application functions, and
accurately estimate and schedule the application work.

Before you begin the next step, general design, be sure you have documented your
work. Here are some suggestions for things to document:

• Work flow, which can also show information flow.

• What information is processed and the characteristics of each piece of
information.

• Major application functions.

• A schedule.

• Important assumptions you have made: those that are key to you doing what
you promised. For example, you may have assumed that you and another
programmer will work full-time on the project.

Chapter 2. Application Design Steps 2-11

Step 2. General Design

2-12

In the general design step, you shift your attention from what the present methods
are to how your application can do the work on the system. In the general design
step, you determine:

• What input the application requires

• What output the application produces

• What processing the application does

For example, the following is a general design diagram for an application that does
order entry:

Customer Number
Order Number

Master
Files

Ship-tc:
Miscellaneous
Information:

lte111:
Quantity:

Item
Master
Fila

Transsction
File

Transaction
Hold File

Customer
Orders

>---- 1. The operator enters the customer number and
order number for the order.

2. The appliQation program reads the customer's
records in the customer master file and the
ship-tc master file. The appliQetion program
displays the names and addresses for the
operator tc verify.

3. If requested, the application program shows
a display that allows the operator to change
shlp-tc information and miscallaneoua
information.

4. The application program writes order header
and ship-to records tc the transaction file.

5. The operator enters the items ordered, one
line at a time.

6. The appfication program reads the Item's
record in the item master file and
calculates the price. For each valid
item entered, the application program
writes a record tc the transaction file.

7. The application program redisplays the line
item, showing the item, quantity, and
calculated price.

8. When the order Is completed. the application
program rewrites the order tc a transsctlon
hold file.

9. An application program prints a picking slip
for each order after it la placed in the
tranaaction hold file.

Name:
Add1'81111:

Transaction
Fila

Transaction
Hold Fila

59019008-t

Notice that the information is general. You have not yet designed individual
displays, files, or reports, and you have not decided how many programs you need.
You are trying to get a big picture of what your application needs, does, and
produces.

The output from an application is often the input to another application. In the
general design step, you identify the links between applications, as the following
example shows:

Application

Order
Entry

Shipping

Billing

Inventory
Control

Accounts
Receivable

Input Process

• Retrieve item and customer data

• Record orders

• Produce shipping order (4 copies)

• Sort order copies

• Distribute order copies

• Classify orders as
ship I cancel I back-order

• Record shipping data on order
copy

• Distribute updated order copy

• Retrieve customer and item
price data

• Calculate invoice total

• Record total on invoice

• Distribute invoice

• Record shipping data

• Store updated file

• Retrieve customer invoice data

• Record payment data

• Store updated customer data

• Summarize Accounts Receivable
status

• Distribute report

Output

Shipping
Order

Report

Chapter 2. Application Design Steps 2-13

Step 3. Detailed Design

In the detailed design step, you (1) design each report, file, and display you
identified in the general design step and (2) design application controls.

Designing Printed Output

Chapter 3, "Printed Output," has guidelines for designing your printed output.

Designing Files and Records

Designing Displays

Chapter 7, "Designing Records," and Chapter 8, "Files," have guidelines for
designing files and records.

Chapter 13, "Displays," has guidelines for designing displays.

Designing Application Controls

Examples of Input Controls

Application controls are the plans you put in place to ensure that input data is
correct, that your programs process data correctly, and that the results are correct.

You might verify input by having someone check all input documents before
entering them into the system. For example, someone could verify that all required
information has been filled out, that valid ranges of values have been specified, and
that valid customer numbers have been used.

Also, you can record what input was entered into the system so that loss of an
entire input document cannm go undetected.

Examples of Processing Controls

2-14

A program could count the number of input documents it processes. You could
compare this total with the count that was made when the documents were entered
into the system.

A program can check whether or not records have been sorted into the correct
sequence.

An audit trail can be used to record what work was done on the system and the
order in which it was done. The audit trail can be generated manually by having
users fill out a log of what they did and when they did it. You can also program the
application so it generates an audit trail.

Examples of Output Controls

Output controls report the results of the processing done by the application. These
controls can be especially effective when you combine them with input controls.
For example, a program can compare input totals with output totals or compare the
number of records processed with the number of documents entered to verify that
output is correct.

Documenting the Detailed Design

1 I I I 11 I 1 1 1 2 2 2 2
1234511 719012 345 6 7 I 9 0 I 2 3

" :b3 11-
I

:

Lt R Ill.
IYl'L

rr. fl] ~ UllllAI"
IE II! It

Your documentation for the detailed design step can include:

• The forms on which you design your printed output. On each form, you can
note which program prints the output, who should receive it, and whether it
requires special forms. Figure 2-4 shows a form used to design a picking slip.

• The forms on which you design your files and records. On each form, you can
note the programs that use the file and how each program uses the file.
Figure 2-5 shows a form used to design a transaction hold file.

• The forms on which you design your displays and menus. On each form, you
can note the display name or menu name and what programs use them.
Figure 2-6 shows a form used to design a menu used to maintain a customer
file. You can also save the output that prints when you create the displays.

2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 ,,,,, .. ,, 4455555 5 5 5 5 5 116 fl 116 1111 111117 7 7 7 77 7 7 7 7 1111 •• I. 45671 901 234 5 6 7 I 9 012345fl7 1901234 5 fl 7 19 0 I 2 34 56 7190 1 2 3 45 6719 0 1 2 3 45 67

IO ~
[i] 'Le;~ ~I x
lilal ~ r,, 01 n1
LIEI 11A1 1£ TI 15~19
1511~ IS -~ 171

l51 rrti . •
~ I~~~ II! llC ~

ICliill liilii E.
0 D IA E >IRIDlf I~ IPI ~
IMlN7IOi] l'flVI

lY l1
c f e I~ 11

119
890

Figure 2-4. Form for Designing Reports

Chapter 2. Application Design Steps 2-15

INPUT /OUTPUT Record Description

Record Name TRANSACTION HOLD System -----------
File Name Translog

File No. ----
Page __ of __

Date _____ _

File Organization Direct Sequence Record Code, Customer Number Prepared by _A_. _S_m_it_h_

Record Length _1._.'2,__'8 ____ _ Key Customer Number Key Length;;6 _______ _

Created by _O""'"R_'D_I_T_M ____ _ Used by ORD/TM, ORDPRT Updated by O_R. __ 'D_R_1?_T ___ _

Field Decimal Location
Values Field Description Name Length Position Format From To

Relative Record Number 128 N 1 128
*Customer Record Information
CV Record Code OCODE 2 A 1 2
D or blank Delete Code ODELET 1 A 3 3

Customer Number CUSNO 6 N 4 9
Order Number ORD NO 6 N 10 15
Customer Name CNAME 25 A 16 40
Customer Address CAD DR 25 A 41 65
City CCI TY 22 A 66 87
State CS TATE 2 A 88 89
ZiJ2. Code CZIPCD 5 N 90 94
Salesman Number CSLSNO 2 N 95 96
Purchase Order Form CPONO 10 A 97 106

*Shi_..12_ to Record Information
cs Record Code OCODE 2 A 1 2

Delete Code ODELET 1 A 3 3
Customer Number CUSNO 6 N 4 9
Order Number ORD NO 6 N 10 15
Ship-To Name SNAME 25 A 16 40
Shi....12.-To Address SAD DR 25 A 41 65
Cit_y SCI TY 22 A 66 87
State SSTATE 2 A 88 89
Zi_..12_ Code SZIPCD 5 N 90 94

*Line Item Record occurs 1 to 3 times for each Customer Record
Record Code 2 A 1 2
Delete Code 1 A 3 3
Customer Number 6 N 4 9
Order Number 6 N 10 15
Order Line Number 2 N 16 17
Item Number 6 N 18 23
Item Descr~tion 20 A 24 43

_Q_uantit_y Ordered 6 N 44 49
Price 6 N 50 55
Amount Extended 8 N 56 63
Warehouse Location 5 A 64 68

Figure 2-5. Form for Designing Files

2-16

Display Screen Layolit Sheet

COLUMN

01
~~~_,_~...., ....... ~""-l ....... -'--'-''--'--'-~"'-'-+~"'-'-'--'-"'-'~-'-+-'-'-'-~"'-'-'--'-""-li-"--'-~'-'-'-~~~'-1--'-~'-'-'-~"'-''-'-+-.............. -'-~"'-'-'-~·t--'-'--'-.._.~_,_~ ...... 

021-...._._.__;_j_~........,c...j....~~..L.~.....4 ........ ...-L..JMi:~l;.._/iJ.'l!ii,t.Ql~'L_l:+f.~~..L_~.....4~~....L.~~--J-.~_,_jl__._~..._+_._._~~~-"-I 
03 

l-''-'-'-.._. .............. ~.._. ....... _._.._. .............. ~ ....... -+-'-"'-'-'--'-"'-''-'-'-+-'~-'-~"'-'-'--'-'-'r'"-'-~'-'-'-~"'-'-j--'-....... '-'-'--'-"'-''-'-+-.............. -'-~"'-'-'--'-t--'-'--'-"'-''-'-'-~"-I 

~~~_L_._~_._.j.jt....._..JJU.S.,flh.Zlfl,...~tslti'rll/.J~1.l..~~~q;li.lf............L~.........J~~..L...~....f--~.....J.~~~~..L~~_.__j 
05

~~~~L~~~~lllJ.'J..IJ.r&lllJ,,_.£.,/,A/JJ.Q.«t'dll~fll.{X!Ae.h&fljr.J__t;J.:.GS.:1J2i"4~'..lb~~afi'fJJJL.__.L__..__..__.._.J_~~~~.....J 
07 

~~._.__._i_._~~~,_I!!Jrr.J..fl:l..~t!J:l.~fd'l.~'Ltt.VAlr&tJ.Jalfl.-.-_.._._......L"-'--'.........J~~..L...~..+-·~.....J._.._._~~~~_.._.__.__i 
09 

11 

~121--..._._._i_._ ............. 1.&. ........ ::2,G~LJ~illil2dlurl(.J~l.A~"11...tl.J!:iQlllIJ~.L. .............. .j....... ......... ..._l_._.._._.....j...._._._...J._.._._....._...J_......._......_L_ ......... ........J 
a: 13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Figure 2-6. Fonn for Designing Displays and Menus 

71-80 
90123456789 

Chapter 2. Application Design Steps 2-17 



Step 4. Program Design 

Documenting Programs 

2-18 

In the program design step, you design and code the application programs, jobs, 
and procedures. 

Chapter 16, "Programs," has guidelines for designing programs. 

Chapter 17, "Jobs and Job Processing," has guidelines for designing jobs. 

Chapter 18, "Procedures," has guidelines for designing procedures. 

Documentation of your programs can include: 

• A definition of the function (such as order entry) 

• A definition of the input (such as displays and files) 

• A definition of the output (such as displays, files, and reports) 

• Logic of the current program (See Figure 2-7 for an example.) 

• A history of the revisions that have been made 

• People to contact for further information 



CMAST 
Customer 
Master File 

File No. 
DOR-1 

ORDPRT 
Print Packing 
Slip 

Start 
Order 
Display 

ORDHDR 
Order Entry 
Processing 

ORDITM 
Order Item 
Processing 

Transaction 
Hold File 

Ship-to 
Display 

file No. OOR-4 

Two-Part Paper 
Form: 6311Y 
Report No. 6311-A 

SMAST 
Ship-to 
Master 

File No. 
DOR-2 

File No. DOR-3 

59019011-0 

Figure 2-7. Example of Program Logic Documentation 

TITLE ORDER ENTRY APPLICATION 

I AUTHOR 
I DATE 

PAGE 1 .OF 

Notes: 

Run Frequency: Daily 
Volume: Approximately 500 transactions per day 

ORDHDR (OR-01) 

Run Time: 1 hour 

Accepts customer number, order number, and 
ship-to information, and writes header customer 
and ship-to records to the transaction (TRANS) 
file. 

ORDITM (OR-02) 

Run Time: 30 minutes 

Accepts item number and quantity information, 
and writes an order record to the transaction hold 
(TRANSLOG) file. 

ORDPRT (OR-03) 

Run Time: 10 minutes 

Generates picking slips, and updates a control 
record in the TRANSLOG file. 

1 

Chapter 2. Application Design Steps 2-19 



Step 5. Testing 

Allow Time for Testing 

Testing is what you do to ensure that your application: 

• Accepts input correctly 

• Processes the input correctly 

• Produces output correctly 

• Is easy to use 

• Presents meaningful error messages for the users 

• Runs as fast as you expected 

• Has acceptable response times for the display stations users 

Be sure to allow plenty of time to test your application. For applications that have 
several complex programs, you might need more time to test than you do to design 
and code. 

Divide the Test into Manageable Tasks 

2-20 

Whereas you design an application top-down, from general functions to specific 
programs that do each function, you should test the application from the bottom 
up. That is, you first test that each program works, then you test that the functions 
work. Some functions require only one program; therefore, you would be able to 
test the function and the program at the same time. 

Test simple programs within simple functions first. For example, an inquiry 
program within an inquiry function is usually a good place to start. 

Each test should build upon the preceding one. For example, if a program reads 
three different record types, you should test that the program can read one, then 
two, then all three record types. 

After you test each application function, test the application as a whole in the 
environments it will be used (for example several people using it at the same time). 
When you are confident that the entire application works by itself, run it with other 
applications. These steps can help you find concurrent processing errors such as 
file sharing problems or incorrect input received from another application. 



Let Users Define Test Cases 

Use Realistic Test Data 

Testing, like the other steps in application design, needs user participation. Let the 
users help define the test cases. The users should be able to define typical 
situations that test each application function. 

Use realistic test data; for example, use actual customer numbers, item numbers, or 
orders. Label test data and save it for future reference. You will want to retest the 
application if you uncover errors or if you change functions after the application is 
installed and operational. 

Test data should include (1) normal and expected conditions and (2) error and 
unexpected conditions. 

Normal and Expected Conditions 

Test that the application works when everything goes as it should; for example, 
without operating errors, without program errors, and with correct input. For 
example, you might test these order entry functions under normal conditions: 

• Open a new account 

• Update a new account 

• Close an existing account 

• Update many existing accounts 

Generate a picking slip report 

Error and Unexpected Conditions 

To test these conditions use incorrect data or operating procedures. For example: 

• Use nonexistent account numbers 

• Update a closed account 

• Enter data that has incorrect dates or totals 

• Use combinations of data that have multiple errors or data that has both 
correct and incorrect values 

• Run a program with wrong input 

Chapter 2. Application Design Steps 2-21 



Use Sufficient Amounts of Test Data 

Document the Test 

2-22 

In addition to using realistic test data, you should test that the application can 
handle the expected volumes of data. You might, for example, test how many 
orders can be processed in an hour or in a work day. 

Keep a record of test data used for input, an explanation of each test, and 
descriptions of the expected results from each test. 



Step 6. Conversion and Installation 

In nearly all cases, your application replaces current methods, even though they are 
partly or entirely manual methods. At some time, the current methods must be 
replaced by the new application. There are two basic methods of converting to the 
new application: 

• The new application runs in parallel with the existing methods. The new 
application is carefully watched and evaluated. When the new application 
performs as intended, the old methods are discontinued. 

• The new application immediately replaces the existing methods as soon as the 
application is tested. 

The parallel method is, of course, more expensive and takes more of the application 
users' time than immediate replacement because information must be entered twice 
and results must be compared with one another. But the parallel method may be 
safer because you have a backup if the new application fails. 

Immediate replacement may be the only way to convert your interactive programs 
or it may be the better way to convert if you have a relatively simple application. 

When you use the immediate replacement method, be prepared to handle the 
transition period when neither the old method nor the new method provides the 
latest information. This transition time might be only a few hours, but you should 
plan how to conduct business as usual during it. 

Regardless of the method you choose, you need to convert the information in its 
present form to a form usable by your application. This usually involves creating 
master files and entering information in them (for example a customer file or an 
inventory file). The information must also be checked for accuracy and corrected 
if necessary. Of course, if you have thousands of customers or parts, this initial 
entry and verification can take quite a while. A schedule is helpful for planning 
what happens and when during conversion and installation. 

You need not convert and install all application functions at the same time. For 
example, you might install inquiry functions first and install more complex 
functions such as online file maintenance later. 

Chapter 2. Application Design Steps 2-23 



Step 7. Operation 

2-24 

In the operation step, you ( 1) plan and provide what users need to run the 
application and then (2) turn the tested, installed application over to the users. 

What do the users need to run your application? They may need some or all of the 
following: 

On-the-job training. 

• Run books (how to start the application, the steps for normal operation, error 
conditions and messages, how to end the application, how to interpret the 
output, samples of all forms). 

Instructions for doing their jobs if the application stops working. 

Scheduling instructions. (Should this application be used before or after other 
applications? In what order should the application functions be run?) 

Backup and recovery instructions (for example, what data to save, when to 
save it, and how to recover from errors). 

• Passwords if password security is active. 

The system operator, as well as the application users, might need instructions from 
you. For example: 

• When to start or stop the application 

• What to do if application users have problems 

• How and when to back up the application programs and data 

A reminder: you need not write all of your instructions on paper. The system lets 
you code help displays, which are online explanations of users' menus and displays. 
Users can see your instructions at the touch of the Help key. Chapter 12, "Menus 
and Menu Design," has information about creating help for menus. 
Chapter 13, "Displays," has information about creating help for displays. 



Chapter Review 

Again, the application design steps are: 

1. Definition 

2. General design 

3. Detailed design 

4. Program design 

5. Testing 

6. Conversion and installation 

7. Operation 

The most important points to remember are: 

• Take time to do a thorough definition so that you understand what the users 
want and what the application should provide. 

• Work with the users from the beginning to the end of the project. 

• Plan and document each aspect of your application. 

Using the Remaining Chapters 

You can use the remaining chapters in any order as you need them. Each one has 
useful information about how the system works, how to design application 
components, and how to program the system. The chapters sometimes summarize 
a topic. 

Chapter 2. Application Design Steps 2-25 



2-26 



Chapter 3. Printed Output 

The purpose of this chapter is to: 

• Describe ways in which the system prints data 

• Describe print spooling, which can be used to efficiently manage the printing of 
data 

• Suggest ways to design printed output 

• Provide printer performance considerations 

• Provide programming tips and techniques regarding printed output 

• Describe merging text and graphics in the printed output 

Chapter 3. Printed Output 3-1 



How the System Handles Printer Output 

3-2 

Printed output on the system is done either by printer data management or by the 
system list function. Printer data management handles most of the printed output. 
System list mainly handles the output created by the SSP system utilities (for 
example, the $MAINT utility program). 

The following list shows those programs that use printer data management: 

User-written programs 
Print key 
SSP data communications programs 
Sort 
Utilities programs (SEU, DFU, SDA, and WSU) 
Development Support Utility (DSU) 
Business Graphics Utilities/36 (BGU/36) 
RPG II compiler 
COBOL compiler 
FORTRAN compiler 
Assembler 
BASIC 
DW /36 (DisplayWrite/36) 
Query/36 

The following list shows those procedures and utility programs that use system list: 

BLDMENU ($BMENU) 
BUILD ($BUILD) 
CATALOG ($LABEL) 
EDITNRD ($SINR) 
FORMAT ($SFGR) 
HISTORY ($HIST) 
LISTDAT A ($COPY) 
LISTFILE ($BICR, $COPY, and $MAINT) 
LISTLIBR ($MAINT) 



Printer Data Management Output 

Printer data management handles most of the output from the system. The 
following diagram shows how printer data management handles printed output. 

Program Producing 
Printed Output 

Sends Re quests to 
a Print Oat 

Printer Data 
Management 

Adds Oat a and Control 
r Printer Codes fo 

Printed Output 
59019012-0 

Printer data management takes the print requests from the program, inserts the 
proper control codes for the printer being used, and sends that information to be 
printed. This causes your output to be printed with the paging and spacing that 
your program requested. 

The printed output from a program can be sent to a specific printer by using a 
PRINTER OCL statement. If a PRINTER OCL statement is not specified, printed 
output is sent to the session printer for the display station. You can use the 
STATUS SESSION control command to display the ID of your session printer. To 
change your session printer, you can use the PRINT procedtire. This will change 
the printer only until you sign off the display station. 

When you sign on, the session printer is determined by the value that was specified 
during system configuration. The configured session printer is shown by the 
STATUS SESSION control command. To change your configured session printer, 
use the SET procedure. This will change the printer until another SET procedure is 
run or the system is reconfigured; that is, the change will still be in effect the next 
time you sign on the display station. If you want to permanently change the default 
printer assignment, use the CNFIGSSP procedure. 

Chapter 3. Printed Output 3-3 



System List Output 

3-4 

The output from SSP utility programs is handled by a special system program called 
system list. System list allows output to go to a printer or a display station. The 
following diagram shows how the system processes system list output. 

SSP Utility 
Program 

Output to Be Listed 

t 

System List 

T 
or 

I Data and Control 
Codes for Printer 

aOa 
ar la 

Printed Output 

Data and Control 
Codes for Display 

0, cl 
( . 

Displayed Output 

59019013-0 

System list takes the output listing requests from the utility program, determines 
whether the output is to be printed or displayed, and sends that information to the 
appropriate device. The printer or display station that is receiving the system list 
output is called the system list device. 

When you first sign on, the system list device is the same as the session printer. To 
display the current system list device, use the ST A TUS SESSION control 
command. To change the system list device, use the SYSLIST procedure. This 
procedure changes the system list device until: 

• Another SYSLIST procedure is processed. 

• A PRINT procedure or the FORMS OCL statement is processed. 

• You sign off the display station. 

The System Reference manual has more information about using the SYSLIST 
procedure. 



Print Spooling 

Advantages 

Because main storage processing is much faster than printing, the system spends a 
lot of its time waiting for the printer to print data already processed. To help 
eliminate this waiting, you can use print spooling for all your printers. Print 
spooling is the capability of the SSP to store printed output on disk (in an area 
called the spool file) for later printing. 

Print spooling has several advantages over normal printing: 

Programs can run faster because they do not have to wait for the printer to 
print each line of data. 

• More than one program that sends output to the same printer can be run at the 
same time. These programs do not have to wait for the printer to become 
available. (Without print spooling, only one program could use a printer at any 
one time. Other programs that direct output to that printer would have to 
wait.) 

Programs producing output can be run even if the printer is not working. The 
data is saved on disk and can be printed when the printer is working again. 

• Multiple copies of the same output can be produced without running the 
program multiple times. 

• Different priority levels can be assigned to printed output, so that a report with 
a higher priority can be printed before less important output. 

• Output can be grouped, then printed by the type of form used (for example: 
invoices, narrow paper, or regular paper). 

• Printing can be restarted if printing errors occur without running the program 
again. 

Output can be redirected to another printer. 

• Printing output from the spool file makes more efficient use of the main 
storage processor, the printer, and the communications lines (for remote 
printers). 

Separator pages can be printed for each job. 

Chapter 3. Printed Output 3-5 



How To Select Print Spooling 

You decide whether to use print spooling during system configuration. The manual 
Changing Your System Configuration has more information about system 
configuration. The default is to use print spooling. 

If you select print spooling, you can later cancel it by using the IPL override 
displays. You can also use the SPOOL-NO parameter of the PRINTER OCL 
statement to avoid print spooling for just one print file as opposed to canceling 
spooling for the whole system. 

Control of Print Spooling 

The system operator has control over all printers and all print entries in the spool 
file. The system operator can, for example, start or stop the printers as well as 
change the number of copies to print. 

Subconsole operators have control over their designated printer(s) as well as all 
print entries in the spool file to be printed on their designated printer. Display 
station operators have some control over the print entries they create. For 
example, they can change the number of copies to print. 

The commands used to control print spooling are shown under "Controlling or 
Displaying Print Spooling Information" on page 3-23. 

How Print Spooling Works 

3-6 

When print spooling is active, a system program called the spool intercept routine 
intercepts each line to be printed and stores it on disk in the spool file. When a 
printer is ready to print the output, another system program called the spool writer 
gets lines from the spool file and prints them. Figure 3-1 shows this process. 

In this example, three programs are running on the system. Programs 1 and 2 each 
print one report; program 3 prints two reports. Each report is placed in separate 
print file (the printed output from a program is called a print file). Each of the four 
reports is handled through a separate intercept buffer, and each is a separate entry 
in the spool file. Three printers are being used, program 1 uses printer Pl, program 
2 uses P2, and program 3 uses P3. 



Your Programs 

Print Files Created 
by Programs 

Spool Intercept 
Buffers 
(one per print file) 

Spool File 
(contains the four 
reports to be printed) 

Spool Writer 
(prints reports from 
spool file) 

Spool Writer Buffers 
(one per printer) 

Printers 

Program 1 

Print File 1 

Program 2 

Print File 2 

Printer Data Management 

Spool Intercept Routine 

Spool File 

'Print File 1 
Print File 2 
Print File 3 
Print File 4 

Spool Writer 

Program 3 

S9019014-0 

Figure 3-1. Print Spooling Overview 

The following sections describe the different parts of print spooling shown in 
Figure 3-1. 

Chapter 3. Printed Output 3-7 



Spool Intercept Routine 

3-8 

The printed output from your program is called a print file. Your programs pass the 
print files to printer data management one line at a time. The spool intercept 
routine is the part of the SSP that takes output from printer data management and 
places it into spool intercept buffers. 

The SSP assigns each print file its own spool intercept buffer, and the spool 
intercept routine handles each print file separately. A unique spool identification 
consisting of the characters SP followed by four decimal digits is assigned to each 
print file. There is no limit to the number of print files that can be processed at the 
same time by the spool intercept routine. 

The following diagram shows how the spool intercept routine handles the output 
from more than one program. 

Your Programs 

Print Files Created 
by Programs 

Spool Intercept 
Buffers 
(one per print file) 

One Spool File 
for the System 

Program 1 

Print File 1 

Buffer 1 

Program 2 

Print File 2 Print File 3 

Printer Data Management 

Spool Intercept Routine 

Spool File 

Entry SP0001 
(Print File 1) 

Entry SP0002 
(Print File 2) 

Entry SP0003 
(Print File 3) 

Entry SP0004 
(Print File 4) 

Program 3 

Print File 4 

Buffer 4 

$9019015-0 



Spool Intercept Buff er 

Spool File 

A spool intercept buffer is created whenever a print file is opened. As the program 
prints data, the data is temporarily placed into the intercept buffer. When a spool 
intercept buffer is full, the spool intercept routine writes the data to the spool file. 
Also, when a print file is closed (either by the program or when the program ends), 
the spool intercept routine places any remaining printer data in the spool file. 

Spool Intercept Buffer Size: The size of a spool intercept buffer assigned to a print 
file depends on the ACTIVITY parameter of the PRINTER OCL statement. 
Specifying a high activity gives you a larger buffer area than if you specify a low 
activity. Spooled output is written to the spool file when the spool intercept buffer 
allocated to your program becomes full. If the buffer is too small for the amount of 
activity, it will fill up quickly, and printer output will have to be written to the spool 
file very often, possibly increasing the processing time for your job and other jobs 
on the system. If the buffer is too large, you may needlessly increase the amount of 
main storage your program requires. The System Reference manual has more 
information about the PRINTER OCL statement. 

The system has one spool file that is shared by all printers on the system. The 
spool file is on disk and consists of a primary file and up to five additional areas on 
disk called extents. The size of the spool file (the primary file) is specified during 
system configuration, and can be from 12 to 12,800 blocks. The default size of the 
spool file is based upon the disk size of the system. Each extent is the same size as 
the primary file. The extents are created only when they are needed; that is, when 
the primary file is full. When an extent becomes empty, it is removed. 

The primary spool file and extents are divided into segments. The size of these 
segments is specified during system configuration, and can be from 1to16 blocks. 
The system starts by allocating one segment to a print file; as the segments are 
filled with printer output, more segments are allocated to the print file. 

Chapter 3. Printed Output 3-9 



3-10 

The following example shows a 12-segment spool file containing three entries: 
SPOOOl, SP0002, and SP0003. Entry SPOOOl is contained in four segments; entry 
SP0002 is contained in one segment; and entry SP0003 is contained in five 
segments. Two segments are unused. 

Contents of 
Spool File 

Spool File 
(one for all printers) Spool File 

Extents 
Primary File 

Segments assigned to entry SP0001 

Segments assigned to entry SP0002 

Segments assigned to entry SP0003 
59019016-0 

Spool File Siz.e: The system automatically calculates the default size of the spool 
file and segment sizes needed based on the amount of disk space. In many cases, 
the size calculated by the system is the best size. However, if you want to override 
the system defaults, the following are some things to consider: 

• Use the system default values whenever possible. If you frequently get the 
message that the spool file is full, consider increasing the size of the spool file 
by using the CNFIGSSP procedure. 

• The recommended size for the spool file segments is based on the size of the 
typical print file. Large segments reduce the work the system does creating 
additional segments because fewer segments are needed. However, the 
amount of unused space in the last segment may be large. Smaller segments 
make more efficient use of spool file space by reducing the amount of unused 
space in the last segment of a print file. 

For more information about the spool file size and segment size, see the Changing 
Your System Configuration manual. 



Spool Writer Program 

Spool File Placement on Disk: If your system has more than one disk drive, you can 
specify on which disk the spool file is to be placed. If you are using the spool file 
frequently and have other programs running on the system, there may be an 
increased demand for disk use. To help balance disk activity, you can specify a 
preferred disk location for the spool file during system configuration. You can use 
the system measurement facility (SMF) to measure the disk activity. SMF is 
described in the SMF Guide. 

The spool writer is the part of the SSP that prints output that has been stored in the 
spool file. One spool writer is shared by all the printers on the system. The spool 
writer is a program that gets data from the spool file and places that data into a 
spool writer buffer. The data is then printed from this buffer; each printer has its 
own buffer. The size of these buffers is determined during system configuration. 

Although the spool writer is one program used for all the printers, you can control 
the operation of the portion of the program assigned to each printer. For example, 
you can stop the portion used by printer P3 and leave the portions for printers Pl 
and P2 running. The STATUS WRT control command shows information about 
the portion of the spool writer assigned to each printer. 

The following diagram shows how the spool writer handles printer output stored in 
the spool file. 

Spool File 
(one for all printers) 

Spool Writer 
(one for all printers; 
a portion assigned to 
each printer) 

Spool Writer Buffers 
(one per printer) 

Printers 

Buffer 1 

Spool File 

Data to 
Be Printed 

Spool Writer 

Buffer 2 Buffer 3 

59019017-0 

Chapter 3. Printed Output 3-11 



Separator Pages 

3-12 

Before the spool writer can begin printing output for each printer, the spool writer 
for that printer must first be started. During system configuration, you can specify 
that the spool writer is to start automatically. If you choose this automatic start 
option, the spool writer is started when you perform system IPL. See the Changing 
Your System Configuration manual for more information about automatically 
starting the spool file. 

If you choose not to have the spool writer started automatically, the START PRT 
or RESTART PRT control command must be entered to start the spool writer. 
These START PRT control commands can be entered by the system operator or 
the Subconsole operator. Once the spool writer has been started, it prints output 
whenever a spool file entry is available to be printed. 

Spool Writer Buffer Siz.e: During system configuration, you can select the size of 
the spool writer buffer to be used for a printer. See the Changing Your System 
Configuration manual for more information about changing the spool writer buffer 
size. 

The spool writer can also print one to three separator pages between spool file 
entries. You can also choose to have no separator pages printed. The separator 
pages help you to identify the printer output. Each separator page contains: 

• Name of the procedure that started the job 

• User ID of the operator who ran the job (this may be blank if a MRT program 
printed the output) 

• Name the system assigned to the job 

• Name of the print file 

• Printer ID of the printer 

• Number of pages in the print file 

You can get separator pages by specifying an option during system configuration. 
See the Changing Your System Configuration manual for more information about 
changing the number of separator pages for a printer. You can also use the 
CHANGE SEP control command to change the number of separator pages (from 
the system console or a subconsole). 

The line length on separator pages is normally 80 characters. However, if you are 
justifying the right margin on the 5219 Printer and if the line length for your text is 
less than 80 characters, the characters at the end of the line on the separator page 
are not printed. For example, if you are justifying text on the 5219 Printer using a 
line length of 72 characters, only the first 72 characters on each line of the 
separator page are printed. 



Designing Printed Output for Your Programs 

This section describes: 

• Considerations to use when you are deciding what reports need to be printed 

• How to design printed reports 

• Performance considerations to use for printers 

• Assigning forms numbers to the different types of forms you use 

Printed Output Considerations 

When you are determining the output of a program, you should consider what the 
person using the information needs. Printing the output may not always be the best 
method to use; displaying the output is often a better choice. The information used 
as output, whether displayed or printed, should be useful and should reflect the 
needs of the person using the output. 

Use printed output for: 

• Information that is not needed immediately or often 

• Information that is not needed by several people (although you can print 
multiple copies if you want) 

• Information that does not change frequently 

• Large volumes of output 

• Information that must be sent to several locations (Diskettes would also be a 
good choice if the other locations have a computer system.) 

Also, a formatted report may not be needed in all cases; that is, a Print key listing 
of a display could serve as the output. 

See Chapter 13, "Displays," for displayed output considerations. 

Chapter 3. Printed Output 3-13 



Designing Your Printed Reports 

3-14 

A well-designed report should be easy to read and easy to handle. When designing 
a report, a document called a printer spacing chart will be useful. The printer 
spacing chart is a blank form that resembles a page to be printed. You can use the 
IBM Print Chart, GX20-1816, or an equivalent chart. 

Each vertical column represents one print position. A typical printed page has 132 
print positions. However, depending on the type of printer you have, you can print 
up to 198 positions on a page. Each horizontal line represents one print line. A 
typical printed page has 66 lines (at 6 lines per inch). However, depending on the 
type of printer you have, you can print four or eight lines per inch. The number of 
print positions and lines per page also depends on what size paper you use. 

To design a report, you select the print positions on the printer spacing chart where 
you want information to print, and place Xs or sample data in the selected 
positions. Report titles and column headings should be used to identify the 
information on the report. 

The goals in designing your reports on a printer spacing chart are to: 

• Ensure that you know how the report will look when it is printed. 

• Have a model of the report to help you code the printing sections of your 
program. The chart can be used to identify the lines and columns for printer 
output. 



The following example shows a completed printer spacing chart along with the 
computer-produced output. 

llJIH1111 l'l II lY 
IS cli It) Dllrl E 

REPORT NOl6311-A 
PICKING SLIP 

SOLD TO: HIKE A. SHITH 

RANSOM'S HOME CENTER 
268 4TH AVENUE SOUTH 
CLEAR LAKE, IA, 50428 
(515) 555-9976 

SHIP TO: LYNN'S NURSERY, INC. 
2356 45TH STREET NW 

05/06193 
PAGE 1 

451 19TH AVENUE NW 
ROCHESTER HN 55901 ROO£STER MN 55901 

SALESMAN PURCHASE 
CUSTOMER NO. ORDER NO. ORDER DATE NO. ORDER NO. PICKED BY DATE 
201040 A35000 05/06/83 09 A7326400A 

ITEH QUANTITY QUANTITY QUANTITY 
NUMBER ORDERED SHIPPED BACK ORDERED DESCRIPTION 
300AAA 50 LANDSCAPING TIMBERS 

Chapter 3. Printed Output 3-15 



When you are designing the output report, use the following guidelines: 

• Leave enough space on the edges (margins) of the reports that must be stapled 
or bound. 

• Separate fields on the report by at least one space. 

• Group information items that are similar. 

• Number all pages of a report. Print spooling allows you to restart the printing 
of a report. If you have to restart the printing of a report, you specify that the 
printing is to begin at a specified page, rather than reprinting the entire report. 

• Provide meaningful headings for the data on a report. Abbreviations, codes, 
and special symbols should be avoided. If you need more space than is 
available on the printer spacing chart, use several lines for long headings, 
rather than abbreviating them. 

Printer Performance Considerations 

The system supports several printers. Each printer has unique forms design 
considerations. 

For information about the physical dimensions of printer forms, refer to the 
documentation for your printer. 

Considerations for Dot Matrix Printers 

3-16 

The characters are made up of dots on a dot matrix printer. With some dot matrix 
printers, it takes the print head several passes to complete a line. This head 
movement takes time, therefore, you should design forms to reduce the head 
movement. Refer to the documentation for your printer to determine if these 
considerations affect your printer. 

• Consider the differences in print density and line length. Greater print density 
means slower print speed in lines per minute but faster speed in characters per 
minute. Shorter lines mean greater lines per minute because the print head 
does not have to move a great distance to complete a line. 

• Repetitive printing of the same character, such as an asterisk(*) in each 
position of a line, requires the printer to print the line in several passes, slowing 
the print speed. Rather than using a solid line of asterisks for a separator, use a 
line of alternating asterisks and blanks. 

• Do not center one or two fields on a line if the fields do not have to be 
centered. Adjusting them to the leftmost portion of the line may shorten the 
printing time. 



• Do not use a large form and print a small amount of information on it. This 
may be inefficient because many line returns could be required to print the 
data. If you keep the forms as short as possible, you might improve printing 
speed. 

• Place fields in a horizontal line rather than spacing them vertically. Also, 
minimize the horizontal space between fields. 

Plan horizontal print fields so that items that are not always printed are printed 
last on the line. For example, an item description field might be a good 
variable-length field to print last on a line. 

Considerations for Character Printers 

Character printers print one character at a time by a print head that must move to 
the appropriate position on the line. This head movement takes time. Therefore, 
you might consider designing your forms to reduce the amount of head movement 
required. For example: 

• Do not center one or two fields on a line if the fields don't have to be centered. 
Adjusting them to the leftmost portion of the line may shorten the printing 
time. 

• Place fields in a horizontal line rather than spacing them vertically. Also, 
minimize the horizontal space between fields. 

• Plan horizontal print fields so that items that are not always printed are printed 
last on the line. For example, an item description field might be a good 
variable-length field to print last on a line. 

Vertical line spacing on some printers is affected by the following considerations. 
Refer to the documentation for your printer to determine if these considerations 
affect your printer. 

• When 12 lines or less are specified, and the output is sent to a printer using 
individual sheets, the printer prints up to the number of lines specified before 
ejecting the sheet. 

• Some printers do not print on the first line of an individual sheet. If a program 
attempts to print on the first and last lines of a sheet, the last line is printed at 
the top of the next sheet. 

• The fewer the number of lines per page, the more processing time some 
printers take to perform the task. 

Chapter 3. Printed Output 3-17 



ABC 
Co. 

VIA: 

SALESMAN 

ITEM 
I QTY. ORD. I 

I 
I 
I 
I 
I 

Figure 3-2 shows an initial design and Figure 3-3 shows an improved design for 
an output form used on a 5256 Printer. 

~OLD TO: 

(name) 

(address) 

(city) 

L 
(state) 

• 
: TERMS: 

I 
QTY. SHP. 

I 
QTY.B/0 I I 

I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

I ~HIPTO: 
(name) 

(address) 

(city) 

_JL (state) 

: CUST. NO. 

"T 

DESC. 
I LIST I 

I 
I 

GROSS 

TAX 

DISC. 

NET 

-, 

_J 

"T 

AMT. 

} 

Putting all these 
fields on one line 
would shorten the 
form and increase 
printing speed. 

} 

Four lines are us1 
totals, causing ex 
spacing. The tot 
these four lines c 
be printed on on1 

59019018-0 

Figure 3-2. Initial Forms Design 

3-18 



~OLD TO: 
Ir 

SHIP TO: 
-, 

(name) (name) ABC 
(address) (address) Co. 
(city) (city) 

L (state) _JL (state) _J 
: T 

~ 
CUST. NO: VIA: TERMS: 1 SLSMAN: 

ITEM DESCRIPTION LIST QTY. SHP. AMT. QTY.ORDER QTY.B/0 
J .L .L .L 

I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I I 
I I 

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

GROSS TAX DISCOUNT NET 

59019019-0 

Figure 3-3. Improved Forms Design 

Chapter 3. Printed Output 3-19 



Considerations for Line Printers 

Line printers, which use a character belt, print one line at a time. Good design 
techniques for a line printer should, therefore, try to reduce the number of lines 
printed on each form. Increasing the number of characters printed per line might 
shorten the time required to print the form. An example of this would be to 
combine two lines into one print line. Consider using as wide a form as possible 
and as short a form as possible. 

For preprinted forms such as picking slips or invoices, consider shading alternate 
lines; this technique can make a long list of items more readable. Design and order 
your preprinted forms well before you plan to use them. Request a sample of the 
form so that you can verify its accuracy before it is printed. 

Assigning Forms Numbers 

3-20 

If you have different types of paper for your printed output (for example, one type 
of paper for general use and another type for a specialized use, such as preprinted 
checks), you may want to assign forms numbers to these different type of forms. 

A forms number is a 1- to 4-character identifier you assign to each type of forms 
you have. For example, the standard forms that you may have for each printer 
could be named 0001. Preprinted check forms could be named CHEK. 

The system automatically keeps track of the forms numbers that are currently 
specified for each printer. When you specify a certain forms number for printing 
and if the forms numbers do not match, the operator who controls that printer is 
prompted to change the paper in that printer to the forms you specified. 

See "Printing Output by Forms Number" on page 3-27 for more information 
about how you can use forms numbers. 



Printer Control Guidelines 

This section describes several functions that are available to manage or control 
printer output. Generally, the functions are: 

• Changing the session or Print key printer, changing the system list device, arid 
setting printer information for a display station. 

• Controlling or displaying printer output. 

• Displaying and copying printed output from the spool file. 

• Printing output by forms type. 

• Combining several print files. 

• Assigning defer status to printed output. 

• Assigning priorities to printed output. 

Changing the Session Printer 

For each display station, a printer used to receive output is specified during system 
configuration. This printer is called the sesmon printer. The session printer is used 
for all printed output created while an operator is signed on. The PRINT 
procedure changes any one or all of the following items: 

• The printer ID to be used for printed output, including system list and Print key 
output. 

• The number of lines per page. 

• The vertical print density, also called lines per inch. 

• The horizontal print density, also called characters per inch. 

• The forms number to be used. 

The PRINT procedure changes these items for the session. When an operator signs 
off, the settings return to the defaults. 

Note: Not all printers support lines per inch and/or characters per inch. The System 
Reference manual has more information about the PRINT procedure. 

Changing the System List Device 

When an operator signs on, the system list device is the default printer specified 
during system configuration. The SYSLIST procedure can change the system list 
device to another printer, the display station, or off (no output is listed). The 
System Reference manual has more information about the SYSLIST procedure. 

Chapter 3. Printed Output 3-21 



Changing the Print Key Printer 

,When an operator signs on, the Print key printer is the default printer specified 
during system configuration. Use the STATUS SESSION control command to 
display the ID of the Print key printer. The PRINTKEY procedure can change the 
printer to be used for Print key output and can specify whether a heading or border 
is to be printed with the display image. The WORKSTN OCL statement can also 
be used to change the Print key printer. The System Reference manual has more 
information about the PRINTKEY procedure or the WORKSTN OCL statement. 

Changing the Printer Configuration Information 

The SET procedure is used to specify the following printer-related items for the 
display station: 

• Printer ID to use for session output as well as Print key output 

• Forms number 

• Number of lines per page 

• Print belt image 

• Whether a heading and border should be printed with Print key output 

These items remain in effect from session to session; that is, after the operator 
signs off, the values remain in effect. The System Reference manual has more 
information about the SET procedure. 

Changing Printer Inf onnation in a Procedure 

3-22 

In a procedure, you can use the FORMS, PRINTER, or WORKSTN OCL 
statements to control how output is printed. For example, you can change any one 
or all of the following items: 

• Printer ID to be used for all printed output (including Print key output). 

• Number of lines per page. 

• Vertical print density, also called lines per inch. 

• Horizontal print density, also called characters per inch. 

• Forms number. 

• Number of copies to be printed. 

• Whether the paper needs to be aligned before the output is printed. 

The System Reference manual has more information about .these OCL statements. 



Controlling or Displaying Print Spooling Information 

Print spooling is controlled by either the system operator or subconsole operators 
entering various control commands. 

To display information about the status of the spool file, use the STATUS PRT or 
STATUSF PRT control command. To display information about the status of the 
spool writer, use the STATUS WRT control command. Control commands can be 
entered either at the system console or a subconsole. However, some commands 
can be entered from any work station. 

Note: If password security is active, operators with a security classification of system 
operator or higher can control print spooling from any display station. The 
commands entered are treated the same as if they were entered at the system 
console. 

The following is a list of commands you can use to control print spooling. 

CANCELPRT 

CHANGE COPIES 

CHANGE DEFER 

CHANGEPRTY 

CHANGE SEP 

CHANGEPRT 

CHANGE FORMS 

CHANGE ID 

HOLDPRT 

RELEASEPRT 

RESTARTPRT 

STARTPRT 

STOPPRT 

Cancels one or more spool file entries. 

Changes the number of copies of output to be printed. 

Changes the defer attribute of a spool file entry. This 
indicates whether an entry can begin printing before all 
the data has been completed by the program. 

Changes the priority of the spool writer for a printer. 

Changes the number of separator pages used to separate 
spool file entries for a printer. 

Changes the order in which spool file entries are printed. 

Changes the forms number to be used for a spool file 
entry. 

Changes the printer ID assigned to one or more spool file 
entries. 

Holds selected spool file entries to prevent them from 
being printed. 

Releases selected held spool file entries to allow them to 
be printed. 

Restarts the printing of a spool file entry. 

Starts the spool writer so that entries can be printed. 

Stops the spool writer so that entries cannot be printed. 

Operating Your System and Using Your Display Station manuals have more 
information about these control commands. 

Chapter 3. Printed Output 3-23 



Controlling Printed Output with the Print Queue Manager 

3-24 

The print queue manager is part of the base SSP and resides in #LIBRARY. The 
print queue manager provides an interface that allows DisplayWrite/36 (DW /36) 
to access and change information about entries on the spool queue and job queue. 

A request is made to the print queue manager through the print queue. 
Information is returned in a print file. 

The print queue manager makes a request to the spool queue manager through the 
queue file. Information is returned in a spool print file to the print queue manager. 

The print queue manager makes a request to the job queue manager through the 
job queue. Information is returned in the job queue file to the print queue 
manager. 

System/36 Product 

Print Queue Print File 
Entries Entries 

+ • 

.. • 
Print Queue 

Manager 

Queue File Spool Print Job Queue Job Queue 

Entries File File Entries 

... • ... • 

j_ • [ ... [ 
Spool Queue Job Queue 

Manager Manager 

Spool Queue Job Queue 

$9019135-0 

Figure 3-4. Print Queue 



The following is a list of commands you can use to control the print queue 
manager: 

Function 

SEARCH 

CANCEL 

HOLD 

RELEASE 

MOVE 

Definition 

Provides the requested number of print files (provided they are 
available). 

Cancels one or more print files from the spool or job queues. 

Holds one or more print files from the spool or job queues. 

Releases one or more print files from the spool or job queues. 

Moves one or more print files from the spool or job queues. 

Consider the following when moving print files: 

• Print files on the spool queue can be moved to any position on the spool queue. 
• Print files on the job queue can be moved to any position on the job queue. 
• Print files on the spool queue may not be moved to the job queue. 
• Print files on the job queue may not be moved to the spool queue. 

You can specify the type of information to be used to qualify the requested 
function. A qualifier list may be used to subset the list of print files returned to the 
user. The valid qualifiers are: 

• Printer ID 
• User ID 
• Forms ID 
• Print File 

There are four possible function modifiers that can be specified. 

Modifier Definition 

Spool Causes the requested function to be performed only on the print files 
that are on the spool queue. 

JobQ Causes the requested function to be performed only on the print files 
that are on the job queue. 

Forward Causes a search to continue forward from the position of the last 
search requested (search function only). 

Backward Causes a search to continue backward from the position of the last 
search requested (search function only). 

Chapter 3. Printed Output 3-25 



Copying and Displaying Spool File Output 

3-26 

Operators can copy and display printed output from the spool file by using the 
COPYPRT procedure. The COPYPRT procedure allows operators to: 

• Copy reports from the spool file to a disk file. 

• Display printed reports at a display station before they are printed. 

• Print reports copied to the disk file. You can also print selected pages of a 
report. 

This procedure allows users to look at reports and decide which pages of the report 
they want to print. You can use this procedure to avoid printing unnecessary 
reports and wasting paper. 

Before operators use the COPYPRT procedure, they should make sure that the 
specified report is held on the spool file by using the HOLD PRT control command 
or the PRIORITY-0 parameter of the PRINTER OCL statement. 

Note: The COPYPRT procedure does not copy spool print-records that were created 
in transparent mode. Transparent mode allows for user programs to send their 
own data stream to the printer. COPYPRT does not process transparent mode 
because it does not know what is contained in the data stream. There[ ore, 
transparent mode is not encouraged but there is an operation code for it in the 
$DTFP macro. 

The disk file used with the COPYPRT procedure can be saved on diskette and then 
printed later. The System Reference manual has more information about the 
COPYPRT procedure. 



Printing Output by Forms Number 

Normally, when output is printed, it is printed in a first-in, first-out basis, with no 
regard to forms number. If, for example, two or more jobs use different forms 
numbers, the operator controlling a printer has to change the forms very often. 
The system allows operators to control the printing of output using different forms 
numbers. 

The system has two methods of printing by forms number. Using the START PRT 
control command, operators can print either by a specific forms number or by 
groups of forms numbers. This allows operators to print all reports that use the 
same forms number together. For example, all jobs in the spool file having special 
invoice forms could be printed together. 

To print by groups of forms (using the FORMS parameter of the START PRT 
command), the spool writer prints all entries in the spool file using the forms 
currently mounted on the printer. When the spool writer has finished printing the 
entries, the spool writer prompts the operator to change forms in the printer. This 
can reduce the number of times an operator has to change the paper in a printer. 

To print by a specific forms number, the spool writer prints only those entries that 
have the specified forms number. If there are no more entries in the spool file with 
that forms number, the spool writer does no more printing. 

For example, to print reports that required forms number Al 12 on printer P2, an 
operator could enter the command: 

START PRT,P2,A112 

and the spool writer would print only reports that required forms number Al 12 on 
printer P2. If there were no entries in the spool file with forms number Al 12 for 
that printer, the spool writer would not print any entries. 

The START PRT control command in the Operating Your System and Using Your 
Display Station manuals have more information about printing by forms type. 

Combining Several Print Files in One Job 

The system allows you to combine printer output from several programs into one 
large print file. The programs must: 

Run in the same job. 

• Specify the same printer for the output. 

The first program of the job creates the print file, and the remaining programs in 
the job add output to the same print file. 

Chapter 3. Printed Output 3-27 



3-28 

For example, if you have three order entry programs within a job, and each 
program produces one report, you can have one print file instead of three separate 
print files. This allows all reports produced by the order entry programs to be 
printed at the same time. The following diagram shows how this process works. 

Program 1 

Job Program 2 

Program 3 

Printed Output 
(The three reports are 
printed together.) 

Report 1 
Report 2 
Report 3 

Report 1 

Report 2 

Report 3 

59019020·0 

This combining of multiple reports into one print file is controlled by using the 
CONTINUE parameter of the PRINTER OCL statement. The System Reference 
manual has more information about the PRINTER OCL statement. 



Assigning the Def erred Status to Printed Output 

You can use the DEFER parameter of the PRINTER OCL statement to specify the 
defer status of a print file. The defer status indicates whether a print file can begin 
printing before the file is completed by the program. Normally, the output is not 
printed until it is complete; that is, until the job ends or the program closes the 
print file. 

By specifying DEFER-NO, the output can begin printing as soon as there is data to 
print. For example, if you have a 60-page report, the output can begin printing 
after the first page is complete. Then, by the time the program has created page 
60, 20 pages of the report may have already been printed. 

Using DEFER-NO might slow down the overall throughput of your printers. No 
print files can be printed until the print file using the DEFER-NO parameter has 
been printed. If you use the default (DEFER-YES), other print files can begin 
printing while yours is being spooled. 

Assigning Priorities to Printed Output 

You can use the PRINTER OCL statement to assign a priority to printed output. 
Printed output can be assigned a priority of 0 through 5. The highest priority is 5; 
that is, any output with a priority of 5 is printed first. Normally, when output is 
printed, it is assigned a priority of 1. A priority of 0 means that the output will be 
held on the spool file until an operator releases the output by entering the 
RELEASE control command. The PRINTER OCL statement in the System 
Reference manual has more information about assigning priorities to printer output. 

Controlling Printer Functions from Your Applications Program 

A PRPQ is available from IBM which allows you to control the following printer 
functions from your RPG, COBOL, or Assembler programs: 

• Lines per inch 
• Characters style (font) 
• Characters per inch 
• Color 
• Emphasis 
• Forms character (for drawing boxes) 
• Page rotation 
• Print quality 
• Source drawer 
• Other functions, by specifying a printer data stream 

This PRPQ is called the Intelligent Printer Data Stream Advanced Functions, 
PRPQ P84094 (5799-CGK) for 5360 and 5362 system units, and PRPQ P84095 
(5799-CGL) for 5364 system unit. 

Chapter 3. Printed Output 3-29 



Merging Text and Graphics 

Creating Graphics Files 

3-30 

You can include a graph anywhere in data printed by DW /36, RPG, COBOL, and 
any other high-level language. The base SSP can invoke the graphics functions of 
the intelligent printer data stream (IPDS) and allows the merging of a graphics disk 
file in the output. You can also print a graphic file without including it in other 
output. These functions work only with output printed on an IPDS printer. The 
following section discusses: 

• How the graphics files are created 

• How to merge text and graphics 

• How to print just a graphics file 

• Programming considerations 

Business Graphics Utilities/36 (BGU/36) is one way of creating a graphics file. 
BGU/36 is an interactive utility that allows you to design simple business and 
scientific graphs quickly. BGU/36 also supplies a procedure that allows you to 
make a graph using data in a report that was made by your application. 

The forms generation utility is another way to create a graphics file. This utility 
reads source specifications describing a form and either prints the form or saves the 
drawing specifications on a graphics disk file. 

The forms generation utility is part of PRPQ P84094 (5799-CGK) for 5360 and 
5362 System Units and PRPQ P84095 (5799-CGL) for 5364 System Unit. 



Merging a Graphics File with Text 

To merge a graphics file with other printed output, you must use a special control 
record. The control record can be anywhere in the print data produced by a 
program. The program can be an application program written in any language, 
OW /36, or DSU. The format ·of this control record is: 

#$@INCLGRPH filename,x,y,w,l 

Notes: 

1. There should be only one blank between "#$@/NCLGRPH" and the file name. 

2. If you use this control record in a DWI 3 6 document, justification should not be 
active for the section of the document where the control record resides. 

filename 

x 

y 

w 

The name of the graphics disk file to be included. Date differentiated 
files are not supported. Only the file with the most current date is 
used. 

The distance (in inches) from the left edge of the page to the left edge 
of the graphics area on the page. The default is zero (O). 

The distance (in inches) from the top of the page to the top of the 
graphics area. The default is zero (0). 

The width of the graphics area in inches. The default is the width of 
the current page (usually 13.2 inches). 

The length of the graphics area in inches. The default is the length of 
the current page. 

Where the graphics data will be printed on the page is defined by x, y, w, and l. 
The upper left corner is defined by the x and y. The size of that area is defined by 
the w and the l. 

The graphics data in the file is scaled to fit the graphics area defined by the w and 
the l. 

The x, y, w, and l are specified in any of the following forms: 

x 
xx 
xx.x 
xx.xx 

x. 
xx. 
x.x 
x.xx 

Note: Leading zeros are allowed. 

Chapter 3. Printed Output 3-31 



Printing a Graphics File 

A utility, $DPGP, is provided to print a graphics file without including that file in 
other output. This utilit'y is mainly used to print a BGU/36 graphics file because 
BGU/36 does not directly support IPDS printers. 

A PRTGRAPH procedure is provided to use the $DPGP utility. The System 
Reference manual has more information about the PRTGRAPH procedure. 

Programming Considerations 

3-32 

$DPGP does not issue any error messages. If there is something wrong (file not on 
disk, graph file not found, or invalid file name) then the #$@INCLGRPH record is 
printed instead. It is treated as normal data and printed as is. 

If the control record is used in an application program, the characters 
#$@INCLGRPH should not appear together, in the source program. If they do 
appear together, and the compiler output is printed on an IPDS printer, the include 
will be performed at the time the compiler output is printed. To prevent this from 
happening, break up the #$@INCLGRPH into two character strings and have the 
program concatenate them when it executes. 

The #$@INCLGRPH control record should be in a print record by itself. If 
anything else is in the print record, it may be considered as a parameter. The 
parameters should immediately follow each other, separated by commas with no 
intervening blanks. 

Because the include function may be performed by the spool writer, the file should 
not be protected by resource security. If the file must be protected, include it in a 
print file that is not spooled. 

Included files are deleted from the printer's storage at the start of each page. 
Includes done on a page must all fit together in the printer's storage. If the printer 
runs out of storage, you will get an error message. 



Chapter 4. Disk Storage 

The purpose of this chapter is to: 

• Describe disk storage. 

• Describe what is stored on disk. 

• Provide you with programming tips and techniques regarding disk processing. 

Chapter 4. Disk Storage 4-1 



Disk Storage Concepts 

4-2 

A disk is a storage device made of flat, circular plates with magnetic surfaces. 
Programs, files, libraries, and system work areas that are used by the system to 
process programs are stored on disk. A disk drive is the mechanism that reads and 
writes information on disk. Disk drives are also called spindles. 

The system can have from one to four disks (indicated by Al through A4, 
respectively). The disks are inside the system unit and are not removable. 

ll 

Disk A3 
~ 

(optional) 

Disk A1 

Disk A4 

Disk A2 
(optional) 

(optional) 

5362 System Unit: 

Disk A2 --+---+ 
(optional) 

Two disks can be externally attached to the 5362 System Unit and are removable. 



5364 System Unit: 

Chapter 4. Disk Storage 4-3 



The system can have the following combinations of disk drives: 

5360 System Unit: 

Total 
Disk Drive 
Capacity Number of Sizes 
in Megabytes Drives in Megabytes 

30 1 30 
60 2 30 

200 1 200 
400 2 200 
600 3 200 
800 4 200 

716 2 358 
758 3 200 and 358 
1074 3 358 
1116 4 200 and 358 
1432 4 358 

5362 System Unit: 

Total 
Disk Drive 
Capacity Number of Sizes 
in Megabytes Drives in Megabytes 

30 1 30 
60 1 60 
90 2 30 and 60 

120 2 60 

4-4 



5362 System Unit with externally attached disk drives: 

Total 
Disk Drive 
Capacity Number of Sizes 
in Megabytes Drives in Megabytes 

260 2 60 and 200 
290 3 30, 60, and 200 
320 3 60 and 200 
460 3 60 and 200 
490 4 30, 60, and 200 
520 4 60 and 200 

5364 System Unit: 

Total 
Disk Drive 
Capacity Number of Sizes 
in Megabytes Drives in Megabytes 

40 1 40 
80 2 40 

In addition to the identifiers A 1 and A2, the identifier F 1 is also used to refer to 
disk storage in certain operations that are performed with files, libraries, and 
folders on disk, regardless of which disk they are on or how many disks your 
system has. For example, the system utility program that lists all files and libraries 
on disk is run by the following procedure: 

CATALOG ALL,F1 

Chapter 4. Disk Storage 4-5 



Physical Organization 

Sectors 

Blocks 

4-6 

To specify certain disk operations, you should be familiar with the way data is 
stored on disk. 

Blocks and sectors are the basic units of measurement used to describe disk 
storage. For example, when you reserve space on the disk for a library, you specify 
the amount of space in blocks. 

Each disk is divided into 256-byte units called sectors. A sector of data is the 
smallest amount of data that can be either read from or written to the disk. 

1 Sector (256 bytes) 

59019022-0 

A block consists of 10 sectors or 2560 bytes. Blocks are important because all disk 
space is measured in blocks. For example, when you create a library, you specify 
its size in blocks. 

1 Block (10 sectors 
or 2560 bytes) 

89019023-0 

You can allocate space for disk files by either blocks or records. When you allocate 
a file by records, the actual amount of disk space allocated is rounded up to the 
next full block. 



Disk Capacities 

The following charts show the number of blocks of disk space available for each 
disk. 

5360 System Unit 
Disk Capacity in 
Megabytes 

30 
60 

200 
400 
600 
800 

358 
716 
758 
1074 
1116 

1432 

5362 System Unit 
Disk Capacity in 
Megabytes 

30 
60 
90 

120 

5362 System Unit 
with External Drives 
Capacity in Megabytes 

260 
290 
320 
460 

490 
520 

Total 
Number of Blocks 

12,049 
24,098 
78,204 
156,408 
234,612 
312,816 

140,218 
280,436 
296,626 
420,654 
436,844 

560,872 

Total 
Number of Blocks 

12,049 
24,098 
36,147 
48,196 

Total 
Number of Blocks 

102,334 
114,383 
126,432 
180,570 

192,619 
204,668 

The first 650 blocks of the first disk are reserved for the system's use. 

Chapter 4. Disk Storage 4-7 



What Is Stored on Disk 

4-8 

This section describes the different types of information that are stored on disk. 

Disk Al is logically divided into two areas: the system area and the user area. 

System Area Contents User Area Contents 

Control storage library Spool file 
System library Job queue 
System work files Trace files 
Task work area Dump files 
History file User ID file 
Service log Resource security file 

Program product libraries 
User files 
User libraries 
User folders 

The system area starts at the lowest block numbers. 

DiskA1 

I System 

_ Area 

Low Block 
Numbers 

User 
Area 

High Block 
Numbers 

59019024-0 

If your system has more than one disk drive, the other drives contain only user 
areas. 

The following sections describe each type of information on the disk, starting with 
the system area. 



System Area Contents 

Control Storage Library 

The control storage library contains the part of the SSP that allows the system to 
perform IPL (initial program load) when you press the Load key on the system 
control panel. The information in this library also controls the running of the entire 
system; that is, it controls how the disks are accessed and how information is 
transmitted to the printers and display stations. 

System Library (#LIBRARY) 

System Work Files 

Task Work Area 

The system library contains the SSP programs that the system uses to run your jobs 
(for example, disk data management and printer data management). 

The system library also contains SSP procedures and SSP utility programs. These 
perform common functions such as copying, saving, or restoring files. The system 
library also contains the system help support. 

The system work files maintain a record of information about the system. They are 
also used when jobs are being run. These files are: 

• The master configuration record. This is a description of the program 
products, display stations, and printers on the system. It also contains such 
information as the default printer for each display station and the size of the 
history file. 

• The disk volume table of contents (VTOC). This contains a record of all the 
files, libraries or folders on disk. The information includes the file, library or 
folder name, the creation date of files, where the file, library or folder is 
located on disk, and how many blocks the file, library or folder uses. 

Each time a new file, library or folder is created, the information about that 
file, library or folder is added to the disk VTOC. When a file, library or folder 
is removed from disk, the corresponding disk VTOC entry is removed. 

• The diskette VTOC. This work file contains the VTOC of a diskette when the 
diskette drive is being used. 

The task work area is the portion of the disk that user programs and the system use 
to run jobs. The task work area contains: 

• Areas for programs or buffers that are swapped out of main storage. 

• Work spaces used by the system during job processing. 

The size of the task work area is set during system configuration and may change 
depending upon the system's workload. See the Changing Your System 
Configuration manual for information about the task work area size. 

Chapter 4. Disk Storage 4-9 



History File 

4-10 

The history file contains the following information: 

• · OCL and utility control statements from user-written procedures. 
IBM-supplied SSP procedures do not have· statements logged in the history file. 
(You can also specify that your procedures are not to have statements logged 
in the history file; see Chapter 18, "Procedures," for information about 
logging statements.) 

• Commands contained in jobs or entered from display stations. 

• All messages displayed at a display station. 

• All operator responses to messages and prompts. 

• The following information about each entry: 

Display station being used 

Operator's user ID 

Job name 

Time and date 

The history file is an important tool you can use to review events that have 
occurred on the system. 

The history file is a fixed size; the size of the history file is set during system 
configuration. See the Changing Your System Configuration manual for 
information about changing the size of the history file. Normally, when the history 
file becomes full, the new entries being logged in the history file begin to overlay 
the older entries. The following diagram shows this process: 

History File History File 
(2:00 PM) (4:00 PM) 

Old Entries Old Entries 

• • 
• • 
• • 

New Entries • 
• 

Unused Space New Entries 

Not Yet Full Full 

History File 
(4:20 PM) 

_l 

New Entries 

Old Entries 

• 
• 
• 

New Entries 

1 
Old entries are 
overlaid and lost. 

59019025·0 



During system configuration, you can select an option that causes the history file to 
be copied to a disk file (named HISTCOPY). This allows you to always have a 
copy of the history file for future reference. 

When the history file is 80% full, entries are automatically copied to the 
HISTCOPY file. The following diagram shows this process: 

History File 
(2:00 PM) 

Old Entries 

• 
• 
• 

New Entries 

Unused Space 

80% Full 

History File 
(2:10 PM) 

New Entries 
after 2:00 

Unused Space 

Old entries 
are erased. 

Automatic copy process; 
history file is erased 
after copy is finished. 

Disk File 
HISTCOPY 

Old Entries 

• 
• 
• 

New Entries 

File Automatically 
Created 

Old Entries 

• 
• 
• 

New Entries 

Entries made as of 
2 :00 still exist in 
file HISTCOPY. 

59019026-0 

Chapter 4. Disk Storage 4-11 



Service Log 

User Area Contents 

Spool File 

Job Queue 

Trace Files 

4-12 

Note the following consideration if you are using the automatic copy option. If the 
history file once again becomes 80% full on the same day and you have not deleted 
or renamed the HISTCOPY file, the following occurs: 

• A message (SYS-1660) will be sent to the system console and to the display 
station that caused the history file to become 80% full. 

• All processing for that display station stops until the file named HISTCOPY 
has either been removed or renamed. Selecting option 2 in response to the 
message causes the history file to wrap (new entries overlay older entries), and 
system processing continues. 

To avoid this situation, the system automatically calls a procedure named 
HISTCOPY after the file named HISTCOPY is created. See "Automatic Copying 
of History File" on page 4-25 for more information. 

The service log is a file that contains information about when the system was 
serviced. The System Reference manual has more information about the system 
service log. 

The spool file contains printed output that has been stored on disk for later 
printing. For more information about the spool file, see Chapter 3, "Printed 
Output." 

The job queue is a list, in a disk file, of jobs waiting to be run by the system. For 
more information about the job queue, see Chapter 17, "Jobs and Job 
Processing." 

Trace files are created when you are tracing system events. The TRACE 
procedure in the System Reference manual has more information about trace files. 



Dump Files 

User ID File 

Resource Security File 

Dump files contain selected system data areas (such as main storage or control 
storage), which are used to solve problems with either IBM-supplied programs or 
user-written programs. Dump files are automatically created when a job is 
canceled with a D (for dump) option or when a program ends abnormally. The 
DUMP procedure in the System Reference manual has more information about 
dump files, 

The user ID file contains the list of users that can use the system. The file is used 
by password security. For more information about the user ID file, see the System 
Security Guide. 

The resource security file contains the list of secured files, libraries, folders, folder 
members, and groups on the system. It also contains a list of users that can access 
those files, libraries, and folders. For more information about the resource security 
file, see the System Security Guide. 

System Mesage File (#MESSAGE) 

Program Product Libraries 

The system message file contains messages that have been sent using the MSG 
control command or the MSG OCL statement. When a message is sent to a 
display station or user, the message is saved in the system message file. The 
message is removed from the file when one of the following occurs: 

• The message is displayed at a display station. 

• An IPL occurs, and the message has been sent to a display station. 

• An IPL occurs, the message is more than 7 days old, and the message has been 
sent to a user. 

• The message is canceled using the MSGFILE procedure. 

You can use the MSGFILE procedure to control the size and location of the 
message file. The System Reference manual has more information about the 
MSGFILE procedure. 

These libraries contain all the programs necessary for you to compile your 
programs or use the utility programs. All display formats, messages, procedures, 
and programs needed by the language compilers and the utility programs are stored 
in these libraries. Each programming language or utility has its own separate 
library. The following is a list of these libraries: 

Chapter 4. Disk Storage 4-13 



User Files 

User Libraries 

User Folders 

4-14 

Program Library 
Product Name 

BASIC #BLLIB 
BASIC help text #BLHPLIB 
COBOL #COBLIB 
RPG II #RPGLIB 
Assembler #ASMLIB 

FORTRAN IV #FORTLIB 
Data file utility (DFU) #DFULIB 
Screen design aid (SDA) #SDALIB 
Source entry utility (SEU) #SEULIB 
Work station utility (WSU) #WSULIB 

Development Support Utility (DSU) #DSULIB 
#DSULBl 
#DSULB2 

Business Graphics Utilities/36 (BGU) #BGULIB 
DW /36 (DisplayWrite/36) #TULIB 

Personal Services/36 #OFCLIB 
Office Management Service (OMS) #TMSLIB 
Text Management Service (TMS) #TMSLIB 
Advanced Printer Function (APP) #APFLIB 
Query/36 #QRYLIB 

PC Support/36 #IWLIB 
Character generator utility ( CGU) #CGULIB 
Ideographic sort program #SRTXLIB 
Local Area Networking #LANLIB 

The sizes of these libraries are shown in the Changing Your System Configuration 
manual. 

User files contain the data your programs need. For more information about files, 
see Chapter 8, "Files." 

User libraries contain the programming information for your jobs. For more 
information about libraries, see Chapter 9, "Libraries." 

Folders contain members created by IDDU (the interactive data definition utility), 
DW /36, and Personal Services/36. For more information about folders, see 
Chapter 10, "Folders." 



Programming Guidelines for Disk 

This section describes several functions that are available to manage or control the 
disk. Generally, the functions are: 

• Placing files and libraries on disk 

• Reorganizing disk space 

• Using disk cache 

Placing User Files and User Libraries on Disk 

The system can automatically place user files and libraries on disk, or you can 
control their location by specifying a disk spindle or block number when you create 
the file or library. The location of your files and libraries on disk can affect the 
performance of your system. Generally, having the system automatically place the 
files and libraries is the most efficient way. 

User folders are automatically placed on disk by the programs that create them. 

Automatic Placement on Disk 

If you have two or more disk drives on your system, you can let the system 
automatically place files, libraries, and folders on the disk that is used the least. By 
placing them on the disk that has the least amount of use, the use of the disks is 
balanced, and the performance of the system can be improved. 

The system has two sets of counters for each disk. These counters measure the 
number of disk reads, disk writes, and scans for that particular disk. One set of 
counters, which is reset every hour, measures current system activity and is used by 
the system to place scratch files and job files. The system also uses another set of 
counters, which measures past system activity, to place resident files, libraries, and 
folders. 

For example, if some disks are particularly busy and a new file is created, the 
system attempts to place the file on the disk that is used the least. 

By placing the file on the least used disk, performance of the system can increase 
because more input/ output activity will be directed to the disk that is least used. 
This helps balance the work each disk has to do while jobs are processing. 

Chapter 4. Disk Storage 4-15 



4-16 

If you have two or more disks and decide not to-let the system automatically place 
your files, libraries, and folders on disk, you should: 

• Minimize the time the system has to search the disk for data. 

• Place files, libraries, and folders on disk so that your programs process the data 
on disk as efficiently as possible. 

• Try to balance the use of the disks. 

The system measurement facility (SMF) can help you measure the use of your 
disks. The System Measurement Facility Guide has more information about running 
SMF. 

Example: The following diagram shows some suggestions for placing files, 
libraries, and folders on the system if you have two disks. 

Disk A1 

System 
library 

Disk A2 

Free Space 

Most-Used Files 
and Libraries 

Least-Used Files 
and Libraries 

Most-Used Files 
and Libraries 

Free Space 

Least-Used Files 
and Libraries 

59019027-1 

To reduce the time the system spends searching for information on disk, you should 
place your most-used files, libraries, and folders following the system library on 
disk Al. Following the most-used, place your least-used files, libraries, and 
folders. 

On disk A2, you should place the least-used files, libraries, or folders at the high 
block number locations. Then place the most-used files, libraries, or folders next, 
leaving the continuous disk space at the low block numbers. Thus space is 
available when large files, libraries, or folders are created. 

To move folders, you can use the MOVEFLDR procedure. The System Reference 
manual has more information about the MOVEFLDR procedure. 



Placement By Spindle Preference 

If your system has two or more disk drives, you can specify the disk identifier (Al, 
A2, A3, or A4) for the disk that is to contain a particular file or library. If the file 
or library will not fit on the disk you selected, the system tries to place it on 
another disk. The system begins searching for disk space on the least used disk. 

If the system places your file or library on another disk, the system keeps a record 
of the disk you preferred. If enough space becomes available on the preferred disk, 
the system moves the file to that disk (for example, during the COMPRESS or 
RESTORE procedure). 

The system searches the disks in a particular direction: either from high blocks to 
low blocks or from low blocks to high blocks, depending upon the number of disks 
in the system. 

For example, if you specify that you want a particular file or library placed on disk 
Al, the system begins searching for continuous disk space beginning at the end of 
the system library (#LIBRARY) and ending at the last block number of disk Al. 

Disk A1 

I S~steml . Library. 

Search Sequence 
59019028-0 

For a system with two disks, the search sequence is: 

Disk Al DiskA2 

_l~-~-~_:rv_m_l _____________ I ~! ________________ __ 

Search Sequence 59019029-0 

Chapter 4. Disk Storage 4-1 7 



For a system with three disks, the search sequence is: 

DiskA1 DiskA2 DiskA3 

l_~-~-~:_e~-m~l __________ _...I _l _________________ I ! ________________ _... 
Search Sequence 59019030-0 

For a system with four disks, the search sequence is: 

DiskA1 DiskA2 DiskA3 Disk AA 

~l~-~-~-e; __ l ____________ I ~l ________________ ~I ~l ________________ ~ll ~----------------~ 
Search Sequence 

890191'0.0 

If you have two or more disks and there is not enough continuous disk space to 
place all of a file on one disk, the system can place part of the file on two disks. 
For example: 

DiskA1 DiskA2 

File starts on A 1 and 
is continued on A2. 59019031-0 

Placement By Block Number Location 

4-18 

You can specify the block number on disk where you want your file or library 
placed. You can use the CATALOG procedure to determine where blocks of disk 
space are available. Files and libraries cannot be placed in block number locations 
that are already being used by the system. 

If you are creating extendable files using block number locations and the file is 
extended, the system might move the file to another area on disk. This will change 
the original block number location. The COMPRESS procedure may also move a 
file from its original block number. 

The following diagram shows the beginning and ending block number locations for 
the disks used by the system. 



For the 5360 System Unit: 

Disk Capacity Disk Drive Al Disk Drive A2 Disk Drive A3 Disk Drive A4 
(in megabytes) Block Numbers Block Numbers Block Numbers Block Numbers 

30 0 to 12,048 

60 0 to 12,048 12,049 to 24,097 

200 0 to 78,203 

400 0 to 78,203 78,204 to 
156,407 

600 0 to 78,203 78,204 to 156,408 to 
156,407 234,611 

800 0 to 78,203 78,204 to 156,408 to 234,612 to 312,815 
156,407 234,611 

358 0 to 140,217 

716 0 to 140,217 140,218 to 
280,435 

758 (358+400) 0 to 78,203 78,204 to 156,408 to 
156,407 296,625 

1074 0 to 140,217 140,218 to 280,436 to 
280,435 420,653 

1116 0 to 78,203 78,204 to 156,408 to 296,626 to 436,843 
(716+400) 156,407 296,625 

1432 0 to 140,217 140,218 to 280,436 to 420,654 to 560,871 
280,435 420,653 

Chapter 4. Disk Storage 4-1 9 



For the 5362 System Unit: 

Disk Capacity Disk Drive Al Disk Drive A2 Disk Drive A3 Disk Drive A4 
(in megabytes) Block Numbers Block Numbers Block Numbers Block Numbers 

60 0 to 24,097 

90 0 to 12,048 12,049 to 36,146 

120 0 to 24,097 24,098 to 48,195 

For the 5362 System Unit with externally attached disk drives: 

Disk Capacity Disk Drive Al Disk Drive A2 Disk Drive A3 Disk Drive A4 
(in megabytes) Block Numbers Block Numbers Block Numbers Block Numbers 

260 (60+200) 0 to 24,097 24,098 to 
102,333 

290 0 to 12,048 12,049 to 36,146 36,147 to 114,382 
(30+60+200) 

320 0 to 24,097 24,098 to 48,195 48,196 to 126,431 
(60+60+200) 

460 0 to 24,097 24,098 to 102,334 to 
(60+200+200) 102,333 180,569 

490 0 to 12,048 12,049 to 36,146 36,147 to 114,382 114,383 to 192,618 
(30+60+200+200) 

520 0 to 24,097 24,098 to 48,195 48,196 to 126,431 126,432 to 204,667 
(60+60+200+200) 

The first 650 blocks of the first disk (drive Al) are reserved for the system's use. 

4-20 



Reorganizing Disk Space 

Reorganizing is the collection of free space on each disk to create continuous free 
space for new files, libraries, or folders. 

You can create new files, libraries, or folders, only when enough continuous space 
on the disk exists for each new file, library, or folder. When you are creating and 
deleting files, there is a chance that the disk space will be fragmented and that 
there will not be enough continuous space to create a new file, library, or folder. 
For example, you want to create a file that takes 20 blocks of space on disk Al and 
the disk space looks like the following (assume that Al is the only disk): 

Disk A1 

System 
Library 

File 1 File 2 File3 

15 Unused 
Blocks 

'---v---1 
10 Unused 
Blocks 89019032-0 

The disk contains two areas of unused space: one is 15 blocks; the other is 10 
blocks. Neither area is large enough to contain a 20-block file. 

In this example, before you can create a file, library, or folder, you must do one or 
more of the following: 

• Delete some of the files, libraries, or folders by using the DELETE procedure. 

• Move the files, libraries, or folders together and collect all unused space into 
one area, by using the COMPRESS procedure. 

• Remove some files, libraries, or folders from the disk. You could relocate them 
on another disk, copy them to diskettes, or copy them to tape. 

Chapter 4. Disk Storage 4-21 



4-22 

If you do not want to use the DELETE procedure to make more disk space 
available, use the COMPRESS procedure. The COMPRESS procedure gathers all 
free space within the user area of each disk into an area either at the beginning of 
the disk or at the end of the disk. 

You can specify one of two options when you run the COMPRESS procedure: 

COMPRESS Procedure 
Options 

FREELOW 

FREEHIGH 

Description 

All available free space is collected at the beginning of 
the disk (at the low block numbers). 

All available free space is collected at the end of the 
disk (at the high block numbers). 

The following diagrams show the two options of the COMPRESS procedure: 

Disk A 1 Before COMPRESS 

System 

Library 
File 1 

Disk A 1 After COMPRESS Using FREE LOW 

I System 

_ Library 

Low Block 

Numbers 25 Unused Blocks 

15 Unused 

Blocks 

Disk A1 After COMPRESS Using FREEHIGH 

I Systom 

_ Library 

Low Block 

Numbers 

File 1 File 2 

File 1 

File 3 

"---v---' 
10 Unused 

Blocks 

File 2 File 3 

High Block 

Numbers 

25 Unused Blocks 

The System Reference manual has more information about running the 
COMPRESS procedure. 

$9019021-0 



Disk Cache 

Disk Cache Considerations 

Disk cache is a main storage buffer between the disk storage devices and the user's 
main storage buffer. To reduce the time the system spends getting information 
from disk, you can create a disk cache. With part of the existing storage devoted to 
the cache and without additional storage, a decrease in pedormance is possible. 
When the CACHE procedure is used to stop the cache, the storage is available for 
general use. 

Disk cache is divided into pages. Cache size and cache page size are specified in 
kilobytes, and can be changed at the system console using the CACHE procedure. 

If significant sequential disk processing is expected, the cache page size can be 
made larger to keep the number of disk accesses smaller. If significant random disk 
processing is expected, the cache page size can be made smaller to reduce the time 
the system has to search for data. The default cache page size is large enough for a 
wide variety of system activity. The following discusses disk cache considerations. 

When using the disk cache, consider the following: 

• A read operation from an area not in the cache causes a whole page of disk 
data to be read into the cache. 

• A read operation from an area that is in the cache retrieves the data from the 
cache rather than from the disk. 

• A write operation to an area that is in the cache updates the cache as well as 
the disk data. 

• A write operation to an area that is not in the cache does not put that data into 
the cache. 

The System Reference manual has more information on the CACHE procedure. 

Chapter 4. Disk Storage 4-23 



Programming Guidelines for Disk Storage 

This section describes several functions that are available to manage or control disk 
storage; for example, listing the files and libraries stored on disk and listing, 
copying, or erasing the history file. 

Listing the Disk Volume Table of Contents 

You list the table of contents of the disk by using the CATALOG procedure. The 
listing shows the names and locations of the files and libraries on disk, as well as 
the locations of unused space. The System Reference manual describes the 
CATALOG procedure. 

Measuring Disk Activity 

To measure the disk activity, you use the system measurement facility (SMF). You 
use three procedures (SMFSTART, SMFSTOP, and SMFPRINT) to run SMF. 
You can also enter the SMF procedure command to display a menu that allows you 
to choose the SMF procedure you want to run. SMF is described in the SMF 
Guide, which tells you how to use the printed results of SMF as a guide to deciding 
how to manage the disks. 

Changing the Size of System Files 

Service Log Procedures 

4-24 

You can change the size of some of the system files (for example, the task work 
area or the history file), by using the CNFIGSSP procedure. The Changing Your 
System Configuration manual has information about changing the sizes of these 
files. 

To add an entry to the system service log, you use the SERVLOG procedure. To 
list the entries contained in the service log, you use the DUMP procedure. Both 
these procedures are described in the System Reference manual. 



Listing, Copying, or Erasing History File Entries 

You can display, print, copy, or erase entries in the history file by using the 
HISTORY procedure. You can select entries to be processed by user ID, display 
station, procedure name, time, and date. You can copy the history file to a disk file 
in either of two formats: 

• The original history file format. This allows you to list that file later (using the 
HISTORY procedure) or to save those entries on diskette (using the SAVE 
procedure). 

• The format of files created by the COPYPRT procedure. This allows you to 
use the history file as input to another program. You can also display or print 
the entries (using the COPYPRT procedure). 

These procedures are described in the System Reference manual. 

Automatic Copying of History File 

During system configuration, you specify whether the history file should be 
automatically copied. The history file is copied to a disk file named HISTCOPY. 

As part of the automatic history file copy process, a procedure named HISTCOPY 
is automatically started by the system after the file HISTCOPY has been created. 
You can change or edit this procedure so that it does what you want; for example, 
you can have it rename the file HISTCOPY. The HISTCOPY procedure is stored 
in the system library. The System Reference manual has more information about 
the HISTCOPY procedure. 

Example of HISTCOPY Procedure 

This example gives each automatic copy of the history file a unique name. This 
example shows the statements you could add to the HISTCOPY procedure in the 
system library (#LIBRARY). The files are named: 

HIST.01 
HIST.02 
HIST.03 

You could then save the files on diskette for later use. 

Chapter 4. Disk Storage 4-25 



4-26 

The sample procedure is shown below. You can use the Development Support 
Utility (DSU) or source entry utility (SEU) to add these statements to the 
HISTCOPY procedure in #LIBRARY. The SEU Guide and DSU Guide have more 
information about SEU and DSU. 

* HISTCOPY PROCEDURE 
* When your system is configured to periodically save the History File, 
* two actions occur each time the History File becomes 80% full: 
* 1) The System History file is copied to the user file named "HISTCOPY". 
* 2) The control is passed to this HISTCOPY PROCEDURE. 

* 
* The purpose of the sample ~ISTCOPY procedure (given below) 
* is to periodically rename the current "HISTCOPY" file to 
*a new file name. The new file names are: HIST.01, HIST.02, 
* up to HIST.99. 

* 
* Parameter 1 is used as a counter. 
II EVALUATE P1=0 

* 
* Check the file names HIST.nn 

* II TAG LOOP 
* Increment the counter 
II EVALUATE P1,2=?1?+1 
* Check for the file name. 
* If the file does exist, go back and get a new file name 
II IF DATAF1-HIST.?1? GOTO LOOP 

* 
* File HIST.nn does not exist, rename HISTCOPY to HIST.nn 

* 
RENAME HISTCOPY,HIST.?1? 

* 
* Send a message to the system operator 

* II MSG ,File HISTCOPY was rename to file HIST.?1? on ?DATE? at ?TIME?. 

Note that a file named HIST.02 is created only if a file named HIST.01 is found on 
the disk. 



Chapter 5. Diskette Storage 

Uses of Diskettes 

The purpose of this chapter is to: 

• Suggest how you can use diskette storage. 

• Describe the types of diskettes you can use with the system. 

• Describe the different formats you can use to store data on diskette. 

• Provide you with programming tips and techniques regarding diskette 
processing. 

Primarily, diskettes are used to create backup copies of information. You can also 
use diskettes for offline storage of files and libraries or to transfer information to 
other systems or devices. 

Diskette Types and Storage Capacities 

System/36 supports several types of diskettes: 

• Diskette 1 is an 8-inch single-sided, single-density diskette. 

• Diskette 2D is an 8-inch double-sided, double-density diskette. 
Double-density means that one side of a diskette 2D can store twice as much 
information as a diskette 1. 

• Diskette 2HC is a 5-1/4 inch double-sided, high-capacity diskette. Diskette 
2HC is also referred to as a 96 TPI (tracks per inch) diskette, 2QD 
(quad-density) diskette, and as a 2HD (high-density) diskette. 

The diskette you use is determined by your needs and the system you have. 

These types of diskettes must be initialized before they can be used. The INIT 
procedure is used to do this. The INIT procedure, through its FORMAT and 
FORMAT2 parameters, allows you to specify storage capacity. 

Chapter 5. Diskette Storage 5-1 



The following table lists the storage capacities and formats of the different 
diskettes you can use. 

INIT Number of Number 
Diskette Procedure Bytes of Total 
Type Parameter per Sector Sectors Bytes 

1 FORMAT 128 1924 246,272 
1 FORMAT2 512 592 303,104 
2D FORMAT 256 3848 985,088 
2D FORMAT2 1024 1184 1,212,416 
2HC FORMAT 256 3848 985,088 
2HC FORMAT2 1024 1184 1,212,416 

Initializing diskettes is discussed in the section "Programming Guidelines for 
Diskette Processing" on page 5-10. 

Depending on the sizes of your files, libraries, and folders, you can place several 
files on one diskette or a large file on several diskettes. 

Diskette Exchange Formats 

5-2 

An exchange format is a set of rules about the content of the header record of the 
diskette and the physical organization of the diskette. Exchange formats are 
provided so you can exchange data between System/36 and other systems. The 
formats you choose depend on which system you exchange your data with. 
System/36 supports these types of exchange formats. 

• Basic data exchange (1) 

• H-data exchange (2D and 2HC) 

• I-data exchange (1 and 2D) 

• Special E-format (2D) 

For information about the exchange format required to exchange data with another 
system, see the appropriate manual for that system. 



Basic Data Exchange Format 

Basic data exchange format files have requirements assuring that diskettes may be 
exchanged between systems capable of reading and writing diskette 1. 

Basic data exchange has the following characteristics: 

• The diskette sector is 128 bytes (diskette 1). 

• The records are unblocked and unspanned. 

• All records in the file must be the same length. The record length of the file 
you put on diskette must be less than or equal to 128 (diskette 1). 

• The file name must be 8 characters or less. 

You can use the TRANSFER procedure or the POST procedure to read and write 
diskettes in this format. The $MAINT utility program allows you to read and write 
library members in basic data exchange format (using record mode). The System 
Reference manual has more information about the TRANSFER procedure, the 
POST procedure, and the $MAINT utility program. 

H-Data Exchange Format 

The H-data exchange format files have requirements assuring that diskettes may be 
exchanged between systems capable of reading and writing the diskettes 20 and 
2HC. 

Note: H-data exchange is also called basic data exchange on System/36. 

H-data exchange has the following characteristics: 

• The diskette sector is 256 bytes. 

• All records in the file must be the same length. The maximum record length is 
256 bytes. 

• The records are unblocked and unspanned. 

• The file name must be 8 characters or less. 

You can use the TRANSFER procedure or the POST procedure to read and write 
diskettes in this format. 

Chapter 5. Diskette Storage 5-3 



I-Data Exchange Format 

Special E-Format 

5-4 

The I-data exchange format files have requirements assuring that diskettes may be 
exchanged between systems capable of reading and writing diskettes 1 and 2D. 

I-data exchange has the following characteristics: 

• The diskette sector is 128 bytes or 512 bytes (diskette 1), or 256 bytes or 1024 
bytes (diskette 2D). 

• All records in the file must be the same length. The record length of the file 
must be less than or equal to 4096. 

• Records are blocked and can span diskette sectors. That is, several records and 
parts of records can be placed in a diskette sector, or a record can extend from 
one sector to another. However, records cannot span diskette volumes. 

• The file name must be 8 characters or less. 

You can use the TRANSFER procedure to read and write diskettes in this format. 
The System Reference manual has more information about the TRANSFER 
procedure. 

The E-general exchange format files have requirements that force the using system 
to examine each field in the header label. None of the characteristics can be 
assumed or summarized. 

System/36 uses a form of E-exchange format called special E-format to 
communicate with some point-of-sale terminals such as the IBM 5260 Retail 
System. You can use the POST procedure to read diskettes in this format. The 
System Reference manual has more information about the POST procedure. 



How Information Is Stored on Diskette 

When you save a file or library on diskette, the system creates a file on diskette 
which contains the file or library that you saved. When you save a folder on 
diskette, the system creates one or more diskette files which contain the folder that 
you saved. The diskette volume table of contents (VTOC), which is similar to the 
disk VTOC, includes the following information about the diskette file: 

• Name of the file or files . 

• Type of file that was created . 

• Date the file was created . 

• Size of the file . 

• Record length of the file . 

• File's expiration date . 

• Sequence number of the diskette, if the file is contained on more than one 
diskette. 

This is only a partial list; the CATALOG procedure in the System Reference 
manual has a complete list. 

Chapter 5. Diskette Storage 5-5 



Types of Diskette Files 

5-6 

The more common types of diskette files you can create with the system are shown 
in the following table: 

File Type 

COPYFILE 

EXCHANGE 

IFORMAT 

LIBRFILE 

SAVELIBR 

SAVEFLDR 

ARCHIVE 

Description 

Created when you use the SA VE procedure (or the $COPY 
utility program) to save a disk file. The format of the diskette 
file is unique to System/36 and System/34. The information 
can be exchanged only with another System/36 or System/34. 

Created when you use the TRANSFER or POST procedure (or 
the $BICR utility program) to copy a disk file in basic data 
exchange format. 

Created when you use the TRANSFER procedure (or the 
$BICR utility program) to copy a disk file in I-exchange format. 

Created when you use the FROMLIBR procedure (or the 
$MAINT utility program) to copy one or more library 
members. 

Created when you use the SA VELIBR procedure (or the 
$MAINT utility program) to save an entire library. The format 
of the diskette file is unique to System/36. 

Created when you use the SA VEFLDR procedure (or the 
$TMSERV utility program) to save an entire folder. The 
format of the diskette file is unique to System/36. 

Created when you use the ARCHIVE procedure (or the 
$TMSERV utility program) to save a folder member. 

This is only a partial list; the CATALOG procedure in the System Reference 
manual has a complete list. 



SA VEFLDR Files on Diskette 

When you use the SA VEFLDR procedure, the system places the folder and its 
extents in separate files on diskette: one file for the folder directory and one file 
for each extent (for a description of these areas, see "Folder Layout" on 
page 10-3). In order to give each diskette file a unique file name, the system uses 
the following naming convention: 

• The diskette file name for the directory is always the name of the folder. 

• For each extent, the file name is in the form NAMEx.yy, where: 

NAME is the first four letters of the folder name. 

xis a sequence number. If this folder has the same first four letters and 
the same creation date as another folder stored on this diskette, this 
number indicates which folder was stored first. 

Y.Y is the sequence number of the folder extent. This is a number between 
01 and 99; it is always 99 for the last extent in the folder. For example, if 
the folder has three extents, the last-created extent would be numbered 99; 
if the folder has only one extent, the sequence number for that extent 
would be 99. 

In the following example, folder TXTLETR has only one extent: 

File Name 
TXTLETR 
TXTL0.99 

Description 
Folder directory 
First and only folder extent 

In the next example, folders LETTER! and LETTER2 are being saved on the 
same diskette on the same day. LETTER! has two extents; LETTER2 has only 
one. 

File Name 
LETTER I 
LETT0.01 
LETT0.99 

LETTER2 
LETTl.99 

Description 
Directory of LETTER! 
First extent of LETTER I 
Second (and final) extent of LETTER! 

Directory of LETTER2 
First and only extent of LETTER2. Because the first 
four letters of LETTER I and LETTER2 are the same, 
and because they have the same creation date, the 
sequence number 1 is given to LETTER2's extent file. 

Chapter 5. Diskette Storage 5-7 



Diskette Data Compression 

5-8 

Diskette data compression can enhance the performance of the SA VE/RESTORE 
or SA VEFLDR/RESTFLDR procedure by compressing the duplicate character 
strings in your data files and folders. 

If you have files and folders with many duplicate characters, diskette data 
compression may reduce the number of diskettes you need and the amount of time 
needed to process your data. 

To run diskette data compression for data files, you specify the COMPRESS 
parameter in the SA VE procedure; for folders you specify the COMPRESS 
parameter in the SA VEFLDR procedure. When you restore the compressed files 
or folders, decompression is automatically performed. 

Data compression can be performed only on 2D and 2HC diskettes initialized to 
FORMAT2. 

Notes: 

1. If your main storage size is l 28K bytes, you may not have enough storage to run 
diskette data compression unless you make space by reducing the system work 
load. For example, you could reduce the trace file size and the number of 
programs running. 

2. For information about the storage requirements, see "Control Storage 
Requirements,, in Chapter 17. 



Diskette File Expiration Dates 

When you copy a file, library, or folder to diskette, one of the parameters you can 
specify is the number of retention days. This parameter specifies how long the 
system should protect the diskette file. The system uses the value specified for 
retention days to calculate the expiration date. 

The calculation is: 

Expiration = 
Date 

Current + 
Date 

Retention 
Days 

If you specify 999 for the retention days parameter, the file is considered 
permanent and will never automatically expire. 

The system examines the expiration date each time you create a file on diskette. If 
the date has passed, the system writes over the file. For example, a diskette file 
named FILEl has an expiration date of 14 July 1983. If you copy another file to 
that diskette before 14 July 1983, FILEl is still on the diskette. However, if you 
copy a third file to that diskette on or after 14 July 1983, FILEl will no longer be 
stored on the diskette; the system automatically erases FILEl because its retention 
period has expired. 

The FILE OCL statement for diskette files in the System Reference manual has 
more information about diskette file retention. 

Chapter 5. Diskette Storage 5-9 



Programming Guidelines for Diskette Processing 

Preparing Diskettes 

5-10 

This section describes procedures and techniques you can use to process diskettes. 

Only IBM-supplied procedures and programs can use the diskette drive. There is 
no high-level language support for diskette. In order to have your programs use 
information on diskette, you must copy the diskette information to a disk file, run 
your program to use the disk file, then copy the disk file back to diskette. 

You prepare a diskette for use by the system by initializing the diskette using the 
INIT or INITDIAG procedures. Initialization determines the number of bytes that 
can be stored on each sector of the diskette. Initializing also erases any 
information on the diskette. 

You may or may not have to initialize your diskettes. If you are unsure about the 
format of your diskettes, use the CATALOG procedure to check the diskettes. 

When you initialize a diskette with the INIT procedure, the system allows you to 
specify identifying information to be placed on the diskette. This identifying 
information is: 

• A 6-character name called the volume ID. You specify the volume ID on 
system procedures to ensure that you are using the proper diskette. 

• A 14-character name called the owner ID. This can be used to determine the 
owner of a diskette. The owner ID is not checked by the system procedures, 
but is displayed by the CATALOG procedure. 

When you initialize a diagnostic (microcode) diskette with the INITDIAG 
procedure: 

• Diskettes are 2D or 2HC and 512 bytes. 

• You need not specify identifying information to be written on diskette. 

• You use the COPYDIAG procedure to copy. 

• You cannot use the CATALOG procedure. 

The INIT and INITDIAG procedures in the System Reference manual have more 
information about diskette initialization. 



Copying, Saving or Restoring Information 

Copying Information 

Saving Information 

The following procedures are supplied by the SSP to let you copy, save, or restore 
information using diskettes. The Systems Reference manual has more information 
about these procedures. 

Procedure 

COPYil 

COPYDIAG 

FROMLIBR 

POST 

TOLIBR 

TRANSFER 

Procedure 

ARCHIVE 

SAVE 

SAVELIBR 

SAVEFLDR 

SAVENRD 

Description 

Copies diskette files, an entire diskette, or several diskettes to 
one or several diskettes. 

Copies diagnostic (microcode) to other diskettes. 

Copies one or more library members to diskette. To copy library 
members to diskette in basic data exchange format, use the 
$MAINT utility program. The Systems Reference manual has 
more information about the $MAINT utility program. 

Copies special E-format diskettes to disk. Also copies disk files 
to diskette in the basic data exchange format. 

Copies library members from a diskette file to a library. 

Copies disk files to diskette in either basic data exchange or 
I-data exchange format. Also copies basic data exchange or 
I-data exchange format diskette files to disk. 

Description 

Saves a folder member from disk to diskette 

Saves disk files on diskette 

Saves an entire library on diskette 

Saves an entire folder on diskette 

Saves a network resource directory on diskette 

Chapter 5. Diskette Storage 5-11 



5-12 

The system issues an error message during a save operation if a diskette is unusable 
or if there is an empty-slot condition. 

The system considers a diskette unusable if it has: 

• Active files (see note) 
• Extended VTOC in header label 
• Physical damage 
• Incorrect format (or does not recognize it) 
• Incorrect label 
• Incorrect geometry (bytes per sector) 
• Incorrect volume ID 

The system assumes an empty-slot condition when: 

• The system is a single-slot system and the slot is empty. 
• The system is a multiple-slot system and there is no diskette in the slot. 
• The diskette is inserted wrong. 
• The loading mechanism cannot remove the diskette from the magazine. 

You need not start the job over again during a save operation if any of these 
conditions occur or if you have a single-slot system. Recovery information for each 
condition is listed below. 

Unusable diskette condition: When the system issues the error message, you can 
press the Attn key and request a command display. Then run one of the following 
procedures to prepare the diskette: the CATALOG, the INIT, or the DELETE 
procedure. 

Empty-slot condition: When the system issues the error message, insert a usable 
diskette and retry the save operation. You may or may not 'get an error message. 
If you do not get an error message, the save operation will continue. If you do get 
an error message, press the Attn key and request a command display. Then run 
one of the following procedures to prepare the diskette: the CATALOG, the INIT, 
or the DELETE procedure. 

Single-slot systems: If you do not already have the next diskette prepared when the 
system issues a message requesting the next diskette, you can press the Attn key 
and request a command display. Then run one of the following procedures to 
prepare the diskette: the CATALOG, the INIT, or the DELETE procedure. 

Once you have prepared the diskette, you can continue the save operation. 

Note: A diskette that contains active files is generally unusable for a save operation 
unless: 

1. All the diskette VTOC entries have been used. 

2. All the data sectors on the diskette have been used. 

3. A SAVE ALL operation is being performed. 

4. It is not the first diskette in the save operation. 



Restoring Information 

Procedure Description 

RESTLIBR Restores an entire library from diskette to disk. 

RESTFLDR Restores an entire folder from diskette to disk. 

RESTNRD Restores a network resource directory from diskette to disk. 

RESTORE Restores disk files from diskette to disk. 

RETRIEVE Restores a folder member from diskette to a folder on disk. 

Listing Information from Diskette 

To list the names of the files, libraries, and folders on diskette, use the CATALOG 
procedure. 

To list a disk file that was copied to diskette by the SA VE procedure or the 
$COPY utility program, use the LISTDAT A procedure. 

If you want to list a library, a basic data exchange file, an I-exchange file, or any 
other type of diskette file, use the LISTFILE procedure. 

The System Reference manual has more information about these procedures. 

Removing Information from Diskette 

To remove information from a diskette, use the DELETE procedure. The System 
Reference manual has more information about this procedure. 

Chapter 5. Diskette Storage 5-13 



Allocating the Diskette Drive to a Job 

5-14 

You can use the ALLOCATE OCL statement to dedicate the diskette drive to a 
job. For example, you have a procedure that saves three files (the diskette has a 
volume ID of VOLOOl): 

SAVE FILE1,,,VOL001 
SAVE FILE2,,,VOL001 
SAVE FILE3,,,VOL001 

Normally, you lose control of the diskette drive between the SA VE procedures. 
That is, after FILE 1 is saved but before FILE2 is saved, another procedure on the 
system could use the diskette drive. This would make your SA VE FILE2 
procedure wait until the other procedure ends. 

You can use the ALLOCATE OCL statement to retain control of the diskette 
drive throughout the three SA VE procedures: 

II ALLOCATE UNIT-11 
SAVE FILE1,,,VOL001 
SAVE FILE2,,,VOL001 
SAVE FILE3,,,VOL001 

To avoid allocating the diskette drive longer than necessary, you should use the 
DEALLOC OCL statement to deallocate the diskette dn've. For example, your 
procedure would save three files and then run another type of job that did not use 
the diskette drive. You would use the DEALLOC OCL statement to allow other 
jobs to use the diskette drive. 

II ALLOCATE UNIT-I1 
SAVE FILE1,,,VOL001 
SAVE FILE2,,,VOL001 
SAVE FILE3,,,VOL001 
II DEALLOC UNIT-I1 

* II LOAD PROG1 
II RUN 

In this example, if the DEALLOC OCL statement is not specified, the job retains 
the diskette drive until the procedure ends. While PROG 1 is running, other jobs 
would needlessly be prevented from using the diskette drive. The System Reference 
manual has more information about the ALLOCATE and DEALLOC OCL 
statements. 



Creating a Sequential Set of Files on P.i.skette 

If your system has a diskette magazine drive, you can use the ALLOCATE OCL 
statement to read or write a sequential set of files on diskette. 

Normally, when you save or restore files, libraries, and folders from a set of 
diskettes, the system starts with the location you specify in the procedure. Assume 
that you want to save three files, two libraries, and two folders. Also, assume that 
you have two empty diskettes in slots Sl and S2: 

FILE1 t 
Fl LE2 These will fit on the diskette in slot S 1. 
FILE3 

LIBR1 f LIBR2 =rhese will fit on the diskette in slot S2. 
FOLDER1 
FOLDER2 

59019126-0 

When you use the SA VE, SA VELIBR, or SA VEFLDR procedure to save a file, 
library, or folder on diskette, the location parameter defaults to Sl. 

If you enter the following procedures: 

SAVE FILE1,,,VOL001 
SAVE FILE2,,,VOL001 
SAVE FILE3,,,VOL001 
SAVELIBR LIBR1,,VOL001 
SAVELIBR LIBR2,,VOL001 
SAVEFLDR FOLDER1,,VOL001 
SAVEFLDR FOLDER2,,VOL001 

the files, libraries, and folders are saved on diskette. However, after the diskette in 
slot Sl becomes full, the system keeps checking that diskette for unused space. This 
means that when the system saves LIBRl, LIBR2, FOLDERl, and FOLDER2, it 
wastes time by looking for unused space on the full diskette in slot S 1. 

Chapter 5. Diskette Storage 5-15 



Also, if you were using a diskette magazine (which can contain up to 10 diskettes), 
a lot of time would be wasted if the system were saving several files that used all 10 
diskettes. The system would check each diskette for unused space before it saved 
the next file, library, or folder. 

You can use the ALLOCATE OCL statement to instruct the system to continue 
the operation from its previous ending location. For example: 

II ALLOCATE UNIT-I1,CONTINUE-YES,AUTO-YES 
SAVE FILE1,,,VOL001 
SAVE FILE2,,,VOL001 
SAVE FILE3,,,VOL001 
SAVELIBR LIBR1,,VOL001 
SAVELIBR LIBR2,,VOL001 
SAVEFLDR FOLDER1,,VOL001 
SAVEFLDR FOLDER2,,VOL001 

Now, the system begins with the diskette in slot Sl (remember, it's the default) and 
automatically goes to the other slots as needed. That is, after the diskette in slot S 1 
becomes full, the system no longer checks that slot until the job ends or the 
DEALLOC statement is processed. The System Reference manual has more 
information about the ALLOCATE OCL statement. 

Changing the AUTO /NO AUTO Settings for Procedures 

5-16 

The AUTO/NOAUTO parameters of the diskette procedures specify whether the 
system should automatically check the next diskette magazine slot for a diskette. 
The default for the IBM-supplied procedures is AUTO; that is, the system 
automatically checks the next slot for a diskette. 

The ALLOCATE OCL statement allows you to override the AUTO/NOAUTO 
parameters of procedures. You can also override the AUTO parameter of the 
FILE OCL statement for diskette files. For example, the SA VE procedure 
AUTO/NOAUTO parameter defaults to AUTO. You can use the ALLOCATE 
OCL statement to prevent the SA VE procedure from automatically advancing to 
the next diskette: 

II ALLOCATE UNIT-I1,AUTO-NO 
SAVE FILE1 

This causes the system to use only the first slot (Sl). The System Reference manual 
has more information about the ALLOCATE OCL statement. 



Chapter 6. Magnetic Tape Storage 

Using Tape Storage 

The purpose of this chapter is to: 

• Suggest how you can use magnetic tape storage. 

• Describe the capacities of tape reels and cartridges. 

• Describe the different formats you can use to store data on tape. 

• Provide you with programming tips and techniques regarding tape processing. 

Primarily, tapes are used to create backup copies of information. You can also use 
tapes for: 

• Offline storage of files, libraries, and folders. 

• Transfer of information to other systems or devices (8809 Tape Drive only). 

Tapes must be initialized before they can be used. You can use the T APEINIT 
procedure to do this. 

Chapter 6. Magnetic Tape Storage 6-1 



Tape Lengths and Storage Capacities 

6-2 

The 8809 Tape Drive records data at 1600 bytes per inch over 9 tracks on the tape. 
The system supports tape reel sizes from 15.9 cm (6.25 in.) to 26.7 cm (10.5 in.). 

The IBM 6157 Tape Drive records data at 8000 bytes per inch over 9 tracks on the 
tape. The system supports one tape cartridge size. 

The following tables list the storage capacities of the different tapes on reel and 
tapes on cartridge you can use. 

Length Megabytes that 
of Tape Reel Size Can Be Stored 
on Reel (Diameter) (Approximate) 

92m 15.9 cm 5 
(300 ft.) (6.25 in.) 

183 m 19.1 cm 10 
(600 ft.) (7.5 in.) 

366m 21.6 cm 20 
(1200 ft.) (8.5 in.) 

732m 26.7 cm 40 
(2400 ft.) (10.5 in.) 

Length Megabytes that 
of Tape Can Be Stored 
on Cartridge (Approximate) 

450 ft. 40 

550 ft. 48.9 



Tape Formats 

The tape format describes the contents and characteristics of information stored on 
the tape. The system initializes tapes differently depending on your system unit 
and tape drive. This section describes the types of formats you can use. 

Tape Format for 8809 Tape Drive 

The system initializes tapes on reel in two formats: IBM standard labeled and 
nonlabeled. 

Using IBM standard labeled tapes is recommended. This allows you to easily 
determine the names of files stored on tape, as well as other information. Also, 
most system procedures can only operate with IBM standard labeled tapes (for 
example, SA VE and SA VELIBR). 

If you use nonlabeled tapes, you have to keep track of the information on the tape, 
because no labels are provided to identify the files on the tape. These SSP 
procedures can be used with nonlabeled tapes: T APECOPY and LISTFILE. 

Tape Format for IBM 6157 Tape Drive 

The system initializes tapes on cartridge in one format: IBM standard labeled. 

This allows you to easily determine the names of files stored on tape, as well as 
other information. 

The TAPECOPYprocedure ($TCOPY program) does not support the IBM 6157 
Tape Drive (UNIT-TC). All tape files are written in fixed block record format 
(RECFM-FB). The block length (BLKL) must be a multiple of 512 bytes. 

How Information Is Stored on Standard Labeled Tapes 

Tape FILEA 
Volume Tape Header 
Label Label 

TM 

When you save a file or library on a standard labeled tape, the system creates tape 
marks (TM), and header and trailer labels on the tape before and after the file or 
library data. The following example shows where these are located on the tape: 

FILEA 
FILEA FILEB 

FILEB 
FILEB 

(data) 
Tape Trailer Tape Header (data) Tape Trailer 
Label Label Label 

TM TM TM TM TM TM 
59019128·0 

Figure 6-1. Standard Labeled Tape Processing 

Chapter 6. Magnetic Tape Storage 6-3 



Header and trailer labels may include the following information about the tape file: 

Header 1 Label (Present on all tapes) 

• Name of the file 
• Date the file was created 
• File's expiration date 
• File's sequence number (SEQNUM) from the beginning of the tape or the 

beginning of a sequence of tapes 
• Volume sequence number of the tape, if the file is contained on more than one 

tape (such a file is called a multivolume file) 

Header 2 Label (Present on tapes used with 6157 Tape Drive) 

• Record length of tape file 
• Record format of tape file 
• Block length of tape file 

User Header Label (Present on System/36 tapes only) 

• Type of file that was created 
• Size of file 

This is only a partial list; the CATALOG procedure in the System Reference 
manual has more information. 

How Information Is Stored on Nonlabeled Tapes 

6-4 

When you copy a file to a nonlabeled tape, the system does not create header or 
trailer labels. You have to keep track of the information on the tape. Each file is 
assigned a sequence number (SEQNUM) and a tape mark (TM). The following 
example shows how information is located on the tape. 

FILEA FILEB FILEC 

(data) (data) (data) 

SEQNUM 1 TM SEQNUM 2 TM SEQNUM 3 TM TM 

Figure 6-2. Nonlabeled Tape Processing 
59019129·0 

Note: Some nonlabeled tapes have a leading tape mark (TM). In order to get the 
first data file, SEQNUM 2 must be specified to read FI LEA data. 



Tape Files 

The types of tape files you can create with the System/36 are shown in the 
following table. Except where noted, the formats of these tape files are unique to 
this system; the information can be exchanged only with another System/36. 

File Type 

COPYFILE 

EXCHANGE 

LIBRFILE 

SAVELIBR 

SAVEFLDR 

ARCHIVE 

Description 

Created when you use the SA VE procedure (or the $COPY 
utility program) to save a disk file. 

Created when you use the T APECOPY procedure (or the 
$TCOPY utility program) to save a disk file. This type allows 
information to be exchanged with another system, not 
necessarily a System/36. 

Note: This type of file is not supported on the IBM 615 7 Tape 
Drive. 

Created when you use the FROMLIBR procedure (or the 
$MAINT utility program) to copy one or more library 
members. 

Created when you use the SA VELIBR procedure (or the 
$MAINT utility program) to save an entire library. 

Created when you use the SA VEFLDR procedure (or the 
$TMSERV utility program) to save an entire folder. 

Created when you use the ARCHIVE procedure (or the 
$TMSERV utility program) to save a folder member from disk 
to tape. 

Chapter 6. Magnetic Tape Storage 6-5 



Exchanging Tape Files with other Systems 

6-6 

To exchange tape files with other IBM systems, you should use IBM standard 
labeled tapes. 

If you exchange tape files with another system, it is possible the tape has been 
written with volume/file security. More information about security access on 
standard labeled tapes is found later in this chapter. 

Note: Exchanging tape files with other systems is not supported on the IBM 6157 
Tape Drive. 

You can specify any of the following processing methods when the system reads 
tapes. These methods are specified in the T APECOPY procedure. The System 
Reference manual has more information about TAPECOPY. 

• IBM standard label processing. Specifies that the header labels are to be used 
to read the tape. 

Note: Files that have only a header 1 label can be processed if the record 
processing information is supplied. 

• Nonlabeled tape processing. Specifies that the tapes have no labels and that 
marks on the tape indicate where the files are stored. 

• Nonstandard label processing. Specifies that the tapes have labels, but the 
labels are not IBM standard labels. Only one file can be read from a 
nonstandard labeled tape . 

. The nonstandard labels are ignored, and the tape is read starting from the first 
mark on the tape to the second mark on the tape. Thus, only the first file is 
read. 

• Bypass label processing. Specifies that the tape has IBM standard labels but 
that label information is to be ignored. Instead, sequence numbers on the tape 
are to be used to process the file. 

You can use this method when you do not know the volume ID of the tape or 
the name of the tape file. 



Tape File Expiration Dates 

When you copy a file or library to tape, one of the parameters you can specify is 
the number of retention days. This parameter specifies how long the system should 
protect the tape file. The system uses the value specified for retention days to 
calculate the expiration date. 

The calculation is: 

Expiration = 
Date 

Current + 
Date 

Retention 
Days 

If you specify 999 for the retention days parameter, the file is considered 
permanent and will never automatically expire. 

When you initialize a tape and you specify date checking, the system examines the 
expiration date of the first file on an IBM standard labeled tape before initializing 
the tape. If the file has expired, the system writes over the expired file, and any 
other files that may be on the tape. Also, when the system continues writing a file 
from one tape to another and files exist on the continued reel, the expiration date 
of the first file on the continued reel is checked. If the first file has expired and 
other subsequent files have not expired, all the files can be written over. 

The FILE OCL statement for tape files in the System Reference manual has more 
information about tape file retention. 

Securing Tapes: Write-Enable Ring and Write-Protect Plug 

IBM 8809 Tape Drive: Write-enable rings are plastic rings that can be inserted into 
the tape reel to allow information to be written on the tape. 

If you remove the write-enable ring from a tape reel, the information on the tape 
can only be read; the information is protected from being written over. This is the 
only way to ensure no active tape files are written over. 

IBM 6157 Tape Drive: Write-enable/write-disable is controlled by a write-protect 
plug on the tape cartridge. The write-protect plug must be set to write-enable to 
allow information to be written on the tape. 

If the plug is set to write-disable, the information can only be read; the information 
is protected from being written over. 

Chapter 6. Magnetic Tape Storage 6-7 



Security on Standard Labeled Tapes 

Security access on standard labeled tapes is controlled by a hex code of '00', '40', 
or 'FO' in the tape volume label (VOLl). If one of these codes is not found, you 
must be a security officer to continue using the tape. The system checks volume 
security when processing standard labeled, nonlabeled, nonstandard labeled, or 
bypass labeled tape, provided a standard volume label exists. 

Security access to the files on standard labeled tapes is controlled by a 0, 1 or a 3 in 
the header label (HDRl). A zero (0) indicates no security access to the files. If 
the code is a 1, you must be a security officer to read or write to the files. If the 
code is a 3, you can read the files but must be a security officer to add to the files. 
File security will be checked when processing standard labeled, or bypass labeled 
tapes only. 

Programming Guidelines for Tape Processing 

Preparing Tapes 

6-8 

This section describes procedures and techniques you can use to process tapes. 

Only IBM supplied procedures and programs can use the tape drive. There is no 
high level language support for tape access. In order to have your programs use 
information on tape, you must copy the tape information to a disk file, run your 
program to use the disk file, then copy the disk file back to tape. 

You prepare a tape for use by the system by initializing the tape with the 
T APEINIT procedure, which is described in the System Reference manual. 
Initializing can also be used to erase any information on the tape. 

You may or may not have to initialize your tapes. If you are unsure about the 
format of your tapes, use the CATALOG procedure to check the tapes. 

When you initialize a tape with the T APEINIT procedure, the system allows you to 
specify identifying information to be placed on the tape. This identifying 
information is: 

• A 6-character name called the volume ID. You specify the volume ID on 
system procedures to ensure that you are using the proper tape. It is a good 
practice to assign unique volume IDs to each tape reel. 

• A 14-character name called the owner ID. This can be used to determine the 
owner of a tape. The owner ID is not checked by the system procedures, but is 
displayed by the CATALOG procedure. 



Copying, Saving, or Restoring Information 

The following procedures are supplied with the SSP to let you copy, save, or restore 
information using tapes. Except where noted, these procedures require standard 
labeled tapes. The System Reference manual has more information about these 
procedures. 

Procedure 

ARCHIVE 

BLDLIBR 

FROMLIBR 

JOBSTR 

RESTLIBR 

RESTFLDR 

RESTNRD 

RESTORE 

RETRIEVE 

SAVE 

SAVELIBR 

SAVEFLDR 

SAVENRD 

SECREST 

SECSAVE 

Description 

Saves folder members from disk on IBM standard labeled tape. 

Creates a new library on tape or tape cartridge. 

Copies one or more library members from a library on disk to 
an IBM standard labeled tape. 

Copies a tape or tape cartridge file that contains one or more 
procedure members and source members to a specific library. 
You can also specify the name of the procedure to be run after 
the members in the tape or tape cartridge file are copied. 

Restores an entire library from tape to disk .. 

Restores an entire folder from tape to disk. 

Restores a network resource directory from tape to disk. 

Restores former disk files from tape to disk. 

Restores folder members from tape to a folder on disk. 

Saves disk files on IBM standard labeled tape. 

Saves an entire library on IBM standard labeled tape. 

Saves an entire folder on IBM standard labeled tape. 

Saves a network resource directory on tape. 

· Restores the user identification file or the resource security file 
from tape to disk. 

Saves the user identification file or the resource security file on 
tape or tape cartridge. 

Chapter 6. Magnetic Tape Storage 6-9 



6-10 

TAPECOPY 

TOLIBR 

Copies disk files to tape in exchange format. Also copies 
exchange format tape files to disk. This procedure allows you 
to use both standard labeled tapes and nonlabeled tapes. You 
can use standard label processing or nonlabeled tape processing 
while reading or writing tape files. Nonstandard label 
processing or bypass label processing can only be used while 
reading tape files. 

Note: TAPECOPYis not valid for the IBM 6157 Tape Drive. 

Copies library members from a tape file to a library on disk. 

If two IBM 8809 Tape Drives are are attached to your system, you can run the 
following procedures at the same time: 

• TAPEINIT 

• TAPECOPY 

• FROMLIBR 

• TOLIBR 

• LISTDATA 

• LISTFILE 

• ARCHIVE 

• RETRIEVE 

If two IBM 8809 Tape Drives are attached to the system, you cannot run the 
following procedures at the same time: 

• SAVE 

• RESTORE 

• SAVELIBR 

• RESTLIBR 

• SAVELIBR 

• SAVEFILE 

• RESTFILE 



Listing Information from Tape 

To list the names of the files, libraries, and folders on an IBM standard labeled 
tape, use the CATALOG procedure. 

To list a file that was copied from disk by the SA VE procedure or the $COPY 
utility program (a COPYFILE), use the LISTDATA or LISTFILE procedure. To 
list any other type of tape file, use the LISTFILE procedure. 

To list information about files on nonlabeled or non-IBM standard labeled tapes, 
use the DUMP procedure. 

The System Reference manual has more information about these procedures. 

Removing Information from Tape 

To remove information from a tape, use the T APEINIT procedure. The System 
Reference manual has more information about this procedure. You cannot remove 
a specific file from tape. 

Chapter 6. Magnetic Tape Storage 6-11 



Allocating the Tape Drive to a Job 

6-12 

You can use the ALLOCATE OCL statement to dedicate the tape drive to a job. 

Assume that you have a procedure that saves three files (the tape has a volume ID 
ofVOLOOl): 

SAVE FILE1,,,VOL001,T1 
SAVE FILE2,,,VOL001,T1 
SAVE FILE3,,,VOL001,T1 

Normally, you do not retain control of the tape drive between the SAVE 
procedures. That is, after FILEl is saved but before FILE2 is saved, another 
procedure on the system could use the tape drive. This would make your 
SA VE FILE2 procedure wait until the other procedure ends. 

You can use the ALLOCATE OCL statement to retain control of the tape drive 
throughout the three SA VE procedures: 

II ALLOCATE UNIT-T1 
SAVE FILE1,,,VOL001,T1 
SAVE FILE2,,,VOL001,T1 
SAVE FILE3,,,VOL001,T1 

To avoid allocating the tape drive longer than necessary, you should use the 
DEALLOC OCL statement to deallocate the tape drive. For example, if your 
procedure would save three files and then run another type of job that did not use 
the tape drive, you would use the DEALLOC OCL statement to allow other jobs 
to use the tape drive. 

II ALLOCATE UNIT-T1 
SAVE FILE1,,,VOL001,T1 
SAVE FILE2,,,VOL001,T1 
SAVE FILE3,,,VOL001,T1 
II DEALLOC UNIT-T1 

* 
II LOAD PROG1 
II RUN 

In this example, if the DEALLOC OCL statement is not specified, the job would 
retain the tape drive until the job ends. While PROG 1 is running,,other jobs would 
needlessly be prevented from using the tape drive. 



Notes: 

1. Asynchronous communications lines and/ or diskette cannot be a/located at the 
same time as the 6157 Tape Drive on a 5362 System Unit. 

2. An 8809 Tape Drive cannot be allocated at the same time as the 615 7 Tape Drive 
on a 5360 System Unit. 

3. To receive greater benefit from the use of the ALLOCATE OCL statement and 
the LEA VE parameter with the 615 7 Tape Drive, the same tape must be in the 
drive and the drive door must not have been opened. statement and the LEA VE 
parameter. 

The System Reference manual has more information about the AL LO CA TE and 
DEALLOC OCL statements. 

Creating a Sequential Set of Files on Tape 

You can use the ALLOCATE OCL statement and the LEA VE parameter in a 
procedure to read or write a sequential set of files on tape. 

Note: To receive greater benefit from the use of the ALLOCATE OCL statement 
and the LEA VE parameter with the 615 7 Tape Drive, the same tape must be 
in the drive and the drive door must not have been opened. the drive door must 
not have been opened to receive greater benefit from the use of the 
ALLOCATE OCL 

The System Reference manual has more information on the ALLOCATE 
procedure. 

Normally, when you save or restore files, libraries, and folders from a set of tapes, 
the system starts with the location you specify in the procedure. 

For example, if you have the following statements in a procedure: 

* Procedure to save 2 files, 2 libraries, and 2 folders 
SAVE FILE1,,,VOL001,T1 
SAVE FILE2,,,VOL001,T1 
SAVELIBR LIBR1,,VOL001,,,T1 
SAVELIBR LIBR2,,VOL001,,,T1 
SAVEFLDR FLDR1,,VOL001,T1 
SAVEFLDR FLDR2,,VOL001,T1 

the files, libraries, and folders are saved on tape. However, the tape is rewound to 
its beginning (for the 6157 Tape Drive, the drive-in-use light does not remain on 
between jobs). This means that when the next job step starts, the tape has to be 
positioned to the end of the last file before the next file can be saved. This 
rewinding and repositioning can waste a lot of time. 

Chapter 6. Magnetic Tape Storage 6-13 



6-14 

You can use the LEA VE parameter to instruct the system to leave the tape 
positioned after the end of the file just processed. The next job step using tape 
may take advantage of the LEAVE state and the tape is not rewound (for the 6157 
Tape Drive, the drive-in-use light remains on). For example, if you have these 
statements in a procedure: 

* Procedure to create a sequential set of files on tape 
II ALLOCATE UNIT-'T1IT2' 
SAVE FILE1,,,VOL001,T1,AUTO,,LEAVE 
SAVE FILE2,,,VOL001,T1,AUTO,,LEAVE 
SAVE ALL,,GRPB,,VOL001,GRPB,T1,,AUTO,LEAVE 
SAVELIBR LIBR1,,VOL001,,AUTO,T1,,LEAVE 
SAVELIBR LIBR2,,VOL001,,AUTO,T1,,LEAVE 
SAVEFLDR FLDR1,,VOL001,T1,,AUTO,LEAVE 
SAVEFLDR FLDR2,,VOL001,T1,,AUTO,UNLOAD 
II DEALLOC UNIT-'T1IT2' 

the system begins with the first file and automatically continues with the other files 
and libraries. 

The tape continues processing from the previous job step's ending location. If the 
tape has auto advanced to the next tape unit and the LEA VE parameter is used, 
the system will keep track of the previous job step's ending unit and tape position. 
Processing will continue from there. The last job step causes the tape to be 
unloaded so that it can be removed from the drive. (For the 6157 Tape Drive, the 
drive-in-use light will be turned off during processing of all I I DEALLOC OCL 
statements.) 

Note: The UNLOAD parameter is defaulted to REWIND on the 6157 Tape Drive. 

When you are using the LEA VE parameter to read files from IBM standard labeled 
tapes, the tape's volume ID, the file name, and (if specified) the file's creation date 
are examined to ensure that the proper file is being read. 

If you are using the LEA VE parameters to write to a standard labeled tape, the 
system will check to make sure the tape is positioned at the end of the tape before 
writing to the tape. 

If a sequence number is specified, the tape is searched from the current position 
toward the specified sequence number, checking that the sequence number can be 
written to the tape. If a tape file exists at that sequence number, it is written over 
with the new tape file. 

Notes: 

1. If you try to write over files on the IBM 6157 Tape Drive, a diagnostic message is 
issued. 

2. For the IBM 615 7 Tape Drive, if the sequence number request is less than the 
current position, the tape will rewind and search from the beginning of the tape. 
If the sequence number requested is greater than the current position, the tape is 
searched forward from the current position. 

If the next job step is reading a standard labeled tape file in bypass label 
processing, the tape is searched from its current position to the specified sequence 
number. 



If the next job step is reading or writing to a nonlabeled tape file and no sequence 
number is specified, the tape is read or written to without any checking. If a 
sequence number is specified, the tape is rewound and then the sequence number 
located. 

If the next job step is reading a nonstandard labeled tape file, the tape is rewound 
and the first file's data is read. 

The procedure control expressions VO LID and DAT AT cause the tape to rewind 
and then search from the beginning of the tape. 

You should also allocate the tape drive to your job when you are using the LEA VE 
parameter. This ensures that your use of the tape drive is not interrupted by 
another job, thus preserving your tape's position. See "Allocating the Tape Drive 
to a Job" on page 6-12 for information about allocating the tape drive to a job. 
LEA VE information is maintained by the system from job step to job step but is 
not passed from job to job. 

Chapter 6. Magnetic Tape Storage 6-15 



6-16 



Chapter 7. Designing Records 

A record is a collection of fields that is treated as a unit. This chapter describes 
how to design records, and describes the types of data you can store in records. 

Identifying Required Fields 

Naming Fields 

The applications determine what data is needed in the records. That is, the records 
must contain all the fields required for input to or output from applications that use 
the file. 

In addition, the records might require any of the following fields: 

• Keys or relative record numbers 

• A status byte to allow for deletions 

• A record code to identify the record 

• Fields for exception reports (for example, credit limit or-minimum stock) 

• Fields to aid in analysis (for example, number of accesses to this record, date 
of last update, number of returns, or pending order) 

• Fields reserved for expansion 

Meaningful field names can make your program logic clearer to a user who is not 
familiar with your program. 

Usually, high-level languages (such as RPG II or COBOL) limit the number of 
characters you can use for field names. Therefore, you usually have to use 
abbreviations for field names. By establishing a list of standard abbreviations, you 
can make sure that they are readily understood by everyone in your installation. 
For example, various programmers might abbreviate the word MASTER as MST, 
MAST, or MSTR. By consistently using one of these abbreviations, you can help 
clarify what the abbreviation means. 

Chapter 7. Designing Records 7 -1 



7-2 

If you use descriptive field names, you usually have several files that contain fields 
with the same name. When these files are used in the same program, you must 
qualify or redefine fields that have the same name, depending on the field-naming 
requirements of the high-level language you are using. 

You can avoid this problem by using an abbreviation of the file name as a prefix to 
the field name. For example, you might use MST as the prefix to all field names in 
your master file. By using unique prefixes such as MST for MASTER, TRAN for 
TRANSACTION, PAY for PAYROLL, and INV for INVENTORY, you can help 
eliminate misinterpretation and confusion. 

The field description entries associated with any one of your files can be 
standardized. You can write a field description for each of your files and then store 
these definitions in separate source members in your libraries. You can then copy 
these field definitions into your program by using $AUTO I COPY, SEU, or DSU 
Full Screen Editor. 

Note: All functions done with SEU can be done with DSU. 

This approach has several advantages: 

• Data definitions are standardized. The programmers in your installation use 
identical file definitions with the same field names and descriptions. 

• You save time. The field description for each file needs to be written, entered, 
and debugged only once. This description can then be made available to all 
programmers. 

• Maintenance becomes considerably easier. Programmers can easily pick up the 
structure of the data because they have probably worked with the same field 
definitions in another program. If the field definition itself needs to be 
updated, only one source member needs to be modified. This member is then 
copied into each program that used the old source member. 

• The source member for each file can be used to document the contents of the 
file. When you build the field description for each file, you can include 
comments that document what each field is used for, what the valid range of 
values is, and whatever additional information you think is necessary. 

The high-level language you use to write your program determines the maximum 
length you can specify for your field names. See the appropriate language manual 
for information about the maximum length allowed for field names in the 
programming language you use. 



Numeric Fields 

Zoned Decimal Format 

If you have numeric fields, you should determine whether the field is to be in zoned 
decimal format, packed decimal format, or binary format. Packed and binary 
formats can reduce the amount of space needed to store numeric information. 

Be sure to allow the maximum length for amount fields. Otherwise, a high-order 
position could be lost in exceptional cases. 

For data in zoned decimal format, each byte of storage represents a single 
character. Each byte of storage is divided into two parts: a 4-bit zone portion and 
a 4-bit digit portion. Zoned decimal format looks like this: 

Bits 0 ----•7 0 ----•7 0 ----•7 0 ----•7 0 ----•7 

Zone Digit Zone Digit Zone Digit Zone Digit Sign 

Byte 

Digit 

Bits 

1101 = Negative 

1111] 
or = Positive 

1100 

59019094·1 

The zone portion of the rightmost byte contains the representation of the sign. A 
positive sign is represented by hexadecimal F (1111) or C (1100). A negative sign 
is represented by hexadecimal D (1101). 

The number 7462 stored in zoned decimal format looks like this: 

7 4 6 

1111 0111 1111 010011111 0110 

Sign (indicates that 
the field is positive) 

I 2 

111 00101 

59019095-0 

In your program, you can specify whether a field is signed or unsigned. A signed 
field stores the sign with the data. An unsigned field does not store the sign with 
the data. To process fields with a negative value, you must define the field as 
signed. If you do not specify that a field is signed, the system assumes that the data 
in the field is positive. This can cause unexpected results. For example, if you 
code your program so that an operation is performed if the sign of a field is 
negative, the operation cannot be performed if the field is unsigned. 

Chapter 7. Designing Records 7-3 



7-4 

When the zone portion of the rightmost byte is changed to represent the sign, the 
rightmost byte might become a character that cannot be printed or displayed. The 
following table shows how changing the sign affects how the rightmost byte is 
printed or displayed. 

Sign Portion How the Rightmost 
of the Value of the Byte Is Printed 
Rightmost Byte Rightmost Byte or Displayed 

Hex F (positive) 0 through 9 0 through 9 
Hex C (positive) 0 Unprintablet 
Hex C (positive) 1through9 A through I 
Hex D (negative) 0 Unprintablel 
Hex D (negative) 1through9 J throughR 

1These characters can be printed if your printer has a printer 
belt that includes additional special characters. 

For example, if you place a value of + 1234 in a signed zoned decimal field, it 
is stored in the computer as: 

F1 F2 F3 F4 

If you print this field, it appears as: 

1 2 3 4 

If you place a value of -1234 in a signed zoned decimal field, it is stored in 
the computer as: 

F1 F2 F3 D4 

However, if you print this field, it appears as: 

1 2 3 M 

because hex D4 is the EBCDIC value of the letter M. Therefore, your 
program must convert the data in the field to properly print the value. 



Packed Decimal Format 

For data in packed decimal format, each byte of storage can represent two 
decimal digits. Therefore, you can store almost twice as much data in the 
same amount of storage by using packed decimal format rather than zoned 
decimal format. 

In packed decimal format, each byte of storage except the rightmost is divided 
into two 4-bit digit portions. Packed decimal format looks like this: 

0 ----1 0 ----1 

Digit Digit Digit Sign 

Byte 

59019096-0 

The rightmost 4 bits of the rightmost byte are reserved for the sign. If you 
are storing a field with an odd number of digits, the field completely fills the 
bytes of storage reserved for it, as shown in the preceding figure. However, if 
you are storing a field with an even number of digits, the field is 
right-adjusted within the bytes of storage reserved for it. The leftmost digit 
portion of the leftmost byte contains only zeros. 

The number 7462 stored in packed decimal format looks like this: 

0 7 4 

0 1 1 

6 2 

Sign (indicates that 
the field is positive) 

I 
1 1 1 

59019097-0 

Chapter 7. Designing Records 7 -5 



7-6 

In packed decimal format, a positive sign is represented by hexadecimal F. A 
negative sign is represented by hexadecimal D. 

If you define a numeric field with a value of + 1234 as an unsigned packed 
decimal field, it is stored in the computer as: 

01 23 4F 

If you define a numeric field with a value of -1234 as an unsigned packed 
decimal field, it is also stored in the computer as: 

01 23 4F 

However, if you define a numeric field with a value of -1234 as a signed 
packed decimal field, it is stored in the computer as: 

01 23 4D 

To print or display a packed decimal field, you must first translate it into its 
zoned decimal equivalents. 

The maximum length of a packed decimal field is 15 digits (8 bytes of 
storage). The following table shows the number of bytes of storage required 
to store zoned decimal and packed decimal fields. 

Digits Zoned Packed 
in Decimal Decimal 
Digits Fonnat Fonnat 

1 1 1 
2 2 2 
3 3 2 
4 4 3 
5 5 3 

6 6 4 
7 7 4 
8 8 5 
9 9 5 
10 10 6 

11 11 6 
12 12 7 
13 13 7 
14 14 8 
15 15 8 



Binary Format 

Data in binary format is represented in storage in binary digits; that is, as a 
number to the base 2. A binary field usually occupies less storage than a 
zoned decimal field and sometimes occupies less storage than a packed 
decimal field. The following table shows how many bytes of storage are 
occupied by binary fields of various lengths. 

Number of Bytes Required Bytes of 
Digits to Represent Storage 
in Field the Number Occupied 

1to2 1 2 
3 to 4 2 2 
5 to 6 3 4 
7 to 9 4 4 
10 to 11 5 8 

12 to 14 6 8 
15 to 18 7 8 

A binary field normally reserves the leftmost bit of its representation in 
storage as the sign position. If the sign position contains 0, the number is 
positive. If the sign position contains 1, the number is negative. 

For example, if a binary field has a value of -1234 and you define the field as 
unsigned, it is represented in storage as hex 04D2: 

0 4 

0000 0100 

Sign 
Position 

D 2 

101 0010 

59019098-0 

Chapter 7. Designing Records 7 -7 



Floating-Point Format 

7-8 

If you define a binary field as signed, it is stored as a negative number. 
Negative binary fields are stored in twos complement. To find the twos 
complement of a binary field, follow these steps: 

1. Change the setting of each bit in the binary representation. That is, 
change each 0 to 1, and each 1 to 0. 

2. Add 1 to the new binary representation. 

For example, the value -1234 is stored as hex FB2E: 

F 

1 1 

Sign 
Position 

B 

1 0 1 

2 E 

0 0 1 0 1 1 0 

59019099-0 

To print or display a binary field, you must first translate it into its zoned 
decimal equivalent. 

Data expressed in floating-point format consists of a decimal number 
followed by an exponent. The decimal number is called the mantissa. The 
exponent specifies a power of 10 that is used as a multiplier to indicate the 
placement of the decimal point. 

The value of a floating-point number is the mantissa multiplied by the power 
of 10 expressed by the exponent. For example, 3E02 is the floating-point 
representation of 3 times 10 to the 2 power, or 300; while 3E-2 equals 0.03. 

Data in floating-point format has the following form: 

[ ± ]mantissaE[ ±]exponent 

Each character or digit occupies one byte of storage. 

+ or - Signs: A plus ( +) or minus (-) sign is optional before the mantissa and 
before the exponent. If no sign is specified, a positive mantissa 
or exponent is assumed. A plus ( +) sign indicates positive 
values and a minus (-) sign represents negative values. 

Mantissa: The mantissa can contain from 1 to 16 digits. The mantissa must 
contain one actual or assumed decimal point as a leading, 
embedded, or trailing symbol. 

The Letter E: The letter E immediately follows the mantissa and indicates the 
exponent. 

Exponent: The exponent immediately follows the second optional sign 
character. It can contain from 1 to 3 digits. 



Alphameric Fields 

Alphameric data can contain letters, numbers and special characters. Special 
characters are those characters other than alphabetic or numeric characters. 
For example;*,+, and% are special characters. 

See the appropriate language manual for information about the lengths 
allowed for alphameric fields. 

Key Length and Placement 

A key is one or more characters used to identify the record and establish the 
record's order within an indexed file. The maximum key length is 120 bytes, 
although in some cases the limit is lower (for example, WSU, DFU, RPG II, 
and Query/36 all restrict the key length to 99 bytes). 

A multiple-index file uses a separate key for each index. The key for the 
primary index of an indexed file must be made up of fields that are next to 
each other in the record, or contiguous. The keys for alternative indexes (for 
all file types) do not have be built from contiguous fields in the record. Up to 
three noncontiguous fields can be used as the key for an alternative index. 
For example, fields 1, 2, and 3 could be the key for the primary index of an 
indexed file; fields 1, 3, and 10 of a record could be the key for an alternative 
indexed file. 

Files and indexes are described in Chapter 8, "Files." 

Providing for Deletion of Records 

When a record is deleted from a delete-capable file, the record remains in the 
file, but the data is unavailable for use. If you might need the data that was in 
a deleted record, do not use a delete-capable file. Instead, have your program 
place a delete code in the record. Then, when the file is processed, your 
program can check for this code. For example, if a customer record becomes 
inactive, you may want to place a delete code in the record and have the 
program check for this delete code. When the program finds this delete code, 
it can bypass the record instead of processing it. Later, if you wish to 
reactivate the inactive customer record, you can do so by removing the delete 
code. 

The system does not treat records with a user-specified delete code as deleted 
records. 

To remove deleted records from a file, you can use the COPYDAT A or 
SA VE procedure. The System Reference manual has information about the 
COPYDATA and SAVE procedures. 

Chapter 7. Designing Records 7 -9 



Field Sizes 

Field size depends on the data in the field. The data in many fields contains 
the same number of characters for every record. For example, every record 
has a six-position field for the customer number, and all six positions contain 
data. Other fields contain a varying number of characters. In those cases, 
each field should be long enough to contain the largest number of characters 
for that field in any record. For example, the length of each customer's name 
varies, but 20 positions should be long enough to contain any customer's 
name. 

Defining Record Length 

The lengths of various fields in a record may vary, but a given field should 
have the same length in every record, and all records in a particular file must 
have the same length. Record length is the sum of the field lengths, plus any 
extra space reserved for new fields. The maximum record length for a disk 
file is 4096 positions. 

Allowing for New Fields 

7-10 

You should allow for future additions to the record. For example, a new field 
might be needed in the record. Your record design should allow for that 
possibility. 

One way to allow for new fields is to make the record length longer than 
initially required (10 percent longer, for example). However, this method 
requires extra space and can decrease performance. For example, if a file 
contains 1000 records, and if 20 positions are set aside in each record for 
future additions, the file requires an additional 20,000 bytes. 

Another way to allow for new fields is to have the program that reads the file 
add the new fields and then write the larger file back to disk. 



Documenting Record Layout 

CRECCO CDELETE 

I I 

23 45 910 

When you document your record layouts, your programs are easier to write. 
The following diagram shows the layout of a master customer record. Record 
layout includes the order of the fields in the record, the length of each field, 
and the name of each field. In this example, the field names all begin with the 
letter C to indicate that the record is from the customer master file. 

CST ATE CSLSNO Not Used 

CNAME CAD DR CCITY 

\ 
I ' I CZIPCD I\ lf;;;;:*'*~~i\i{Sl 

3435 5960 81 82 83 84 8889 9091 128 

59019068-0 

The following is one way to document this record layout: 

INPUT /OUTPUT Record Description 

Record Name Customer Master System..::36=--------

File Name_C .... M.""~~S~T--------------------

File No.---
Page_t_ ot _1 _ 
Date ____ _ 

File Organization Indexed Sequence Organized in Key Sequence Prepared by-'M.='S,_T __ _ 

Record Length 128 Key Customer Number Key Length ..-6 ______ _ 

Created by CUST£NT Used by CUSTL/ST Updated by CUSTINO 

Field ro-ec1ma Location 
Values Field Desc~ion Name Length Positi~ Format From To 
MA Recor::?[ C~e CRECCO ~ A 1 ~ 
D or blank Delete C~e CDELETJ! 1 A 3 3 

Customer Number CUSNO 6 0 N 4 9 
Customer Name CNAME 25 A 10 34 
Customer Address CAD DR 25 A 35 59 
City_ CCI TY 22 A 60 81 
State CSTATE 2 A 82 83 
Zi.12_ Code CZIPCD 5 N 84 88 
Salesman Number CS LS NO 2 N 89 90 
-- Not Used -- 38 A 91 128 

--- --~ --.i -- ---59019112-0 

On the following page is a sample record description form. You can make 
copies of this form to use in documenting your record layouts. 

Chapter 7. Designing Records 7 -11 



INPUT /OUTPUT Record Description File No. 

Record Name System Page __ of __ 

File Name Date 

File Organization Sequence Prepared by 

Record Length Key Key Length 

Created by Used by Updated by 

Field 11..1ec1ma Location 
Values Field Description Name Length Positio~ Format From To 

~-0 

7-12 



Chapter 8. Files 

A me is a set of related records that is treated as a unit. Files contain 
information such as customer accounting data. 

Introduction to Files 

Using Files in General 

This chapter describes disk files, including: 

• Using files in general 

• File organizations and access methods 

• File attributes 

• Blocking records and index entries 

• Sharing files 

This introductory section gives an overview of some basic file concepts, each 
of which is described in greater detail later in this chapter. 

As you program your applications, you do the following: 

• Create files 

• Name files 

• Specify files in programs 

• Place data in files 

• Remove files from disk 

• Secure files 

Chapter 8. Files 8-1 



File Organizations and Access Methods 

8-2 

The system allows three types of file organizations: sequential, direct, and 
indexed. File organization refers to the way records are placed in a file. 

Sequential Files: Records occur in the order in which they were entered into 
the file. IDDU creates only sequential files. 

Direct Files: Records occur in any order. Each record has an associated 
relative record number, which specifies the location of a record in relation 
to the beginning of the file. 

Indexed Files: The key and the position of each record are recorded in a 
separate portion of the file called an index. The key is one or more 
characters in the record and is used to access the record in the file. 

File access methods refer to the way in which your programs use or process 
the file. The system allows programs to access files using the following 
methods: 

Consecutive access allows you to access records in the order in which they 
appear in the file, one after the other from the first to the last. 

Random access by relative record number allows you to access only the record 
you need by specifying the record's relative record number. 

Sequential access by key allows you to access indexed files according to the 
sequence of the keys in the index. 

Random access by key allows you to access, in an indexed file, only the record 
you need by specifying the key of the record. 

Generalized access allows you to access a file by using a combination of the 
above methods. 



File Attributes 

File attributes indicate how long a file is to be retained, whether a file can be 
extended, or whether records in a file can be deleted. 

The file retention attributes are: 

Resident files are considered permanent files; for example, a customer master 
file is usually a resident file. These files are always on the system until 
they are explicitly removed. Resident files can be shared among several 
jobs. 

Job files exist from the time they are created and remain on the system until 
the job that was using them ends. Job files are usually used to store 
temporary data that is needed only from one job step to the next. 

Scratch files exist from the time they are created and remain on the system 
until the program that was using them ends. Scratch files are used to store 
temporary data for one program. 

The extendable me attribute allows the system to automatically extend a file 
when you add more records than the file's current size allows. This prevents 
a program from ending abnormally when the file does not contain enough 
room to add more records. 

The delete-capable me attribute allows your programs to use their delete 
statements or codes to delete records from the file. This prevents you from 
having to reserve a record location for a delete code, for which all your 
programs would have to check. 

Blocking of Records and Indexes 

The system allows you to block records and index entries. The record 
blocking factor specifies approximately how many records are to be 
transferred for each disk input/ output operation. Record blocking is useful 
when you are likely to process several records at a time. By specifying a large 
blocking factor, you reduce the number of disk input/output operations that 
are required. 

Index entry blocking tells the system how many index entries to read from the 
disk for each disk input operation. Blocking index entries can save processing 
time when your program is accessing consecutive index entries, because the 
system does not have to read the index on disk until all the index entries in 
main storage are processed. 

If you are using the cache, it is better not to specify a blocking factor. 

Chapter 8. Files 8-3 



File Sharing 

Using Files 

8-4 

The system allows resident files to be shared by two or more programs at the 
same time. The system allows you to specify the sharing levels of the 
programs that are to share files. -For example, if two programs are sharing a 
file, one program can be allowed to read and modify data, but the other 
program can be allowed only to read the file. 

This section describes several topics about files in general, including: 

• Creating files 

• Naming files 

• Specifying a file for a program 

• Placing data in files 

• Removing files from disk 

• Securing files 



Creating a File 

You can create files on disk by using: 

• The system help menu for working with files. To display that help menu, 
enter HELP CREAFILE. 

• The BLDFILE procedure. For example, if you want to create a 
sequential file named NEWFILE on disk unit Al and you have enough 
space for one hundred 256-byte records, you would enter the following 
statement: 

BLDFILE NEWFILE,S,R,100,256,A1,T 

• WSU or DFU, which automatically creates files. WSU creates direct 
files. DFU creates sequential, direct, or indexed files. 

• A program that does output operations. The FILE OCL statement may 
have DISP-NEW or no DISP parameter specified. For example, if you 
want your program to create an output file named OUTl with the label 
OUTPUT and you have enough disk space for 10 blocks of data, you 
could enter the following FILE OCL statement: 

II FILE NAME-OUT1,UNIT-F1,LABEL-OUTPUT,BLOCKS-10, 
II RETAIN-T,DISP-NEW 

• The OPEN statement in BASIC. 

• The RESTORE, POST, TRANSFER, or TAPECOPYprocedure to copy 
files from diskette or tape to disk. 

• The COPYDAT A procedure to copy files from disk to disk. 

The Query /36 data entry facility. 

• IDDU. 

You have two options when you specify the size of files being created. You 
can specify either: 

The number of records that the file is to contain 

The number of blocks of disk space desired for the file 

For example, you may want to create a file with enough room for five 
hundred 256-byte records, or you may wish to create a file that has 20 blocks 
of disk space allocated for it. 

Chapter 8. Files 8-5 



Naming a File 

8-6 

The SSP requires a unique identification for each file. This identification is 
provided by a file name and a file label. A file name or file label can be up to 
8 characters long and must begin with an alphabetic character (A through Z, 
#,$,or@). characters can be any combination of characters (numeric, 
alphabetic, and special). Do not name files ALL. 

You should avoid using the following characters because these have special 
meanings in procedures: commas(,), apostrophes('), question marks(?), 
slashes (/), greater than signs (> ), equal signs (=),plus signs ( + ), and 
hyphens(-). 

You can create meaningful file labels by abbreviating the name of the 
application that uses the file. For example: 

File Label Application or Type of File 

ACCTRECV Accounts receivable 
CUSTMAST Master customer file 
CUSTORDS Customer orders 
INVTRANS Inventory transactions 
ITEMBAL Item balance file 
INVMAST Inventory master file 
SHIPMAST Ship-to master file 

Do not confuse the file name with the file label. The file name indicates how 
the program refers to the file. The file label indicates how the system refers 
to the file on disk. Both NAME and LABEL are parameters on the FILE 
OCL statement. The LABEL parameter must be specified only when the 
name of the file on disk is different from the name used in the program. If 
the LABEL parameter is not specified, the name specified as the NAME 
parameter is used. For example, in the COBOL coding and the FILE OCL 
statement shown below, the file name used by the program is ITEMMAST, 
but the file label is INVMAST (the actual name of the file on disk). 

COBOL Program Segment: 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT INPUT-FILE ASSIGN TO DISK-ITEMMAST. 

FILE OCL Statement: 

II FILE NAME-ITEMMAST,LABEL-INVMAST 

The System Reference manual has more information about the NAME and 
LABEL parameters on the FILE OCL statement. 



File Dates 

Group Files 

You can assign the same file label to more than one file as long as each file 
has a different creation date. 

During system configuration, you can specify that the system prevent a new 
disk file (with a different date) from being created if it has the same label as 
an existing file. See the Changing Your System Configuration manual for 
more information. 

Group files are a set of files collectively identified by a file name that contains 
identifiers separated by one or more periods. The characters preceding a 
period identify the file group. 

The advantage of using group files is that they can be saved, restored, or 
deleted in one step by using the SA VE, RESTORE, or DELETE procedure. 
You should consider using group files for all files used by a particular 
application or portion of an application. 

Another advantage of group files is that they can be secured easily. See the 
System Security Guide for more information about securing group files. 

Here are some examples of file names that identify group files: 

File Name File Group Name 

!NV.MAST r 
I NV.TRAN NV 
I NV.WORK 

M.TEST.1 
M.TEST.2 
M.TEST.3 

~.TESTo'M 
59019124-0 

The limit of 8 characters for a file name also applies to names for group files. 
The period counts as one of the 8 characters. 

To have a meaningful group name, it should not be more than 6 characters 
long plus a period(.). A 7-character group name plus a period(.) would not 
allow more characters to differentiate between files in a group. An 
8-character group name is not possible because no period(.) is allowed after 
the name. 

Chapter 8. Files 8-7 



Files in a Group Resource 

Renaming a File 

8-8 

Files, folders, and libraries can be part of a group resource. The group 
resource must be named and each file, library, or folder that is part of the 
group must be named. 

For example, a group resource could be .PAY: a file that is part of this group 
could be PAY.FILE, a library could be PAY.LIB, and a folder could be 
PAY.FOLD. As you can see, the group resource name and the name of the 
file, library, or folder are separated by a period (.). PAY is called the group 
identifier. 

One advantage of using groups is that they can be secured easily. See the 
System Security Guide for more information about securing groups. 

The limit of 8 characters for a file name also applies to names of groups. A 
period counts as one of the 8 characters. 

You can use the RENAME procedure to rename files. However, you should 
be careful not to rename files that other programs, procedures, or utilities 
depend on. For example, if you rename a file that is used by several jobs, the 
reference to that file name must also be changed in each job. 

The System Reference manual has more information about the RENAME 
procedure. 



Specifying a File in a Program 

To use a file in a program, you must specify the file name and, optionally, the 
file label in the program. When the program is compiled, the compiler 
extracts the necessary file information from the file description in the 
program. The system uses some of this information to define the record 
formats to be processed and some of it to open the file. 

The file description in the program contains a description of: 

• The record formats, which includes the field names, data types (numeric, 
alphameric, or character), and field lengths 

• The access method 

The file organization as specified in the high-level language program 

All records in a file are fixed length and can have the same or different field 
descriptions. In your high-level language program, you can subdivide a field 
and/ or redefine the field for processing. Records are described in 
Chapter 7, "Designing Records." 

Your high-level language program must open a file before issuing requests to 
read, write, update, or delete records in the file. A request to open a file 
allows the file to be processed by the program. A request to close a file 
prevents further processing of the file by the program. How you issue a 
request to open or close a file depends on which high-level language you use. 
In some high-level languages, you must code the request in your program; in 
other languages, the open or close operation is performed automatically. 

Some high-level languages allow you to specify file parameters in the 
program; others require a FILE OCL statement to specify these parameters. 
Before a file is opened, the system checks to see if a FILE OCL statement 
has been entered to override the file specified in the program. The file 
description in the program is merged with the parameters on the 
file-overriding FILE OCL statement. 

See the appropriate language manual for more information. 

Chapter 8. Files 8-9 



Placing Data in Files 

8-10 

There are several ways to place data in files: 

• High-level language program. For more information, see the appropriate 
language manual. 

• WSU. The Work Station Utility Guide has more information. 

• DFU. The Data File Utility Guide has more information. 

• Query/36. Getting Started with Query/36 or the Query/36 Online 
Information has more information. 

• Diskette to disk. Use the TRANSFER, RESTORE, or POST procedure. 

• Tape to disk. Use the TAPECOPY or RESTORE procedure. The 
System Reference manual has more information about these procedures. 

• COPYDATA procedure. The COPYDATA procedure copies a file on 
disk to another file on disk. During the copy operation, the COPYDAT A 
procedure can: 

Remove deleted records 

Include or omit specific records 

Create the copied data in either the same or a different file 
organization 

Specify a selection criteria to copy specific records 

The System Reference manual has more information about the 
COPYDATA procedure. 



Printing or Displaying Files 

You can use the following methods to print or display files: 

• High-level language program. For more information, see the appropriate 
language manual. 

• DFU. The Data File Utility Guide has more information. 

• Query/36. Getting Started with Query/36 or the Query/36 Online 
Information has more information. 

• LISTDA TA procedure. The LISTDAT A procedure allows you to 
selectively list data from any file, no matter what the file organization is. 
This data can be printed or displayed. 

The options of the LISTDAT A procedure allow you to: 

Print or display the records in either character or hexadecimal 
representation. 

Specify the maximum number of records to be printed. 

Make the record length either larger or smaller than the original 
record length. 

Include or omit selected records. 

Specify a selection criterion for printing or displaying specific 
records, for example, greater than or equal to a specific value in the 
record. 

The System Reference manual has more information about the 
LISTDATA procedure. 

• LISTFILE procedure. The LISTFILE procedure allows you to list files 
or libraries from disk, diskette, or tape. The System Reference manual has 
more information about the LISTFILE procedure. 

Reorganizing Disk Space 

When disk space is reorganized, the free space on disk is collected and files 
are moved to create continuous free space for new files or libraries. You 
cannot create new files unless there is enough continuous space on the disk 
for each new file. For information about reorganizing disk space, see 
"Reorganizing Disk Space" on page 4-21. 

Chapter 8. Files 8-11 



Securing Files 

8-12 

r 

You can secure your files by using resource security. Not everyone who uses 
the system should be allowed to read, write, or change data in a file. For 
example, payroll information should not be accessible to everyone. You 
should decide who should be allowed to: 

• Read data from the file 

• Create or delete the file 

• Change data in a file 

The access levels you can specify for resource security allow you to decide 
who is the owner of the file, who can change the file, and who can only read 
the file. These access levels are listed below in descending order, with the 
highest access levels having the greatest authority. The authority that is given 
by a higher access level includes all the authority of the access levels below it 
(except, of course, for an access level of None). For example, the user with 
change access to a file also has update and read access to it. 

Access 
Level 

Owner 

Change 

Update 

Read 

None 

Description 

The owner of a file can: 

• Indicate the users of the file and their access levels. 

• Create, rename, or delete the file. 

• Read, write, update, or delete records in the file. 

A user with change access to a file can: 

• Create, rename, or delete the file. 

• Read, write, update, or delete records in the file. 

A user with update access to a file can read, write, update, or 
delete records in the file. 

A user with read access to a file can only read records in the file. 

A user with this access is not allowed to access the file. 

The System Security Guide has more information about how to secure files. 



Removing a File from Disk or Diskette 

To remove a file from disk or diskette, use the DELETE procedure. The 
System Reference manual has more information about the DELETE 
procedure. 

File Organizations 

The system allows three types of file organizations: sequential, direct, and 
indexed. This section describes each organization. 

Sequential File Organization 

2 

Disk File A 

2 4 

8 

In a sequential file, records are arranged in exactly the same sequence as they 
were placed into the file by a program that created the file. The first record is 
placed in the first position in the file, the second record is placed in the 
second position, and the rest of the records are placed sequentially in the file 
one after another. 

Figure 8-1 shows the creation of two sequential files. 

4 

7 

File-Loading 

Program 

File- Loading 

Program 

Disk File B 

5 7 8 7 2 5 8 4 

59019037-1 

Figure 8-1. Organization of a Sequential File 

Chapter 8. Files 8-13 



8-14 

The records on the left are read by the file loading program in the following 
sequence: 2, 4, 5, 7, 8. They are loaded onto a disk in exactly the same 
sequence; thus the disk file is a sequential file. The records on the right are 
read by the file loading program in the sequence: 7, 2, 5, 8, 4. They are 
loaded onto a disk in that same sequence; again fitting the definition of a 
sequential file. 

Thus, a sequential file does not mean that the records are stored in the file in 
numerical sequence. Rather, it means that the records are stored in the file in 
the sequence that they were written by the me loading program. 

The records in a sequential file can be loaded in an ordered sequence or in an 
unordered sequence. In an ordered sequence, records are arranged into 
ascending or descending sequence, based on the value of some control field. 
The records in Disk File A in Figure 8-1 are loaded in an ordered sequence. 
The records in the Disk File B in Figure 8-1 are loaded in an unordered 
sequence. Whether a file is loaded in an ordered or unordered sequence is 
determined by the way the file loading program is written, not by the 
sequence of the input source records. However, most file loading programs 
load records in the same sequence as the sequence of input records. 

A sequential file takes less space than a direct file or an indexed file. Direct 
files typically have gaps in the file for missing records; indexed files use extra 
space for the index. 

When a record is added to a sequential file, the record is placed at the end of 
the file, not between existing records. Thus, if record 6 is added to Disk File 
A in Figure 8-1, it is placed after record 8, not between records 5 and 7. If it 
is important that record 6 appear between records 5 and 7, you can run a sort 
program to arrange the records into a new ordered sequence. 

Sequential files can be accessed consecutively, randomly by relative record 
number, or by the generalized access method (both consecutively and 
randomly). Each of these access methods is discussed under "File Access 
Methods" on page 8-35. 



Direct File Organization 

In a direct file, records are loaded into assigned places within the file. 
Normally, the file loading program uses the value of one of the fields from the 
input record to point to the position in the disk file where the record should 
be placed. This pointer is called the relative record number. It identifies the 
position of the record relative to the beginning of the file. For example, if the 
decimal value of a relative record is 8, that record is placed in the eighth 
record position in the file. 

No matter what sequence the records are read by the file loading program, 
the file loading program places the records into the direct file at the proper 
location. For example, Figure 8-2 shows two sequences of input records. 

2 

Disk File 

2 

8 

File- Loading 
Program 

4 5 

Figure 8-2. Organization of a Direct File 

7 

4 

File- Loading 
Program 

7 8 

S9019038-1 

Chapter 8. Files 8-15 



8-16 

The input records on the left in Figure 8-2 are in the sequence: 2, 4, 5, 7, 8. 
The input records on the right are in the sequence: 7, 2, 5, 8, 4. However, in 
both cases, the file loading program places the records into the same positions 
in the direct file. Spaces are left for records 1, 3, and 6. When records are 
added to a direct file, they are placed in the spaces that were left for them. 
For example, record 6 would be added between records 5 and 7. 

When a direct file is created, all record positions in the file are initialized to 
blanks (hex 40s) if the file is not delete-capable. If the file is delete-capable, 
unused record positions are marked as deleted records and initialized to 
hex FF. 

Relative record numbers can be either decimal (for Assembler, BASIC, 
COBOL, FORTRAN IV, or RPG II programs) or binary (for Assembler 
programs). If the relative record number is a decimal number, the first record 
position in the file has a value of 1. If the relative record number is a binary 
number, the first record position in the file has a value of 0. 

Usually, the relative record number is based on a value stored in the record. 
However, the relative record number can also be a computed value. In this 
case, an arithmetic formula is used to calculate the position in the file where 
the record is to be stored. Normally, these calculations are based on the 
values of certain fields in the record. 

Direct organization can use a great deal of disk storage space if the formula 
you choose for calculating record positions leaves many unused record 
positions in the file. For example, if your calculations create relative record 
numbers from 1 to 1000, space is reserved in the file for 1000 records. If you 
use only 100 records, the space for the other 900 records is not used. 

Occasionally, when you use formulas to determine relative positions, more 
than one record has the same calculated position in the file. These records 
are called synonym records (see Figure 8-3). 



Relative Record Number Locations 

2 4 

Figure 8-3. Synonym Records 

Synonym 
Records 

5 7 8 

59019039-0 

If you use formulas to create direct files, you must plan how you will store 
and retrieve synonym records from various locations within the file, because 
only one synonym record can be stored in a calculated record position. For 
information about handling synonym records, see Appendix A, "Access 
Algorithms for Direct Files." 

Direct files can be processed consecutively, randomly by relative record 
number, or by the generalized access method. Each of these access methods 
is discussed under "File Access Methods" on page 8-35. 

Indexed File Organization 

In an indexed file, the records are arranged in the same sequence as they were 
written by the file loading program. Therefore, the records in an indexed file 
are organized in the same sequence as the records in a sequential file. 
However, the SSP builds an index at the front of an indexed file. Thus, an 
indexed file is a file that contains two parts: an index and the records. 

An index allows a program to process required records by referring to the key 
of the record. For example, if you have an indexed file consisting of order 
records containing customer number, amount ordered, and balance due, your 
program can use the customer number as the key to find a record for a 
particular customer without having to read any other records. 

The index is a table containing an entry for each record in the file. Each 
index entry identifies a record by the value of its key and locates the record 
by its address in the file. The key (also called the key field or the record key) 
is the portion of the record containing information that identifies the record. 
For information about the rules for forming keys, see "Rules for Index Keys" 
on page 8-22. 

Chapter 8. Files 8-17 



2 

Index 

2 4 5 7 8 

Figure 8-4 shows how indexed files are organized. 

8 

File-Loading 
Program 

2 4 

Index 

Disk File 

5 7 8 

Disk File 

7 

4 

File- Loading 
Program 

2 4 5 7 8 7 2 5 8 4 

59019040-1 

Figure 8-4. Organization of an Indexed File 

8-18 

Indexed files can be accessed consecutively, sequentially by key, randomly by 
relative record number, randomly by key, or by the generalized access 
method. Each of these access methods is discussed under "File Access 
Methods" on page 8-35. 



Structure of the Index 

The index is divided into a primary area and an overflow area: 

Primary 
Area 

Index 

Overflow 
Area 

59019043-0 

The primary area contains the index entries in ascending order by the value of 
the key. The overflow area contains the entries for records added to the file 
and for records with updated keys. The system automatically keeps the 
entries in each area of the index in sequence. This allows you to access all the 
records in an indexed file sequentially by key without sorting the index. 

Chapter 8. Files 8-1 9 



Keysorting 

8-20 

When the system sorts the entire index, the entries from the overflow area are 
merged into the primary area. The main reason for keysorting is to increase 
performance when you add or update records. Indexes can be sorted when: 

• A program sequentially adds records to a file that is not shared. In this 
case, the system may keysort the file when it is opened by the program. 
Index entries for records that have been added may be in the overflow 
area of the file after the program ends. 

• The system operator enters a STOP SYSTEM or STOP SYSTEM,SORT 
command. 

• System IPL is performed, and files are rebuilt. This topic is discussed 
under "IPL File-Rebuild Function" on page 19-14. 

• The KEYSORT procedure is run. The system allows the keys for a 
shared indexed file to be sorted by the KEYSORT procedure. However, 
programs sharing a file whose keys are being sorted cannot access records 
within the file until the keysort is completed. 

The System Reference manual has more information about the KEYSORT 
procedure. 

In addition, the system sorts the keys in the file when the following 
procedures are used to do the indicated functions: 

SSP 
Procedure Function 

RESTORE Restore an indexed file from diskette or tape 

COPYDATA Create an indexed file on disk 

TRANSFER Transfer a file from disk to diskette 

BLDINDEX Create a multiple-index file 



Multiple Indexes for a File 

A file that contains data records is called a physical file. After a physical file 
is created, you can create indexes, called alternative indexes, for that file 
without creating new data records (see Figure 8-5). You can create any 
number of alternative indexes for a file. A file that has one or more 
alternative indexes is called a multiple-index file. The files that you create to 
define each of the alternative indexes are called alternative index files. 

Alternative indexes can be created for any file type: sequential, direct, or 
indexed. 

When the physical file is an indexed file, the index that is built when the 
physical file is created is called the primary index. 

Primary 
Index 

2 4 5 7 8 

A B C D E 

7 D 2 B 

Alternative 
Index File 

Data Records 

5 A 8 E 4 c Physical 

File 

Alternative 
Index 59019041-0 

Figure 8-5. Multiple Indexes for an Indexed File 

All the indexes point to the same data records in the file, but each index can 
use a different portion of the record as the key. The field(s) used as the key 
in an index can overlap the field(s) used as the key in other indexes. 
Therefore, you can process records from the file in various sequences, 
depending on which index you use. For example, for a personnel file, you can 
use the employee number as one key and the department number as a second 
key. Then you can access the records in the file by using either index. A 
high-level language program treats a multiple-index file the same way it treats 
a normal indexed file. 

When changes are made to the physical file, all indexes (primary and 
alternative) are changed as required to reflect the change, as long as any 
restrictions for duplicate keys or updating keys are followed. For example, if 
you use the employee number as one key and the department number as a 
second key, any changes you make to the file while using the index based on 
the employee number are automatically made in the index based on the 
department number. 

You must have a FILE OCL statement for each index that the program uses. 

Alternative index files are created by the BLDINDEX procedure. The System 
Reference manual has more information about the BLDINDEX procedure. 

Chapter 8. Files 8-21 



Rules for Index Keys 

8-22 

The following rules apply to keys: 

• A key can be up to 120 bytes in length, although in some cases the 
maximum length is lower (for example, WSU, DFU, Query/36, and RPG 
II all restrict the maximum length to 99 bytes). 

• A key is treated as alphameric, even if the data is numeric. If a key is 
numeric, it should not contain a sign(+ or -). 

• A key can start anywhere within the record. 

• Up to three fields can be combined to form a key. 

• The fields in a key must be defined so that each contains a unique set of 
positions in the record; for example, for a key made up of fields 2, 3, 
and 5, you cannot specify that field 2 contains positions 4 through 7 and 
that field 3 contains positions 6 through 9, because both fields contain 
positions 6 and 7. 

• Key fields can be specified in any order, regardless of their place in the 
record. 

• For a primary index, the fields in a key must be next to each other in the 
record (contiguous); for alternative indexes, they do not need to be next 
to each other in the record. 

For example, refer to the fields in the record shown below. For this 
record, you could use fields 1 and 2 together as the primary key; you 
could use fields 5, 9, and 7 together as an alternative index key; and you 
could use fields 1 and 3 as another alternative index key. 

Keys 

Primary Index: 
Key = Fields 1 and 2 

Record 
Alternative Index: 
Key = Fields 5, 9, 7 

Alternative Index: Fields in the Record 

Key= Fields 1 and 3 
89019118-0 



Considerations for Using Multiple-Index Files: When you use multiple-index 
files, you should be aware of the following: 

• Updates to a file can be lost if you update a file through more than one 
index within the same program. For more information, see "Using One 
File As Two Or More Logical Files" on page 8-89. 

• You cannot delete the physical file if alternative indexes are specified for 
it. The RET AIN-S parameter of the FILE OCL statement is not allowed 
for the physical file or for the alternative indexes. 

To delete the physical file, you first have to delete all alternative indexes 
associated with the file. You can use the DELETE procedure to delete 
the alternative index files. You can delete a physical file and all indexes 
by using the file group naming convention and the DELETE procedure to 
delete the entire group. See "Group Files" on page 8-7 for more 
information about file groups. 

Records 

Physical ...._ To Delete 

File This File 

Alternative 
Index 

... __________ Delete These 

Indexes First 

Alternative 

Index 

You cannot rewrite (overlay) an existing physical file if it has alternative 
indexes associated with it. Before you can overlay the data in the 
physical file, you must first delete the alternative indexes. 

You can never rewrite an alternative index file. You can only perform 
add or update operations to alternative index files. 

• A multiple-index file can be specified in a procedure substitution 
expression that retrieves information about the file's size (?F'S'? or 
?F'A'?). If the specified file is an alternative index file, the number of 
blocks or records allocated for the physical file is substituted. 

• The date of an alternative index file is the same as the creation date of 
the physical file. 

59019042-t 

Chapter 8. Files 8-23 



8-24 

• When it is used by a program, a multiple-index file requires more space in 
the assign/free area of main storage than an indexed file requires. Extra 
space is required because the control blocks for all indexes (primary and 
alternative) must be in main storage for the SSP to use. 

• On update operations, key values cannot be changed in the primary 
index, but key values can be changed in the alternative indexes. When 
you update an alternative index, consider the following: 

In a COBOL program, you cannot change a key that has been used 
to retrieve the record. Therefore, the record should not be retrieved 
by the field to be changed. 

In an RPG Il program, between the record retrieval (CHAIN, 
READ, READE, or READP operation) and the record update, no 
other retrieval operation should be made to the file. This restriction 
ensures that the correct record is updated. 

• When a record is updated and a key for any index is changed or when a 
record is added, duplicate keys can occur. The duplicate key can cause 
an error message to be displayed for an index that the program is not 
using. This error message occurs only for indexed files that do not allow 
duplicate keys. You indicate whether an indexed file allows duplicate 
keys when you create the file. For more information about specifying 
duplicate keys, see "Specifying Duplicate Keys" on page 8-27. 

Saving Multiple-Index Files: When you use the SA VE procedure to save an 
indexed file that has no alternative indexes, the system saves the data and a 
description of the index. It does not save the index itself. 

When you save an alternative index, the system saves only a description of 
the index. It does not save the index itself or the data in the file. Saving the 
physical file does not save the alternative indexes. You can save a physical 
file and all indexes for that file by using the file group naming convention and 
the SA VE procedure to save the entire group. See "Group Files" on 
page 8-7 for more information about file groups. When you use the SA VE 
procedure to save a file group, the system first saves the physical file, and 
then it saves the alternative indexes. 

The description of the SA VE procedure in the System Reference manual has 
more information about saving multiple-index files. 

Restoring Multiple-Index Files: When you use the RESTORE procedure to 
restor~ an indexed file that has no alternative indexes, the system restores the 
data and rebuilds the index from the description that was saved. 

When you restore an alternative index, the system rebuilds the alternative 
index from the description that was saved. The data used for this rebuild is 
the data in the physical file that has the same date as the alternative indexes 
being restored. Therefore, when you restore the indexes individually, the 
physical file must be restored before any alternative indexes are restored. If 
the physical file is not on disk and you are restoring an alternative index for 
the file, an error message is displayed. 



Storage Index 

When you use RESTORE ALL to restore a multiple-index file, the system 
restores the physical file first and then the alternative indexes. A physical file 
on tape or diskette cannot be restored into an existing physical file on disk 
until the alternative indexes are deleted from disk. 

Because the system rebuilds alternative indexes when they are restored, 
restoring a multiple-index file can be time-consuming. The time depends on 
the number of records in the file, the number of alternative indexes defined 
for the file, the key length, and whether duplicate keys have been allowed in 
the file being restored. 

The description of the RESTORE procedure in the System Reference manual 
has more information about restoring multiple-index files. 

To access an indexed file randomly, the system searches the index to find the 
requested record. This can be time-consuming if the index is large, because 
the system scans the entire index for a particular entry. 

In order to process indexed files faster, the system may create a storage index 
for indexed files that are being used by programs. The storage index resides 
in the assign/free area of main storage. Thus, it is an in-storage index to the 
file's primary index on disk. 

Main Storage 

Assign/Free Area 

Segment 2 

First Key 5 

SSP 

3 

8 

Disk 
Storage 

Segments 

Index 

59019044-0 

To create a storage index, the system divides the file's primary index into 
segments and then uses the first key of each segment (except the first 
segment) as an entry in the storage index. Each storage index entry contains 
the lowest key field from the next segment in the file index. The size of each 
segment is stored at the beginning of the storage index area. By directing the 
program to the index segment containing the entry of the desired record, the 
storage index eliminates much of the needless searching of the disk. 

Chapter 8. Files 8-25 



8-26 

The storage index is built when the file is first opened if the following 
conditions are met: 

• A storage index for the file does not already exist. Only one storage 
index is built per file, and any programs sharing a file also share the 
storage index. 

• Using the storage index would improve processing speed. Processing 
speed improves if you are accessing an indexed file randomly by key or 
sequentially by key within limits. It also improves if you are adding 
records to an indexed file that does not allow duplicate keys in the index. 

• The primary portion of the disk index is large enough to justify creating a 
storage index for it. 

The maximum size of the storage index is determined by the key length of the 
file, the number of records in the file, the size of the system, and the value 
specified on the FILE OCL statement. On systems with more than l 28K 
bytes of main storage, the maximum default size of the storage index is 8K 
bytes. On systems with 128K bytes of main storage, the maximum storage 
index size is 2K bytes. 

The building of a storage index requires additional work for the system and 
requires space in the assign/free portion of main storage. If your program 
accesses the file infrequently, the time to build the index may offset the faster 
processing time of the program using the storage index. For example, if you 
have an inquiry program that reads an indexed file only a few times, you may 
not want the system to create a storage index for the program. If you do not 
want a storage index built, specify NO on the STORINDX parameter of the 
FILE OCL statement when you open the file. Normally, if you access the file 
more than three times, you should let the system build a storage index. 

If NO is specified on the STORINDX parameter of the FILE OCL statement, 
the program uses a storage index anyway if the storage index has already 
been created for the file or if a storage index is built when the file is opened 
by another program. 

You can also specify YES on the STORINDX parameter of the FILE OCL 
statement if you always want a storage index to be built for all the indexes of 
the file. This would be useful if you are processing a file in such a way that 
the system does not automatically build a storage index for the file. Building 
a storage index improves processing time for files that have had keys changed 
during update operations, or for files that have records deleted. 

By specifying STORINDX-YES, you also force the system to build a storage 
index when a particular file is opened. If you specify YES on the 
STORINDX parameter, the primary portion of the index must still be large 
enough to justify the creation of the storage index before the system will 
build one. 



Duplicate Keys 

When it is determined that a storage index should be built, the SSP will try to 
build a storage index that will result in the fastest possible record scan (one 
entry per 100 sectors of index). 

You can override the 8K maximum default size by specifying a value from 1 
through 16 on the STORINDX parameter of the FILE OCL statement. The 
SSP will use this value in determining the size of the storage index. This value 
is the maximum storage index size. 

The system allows duplicate keys in indexed or alternative index files. For 
example, if you want to process employee records sequentially by department 
number, you can build an indexed file that uses the department number as the 
key. Because there would be more than one employee record for each 
department, the file must allow duplicate keys. 

Specifying Duplicate Keys: You can specify whether a file is to allow duplicate 
keys when the file is created. If the BLDFILE procedure is used to create the 
file, allowing duplicate keys is specified as a parameter. If the file is created 
by a program, allowing duplicate keys is specified by the DUPKEY parameter 
of the FILE OCL statement. You can specify whether an alternative index 
file is to contain duplicate keys by using the DUPKEY parameter on the 
BLDINDEX procedure. 

If an indexed file is created with records containing duplicate keys but the 
records are not supposed to contain duplicate keys, error message SYS-1365 
is issued when the keys are sorted at the end of the job, and the duplicate 
keys are displayed. At that point, the user can choose a response that deletes 
the file or one that changes the file attribute so that duplicate keys are 
allowed for the file. 

Checking for Duplicate Keys: If a file does not allow duplicate keys, the 
system checks for duplicate keys before an index entry is added to the file 
either during add operations or during update operations that change a key 
field. If the operation would cause a duplicate key in any index that does not 
allow duplicate keys, the operation is not allowed. 

Sequence of Duplicate Keys: If an indexed file has duplicate keys, the 
sequence of the duplicate keys is maintained by the relative record number of 
the records in the file. That is, the first record entered or added to the file is 
represented by the first entry in the index. Update operations do not change 
the position of records in the file. If an update operation changes a key, the 
new key is sequenced by the relative record number of the original record. 

Chapter 8. Files 8-27 



8-28 

Processing a File with Duplicate Keys: When a file with duplicate keys is 
accessed randomly by key, only one of the records having duplicate keys is 
available for processing. That record is the one whose index entry is the first 
in the set of duplicate entries. Random access by key is discussed under 
"Random Access by Key" on page 8-40. 

If the generalized access method is used, the other records that have duplicate 
keys can be retrieved by requesting operations that read the next record in 
the file. The generalized access method is discussed under "Generalized 
Access Method" on page 8-41. 

Records with duplicate keys can be accessed sequentially by key either for the 
entire file or for records within limits. Sequential access by key is discussed 
under "Sequential Access by Key" on page 8-37. When limits are specified 
for keys that have duplicates, the lower limit is set to the first duplicate key in 
the index, and the upper limit is set to the last duplicate key. The upper limit 
is determined as records are read from the file, and it includes any records 
added by other jobs. 

Bypassing Duplicate-Key Checking: The BYPASS parameter on the FILE 
OCL statement allows the system to bypass the checking for duplicate keys 
for a particular file. The BYPASS parameter can be specified for indexed 
files used by programs other than BASIC programs. When this option is 
selected, disk data management does not check for duplicate keys when 
records are added to the file. This option should be used only when the 
program is designed so that records having duplicate keys cannot be added to 
the file. The BYPASS parameter eliminates the duplicate-key checking only 
for the index being used by that particular program. Disk data management 
still checks for duplicate keys in the indexes of other files that do not allow 
duplicate keys. 

Using the KEYSORT Proce.dure: If you want to see the duplicate keys in a 
file, run the KEYSORT procedure with the CHKDUP parameter specified in 
the fourth position. This parameter causes the KEYSORT procedure to 
check for duplicate keys. When duplicate-key checking is specified, the 
KEYSORT procedure halts at each duplicate key found in the file and 
displays the keys. Specifying the CHKDUP parameter for the KEYSORT 
procedure may increase the amount of time it takes to sort the keys in the 
index. 



-------- ----- -- ----~~---------------

Performance Considerations for Indexed Files 

Many factors can affect system performance in the processing of indexed 
files. These factors include: 

• Number of alternative indexes 

• Number of indexes used at the same time 

• Storage index 

• Size of the overflow portion of the index 

• Duplicate keys 

• Key lengths 

• Keysorting 

Number of Alternative Indexes: If you update, delete, or add records to a 
multiple-index file, the system must update all the indexes. Therefore, the 
number of alternative indexes directly affects the performance of the 
program. 

Because of these performance considerations, it may be more efficient to 
build alternative indexes for a file only when needed. For example, if a 
program requires a certain index in order to produce a monthly report, that 
index could be built just before running the job that produces the monthly 
report. 

The decision about whether to use multiple-index files should be based on the 
functions of the application that is being designed. Using alternative indexes 
is only one of many ways to process files, and it should be considered with 
other options, such as whether to use indexed files or direct files. 

Number of Indexes Used at the Same Time: When an index is being used, it is 
maintained while the program is running, and the entries in the overflow 
portion of the index are kept in order. When an index is not being used, 
entries are added to the overflow portion in an unordered sequence. 

Storage Index: Building the storage index takes time when the file is opened. 
However, this time is made up if the program accesses the file several times. 
More information about storage indexes is under "Storage Index" on 
page 8-25. 

Chapter 8. Files 8-29 



8-30 

Siu of the Overflow Portion of the Index: When the overflow portion of an 
index becomes large, the time that it takes to update the index can become 
significant, because the system maintains the sequence of index entries in the 
overflow area whenever an entry is added. The larger the overflow area, the 
more time this sequencing takes. The size of the overflow area depends on 
both the key length and the number of records that were added or updated 
since the last keysort. For more information, see "Keysorting for 
Multiple-Index Files" on page 8-31. 

Duplicate Keys: If a file is defined as not allowing duplicate keys, the system 
must check for a duplicate key each time an index entry is added or changed. 
This error-checking requires additional time that must be considered when 
you decide whether to allow duplicate keys. 

This additional checking can be avoided by allowing duplicate keys in the file 
or, if you know that the keys are not duplicated, by specifying the BYPASS 
parameter on the FILE OCL statement. For more information, see 
"Duplicate Keys" on page 8-27. 

The time required to update and/ or delete records in a file that does not 
allow duplicate keys can be reduced if a storage index is built. 

When you change the key fields in a file that allows duplicate keys, the 
system does extra processing to keep the duplicate keys in order by relative 
record number. If you create a key that has many duplicates, this extra 
processing can cause performance problems. You should design applications 
to avoid this problem. For example, if duplicate key ordering is not 
important, it may be better to delete the old record first and then add the 
updated record, instead of doing a single update operation (but you must 
make the file large enough to hold the deleted record slots). 

Key Length: As the length of the key increases, the time required to process 
the file also increases. This relationship is a result of factors such as storage 
indexes, size of the index area, duplicate-key checking, and maintenance of 
the index. 



Keysorting for Multiple-Index Files: Because of the considerations just 
mentioned, it is important to keep the overflow areas of the indexes relatively 
small (lOK to 20K bytes). The length of an entry in the index is equal to the 
key length plus 3 bytes (for the binary address). For example, if you add 
1000 entries of a 5-byte key, the overflow area could increase SK bytes: 

256 bytes per sector / (5 + 3) bytes per entry = 
32 entries per sector 

1000 entries / 32 entries per sector = 
32 sectors for the overflow area = 8K bytes 

One way to keep the overflow area small is to schedule regular keysorts of the 
indexes. Keysorting occurs when a STOP SYSTEM command, a KEYSORT 
command, or an IPL file-rebuild occurs. The KEYSORT procedure can be 
run concurrently with any programs accessing the file, as long as the file is 
defined as being shared. 

Note: Keysorting when available disk space is limited will take longer if the 
index is large compared to the available disk space. 

For more information about key sorting files, see "Keysorting" on 
page 8-20. 

Chapter 8. Files 8-31 



Accessing Files 

Current Record Pointer 

Accessing files involves the following concepts: 

• Current record pointer 

• Nonkeyed and keyed processing 

• File access methods 

When you open a file, the system establishes a current record pointer. The 
current record pointer points to a particular record position within the file. It 
positions a record for reading and maintains that position for updating or 
deleting the record. 

The current record pointer is updated by the SSP when an input operation is 
completed successfully or when an end-of-file completion code is returned. 

The current record pointer is always at one of the following positions: 

• Beginning of file. In this position, the pointer is before the first record in 
the file. If a request to read the next record occurs, the first record in the 
file is read. After a file is opened, the pointer is set at the beginning of 
the file. 

• End of file. In this position, the pointer is beyond the last record in the 
file. If a request to read the previous record occurs, the last record in the 
file is read. 

• Record position. In this position, the pointer points to a record position 
in the file. The record at that position may be an active record or a 
deleted record. 



Nook.eyed and Keyed Processing 

Nook.eyed Processing 

Files can be processed either without using a key (nonkeyed processing) or 
according to the value of the key (keyed processing). 

In nonkeyed processing, the records are sequenced in the order in which they 
are stored in the file. This sequence allows records to be processed either 
randomly or consecutively. The current record position is based on the 
relative position of the record in the file. When the file is opened, the current 
record pointer is set at the beginning of the file. The current record position 
changes as read operations occur for the file. Update, delete, and release 
operations are performed on the record at the current record position. Add 
operations do not change the position of the current record pointer. 

Nonkeyed processing allows the following operations for sequential, direct, 
and indexed files (except where noted): 

• Read the first record in the file 

Read the last record in the file 

• Read the next record in the file 

• Read the previous record in the file 

• Read the record at the current record position + N 

• Read the record at the current record position - N 

• Read the record at the relative record number 

• Add a record at the end of data (except for direct files) 

• Add a record at the relative record number 

• Update the current record 

• Delete the current record 

• Release the current record 

Note: Not all of the high-level languages allow every operation in the preceding 
list. Ref er to the appropriate language manual for information about 
the operations allowed in a particular language. 

Chapter 8. Files 8-33 



Keyed Processing 

8-34 

In keyed processing, the records are in sequence by their key values. This 
sequence allows records to be processed either randomly by key or 
sequentially by key. During file processing, a current record pointer is 
maintained. When the file is opened, the pointer is set at the beginning of the 
first key in the index. The current record position changes as read operations 
occur for the file. Update, delete, and release operations are performed on 
the record whose index entry is at the current record pointer. Add operations 
do not change the position of the current record pointer. 

Keyed processing allows the following operations for indexed files: 

· • Read the record that has a specific key value 

• Read the first record in the file 

• Read the last record in the file 

• Read the next record in the file 

• Read the previous record in the file 

• Read the record that has an equal or greater key value 

• Read the record that has a greater key value 

• Read the record if it has a key equal to a specified value 

• Add a record at the end of data 

• Update the current record 

• Delete the current record 

• Release the current record 

Note: Not all of the high-level languages allow every operation in the preceding 
list. Refer to the appropriate language manual for information about 
the operations allowed in a particular language. 



File Access Methods 

Before the file is created, you must select an access method. Access method is 
the general term used to describe the way a program retrieves disk records for 
processing. The access method defines a set of functions that the high-level 
language program uses to retrieve records from the file. The access 
methods are: 

• Consecutive 

• Sequential by key 

• Random by relative record number 

• Random by key 

• Generalized access 

Do not confuse these access methods with file organizations. However, the 
file organization plays a significant role in determining which access method 
can be used in a given program. The following table indicates which access 
method can be used for each file organization. 

Processing Sequential Direct Indexed 
Method Organization Organization Organization 

Consecutive Yes Yes Yes 

Sequential by key No No Yes 

Random by relative Yes Yes Yes 
record number 

Random by key No No Yes 

Generalized access Yes Yes Yes 
method (nonkeyed 
processing) 

Generalized access No No Yes 
method (keyed 
processing) 

Chapter 8. Files 8-35 



Consecutive Access Method 

8-36 

The consecutive access method reads records in the order in which they 
appear in the file, one after another from first to last (see Figure 8-6). 

Sequential File 

f: 12 ~egin Reading 

15 18 14 I 
[ Last Record 

Read 

Direct File t 12 ~egin Reading 

14 15 17 js 

Indexed File 

Index Records 

1
4 

I 

Begin Reading L Last Record 
Read 

Figure 8-6. Consecutive Access Method 

The consecutive access method can be used for all three file organizations. 

Sequential Files: When a sequential file is accessed consecutively, the space 
at the end of the file that is reserved for new records is not read. Therefore, 
the last record to be read in the sequential file in Figure 8-6 is record 4. 

Direct Files: When a direct file that is not delete-capable is accessed 
consecutively, the gaps that were left for new records are read by the 
program. Therefore, the program must test for a blank record each time it 
reads a record. When a program accesses a direct file that is delete-capable, 
the deleted records are bypassed. 

59019045-0 

Indexed Files: When an indexed file is accessed consecutively, the program 
ignores the index portion of the file as it reads the records. However, if keys 
are changed by update operations or if records are either added or deleted, 
the system automatically updates all indexes for the file. The space at the end 
of the file that is reserved for new records is not read. Therefore, the last 
record to be read in the indexed file in Figure 8-6 is record 4. 



Sequential Access by Key 

When an indexed file is accessed sequentially by key, the program processes 
the records according to the sequence of the keys in the index (see 
Figure 8-7). 

Index Records 

E 1

5 
17 18 17 12 

f 
15 18 14 

Read Recoros 

Read Index 
Sequentially 59019046-0 

Figure 8-7. Sequential Access by Key 

Although the keys are accessed consecutively, the records are accessed 
randomly, because the index entries are sorted, but the records are not. The 
records are processed in ascending order of key value. 

If there are duplicate keys in the index, the records with duplicate keys are 
processed in the order in which they were placed into the file. For more 
information about duplicate keys, see "Duplicate Keys" on page 8-27. 

In a delete-capable file, the deleted records are bypassed. 

Se.quential Aelln by Key within Limits: Normally, the sequential-by-key access 
method is used to process all records in a file. However, you can specify the 
upper and lower limits of the key values of the records to be accessed 
sequentially by key in ascending order (see Figure 8-8). You can also 
specify the limit of the key values for records to be accessed sequentially by 
key in descending order (see Figure 8-9 on page 8-38). 

Low High 
Key Key 

Index Records 

2 7 2 5 8 4 

Begin End 
Processing Processing 59019047-0 

Figure 8-8. Sequential Access by Key in Ascending Order within Limits 

Chapter 8. Files 8-3 7 



8-38 

Limit 

ln~ex / 
( I ' I 2 I 4 I 5 7 I 8 l1 
L_ 

Read ! 
Records 

Begin Processing 
in Descending 
Order 

Records 

2 5 Is 14 

59019119-0 

Figure 8-9. Sequential Access in Descending Order by Key within Limits 

Accessing an indexed file sequentially by key within limits allows you to 
process a specific group of records in the file. You can access the file in 
ascending order or descending order. 

The following describes the limits when accessing files in ascending or 
descending order: 

• Ascending order: The lower limit is the key value at which processing 
begins, and the upper limit is the key value at which processing ends. If 
there are duplicate keys in the index, the first duplicate of the appropriate 
key is used as the lower limit, and the last duplicate of the appropriate 
key is used as the higher limit. 

• Descending order: Processing begins at the key value just below the limit 
and continues in descending order to the first record in the file. If there 
are duplicate keys in the index, the first key returned will be the last key 
in the group of duplicates. 

You specify the limits for accessing the file, and the limits you specify remain 
in effect until one of the following occurs: 

• New limits are set. 

• A random read operation occurs. 

• The file is closed. 



Random Access by Relative Record Number 

The random by relative record number access method is used to read only the 
record the program needs, and all the other records in the file are ignored. 
This allows disk records to be processed in an order you determine during the 
processing of the program. The relative record numbers indicate the positions 
of the records in the file relative to the beginning of the file. Relative record 
numbers are positive whole numbers that the system converts into the disk 
addresses of the records. 

All three file organizations can be accessed randomly by relative record 
number. When a delete-capable file is accessed randomly by relative record 
number, the deleted records cannot be read by the program. However, the 
deleted records do take up space in the file, so they affect the relative record 
number of other records. 

Sequential Files: Normally, sequential files are accessed randomly by relative 
record number when only a few of the records in the file are to be processed 
and you know the relative record numbers of the records. 

Direct Files: Figure 8-10 shows an example of a direct file accessed randomly 
by relative record number. In this example, the direct file contains customer 
records that are stored at record positions based on the customer number. 
The program receives a request to read the record for customer 4 . 

Processing 0 Request 
Customer 4 

.-----.... 

~~~~~~2°r--i Program 

Read Directly

Direct File

2 4 5 7 8

Figui-e 8-10. Random Access by Relative Record Number for a Direct File

The customer number is used as the relative record number. The program
retrieves the requested record (the fourth record relative to the beginning of
the file) without reading any other record. Thus, blank records are not a
problem when retrieving records from a direct file, because only the desired
records are read.

59019048-0

Indexed Files: When an indexed file is accessed randomly by relative r~cord
number, the records are processed by their relative record number values. If
any of the keys in the records are changed by update operations, or if any
records are added to or deleted from the file, the system updates all indexes
for the file.

Chapter 8. Files 8-39

Random Access by Key

8-40

Only indexed files can be accessed randomly by key. Figure 8-11 on
page 8-40 shows an example of this access method. In this example, the
program receives a request to read the record for customer 4.

D Request

Cust:mer 4 Processing

F.~-;-;-;-;;--;;;;:=::;-lr--... -1 Program

Read Index First

Then Read Record

5 7 8 7 2 5 8 4

Index Records

Figure 8-11. Random Access by Key for an Indexed File

$9019049-0

The customer number is used as the key. The record for customer 4 is
retrieved in two steps. First, the SSP searches the index for a value that
matches the requested key. The index entry with the matching key value also
contains the relative record number of the record for that key. Second, the
SSP reads the record at that record position from the data portion of the file.

Generalized Access Method

LOC LOC

A A

LOC LOC

A A

LOC

B

Index

LOC

B

The generalized access method is used to process a disk file randomly,
consecutively, or sequentially while updating, deleting, or adding records.
When using the generalized access method, you can do either nonkeyed or
keyed processing.

For example, assume that you have a file of employee records containing
employee number, department number, and location code. Also, assume that
the file is an indexed file with location code as the key. Using the generalized
access method with keyed processing, your program can process the records
for all the employees at a particular location. First, the program can access
the file randomly by key to find the first record that has the particular location
code:

Read Index
Randomly by Key

LOC

c

LOC

c

LOC

c

Program

Process

EMP DEP LOC EMP DEP LOC EMP DEP LOC EMP DEP LOC EMP DEP LOC

001 33 B 002 15 c 003 12 A 004 24 A 005 32 c

Records-
59019050-0

After the program finds that record, it can access the file sequentially by key
to process the records for all the other employees at that location:

Read Index

Sequentially by Key
Program

Process

LOC EMPDEP LOC EMPDEP LOC EMPDEP LOC EMPDEP LOC EMPDEP LOC

c 001 33 B 002 15 c 003 12 A 004 24 A 005 32 c

Index Records
59019051-0

Chapter 8. Files 8-41

While processing the file, the program could also add records to the file:

Program

Add

EMPDEP LOC EMPDEP LOC EMPDEP LOC EMPDEP LOC EMPDEP LOC EMPDEP LOC

001 33 B 002 15 c 003 12 A 004 24 A 005 32 c 006 27 c
'--~~~~~~~~~~~~----~~~~~~~~~~~~~

8-42

Existing Records New Record
69019052-0

Sequential or Direct Files: The nonkeyed generalized access method allows
you to process sequential or direct files either consecutively or randomly by
relative record number.

Indexed Files: The nonkeyed generalized access method allows you to process
indexed files by using:

• Consecutive access

• Random access by relative record number

The keyed generalized access method allows you to process indexed files by
using:

• Sequential access by key

• Random access by key

Specifying the Generalized Acam Method in High-Level l.Anguages: The
following table lists the ways in which various programming languages use the
generalized access method on the system:

Programming Language Generalized AcceM Method

Assembler Disk file macroinstructions

BASIC Used internally

COBOL DYNAMIC access mode

FORTRAN IV READ and DEFINE FILE statements

RPG II Full-procedural files

You can also use logical files to process the same file by different access
methods. Refer to "Using One File As Two Or More Logical Files" on
page 8-89 for more information about multiple logical files.

Choosing a File Organization

File Usage

Master File

When you create a file, you have to decide which file organization to use
(sequential, direct, or indexed). You should choose the file organization that
allows the file to be used most efficiently in the application. Among the
factors that you should consider are:

• File usage

• Volatility of the file

• Activity of the file

• Disk space

• Processing speed

Usage is the overriding factor in the selection of a file organization. Usage
involves the type of data stored in the file, the access method used to process
the data, and the type of application. Therefore, the design factors include
the following considerations:

• What kind of data is stored in this file? Is it permanent data (such as a
master file) or temporary data (such as a transaction file)?

• What access method is required?

• What does the type of application require?

A master file is relatively permanent and is often used in several jobs with
several other files. When you choose an organization for a master file,
consider the following processing requirements:

How are the other files that are processed against the master file
organized? If the other files are in an ordered sequence (that is, if they
are sorted in the same sequence as the master file), the master file could
be processed consecutively. Therefore, a sequential or indexed
organization for the master file would be most efficient.

If the other files that you process against the master file are in an
unordered sequence, the master file needs to have a direct or indexed file
organization, and the access method should be random. Direct files offer
the advantage of faster processing than indexed files, because direct files
require fewer accesses to the disk. Processing an indexed file randomly
requires two disk accesses: one to read the index and another to read the
record. Processing a direct file randomly requires only one disk access
per record (unless the record has synonyms).

Chapter 8. Files 8-43

Transaction File

8-44

• How do other jobs process the file? If the master file is used in several
jobs and is accessed both consecutively and randomly, either a direct
organization or an indexed organization is better than a sequential
organization.

• Does the master file require sorting to be processed by a subsequent job?
If so, consider that when your master file is direct or indexed, the file that
is produced by the sort is a sequential file. You would keep the original
unsorted direct or indexed file as the master file, and use the sorted
sequential file for that one job.

• Do you want display station operators to inquire into the master file? If
so, how important is response time? To ensure the shortest possible
response time, the file should be direct because reading a record from a
direct file requires only one disk access if the record has no synonyms. If
the record has numerous synonyms, reading a record can require several
disk accesses. In that case, a direct file might not provide shorter
response time than an indexed file that is accessed randomly by key.

Transaction files are less permanent than master files. Typically, they are
used to update master files. Transaction file records are frequently logged in
history files to keep records of business activities. An example of a
transaction file is a cash receipts file for an accounts receivable application.
An example of a more permanent transaction file is an open-item accounts
receivable file. These transactions are usually maintained to show detail on
reports such as statements sent to customers and aged trial balances.

Typically, transaction files entered from display stations in an interactive
environment are direct files. The reason for using direct files is that the
operator can usually expect a short response time when paging through a file,
adding records, deleting records, or reviewing all or part of a file.

For example, the transaction file created by a WSU program is a direct file
that has records separated logically by display station. Several display station
operators can enter transactions concurrently, and these transactions become
mixed physically in the file. But each transaction record contains a control
field that identifies the next available relative record number and the relative
record number of the last record entered at that display station (see
Figure 8-12). This control field allows the transactions from each display
station to be chained so that each operator can access the records entered
from his display station.

Relative Record
Number Contents

1 Next available relative record number } Control Record Last relative record number

2 W4 transaction 1 D
3 W1 transaction 1 D
4 W7 transaction 1 D
5 W1 transaction 2

Control fields point to the
6 W1 transaction 3

next available relative record

7 W4 transaction 2 D number.

8 W1 transaction 4 D
9 W7 transaction 2 D
10 W2 transaction 1 D
11 W1 transaction 5 D

Figure 8-12. Direct Transaction File Using Control Fields

A direct transaction file can also be organized so that each display station has
its own work area (see Figure 8-13).

Chapter 8. Files 8-45

8-46

Relative Record
Number

1

2

10

11

12

110

111

Contents

Next available relative record number
.First relative record number W1 work area
Last relative record number

Next available relative record number
First relative record number
Last relative record number

Wl transaction 1

Wl transaction 2

Wl transaction 3

W2 transaction 1

W2 transaction 2

W2work area

Figure 8-13. Direct Transaction File Using Separate Work Areas

Notice that a control record is required for the records entered from each
display station. This direct file reduces the possibility that a display station
operator may try to access a record within a sector assigned to another
program. However, the number of records that can be entered from a display
station is limited, and gaps can exist between the end of one section of the file
and the beginning of the next section.

Access Method

Application

The file organization is determined when the file is created, but the access
method used to process that file can vary from one program to the next. If
you create a file for an existing application in which a particular access
method is used, your choice of file organization may depend on that access
method.

If random access is used, the program can access specific records in a file,
either by relative record number or by key, without having to process the
entire file. For example, when display station operators are processing
telephone orders, they want to access specific data in an indexed file by using
the customer number as a key.

If consecutive access is used, the program processes all the records in the file.
For example, to produce invoices for all customers, the program would access
the file consecutively. In that case, the file organization could be sequential.

Consecutive access takes advantage of the disk cache because each read miss
causes a whole page of consecutive disk sectors to be read into the cache.

The type of application can also affect your choice of file organization. For
processing all the records in a transaction file arranged in customer-number
sequence and used as input for a report, sequential file organization might be
best. For processing a master file of 10,000 records that has few additions or
deletions and that is used for high-speed inquiry, direct organization would be
appropriate. For processing a master file of employee addresses to print
addresses on 15 percent of the payroll checks, indexed organization could be
used.

Batch Processing and Interactive Processing: An important distinction between
types of applications is whether the application uses batch processing or
interactive processing.

In batch processing, groups of data are accumulated and processed at specific
times, such as daily, weekly, or monthly. Certain applications, such as a
payroll application that is processed once a week, are perfectly suited for
batch processing.

In interactive processing, individual records or transactions are processed at
the time the transaction occurs. For example, in an interactive order entry
application, as soon as a sale is made, the quantity of merchandise sold is
subtracted from the quantity on hand in the appropriate master file.

The type of processing might require a particular file organization. Batch
processing, which does not require random access to the data, might require
sequential files. Interactive processing requires immediate access to the file,
so direct or indexed files is more appropriate.

Chapter 8. Files 8-4 7

Volatility of the File

8-48

The term volatility refers to the number of additions to and deletions from the
file. Highly volatile files might require direct organization because a record
can usually be added or deleted with fewer disk accesses than for other disk
organizations, and fewer disk accesses should help shorten response time.

For example, adding a record to an indexed file requires:

1. Scanning the index, including added index entries, to make sure that the
record does not already exist

2. Reading the data area where the new record will reside

3. Writing the record

4. Writing the new index entry

Adding a record to a direct file might require:

1. Reading a control record to find the next available location.

2. Writing the data.

3. Updating the control record. Updating the control record after each
record is added makes it easier to program for recovery but requires an
additional disk access.

The direct file might require disk space to allow for synonym records, and
multiple disk accesses could be required for those records. Processing the
direct file should be faster than processing a sequential file or an indexed file.

Note: The system can rebuild an index automatically, but it cannot rebuild
control records and chain fields. There/ ore, if your file requires control
records or chain fields, direct organization may not be a good choice.

Activity of the File

Disk Space

Processing Speed

The term activity refers to the frequency of accesses to the file. Activity is
measured as a fraction in which the number of transactions to the file is
divided by the number of records in the file. This fraction is usually
expressed as a percentage. For example, if a file has 600 records and 1200
transactions are processed against the file each day, the activity of the file is
200 percent per day.

A relatively inactive file might be accessed randomly and, therefore, have a
direct or an indexed organization. However, as activity increases, consecutive
access becomes more advantageous because the likelihood increases that the
record to be processed is available in a buffer and can, therefore, be accessed
without reading from or writing to disk. Therefore, very active files could be
either sequential (accessed consecutively) or indexed (accessed sequentially
by key).

The total activity of an indexed master file might be reduced by sorting a
transaction file so that only one retrieval of a master file record is needed for
a group of transactions that have the same key. Activity might also be
reduced by sorting the data in the master file to match the sequence of the
index.

A sequential or direct file takes less space than an indexed file because an
indexed file requires additional space for the index. Therefore, if disk space is
a prime concern, you should consider using a sequential or direct file
organization.

If processing speed is the most critical factor, you would probably not want
an indexed file organization. A sequential file organization is faster for
consecutive access, and a direct file organization is faster for random access.

Sequential file organization coupled with a large cache page size gives faster
processing speed when reading or reading/writing records. When only
writing records, it is faster to not use the cache.

Chapter 8. Files 8-49

File Attributes

Scratch Files

8-50

File attributes include the following:

• Scratch files

• Job files

• Resident files

• Extendable files

• Delete-capable files

Scratch files are files that have RETAIN-S specified on the FILE OCL
statement. Scratch files are usually used as temporary work files for a single
job step. At the end of the job step in which the scratch files are created, the
disk space used by the scratch files is released (see Figure 8-14). Thus, a
scratch file can be used in only one job step. Scratch files cannot be shared
by other programs.

Job Step

Starts

Job Step

Ends

Figure 8-14.

Program

Program

Scratch Files

\

I

Scratch

File

I

File Space

Allocated

File Space

Released

59019035-0

Job Files

Job files are files that have RET AIN-J specified on the FILE OCL statement.
Job files exist from the time they are created until the job ends or until they
are deleted. The disk space used by the job file is released when the last job
step in the job ends (see Figure 8-15).

First Job
Step r

!'--.. ./

Program Job File Space
~

Allocated File

1 I
Other Job]_ :i:
Step

,,,-
I'-. ../

Program
-.

Job ~

File

I Last Job x I

Step /\
!'-..' ~

' I File Space -. v
Program .J6h.

/File',
Released

I '
I '

Figure 8-15. Releasing Disk Space Used by a Job File 59019036-0

The disk space used by a job file can also be released when the RET AIN-S
parameter of the FILE OCL statement is specified in a particular job step for
the file.

Job files usually contain a limited number of records from a particular file,
and these records are used by various programs within the same job. For
example, portions of a master file can be placed into a job file, and this job
file can be used by many programs within the same job. A job file cannot be
shared by programs in different jobs.

If you use the same job file name for a sort output file in another FILE OCL
statement within the same job (different job step), sort does not allocate a
new file but uses the existing job file. If you specify a size for the sort file
different from the original FILE OCL statement, the system will ignore the
new size specified and use the size of the original job file in the FILE OCL
statement. This may result in an error message telling you that the output file
is too small. To avoid this error, you can specify EXTEND on the original
FILE OCL statement so that the sort output file will extend if more space is
required.

Chapter 8. Files 8-51

Reserving Space for Scratch and Job Files

Resident Files

If you are running a job and want to ensure that you have enough disk space
to create new scratch and new job files, you can use the RESERVE OCL
statement to ensure that a specific amount of disk space is reserved for these
files. The system reserves the number of blocks specified on the RESERVE
OCL statement for new scratch files and job files.

The System Reference manual describes the RESERVE OCL statement.

Resident files are files that have RETAIN-T specified on the FILE OCL
statement. Resident files can be considered permanent files. For example, a
master file is a resident file. Resident files allow you to share data among
various jobs. You can save and restore resident files by using diskettes.
Resident files remain on disk until one of the following occurs:

• The DELETE procedure is run.

• The file retention parameter on the FILE OCL statement is changed to S
(scratch) in a particular job step, and the file is allocated by the job.
Note that the file cannot be shared with another job.

• The FREE command is issued when using BASIC.

Using Resident Files from One Job Step to Another

8-52

If you specify JOB-YES on the FILE OCL statement for a resident file, the
file is kept for other job steps until the end of the job. The other parameters
on the FILE statement remain in effect until the end of the job or until they
are overridden by a FILE statement in another job step that has the same
NAME parameter. The LOCATION and size (RECORDS or BLOCKS)
parameters cannot be overridden after the file is created. New parameters
can be added by a FILE statement in another job step that has the same
NAME parameter.

If you specify JOB-YES on a FILE statement in another job step later in the
job, the parameters specified on that FILE statement remain in effect until
the end of of the job or until they are overridden in a later job step in the job.
The parameters specified with JOB-YES on the FILE statement in a previous
job step in the job no longer apply.

The JOB-YES parameter can be specified only for FILE statements that are
outside the LOAD and RUN statements. Placing a FILE statement outside a
LOAD and RUN pair causes the system to try immediately to acquire
ownership of the specified disk file for use by the job. If the FILE statement
is within the LOAD and RUN pair, the system waits until it encounters the
RUN statement before it acquires ownership of the file.

If you specify JOB-NO on a FILE statement in a job step, the program gives
up ownership of the file at the end of the job step.

The following example shows how the JOB-YES parameter affects the FILE
OCL statement for a new file during each of three job steps.

* Job step 1:
II FILE NAME-A,JOB-YES,RECORDS-10,EXTEND-50,DBLOCK-200,
II DISP-NEW
II LOAD PROG1
II RUN

In job step 1, the JOB-YES parameter means that the FILE OCL statement
parameters specified for file A remain in effect until the end of the job or
until they are overridden in a later job step. Those parameters are:

• The size of the file is 10 records.

• The file will be extended by 50 records whenever additional space is
needed.

• 200 records will be moved between main storage and disk for each
input/ output operation.

Suppose that the program does not use file A during job step 1. In that case,
file A is not created. Now suppose that job step 2 includes the following
FILE statement for file A:

* Job step 2:
II LOAD PROG2
II FILE NAME-A,BLOCKS-20,EXTEND-60,DISP-NEW
II RUN

Because file A was not created in job step 1, the BLOCKS parameter in job
step 2 is used instead of the RECORDS parameter in job step 1. Therefore,
if file A is created in job step 2, its size will be 20 blocks instead of 10
records. The EXTEND parameter in job step 2 also overrides the EXTEND
parameter in job step 1, but only for a single job step because JOB-YES is
not specified on the FILE statement for job step 2. Therefore, if file A is
created in job step 2, it will be extended by 60 blocks instead of 50 records
whenever it requires additional space.

If file A is not created in job step 2, the EXTEND parameter is reset to 50 at
the end of the job step. The DBLOCK parameter specified in job step 1
remains in effect in job step 2 because it was not overridden.

Suppose that file A is not created in job step 2 but is created in job step 3.
Also suppose that job step 3 contains no FILE statement:

* Job step 3:
II LOAD PROG3
II RUN

Chapter 8. Files 8-53

8-54

In this case, the BLOCKS parameter stays at 20 because the size parameter
(RECORDS or BLOCKS) and the LOCATION parameter are the only
exceptions to the rule that parameters are reset to the value specified on the
FILE statement with JOB-YES specified. (Incidentally, if the size and
location parameters are specified with JOB-YES on a FILE statement for a
file that already exists, the system ignores the size and location parameters.)
The EXTEND parameter is reset to 50 because that is the value specified on
the FILE statement with JOB-YES in job step 1. The DBLOCK parameter
specified in job step 1 remains in effect in job step 3.

Resident files with the JOB-YES parameter can cause a file lock when the file
is shared. If one program within a job acquires the file as a shared file,
another program in another job cannot acquire the same file as a nonshared
file until:

• The program that acquired the file as a shared file goes to end of job.

• JOB-NO is specified for a particular job step in the job that was sharing
the file, and that job step ends.

Following is an example of OCL statements used with two jobs sharing a file
for which JOB-YES is specified. In the example, program C wants exclusive
use of file A; therefore, program C must wait until program B in job Y ends.

Job X

* Job step 1 for job X
II FILE NAME-A,JOB-YES,DISP-SHR
//LOAD PROGA
//·RUN

* Job step 2 for job X
//LOAD PROGC
II FILE NAME-A,DISP-OLD
II RUN

Job Y

II FILE NAME-A,JOB-YES,DISP-SHR
// LOAD PROGB
II RUN

A file deadlock can also occur if two or more jobs are using two or more
resident files with JOB-YES specified. If the jobs try to use files that do not
permit sharing and have the JOB-YES parameter specified, both jobs may
have to wait.

If you are running a job that contains a MRT procedure and you want the file
to be used by the other job steps, the MRT procedure must contain the FILE
OCL statement on which the JOB-YES parameter is specified.

The System Ref ere nee manual has more information about using the FILE
OCL statement.

Extendable Files

An extendable file is a disk file for which the system automatically attempts
to allocate more space each time the file becomes full. Specifying an
extendable file prevents your program from ending abnormally when there is
no room in the file to add additional records.

Specifying an Extendable File

You can specify a file as an extendable file by either of the following
methods:

• FILE OCL statement. The EXTEND parameter specifies the number of
blocks or records to extend the file.

• BLDFILE procedure. The number of blocks or records to extend the file
is a parameter.

The extension value must be a numeric value that indicates the amount of
additional space needed for the extension. If the file size was specified in
blocks when the file was created, the extension value is in blocks. This value
must be large enc;>ngh to contain at least one record. If the file size was
specified in records when the file was created, the extension value is in
records. The amount of the file extension is the number of records or blocks
specified, rounded up to a block boundary.

If you specify an extension value when the file is created or when an existing
file is updated with new information, the extension value becomes an
attribute of the file. In that case, the file is extended, if required, by any
program using the file. Note that when an existing file is updated with new
information, the old extension value is not saved for the file. The value must
be specified again, as if the file were a new file.

You can also specify an extension value when your program uses an existing
file. This allows you to override any existing extension values or to specify a
new extension value for a file. For example, if a file was not specified as
extendable when it was created, you can use the FILE OCL statement to
make the file extendable while your program is using the file.

Chapter 8. Files 8-55

Automatic File Extension

8-56

You can prevent your program from extending a file by specifying 0 on the
EXTEND parameter of the FILE OCL statement.

If the file is being shared and the various programs use different EXTEND
values on their FILE OCL statements, the system uses the extension value of
the program that caused the file to become full. When the file is extended, all
programs sharing the file take advantage of the extra space, even if the
EXTEND parameter was not specified on the FILE OCL statement for each
program.

A file can be extended any number of times. A file is not extended if there is
not enough disk space or if a disk input/ output error occurs. Once initiated,
the extension cannot be canceled.

The following conditions can cause the system to automatically extend a file:

• The addition of records to a sequential or indexed file.

• Reading a record from a direct file for updating when the specified
relative record number is beyond the end of the file. If the relative record
number is greater than the file size plus the extend value, the system does
not attempt to extend the file. In that case, an invalid-record-number
completion code is returned to the program. (An end-of-file condition is
returned to BASIC programs.)

• Writing a record to a delete-capable file when the specified relative
record number is beyond the end of the file. If the relative record
number is greater than the file size plus the extend value, the system does
not attempt to extend the file. In that case, an invalid-record-number
completion code is returned to the program. (An end-of-file condition is
returned to BASIC programs.) For a discussion of delete-capable files,
see "Delete-Capable Files" on page 8-57.

What Happens When Extendable Files Become Full

Delete-Capable Files

The following list describes how the system handles various types of
extendable files when they become full:

• Scratch and job files in the reserve area. The reserve area is an area on
disk set aside for scratch and job files used by a job. The system displays
a message to the system operator, and processing stops. The system
operator can choose an option to extend the file. In this case, the system
copies the file to a larger area on disk outside the reserve area, and the
program continues processing. If the operator does not want the file to
be extended, the operator can cancel the program or choose an option
that returns an end-of-extent completion code to the program. The
RESERVE OCL statement in the System Reference manual has more
information about the reserve area.

• · Sequential, direct, and alternative index files. The system attempts to
allocate the additional space immediately following the file. If that is not
possible, the system copies the file to a larger area on disk and frees the
original space occupied by the file.

• Indexed files. The system copies the indexed file to a larger area on disk
and then frees the original space occupied by the file. If the file has
alternative indexes, they are also extended.

When a file is extended, a message is placed in the history file, stating that the
file was extended.

If the file cannot be extended because of a lack of disk space or because of a
disk error, an end-of-extent completion code is returned to the program.

A delete-capable file is a file in which programs can delete records. The
reason for specifying a file as delete-capable is to allow your programs to
delete unwanted records when processing the file. If, for some reason, you
need the data that was in a deleted record, do not use a delete-capable file.
Instead, have your program place a delete code in the record. Then, when the
file is processed, your program can check for this code. For information
about using a delete code, see "Providing for Deletion of Records" on
page 7-9.

Chapter 8. Files 8-57

Creating a Delete-Capable File

To create a delete-capable file, you can do any of the following:

• Specify the DFILE parameter on the BLDFILE procedure.

• Specify DFILE-YES on the FILE OCL statement.

• In a BASIC program, specify the OUTIN parameter on the OPEN
statement if no FILE OCL statement is used.

When a delete-capable direct file is created, all bytes in the file are set to
hex FF. That is, all the bits for every character in every record are set on.

Deleting Records from a Delete-Capable File

8-58

When you delete records from a delete-capable sequential or indexed file, the
records are not physically removed from the file (unless you use the
COPYDATA procedure to remove them). Instead, the records are filled with
hex FF. Therefore, the data that was in the record before it was deleted is no
longer available to the program.

When a record is deleted from a multiple-index file, the system deletes the
key for that record from all indexes.

In RPG II, if you use an address output (addrout) file to access records in a
file and you delete a record, the record is deleted from the file you access but
not from the addrout file. To delete the record from the addrout file, you
must delete the entry for the record in the addrout file or re-create the
addrout file.

The following table lists the statements used by various programming
languages to delete records from a delete-capable file:

Programming
Language Statements Used to Delete Records

Assembler $PUTD macro with OP-DELETE parameter

BASIC DELETE statement

COBOL DELETE statement

FORTRANN RTNCD subprogram

RPG II U in column 15 of file description specifications

DEL in columns 16-18 of output specifications

ProcesW!g a File Containing Deleted Records

When a file containing deleted records is processed consecutively or
sequentially by key, each deleted record is bypassed and the next record in
the file is read.

When a file containing deleted records is processed randomly by key or
randomly by relative record number, a record-not-found completion code is
returned to the program when a deleted record is accessed.

Adding Records to a Delete-Capable File

You can add records to delete-capable sequential, direct, and indexed files by
using relative record numbers.

The system does not allow a record having hex FF as its first byte to be
written to a delete-capable file during an add or update operation. If the first
byte of the record contains hex FF, an invalid update/add/output completion
code is returned to the program.

Using RPG II to Add Records to Delete-Capable Files: For sequential and
direct files, you must first place the relative record number of the record to be
added to the file into the RECNO field. The RECNO field is defined on the
continuation line of the file description specifications. The relative record
number must be the record number of a deleted record. Then, to add a
record to the file, you code output specifications that contain ADD in
columns 16 through 18. RPG II uses the relative record number from the
RECNO field to locate where the record is to be added to the file. If the
relative record number is not the number of a deleted record, a halt occurs
and the system displays a message that a duplicate record exists in the file.

For indexed files, you add records randomly by key using chaining. Chaining
means comparing the key field of the record to be added with the key fields
already in the index. The reason for this comparison is to make sure that the
record to be added is not a duplicate of a record already in the file. Chaining
allows you to design your program so that, if a duplicate key field is found,
your program can handle it appropriately without requiring the person using
the display station to decide how to respond to an error message. The
Programming with RPG II manual has more information about adding a
record to an indexed file using chaining.

Using COBOL to Add Records to Delete-Capable Files: If you specify relative
organization for the file, you can add records to delete-capable files. When
ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, new records
are inserted into the file. The RELATIVE KEY specified for the file must
contain the desired relative record number for this record before a WRITE
operation is performed. When the WRITE operation is performed, the record
is placed at the specified relative-record-number position in the file. If the
relative record number is not the number of a deleted record, a halt occurs
and a file-status return code indicating that a duplicate record exists is
returned to the program.

Chapter 8. Files 8-59

Using DFU with Delete-Capable Files

DFU can update, list, or inquire into delete-capable files. DFU cannot be
used to create delete-capable files or to delete records from a delete-capable
file.

Using WSU with Delete-Capable Files

WSU does not delete records from a transaction file in the same way as the
other programming languages. Therefore, a WSU program ends abnormally
if it tries to use a delete-capable transaction file. However, a WSU program

. can use a delete-capable master file.

Blocking Records and Index Entries

Blocking Records

This section describes blocking of records and index entries, and the
differences between physical and logical input/ output operations.

A record block is the number of records transferred as a unit of information
between a disk file and a buffer in main storage. Although only one record at
a time is available for processing by your program, one or more records may
be transferred into the data buffer at a time. The block length specifies the
amount of main storage used for a data buffer in your program.

The size of the buffer is determined by the block length specified in your
program. You can change the buffer size by using the DBLOCK parameter
of the FILE OCL statement. The block length does not affect the way that
records are stored on disk.

Considerations for Efficient Record Blocking

8-60

Block length is a multiple of record length. For example, if the record length
is 64 characters and the blocking factor is four, the block length is 256

· characters. In that case, four records are transferred at one time.

The system always transfers data between disk and main storage in sectors
(256 bytes). Because of this, the system may round your block size up to a
multiple of 256. For efficient blocking, you should choose a record length
that is either a multiple or submultiple of 256. For example, 512 is a multiple
of 256, and 64 is a submultiple of 256 because it divides into 256 an even
number of times. This choice is best because data is always transferred in
sectors, and for records with a record length less than or equal to 256, you
eliminate the chance of having records stored in more than one sector. The
system attempts to get the storage space as requested. However, it may
allocate less space, depending on the amount of main storage available.

Buffer Record Record
1 2

Blocking is useful if you are likely to process multiple records in a data buffer.
By specifying a large blocking factor, you reduce the number of times the
system must read from and write to disk. For example, assume that your
program reads a file consecutively when records are blocked 100 per data
buffer. To read the first record, the system must transfer 100 records from
disk to the data buffer, which takes a relatively long time.

Program

t

Reading

t
r
~ _.,)

Record
100 JL Records J Disk File

59019053-0

However, the next 99 times the program reads a record, the record is already
in main storage, so no time is required to read the disk file.

The system takes advantage of a large block size if you are sharing files.
However, the records may be reread if other programs sharing the file change
records that are in the buffer. For example, if a program reads 100 records
into the buffer and then another program updated the 50th record in the
block, the system would have to read the file again to get the current version
of the 50th record.

By increasing the size of your data buffers, the number of disk reads and
writes required by your program is reduced. However, increasing the size of
your data buffers increases the amount of main storage required to run your
programs. This can affect the performance of both your program and system.

For files processed randomly, you should not specify a large block length
unless you are sure that more than one record will be processed in a block
before another block is transferred.

If the record length is less than or equal to 256 and blocking is not specified
for the file, the data buffer holds either a single sector of data if the record
length is a submultiple of 256, or two sectors of data if the record length is
not a multiple or submultiple of 256. If the record length is greater than 256
and blocking is not specified for the file, the data buffer size is the record
length rounded up to the next multiple of 256.

To take advantage of the disk cache, it is better not to specify a blocking
factor.

Chapter 8. Files 8-61

Blocking Index Entries

8-62

When a program processes an indexed file, the index entries for the file are
read into a buffer area of main storage. The number of index entries placed
in this buffer is determined by the program and can be changed by the
IBLOCK parameter on the FILE OCL statement.

The IBLOCK parameter tells the system how many index entries to read from
the disk to main storage on each disk read. Blocking index entries saves
processing time if consecutive index entries are used, because the system does
not have to read the disk file again until all the entries in the buffer are
processed. When the program is finished processing the index entries in the
buffer area, more index entries are read from disk to main storage.

The size of the index buffer area that is specified by the IBLOCK parameter
is based on the length of the key. The number of index entries that will fit
into one sector equals 256 divided by the sum of the key length plus 3. This
number is rounded down to the next lower whole number. The number of
sectors in the index buffer equals the IBLOCK value specified on the FILE
OCL statement, divided by the number of index entries per sector. This
value is then rounded up to the next highest whole number. The system
attempts to get the storage space as requested. However, it may allocate less
space, depending on the amount of main storage space available.

For example, suppose a file contains records that have a 9-digit key, and 100
is specified as the IBLOCK parameter on the FILE OCL statement. The
following calculations show how the system determines the number of sectors
in the index buffer for this example:

256 I (9+3) = 21 index entries per sector

100 I 21 = 5 sectors in the index buffer

When using the IBLOCK parameter, you should be aware that increasing the
size of your index buffers can reduce the number of disk reads required by
your program, but it also increases the amount of main storage required to
run your program.

Considerations When Specifying the IBLOCK Parameter

• If you are accessing an indexed file sequentially by key, and the file
records are not organized to match the keys, specify DBLOCK = 1 and
specify a larger value for !BLOCK.

• The benefit of a large !BLOCK can be'realized by issuing a sequential
read first. If you specify a large !BLOCK and you are doing only random
reads by key, the SSP will only read one sector of the index into the large
index buffer. This is due to a disk hardware scan performed rather than a
hardware read.

• For better system performance, be sure that the program processing size
(the program code plus the index buffer plus the data buffer for all the
files used by the program) is less than 64K bytes. If the processing size is
greater than 64K bytes, the system puts the buffer in the task work space,
requiring more time to access the files. For more information, see
"Program Processing Size" later in this chapter.

• If a program uses several files, you may want to specify the largest
!BLOCK size for the file that is accessed the most.

• If you specify the !BLOCK parameter for a file that is not an indexed
file, the system ignores the !BLOCK parameter.

• If you do not specify the !BLOCK parameter for an indexed file, the
system uses the blocking factor that was specified in the program.
High-level language programs set the index blocking factor equal to the
blocking factor for the data buffer.

Using Record Blocking and Index Blocking

On System/36, buffers are not included in your program when it is compiled.
Instead, the system acquires the buffers when your program opens files.

This approach has several advantages:

• Programs (logic) can be larger. On System/36, a program can be a
maximum of 64K bytes; this size does not include space required for the
buffers.

• Buffer sizes can be changed without recompiling the program. The
DBLOCK and !BLOCK parameters of the FILE OCL statement are
provided for this purpose.

Less library space is required to store your program.

• Storage for buffers is allocated only for opened files. If your program can
control opening and closing files, buffer space for closed files is reused.

Chapter 8. Files 8-63

Storage Space Required for a Program

To improve performance, you may want to vary the amount of storage
required to run your program.

One way to determine the amount of storage space required to run your
program is to use the STATUS control command while your program is
running. The ST A TUS USERS control command shows the storage space
used by the program.

Another way to determine the storage space required for your program
involves two steps:

1. Calculate the amount of storage required for the file space used by your
program. File space means the space required for record blocking, index
blocking, and control blocks.

2. Add the file space amounts to the size of your compiled program. The
sum is the total amount of storage required to run the program.

Calculating Storage Space Required for Disk Buffers and Control Blocks

8-64

In general, the amount of storage space required for buffers is based on the
following:

• Number of files being used.

• Length of the records in each file.

• Record blocking factor specified for each file.

• Index blocking factor for each file.

• Number of alternative indexes for each file.

• Key length.

• Whether batch add processing is done (see "Delaying Maintenance for
Batch Adds" on page 8-72).

In addition to buffer space, 200 bytes are required for internal control blocks.
The following formula shows how to determine the amount of main storage
required for buffers and control blocks for each file opened by your program.

Main storage space = 200 + data buffer size +
(in bytes}

index buffer size + (6 x key length)

Note: The (6 x key length} expression is required only if the file is
processed by key.

The data buffer size is calculated from the record length and DBLOCK value
as follows:

1. Multiply the DBLOCK value by the record length to determine the
record area.

(DBLOCK value) x (record length) = (record area)

2. Divide the record area by 256 to determine how many sectors are
required by the buffer.

(record area) / 256 = (number with remainder)

3. If the remainder is 0, the data buffer size equals the record area.

If the remainder is a submultiple of 256, the data buffer size equals the
record area plus 255, rounded down to the next multiple of 256.

Submultiples of 256 are: 1, 2, 4, 8, 16, 32, 64, 128, and 256.

(record area) + 255 = (data buffer)

Round the data buffer size down to the next multiple of 256.

If the remainder is not a submultiple of 256, the data buffer size equals
the record area plus 510, rounded down to the next multiple of 256.

(record area) + 510 = (data buffer)

Round the data buffer size down to the next multiple of 256.

Chapter 8. Files 8-65

8-66

The index buffer size is calculated from the key length and IBLOCK value as
follows:

1. Divide 256 by the key length plus 3 to determine the number of index
entries per sector.

256 / (key length + 3) = (index entries per sector)

Round the result down to the next whole number.

2. Divide the IBLOCK value by the number of index entries per sector to
determine the number of sectors in the index buffer.

(IBLOCK value) I (index entries per sector)
(sectors in index buffer)

Round the result up to the next whole number.

3. Multiply the number of sectors value times 256 to determine the index
buffer size.

(sectors in index buffer) x 256 index buffer size

The main storage space can be made larger if:

• Batch add processing is done (see "Delaying Maintenance for Batch
Adds" on page 8-72).

• Alternative indexes are defined for the file.

• The file is an indexed file not processed by key.

For batch-add processing of an indexed file, an index buffer and a 24-byte
control block are allocated for each index that is not the index on the access
path. For example, if nonkeyed batch-adds are done to an indexed file that
has one alternative index, two additional index buffers and two 24-byte
control blocks are allocated. (One index buffer and one control block are for
the primary index because it is not used to access the file; the second index
buffer and control block are for the alternative index.) The batch-add index
buffers are the same size as the index buffers on the access path. If no index
buffer exists on the path, the length of the index buffer is 256 bytes.

The maximum amount of storage space that the system allows for each file is
44K bytes. If more storage is requested, the system automatically eliminates
or reduces the size of some of the buffers so that the total storage required
for the file is 44K bytes or less.

Allocating Storage for Buffers and Control Blocks

The storage space required for each file is allocated to the program when the
file is opened. This required storage space called file space, includes data
blocking, index blocking, and control blocks.

The system allocates file space to a program in one of two ways:

• Adding the file space to the user program area and increasing the
program's processing size by the amount of the file space. This occurs if
adding the file space to the user program area does not make the
program's processing size greater than 64K bytes or greater than the
available user storage. This is called appending the file space to the user
program.

• Placing the file space in the task work space, which is an area separate
from the region size of the program. This occurs if adding the file space
to the user program area makes the program's processing size greater
than 64K bytes or greater than the available user storage.

Chapter 8. Files 8-67

8-68

The system uses the following logic when allocating file space:

Put file space
in task work
space

Yes

Start

Evaluate
amount of

file space

Program size=
program+ file
space

Put file space
at end of
user program

Go to Start, and
allocate space
tor next file

Set file
space= 44K

59019054-0

Program Processing Size

The program processing size is defined by the program code (load member)
plus appended file spaces. The actual method of file space allocation is
determined separately for each file. The optimum situation occurs when the
program plus all file spaces are less than 64K bytes.

If the program's processing size is greater than 64K bytes, the system assigns
the file space that caused the size to exceed 64K bytes to the task work space.
Assigning the file space to the task work space may decrease system
performance because of the time needed to address the task work space
(which is outside the program region size), and to swap the task work space
into and out of main storage separately from the program.

The following diagram shows what happens when a program opens three
files: file A, file B, then file C. Note that even though file B was opened
before file C, the buffer space for file B was put in the task work space. File
B could not be appended to the program because its buffer space (38K bytes)
would have caused the total program size to exceed 64K bytes:

32K bytes (program) + 10K bytes (file A)
+ 38K bytes (file B) = BOK bytes

File Space C
(16K bytes)

File Space A
(10K bytes)

User
Program
(32K bytes)

Program Region
Size (58K bytes)

File Space B
(38K bytes)

Task Work Space

59019055-0

It is important to understand that data buffers are allocated to the program as
files are opened. Therefore, data buffers most commonly accessed by the
program should always be opened first, so that they are allocated to the
program's region instead of being placed into the task work space.

RPG II opens all files at program initiation. The primary file is opened first,
and then the other files are opened in the sequence in which they are coded
on the file description specifications.

A COBOL program can define the sequence for opening files by using the
OPEN statement. It may be advantageous to open a file only when required
and to close the files that are no longer in use, rather than opening all files at
program initiation and closing them at program termination. This approach
allows the system to reallocate the buffer space used by closed files.

Chapter 8. Files 8-69

Physical and Logical Input/ Output Operations

JlecordBlocking

Access Method

Physical input/ output operations perform disk read and write operations.
These operations take time because they usually require positioning and
moving the disk arm. Therefore, during application design, you should plan
to minimize physical input/ output operations in order to improve response
time and system performance.

Logical input/ output operations access records. The number of physical
input/ output operations that result from logical input/ output operations is
affected by the following factors:

• Record blocking

• Access method

• Deferring file operations

• File sharing

For information about how record blocking is related to physical and logical
read operations, see "Blocking Records" on page 8-60.

When an indexed file is accessed, each logical input/ output operation results
in two physical read operations for each record. The index entry and the data
record are read in two separate operations.

Direct file organization allows faster random access to records in a file than
any other file organization. However, there the program must compute the
relative record number location of the record within the file.
Appendix A, "Access Algorithms for Direct Files" describes several access
algorithms.

When records need to be processed consecutively, a program accessing the
records can process faster if the records are ordered sequentially in the file.
For example, assume that a file has 50 records per block and that consecutive
processing is used. A physical input/ output may be required only once for
each set of 50 logical requests.

Delayed File Operations

In certain cases, the system delays the following file operations:

• Reading records from a file

• Writing records to a file

• Maintaining indexes

8-70

Delayed Input Operations

Delayed Output Operations

For input operations, the system reads a disk file when the required record is
not in the buffer or when the buffer contains records that no longer reflect
the current file status. This ensures that any record retrieved reflects the
latest information in the file.

If an indexed file is used, the system reads the index from disk under the same
conditions.

The amount of data read is equal to the buffer sizes specified for either the
data or the index entries.

For output operations, the record is written to the file on each output
operation unless the system determines that the output operation can be
delayed until the buffer is full. File output is delayed if the program accessing
the file meets the following conditions:

• The file is not shared.

• Multiple logical files are not defined in the program.

Output of index entries may be delayed under the same conditions listed
above.

When the output is delayed, the amount of data written is equal to the size of
the buffer specified. The buffer sizes depend on the blocking factors
specified in the program or on the FILE OCL statement.

When the system does not delay output, only the sector(s) in the buffer
containing changed or added records is written to disk.

Delaying file output can improve performance. However, it may result in lost
data if a program ends abnormally. The maximum amount of data that can
be lost depends on the size of the data buffer specified in the program or on
the DBLOCK parameter of the FILE OCL statement. Also, because of the
structure of the buffer, data records may be in more than one sector.
Therefore, after an abnormal termination, the last record in the file buffer
may be only a partial record.

Chapter 8. Files 8-71

Delaying Maintenance of Indexes

Normally, the overflow portion of an index is arranged in ascending key
sequence. Maintaining this sequence requires that entries added to the index
be inserted into the overflow area of the index in sequence. However, at
certain times, the system delays arranging the index in sequence. Instead, it
places the new index entry at the end of the overflow area of the index, and
later it sorts the overflow portion. The maintenance of indexes is delayed in
the following two cases:

• Unused alternative indexes

• Batch add processing

Delaying Maintenance for Unused Alternative Indexes

Maintenance of indexes is delayed for all alternative indexes to a file that are
not accessed by a program. When an alternative index is being used, the
system always maintains the index. The maintenance of the index is delayed
until the alternative index file is opened. When it is opened, the overflow
portion of the index is sorted. From that time on, the index is maintained
while the file is used. The maintenance of the primary index is not delayed,
even if no programs are using the file.

Delaying Maintenance for Batch Adds

8-72

Maintenance is delayed if the file access meets the following conditions:

• The file is not shared

• No other logical files have been specified for the file

• Only add operations are done to the file (or, if other operations are being
done, the add operations must be sequential)

When the system adds records in batches, the maintenance of the index is
delayed until the job step ends. At that time, the overflow portion of the
index is sorted if the entries are not in sequence. The maintenance of all
other indexes is deferred until the particular file is opened as described in the
previous topic.

Sharing Files

File sharing means allowing two or more programs to access the same file at
the same time.

File

Program A Program B Program C

89019068-0

File Sharing Considerations

If you want to allow more than one program to share a file, consider that:

• Only resident files can be shared.

• Files that are being created cannot be shared.

• If you change a resident file to a scratch file by specifying a RETAIN-S
parameter on the FILE OCL statement, the file cannot be shared.

• The system protects records read for update by one program from being
changed by another program using the same file. For more information,
see "Record Protection" on page 8-78.

• If programs share more than one file, all programs should access the files
in the same sequence to reduce the chances of a file deadlock occurring.
For more information, see "File Deadlock Conditions" on page 8-84.

Chapter 8. Files g;_ 73

Levels of File Sharing

8-74

The system allows several levels of file sharing. The level of file sharing is
determined by the DISP parameter of the FILE OCL statement, except in
BASIC programs, where the share level is specified on the OPEN statement.

When one or more programs are using a file, the programs that own the file
determine which other programs can share the file. The share level tells the
system how the program uses the file and what types of processing other
programs can do while sharing the file. For example, if DISP-SHRMR is
specified, the program can modify the file while sharing it with other
programs that can only read the file. Once the system lets the program use
the file, other programs that want to modify the file are not allowed to use
the file.

The following table shows:

• The levels of file sharing you can specify

• The type of processing you can do when you own the file

• The type of processing other programs can do while your program owns
the file

The Program That
Share Level Owns the File Can Other Programs Can

SHR Read and modify Read and modify

SHRMM Read and modify Read and modify

SHRMR Read and modify Read only

SHRRM Read only Read and modify

SHRRR Read only Read only

OLD Read and modify Not allowed to access file

NEW Read and modify Not allowed to access file

Not Read and modify Not allowed to access file
specified

Note: Modifying includes update, delete, and add operations to a file.

Waiting for Files to Become Available

If a file is used by another program and the file is at a share level that does
not permit your program to use the file, the system either displays a message
or waits for the file.

A message is displayed if the file is owned by a never-ending program with a
share level of noshare with the requesting program or if the file was acquired
by a FILE OCL statement with JOB-YES specified. The message allows you
to either cancel your job or have the system try again to get ownership of the
file. ·

If the file is not available and is not used by a never-ending program, the
system automatically waits for the file until the program using the file goes to
the end of the job step. While the program is waiting, all other programs that
request the file also have to wait. When the file becomes available, the
program gains ownership of the file and begins running. If other programs
are also waiting to use the file, the system checks if they can use the file at
their requesting share level.

The following table shows whether another program can share a file at a
requested level when one program owns the file:

Share Level
Requested by
Another Share Level for the Program That Owns the File

Program SHRRM SHRMMt SHRMR SHRRR No share2

SHRRM Yes Yes Yes Yes No
SHRMM1 Yes Yes No No No
SHRMR Yes No No No No
SHRRR Yes No No Yes No
No share2 No No No No No

t DISP-SHRMM is the same as DISP-SHR.

2 No share is specified by DISP-OLD, DISP-NEW, or by no DISP
parameter being specified.

For example, if your program requests to share a file by using DISP-SHRMM
on the FILE OCL statement, the system would allow your program to share
the file only if the programs that own the file specified either DISP-SHRRM,
DISP-SHRMM, or DISP-SHR on the FILE OCL statement.

When several programs are sharing a file, other programs are allowed to share
the file only when their requesting share levels are compatible with all other
share levels.

Chapter 8. Files 8-75

Using the WAIT Parameter

8-76

Another way to determine (within your jobs) whether a file is available is to
use the WAIT parameter on a FILE OCL statement that is not between
LOAD and RUN statements. You can specify WAIT-YES or WAIT-NO.

If WAIT-NO is specified, the system tries to acquire the file for the program
at the desired shared level. If the file is unavailable to the program,
completion code 2030 or 2031 is returned to the procedure. By using the
?CD? substitution expression and an IF conditional expression within your
procedure, you can choose the processing steps done within a job if the file is
unavailable for you by your program. For example, if a file you need as input
to the first program of a job is unavailable, you may decide not to run the rest
of the job.

If WAIT-YES or if no WAIT parameter is specified, the program waits until
the file becomes available. This wait condition lasts until the program can use
the file. For example, you may decide to submit a program using a particular
file and not have this program use the file until all other programs using the
file are finished.

If a file is owned by a suspended program or by a never-ending program, the
system ignores the WAIT-YES parameter. The system issues a halt message
to the display station operator and stops processing the program.

The following example uses the WAIT parameter to check whether a file is
unavailable (busy) for more than 30 minutes. If the file is unavailable for
more than 30 minutes, the system sends the system operator a message to run
the job later.

* Parameters used:
* Parameter 1 Number of minutes between tries.
* Range of 1 to 59 minutes.

*
* Parameter 2

*

Default 5 minutes.
Maximum number of tries.
Default is 6 tries.

* Parameter 64

*
Number of times the program tried
to get the file

**
II IFF ?1?=' I EVALUATE P1='?1?00'
II EVALUATE ?64F'1'? P1,6=?1'000500'?
II TAG LOOP
II FILE NAME-TEST,WAIT-NO
II IF ?CD?=OOOO GOTO GOTFILE
II IF ?64?>?2'6'? GOTO NOFILE
II EVALUATE P64=?64?+1
II WAIT INTERVAL-?1?
II GOTO LOOP

* /I TAG NOFILE
II ** 'FILE "TEST" IS BEING USED; RUN JOB LATER'
II RETURN

*
II TAG GOTFILE
II LOAD PROG1
II RUN

Note: If you place the FILE statement before the LOAD statement, the system
attempts to acquire the file for the job immediately. For example:

II FILE NAME-INPUT,UNIT-F1,LABEL-MASTER,RETAIN-T,
II DISP-OLD,WAIT-YES
II ATTR CANCEL-NO,MRTMAX-20,NEP-NO,PRIORITY-HIGH,
II RELEASE-YES
II LOAD ORDPRG,ORDERLIB
II PRINTER NAME-REPORT,ALIGN-YES,SPOOL-YES
II RUN

Chapter 8. Files 8-77

Record Protection

8-78

Record protection is the means of preventing two or more programs from
updating a record in a shared file at the same time. Record protection applies
to programs that access the file with SHR or SHRMM share levels.

File

Record 1

Program A Program B

59019057-0

To understand how a record is protected, you should first understand how a
record is updated when only one program is involved and then what happens
when more than one program is involved.

When there is only one program, updating a record consists of the following
steps:

1. The program requests data management to read a record for update.

2. Disk data management places one or more sectors containing the record
into a buffer area in main storage. The number of sectors placed into the
buffer depends on the blocking factor specified either in your program or
by the DBLOCK parameter of the FILE OCL statement. For example,
if program A is to update record 1 in file X, the buffer assigned to the
program might look like this:

Main Storage

Buffer 1 2 3 4 5 6
FileX

Records

59019058-0

3. Disk data management retrieves record 1 from the buffer, locks it so that
other programs do not have access to the record, and gives the record to
program A to update:

Main Storage

Program A

Buffer 2 3 4 5 6

Records

59019059-0

Chapter 8. Files 8-79

8-80

4. The program updates the record and calls data management to write the
updated record back to the file.

Main Storage

Program A

Buffer

Records

8 Record 1 locked.

5. Disk data management moves the updated record into the buffer and
writes the sector(s) containing the record back to the file.

6. Disk data management unlocks the record so other programs can access
the record for possible updating.

The following section describes how a record is updated when there is more
than one program. Suppose that program B wants to update record 1 in
file X. Because program A is using that record, it is not available to
program B. Program B must wait until the record is released.

Main Storage

Program A Program B

Wait

Buffer 2 3 4 5 6 3 4 5

Records

59019060-1

59019061-0

Now suppose that program B wants to update record 5, which is in the same
sector(s) as record 1. The system places the sector(s) containing records 1
and 5 in a buffer, locks record 5, and gives record 5 to program B.

Main Storage

Program A

A's
Buffer 2 3 4 5 6

Records

B's
Buffer

Program B

2 3 4 6

Records

59019062-0

Chapter 8. Files 8-81

8-82

If program A finishes updating record 1 before program B finishes updating
record 5, then when disk data management writes the sector(s) containing
records 1 and 5 back to disk, it notes that program B's buffer does not
contain the updated copy of record 1.

Main Storage

Program A

A's
Buffer

8Record 1 locked.

2 3 4 5 6

Records

FileX

B's
Buffer

Program B

2 3 4 5 6

Records

59019063-1

- -- -----·-------~--

When program B finishes updating record 5 and calls data management to
write the record, the sector(s) it has in its buffer no longer contains the data
that is in the file, because the buffer does not contain the updated record 1.
Therefore, if data management wrote the sector(s) from program B's buffer
back to the file, the changes made to record 1 by program A would be lost.
To ensure that the changes made to record 1 are not lost, data management
again reads the sector(s) containing records 1 and 5 from the file to a buffer
in main storage. The updated record 5 is then moved into the buffer, and the
sector(s) containing both updated records is written back to the file.

Main Storage

Program B

Buffer 2 3 4

Records

"Records 1 and 5 locked. 59019064-1

Chapter 8. Files 8-83

File Deadlock Conditions

8-84

A file deadlock condition can occur when two or more update files are
shared. For example, assume that program A and program Bare updating
two shared files, file 1 and file 2. Program A reads record 3 for updating from
file 1, and program B reads record 2 for updating from file 2.

Program A Owns

I
Record Record Record Record File 1

1 2 3 4

Program B Owns

I
Record Record Record Record Record

File 2

1 2 3 4 5

89019065-0

Suppose that program A tries to read record 2 from file 2. Program A must
wait because program B is using the record.

Record Record
1 2

Program A Owns

I
Record
3

Record
1

Record
4

Program B Owns

Program A Waiting

I
Record Record Record
2 3 4

File 1

Record
File2

5

89019066-0

Then, if program B tries to read record 3 from file 1, program B must wait
because program A is using that record.

Record Record
1 2

Program A Owns

Program B Waiting

I
Record
3

Record
1

Record
4

Program B Owns

Program A Waiting

I
Record Record Record
2 3 4

File 1

Record
File 2

5

59019067-0

This condition of programs waiting for each other is called a f"de deadlock. To
ensure that file deadlocks do not occur, you should always release a record
before reading a record from another shared update file.

If you press the Attn key to interrupt a program when a record lock exists on
one of the files opened by the program, option 1 (request Command display)
of the Inquiry Options display will have an asterisk(*) before the 1. This
means option 1 can be chosen but will be delayed until all record locks are
released. This prevents another job from being started at the display station
while the suspended program is holding a locked record.

You must release the locked records before the Command display will appear.
See "Releasing Locked Records" later in this chapter.

Chapter 8. Files 8-85

Releasing Locked Records

8-86

A record is released when any of the following conditions occurs:

• The program reads another record from the file.

• The program does a data management operation that causes an error to
occur (see the note that follows).

• The program updates the record (see the note that follows).

• The program deletes the record from the file.

• The program adds a new record to the file (see the note that follows).

• The program does a release operation. How your program releases
records depends on the high-level language you are using. For example,
in RPG II, you can release a locked record by writing a record with no
output fields.

• The program closes the file.

• The program ends.

Note: In COBOL, these operations cause the record to be unlocked. However,
if the program is using random access, updates to the record can be
done. Because the record is unlocked, other programs can update the
record between the time the record is unlocked and the time the COBOL
program does its update. In this case, the other program's updates will
be overlaid by the update from the COBOL program.

File Update Programming Considerations

Possible Errors

If a single, logical file is processed by two or more display stations within the
same program and if the program reads a record for updating but then reads a
second record from the same file before updating the first record, the
following errors can occur:

• An update or part of an update can be lost. For example, suppose a
record is read from file X and displayed at display station 1. Then
suppose the same record is read from file X and displayed at display
station 2. If file X is not shared and the program does not reread the
record, then the last update might overlay any previous updates. If file X
is shared, an error message is displayed, and the second update is not
performed.

• The wrong record can be updated. For example, suppose a record is read
from file X and displayed at display station 1. Then suppose a different
record is read from file X and displayed at display station 2. If display
station 1 tries to update the first record but does not read that record
again, disk data management tries to update the last record read from
file X, which is displayed at display station 2. If this condition occurs
during an attempt to update an indexed file, an error message might be
displayed if the primary key field is changed, and the requested update is
not performed. Otherwise, the wrong record is updated.

• An update performed by another program sharing the file can be lost. For
example, suppose a record is read by program A from file X and is
displayed at display station 1. Then suppose another record is read by
program A from file X and is displayed at display station 2. The second
read operation from file X causes the SSP to free the first record.
Therefore, a second program sharing file X can update the first record.
Then, if display station 1 reads the record again and updates the record
by using the original field values, the updates made by the second
program might be lost.

Note: For the above e"ors, the program can be an SRT with acquired work
stations, or an MRT. The important thing to note is that when the
program supports more than one work station at the same time, these
e"ors can occur.

Chapter 8. Files 8-87

Avoiding These Errors

8-88

You can avoid the preceding error conditions by using one of the following
techniques:

• Before doing an update, the program should read the record again and
check that none of the fields being updated have been changed since the
record was displayed for updating. If any of the fields were changed, the
program should display the field again for updating or, if possible, use the
field values currently in the record to do the update.

• Protect records being updated by establishing a field in the record to be
used as a busy indicator that indicates the record is being updated. For
example, a busy indicator might be the display station ID and the
program name. Subsequent attempts to access the same record should
test for the busy indicator and, depending on the value of the indicator,
not allow the record to be updated. The busy indicator should be
removed from the record when the update is performed by the requesting
program or if no update is performed. If records in a file can be updated
at the same time by two different programs, both programs should test
and use the same busy indicator.

If the program ends abnormally and you are not going to restart the
program, you should run another program that turns off the busy
indicators in records that were being updated by the program when it
ended, so that programs that check the busy indicator can handle the
record properly.

• Consider defining a separate logical file for each display station.
Separate logical files protect against updates by other programs, but they
do not protect against multiple updates within a single program. For
more information, see the note under "Using One File As Two Or More
Logical Files" on page 8-89.

Using One File As Two Or More Logical Files

Each file defined within a program is called a logical file. A program can use
one disk file as two or more logical files. For example, a program can be
written to access two files called FILEA and FILEB, which are the same
physical file, by using the following OCL statements:

II FILE NAME-FILEA,LABEL-MASTER,DISP-SHRMM
II FILE NAME-FILEB,LABEL-MASTER,DISP-SHRMM

Defining a disk file as two or more logical files allows you to process one file
by two separate access methods in one program. For example, one part of
the program can access a master file randomly by key, and the other part of
the program can access the same file randomly by relative record number.

Using the generalized access method is another way to process a file by two
separate access methods (randomly and consecutively). For information
about the generalized access method, see "Generalized Access Method" on
page 8-41.

A single physical file is also used as multiple logical files in a program when
more than one index is used by the program to process the file. For example,
if FILEA has an alternative index labeled AL TINDXA, a program can use
both files by using the following OCL statements:

II FILE NAME-FILEA,DISP-SHRMM
II FILE NAME-ALTINDXA,DISP-SHRMM

Records can be added to or updated in more than one of the logical files.

Note: The system does not prevent a COBOL or RPG II program from
updating the same record in two logical files at the same time. If a
program updates the same record in two logical files at the same time,
only the update that was made last appears in the physical file.
However, if the file is shared, the system protects each record in the file
from being updated at the same time by other programs (see "Record
Protection" on page 8-78). Assembler users can specify LOCKCK-Y
on the $DTFD macro to prevent the same record from being read for
update through two logical files. BASIC prevents the same record from
being read for update through two logical files.

Chapter 8. Files 8-89

8-90

Chapter 9. Libraries

The purpose of this chapter is to:

• Describe what a library is.

• Suggest how you can use libraries for your applications.

Library Concepts and Uses

A library is a named area on disk that contains library members. These library
members contain your programs, procedures, display formats, and message
members that are used by your jobs.

Types of Libraries on the System

The system can contain the following types of libraries:

• The system library (#LIBRARY). The system library contains most of the
IBM-supplied programming support for the system. In most cases, you
should create your own libraries to store other programming information,
instead of using the system library. Any user information placed into the
system library is erased when a new release is installed on the system.

• Other program product libraries. These libraries contain the IBM-supplied
programming support for the programming languages, Development
Support Utility, the Utilities Program Product, and the OFFICE/36
Program Products.

• Your application libraries. These are the libraries you create to store your
programming information.

Library Naming Conventions

A library name can be up to 8 characters long and must begin with an
alphabetic character (A through Z, #, $, or @). The remaining characters
can be any combination of characters (numeric, alphabetic, and special)
except #LIBRARY, Fl, READER, DISK, PRINT, ALL, and TAPE.

You should avoid using the following characters because these have special
meanings in procedures: commas(,), apostrophes('), question marks(?),
slashes (/), greater than signs (>), equal signs (=),plus (+), and hyphens
(-).

Chapter 9. Libraries 9-1

Group Libraries

9-2

You can create meaningful library names by abbreviating the name of the
application that uses the library. For example:

Library
Name Application

ACCTLIBR Accounts receivable

PA YLIB Payroll

PROGLIBR Miscellaneous programs

MSGLIBR Messages library

Group libraries are a set of libraries collectively identified by a name that
contains identifiers separated by one or more periods. The characters
preceding a period identify the library group.

One advantage of using group libraries is that they can be secured easily. See
the System Security Guide for more information about securing group
libraries.

Here are some examples of library names that identify library groups:

Library Library
Name Group Name

ACNT.PAY}-
ACNT.REC CNT
ACNT.MSG

!NV.MAIN~
I NV. SU BR NV
INV.DISP

M.TEST.1
M.TEST.2
M.TEST.3

~.TESTo•M
59019125-0

The limit of 8 characters for a library name also applies to names for library
groups. The period counts as one of the 8 characters.

Libraries in a Group Resource

Folders, files, and libraries can be part of a group resource. The group
resource must be named and each file, library, or folder that is part of the
group must be named.

For example, a group resource could be PAY: a file that is part of this group
could be PAY .FILE, a library could be PAY .LIB, and a folder could be
PAY.FOLD. As you can see, the group resource name and the name of the
file, library, or folder are separated by a period (.). PAY is called the group
identifier.

One advantage of using groups is that they can be secured easily. See the
System Security Guide for more information about securing groups.

The limit of 8 characters for a library name also applies to names of groups.
A period counts as one of the 8 characters.

Types of Library Members

A library contains four types of library members:

• Source members (SOURCE or S members). Source members contain
statements such as program statements or source specifications that are
used as input to a compiler. Examples of source members are:

Source statements for programs

S-, H-, and D-specifications for display formats

Source statements for menus

Source statements for message members

• Procedure members (PROC or P members). Procedure members (also
called procedures) contain the statements necessary to run a program or a
group of programs.

• Load members (LOAD or 0 members). Load members contain
information in a form that the system can use directly. Examples of load
members are:

Compiled and link-edited programs

Compiled display formats

Compiled menus

Compiled message members

• Subroutine members (SUBR or R members). Subroutine members are
usually members that have been compiled. BASIC programs are
normally stored as subroutine members. WSU, DFU, and Query/36 also
store members as subroutine members.

Chapter 9. Libraries 9-3

Library Member Subtypes

9-4

A subtype is a further classification of a library member. For example, a
library source member might contain RPG II program statements, COBOL
statements, BASIC statements. You specify the library member subtype for
source and procedure members when you create or change the member.
When you compile, link-edit, or generate a load member, the subtype is
automatically assigned by the system based upon the subtype of the source
member from which the load member is derived.

The system allows you to assign subtypes to your library members. These
subtypes allow you to better define the library member. You can use them to
help you identify the members when you list them. Also, some of the utilities
allow you to select the subtypes you want to work with. For example, the
screen design aid utility (SDA) allows you to select subtypes; thus, you can
choose to view only display formats if you want.

Subtype

ARP
ARS
ASM
BAP
BAS
BGC
BGD
BGF
COB
CSM
CSP
DFU
DLS
OTA
FMT
FOR
ICF

KEY
MNU
MSG
PHL
QDE
QRY
RPG
SRT
SSP
TXT
UNS
wsu
X25

Meaning

RPG II auto report member
Automatic response member
Assembler member
BASIC procedure (source member)
BASIC member
Business graphic chart
Business graphics data
Business graphics format
COBOL member
Alert source member
Cross-system product
Data file utility member
Document library services
Data member
Display format member
FORTRAN IV member
CNFIGICF procedure Interactive Communications Feature
member
KEYS procedure
Menu member
Message member
Phone list member
Query data entry
Query /36 member
RPG II member
Sort member
CNFIGSSP procedure system configuration member
Text member
Member subtype not specified
Work station utility member
CNFIGX25 procedure line configuration member

Library Member Naming Conventions

Uses of Libraries

A library member name can be up to 8 characters long and must begin with
an alphabetic character (A through Z, #,$,or@). The remaining characters
can be any combination of characters (numeric, alphabetic, and special).

You should avoid using the following characters because these have special
meanings in procedures: commas (,),apostrophes ('),question marks (?),
slashes (/), greater than signs (>), equal signs (=), plus (+), period (.), and
hyphens(-). Do not use DIR, SYSTEM, NEW, or ALL as a member name.

Libraries allow you to group programs, display formats, and message
members for a specific application. For example, you could place all your
order entry jobs into a library named ORDERLIB.

Having several libraries allows you to group programs, displays, and message
members in separate libraries. If you decide to use multiple libraries for your
applications, you can group the members contained in those libraries in
several ways:

• By application or job. For example, you could place the order entry
application members into a library named ORDERLIB and the payroll
application members into a library named PA YLIB.

• By user. You can assign each operator his own library for creating his
own menus or procedures.

• By shifts. For example, you can assign the first shift a library which
contains all the programs they can use, but restrict the second shift to a
different library. The second shift library would contain only those
programs that can be run without your supervision.

• By business cycle. You could create one library containing only programs
that are run daily, a second library that contains programs to be run
weekly, and a third library containing programs to be run monthly. In
this way, you can save disk space by loading the second and third
libraries only when you need them.

• By production and testing. As you develop your applications, you may
find it easier if you have a development library (to contain the programs
you are working on) and a production library (to contain the programs
that have been developed and tested). When you finish testing the
applications, you can move them into the production library. The
members in each library are kept separate to ensure that no untested
programs are run by mistake.

• By member type. For example, you could place the displays and
messages in one library and the programs in another library.

Libraries can be secured. This allows you to specify the operators that can
run the application programs and who can change the programs in the library.

Chapter 9. Libraries 9-5

Sign-On, Current, Session, and Job Library

9-6

Libraries can be assigned to display stations, operators, or jobs in the
following ways:

• Sign-on library. You can have a particular library designated as the
library to be used by a particular display station or operator. You use the
SET procedure to define the library to be used by a particular display
station; the specified library is then shown on the Sign-On display at that
display station.

Another way to have an automatic sign-on library is to have a security
officer use the SECEDIT procedure and the user ID file to define a
sign-on library for a particular operator. This library name will not
appear on the Sign-On display, but the system will automatically search
the user ID file for the sign-on library. See the System Security Guide for
more information.

• Current library. Each display station that is signed on has a current
library associated with it. Normally, the current library is the sign-on
library, but you can specify either a session library or a job library as the
current library.

Session library. A library can be designated for a session. The
system first searches the session library for the members needed for a
job. If the job information is not found in the session library, the
system then searches the system library (#LIBRARY). You can use
the SLIB procedure or the MENU control command to change the
session library.

Job library. A library can be designated for each job or job step by
using the LIBRARY OCL statement.

Library Format

A library has the following format:

Directory

Library
Control
Sector

Beginning
of Library

Directory
Entries

Library Members

t

End of
Library

59019069-0

The library directory contains a library control sector and an entry for each
member in the library. The library control sector is used to keep track of the
library space that is being used or is available for use. Each time you create
or remove a member, the library control sector is updated to indicate the
change in space used and available.

Chapter 9. Libraries 9-7

9-8

The directory entries contain the following information for each member in
the library:

• Name of the member.

• Type of the member; for example, a procedure or source member.

• Subtype of the member; for example, RPG (RPG II) or COB (COBOL).

• Date and time the member was created or last changed.

• Reference number of the member. The reference number for source or
procedure members is usually increased by 1 each time the member is
edited. The reference number for load or subroutine members is set to
the reference number of the source member that was compiled or
link-edited.

• Attributes of the member; for example:

Display format member

IBM-supplied member

Multiple requester program

Never-ending program

Whether a program temporary fix (PTF) was applied

• Release level of the system programs when the member was created or
last changed.

• Maximum number of requesters that can be attached to a multiple
requester terminal program.

• Amount of storage required for the program (for load members).

• Length of the statements in source or procedure members.

• Number of statements in source or procedure members.

• Size of the member (in sectors).

The listing produced by the LISTLIBR procedure provides this detailed
information about libraries and library members. The System Reference
manual has information about running the LISTLIBR procedure.

Library Size

When you create a library, you specify the total size for the library in blocks.
The minimum size for a library is 2 blocks; the maximum is 15,000 blocks.
Typically, a good starting size for a library is 100 blocks. You create a library
by using the BLDLIBR procedure. The System Reference manual has
information about running the BLDLIBR procedure.

You can specify a separate size for the directory; the directory size is
specified in sectors (1 block equals 10 sectors). The minimum size for a
directory is 2 sectors; the maximum is 2500 sectors.

To determine the number of available directory entries for a given number of
sectors, multiply the number of sectors by 5 and subtract 7 from that number.
For example, for 10 directory sectors, you could have 43 entries:

5 x 10 = 50
50- 7 = 43

If you do not want to specify a directory size when you create the library, the
system automatically assigns the size for you. The directory size will be
1I100 of the total library size. For example, if you specify a library to be
100 blocks, the system automatically assigns a directory size of 10 sectors.

1I100 x 100 blocks = 1 block

1 block = 10 sectors

If you find that the library is either too small or too large for your use, you
can use the ALOCLIBR procedure to increase or decrease the size. The
System Reference manual has information about running the ALOCLIBR
procedure.

Chapter 9. Libraries 9-9

Reorganizing Library Space

9-10

When you are developing applications, you will change, create, or remove
members in your library. This can create unusable gaps in the library.
Library space reorganization is the collecting of the unused space in a library
in order to make a continuous unused area for the creation of new members.

The CONDENSE procedure collects the unused space in a library into one
area and, therefore, makes the space usable for new library members. For
example, you want to create a member that takes 20 sectors of space and
your library looks like the following:

Library Before CONDENSE

Member3

~

10 Unused
Sectors

15 Unused
Sectors

The library contains two areas of unused space: one is 10 sectors, the other is
15 sectors. Neither area is large enough to contain a 20-sector member.
After you condense the library, it will look like this:

Library After CONDENSE

Directo'Y I Membe• 1 I Membe• 21 Member 3

59019070-0

25 Unused Sectors

Now you have enough continuous space for the 20-sector member to fit in
the library. The System Reference manual has more information about the
CONDENSE procedure.

59019071-0

Library Extension

When you are copying a member to a library and the member is too large to fit in
the library, the system automatically creates an additional area on disk into which
this member can be placed. The additional area is called a library extent. The
system also displays a message informing the user when an extent is about to be
created.

A library can have only one extent. If the extent becomes full and you attempt to
copy a member into the library, the system displays a message, and you must
reallocate your library and then copy the member into the library.

This extent is normally 50 blocks (provided 50 blocks of disk space are available).
The size of the extent may also depend on the following:

• If the library member being copied is larger than 50 blocks, the size of the
extent will be the same size as the member.

• If less than 50 blocks of disk space are available, the system attempts to
provide as much disk space as possible to contain the member.

• If not enough space is available to create an extent, the system displays a
message that indicates you must reallocate or condense your library. You use
the ALOCLIBR or CONDENSE procedure to reallocate or condense a library.
The System Reference manual has information about how to run the
ALOCLIBR and CONDENSE procedures.

Note: The system library (#LIBRARY) can be extended in sector mode, only. For
more information see "Library Sector-Mode and Record-Mode Files" on
page 9-15.

Chapter 9. Libraries 9-11

Library Sharing Restrictions

Usually two or more programs can read from the same library at the same
time. However, the following library functions require that no other
programs use the same library at the same time:

• Condensing a library using the CONDENSE procedure.

Restoring a library using the RESTLIBR procedure.

• Removing all library members or all library members of one type using
the REMOVE procedure.

• Renaming a library using the RENAME procedure.

• Deleting a library using the DELETE procedure.

• Copying IBM-supplied library members into the system library.

• Reallocating a library using the ALOCLIBR procedure.

Changing Libraries in a Job

9-12

If you decide to use multiple libraries, you often need to change libraries in
the middle of a job. The LIBRARY OCL statement specifies the library to
be used for a job or a specific job step. The System Reference manual has
information about the LIBRARY OCL statement.

Securing Libraries

You can secure both user libraries and the system library by using resource
security. The access levels you can specify for resource security are shown
below in descending order, with the highest access levels having the greatest
authority. The authority given by a higher access level includes all the
authority of the access levels below it (except, of course, for an access level
of None). For example, the user with change access to a library also has
update and read access to it.

These access levels allow you to decide who is the owner of the library, who
can change the library or members in the library, and whether operators can
only run programs stored in the library.

Access
Level

Owner

Change

Update

Read

Run

None

Description

The owner of a library can:

• Indicate the users of the library and their access levels.

• Create, rename, or delete the library.

• Create, change, run, list, remove or copy any member of the
library.

A user with change access to a library can:

• Create, rename, or delete the library.

• Create, change, run, list, remove or copy any member of the
library.

A user with update access to a library can create, change, run,
list, remove or copy any member of the library.

A user with read access to a library can run, list, or copy any
member of the library.

A user with run access to a library can run any member of the
library.

A user with this access level is not allowed to use any member of
the library.

The System Security Guide has more information about how to secure
libraries.

Chapter 9. Libraries 9-13

Backup and Recovery Considerations

9-14

If a member is being created or changed and if the program changing the
member terminates abnormally, the changes may or may not have been added
to the member. The source entry utility (SEU) and Development Support
Utility (DSU) automatically create a work file to help with recovery from
abnormal terminations. The SEU Guide or DSU Guide has more information
about SEU or DSU.

If you were copying a member to a library (for example, by using the
TOLIBR procedure) when an abnormal termination occurs, you should check
the member to ensure it is correct. If the member is not correct, do the copy
again. Also, if you were copying several members to a library, some of the
members may not have been copied at all.

Some general objectives for library backup and recovery are:

• To ensure your data is correct

• To minimize recovery time for each program

If you make any changes or additions to a library or library member, you
should create a backup copy of the library. You will then have a current copy
of the libraries and members on diskette or tape in case a machine or program
error occurs, and you won't have to reenter all the changes.

You must be able to reconstruct your libraries if a failure occurs so that your
applications can continue to operate. For more information about backup
and recovery, see Chapter 19, "Error Prevention, Detection, and Recovery."

To help you back up and recover libraries, you can use the SA VELIBR and
RESTLIBR procedures. SA VELIBR saves a library on diskette or tape;
RESTLIBR restores a library from diskette or tape.

Library Sector-Mode and Record-Mode Files

Sector-Mode Files

Record-Mode Files

Library members can be copied to disk, diskette, or tape files in either of two
formats: sector mode or record mode.

Sector-mode files contain library members that are stored in the internal
format used by System/36. These files are only created by the FROMLIBR
and SA VELIBR procedures, or by the $MAINT utility program. The system
reads data from these files one sector at a time.

Sector-mode files can be used only with another System/36.

The System Reference manual has more information about using sector-mode
files.

Records in a record-mode file have a special format. One statement from the
member is contained in each record. All records have the same length, and
the record can be from 40 to 120 characters long. System/36 either pads the
record with blanks or truncates the statements within the library member to
match the specified record length.

The first record in the file is a COPY statement that defines the library
member. The last record in the file must be a CEND statement. The records
in between contain the statements in the library member.

If you use the FROMLIBR procedure or the $MAINT utility program to
create a record-mode file from either a source or procedure member, the
COPY and CEND statements are placed in the file automatically. Otherwise,
you must specify the COPY and CEND statements (for example, if a
program you coded is to create a file that becomes a library member). Also,
if the record-mode file is organized as a direct file on disk or tape, you must
have an END statement following the CEND statement.

Record-mode files can be used on other systems if the files are written as
basic data exchange files.

The System Reference manual has more information about using record-mode
files.

Chapter 9. Libraries 9-15

Programming Guidelines for Libraries

Creating Libraries

The following describes the functions you can do with libraries and library
members, and indicates the procedures you can use to do the functions. The
System Reference manual has more information about these procedures.

Use the BLDLIBR procedure to create libraries on disk.

Creating and Changing Members

To create or change a library source or procedure member, use the
Development Support Utility (the DSU procedure) or the source entry utility
(the SEU procedure). The SEU Guide and DSU Guide have information
about using SEU and DSU. You can also create library members by using the
$MAINT utility program (if you don't have SEU or DSU).

The screen design aid utility (SDA) allows you to create and change source
members for display formats and menus.

Load and subroutine members are created by compilers.

Listing Members and Library Information

9-16

When your library is on disk, use the LISTLIBR procedure to:

• List the library's directory.

• List members from the library.

• List information about a library, such as, its size, its location on disk, or
the amount of space used in the library.

When you have a library saved on diskette or tape, or you have one or more
members in a diskette or tape file, use the LISTFILE procedure to list
information about the members.

DSU also lets you list members or the contents of a library (only members
that can be edited).

Saving and Restoring Libraries

Use the SA VELIBR procedure to save an entire library on diskette or tape.
Use the RESTLIBR procedure to restore an entire library from diskette or
tape to disk.

Copying Libraries and Library Members

Use the LIBRLIBR procedure to copy library members from one library to
another. Use the FROMLIBR procedure to copy library members from a
library to a disk, diskette, or tape file. Use the TOLIBR procedure to copy
library members from a file (either disk, diskette, or tape) to a library.

Changing Library or Directory Size

Condensing a Library

Securing a Library

You use the ALOCLIBR procedure to change the size of a library, a library's
directory, or both. You can either increase or decrease the sizes. (The
directory size of the system library cannot be changed.)

Use the CONDENSE procedure to condense a library; that is, to gather all
the unused spaces into a single area. This allows you to add more members to
a library.

Library resource security is described under "Securing Libraries" on
page 9-13. Use the SECEDIT RESOURCE procedure to secure a library.
See the System Security Guide for information about using the SECEDIT
procedure.

Renaming a Library or Library Member

To rename a library, use the RENAME procedure. To rename a library
member, use the CHNGEMEM procedure.

Removing a Library or Library Members

To remove an entire library, use the DELETE procedure. To remove library
members, use the REMOVE procedure. DSU also allows you to remove
source or procedure members.

Chapter 9. Libraries 9-17

9-18

Chapter 10. Folders

The purpose of this chapter is to:

• Describe what a folder is.

• Describe the procedures you use to work with folders.

Folder Concepts and Uses

A folder is a named area on disk that contains folder members created and
used by DW /36 (DisplayWrite/36), Personal Services/36, IDDU (the
interactive data definition utility), and PC Support/36.

Types of Folders and Folder Members

Several different types of folders can be created for storing specific kinds of
information. Each folder can contain many members. The table that follows
shows some of the different kinds of folders and folder members.

Created Contents
Folder Type by (Member Type)

Document DW /36, DW3, DW4, Text ot PC files
or PC Support/36

Mail Personal Services/36 Mail documents for the entire
system

Mail Log Personal Services/36 Memo status information for
tracking mail

Data Dictionary IDDU Field, format, and file
definitions

Some folder types can contain only one type of member. For example, data
dictionary folders can contain only field, format, and file definitions.

Chapter 10. Folders 10-1

Uses of Folders

Data dictionaries created by IDDU are stored in folders. Personal
Services/36 stores the mail that it sends and receives in a central mail folder;
each user of Personal Services/36 keeps information about the mail in a
personal mail log folder. DW /36 lets you create and edit documents; these
documents are also stored in folders. You can group information in DW /36
document folders for a specific purpose. For example, a folder named MGRS
could contain all letters and memos sent to managers of a company.

Folder Naming Conventions

A folder name can be up to 8 characters long and must begin with an
alphabetic character (A through Z). The#,$, and@ characters should not
be used because IBM often uses these characters for names on the system.
The remaining characters can be any combination of characters (numeric,
alphabetic, and special).

A void using the following characters because these have special meanings in
procedures: commas(,), apostrophes ('),question marks(?), slashes (/),
greater than signs(>), equal signs(=), plus(+), hyphens(-), and ALL.

You can create meaningful folder names by using an abbreviated description
of the folder. For example:

Folder
Name Description

TXTEMPNU Document describing office procedure for training new
employees

MYMAIL Your personal mail log

COMDICl Data dictionary for a communications file

Folders in a Group Resource

10-2

Folders, files, and libraries can be part of a group resource. The group
resource must be named, and each file, library, or folder that is part of the
group must be named.

For example, a group resource could be PAY: a file that is part of this group
could be PAY.FILE, a library could be PAY .LIB, and a folder could be
PAY .FOLD. As you can see, the group resource name and the name of the
file, library, or folder are separated by a period (.). PAY is called the group
identifier.

One advantage of using groups is that they can be secured easily. The System
Security Guide has more information about securing groups.

The limit of 8 characters for a folder name also applies to names of groups.
A period counts as one of the 8 characters.

Folder Layout

A folder is composed of a directory, which contains information about the
members and subdirectories in the folder, and a number off older extents,
which contain the contents of the members.

Note: Subdirectories are a part of the shared folder f aci/ity.

The directory contains an entry with the name, description and member type
of each member and subdirectory in the folder. For more information about
subdirectories, see Chapter 11, "Subdirectories."

Folder members are stored in disk areas called folder extents. The first part
of each folder extent is used to keep track of the folder extent space. Each
time you create, change, or move a member, this area is updated to indicate
the change in space used and available.

When the system attempts to place a member into a folder extent that cannot
contain the member, the system automatically creates an additional extent
into which this member can be placed. A folder can have up to 99 extents.

Folder

Directory

Extent 1

Extent 2

I MEM
H (continued)

Members

MEM

G

$9019120-0

If you attempt to add a member to a folder when all its extents are full or you
have reached your limit, the system displays a message, and you must
reorganize the folder using the ALOCFLDR procedure with the MIN
parameter specified or the CONDENSE procedure with the folder parameter
specified.

Chapter 10. Folders 10-3

Folder Size

10-4

In general, some of the programs that use folders create the folders for you.
For example, Personal Services/36 creates mail log folders. When folders are
created, there is no need for you to specify the folder size.

When using IDDU and DW /36, you must have the authority to create
folders. Authority for creating folders is specified in your user profile. If you
cannot create folders but wish to do so, contact your master security officer
or security officer.

If you have the authority to create folders, you can use the TEXTFLDR
procedure to create a folder and optionally specify the size. For more
information about DW /36 folder size and extension, see "Folder
Considerations for DisplayWrite/36" on page 10-6.

Using this procedure, you provide an approximate number of documents that
the folder will contain and the average number of pages for each document.
DW /36 translates this information into the number of blocks needed for your
folder or you can specify the size in the number of PC files and file size in
kilobytes.

You can use the ALOCFLDR procedure to increase or decrease the size of a
folder. The System Reference manual has information about running the
ALOCFLDR procedure.

Reorganizing Folder Space

When you are working with folders, you change, create, or remove members.
This can create unusable gaps in the folder extents between the members. As
a result, you may want to reorganize your folder, moving all folder members
so that they are next to each other. Reorganization may increase the speed
with which the system works with the folder; it also makes the unused space
free for other uses.

The CONDENSE procedure is used to reorganize a folder and to free all
unused space in the folder by placing the members next to each other in the
smallest possible number of folder extents. After you run the CONDENSE
procedure, the folder is at its minimum size. The following figure shows a
folder before and after the CONDENSE procedure has been run.

Folder Extent before CONDENSE

Extent 1

Extent 2

MEM
K

Folder Extent after CONDENSE

Extent 1

59019121-0

The reorganized folder area is determined by calculating the amount of space
currently being used plus a 10 block system overhead. At best, all of the
extents will be combined into one extent; the maximum extent area is 6,553
blocks.

The ALOCFLDR procedure is used to reorganize the folder and, optionally,
to increase or decrease the size of the folder. ALOCFLDR with MIN
specified works the same as CONDENSE.

The System Reference manual has more information about the ALOCFLDR
and CONDENSE procedures.

Chapter 10. Folders 10-5

Folder Considerations for DisplayWrite/36

10-6

The security officer can specify in your user profile the maximum size of a
folder you can create. If you exceed the size limitations specified in your user
profile, the system sends you a message telling you that the block size is too
large. If a larger maximum size is required, contact your security officer.

When the maximum folder size is exceeded, the folder must be reorganized
using the ALOCFLDR procedure with the MIN parameter specified.
However, the authorized size limit may prevent reorganization of the folder.
If this occurs, you must remove data from the folder or you must ask the
security officer to increase the maximum size of the folders you can create.

You can specify the maximum number of extents that are added automatically
to the folder. Folders can have from 1 to 98 extents. The default value is 6.
If you specify a value close to 98, you will not have much warning before you
run out of space and you could lose part of your document. When the limit
you specified is reached, you must reorganize the folder to reduce the number
of extents or you must enlarge the folder.

Extension continues to occur up to the maximum limit you specified. When
you have reached that limit, the system will issue a warning telling you that
you have reached the maximum number of extents. The folder or a folder
member cannot be opened for any purpose that would cause further
extension. However, if you are currently updating a member when the
maximum is exceeded, you are permitted to complete your operations even
though it may result in several more extensions. The maximum number of
extents specified when the folder was created cannot be changed without
creating a new folder and copying the original folder members into it.

Folder Sharing Restrictions

Securing Folders

Usually two or more programs can read from the same folder at the same
time. However, the following folder functions require that no other programs
use the same folder at the same time:

• Reorganizing a folder using the ALOCFLDR or CONDENSE procedure

• Restoring a folder using the RESTFLDR procedure

• Renaming a folder using the RENAME procedure

• Deleting a folder using the DELETE procedure

The security officer can specify in your user profile whether you can create
folders when using IDDU and DW /36.

You can secure entire folders, subdirectories, or individual folder members by
using resource security. The access levels that you specify for resource
security allow you to decide who can read or change a folder, subdirectory, or
members in a folder or subdirectory.

For folders, subdirectories, or folder members to which you have owner
access, you can specify the access levels for other users on an authorization
list. An authorization list is a list of user IDs and their access levels. You
assign a name to each authorization list. Then, when you secure a folder,
subdirectory, or folder member, you specify an authorization list name for it.
You can use the same authorization list for many folders, subdirectory, and
some folder members.

Only the owner of an authorization list can change or remove it.

Access levels for folders and folder members are listed in Figure 10-1 on
page 10-8 and Figure 10-2 on page 10-10 with the highest access level
(Owner) having the greatest authority. The authority that is given by a higher
access level includes all the authority of the access levels below it (except, of
course, for an access level of None). For example, the user with change
access to a folder also has update and read access to that folder.

For information about access levels for subdirectories, see
Chapter 11, "Subdirectories."

The System Security Guide has more information about how to secure folders,
subdirectories, and folder members.

Chapter 10. Folders 10-7 1

Access Levels for Folders

Owner Change Update Read None
Access Access Access Access Access

Description Level Level Level Level Level

Read, revise, or delete security x
information for a folder or subdirectory.

Rename a folder x
Add, revise, or delete security x
information for any member in the folder
or subdirectory (whether or not the user
has access to the member)

Read, revise, or copy any information in x
any members of a folder or subdirectory

Create or delete a folder or subdirectory x x
at the folder level

Save the folder on disk, diskette, or tape x x
Restore the folder from disk, diskette, or x x
tape

Read, revise, or copy information in x x
folder members for which a user has at
least update access

Create and secure folder members x x x
Delete folder members for which a user x x
has at least update access

Read, revise, or delete security x x x
information for folder members that a
user owns

Reorganize the folder and optionally x x x
change the size

Figure 10-1 (Part 1 of 2). Access Levels for Folders

10-8

Owner Change Update Read None
Access Access Access Access Access

Description Level Level Level Level Level

Restore the folder on disk, diskette, or x x x
tape for which a user has update access
to all the folder members

Save the folder on disk, diskette, or tape x x x
for which a user has read access to all the
folder members

Read and copy information in folder x x x
members for which a user has update
access

Read or copy information in a folder x x x x
member for which a user has at least read
access

Figure 10-1 (Part 2 of 2). Access Levels for Folders

Chapter 10. Folders 10-9

Access Levels for Folder Members

Owner Update Read Run None
Access Access Access Access Access
Description Level Level Level Level Level

Revise or delete security information for x
a folder member if the user also has at
least update access to the folder or
subdirectory

Secure folder members x
Rename folder member x
Read, revise, or delete a folder member if x x
the user has at least update access to the
folder or subdirectory

Retrieve folder members from disk, x x
diskette, or tape if the user has at least
read access to the folder or subdirectory

Read or copy information in a folder x x x
member if the user has at least read
access to the folder or subdirectory

Run a PC file if the user has at least read x x x x
access to the folder or subdirectory

Archive folder members on disk, diskette, x x x x x
or tape if the user also has at least read
access to the folder or subdirectory

Figure 10-2. Access Levels for Folder Members

Note: If a member has its own security, a user must have the proper
authorization to access the member. If a member does not have its own
security, it assumes the same security as thef older or subdirectory.

10-10

Backup and Recovery Considerations

Some general reasons for folder backup and recovery are:

• To protect against loss of data

• To ensure your data is correct

To minimize recovery time for each program

If you make any changes or additions to a folder or folder member, you
should create a backup copy of the folder. You will then have a current copy
of the folders and folder members on diskette or tape in case a machine or
program error occurs, and you will not have to reenter all the changes.

You can save a folder member or all folder members marked for archive from
disk to diskette or tape by entering the ARCHIVE procedure command. You
can restore a folder member from diskette or tape to disk by entering the
RETRIEVE procedure command.

ARCHIVE and RETRIEVE can also be used to save or restore folder
members to or from a file on disk as well as tape or diskette.

You can also use the SA VEFLDR and RESTFLDR procedures to back up
and recover entire folders. SA VEFLDR saves a folder to disk, diskette, or
tape, or all folders on the system to diskette or tape; RESTFLDR restores a
folder from disk, diskette, or tape.

SA VEFLDR and RESTFLDR can also be used to save or restore a folder to
or from a file on disk as well as tape or diskette.

If a folder member is being created or changed and if the program changing
the folder member ends abnormally, the following occurs:

• Changes made to the directory, such as member name and member type,
are retained. These changes are effective as soon as you enter them.

• Changes to the contents of the member are not made until you save the
member. When the program is run again, you will have a copy of the
folder member before you made any changes (old version) and a copy of
the folder member with the changes (new version) up to the time the
program ended abnormally. You can select either the old or the new
version and continue your job. If you select the new version, verify that
your previous changes are correct. Generally, if the program ended
abnormally, changes made after you pressed the Enter key or a command
key are lost.

For DW /36, if you were copying a member to a folder (for example, by using
the TEXTDOC procedure) when the program ended abnormally, delete the
new member and do the copy again. If you were copying several folder
members to a folder, some of the folder members may not have been copied
at all.

For more information about backup and recovery, see Chapter 19, "Error
Prevention, Detection, and Recovery."

Chapter 10. Folders 10-11

Working with Folders in General

10-12

The programs that create folders let you select menu options to work with
folders. You can also work with folders by entering procedure names and
parameters. The following is a list of some of the things you can do with your
folders:

• Changing folder size

• Create folders

• Create folder members

• List information about folders

• List information about folder members

Remove folders from disk

• Remove folder members from disk

• Rename folders

• Rename folder members

• Reorganize folders

• Restore folders from disk, diskette, or tape

• Restore folder members from disk, diskette, or tape

• Save folders to disk, diskette, or tape

• Save folder members to diskette or tape

• Secure folders

• Secure folder members

Changing Folder Size

Creating a Folder

The following information describes functions and procedures you can while
working with folders. For more information about these procedures, see the
System Reference manual. The online information for DW /36, IDDU, and
Personal Services/36 and the following manuals have information about
working with folders through menus:

• Getting Started with Display Write/ 36

Getting Started with Interactive Data Definition Utility

• Getting Started with Personal Services I 3 6

You use the ALOCFLDR procedure to change the size of a folder. You can
either increase or decrease the size. ALOCFLDR reorganizes the folder
when it changes the size of the folder: the folder members are moved to the
front of the folder to eliminate as many folder extents as possible.

For DW /36, you use the TEXTFLDR procedure to create a folder.

For IDDU, you use the IDDUDCT procedure to create a data dictionary
(which is a folder).

Note: For IDDU and DW/36 folders, you must have authority to create
folders.

For Personal Services/36, you use the OFCINSTL procedure to install
Personal Services/36 and create the central mail folder; each user creates his
personal mail log folder using the OFCMAIL procedure.

Displaying or Printing Folder Members

For DW /36, you use the TEXTDOC procedure to print or display the list of
folder members.

Listing Folder Information

Use the CATALOG procedure to list information about a folder on disk,
diskette, or tape.

Listing Archived Folder Member Information

Use the LISTFILE procedure to list information about folder members saved
(using the ARCHIVE procedure) on diskette or tape.

Chapter 10. Folders 10-13

Removing a Folder

Renaming a Folder

Reorganizing a Folder

To remove an entire folder, use the DELETE procedure.

To rename a folder, use the RENAME procedure.

You can use the CONDENSE or the ALOCFLDR procedure to reorganize a
folder to its smallest possible size. You can also use the ALOCFLDR
procedure to reorganize a folder and leave the folder size the same or
increase or decrease the folder size by a specified number of blocks.

Reorganizing a folder places all the members next to each other at the front
of the folder and when possible, decreases the number of extents the folder
has.

Saving and Restoring Folders

Use the SA VEFLDR procedure to save an entire folder to disk, diskette, or
tape, or all folders on the system to diskette or tape. Use the RESTFLDR
procedure to restore an entire folder from disk, diskette, or tape to disk.

Saving and Restoring Folder Members

Securing a Folder

10-14

Use the ARCHIVE procedure to save a folder member or all folder members
marked for ARCHIVE on disk, diskette, or tape. Use the RETRIEVE
procedure to restore a folder member or all folder members marked for
archive from disk, diskette, or tape to disk.

Resource security for folders is described under "Securing Folders" on
page 10-7. Use the SECEDIT procedure to secure a folder. The System
Security Guide has information about using the SECEDIT procedure.

Chapter 11. Subdirectories

This chapter discusses the concepts of subdirectories (directories) within
shared folders. Subdirectories can be created by DW /36 or by PC
Support/36 users.

Subdirectories are used when System/36 users and personal computer users
are sharing folders or personal computer users are sharing PC files on
System/36 with other personal computer users. Support for shared folders is
part of the optional SSP.

The purpose of this chapter is to:

• Describe what is a subdirectory.

• Describe how to manage subdirectories.

• Describe the procedures you use to work with subdirectories.

Subdirectory Concepts and Uses

Shared Folder Facility

A subdirectory (directory) is the part of the folder that contains information,
such as names, descriptions, member types and security information for folder
members and other subdirectories (except security, subdirectory security
information is contained in the resource security file).

This section discusses concepts, uses, and management of folders with
subdirectories.

Shared folder facility allows the personal computer user to:

• Work with folders created by DW /36 users and take advantage of the
functions of some of the System/36 office products.

• Access members directly in a folder on the system instead of copying
members from virtual disk into a folder.

• Use all the capabilities of virtual disk.

Chapter 11. Subdirectories 11-1

Using Subdirectories

A folder with subdirectories has a hierarchical structure beginning at the root
and proceeding downward to dependent member types. This structure was
added to folders so that personal computer users can share PC files or
members with other personal computer users or System/36 users. The
relationship between folders and subdirectories allows you to group and store
folder members at different levels in the folder.

Subdirectories allow you to better manage your folders and folder members.
Similar members, such as spreadsheets, memos, or documents, can be
grouped together in one subdirectory.

Managing Subdirectories

Subdirectories give you the ability to better organize your folders and disk
space. Instead of placing a large number of files or folder members in two or
three folders, which could be inefficient for both you and your system, you
can group similar files or folder members in several subdirectories within a
single folder.

Organization and Identification

SALES

I =r=
QTR1 QTR2 QTR3

11-2

If you have files or folder members that are spreadsheets, memos, or
documents, you can place all of your spreadsheets in one subdirectory and do
the same for memos and documents in another subdirectory.

For example, let us assume you have two departments that share the same
folders and folder members. All the folders are stored on System/36. The
two departments, Sales and Accounting, share different types of files such as
spreadsheets (PC data), or folder members such as spreadsheets, documents,
and mail (System/36 data). Both are contained within folders.

Assume the present organization of the folders looks like the following:

I I
QTR4 MAIL

System/36 /Personal Computer

I
ACCT.REC.

I
LJAN

ACCT
=r=
I I

LPAT LSAM
I

LDON
I

MAIL

59019136-0

QTR1

By using subdirectories, the files and folder members could be organized as
follows:

System/36 I Personal Computer

ACCT.REC LOTUS

SALES.NE

Figure 11-1. Subdirectory Structure
$9019137-0

Organized this way, all files and folder members relating to quarterly sales are
in the subdirectory SALES.QTR

All the files and folder members relating to spreadsheets are in the
subdirectory LOTUS. All files and folder members relating to mail are in the
subdirectory MAIL, which contains files and folder members and a
subdirectory called MAIL.COM, which contains answered mail.

Terms Used with Subdirectories

There are several different terms used when discussing subdirectories. They
are:

• Root (system) directory
• Subdirectory
• Current directory

Chapter 11. Subdirectories 11-3

Root (System) Directory

Subdirectory

11-4

The root (system) directory contains the names of all the files and directories
on the system.

System/36: The root directory is called the VTOC on System/36. You can
use the CATALOG procedure to list all the files, libraries, and folders in the
VTOC. You will not see any of the folder members.

You can also get a list of folders or folder members from the Work with
Documents display.

Personal Computer: The root directory is the parent of all other directories on
that drive.

If you assign a drive to the system, the root directory will contain all the
folders on the System/36.

If you assign a drive to a folder that is shared, you will see the members in the
folder directory in your root directory.

When you issue a DIR command on the shared folder drive, you will see a list
of all the folders on the System/36.

Subdirectories contain the names of other directories (subdirectories) and
folder members that are found within the folder.

Although subdirectories are limited only by the amount of space available in
the folder, for better management, three levels are recommended.

The following figure shows an example of a folder with four levels of
subdirectories.

System/36 I Personal Computer

ACCT.REC LOTUS (LEVEL 1)

QTR1 ACCT.NE SALES.NE

lsALEsl lAccTl

LOTUS.1 (LEVEL 2)

lAccTs I LOTus.2 (LEVEL 3l lsALES I

1986 (LEVEL 4)

GROSS
59019138-0

Figure 11-2. Subdirectory Structure

Current Directory

This directory is the default directory for each drive on the system or the
directory (subdirectory) you are presently in. The current directory is
searched first if no other directory is specified.

In Figure 11-2, the folder (SHARE) has four levels of subdirectories. If you
are at the folder level, then SHARE is the current directory. To make 1986
(level 4) the current directory, you must specify the series of directory
(subdirectory) names to 1986_ For example:

/SHARE/LOTUS/LOTUS.1/LOTUS.2/1986

System/36: You can change your current directory from a display that lists
all of the subdirectories you have access to. Each entry in the list is similar to
the above example. You do not see the folder members on this display.

Chapter 11. Subdirectories 11-5

Naming Conventions

11-6

Personal Computer: You can change your current directory by using the
change directory (CD) command. The change directory command is
discussed later in this chapter.

When you specify a current directory and then use the DIR command, you
will see all subdirectories and files or folder members that you have access to
at the current directory level.

A subdirectory name can be up to 8 characters long followed by a period (.)
and a 3-character extension and must begin with an alphabetic character (A
through Z) or a numeric character (O through 9). The#,$, and@ characters
are valid but should not be used because IBM often uses these characters for
names on the system. The remaining characters can be any combination of
characters (numeric, alphabetic, and special).

The following characters are not allowed: greater than signs (>), double
quotes ("),plus signs (+), equal signs (=), semicolons (;), commas (,),
asterisk(*), question marks (?),and colons(:). If you try to create a
subdirectory name with any of these characters, it will be rejected by
System/36.

Do not use back slash (\),forward slash(/), less than sign(<), and double
bars (I). These characters have special meaning on the personal computer.

Subdirectory names and member names must be different if they are at the
same level in the folder.

You can create meaningful subdirectory names by using an abbreviated
description of the contents of the subdirectory. For example:

Subdirectory
Name

TXTEMPNU.PA Y

MYMAIL.NEW

Description

Subdirectory for documents describing
office procedures for training new
employees

Subdirectory for your personal mail logs

It is possible to create a PC file name, System/36 document name, or
System/36 folder name that will not be valid for the personal computer,
System/36, or both. The following table shows some names that are valid or
invalid for the System/36 or the personal computer.

Example PC File Document Folder
Name Name Name Name

/TEXT No No No

>FRED No Yes No

A" No Yes Yes

GC010886 Yes Yes Yes

The following is an explanation of the items in the table.

• /TEXT is not a valid name for a PC file, a document, or a folder, and is
rejected by both System/36 and the personal computer because the
forward slash is used to define root directories.

• >FRED is a valid document name on the System/36 but is not valid for
folders or PC files because the greater than sign (>) has special meaning
on the personal computer.

A" is a valid folder name and document name on the System/36 but is
not valid for a PC file. Because folder A" is not valid for the personal
computer, it will not show as a PC file and will not allow access to the
folder or folder members.

For example, if the following folders and documents are on the
System/36:

Folder Document Document
Name Name Name

TXTFRED XYZ 122285

TXTJOHN STUFF JUNK

SOMEFLDR DOCl DOC2

A" DOCl XYZ

Document
Name

010886

XYZ

DOC3

DOC2

Then, when Fred is using the personal computer at the root directory
level and uses the DIR command, he will see in his directory:

TXTFRED <DIR>
TXTJOHN <DIR>
SOMEFLDR <DIR>
A" <DIR>

mm-dd-yy
mm-dd-yy
mm-dd-yy
mm-dd-yy

hh
hh
hh
hh

mm
mm
mm
mm

Even though A" is not a valid name for the personal computer, folder A"
would appear as a directory on the personal computer. If Fred uses the
CD command (change directory) to make folder A" his current directory,
the system would issue an error message telling him that A" is not a valid
directory. Therefore, Fred cannot access any document in folder A".

• GC010886 is valid for PC files, System/36 documents and folders
because the name is valid for both System/36 and the personal computer.

Chapter 11. Subdirectories 11-7

Folder Layout with Subdirectories

11-8

A folder contains two major areas: the directory and folder extents.

The directory contains the names, descriptions, and member types of the
subdirectories and folder members in a folder. It can also contain security
information about the folder and subdirectories.

With folders, it is possible to have more than one member type. Each time a
new subdirectory is created, a new member type is added to the folder by the
system. For example, if the first member type in a folder is 10, and three new
subdirectories (SALES.QTR, LOTUS, and MAIL) are created, they would
also be assigned member type 10.

All members in SALES.QTR would be assigned member type 11. The
subdirectory and members in LOTUS would be assigned member type 12.
All subdirectories and members in MAIL would be assigned member type 13.

If another subdirectory (LOTUS. I) and members are created in LOTUS, the
member type for LOTUS.1 and the members would be assigned member type ·
14. A subdirectory (MAIL.COM) and members created in MAIL would be
assigned member type 15.

If a subdirectory (LOTUS.2) and members are created in LOTUS.l, the
member type for LOTUS.2 and the members would be assigned member type
16. A subdirectory (1986) created in LOTUS.2 would be assigned member
type 16 but the members in 1986 would be assigned member type 17.

The folder directory would be similar to the following:

Folder Directory

Member Member Type

Member Type 10
SALES.QTR 11
ACCT.REC
LOTUS 12
MAIL 13

{
OTR1

Member Type 11 OTR2
(SALES.OTR) OTR3

OTR4

{
DON

Member Type 12 SAM

(LOTUS) LOTUS.1 14
JAN
PAT

[ACCT.NEW
Member Type 13 SALES.NOW
(MAIL) MAIL.COM 15

Member Type 14 [ACCTS

(LOTUS.1) LOTUS.2 16
SALES

Member Type 15 { SALES
(MAIL.COM) ACCTS.

{
JAN

Member Type 16 PAT

(LOTUS.2) 1986 17
DON
SAM

Member Type 17 { GROSS
(1986) NET

59019139-0

Figure 11-3. Folder Layout with Subdirectories

For information about folder extents, see "Folder Layout" on page 10-3 in
Chapter 10, "Folders."

Chapter 11. Subdirectories 11-9

Securing a Subdirectory

To restrict access to a specific subdirectory, you can secure it with the
SECEDIT RESFLDR procedure. In this procedure, you must first specify the
series of subdirectory names to the subdirectory you want to secure. The
subdirectory names in the series are separated by a forward slashes (/). The
last subdirectory in the series is the one you are securing. The sum of the
forward slashes, characters in folder name, and subdirectory names cannot
exceed 63 characters.

The access-levels that you specify for resource security allow you to decide
who can read or change a subdirectory and the members in that subdirectory.
For subdirectories, to which you have owner access, you can specify the
access levels for other users on an authorization list. An authorization list is a
list of user IDs and their access levels. You assign a name to each
authorization list. Then, when you secure a subdirectory, you specify an
authorization list name for it. You can use the same authorization list for
many subdirectories. Only the owner of an authorization list can change or
remove it.

The access levels are listed below in descending order, with the highest level
having the greatest authority.

The authority given by the higher access level includes all the authority of the
access levels below it (except, of course, an access level of None). For
example, a user with change access to a subdirectory also has update and read
access.

Access Levels for Subdirectories

11-10

Access
Level

Owner

Change

Description

A user who has owner access to a subdirectory can:

Create, secure, or delete a subdirectory.
Create and secure folder members.

• Revise security information for a subdirectory or any folder
member in that subdirectory.

• Revise information in a folder member or delete folder
members. access.

• Read or copy information in a member.

A user with change access to a subdirectory can:

• Create, secure, or delete a subdirectory.
Create or secure folder members.
Revise information in the folder members or delete folder
members for which he has update access.

• Read or copy information in a member.

Update

Read

None

A user with update access to a subdirectory can:

• Create or secure folder members.
• Revise information in folder members or delete folder

members for which he has update access.
• Read or copy information in a member for which he has read

access.

A user with read access to a subdirectory can read and copy
information in the folder members for which he has read access.

A user with an access level of none cannot access any members
in a subdirectory.

The System Security Guide has more information about securing
subdirectories.

Backup and Recovery Considerations

Backup and recovery for subdirectories must be done at the folder level on
System/36.

Some general reasons for backup and recovery are:

• To ensure your data is correct

• To minimize recovery time for each program

If you make any changes or additions to a folder, subdirectory, or folder
member, you should create a backup copy of the folder. You will then have a
current copy of the folders, subdirectories, and folder members on diskette, or
tape and you will not have to reenter all the changes in case a machine or
program error occurs.

You can use the SAVEFLDR and RESTFLDR procedures to back up and
recover entire folders with all subdirectories and files or folder members.

You can also save a folder member in a subdirectory marked for archive to
diskette or tape by entering the ARCHIVE procedure command. You can
restore a folder member to a subdirectory from diskette or tape by entering
the RETRIEVE procedure command.

For more information about backup and recovery, see "Backup and Recovery
Considerations" in Chapter 10, "Folders."

Chapter 11. Subdirectories 11-11

Working with Subdirectories

11-12

You can work with folders and subdirectories by selecting menu options or by
procedures and commands from the System/36 or by entering commands
from the personal computer. The following is a list of the things you can do
with subdirectories.

• Assign a drive to a folder

• Change the current directory

• Create a subdirectory

• Specify a path to a file or folder member

• Display a list of subdirectories

• Display a list of folder members in a subdirectory

• Save folder members in a subdirectory

• Restore a folder member to a subdirectory

• Delete a subdirectory

• Reorganize a subdirectory at the folder level

• Secure a subdirectory

The following describes these functions and indicates the commands or
procedures you can use to do them.

Assigning a Drive to a Folder

System/36: You do not have to assign a drive to a folder. You can access
folders with the TEXTDOC procedure.

Personal Computer: You must first assign a drive to System/36 before you
can work with shared folder support.

You can assign a drive in two ways or a combination of both. The first way is
to assign one drive per System/36. The second way is to assign one drive to
a folder or a subdirectory in a folder. You can, however, assign one drive to
the system and have other drives assigned to folders.

If you assign a drive to the system, you will see the folders that you have
access to at the root directory level.

If you assign a drive to a folder, you will see the files or folder members and
subdirectories in the folder that you have access to. Assigning one drive per
folder is similar to using virtual disk.

Whichever way you choose, you must use the following command to assign a
drive to System/36 or to a folder.

FSPC ASSIGN <d:> </Path>

Following are the two parameters that can be specified with the assign
command:

Parameter

d:

Path

Changing the Current Directory

Description

The drive that you want to access the System/36 with. If
this parameter is not specified, the next available drive will
be used.

The series of directory (subdirectory) names to the
System/36 directory you want to assign to the drive.

ASSIGN E:/DIRa/DIRb/DIRc

If you do not specify the path parameter or only specify a
< >.the path defaults to the system directory.

System/36: You can change your current directory by selecting a different
folder or subdirectory from a list on the Work with Documents display.

Personal Computer: If you are at the root directory level and are using a
system drive, you must use the change directory command to change the
current directory before you can create a subdirectory. The CD command
tells the system which directory it should remember as the current directory.
If you do not use the CD command, the system will default to the root
directory of the personal computer.

Chapter 11. Subdirectories 11-13

Creating a Subdirectory

11-14

For example, you have assigned drive E to System/36 and drive F to a folder.
To change your current directory (drive E) to the directory of the folder
(drive F), type the following:

F:

This command will take you to the drive you have assigned to the folder. The
folder directory is now the current directory and you will see all the files or
folder members at the folder level.

System/36: You can use the DEFSUBD procedure to create a subdirectory.
The System Reference manual has more information about the DEFSUBD
procedure.

Personal Computer: If you have assigned a drive, you can use the make
directory command (MD) to create a subdirectory. (You cannot create a
shared folder with the MD command: you must use the TEXTFLDR
procedure on the System/36.) With the MD command, you must specify
certain parameters depending on which directory is current.

If your current directory is the root directory, you must use the CD command
before you can access a folder in drive E. For example:

CD E:

To create a subdirectory, you must specify the series of subdirectories names
preceding it. The subdirectory names in the series are separated by forward
slashes (/) and can be up to 63 characters in length.

For example, you want to create a subdirectory in folder TXTEMPNU
assigned to drive E on the system, and you are at the folder level. To create a
subdirectory named TX TEMP NU.PAY, you would specify:

MD /TXTEMPNU/TXTEMPNU.PAY

You can create as many subdirectories as you want, however you should
make sure that the longest series of subdirectory names you create from the
forward slash and root directory to the last subdirectory is not more than 63
characters in length (including forward slashes). You cannot change the
name of a subdirectory after you have created it.

If you have changed your current directory to the folder directory, you do not
have to use the CD command because the system will default to that folder
directory.

Specifying a Path to a File or Folder Member

Listing Subdirectories

Once you have created a subdirectory and files or folder members reside
within the subdirectory, anytime you wish to access a file or folder member,
you must specify the series of subdirectory names to that file or folder
member. This series of subdirectory names is called a path.

System/36: You specify the document you want to work with from the Work
with Documents display. From this display, a command key 14 will take you
to the Select a Subdirectory display. On this display, a list of paths is shown.
You select from this list the path or series of subdirectory names you want for
the folder member you specified. The path or series is similar to the personal
computer example showing the path to JANET except JANET is not shown.
JANET is specified on the Work with Documents display.

Personal Computer: You must specify the series of directory (subdirectory)
names to the file or folder member. For example, you have a file or folder
member named JANET that resides in the folder TXTEMPNU, but also
within the subdirectory TXTEMPNU.PA Y. If you are at the folder level, you
must specify the following to access JANET:

/TXTEMPNU/TXTEMPNU.PAY/JANET

If you are at the personal computer directory (root) level, you must also
specify the drive ahead of the path by using the DIR command.

DIR E:/TXTEMPNU/TXTEMPNU.PAY/JANET

By specifying the series of directory (subdirectory) names to JANET, the
system will search in sequence TXTEMPNU (root directory) first until it
finds the subdirectory TXTEMPNU.PAY. After the system finds
TX TEMP NU.PAY, the system will search until it finds JANET.

If you have the right security access level to the subdirectory and the member
does not have its own security information, you can work with that folder
member. For more information on access levels, see "Securing a
Subdirectory" earlier in this chapter.

System/36: You can get a list of subdirectories from the Work with
Documents display.

Personal Computer: If you are a personal computer user, use the DIR
command to get a list of subdirectories. If you do not specify the
subdirectory you want, it will default to the current directory.

Once you are at the specified subdirectory level, you can get a list of
subdirectories within that subdirectory.

Chapter 11. Subdirectories 11-15

Listing Members in a Subdirectory

System/36: You can get a list of files or folder members from the Work with
Documents display.

Personal Computer: To get a list of files in a subdirectory, use the DIR
command with the subdirectory parameter. If you do not specify the
subdirectory you want, it will default to the system directory.

Saving Folder Members in a Subdirectory

To save folder members in subdirectories to disk, diskette, or tape, use the
ARCHIVE procedure.

The subdirectory parameter is optional when using the ARCHIVE procedure.
However, if you specify a subdirectory, the system will use the subdirectory
to find the correct member to archive. If you do not specify the subdirectory,
the system will archive the member in the base folder (root directory). The
System Reference manual has more information about the ARCHIVE
procedure.

Restoring Members to a Subdirectory

Deleting a Subdirectory

11-16

To restore folder members from disk, diskette, or tape to a specific
subdirectory, use the RETRIEVE procedure.

The subdirectory parameter is optional when using the RETRIEVE
procedure. However, if you specify a subdirectory, the member will be
restored to that subdirectory. If you do not specify a subdirectory, the system
will restore the member to the base folder (root directory). The System
Reference manual has more information about the RETRIEVE procedure.

Subdirectories can be deleted (removed) only if they do not have any
members or subdirectories in them. The root directory or current directory
cannot be deleted.

System/36: You can delete a subdirectory or a list of subdirectories from a
display or you can use the DEFSUBD procedure. The System Reference
manual has more information about the DEFSUBD procedure.

Personal Computer: Use the remove directory command (RD) to remove a
subdirectory. (You cannot delete a shared folder with the RD command:
you must use the TEXTFLDR procedure on the System/36.) Only one
directory can be removed at a time.

If you want to remove a subdirectory named TXTEMPNU .PAY and it resides
in folder TXTEMPNU , you can remove it using the RD command. For
example:

RD /TXTEMPNU/TXTEMPNU.PAY

The RD command specifies to the system that you want the last subdirectory
in the series of directory (subdirectory) names deleted, therefore,
subdirectory TXTEMPNU.PAY will be deleted from the folder
TXTEMPNU.

Reorganizing Subdirectory Space at the Folder Level

Securing Subdirectories

Reorganizing space in a subdirectory can only be done at the folder level.
For more information, see "Reorganizing Folder Space" in
Chapter 10, "Folders."

To secure a subdirectory, use the SECEDIT RESFLDR procedure. The
System Security Guide has more information about the SECEDIT RESFLDR
procedure and securing subdirectories.

Chapter 11. Subdirectories 11-1 7

11-18

Chapter 12. Menus and Menu Design

Note: The information in this chapter is intentionally similar to the
information in Chapter 1 of the manual Creating Displays: Scrt!l!n
Design Aid and System Support Program.

The purpose of this chapter is to introduce menus and to describe how you
can design and create them.

Application users can select the work they want to do from menus. A menu
is a displayed list of options; each option has an option number and a brief
description of the job. When the user enters the option number for a
particular job description, the system runs the job associated with that option
number.

Chapter 12. Menus and Menu Design 12-1

12-2

The following is an example of a menu, INVINF, that a warehouse foreman
might use. This menu is used to display information in the files used by the
inventory management application.

COMMAND MENU: INVINF

Inventory Management: File Information Menu

Select one of the following:

1. Display item master
2. Display item balance detail (warehouse)
3. Display item balance detail (manufacturing)
4. Display open orders
5. Display item availability
6. Display item balance history

Help key - Display help information for this menu and its options
Cmd3 - Display previous menu

Home key - Display sign-on menu

Ready for option number or command

Notice that the menu shows:

• The name of the menu

• A descriptive title for the menu

• The option numbers

• A brief description of what each option does

• Prompts describing other functions that can be performed using this
menu

W1

Benefits of Menus

Using Menus

Menus can significantly simplify the duties of anyone who uses your
application, and can reduce the chances that the user will make a mistake.
Because the user simply selects an option number, he needs no knowledge of
the operation control language (OCL) statements, procedures, or control
commands needed to run a job. The amount of typing and the chance of
error are reduced considerably.

Menus can be used to group jobs by application; for example, all accounts
receivable jobs could be listed on one menu, all order entry jobs on another
menu, and all inventory management jobs on a third menu. Such grouping
keeps related jobs together, allowing users to run several related jobs
consecutively.

The application user can display a menu by:

• Entering the name of a menu in the menu field on the Sign-On display.
The requested menu appears when the user has signed on.

• Leaving the menu field blank during sign-on if the user is assigned a
default menu. The default menu appears when the user has signed on. (If
the menu field is left blank and the user is not assigned a default menu,
the main system help menu appears.)

• Requesting a menu from the main system help menu.

• Selecting a menu from another menu.

• Running a procedure that displays a menu.

• Entering a MENU control command.

Chapter 12. Menus and Menu Design 12-3

The user can respond to a menu by:

• Entering an option number.

• Entering a control command, a procedure, or OCL statements.

• Pressing the Help key to request help for the menu or its options.

Pressing the Home key to return to the menu named during sign-on or to
return to the default menu.

• Pressing command key 3 to return to the menu displayed immediately
before the current menu.

• Entering the HELP command or pressing command key 6 to display the
system help menu assigned to the user.

• Entering a 0 instead of an option number. This removes the current
menu from the display and replaces it with a command display.

Using Menu Security

12-4

To limit the jobs that a user can run, you can use the SSP-provided menu
security. If the user is assigned a default menu, that menu can also be defined
as mandatory. If the default menu is mandatory, the user is restricted to
making selections from that menu or from a menu displayed by an option on
the default menu, and to using a few control commands. The user is limited
to doing those jobs controlled by the mandatory menu.

The user can also be assigned a system help menu. That help menu is called a
beginning help menu. When the user enters the HELP command or presses
command key 6 when a menu is displayed, the beginning help menu is
displayed. The beginning help menu is selected according to the user's
responsibilities and level of experience. For example, a user responsible for
the printing of output from a particular printer may be assigned the system
help menu named SPOOLJOB, the menu used to control spool file entries.

For more information about menu security, default menus, mandatory menus,
and beginning help menus, see the manual System Security Guide.

Menu Formats

Fixed-Format Menus

The system allows you to create two types of formats for menus:

• Fixed-format

• Free-format

Menus must be displayed only in 24 x 80 format (that is, 24 lines of 80
characters). If you specify 27 x 132 for a menu format (for a 3180 Display),
the menu may not display correctly.

A fixed-format menu always contains two columns of menu option numbers,
1through24, with 12 options in each column. When you create a
fixed-format menu, you simply tell the system the name of the menu and
which option numbers you will use, give the descriptive text for each option,
and supply the procedure to be run for each option. The system formats the
information as shown in the following example. (In this menu, the
programmer provided the name of the menu, and the text and procedures for
option numbers 1 through 9 only.)

COMMAND MENU: INVFIX

Select one of the following:

1. Print stock status 13.
2. Print open order status 14.
3. Print financial stock analysis 15.
4. Print stock movement analysis 16.
5. Print reorder report 17.
6. Print control totals 18.
7. Print item price list 19.
8. Print item balance list 20.
9. Print item master list 21.

10. 22.
11. 23.
12. 24.

Ready for option number or command

Although all 24 option numbers are displayed on a fixed-format menu, the
user can select only the option numbers that have descriptive text and
procedures.

W1

Chapter 12. Menus and Menu Design 12-5

Free-Fonnatl\fenus

12-6

A free-format menu contains only the option numbers you want to use; you
determine exactly how the menu will appear. A large portion of the display is
available to provide descriptive text to your users.

When you create a free-format menu, you can define up to 24 option
numbers and descriptions, and the procedure, control commands or OCL
statements associated With each option number. You decide the exact
placement of the option numbers and their associated descriptions, as well as
any other text you might consider helpful to the user.

The following is an example of a free-format menu. Notice that the options
on this menu are the same as the options on the previous example of a
fixed-format menu, but the programmer decided the placement of the
numbers and their descriptions, supplied a descriptive title, and provided
information about help text and command key usage.

COMMAND MENU: INVFRE W1

Inventory Management: Reports Menu

Select one of the following:

1. Print stock status
2. Print open order status
3. Print financial stock analysis
4. Print stock movement analysis
5. Print reorder report
6. Print control tables
7. Print item price list
8. Print item balance list
9. Print item master list

Help key - Display additional information about this menu and its options
Home key - Display sign-on menu

Cmd3 - Display previous menu

Ready for option number or command

Designing Menus

When you design menus, consider how the menu will be used, the types of
jobs you want the menu to control, and the level of experience or
responsibility of the user. A well-organized and descriptive menu helps to
increase user productivity.

Use the following guidelines when you design your menus:

• Use free-format menus as much as possible. Free-format menus do not
have unused option numbers that can clutter the menu and confuse the
user.

Avoid mixing free-format and fixed-format menus within the same
application. Consistency is one of the keys to building user confidence
and improving productivity.

• Do not:

Specify the 27 x 132 character attribute for menus.

Put any fields with user-supplied data on a menu.

Move the input field on a menu.

If you do any of these things, the results may be unpredictable.

• Write your menus in both uppercase and lowercase letters. TEXT
WRITTEN ONLY IN UPPERCASE LETTERS, LIKE THIS
SENTENCE, IS DIFFICULT TO READ.

• Number your options beginning with 1.

• Place the most frequently selected options near the top of the menu, or
place them in the sequence they are to be selected. If order is not
important, arrange the options alphabetically.

• Make the menu title and option descriptions meaningful and descriptive.
Use words that describe simply and clearly what job is to be selected.
For example, Release orders is a more meaningful option description than
RELORD, the name of the program that releases orders.

• Use a word that suggests action, such as list or print, for the first word in
the option description.

• If the same task is done on several different menus (sign-off, for
example), use the same option number for that task on each of the
menus.

• Avoid using abbreviations.

• Provide menu help text.

Chapter 12. Menus and Menu Design 12-7

12-8

The following sample menu, ORDENT, the main menu for the order entry
and invoicing application, illustrates good design techniques:

Prompts in Uppercase
and Lowercase

MENU: ORDENT

Order Entry and Invoicing: Main Menu

Select one of the following:

1. Process orders
2. Inquire into file information
3. Maintain files
4. Print reports
5. List files
6. Do monthly close

Descriptive Title

Help key - Display help information about this
menu and its options

CDld3 - Display previous menu
- Display sign-on menu

W1

Help Text
Provided

Description of Allowed
Command and Function Keys

89019127·0

1 . Process Or de rs

Menu chaining is a good technique to use for applications because it helps
organize a user's work by guiding the user to the displays needed to do a
particular job. Menu chaining uses a main menu that lists other menus
(generally more specialized) from which a user can select a job. For example,
the previous menu (ORDENT) is the main menu for order entry and
inyoicing applications.

The following shows the options on ORDENT and the menus chained to
ORD ENT.

~

COMMAND MENU: ORDERS

Order Entry and Invoicing: Orders Menu

Select one of the following:

I. Enter orders
2. Enter orders and release i11111ediately

V'

Ill

2. Inquire int o File Information~ COMMAND MENU: ORD INF Ill

Order Entry and Invoicing: File Information Menu

Select one of the following:

I. Display customer status
2. Display customer orders

V' ~
3. Maintain F iles COMMAND MENU : ORDMNT Ill

Order Entry and Invoicing: File Maintenance Menu

Select one of the fol lowing:

I. Maintain customer master file
2. Maintain item balance file

V'
4. Print Repo rts COMMAND MENU: ORDREP Ill

Order Entry and Invoicing: Reports Menu

Select one of the following:

I. Print open orders by date
2. Print open orders by item

V' ~

5. List Files COMMAND MENU: ORDPRT Ill

Order Entry and Invoicing: File Lists Menu

Select one of the following:

I. Print customer master file
2. Print item master file
3. Print ship to master file
4. Print contract price file
5. Print quantity price file

Cmd3 - Displays previous menu HOME key - Displays sign-on menu

Ready for option number or command

\.. ,,I

Chapter 12. Menus and Menu Design 12-9

When a user selects option 1 from the main menu, the MENU control
command is run and the Orders Menu appears. When the user selects an
option from the Orders Menu, the user sees either another menu if there are
additional order processing categories to select, or a display on which the user
can begin a job.

The MENU OCL statement and the MENU control command are useful
when you are building a menu chain.

The System Reference manual has more information about the MENU OCL
statement and the MENU command.

When you chain menus, you should allow the user to display the main menu
again. You can do so with an option on the menus that are displayed after
the main menu, or you can remind the user that command key 3 causes the
previous menu (in this example the main menu) to be displayed. For
example, on the Orders Menu the user can return to the main order entry and
invoicing menu (ORDENT) by pressing command key 3 or the Enter key.
Also, you should allow ways for experienced users to bypass the menu chains
and directly begin their jobs, perhaps by entering a procedure from the menu.

Creating and Updating Menus

12-10

From the programmer's viewpoint, a menu is made up of two library
members: the menu text member and the command text member:

• The menu text member tells the user what each option number will do.
The menu text member, a display format, describes what will appear
when the menu is displayed. The menu text member includes any
descriptive text associated with an option number, the placement of the
option numbers, and the name and title of the menu.

• The command text member tells the system what to do for a selected
option number. The command text member, a second-level message
member, describes what procedures, commands, or statements will be
used to run a job when the user selects an option number.

The system provides two ways for you to create and update your menus:

• Screen design aid (SDA) utility

• BLDMENU procedure

Using SDA to Create a Menu

The screen design aid (SDA), which is part of the optional Utilities Program
Product, can lead you through the steps used to create and update a menu.
For this reason, you may find that SDA is considerably easier to use than the
BLDMENU procedure.

SDA has several advantages over using the BLDMENU procedure to create a
menu:

• You can design your menu at the display station. This allows you to see
immediately how your menu will look when it is displayed.

• SDA automatically creates the source and the load members required to
display a menu. SDA does most of the work for you; you need only
supply the menu text and the command text for the menu.

• You can also use SDA to create and update help text for each menu
option or for the entire menu. For more information about menu help
text, see "Creating and Displaying Help Text for Menus" on page 12-12.

The Creating Displays manual describes how to use SDA to create and update
menus and menu help text.

Using the BLDMENU Procedure to Create a Men •.

The BLDMENU procedure, which runs the $BMENU utility program, is part
of the SSP. If you choose to use the BLDMENU procedure instead of SDA,
you must first determine the design of your menu, perhaps on paper or on a
preprinted form. Having designed the menu, you then use the source entry
utility (SEU) or the $MAINT utility program to enter and create the menu
text and command text source members. And finally, you run the
BLDMENU procedure to convert the source members into the load members
used by the system.

Although SDA is easier to use than the BLDMENU procedure, you might
find that you can use SEU or DSU to make minor changes to your menu
source members and then run the BLDMENU procedure to compile them
faster than if you use SDA to do the same. You may want to use both SDA
and the BLDMENU procedure, and then decide which works better for you.

The Creating Displays manual describes how to use the BLDMENU
procedure to create and update menus.

Chapter 12. Menus and Menu Design 12-11

Creating and Displaying Help Text for Menus

Although each menu option has a description of the job that will be run when
the user chooses a particular menu option, a simple job description might not
be enough. For example, because a menu is the entry point to the
application, you might also want to supply the following kinds of information:

• A summary of the application itself, such as an explanation of when a
particular menu option or job should be selected

• A description of the input forms necessary to perform the job

• The work the user will be expected to do while the job is running

• An estimate of how long a job takes to run

• A description of the output produced by the job, and an explanation of
what is to be done with that output

You can supply this kind of additional information by using SDA to create
menu help text.

Creating Menu Help Text

12-12

SDA allows you to create menu help text. After you create your menu, you
can create help text for the entire menu, for a single option on that menu, or
for a range of menu options. For example, if a menu has six menu options,
you could create a display of summary help text for the entire menu and two
displays of help text describing the menu options in more detail: one display
describing options 1 though 3, and the other describing options 4 through 6.
After you specify the range of option numbers for which you want to create
menu help text, SDA shows you a display on which you can design the help
text.

After you create the help text for your menu, you can update it just as you
would the menu it describes. Just specify the range of option numbers the
help text addresses, and SDA shows you the help text. You can then change
the help text.

The Creating Displays manual has more information about creating and
updating menu help text.

Displaying Menu Help Text

The user can display menu help text by doing either of the following:

Pressing the Help key when the menu is displayed

Typing in an option number on that menu and pressing the Help key

If the user presses the Help key without typing in an option number, help text
for the entire menu is displayed. For example, if the user is viewing the menu
for jobs that display information about the files used by the inventory
management application, the user can press the Help key, and the menu help
text summarizing the jobs run by the menu is displayed:

COMMAND HELP TEXT FOR MENU OPTIONS: 00 - 24

Help information for the menu INVINF, which is used to display information
about the files used by the inventory management application.

Option 1 displays information about the item master file.

Option 2 displays item balance detail for goods located at the warehouse.

Option 3 displays item balance detail for goods located on the
manufacturing floor.

Option 4 displays status information about open orders.

Option 5 displays information about the availability of your inventory.

Option 6 displays history about the balance of your inventory.

W1

Roll keys - Display additional information Cmd3 or Enter key - Display INVINF

Ready for option number or command

Chapter 12. Menus and Menu Design 12-13

12-14

If the user types in an option number and presses the Help key, more detailed
menu help text about that particular menu option is displayed. For example,
if the user selects option 1 on the inventory management application menu
and presses the Help key, the following would be displayed:

COMMAND HELP TEXT FOR MENU OPTIONS: 01 - 01

If you select option 1 of INVINF, you should know the following information
before you begin:

REQUIRED FIELDS: Item number

OPTIONAL FIELDS: None.

COMMAND/FUNCTION KEYS: Cmd7 ends the program. The data you type in on the
display is ignored, and causes INVINF to reappear.

NOTES: When you press the Enter key to continue, the Item Master File
Record display appears, showing information about the file number
you entered.

POSSIBLE MESSAGES: 0101 XXXXXX - File record is missing
4520 Item master record not found
4675 Severe error - end program and rerun

Ready for option number or command

In either case, once the help text is displayed, the user can do the same things
that were allowed on the menu that was originally displayed. The user can,
for example, select an option number or enter a procedure or command. The
only exception is that once menu help text is displayed, the user cannot use
the Help key to obtain more help information. However, if the user is
viewing a portion of the help text supplied for a menu, the rest of the help
text can be displayed simply by pressing the Roll Up (Roll+) or Roll Down
(Roll+) key. The user can return to the original menu by pressing command
key3.

W1

Using Color or Highlighting on Your Menus

Any menu that you design and create for a noncolor display station can also
be used for a color display station. If you have a color display station, take
advantage of the colors you can use on your menu.

Used properly, color is more pleasing to the eye than noncolor data, and it
generally makes the display more interesting. Color can be used to draw
attention to menu options that are more significant than others.

Some display stations, depending on the model, can display the following
colors:

Green
Red
White
Blue
Turquoise
Pink
Yellow

If you use SDA to create your menus, the menu text member is stored as a
display format source member. You can use SDA's design display format
option to add color to the menu text member (you cannot use the SDA design
menu option to select color for a menu). Use the SDA procedure and select
the option that allows you to create and update display formats. From the
SDA Field Attributes display, you can press command key 8; the Color
Attributes for Field display appears. You can then select a color for the field
that you are defining.

Note: When you use the display format option to update a menu, be careful to
update only the fields that describe the menu options and change only the
field attributes that control color. Do not change the input or output
data characteristics for the fields on the menu. Do not add, move, or
delete fields on the menu, and do not change the lengths of the fields on
the menu. If you do not take these precautions, unpredictable results may
occur.

Once you have used the SDA display format option to add color or
highlighting to your menu, do not use the SDA menu option to update
your menu; instead, use the display format options of SDA. If you
update your menu using the SDA menu option, the color or highlighting
attributes will be lost.

The Creating Displays manual has information about using SDA to create and
update display formats.

Even if you do not have color display stations, you can still use the method
just described to highlight fields on your menus. You can display a particular
field in reverse image, in high intensity, or with column separators, blink or
underline the field, or displ!lY the field with a combination of these field
attributes. The advantage of highlighting on a noncolor display is exactly the
same as using color on a color display: the menu becomes more pleasing,
more interesting, and easier to use.

Chapter 12. Menus and Menu Design 12-15

12-16

Chapter 13. Displays

The purpose of this chapter is to:

• Explain the basic concepts of displays and display formats

• Describe how you can design and create display formats

• Describe how display formats are used by procedures and programs

An application user uses the display station to communicate with the system
and to run application programs. Sometimes the user enters data on the
display for the system or a program to use, and at other times the system or a
program uses the display screen to show information needed by the
application user.

The information shown on the display screen is called a display. That
information and its use is defined in a display format. Using the display
defined in a display format, a program can prompt the application user to
enter information. That program can also use the display to show requested
information to the application user and to explain what actions are to be
taken.

Chapter 13. Displays 13-1

The following is a sample display:

DISPLAY ITEM MASTER FILE

To display information in the item master file,
type in an item number and press the Enter key.

Item number: 50011230
Item description: Storage Cabinet with Doors

Item type: E
Item class: 50
Warehouse location: H1
Unit weight: 115

Cost per unit: 250.00
Selling price per unit: 325.00

Date record last maintained: 12/15/82

Press the Enter key to see the next record in the file
Cmd1 to change the information in the record that is displayed
Cmd7 to end this program and return to the previous menu

This sample display contains 24 lines of 80 characters each. For a 3180
Display Station, the display may contain 27 lines of 132 characters each.

Benefits of Displays and Display Formats

13-2

Displays are useful for the following reasons:

• They make it easier for the application user to enter and get data.

• They improve productivity.

• They are defined separately from the program or procedure that uses
them.

Using, a display, the user can easily recognize what information is required.
Because display formats are separate from the procedure or program that uses
them, one set of display formats can be used by different procedures or
programs. And because display formats are defined separately. they usually
can be changed without recompiling your programs.

The following describes how your programs and the system use displays and
display formats.

Work Station Data Management

Programs that communicate with display stations are called interactive
programs. Interactive programs use a system function called work station data
management to write data to and read data from a display station. Work
station data management communicates with the interactive programs by
using display formats to get data to the program and to write data from the
program on the display screen.

Work Station Data Management Operations

Work station data management uses an area in main storage called the work
station buffer as work space for operations involved with reading or writing
display formats.

The size of the work station buffer changes based upon the number of input
or output requests to the display station and the size of the display format
being written to or read from the display station. The system automatically
maintains the size of the work station buffer.

A program must be able to do the following basic operations in order to use
display formats:

• The program must specify the load member or members containing the
display formats to be used. The display format load member can be
thought of as a type of file. Like any other file, the file associated with
the display format load member must be defined and opened. The file is
identified and described by some specification, statement, or subroutine.

• The program must be able to select the specific display formats to be
used and must be able to send data to the display. That data is the output
needed by the user running the program. The sending of data to the
display is often called an output operation, or a write or put operation.

• The program must be able to accept data entered on the display. That
data is the input needed by the program. The accepting of data entered
by the user is often called an input operation, or a read, invite, or get
operation.

In addition to the operations listed above, the program must be able to
control other functions such as indicators and the command and function
keys.

Chapter 13. Displays 13-3

Output Operations and Output Fields

13-4

For output operations, work station data management prepares a data stream
to be transmitted to the display station by merging data supplied by the
program with the display format. This information is placed in the work
station buffer, and work station data management sends the contents of the
buffer to the display station.

Output fields contain information that the application user cannot change on
the display. The contents of output fields are not returned to the program.
Output fields can be fields containing data supplied by the program, or they
can be prompts or constants, defined by the display format. A prompt is a
request for information or action from the application user. A prompt can tell
the user what type of information is to be entered or displayed, the form in
which that information is to be entered or displayed, and the options or values
that are allowed as input for that data field.

The following shows examples of output fields. In this example, all the output
fields are prompts defined by the display format.

DISPLAY ITEM MASTER FILE

To display information in the item master file,
type in an item number and press the Enter key.

Item number: 50011230
Item description: Storage Cabinet with Doors

Item type: E
Item class: 50
Warehouse location: H1
Unit weight: 115

Cost per unit: 250.00
Selling price per unit: 325.00

Date record last maintained: 12/15/82

Press the Enter key to see the next record in the file
Cmd1 to change the information in the record that is displayed
Cmd7 to end this program and return to the previous menu

Input Operations and Input Fields

For input operations, the data entered into the format is placed into the work
station buffer when the operator presses the Enter key. When a program
does a read operation from the display station, work station data management
moves data from the buffer to the user's record area.

Input fields are fields in which the application user can enter data on the
display. When a program shows a display, input fields are usually blank
(although in some cases, a default value may already be supplied). The user
can type data into the input field; its contents are sent to the program when
the application user presses the Enter key. This data is then used by the
program to do an operation, such as a calculation or a file update.

The following shows an example of an input field.

DISPLAY ITEM MASTER FILE

To display information in the item master file,
type in an item number and press the Enter key.

Item number: 50011230
Item description: Storage Cabinet with Doors

Item type: E
Item class: 50
warehouse location: H1
Unit weight: 115

Cost per unit: 250.00
Selling price per unit: 325.00

Date record last maintained: 12/15/82

Press the Enter key to see the next record in the file
Cmd1 to change the information in the record that is displayed
Cmd7 to end this program and return to the previous menu

In this example, the user typed an item number, 50011230, in the input field.
When the user pressed the Enter key, the contents of the input field were sent
to the program.

Chapter 13. Displays 13-5

Input/ Output Fields

13-6

Input/ output fields allow data to be entered by the user, and they allow data
to be displayed to the user. The user can type in new data in a blank
input/ output field, or the user can change data that might already be
displayed in an input/ output field. Data displayed to the application user can
be supplied by the program or specified by the display format itself. Data
contained in an input/ output field is returned to the program when the user
enters the display.

The following shows examples of input/ output fields. In this example, the
program supplied information about the requested item number. The user
can accept that information or change it. The user can change the
information in any of the input/ output fields, and then press command key 1
to enter those changes.

DISPLAY ITEM MASTER FILE

To display information in the item master file,
type in an item number and press the Enter key.

Item number: 50011230
Item description: Storage Cabinet with Doors

Item type: E
Item class: 50
Warehouse location: H1
Unit weight: 115

Cost per unit: 250.00
Selling price per unit: 325.00

Date record last maintained: 12/15/82

Press the Enter key to see the next record in the file
Cmd1 to change the information in the record that is displayed
Cmd7 to end this program and return to the previous menu

Data Types

If you define a particular field as an input or input/ output field, you must also
define the type of data that can be entered in it. For example, you can
specify that an input field is to accept numeric data only; that is, the field
accepts only the digits 0 through 9, commas, decimal points, plus signs and
minus signs. This definition is useful if a field requires the entry of such
information as inventory amounts or account balances.

You can specify that a field is to accept alphameric data only: the characters
A through Z, special characters, and any numeric data. This definition is
useful for a field that requires both alphabetic characters and numeric digits,
such as a customer's address.

Other data type definitions include:

• Alphabetic data. Only the letters A through Z, and certain special
characters, are allowed.

• Digits only. Only the numbers 0 through 9 are allowed.

• Signed numeric. Only the numbers 0 through 9 are allowed; the sign is
determined by which key is pressed, Field+ or Field-, after the numbers
are entered.

• Magnetic stripe reader. This field contains data to be read from the
magnetic stripe reader.

• Right-to-left field. If the appropriate national language PRPQs are
installed, the cursor moves from right to left within this field as the
application user types in data.

• Katakana data. This field can contain Katakana characters.

• Ideographic data. For the ideographic version of the SSP, ideographic
characters can be entered and displayed.

• Numeric shift fields. On data entry keyboards, the keyboard will be
automatically shifted to numeric shift when the cursor is in this field. On
keyboards that are not data entry keyboards, the field defaults to an
alphameric field.

Chapter 13. Displays 13-7

Attributes

13-8

Besides defining the field and the data type, you also define the physical
characteristics, or attributes, of a field. The attributes that you can specify
include:

• High intensity. Data shown in high intensity is brighter than that shown
in normal intensity. In effect, your data looks as if it is displayed in
boldface. High intensity is useful for drawing attention to important
information, such as display titles or column headings.

• Blink field. If a field is a blink field, data displayed in that field blinks. A
blinking field is easy to see and can be used to draw attention to
important information. Blinking fields, however, are difficult to read and
might annoy the application user if used too often.

• Nondisplay. If data is typed in or sent to a nondisplay field, it does not
appear on the display. A nondisplay field is useful for information
needed by the program but not by the user, such as a display or record
ID, or for information that must remain confidential, such as a password
or security code.

• Reverse image. Normally, data on the display appears as light characters
on a dark background. If a field has the reverse image attribute, the data
in that field appears as dark characters on a light background. Reverse
image is a good way to show the user the location of a field or to draw
attention to an error message or to fields in which the user has entered
incorrect data.

• Underline. An underlined field can be used to emphasize information,
like this , or it can be used to show the length of an input field, like this:

. Showing the application user the length of an input
field is important, because a keyboard error message results if the user
attempts to type data outside the input field.

• Column separators. Column separators are useful for showing the
number of positions in an input field. Column separators appear as dots
or vertical lines (depending on the type of display station on which the
display is shown) on either side of each character position within the
field. Column separators do not require character positions of their own.
An input field with S character positions, for example, would look like
this:

i.n.p.u.t.

Field attributes are allowed in combinations. For example, you can specify
that a field be displayed in high intensity and reverse image. Also, you can
specify that a field attribute always be used, or that the field attribute is
controlled by the program. A special kind of switch called an indicator can be
used by the program to turn an attribute on or off.

Special Work Station Data Management Operations

When you define a display format, you can specify the following special
operations not normally performed by work station data management:

• Erase input fields

• Override fields

• Suppress input

These special operations can be useful to you in improving the performance
of your display stations, display formats, and programs. These operations can
be performed each time a display format is used, or they can be performed
when needed by setting on an indicator.

Erase Input Fields Operation

For an erase input fields operation, work station data management blanks out
the contents of unprotected input and input/ output fields on the display.
Work station data management then invites input from the display. The
display format is read from disk but is not sent to the display station on an
erase input fields operation. This operation sends only the control characters
required to remove the contents of the input fields rather than sending all the
data required to display the entire format again.

You might want to request the erase input fields operation when an
application using remote display stations requires an application user to enter
information in the same fields time after time. In such an application, you
should specify an indicator to control the erase input fields operation. The
first time.the program displays the format, that indicator should be off. The
program should then turn on the indicator for the next and succeeding times it
issues the display. Each time the display is issued with the indicator on, the
input fields are blanked out, and the user can again enter data in them. This
operation can be important when a program communicates with a remote
display station because the amount of information transmitted to a remote
display station directly affects the performance of the jobs using the
communications line.

See "Designing Displays for Remote Display Stations" on page 13-19 for
remote display station considerations.

Chapter 13. Displays 13-9

Override Fields Operation

Suppress Input Operation

13-10

For an override fields operation, work station data management:

• Transmits the contents of conditional output fields (output fields for
which an indicator is specified for the output data attribute) if an output
indicator is on.

• Retransmits only the attribute bytes for all field attributes controlled by
indicators; except for the protect field attribute, which will be
retransmitted.

The override fields operation allows the program to override (modify) output
fields on a display without retransmitting the entire display. This operation
can be valuable when a program communicates with a remote display station,
in that it reduces the amount of information transmitted over the
communications line.

See "Designing Displays for Remote Display Stations" on page 13-19 for
remote display station considerations.

For a suppress input operation, work station data management does not invite
input from the display station after transmitting the format to the display
station. The application user can enter information into input fields on the
display if the keyboard is not locked, but this information is not sent to the
program until the program requests work station data management to read
input from the display station.

This operation is usually used with display formats that contain only output
fields. If multiple display formats are displayed before input is returned to the
program, the suppress input operation should be used. When multiple
formats are sent, the suppress input operation should be specified on all but
the last format displayed.

See "Designing Displays for Remote Display Stations" on page 13-19 for
remote display station considerations.

Display Design Considerations

When you design displays, you are concerned primarily with the way data is
displayed to the user and with the way the user responds to this data. Input
displays should be designed for ease of data entry, and output displays should
be designed for ease of reading. Displays that show output and also allow
input are the most challenging to design because you must try to make a
balance between ease of data entry and ease of reading.

Displays must be clear, complete, and understandable. A well-organized and
descriptive display can help to improve user productivity. When you design a
display, you must consider:

• How the display will be used

• What kind of information you want the display to process

• The source documents used as input for the display

• The level of experience or responsibility of the application user who uses
the format

• The size of the display (24 lines of 80 characters, or 27 lines of 132
characters for the 3180 Display Station)

Chapter 13. Displays 13-11

General Display Design Guidelines

13-12

When you design your display, remember to:

• Make the user feel productive

• Identify the displays and provide meaningful headings

• Design displays that are easy to read

• Display a small amount of information at one time or provide one idea for
each display

• Maintain consistencies among displays

• Keep user responses short

• Respond to user input

• Make error correction easy

• Provide help information

• Document your displays

The Creating Displays: Screen Design Aid and System Support Program
manual has more detailed information these design guidelines.

Additional Display Design Guidelines

Choosing the Appropriate Form for Your Display

Fixed Form Displays

Displays should be designed so that they suit your particular application. The
following are general types of displays:

• Fixed form

• Adjacent form

• Free form

• Menu form

• Code link form

You should choose the form that works best for your particular application.

Using a fixed form display, the user supplies input in response to prompts on
the display. In fact, a fixed form display is usually designed to resemble the
source documents that contain the data to be entered into the system.
Prompts and input fields on a fixed form display are arranged the same way
the corresponding fields are arranged on the source document. Because of
this similarity, the inexperienced user can easily master fixed form displays.

The following is an example of a fixed form display:

COMPANY CAR REGISTRATION INFORMATION

Motor ser. no.: 3TX0123 Purchase price: 7500 Dealer: Bob's Pontiac

Mfg.: PON Year: 80 Model: FIREB Style: ESP Gross wt.: 3500

Ins.: Aetna

Name: Frank Fredora
1500 Rampart St. Address:

City: Raleigh State: NC Zip:

Fees
Document: 1.00
Title: 5.00
Registration: 13.00

Total: 19.00

Tag no.: LAG535

Enter key - Display next record
Cmd1 - Change this record
Cmd7 - End program

27609 County: Wake

Chapter 13. Displays 13-13

Adjacent Form Displays

Free Form Displays

13-14

In an adjacent form display, data is arranged and entered in columns. The
first column contains prompts for the kind of information to be entered or
displayed, and the second column contains the fields that are to receive the
input data or show the output data. A third column could be used to allow
the user to change information displayed in the second column. Adjacent
form displays are easy to read at a glance, and are good for the occasional
user.

The following is an example of an adjacent form display:

Motor ser. no. :
Purchase price:
Dealer:
Mfg.:
Year:
Model:
Body style:
Gross wt.:
Ins. co.
Name:
Address:
City:
State:
Zip:
County
Fees

Document:
Title:
Registration:

Total:
Tag no.:

COMPANY CAR REGISTRATION INFORMATION

3T7X0123
7500
Bob's Pontiac
PON
1980
FIREB
ESP
3500
Aetna
Frank Fredora
1500 Rampart St.
Raleigh
NC
27609
Wake

1.00
5.00
13.00
19.00
LAG535

On a free form display, data is entered into long unprotected fields. Data is
typed in a string of characters; individual fields or records are separated by a
special predetermined character. For example, a customer's name and
address could be entered as follows, the separating character being a
semicolon (;):

last name;first name;initial;address;city;state;zip code

Free form displays are especially useful for more experienced users and all
rapid data entry. One line of constant header information is usually all that is
needed to aid the user in remembering the position of individual fields or
records.

Your program must be able to interpret the format of that data; special input
array processing might be required.

Menu Form Displays

One of the first displays that an application user sees within an application is
a menu used to select a particular job. Menus are generally easy to use, and
their format can be applied to the displays that your programs use. Many
applications have several predefined transactions for which the same kind of
data or actions are used time after time. To eliminate unnecessary keying of
data, you can use a menu form display on which the user simply types in a
selection from a displayed list of options. Based on that selection, data is
appropriately displayed or processed by your program.

30

COMMAND MENU: INVINF

Inventory Management: File Information Menu

Select one of the following:

1. Display item master
2. Display item balance detail (warehouse)
3. Display item balance detail (manufacturing)
4. Display open orders
5. Display item availability
6. Display item balance history

Ready for option number or command

W1

Chapter 13. Displays 13-15

Code Link Form Displays

The code link form display is an extension of both the free form and menu
form displays. In a code link form display, a code number is selected from the
menu and a value associated with that selection is entered in free form.
Based on the selected code number, the program must interpret and process
the entered data (input array processing might be required).

The following is a sample code link form display:

Stock number: 1234
Inventory: 1 on hand
Sales:

3 Jan.
7 May

11 Sep.

4 Feb.
8 Jun.

12 Oct.

2 on order

5 Mar.
9 Jul.

13 Nov.

6 Apr.
10 Aug.
14 Dec.

Type in the inventory code and the sales code, then press Enter.

Inventory code:
Sales code:

Press Cmd7 to end program.

Using Color to Highlight Data

13-16

Any display that you design for a noncolor display station can also be used
for a color display station. If you have a color display station, take advantage
of the colors you can control using the display format.

Used properly, color is more pleasing to the eye than noncolor data, and it
generally makes the display more interesting. Color can be used to draw
attention to fields that need user attention, such as a request for user input or
a response to an error condition.

Some display stations, depending on the model, can display the following
colors:

Green
Red
White
Blue
Turquoise
Pink
Yellow

If you use SDA to create and update displays, you can select colors for each
field from the Color Attributes for Field display. The Creating Displays
manual has a description of how to select color attributes.

When you design a display that uses color, consider the following
recommendations:

• Determine whether the display format will be used on both color and
noncolor displays. If you are designing displays that will be shown at
both color and noncolor display stations, use the Limit Color Select
option to preview the finished display. The Limit Color Select option, a
special keying sequence, reduces the number of colors displayed to two.
This preview lets you see how a display designed for color will look when
it is displayed at a noncolor display station.

• Use each color for a particular purpose. When you choose a color, define
what it means, and use it in the same way on every display. For example,
if white is used to highlight important output fields or error messages, use
white for that purpose throughout the displays that you design.

• Use a limited number of colors. Too many colors on a display can
confuse the user. The fewer colors used, the more effective each color
becomes.

• Group colors. If colors are grouped in a recognizable and consistent
manner, the user can easily organize and follow information. Too many
colors spread over a display can hide the meaning of the display.

The Display Station Programmer's Guide to Using Color has more information
about color display stations if you have a color display station.

Chapter 13. Displays 13-1 7

Designing Multiple Formats

13-18

Information from several display formats can appear on the display at one
time. This capability is useful if some information on the display is to remain
unchanged while other information is to be replaced. If you use multiple
formats, the following are true:

• Response time is improved because no unnecessary information is sent to
the display station.

• Less coding is required because the specifications for each format are
generally simpler. This reduces the amount of coding.

• Because fewer specifications are required for each format, less disk space
is needed and data is not duplicated.

When using multiple formats, be careful not to clear or replace any
information that should remain on the display.

When multiple formats are displayed before information is read from the
display, the system reads only those input fields from the last format
displayed with input fields. This means that when all or a portion of a display
format is replaced by a new display format with input fields, the data
contained in all previous input fields cannot be read, if the input fields on the
new display format are at different locations on the display screen.

You should take certain precautions to avoid a display station error and to
reduce system workload when multiple formats are displayed. If the formats
do not define any input fields, the suppress input operation should be
specified for all but the last display format. In addition, the last format must
define at least one input field if all of the following are true:

• A value other than 24, 27, or blanks is specified as the number of lines to
clear.

• The format replaces or clears a line that contains an input field created by
a previous format displayed with input fields defined.

• Suppress input is not specified (the user can enter data on the display).

The program will be suspended if all of the following are true:

• An RPG II, COBOL, or BASIC MRT program displays multiple formats.

• The suppress input operation is specified on any format prior to the last
format.

• The user interrupts the program by pressing the Attn key before the last
format is displayed.

No other display stations can use or start the program during the inquiry
request. The system does not inform application users at other display
stations that the program has been suspended.

Designing Displays for Remote Display Stations

Program performance can vary depending upon whether a format is displayed
at a local display station or at a remote display station. Remote display
stations communicate with the system at a slower rate than do local display
stations; consequently, response time at remote display stations is increased.
Because of the slower transmission rate, remote display stations can also tie
up overall system activity. If remote display stations cause poor performance,
using one of the following techniques might significantly improve
performance:

• Reduce the amount of data that is transmitted over the communications
line.

• Increase the line speed.

Of these techniques, reducing the amount of data transmitted is the only one
that can be directly controlled by programming techniques. You can reduce
the amount of data transmitted by following these suggestions when coding
your display formats:

• Send only the data that the user needs to efficiently use the application.
Consider creating help display formats that can be used to request
additional information.

• Avoid displaying the same data and prompts again.

• Specify N (no) for the return input operation. This reduces the amount
of data transmitted over the communications line, and also reduces the
response time.

If you have an identification field on a display format that is being read
by a program, you should specify Y (yes) for return input operation.

Chapter 13. Displays 13-19

13-20

• Use an erase input fields operation to remove the contents of an input
field rather than displaying the entire format again.

• Avoid using the read-under-format technique (described later in this
chapter) to pass information from one job step to another. Instead,
consider using a temporary disk file, the local data area, or data structures
or arrays to pass the information.

• Use an override fields operation to display error messages. Display the
error message and only the fields in error. This technique avoids
transmitting unnecessary data when errors occur.

• In the display format specifications, define the fields in the same
left-to-right, top-to-bottom order that they will appear on the display.
(Additional control characters must be transmitted for any
out-of-sequence fields, thus increasing the response time.)

• If you do use multiple formats, specify the suppress input operation on all
but the last format. Specifying suppress input reduces the turnaround
time before each new format is displayed. (Turnaround time is the time
between receiving and transmitting data or between transmitting and
receiving data.) If input is not suppressed, several line turnarounds are
required after each format is displayed.

When designing and coding display format for remote display stations, you
should be careful to use the proper coding techniques. The following table
lists the approximate number of bytes that are transmitted when a display
format is sent to and received from a display station.

Item Bytes Required

Each display 4 bytes minimum
format

+ 4 bytes if the format clears a portion of the previous
format

+ 3 bytes for each field for which the position cursor
attribute is specified

+ 5 bytes if any input or input/ output fields are
contained in the format

Each input field 8 bytes minimum

+ 2 bytes if the field is out of sequence

+ 2 bytes if the field is self-checking

Each input/ output 8 bytes minimum
field

+ 2 bytes if the field is out of sequence

+ 2 bytes if the field is self-checking

+ The length of the output data

Each output field 4 bytes minimum

+ The length of the output data

As you can see, it is to your advantage to avoid the unnecessary transmission
of data. In a typical application with five display formats in which input data
is read and output data is displayed, the total characters transmitted over the
communications line might be, for example, 2700 characters. With the proper
use of the return input, erase input, override fields, and suppress input
operations, the total characters transmitted over the line can be reduced to
approximately 2100, a reduction of over 20%. The response time is better,
and more important, the rate at which an application user can perform the
work is improved.

Chapter 13. Displays 13-21

Using Message Members with Your Display Formats

13-22

Display formats allow you to use message members to display constant
information. Message members are especially useful for fields that show
error messages or conditional instructions. For example, if a program detects
an input error, the program can select the appropriate error message from a
message member and display that message. The program only has to specify
the message identification code (or MIC number) for the particular message
to be displayed; the program or the display format does not have to define the
text of the error message. With this capability, you can define one message
member for your application and have all the programs within the application
use the same messages in that member. This provides consistency within the
application and frees you from the coding of message text within your
programs or display formats.

The message to be displayed can be identified by the display format itself, or
it can be specified by the program using the display format. If a MIC number
and a message member identifier are specified for an output field in your
display format, the corresponding message is displayed in the output field. If
a MIC number and a message member identifier are not specified for the
output field, the program supplies that information in the output record area.
Then, when a write operation is sent to the display format, the message
corresponding to the supplied MIC number and message member identifier is
displayed in the output field.

For more information about creating and using message members, see
Chapter 14, "Messages and Message Members." The Creating Displays
manual has more information about the specific entries made in the display
format for displaying messages from a message member.

Using Self-Check Digits

Self-checking digits can provide some protection against data entry errors and
fraud. Self-checking provides a method of verifying the contents of an input
field at the same time it is entered. This method is especially useful if an
application requires the entry of numeric data, such as account numbers.
Unless the person attempting the fraud knows the system, the chance of an
invented number matching an allowed number is reduced.

Note: You must have the extended function feature installed on remote 5251
or 5 2 94 display stations to use self-check digits. If this feature is not
installed, a program error will result when self-check is specified and the
operator tries to leave the field.

The system offers two methods of self-checking: modulus 10 and modulus
11. If a self-checking method is specified for an input field, the system
determines a self-check digit for the field's contents using the specified
self-check method. That self-check digit is compared to the rightmost position
of the input field. If the self-check digit matches the rightmost position of the
input field, the contents of the input field are allowed, and the user can
continue. If those numbers do not match, the contents of the input field are
not allowed, and a keyboard error is displayed. The user must then enter an
allowed number before continuing.

The Creating Displays manual gives more detailed information about how the
system checks the contents of an input field according to the appropriate
self-check method. After reviewing how the self-check digit is determined,
you might want to write a program that generates input numbers that
successfully complete a self-check. You can, for example, use the generated
numbers as a basis for assigning account numbers, item numbers, or security
codes.

Chapter 13. Displays 13-23

Programming Considerations

The following pages summarize:

• How you can create display formats using SDA or the FORMAT
procedure

• How you can create help text for your displays

• How the programming languages use display formats

Creating Display Formats

13-24

After you design your display, you must create the library member the system
uses to show the display. Every display is defined by a display format, which
is stored in a display format member.

The display format member can contain up to 255 display formats. Each
display format is made up of specifications. These specifications define
information about:

• The entire display. This information is defined in the display control
specification (or S specification).

• Individual fields on the display. This information is defined in the field
def"mition specifications (or D specifications).

• Optionally, help text that is available for the display. This information is
defined in the help def"mition specifications (or H specifications).

The system provides two ways for you to create your display formats:

• Screen design aid (SDA) utility

• FORMAT procedure (SSP)

Using SDA to Create a Display Format

The screen design aid (SDA), which is part of the Utilities Program Product,
can lead you through the steps used to create a display format. For this
reason, you may find that SDA is considerably easier to use than the
FORMAT procedure.

SDA has several advantages over using the FORMAT procedure to create
your display formats:

• You can design your displays at the display station. This allows you to
see immediately how the display will look when it is shown.

• You can use SDA to test your displays. By controlling which indicators
are on or off and by specifying the order in which a series of displays is
shown, you can get a good idea of how your displays will work when the
application is run.

• SDA does most of the work for you; you need only supply certain control
information for the display, and the location and characteristics of the
fields to be displayed.

• SDA also offers some additional options that may help you in creating
your displays and coding and documenting your application programs.
Using SDA, you can call source entry utility (SEU) or development
support utility (DSU) full screen editor to create or update source and
procedure members. Furthermore, you can use SDA to create RPG TI
and WSU program specifications for the display formats that you create.

The Creating Displays manual describes how to use SDA to create display
formats.

Chapter 13. Displays 13-25

Using the FORMAT Procedure to Create a Display Format

:13-26

The FORMAT procedure, which runs the $SFGR utility program, is part of
the SSP support. If you use the FORMAT procedure instead of SDA, you
must first design your display on paper, or on a preprinted form. Having
designed the display, you then use either SEU or the $MAINT utility program
to enter and create the display format source member. And finally, you run
the FORMAT procedure to convert the source member into the load member
to be used by your program.

After the FORMAT procedure creates the load member, the system prints
information about the display format you have defined. This information is
useful for documenting your displays and can be used for correcting problems
with your display formats and programs. You can refer to this printout when
coding the programs that will use the display formats you have defined.

Although SDA is easier to use than the FORMAT procedure, you may find
that you can use SEU to make minor changes to your display format source
members and then run the FORMAT procedure to compile them faster than
if you use SDA to make changes. You may want to use both SDA and the
FORMAT procedure, and then decide which works better for you.

The Creating Displays manual describes how to use the FORMAT procedure
to create display formats.

Creating Help Text for Your Displays

Using DW /36 (DisplayWrite/36), SDA, or the FORMAT procedure, you
can define help text for your displays. Help text can be used to explain all or
a portion of a display shown by the application program. To provide help
text to your application users, you define help areas on the display used by
your application program. Each help area is defined by a specification called
the help definition specification, or H specification.

DW /36 lets you define help text and store it as a document in a folder. The
Getting Started with Display Write I 3 6 manual has information about defining
help text using DW /36.

For SDA or the FORMAT procedure, the help area and its H specification
correspond to help text on a special kind of display format called a help
format. To use help formats, you must first disable the Help key (so that a
return code indicating that the key is pressed is not sent to the program).
This allows the system to detect whether the Help key is pressed, rather than
allowing the program to detect it. Then, if the cursor is within a help area
when the Help key is pressed, the corresponding help format is displayed.
Using the Roll Up (Roll+) and Roll Down (Roll+) keys, the user can page
through other help formats you have defined for the display. Once the user
has viewed the help formats, the user can return to the original display by
pressing the Enter key or a command key.

Using SDA Application Help Support to Create Help Text

Application help is a part of SDA that allows you to easily define and delete
help specifications (H-specs) within your $SFGR format members. This
simplifies the creation of help text for your applications. You can use SDA to
do the following to your H-specs:

• Add
• Update
• Browse
• Browse all
• Delete
• View

Application help adds three new members to the SDA library (#SDALIB):
#SAHF, #SA@HF, and #SA@HH.

Help areas and help formats are a good way of providing user instruction on
the system, separate from the application they describe, and ready to use
whenever necessary. Although you should design your displays and your
application with the idea of supplying help to your users, you can easily add
help to an existing application by making a few simple changes to the existing
display formats and by creating the help format or formats that contain the
help information. Generally, you do not have to rewrite or recompile your
programs to support the new help information.

The Creating Displays manual has more detailed information about how help
areas and help formats are designed and created.

Chapter 13. Displays 13-27

Using Display Formats with the Programming Languages

13-28

Each of the programming languages can use display formats. In addition, a
procedure can use a PROMPT OCL statement to show a display. The
display formats that you create allow a program or procedure to use the
display station as an input or output device.

Programs written with the work station utility (WSU) can use display formats.
However, WSU requires some special entries to the Sand D specifications;
those entries and their use are not described in this manual. The WS U Guide
manual has more information about WSU and how the WSU S and D
specifications are coded.

This section briefly describes how programming languages use display formats
and how the display format load member is identified and described.

Using Display Formats with RPG II

Programs written in RPG II use a WORKSTN (work station) file to use
display formats. RPG II WORKSTN file programs require file description,
input, and output specifications. In order to code these specifications
correctly, you must use the information printed by the $SFGR utility program
after it has created the display format load member. This means that any
display formats an RPG II program is to use must be designed, coded, and
created before the RPG II program is written.

The file description specifications for a WORKSTN file identify, among other
things:

• The file name assigned to the WORKSTN file.

• An indication that the WORKSTN file is a combined file. A combined
file is capable of being both an input and an output file.

• The maximum length of the data that is read from or written to the
display format.

Most importantly, the file description specifications identify the display
format load member that contains the formats used by the RPG II program.

Because a WORKSTN file is a combined file, the data that is read from the
display format must be described on the input specifications.

The request for a particular display format and the data to be displayed are
identified in the output specifications. The output record contains the
program-supplied data that is to be sent to the display format.

The Programming with RPG II manual has more information about the use
of RPG II WORKSTN files.

Using Display Formats with COBOL

Programs written in COBOL use a TRANSACTION file to read from and
write to display stations. The TRANSACTION file associated with the
display station must be identified by the FILE-CONTROL paragraph of the
CONFIGURATION section of the ENVIRONMENT division. The ASSIGN
clause of the FILE-CONTROL paragraph associates the TRANSACTION
file with a display format load member to be used by the COBOL program.

A WRITE statement, used in the PROCEDURE division of the COBOL
program, identifies the specific format that is displayed. In addition, the
WRITE statement is used to send program-supplied data to the display.

A READ statement, also used in the PROCEDURE division of the COBOL
program, accepts data entered in the display format.

The Programming with COBOL manual has more information about using
COBOL TRANSACTION files.

Chapter 13. Displays 13-29

Using Display Formats with BASIC

Programs written in BASIC use a work station file to send or receive
formatted data to or from the display station. The display format load
member that contains display formats used by a BASIC program is associated
with a work station file.

The work station file (or display format) is used with the following
statements:

• OPEN (WS, or work station)

• WRITE

• REWRITE

• READ

• REREAD

The OPEN statement assigns a file reference to the display format load
member that contains the display formats used by the BASIC program.

The WRITE statement identifies the specific display format that is to be
displayed. In addition, the WRITE statement can send data to the display.

The REWRITE statement is similar to the WRITE statement. The
REWRITE statement is used to write over fields in the display format with
any new data.

The READ statement reads data entered on a display. The REREAD
statement rereads data entered on that display.

The Programming with BASIC manual has more information about using
BASIC work station files.

Using Display Formats with FORTRAN IV

13-30

In order to use display formats with your FORTRAN program, you must
supply the compiler with certain control information. That information is
placed in a source member, and contains the following statements:

• A READ device option statement that specifies DEVICE-KEYBDF.

• A DISPLAY device option statement that specifies DEVICE-CRTF and
the name of the display format load member that contains the display
formats used by the program.

The DISPLAY device option statement specifies that output is to be directed
to the display, and it specifies the name of the display format load member to
be used by the program.

The DISPL Y subprogram is used to initialize and return control information
for the keyboard and the display.

The WRITE statement is used to send data from the program to a device, in
this case, the display screen. In addition, the WRITE statement specifies the
number of the FORMAT statement that describes the form of the data that is
to be sent to the display screen.

The READ statement is used to receive data from a device (in this case, the
keyboard) and send it to the program.

The Programming with FORTRAN JV manual has more information about
how a FORTRAN program uses display formats.

Using Display Formats with ~mbler

To use display formats with an Assembler program, you should be familiar
with several macroinstructions, including:

• $DTFW, which defines the file for a display station

• $DTFO, which defines the DTF labels, offsets, field contents, and field
lengths for all devices and access methods

• $WSIO, which constructs a means of sending output to or receiving input
from the display station

• $WSEQ, which constructs labels for display station device-dependent
values

The $DTFW macroinstruction identifies the display format load member that
contains the formats used by the Assembler program.

The $WSIO macroinstruction builds the code to modify the file for a display
station and to issue a call to perform a specified operation. The $WSIO
macroinstruction also identifies the specific display format to be used, and
specifies the requested operation. Operations that can be requested include a
PUT, which sends data to the display, and a GET, which receives data from
the display.

The Programming with Assembler manual has more information.

Chapter 13. Displays 13-31

Using Display Formats within a Procedure

13-32

If you want a procedure to show a display that prompts for input data, use the
PROMPT OCL statement. The PROMPT OCL statement allows you to:

• Prompt for up to 64 procedure parameters (or a total of 1024 characters)
by using one or more display formats

• Define each parameter for the user

• Assign default parameters

• Control various display format functions

• Show the display format to be read on the first read operation in a
program (This is called the read-under-format technique.)

When you show a display using the PROMPT OCL statement, any
parameters that have a value cause the corresponding display format indicator
to be set on. For example, if parameters 1 through 5 and 7 have values
(parameter 6 does not have a value), display format indicators 01 through 05
and 07 are set on.

The PROMPT OCL statement in the System Reference manual has
information about showing display formats and using parameters to set
indicators on or off.

You can use this feature to:

• Display defaults for the parameters.

Highlight a specific field. You could do this when a parameter is entered
wrong, to allow the user to identify the field in error.

Position the cursor to a specific field. You could do this when a
parameter is entered wrong, to allow the user to key the parameter again
correctly.

Using the Read-Under-Format Technique

The read-under-format technique allows the application user to enter
information on a display while the program that uses the display is starting.
When the read-under-format technique is used, a program or procedure
displays a format, and the next program called reads it. This format is first
displayed by a program or a PROMPT OCL statement with PDATA-YES
specified. If a SRT program displays the format, it then goes to end of job.
A MRT program displaying the format releases the requesting display station.
While the next program is being started, the user can enter information on the
display. When the user enters the display, the information is sent to the
second program.

Note: The program data, if any, on the second procedure call or INCLUDE
OCL statement is ignored.

The read-under-format technique can be used with all types of applications.
This technique can decrease the size of a program because fewer read and
write operations are required. Although the read-under-format technique
might increase response time because of the extra work the system does while
starting and ending a program, overall performance may be improved.
Performance improves because two tasks happen at the same time: while the
second program is being started, the user is already entering data for the first
input operation in that program.

Chapter 13. Displays 13-33

13-34

The following example shows how the read-under-format technique is used
with two displays and two programs. The PROMPT OCL statement in the
System Reference manual has more detailed information.

PROMPT OCL statement -----w FORM1
displays format FORM1.

Program PROG 1
is loaded. PROG1

Operator types in
data and then enters
the d;splay.1
Program PROG1

1-----+., reads data from the
display.

Program PROG1 -------w FORM2
displays format
FORM2 and ends.

Program PROG2
is loaded. PROG2

Operator types in
data and then enters

the d;splay. J

Program PROG2
1-----•., reads data from the

display.

$9019072-0

Figure 13-1. Example of Read Under Format

Chapter 14. Messages and Message Members

The purpose of this chapter is to:

• Describe what messages and message members are.

• Describe how you can use messages and message members.

Message Concepts

The system and your programs use messages to communicate with you and
your application users.

Displayed messages can be grouped into the following categories.

• Informational messages. These are messages that, for example, indicate
the status of a job that is running. An informational message that is
displayed could be: LISTLIBR procedure running or Payroll
program running.

• Prompting messages. These displayed messages ask a user to enter some
type of information. For example: Enter the library member
name.

• Error messages. These messages indicate that an error has occurred, and
the system waits for a response.

Some IBM-supplied error messages have automatic responses and
severity levels. This allows the system to respond to them automatically,
rather than having the operator enter the response. You can also specify
automatic responses for your error messages.

Displayed messages also allow a user to communicate with other display
station users. The manuals "Operating Your System" and "Using Your
Display Station" use the MSG control command to send messages to another
display station user.

IBM-supplied printed messages are used to show errors or information about
source members, such as programs, display formats, menus, or message
members that have been compiled.

Your applications can use printed messages for report headings, for example.

Chapter 14. Messages and Message Members 14-1

Message Member Concepts

14-2

A message member is a library member that defines the text of each message
and its associated message identification code (MIC). You can use message
members to define messages for programs, display formats, and procedures.
Using message members allows you to store your messages in one place, and
then reference those messages by number from several places (for example,
from programs; procedures, and display formats) instead of coding the text to
be displayed or printed each time. Using message members also ensures that
your application users will not see the same message worded several ways,
and message members save you time because you can code a MIC number
rather than the message text. You typically use messages for:

• Titles of displays or listings. For example, stock status Report.

• Operator information shown on displays. For example, Press the
Enter key to continue.

• Application error messages, either printed or displayed. For example,
Customer number must be entered.

• Procedure substitution using the ?Mmic? expression, (the System
Reference manual describes the ?Mmic? substitution expression).

The system allows you to create first-level and second-level message
members.

You can create messages that allow data to be inserted when a procedure is
running. "Inserting Variable Data into Displayed Messages" on page 14-13
has information about this function.

For the ideographic version of the SSP, the system allows you to create
message members that have the message in two languages; for example,
Katakana and Kanji. The System Reference manual has more information
about creating these types of message members. Chapter 20, "Ideographic
Data Concepts and Considerations" describes ideographic characters.

First-Level Message Members

These message members allow messages that have from 1to75 characters of
text. First-level messages can be used by all programming languages and by
procedure control expressions.

A sample first-level message source member is shown below:

II MSGSAMPL, 1
11 0001 Enter your name

0002 Enter yesterday's date
0003 ACCOUNTS PAYABLE APPLICATION

The sample indicates:

II The name that will be assigned to the message load member is
MSGSAMPL, and the member contains first-level messages (indicated
by the 1 following the name).

II The numbers (0001, 0002, and 0003) are message identification codes
or MICs. These numbers identify the message text to be used for the
MIC number. For example, to display or print the message Enter
your name, you would use MIC 0001.

This example shows the message member in its source form. In order for
your programs and procedures to use these messages, you must create a load
member from the source. The System Reference manual describes how you
use the CREA TE procedure to create source and load message members.

Second-Level Message Members

These message members allow messages that have from 1 to 225 characters
of text. Second-level messages can be used by some programming languages;
see the appropriate programming language manual for more information.

Chapter 14. Messages and Message Members 14-3

Designing Message Members

When you are designing your applications, you may want to:

• Create a single message member and put all the application messages in
it.

• Create several message members and group messages by:

Program type. For example, you could place the order entry
messages into a member named ORDERMSG.

How they are used. For example, you could place the displayed
messages into a member named MSGDISP, and the printed messages
into a member named MSGPRINT.

Providing Automatic Responses for Messages

14-4

You can have the system automatically respond to displayed system and
application messages, by using the RESPONSE and NO HALT procedures.
When a message has an automatic response, the message is not displayed;
instead, the response is immediately given by the system. This allows you to
define a specific response that is. to be given automatically by the system,
rather than having an operator enter a response. In order for a message to
have an automatic response, the message must be in a message member.

Some IBM-supplied displayed messages already have automatic responses and
severity levels assigned; you can use the RESPONSE procedure to change
these values. For your application's displayed messages, you can assign your
own automatic responses and severity levels by using the RESPONSE
procedure. Your application messages that have automatic responses should
be displayed by using the ERR procedure.

IBM-supplied displayed messages allow the following responses: 0, 1, 2, 3,
D (Dump), and H (Help). The automatic response you choose is valid only
if that response is allowed by the message. For example, if a message had
only options 2 and 3, an automatic response of 1 would not be valid, and the
message would be displayed. The H (Help) option cannot be specified as an
automatic response.

The automatic response facility allows option N so that you can select the
IBM-supplied response. You would use this option when you have changed
the IBM-supplied response and you want to change it back.

When you define or change an automatic response for a message (either
IBM-supplied or one of your application messages), you specify:

1. The MIC of the message to be responded to. If the message is one of
your own application messages, you must specify the load member
containing the MIC. If the message is an IBM-supplied message, the
system automatically determines the load member.

2. The automatic response to be used.

3. The severity level for the automatic response.

The IBM-supplied system messages have a particular severity level (1 through
5). The severity levels and automatic responses are shown in the messages
manuals. When you assign an automatic response to your messages, you also
specify a severity level (unless N is specified as the automatic response). The
system uses these severity levels to respond to the messages defined as
automatic response messages. For example, you may allow an automatic
response for messages with a severity level of 3 or lower, but require a
manual response for messages with a severity level of 4 or 5.

The following table lists suggested severity levels for different categories of
messages. These severity levels are used by IBM for system messages. When
assigning automatic responses for your own messages, you can use these
severity levels as a guideline.

Severity
Level

1

2

3

4

5

Explanation

Informational messages that require a response (option 0 only).

Messages with one option (like a warning message). Also,
messages with two or more options where one of the options is
to retry the function being performed.

Program error messages; these messages usually have more than
one option for the operator to choose.

Messages for severe errors, such as device errors or permanent
input/ output errors.

No automatic response is defined for the message.

The System Reference manual describes how to use the RESPONSE
procedure to assign automatic responses and severity levels to messages. The
System Reference manual also describes how to use the NOHALT procedure
or OCL statement to specify a severity level for a job, for a session, or for the
system.

Chapter 14. Messages and Message Members 14-5

14-6

The following sample OCL statements show how to assign a severity level for
·a job. The NO HALT OCL statement causes all messages with a severity
level of 2 or lower to receive an automatic response for the duration of the
INVPROG program.

II NOHALT 2,JOB
II MEMBER USER1-MSGDISP,LIBRARY-INVLIB
II LOAD INVPROG,INVLIB
II RUN

The NOHALT OCL statement specifies a severity level of 2 for the job. The
MEMBER OCL statement specifies the message member to use (MSGDISP)
and the library containing the member (INVLIB). If the program being run
(INVPROG) displays a message that has an automatic response that matches
one of the displayed options, and if the severity level of that message is 1 or
2, the system automatically responds to the message.

Note: Any system message with a severity level of 1 or 2 will also be responded
to automatically.

Considerations for Automatic Responses to Messages

The following are some considerations you should be aware of when using the
automatic response capabilities of the system:

• Both the message and the automatic response of the system are written to
the history file. The message is not displayed at the display station.

• Do not create an automatic response to error messages that are displayed
by the RESPONSE procedure or the $ARSP utility program. Doing so
could cause an error in your automatic response statements to go
undetected.

Do not create an automatic response to system messages indicating that
the system is retrying an operation. For example, if invalid data is found
on a diskette, a user can select an option to retry the reading of the
diskette. If you specify the retry option as an automatic response, the
system will continually retry reading the diskette, without giving the user
a chance to stop retrying. (Specifying a retry option might fill up the
history file very quickly.)

• Use caution when creating an automatic response to informational
messages. If you want an operator to see the message, the message
should require a response.

• Do not create an automatic response to messages that require the user to
do something before the message is responded to. For example, if the
operator has to align forms in the printer and you specify an automatic
response to the message indicating that the forms are to be aligned, the
user may not have an opportunity to align the forms in the printer
correctly.

• Do not create an automatic response to messages indicating that there are
serious problems with the system such as device errors and messages that
indicate a service representative should be called.

The System Reference manual lists additional considerations that apply when
you are using the RESPONSE procedure to set up automatic responses.

Chapter 14. Messages and Message Members 14-7

Unattended System Operation

14-8

You can use the automatic response capabilities of the system to have the
system process programs without any operators present. For example, you
can place certain programs in priority level 0 of the job queue during the day,
then start the job queue in the evening, and have the system process these
programs during the night. Any messages generated by the system or the
programs should have automatic responses created for them.

If you are planning to run programs while the system is unattended, you
should consider the following:

• Printed output:

Have the proper forms in the printer.

Be sure the forms are aligned correctly in the printer.

Have enough forms so that all jobs can print.

You can have reports written to the spool file and not be printed until an
operator is present. You can do this by specifying PRIORITY-0 on the
PRINTER OCL statement.

You can also have the system print your output while no operators are
present and have one copy stored in the spool file. You can do this by
specifying HOLD-YES on the PRINTER OCL statement. This allows
you to print your output but, if something goes wrong with the paper or
the printer, you can print the output that is saved in the spool file.

• Diskette processing:

Have the diskettes placed in the correct slots or have the diskette
magazine loaded for any job using diskettes.

Do not run any jobs that require diskettes to be removed from or
inserted in the diskette drive.

• Tape processing:

Have the tapes placed in the correct tape drives.

Do not run any jobs that require tapes to be removed from or
inserted in the tape drive.

• Program processing:

Run programs that do not use a display station.

Run jobs that have been tested and are working correctly.

Have some method of restarting your program in the event of
program errors.

Programming Guidelines for Message Members

This section describes how you can create, change, and use message
members.

The System Reference manual has more information.

Creating or Changing Message Members

You create message members by first creating a message source member.
Use the source entry utility (SEU) or Development Support Utility (DSU) to
create the source member. Message source members must be entered in a
special format. Also, SEU has special display formats to help you enter
message members.

After the message source member is created, use the CREATE procedure to
compile the source member into a message load member. The load member is
what is used by the system to display or print the message.

If you want to change a message:

1. Use SEU or DSU to change the message source member.

2. Use the CREATE procedure to generate the new message load member.

The System Reference manual describes how to use the CREATE procedure
to create message members and the special format for message members.

Chapter 14. Messages and Message Members 14-9

Assigning Automatic Responses and Severity Levels

14-10

You assign automatic responses to messages in message members by first
creating a response source member. Use the source entry utility (SEU) or the
Development Support Utility (DSU) to create the source member. The
System Reference manual describes how to use the RESPONSE procedure to
create automatic responses for messages and the special format for the
response source members.

The following shows a source message member and its corresponding
response source member for a sample application. The library INVLIB
contains the message member MSGDISP. The response source member
specifies automatic responses for two messages, MIC 0001 and MIC 0002;
and it specifies that the MICs are in message member MSGDISP in library
INVLIB.

Me~e Member MSGDISP in Library INVLIB

MSGDISP,1
0001 Parameter 3 must be SALES or CREDIT
0002 File INVMST is not on the disk

Response Source Member

USER,MSGDISP,INVLIB
0001 3,3 Parameter 3 error
0002 3,3 File not found error

/----
Automatic Response Severity Level

59019131-0

59019123-0

You can assign automatic responses to as many of your messages as you
want. You may have some messages for which there are no automatic
responses.

After the response source member is created, use the RESPONSE procedure
to assign the automatic responses and severity levels to the message load
member. The NOHALT procedure or OCL must be run before the
RESPONSE procedure will be effective.

If you want to change a response or severity level:

1. Use SEU or DSU to change the response source member.

2. Use the RESPONSE procedure to assign the new values.

Note: If you recompile the message source member (by using the CREATE
procedure), the automatic responses no longer apply. You will then have
to run the RESPONSE procedure again to apply the automatic responses
and severity levels.

Specifying a Message Member to Be Used within a Procedure

The MEMBER OCL statement assigns message members to a job. The
messages in the assigned member can be used in the procedure, by programs
run by the procedure, and by display formats. For example, the following
MEMBER OCL statement:

II MEMBER USER1-DISPMSG,LIBRARY-INVLIB
II LOAD PROG1
II RUN

assigns first-level message member DISPMSG from library INVLIB to the
program PROG 1.

Displaying Messages from Procedures

You can use several statements and procedures to display messages from
procedures.

11 *(Informational Message) Statement

This statement displays a message from a procedure to the operator running
the procedure. For example, the following statement:

II* 'Enter today' 's date:'

displays the message Enter today's date:

11 **(System Console Message) Statement

This statement displays a message from a procedure on the system console.
For example, the following statement:

II ** 'Procedure PROC1 is running'

displays the message Procedure PROC 1 is running

Chapter 14. Messages and Message Members 14-11

Displaying Your Messages in the Same Format as System Messages

The ERR procedure displays your error messages in the same format as
system-displayed messages. For example, if the following statements are in a
procedure:

II MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR 0001,23

the MEMBER statement assigns a message member to the job. The ERR
procedure displays message 0001, and allows options 2 and 3 to be taken. If
message 0001 is Parameter 3 is invalid, the ERR procedure displays:

USER-0001 23)
Parameter 3 is invalid

For options 0, 1, and 2, the system sets a return code that can be tested using
the ?CD? substitution expression. For option 3, the job is immediately
canceled. The System Reference manual describes the ?CD? substitution
expressions.

Ensuring That Required Parameters Are Entered

The ?nR'mic'? substitution expression displays a message when the nth
parameter does not have a value. You could use this expression when you are
checking the parameters of a procedure to ensure that a required parameter
has been entered. In the following example, the EVALUATE statement
processes the substitution expression.

II MEMBER USER1-DISPMSG,LIBRARY-INVLIB
II EVALUATE ?1R'0004'?

If the first parameter was not entered when the operator started the
procedure, message 0004 from message member DISPMSG would be
displayed. The operator would then be prompted to enter the parameter.

Using Messages with Programs

You can use messages with programs. You can either code the text in the
program or use message members. See the appropriate language manual for
more information.

Using Messages with Displays

14-12

You can use messages with display formats. You can either code the text in
the display, have the program or procedure display the message text, or use
message members. See Chapter 13, "Displays," for more information.

Inserting Variable Data into Displayed Messages

If you code a first-level message such that it contains one or more fields of #
signs, you can use the ERR procedure to insert variable data into the message
when it is displayed. A parameter of the ERR procedure specifies the data to
be inserted.

The data is substituted for # signs contained in the message text, where each
sign indicates a character to be inserted. For example, if MIC 0003 in
message member DISPMSG is:

Procedure ######## is on the job queue

and the following statements are in a procedure:

II MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR 0003,0,INVJOB

the message displayed would be:

USER-0003 Options (0
Procedure INVJOB is on the job queue

Because the characters from the ERR procedure are substituted one for one
for the # signs, you can make messages that have more than one field of
insert data. For example, if MIC 0005 in message member DISPMSG is:

Job ######## requires file ########

and the following statements are in a procedure:

II MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR 0005,0,'INVJOB CUSTMST'

the message displayed would be:

Job INVJOB requires file CUSTMST

Note that the variable fields in the message must be long enough to handle
the data to be inserted. Also, notice that blanks must be inserted if the data is
shorter than the variable field in the message.

Chapter 14. Messages and Message Members 14-13

14-14

Another way to use the ERR procedure to insert data in displayed messages is
to create one message that contains 7 5 # signs. This allows you to insert the
entire message from the ERR procedure. For example, if MIC 0004 in
message member DISPMSG is:

################## ... #####

75 #signs.

and the following statements are in a procedure:

II MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR 0004,13,'A required file cannot be accessed.'

the message displayed would be:

USER-0004 Options (1 3
A required file cannot be accessed.

The System Reference manual describes the ERR procedure.

Chapter 15. Main Storage

This chapter describes the areas of main storage and the main storage
processor.

Main Storage Concepts

Main storage contains programs, data buffers, and instructions for the system.
Main storage also contains work areas that are used by both the system and
your application programs.

Main storage is divided into a system area (called the nucleus) and a user area
of main storage.

Main Storage

System Area Main Storage
(nucleus) Processor

User Area

• User Programs
• Some System

Programs
• Data Buffers

89019074-0

The system has a main storage processor that processes the system and
application program instructions in main storage. The following information
describes the nucleus, the user area, the data buffers, and the main storage
processor.

Chapter 15. Main Storage 15-1

System Area (Nucleus) of Main Storage

The nucleus contains parts of the SSP (System Support Program Product)
that must be in main storage all the time. The system uses these parts of the
SSP to manage system resources such as:

• Disks

• Printers

• Display stations

The nucleus consists of two separate portions. The size of one portion, the
fixed-sized portion, does not vary. The size of the other portion of the
nucleus, the variable-sized portion, can vary in size.

Expansion and Contraction of the Nucleus

15-2

Because the nucleus is composed of two portions (the fixed-sized portion and
the variable-sized portion), the size of the nucleus can vary. The size of the
nucleus affects how much main storage space is available for user programs in
the user area of main storage.

The system checks the new size of the user area whenever it takes space away
from the user area to use as additional nucleus space (expansion).

The system will send a message to the system operator when it is running out
of user storage. The purpose of the message is to let the operator know what
is happening so the operator will stop or cancel some jobs. Canceling or
stopping jobs will stop nucleus expansion and/ or cause the nucleus to
contract.

The system will prevent the initiation of new jobs once the user area is
reduced below 24K.

Fixed-Sized Portion of the Nucleus

The fixed-sized portion of the nucleus is a 27K-byte area of main storage that
is reserved for use by the system. Included within the fixed-sized portion of
the nucleus are:

• Work spaces used by control storage programs.

• Disk data management.

• Work station data management.

Command processor program.

• The transient area. This area is a 4K-byte area of main storage that
contains SSP routines that do special functions. Only one routine can use
the transient area at a time, and the various routines take turns using the
transient area.

Variable-Sized Portion of the Nucleus

The amount of storage in the variable-sized portion of the nucleus depends
on the options selected during configuration or IPL (initial program load).
Within the variable-sized nucleus are:

• Nonswappable system routines and work areas/buffers

• Assign/ free area and space for system control blocks and pointers

This section includes several charts describing the sizes of system programs.
Use these charts to help determine the amount of user storage available for
your programs and data buffers, depending upon the current configuration
and status of your system.

Chapter 15. Main Storage 15-3

Nonswappable System Routines

Nonswappable
System Routines

Batch BSC Interrupt
Handler

SDLC Interrupt Handler

SSP-ICF BSC Interrupt
Handler

BSC 3270 Interrupt
Handler

MSRJE BSC Interrupt
Handler

X.25 Interrupt Handler

Printer Data
Management and Spool
Intercept Routine

Folder Management and
I/0 Router

15-4

These routines are selected during system configuration. When you request
the support that uses these routines, they run in the user area of main storage,
yet are considered part of the nucleus. These routines are loaded when
requested and remain in storage until they are no longer needed.

The following table lists the nonswappable system routines and their sizes.

Size
Description (in bytes)

Used when batch BSC (binary synchronous 4K
communications) is configured and active.

Used when SDLC (synchronous data link control) 8K
communications is configured and active.

Used when a BSCEL, BSC CCP, BSC CICS, or BSC 12K
IMS/IRSS subsystem is enabled and active.

Used when BSC 3270 device emulation is enabled and 8K
active. This routine also requires 4K bytes of task work
space that must be resident.

Used when MSRJE BSC is active in the system. lOK

Used when X.25 communications is active in the system. 42K

Used when print spooling is active. lK

Used to route control to the folder management 1/0 2.25K
routines

Assign/Free Area

The assign/free area contains areas used by the system for job processing.
Control blocks and buffer spaces used by the system are in the assign/free
area. The size of the assign/ free area varies depending on:

• The number of programs running in main storage

• The number of active display stations

• The number of active printers

• The number of files being processed

• Data communications being active

• Disk cache being active

Each program that runs from a display station, that uses one disk file, and
prints one report, uses about 2K bytes in the assign/free area. The following
table shows the approximate amount of assign/free area that is used for the
following items:

Amount of Assign/Free Area
Item Needed For Each Item

Each Active 512 bytes
Program

Each Active Display 512 bytes
Station

Each Active Printer 512 bytes

Each Active File 1 512 bytes

Data Variable amount based upon
Communications type of communications active

Disk Cache 512 bytes
Resident Code

1 When a file with multiple indexes is used, each index
is an active file (even when that file is not used by the
program).

The assign/free area is rounded up to 2K bytes. The system also tries to
keep 2K bytes available for the next time that space is needed in the
assign/ free area.

Chapter 15. Main Storage 15-5

User Area of Main Storage

To run your programs, the system loads them into the user area of main
storage.

Organization of the User Area

15-6

The user area consists of all main storage that is not currently part of the
nucleus. The user area of main storage is divided into 2K-byte segments
called pages.

The system uniquely identifies these pages to keep track of both programs
and data used by programs. When combined in main storage, the pages for
each program form what is called a region. The size of the region used by a
program is called the region size. The default region size assigned to each
program is 24K bytes. The largest region size that can be assigned to a
program is 64K bytes. You can use the REGION OCL statement or the SET
procedure to change the default region size to a larger or smaller value.
However, when the program runs, the system assigns only as much storage as
is needed for the program and its data. For example, if you set the default
region size for a program to 24K bytes but the program actually requires only
16K bytes of main storage, the system assigns only 16K bytes (8 pages) to
the program when the program runs.

Several programs can run in main storage at the same time. The system uses
a method of swapping programs into and out of main storage to run jobs. For
more information about job processing and program swapping, see
Chapter 17, "Jobs and Job Processing."

The following example shows the user area of main storage separated into
three regions. Program 1 has a 32K-byte region, and programs 2 and 3 each
have a 24K-byte region.

Main Storage

EJ
Program 1
(32K bytes)

Program 2
(24K bytes)

Program 3
(24K bytes)

Region for Program 1

Region for Program 2 User Area

Region for Program 3

59019075-0

When the nucleus expands, some pages in the user area are claimed by the
system and are not available for use by application programs. When these
pages are no longer needed by the nucleus, they are returned for use in the
user area. When the additional pages are claimed, more swapping of
programs may occur.

Many system programs run in the user area of main storage. For example:

• System utility programs (such as $COPY or $MAINT)

• Transient system routines

Transient System Routines

Program Name

Some system routines do not have to be resident in main storage. These
transient (or temporary) routines are loaded into the user area of main
storage from the system library as they are needed to run programs. If the
routine is not needed, the main storage space used by the transient program is
made available for other user or system programs.

The following table lists some of the important transient system programs and
their sizes:

Size
Description (in bytes)

Work Station Data Management Used to get data to the program from the 4K
(GET operation) display station

Work Station Data Management Used to display data from a program to the 4K
(PUT and PUT override
operations)

SSP-ICF Management

display station

Used for the Interactive Communications 8K
Feature (SSP-ICF)

This table does not list every system program, because the amount of main
storage required for some of these programs varies according to how the
program is being used. To find out how much main storage a particular
program actually uses at a given time under certain conditions, you can use
the System Measurement Facility (SMF). The System Measurement Facility
Guide has information about how to use SMF.

Chapter 15. Main Storage 15-7

Buffers Used by Programs

Buff er Allocation

15-8

Data buffers are not compiled into the program load members. Instead, when
the program is loaded into main storage and run, the buffers are placed into
main storage outside the load member.

Each disk file used by a program requires a buffer when the program is run.
The buffers are allocated by the system as the files are opened. A disk file
buffer consists of:

• A control block, which is used by disk data management to read and
write file data.

• A data block, which contains one or more sectors of disk file data.

• An index block (for indexed files).

Buffers are also needed for print spooling intercept buffers when print
spooling is used.

You can define two types of blocking for disk files: record blocking and
index blocking. Record blocking can be specified in your program or on the
FILE OCL statement. Index blocking can only be specified on the FILE
OCL statement.

Blocking affects the amount of data that the system must read from and write
to the disk in one disk operation. By increasing the blocking size, the number
of disk operations may be reduced because the system can read and write
more records during a single input/ output operation.

Record blocking is useful if you are using a consecutive processing method,
but is probably not an advantage if you are using a random processing
method. See Chapter 8, "Files" for more information about blocking.

The system assigns buffers to programs in either of the following ways:

• By appending the buffer area to your program and increasing your
program's size by the amount of the buffer. This method is used when
the addition of the buffer does not make the total program size larger
than 64K bytes or the available user storage.

• By placing the buffer in the disk file work space of main storage, which is
an area that is separate from the program's region. This method is used
when the addition of the buffer makes the total program size larger than
64K bytes or the available user storage.

Note: If space is not available in the program's region, the spool intercept
buffers are placed in the assign/ free area.

By sizing the buffers such that they are appended to the program rather than
separate from the program, the time the system takes to run the program can
be reduced because the system does not have to swap two separate areas of
main storage. Also, when the buffers are separate from the program, disk
data management must do extra work to access these buffers. This also takes
extra time.

Because of the way program size is determined, the buffers are allocated to
the program as the disk and printer files are opened. Buffers that are used
the most by a program should be opened first, so that the space used by the
buffer has a greater chance of being allocated to the program's region size,
rather than the disk file work space.

See Chapter 8, "Files," for more information about buffers.

System-Assigned Program Attributes

Each program is assigned, by the system, one processing attribute and one
storage attribute.

The processing attributes are:

Reentrant. Specifies that the program code can be used by several users
and that each user has his own set of data. This attribute saves space.

• Reusable. Specifies that the program code can be used by only one user
at a time. If the code is being used, any other requests must wait.
However, the code does not have to be loaded again for the next user.

• Reloadable. Specifies that a separate copy of the program code is loaded
for each user. This attribute is assigned to user programs.

The storage attributes are:

• Swappable. Specifies that the program can be swapped (or stored)
temporarily on disk when its main storage space is needed by another
program.

• Nonswappable. Specifies that the program remains in main storage until
it is completed. This attribute is allowed only for system programs.

• Refreshable. Specifies that the program code, at a certain point, is
equivalent to the code stored in the library. This attribute is allowed only
for system programs and program products. When the storage used by a
refreshable program is needed, the storage is released. The system does
not require an image of the program to be saved on disk. When the code
is again needed in main storage, a new version of it is loaded from the
library.

Chapter 15. Main Storage 15-9

The following table shows the combinations of processing and storage
attributes that are used on the system:

Reentrant Reusable Reloadable

Swappable Utilities Program
Product, Language
Program Products,
System Programs,
User Programs
(except BASIC
programs)

Nonswappable Resident System
Programs

Refreshable System System Query /36 Data
Programs, Programs Entry Facility
BASIC
Programs,
Query/36

1.VlainStorageProcessor

15-10

The system uses the main storage processor to process application program
instructions and system commands.

The more user program instructions the main storage processor can process,
the more work the system can do. The system is designed to let the main
storage processor process as many program instructions as possible without
having to do other things such as obtaining data for programs or controlling
the input or output of data to the devices used by the system. A separate
processor called the control storage processor is responsible for supervisory
functions and the input and output of data.

Chapter 16. Programs

This chapter describes the various types of programs you can design, the
reasons for choosing each type, and some suggestions for designing your
applications.

This chapter has three main sections:

• Program concepts, which describes batch and interactive programs

• Designing applications, which presents general suggestions about the
factors you should consider when deciding which type of program is
appropriate

• Programming considerations, which provides more specific suggestions to
help you implement your design choices

Program Concepts

This section defines major program concepts that you should keep in mind
when you design a program or application:

• Batch programs.

• Interactive programs. For interactive programs, the following factors can
affect your program or application design:

Program size

Number of users that can communicate with the program

Number of users that can request the program

Chapter 16. Programs 16-1

Batch Programs

Interactive Programs

16-2

A batch program is one that processes records with little or no operator
interaction. Typically, a batch program processes a group of related
transactions that have accumulated over a given period of time. An example
of a batch program is one that prints invoices at the end of the day, rather
than when the order is entered.

An interactive program is one that receives requests from one or more display
stations and may respond to each request as it is received. The program
processes individual records or transactions at the time the request is received,
rather than processing requests that accumulate over a period of time. An
example of an interactive program is one that processes orders and prints an
invoice at the time each order is entered.

Note: Throughout this chapter, the term display station means a display station
or an SSP-ICF session. Refer to the appropriate subsystem reference
manual for more information about SSP-ICF sessions.

Interactive programs use a display station file to communicate with a user.
The following table shows how a display station file is identified in each
programming language. For information about display station files for a
particular programming language, refer to the manual for that language.

Programming Language Display Station File

Assembler Work station file

BASIC Work station file

COBOL TRANSACTION file

FORTRAN IV READ DEVICE-KEYBD and
DISPLAY DEVICE-CRT device
option statements

RPG II WORKSTN file

Typical Uses of Interactive and Batch Programs

Most applications include both interactive and batch programs. The
following list shows typical uses of interactive and batch programs for order
entry, accounts receivable, and inventory control applications:

Order Entry Applications Program Type

Order entry Interactive

Open order inquiry Interactive

Inventory allocation Interactive or batch

Print invoices Interactive or batch

Accounts Receivable Applications Program Type

Cash receipts Interactive

Account status inquiry Interactive

Open items Interactive or batch

Monthly statements Batch

Inventory Control Applications Program Type

Receipts/ adjustments Interactive

Status inquiry Interactive

Vendor code changes Interactive or batch

Parts requisition Batch

Chapter 16. Programs 16-3

Program Size

An application usually includes many logical steps. A large program includes
all or most of the logical steps that make up an application. If all the display
stations use a large program at the same time, main storage would not be
large enough to contain a separate copy of the program for each display
station. Therefore, the system has to swap programs frequently. As a result,
large programs tend to have poorer performance.

A small program is one logical step of an application; several small programs
make up a single application. If all the display stations use a small program at
the same time, main storage would be large enough to contain a separate copy
of the program for each display station. Therefore, swapping occurs less
often and performance improves.

Number of Users That Can Communicate with a Program

One-User Programs

l6-4

Programs can communicate with any number of display station users. Some
of those users can call a program, and some can be assigned to the program.
Users that call the program are called requesters. Users that are assigned to
the program are called acquired display stations. An acquired display station
cannot call the program.

In terms of the number of users allowed, the system supports the following
types of programs:

• One-user programs

• Multiple-user programs

• No-user programs

A one-user program is an interactive program that can communicate with
only one user at a time. A one-user program has a display station file that is
limited to one display station.

In RPG Il, you can limit the number of users to one by specifying a value of 1
for the NUM continuation-line option on the WORKSTN file description
specification. In other programming languages, there is no way to limit the
number of users.

When a one-user program is a single-requester-terminal (SRT) program, the
requester is the only display station that the program can communicate with.

Multiple-User Programs

No-User Programs

A multiple-user program is an interactive program that can communicate with
more than one user at a time. A multiple-user program, like a one-user
program, has a display station file. However, the display station file for a
multiple-user program allows two or more users. Those users can be
requesting display stations, acquired display stations, or both.

A no-user program is a batch program because it does not have a display
station file. An example of a no-user program is a program that prints a disk
file.

Number of Users That Can Request a Program

The number of requesters affects the application design because it affects the
OCL statements and procedures you use to call the programs in the
application. For example, if a program has more than one requester, you
must use a procedure to call it.

In terms of the number of requesters, the system supports the following types
of programs:

• Single-requester-terminal (SRT) programs

• Multiple-requester-terminal (MRT) programs

Nonrequester-terminal (NRT) programs

Single-Requester-Terminal Programs

A single-requester-terminal (SRT) program can interact with only one
requesting user. More than one user can request a SRT program, but, each
time a SRT program is requested, a separate copy of the program is loaded
into main storage. For example, if two users request SRT program A, two
copies of the program are loaded into main storage.

:.J al SRT i...
0

Main Storage

l J Program A

OJ a1 SRT
[J Program A

59019076-0

Chapter 16. Programs 16-5

Specifying a SRT Program: Any program that is not called as a NRT program
or specified as a MRT program is a SRT program. No coding is required to
specify that a program is a SRT.

Difference between a SRT Program and a One-User Program: In a SRT
program, the user is always a requester. In a one-user program, the user may
be either a requester or an acquired display station. A one-user program is
usually a SRT program, but it could be a nonrequester-terminal (NRT)
program with one acquired display station.

Multiple-Requester-Terminal Programs

16-6

A multiple-requester-terminal (MRT) program is an interactive program that
processes requests from more than one user at the same time, using a single
copy of the program. Each user appears to have its own copy of the program,
but in fact they all share the same copy of the program. A MRT program
uses a display station file.

L cl
['..r

[~-·],
Main Storage

cl MRT
[l_J~ Program

(Requester I
Cl.-.,;

[']~
59019077-0

The work station utility (WSU) is a programming language that helps make
coding MRT programs easier. The WSU Guide has more information about
wsu.

Difference between MRT Program and Multiple-USN Program: The difference
between a MRT program and a multiple-user program lies in whether the
users are requesters or acquired.

A MRT program can have as many users as permitted by the display station
file definition (in RPG, that number is the NUM value). More than one of
those users can be requesters.

A multiple-user program that is not a MRT can also have any number of
users. However, no more than one of those users can be a requester. The
other users must be acquired.

Specifying a MRT Program: Both the program and the procedure that calls
the program must be specified as MRTs. You specify the program as a MRT
by assigning a MRTMAX value when the program is compiled. You specify
the procedure as a MRT on the replacement display for the source entry
utility (SEU), the exit options display of DSU full screen editor, or the MRT
parameter of the $MAINT utility program. For information about MRT
procedures, refer to Chapter 18, "Procedures."

MRTMA.X Value: The MRTMAX value specifies the maximum number of
requesters that can be active at any given time for a MRT program. When
the number of requesters equals the MRTMAX value, a subsequent requester
has to wait until a current requester is finished using the program.

You can decrease the MRTMAX value by using the A TTR OCL statement
when you run the program. To increase the MRTMAX value, you must
recompile the program.

A program must be able to handle any number of requesters. The only
control the programmer has over the number of requesters is that the number
of requesters cannot exceed the MRTMAX value specified by the
programmer.

NUM Value: The NUM value specifies the sum of the MRTMAX value plus
the number of acquired display stations that can communicate with an RPG
program. Thus, an RPG programmer can control the total number of users
and the maximum number of requesters. For example, if a NUM value of 3 is
specified and the program has two requesters, no more than one display
station can be acquired.

The NUM value is defined on the continuation line for the WORKSTN file
on an RPG file description specification.

In other programming languages, the only way to control the total number of
users is to code the logic to check the number of users.

Chapter 16. Programs 16-7

Nonrequester-Terminal Programs

A nonrequester-terminal (NRT) program has no requesters. A program
becomes a NRT program when the requester purposely separates the program
from the display station by using a command or OCL statement. For
example, if a program is called by an EVOKE OCL statement, the system
immediately separates the program from the requester; the user is free to do
other work, and the program has no requesters.

Comparison of Program Types

The following table compares the characteristics of six types of programs:

One-User Program. Designed to use only one Single-Requester-Terminal Program. When
display station, which can be a requester or nothing else is specified, a program is a SRT. Can
acquired. Can be a SRT, a NRT, or a MRT be a one-user program, a no-user program, or a
(MRTMAX = 1). multiple-user program.

Multiple-User Program. Users can be any Multiple-Requester-Terminal Program. Typically
combination of requesters or acquired display designed to communicate with more than one user
stations. Can be a NRT, SRT, or MRT. at the same time (MRTMAX = 2 or more), but

can be restricted to one user (MRTMAX = 1).

No-User Program. Has no users and cannot Nonrequester-Terminal Program. Has no
acquire any. Can have a requester but cannot requesters but can acquire any number of users.
communicate with it. Can be a NRT or a SRT. Can be a one-user, multiple-user, or no-user

program.

'16-8

Summary Table of Users and Requesters

Number of
Users

1

1

1

More than 1

More than 1

More than 1

0

0

0

The following table lists the program types that you would probably use
based on the combinations of requesters and acquired display stations:

Number of Type of
Requesters Program Description

1 SRT Most common situation.

1 MRT MRTMAX = 1. No acquired display stations.

0 NRT Can acquire one display station.

1 SRT In RPG, can acquire up to NUM - 1 display
stations. In other languages, can acquire any
number of display stations.

More than 1 MRT In RPG, requesters + acquired display stations :5
NUM. In other languages, the total can be any
number. Common MRT situation.

0 NRT In RPG, can acquire up to NUM display stations.
In other languages, can acquire any number.

0 SRT Common situation for batch programs. Cannot
communicate with users.

0 MRT Meaningless combination.

0 NRT Cannot communicate with users.

Chapter 16. Programs 16-9

Designing Applications

16-10

This section presents information that can help you select the appropriate
program types. It discusses all the program types defined in the previous
section, but it emphasizes the considerations for interactive programs.

This section is organized around the following questions that you answer
when you design a program or application:

• Should this be a batch application, interactive application, or a mixture of
both?

• How should I structure my application? Do I want:

One large program for each user?

One large program shared by all users?

Several small programs, each user having a separate copy of one of
the programs?

Several small programs, all users sharing one set of programs?

A mixture of the two preceding possibilities?

More than one user for each program? If so, do I want:

More than one requester?

Any acquired display stations?

• What attributes should this program have?

• How can I get the best performance possible from my programs?

Batch versus Interactive Programs

Application Structure

Sometimes a batch program is the best choice even though an interactive
program seems preferable. For example, you may want to update your
inventory file as orders are entered. However, this interactive updating has
potential problems. One such problem is the difficulty of recovering an
inventory master file if the system terminates prematurely. For an interactive
program, it is difficult to determine whether the last transaction update
actually occurred for each user. A batch program does not normally share
files, so you can probably tell whether the last update actually occurred.

When you design an application that is run from only one display station at a
time, the design decision is whether the application should consist of one large
SRT or several small SRT programs. But when you design an application that
is typically run from two or more display stations, you must decide whether
the application should consist of programs that interact with two or more
display stations concurrently or programs that have a separate copy for each
active display station.

Chapter 16. Programs 16-11

One Large Program for Each User

I

El cl\
['.J

Most programmers initially write an application that consists of one large
program. If the application is not very complex, if main storage is plentiful,
and if performance is acceptable, this may be the best choice.

Main Storage

Order Order
Entry Entry
Program Program

G ,.----------- ... ,.----------- ..
I I I I
I One-User I I One-User I
I I I I D] I File I I File I

. ~ I I r ·1: 'l L-----------1 '------------·

59019078-0

One Large Program Shared by All Users

16-12

System response time may not be acceptable when one large program is
shared by all users. Such a program could be more difficult to code because
you may have to design tables that reflect the status of each user. However,
this additional difficulty may be offset by the performance improvement
because the program requires less main storage, thus reducing or eliminating
swapping of the program.

WSU creates these tables as part of the program generation process. The
WSU Guide has more information.

Main Storage

Order
Entry

8
Program

G r------------ ..
I I
I Multiple- I

cl I I
L L... DJ User File
l '..I I I "l :1J L-----------1

59019079-0

Several Small Programs, Each User Having a Separate Copy of the Programs

E]J c1
l J

EJ. c\.
L
[~ iJ~

An application that consists of one large program for the entire application
has two disadvantages. First, it is probably very difficult to code properly.
Second, if the number of concurrent users becomes too large, the
performance advantage may be lost.

To retain the simplicity of coding and the performance advantage, you can
divide the application into several programs. Even though a separate copy of
any one program exists in main storage for each user, the average amount of
main storage required for each user is far less than the amount required for
one large program for each user.

Main Storage

Customer
Number Order

Program Entry
,-------------, Application
I I
1 One-User 1
I I Transaction File 1
I I

-------------' Maintenance
Program

EJl -------------,
: I
, One-User 1

Detail
I I
, File 1

Items
!._ ____________ , •t

Program
,-- --- --------,
I I

I One-User I
I I

File I
~, I

'-------------'

59019080-0

5
~

Chapter 16. Programs 16-13

Several Small Programs, All Users Sharing One Copy of the Programs

A large program with many concurrent users may have poor performance if it
includes many logical steps and if it takes a long time between successive
input operations. An application that consists of several small programs, one
set for the entire application, reduces these performance problems because
each program has fewer users at any given time. Such an application should
also be simpler to code than one large program for the entire application.

Main Storage

Customer
Number

~ Program

\b)JJ __ ..., i- --~~~t~p~e--- - - -:

Order
Entry
Application

[a1 1 User File :
tL~~~~~~~[·J)4i ,.~~------------:

Transaction
Maintenance

Detail
Items

I
Program E]
:---~~~i~~~----: W3 ,.--___,,,,.
I I Cl
1 User File 1~ i1;~~~~=~-1
~------------'~ l'\: '.]

n=:.=n ,~-.... :~~o:~a-~ ______ -:

~~ 1 Multiple- 1

l-;::======a::;-i\-14' ~1 User File :
l J ~------------:

89019081-0

A Mixture of the Two Preceding Possibilities

16-14

If you create a separate program for each application step rather than one
large program for the entire application, you may want to use some small
programs with a separate copy for each user and some small programs with
one copy shared by all users. You would probably want a single copy of the
programs used most often, and a separate copy for each user of programs
used less often. Such a mixture provides both simplicity of coding for
infrequently used programs and performance advantages for frequently used
programs. For example, in an order entry application, the program that
enters the orders would be used frequently and would be coded as a single
copy shared by all users. On the other hand, a program that prints invoices
only at the end of the day would be used infrequently and would, therefore,
be coded as a separate copy for each user.

Number of Users of Each Program

If you decide to use one large program for the entire application or some
small programs with a single copy shared by all users, you must decide how
many users can share that single copy. The decision about the number of
users can be based on the number of display stations available for a given
application. The decision can also be based on observed performance. For
example, you may have noticed that response times increase significantly
when the number of users exceeds a given number.

One User: The user of a one-user program could be either the requester or a
display station acquired by the program for input or output.

The main advantage of one-user programs is simplicity of program design.
The program handles only one transaction at a time, whereas a multiple-user
program must be able to handle several transactions at a time. Handling
multiple transactions concurrently can increase the complexity of the
program.

Because a one-user program is less complex, it usually uses less main storage
per copy than a multiple-user program for the same application.

Multiple Users: The main advantage of multiple-user programs is
performance. Because multiple-user programs can be initiated or terminated
only once a day, they generally run faster than one-user programs.

Another advantage is that, when the application is run from two or more
display stations at the same time, a multiple-user program uses less main
storage. As a result, there is less contention for system resources and,
therefore, improved performance.

Occasionally, a multiple-user program may be advantageous because a single
copy of it can manage a nonshared file more efficiently. Sharing a file with
other programs uses more system resources than using a nonshared file.
Sharing a file with other users of the same program may require you to keep
tables of information for each user. The program could use this information
to tell other users that a requested record in a shared file is being used. This
information can help prevent a file deadlock for a multiple-user program. For
information about file deadlock, see "File Deadlock Conditions" on
page 8-84.

Sharing a file with other programs requires the other users to wait an
unpredictable length of time whenever two or more programs attempt to
access the same record in a shared file.

No User: A no-user program cannot interact with a display station. An
example of a no-user program is a program in an order entry application that
is evoked to update an inventory file while the operator is entering the next
order.

Chapter 16. Programs 16-15

Number of Requesters and Acquired Display Stations

16-16

If you decide that more than one user should be able to interact with the
program, you must also decide how many of the users can request the
program. Normally, all users are requesters. However, sometimes acquiring
display stations is an advantage because acquiring them allows the application
to control who and where its users are. For example, suppose a company has
display stations in two or more separate locations, as shown in the following:

Personnel Dept.

D c

['l

D
Main Storage

c Payroll

f [J Application

D Inventory

c
Application

f, '.]

(110 1 1)g [~g
I I (~

Warehouse

59019082·0

In this example, the payroll application is run from the display stations in the
personnel department, and the inventory application is run from the
warehouse, which may be across the hall or across the country. Having the
program acquire the display stations provides a form of security that does not
depend on user identification. The payroll application can be run only from
the display stations in the personnel office, and the inventory application can
be run only from the display stations in the warehouse.

Another case for acquiring a display station involves two separate computers
that communicate by SSP-ICF. If one computer is running an order entry
application, it might need to obtain inventory status information from the
other computer. If the program finds that the inventory on hand is
insufficient to fill an order, it acquires an SSP-ICF session, evokes a program
in the second computer, and receives a response about inventory on hand at
the second location.

Summary of Differences between SRT and MRT Programs

Having read the preceding explanation of one-user and multiple-user SRT
and MRT programs, you probably foresee each of your applications as being
one or a combination of the following general types of programs:

• Large one-user SRT. The entire application consists of a single program.
Each requesting device has a separate copy of the program. This is the
most straightforward type of program. This type is good if the program is
simple and run infrequently, but performance tends to be poor if the
program is run frequently and the system is busy.

• Small SRT. The application consists of several small application steps
instead of one large program. Each requesting device has a copy of one
of the application steps at a given time. More than one copy of a
program segment can be active at a given time. This type of program is
the simplest and the easiest to maintain. It gives reasonable performance
except when the system is very busy.

• Large multiple-user program (either a large SRT that acquires devices or
a large MRT). All users share the same copy of the program. This type
of program may give the best performance, but it may be the most
complex and the most difficult to maintain.

• Small MRT. The application consists of several small application steps.
Each requesting device is attached to a copy of one of the application
steps at a given time. No more than one copy of any application step is
active at a given time. This type of program gives good performance and
is relatively simple to design and maintain.

Chapter 16. Programs 16-1 7

Program Type

Large One-User SRT

Small SRT

Large Multiple-User
SRT or MRT Program

SmallMRT

16-18

The following summary lists the advantages in general terms of simplicity,
maintenance, and performance for each of these four types. The comparison
of performance assumes a busy system.

Small means that the average program size is less than the average amount of
main storage user space available for each program, assuming that main
storage is divided equally among all the users. For example, if you have 80K
bytes of user space available and five active display stations, 16K bytes could
be allocated for each user. A small program decreases the probability of
swapping.

Large means that the average program size is much larger than a small
program. Therefore, a large program significantly increases the probability of
swapping.

Simplicity Maintenance Performance

More complex than a More difficult to Comparable to several
small SRT. maintain than a small small SRTs.
Much simpler than a SRT. Poorer than a large
large multiple-user About as difficult to multiple-user program.
program. maintain as a large Somewhat poorer than
Probably more multiple-user program. several small MRTs.
complex than most More difficult to
smallMRTs. maintain than a small

MRT.

Somewhat simpler than Easier than a large Comparable to a large
a large SRT. SRT. SRT.
Much simpler than a Easier than a large Poorer than a large
large multiple-user multiple-user program. multiple-user program.
program. Could be easier than a Poorer than several
Simpler than a small small MRT. smallMRTs.
MRT.

More complex than a As difficult as a large Usually better than a
large SRT. SRT. large SRT.
Much more complex More difficult than Usually better than
than a small SRT. several small SRTs or several small SRTs.
More complex than a MR Ts. May be better than
small MRT. several small MRTs.

May be less complex Easier than a large Usually better than a
than a large SRT. SRT. large SRT.
Slightly more complex Slightly more difficult Usually better than
than several small than several small several small SRTs.
SR Ts. SR Ts. Usually slightly poorer
Simpler than a large Easier than a large than a large
multiple-user program. multiple-user program. multiple-user program.

Program Attributes

Never-Ending Programs

Any program can have the following user-assigned attributes:

Never-ending

• Inquiry

The never-ending program (NEP) attribute implies that the program is going
to run for a long time. Therefore, when the NEP owns a nonshared file that a
second program attempts to use, the system issues an error message to the
second program. The error message enables the operator to retry or cancel
the job. If the file owner is not a NEP, the second program waits for the file
to become available. If the running program is active for a long time, the
second program will wait a long time. A MRT program, a program on the job
queue, or a program run by the EVOKE OCL statement is treated as though
it were a NEP for file sharing (unless otherwise specified by NEP-NO on an
ATTR OCL statement).

For a MRT program, the NEP attribute has additional meaning. When a
MRT program is not a NEP and releases its last requester, the program is
given a return code instructing it to go to end of program. At that point, the
program is in effect no longer an active MRT. Therefore, if another device
requests that program, a new copy is initiated. If the MRT program does not
terminate rapidly, the NEP attribute may cause the new copy to wait until the
terminator frees the resources assigned to the MRT program.

When a MRT program is a NEP, it is called a MRT-NEP and it is not
instructed to go to end of program when the last requester is released
because, by definition, the NEP is expected to run for a long time and
presumably does not want to know when it temporarily has no requesters.

The NEP attribute can be canceled by using the STOP SYSTEM command.
Thereafter, all MRT-NEP programs are instructed to go to end of program
when they release their last requester.

One reason for assigning the NEP attribute to a MRT program is so that the
program has consistently good response time.

Chapter 16. Programs 16-19

Inquiry

16-20

The inquiry attribute allows you to specify whether the program can be
interrupted so that another program can be run from the same display station.
The inquiry attribute specifies whether Inquiry display option 1, which calls
the command display, is permitted.

You can use the ATTR OCL statement to specify the inquiry attribute; see
"Preventing Jobs from Being Canceled or Interrupted" on page 17-34 for
more information. In RPG, the inquiry attribute can also be sµecified in
column 37 of the control specification. In BASIC, you can prevent inquiry
from a SRT program by coding ON ATTN IGNORE. The inquiry attribute
cannot be specified in the other high-level languages.

It is possible to code a MRT program that causes all other requesters to wait
indefinitely. When a MRT program writes more than once to a display
station before allowing input, for each output except the last you should
specify suppress input in columns 35 and 36 of the S specification for the
$SFGR utility. If you do not specify suppress input, the program and all
other devices requesting it may wait indefinitely if the operator presses the
Attn key.

Programming Considerations

This section contains considerations that might help you code more efficient
programs. This section has three parts, organized from most general to most
specific:

• Programming considerations for any program

• Programming considerations for multiple-user programs

• Programming considerations for MRT programs

Programming Considerations for Any Program

The following topics apply to all programs:

• Acquiring a display station

• Releasing a display station

• File sharing

• Transaction file design

• Memo updating

• Printed output

• Inquiry menu options

• Calling the program

• Read under format

• External switches

• Local data areas

Chapter 16. Programs 16-21

Acquiring a Display Station

16-22

To be acquired, a display station must be showing the Standby display (the
word STANDBY appears in the upper left corner). If the operator is using a
command display station, the operator can enter the MODE command to
show the Standby display. You can also use the CNFIGSSP procedure to
cause a display station to be a data display station, which can then be
acquired.' The System Reference manual has information about the MODE
command. The Changing Your System Configuration manual has information
about the CNFIGSSP procedure.

There are two ways that a program can acquire a display station. The first
way is to use the WORKSTN OCL statement with REQD-YES and a display
station identification specified. The second way is to use the programming
language statement that acquires a display station. The following table lists
the appropriate statement for each programming language:

Programming
Language Statement for Acquiring Display Station

Assembler $WSIO macroinstruction with OPC-ACQ

BASIC OPEN statement with display station ID

COBOL ACQUIRE statement

FORTRAN IV Cannot acquire display stations

RPG II ACQ operation code

For more information, refer to the appropriate language manual.

Note: In RPG, if REQD-YES is specified on a WORKSTN OCL statement
or if ~EQD-YES is not specified and a display station is available, the
display station appears to be a new requester with blank input fields
when the display station input operation occurs. You can use the return
code in the INFDS to determine whether the display station is a
requester or an acquired display station.

Releasing a Display Station

:File Sharing

Display stations should be released from a program when the program is no
longer using them. A SRT program cannot release its requester, but it can
release acquired display stations.

A MRT program can release both requesters and acquired display stations. If
a MRT program goes to end of job before releasing a requester, the requester
terminates abnormally. The following table lists the statement for releasing a
display station in each programming language:

Programming
Language Statement for Releasing Display Station

Assembler $WSIO macroinstruction with OPC-REL

BASIC CLOSE statement

COBOL DROP statement

FORTRAN IV Cannot release display stations

RPG II REL operation code in calculation
specifications

R in column 16 of output specifications

For more information, refer to the appropriate language manual.

When a file is shared, two problems must be prevented: one is loss of data,
and the other is file deadlock.

Data can be lost when two or more users update the same record of a file
shared within a single copy of a program. When the program writes the
second updated record back to the file, that record is written over the first
updated record. Therefore, the first update is lost.

File deadlock can occur when two or more programs try to update records in
two or more files at the same time. For information about file deadlock, see
"File Deadlock Conditions" on page 8-84.

One way to prevent file deadlock is never to own more than one record at a
time. Each time you read a record from a file shared for update, write the
record back to the file before you read a record from another file shared for
update. This technique may have a significant effect on how you design your
application because you may have to divide the application into several small
programs.

Chapter 16. Programs 16-23

Transaction File Design

16-24

A second way to prevent file deadlock is to design your application so that
each shared file is accessed by only one program. This technique also
requires you to write an updated record back to the file before you read
another record.

This technique also prevents loss of data because one update cannot be
partially completed while another update of the same record occurs. For
example, if two display station operators enter orders for the same inventory
item at the same time, the second update may replace the first update. To
prevent both loss of data and file deadlock, treat each display station input as
a separate transaction. Do not assume that values that were valid at the
previous display station input are still valid for the current display station
input.

A transaction file contains data, such as customer orders, that is usually used
to update a master file.

Note: This transaction file is not the same as a COBOL TRANSACTION
file, which is an input/output file used to communicate with display
stations and SSP-ICF sessions. The manual Programming with
COBOL has information about COBOL TRANSACTION files.

There are two basic ways to design your transaction file:

• Use a single file for all transactions

• Use a separate file for each device

The method you choose will likely depend on how the transaction file is to be
used and how you plan to recover from errors. For information about error
recovery, see Chapter 19, "Error Prevention, Detection, and Recovery." For
more information about transaction files, see "Transaction File" on
page 8-44.

Memo Updating

Single File for All Tramactiom: If you decide to use a single file for all your
transactions, you still have another decision to make about how that file will
be organized. You can either put all the transactions in the file in the order in
which the transactions arrive, or you can put the transactions for each device
in a separate part of the file. For example, you could allocate 3000 records
for the file, partitioned as follows:

Record 1 Control record for Wl (display station 1)

Records 2-1000 Data records for Wl

Record 1001 Control record for W2 (display station 2)

Records 1002-2000 Data records for W2

Record 2001 Control record for W3 (display station 3)

Records 2002-3000 Data records for W3

Separate File for Each Device: The second way to design a transaction file is
to assign a separate file to each device. Thus, for the preceding example, you
could assign a separate file, each containing 1000 records, to each device.
Because the FILE OCL statement is read only for the first requester of a
MRT program, this approach requires a separate FILE statement for each
user.

An advantage of an interactive environment is that operators always have
access to up-to-date information in the master files. For example, suppose an
operator enters a transaction that reduces the quantity on hand of an item in
an inventory master file. If another operator inquires for the quantity of that
item on hand, he can see the value that reflects previous changes made to it.

Interactive updates to files should be done carefully because recovery from a
system or program failure can be difficult if you do not know which updates
are reflected in the file and which updates need repeating.

Memo updating is a technique that allows interactive updates to your master
files and provides batch processing to check that the updates have been
applied correctly.

Chapter 16. Programs 16-25

I
I--

For this technique, master file records must allow duplicate fields for those
fields that can be updated interactively. For example, the field named MBAL
(memo balance) could reflect interactive updates, and the field named BAL
(balance) could be used for batch processing.

10 30 40 50

CONTRL DESCR BAL MBAL

Key Description Date Balance Memo Balance

Duplicates 59019083-0

Initially (for example, at the beginning of the day), these two fields should be
equal. The transactions made during the day are applied only to the memo
balance field.

The following RPG input specifications and output specifications could be
used for the master file by interactive data entry and inquiry programs.
Notice that these specifications ignore the balance field. The memo balance
field should always reflect the current balance.

Field i' External Field Name Field Location

filename § :6 Record Identification Codes §, c: Indicators

Record Name J "' w -~ :g 1 2 3 From To .i RPG -' :§ -e ~ or • .E l P; ·~

~ ~ =>: ~ .~ il ·;; Field Name l ;l' £ ~
Line i =. 6 ~ • ! a; - 5 ~ rr.· Data Structure ~ !I 5 !' ! Plus Minus '!;ro

_1---,,.-1-,-~0-l-R.....li j j Position ~ ~ = Position ~ ~ j Pos1t1on ~ ~ = jg Occurs .5 I j ~ l Blank

s::~re A +;to z a I. J u 6 I u 0 I u G U> a:: n Times Length c5 cJ 2 0 i.i.

3 4 s e 7 a 9 10 11 12 13 14 15 1e 17 11 19 20 21 22 23 24 25 21141 28 29 30 31 32 33~ 35 36 37 38 39 40 4t 42 43 44 e 46 47 48 49 su 51 52 53 54 s& se 57 &8 69 eo &1 12 63 M e& 61 81 88 89 10 11 72 73 74

0 1 IWl,eSTJEI~ s 1
o 2 I

o > I 1
o • I I~ 1£ IEI} L
o s I
o s I

0
~

@i Skip Output I ndieators

~
Commn

Zero Ba!ences
No Sign CR - X •Remove

I-- t:: ~ Field Name to Print Plus Sign 5.9.
e~ Ot" v .. v .. 1

V "'Dlte u ...
Filename

:c •

2. ,.!. A J Field Edit

! i~ i~
EXCPT Name v .. No 2 Defined

or B K Z"' Zero

Record Name t?'~ cc Posit•on No v .. 3 c L Suppress line

~ ~ ~L j • H ;. No No • 0 M

li Output "' A o a :i

l.!!i :1o1 • i i •AUTO ~~ R•cord iii Constant or Edit Word z A: t 2 3 • •• 7 • 9 10 11 12 13 14 115 1fl 11 18 19 20 21 22 23 24 A
3 • • • 7 8 9 10,, 12 13 "' . " 17 18 " ,. 21 22 23 24 26 .. '"' "30 31 32 33 :w 35 36 37 38 .. 40 41 42 43 ~G•Veq~M~HNHM~Hff~~naMHM~MO~ 71 72 73 74

0 t l<>IN !Al.:; Tl£1R 11
0 2 lq ~IE r;
0 3 0
0 4 Jq

16-26

I
t-- Filename

1 or
Fhlcord Name

l
~

Line

~ Dita

~:+o Structure
N1mo

3 4 II 8 7 8 9 10 11 12 13 14 Iii HI

0 1 ·1~ Itf INS IA LS
0 2 I
0 3 I
0 4 I~ ~IS I EIE l~IS
0 6 I
0 8 I
0 7 I
0 8 I

c Indicators
3

t-- 9- 1 I ii l
Line ~r § :i I I IJ

Later (for example, at the end of the day), the transaction file is processed by
a batch edit program. The transactions are posted to the balance fields in the
master file by a batch update program, as the following segment of the
program shows:

g External Field Name Field

l Field Location
Indicators Record Identification COdel

~ .. rig
From]

~ 1i w"' 1 2 3 :I ..J

~> :a~
To RPG .a.a "' Ii

~ Field Name ! :i 'ii

j .1: ti :5"'
~ u: Zero =s ~ o I ~ o I Date Structure F .s - - ~@ • :i

,. g Plus Minus or

§H Position

I" II
Position

1§~
Position

~i~
.~ ~ Blank

Occun ~ .§ ~6 ~ zH ()ti i <.> "'~ nTim11 Length

17 18 ,. 20 21 22 23 24 ,. ,. 21 la 29 30 31 32 33 3 35 38 37 38 ,. 40 41 42 434'4648 47 48 49 Su 51 52 53 54 55 56 57 58 59 60 61 82 63 " .. 69 70

Jeff
c rnn ~11

u 1!flra ~
~2

TRIL ltJltl
I~ l

Result Field
Resulting
lndiclton

!
Arithmetic

~~ P1uiTMinu1 Zero
Factor 1 Operation Factor 2 n ComPtre Comments

Name Length 1>21<2{i•2 .. :f
h Lookup(Factor Ws

Hi~ Low Equat

n n 1a 14

•• • • 7 • • 10 1t 12 13 14 115 11 17 18 111 :zo 21 22 13 24 21 21 27 lza21303132 33 34 35 38 37 38 31 40 41 42 434441414748 49 SO SI 52 SJ ~ 56 56 57 68 59 80 81 62 63 64 65 68 67 68 89 70 71 72 73 74

0 1 le
0 2 c
0 3 c

0
1---1

!
Lint !

12

Filename
or

Record Name

H A,MJ IPID ~Il E!lbll:

fE 1 Ss*• Skip OutPUt lndlcaton • ~ Comma Zert: ~:~~es No Sign CR - X"' Remove
~ ~ • F ield0~ame Y "' ~~tse Sign 5 . 9 =

l~l-j-E-io----l---And-1~-And-:r~--1 EXCPT Name ~= -::: ; : ~ Z = ;!;~d Edit ~:~~ned
1-~ 13 ~ Po11tlon No Yes ! ~ ; Suppress

~ ~~ j ~ ! l) :;.....,, ~ .__N_•_. __ N_• _ _. __ ..J----''---'------'-----1

o R J p; S •AUTO i6 ~ Record e: Constant or Edit Word
~ D ;f. z "" m o. • 1 2 3 4 5 6 1 8 9 10 11 12 13 14 16 1& 11 18 19 20 21 22 23 24

3 4 ti I 7 8 i 10 11 12 13 14 11S 16 17 18 19 2Q 21 22 23 24 25 2tl 27 28 29 30 31 32 33 34 31 31 37 38 31 40 41 42 43(44 411 41 47 Cl .f.9 5tl Iii Ii, PL"f M ~ 58 57 58 59 80 81 62 83 84 65 68 67 68 69 70 71 72 73 74

• , 01.-rx~ rl§E II 12 111
o 2 lo
o 3 lo
o • Jo
• 6 r<>

Note that these
balances are set
equal to one
another.

11 11 1111

Chapter 16. Programs 16-27

Printed Output

16-28

The transaction files must be backed up periodically, usually each day. The
master files can be backed up frequently if the file is constantly being
updated. Recovery can be done by reloading the master files and processing
all subsequent transactions. (For information about file recovery, see
Chapter 19, "Error Prevention, Detection, and Recovery.") To bring the
memo balance field to its current value, run a program that updates the memo
balance field with the transactions. After the memo balance field has been
updated, all current activity has been accounted for and normal operations
can continue.

A variation of the memo updating technique is to set the memo balance field
to 0 at the start of the day rather than to the value of the balance field. As
for the previous method, interactive updates would be made only to the memo
balance field.

The memo balance field would reflect the day's activity for that item. If no
transactions for the item occurred, the memo balance would remain 0. In
order to determine the current balance, an inquiry program would have to add
or subtract the memo balance from the balance in the master file.

If the application does not have exclusive use of the printer, you must decide
whether the output can wait until the application is completed or should be
printed as soon as it is available.

If you want the printed output as soon as possible without having exclusive
use of the printer, you must decide whether to use the PRINTER OCL
statement to defer printing. For example, if you are printing invoices and you
specify DEFER-NO on the PRINTER OCL statement, you might cause the
printer to be unavailable to anyone else for a long time. On the other hand, if
you specify DEFER-YES, you cannot print until your job is completed.

To have invoices printed as soon as they are available and still have the
printer available for other jobs, design the application so that the print
program runs as required. A good way to do this is to use the EVOKE OCL
statement to call the print step, which is therefore a NRT program.

The advantage of this technique is that it runs only when the output is ready
to print. Also, the operator can continue processing because, as soon as the
NRT initiates, the application continues with the next step. If the print step is
not a NRT, the operator has to wait until the program initiation, allocation,
and termination, as well as the printing, are complete.

The disadvantage of making the print program a NRT program is that the
spool file may become overloaded with numerous, small entries.

Inquiry Menu Options

When you press the Attn key, the inquiry menu is displayed. The three
options that you can select from that menu differ, depending on whether your
program is a SRT or a MRT. Those three options are 2, 3, and 4.

For a SRT program:

• Option 2 terminates the job and closes files.

• Option 3 terminates the job. The system retains dhta created by previous
job steps. Any records that were added or updated to existing files by
this job step are also retained. Records that were deleted by this job step
remain deleted. However, any new files created by this job step are lost.

• Option 4 is used by high-level languages to perform special processing
functions. See the appropriate language manual for more information.

For a MRT program:

• Options 2 and 3 have no effect on the program. They release the
requester from the program. Option 2 sends the requester to the next
step in the job stream, whereas option 3 terminates the job. You can use
?CD?=3721 on a procedure control expression to test whether the MRT
job step was terminated by option 2.

• Option 4 is not allowed.

If INQUIRY-NO is specified on the ATTR OCL statement for either the
MRT program or the procedure that called the program, the MRT step
cannot be interrupted by using option 1.

If CANCEL-NO is specified on the ATIR OCL statement for either the
MRT program or the procedure that called the program, the MRT step
canrtot be canceled by using options 2 or 3.

Chapter 16. Programs 16-29

Calling the Program

Read under Format

16-30

A program can be called in several ways. The operator can:

• Enter the OCL statements at the display station

• Enter the procedure name at the display station

• Select a menu option at the display station

An SSP-ICF session can call a procedure.

A MRT program can be called only from a MRT procedure. The system
checks by procedure name to see whether the MRT program is already active.

When you create a procedure, you can specify that the data following a
procedure name is either data for the program or parameters for substitution
in the OCL statements. For MRT programs, the procedure can be called only
with data, not with parameters for substitution. Anything following the MRT
procedure name is saved until the MRT program does its first input operation.
The SEU Guide has more information about calling the procedure with data.
A description of the PDATA parameter is on the SEU end-of-job display, or
on the $MAINT utility in the System Reference manual.

The read-under-format technique allows an operator to enter information on
a display while the program that uses the display is initiating. When the
read-under-format technique is used, a program or procedure displays the
format, and the program called next in the procedure reads it. The format is
displayed by a program or a PROMPT OCL statement with PDATA-YES
specified. If a SRT program displays the format, it then goes to end of job.
A MRT program displaying the format releases the display station. While the
next program is being initiated, the operator enters information for the
display. When the operator presses the Enter key, the input from the display
is sent to the second program.

For more information about this technique, see "Using the
Read-Under-Format Technique" on page 13-33.

External Switches

Eight external indicators (switches) are available for each requester. You can
set or change these switches by using the SWITCH OCL statement, the
SWITCH procedure, or the PROMPT OCL statement with UPSI-YES
specified. By setting these switches, you can affect how your job is processed
by the system. For example, if a certain error condition occurs, you can set a
switch on and bypass those job steps that are in error.

The following table shows how to access these switches in various high-level
languages:

Programming Language How to Access External Switches

Assembler $INFO macroinstruction

BASIC UPSI$ intrinsic function

COBOL IF and SET statements

FORTRANN Data switch subprogram

RPG II Ul-U8 or SUBR20

The following example uses the SWITCH OCL statement to affect how the
system processes a job stream. In the example, the SWITCH statement sets
switch 1 to 1 (on). Switch 1 determines whether the program is a daily or
weekly run. In the procedure, a FILE OCL statement for the daily run
differs from the FILE statement for the weekly run.

II IF SWITCH-1 FILE NAME-A
II ELSE FILE NAME-A,LABEL-B

When switch 1 is on, file A is used. When it is off, file B is used.

For a MRT program, a separate copy of the switch settings is kept for each
requester's job stream, and control is passed to the next job step when the
requester is released. Also, the switch settings are normally the first
requester's settings. Some high-level languages allow you to access a specific
requester's switch settings.

The System Reference manual has more information about using the external
switches.

Chapter 16. Programs 16-31

Local Data Areas

16-32

A local data area (LDA) is 512 bytes that can be used to receive data from
previous job steps or to pass data to later job steps. You can use the LOCAL
OCL statement to change the LDA. Local data can be substituted in OCL
statements and procedure control expressions.

For a MRT program, a separate copy of the LDA is kept for each requester's
job stream, and control is passed to the next job step when the requester is
released. Also, the local data area is normally the first requester's data.
Some high-level languages allow you to access a specific requester's local data
area.

Whenever a program is placed on the job queue, called by the EVOKE OCL
statement, released by the ATTR OCL statement, or called during inquiry,
the external switches and the LDA have the value that was in effect at that
time.

Each high-level language has a separate way of accessing the LDA. The
following table shows how to access the LDA in various high-level languages:

Programming Language How to Access LDA

Assembler $INFO macroinstruction

BASIC LOCAL, a 512-byte file

COBOL ACCEPT and DISPLAY
statements

FORTRANN Local data area subprogram

RPG II SUBR21 or special data structure

Programming Considerations for Multiple-User Programs

If you decide to use a multiple-user program, you should also be aware of the
following considerations:

• Creating a table of separate variables

• Sequential processing of multiple records with duplicate keys

• Changing a one-user program to a multiple-user program

• Response time

Creating a Table of Separate Variables

Because a multiple-user program can handle more than one transaction at a
time, you may require separate variables and work areas for each active
display station. For example, you may need separate copies of:

• Indicators, flags, or switches

• Current record identification for each disk file

• Current display format

WSU automatically creates these tables as part of the program generation
process. The WS U Guide has more information.

To keep a multiple-user program relatively simple and easier to maintain, try
to design the program such that an entire transaction is completed between
two successive display station input operations. This eliminates the need for
saving the above information.

Indicators, Flags, or Switches: Because a multiple-user program may process
transactions that require several display station input operations, it may be
necessary for the program to switch from one display station to another
before completing a transaction. Therefore, the program may have to store
the status of each display station whenever the program returns to the input
operation for the display station file. Usually, you can code an array or table
in which each element consists of the display station identification and the
appropriate status fields.

Chapter 16. Programs 16-33

16-34

Cut'l'ellt Record Identification for Each File: Among the status fields in the
table elements could be the key or record number for the last record
processed in each disk file. When the program is reading duplicate keys
sequentially and not all of the keys have been processed, the first of the series
may have to be saved.

Each time the program reads from a display station file, it should search the
table for an element that matches the display station identification. If the
program finds a match, it uses the element for that identification. If it does
not find a match, it should allocate a new element. The program should
reinitialize the identification field when it releases the display station.

Another method for maintaining multiple current record IDs (one for each
work station) is to define multiple logical files. One logical file could be
defined for each work station using the file. For information about how to
define multiple logical files, see "Using One File As Two Or More Logical
Files" on page 8-89.

When a disk file is shared, the table of variables should not include current
record identification because the only valid file information is that which you
read after the most recent display station input. For more information, see
"Sharing Files" on page 8-73.

Cul'l'ent Display Format: For similar reasons, you may want your program to
store the last operation for each display station. The operation could include
the display format name.

This table element could also include fields for such variables as local data
area, external switches, and separate totals.

Note: Keeping track of these variables can be complicated, because completion
of a transaction might require several input operations from a display
station, and those input operations might not be consecutive. Therefore,
if possible, you should try to avoid relying on tables of variables between
display station input operations. To avoid using tables, you may be able
to obtain all the necessary variables from the preceding display format.
For example, a part number or customer number might be on the
preceding display format. To use these fields, you may have to change
them from output-only to input I output fields. You may also have to
write as nondisplayed fields other information that otherwise would be
stored in the table of variables. This method also requires you to read
the master file again for each display station input operation, which is a
good technique.

Sequential Processing of Multiple Records with Duplicate Keys

When you use the generalized access method to process multiple records with
duplicate keys in one file shared among users of the same program, you may
need to keep track of which record you last processed for each user so that
you can continue processing from that point. Each time you access the file
for a given key, you access the first record with that key value. If other
records have the same key, you must continue reading the file sequentially
until you find the record you want. If you must interrupt the sequence of
read operations to read from the display station file, you might not be able to
find the last record you processed unless you create a table to store the last
record processed for each file by each display station. For information about
the generalized access method, see "Generalized Access Method" on
page 8-41. For information about duplicate keys, see "Duplicate Keys" on
page 8-27.

Changing a One-User Program to a Multiple-User Program

To change a one-user program to a multiple-user program, you may have to
change the program logic. In a one-user program, there is no need to keep
separate copies of variables and work areas for each device. In a
multiple-user program, a table or array is usually necessary for this purpose.

If the program is so simple that you always complete a transaction before
receiving input for the next transaction, such as a read-only inquiry program,
it probably requires no additional logic as a multiple-user program than as a
one-user program, except to release the requesters.

Usually, you would be converting a SRT to a MRT, and the logic would have
to be changed to account for multiple concurrent transactions. To convert a
SRT to a MRT, you must also change the response to the prompt about the
maximum number of requesters on the procedure used to compile the
program.

The general steps to change a one-user program to a multiple-user program
are:

1. Create a data structure to save unique information required by individual
display stations from one cycle to another if necessary. The data
structure search argument should be the display station identification.

2. Always reread the disk record to be updated if a display station input
operation occurred after the previous disk read.

3. Make sure that the program logic can handle the maximum number of
users.

Chapter 16. Programs 16-35

Response Time

If a multiple-user program has considerable input/ output or processing, the
average response times for the display station operators could become poor if
there are many concurrent users. For this reason, a technique often used to
ensure reasonable response time is to group the display stations. This
multiple-user program is usually a MRT program, so each group has a
separate copy of the MRT program. This technique reduces the number of
display stations trying to use the program. One way to group the display
stations using a MRT program is to use the NEWNAME parameter on the
LIBRLIBR utility to create a new copy of the MRT procedure within the
same library. Then, to ensure the response time, you can use the MRTMAX
parameter to limit the number of display stations using each copy.

Programming Considerations for MRT Programs

16-36

The following considerations apply primarily or exclusively to MRT
programs. These additional considerations include:

• Job stream

• Modular applications

• MRTMAX value

• Limiting the number of users

• First-requester considerations

• Summary of MRT considerations

Job Stream

The following diagram represents a normal program flow:

Initialize program,
open files, and
allocate resources

Read input

No

Process

Output

Yes

Beginning
of Program

End program,
close files, and
free resources

59019107-0

Chapter 16. Programs 16-37

16-38

A MRT program has this same flow, except that:

• All but the first requester start by reading input

• All requesters end by releasing the session

Initialize program,
open files, and

allocate resources

Read input

Yes

Beginning of Program

for First Requester

Beginning of Program
for All Subsequent

Requesters

No Yes
End program,

close files, and
free resources

Process

Output

No

Reinitialize

for next step

Release

session

End of Program

for One Requester

If you design an application that interacts with two or more display stations,
there is a separate job stream for each display station. The job stream
consists of a series of steps, each step including LOAD and RUN OCL
statements, typically FILE statements, and possibly other OCL statements.
When a step is a MRT, the MRT is normally already active, so the system
merely attaches to the MRT program rather than going through the complete
program initiation that would be required for a non-MRT. When the step is
complete for that job stream, the MRT merely releases the requester rather
than going through a time-consuming program termination.

89019106-0

Modular Applications

Display Station W1 Display Station W2

Step 1 I I LOAD Step 1 I I LOAD
I I RUN I I RUN

t

Step 2 I I LOAD Step 2 I I LOAD
I I RUN I I RUN

Attach Attach

Step3 MRT
Program

Release Release

Step4 11 LOAD Step4 I I LOAD
I I RUN I I RUN

59019084-0

For additional information about jobs and job processing, see
Chapter 17, "Jobs and Job Processing." For additional information about
procedures, see Chapter 18, "Procedures."

If you modularize a large application into a set of small, simple programs, the
performance might be poor if the programs are SRTs because of the time for
initiation and termination. The performance is probably better if the
programs are MRTs.

In the following example, an order entry application is divided into four steps:

1. Read the customer master file (CUSTNO program)

2. Enter the order (DETAIL program)

3. Update the inventory file (INVENTRY program)

4. Print the invoice and picking slip (ORDPRINT program)

Chapter 16. Programs 16-39

16-40

1
Step 1 CUSTNO Program

(MRT, 0 requesters)

Multiple-User File

l Release

~~~~~~i}-·--... ~ Step 2 DETAIL Program 
(MRT, 2 requesters) 

El-[ cl 
( 11 

Multiple-User File 

I Release 

Step 3 INVENTRY Program 
(MRT, 1 requester) 

Multiple-User File 

l Release 

~ < LDA indicates 
there is an 
order to print 

No 

yl 
I I ATTR RELEASE-YES 

Step4 ORDPRINT 
Program (NRT) 

l 
Display Prompt for 
CUSTNO Program 

l 
59019005-0 59019085-0 



MRTMAX Value 

This modular design is easier to maintain than one large, complex, program 
would be. Moreover, because the devices merely attach to and release from 
already active programs, the MR T programs have acceptable response times. 

The procedure for this example could be coded as follows: 

II TAG TAGB 
II PROMPT format name 
CUSTNO 
DETAIL 
INVENTRY 
II IF ?L'1,4'?10 GOTO TAGA 

* 
* 
II GOTO TAGB 

II TAG TAGA 

II ATTR RELEASE-YES 

II LOAD ORD PRINT 

II RUN 

II GOTO TAGB 

Start of procedure. 
Initial order entry format. 
Procedure to read customer file. 
Procedure to enter order. 
Procedure to update inventory file. 
Test for successfully completed order. 
First 4 bytes of LOA are set to nonzero 

value when order is canceled. 
Start next order. 
Normal processing continues here. 
Create NRT program to print invoice 

and picking slip while beginning 
to process next order. 

Process next order. 

In this example, the print job step is shown as a NRT program in order to 
ensure the best performance for the procedure and maximum availability of 
the printer. 

A MRT can be either a one-user or multiple-user program. The MRTMAX 
value is specified on the procedure that compiles your program, and it can be 
decreased on the A TTR OCL statement. 

If a MRT is a one-user program, it must have a MRTMAX value of 1. A 
MRTMAX value of 1 can be used to ensure that only one copy of a program 
is active at a given time. This technique is sometimes used to control the 
sharing of a resource. 

If your program already has the maximum number of requesters and another 
display station or SSP-ICF session requests it, the new requester must wait 
until a previous requester is released. You can test whether the MRTMAX 
value has been reached with a procedure control expression. You can use an 
IF MRTMAX procedure control expression that could issue a prompting 
message and try the IF test again before calling the MRT. If the problem 
becomes persistent, you can raise the MRTMAX value or use separate copies 
of the program. The System Reference manual has information about 
procedure control expressions. 

Chapter 16. Programs 16-41 



Indicating the Run Time of MRTMAX 

16-42 

You can use the MRTW AIT value in the A TTR OCL statement to indicate 
the run time of MRTMAX. 

The MR TWAIT value is specified in the procedure that compiles your 
program and can be changed on the A TTR OCL statement. 

If you specify MRTW AIT-YES, and a request causes the number of active 
users to exceed the MRTMAX value for the MRT, you will wait until the 
MRT is attached. 

If you specify MRTW AIT-NO, and a request causes the number of active 
users to exceed the MRTMAX value for the MRT, you will get back control 
and return code 2045 is issued. This return code can be tested by using the 
?CD? substitution expression. You must specify MRTWAIT-NO in a 
procedure. It will be ignored if entered anyplace else. 

Each time the MRT is processed, the value is reset. The I I ATTR statement 
with MRTWAIT-NO is required before each invocation of the MRT 
procedure in order to use this function. 

If an invalid MRTWAIT parameter is specified, a system error is issued. 

The following is an example of MRTWAIT-NO specified in a procedure. 

//ATTR MRTWAIT-NO 
MRTPROC 
//IF ?CD?=2045 GOTO PROC2 
//RETURN 
//TAG PROC2 
//ATTR MRTWAIT-NO 
//IF ?CD?=2045 GOTO PROC3 
//RETURN 
//TAG PROC23 

/*TRY PROC2*/ 

/*TRY PROC3*/ 

Note: If a requester is trying to use an existing MRT that is not fully 
operational, return code 2045 is issued. 



Limiting the Number of Users 

Usually, the number of users of a MRT program means the number of 
requesters. To limit the number of requesters, you use the MRTMAX value 
at compile time. At run time, you can use the A TTR OCL statement to 
reduce the MRTMAX value. 

Program users can also include acquired display stations, which can be 
acquired either by using statements in the high-level language program or 
from the job stream by using the WORKSTN OCL statement. Except in 
RPG, there is no way to control the number of display stations acquired at 
run time. In RPG, the NUM continuation-line option can be used to limit the 
total number of requesters plus acquired display stations. 

First-Requester Considerations 

The following considerations apply only to the first requester of a program: 

• Many of the execution-time variables (such as the parameters on the 
FILE OCL statement) are specified by the first requester. You might not 
know if you are the first requester or a subsequent requester. If you are a 
subsequent requester and you specify a file name, for example, it may 
already be defined. 

• Although a MRT is logically a separate job, it can be used as a step in 
any other job. Whenever possible, variables that initialize the job status 
come from the CNFIGSSP procedure or from initial program load. These 
variables include date, date format, forms number, and lines per page. 
Other variables must come from the first requester. These variables 
include priority, NEP, MRTMAX, log, external switches, current library, 
procedure library, local data area, and step region size. 

Summary of MRT Program Considerations 

Unlike a SRT program, a MRT program cannot write to a requesting display 
station before reading from the display station. A MRT program can be 
called only from a MRT procedure. 

The system checks by procedure name whether the MRT is already active. 
Because it would take more time, the system does not check by program 
name or by procedure name qualified by library name. Therefore, you should 
have only one copy of a MRT procedure in the entire system. 

When a MRT program (that is non-NEP) releases its last requester, the MRT 
procedure is indicated as no longer active. If another request is made for that 
MRT procedure and program, but the MRT program has not yet ended, there 
could be a delay in beginning the subsequent MRT if it requires exclusive use 
of some system resources. 

Chapter 16. Programs 16-43 



16-44 

For non-MRT programs, you can specify that the data following a procedure 
name is either data for the program or parameters for substitution in the OCL 
statements. For MRT programs, the procedure can be called only with data, 
not with parameters for substitution. Anything following the MRT procedure 
name is saved until the MRT program does its first input operation. 

If a MRT program reads from a specific display station as opposed to reading 
from any display station that has input ready, all other users wait until the 
specified display station input operation is complete. For example, if an RPG 
program processes a NEXT operation for display station W2, no other display 
station input is processed until the operator at display station W2 presses the 
Enter key. 

When an ATTR OCL statement with RELEASE-YES is specified for a MRT 
program, the MRT program becomes a MRT program with zero requesters, 
not a NRT program. This technique is advisable for MRT-NEP programs. 

The EVOKE OCL statement cannot be used to initiate a MRT procedure. 
However, the SSP-ICF EVOKE operation code can be used for this purpose. 
The SSP-ICF EVOKE-EOX operation code can be used to initiate a MRT 
program, but all the program can do with the display station file is to 
determine that the requester is an SSP-ICF session. 

When a SRT program runs, most system messages go to the requesting 
operator. For a MRT or NRT program, all system messages go the system 
operator. 

You can use ?CD?= 3721 on a procedure control expression to test whether 
a MRT job step was terminated by inquiry option 2. 

If a MRT program writes more than once to a display station and does not 
suppress input on all but the last of the write operations, the operator might 
suspend the program if he presses the Attn key. 

Even if a MRT procedure specifies that the OCL statements should be logged 
to the history file, the statements are not displayed unless HISTORY 
LIST,ALL or HISTORY CRT,ALL is specified. Furthermore, if you have 
system security installed, you can specify ALL only if your security 
classification is operator or higher. 



Chapter 17. Jobs and Job Processing 

This chapter describes how the system processes jobs and how you can affect 
the way the system processes jobs. 

Jobs and Job Steps 

A job is a unit of work to be done by the system. Usually a job is composed 
of one or more programs. For example, an order entry job might run one 
program to process orders and then a second program to print reports about 
the orders. 

A job step is a unit of work done by one program. A job that runs two 
programs has two job steps. A job step usually begins with a LOAD OCL 
statement and usually ends with a RUN OCL statement. The following 
procedure contains one job step because only one program is loaded and run: 

II LOAD PROG1 
II RUN 

This next example has two job steps because two programs are loaded and 
run: 

II LOAD PROG1 

II RUN 

II LOAD PROG2 

II RUN 

The statements in a procedure control the files, display stations, printers, and 
other resources used by a program. For example: 

II LOAD PROG3 
II FILE NAME-CUSTOMER 
II RUN 

These statements show the following: 

LOAD 

FILE 

RUN 

The program to be run is named PROG3. 

A disk file named CUSTOMER is to be used by program PROG3. 

The program is to be run. Also indicates the end of the OCL 
statements for this job step. 

Chapter 17. Jobs and Job Processing 17-1 



Starting and Ending Jobs 

How Jobs Are Started 

Any of the following actions causes a job to start: 

• Entering operation control language (OCL) at the keyboard. 

• Entering procedures at the keyboard. 

• Entering menu options that run procedures. 

• Using the JOBQ control command or OCL statement to place a 
procedure on the job queue. The job queue is a list of jobs waiting to be 
processed by the system. Typically, batch jobs, which require no 
interaction with a user, are placed on the job queue. 

• Using the EVOKE OCL statement to start a procedure. 

• Using the Interactive Communications Feature (SSP-ICF) to have a 
remote program evoke a job. The SSP-ICF Guide and Examples has 
more information about SSP-ICF and how to evoke jobs from a remote 
program. 

How the System Assigns Job Names 

17-2 

The SSP assigns a unique job name to each job that is submitted to the 
system. The job name has the following format: 

wwhhmmss 

where ww is the display station ID of the requesting display station or the 
session ID of the associated SSP-ICF session, and hhmmss is the time the job 
was submitted (in hours, minutes, and seconds) based upon the 24-hour clock 
set by the system operator during initial program load. 

Job names can be displayed by using the STATUS USERS, the STATUSF 
USERS or STATUS SUBSESS (for SSP-ICF remote programs) control 
command. 



Overview of How the System Runs Jobs 

Job Request 
from Operator 

0 J 

[ 

or 

Procedure Command 

0 

J 

from Remote Program 
via SSP-ICF 

The following is an overview of how jobs are run by the system. When a user 
starts a job (by selecting an item from a menu, entering an OCL statement, or 
entering a procedure command) or a remote program requests a job to be 
run, an SSP function called the command processor processes the request. 

Job Request 
from Operator 

0 .I 
[ 

l 

or 

Procedure Command 

0 

from Remote Program 
via SSP-ICF 

The command processor either: 

Command 
Processor 

59019086-0 

• Passes control to another function of the SSP called the initiator. 

• Attaches the requesting display station to a MRT program, if the 
procedure command is for an already running MRT procedure. 

(The command processor processes control commands itself.) 

.... Command .... Active 
Processor MRT Program 

Procedure Command 
or 
Job Request 

Initiator 

59019087-0 

Chapter 17. Jobs and Job Processing 1 7-3 



Job Request 
from Operator 

0 I 
[ 

l'-

or 

Procedure Command 

c1 
J 

from Remote Program 
via SSP-ICF 

17-4 

The initiator reads and processes: 

• Procedures. This includes MRT procedures that will start MllT 
programs. 

• OCL statements. 

When the initiator processes a RUN OCL statement, the initiator loads and 
passes control to the program, which then begins running. 

Command Active 
Processor MRT Program 

~ 

Initiator 

User Program 

59019088-0 



Job Request 
from Operator 

or 

Procedure Command 
from Remote Program 
via SSP-ICF 

When the program ends, the SSP terminator function performs the system 
actions needed to end the job step. These actions include, for example, 
freeing system resources used by the program. If more job steps follow, the 
terminator returns control to the initiator. 

If no other job steps follow in the job, the terminator ends the job and either: 

Returns control to the command processor for local jobs. 

Ends the SSP-ICF session for remote jobs. 

End 
of 
Job 

.... Command 
Processor 

Initiator 

End-of-Job Steps 
But Not 
End of Job 

User Program 

~ 
or Terminator 

Active 
MRT Program 

Program Releases 
Display Station 
or Remote 
SSP-ICF Session 

59019089-0 

The following sections describe the command processor, the initiator, and the 
terminator in more detail. 

Chapter 17. Jobs and Job Processing 17-5 



Command Processor 

Initiator 

17-6 

The command processor is the SSP function that first processes information 
that the user enters. When (1) a user enters a command or selects a menu 
item, or (2) a remote program sends a procedure command request using 
SSP-ICF, the command processor checks the command or the command 
associated with the menu item to determine whether a job should be started. 

If the entry or menu item is a procedure command, the command processor 
next checks to see if the procedure command is a request for a currently 
running MRT program. If it is, the command processor attaches the display 
station or SSP-ICF session to the MRT program. If the procedure command 
is not a request for a currently running MRT program, the command 
processor passes the procedure command to the initiator. 

If the entry or menu item is a control command, the command processor does 
not start a new job. Instead, the command processor passes control to the 
SSP routines that immediately process the control command. 

If the entry or menu item is an OCL statement, the command processor 
passes the statement to the initiator. 

The initiator reserves system resources for the job, finds the programs, and 
loads and passes control to the programs in a job. In addition, the initiator: 

• Ensures that enough main storage space (region size) is available for the 
job to run. 

• Processes procedure control expressions (substitution expressions and 
conditional tests). 

• Processes OCL statements. 

• Ensures that required load members exist. 

• Ensures that the files needed by the program exist at the specified share 
level. 

• Gets buffer spaces for the job. 

• Acquires display stations for which REQD-YES is specified on the 
WORKSTN OCL statement. 

Releases requesting display stations if RELEASE-YES is specified on the 
ATTR OCL statement. 



How the System Processes OCL Statements and Procedure Control Expressions 

A special system function called system input processes statements entered 
from a display station or from a procedure member. After reading the 
statement, system input performs all the substitutions and the functions 
specified by the statements. 

The statements that control the system input processing are the procedure 
control expressions. The System Reference manual has more information 
about these statements. 

After processing a statement, system input returns the processed statement to 
the calling function. During job initiation, the calling function is the initiator; 
therefore, all statements up to and including the RUN OCL statement are 
returned to the initiator. After a job has started, the statements are returned 
to the program that requested system input processing. A system utility 
program such as $COPY is an example of a program that requires system 
input to process utility control statements. 

The following example shows how system input processes a typical statement. 
The example is intended to give a general idea of how system input works; it 
does not show the detailed logic of system input processing. 

Before reading the example, you should be aware of the fundamental rules of 
system input processing: 

• System input processes a statement one field at a time from left to right. 
Fields are delimited by blanks. 

• Each time a substitution expression is evaluated, system input goes back 
to the beginning of the field and begins processing again. This is done to 
allow for nested substitution expressions. 

• After all substitutions are performed, the length of the generated 
statement must not exceed 512 characters (including spaces). The actual 
length of the statement before substitution can be up to 512 characters 
(including spaces). 

Chapter 17. Jobs and Job Processing 1 7 -7 



System Input Processing Example 

17-8 

In this example, the following statement is being processed by system input: 

11 IF DATAF1-?1'?2?'?FILE SWITCH X1XXOOXX 

\~ -- " \ Field 1 Field 2 Field 3 Field 4 Field 5 

s9019132-0 

Assume that when the statement is read, parameter 1 does not have a value 
and parameter 2 has a value of AR. Also, assume that a file named ARFILE 
exists on disk. 

The system input function performs the following steps: 

Step 1. 

Step 2. 

Step 3. 

Identifies the first field as / /. 

Identifies the second field as IF, a valid procedure control 
expression. 

Examines the third field and determines that the field contains a 
nested substitution expression. The innermost substitution is 
evaluated first. Therefore, system input substitutes the value of 
parameter 2, AR, into the field. After the substitution, the 
statement looks like this: 

11 IF DATAF1-?1'AR'?FILE SWITCH X1XXOOXX 

\~ --- """ \ Field 1 Field 2 Field 3 Field 4 Field 5 
89019133-0 

Because a substitution was performed, system input goes back to the 
beginning of field 3 and starts processing it again. 

Step 4. Examines the third field and determines that the field contains a 
substitution expression. System input performs the substitution. 
In this case, parameter 1 does not have a value and the value AR 

is substituted. Now the statement looks like this: 

11 IF DATAF1-ARFILE SWITCH X1XXOOXX 

\~-- \ \ 
Field 1 Field 2 Field 3 Field 4 Field 5 

89019134-0 



Again, because another substitution was performed, system input goes back 
to the beginning of field 3 and starts processing it again. 

Step 5. 

Step 6. 

Examines the third field and determines that the field is an 
existence test for a file. 

Evaluates the conditional expression formed by fields 2 and 3. 
The file ARFILE exists on disk (it was one of our assumptions), 
so the test is true. Because the test is true, system input discards 
the IF test (fields 2 and 3). Now the statement looks like this: 

I I SWITCH X1 XXOOXX 

\ ""- "' Field 1 Field 2 Field 3 

59019122-0 

After checking each field and determining that no further substitution or 
system input processing of the statement is required, the statement is passed 
back to the caller (usually the initiator). 

If the file ARFILE had not been on disk (that is, the conditional expression in 
the original third field had been false), system input would discard the 
remainder of the statement and process the next statement. 

Chapter 17. Jobs and Job Processing 17-9 



How the System Ends Jobs 

Normal Termination 

l 7-10 

A job ends when: 

• The last step in a job ends. 

• A MRT program releases its last requester. 

• The job is canceled by: 

A user selecting option 3 in response to an error message. 

The system operator cancels the job using the CANCEL control 
command. 

A user selects option 2 or 3 from the Inquiry display. 

When a job or job step ends, the terminator performs system actions 
necessary to end the job or job step. If there are more job steps to process in 
the job, the terminator returns control to the initiator. If the job step is the 
last one in the job or if a MRT program releases its last requester, the 
terminator ends the job and returns control to the command processor and 
ends any active SSP-ICF sessions. 

When a job step ends or when the user selects option 2 in response to an 
error message, the terminator does the following functions: 

• Saves newly created resident files on disk. 

• Makes available work areas (such as buffers and main storage space) 
used by the program. 

• Initializes work areas to be used by the next job step. 

• Deletes any scratch files (RETAIN-S) used by the job. 

If the job step is the last one of the job, the terminator does the following 
additional job termination functions: 

• Deletes any job files (RETAIN-J) used by the job. 

• Releases the requesting display station if it is still attached to the job and 
returns control to the command processor so the user can request another 
job. 

• Ends the requesting SSP-ICF session if the program was requested by a 
remote program and if the remote session is still active. 

• Frees any system resources that were used by the job. 



Abnormal Termination 

Abnormal termination of a program occurs when any of the following 
conditions happen: 

• A user selects option 3 in response to a displayed error message. 

• The user interrupts the program and selects option 2 or option 3 from the 
Inquiry display for all programs except MRT programs. 

For MRT programs, option 2 releases the display station from the MRT 
program and continues with the next job step; option 3 releases the 
display station from the MRT program and cancels the remaining job 
steps. 

• The system detects an error condition during normal termination and 
cannot let the job normally terminate. 

• A user enters the CANCEL command at the system console or at a 
system service display station. 

When one of the above conditions occurs and the program is not a MRT 
program, the system automatically runs the terminator, and any jobs 
following the job step in error are not performed. If option 2 was selected 
from an Inquiry display, the files used by the terminated job are closed. For 
all other types of abnormal termination, files are not closed, and the following 
statements are true: 

• Files contain all updates done before the abnormal termination. 

• Any additions made to shared and nonshared files remain in the file. 

• No new entries are added to the disk VTOC. 

• If RET AIN-S was specified for a resident file in this job step, the resident 
file will not be deleted. 

When the terminator function ends, it returns control to the command 
processor and ends any active SSP-ICF sessions. 

Chapter 17. Jobs and Job Processing 1 7 -11 



Job Management and Job Scheduling 

Processing Priorities 

l7-12 

The system allows you to assume an important role in managing and 
scheduling your jobs. For example, you can: 

• Affect how your programs use main storage by using different processing 
priorities. 

• Affect the order in which your jobs are to be processed by the system by 
using different job queue priorities in the job queue. 

Priority is the relative ranking of items. For example, a job with high 
processing priority should run faster than a job with medium or low priority. 

You can specify the processing priority for a job or job step by using the 
ATTR OCL statement. To have a job processed at the same priority each 
time it was run, you would specify the ATTR OCL statement in that job's 
procedure. Operators can also use the PRTY command to assign processing 
priorities to the next job they start; system operators can use the PRTY 
command to change the priority of a currently running job. The processing 
priorities are: 

• High 

• Medium 

• Normal 

• Low 

If your job does not specify a processing priority, the system assigns your job 
a normal priority. The System Reference manual describes the PRTY control 
command and the ATTR OCL statement. The Using Your Display Station 
and Operating Your System manuals shows how to use the PRTY command to 
specify the processing priority of a job you want to start. 

The initiator takes into account the following items regarding processing 
priorities of jobs: 

• Each job step (or program) may have its own priority, and the priority 
becomes effective as soon as the initiator checks the OCL statements. 

• A nonrequester-terminal (NRT) program (that is, a program running 
without a requesting display station) has the same priority as the job that 
started the NRT program. 



• When a job is started by using the EVOKE OCL statement, the evoked 
job has the same priority as the job that evoked it. 

• The priority of a MRT program is not related to any current requesters of 
the MRT. The priority of MRT programs is determined by: 

Processing Priority Considerations 

The priority of the MRT procedure. 

The priority specified by the user that initially requested the MRT 
procedure. 

If the MRT procedure was initially requested from a 
single-requester-terminal (SRT) procedure, the priority specified in 
that SRT procedure. 

In general, let the system assign processing and job queue priorities to your 
jobs; the normal priority can usually handle your job needs. 

When assigning priority levels to jobs, your main goal is to have the system 
process the maximum number of jobs in the least amount of time. 

You may want to use the processing and job queue priorities to establish 
groups of jobs with certain characteristics. For example, you may want to 
assign all certain jobs a job queue priority or a processing priority. You may 
want to run your testing jobs with one processing priority and your 
production programs with another processing priority. 

You may want to assign processing priority to programs based upon the 
following criteria: 

• Assign high priority to jobs requiring fast response time at a display 
station or quick system throughput. 

• Assign low priority to jobs that do not use display stations and will run 
for a long time. 

• Assign medium priority to interactive jobs that could be reclassified as 
batch jobs by the system, based upon the processing requirements of the 
program. 

If you do assign more than one job a high priority, the overall effect might 
actually be to reduce the actual response time and throughput of the jobs you 
are trying to make run faster. 

Chapter 17. Jobs and Job Processing 1 7 -13 



Job Queue 

Job Queue Priority Levels 

17-14 

The job queue allows you to run 1 through 50 batch jobs at once and still 
continue to use your display station for other work. During the hours when 
your system is busiest, you can run very few jobs from the job queue. Later, 
during the light load hours, run many jobs from the job queue. 

You can specify six different job queue priority levels, numbered 0 through 5. 
Job queue priority 5 is the highest level, and priority 0 is the lowest level. By 
specifying job queue priority levels, you can determine the order in which 
jobs are processed from the job queue. 

Level 5 jobs are considered first, followed by level 4 jobs, then level 3 jobs, 
and so on. If you do not assign a priority level to jobs using the job queue, 
the system assigns each job a priority level of 3. An example of how to use 
the job queue priority levels would be to have the important batch portions of 
a printing application (such as the printing of payroll checks) use level 5; but 
have level 1 used for program compilations. 

You can increase the number of jobs to run from the job queue by entering: 

CHANGE JOBS,JOBQ,# of jobs 

This implementation also gives you the flexibility to have multiple job queue 
jobs in addition to the sequential execution of jobs. To have 5 job queue jobs 
execute concurrently, but also have job queue priority 3 jobs execute 
sequentially, you would enter the following commands: 

CHANGE JOBS,3,1 
CHANGE JOBS,JOBQ,5 

The job queue priority of a job is specified when you put the job on the job 
queue using the JOBQ control command or OCL statement. For example, 
the following JOBQ command: 

JOBQ 4,PAYLIB,PAYROLL 

puts the PAYROLL procedure (from the library PAYLIB) on the job queue 
with a job queue priority of 4. The System Reference, Using Your Display 
Station, and Operating Your System manuals describe the JOBQ control 
command and OCL statement. 

Job queue priority is different from processing priority. Job queue priority 
specifies the order the jobs in the job queue are presented to the system to be 
run. Processing priority is the order in which jobs already running on the 
system are assigned system resources. Jobs on the job queue can be assigned 
a processing priority, but it only becomes meaningful when the job is taken 
off the job queue and starts running. 



The following table shows the order in which jobs are considered by the 
system to be run based upon the order the jobs were placed on the job queue 
and the job queue priority specified. 

Order Placed in Order Considered to be 
Job Queue Run by the System 

Job Priority Job Priority 

Job 1 3 Job6 5 
Job 2 4 Job 2 4 
Job 3 2 Job 1 3 
Job 4 3 Job 4 3 
Job 5 1 Job 3 2 
Job 6 5 Job 5 1 

You can start and stop individual jobs within each priority level. For 
example, if you do not want job 4 within priority level 3 to run, you would 
use the HOLD JOBQ control command so that jobs would be selected in the 
following order: 

Order Placed in Order Considered to be 
Job Queue Run by the System 

Job Priority Job Priority 

Job 1 3 Job 6 5 
Job 2 4 Job 2 4 
Job 3 2 Job 1 3 
Job 4 3 Job 3 2 
Job 5 1 Job 5 1 
Job 6 5 

To run job 4, you would use the RELEASE JOBQ control command so that 
job 4 could be selected from the job queue. 

A job being held is not allowed to run until it is released or explicitly started 
by using the START JOBQ command. Other jobs in the same priority level 
that are not held are allowed to run. 

Chapter 17. Jobs and Job Processing 1 7 -15 



You can also prevent entire priority levels from being considered by the 
system to be run. For example, if you do not want any jobs from priority 
level 3 running, use the STOP JOBQ control command. Jobs are then 
presented to the system in the following order: 

Order Placed in Order Considered to be 
Job Queue Run by the System 

Job Priority Job Priority 

Job 6 5 Job 6 5 
Job 2 4 Job 2 4 
Job 1 3 Job 3 2 
Job4 3 Job 5 1 
Job 3 2 
Job 5 1 

Later on, you could use the START JOBQ command to allow the priority 3 
jobs to be run. 

Priority Level Zero: You can assign priority level zero to jobs that might not 
need to be run for some time, such as, special jobs to be run later in the day 
or overnight. Priority level zero is the one priority level of the job queue that 
is initially stopped. 

For example, you may submit jobs with this level during the day, and then 
start priority level zero at night to have the jobs run overnight. 

Priority level zero combined with the system's automatic message response 
capability is an effective way of submitting jobs to be run: overnight when the 
processing load of the system might not be so great and the system could run 
unattended. For more information about the system's automatic response 
capability, see Chapter 14, "Messages and Message Members." 

Processing Priority of Jobs on the Job Queue 

17-16 

Each job on the job queue can have a different processing priority. The job 
queue priority level determines which jobs are presented to the system to be 
run, while the processing priority determines the order in which jobs are run 
by the system. 

The processing priority of a job placed in the job queue is normal unless you 
use the PRTY command or the ATTR OCL statement to specify a different 
processing priority. For example, the following PRTY and JOBQ commands: 

PRTY HIGH 
JOBQ 4,PAYLIB,PAYROLL 

put the PAYROLL procedure (from the library PAYLIB) on the job queue 
with a job queue priority of 4, and with a processing priority of HIGH. 



Print Queue Manager 

If you use a procedure to place a job in the job queue, your job has the same 
processing priority as the procedure that placed it in the job queue. 

Using the system console, you can enter the CHANGE control command to 
change the processing priority of a job that is in the job queue. The job 
queue priority level does not change nor does its position within the priority 
level change. 

The print queue manager provides an interface through which DW /36 can 
control the job queue. The print queue manager is a part of the SSP and 
resides in #LIBRARY. Using the print queue manager, some of the functions 
you can use to control the job queue or spool queue are: 

• Search 

• Hold 

• Cancel 

• Move 

• Release 

For more information about the print queue manager, see the printer control 
guidelines in Chapter 3, "Printed Output" on page 3-1. 

Dispatching and Swapping of Programs in Main Storage 

Some of the applications you run on the system are more important than 
others in terms of throughput or response time. This section describes how 
the system's dispatching and swapping functions work together in order to 
optimize pedormance for your programs. (Not all the details of how 
dispatching and swapping are described, only those details that are important 
to you as a programmer are described.) This section also describes some 
methods you can use to affect how the system dispatches or swaps programs. 

The system (1) handles multiple display station operations at the same time 
and (2) supervises the sharing of system resources among programs. 

Additionally, the system treats interactive and batch programs differently. 
Interactive programs tend to spend a relatively large amount of time waiting 
for users to enter data, thus the system easily recognizes them and optimizes 
their pedormance by using the wait times to process other programs. 

Batch programs seldom do any display station input operations and 
sometimes use large amounts of system resources. Even though the system 
can easily recognize batch programs, the system can do little to optimize their 
pedormance (other than overlap processing with input/output operations). 
What the system can do, however, is minimize the effect of batch programs 
on the performance of interactive programs. 

Chapter 17. Jobs and Job Processing 1 7-1 7 



L 7-18 

Dispatching is the act of assigning the main storage processor to the most 
eligible program on the system. The following table shows the sequence in 
which programs become eligible for dispatching. The sequence is based on 
processing priority. 

Proces.sing 
Priority 

System 
High 
Medium or Normal 
Low 

Dispatching 
Sequence 

First 
Second 
Third 
Fourth 

Only the system can use the system processing priority, for example, for 
programs such as the command processor. You can specify the other 
priorities for your applications to control sequence in which programs are 
assigned to the main storage processor. 



Swapping 

The following diagram shows programs with various processing priorities and 
program status types: waiting and ready. Waiting means the program is 
waiting for some type of input/ output operation; ready means the program is 
eligible to use the main storage processor. 

Processing Program 
Program Priority Status 

Program 1 High Waiting 
Program 2 High Waiting 
Program 3 Normal Waiting 
Program 4 Normal Ready 
Program 5 Normal Waiting 
Program 6 Low Ready 

Starting the search from the highest priority, program 4 would be selected 
because it has the highest priority of all programs ready to be run. 

The order of dispatching programs is from high to normal to low. The normal 
priority also includes the medium priority. To better understand these 
priorities, you should understand what program swapping is and how it works. 

When the system is moderately busy, it is very common that the size of main 
storage is not sufficient to accommodate all the programs running on the 
system. The system is processing more programs than can fit in main storage 
at the same time. 

The system moves (or swaps) programs that are not busy or less important to 
disk so that their main storage can be used by other programs. Later, the 
programs that were swapped out to disk can be swapped back into main 
storage. Usually, the swapping occurs when a display station input operation 
has occurred. 

Chapter 17. Jobs and Job Processing 1 7 -19 



17-20 

The following example shows how swapping can increase the total amount of 
work that programs running at the same time can do. 

Assume that programs A, B, and C are running at the same time and have the 
same processing priority. Programs A and Bare in main storage; program C 
has been swapped to disk. 

( User ) 
Program A 

D\ 
L 

l: '] 

( u~r 
Program B 

L 
Cil 

l: '-' 

( User ) 
Program C 

r ~ :\ 

Main Storage 

Program A 

r- Program B 

Disk Swap 
Area 

I Program CI 

89019090-0 



The system knows that program C is ready to run when program A requests 
input from display station Wl. Program A will be inactive until the user 
enters data. Therefore, the system swaps program A to disk and swaps 
program C into main storage. 

( User ) 
Program A 

f \: 
I 

User 
Program B 

:J 

L 

User I Program C 

[ 

;) 

C\ 

:J 

cl 
'] 

Main Storage 

Program B 

Program C 

Disk Swap 
Area 

I Program A I 

59019091-0 

Programs Band C then share the main storage processor. After program A 
becomes ready, it will replace either program B when it requests input from 
display station W2, or program C when it requests input from display 
station W3. 

Chapter 17. Jobs and Job Processing 1 7 -21 



Automatic Priority Adjustment of Programs 

17-22 

Although the relative priority of all programs remains the same (that is, high 
is before normal and norma~s before low), there is some adjustment of 
priorities within the priority levels. For example, if four programs have a 
medium priority, the system might give preference to one of the four 
programs and allow it to have more system resources than the other three 
programs. Because there are usually more normal priority programs being 
processed by the system, this section describes how the system automatically 
adjusts the normal priorities. 

Two dispatching status types, waiting and ready, have previously been 
described. One type of waiting status that is significant for swapping 
purposes is the long wait. This status type applies to certain operations that 
tend to last for a relatively long time. This means that the system usually has 
enough time to swap the program out to disk before it will again be ready. 
Waiting for a resource is an example of a long wait. The most common is the 
wait for display station input. 

When a program is ready to be swapped in, pages of main storage might have 
to be swapped out. Programs that are in a long wait are the most eligible to 
be swapped out. If no programs are in a long wait, another program might be 
swapped out, usually a batch program. (Batch programs are recognized by 
the system as those programs that have exceeded a system-defined time limit 
without entering a long wait.) The system performs additional checks to 
ensure that nonproductive swapping does not occur. 

When a program is swapped out,. its priority is effectively increased or 
maintained at its current level. When a program runs for a particular length 
of time without entering or attempting to enter a long wait, its priority is 
reduced. The effect of this is that batch programs move to the bottom of the 
normal priority programs while interactive programs stay at the top. When 
interactive programs are swapped out, they have preference over batch 
programs to be swapped in when the user is finished typing in data. 



Job Scheduling Guidelines 

The following are some ideas you should consider: 

• When two or more batch programs are run at the same time, they: 

Might take longer to run than if they were run separately (one after 
the other). 

Have a tendency to adversely affect response time of interactive 
programs. 

One way to keep batch programs from adversely affecting interactive 
programs is to put the batch programs on the job queue. 

• Interactive programs that do a lot of calculating or do a lot of disk 
reading and writing might have poor or inconsistent response times. The 
system might treat these interactive programs the same as batch 
programs. Therefore, you may not want other batch programs running 
on the system when these types of interactive programs are running. 
Also, you may want to assign medium priority to these types of 
interactive programs. 

• The specification of high and medium processing priorities might cause 
normal priority interactive programs to process slower. 

• Use processing priorities sparingly; however, if you must use them: 

Use low priority for batch programs (these programs might be 
swapped more often). 

Use medium priority for your important interactive programs that 
perform lots of calculations or disk read and write operations; for 
example, order entry applications. 

Use high priority for extremely important programs or for efficiently 
coded interactive programs. You should not assign high priority to 
more than one batch job; if you do, your interactive jobs may slow 
down considerably. 

• Consider the control storage requirements for the jobs you are running. 
See "Control Storage Considerations" later in this section. 

Chapter 17. Jobs and Job Processing 1 7 -23 



Control Storage Considerations 

17-24 

Depending on the size of your control storage relocatable area and the 
functions you run there, all functions may not be able to run concurrently. 
For example, if you have a 5360 System Unit stage 1 (see Figure 17-2), and 
if you run BASIC and FORTRAN programs at the same time, you cannot 
also run the data compression, extended trace, SMF communications, or 
1255 MCR functions. 

The following is a list of functions that run in the relocatable control storage 
area and the size of the relocatable storage each function requires: 

Function 5360 5362 5364 
or System System System 
Programs Unit Unit Unit 

BASIC 3.75K 3.75K 3.75K 

Data l.75K 1.75K 1.75K 
Communications 

Data l.75K 1.75K 1.75K 
Compression 

Disk Cache l.25K 1.25K 1.25K 

Diskette 2.0K 2.5K 2.5K 
Functions 

Extended 0.75K 0.75K 0.75K 
Trace 

FORTRAN 3.75K 3.75K 3.75K 

Local Area 2.0K 2.0K 2.0K 
Network 

SMF 1.25K 1.25K 1.25K 
Communications 

1255 MICR 1.25K See Note 1 See Note 1 

6157 1/4-inch 0 0 0 
Tape Drive See Note 2 See Note 2 See Note 2 

Notes: 

I. 1255 MICR is not allowed on the 5362 and 5364 
System Units. 

2. 615 7 I/ 4-inch tape drive can run without using any 
control store relocatable space on the 5360 and 5362 
System Units. 

Figure 17-1. Relocatable Area Sizes and Rules 



Data communications and diskette functions are always guaranteed space to 
run. If enough space is not available for the other functions, an error message 
is issued. To recover from the error, you must either wait for some programs 
to finish or cancel some programs. You can either cancel the program 
requesting the storage (option 3), or cancel some other programs that are 
using one of the other functions. This will free up the space for the requested 
program. The following relocatable area size and rules will help you 
understand and schedule which functions can run concurrently on your 
system. 

Control Storage 
System Unit Relocatable Size 

5360 stage 1 3 3.75K segments 

5360 stage 2 or stage 2.1 5 3.75K segments 

5360 stage 3 5 3.75K segments 

5362 with work station controller 5 3. 7 SK segments 

5362 without work station controller 3 3.75K segments 

5364 2 3.75K segments and 
1 1.SK segments 

Figure 17-2. Control Store Relocatable Sizes 

Note: To determine the stage of your system, look on the label on the inside of 
the control panel cover. In the top center of the label, immediately to the 
right of the words Processor Check, will be the stage of your system: 
stage 2, stage 2.1, or stage 3. If there is no indication and the system 
unit is not a 5360 Model JD, you have a stage 1 system. 

Control Store Relocatable Area Usage Rules 

Following are the rules used by the system to use the control store relocatable 
area: 

1. Data communications and diskette function code are always guaranteed 
space to run. 

2. Code in the relocatable area cannot cross over the segments. 

3. Space to accommodate the entire size of the function (see Figure 17-1) 
must be available for a function to run. 

Chapter 17. Jobs and Job Processing 1 7-25 



Data Extended SMF 1255 Disk 
BASIC FORTRAN Compression Trace Communications MICR Cache 

x x x x 
x x x x 

x x x x 
x x x x 

x x x x 
x x x x 

x x x x 
x x x x 

x x x x x 
x x 
x x x x 

x x x x 

Figure 17-3. Partial List of Programs That Can Run Concurrently on a 5360 System Unit Stage 1 
Control Storage (See Note) 

17-26 

All the programs listed above can run concurrently on the 5360 System 
Unit with a stage 2 or 2.1 control storage processor. 

Note: To determine the stage of your system, look on the label on the inside 
of the control panel cover. In the top center of the label, immediately 
to the right of the words Processor Check, will be the stage of your 
system: stage 2, stage 2.1, or stage 3. If there is no indication and the 
system unit is not a 5360 Model lD, you have a stage 1 system. 



Data Extended SMF 
BASIC FORTRAN Compression Trace Communications 

x x x 
x x x 
x x 

x x 
x x x 

x x x 
x x x 

Figure 17-4. Partial List of Programs That Can Run Concurrently on a 
5362 System Unit without a Work Station Expansion Feature 

Note that BASIC and FORTRAN programs are mutually exclusive. 

All the programs listed above can run concurrently on a 5362 System Unit 
with a work station expansion feature. 

Disk 
Cache 

x 
x 
x 

Chapter 17. Jobs and Job Processing 17-27 



Data Extended SMF Disk 
BASIC FORTRAN Compression Trace Communications Cache 

x x 
x x 

x x x 
x x x 

x x 
x x 

x x 
x x 

x x x 

Figure 17-5. Programs That Can Run Concurrently on a 5364 System Unit 

Note that data compression, BASIC, and FORTRAN are mutually exclusive. 

17-28 



Job-Related Information Contained in the History File 

The system records information about each job run by the system in the 
history file. The information is logged when the job ends, and includes the 
following: 

• Starting time 

• Ending time 

• Amount of time used to run the job 

• Date the job was run 

.. User ID of the operator running the job 

• Display station ID of where the job was run 

• Name of procedure that started the job 

• Whether the job was: 

A single-requester-terminal. program 

A multiple-requester-terminal program 

Run from the job queue 

A nonrequester-terminal program 

The HISTORY procedure in the System Reference manual has more 
information about the information logged to the history file. 

Chapter 17. Jobs and Job Processing 17-29 



Evoking Other Jobs 

17-30 

You can use the EVOKE OCL statement to start a new job from within a job 
that is running. For example, you have a procedure with one or more job 
steps similar to the job shown below: 

* Start order entry program 
II LOAD ORDENT 
II RUN 
* Start order summary listing program 
II LOAD PRTLIST 
II RUN 

The first program, ORDENT, uses the display station to enter new orders 
into the system. The orders are stored in a disk file. The second program, 
PRTLIST, reads the disk file and prints the information on an order form. 
Because the PRTLIST program does not require a display station, it could be 
used to do other work while the PRTLIST program is running. However, the 
display station will remain attached to the procedure while the PRTLIST job 
step is running, thus preventing the display station from doing other work. 

If you create two procedures and use the EVOKE OCL statement to start the 
second procedure, the user's display station is free to do additional work while 
the PRTLIST program is running. For example: 

* Start order entry program 
II LOAD ORDENT 
II RUN 
* Start order summary listing procedure 
II EVOKE PRTLIST 

Procedure PRTLIST 

* Start order summary listing program 
II LOAD PRTLIST 
II RUN 

The System Reference manual describes the EVOKE OCL statement. 



Submitting Jobs to be Run Later 

Job Queue 

You can have jobs start at a later time by using either: 

The job queue 

The WAIT OCL statement 

The job queue is described earlier in this chapter. You can use the JOBQ 
control command or the JOBQ OCL statement to place a job on the job 
queue. The System Reference, Using Your Display Station, and Operating Your 
System manuals describe these. 

The JOBQ OCL statement allows you to place a job on the job queue from 
within a job that is already running. 

The HOLD and RELEASE commands allow you to hold and release jobs on 
the job queue. 

The START and STOP commands allow you to start and stop the processing 
of jobs from the job queue, or to start and stop the processing of job queue 
priority levels. The ST ART command also allows you to immediately start a 
job on the job queue. 

Chapter 17. Jobs and Job Processing 1 7 -3 1 



WAIT OCL Statement 

17-32 

The WAIT OCL statement causes a job to wait until a certain time of day, or 
until a certain period of time has passed. Once a WAIT OCL statement is 
processed, the job does not resume processing until the specified condition is 
met. The System Reference manual describes the WAIT OCL statement. 

When the WAIT OCL statement is processed, any system resources allocated 
to a waiting job are treated as if they are owned by a never-ending program. 
See Chapter 16, "Programs" for more information about never-ending 
programs. 

If you use the WAIT OCL statement, you should consider the following 
items: 

• The ?TIME? substitution expression, along with the WAIT OCL 
statement, can be used to check to see if the job has waited until a 
specific time. Then processing can begin based upon how long the job 
has waited. 

• The STATUS USERS control command can be used to see if the job is 
waiting. 

• A job can be canceled even if it is waiting. 

• If you place a job containing a WAIT OCL statement on the job queue, 
that job may prevent other jobs on the queue from processing. This 
might delay processing considerably, depending upon the length of time 
specified by the job using the WAIT OCL statement. 

This example shows how to make a procedure wait until 4 p.m. (a time of 
160000). If the time is already greater than 4 p.m., the WAIT statement is 
not processed. For example, if the procedure were run at 5 p.m., the 
procedure PROCl would be run immediately. If.the ?TIME? test were not 
performed, procedure PROCl would not be run until 4 p.m. of the next day. 

II IFF ?TIME?>160000 WAIT TIME-160000 
II EVOKE PROC1 



Changing the Position of a Job in the Job Queue 

Once a job has been placed in the job queue, you can place a job in a higher 
or lower priority level by using the CHANGE JOBQ command. The 
processing priority of the job is not changed. The System Reference, Using 
Your Display Station, and Operating Your System manuals have more 
information about the CHANGE control command. 

Submitting Jobs by Security Classification 

You can specify that certain security jobs be run by a user who has a 
particular security classification. The following is a list of the various security 
levels, listed from the highest to the lowest level of security, that can be 
assigned to users: 

Master security officer (M) 
Security officer (S) 
System operator (0) 
Subconsole operator (C) 
Display station operator (D) 

When you submit a job, you can use the SECURITY conditional expression 
to determine whether an operator has the required security level. 

The following example uses the SECURITY conditional expression to 
determine whether the user who submitted the job has a security classification 
of system operator or higher. The SECURITY-0 expression tests for the 
system operator security classification. If the user does not have system 
operator classification or higher, the IFF statement cancels the job. 

II IFF SECURITY-0 CANCEL 
II LOAD PROGRAM 
II RUN 

You can also use the SECURITY conditional expression to determine 
whether password security is active. 

The System Reference manual has more information about the SECURITY 
conditional expression, 

Chapter 17. Jobs and Job Processing 17-33 



Preventing Jobs from Being Canceled or Interrupted 

Preventing Canceled Jobs 

If you specify CANCEL-NO on the ATTR OCL statement in a job, any 
subsequent use of the Attn key at the display station causes options 2 and 3 
(cancel job) of the Inquiry display not to be shown. This prevents users from 
canceling jobs from the display stations. A job may be canceled at any time 
by a user using the CANCEL control command at the system console or 
system service display station. 

Preventing Interrupted Jobs 

If you specify INQUIRY-NO on the ATTR OCL statement in a job, any 
subsequent use of the Attn key at the display station causes option 1 (request 
command display) of the Inquiry display not to be shown. This prevents 
another job from being started at the display station. 

The System Reference manual has more information about the A TTR OCL 
statement. 

If you are running MRT programs, the ATTR OCL statement should be 
placed in the MRT procedure. 

Preventing Informational Messages from Displaying 

17-34 

Most IBM-supplied procedures display informational messages at the display 
station from which they are run. When you have a job composed of programs 
and IBM-supplied procedures (such as DELETE) that display informational 
messages, the messages can be very confusing to a user who has no idea of 
what processing steps are being performed by the system. 

Also, messages sent to remote display stations cause the system to store the 
display on disk, show the informational message, and then show the previous 
display again. This can have an adverse effect on performance for remote 
display stations. 

The INFOMSG control command or OCL statement allows you to select 
whether informational messages from procedures should be displayed. The 
System Reference manual has more information. 



Running Jobs During Initial Program Load (IPL) 

#STRTUPl Procedure 

#STRTUP2 Procedure 

The system allows you to have jobs run as you are starting up the system by 
using the #STRTUPl and #STRTUP2 procedures. The System Reference 
manual has more information about the #STRTUPl and #STRTUP2 
procedures. 

The #STRTUPl procedure is called by the IPL system function and runs 
during IPL after the system operator has signed on but before other users are 
allowed to sign on. The #STRTUPl procedure can be used to perform job 
processing functions you want done when no other jobs are being run and 
when these functions require a dedicated system. For example, you may want 
to condense certain libraries or reorganize disk space before running any jobs. 

You create the #STRTUPl procedure member and place procedures, such as 
CONDENSE or COMPRESS, within the member. You can store the 
#STRTUPl procedure either in the system library or the system operator's 
sign-on library. 

You cannot start any other jobs until the #STRTUPl procedure ends nor can 
any parameters be passed to the #STRTUPl procedure. Because the 
#STRTUPl procedure runs before IPL is complete, certain functions such as 
print spooling and job queue initialization have not yet been done; therefore, 
do not place a never-ending program within the #STRTUPl procedure 
member or a program that uses the job queue or print spooling. 

The #STRTUP2 procedure is similar to the #STRTUPl procedure except: 

• #STRTUP2 begins running only when IPL is completed. 

• Jobs can be submitted to the system to be run while #STRTUP2 is 
running. For example, jobs can be submitted to the job queue while 
#STRTUP2 is running. 

You can store the #STRTUP2 procedure either in the system library or the 
system operator's sign-on library. 

Chapter 17. Jobs and Job Processing 17 -3 5 



Running Jobs Without Operators 

17-36 

You can have jobs running on the system while no operators are present, such 
as overnight. When you schedule jobs to run without operator supervision, 
you should consider the following: 

• Using programs that have been tested and are working correctly. The 
programs should not require display stations. 

• Using the automatic response facility to respond to any error messages 
that occur. Automatic response is discussed in Chapter 14, "Messages 
and Message Members." 

• Using the HOLD-YES parameter of the PRINTER OCL statement if you 
are doing any printing. The HOLD-YES parameter causes one copy of 
the output to be held on the spool file. This allows you to reprint that 
spool file entry without having to rerun the job that created the printed 
output. 

• Stopping the spool file writers. This prevents any output from printing; 
however, your programs can run, and the output will be stored in the 
spool file. 

• If you do print the output from programs, be sure your printers have 
enough forms or paper to complete the jobs. Also, ensure the forms are 
aligned properly. 



End-of-Day Processing 

You can use the WAIT and POWER OFF OCL statements together to 
automatically start end-of-day processing tasks and then power off the 
system. For example, you may want to do a nightly save of your master files: 

* Nightly Save Procedure 

* * Wait until 6 p.m. before beginning save 
* and power-off sequence. 
II WAIT TIME-180000 

* * Allocate the diskette drive 
II ALLOCATE UNIT-I1,CONTINUE-YES 

* * Save the master files on diskette 
SAVE CUSTMAST,,,VOL001,M1 
SAVE ITEMMAST,,,VOL001,M1 
SAVE ACCTMAST,,,VOL001,M1 
SAVE SHIPMAST,,,VOL001,M1 

* * Start power-off sequence 
II TAG PWRLOOP 
II POWER OFF 

* * If power-off is not successful, 
* wait 1 minute and try it again. 
II WAIT INTERVAL-000100 
II GOTO PWRLOOP 

Because the system ignores the POWER statement when it cannot be safely 
processed (for example, when another job is running), a GOTO and TAG 
loop is needed in case the POWER statement was not successful. The WAIT 
OCL statement is included to prevent the system from constantly trying the 
POWER statement, which would needlessly increase the amount of work the 
system is doing. 

Note that this procedure would require a diskette magazine in slot Ml. The 
magazine would have to be in place before 6 p.m. 

Chapter 17. Jobs and Job Processing 17-3 7 



17-38 



Chapter 18. Procedures 

This chapter describes what procedures are and how you can create your own 
procedures. 

Procedure Concepts 

A procedure is a collection of statements that causes one or more programs to 
be run. Procedures are used to start jobs running on the system. 

Many procedures are supplied as part of the SSP, the Utilities Program 
Product, and the programming languages. For example, the SSP procedures 
allow you to create data files, create libraries, and copy data files. The 
Utilities Program Product procedures allow you to create and change library 
members. The procedures supplied with the languages (such as RPGC and 
COBOLC) allow you to compile and run the programs you code. These 
procedures are described in the System Reference manual, the utilities 
manuals, and the programming language manuals. 

By using procedures, you .can avoid the repetition of entering several 
statements each time a job must be run. For example, operation control 
language (OCL) statements can be included in a procedure. The collection of 
statements is stored in a library member called a procedure member. 

Chapter 18. Procedures 18-1 



What a Procedure Can Contain 

Procedures can contain the following types of statements. These are 
described in the System Reference manual. 

• OCL statements, which are used to load and run programs. OCL 
statements also indicate how the SSP is to run the program and how the 
SSP is to use the input and output devices that the program may require. 
Examples of OCL statements are LOAD, FILE, and RUN. 

• Procedure control expressions, which control how the procedure is 
processed based on certain conditions. 

• Procedure commands, which cause other procedures to be run. Examples 
of these procedure commands are COPYDATA and SA VE. You can 
also use procedure commands to run your own procedures. 

• Utility control statements for SSP utility programs, which pass information 
to SSP utility programs. 

Procedures cannot contain any control commands. 

Advantages of Using Procedures 

18-2 

Using procedures offers· several advantages in running your jobs: 

• You can run several job steps by entering one procedure command. This 
saves the repeated entering of OCL statements each time a job needs to 
be run. 

• If you code the procedure command in a menu, you can start your jobs 
from the menu by entering an option number. 

• You can prompt for and pass variables to your jobs. This information is 
in the form of parameters. 

• If you code a procedure so that it uses parameters, you can check that the 
proper values were entered for the parameters or make decisions based 
on the values entered. 

• You can also code a procedure so that it passes data to any one program 
called by the procedure. You can also change the user-programmable 
status indicator switches and the local data area. 



Procedure Parameters 

You can define parameters in your procedures. Parameters allow information 
and variables to be passed to the procedure. A procedure can have a 
maximum of 64 parameters, and each parameter can have up to 128 
characters. 

Parameters passed to procedures are called positional parameters. Parameters 
are separated by commas(,). Whenever a parameter appears in a procedure 
command, it must appear in the same position in relation to other parameters 
in the procedure command. That is, each parameter is assigned a place, such 
as the first parameter or the second parameter. If a parameter is omitted, a 
comma must still be used to indicate the position of the omitted parameter. In 
the following example, the second parameter is omitted: 

PROCA PARM1,,PARM3 

The first and third parameters are separated by two commas, which indicate 
that the second parameter is omitted. 

To define parameters in your own procedures, you use substitution 
expressions. The System Ref ere nee manual has more information about using 
parameters with your procedures. 

The following example shows how two parameters are entered and 
substituted in a procedure. Procedure PROCA contains the following 
statements: 

II LOAD PROGRAM1 
II FILE NAME-INPUT,LABEL-?1? 
II FILE NAME-OUTPUT,LABEL-?2? 
II RUN 

When you enter the following procedure command to start PROCA: 

PROCA FILE1,FILE2 

the first parameter (FILEl) and the second parameter (FILE2), are 
substituted for the expressions ?1? and ?2?, respectively: 

II LOAD PROGRAM1 
II FILE NAME-INPUT,LABEL-FILE1 
II FILE NAME-OUTPUT,LABEL-FILE2 
II RUN 

The substitution is performed when the procedure is processed by the 
initiator. The initiator is described in Chapter 17, "Jobs and Job 
Processing." 

Chapter 18. Procedures 18-3 



Using Procedures with Menus 

Your application users generally don't need to know the procedure's name or 
parameters because you will provide menus for them. The user selects an 
option from a menu, and the system runs the appropriate procedure (the 
procedure you told the system to run when you created the menu). The 
procedure then loads and runs the program to do the task that the application 
user specified. 

Calling a Procedure from Another Procedure 

One procedure can call another procedure. A procedure called by another 
procedure is a nested procedure. Nesting is generally helpful when the same 
procedure is called several times in a job. The procedure can be entered and 
stored only once and then called as often as necessary. 

A good example of using a procedure to call another procedure is deleting a 
file your program creates. Your procedure could simply include the DELETE 
procedure command. For example: 

*Delete work file FILE1, if it exists 
II IF DATAF1-FILE1 DELETE FILE1,F1 
* Run program 
II LOAD PROGRAM1 
II FILE NAME-FILE1,RECORDS-250 
II RUN 

Considerations for Multiple-Requester-Terminal Procedures 

18-4 

To understand multiple-requester-terminal (MRT) procedures, you should 
first be familiar with MRT programs. A MRT program allows several 
requesting display stations to be attached to one copy of a program at a time. 
For more information about MRT programs, see Chapter 16, "Programs." 

A MRT program can be started only by a MRT procedure. You specify a 
MRT procedure by selecting an option at the end of the source entry utility 
(SEU) that will identify the MRT procedure, or by specifying the MRT 
parameter of the $MAINT utility. 

When you start a MRT procedure, the system first checks whether the MRT 
procedure is already running. If the procedure is not running, the system loads 
and starts the MRT program. 

If the procedure is running and the number of display stations using the 
program is less than the maximum, the requesting display station is attached 
to the program. If the procedure is running and the maximum number of 
display stations is using the MRT program, the requesting display station 
waits for the MRT to release one of the other display stations. 



The system processes the statements in the MRT procedure from only the 
first requesting display station that runs the MRT procedure. MRT procedure 
statement processing is done only one time for a MRT program. After the 
first requesting display station starts the MRT program running, all other 
requesting display stations are attached directly to the MRT program until the 
MRT program ends. 

If other display stations are waiting to use the MRT program when it releases 
one of the requesting display stations, one of the waiting display station is 
attached to the program. 

The following are additional facts about MRT procedures: 

• Only one LOAD and RUN OCL statement pair is allowed in a MRT 
procedure. Also, any statements that follow the RUN OCL statement 
are ignored. Therefore, you may need to call the MRT procedure from 
another procedure if the MRT procedure is a job step within a job. 

A MRT procedure can be called by another procedure, but a MRT 
procedure cannot call another procedure. 

• When a MRT procedure is started by another procedure, a new job (in 
effect) is started on the system. Therefore, OCL statements, such as 
REGION and ATTR, within the MRT procedure are processed as if they 
were at the beginning of a job. 

• Once the MRT program is running, other display stations that request to 
use the MRT program (by entering the name of the MRT procedure) are 
attached directly to the MRT program. Therefore, the OCL statements 
in a MRT procedure are not processed for other requesting display 
stations. 

• The INCLUDE OCL statement or the procedure command that starts a 
MRT procedure can pass data to the MRT program. However, no 
parameters can be passed to the MRT procedure. The data to be passed 
to the program starts with the first nonblank character following the 
procedure name and ends with the last nonblank character in the 
statement. The system passes the data to the program on the first input 
operation for the first requesting display station. 

• Any DATE, FORMS, or MEMBER OCL statement that has been used 
in a previous job step has no effect on a job step that runs a MRT 
program. Instead, the MRT program uses values specified during system 
configuration or IPL. 

• Any PRINTER or SYSLIST OCL statement that has been used in a 
previous job step has no effect on a job step that runs a MRT program. 
Instead, the MRT program uses the configured system printer for both 
program and system list output. 

Chapter 18. Procedures 18-5 



Designing Procedures 

Naming a Procedure 

This section introduces several topics you should consider when you are 
creating procedures. 

You should assign meaningful names to your procedures. This makes them 
easier to remember and, therefore, easier to use. For example, all your 
procedures that have to do with accounting could begin with ACC or ACCT. 

You could then have ACCTPAY for your accounts payable application and 
ACCTREC for your accounts receivable application. 

Procedure Performance Tips and Coding Techniques 

18-6 

This section describes some of the techniques you can use to help improve the 
performance of your procedures. The System Reference manual has more 
information. 

• Use GOTO and TAG statements rather than several redundant IF 
expressions. Use one IF expression and a GOTO expression to reduce 
the time needed to evaluate several IF expressions. The statements 
skipped by the GOTO and TAG expressions are not processed. 

• Use ELSE statements if you have more than one IF expression and only 
one of the expressions can be true. All ELSE statements are skipped 
after a true IF or a false IFF expression. 

• Combine IF expressions when possible. The remainder of a statement is 
not processed after a false condition. 

• Avoid using the informational message(// *)statement to display 
prompting messages (such as: ENTER MEMBER NAME or ENTER 
LIBRARY NAME). Use the PROMPT OCL statement and a display 
format instead. The advantages are: 

More information can be displayed. 

The prompt display can have help text. 

Fewer disk operations are required. 

For remote display stations, fewer data transmissions are made. The 
I I * statement must save the current display contents, show the 
message, and show the display again after the procedure ends. The 
PROMPT statement shows the display format without having to save 
the current display contents. 

For MRT procedures, informational messages are displayed at the 
system console. 



• After you have tested your procedures, stop the logging of the OCL 
statements to the history file. You may only need to have the OCL 
statements logged when you are creating and testing your procedure. 

• If you have many comments in your procedure, you should put a 
RETURN statement at the end of the procedure and put your comments 
after the RETURN. This way the system processes the RETURN 
statement and your comments are not processed (thus, saving the amount 
of time the system would otherwise use to read the comments). 

• Use your own libraries for your applications; that is, run procedures and 
programs from a library other than the system library (#LIBRARY). The 
system library has a very large directory and, therefore, more time is 
needed to search for a library member in the system library than for the 
same member in one of your libraries. 

Also, the SSP always searches the current library first, and if the member 
is not found, then it searches the system library. 

• Use IF conditional expressions to avoid having the system operator 
respond to an informational message when a procedure is sent to the job 
queue or when the procedure is started by the EVOKE OCL statement 
or an SSP-ICF evoke operation. 

Chapter 18. Procedures 18-7 



Programming Guidelines for Procedures 

This section describes the procedures to use to create, change, and list 
procedures. It also shows some techniques you can use in your procedures. 

Creating or Changing Procedures 

Listing Procedures 

18-8 

You enter procedures into a library using the development support utiltiy 
(DSU) or the source entry utility (SEU). SEU is described in detail in the 
SEU Guide. DSU is described in detail in the DSU Guide. 

You can also use the $MAINT utility to create and copy procedures into a 
library. The $MAINT utility is described in the System Reference manual. 

Note that DSU and SEU allows you to change lines in a procedure and then 
store those changes. The $MAINT utility allows you to only create procedure 
members; if you want to change a line in the procedure, you must reenter the 
entire procedure. 

SEU, DSU, and the $MAINT utility allow you to specify the following about 
procedures: 

• It is a MRT procedure (the default is a non-MRT procedure). 

• The procedure is to have parameters (this is the default for non-MRT 
procedures). 

• The procedure is to pass data to a program (MRT procedures always 
have this characteristic). 

You list a procedure by using the LISTLIBR procedure. The LISTLIBR 
procedure is described in the System Reference manual. DSU can also list a 
procedure. 



Controlling How a Procedure Runs 

You control how a procedure runs by using procedure control expressions. 
These expressions allow you to do the following and make decisions based on 
the results: 

Create variables in procedures by using substitution expressions, 
including: 

Value entered for a parameter 

A return code set by system programs called by your procedure 

Current or session library 

Date and time 

Information in the local data area 

Session printer 

System list device 

Requesting display station's ID 

• Test a value and process a statement using the IF statement. For 
example, you can test: 

Value of a parameter for equal to or greater than 

Whether a procedure is currently running 

Whether a specified amount of disk space is available 

Whether a file or library is on disk 

Whether a partial file or library is on disk 

Whether a file is on diskette 

Whether a job is being run from the job queue or is evoked 

Whether the maximum number of display stations is using a MRT 
program 

Whether a library member exists in a library 

Security classification of an operator 

Volume ID of a diskette 

Chapter 18. Procedures 18-9 



18-10 

• Display messages to the application users using the I I * (informational 
message) statement or to the system operator using the// **(system 
console message) statement. 

• End an entire procedure using the CANCEL statement or end a 
procedure level using the RETURN statement. 

• Use the EVALUATE statement to: 

Assign values to parameters 

Add, subtract, multiply, and divide numbers 

Determine the value of substitution expressions 

Set the job return code 

• Branch to statements in a procedure using the GOTO and TAG 
statements. 

• Temporarily stop the running of a procedure and display a message using 
the PAUSE statement. 

• Start another procedure or restart the same procedure using the RESET 
statement. 

The procedure control expressions are described in the System Reference 
manual. 



Debugging Procedures 

Several statements can help you to debug your procedures. 

DEBUG OCL Statement: This statement allows you to trace the logic flow of 
your procedures. It shows each level of substitution expression evaluation. 
The output is listed on the system list device. It also allows you to 
temporarily stop the running of a procedure between job steps. 

LOG OCL Statement: This statement allows you to have the statements that 
are processed in your procedures logged to the history file. This allows you to 
display or print the history file to determine the statements run. 

HISTORY Procedure: This procedure lists, displays, or copies the contents of 
the history file. It allows you to select information to be displayed, listed, or 
copied for the statements that have been logged to the history file. You can 
select: 

• All entries 

Name of the procedure 

• Time the procedure ran 

• Display station ID 

• Operator's user ID 

More information about these statements is in the System Reference manual. 

Chapter 18. Procedures 18-11 



History File and Procedure Processing 

J8-12 

The system automatically logs, to the history file, each statement processed in 
a procedure unless: 

• At the end of the source entry utility (SEU) on the end-of-job display, 
you specified that the statements were not to be logged. 

• You use the LOG OCL statement to turn off statement logging. The 
LOG OCL statement controls whether the statements in a procedure are 
logged to the history file. The LOG OCL statement is used to override 
the logging indicator you specified for the procedure member when you 
created it using SEU. 

The LOG statement affects only the logging of OCL statements to the 
history file. Other items such as messages, halts, and job information are 
not affected by using the LOG OCL statement. 

• The procedure is an IBM-supplied procedure. 

Note: All IBM procedures have a default of NOLOG. You can log IBM 
supplied procedures to the history file the same way normal user 
procedures are logged. 

Logging requires that every OCL statement processed by the system be 
written to the history file. This can increase the number of disk write 
operations and affect performance. You should only log OCL to history file 
when you first create your procedure members and are testing them to see if 
they are working correctly. 



Calling Multiple-Requester-Terminal Procedures 

By having a non-MRT procedure call a MRT procedure, you can have the 
non-MRT procedure check whether the maximum number of requesters is 
already attached to a MRT program. For example, the following non-MRT 
procedure uses the IF procedure control expression ,and the MRTMAX 
conditional expression: 

* Test for the maximum number 
II IF MRTMAX-ORDENT GOTO TOOMANY 

* * Number of requesters is less than the maximum, 
* call ORDENT (which is a MRT procedure) 
ORD ENT 
II RETURN (End this procedure) 

* 
II TAG TOOMANY (Maximum requesters already using ORDENT) 
II* 'Too many people are running order entry.' 
II* 'Canceling the procedure, try again later.' 
II PAUSE 
II RETURN (End this procedure) 

This diagram shows how the procedure ORDENT would be called: 

Non-MRT Procedure OR DENT 
MRT Procedure 

Call MRT MRT 
Procedure Program 

Next OCL End of MRT Program 

Statement 

59019092-0 

Chapter 18. Procedures 18-13 



18-14 



Chapter 19. Error Prevention, Detection, and Recovery 

This chapter will aid you in preventing, detecting, and recovering from 
system, programming, and user errors and failures. As you read this chapter, 
keep two things in mind: anticipate the unexpected, and take precautions to 
prevent the unexpected. 

Types of Errors and Failures 

System Failure 

Power Failures 

The following is a description of some of the most common system errors or 
failures. Although in most cases the probability of one of these occurring is 
relatively low, you should be aware that at least one of them might happen, 
and you should be prepared to correct and recover from the error or failure. 

A system failure might result in a damaged file or library. To recover from 
such a failure, you must restore a copy of the file or library and reapply all 
changes to the file or library since the last recorded save operation. The 
probability of a system failure is relatively low; if you keep up-to-date copies 
of your files and libraries, recovery should be relatively easy. 

Power failures are unpredictable and are usually not preventable. The key to 
recovering from a power failure is to find out which programs and files were 
in use when the power failure occurred. You then have to find the last 
successful checkpoint, the last point at which data in the files correctly and 
accurately reflected the corresponding data in other files. (Checkpoint code 
keeps track of the last record in the file that was in some way modified or 
added.) All changes made to the files after the last successful checkpoint 
should be eliminated, and all changes from that checkpoint reapplied. 

Chapter 19. Error Prevention, Detection, and Recovery 19-1 



Equipment Failures 

Programming Errors 

An equipment failure could be a modem failure, a problem with a 
communications line, a problem with external disks, or a display station 
problem. Equipment failures are unpredictable and are usually not 
preventable. Often an error message is displayed when the system detects an 
equipment failure; you can either cancel the job or continue the job. If you 
continue the job, a code may be returned to your program indicating the error 
type. Your program can then check the status of the data you were 
processing or perform the necessary corrections. 

There are two types of programming errors. The first is one you will find 
within hours of it happening, such as inaccurate information found in a 
printout, or a program that unsuccessfully attempts to use a display station. 
This type of error can be treated in much the same way as a power failure 
(the program producing the error should also, of course, be debugged), and 
should be relatively easy to correct. The second type of programming error is 
one that can only be detected after a long period of time, such as inaccurate 
monthly or yearly summaries. This kind of error might be unrecoverable. 
Prevention is the key: before you put such a program into use, test it 
extensively. 

System Operator Errors 

Operator Errors 

19-2 

System operator errors are much more frequent than programming errors. If 
the system operator inadvertently cancels an important job, for example, data 
in your files might not correctly and accurately reflect the corresponding data 
in other files. It is important to detect such a situation as soon as possible and 
to correct affected files. As with a power failure, you look for the last 
successful checkpoint and reapply any transactions made since that 
checkpoint. One important point: the more often you perform checkpoints, 
the fewer transactions you will have to reapply. 

Operator errors are common. Examples include inadvertently powering off a 
display station, external disks, or entering inaccurate input. Because users of 
an application are usually less knowledgeable about the workings of the 
system, they might be unaware of an error when it occurs, and probably are 
unfamiliar with the consequences of the error. Again, prevention is 
important: restrict the application user to only running options from an 
assigned menu, and should the user inadvertently stray into a potential 
problem situation, allow the program to detect the problem and stop the user 
from going any further. You or the program (not the operator) should handle 
the recovery. Recovery from user errors should be treated in the same way as 
recovery from system operator errors. 



Error Prevention 

The following pages describe a few of the things you can do to prevent errors 
or failures. 

Using the Automatic Response Facility 

You can have the system automatically respond to displayed messages, by 
using the RESPONSE and NO HALT procedures. When a message has an 
automatic response, the message is not displayed; instead, the response is 
immediately used. This allows you to define a specific response that is to be 
used automatically, rather than having an operator enter a response. 

See "Providing Automatic Responses for Messages" on page 14-4 for more 
information. 

Preventing Job Cancellation 

One of the major causes of system operator or user error is the unscheduled 
cancellation of jobs. Obviously, you do not want to take away the system 
operator's ability to use the CANCEL command; there is definitely a need 
for the system operator to cancel jobs in an emergency. However, you should 
consider preventing a user from canceling jobs via the Attn key. 

Using the CANCEL-NO parameter of the ATTR OCL statement, you can 
prevent the Inquiry cancel options (2 and 3) from being displayed. See 
"Preventing Jobs from Being Canceled or Interrupted" on page 17-34 for 
more information. 

Program Testing and Debugging 

Although it might be considered an obvious statement, thorough program 
testing and debugging is the soundest way of minimizing programming errors. 

As you test your programs and procedures, use the LOG OCL statement or 
the LOG procedure to ensure that all OCL statements in your procedures are 
recorded to the history file. Logging OCL statements to the history file 
allows you to trace the activity of your procedures and programs. 

The DEBUG OCL statement allows you to follow the logic of your 
procedures as you run them. Using the DEBUG OCL statement, you can 
specify whether procedure control expressions and OCL statements in your 
procedures should be listed as they are evaluated, and whether the procedures 
should stop after each job step. Like the LOG statement or procedure, the 
DEBUG statement enables you to evaluate your procedures and programs as 
you test them. 

Chapter 19. Error Prevention, Detection, and Recovery 19-3 



The System Reference manual has more information about the LOG OCL 
statement and the LOG procedure, and about the DEBUG OCL statement. 

Many of the programming languages allow you to perform debugging 
operations during compile time. Some of the programming languages allow 
you to override debugging operations, thus preventing the debugging 
information from being added to your source code; however, the debug 
option is a good way of detecting program errors before they occur. For 
more information about the problem determination and program debugging 
capabilities of the programming language that you use, see the appropriate 
language manual. 

Extending the Size of a Library 

19-4 

When you are copying a member to a library and the member is too large to 
fit in the library, the system automatically creates an additional area on disk 
into which this member can be placed. The additional area is called a library 
extent. The system also displays a message informing the user when an 
extent is about to be created. See "Library Extension" on page 9-11 for 
more information. 

You can prevent a library from having an extent by doing frequent condenses 
of the library, when you are developing an application for example. The 
CONDENSE procedure in the System Reference manual has information 
about condensing libraries. 

Note: The system library (#LIBRARY) is not allowed to have an extent. 



Extending the Size of a File 

An extendable file is a disk file for which the system automatically attempts 
to allocate more space each time the file becomes full. Specifying an 
extendable file prevents your program from ending abnormally when there is 
no room in the file to add additional records. 

You can specify a file as an extendable file by either of the following 
methods: 

• FILE OCL statement. The EXTEND parameter specifies the number of 
blocks or records to extend the file. 

• BLDFILE procedure. The number of blocks or records to extend the file 
is a parameter. 

If you specify an extension value when the file is created, the extension value 
becomes an attribute of the file. In that case, the file is extended, if required, 
by any program using the file. You can also specify an extension value when 
your program uses an existing file. This allows you to override any existing 
extension values or to specify a new extension value for a file. For example, 
if a file was not specified as extendable when it was originally created, you 
can use the FILE OCL statement to make the file extendable while your 
program is using the file. 

If the file is being shared and the various programs use different EXTEND 
values on the FILE OCL statement, the system uses the extension value of 
the program that caused the file to become full. When the file is extended, all 
programs sharing the file take advantage of the extra space, even if the 
EXTEND parameter was not specified on the FILE OCL statement. 

The System Reference manual has more information about the FILE OCL 
statement and the BLDFILE procedure. 

Chapter 19. Error Prevention, Detection, and Recovery 19-5 



Extending the Size of a Folder 

If you are copying a member to a folder and the member is too large to fit in 
the folder, the system automatically creates an additional area on disk into 
which the member can be placed. The additional area is called a folder 
extent. See "Folder Layout" on page 10-3 for more information. 

Using the WAIT and FILE OCL Statements 

The WAIT OCL statement causes a job to wait until a certain time of day, or 
until a certain period of time has passed. Once a WAIT OCL statement is 
processed, the job will not continue processing until a specified condition is 
met. 

If a program needs to use a file or resource and that file or resource is being 
used by another program or procedure, an error might occur. The WAIT 
parameter of the FILE OCL statement can prevent other programs from 
waiting for the resources owned by another job. 

The System Reference manual has more information about the WAIT and 
FILE OCL statements. 

Allocating the Diskette or Tape Drive to a Job 

19-6 

You can use the ALLOCATE OCL statement to dedicate the diskette or a 
tape drive to a job. For example, you normally do not retain control of the 
drives between SAVE procedures. That is, after FILEl is saved but before 
FILE2 is saved, another procedure on the system could use the drive. This 
would make your SA VE FILE2 procedure wait until that other procedure 
was done. 

To avoid allocating the drive longer than necessary, you should use the 
DEALLOC OCL statement to deallocate the drive. For example, your 
procedure could save three files and then run another type of job that did not 
use the drive. You could use the DEALLOC OCL statement to allow other 
jobs on the system to use the drive. 

The System Reference manual has more information about these statements. 



Error Detection in Programs and Procedures 

As you plan and code your applications, you naturally attempt to create 
programs that are free of errors. Nonetheless, errors might occur in the 
system facilities or the input data that your program uses. 

You should anticipate these problems, and put code in your programs to 
handle them. If such code is not in your programs, not only could output data 
and files contain errors, but you might not even be aware of the errors. 

Special error detection subroutines are provided by some of the programming 
languages, such as RPG IL If the programming language that you use does 
not provide error detection capabilities, you must include error-handling code 
in the program. 

The action taken by your error-handling code can vary from correcting the 
situation to stopping the program. In any event, a message should alert your 
users to the situation. You can define the message, severity levels, and 
various procedures the display station operator should do when an error 
occurs. 

When an error is detected, the program must determine what action to 
perform. The following is a list of recovery actions you should consider: 

• Trying the display station operation again. For example, if your program 
cannot read a display format, the program can keep trying to read the 
display format. 

• Saving the data used by the program and ending the program. If you do 
this, you must have a method of using the saved data and restarting the 
program. 

• Ending the program without saving the data, or ending the program and 
discarding previously saved data. The program must be reloaded, and the 
data must be reentered. 

• Releasing the display station from a MRT program. 

Each programming language supplies ways to detect errors as they occur. 
The following describes a few of the error detection capabilities of each of 
the programming languages. For more information about the error detection 
capabilities and the error return codes for each programming language, see 
the appropriate language manual. 

Chapter 19. Error Prevention, Detection, and Recovery 19-7 



Error Detection in ~mbler 

Error Detection in BASIC 

Error Detection in COBOL 

After each $WSIO macroinstruction is run, you can test the return code in the 
display station DTF for a successful completion. If the display operation 
results in an error, then a user-coded error recovery routine for the specific 
return code can be run. 

The IOERR parameter of the OPEN, READ, WRITE, and CLOSE 
statements can be used to specify a- line number that the program should 
branch to when a display station operation completes with an error. The 
ERR intrinsic function can be used to determine which type of error has 
occurred, and user-coded operations can be run for that return code. 

The EXCEPTION/ERROR declarative can be used to specify how the 
program is to handle input or output errors. 

Error Detection in FORTRAN IV 

Error Detection in RPG II 

19-8 

The DISPL Y subprogram starts the error detection capabilities of 
FORTRAN. The RTCODE parameter of the DISPLY subprogram contains 
the return code for each read or write operation to a display station. The 
return code can be checked by the program. You can also use the ERR 
parameter of the READ statement to determine which errors have occurred. 
The ERR parameter also contains the statement number that the program 
should branch to if an error occurs. 

The WORKSTN file information data structure (INFDS) contains status 
information that the program can check to determine what type of error has 
occurred. Using the information in the INFDS data structure, the program 
can then determine which error conditions can be processed by the INSFR 
subroutine. 



Error Detection for MRT Programs 

When a permanent 1/0 error is detected at a work station which is a 
requester of a MRT program, the system releases the work station and allows 
the MRT program to continue processing for the other MRT requesters. 
Because the work station has been released, the program is not canceled and 
other requesters of the program do not have to wait for a system message 
response. A return code of hex 24 is placed in the MRT program's DTF after 
the work station is released, indicating that the terminal has been released by 
the operator. This return code may be returned for both input and output 
operations. 

User-Coded Error Detection Routines 

You can also create your own detection routines for errors unique to your 
installation. The design and purpose of such coding would depend on your 
particular application. 

Checking Return Codes in Procedures 

Using the ?CD? substitution expression, your procedures can check a return 
code that indicates abnormal or problem situations such as disk failures. 
Procedure logic flow can be based on the substituted return code, and the 
procedure can branch to recovery routines if a particular return code is found. 
The System Reference manual has an explanation of the use of the ?CD? 
substitution expression and the return codes that you can use to control 
program logic. 

Chapter 19. Error Prevention, Detection, and Recovery 19-9 



Backup and Recovery 

Equipment Backup 

19-10 

The goal of system backup plans and procedures should be to minimize the 
impact of any breakdown in the system and to recover from this breakdown 
as quickly and economically as possible. 

Most backup procedures used for batch systems also apply to interactive 
systems. However, there are additional backup considerations in interactive 
systems. In interactive applications, the entire business can become 
dependent upon the system; therefore, the system must have reliable backup 
and recovery procedures. 

Mutual backup plans between users with similar equipment have long been 
used for batch-oriented systems. However, this type of arrangement is 
generally not practical in an interactive environment. Even if an identically 
configured system could be located, the delays and difficulty of establishing 
the necessary data links would preclude relying on this approach to equipment 
backup. 

Equipment backup plans can vary according to the business requirements and 
the cost of implementing those plans. Equipment backup can range from 
having a spare display statiOn to completely duplicating the central system. 
The actual level of equipment backup provided must be determined by 
weighing the cost against the possible business loss if the backup is not there 
when it is needed. 



Data Backup and Recovery 

Because data (libraries, files, and folders) can be damaged or destroyed by 
incorrect modification, a system failure, operator errors, or a natural disaster 
such as a fire, keeping backup copies of vital information is recommended. 
Backup procedures typically involve copying the vital information kept on the 
system and then storing the copy in a safe location. For example, files and 
libraries can be copied to diskettes or tape, dated, labeled, and stored in a 
fireproof safe or at another location. 

Loss of data could be disastrous to most businesses using data processing. 
Thus, a standard, well-documented, backup procedure should be established 
and used regularly. Typically, master files and all files related to the master 
files are saved at the same time. New data such as batches of transaction 
records can be copied to disk, diskette, or tape after they have been entered 
and edited. These saved transactions can be used during recovery procedures 
to make the master files current. 

The level of data protection can vary greatly without a significant difference 
in cost implementation. Developing a backup plan and testing that plan can 
provide a potential return far greater than the time and effort involved. 
Developing a backup plan includes analyzing the effect of a system failure on 
each step of an application, defining the appropriate recovery procedures, and 
testing those procedures. It is important that the procedures be tested. A 
crisis situation is not the time to find the shortcomings of a backup plan. 

For backup and recovery purposes, data can be divided into different 
categories. These are: 

• Historical data 

• Master files 

• Data processed but not distributed 

• Data logged but not processed 

• Data received but not logged 

Chapter 19. Error Prevention, Detection, and Recovery 19-11 



Historical Data 

Master Files 

19-12 

Historical data or archive data is not used in day-to-day processing and is 
saved on some media (such as diskettes, tape, or microfilm) in a secure 
location, preferably off site. Any test of the backup plans should include 
trying to reconstruct current files from these historical files. The test should 
verify such considerations as: 

• Are the files always available? 

• Is the storage media compatible with the present hardware? 

• Is the media protected against modification or deterioration? 

• Are copies of the programs that process the data protected in the off-site 
location also? Is the program documentation available? 

• How current are master files that are reconstructed directly from these 
historical files? What would be the cost of making the reconstructed files 
more current? 

• Are operating procedures and run books available? 

• Is the stored data the right data? 

Master files are those files used in day-to-day operations. Many users keep 
backup copies of all master files on site and update them on a daily basis. In 
this way, no more than one day's processing can be lost, and the transactions 
for that day are logged in the transaction log file. The transaction log file is 
retained until the daily update run has been completed.successfully. 



Data Proces.sed but Not Distributed 

If a system failure occurs during the day's processing, then data that has been 
processed but not distributed must be considered. Master files have been 
updated, but the output of the application is stored within the system and is 
not recoverable. The transactions cannot simply be rerun because the master 
files would reflect double activity. A method that can be used is to have the 
application programs that process the transaction file flag the header record 
of all orders processed. The recovery plan would be designed to begin 
processing at the last order printed or distributed to a display station and to 
process all the following transaction records, but not actually update master 
files or memo fields on flagged orders. 

Data Logged but Not Proces.sed 

When the recovery program has processed all the flagged orders, another 
category of data must be recovered: the records in the transaction file that 
have been received from the display stations but have not been processed. If 
a system failure occurs, the operators must not reenter these records. The 
operators must be notified as quickly as possible not to enter more data 
because a recovery is in process. The recovery program must scan the 
transaction file and identify for the operator the last record correctly entered 
in the transaction file. If transactions are linked together by display station 
within the transaction file, the logic of the recovery program can be much 
more straightforward. 

Data Received but Not Logged 

Data that has been received but not logged must be reentered by the 
operators. This data was in main storage at the time of the power or system 
failure and is now lost. 

Loss of Transaction File Data 

In many instances, the transaction file is the key factor in a successful 
recovery from a system failure. Transaction file data that is lost or unusable 
will have to be reentered. Transaction file data can be made less critical if 
master files are backed up on a daily basis. If a failure occurs in this case, a 
maximum of one day's input has to be reentered. If the master files are 
backed up twice a day, then a maximum of one-half day's input has to be 
reentered. Even orders that have been processed and printed have to be 
reentered so that the master files can be correctly updated. The printing of 
the output can be bypassed for the duplicates to prevent wasting forms. 

Whichever method is used, the time required to reenter records should be 
balanced against the time required to back up files. 

Chapter 19. Error Prevention, Detection, and Recovery 19-13 



Printing the Configuration Member 

The configuration member identifies and describes the machines, devices, and 
programs used by your system. If the configuration member is somehow 
destroyed during a system failure, you will have to reconstruct the 
configuration member. If you have a system with a large number of devices 
and programs, it would be particularly difficult for you to reconstruct the 
configuration member from memory. Therefore, you should have a printout 
of your configuration safely stored away so that you can reconfigure your 
system. 

Using the main menu of the CNFIGSSP procedure, you can select an option 
to print your configuration member. The Changing Your System 
Configuration manual has more information about using the CNFIGSSP 
procedure to print out the configuration member. 

IPL File-Rebuild Function 

19-14 

The system provides IPL file-rebuild as a recovery function that makes sure 
that a correct VTOC entry exists for every file, library, and folder. If the 
VTOC entry contains an error, the IPL file-rebuild function tries to correct 
the entry. 

In addition, the IPL file-rebuild function does the following for data files: 

• Displays the names of all files that are in error. 

• If the VTOC entry for the file cannot be corrected, asks whether the file 
should be deleted. 

• Deletes the VTOC entries of files that are deleted by the IPL file-rebuild 
function. 

• Removes dump files whenever the current date exceeds the date of the 
task dump files and a request is made to remove them by using the IPL 
overrides. 

The system checks each file to see if the data and the end-of-data pointer in 
the file are correct. If the data is not correct, the system attempts to 
reconstruct the end-of-data pointer for each file. 

For indexed files, the system attempts to create the index if either the 
end-of-data pointer changed or the index has been flagged as defective by the 
system. 

After the file-rebuild function is completed, the folder-rebuild function checks 
the folders in the VTOC and rebuilds any folders that were not closed before 
the IPL began. Folder-rebuild takes place only after a file rebuild; if you 
override the file-rebuild function at IPL, you automatically override the 
folder-rebuild function as well. 

The files, libraries, and folders in the VTOC cannot be used until the rebuild 
function is completed. 



Backup and Recovery Methods 

Method 1 

Recovery is a series of steps that you follow or procedures that you run to 
restore data on the system. Recovery procedures can require removing all or 
some master files, restoring backed up master files, and running those 
procedures that updated files to post transactions in the order that they were 
originally processed. 

Programs and procedures can be designed to restore and recover all files, 
inform the operators about the last items correctly processed, and allow 
operations to continue from that point. This effort might involve using 
additional fields in records and using additional calculations in programs. 
Also, new files, programs, and procedures might be needed, particularly for 
recovery in an interactive environment. The planning and programming 
effort might not seem costly in light of the potential results of inadequate 
backup and recovery procedures. Typically, businesses that are most 
dependent on their data processing system require the shortest recovery times 
and thus should develop the most elaborate backup and recovery procedures. 
Regardless of their complexity, backup and recovery procedures should be 
well-documented so that all operators use them correctly. 

The following information describes three methods of backup and recovery. 
The first method requires the least design and programming effort, but 
probably requires the longest recovery time because transaction batches are 
not saved. The second method requires more planning and programming, but 
reduces the amount of recovery time required because reentering the 
transactions is not necessary. The third method requires the most planning 
and programming but provides the quickest way to recover data because the 
operator's involvement is minimized. 

This method requires the operator to periodically save master files and files 
that the application updates in order to establish a point from which to 
recover (restart) the application. For example, at the end of each day after 
all transactions have been posted, the operator might run a procedure that 
contains SA VE procedures to back up all master files and their related files 
on diskette or tape. 

Operators should keep a log of the work they do on the system. This 
manually kept log must be accurate if it is to be relied upon during recovery. 
One method of keeping a log is to use the following sample run sheet. 

Chapter 19. Error Prevention, Detection, and Recovery 19-15 



RUN SHEET 

Display Station ID ________ _ Date--------- Page __ _ 

Operator's Start Stop 
Menu. Job, or Command Name Initials Time Time Comments, Halts, or Messages 

19-16 



Method 2 

Another method of obtaining a log of work done on the system is to print the 
history file. 

This recovery method consists of the operator (1) deleting files from disk, (2) 
restoring the backup copies from diskettes or tapes to establish a point from 
which to recover, and (3) reprocessing all transactions that have been entered 
since the last backup was done. 

All of the work done since the last backup must be redone. Because they are 
not saved, transaction batches must be reentered. This method might be 
adequate for a business that processes low volumes of data and that 
frequently backs up its data. 

This method requires the operator to ( 1) periodically save the master files and 
their related files and (2) save batches of transactions at logical breakpoints 
in the application. For example, at the end of each day after all transactions 
have been posted, the operator runs a procedure that contains SA VE 
procedures to back up master files and their related files on diskettes or tapes. 
As part of the transaction-posting procedure run during normal processing, a 
batch of transactions is saved on diskette or tape and deleted from disk. The 
operator labels the diskettes or tapes that contain the transactions to 
document the sequence in which the batches have been saved. Also, the 
operator lists the names of the procedures in the order that they were run. 

The recovery method requires the operator to ( 1) delete the files from disk, 
(2) restore the backup copies from diskettes or tapes to establish a point from 
which to recover, and (3) reprocess the application's procedures in their 
original order using the saved copies of the transaction batches. The operator 
uses the information labeled on the diskettes or tapes to ensure that the 
transaction batches are restored in the correct order. 

This method eliminates the entering of transactions that was required in 
method 1. 

Chapter 19. Error Prevention, Detection, and Recovery 19-1 7 



Method3 

19-18 

This method requires code to be included in an application's procedures to do 
the following: 

• Periodically back up the master files and their related files. 

• Automatically back up batches of transactions on disk, diskette, or tape 
at logical breakpoints in the application. 

• Assign names and sequence numbers to these batches of transactions. 

• Keep a history of all procedures that the operator runs after the previous 
backup. 

• Provide a common recovery procedure. 

The recovery method requires the operator to run the common recovery 
procedure, which lists the control file and restores the files. The operator 
uses the history to rerun the application's procedures in their original order. 
The common recovery procedure could prompt the operator to insert the 
proper backup diskettes or tapes in the correct sequence. 

This recovery method uses a program-generated control log, which is more 
accurate than a manually kept log. Because unnecessary procedures such as 
reprinting statements or reports could be skipped during recovery, this 
method provides the quickest recovery of the three methods. This method is 
similar to the backup and recovery procedures used in some IBM licensed 
application programs. 

The following example shows one method of restoring a particular file from a 
diskette or tape: 

Step Procedure Action 

1 CATALOG Determine the file to be restored. 

2 RESTORE Restore the file from backup diskettes 
or tapes. 

3 CATALOG Verify that file has been restored. 



Service Aids Procedures 

SERVICE Procedure 

The following pages describe the system's service aid procedures. You will 
not normally have to run these procedures; however, you may be asked to run 
some of these procedures to do problem determination and correction. The 
System Problem Determination manual has information about problem 
determination. The System Reference manual has more information about 
these service aid procedures. 

The SERVICE procedure displays a menu that allows you to do the various 
tasks you may be asked to do for problem determination and correction. 
These tasks include: 

• Running the service aid procedures for determining program-related 
problems (such as DUMP, APAR, DFA, and TRACE) 

• Running the service aid procedures for determining hardware-related 
problems (such as ERAP) 

• Copying and applying program temporary fixes (PTFs) to the licensed 
programs 

• Adding entries to or listing the system service log 

• Running the PATCH procedure to display or change disk or diskette 
sectors 

Chapter 19. Error Prevention, Detection, and Recovery 19-19 



AP AR Procedure 

DF A Procedure 

DUMP Procedure 

ERAP Procedure 

PATCH Procedure 

PTF Procedure 

SETDUMP Procedure 

TRACE Procedure 

19-20 

The AP AR procedure collects diagnostic information that helps software 
service people to correct programming problems that might occur in the 
system. 

The DFA (dump file analysis) procedure retrieves selected information from 
a dump file, formats the information, and either prints or displays it. The 
DFA procedure can also be used to format dump files copied to diskette by 
the AP AR procedure. 

The DUMP procedure prints or displays dump files from disk, diskette, or 
tape created by the AP AR procedure. 

The ERAP procedure displays or prints data that was logged for the devices 
on the system. 

The PATCH procedure displays selected disk or diskette sectors and allows 
you to modify the data in those sectors. You can modify disk or diskette 
information by replacing data displayed with new data. 

The PTF procedure allows you to apply program temporary fixes (PTFs) to a 
specified library. 

The SETDUMP procedure allows you to debug programs running in main 
storage at predetermined breakpoints or addresses without having to stop the 
main storage processor. 

The TRACE procedure allows you to keep a history of events that occur in 
the system. 



Remote Operation/Support Facility 

Remote Operation/Support Facility (ROSF) is the capability provided with 
the SSP that allows an operator at a remote display station (and an optional 
printer) to enter many system commands to provide you with operational, 
programming, and technical support. In addition, your remote support group 
can use ROSF to perform problem determination. 

The Remote Operation/Support Facility Guide, SC21-9060, has more 
information. 

Chapter 19. Error Prevention, Detection, and Recovery 19-21 



19-22 



Chapter 20. Ideographic Data Concepts and Considerations 

This chapter describes ideographic data and identifies things to consider when 
you are using ideographic characters. 

Ideographic characters are available only with the ideographic version of the 
SSP. 

Special display stations and printers are required to display, enter, and print 
ideographic characters. 

Ideographic Data Concepts 

The ideographic version of the SSP allows users of the system in some 
countries to work in their native language. The common written languages of 
some countries consist of thousands of symbols, each of which may represent 
a single word or concept. 

Because these languages include thousands of characters, a single byte cannot 
uniquely represent each character in the system. The ideographic version of 
the SSP allows each of the characters to be represented by 2 bytes of data. 
Characters that are defined by 2 bytes of data are called ideographic 
characters. The usual 1-byte characters are called alphanumeric or 
alphanumeric/Katakana characters. 

Each ideographic character is defined by a matrix pattern of dots. The size of 
the matrix depends on which device is used to display or print the ideographic 
character. The matrixes are either 24 by 24 dots or 18 by 18 dots, depending 
on the device used to display or print the characters. See the operator's guide 
for your display station or printer for information about how characters are 
displayed or printed. 

Some versions of the SSP support ideographic display stations only. This 
saves the disk space by not retaining the nonideographic version of the 
display formats. 

Chapter 20. Ideographic Data Concepts and Considerations 20-1 



Shift-out and Shift-in Characters 

20-2 

All ideographic data streams must be preceded by a shift-out (SO) character. 
The data must be followed by a shift-in (SI) character. SO tells the system to 
shift out of normal alphanumeric/Katakana mode; SI tells the system to shift 
into normal alphanumeric/Katakana mode. The SO and SI characters serve 
as a signal to the system that any data between them should be interpreted as 
a string of 2-byte characters. The shift characters' hexadecimal equivalents 
are: 

Shift 
Character 

so 
SI 

Hex Value 

OE 
OF 

The ideographic display stations provide a special keying sequence to allow 
the operator to enter the shift characters. Another key allows them to be 
displayed. See the operator's guide for your display station for information 
about how to enter ideographic characters. 



Ideographic Character Sets 

The ideographic characters available on the system are divided into the 
following categories: 

• The basic ideographic character set contains 3,707 characters. These 
3,707 characters are stored in the display stations and printers. No 
special SSP support is necessary to process the basic set of characters. 
The basic character set includes: 

Commonly used Kanji characters 

Special symbols (such as circles and arrows) 

Alphanumeric characters 

Katakana characters 

Jamo 

Hanjuel 

Hiragana (a cursive form of Katakana) characters 

Greek characters 

Russian characters 

Roman numerals 

• The extended ideographic character set contains 3,483 less commonly 
used ideographic characters. The matrix patterns that define these 
characters are stored in IBM-supplied system files. Because different 
ideographic devices require different sized character matrix.es, the system 
has two extended character files: 

#EXT1818 contains the IBM extended character definitions for the 
18x18 dot matrix characters and is available for Japan only. 

#EXT2424 contains the IBM extended character definitions for the 
24x24 dot matrix characters and is available for Japan and the 
SEAR countries. 

• The user-def'med ideographic character set can contain up to 4,370 
additional characters. You can use the character generator utility (CGU) 
to define these characters as required. CGU stores the characters you 
create in #EXT1818 and #EXT2424 along with the characters provided 
by IBM. 

Note: The character generator utility is available for Japan only. 

See "Creating Ideographic Characters" on page 20-9 for more 
information. 

Chapter 20. Ideographic Data Concepts and Considerations 20-3 



All the characters stored in the extended character files, both IBM extended 
and user-defined, are called EXTN characters. The files are often called the 
EXTN files. The SSP support necessary to process the characters in these 
EXTN files is described in "Processing Extended Characters" on page 20-8. 

Note: Extended and user-defined ideographic character sets are valid for 
Japan, Korea, Taiwan, and PRC. They are used primarily for the 5227 
printer which cannot store the entire character set at the device and must 
access #EXT2424 for the definition of the user-defined and extended 
characters. 

Hex Representation of Ideographic Characters 

20-4 

Each ideographic character is represented by a 2-byte hexadecimal code. The 
first byte of an ideographic character is called the ward number and points to a 
particular code table. The second byte is called the location number and 
provides the location of the character in the code table. Each byte can 
contain values from hex 41 to hex FE. The only exception is an ideographic 
blank which is represented as hex 4040. 

The following table shows the allowed ward and location numbers for each of 
the three Japan-only character sets: 

Japan- Ward Number Location Number 
Only First Byte Second Byte 
Character Set (in hex) (in hex) 

IBM Basic 41 through 55 41 through FE 

IBM Extended 56 through 68 41 through FE 

User-defined 69 through 7F 41 through FE 

Reserved 80 through FE - -

The following tables show the ward and location numbers for the 5227 
printer support character set. Note that the ROS character set is not 
equivalent with the Basic character set. 

5227-001 Ward Number Location Number 
Japan4KROS First Byte Second Byte 
Character Set (in hex) (in hex) 

Basic=ROS 41 through 55 41 through FE 

Extended 56 through 68 41 through 7F 

User-defined area 69 through 7F 41 through FE 

Note: The above table is also for devices other than the 5227 printer. 



5227-002 Ward Number Location Number 
Korea4KROS First Byte Second Byte 
Character Set (in hex) (in hex) 

Special symbol/ 41 through 46 41 through FE 
Hiragana/ 
Katakana/ Greek/ 
Roman= ROS 

Hanja (Chinese) = SO through S2 41 through FE 
ROS part of total 
Hanja set 

Hanja (Chinese) S3 through 67 41 through FE 
part of total Hanja 
set (not in ROS) 

Hanjuel and Jamo 84 through D3 41 through FE 
(scattered) = ROS 

User-defined area D4 through DD 41 through FE 
(not in ROS) 

5227-003 Ward Number Location Number 
Taiwan 4K ROS First Byte Second Byte 
Character Set (in hex) (in hex) 

Non-Chinese = 41 through 44 41 through FE 
ROS 

Special Symbol = 4S through 46 41 through FE 
ROS 

Chinese character 4C through SC 41 through FE 
first set ='ROS 
part of first set 

Chinese character SD through 68 41 through FE 
first set (not in 
ROS) 

Chinese character 69 through 91 41 through FE 
first set (not in 
ROS) 

User-defined area DO through DD 41 through FE 
(not in ROS) 

Chapter 20. Ideographic Data Concepts and Considerations 20-5 



Ideographic Number 

20-6 

5227-005 Ward Number Location Number 
PRC SK ROS First Byte Second Byte 
Character Set (in hex) (in hex) 

Non-Chinese= 41 through 46 41 through FE 
ROS 

Special Symbol = 48 through SC 94 through 89 
ROS 

Chinese level-2 = SC through 6C 94 through 94 
ROS part of first 
set 

Reserved (not in SD through 68 41 through FE 
ROS) 

User-defined area 76 through 7F 41 through FE 

Reserved 80 through FE 41 through FE 

Each ideographic character is also assigned a 2- to S-digit ideographic 
number. 

Ideographic display stations have an alternative entry mode which allows the 
operator to enter any ideographic character using its number. If a character is 
not represented on the keyboard or if the operator is using an 
alphanumeric/Katakana keyboard, the character can only be entered by using 
the alternative entry mode. 

Ordinarily, users are not concerned with the hexadecimal representations of 
the characters. The ideographic number associated with a character can be 
calculated from the 2-byte hexadecimal code: 

1. Subtract hex 4000 from the hexadecimal code. 

2. Convert the number to decimal. 



Dual Language Support 

Ideographic Se~ions 

The system allows you to create and use ideographic and 
alphanumeric/Katakana versions of messages and display formats. System 
messages and display formats are also available in ideographic and 
alphanumeric/Katakana versions. This allows you to direct 
alphanumeric/Katakana messages and display formats to nonideographic 
display stations. With some versions of the SSP, there is not an 
alphanumeric/Katakana version of the display formats. Nonideographic 
display stations should not be attached if some versions of the SSP are loaded. 

The system provides an option for each operator to specify that system 
messages and formats which are directed to that operator should be displayed. 

At an ideographic display station, the Sign On display contains an extra 
prompt that indicates whether an ideographic session is to be started. System 
messages and display formats are directed to that display station throughout 
the session if an ideographic session is started. 

The extra prompt is not displayed for the ideographic display station attached 
to the Kanji version of the SSP. A display station will automatically be placed 
in an ideographic session for the Kanji version of the SSP. 

Ideographic sessions are not possible if the display station is not capable of 
displaying ideographic characters. All system messages and display formats 
directed to a nonideographic display station consist of Katakana and other 
alphanumeric data. These are ordinary 1-byte characters. 

Programming Considerations 

User-written programs can show display formats that contain ideographic 
data at any display station. The formats are correctly displayed at an 
ideographic display station, regardless of the session type. But at a 
nonideographic display station, the 2-byte data is interpreted as 1-byte data 
and the result is meaningless. 

You can prevent this from happening by using the following procedure 
control expression: 

IF DSPLY-IGC 

This allows you to determine whether the procedure is being run from a 
display station in an ideographic session. The System Reference manual has 
more information. 

Chapter 20. Ideographic Data Concepts and Considerations 20-7 



Processing Extended Characters 

Displayed Output 

Printed Output 

20-8 

Extended ideographic (EXTN) characters are stored in two system files called 
#EXT1818 and #EXT2424. For an EXTN character to be printed, the 
character's matrix pattern must be read from the EXTN file that contains the 
correct matrix size for the device on which it to be displayed or printed, and 
then transmitted to the device. 

The system provides a special program, called the EXTN task, to handle the 
processing of EXTN characters. This program is always active when the 
ideographic version of the SSP is installed and ideographic devices are 
configured. The EXTN task maintains the EXTN characters in the display 
station or printer by transmitting the proper matrix pattern whenever that 
character is required. See the appropriate operator's guide for information 
about how many extended ideographic characters can be stored in the display 
stations or printers. 

Work station data management automatically handles EXTN character 
processing for input operations from display stations. When an operator 
types an ideographic number, the EXTN task replaces the ideographic 
number with the hexadecimal representation of the character. If an EXTN 
character is encountered, the EXTN task ensures that the correct ideographic 
character is shown at the display station, by using the EXTN character files. 

For output operations, you can turn EXTN processing on and off using the 
SYSLIST, PRINTER, or WORKSTN OCL statements. 

The System Reference manual has more information about these OCL 
statements. 

Note: For SEAR DBCS countries, the EXTN processing is only performed for 
printers (primarily 522 7). EXTN processing is not used for display 
stations because they are full-! ont capable. 

If EXTN processing is specified, work station data management scans the 
output data for EXTN characters. When an EXTN character is found, work 
station data management works with the EXTN task to ensure the correct 
ideographic character is displayed. If EXTN processing is not specified, work 
station data management does not scan the data, and any EXTN characters 
encountered are displayed as the default ideographic character. 

If EXTN processing is specified, printer data management scans the output 
data for EXTN characters. When an EXTN character is found, printer data 
management works with the EXTN task to ensure that the correct 
ideographic character is printed. If EXTN processing is not specified, printer 
data management does not scan the data, and any EXTN characters are 
printed as the default ideographic character. 



Programming Guidelines for Ideographic Data 

This section describes how you can: 

• Create ideographic characters 

• Create ideographic message members 

• Create ideographic display formats 

Sort ideographic data 

• Manipulate bytes of ideographic data 

Creating Ideographic Characters 

The character generator utility (CGU) is an interactive utility program that 
allows you to define and maintain ideographic characters on your system. 

CGU allows you to define just the 24x24 character, just the 18x18 character, 
or both the 18x18 and 24x24 characters. Characters are defined by entering 
the dot pattern in an 18x18 or 24x24 matrix work area, depending on which 
size character is being defined. CGU stores the character's matrix pattern in 
the appropriate extended ideographic character set file. 

Note: The character generator utility (CGU) is available for Japan only. Other 
countries use a PC-based character generator utility. 

The Character Generator Utility Guide has more information about CGU. 

Creating Ideographic Message Members 

The CREA TE procedure allows you to build message members which contain 
two portions. 

• The first portion contains messages which are used for nonideographic 
sessions. 

The second portion contains messages which are used for ideographic 
sessions. 

Note that the same message identification code is used in each portion of the 
message member, so that two versions of each message are available. For 
more information about message members, see Chapter 14, "Messages and 
Message Members." 

Chapter 20. Ideographic Data Concepts and Considerations 20-9 



Creating Ideographic Display Formats 

You can create ideographic displays by using S- and D-specifications and the 
FORMAT procedure, or by using the screen design aid (SDA) utility. F9r 
more information about display formats, see Chapter 13, "Displays." 

Sorting Ideographic Characters 

The ideographic sort program allows you to select records based on 
ideographic fields and to sort the records based on ideographic control fields. 
The ideographic sort program is available for Japan only. 

The Ideographic Sort Guide has information about sorting ideographic data. 

Manipulating Bytes of Ideographic Data 

Truncating Ideographic Data 

20-10 

Manipulating ideographic data requires special care to preserve the proper 
relationship between the SO and SI pairs. Problems can occur when you 
improperly truncate, concatenate, or separate ideographic character strings. 
An unmatched SO character can cause alphanumeric data to be incorrectly 
interpreted as ideographic data. A missing SO character will cause 
ideographic data to be interpreted as alphanumeric data. 

The information in this section describes possible situations that may occur 
when you are truncating, concatenating, or separating ideographic data. 

The following are ways of handling truncated records: 

If the last byte of the remaining data is an SO character, delete the SO 
character. 

If the last byte of the remaining data is the ward number of an 
ideographic character, replace the last byte with an SI character. 

• If the last byte is the location number of an ideographic character, delete 
the last byte and replace the next to last byte with an SI character. 



Concatenating Ideographic Data 

When ideographic data is concatenated, you should be aware of the following 
situations: 

1. Ideographic data fills the first record, and the last position contains an SI 
character. 

First Record Second Record 

I sol Ideographic Data I SI I I sol Ideographic Data I SI I 
'---'--~~~~~~-~~ ~'--~~~~~~__,__, 

These can be removed 
when the concatenation 
is performed. 59019114-0 

If the second record begins with an SO character, the SI character at the 
end of the first record and the SO at the beginning of the second can be 
deleted when the records are combined. If necessary, add blanks to the 
end of the concatenated record. 

Concatenated Record 

Ideographic Data 

59019115-0 

Chapter 20. Ideographic Data Concepts and Considerations 20-11 



2. Ideographic data .fills the first record except for the last byte which is a 
blank ( h in the diagram). 

First Record Second Record 

I sol Ideographic Data I SI If> I I sol Ideographic Data I SI I 
---~~~~~~ ---~~~-

These can be removed 
when the concatenation 
is performed. 59019116-0 

If the second record begins with an SO character, delete the SI character 
and blank at the end of the first record and the SO character at the 
beginning of the second record. If necessary, add blanks to the end of 
the concatenated record. 

Concatenated Record 

Ideographic Data 

59019117-0 

Note: Constant ideographic data specified on D specifications for display 
formats is concatenated differently for certain situations. Appendix C of 
the Creating Displays manual has information on concatenating constant 
ideographic data for $SFGR display formats. 

Separating Ideographic Data 

20-12 

When you separate an ideographic data record, extra SO and SI characters 
may need to be inserted so that neither of the individual records contain an 
unmatched SO or SL 



Chapter 21. Summary of Design Considerations 

This chapter summarizes the major topics discussed in this book. 

Application Design Steps 

Step and Page Application Users Application Designer 

"Step 1. Definition" on Explain current methods. Provide Identifies what users do. Defines 
page 2-5. complete examples of input and input and output. Identifies what the 

output for current methods. application should do. Defines 
Explain sources and destinations of application functions. Makes 
information. Describe desired preliminary schedule. Reviews work 
methods for existing and additional with users. Documents the definition. 
application functions. 

"Step 2. General Help define the application Specifies the input, processing, and 
Design" on page 2-12. functions. Review the design. output for the application in general. 

"Step 3. Detailed Review and agree upon displays Designs printed output, files, and 
Design" on page 2-14. and reports. displays. 

"Step 4. Program Help define the sequence and Designs programs and then codes 
Design" on page 2-18. frequency of functions. Identify them. 

deadlines and constraints. 

"Step 5. Testing" on Help define test cases, test the Codes test cases. Ensures that each 
page 2-20. application, and check the results. program and all application functions 

work. 

"Step 6. Conversion Help convert information. Trains application users. Ensures all 
and Installation" on existing information is converted to a 
page 2-23. form usable by the new application. 

Loads the application components 
onto the system. 

"Step 7. Operation" on Use the application. Turns the application and 
page 2-24. documentation over to the users. 

Chapter 21. Summary of Design Considerations 21-1 



Printed Output 

For More 
Design Considerations Information, See 

Consider printing information that: "Printed Output 
Considerations" on 

• Is not needed immediately or often page 3-13 . 

• Is not needed by several people 

• Does not change frequently 

• Has large volumes of output (several pages of 
information) 

. Must be sent to several places 

Use a printer spacing chart to design your output. "Designing Your Printed 
Consider: Reports" on page 3-14. 

• Leaving enough space on the edges of the report so 
you can bind it 

• Separating each field on the report by at least one 
space 

• Grouping similar items 

. Numbering all pages of the report 

• Providing meaningful headings for data on the 
report 

21-2 



Disk Storage 

For More 
Design Considerations Information, See 

For systems with more than one disk drive, try to "Placing User Files and 
balance how the system uses the disks. This will User Libraries on Disk" on 
minimize the time the system uses to search for and page 4-15. 
read or write data. 

Collect the free spaces on disk to make larger areas of "Reorganizing Disk Space" 
disk space available. on page 4-21. 

Diskette Storage 

For More 
Design Considerations Information, See 

When you have several job steps that copy information "Allocating the Diskette 
on diskette, you should allocate the diskette drive to Drive to a Job" on 
your job so that you can retain control of the diskette page 5-14. 
drive during that job. 

When a job contains several SA VE, SA VELIBR, or "Creating a Sequential Set 
SA VEFLDR procedures or several RESTORE, of Files on Diskette" on 
RESTLIBR, or RESTFLDR procedures, you should page 5-15. 
allocate the diskette drive to your job so that you can 
read or create a sequential series of diskette files. 

Chapter 21. Summary of Design Considerations 21-3 



Tape Storage 

For More 
Design Considerations Information, See 

When you have several job steps that copy information "Allocating the Tape Drive 
on tape, you should allocate the tape drive to your job to a Job" on page 6-12. 
so that you can retain control of the tape drive during 
that job. 

When a job contains several SA VE, SA VELIBR, or "Creating a Sequential Set 
SA VEFLDR procedures or several RESTORE, of Files on Tape" on 
RESTLIBR, or RESTFLDR procedures, you should page 6-13. 
allocate the tape drive to your job and use the LEA VE 
parameter so that you can create a sequential series of 
tape files. 

Records 

For More 
Design Considerations Information, See 

When you are designing records that contain numeric "Numeric Fields" on 
fields, select the most appropriate format: zoned page 7-3. 
decimal, packed decimal, binary, or floating point. 
Select a format that can be used by the processing 
program (for example, do not select floating point for a 
file to be used by Query/36). 

Document record layouts so that your programs are "Documenting Record 
easier to create and maintain. Layout" on page 7-11. 

21-4 



Files 

For More 
Design Considerations Information, See 

When you create a file, you should decide which file "File Organizations" on 
organization is most appropriate to use (sequential, page 8-13, "Accessing 
indexed, or direct). You must also decide which access Files" on page 8-32, and 
method is most appropriate to use (consecutive, "Choosing a File 
sequential by key, random by key, or random by Organization" on 
relative record number). page 8-43. 

Blocking records and index entries is useful when your "Blocking Records and 
programs are likely to process several records at a time. Index Entries" on 
By specifying a large blocking factor, you might page 8-60. 
improve the performance of your programs. 

Using file sharing, you can allow several pro~rams to "Sharing Files" on 
access the same file at the same time. page 8-73. 

You can secure your files to prevent unauthorized use "Securing Files" on 
or changes. page 8-12. 

Chapter 21. Summary of Design Considerations 21-5 



Libraries 

For More 
Design Considerations Information, See 

As you develop applications, you may find it easier to "Uses of Libraries" on 
have a development library that contains the items you page 9-5. 
are working on and a production library that contains 
the items you have tested. 

Using multiple libraries can help you organize and 
control your work. For example, you can use any of 
the following approaches: 

• Create a separate library for each application . 

• Allow each user to have a separate library . 

• Create a library for each shift of users . 

• Create separate libraries for programs, procedures, 
messages, and display formats. 

You can secure your libraries to prevent unauthorized "Securing Libraries" on 
use or changes. page 9-13. 

Folders 

For More 
Design Considerations Information, See 

You can organize your document folders according to "Uses of Folders" on 
the kinds of documents contained in them. page 10-2 

You can secure your folders to prevent unauthorized "Securing Folders" on 
use or changes. page 10-6. 

21-6 



Subdirectories 

For More 
Design Considerations Information, See 

You can organize your documents in a folder according "Using Subdirectories" on 
to the types of documents and group them in page 11-2 
subdirectories. 

You can secure your subdirectories to prevent "Securing a Path to a 
unauthorized use or changes to the members. Subdirectory" on 

page 11-10. 

Menus 

For More 
Design Considerations Information, See 

When you are designing menus, remember to: "Designing Menus" on 
page 12-7. 

• Use free-format menus 

• Use both uppercase and lowercase letters 

• Make the menu title and menu options meaningful 

• Put options in logical order 

Also, chain menus together. For example, have a 
general or main menu from which users can call several 
more detailed menus. 

Creating help text for menus can provide helpful "Creating and Displaying 
information for your users, should they need it. Help Text for Menus" on 

page 12-12. 

Chapter 21. Summary of Design Considerations 21-7 



Displays 

For More 
Design Considerations Information, See 

When you are designing display formats, remember to: "Display Design 
Considerations" on 

• Choose the appropriate form for your display. page 13-11. 

• Identify the displays . 

• Provide meaningful headings . 

• Provide one idea for each display . 

• Respond to operator input. 

Creating help text for displays can provide helpful "Creating Help Text for 
information for your users, should they need it. Your Displays" on 

page 13-27. 

If you use remote display stations: "Designing Displays for 
Remote Display Stations" 

• Reduce the amount of data transmitted. on page 13-19 . 

• Increase the line speed . 

• Send only the minimum amount of data required . 

• Use an erase input fields operation to remove the 
contents of an input field rather than displaying the 
entire format again. 

If you have a color display station, take advantage of "Using Color to Highlight 
the colors you can control using the display format. Data" on page 13-16. 

21-8 



Messages and Message Members 

For More 
Design Considerations Information, See 

When you design your application, you can group "Designing Message 
messages by: Members" on page 14-4. 

• Program type 

• Displayed or printed messages 

You can have the system automatically respond to "Providing Automatic 
displayed messages. Responses for Messages" 

on page 14-4. 

Programs 

For More 
Design Considerations Information, See 

Interactive programs use display stations to display and "Interactive Programs" on 
allow data to be entered. Batch programs have little or page 16-2. 
no operator interaction, and can be used to process 
groups of information that have accumulated over a 
period of time. 

You can design your programs several ways: "Application Structure" on 
page 16-11. 

• One large program for each user 

• One large program shared by all users 

• Several small programs with each user running a 
separate copy of the program 

• Several small programs with all users sharing one 
copy of the program 

Chapter 21. Summary of Design Considerations 21-9 



Jobs and Job Processing 

For More 
Design Considerations Information, See 

Using processing priorities allows you to control which "Processing Priorities" on 
jobs may run faster than other jobs on the system. page 17-12. 

Using the job queue allows you to have batch jobs "Job Queue" on 
processed sequentially. You can also use the job queue page 17-14. 
to process your batch jobs at a later time (for example, 
second shift). You can use job queue priority to 
change the order of the jobs in the queue. 

Procedures 

For More 
Design Considerations Information, See 

Use procedures to: "Advantages of Using 
Procedures" on page 18-2. . Run several programs by entering one procedure 

command 

• Prompt for parameters for jobs 

• Check entered parameters for errors 

Use parameters to pass information and variables to "Procedure Parameters" on 
the procedure. A procedure can have a maximum of 64 page 18-3. 
parameters, and each parameter can have up to 128 
characters. 

21-10 



Appendix A. Access Algorithms for Direct Files 

This appendix describes some access algorithms you can use with direct files. 
These methods may help you design your direct files more efficiently. 

A key to designing and implementing a direct file is defining an access algorithm 
that satisfies the processing requirements for the file while preserving the 
advantages of direct files. 

In the simplest case, relative record numbers are assigned sequentially. The first 
record placed in the file has relative record number l, the second record has 
relative record number 2, and so on. 

In another simple case, a control field in each record is used as its relative record 
number. For example, loan number 3456 could be used without change as relative 
record number 3456. A control field should be used directly as a relative record 
only if there is not a large number of unused values within the range of values for 
the control field. If there are many unused values and, therefore, unused record 
positions, an algorithm should be defined to reduce the size of the file. 

Appendix A. Access Algorithms for Direct Files A-1 



Choosing an Access Algorithm 

A-2 

An access algorithm is whatever method is used to determine the position to be 
occupied by each record. The algorithm can be simple or complex. In either case, 
the algorithm must yield a positive, whole number as a relative record number. 

One method is to use a formula as an algorithm to determine the record number. 
For example, if loan numbers start with 1001, then loan number 3456 could be 
relative record number 2456 (3456 minus 1000). The formula can be as complex 
as you need to make it. Refer to "Examples of Access Algorithms" on page A-4 
for more information and examples. 

Another method is to use a control field that contains alphameric data. An 
algorithm would then convert the alphameric data to a relative record number. 
Refer to "Handling Synonym Records" on page A-3 for an example of using a 
customer name as the control field. 

The choice of an access algorithm and, ultimately, the decision about whether to 
use a direct file is usually based on how well synonym records can be handled. A 
synonym record is a record in a direct file whose control field yields the same 
relative record number as another control field. The first record with a given 
relative record number is called the home record. If the handling of synonyms 
requires a significant number of additional disk accesses, one of the important 
advantages of the direct file is lost. Also, because the access algorithm and the 
synonym code must reside in each program that uses a direct file, a risk is involved: 
if the algorithm and synonym handling are revised, you might need to rebuild files 
and modify all the programs that use those files. 



Handling Synonym Records 

Synonyms can be handled in many ways. Two of the common ways are: 

• Place synonyms in a separate part of the file. 

Place synonyms in the next available blank location. 

In these two methods, the record must contain a pointer to the synonym record. If 
two or more synonyms exist, the first synonym contains a pointer to the second 
synonym, and so on. 

For example, assume that the control field for a file is the first five characters of 
the customer's name. The file contains space for 40,000 records and allowance for 
three synonyms for each home record. The customer's name is converted to a 
decimal value as follows: 

SM ITH 

//I\~ 
D4 C9 E3E2 ca (EBCDIC code) 

I I I I I 
F2 F4 F9 F3 F8 (zoned decimal) 

~\IY 
24938 (decimal) 

59019093-0 

The decimal value is then divided by 9999: 

24938 I 9999 = 2.4940 

Ignoring the whole number of the quotient, you would calculate the location as 
follows: 

(4940 x 4) + 1 = 19761 

Because many customers may have the same name, such as Smith, the program 
may have to read records 19761, 19762, 19763, and 19764 to find the correct 
Smith. If extra synonyms are required, the third synonym could point to the next 
available space in the file (possibly an unused synonym location for the next home 
record). Another possibility, to reduce the number of synonyms, is to accept six or 
more characters from the customer name. 

Appendix A. Access Algorithms for Direct Files A-3 



Examples of Access Algorithms 

Example 1 

A-4 

The following examples illustrate three approaches to designing access algorithms 
for direct files. 

In this example, the major goals are to build a file in which: 

• The records can be accessed with an average of one disk access. 

• The disk space used for the file should contain little unused space. 

• The file should easily accommodate new records. 

Defining the Algorithm: In this example, an indexed item file is to be converted to a 
direct file for an interactive order entry application. The key field is a five-digit 
item number; four digits are assigned by the user, and the fifth digit is a check digit. 
The four digits start with 1001, and the user merely assigns the next sequential 
number to new items. Deleted item numbers are not reused until item 9999 has 
been taken. Approximately 20 new items are added per month, and four items are 
deleted. Currently, the highest number is 4317, but the file contains only 2,812 
items. 

The algorithm could be stated this way: the direct file position for each record is 
equal to the four-digit item number. Assume that the new record is a few bytes 
larger than the old record and that the file also accommodates 12 months of growth 
before reorganization. The algorithm requires a file containing 4,557 record 
positions. The items are related to direct file positions as follows: 

12 Months' 
Growth 

Item 
Number 

File 
Position 

1001 
1002 
1003 

4317 

4557 

1000 
-----1001 
-----•1002 
-----•1003 

------.4317 

4557 
59019100-0 



This approach, while yielding no synonyms, uses only two-thirds of the record 
positions, and most of the unused space is at the beginning of the file. 

The algorithm can be revised to state: the direct file position for each record is 
equal to the four-digit item number minus 1000. The file now requires 3,557 
positions with the following relationships: 

Item 
Number 

File 
Position 

1001-----· 
1002 -----· 2 
1003 3 

4317----- 3317 

4557 ----- 3557 

59019101-0 

This approach, also yielding no synonyms, uses 85 percent of the record positions. 
The unused portions are embedded randomly within the file where items have been 
deleted. Although each record requires only one disk access, the file size still is 15 
percent larger than the data portion of the indexed file it is to replace. 

Appendix A. Access Algorithms for Direct Files A-5 



A-6 

Now assume that the algorithm is further revised to state: the direct file position 
for each record shall be found by subtracting 1000 from the four-digit item 
number, multiplying the difference by 0.85, and half-adjusting the result. The file 
then occupies 3,023 positions with the following relationships: 

Item 
Number 

File 
Position 

1001-----
1002-----+ 2 
1003-----3 

4317----- 2819 

4557 ----- 3023 

59019102-0 

This approach uses 99 percent of the record positions, and the file size is only 1 
percent larger than an indexed file. It has, however, introduced the possibility of 
synonym records. For example, if item 1004 exists, it is assigned to direct file 
record position number 3 (same as item 1003). Similarly, items 4316 and 4317 
conflict, as do items 4556 and 4557. Thus, the refinement of the algorithm to meet 
the second major goal, minimum file space, may now affect the first goal, minimum 
disk accesses, because synonym records take a minimum of two accesses. 



Item 
Number 

1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 

File 

Handling Synonyms: The method that is used to handle synonyms must accomplish 
two goals: minimum accesses and minimum file space. The first step is to define 
(program) the manner in which a record will be placed in an alternative position 
when its home location is filled. 

Further analysis of the item file in this example might offer some suggestions for 
synonym handling. Note that, in this example, a synonym occurs about once in 
seven records. 

The previous algorithm caused the following mapping (asterisks identify 
synonyms): 

Item File Item File 
Position Number Position Number Position 

1 
2 
3* 
3* 
4 
5 
6 
7 

1009 8 1017 14* 
1010 9* 1018 15 
1011 9* 1019 16 
1012 10 1020 17 
1013 11 1021 18 
1014 12 1022 19 
1015 13 1023 20* 
1016 14* 1024 20* 

59019103-0 

Approximately one in seven item numbers is unused because of deleted items; the 
file is only 86 percent full. Thus, you might expect to find an unused position in 
the direct file about as frequently as the synonyms occur. 

Appendix A. Access Algorithms for Direct Files A-7 



Item 
Number 

1001 
1002 
1003 
1004 
1005 
1006 
1009 
1010 
1011 
1012 
1013 
1014 

A-8 

File 

Assume that the method of handling synonyms can be stated as follows: a 
synonym record is placed in the next higher numbered position that is unused. 
Because the file uses only 85 percent of the range of numbers, 15 percent of the 
numbers are not used because they are deleted. However, the deleted numbers are 
randomly distributed throughout the range of numbers. Thus, some positions will 
be available in the file for synonym records. About every seventh number will be a 
synonym. Assume that of the first 40 item numbers, items 1007, 1008, 1015, 
1017, 1020, and 1039 are among those deleted numbers. 

Item File Item File 
Position Number Position Number Position 

1 
2 
3 
6 
4 
5 
8 
9 
13 
10 
11 
12 

1016 14 1030 26 
1018 15 1031 ** 
1019 16 1032 27 
1021 18 1033 28 
1022 19 1034 29 
1023 20 1035 30 
1024 33 1036 31 
1025 21 1037 ** 
1026 22 1038 32 
1027 23 1040 34 
1028 24 
1029 25 

59019104-0 

Note the following: 

• Item 1031 will be placed after position 34. 

• Item 103 7 occupies a higher numbered position than item 1031. 

• File positions 7 and 17 are unused. 

After accessing a record, the program has to verify that the record is the one 
that was requested. If it is not, the program must access a synonym. 

• No more than two items have the same relative record number. Thus, most 
records require no more than two disk accesses. 



Example 2 

Note: This example assumes that records are loaded into locations before synonym 
records are loaded in a second run. This example also assumes that few 
records are added. If records are added after the synonyms are loaded, the 
locations for the added records may be occupied by synonyms. Thus, the added 
record becomes a pseudo synonym. If many records are added, most have to 
be handled as synonyms. In this situation, the technique described here may 
be less useful because performance tends to be degraded as records are added. 

In this synonym-handling technique, the average synonym should be close to the 
first position searched. Thus, a second access is necessary approximately 15 
percent of the time, and this access should.find the record not too distant from the 
original location. 

At this point, the file should be loaded, and the synonyms added in a second run. 
As the synonyms are added in the next available higher numbered position, a 
synonym pointer in the record has to be updated to point to the synonym record 
position. 

Assume that a customer master file contains three types of records (A, B, and C) 
for three types of customers. These records are in an indexed file, which has keys. 
Type A records have customer numbers from 10000 to 49999; type B records are 
numbered from 60000 to 79999; and type C records from 90000 to 99999. Each 
type of record is arranged alphabetically by customer name. 

The file was first loaded with approximately 500 alphabetized type C records, 
followed by 1000 alphabetized type B records, and finally about 3000 alphabetized 
type A records. 

Appendix A. Access Algorithms for Direct Files A-9 



A-10 

Records were added at the end of the file in the following manner: first, the added 
record type is determined (A, B, or C); then it is assigned an unused customer 
number that corresponds to the alphabetic sequence of the customer name 
according to a listing of the file. When first loaded, the contents of the file were as 
follows: 

Record 
Number 

0001 
0002 
0003 

0467 
0468 
0479 

1592 
1593 
1594 
1595 

Customer 
Number 

90020 Type C (alphabetical 90000} 
90040 by customer name) 

60040 Type B (alphabetical 60020 } . 

60060 by customer name) 

10000} 10013 Type A (alphabetical 
10026 by customer name) 
10039 

89019105-0 

The file originally contained 4, 725 records. Space was allowed for 6,000 records. 
Now, 18 months later, the file contains 5,638 records. 

An analysis of the file indicates the following: 

• The file is being expanded at the rate of about 12 percent per year and should 
probably be planned for about 6,600 records to meet one year's requirements. 

• Eight percent of customer numbers 10000 through 50000 are used, and 5 
percent of the other numbers are used. 

• Synonym records should be kept as close as possible to the expected location. 

• The best file design solution might be more than one file and more than one 
type of file organization. 

• H all the customer numbers will be in one file, an algorithm must take into 
account the necessity of loading type C customers at the front of the file, 
followed by types B and A. 

• The ratio of A to B to C types is about 6 to 2 to 1. 



A trial algorithm might try to accomplish the following mapping: 

Customer Number Type File Record Number 

90000 through 99999 c 0001 through 0733 
(1/9 x 6600 = 733) 

60000 through 79999 B 0734 through 2200 
(2/9 x 6600 = 1467) 

10000 through 49999 A 2201 through 6600 
(6/9 x 6600 = 4400) 

In order to accomplish the mapping, the algorithm must: 

• Convert customer numbers 90000 through 99999 into a set of relative record 
numbers from 1 through 733. 

Convert customer numbers 60000 through 79999 into a set of relative record 
numbers from 734 through 2200. 

• Convert customer numbers 10000 through 49999 into a set of relative record 
numbers from 2201through6600. 

One method of doing these conversions is as follows: 

• If the customer number is greater than 89999, subtract 89999 from it, multiply 
the difference by 0.0733 (the ratio of 733 positions to 10000 numbers), and 
use the half-adjusted product as the record position. 

• If the customer number is less than 50000, subtract 9999 from it, multiply the 
difference by 0.11 (the ratio of 4400 record positions to 40000 record 
numbers), add the half-adjusted product to 2200, and use the sum as the 
record position. 

• For all other customer names (60000 to 79999), subtract 59999 from the 
number, multiply the difference by 0.0733 (the ratio of 1,467 record positions 
to 20,000 numbers), add the half-adjusted product to 733, and use the sum as 
the record position. 

The synonym-handling technique might be the same as in "Example 1" on 
page A-4. You should test the synonym-handling technique by loading the file. 
Then the technique's effectiveness can be measured by another program that 
attempts to retrieve all records and counts the number of accesses necessary. The 
results of the second program indicate whether modifications are necessary or 
desirable. To further test the synonym-handling technique, run a sample program 
in an interactive environment to see whether response time at the display stations is 
acceptable. 

Appendix A. Access Algorithms for Direct Files A-11 



Example 3 

A-12 

The following techniques are randomizing techniques. These techniques use part 
of the data to determine the record position. Regardless of which randomizing 
technique you use, document the concept and approach in each program that uses 
the technique. 

Some master files might have altogether different uses and for that reason use 
different techniques. Consider a rate file in a telephone revenue accounting 
application; the file would have one record for every from-to location in the United 
States. A call made from number (123) 555-1234 to (456) 555-4567 would 
require the retrieval of a rate record from the master file that would have a key of 
123555456555. How can such a number be converted to a relative record position 
on a direct file? 

You could develop an algorithm that multiplies the numbers 123555 and 456555 
and then uses the second, fourth, sixth, eighth, and tenth digits of the product as 
the relative record position. This technique might yield a random distribution 
across a file for approximately 100,000 records. Another approach would be to 
use an algorithm that takes the second, fourth, sixth, eighth, and tenth digits from 
the 12-digit key. Thus, the first algorithm might locate the rate record in relative 
position 20632 (123555 x 456555 = 22109653025); the second algorithm 
might place the same record in position 25555. 

Some records, for a given billing location, would be far more active than the 
majority of the records. These very active records might be placed in a separate 
file, which may or may not be direct. 



Glossary 

#LIBRARY. The library, provided with the system, that 
contains the System Support Program Product. See system 
library. 

abnormal termination. A system failure or operator action 
that causes a job to end unsuccessfully. 

access level. The level of authority an operator has in 
order to use a secured file, library, folder, or folder 
member. 

access method. The way that records in files are referred 
to by the system. The reference can be consecutive 
(records are referred to one after another in the order in 
which they appear in the file), or it can be random (the 
individual records can be referred to in any order). 

accumulate. To collect. For example, to accumulate the 
values in a field. 

accumulating. The process of totaling the values in a 
particular field as records are being processed. 

acquire. To assign a display station or session to a 
program. 

acquired session. A session that has been started by a 
System/36 program using an acquire operation, or in 
BASIC, using an OPEN statement. 

adapter. See communications adapter. 

address. ( 1) A name, label, or number that identifies a 
location in storage, a device in a network, or any other 
data source. (2) In PS/36, an 8-byte code required for 
sign-on and the distribution of mail. 

address output file. Either a record address file or a limits 
file. 

address switches. Switches that you set to represent the 
address of a work station. 

addressing. ( 1) In data communications, the way that the 
sending or control station selects the station to which it is 
sending data. (2) A means of identifying storage 
locations. 

addrout file. See address output file. 

advanced program-to-program communications (APPC). 
Communications support that allows System/36 to 
communicate with other systems having the same support. 
APPC is the way that System/36 puts the IBM SNA 
LU-6.2 protocol into effect. 

alarm. An audible signal at a display station or printer 
that is used to get the operator's attention. 

alert. A record sent to another system to communicate a 
problem or an impending problem. On System/36, the 
problem management portion of the Communications and 
Systems Management feature used to generate and send 
alerts. 

align. To bring into or be in line with another or with 
others. For example, to align numbers on the decimal 
point. 

allocate. To assign a resource, such as a disk file or a 
diskette file, to perform a specific task. 

alphabetic character. Any one of the letters A through Z 
(uppercase and lowercase). Some program products 
extend the alphabet to include the special characters #, $, 
and@. A character that is one of the 26 uppercase 
characters of the alphabet, or a space. Any one of the 
uppercase letters A through Z, or the special character $. 

alphameric. Consisting of letters, numbers, and often 
other symbols, such as punctuation marks and 
mathematical symbols. 

alphanumeric. See alphameric. 

alternative index. An index that is built after a physical 
file is created and that provides a different order for 
reading or writing records in the file. Contrast with 
primary index. 

alternative system console. A command display station 
that can be designated as the system console. 

Glossary G-1 



American National Standard Code for Information 
Interchange (ASCII). The code developed by ANSI for 
information interchange among data processing systems, 
data communications systems, and associated equipment. 
The ASCII character set consists of 7-bit control 
characters and symbolic characters. 

application. ( 1) A particular business task, such as 
inventory control or accounts receivable. (2) A group of 
related programs that apply to a particular business area, 
such as the Inventory Control or the Accounts Receivable 
application. 

application program. A program used to perform an 
application or part of an application. 

archive. To copy a folder member onto tape or diskette. 

archived member. A folder member that has been saved 
on disk, diskette or tape. 

argument. An expression that is passed to a function or 
subroutine for evaluation. A parameter passed between a 
calling program and a subprogram or statement function. 

ascending key sequence. The arrangement of data in order 
from the lowest value of the key field to the highest value 
of the key field. Contrast with descending key sequence. 

ascending sequence. The arrangement of data in order 
from the lowest value to the highest value, according to 
the rules for comparing data. Contrast with descending 
sequence. 

ASCII. See American National Standard Code for 
Information Interchange (ASCII). 

assembler. A program that converts assembler language 
statements to machine instructions. 

assembler language. A symbolic programming language in 
which the set of instructions includes the instructions of 
the machine and whose data structures correspond directly 
to the storage and registers of the machine. 

assign/free area. An area of main storage that contains 
control information for all system activity and for each job 
that is active. 

assignment. The process of giving values to variables. 

asynchronous transmission. In data communications, a 
method of transmission in which the bits included in a 
character or block of characters occur during a specific 
time interval. However, the start of each character or 
block of characters can occur at any time during this 
interval. Contrast with synchronous transmission. 

G-2 

attribute. A characteristic. For example, an attribute for 
a displayed field could be blinking. A characteristic of a 
graph that you can change. 

audit trail. Information that allows the history of things 
such as a customer account or item record to be traced. 
The more recent information can be stored in the 
computer. 

authority. The right to communicate with or use a 
resource. 

authorization list. A list of user identifications and access 
levels that is used to secure folders and folder members. 

authorize. To allow a user to communicate with or use a 
resource. 

auto report. An RPG option that simplifies the defining 
of formats for printed reports and that allows the 
previously written statements to be included in new 
programs. 

automatic response severity level. The value that indicates 
whether messages should be automatically responded to 
by the System Support Program Product. 

back up. To copy information, usually onto diskette or 
tape, for safekeeping. 

backup copy. A copy, usually of a file, library member, or 
folder, that is kept in case the original is unintentionally 
changed or destroyed. 

badge security. A System Support Program Product 
option that helps prevent the unauthorized use of a display 
station by checking the data from a magnetic stripe on a 
badge before allowing an operator to sign on. 

base number. The part of a self-check field from which 
the check digit is calculated. 

basic data exchange. A file format for exchanging data on 
diskettes between systems or devices. 

basic ideographic character set. A character set defined by 
IBM that contains 3226 Kanji and 481 additional 
characters. The additional characters include Katakana, 
Hiragana, the alphabet (A through Z and a through z), 
numbers (0 through 9), Roman numerals (I through X), 
Greek, Cyrillic, and special symbols. Contrast with 
extended ideographic character set; see also ideographic 
character set. 

batch. Pertaining to activity involving little or no operator 
action. Contrast with interactive. 

batch compilation. A method of compiling programs 
without the continual attention of an operator. 



batch processing. A processing method in which a 
program or programs process records with little or no 
operator action. Contrast with interactive processing. 

beginning of tape. A reflective marking near the beginning 
of a tape reel that indicates where the system can begin 
recording data. 

BGU/36. See Business Graphics Utilities/ 36 (BGU I 36). 

binary. (1) Pertaining to a system of numbers to the base 
two; the binary digits are 0 and 1. (2) Involving a choice 
of two conditions, such as on-off or yes-no. 

binary operator. A symbol representing an operation to be 
performed on two data items, arrays, or expressions. The 
four types of binary operators are numeric, character, 
logical, and relational. 

bit. Either of the binary digits 0 or 1. See also byte. 

block. ( 1) A group of records that is recorded or 
processed as a unit. Same as physical record. (2) Ten 
sectors (2560 bytes) of disk storage. (3) In data 
communications, a group of records that is recorded, 
processed, or sent as a unit. A sequential group of 
statements (defined using line commands) that is treated 
as a unit. A sequential string of text (defined using cursor 
movement keys or line commands) that is treated as a 
unit. 

Boolean data. A category of data items that are limited to 
a value of one or zero. 

bps. Bits per second. 

branching. Performing a statement .other than the next 
one in sequence. 

buffer. ( 1) A temporary storage unit, especially one that 
accepts information at one rate and delivers it at another · 
rate. (2) An area of storage, temporarily reserved for 
performing input or output, into which data is read or 
from which data is written. 

Business Graphics Utilities/36 (BGU/36). A program 
product that can be used to design, display, print, and plot 
graphics. 

byte. The amount of storage required to represent one 
character; a byte is 8 bits. 

C. Celsius. 

C & SM. See Communications and Systems Management 
(C &SM). 

cache. A fixed user area of main storage that contains 
recently accessed disk data. 

cache page. The smallest amount of contiguous disk data 
that can be held in a cache. 

calendar. A list or schedule of appointments, reminders, 
and programs. 

calendar default. A default value assigned to a calendar 
user. The calendar defaults are the calendar itself, 
calendar view, and display format. 

call. (1) To activate a program or procedure at its entry 
point. Compare with load. (2) In data communications, 
the action necessary in making a connection between two 
stations on a switched line. 

cancel. To end a task before it is completed. 

CGU. See character generator utility (CGU). 

chain. (1) A group of logically linked records. (2) In 
SNA, a group of logically linked records that are 
transferred over a communications line. 

chained file. An input, output, or update disk file from 
which records can be read randomly. 

change authority. The right to create, add, change, and 
remove files, libraries, and folders. 

change bar. A character used to indicate any document 
line that is changed. 

change management. The part of the Communications 
and Systems Management feature that allows a host 
system operator to send (via DSX) programming changes 
and new programs to System/36, and to start procedures 
on System/36. 

channel. A path along which data passes. 

character. A letter, digit, or other symbol. 

character expression. A character constant, a simple 
character variable, a scalar reference to a character array, 
a character-valued function reference, or a sequence of the 
above separated by the concatenation operator (&) and 
parentheses. 

character generator utility (CGU). A program that is used 
to create, maintain, and display ideographic characters. 

character key. A keyboard key that allows the user to 
enter the character shown on the key. Compare with 
command key and function key. 

character string. A sequence of consecutive characters. A 
sequence of characters that form a COBOL word, a literal, 
a PICTURE character string, or a comment entry. 

Glossary G-3 



character variable. The name of a character data item 
whose value is assigned and/ or changed while the 
program is running. 

characters per inch (CPI). The number of characters 
printed within an inch horizontally across a page. 

chart. A display screen, printed page, or plotted page that 
contains multiple graphs. 

chart utility. The part of BGU/36 that allows you to 
design, display, print, and plot charts and maintain chart 
members. 

check. (1) An error condition. (2) To look for a 
condition. 

child. Pertaining to a secured resource, either a file or 
library, that uses the user list of a parent resource. A child 
resource can have only one parent resource. Contrast 
with parent. 

close. To end the processing of a file. 

COBOL (common business-oriented language). A 
high-level programming language, similar to English, that 
is used primarily for commercial data processing. 

code. ( 1) Instructions for the computer. (2) To write 
instructions for the computer. Same as program. (3) A 
representation of a condition, such as an error code. 

column. ( 1) A character position within a print line or on 
a display. The positions are numbered from 1, by 1, 
starting at the leftmost character position and extending to 
the rightmost position. (2) A group of data that is aligned 
vertically (usually with tabs) within a list or table. A list 
of values in a report. Each field in the report is a single 
column. 

command. A request to the system to perform an 
operation or a procedure. 

command display. A display that allows an operator to 
display and send messages, and use control commands and 
procedure commands to start and control jobs. Contrast 
with standby display. See also console display and 
subconsole display. 

command display station. A display station from which an 
operator can start and control jobs. A command display 
station can become an alternative system console, can be 
designated as a subconsole, and can also be used as a data 
display station. See also alternative system console, data 
display station, and subconsole. 

G-4 

command file. In the MSRJE utility, a disk file, procedure 
member, or source member that can contain MSRJE 
utility control statements and records to be transmitted to 
the host system. Contrast with data file. 

command key. A keyboard key that is used to request 
specific programmed actions. Compare with character key 
and function key. 

command processor. The part of the System Support 
Program Product that processes control commands and 
that passes procedure commands and operation control 
language statements to the initiator. 

comment. Words or statements in a program or on a 
display that serve as documentation rather than as 
instructions, choices, or prompts. A note in the 
Identification Division or Procedure Division of a COBOL 
source program. A comment is ignored by the compiler. 
As an IBM extension, comments may be included at any 
point in a COBOL source program. 

comment line. A source program line that is not translated 
by the compiler. The comment line can be used to 
document the program. A special form of the comment 
line can be used to cause page ejection before the 
comment line is printed. 

communications. See data communications. 

communications adapter. A hardware feature that enables 
a computer or device to become a part of a data 
communications network. 

Communications and Systems Management ( C & SM). A 
feature of the System Support Program Product that 
contains the remote management support (also referred to 
as DHCF), the change management support (referred to 
as DSNX), and the problem management support 
(referred to as alerts). 

communications file. A file that describes an advanced 
program-to-program communications (APPC) subsystem 
session between a System/36 program and a remote 
device, another program, or another system. 

communications file definition. The format in the 
communications file that contains the APPC subsystem 
session description. 

communications line. The line over which data 
communications takes place; for example, a telephone line. 

communications security. A System Support Program 
Product option that allows the identity of a remote 
location to be verified before that location can run 
programs on your system. 



compile. To translate a program written in a high-level 
programming language into a machine language program. 

compiler. A program that compiles. 

complex condition. A condition in which one or more 
logical operators (AND, OR or NOT) act upon one or 
more conditions. Complex conditions include negated 
simple conditions, combined conditions, and negated 
combined conditions. See conditional expression and 
simple condition. 

compress. (1) To move files, libraries, or folders together 
on disk to create one continuous area of unused space. 
(2) To replace repetitive characters in: a file or folder with 
control characters so that the file or folder takes up less 
space when saved on diskette. 

compression. In data communications, a technique for 
removing strings of duplicate characters and for removing 
trailing blanks before transmitting data. 

computer graphics. The use of a computer to produce 
pictorial representations of relationships, such as charts, 
and two- or three-dimensional images, by means of dots, 
lines, curves, and so forth. 

concatenate. (1) To link together. (2) To join two 
character strings. 

concept. An idea generalized from particular instances. 

condense. To move library members together in a library 
to create one continuous area of unused space in the 
library. 

condition. An expression in a program or procedure that 
can be evaluated to a value of either true or false when the 
program or procedure is running. An expression in a 
program for which a truth value can be determined at run 
time. Conditions include the simple conditions (relation 
condition, class condition, condition-name condition, 
switch-status condition, sign condition) and the complex 
conditions (negated simple conditions, combined 
conditions, negated combined conditions). 

conditional expression. A logical statement that describes 
the relationship (such as greater than or equal) of two 
items. A simple condition or a complex condition 
specified in an IF, a PERFORM, or a SEARCH 
statement. See complex condition and simple condition. 

conditioning. The use of indicators to control when 
calculations or output operations are done. 

configuration. The group of machines, devices, and 
programs that make up a data processing system. See also 
system configuration. 

consecutive processing. The processing of records in the 
order in which they exist in a file. Same as sequential 
processing. See also random processing. 

console display. A display that can be requested only at 
the system console. From a console display an operator 
can display, send, and reply to messages and use all 
control commands. 

constant. A data item with a value that does not change. 
Contrast with variable. 

constant field. A field that is defined by a display format 
to contain a value that does not change. 

contiguous. Being in actual contact. 

continuation line. A line of a source statement into which 
characters are entered when the source statement cannot 
be contained on the previous line or lines. 

control block. A storage area used by a program to hold 
control information. 

control command. A command used by an operator to 
control the system or a work station. A control command 
does not run a procedure and cannot be used in a 
procedure. 

control field. A field that identifies a record's relationship 
to other records (such as a part number in an inventory 
record). In RPG, control fields are compared from record 
to record to determine when certain operations are to be 
performed. In sort, control fields determine the order of 
records in the sorted file. 

control panel. A panel that contains lights and keys used 
to observe and operate the status of the operations within 
the system. 

control storage. Storage in the computer that contains the 
programs used to control input and output operations and 
the use of main storage. Contrast with main storage. 

control storage initial program load. The loading of control 
storage programs from disk or diskette to control storage. 

control storage processor. The hardware that performs 
control storage instructions to handle data transfer and 
main storage, and input/ output assignments. 

controlled cancel. The system action that ends the job 
step being run and saves any new data already created. 
The job that is running can continue with the next job 
step. 

controller. Circuitry or a device used to coordinate and 
control the operation of one or more devices. 

Glossary G-5 



counter. A register or storage location used to accumulate 
the number of occurrences of an event. 

CPI. See characters per inch (CPI). 

creation date. The program date at the time a file is 
created. See also program date, session date, and system 
date. 

current library. The first library searched for any required 
members. The current library can be specified during 
sign-on or while running programs and procedures. 

current record. The record that is currently available to 
the program. 

cursor. A movable symbol on a display, used to indicate 
to the operator where to type the next character. 

cylinder. All disk or diskette tracks that can be read or 
written without moving the disk drive or diskette drive 
read/write mechanism. 

data communications. The transmission of data between 
computers and/or remote devices (usually over a long 
distance). 

-data definition. Information that describes the contents 
and characteristics of a field, format (record), or file. A 
data definition can include such things as field names, 
lengths, and data types. See also field definition, file 
definition, and format definition. 

data dictionary. A folder that contains field, format, and 
file definitions. 

data display station. A display station from which an 
operator can only enter data. A data display station is 
acquired and controlled by a program. Contrast with 
command display station. 

data entry facility. A function of Query/36 that allows a 
user to add, change, and mark records to be deleted in a 
file. The file must be linked to a file definition created 
with IDDU. 

data file. In the MSRJE utility, a disk file, procedure 
member, or source member that can contain only records 
to be transmitted to the host system. Contrast with 
command file. 

data file utility (DFU). The part of the Utilities Program 
Product that is used to create, maintain, display, and print 
disk files. 

data link. The equipment and rules (protocols) used for 
sending and receiving data. 

data management. See disk data management. 

G-6 

data stream. All information (data and control 
information) transmitted over a data link. 

data type. A category that identifies the mathematical 
qualities and internal representation of data. 

DDM. See Distributed Data Management (DDM). 

deactivate. To make ineffective. For example, to 
deactivate security. 

debug. To detect, locate, and remove errors from a 
program. 

decimal. ( 1) Pertaining to a system of numbers to the 
base ten; decimal digits range from 0 through 9. (2) A 
proper fraction in which the denominator is a power of 10. 

default. See default value. 

default printer. A printer that accepts all the printed 
output from a display station that is assigned to it. 

default value. A value stored in the system that is used 
when no other value is specified. 

define-the-file (DTF). A control block containing 
information that is passed between data management 
routines and users of the data management routines. 

delete. To remove. For example, to delete a file. 

delete character. A character that identifies a record to be 
removed from a file. 

delete-capable file. A file from which records can be 
logically removed without compressing the file. 

delimiter. A character or sequence of characters that 
marks the beginning or end of a unit of data. A character 
or a sequence of consecutive characters that marks the end 
of a unit of data and is not a part of that unit of data. 

descending key sequence. The arrangement of data.in 
order from the highest value of the key field to the lowest 
value of the key field. Contrast with ascending key 
sequence. 

descending sequence. The arrangement of data in order 
from the highest value to the lowest value, according to 
the rules for comparing data. Contrast with ascending 
sequence. 

detail record. A record that contains the daily activities or 
transactions of a business. For example, the items on a 
customer order are typically stored in detail records. 
Contrast with header record. 



detail report. A report that contains all the information 
produced by a query. Contrast with summary report. 

Development Support Utility (DSU). A program product 
that can be used to create, edit, remove, view, or print 
procedure members and source members. 

device passthru. See Display Station Pass-Through 
(DSPT). 

DFU. See data file utility (DFU). 

diagnostic. Pertaining to the detection and isolation of an 
error. 

diagnostic diskette. A diskette that contains tests to check 
that the system is operating properly. 

diagnostic program. A computer program that recognizes, 
locates, and explains either a fault in equipment or a 
mistake in a computer program. 

digit. Any of the numerals from 0 through 9. 

direct file. A disk file in which records are referenced by 
the relative record number. Contrast with indexed file and 
sequential file. 

directory. See network resource directory (NRD). A file 
containing such information as a name, address, and 
telephone number for each user of PS/36. Indirect users 
and individuals or organizations that do not use PS/36 
may also be listed in the directory. 

disable. In interactive communications, to end a 
subsystem and free the area of main storage used by that 
subsystem. Contrast with enable. 

disk. A storage device made of one or more flat, circular 
plates with magnetic surfaces on which information can be 
stored. 

disk data management. The System Support Program 
Product support that processes a request to read or write 
data. 

disk drive. The mechanism used to read and write 
information on disk. 

disk file. A set of related records on disk that is treated as 
a unit. See also record file and stream file. 

diskette. A thin, flexible magnetic plate that is 
permanently sealed in a protective cover. It can be used to 
store information copied from the disk or to exchange 
information with other computers. 

diskette drive. The mechanism used to read and write 
information on diskettes. 

diskette magazine drive. A diskette drive that holds up to 
two magazines plus three individual diskettes. 

diskette 1. A diskette that contains information on only 
one side. 

diskette 2D. A diskette that contains information on both 
sides, and with two times the amount of information 
stored in the same space as a diskette 1. Therefore, a 
diskette 2D holds approximately four times the amount of 
information as a diskette 1. 

display. (1) A visual presentation of information on a 
display screen. (2) To show information on the display 
screen. 

display format. Data that defines (or describes) a display. 

display layout sheet. A form used to plan the location of 
data on the display. 

display screen. The part of the display station on which 
information is displayed. 

display station. A device that includes a keyboard from 
which an operator can send information to the system and 
a display screen on which an operator can see the 
information sent to or the information received from the 
system. 

Display Station Pass-Through (DSPf). A communications 
feature that allows a user to sign on to one System/36 
from another System/36 and access that remote system's 
resources. 

DisplayWrite/36 (DW /36). A program product that 
creates, revises, views, and prints documents that are 
produced in an office environment. 

disposition. In file processing, the process of specifying 
whether a file is new, old, or shared, and how the file is to 
be shared. 

Distributed Data Management (DDM). A feature of the 
System Support Program Product that allows an 
application program to work on files that reside on a 
remote system. 

Distributed Systems Executive (DSX). A program product 
available for IBM host systems (System/370, 43XX, and 
30XX) that allows the host system to get, send, and 
remove files, programs, formats, and procedures in a 
network of computers. 

Distributed Systems Node Executive (DSNX). Another 
name for the change management support offered by the 
Communications and Systems Management feature. This 
support processes changes sent by a DSX host system. 

Glossary G-7 



distribution list. A list of users to receive a particular piece 
of mail. This list can be within a group. 

distribution request. A request to send a document or 
documents to an individual or to a distribution list. 

document. One or more lines of text that can be named 
and stored as a member in a folder. 

document description. Data that describes the 
characteristics of a document. The description can include 
document type, subject, author, and date created. 

document folder. A folder that is used to store 
documents. 

document format. The selected arrangement of text for a 
specific document. 

document ID. An eight-character name that PS/36 
automatically assigns to each document it sends or 
receives. 

dot matrix. ( 1) In computer graphics, a two-dimensional 
pattern of dots used for constructing a display image. (2) 
In word processing, a pattern of dots used to form 
characters. 

down load. To transmit a font over a communications line 
to a 6670 printer. 

DSNX. See Distributed Systems Node Executive (DSNX). 

DSU. See Development Support Utility (DSU). 

DSX. See Distributed Systems Executive (DSX). 

DTF. See define-the-file (DTF). 

dump. (1) To copy the contents of all or part of storage, 
usually to an output device. (2) Data that has been 
dumped. 

dump file. A file that contains the data areas used by a 
program that failed. 

DW/36. See DisplayWrite/36 (DW/36). 

dynamic access. An access mode in which records can be 
read from or written to a file in a nonsequential order (see 
random access) and read from a file in a sequential order 
(see sequential access) during the scope of the same OPEN 
statement. 

E-format. Floating-point format, consisting of a number 
in scientific notation. 

EBCDIC. See extended binary-coded decimal interchange 
code (EBCDIC). 

G-8 

EBCDIC character. Any one of the symbols included in 
the 8-bit EBCDIC set. 

edit. (1) To modify the form or format of data; for 
example, to insert or remove characters such as for dates 
or decimal points. (2) To check the accuracy of 
information that has been entered, and to indicate if an 
error is found. (3) To make changes to a document by 
adding, changing, or removing text. 

edit code. A number or letter indicating that editing 
should be done according to a defined pattern. 

EDIT display. (DSU) The display used to make changes 
to a member by adding, changing, or removing statements. 

Edit display. (DW /36) The display used to make changes 
to a document by adding, changing, or removing text. 

embedded blanks. Blanks that are surrounded by any 
other characters. 

emulation. Imitation; for example, the imitation of a 
computer or device. 

enable. In interactive communications, to load and start a 
subsystem. Contrast with disable. 

end of extent. The end of the area on a disk or diskette 
reserved for a file. 

end of tape. A reflective marking near the end of a tape 
reel that indicates where the system must stop recording 
data. 

enhance. To make greater; to improve. 

enter. To type in information from a keyboard and press 
the Enter key in order to send the information to the 
computer. 

enter/update mode. The mode that is used to enter new 
statements into a source or procedure member, or to 
change statements that already exist in a source or 
procedure member. 

entry. Any descriptive set of consecutive clauses ended 
by a period and written in the Identification, Environment, 
or Data Division of a COBOL source program. 

evoke. To start a program or procedure so that it can 
communicate with your program. 

exchange file. A file format for exchanging data on 
diskette or tape between systems or devices that support 
that medium. See also basic data exchange. 



expiration date. The date after which a diskette file is no 
longer protected from being automatically erased by the 
system. 

exponent. A number, indicating to which power another 
number (the base) is to be raised. 

exponent (of an E-format number). An integer constant 
specifying the power of ten by which the base (mantissa) 
of the decimal floating-point number is to be multiplied. 

exponentiation. The operation in which a value is raised 
to a power. 

expression. A representation of a value. For example, 
variables and constants appearing alone or in combination 
with operators. 

extendable disk file. A file that the system can increase in 
size whenever more space is needed. 

extended binary-coded decimal interchange code 
(EBCDIC). A set of 256 eight-bit characters. 

extended character file. An area on disk that contains the 
extended ideographic character set. 

extended ideographic character set. An ideographic 
character set, residing in auxiliary storage, that contains 
3483 IBM-supplied ideographic characters and up to 4370 
user-defined ideographic characters. Contrast with basic 
ideographic character set; see also ideographic character set. 

extent. A continuous space on disk or diskette that is 
occupied by, or reserved for, a particular file, library, or 
folder. 

external indicators. Indicators that can be set by another 
program before a program is run or changed while a 
program is running. The external indicators are U 1 
through U8. 

extract. To obtain. For example, to extract information 
from a file. 

factor. A field name, constant, literal, subroutine name, 
label, display name, or file name used in an operation. 

feature. A programming or hardware option, usually 
available at an extra cost. For example, Communications 
is a feature of the System Support Program Product. 

field. One or more characters of related information 
(such as a name or an amount). 

field definition. Information that describes the 
characteristics of data in a field. A field definition is 
contained in a data dictionary. 

file. A set of related records treated as a unit. 

file definition. (1) In RPG, file description and input 
specifications that describe the records and fields in a file. 
(2) In IDDU, information that describes the contents and 
characteristics of a file. A file definition is contained in a 
data dictionary. 

file name. The name used by a program to identify a file. 
See also label. 

file organization. The permanent file structure established 
at the time a file is created. 

first-level message. A message that is issued immediately 
when an error occurs. See also second-level message. 

fixed-format menu. A menu that is formatted as two 
12-item columns. Compare with free-format menu. 

fixed-point constant. A numeric constant consisting of an 
optional sign followed by one or more digits and a decimal 
point. 

fixed-point format. The form used to express a 
fixed-point constant. 

floating-point constant. (1) A numeric constant consisting 
of an optional sign followed by one or more digits and a 
decimal point, which may be at the end. (2) A numeric 
constant with an optional sign followed by the letter D or 
E, followed by a one- to three-digit integer constant. For 
example, 3E-02, which is 3 times 10 to the -2 power or 
0.03. 

floating-point format. The form used to express a 
floating-point constant. 

folder. A named area on disk that contains documents, 
profiles, mail, or data definitions. Compare with library. 

folder directory. An area, in a folder, that contains 
information about each member in the folder; for example, 
the member name and the location. 

folder member. A named collection of statements in a 
folder. A document is an example of a folder member. 

font. An assortment of characters of a given size and 
style; for example, 10 point Courier. 

footer. Text that appears at the bottom of every page of 
a document. For example, a page number c6uld be a 
footer. Compare with header. 

format. ( 1) A defined arrangement of such things as 
characters, fields, and lines, usually used for displays, 
printouts, files, or documents. (2) To arrange such things 
as characters, fields, and lines. (3) In BASIC, a 
representation of the correct form of a command or 
statement. (4) In IDDU, a group of related fields, such as 
a record, in a file. 

Glossary G-9 



format definition. Information that describes the contents 
and characteristics of data within a group of related fields, 
such as a record in a file. A format definition is contained 
in a data dictionary. 

format member. A load member that contains display 
formats generated from S and D specifications in a 
program. A member that contains all the graph 
information defined for a graph (for example: graph type, 
headings, and axis). 

formatted diskette. A diskette on which control 
information has been written but which may or may not 
contain any data. 

formatted message. A two-line display in which the first 
line (format line) provides information about the message, 
and the second line (message text line) contains the 
message itself. 

FORTRAN (formula translation). A high-level 
programming language used primarily for scientific, 
engineering, and mathematical applications. 

free-form format. The SEU display format designed for 
entering and updating statements, such as OCL statements 
and utility control statements, that do not have a constant 
format. The format line and language prompt designed for 
entering and updating statements, such as OCL and utility 
control statements, that do not have a constant format. 

free-format menu. A menu for which the programmer 
defines the format of lines 3 through 20. Contrast with 
fixed-/ ormat menu. 

full-procedural file. A disk file that can be processed both 
randomly and sequentially. 

full-screen editor. A program that allows you to edit an 
entire screen of data or text at a time. 

function key. A keyboard key that requests an action but 
does not display or print a character. The cursor 
movement and Help keys are examples of function keys. 
Compare with command key and character key. 

function subprogram. A user-written subprogram defined 
by FORTRAN statements, the first of which is a 
FUNCTION statement. See also statement function and 
subroutine. 

Gaiji. A character in the extended ideographic character 
set. 

general user. A person, such as an office principal 
(manager or professional), secretary, or clerk, who is 
enrolled in and who can sign on to and use PS/36 directly. 
Contrast with indirect user. 

G-10 

generation. For some remote systems, the translation of 
configuration information into machine language: 

graph. Displayed, printed, or plotted output that 
compares two or more sets of variable data. The types of 
graphs are bar, line, pie, surface, and text. 

graph utility. The part of BGU/36 that allows you to 
design, display, print, and plot graphs, produce a graph 
object file, and maintain format and data members. 

graphic. (I) A picture. (2) See computer graphics. 

group. A list of names that are known together by a 
single name. 

group resource record. A record in the resource security 
file that secures a group of files and/ or libraries. 

hard copy. A printed copy. 

hardware. The equipment, as opposed to the 
programming, of a system. 

header. Text that appears at the top of the printed pages 
of a document. For example, the subject of the document 
could be a header. Compare with f oater. 

header label. A special set of records on a diskette or tape 
that describes the contents of the diskette or tape. 

header record. A record that contains information, such 
as customer name and customer address, that is common 
to following detail records. Contrast with detail record. 

Help key. A function key that, when pressed, displays 
online information or some part of the system help 
support. 

help text. The part of the system help support that offers 
additional information about displays and messages. 

hex. See hexadecimal. 

hexadecimal. Pertaining to a system of numbers to the 
base sixteen; hexadecimal digits range from 0 (zero) 
through 9 (nine) and A (ten) through F (fifteen). 

history file. A file that contains a log of system actions 
and operator responses. 

1/0. See input/output (I/O). 

ID. Identification. 

IDDU. See interactive data definition utility (JDDU). 



identifier. (1) A sequence of bits or characters that 
identifies a program, device, or system to another 
program, device, or system. (2) In COBOL, a data name 
that is unique or is made unique by the correct 
combination of qualifiers, subscripts, or indexes. (3) In 
PS/36, a name that identifies the type of member in a 
group. The identifier can be a calendar, a user ID, or 
another group. 

ideographic. Pertaining to 2-byte characters consisting of 
pictograms, symbolic characters, and other types of 
symbols. 

ideographic character set. The combination of the basic 
and extended ideographic character sets; see also basic 
ideographic character set and extended ideographic character 
set. 

ideographic session. A display station operating session 
during which ideographic data is used for system 
communication with the operator. 

ideographic sort utility. A program that sorts ideographic 
data. 

ideographic SSP. A version of the System Support 
Program Product that includes formats for help displays in 
both Katakana 1-byte and 2-byte ideographic characters. 
Compare with Kanji-preferred SSP. 

ideographic support. The hardware and programming 
elements that allow processing of ideographic data. 

IF expressions. Expressions within a procedure that are 
used to test for a condition. 

include. To add statements from one library member to 
another library member. 

independent work station. A work station that can operate 
independently of a host system, but which can also 
communicate with a host system. An example of an 
independent work station is a Displaywriter. 

independent work station user. A person who uses the 
Electronic Document Distribution licensed program to 
communicate with PS/36. 

index. ( 1) A table containing the key value and location 
of each record in an indexed file. (2) A computer storage 
position or register, the contents of which identify a 
particular element in a set of elements. 

index key. The field within a record that identifies that 
record in an indexed file. 

indexed file. A file in which the key and the position of 
each record are recorded in a separate portion of the file 
called the index. Contrast with direct file and sequential 
file. 

indicator. An internal switch that communicates a 
condition between parts of a program or procedure. 

indirect user. A person enrolled as a PS/36 user who is 
authorized to receive and print mail but has no mail log. 
Contrast with general user. 

informational message. A message that provides 
information to the operator, but does not require a 
response. 

initial program load (IPL). The process of loading the 
system programs and preparing the system to run jobs. 

initialize. To prepare for use. For example, to initialize a 
diskette. 

initiator. The part of the System Support Program 
Product that reads and processes operation control 
language statements from the system input device. 

input. Data to be processed. 

input stream. The sequence of operation control 
statements and data given to the system from an input 
device. 

input/output (1/0). Pertaining to either input or output, 
or both. 

inquiry. (1) A request for information in storage. (2) A 
request that puts a display station into inquiry mode. (3) 
In data communications, a request for information from 
another system. 

inquiry mode. A mode during which the job currently 
running from a display station is interrupted so that other 
work can be done. The operator puts the display station 
in inquiry mode by pressing the Attn key. 

inquiry program. ( 1) A program that allows an operator to 
get information from a disk file. (2) A program that runs 
while the system is in inquiry mode. 

instruction. A statement that specifies an operation to be 
performed by the computer and the locations in storage of 
all data involved in that operation. 

integer. A positive or negative whole number; that is, an 
optional sign followed by a number that does not contain 
a decimal point. A numeric data item or literal that does 
not include any character positions to the right of the 
decimal point. When the term integer appears in formats, 
integer must be an unsigned numeric literal and must be 
nonzero unless the rules for that format explicitly state 
otherwise. 

interactive. Pertaining to activity involving requests and 
replies as, for example, between an operator and a 
program or between two programs. Contrast with batch. 

Glossary G-11 



Interactive Communications Feature (SSP-ICF). A feature 
of the System Support Program Product that allows a 
program to interactively communicate with another 
program or system. 

interactive data definition utility (IDDU). The part of the 
System Support Program Product used to define the 
characteristics of data and the contents of files. 

interactive processing. A processing method in which each 
operator action causes a response from the program or the 
system. Contrast with batch processing. 

interrupt. (1) To temporarily stop a process. (2) In data 
communications, to take an action at a receiving station 
that causes the sending station to end a transmission. 

invite. To ask for input data from either a display station 
or an SSP-ICF session. 

IPL. See initial program load (IPL). 

ISO. International Standards Organization. 

job. (1) A unit of work to be done by a system. (2) One 
or more related procedures or programs grouped into a 
procedure. 

job file. A disk file that exists until the job that uses it 
ends. 

job queue. A list of jobs waiting to be processed by the 
system. 

job region. The main storage space reserved by the 
System Support Program Product for use by a job. 

job step. A unit of work represented by a single program 
or a procedure that contains a single program. A job 
consists of one or more job steps. 

job stream. One or more library source members or 
procedure members saved on diskette or tape. 

justify. To adjust text to be even with the top, bottom, 
left, or right margin. 

K-byte. 1024 bytes. 

Kanji. ( 1) The ideographic character set used by the 
Japanese to represent their native language. (2) A single 
character in the ideographic character set. 

Kanji-preferred SSP. A version of the System Support 
Program Product that includes formats for help displays in 
Kanji 2-byte ideographic characters. Compare with 
ideographic SSP. 

G-12 

Katakana. A native Japanese character set that is used 
primarily to write foreign words phonetically. 

key. One or more characters used to identify the record 
and establish the record's order within an indexed file. 
One or more characters used to identify the record and 
establish the record's order within an indexed file or a 
direct (relative) file. 

keyboard. A group of numeric keys, alphabetic keys, and 
function keys used for entering information at a display 
station and into the system. 

label. (1) The name in the disk or diskette volume table 
of contents or on a tape that identifies a file. See also file 

, name. (2) The name that identifies a statement. The 
name that identifies a BASIC program line. 

left-adjust. To place or move an entry in a field so that 
the leftmost character of the field is in the leftmost 
position. Contrast with right-adjust. 

library. (1) A named area on disk that can contain 
programs and related information (not files). A library 
consists of different sections, called library members. 
Compare with folder. (2) The set of publications for a 
system. 

library control sector. In a library directory, the first 
sector, which contains a record of the used and available 
space in the library. 

library directory. An area, in a library, that contains 
information about each member in the library; for 
example, the member name and the location. 

library member. A named collection of records or 
statements in a library. The types of library members are 
load member, procedure member, source member, and 
subroutine member. 

library member subtype. A specific classification of a 
library member type. For example, a source member can 
be identified as a COBOL source member or a DFU 
source member. 

library name. A user-defined word that names a library. 

licensed application program. A set of licensed programs 
used to perform a particular data processing task, such as 
a distribution management application or a construction 
management application. 

licensed program. An IBM-written program that performs 
functions related to processing user data. 

lightness. The characteristic that allows colors to be 
ranked on a scale from light to dark. 



limits file. A file that contains upper and lower values of 
the record keys that can be used to read from an indexed 
file. 

lines per inch (LPI). The number of characters printed 
within an inch vertically down the page. 

link-editing. To combine, by the overlay linkage editor, a 
number of load members and/ or subroutine members into 
one program. 

linkage. The coding that passes control and parameters 
between two routines. 

linkage editor. See overlay linkage editor. 

literal. A symbol or a quantity in a source program that is 
itself data, rather than a reference to data. 

load. (1) To move data or programs into storage. (2) To 
place a diskette into a diskette drive or a diskette 
magazine into a diskette magazine drive. (3) To insert 
paper into a printer. (4) To mount a tape or insert a tape 
cartridge into a tape drive. 

load member. A library member that contains information 
in machine language, a form that the system can use 
directly. Contrast with source member. 

load module. A program in a form that can be loaded into 
main storage and run. The load module is the output of 
the overlay linkage editor. 

local. Pertaining to a device, file, or system that is 
accessed directly from your system, without the use of a 
communications line. Contrast with remote. 

local data area. A 512-byte area on disk that can be used 
to pass information between jobs and job steps during a 
session. A separate local data area exists for each 
command display station. 

log. (1) To record; for example, to log all messages on 
the system printer. (2) See mail log. 

logical expression. An expression consisting of logical 
operators and/ or relational operators that can be 
evaluated to a value of either true or false. 

logical operator. A word or symbol that defines the 
logical connection between conditions or that makes 
opposite a condition. A reserved word that defines the 
logical connection between conditions or negates a 
condition: OR (logical connective-either or both), AND 
(logical connective-both), and NOT (logical negation). A 
set of operators used in logical expressions. The operators 
are: .NOT. (logical negation), .AND. (logical 
conjunction), and .OR. (logical union). 

loop. A sequence of instructions that is performed 
repeatedly until an ending condition is reached. 

LPI. See lines per inch (LP!). 

M-byte. See megabyte. 

machine instruction. An instruction of the machine 
language that can be performed by the computer. 

machine language. A language that can be used directly 
by a computer without intermediate processing. 

macro. See macroinstruction. 

macroinstruction. A single instruction that represents a set 
of instructions. 

magazine. A container that holds up to 10 diskettes. 

magnetic tape. See tape. 

magnetic tape unit. A device for reading or writing data 
from or on magnetic tape. 

mail. Any correspondence (online or hard copy) that is 
sent between users. 

mail folder. A folder used to store documents sent and 
received as mail. 

mail list. A selected part of an entire mail log. 

mail log. A record of all the mail sent or received by a 
user. 

main storage. The part of the processing unit where 
programs are run. Contrast with control storage. 

main storage processor. Hardware that performs the 
machine language instructions in main storage. 

mainline module. A mainline routine after it has been 
compiled. 

mainline routine. The first subroutine encountered when 
link-editing. 

mandatory entry field. A field in which an operator must 
enter at least one character. 

mandatory fill field. A field for which an operator must 
enter nothing or must fill in completely. 

mask. A pattern of characters that controls the keeping, 
deleting, or testing of portions of another pattern of 
characters. 

Glossary G-13 



master configuration record. Information, stored on disk, 
that describes system devices, programming, and 
characteristics. 

master file. A collection of permanent information, such 
as a customer address file. 

master security officer. A person who is designated to 
control all of the security tasks that are provided with the 
System Support Program Product. A master security 
officer can, for example, deactivate password, badge, or 
resource security, or add, change, or remove security 
information about any system operator. Contrast with 
security officer. 

match fields. When processing more than one file with 
RPG, fields that are compared to determine whether 
operations should be done. 

matrix. An array arranged in rows and columns. 

megabyte. One million bytes. 

member. See library member. 

memo slip. A short message that can be sent with a 
document to give instructions to the addressee. 

menu. A displayed list of items from which an operator 
can make a selection. 

menu security. A System Support Program Product option 
that restricts an operator to selecting items from a 
particular menu. 

merge. To combine two or more ordered files into one 
similarly ordered file. To perform a data/text merge. To 
break down the groups contained within another group to 
their individual members. 

message. (1) Information sent to one or more users or 
display stations from a program or another user. A 
message can be either displayed or printed. (2) An 
indication of the condition of the system sent by the 
system. (3) For IMS/IRSS, a unit of data sent over the 
communications line. 

message identification. A field in the display or printout of 
a message that directs the user to the description of the 
message in a message guide or a reference manual. This 
field consists of up to four alphabetic characters, followed 
by a dash, followed by the message identification code. 

message identification code (MIC). A four-digit number 
that identifies a record in a message member. This 
number can be part of the message identification. 

G-14 

message member. A library member that defines the text 
of each message and its associated message identification 
code. 

MIC. See message identification code (MIC). 

mm. Millimeter. 

mode. A method of operation. For an example, see 
enter/update mode. 

module. ( 1) One part of a program, which usually 
performs a specific task (such as disk input/ output). (2) 
See load module. (3) See object module. 

modulus to/modulus 11 checking. Formulas used to 
calculate the check digit for a self-check field. 

monitor. Programming or hardware that observes, 
supervises, controls, or verifies the operation of a system. 

MRT procedure. See multiple requester terminal (MRT) 
procedure. 

MRT program. See multiple requester terminal (MRT) 
program. 

MSRJE. See Multiple Session Remote Job Entry 
(MSRJE). 

multiple. More than one. 

multiple requester terminal (MRT) procedure. A 
procedure that calls a multiple requester terminal program. 

multiple requester terminal (MRT) Pl"Ogram. A program 
that can process requests from more than one display 
station or SSP-ICF session at the same time using a single 
copy of the program. Contrast with single requester 
terminal (SRT) program. 

Multiple Session Remote Job Entry (MSRJE). A feature 
of the System Support Program Product that allows one or 
more remote job entry sessions to operate on a host 
system (such as a System/370, or a 30XX or 43XX 
processor) at the same time. 

multiprogramming. The processing of two or more 
programs at the same time. 

multivolume file. A diskette file that occupies more than 
one diskette. 

name. A word that defines a COBOL operand. A name 
is composed of not more than 30 characters. 

national characters. The characters#, $, and @. 

NEP. See never-ending program (NEP). 



nest. To incorporate a structure or structures of some 
kind into a structure of the same kind. For example, to 
nest one loop (the nested loop) within another loop (the 
nesting loop); to nest one subroutine (the nested 
subroutine) within another subroutine (the nesting 
subroutine). 

nested procedure. A procedure that is called by another 
procedure. See also procedure level. 

network. A collection of data processing products 
connected by communications lines for information 
exchange between stations. 

network resource directory (NRD). An area on disk that 
lists the files on remote systems that can be accessed using 
Distributed Data Management (DDM). 

never-ending program (NEP). A long-running program 
that does not share system resources, except for shared 
files and the spool file. 

noncontiguous. Not being in actual contact. 

nonlabeled tape. A tape that has no labels. Tape marks 
are used to indicate the end of the volume and the end of 
each data file. 

nonrequesting terminal program. A program that is not 
associated with a requesting display station. 

nonsequenced display. A display that is not part of a 
sequence. Contrast with primary display sequence, 
secondary display, and sequenced display. 

nonstandard labeled tape. A tape that has labels but does 
not follow the IBM standard labeling conventions. 

nonswappable storage. The storage containing programs 
or data that must remain in storage. 

nucleus. That portion of main storage that is used by the 
System Support Program Product. 

null character. The character hex 00, used to represent 
the absence of a displayed or printed character. 

null character string. Two consecutive single quotation 
marks that specify a character constant of no characters. 

numeric. Pertaining to any of the digits 0 through 9. 

object module. A set of instructions in machine language. 
The object module is produced by a compiler from a 
subroutine or source program and can be input to the 
overlay linkage editor. 

object program. A set of instructions in machine-runnable 
form. The object program is produced by a compiler from 
a source program. 

OCL. See operation control language (OCL). 

office products. A group of IBM-supplied programs that 
work together to help an office operate more efficiently. 
The office products are DisplayWrite/36 (DW /36), 
Personal Services/36 (PS/36), and Query/36. The 
interactive data definition utility (IDDU) can be used to 
define files used by DW /36 and Query /36. 

OFFICE/36. The group of office products: 
DisplayWrite/36 (DW /36), Personal Services/36 
(PS/36), and Query/36. 

offline. Neither controlled directly by, nor communicating 
with, the computer, or both. Contrast with online. 

online. Being controlled directly by, or directly 
communicating with, the computer, or both. Contrast 
with offline. 

online information. Information, read on the display 
screen, that explains displays, messages, and programs. 
For some programs, the online information is similar to a 
printed manual and may contain a table of contents, guide 
information, practice exercises, help text, a glossary, and 
an index. 

open. To prepare a file for processing. 

operand. A quantity of data that is operated on, or the 
address in a computer instruction of data to be operated 
on. The object of a verb or an operator; that is, an 
operand is the data or equipment governed or directed by 
a verb or operator. 

operation. A defined action, such as adding or comparing, 
performed on one or more data items. 

operation control language (OCL). A language used to 
identify a job and its processing requirements to the 
System Support Program Product. 

operator. (1) A person who operates a device. (2) A 
symbol that represents an operation to be done. 

option. An item (usually numbered) in a list that a user 
selects to perform a task. 

output. The result of processing data. 

output stream. Messages and other output data, displayed 
on output devices by an operating system or a processing 
program. 

overlay. (1) To write over (and therefore destroy) an 
existing file. (2) A program segment that is loaded into 
main storage and replaces all or part of a previously 
loaded program segment. 

Glossary G-15 



overlay linkage editor. The part of the System Support 
Program Product that combines object programs to 
produce code. that can be run and allows the user to 
determine overlays for programs. 

overlay region. A continuous area of main storage in 
which segments can be loaded independently of other 
regions. 

override. ( 1) A parameter or value that replaces a 
previous parameter or value. (2) To replace a parameter 
or value. 

override user ID. A user identification that is used to sign 
on to the system if the user identification file is destroyed. 

owner authority. The right to create, add, change, delete, 
and rename files, libraries, and folders that he/she owns. 
The right to add, change, read (view), and delete items in 
files, libraries, and folders that he/she owns. 

packed decimal format. A format in which each byte 
(except the rightmost byte) within a field represents two 
numeric digits. The rightmost byte contains one digit and 
the sign. For example, the decimal value 123 is 
represented as 0001 0010 0011 1111. Contrast with zoned 
decimal format. 

packed key. An index key in packed decimal format. 

pad. To fill unused positions in a field with dummy data, 
usually zeros or blanks. 

page. A 2048-byte segment of main storage. 

parameter. A value supplied to a procedure or program 
that either is used as input or controls the actions of the 
procedure or program. A variable or a literal that is used 
to pass data values between calling and called programs. 

parent. Pertaining to a secured resource, either a file or 
library, whose user list is shared with one or more other 
files or libraries. Contrast with child. 

password. A string of characters that, when entered along 
with a user ID, allows an operator to sign on to the 
system. 

PC Support/36. A group of programs that can be used to 
transfer data from a System/36 to an IBM personal 
computer, to use disk storage on System/36 as IBM 
personal computer disk storage, and to use printers 
attached to System/36 as a IBM personal computer 
printer. 

PCE. See procedure control expression (PCE). 

G-16 

pending. Waiting, as in an operation is pending. 

personal document. A document that may be handled 
only by its owner or by someone who knows the owners 
personal document password specified. 

personal document password. A string of characters that 
must be entered to handle a personal document. 

Personal Services/36 (PS/36). A program product that 
can be used to send and receive mail, schedule 
appointments on calendars, maintain directories of names 
and addresses, and work with groups of users or calendars. 

physical file. A file that contains data records. 

physical record. ( 1) A group of records that is recorded or 
processed as a unit. Same as block. (2) A unit of data 
that is moved into or out of the computer. 

position. The location of a character in a series, as in a 
record, a displayed message, or a computer printout. 

positional parameter. A parameter that must appear in a 
specified location, relative to other positional parameters. 

primary display sequence. The first set of displays coded 
in a WSU source program. 

primary file. The main file from which a program reads 
records. 

primary index. The index that is built when a file is 
created. Contrast with alternative index. 

print image. A character set that corresponds to the 
characters on a print band. 

print intercept routine. The spooling routine that causes 
printer output to be placed in a spool file rather than being 
printed. 

printout. Information from the computer that is produced 
by a printer. 

priority. The relative ranking of items. For example, a 
job with high priority will be run before one with regular 
or low priority. 

problem determination. The process of identifying why 
the system is not working. Often this process identifies 
programs, equipment, data communications facilities, or 
user errors as the source of the problem. 

problem management. The part of the Communications 
and Systems Management feature that allows System/36 
to generate and send alerts to a host system using APPC. 



procedure. A set of related operation control language 
statements (and, possibly, utility control statements and 
procedure control expressions) that cause a specific 
program or set of programs to be performed. One or more 
successive paragraphs or sections within the Procedure 
Division, which directs the computer to perform some 
action or series of actions. 

procedure command. A command that runs a procedure. 

procedure control expression (PCE). A set of statements 
and expressions that control how a procedure runs. 

Procedure Division. One of the four main component 
parts of a COBOL program. The Procedure Division 
contains instructions for solving a problem. The 
Procedure Division may contain imperative statements, 
conditional statements, paragraphs, procedures and 
sections. 

procedure level. The relative position of a procedure 
within nested procedures. For example, if procedure A 
calls procedure B, and procedure B in turn calls procedure 
C, then procedure C is a third-level procedure. 

procedure member. A library member that contains the 
statements (such as operation control language 
statements) necessary to perform a program or set of 
programs. 

procedure start request. A message from the remote 
system asking an SSP-ICF subsystem to start a System/36 
procedure. 

processing unit. The part of the system unit that performs 
instructions and contains main storage. 

profile. Data that describes the significant features of a 
user, program, device, or remote location. 

program. (1) A sequence of instructions for a computer. 
See source program and load module. (2) To write a 
sequence of instructions for a computer. Same as code. 

program date. The date associated with a program (job 
step). See also creation date, session date, and system date. 

program generation. The compilation of a WSU program. 

program product. A licensed program for which a fee is 
charged. 

program temporary fix (PTF). A temporary solution to or 
bypass of a defect in a current release of a licensed 
program. 

Programming Request for Price Quotation (PRPQ). A 
program created especially for a particular group of 
customers or an application. Documentation for the 
program is provided only to those customers who order 
the PRPQ. 

prompt. A displayed request for information or operator 
action. 

PRPQ. See Programming Request for Price Quotation 
(PRPQ). 

PS/36. See Personal Services/ 36 (PS/ 36). 

PTF. See program temporary fix (PTF). 

query. A request for information from a file based on 
specific conditions; for example, a request for a list of all 
customers in a customer master file whose balance is 
greater than $1000. 

Query/36. A program product that produces files and 
reports based on those files. The files must be linked to 
file definitions created with IDDU. 

queue. A line or list formed by items waiting to be 
processed. 

random access. An access method in which records can be 
read from, written to, or removed from a file in any order. 
An access mode in which records can be read from, 
written to, or removed from a file in any order. 

random by key. A processing method for chained files in 
which record keys identify records to be processed. 

random by relative record number. A processing method 
for chained files in which relative record numbers identify 
the records to be processed. 

random processing. The processing of records in an order 
other than the order that they exist in a file. See also 
consecutive processing and sequential processing. 

real number. A number, containing a decimal point, 
stored in fixed-point or floating-point format. 

record. A collection of fields that is treated as a unit. 

record address file. An input file that indicates to a 
program which records are to be read from a disk file, and 
the order in which these records are to be read from the 
disk file. 

record file. A file on disk in which the data is read and 
written in records. Contrast with stream file. 

record ID code; See record identification code (record ID · 
code). 

Glossary G-1 7 



record identification code (record ID code). One or more 
characters that identify a record as belonging to a 
particular format of a disk file. 

record identifying indicator. An indicator that identifies 
the record just read. 

record type. The classification of records in a file. 

recovery procedure. (1) An action performed by the 
operator when an error message appears on the display 
screen. Usually, this action permits the program to 
continue or permits the operator to run the next job. (2) 
The method of returning the system to the point where a 
major system error occurred and running the recent critical 
jobs again. 

region size. The amount of main storage available for a 
program to run. See also job region and step region. 

register. A storage area, in a computer, usually intended 
for some special reason, capable of storing a specified 
amount of data such as a bit or an address. 

relational expression. A logical statement that describes 
the relationship (such as greater than or equal) of two 
arithmetic expressions or data items. 

relational operator. The reserved words or symbols used 
to express a relation condition or a relational expression. 
A reserved word, a relation character, a group of 
consecutive reserved words, or a group of consecutive 
reserved words and relation characters used to express a 
relation condition. Any of the set of operators that 
express an arithmetic condition that can be either true or 
false. The operators are: .GT., .GE., .LT., .LE., .EQ., 
and .NE .. They are defined as greater than, greater than 
or equal to, less than, less than or equal to, and not equal 
to, respectively. 

relative addressing. A means of addressing instructions 
and data areas by designating their location in relation to 
the location counter or to some symbol. 

relative file. Same as direct file. 

relative record number. A number that specifies the 
location of a record in relation to the beginning of the file. 

remote. Pertaining to a device, file, or system that is 
accessed by your system through a communications line. 
Contrast with local. 

remote job entry (RJE). Sending job instructions and 
possibly data to a remote system requesting it to run a job. 

G-18 

Remote Operation/Support Facility (ROSF). An 
implementation that allows an operator at a remote 
support group to use a remote display station (and an 
optional remote printer) to provide operational and 
technical assistance. 

remotely started session. A session started by an incoming 
procedure start request from the remote system. Contrast 
with acquired session. 

reorganize. To move folder members together at the front 
of the folder to reduce as much as possible the number of 
folder extents. 

reserved fields. Special fields provided and maintained by 
WSU that contain such current information as relative 
record numbers, date and time, and error codes. 

reset. To return a device or circuit to a clear state. 

resident file. A file that exists on disk until it is 
specifically deleted or changed to a scratch file. 

resource. Any part of the system required by a job or 
task, including main storage, input and output devices, the 
processing unit, and files, libraries, and folders. 

resource security. A System Support Program Product 
option that restricts the use of information in files, 
libraries, folders, and folder members to specified users. 

resource security file. A security file that contains 
information that restricts access to files, libraries, and 
folders. 

restore. Return to an original value or image. For 
example, to restore a library from diskette. 

return code. In data communications, a value generated 
by the system or subsystem that is returned to a program 
to indicate the results of an operation issued by that 
program. 

right-adjust. To place or move an entry in a field so that 
the rightmost character of the field is in the rightmost 
position. Contrast with left-adjust. 

ROSF. See Remote Operation/Support Facility (ROSF). 

routine. A set of statements in a program that causes the 
system to perform an operation or a series of related 
operations. 

RPG. A programming language specifically designed for 
writing application programs that meet common business 
data processing requirements. 

run, To cause a program, utility, or other machine 
function to be performed. 



scratch file. A file, usually used as a work file, that exists 
until the program that uses it ends. 

screen design aid (SDA). The part of the Utilities Program 
Product that helps the user design, create, and maintain 
displays and menus. Additionally, SDA can generate 
specifications for RPG and WSU work station programs. 

SDA. See screen design aid (SDA). 

SEAR. South East Asia Region. 

search word. Data used to find a match in a table or 
array. 

second-level message. A message that supplies additional 
information about an error condition when the Help key is 
pressed for a first-level message. See also first-level 
message. 

secondary display sequence. The set of displays that 
follows the primary display sequence in a WSU source 
program. 

secondary file. Any input file other than the primary file. 

sector. (1) An area on a disk track or a diskette track 
reserved to record information. (2) The smallest amount 
of information that can be written to or read from a disk 
or diskette during a single read or write operation. 

security. The protection of data, system operations, and 
devices from accidental or intentional ruin, damage, or 
exposure. See also system security. 

security officer. A person who is designated to control 
many of the system security tasks that are provided with 
the System Support Program Product. A security officer 
can, for example, add, change, or remove security 
information about system console operators, subconsole 
operators, and display station operators. A security 
officer cannot, however, deactivate password, badge, or 
resource security. Contrast with master security officer. 

segment. A part of a program that can be run without the 
entire program being in main storage. 

self-check field. A field, such as an account number, 
consisting of a base number and a check digit. 

separator page. A printed page used to show the end of 
output for one job and the start of output for another job. 

sequenced display. A display within a sequence. See 
nonsequenced display. 

sequential access. An access mode in which records are 
read from, written to, or removed from a file based on the 
logical order of the records in the file. 

sequential by key. A method of indexed file processing in 
which records are read or written in the order of the 
record keys. 

sequential file. A file in which records occur in the order 
in which they were entered. Contrast with direct file and 
indexed file. 

sequential processing. The processing of records in the 
order in which they exist in a file. Same as consecutive 
processing. See also random processing. 

session. (1) The logical connection by which a System/36 
program or device can communicate with a program or 
device at a remote location. (2) The length of time that 
starts when an operator signs on the system and ends 
when the operator signs off the system. 

session date. The date associated with a session. See also 
creation date, program date, and system date. 

session library. The library specified, or assigned as a 
default, when signing on or while running a program. 

SEU. See source entry utility (SEU). 

severity code. A code that indicates how serious a 
compiling error or an operating error is. 

severity level. See automatic response severity level. 

shared folder facility. A function of PC Support/36 that 
allows multiple System/36 and personal computer users 
concurrent access to a folder from a personal computer. 

shift-in control character. A character (hex OF) that 
indicates the end of a string of ideographic characters. 
Contrast with shift-out control character 

shift-out control character. A character (hex OE) that 
indicates the start of a string of ideographic characters. 
Contrast with shift-in control character 

sign off. To end a session at a display station. 

sign on. (Verb) To begin a session at a display station. 

sign-on. (Noun) The action an operator uses at a display 
station in order to begin working at the display station. 

simple condition. Any single condition chosen from the 
set: relation condition; class condition; condition-name 
condition; switch-status condition; sign condition. See 
complex condition and conditional expression. 

single requester terminal (SRT) program. A program that 
can process requests from only one display station or 
SSP-ICF session from each copy of the program. 
Contrast with multiple requester terminal (MRT) program. 

Glossary G-19 



SMF. See system measurement facility (SMF). 

SNA. See systems network architecture (SNA). 

SNA Upline Facility (SNUF). The SSP-ICF subsystem 
that allows System/36 to communicate with CICS/VS 
and IMS/VS application programs on a host system. 
Also, using this subsystem, DHCF communicates with 
HCF and DSNX communicates with DSX. 

SNUF. See SNA Upline Facility (SNUF). 

sort utility. The part of the System Support Program 
Product used to arrange records (or their relative record 
numbers) in a sequence determined by data contained in 
one or more fields within the records. 

source. A system, a program within a system, or a device 
that makes a request to a target. Contrast with target. 

source entry utility (SEU). The part of the Utilities 
Program Product used by the operator to enter and update 
source and procedure members. 

source member. A library member that contains 
information in the form in which it was entered, such as 
RPG specifications. Contrast with load member. 

source program. A set of instructions that are written in a 
programming language and that must be translated to 
machine language before the program can be run. 

source statement. A statement written in a programming 
language. 

special character. A character other than an alphabetic or 
numeric character. For example; *, +, and % are special 
characters. A character that is neither numeric nor 
alphabetic. Special characters in COBOL include the 
space ( ), and the period (.), as well as the following: + -
*/=$,")(;<>. 

specification sheets. Forms on which a program is coded 
and described. 

split key. A key, for an indexed file, defined from more 
than one field within each record. 

spool file segment. A part of the spool file that can hold a 
print file, or part of a print file. 

spool intercept buffer. An area of main storage containing 
printer data that is being written in the spool file. 

spool writer. The part of the System Support Program 
Product that prints output that has been saved in the spool 
file. 

G-20 

spooling. The part of the System Support Program 
Product that saves output on disk for later printing. 

SRT program. See single requester terminal (SRT) 
program. 

SSP. See System Support Program Product (SSP). 

SSP-ICF. See Interactive Communications Feature 
(SSP-ICF). 

standard label tape. A tape that follows the IBM standard 
labeling conventions. 

standby display. A display that allows an operator to enter 
data only. When a standby display appears, the display 
station can be acquired by a program. Contrast with 
command display. 

statement. An instruction in a program or procedure. A 
syntactically valid combination of words and symbols, 
beginning with a verb, that is written in the Procedure 
Division. 

statement function. A user-written function that is 
defined and referred to within the same program unit. The 
user-written function is defined in a statement function 
definition statement. See also function subprogram and 
subroutine. 

status. A condition. For example, the status of a printer, 
a job, or a communications line. 

step region. The main storage space reserved by the 
System Support Program Product for use by a program. 

storage index. A table in main storage that contains the 
address of the lowest key on each track in the file index. 

stream file. A file on disk in which data is read and 
written in consecutive fields. Contrast with record file. 

subconsole. A display station that controls a printer or 
printers. 

subconsole display. A display that can be requested only 
from a command display that appears on a subconsole. 
From a subconsole display an operator can display and 
send messages, and enter all control commands except 
those that can be entered only at the system console. See 
also console display. 

subdirectory. (S/36) A part of a folder that contains the 
names, descriptions, member types, and security 
information for other directories (subdirectories and folder 
members. Subdirectories are part of the shared folder 
facility. See also shared folder facility. 



subdirectory level. Subdirectories within folders or within 
other subdirectories in a folder are assigned a level based 
on the number of subdirectories in the path. If a 
subdirectory is the first one in a folder, it is assigned level 
1. If the subdirectory is within another subdirectory, it is 
assigned level 2, 3, etc. based on how many subdirectories 
precede it. 

subordinate. Occupying a lower class or rank. 

subroutine. A group of instructions that can be called by 
another program or subroutine. A subprogram consisting 
of FORTRAN statements, the first of which is a 
SUBROUTINE statement. It optionally returns one or 
more parameters to the calling program unit. See also 
function subprogram and statement function. 

subroutine member. A library member that contains 
information that must be combined with one or more 
members before being run by the system. A library 
member that contains a BASIC program in the form in 
which it appears within the computer. 

subsystem. The part of communications that handles the 
requirements of the remote system, isolating most 
system-dependent considerations from the application 
program. 

subtype. See library member subtype. 

summary report. A report that contains only the summary 
information produced by a query. Contrast with detail 
report. 

swapping. The process of temporarily removing an active 
job from main storage, saving it on disk, and processing 
another job in the area of main storage formerly occupied 
by the first job. 

synchronous. Occurring in a regular or predictable 
sequence. 

synchronous transmission. In data communications, a 
method of transmission in which the sending and receiving 
of characters is controlled by timing signals. Contrast 
with asynchronous transmission. 

system. The computer and its associated devices and 
programs. 

system configuration. A process that specifies the 
machines, devices, and programs that form a particular 
data processing system. 

system console. A display station from which an operator 
can keep track of and control system operation. 

system date. The date assigned by the system operator 
during the initial program load procedure. See also 
creation date, program date, and session date. 

system dump. A dump of all active programs (and their 
associated data) recorded after an error stops the system. 
Contrast with task dump. 

system help support. The part of the System Support 
Program Product that uses menus, prompts, and 
descriptive text to aid an operator. 

system library. The library, provided with the system, that 
contains the System Support Program Product and is 
named #LIBRARY. 

system list device. The device that receives output for 
most System Support Program Product utility programs 
and service aids. 

system log device. The device or devices designated by 
the LOG OCL statement to record messages and OCL 
statements. 

system measurement facility (SMF). System Support 
Program Product routines that, in conjunction with control 
storage routines, observe system and device activity, 
observe SSP work area usage, and record this data in a 
disk file. 

system printer. The printer that is used for any printed 
output that is not specifically directed to another printer. 

system program. An IBM-supplied program that is 
installed on the system. The System Support Program 
Product (SSP) is an example. 

system security. A system function that restricts the use 
of files, libraries, folders, folder members, and display 
stations to certain users. 

system service display station. A display station that can 
use all the procedures, programs, and commands needed 
to service the system. 

system services control point (SSCP). A focal point within 
an SNA network for managing the configuration, 
coordinating network operator and problem determination 
requests, and providing directory support and other 
session services for network users. 

System Support Program Product (SSP). A group of 
licensed programs that manage the running of other 
programs and the operation of associated devices, such as 
the display station and printer. The SSP also contains 
utility programs that perform common tasks, such as 
copying information from diskette to disk. 

system unit. The part of the system that contains the 
processing unit, the control panel, the disk drive and the 
disk, and either a diskette drive or a diskette magazine 
drive. 

Glossary G-21 



SYSTEM-CONSOLE. A COBOL function name 
associated with the operator's keyboard/display. 

systems network architecture (SNA). A set of rules for 
controlling the transfer of information in a data 
communications network. 

TACLA. See twin asynchronous communications line 
attachment. 

tape. A thin, flexible magnetic strip on which data can be 
stored. It can be used to store information copied from 
the disk. 

tape cartridge. A case containing a reel of magnetic tape 
arranged for insertion into a tape drive. 

tape drive. A mechanism used to read and write 
information on magnetic tapes. 

tape mark. A mark on the tape that indicates the 
beginning or end of a file or tape. 

tape reel. A round device on which magnetic tape is 
wound. 

tape volume. A single reel of magnetic tape. 

target. A system, a program within a system, or a device 
that interprets, rejects or satisfies, and replies to requests 
received from a source. Contrast with source. 

task. A unit of work (such as a user program) for the 
main storage processor. 

task dump. A dump of a program that failed (and its 
associated data). Contrast with system dump. 

task work area. An area on disk containing control 
information and work areas related to a specific task. 

terminal. In data communications, a device, usually 
equipped with a keyboard and a display device, capable of 
sending and receiving information over a communications 
line. 

terminator. The part of the System Support Program 
Product that performs the action necessary to end a job or 
program. 

text. The displayed or printed information of a 
document. 

trace. To,record data that provides a history of events 
that occur in the system. To create a list of the number of 
lines performed when a BASIC program is run. 

G-22 

track. A circular path on the surface of a disk or diskette 
on which information is magnetically recorded and from 
which recorded information is read. 

transaction. (1) An item of business. The handling of 
customer orders and customer billing are examples of 
transactions. (2) In interactive communications, the 
communication between the application program and a 
specific item (usually another application program) at the 
remote system. 

transaction file. A file containing data, such as customer 
orders, that is usually used only with a master file. A 
direct file containing control records and data records for 
each work session. 

transient. Pertaining to a System Support Program 
Product program that does not reside in main storage or to 
a temporary storage area for such a program. 

translation table. A table that provides replacement 
characters for characters that cannot be printed by the 
3262 printer. 

transparent text mode. A mode that allows BSC to send 
and receive messages containing any of the 256 character 
combinations in hexadecimal, including transmission 
control characters. 

truncate. To shorten a field or statement to a specified 
length. 

twin asynchronous communications line attachment 
(T ACLA). In data communications, a feature that allows 
a second communications line using asynchronous 
protocol to be connected to the 5362 System Unit with the 
single line communications adapter/attachment (SLCA). 

unique. The only one. 

update authority. The right to add, change, or remove 
items in a file, library, or folder. 

update file. A disk file from which a program reads a 
record, updates fields in the record, and writes the record 
back into the location it came from. 

user area. The parts of main storage and disk that are 
available to the user. 

user ID. See user identification (user ID). 

user identification (user ID). A string of characters that 
identifies a user to the system. 



user identification file (user ID file). A file containing 
information about which operators can use certain system 
functions, which menu is displayed when an operator signs 
on to the system, and which library is assigned to an 
operator when the operator signs on to the system. 

user identification record (user ID record). A record in the 
directory that gives a user's name, address, and telephone 
number. 

user list. A list, containing the user identification and 
access levels, of all operators who are allowed to use a 
specified file or library. 

user profile. A profile in the user identification file that 
contains information about someone who is allowed to 
sign on to the system. 

user program status indicator (UPSI) switch. One of a set 
of eight switches that can be set by and passed between 
application programs and procedures. 

utilities. See utility program. 

Utilities Program Product. A program product that 
contains the data file utility (DFU), the source entry utility 
(SEU), the work station utility (WSU), and the screen 
design aid (SDA). 

utility program. ( 1) A program provided to perform a task 
that is required by many of the programs using the system; 
for example, a program that copies information from 
diskette to disk. (2) A program of the System Support 
Program Product that performs a common task. 

Ul-U8 indicators. See external indicators. 

valid. (1) Allowed. (2) True, in conforming to an 
appropriate standard or authority. 

variable. A name used to represent a data item whose 
value can change while the program is running. Contrast 
with constant. 

verify. To confirm the correctness of something. 

volume label. An area on a standard label tape used to 
identify the tape volume and its owner. This area is the 
first 80 bytes and contains VOLl in the first four 
positions. 

volume table of contents (VTOC). An area on a disk or 
diskette that describes the location, size, and other 
characteristics of each file, library, and folder on the disk 
or diskette. 

VTOC. See volume table of contents (VTOC). 

WACK. See wait-before-transmitting-acknowledgment 
character (WACK). 

wait-before-transmitting-acknowledgment character 
(WACK). In BSC, the transmission control character 
indicating that the station is temporarily not ready to 
receive data. 

work file. A file that is used for temporary storage of data 
being processed. 

work station. A device that lets people transmit 
information to or receive information from a computer; 
for example, a display station or printer. 

work station data management. The part of the System 
Support Program Product that enables a program to 
present data on a display screen by providing a string of 
data fields and a format name. 

Work Station Expansion feature. A feature that provides 
six ports for the attachment of work stations to the 5360 
and 5362 System Unit. 

work station utility (WSU). The part of the Utilities 
Program Product that helps you to write programs for data 
entry, editing, and inquiry. 

write-enable ring. A device that is installed in a tape reel 
to permit writing on a tape. If a tape is mounted on a tape 
drive without the ring in position, writing to the tape 
cannot occur; the tape is protected. 

write-protect plug. A device on a tape cartridge that 
controls writing on the tape. 

WSU. See work station utility (WSU). 

WSU-generated procedure. The procedure that WSU 
creates to load and run a WSU program for the first 
operator who calls the procedure. 

X.21. In data communications, a specification of the 
CCITT that defines the connection of data terminal 
equipment to an X.21 (public data) network. 

X.21 feature. The feature that allows System/36 to be 
connected to an X.21 network. 

X.21 short hold mode. An option specified during system 
configuration that allows a circuit switched line to be 
disconnected when the line is not active. 

X.25. In data communications, a specification of the 
CCITT that defines the interface to an X.25 (packet 
switching) network. 

X.25 feature. The feature that allows System/36 to be 
connected to an X.25 network. 

Glossary G-23 



zoned decimal format. A format for representing numbers 
in which the digit is contained in bits 4 through 7 and the 
sign is contained in bits 0 through 3 of the rightmost byte; 
bits 0 through 3 of all other bytes contain ls (hex F). For 
example, in zoned decimal format, the decimal value of 
+ 123 is represented as 1111 0001 1111 0010 1111 0011. 
Contrast with packed decimal format. 

zoned decimal item. A numeric data item that is 
represented internally in zoned decimal format. 

zoned field. A field that contains data in the zoned 
decimal format. 

G-24 

1024-byte format. A format for diskette 2D diskettes 
with 1024 bytes per sector and 8 sectors per track. 

1255 Magnetic Character Reader. A device that reads 
documents printed with magnetic ink characters. 

128-byte format. A format for diskette 1 diskettes with 
128 bytes per sector and 26 sectors per track. 

256-byte format. A format for diskette 2D diskettes with 
256 bytes per sector and 26 sectors per track. 

512-byte format. A format for diskette 1 diskettes with 
512 bytes per sector and 8 sectors per track. 



Index 

I Special Characters I 
$BMENU (build menu utility program) 12-11 
$MAINT, creating procedures 18-8 
//*(informational message) statement 14-11 
/I** (system console message) statement 14-11 
I subdirectories/folder layout 11-8 
?CD? expression 19-9 
?nR'mic'? expression 14-12 
?TIME? substitution expression 17-32 
#APFLIB library 4-13 
#ASMLIB library 4-13 
#BGULIB library 4-13 
#BLHPLIB library 4-13 
#BLLIB library 4-13 
#COBLIB library 4-13 
#DFULIB library 4-13 
#DSULBl library 4-13 
#DSULB2 library 4-13 
#DSULIB library 4-13 
#EXT1818 ideographic character file 20-3 
#EXT2424 ideographic character file 20-3 
#FORTLIB library 4-13 
#IWLIB library 4-13 
#LIBRARY 4-9 
#OFCLIB library 4-13 
#OMSLIB library 4-13 
#QRYLIB library 4-13 
#RPGLIB library 4-13 
#SDALIB library 4-13 
#SEULIB library 4-13 
#STRTUPl procedure 17-35 
#STRTUP2 procedure 17-35 
#TMSLIB library 4-13 
#TULIB library 4-13 
#WSULIB library 4-13 

abnormal termination 17-11 
about this manual xix 
access algorithms for direct files 

description A-1 
examples of A-4 

access levels 
subdirectories 11-10 

access methods 
choosing a file organization 8-4 7 
concepts of 8-32 

access methods (continued) 
consecutive, description 8-36 
current record pointer 8-32 
description 8-35 
generalized 8-41 
introduction 8-2 
keyed processing 8-33 
nonkeyed processing 8-33 
physical and logical input/ output 8-70 
random access by key, description 8-40 
random access by relative record number, 

description 8-39 
sequential access by key, description 8-37 

acquiring display stations, programs 16-22 
activity, disk storage, measuring 4-24 
adjacent-form displays 13-14 
aids, productivity 1-8 
ALLOCATE OCL statement 

assigning diskette drive to a job 5-14 
assigning tape drive to a job 6-12 
changing AUTO/NOAUTO settings 5-16 
reading or writing sequential set of files 5-15, 6-13 

allocating 
diskette drive to a job 5-14 
file buffers to a program 15-8 
storage for file buffers and control blocks 8-67 
tape drive to a job 6-12 

ALOCFLDR procedure 10-4 
ALOCLIBR procedure 9-9 
alphabetic fields, display formats 13-7 
alphameric fields 

display formats 13-7 
record design 7-9 

alternative indexes 
See also multiple indexes 
considerations 8-23 
creating 8-21 
deleting 8-23 
description 8-21 

APAR files, creating using APAR procedure 19-20 
APAR procedure 19-20 
appending file space to program 8-67 
application 

definition 1-1 
overview 1-28 

application design 
controls on input and output 2-14 
conversion 2-23 
defining information to process 2-8 
defining the job 2-5 
design considerations summary 21-1 
detailed design step 2-14 
documenting 2-11, 2-15 

Index X-1 



application design (continued) 
functions to do 2-10 
general design step 2-12 
identifying what users do 2-5 
installation 2-23 
making a schedule 2-11 
objectives 2-3 
operation 2-24 
printed output 3-13 
program design 2-18 
program structure 16-11 
steps to follow 2-1 
testing 2-20 

ARCHIVE 
diskette files 5-6 
tape files 6-5 

ARCHIVE procedure 5-11, 11-11 
areas 

assign/free 15-5 , 
local data, programming 16-32 
task work 4-9 

assembler 
display formats 13-31 
introduction 1-7 
library 4-13 

assign/free area 15-5 
assigning 

automatic responses 14-10 
job names 17-2 
severity levels 14-10 

A TTR OCL statement 
INQUIRY parameter 16-20 
MRTMAX parameter 16-7, 16-41 
preventing canceling 17-34 
preventing interupting 17-34 
PRTY parameter 17-12 

attributes 
See also field attributes 
color control 12-15, 13-17 
files 8-3 
program 16-19 

main storage considerations 15-9 
authorization for files, security 8-12 
AUTO/NOAUTO settings for procedures, changing 5-16 
automatic copy of history file 4-11 

example 4-25 
automatic file, library, and folder placement 4-15 
automatic response 

assigning to messages 14-10 
considerations 14-7 
description of 14-4 
severity level guidelines 14-5 

X-2 

backup 
equipment 19-10 
error prevention 19-10 
folder considerations 10-11 
library considerations 9-14 
sample nightly procedure 17-37 
subdirectory considerations 11-11 

backup and recovery 19-11 
backup and recovery methods 19-15 
badge security 1-27 
balancing disk use 4-15 
bars, vertical 

See column separators 
BASIC 

display formats 13-30 
introduction 1-7 
library 4-13 
work station file 13-30 

basic data exchange format, diskettes 5-3 
batch 

processing, file design 8-4 7 
programs 16-2 
versus interactive programs 16-11 

beginning 
See starting 

beginning help menu 12-4 
BGU 

36, introduction 1-5 
binary format, record fields 7-7 
BLDFILE procedure 

creating delete-capable files 8-58 
creating files 8-5 
extending files 8-55 

BLDINDEX procedure 
allowing duplicate keys 8-27 
creating alternative indexes 8-21 

BLDLIBR procedure 9-9 
BLDMENU procedure 12-11 
blink field display format attribute 13-8 
block number, file and library placement 4-18 
blocking 

index entries 
description 8-62 
introduction 8-3 
performance considerations 8-63 

records 

blocks 

description 8-60 
introduction 8-3 
performance considerations 8-60 

capacity of diskettes 5-1 
capacity of tapes 6-2 



blocks (continued) 
disk, description 4-6 
for folders 10-4 
for libraries 9-9 

$BMENU (build menu utility program) 12-11 
border for Print key 3-22 
buffer areas for data channel 1-16 
buffers 

maximum amount of storage allowed 8-66 
used by files 8-67 
used by programs 15-8 

build menu utility program ($BMENU) 12-11 
Business Graphics Utilities 

36 (BGU 
36), introduction 1-5 

bypassing checking for duplicate keys 8-28 
bytes, for zoned decimal and packed decimal fields 7-6 

cache 
See disk cache 

calling 
menus 12-9 
procedures 18-4 

CANCEL control command 3-23 
canceling 

jobs 17-10 
preventing jobs from being canceled 17-34 
printer output 3-23 

capacities, disk 4-7 
CATALOG procedure 4-24, 5-13, 6-11 
?CD? expression 19-9 
CGU 20-9 
chaining menus 12-9 
CHANGE control command 3-23, 17-33 
changing 

AUTO/NOAUTO settings for procedures 5-16 
automatic responses 14-10 
characters per inch 3-21 
current directory 11-13 
directory size 9-17 
folder size 10-4, 10-13 
forms number 3-21 
history file size 4-24 
job queue position 17-33 
libraries in a job 9-12 
library members 9-16 
library size 9-9, 9-17 
lines per inch 3-21 
lines per page 3-21 
menu help text 12-12 
menus 12-10 
message members 14-9 

changing (continued) 
print belt image 3-22 
Print key printer 3-22 
printer configuration 3-22 
printer information in a procedure 3-22 
procedures 18-8 
session printer 3-21 
severity levels 14-10 
system list device 3-21 
task work area size 4-24 

character generator utility 20-9 
character sets, ideographic 20-3 
characters 

shift-in 
SI 20-2 
OF 20-2 

shift-out 
so 20-2 
OE 20-2 

characters per inch, changing 3-21 
checking OCL statement syntax 17-6 
choosing 

a file organization 8-43 
an access algorithm for direct files A-2 
when to run jobs 17-12 

classification, security, submitting jobs by 17-33 
clearing a menu from the display 12-4 
COBOL 

display formats 13-29 
introduction 1-7 
library 4-13 
TRANSACTION file 13-29 

code-link form displays 13-16 
color 

display design considerations 13-16 
using on menus 12-15 

column separators display format attribute 13-8 
command display station, introduction 1-23 
command key 3, displaying previous menu 12-4 
command key 6, displaying a help menu 12-4 
command processor 17-3, 17-6 
command text member, menus 12-10 
command, procedure 18-2 
commands 

CANCEL 3-23 
CHANGE 3-23, 17-33 
HOLD 3-23, 17-15 
how processed 1 7-6 
INFOMSG 17-34 
PRTY 17-12, 17-16 
RELEASE 3-23, 17-15 
RESTART 3-23 
START 3-23, 17-16 
STOP 3-23, 17-16 

Index X-3 



communications 1-24 
communications security 

introduction 1-27 
comparing program types 16-8 
COMPILE OCL statement 16-7 
COMPRESS procedure 4-21 
compressing 

disk storage 4-21 
folders 10-5 
libraries 9-10 

concatenating ideographic data 20-10 
concepts 

disk storage 4-2 
diskette storage 5-1 
displays 13-1 
error recovery 19-1 
files 8-1 
ideographic 20-1 
jobs 17-1 
libraries 9-1 
main storage 15-1 
menus 12-1 
messages and message members 14-1 
print spooling 3-5 , 
printed output 3-2 
procedures 18-1 
programs 16-1 
record design 7 -1 
tape storage 6-1 

concepts and uses 
subdirectory 11-1 

CONDENSE procedure 9-10, 9-17, 10-5, 10-14 
condensing folders 10-5, 10-14 
condensing libraries 9-10, 9-17 
configuration record, master, description 4-9 
consecutive access method 

description 8-36 
direct files 8-3 6 
indexed files 8-36 
introduction 8-2 
sequential files 8-36 

console, system, introduction 1-23 
contents 

of disk 4-8 
of history file 4-10 
of procedures 18-2 

continuing print files 3-27 
contraction of nucleus 15-2 
control blocks 

allocating storage for 8-67 
storage space required for 8-64 

control commands 
See commands 

control expressions, procedure 18-2, 18-9 

X-4 

control statements, utility 18-2 
control storage 

introduction 1-13 
library, on disk 4-9 
processor 1-13 

control storage processor 
stage 1 1-14 
stage 2 1-14 
stage 3 1-14 

control storage requirements for jobs 17-24 
controllers, input/output, introduction 1-16 
controlling 

job scheduling 17-12 
print spool 3-23 
print spooling 3-6 

controlling functions 
printer 3-29 

conversion, application design 2-23 
COPYDATA procedure 

creating files 8-5 
putting data in files 8-10 
removing deleted records 8-58 
reorganizing files 8-10 

COPYDIAG procedure 5-11 
COPYFILE 

diskette files 5-6 
tape files 6-5 

copying 
diskette files 5-11 
files 8-10 
history file, automatically 4-11 

example 4-25 
libraries 9-1 7 
library members 9-17 
spool file output 3-26 
tape files 6-9 

COPYil procedure 5-11 
COPYPRT procedure 3-26 
creating 

a sequential set of diskette files 5-15 
a sequential set of tape files 6-13 
alternative indexes 8-21 
automatic responses 14-10 
display formats 13-24 

files 

help text 13-27 
using FORMAT procedure 13-26 
using SDA 13-25 

BLDFILE procedure 8-5 
copying from disk 8-5 
copying from diskette 8-5 
FILE OCL statement 8-5 
Query/36 data entry facility 8-5 

folder 10-13 
help text for displays 13-27 
ideographic 

characters 20-9 



creating (continued) 
ideographic (continued) 

display formats 20-10 
message members 20-9 

library members 9-16 
menu help text 12-12 
menus 12-10 
message members 14-9 
procedures 18-8 
severity levels 14-10 
subdirectory 11-14 

creating help text 
SDA Application Help Support 13-27 

creation dates 
files 8-7 

current directory 
changing 11-13 

current display format 
in multiple-user programs 16-34 

current library 9-6 
current record identification 

in multiple-user programs 16-34 
current record pointer, file accessing 8-32 
cursor 

in multiple-user programs 16-34 

D-specification, display formats 13-24 
data 

backup and recovery 19-11 
placing into files 8-10 
prompting for 13-32 
sharing with other systems 5-1, 6-1 

data area, local, programming 16-32 
data channel, introduction 1-15 
data communications 

introduction 1-24 
data compression, diskette 5-8 
data display station, introduction 1-23 
data entry facility (Query /36) 8-5 
data file utility (DFU), introduction 1-5 
data file utility library 4-13 
data transfer 1-7 
data types, display formats 

alphabetic 13-7 
alphameric 13-7 
introduction 13-7 
Katakana 13-7 
magnetic stripe reader 13-7 
numeric 13-7 
right-to-left field 13-7 
signed numeric 13-7 

data types, records 
alphameric 7-9 
binary 7-7 
floating-point 7-8 
numeric 7-3 
packed decimal 7-5 
zoned decimal 7-3 

date, expiration 
for diskette files 5-9 
for tape files 6-7 

dates, files 8-7 
deadlock conditions, files 8-84 
DEALLOC OCL statement 5-14, 6-12 
deallocating diskette drive from a job 5-14 
deallocating tape drive from a job 6-12 
DEBUG OCL statement 18-11 
debugging 

procedures 18-11, 19-3 
programs 19-3 
system, using the SERVICE procedure 19-19 

decimal formats 
packed 7-5 
zoned 7-3 

decreasing 
See changing 

default menu 12-3, 12-4 
DEFER parameter, PRINTER OCL statement 3-29 
deferring 

file operations 8-70 
printed output 3-29 

defining 
application needs 2-5 
information to process 2-8 

delayed file operations 
description 8-70 
input operations 8-71 
maintaining indexes 8-72 
output operations 8-71 

delete 
subdirectory 

RD command 11-16 
delete code, record design 7-9 
DELETE procedure 

deleting alternative indexes 8-23 
deleting files from disk 8-13 
deleting information from diskette 5-13 

delete-capable files 
adding records to 8-59 
creating 8-58 
deleting records from 8-58 
introduction 8-3, 8-57 
processing a file containing deleted records 8-59 
using COBOL with 8-59 
using DFU with 8-60 
using RPG II with 8-59 
using WSU with 8-60 

Index X-5 



deleting alternative indexes 8-23 
description of system 1-9 
design considerations, summary 21-1 
design steps, for applications 2-1 
designing 

applications 1-28, 16-10 
menus 12-7 
message members 14-4 
printed output 3-13 
printed reports 3-14 
procedures 18-2, 18-6 
records 7-1 

designing displays 13-11 
detecting errors 19-1, 19-7 
determining field size 7 -10 
Development Support Utility (DSU), introduction 1-3, 

1-5 
device security 1-27 
DFA procedure 19-20 
DFU, introduction 1-5 
direct files 

access algorithms for A-1 
examples A-4 

consecutive access method 8-36 
description 8-15 
generalized access method 8-42 
introduction 8-2 
multiple indexes for 8-21 
random access by relative record number 8-39 
synonym records A-3 

directory 
current 11-3 
description 11-1 
root 11-3 
system 11-3 

directory of a folder 10-3 
directory of a library 9-7 
directory sectors for libraries 9-9 
disk blocks, description 4-6 
disk buffers, storage space required for files 8-64 
disk cache 4-23 

concepts 4-23 
considerations 4-23 

disk capacities 4-7 
disk drive, definition 4-2 
disk sectors, description 4-6 
disk storage 

block number location 4-18 
compressing 4-21 
concepts 4-2 
contents 4-8 
control storage library 4-9 
description 4-1 
design considerations summary 21-3 
dump files 4-13 
guidelines 4-15, 4-24 

X-6 

disk storage (continued) 
introduction 1-16 
job queue 4-12 
measuring activity of 4-24 
placement of files, libraries, and folders 4-15 
resource security file 4-13 
sector addresses 4-18 
sizes 4-7 
spool file 4-12 
system area 4-9 
system library 4-9 
system message file 4-13 
trace files 4-12 
user area 4-12 
user ID file 4-13 
VTOC, listing 4-9 

disk units Al and A2 4-17 
disk, physical organization 4-6 
diskette data compression 5-8 
diskette storage 

description 5-1 
design considerations summary 21-3 
introduction 1-17 

diskettes 
allocating to a job 5-14 
changing AUTO/NOAUTO settings 5-16 
copying information 5-11 
deallocating from a job 5-14 
exchange formats 5-2 
format 5-1 
guidelines 5-10 
how information is stored 5-5 
initializing 5-2, 5-10 
listing information 5-13 
removing information 5-13 
restoring information 5-11 
retention days 5-9 
saving information 5-11 
sequential set of files 5-15 
sharing data with other systems 5-1 
storage capacities 5-1 
storage capacity of 5-1 
type 1 5-1 
type 2D 5-1 
type 2HC 5-1 
types of files 5-6 
uses of 5-1 

dispatching function, job processing 17 -17 
display control specification 13-24 
display design 

considerations 13-11 
documenting 13-26 
using color 13-16 

display format specifications 13-24 



display formats 
adjacent-form display 13-14 
advantages 13-2 
Assembler 13-31 
BASIC 13-30 
choosing appropriate style 13-13 
COBOL 13-29 
code-link form display 13-16 
coding considerations 

multiple formats 13-18 
read-under-format 13-33 
remote display stations 13-19 

creating 13-24 
using FORMAT procedure 13-26 
using SDA 13-25 

data types 13-7 
description 13-1 
designing 13-11 
erasing input fields 13-9 
field attributes 13-8 
fixed-form display 13-13 
FORTRAN IV 13-30 
free-form display 13-14 
help text 13-27 
input fields 13-5 
input/ output fields 13-6 
listing 13-26 
menu-form display 13-15 
output fields 13-4 
overriding fields 13-10 
procedures 13-28, 13-32 
programs 13-28 
prompting for procedure data 13-32 
read-under-format technique 13-20 
RPG II 13-29 
sample 13-2 
screen format generator utility program 

($SFGR) 13-26 
self-check fields 13-23 
using messages with 13-22 
wsu 13-28 

display stations 
acquired 16-5 
command 1-23 
data 1-23 
introduction 1-21 
subconsole 1-23 
system console 1-23 

display text member 
See menu text member 

displayed messages 14-1 
displaying 

files 8-11 
folder members 10-13 
informational messages, preventing 17-34 
inserting data in messages using ERR 

procedure 14-13 

displaying (continued) 
menu help text 12-13 
menus 12-3 
messages using 

I I * statement 14-11 
I I ** statement 14-11 
?nR'mic'? expression 14-12 
ERR procedure 14-12 

print spool 3-23 
procedure prompt displays 13-32 
spool file output 3-26 
status of printed output 3-23 

displays 
description 13-1 
design considerations summary 21-8 
designing 

considerations 13-11 
using color 13-16 

introduction 1-30 
message members, using with 14-12 

DisplayWrite 
36 

Programming Considerations 10-6 
DisplayWrite/36 1-6 
documenting 

dots 

applications 2-11, 2-15 
display formats 13-26 
operating instructions, application 2-24 
programs 2-18 
record layout 7-11 

See column separators 
DSU 1-5 

creating or changing procedures 18-8 
introduction 1-5 
listing procedures 18-8 

dual language support, ideographic 20-7 
dump file analysis procedure 19-20 
dump files 4-13 
DUMP procedure 6-11, 19-20 
duplicate keys 8-27 

allowing 8-27 
bypassing checking for 8-28 
checking for 8-27 
generalized access 8-28 
keysorting 8-28 
performance considerations 8-30 
processing a file with 8-28 
random access by key 8-28 
sequential access by key 8-28 

duplicate keys, programming considerations 16-35 
DW/36 

defining help text 13-27 
introduction 1-6 
library 4-13 

Index X-7 



OE (shift-out) characters 20-2 
electronic mail 1-6 
end of day processing 17-37 
ending jobs 17-10 
ensuring required parameters are entered 14-12 
equipment 

backup 19-10 
failures 19-2 

ERAP procedure 19-20 
erase input fields operation, display formats 13-9 
erasing history file 4-25 
ERR procedure 14-12 

substituting data 14-13 
error messages 14-1 
error prevention 19-1 
errors 

detection 19-7 
device caused 19-2 
power caused 19-1 
preventing by backup and recovery 19-10 
prevention 19-3 
programming 19-2 
system operator 19-2 
types of 19-1 
user 19-2 

EVOKE OCL statement 17-2 
example 17-30 

evoking jobs 
description 17-2 
example using EVOKE OCL statement 17-30 

EXCHANGE 
diskette files 5-6 
tape files 6-5 

expansion of nucleus 15-2 
expiration date for diskette files 5-9 
expiration date for tape files 6-7 
expressions 

?TIME? 17-32 
procedure control 

description 18-9 
introduction 18-2 
processing by system 17-7 

extendable files 
causes of extending 8-56 
introduction 8-3, 8-55 
specifying 8-55 
what happens when full 8-57 

extended ideographic character processing 20-8 
extending 

files 19-5 
folders 19-6 
libraries 19-4 

X-8 

extending folders 10-3 
extending libraries 9-11 
external switches, programming 16-31 
EXTN processing, ideographic 20-8 
#EXT1818 ideographic character file 20-3 
#EXT2424 ideographic character file 20-3 

OF (shift-in) characters 20-2 
failures, types of 19-1 
field attributes 

blink field 13-8 
column separators 13-8 
high intensity 13-8 
introduction 13-8 
nondisplay 13-8 
reverse image 13-8 
underline 13-8 

field definition specification 13-24 
field sizes 7-10 
fields, display format 

Katakana 13-7 
magnetic stripe reader 13-7 
right-to-left field 13-7 

fields, display formats 
alphabetic 13-7 
alphameric 13-7 
attributes 13-8 
numeric 13-7 
overriding 13-10 
signed numeric 13-7 

fields, record 
alphameric 7-9 
naming 7-1 
numeric 7-3 

file blocking, buffers 15-8 
FILE OCL statement 

allowing duplicate keys 8-27 
blocking index entries 8-62 
blocking records 8-60 
BLOCKS parameter 8-52 
bypassing duplicate key checking 8-28 
creating delete-capable files 8-58 
creating files 8-5 
creating storage index 8-26 
extending files 8-55 
file sharing 8-7 4 
JOB parameter 8-52 
LOCATION parameter 8-52 
RECORDS parameter 8-52 
waiting for files to become available 8-76 



file organization 
choosing based upon 

access method 8-4 7 
activity 8-49 
application type 8-47 
disk space 8-49 
file volatility 8-48 
processing speed 8-49 

choosing which to use 8-43 
description 8-13 
introduction 8-2 
master file 8-43 
transaction file 8-44 

file recovery, IPL file rebuild 19-14 
file sharing 

considerations 8-73, 16-23 
file deadlock conditions 8-84 
file update programming considerations 8-87 
file update programs 

avoiding errors 8-88 
possible errors 8-87 

introduction 8-73 
levels of 8-7 4 
record protection 8-78 
releasing locked records 8-86 
using one file as two or more logical files 8-89 
waiting for files to become available 8-7 5 

file space 8-64 
programming considerations 8-69 

file update programs 
considerations 8-87 

file usage, determining file organization 8-43 
files 

access methods 
description 8-35 
introduction 8-2 

accessing 8-3 2 
attributes 

description 8-50 
introduction 8-3 
job file 8-51 
resident file 8-52 
scratch file 8-50 

automatic placement 4-15 
backup and recovery 19-11 
block number placement 4-18 
consecutive access method 8-36 
copying 8-10 
creating 8-5 
creation dates 8-7 
dates 8-7 
deadlock conditions 8-84 
delayed operations 8-70 
delete-capable 8-3 
deleting alternative indexes 8-23 
description 8-1 
design considerations summary 21-5 

files (continued) 
designing 8-43 
direct 8-15 
displaying 8-11 
dump, on disk 4-13 
extendable 8-3 
extending 8-55 
extents 19-5 
groups of 8-7 
HISTCOPY 4-11 
history 

introduction 1-31 
use during job processing 17-29 

indexed 
description 8-17 
duplicate keys 8-27 
performance considerations 8-29 
storage index 8-25 

introduction 1-31, 8-1 
job 

description 8-51 
introduction 8-3 
reserving space 8-52 

JOB-YES 8-52 
keyed processing 8-33 
keysorting 8-20 
label definition 8-6 

.., logical 8-89 
logical input/ output operations 8-70 
master, introduction 1-31 
multiple indexes 8-21 
names of on disk 4-24 
naming 8-6 
nonkeyed processing 8-33 
organizations 

direct 8-15 
indexed 8-17 
introduction 8-2 
sequential 8-13 

part of a group resource 8-8 
physical input/ output operations 8-70 
placement on disk 4-15 
placing data into 8-10 
printing 8-11 
record mode, library 9-15 
relative record number 8-15 
removing 8-13 
renaming 8-8 
reorganizing 

disk space 8-11 
records 8-10 

resident 
description 8-52 
introduction 8-3 

resource security file, on disk 4-13 
scratch 

description 8-50 
introduction 8-3 

Index X-9 



files (continued) 
scratch (continued) 

reserving space 8-52 
sector mode, library 9-15 
securing 8-12 
sequential 8-13 
sharing 

considerations 8-73, 16-23 
file deadlock conditions 8-84 
file update programming considerations 8-87 
introduction 8-4, 8-73 
levels of 8-7 4 
record protection 8-78 
releasing records 8-86 
using one file as two or more logical files 8-89 
waiting for files to become available 8-7 5 

system message file, on disk 4-13 
trace, on disk 4-12 
transaction, introduction 1-31 
types of diskette 5-6 
types of tape 6-5 
user ID file, on disk 4-13 

·Using with programs 8-9 
waiting to become available 8-76 

first-level message members 14-3 
fixed-form displays 13-13 
fixed-format menu 12-5 
fixed-sized portion. of nucleus 15-3 
flags 

in multiple-user programs 16-33 . 
flashing 

See blink field 
floating-point format 7-8 
folder 

extents 5-7 
Folder Considerations 

Display Write 
36 10-6 

folder layout 
with subdirectories 11-8 

folder member 
organization and identification 11-2 
specifying a path to 11-15 

folder members 
backup and recovery 11-11 
directory 10-3 
listing 10-13 
removing 10-14 
renaming 10-14 
restoring 10-14 
saving 10-14 
securing 10-7 
subdirectory 11-12 
types of 10-1 

X-10 

folder recovery, IPL file rebuild 19-14 
folder structure 

hierarchical 11-2 
folders 

automatic placement 4-15 
backup and recovery 10-11 
changing size 10-13 
condensing 10-5, 10-14 
creating 10-13 
description 10-1 
design considerations summary 21-6 
directory 10-3 
extension 10-3 
extents 19-6 
layout 10-3 
listing 10-13 
listing information 10-13 
naming 10-2 
operations 10-12 
part of a group resource 10-2 
placement on disk 4-15 
removing 10-14 
renaming 10-14 
restoring 10-14 
saving 10-14 
securing 10-7 
Sharing 11-1 
sharing restrictions 10-7 
size for 10-4 
subdirectories 

securing 10-7 
types of 10-1 
uses 10-2 

folders member 
displaying 10-13 
printing 10-13 

format 
binary 7-7 
floating-point 7-8 
packed decimal 7-5 
tape 6-3 
zoned decimal 7-3 

FORMAT procedure 13-26 
formats 

See also displays 
exchange, diskette 5-2 
IBM 6157 Tape Drive 6-3 
of diskettes 5-1 
of libraries 9-7 
of tapes 6-3 
8809 Tape Drive 6-3 

forms number 
assigning to paper types 3-20 
changing 3-21 
description 3-20 
printing by 3-27 



FORMS OCL statement 3-22 
FORTRAN 

display formats 13-30 
introduction 1-7 
library 4-13 

free-form displays 13-14 
free-format menu 12-6 
freeing disk space 4-21 
FROMLIBR procedure 5-11, 6-9 
full, history file 4-10 
functions of an application 2-10 

gathering 
See compressing, condensing 

generalized access method 8-41 
direct files 8-42 
indexed files 8-42 
sequential files 8-42 
specifying in programming languages 8-42 

graphic files and text 
merge 3-31 

graphics file 
forms generation utility 3-30 

graphics, merging with text 3-29 
group files 8-7 
group libraries 9-2 
group resources 8-8, 9-3, 10-2 
guidelines 

automatic response 14-7 
automatic response severity levels 14-5 
disk storage 4-15, 4-24 
diskette processing 5-10 
display formats 13-12 
files 8-1 
ideographic data processing 20-9 
libraries 9-16 
main storage 15-3 
menus 12-7 
messages 14-1 
printers 3-21 
procedures 18-2, 18-8 
processing priority 17-13 
programs 16-10 
record design 7-1 
tape processing 6-8 

H-exchange format, diskettes 5-3 
H-specification, display formats 13-24 
hardware backup 19-10 
header for Print key 3-22 
help definition specification 13-24 
Help key, requesting help for a menu 12-4, 12-11 
help support, description of 1-8 
help text 

display formats 13-27 
menus 12-11 

hex representations, ideographic characters 20-4 
hierarchical structure 

folders 11-2 
high intensity display format attribute 13-8 
highlighting 

using on displays 13-16 
using on menus 12-15 

HISTCOPY file 4-11 
HISTCOPY procedure 4-11 

example of 4-25 
history file 

automatic copying 4-11 
example 4-25 

changing size of 4-24 
copying 4-25 
description 4-10 
erasing 4-25 
filling up 4-10 
introduction 1-31 
job processing 17-29 
listing 4-25 
procedure processing 18-12 

HISTORY procedure 18-11 
HOLD control command 3-23, 17-15 
holding job queue entries 17-15 
Home key, displaying sign-on menu 12-4 
home record for synonym records A-2 
ho~ntal print density, changing 3-21 
horizontal lines 

See underline 
how information is stored on 

diskette 5-5 
how print spooling works 3-6 
how to control print spooling 3-6 
how to select print spooling 3-6 

Index X-11 



I-exchange format, diskettes 5-4 
IBLOCK 

considerations 8-63 
IDDU 

general introduction 1-4 
identifying required fields in records 7-1 
ideographic 

character files 20-3 
character sets 20-3 
characters 

creating 20-9 
hex representations 20-4 
sorting 20-10 

concepts 20-1 
considerations 20-1 
data 

concatenating 20-10 
separating 20-10 
truncating 20-10 

display formats, creating 20-10 
dual language support 20-7 
extended character processing 20-8 
location number 20-4 
message members, creating 20-9 
number of a character 2Q-6 
programming considerations 20-7 
programming guidelines 20-9 
second language messages 14-2 
sessions 20-7 
ward number 20-4 

!FORMAT 
diskette files 5-6 

including other procedures 18-4 
increasing 

See changing 
index blocking 

buffers 15-8 
calculating buffer size 8-62 
description 8-63 
introduction 8-3 

index key 8-22 
index, structure of 8-19 
indexed files 

consecutive access method 8-36 
considerations for using multiple indexes 8-23 
description 8-17 
duplicate keys 8-27 
generalized access method 8-42 
introduction 8-2 
keysorting 8-20 
multiple indexes for 8-21 
performance considerations 8-29 

X-12 

indexed files (continued) 
random access by key 8-40 
random access by relative record number 8-39 
sequential access by key 8-37 
sequential access by key within limits 8-37 
storage index 8-25 
structure of the index 8-19 

indicators 
in multiple-user programs 16-33 

INFOMSG control command 17-34 
INFOMSG OCL statement 17-34 
information, how stored on diskette 5-5 
information, how stored on tape 6-3, 6-4 
informational message statement 14-11 
informational messages 

description 14-1 
preventing from displaying 17-34 

INIT procedure 5-2, 5-10 
INIIDIAG procedure 5-2 
initial program load 

file rebuild 19-14 
running jobs during 17-35 

initializing diskettes 5-2, 5-10 
during a save operation 5-12 

initializing tapes 6-2, 6-8 
initiator 17-3, 17-6 
input control, application design 2-14 
input fields, display formats 

description 13-5 
erasing 13-9 

input job queue 
See job queue 

input/ output controllers, introduction 1-16 
input/ output fields, display formats 13-6 
input/ output operations, files, physical and logical 8-70 
inquicy attribute, programs 16-20 
inquiry considerations 8-85 
inquiry menu options, considerations 16-29 
inquicy, initializing diskettes under 5-12 
inserting data into messages 14-13 
installation, application design 2-23 
interactive 

introduction 1-21 
processing, file design 8-4 7 
programs 16-2 
versus batch programs 16-11 

intercept buffer, print spooling 3-9 
intercept routine, print spooling 3-8 
interupted, preventing jobs from being 17-34 
introduction 1-1 

BGU/36 1-5 
data communications 1-24 
DSU 1-5 
DW/36 1-6 
OFFICE/36 1-6 
PC Support/ 36 1-7 



introduction 1-1 (continued) 
Personal Services/36 1-6 
Query/36 1-6 

invisible 
See nondisplay field 

IPL 
See initial program load 

job files 8-51 
introduction 8-3 
reserving space 8-52 

job flow example 2-5 
job library 9-6 
job names, assigning 17-2 
job processing 17-1, 17-3 

design considerations summary 21-10 
job queue 

changing job position 17-33 
description 17 -14 
disk storage 4-12 
holding jobs 17-15 
placing jobs on 17-31 
print queue manager 17-17 
priority 1 7 -14 
priority level 0 1 7 -16 
processing priority 1 7-16 
releasing jobs 17-15 
starting 1 7 -16 
stopping 17-16 

job step 
definition 1 7-1 
example procedure 17 -1 
introduction 1-34 

JOB-YES files 8-52 
jobs 

application design 2-1 
changing position in job queue 17-33 
command processor 17-3, 17-6 
continuing print files 3-27 
control storage considerations 17-24 

description 17-1 
design considerations summary 21-10 
designing 2-3 
dispatching 17-17 
end of day processing 17-37 
ending 17 -10 
evoking using EVOKE OCL statement 17-30 
history file use 17-29 
how run by system 17-3 
initiator 17-3, 17-6 
introduction 1-34 
job queue 17-14 

jobs (continued) 
managing 1 7 -12 
naming by system 17-2 
placing on job queue 17-31 
preventing from being canceled 17-34 
preventing from being interupted 17-34 
processing priority 

considerations 17-13 
description 1 7-12 
job queue 17-16 

running at a later time 17-31 
running during initial program load 17-35 
running without operators 17-36 
scheduling 1 7-12 
security classification 17-33 
starting 17 -2 
swapping 1 7-1 7 
terminator 17-5 
waiting to run 17-32 

Katakana data field, display format 13-7 
key length 

maximum 7-9 
performance considerations 8-30 

key, record 
definition of 8-22 
maximum length 8-22 

keyed processing 8-33 
keys, duplicate 

description 8-27 
programming considerations 16-35 

keysorting 
disk space 8-31 
files with duplicate keys 8-28 
indexed files 8-20 
performance considerations 8-31 

keyword parameters 18-3 

labels for files 8-6 
language support, ideographic 20-7 
language, second, message members 14-2 
languages, programming, summary of 1-7 
later, running jobs 17-31 
layout 

of folders 10-3 

Index X-13 



LDA, programming 16-32 
level, security, submitting jobs by 17-33 
level, severity guidelines 14-5 
libraries 

automatic placement 4-15 
backup and recovery 9-14, 19-11 
block number placement 4-18 
changing members 9-16 
changing size 9-1 7 
concepts 9-1 
condensing 9-10, 9-1 7 
control storage 4-9 
copying 9-1 7 
creating members 9-16 
current 9-6 
definition 9-1 
design considerations summary 21-6 
directory 9-7 
extension 9-11 
extents 19-4 
format of 9-7 
groups of 9-2 
introduction 1-32 
job 9-6 
listing information 9-16 
member naming conventions 9-5 
naming conventions 9-1 
part of a group resource 9-3 
placement on disk 4-15 
program product 9-1 

on disk 4-13 
programming guidelines 9-16 
record mode files 9-15 
removing 9-17 
renaming 9-1 7 
restoring 9-1 7 
saving 9-17 
sector mode files 9-15 
securing 9-5, 9-13, 9-17 
session 9-6 
sharing restrictions 9-12 
sign-on 9-6 
size for 9-9 
subtypes of members 9-4 
system 4-9 
system (#LIBRARY) 9-1 
types of members 9-3 
user 9-1 
uses for 9-5 

#LIBRARY 4-9 
library directory, changing size 9-17 
library members 

changing 9-16 
copying 9-1 7 
creating 9-16 
definition 9-1 

X-14 

library members (continued) 
directory 9-7 
introduction 1-32 
listing 9-16 
naming conventions 9-5 
removing 9-17 
renaming 9-17 
securing 9-5, 9-13 
subtypes 9-4 
types of 9-3 

LIBRARY OCL statement 9-12 
LIBRFILE 

diskette files 5-6 
tape files 6-5 

limiting the use of a menu 12-4 
lines per inch, changing 3-21 
lines per page, changing 3-21 
lines, horizontal 

See underline 
lines, vertical 

See column separators 
LISTDATA procedure 5-13, 6-11, 8-11 
LISTFILE procedure 5-13, 6-11, 8-11 
listing 

diskette files 8-11 
diskette information 5-13 
files 8-11 
folder members 10-13 
folders 10-13 
history file 4-25 
libraries saved on diskette 8-11 
library members 9-16 
names of files on disk 4-24 
procedures 18-8 
subdirectories 11-15 
tape information 6-11 

listing members 
subdirectory 11-16 

LISTLIBR procedure 18-8 
load members 

description 
introduction 

9-3 
1-32 

local data area, programming 16-32 
location number, ideographic 20-4 
location of files, libraries, and folders 4-15 
LOG OCL statement 18-11 
log, service 4-12 
logical files 8-89 
logical input/ output operations 8-70 



magnetic stripe reader, display station 13-7 
magnetic tape 

See tape storage, tapes 
main storage 

assign/free area 15-5 
concepts 15-1 
description of 15-1 
guidelines 15-3 
introduction 1-11 
nucleus 15-1 
program attributes 15-9 
region size 15-6 
space required for a program 8-64 
space required for disk buffers and control 

blocks 8-64 
user area 15-1 

contents of 15-6 
organization 

main storage processor 
description 15-10 
introduction 1-11 

15-6 

$MAINT, creating procedures 18-8 
making 

See creating, changing 
managingjobs 17-12 
managing subdirectories 11-2 
mandatory menu 12-4 
master configuration record, description 
master file 

description 8-43 
introduction 1-31 

maximum number of requesters 16-7 
measuring disk activity 4-24 
MEMBER OCL statement 14-11 

4-9 

member, master configuration, description 4-9 
members, library 

See library members 
MENU command 12-3, 12-10 
menu help text 12-12 
MENU OCL statement 12-10 
menu security 

description 12-4 
introduction 1-27 

menu text member 12-10 
menu-form displays 13-15 
menus 

advantages 12-3 
beginning help menu 12-4 
BLDMENU procedure 12-11 
chaining from one to another 12-9 
changing 12-10 
clearing from the display 12-4 
color 12-15 

menus (continued) 
command text member 12-10 
creating 12-10 
default menu 12-3, 12-4 
description 12-1 
design considerations summary 21-7 
designing 12-7 
displaying 12-3 
displaying menu help text 12-13 
example 12-2 
fixed-format 12-5 
free-format 12-6 
help text 12-11, 12-12 
highlighting 12-15 
introduction 1-29 
limiting the use of a menu 12-4 
mandatory 12-4 
menu help text 12-12 
menu security 12-4 
menu text member 12-10 
procedures, using with 18-4 
removing from the display 12-4 
requesting at sign-on 12-3 
requesting using MENU command 12-3 
restricting the use of a menu 12-4 
screen design aid (SDA) 12-11 
securing 12-4 
selecting 12-3 
using 12-4 
using command key 3 12-4 
using command key 6 12-4 
using menu help text 12-13 
using the Help key 12-4, 12-11 
using the Home key 12-4 

merge 
text and graphics 3-31 

Merging Text and Graphics 3-29 
message identification codes 

description 14-3 
introduction 1-35 

message members 
changing 14-9 
concepts 14-2 
creating 14-9 
designing 14-4 
displays, using with 14-12 
first-level 14-3 
guidelines 14-9 
introduction 1-35 
procedures, using with 14-11 
programs, using with 14-12 
second language 14-2 
second-level 14-3 
using with displays 13-22 

Index X-15 



messages 
See also message members 
description of 14-1 
design considerations summary 21-9 
displayed 14-1 
displaying using 

I I * statement 14-11 
I I ** statement 14-11 
?nR'mic'? expression 14-12 
ERR procedure 14-12 

error 14-1 
informational 14-1 
inserting data using ERR procedure 14-13 
introduction 1-35 
preventing displaying of informational 17-34 
printed 14-1 
secondlanguages 14-2 
using with displays 13-22 

MIC (message identification code), introduction 1-35 
MRT procedures 

calling 18-13 
considerations 18-4 

MRT programs 
first-requester considerations 16-43 
introduction 16-6 
JOB-YES parameter of FILE OCL statement 8-54 
limiting number of users 16-43 
programming considerations 16-36 
summary 16-1 7 
summary of considerations 16-43 

MRTMAX 
MRTWAIT 16-42 

MRTMAX value 
MRTWAIT 

MRTMAX 

16-7 

16-42 
multipl(! display formats, coding considerations 13-18 
multiple indexes 8-21 

duplicate keys 8-27 
duplicate keys, performance considerations 8-30 
key length, performance considerations 8-30 
keysorting, performance considerations 8-31 
number of alternative indexes 8-29 
number of indexes used at the same time 8-29 
overflow portion of the index 8-30 
storage index, performance considerations 8-29 

multiple logical files 
in multiple-user programs 16-34 

multiple requester terminal 
SeeMRT 

multiple-index files 
considerations for using 8-23 
restoring 8-24 
saving 8-24 

multiple-user programs 16-5 

X-16 

naming 
fields 

in records 7-1 
programming considerations 7-2 

files 8-6 
jobs 17-2 
libraries 9-1 
library members 9-5 
procedures 18-6 

naming convention 
SA VEFLDR files on diskette 5-7 

naming conventions 
folders 10-2 
subdirectory 11-6 

nesting procedures 18-4 
never-ending programs 16-19 
no-user programs 16-5 
NOAUTO/ AUTO settings for procedures, changing 5-16 
NOHALT procedure 14-4 
non-swappable system routines 15-4 
nondisplay field display format attribute 13-8 
nonkeyed processing 8-33 
nonlabeled tapes 6-4 
nonrequester-terminal programs 16-8 
normal termination 17-10 
?nR'mic'? expression 14-12 
NRT (nonrequester-terminal) programs l 6-8 
nucleus 

description 15-1 
expansion and contraction 15-2 
fixed-sized portion 15-3 
variable-sized portion 15-3 

NUM value 16-7 
number of alternative indexes 8-29 
number of indexes used at the same time 8-29 
number of MRT users, limiting 16-43 
number of requesters, maximum 16-7 
number of users of a program 16-5 
number, of an ideographic character 20-6 
numeric fields 

display formats 13-7 
records 7-3 

object members 
See subroutine members 

objects 
See files, libraries 



OCL statements 
ALLOCATE 

assigning diskette drive to a job 5-14 
assigning tape drive to a job 6-12 
changing AUTO/NOAUTO settings 5-16 
reading or writing sequential set of files 5-15, 

6-13 
ATTR 

INQUIRY parameter 16-20 
MRTMAX parameter 16-7 
preventing canceling 17-34 
preventing interupting 17-34 
PR TY parameter 17-12 

COMPILE 16-7 
DEALLOC 5-14, 6-12 
DEBUG 18-11 
EVOKE 17-2 

example of 17-30 
FILE 

allowing duplicate keys 8-27 
blocking index entries 8-62 
blocking records 8-60 
bypassing duplicate key checking 8-28 
creating delete-capable files 8-58 
creating files 8-5 
creating storage index 8-26 
extending files 8-55 
sharing files 8-7 4 
waiting for files to become available 8-76 

FORMS 3-22 
INFOMSG 17-34 
LIBRARY 9-12 
LOG 18-11 
MEMBER 14-11 
MENU 12-10 
POWER 17-37 
PRINTER 3-22 

continuing print files 3-27 
deferring output 3-29 

processing 17-6, 17-7 
PROMPT 13-32 
RESERVE 8-52 
starting jobs 17-2 
SWITCH 16-31 
SYSLIST 3-21 
WAIT 17-32 
WORKSTN 3-22 

office management services library 4-13 
OFFICE/36 

introduction 1-6 
olders/introduction 1-33 
one-user programs 16-4 
operating applications 2-24 
operating the system without operators 14-8, 17-36 

operation control language statements 
See OCL statements 

operator errors 19-2 
organization of disk 4-6 
organization of files 8-13 
output control, application design 2-14 
output fields, display formats 13-4 
output, printed 3-1 
overflow portion of the index 8-30 
overriding fields operation, display formats 13-10 
overview 

application 1-28 
running jobs 17-3 
system 1-9 

packed decimal format 7-5 
number of bytes in fields 7-6 

pages of main storalie 15-6 
pages to separate print files 3-12 
panels 

See displays 
paper types, assigning forms numbers 3-20 
parameters 

ensuring required paramaters are entered 14-12 
introduction 1-34 
positional 18-3 
procedure 18-3 
prompting for 13-32 

password security 
introduction 1-27 

PATCH procedure 19-20 
paths 

securing 11-10 
PC Support/36 

data transfer 1-7 
introduction 1-7 
library 4-13 
virtual disk support 1-7 
virtual printer support 1-7 

performance tips, procedures. 18-6 
personal computer 1-7 
Personal Services/36 1-6 

introduction 1-6 
physical 

disk organization 4-6 
files 8-21 
input/ output operations 8-70 
security 1-27 

placement of files 
automatic 4-15 
by block number 4-18 
by spindle preference 4-1 7 

Index X-17 



placement of files, libraries, and folders on disk 4-15 
placement of folders 

automatic 4-15 
placement of libraries 

automatic 4-15 
placing 

data in files 8-10 
fields in multiple-index files 7-9 
jobs on the job queue 17-31 

plugs, write-protect for tapes 6-7 
position, changing, job queue 17-33 
positional parameters 18-3 
POST procedure 5-11 

putting data in files 8-10 
power failures 19-1 
POWER OCL statement 17-37 
powering off the system, example 17-37 
preferred disk location, using 4-17 
preparing 

See initializing 
preventing 

errors 19-1, 19-3 
backup and recovery 19-10 

informational message from displaying 17-34 
jobs from being canceled 17-34 
jobs from being interupted 17-34 

preventing entries on the job queue from processing 17-15 
primary index 8-21 
print belt image, changing 3-22 
print files, continuing 3-27 
Print key printer, specifying 3-22 
print queue manage 

functions 
CANCEL 3-25 
HOLD 3-25 
MOVE 3-25 
RELEASE 3-25 
SEARCH 3-25 

print queue manager 
function modifiers 3-25 

Backward 3-25 
Forward 3-25 
Jobq 3-25 
Spool 3-25 

job queue 17-17 
qualifiers 3-25 
spool file 3-24 

print spooling 
advantages 3-5 
controlling 3-6, 3-21, 3-23 
description 3-5 
displaying information about 3-23 
functioning of 3-6 
intercept buffer 3-9 

size 3-9 
intercept routine 3-8 

X-18 

print spooling (continued) 
introduction 1-26 
selecting 3-6 
separator pages 3-12 
spool file 

description 3-9 
placement on disk 3-11 
size 3-10 

spool writer 3-11 
buffer size considerations 3-12 

printed messages 14-1 
printed output 3-1 

continuing print files 3-27 
controlling 3-21 
copying and displaying 3-26 
design considerations summary 21-2 
designing 3-13 
forms number 3-27 
introduction 1-29 
output report design 3-14 
performance considerations 3-16 
print spooling 3-5 
printer data management 3-2 
priority 3-29 
programming considerations 16-28 
system list 3-2 
when to use 3-13 

printed report design 3-14 
printer considerations 

dot matrix printer 3-16 
line printer 3-20 

printer cosiderations 
character printer 3-17 

printer data management 
description 3-3 
introduction l-26 
programs that use 3-2 

printer forms, physical dimensions 3-16 
PRINTER OCL statement 3-22 

continuing print files 3-27 
deferring output 3-29 

, printer to use, changing 
using FORMS OCL statement 3-22 
using PRINT procedure 3-21 
using PRINTER OCL statement 3-22 
using PRINTKEY procedure 3-22 
using SET procedure 3-22 
using SYSLIST procedure 3-21 
using WORKSTN OCL statement 3-22 

printers 
configuration, changing 3-22 
continuing print files 3-27 
control guidelines 3-21 
controlling functions 3~29 

deferring output 3-29 
displaying status of 3-23 



printers (continued) 
files 8-11 
forms number 3-20 
introduction 1-25 
output by forms number 3-27 
performance considerations 3-16 
print spool 3-23 
priority for printing 3-29 
spacing chart 3-14 
spool file output 3-26 

printing 
folder member 10-13 

printing methods 
introduction 3-2 
printer data management 3-3 
system list output 3-4 

PRINTKEY procedure 3-22 
priority 

job processing 17-12 
considerations 17-13 

job queue 17-14, 17-16 
printed output 3-29 

procedure 
DUMP 6-11 
TEXTDOC 10-13 

procedure advantages 18-2 
procedure command 18-2 
procedure control expressions 

description 18-9 
introduction 18-2 
processing 1 7 -7 

procedure members 
definition 18-1 
description 9-3 
introduction 1-32 

procedures 
#STRTUPl 17-35 
#STRTUP2 17-35 
advantages 18-2 
allowed statements 18-2 
ALOCFLDR 10-4 
ALOCLIBR 9-9 
APAR 19-20 
ARCHIVE 5-11, 6-9, 11-11 
BLDFILE 

creating delete-capable files 8-58 
creating files 8-5 
extending files 8-55 

BLDINDEX 
allowing duplicate keys 8-27 
creating alternative indexes 8-21 

BLDLIBR 9-9 
calling MRT procedures 18-13 
CATALOG 4-24, 5-13, 6-11 
changing printer information in 3-22 
checking return codes 19-9 
COMPRESS 4-21 

procedures (continued) 
concepts 18-1 
CONDENSE 9-10, 9-17, 10-5, 10-14 
control expressions 18-9 
COPYDATA 

putting data in files 8-10 
removing deleted records 8-58 
reorganizing files 8-10 

COPYDIAG 5-11 
COPYil 5-11 
COPYPRT 3-26 
creating or changing 18-8 
debugging 18-11, 19-3 
definition of 18-1 
DELETE 

deleting alternative indexes 8-23 
deleting disk information 8-13 
deleting diskette information 5-13 

design considerations summary 21-10 
designing 18-6 
DFA 19-20 
DUMP 19-20 
ERAP 19-20 
ERR 14-12 

substituting data 14-13 
FORMAT 13-26 
FROMLIBR 5-11, 6-9 
HISTCOPY 4-11 

example of 4-25 
HISTORY 18-11 
history file logging 18-12 
INIT 5-2,5-10 
INITDIAG 5-2 
introduction 1-34 
LIATDATA 8-11 
LISTDATA 5-13, 6-11 
LISTFILE 5-13, 6-11, 8-11 
listing 18-8 
LISTLIBR 18-8 
menus, using with 18-4 
message members, using with 14-11 
multiple-requester-terminal (MRT) 

considerations 18-4 
naming suggestions 18-6 
nesting 18-4 
NOHALT 14-4 
parameters 18-3 
PATCH 19-20 
performance tips 18-6 
POST 5-11 

putting data in files 8-10 
PRINTKEY 3-22 
programming guidelines 18-8 
PTF 19-20 
RENAME 8-8 
RESPONSE 14-4 
RESTFLDR 5-11, 6-9, 10-11 

Index X-19 



procedures (continued) 
RESTLIBR 5-11, 6-9, 9-14 
RESTNRD 5-11, 6-9 
RESTORE 5-11, 6-9 

creating files 8-5 
putting data in files 8-10 
restoring alternative indexes 8-24 

RESTRIEVE 11-11 
RETRIEVE 5-11, 6-9 
SAVE 5-11, 6-9 

saving alternative indexes 8-24 
SAVEFLDR 5-11, 6-9, 10-11 
SAVELIBR 5-11, 6-9, 9-14 
SA VENRD 5-11, 6-9 
SECEDIT 9-17 
SERVICE 19-19 
service aid 19-19 
SERVLOG 4-24 
SET 3-22 
SETDUMP 19-20 
SMF 4-24 
SMFPRINT 4.:24 
SMFSTART 4-24 
SMFSTOP 4-24 
starting jobs 17-2 
STATUS PRT 3-23 
STATUS WRT 3-23 
STATUSF PRT 3-23 
SWITCH 16-31 
SYSLIST 3-21 
T APECOPY 6-9 
T APEINIT 6-2, 6-8 
TEXTFLDR 10-4 
TOLIBR 5-11, 6-9 
TRACE 19-20 
TRANSFER 5-11 

creating files 8-5 
putting data in files 8-10 

troubleshooting 18-11 
processing 

commands 17-6 
jobs 17-1, 17-3 
OCL statements 17-6, 17-7 

processing priority, for jobs 17-12 
considerations 1 7-13 
jobqueue 17-16 

processor, main storage 15-10 
productivity aids 1-8 
program product libraries, on disk 4-13 
program temporary fixes 19-20 
programming 

description of 1-1 
introduction 1-1 
tools 1-3 

X-20 

programming considerations 16-21 
acquiring a display station 16-22 
calling the progcam 16-30 
changing a one-user program to a multiple-user 

program 16-35 
duplicate keys 16-35 
external switches 16-31 
file sharing 16-23 
first-requester considerations 16-43 
for any program 16-21 
for multiple-user programs 16-33 
inquiry menu options 16-29 
limiting the number of users 16-43 
local data area 16-32 
memo updating 16-25 
modular applications 16-39 
MRT job streams 16-37 
MRTMAX value 16-41 
printed output 16-28 
procedures 18-8 
read under format 16-30 
releasing a display station 16-23 
response time 16-36 
transaction file design 16-24 

programming languages, description of 1-7 
programs 

acquiring display stations 16-22 
appending file space to 8-67 
application design 2-1 
application structure 16-11 
attributes 16-19 

inquiry 16-20 
main storage considerations 15-9 
MRTMAX 16-7 
multiple-requester-terminal 16-6 
nonrequester-terminal 16-8 
single-requester-terminal 16-5 

batch 
description 16-2 
versus interactive 16-11 

buffers used 15-8 
calling considerations 16-30 
changing a one-user to a multiple-user 16-35 
comparison chart 16-8 
concepts 16-1 
considerations 16-21 
continuing print files 3-27 
debugging 19-3 
design considerations summary 21-9 
designing applications 2-18, 16-10 
display formats, using 13-28 
documenting 2-18 
duplicate key considerations 16-35 
errors 19-2 
file sharing considerations 16-23 
interactive, description 16-2 



programs (continued) 
introduction 1-31 
large or small 16-4 
local data area 16-32 
main storage space required for 8-64 
memo updating considerations 16-25 
message members, using with 14-12 
MRT considerations 16-36 
multiple-user 16-5 
never-ending 16-19 
no-user 16-5 
number of users 16-5 
one-user 16-4 
printed output considerations 16-28 
releasing display stations 16-23 
remote, starting jobs 17-2 
running without operators 17-36 
SRT and MRT, differences 16-17 
swapping 17-17 
system, non-swappable 15-4 
testing 19-3 
transaction file design considerations 16-24 
transient system 15-7 
using files 8-9 
using printer data management 3-2 
using system list 3-2 

PROMPT OCL statement 13-32 
.PDATA parameter 16-30 
UPSI parameter 16-31 

prompting for procedure data 13-32 
protecting, tapes 6-7 
providing extra space in the record 7-10 
providing for deletion of records 7-9 
PRTY control command 17-12, 17-16 
PS/36 

library 4-13 
PTF (program temporary fixes) 19-20 
PTF procedure 19-20 
putting jobs on the job queue 17-31 

Query/36 
creating files 8-5 
introduction 1-6 
library 4-13 

queue 
See job queue, spool file 

?nR'mic'? expression 14-12 
random access by key 

description 8-40 
introduction 8-2 

random access by relative record number 8-39 
direct files 8-39 
indexed files 8-39 
introduction 8-2 
sequential files 8-39 

RD command 
delete subdirectory 11-16 

read-under-format 
coding considerations 13-33 
description 13-20 
programming considerations 16-30 

record 
blocking 8-63 
definition 7-1 

record design 
alphameric fields 7-9 
documenting record layout 7-11 
field sizes 7-10 
identifying required fields 7-1 
key length 7-9 
key placement 7-9 
naming fields 7-1 
numeric fields 7-3 
placing fields in multiple-index files 7-9 
providing extra space in the record 7-10 
providing for deletion of records 7-9 
record length 7-10 

record formats of diskettes 5-2 
record layout, documenting 7-11 
record length 7-10 
record mode library mes 9-15 
record protection for shared files 8-78 
record, master configuration, description 4-9 
records 

blocking 8-60 
considerations for efficient blocking 8-60 
introduction 8-3 

current pointer, file accessing 8-32 
delayed operations 8-70 
designing 7-1 
key field 8-22 
relative record number 8-15 
reorganizing 8-10 

recovery 
and backup 19-11 
folder considerations 
library considerations 
methods 19-15 

10-11 
9-14 

subdirectory considerations 11-11 

Index X-21 



region size of main storage 15-6 
relative record number 8-15 
RELEASE control command 3-23, 17-15 
releasing 

display stations, programs 16-23 
jobs from the job queue 17-15 
locked records 8-86 

remote programs, starting jobs 17-2 
remote work stations, display format coding 

considerations 13-19 
removing 

a menu from the display 12-4 
diskette information 5-13 
files 8-13 
folder members 10-14 
folders 10-14 
libraries 9-17 
library members 9-17 
tape information 6-1.1 

RENAME procedure 8-8 
renaming 

files 8-8 
folder members 10-14 
folders 10-14 
libraries 9-17 
library members 9-17 

reorganizing 
disk storage 4-21, 8-11 
files 8-10 
folders 10-5 
libraries 9-10 
records 8-10 

reorganizing space 
subdirectory 11-17 

requesters 
maximum number of 
number for a program 

RESERVE OCL statement 
reserving disk space for files 
resident files 8-52 

introduction 8-3 

16-7 
16-5 
8-52 
8-52 

using in several job steps 8-52 
resource security 

files 8-12 
folders and folder members 10-7 
introduction 1-27 
libraries and library members 9-5, 9-13 

resource security file, on disk 4-13 
RESPONSE procedure 14-4 
response time, programming considerations 16-36 
response, automatic 

See automatic response 
REST ART control command 3-23 
RESTFLDR procedure 10-11 

X-22 

RESTLIBR procedure 5-11, 6-9, 9-14 
RESTNRD procedure 6-9 
RESTORE procedure 5-11, 6-9 

creating files 8-5 
putting data in files 8-10 
restoring alternative indexes 8-24 

restoring 
diskette files 5-11 
folder members 10-14 
folders 10-14 
libraries 9-17 
multiple-index files 8-24 
tape files 6-9 

restricting the use of a menu 12-4 
retention days for diskette files 5-9 
retention days for tape files 6-7 
retention, files 8-3 
RETRIEVE procedure 11-11 
return codes, checking in procedures 19-9 
reverse image display format attribute 13-8 
revovery, errors 19-1 
right-to-left field, display format 13-7 
rings, write-enable for tapes 6-7 
routines 

system, non-swappable 15-4 
transient system 15-7 

RPG II 
display formats 13-29 
introduction 1-7 
library 4-13 
WORKSTN file 13-29 

RUF 
See read-under-format 

running 
jobs 17-3 
jobs at a later time 17-31 
jobs at end of day 17-37 
jobs during initial program load 17-35 
jobs without operators 14-8, 17-36 

running jobs concurrently 17-24 

S-specification, display formats 13-24 
SAVE procedure 5-11, 6-9 

saving alternative indexes 8-24 
SAVEFLDR 

files on diskette 5-7 
tape files 6-5 

SA VEFLDR procedure 10-11 
SAVELIBR 

diskette files 5-6 
tape files 6-5 



SA VELIBR procedure 
SA VENRD procedure 
saving 

5-11, 6-9, 9-14 
6-9 

diskette files 5-11 
folder members 10-14 
folders 10-14 
history file, automatically 4-11 
libraries 9-1 7 
multiple-index files 8-24 
tape files 6-9 

schedule for application design 2-11 
scheduling jobs 17-12 
scratch files 8-50 

introduction 8-3 
reserving space 8-52 

screen design aid 
See SDA 

screen design aid (SDA), introduction 1-5 
screen design aid library 4-13 
screen format generator utility program ($SFGR) 
screens 

See displays 
SDA 

creating display formats 13-25 
creating menus 12-11 

SDA Application Help Support 
help text 13-27 

SECEDIT procedure 9-17 
SECEDIT RESFLDR procedure 

secure a subdirectory 11-17 
second language, message members 14-2 
second-level message members 14-3 
sector addresses, on disk 4-18 
sector mode library files 9-15 
sectors, directory, for libraries 9-9 
sectors, disk, description 4-6 
secure a subdirectory 

SECEDIT RESFLDR procedure 11-17 
securing 

files 8-12 
libraries 9-5, 9-17 
menus 12-4 
tapes 

IBM 6157 6-7 
8809 6-7 

securing a path 
subdirectories 11-10 

security 
badge 1-27 
communications 1-27 
introduction 1-27 
library 9-5 
menu 1-27 
of the system unit 1-27 
password 1-27 
resource 1-27 
submitting by classification 17-33 

13-26 

security access 
standard labeled tapes 6-8 

segments of main storage 15-6 
selecting 

menus 12-3 
print spooling 3-6 
when to run jobs 1 7-12 

self-check fields, display formats 13-23 
separate variables 

for multiple-user programs 16-33 
separating ideographic data 20-10 
separator pages, printing 3-12 
sequential access by key 

description 8-37 
introduction 8-2 
within limits 8-37 

sequential files 
consecutive access method 8-36 
description 8-13 
generalized access method 8-42 
introduction 8-2 
multiple indexes for 8-21 
random access by relative record number 8-39 

sequential set of diskette files 5-15 
sequential set of tape files 6-13 
service aid procedures 19-19 

APAR 19-20 
DFA 19-20 
DUMP 19-20 
ERAP 19-20 
PATCH 19-20 
PTF 19-20 
SERVICE 19-19 
SETDUMP 19-20 
TRACE 19-20 

service log 
adding entries to 4-24 
description 4-12 
listing entries in 4-24 

SERVICE procedure 19-19 
SERVLOG procedure 4-24 
session library 9-6 
session printer, changing 3-21 
sessions 

ideographic 20-7 
SET procedure 3-22 
SETDUMP procedure 19-20 
SEU, creating or changing procedures 18-8 
severity levels 

assigning 14-10 
guidelines 14-5 

Shared Folder Facility 11-1 
sharing data with other systems 5-1, 6-1 
sharing files 

See file sharing 

Index X-23 



sharing folders, restrictions 
sharing libraries, restrictions 
shift-in characters 20-2 

so 20-2 
OE 20-2 

shift-out characters 20-2 
SI 20-2 
OF 20-2 

10-7 
9-12 

SI (shift-in) characters 20-2 
sign-on library 9-6 
sign-on printer, changing 3-22 
signed numeric fields, display formats 13-7 
single-requester-terminal programs 16-5 
sizes 

assign/free area 15-5 
disk storage 4-7 
for folders 10-4 
for libraries 9-9 
non-swappable system routines 15-4 
transient system routines 15-7 

SMF procedure, using to measure disk activity 4-24 
SMFPRINT procedure 4-24 
SMFST ART procedure 4-24 
SMFSTOP procedure 4-24 
SO (shift-out) characters 20-2 
software errors 19-2 
sorting the keys in an index 8-20 
sorting, ideographic characters 20-10 
source entry utility (SEU), introduction 1-5 
source entry utility library 4-13 
source members 

description 9-3 
introduction 1-32 

space, disk, compressing 4-21 
spacing chart, printer 3-14 
special E-format, diskettes 5-4 
specifications, display format 13-24 
specifying a file in a program 8-9 
spindle preference, disk storage 4-17 
spindle, disk, definition 4-2 
spool file 

copying and displaying output 3-26 
definition 3-6 
description 3-9 
disk storage 4-12 
placement on disk 3-11 
size 3-10 

spool intercept buffer 
description 3-9 
size 3-9 

spool intercept routine 
definition 3-6 
description 3-8 

spool writer 
buffer size considerations 3-12 
description 3-11 

X-24 

spoolfile 
print queue manager 3-24 

spooling, print 3-5 
SRT programs 

introduction 16-5 
summary 16-17 

stage 1 
control storage processor 1-14 

stage 2 
control storage processor 1-14 

stage 3 
control storage processor 1-14 

standard labeled tapes 6-3 
security access 6-8 

START control command 3-23, 17-16 
starting 

job queue 17-16 
jobs 17-2 

statements 
allowed in procedures 18-2 
system input processing 1 7 -7 
utility control 18-2 

ST ATVS PRT procedure 3-23 
STATUS WRT procedure 3-23 
status, of printers, displaying 3-23 
STATUSF PRT procedure 3-23 
step, job 

See job step 
STOP control command 3-23, 17-16 
stopping 

job queue 17-16 
printer output 3-23 

storage 
See also disk storage, diskette storage, main storage 
capacity of diskettes 5-1 
capacity of tapes 6-2 

storage index 8-25 
performance considerations 8-29 

#STRTUPl procedure 17-35 
#STRTUP2 procedure 17-35 
subconsole, introduction 1-23 
subdirectories 

access levels 11-10 
listing 11-15 
managing 11-2 
securing 11-10 
using 11-2 

subdirectory 
concepts and uses 11-1 
creating 11-14 
design considerations summary 21-7 
listing members in 11-16 
naming 11-6 
organization and identification 11-2 
path to 11-15 
reorganizing space 11-1 7 



subdirectory (continued) 
SECEDIT RESFLDR to secure 11-17 
working with 11-12 

subdirectory in a folder 11-12 
submitting jobs by security classification 17-33 
SUBR members 

See subroutine members 
subroutine members 

description 9-3 
introduction 1-32 

substituting data into messages 14-13 
substitution expressions 

?TIME? 17-32 
procedure 18-9 

subtypes of library members 9-4 
suggestions, naming, for procedures 18-6 
summary, design considerations 21-1 
swapping, job 17-17 
SWITCH OCL statement 16-31 
SWITCH procedure 16-31 
switches 

in multiple-user programs 16-33 
switches, UPSI, programming 16-31 
synonym records 

access algorithms A-7 
description 8-16, A-3 

syntax checking of OCL statements 17-6 
SYSIN function 17-7 
syslist 

See system list 
SYSLIST OCL statement 3-21 
SYSLIST procedure 3-21 
system 

assigning job names 17-2 
backup 19-10 
ending jobs 17-10 
failures 19-1 
how jobs are run 17-3 
operator errors 19-2 
program attributes, and main storage 15-9 
running unattended 14-8 
transient routines 15-7 
user errors 19-2 
work files, description 4-9 

system area, on disk 4-8 
system console message statement 14-11 
system console, introduction 1-23 
system files, changing the size of 4-24 
system input function 17-7 
system library, on disk 4-9 
system list 

changing output device 3-21 
description 3-4 
programs that use 3-2 

system measurement facility, disk activity 4-24 
system message file, on disk 4-13 
system overview 1-9 
system routines, non-swappable 15-4 
System Support Program, description of 1-4 

table of separate variables 
for multiple-user programs 16-33 

Tape security 
standard labeled tapes 6-8 

tape storage 
description 6-1 
design considerations summary 21-4 
introduction 1-19 

T APECOPY procedure 6-9 
T APEINIT procedure 6-2, 6-8 
tapes 

allocating to a job 6-12 
cartridge sizes 6-2 
copying information 6-9 
deallocating from a job 6-12 
formats 6-3 
guidelines 6-8 
how information is stored 6-3, 6-4 
initializing 6-2, 6-8 
listing information 6-11 
reel sizes 6-2 
removing information 6-11 
restoring information 6-9 
retention days 6-7 
saving information 6-9 
sequential set of files 6-13 
sharing data with other systems 6-1 
storage capacity of 6-2 
types of files 6-5 
uses of 6-1 

task work area 4-9 
changing size of 4-24 

telecommunications 1-24 
termination 

abnormal 17-11 
normal 17-10 

terminator 17-5 
ending jobs abnormally 17-11 
ending joos normally 17-10 

testing 
procedures 19-3 
programs 19-3 

testing applications 2-20 
text and graphics, merging 3-29 

Index X-25 



text management services library 4-13 
text, help 1-8 
TEXTDOC procedure 

print or display a list of folder members 10~13 
TEXTFLDR procedure 10-4 
time 17-32 

response, programming considerations 16-36 
running jobs later 17-31 

TOLIBR procedure 5-11, 6-9 
·tools for programming the system 1-3 
tools, productivity aids 1-8 
trace files 4-12 
TRACE procedure 19-20 
transaction file 

introduction 1-31 
organization 8-44 

TRANSFER procedure 5-11 
creating files 8-5 
putting data in files 8-10 

transient system routines 15-7 
troubleshooting procedures 18-11 
truncating ideographic data 20-10 
twos complement data format 7-8 
types of 

diskette files 5-6 
diskettes 5-1 
errors 19-1 
folder members 10-1 
folders 10-1 
library members 9-3 
tape files 6-5 
tapes 6-2 

types of folder members 10-1 
types of folders 10-1 

unassigning diskette drive from a job 5-14 
unassigning tape drive from a job 6-12 
unattended system operation 14-8, 17-36 
underline display format attribute 13-8 
UPSI switches, programming 16-31 
user area of main storage 15-1, 15-6 
user area, on disk 4-8 
user errors 19-2 
user ID file, on disk 4-13 
USERl message members 14-3 
USER2 message members 14-3 
uses for libraries 9-5 
uses of diskettes 5-1 
uses of tapes 6-1 

X-26 

using 
files 8-4 
menu help text 12-13 
menus 12-4 
record blocking and index blocking 8-63 
resident files from one job step to another 8-52 

using a disk file as two or more logical files 8-89 
using subdirectories 11-2 
utilities program product, description of 1-5 
utility control statements 18-2 

variable-sized portion of nucleus 15-3 
variables, parameters 18-3 
vertical bars 

See column separators 
vertical lines 

See column separators 
vertical print density, changing 3-21 
virtual disk 1-7 
virtual printer 1-7 
volume table of contents (VTOC) 

description 4-9 
listing 4-24 

WAIT OCL statement 17-32 
waiting for files to become available 8-75, 8-76 
waiting to run jobs 17-32 
ward number, ideographic 20-4 
what is stored on the disk 4-8 
when to use printed output 3-13 
word-processing 1-6 
work area, task 4-9 
work files, system, description 4-9 
work flow example 2-5 
work station buffer 13-3 
work station data management 

description 13-3 
input operations 13-5 
introduction 1-23 
modified operations 13-9 
operations 13-3 
output operations 13-4 

work station utility (WSU), introduction 1-5 
work station utility library 4-13 
work stations 

See display stations, printers 



WORKSTN file, RPG II 13-29 
WORKSTN OCL statement 3-22, 16-43 
write-enable rings for tapes 6-7 
write-protect plugs for tapes 6-7 
wsu 13-28 

zero priority, job queue 17-16 
zoned decimal format 7-3 

number of bytes in fields 7-6 

I Numerics I 
0 priority, job queue 1 7-16 
OE (shift-out) characters 20-2 
OF (shift-in) characters 20-2 
1 diskettes 5-1 
2D diskettes 5-1 
2HC diskettes 5-1 

Index X-27 



X-28 



IBM Syslrni/36 
Concepts and Progranm1cr's Guide SC2I-9019-5 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any requests 
for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
so on, Lo your IBM representative or to your IBM-approved remarketer. You may use this form to 
communicate your comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation Lo you. 

O Ir your comment does not need a reply (for example, pointing out a typing error), check 
this box and do not include your name and address below. If your comment is applicable, 
we will include it in the next revision of the manual. 

O Ir you would like a reply, check this box. Be sure to print your name and address below. 

Page n um ber(s): Commenl(s): 

No postage necessary if mailed in the U.S.A. 

Please contact your IBM representative or your IBM-approved 
remarketer to request additional publications. 

Name 

Company or 
Organization 

Address 

Phone No. 

City State Zip Code 

Area Code 



Fold and tape. Pl- do not staple. 

----------------------------------------------------------------------------L-----------, 

BUSINESS REPLY MAIL 
FIRST CLASS I PERMIT NO. 40 I ARMONK. NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Information Development 
Department 245 
Rochester, Minnesota, U.S.A. 55901 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

----------------------------------------------------------------------------------------~ 
Fold and tape. Please do not staple. 

--------- ----- - -- - ---- - ------------·-"' 




	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	08-66
	08-67
	08-68
	08-69
	08-70
	08-71
	08-72
	08-73
	08-74
	08-75
	08-76
	08-77
	08-78
	08-79
	08-80
	08-81
	08-82
	08-83
	08-84
	08-85
	08-86
	08-87
	08-88
	08-89
	08-90
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	X-22
	X-23
	X-24
	X-25
	X-26
	X-27
	X-28
	replyA
	replyB
	xBack

