Contents

CONTROL PROCESSOR
DATA FLOW AND CLOCKS
Data Flow
Clocks
System
I/O Attachment and Controller
Storage
OPERATIONS
IPL-Customer User Programs
Control Storage Initial Program Load (CSIPL) 2-
Main Storage Initial Program Load (MSIPL) 2-
IPL Timing Sequence
Display Light Sequence (Byte 0)
Disk Operation
Disk Sequence
62EH Disk Timing
62PC Disk Timing
IPL-Customer SSP from Diskettes 2-1
IPL-CE Diagnostics
Diskette CSIPL Diagnostic Sequence 2-1
Diskette Timing (Level 1 Attachment) 2-1
33FD/53FD CSIPL Flowchart (Level 1
Attachment)
Diskette Timing (Level 2 Attachment) 2-2
33FD/53FD/72MD CSIPL Flowchart (Level
2 Attachment)
Error Indications
CSIPL Switch Options
Instructions
Instruction Times
Sequence and Timing
Routine Printout
Mnemonic Listing
INSTRUCTION EXECUTION
Signals, Gating Lines, and Logical Functions for
Timing Charts
Branch (B)
Branch (Stop Condition) (B)
Branch and Link (BAL)
Jump on Condition (JC)
Jump on Condition (Stop Condition) (JC) 2-44

Logical/Arithmetic 1 (XR, ZAR, OR, NCR, NR,	
OCR, DEC, ACYR, SR, AR, SCYR, INC)	2-42
Condition Code for Logical Operations	2-42
Condition Code for Arithmetic Operations	
Logical/Arithmetic Functions	2-43
Logical/Arithmetic 2 (XR, ZAR, OR, NCR, NR,	
OCR, DEC, ACYR, SR, AR, SCYR, INC)	2-46
Condition Code for Logical Operations	2-46
Condition Code for Arithmetic Operations	2-46
Logical/Arithmetic Functions	2-47
Load Immediate (LI)	2-50
Compare Immediate (CI)	2-52
Subtract Immediate/Add Immediate (SI, AI)	2-54
Test Mask (TM)	2-56
Set Bits On (SBN)	
Set Bits Off (SBF)	
Storage (LC, LM, STC, STM)	2-63
Instruction List	2-63
Main Storage Access by Control	
Processor	
Control Processor Control of MSAR	
MSP Bus Line Control	2-68
Main Storage Address Decoding	2-69
Register Control (WMPR, RMPR)	2-73
Instruction List	2-73
Storage Direct (L, ST)	2-76
Move Local Storage Register (MVR)	2-78
Hexadecimal Branch (HBN, HBZ)	2-80
Hexadecimal Move (SRL, SRLD, MZZ, MZN)	
I/O Immediate	
I/O Load or I/O Control Load (IOL, IOCL)	
I/O Sense or I/O Control Sense (IOS, IOCS) .	
Sense Interrupt Level Status Byte (SILSB)	
Control Processor Load Function (MPLF)	
Control Processor Sense (MPS)	2-99
I/O Storage (WTCL, WTCH, RDCL, RDCH,	
WTM, RDM)	
Instruction List	2-100
•	2-104
	2-108
-	2-109
	2-109
Micro-Operation Register	2-109
X-Registers and Y-Registers	2-109

Arithmetic and Logic Units
Arithmetic and Logic Unit Gates
Arithmetic and Logic Unit Parity Predict 2-111
Storage Data Register
Local Storage Registers
Processor Condition Register
Storage Gate High/Low
Status 1 Gate
Status 2 Gate
ERROR CONDITIONS
Control Processor Checks
Processor Errors
Error Conditions (Second Level)
Machine Check Interrupt and Processor
Check Generation
MSP Hardware Checks
Control Processor Checks
SDR Parity Check Generation
MOR Parity Check
MOR Parity Check
MOR Parity Check
MOR Parity Check 2-124 Storage Gate High/Low Parity Check 2-125 and Generation 2-125
MOR Parity Check 2-124 Storage Gate High/Low Parity Check and Generation 2-125 ALU Gate High Parity Check and
MOR Parity Check 2-124 Storage Gate High/Low Parity Check 2-125 and Generation 2-125 ALU Gate High Parity Check and 2-126 ALU Gate Low Parity Check and 2-126
MOR Parity Check 2-124 Storage Gate High/Low Parity Check and Generation 2-125 ALU Gate High Parity Check and Generation 2-126

Contents for Control Processor

Control Processor

The control processor is made up of eight cards (16K-word storage positions that can be addressed): six cards for the processor and two cards for storage. The control processor:

- Controls system input/output (I/O) operations
- Controls assigning of tasks
- Moves data between the I/O devices and the main storage processor
- Handles some of the system control programming
- Moves data between the control processor and the I/O devices that use the channel
- Performs channel command functions (load and sense)
- Moves data between the control processor and the main storage processor
- Controls the main storage processor clock

Control storage contains 16K words; each word is 2 bytes long. Control storage can be addressed one word at a time. The control processor executes control storage instructions that are in control storage. The control processor functions are performed by the control storage program. The control storage program is loaded in control storage during the control storage initial program load (CSIPL) sequence. Control storage is loaded from the disk during normal operations or from the DIAGXX diskettes for diagnostic programs. The diagnostic programs control the routines and work done by transients that are not loaded at CSIPL time.

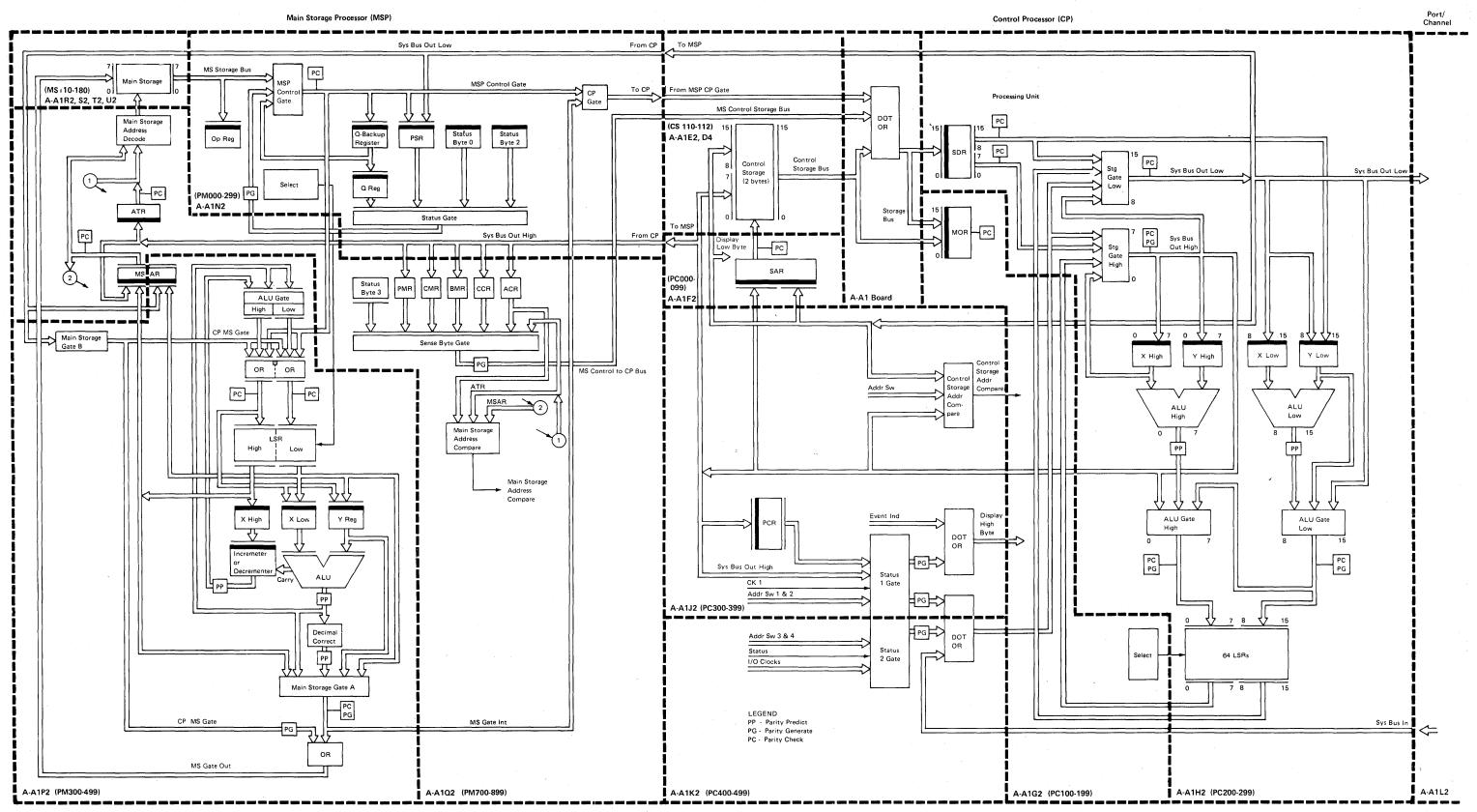
DATA FLOW AND CLOCKS

Data Flow

The control processor works with either 1 or 2 bytes of data at a time. The instruction being executed determines the number of bytes and the exact path of the data.

The 'system bus in' lines (channel SBI) from the channel are 1 byte wide plus parity (9 lines), but the byte can be either a high- or low-order byte in the control processor. If the data on the 'system bus in' lines is to be sent directly to the main storage processor, the control storage program sends 1 byte plus parity at a time. The control processor can also address main storage and main storage processor registers.

Parity Checking


Odd parity by byte is maintained in the data flow. To ensure correct parity, System/34 has checking and generating stations. Parity is checked at the storage address register (SAR), storage data register (SDR), storage gates high and low, arithmetic and logic unit (ALU) gates high and low, micro-operation register (MOR), and on the channel data lines.

Parity generating stations are supplied for the status register, the control panel, switch bytes, and other internally generated data pertaining to the control processor (storage gate high and ALU gates high and low).

Default Conditions

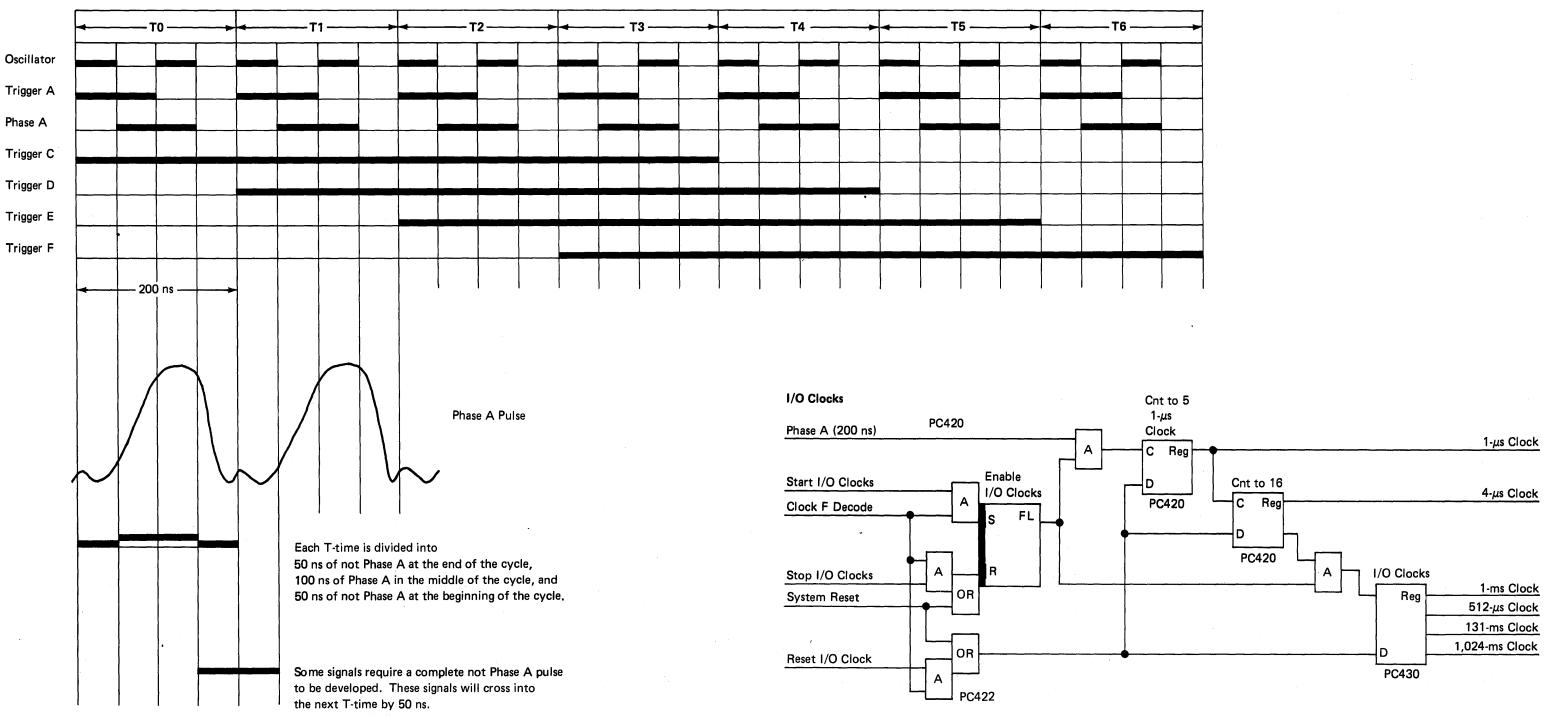
If no hardware conditions are specified for the control processor, the control processor has automatic selections and functions that are default conditions. The default conditions for the functional units in the control processor are as follows:

Unit	Default Selection
Storage gate high	LSR high
Storage gate low	LSR low
ALU gate high	ALU high
ALU gate low	ALU low
ALU function	X-register plus 1

*Data flow bus lines may not pass through FRUs as shown

Clocks

System


The control processor has a 100-nanosecond oscillator that runs continuously, supplying the 10-megahertz frequency needed for the clock pulses. The rise of this oscillator output causes

T-Time and Phase A Relationship

'trigger A' to change condition, while the fall of this oscillator output causes the 'phase A' line to change condition.

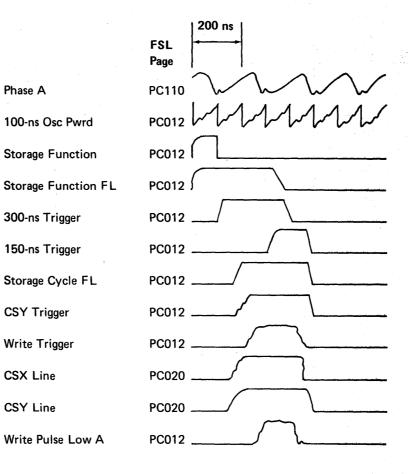
Four control processor clock triggers (C, D, E, and F) are decoded to determine control processor clock times T0 through T6.

When the current instruction is decoded, the control processor determines if some of the control processor clock times are needed and controls the gating of the triggers to skip the times that are not needed.

I/O Attachment and Controller

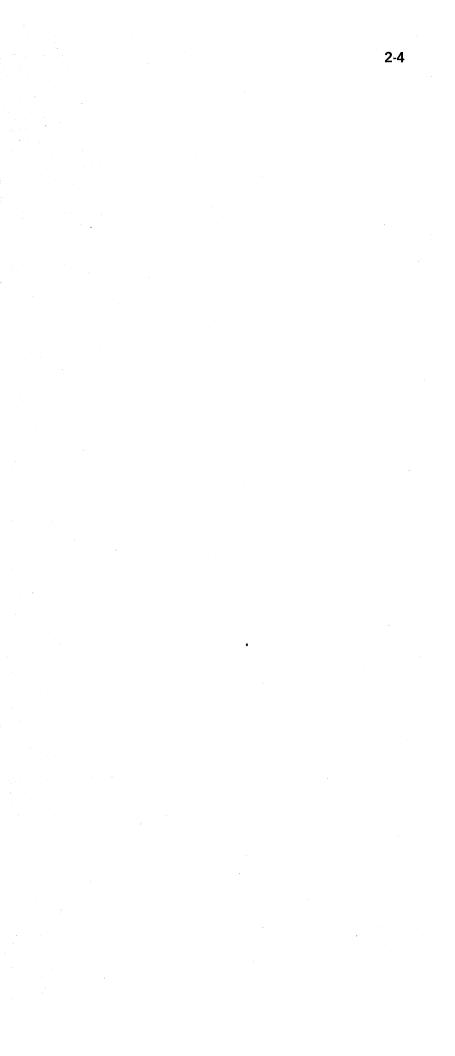
The control processor has eight continuously running clocks that are used by the I/O attachments and controllers. Seven of these clocks can be stopped and started for diagnostic testing. The 100-nanosecond, free-running internal oscillator generates the 'phase A' line which, in turn, generates the other seven clocks. Clock triggers are used to count the time needed in the generation of the seven clocks. The times of the clocks are:

- 100 nanoseconds (oscillator)
- 1 microsecond
- 4 microseconds
- 1 millisecond
- 512 microseconds
- 16 milliseconds
- 131 milliseconds
- 1,024 milliseconds


These clocks, except for the 100-nanosecond oscillator, are sensed by the I/O immediate instruction. The clocks must be in a stop condition before a program can execute an I/O immediate instruction (B76R or B66R).

Storage


During instruction times T0 through T2, time T0 fetches the microaddress register (MAR) contents from the local storage register (LSR) stack and places this data into the storage address register (SAR). Time T0 also starts the storage clocks for the storage access. During times T1 and T2, storage is addressed to read the instruction.


The storage clocks are also used during burst-cycle-steal-mode operations and base-cycle-steal-mode operations. When an I/O device activates the 'disk/dskt block processor clock' line or the 'base cycle steal request' line, the control processor completes the instruction it is working on and then goes to the T7 condition where it is held until the 'disk/dskt block processor clock' line is not active. The rise of the 'disk/dskt (load) BC reg' line¹ while the 'disk/dskt block processor clock' line is active generates a 'storage cycle request' line which, in turn, generates time T8 (clock SAR and X reg); time T8 is then used to load the storage address in the main storage address register (MSAR) or control storage address register (SAR). After the operation is completed, the 'disk/dskt block processor clock' line is not active and the control processor clocks are permitted to run. (See Burst Cycle Steal Mode in the Channel section of this manual.) The control processor storage clocks can also control main storage. (See Control Processor and Main Storage Processor Communication in the Interrupts and Cycle Steal Requests section of this manual.)

Storage Access Timings

Storage Function

OPERATIONS

IPL-Customer User Programs

MSIPL Switch in Disk Position: CSIPL Switch in Disk Position: Initial program load (IPL) is completed in three major stages from the time the Load key is pressed until the SYSTEM CONSOLE message is displayed on the system console display screen. Loading is done from the disk. The three stages of IPL are as follows:

IPL		
CSIP	L	MSIPL
Stage 1	Stage 2	Stage 3
Control storage is loaded three times to run diagnostic routines and check hardware circuits (see Section 99 of the 5340 System Unit Maintenance Manual).	The control storage pro- gram loaded includes IPL routines that overlay stage 1 and are executed (see the <i>Control Storage</i> <i>Logic Manual</i>).	Main storage initialization is loaded in three phases (see the SSP Logic Manual: System).

Control Storage Initial Program Load (CSIPL)

Stage 1

Stage 1 of the control storage initial program load (CSIPL) sequence loads control storage three times and performs a basic system check of the control processor and I/O functions. Nine display lights (display byte 0, bits P0 and 0 through 7), and the Load light on the CE panel are set to on by pressing the Load key. These lights are reset to off at various stages of the CSIPL by both hardware and software as programs are loaded and executed.

First Load: Load 16 sectors (2K words) that contain control processor diagnostic routines 1 through 19.

Then, perform the following tasks:

4

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- 2. Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0000 through 07FF.
- 3. Reset the microaddress register (MAR) for machine check (local storage register hexadecimal 0A) to hexadecimal 0000 and execute any machine check log routines for control processor errors using interrupt level 0.
- 4. Software set the microaddress register (MAR) for main program level to hexadecimal 0292, branch to hexadecimal 00FF, and execute instructions for diagnostic routines 1 through 19.

If all tests run correctly, the following lights are reset to off in the sequence: bits PO, O, and 1 of display byte 0, the Load light, and bit 2 of display byte 0.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).

See Error Indications or Display Light Sequence later in this section.

Second Load: Load 16 sectors (2K words) that contain control processor diagnostic routines 20 through 70.

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- 2. Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0800 through OFFF.
- 3. Software set the microaddress register (MAR) for main program level to hexadecimal 0800 and execute instructions for diagnostic routines 20 through 70.

If all tests run correctly, bits 3 and 4 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- · The Processor Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).

See Error Indications or Display Light Sequence later in this section.

Third Load: Load 28 sectors (3.5K words) that contain control processor diagnostic routines 71 through 79 and device wrap loader tests.

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- 2. Load 3.5K words (7,168 bytes) into control storage at hexadecimal addresses 0080 through 0E7F.
- 3. Software set the microaddress register (MAR) to hexadecimal 0080 and execute instructions for diagnostic routines 71 through 79.

The wrap loader calls in each device wrap test and executes that test before it calls in the next wrap test.

If all tests run correctly, bits 5, 6, and 7 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- The Console Check light is set to on.
- Display byte 0 does not contain correct results.
- · The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).
- Error messages are stored in control storage at hexadecimal locations 07A0 through 07BF and may also appear on the system console display screen.

See Error Indications or Display Light Sequence later in this section.

Stage 2

Stage 2 of the control storage initial program load (CSIPL) sequence loads the control storage program that contains the routines necessary to load:

- The work station controller program
- The printer controller program
- · The main storage nucleus initialization program (#MSNIP)

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- Load 62 sectors (9.75K words) into 2 control storage at hexadecimal addresses 0000 through 26FF.
- 3. Software set the microaddress register (MAR) to hexadecimal 1E00 and the control processor takes control.

To indicate a failure, one or more of the following occur:

- · The Processor Check light is set to on.
- The Console Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).
- Error messages are stored in control storage at hexadecimal locations 07A0 through 07BF and may also appear on the system console display screen.

See Error Indications or Display Light Sequence later in this section.

Main Storage Initial Program Load (MSIPL)

Stage 3

Initialization of main storage completes the hardware and software tasks necessary to load the System Support Program Product (SSP) and ready the system for customer user program requests. The initialization is performed in three phases.

Phase 1: The main storage module (#MSNIP) initializes main storage. This module is the basic first step for all other modules that will be used during the main storage initial program load (MSIPL) sequence. The main functions of #MSNIP are to:

- Initialize the system communications area
- Assemble the resident library format 1
- · Determine the bad main storage locations
- Initialize the transient/transfer control table
- Determine the disk addresses as needed
- · Set the command processor task control block (TCB) to indicate any bad 2K storage blocks
- Increase the size of the assign/free area to permit assigning of main storage
- · Load and pass control to software module #MSTWA (phase 2)

Phase 2: Software module #MSTWA initializes the task and work areas in main storage. The main functions of #MSTWA are to:

- Initialize the transfer control table for the resident routine
- Initialize the task work area index
- · Initialize the terminal unit blocks
- · Initialize the task work areas for each work station
- Assemble the device allocate table
- · Load and pass control to software module #MSIPL (phase 3)

Phase 3: This phase controls the last main storage initial program load (MSIPL) and includes a group of software modules under the control of software module #MSIPL. The main functions of #MSIPL are to:

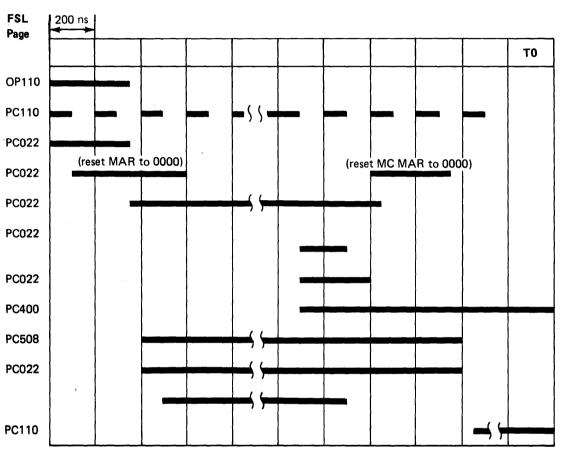
- · Perform the main storage initial program load sign-on request
- Process the override information if necessary
- Initialize the print spool function
- · Complete the nucleus initialization

Before MSIPL is complete, the #MSIPL module updates the instruction address register (IAR) in the request block (RB) stack to pass control to the command processor resident router. The supervisor task attach transient then attaches a task control block (TCB) to run file rebuild. Control then passes to the control processor resident router. The IPL SIGN-ON message is displayed on the system console display screen while phase 3 is completing many of the last tasks.

Initial program load is complete when SYSTEM CONSOLE DISPLAY appears on the display screen or COMMAND DISPLAY appears at one of the work stations. The customer now has an operational system and can process job requests.

Errors that occur during main storage initial program load cause two types of not normal terminations (abends):

- · Task-associated abends do not stop the system (except for the command processor task), but a dump of main or control storage is written to disk and only the error task is terminated while other tasks continue.
- System-associated abends are so severe that they do not permit any task to continue. The system must be stopped immediately so the damage can be contained and diagnosed. Two types of processor checks that cause system-related abends are:
- Hardware generated—The specified error is shown in the command processor unit status word indicators. (Set the Mode Selector switch on the CE panel to the Dply Chks position.)
- Software generated-Activated by the System Support Program Product when an error occurs that cannot permit the operation to continue. (A display of selected local storage registers describes the error more fully.)


For detailed information on errors, see Appendix G. Troubleshooting Aids and Appendix I. Hardware Diagnostic Information in the Data Areas Handbook.

To run a complete test of the I/O devices, run the SYSTST program. SYSTST checks all the mechanical parts of all the I/O devices, the system program, and the I/O routines.

IPL Timing Sequence

Pressing and releasing the Load switch starts the control storage initial program load (CSIPL) sequence and the Load light is set to on. The CSIPL, along with the ALU high 'data 4' and the '150-ns tgr' lines, causes the 'transfer complete' line to be activated.

CSIPL Sequence
Load Pressed
Phase A
System Reset
(special) System Reset
New CSIPL Cycle (to I/O)
CSIPL Cycle (and) ALU High Data 4 (and) 150-ns Trigger (4,096 bytes transferred) ¹
Transfer Complete Latch
Run Latch OCD
Block Processor Clock (BPC tgr) ²
Load Indicator (light)
Data Transfer
CP Clocks Run ¹
and the second states are set of the second states

Note: The Load light continues to be set on if: (1) the block processor clock is not de-activated, (2) the disk is not ready, or (3) a processor check occurs.

¹ This line cannot be probed.

² The 'block processor clock' line is active as shown for 62EH disk drives. The line will be pulsing if 62PC disk drives are installed.

Display Light Sequence (Byte 0)

The Load light and all nine display lights (display byte 0 on the CE panel) are set to on when the operator presses the Load switch. When the Load switch is released, the control storage initial program load (CSIPL) sequence starts and 2K words are moved into control storage (from either the disk or a diskette). At the end of the move of 2K words, the Load light is reset to off if no error was sensed. The lights are reset to off as described below as the sequence advances. If CSIPL is not completed, the lights that represent the part of CSIPL that was not completed continue to be set on. The Mode Selector switch must be in the Proc Run position for the lights to appear when set to on (clock running).

If during the CSIPL, the system has a processor check, and byte 0 bits P0, 0, 1, and 2 are reset to off, and either bit 3, 4, 5, 6, or 7 is set to on, this indicates that the control processor has failed in one of its bring-up diagnostic routines. To determine which routine failed (for routine numbers larger than 08), display work register 3 low. This register will contain the hexadecimal number that identifies the failing routine. See Section 99 of the 5340 System Unit Maintenance Manual for routine numbers.

Each light is reset to off and remains off as follows:

- **P0**¹ The adapter has received the 'load' signal and made active the 'disk/dskt block processor clock' signal to start data transmission by a burst-cycle-steal-mode operation. **O**¹ The first cycle steal request was received and data transmission was started (write trigger). 11 The transmission of 4,096 bytes of data was completed. The data transmission was Load¹ completed with no data check. 2 The branch and branch-on-condition routines have completed. Parity checks are reset during routine 2. 3 The second load of control storage was completed and the first instruction was executed. 4 The control storage test was run correctly. 5 The third load of control storage
 - was completed and the first instruction was executed.
 - 6 The main storage test ran correctly. Start executing the wrap loader control program.

7

The System Support Program Product or the diagnostic supervisor was loaded. After loading, the initial program load sequence is complete and the system is ready to run user programs or diagnostic programs.

¹Reset by hardware controls. The other lights are reset by control storage instructions.

Disk Operation

When the operator presses the Load switch, the control storage initial program load (CSIPL) sequence does three partial control storage loads. Then, it loads the control storage program from cylinder 0, track 1, sector 0-3B, and takes control at hexadecimal location 1E00 of control storage.

The control storage program has routines that load and control the main storage initialization along with loading the System Support Program Product.

First Load: Hardware loads 2K words into control storage at hexadecimal locations 0000 through 07FF. These words contain the following:

	Words
Direct area (the unit definition table and addresses)	128
Control processor instruction tests	1,408
Disk loader	512

Second Load: The disk loader loads 2K words into control storage at hexadecimal locations 0800 through OFFF. These words contain the following:

	Words
Remainder of control processor instruction tests	1,792
Control storage tests	256

Addresses (Hex) 0000-007F 0080-05FF 0600-07FF

Addresses (Hex)

0000-0EFF

0F00-0FFF

Third Load: The disk loader loads 3.5K words into control storage at hexadecimal locations 0080 through 0E7F. These words contain the following:

	And a second sec	Words	Addresses (Hex)
	Main storage processor basic tests	640	0080-027F
	Wrap loader and control program subroutines	128	0280-02FE
	Wrap loader and control program	512	02FF-047F
	Wrap device identification and location table	256	0480-057F
	Wrap device and unit definition table	256	0580-067F
	Additional subroutines	128	0680-06FF
Т	Reserved	128	0700-077F
	Wrap error storage area	128	0780-07FF
	Work station display routine and CSIPL wrap error messag	640 ge	0800-0A7F
	CSIPL device wrap tests	1,024	0A80-0E7F

Fourth Load: The disk loader loads 9.75K words into control storage at hexadecimal locations 0000 through hexadecimal 26FF. Control is passed to hexadecimal location 1E00.

For more information on control storage initial program load, see Section 1 of the Control Storage Logic Manual.

Load MSIPL: The last CSIPL load routine of the main storage fixed nucleus and the variable nucleus (under control of the control storage program) are loaded into main storage. The size of the variable nucleus will rely on the system configuration.

2000

Start

Address

(Hex)

0000

00D0

00F0 0100

01C0 01E0 0200

0280

0298 02D4

02E0 0300 0310

0320

0330

0340

0350 0360

0370 0380

0390 0398 03A0

03A8 03B0

0700

07C0

0800

1000

	Words A ss igned
Function	(Decimal)
System Communication Area	208
Termination Dump IOB	32
Termination Dump ACE	16
ACE Queue Headers	192
Multipurpose IOB	32
CS Transient Loader IOB	32
Command Processor TCB	128
Task Work Area Index	24
System Diskette IOB	60
Disk Error Request Block	12
#Library Format 1	32
Alter/Display ACE	16
Alternative Sector ACE	16
Statistical Logout ACE	16
Interval Timer ACE	16
MS Processor Check ACE	16
Swap ACE	16
MS Transient Loader ACE	16 🕤
Diskette ERP ACE	16
Error Task-to-Task ACE	16
Dispatcher TQE	8
Midnight TQE	8
	8
System Queue Space/Failure TQE	8
MSIPL Free Area	848
Minimum Trace Buffer	256 170
or Alter Display Work Area	170
and CSIPL Error Log Work Area	0 .4
Main Storage Transient Area	64 2,048
Variable Nucleus	∡,040
Terminal Unit Blocks	
Command Processor Work Area	
Command Processor Matrix Image	
Command Processor Mainline	
Disk Data Management	
Task-to-Task Communications	
Device Allocate Table	
Command Processor Error ACE	
Command Processor Task-to-Task ACE	
Command Processor JCB	
Spool Intercept	
Spool Intercept Buffer	
Spool Write Buffer	
Display Station Data Management	
Work Station Queue Space	
System Queue Space	
Load Address for IPL Diskette	

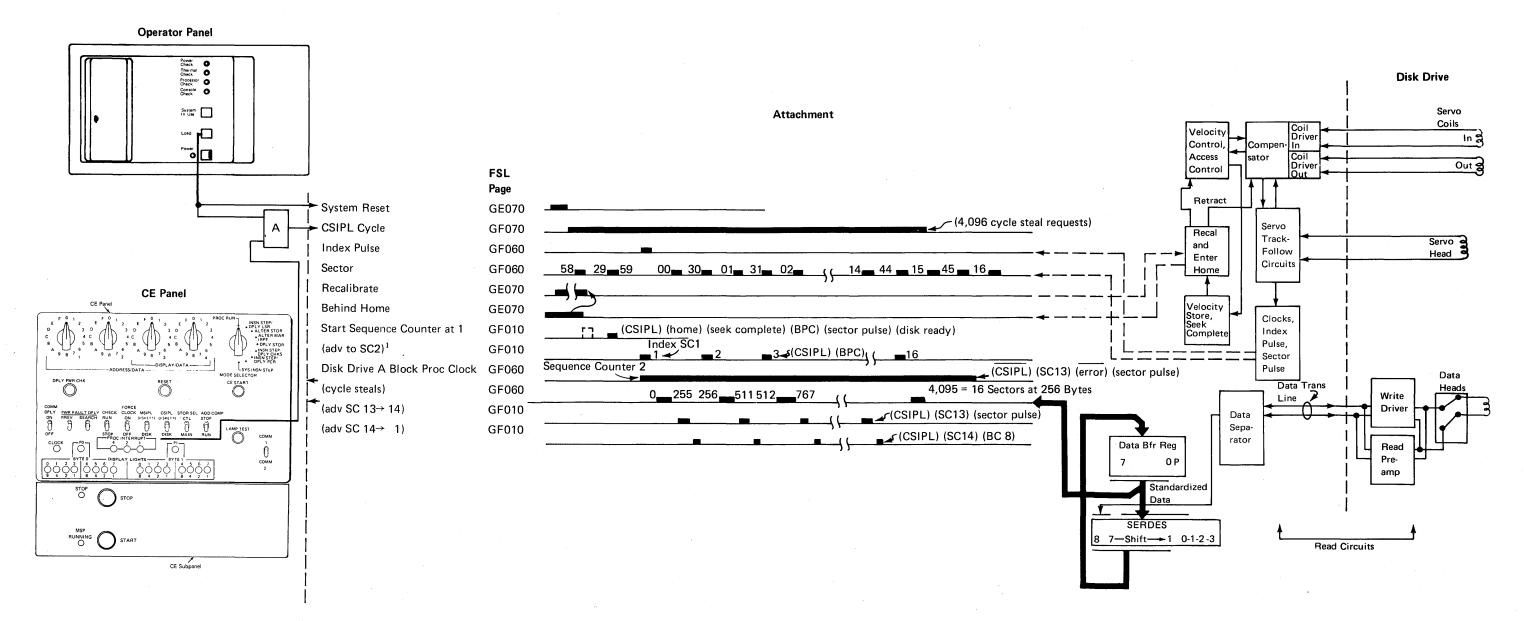
See the SSP Logic Manual: System.

Disk Sequence

First Load of Second Load of Third Load of Fourth Load of CSIPL-2K Words CSIPL-2K Words CSIPL-3.5K Words CSIPL-9.75K Words Load 0000 0000 0000 0000 Direct Area 128 Words 0080 Main Storage Processor 640 Words Basic Tests OFFF 0280 1000 Wrap Loader and Control 128 Words Program Subroutines Unchanged from **Control Processor** 1,408 Words 02FF Preceding Load Instruction Tests Wrap Loader and 512 Words Control Program 0480 Wrap Device Identification Control Storage 256 Words and Location Table Program 0580 512 Words Disk Loader (moved to Wrap Device and Disk Loader 47FF 256 Words ____ (moved to hex 3F00) hex 3F00 on first load) Unit Definition Table 4800 0680 0800 0800 1E00 128 Words Additional Subroutines Start Start 0700 Execution 87FF Execution 8800 1,792 Words Reserved 128 Words Remainder of ,0780 **Control Processor** Not Loaded at This Time Wrap Error 128 Words Instruction Tests Storage Area C7FF ----- 6 Start 0800 C800 Execution Work Station Display 640 Words Routine and 26FF CSIPL Wrap Error Message 2700 0A80 7FFF **Control Storage Initial** Reserved _____ OFOD BFFF 1,024 Words ___ Program Load Control Storage Tests 256 Words FFFF --6 Device Wrap Tests OFFF 3FFF 0E7F Last 28 Sectors Loaded First 16 Sectors Loaded First 62 Sectors Loaded Second 16 Sectors Loaded from Track 0, Cylinder 0 from Track 1, Cylinder 0 from Track 0, Cylinder 0 from Track 0, Cylinder 0

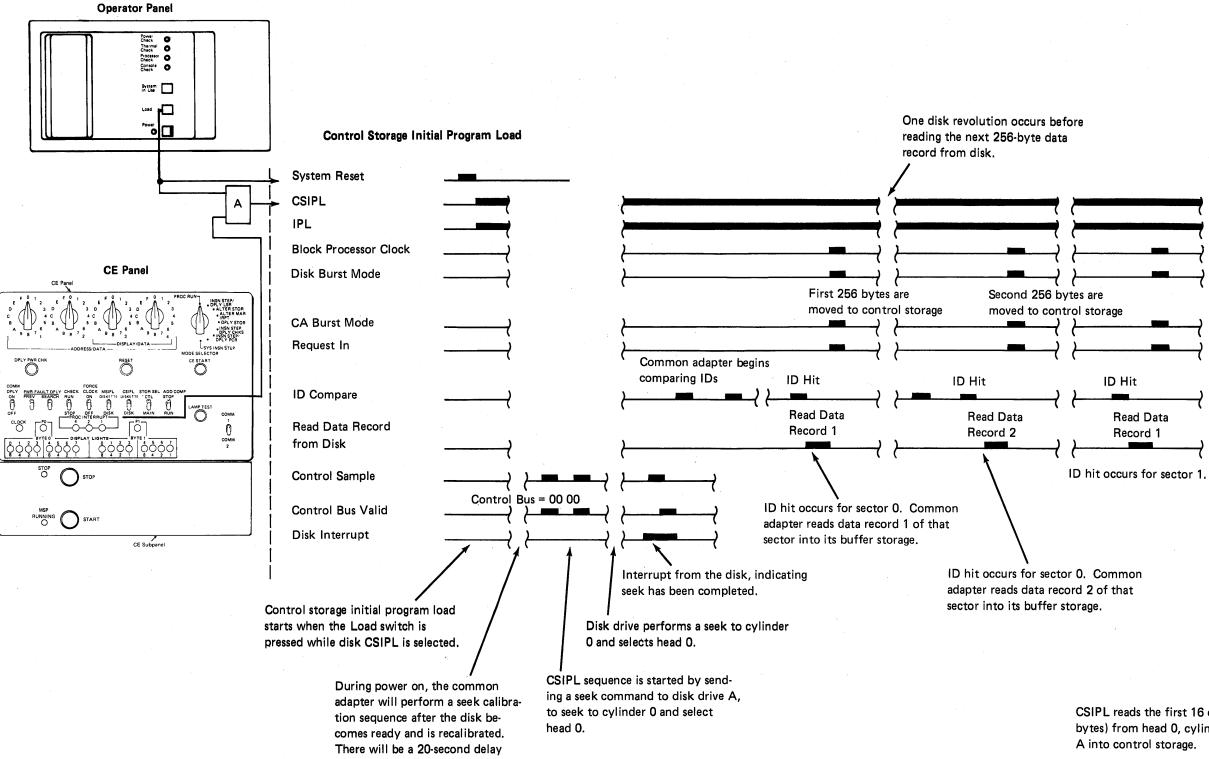
MSIPL	
Main Storage Fixed Nucleus (4K Bytes)	4K Bytes
Variable Nucleus	
32K Machine	14K Bytes
48K Machine	30K Bytes
64K Machine	46K Bytes
Reserved for User Area	14K Bytes
32K Machine 48K Machine 64K Machine	

•


. . . .

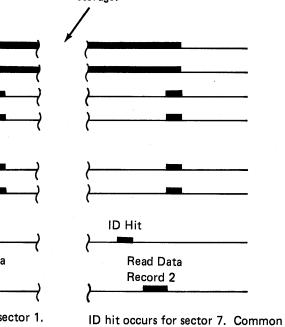
and the intentionally left blank.

2-10


.

62EH Disk Timing

¹ Data transfers operate like read data or read diagnostic operations. Sector hit is forced.


62PC Disk Timing

from power on to the start of the CSIPL sequence.

.

2-12

Twelve more data records are read from disk and moved to control storage.

adapter reads data record 2 of that sector into its buffer storage.

After this data has been moved to control storage, CSIPL is reset.

CSIPL reads the first 16 data records (4,096 bytes) from head 0, cylinder 0 of disk drive

IPL-Customer SSP from Diskettes

MSIPL Switch in Diskette Position; CSIPL Switch in Disk Position: Initial program load (IPL) is completed in three major stages from the time the Load key is pressed until the system operator does another IPL from disk and IPL SIG№-ON and SYSTEM CONSOLE DISPLAY have been displayed on the system console display screen. This type of IPL is necessary when the customer must update his SSP with a new release or exchange an existing SSP because it has been damaged.

Stage 1

The control storage initial program load (CSIPL) sequence loads control storage three times from the disk and performs a basic check of the control processor and I/O functions. Stage 1 is the same as the IPL operation on customer user programs. Nine display lights (display byte 0, bits PO and 0 through 7) and the Load light on the CE panel are set to on by pressing the Load key. These lights are reset to off at various stages of CSIPL by both hardware and software as programs are loaded and executed.

Stage 2

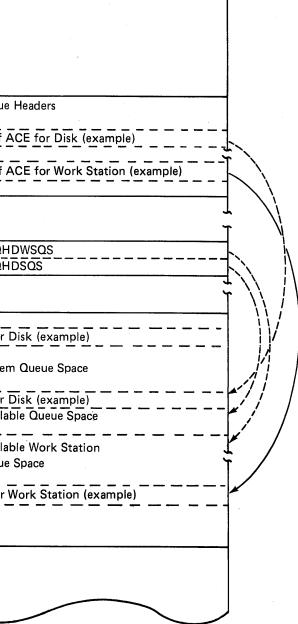
CSIPL loads the control storage program from the disk that contains the routines necessary to load:

- The work station controller program
- The printer controller program

The MSIPL switch in the Diskette position is checked by the program and causes two operations to occur: 1) the main storage initialization is not done as before (IPL of customer user programs); 2) the IPL sign-on display is bypassed.

Stage 3

The first load program from diskette is loaded into main storage and starts executing the load routines. The SYSTEM CONSOLE DISPLAY message gives prompting messages to the operator to control the inserting of all necessary diskettes as they are again loaded on the disk. If the correct sequence is followed and all diskettes have been loaded, the COMPLETE message informs the operator that the programs are all loaded and the system is now ready for a normal customer IPL. Some additional prompting messages inform the operator to: 1) reset the CSIPL and MSIPL switches to the Disk position and 2) press the Load key to perform an IPL for customer user programs.


Control Storage Layout

Control Storage Fixed Area **Contains Entry** 1080 Immediate SVC Addresses of Immediate (status word table) 10**B**F SVC Functions Contains Masks 10C0 Delayed SVC for Setting (status word table) ACW Bits 10DF 10E0 System Event Counter Table 10F7 10F8 **Resource Timer** Table 10FF 1100 Contains Entry ACW Entry Address Addresses of Delayed Table SVC Functions 113F 1140 Searched by ACW 0 ĀĒŴ Ī Action Controller 1141 ACW 2 1142 ACW 3 1143 1144 Contains an Entry for Transient Transfer Each Main Storage Transient that Control Table Can be Called by an (for main storage) Explicit RIB 1193 1194 Control Storage Register Stack 11BD Contains Control Storage 11BE Control Storage Transient Module IDs and Transient Table 11F6 Sector Addresses 11F7 Interrupt Level 2 Post Table 11FF

ŧ.

Main Storage Layout

System Co	mmunication Area	0000	
		00FF	_
ACE, TCB	Addresses of 1st , TQE, and so on, on Queue	0100	C
	rious Functions		Add
	stem Queue Headers Table		T-Add
Logic Man	5 of the <i>Control Storage</i> Jual.	016E	
	Ist Available Space		Ť
for the Wo	ork Station Queue	-	-
Points to 1	Ist Available Space	0180 0182	
	Queue Space	0102	
· · · · · · · · · · · · · · · · · · ·			T
	TUBs, and so on, for	XXXX	
a Given Fu Together	unction are Chained		ACI
rogenier			- s
Example:	The 1st Disk Input/Output A		<u>\</u>
•	Contains a Pointer to the 2nd Disk Input/Output ACE, and		
	on.	1 50	
			Ţ
			ĀCI
			-

IPL-CE Diagnostics

MSIPL Switch Not Used; CSIPL Switch in Diskette Position: When the Load switch is pressed, the control storage initial program load (CSIPL) sequence does three partial loads and then loads the diagnostic control program. The four control storage loads are as follows:

	IPL		
	CSIPL		
Load 1	Load 2	Load 3	Load 4
Loads control processor diagnostic routines 1-19 and executes	Loads control processor diagnostic routines 20-70 and executes	Loads control processor diagnostic routines 71-79, then executes and wraps	Loads CE diagnostic supervisor and executes

See Section 99 of the 5340 System Unit Maintenance Manual.

Load 1: Hardware loads 2K from track 0) into control stor hexadecimal addresses 0000 These words contain the follo for control processor diagnos through 19:	rage at through owing in	07FF. formation	<i>Load 2:</i> The diskette loader loads 2K words (8 sectors from track 1) into control storage at hexadecimal addresses 0800 through 0FFF. These words contain the following information for control processor diagnostic routines 20 through 70:				
	Words	Addresses (Hex)	Words Addresses				
Direct area (the unit definition table and addresses)	128	0000-007F	(Hex) Remainder of control processor 1,792 0800-0EFF instruction tests				
Control processor instruction tests	1,408	0080-05FF	Control storage tests 256 0F00-0FFF				
Diskette loader	512	0600-07FF	Then, perform the following tasks:				
Then, perform the following t	asks:		 Load control storage from diskette by an interrupt-level-mode operation. 				
 Load control storage fro burst-cycle-steal-mode 		•	 Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0800 				
 Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0000 through 07FF. 			 through OFFF. 3. Software set the microaddress register (MAR) to hexadecimal 0800 and execute the instructions for diagnostic routines 20 				
 Software set the microa (MAR) to hexadecimal 0 the instructions for diag through 10 	0000 and	d execute	through 70. If all tests run correctly, bits 3 and 4 of display				
through 19.			byte 0 are reset to off.				
If all tests run correctly, the f reset to off in the sequence: of display byte 0, the Load lig	bits PO,	0, and 1	To indicate a failure, one or more of the following occur:				
display byte 0.	,,		• The Processor Check light is set to on.				
To indicate a failure, one or more of the following occur:			 Display byte 0 does not contain correct results. 				
• The Processor Check light is set to on.			• The system goes into a loop during CSIPL				
 Display byte 0 does not contain correct results. 			(display byte 0 lights show the sequence of advance).				
 The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance). 			See Error Indications or Display Light Sequence in this section.				
San Error Indiantora an Dianla	liaht C	·					

See Error Indicators or Display Light Sequence in this section.

Load 3: The diskette loader loads 3.5K words (track 2 and six sectors of track 3) into control storage at hexadecimal addresses 0080 through OE7F. These words contain the following information for control processor diagnostic routines 71 through 79 and device wrap tests:

	Words	Addresses (Hex)
Main storage processor basic tests	~ <u></u> 640	0080-027F
Wrap loader and control program subroutines	128	0280-02FE
Wrap loader and control program	512	02FF-047F
Wrap device identification and location table	256	0480-057F
Wrap device and unit definition table	256	0580-067F
Additional subroutines	128	0680-06FF
Reserved	128	0700-077F
Wrap error storage area	128	0780-07FF
Work station display routine and CSIPL wrap error message	640	0800-0A7F
CSIPL device wrap tests	1,024	0A80-0E7F

Then, perform the following tasks:

- 1. Load control storage from diskette by an interrupt-level-mode operation.
- 2. Load 3.5K words into control storage at hexadecimal addresses 0080 through OE7F.
- Software set the microaddress register З. (MAR) to hexadecimal 0080 and execute the instruction for diagnostic routines 71 through 79 and device wrap tests.

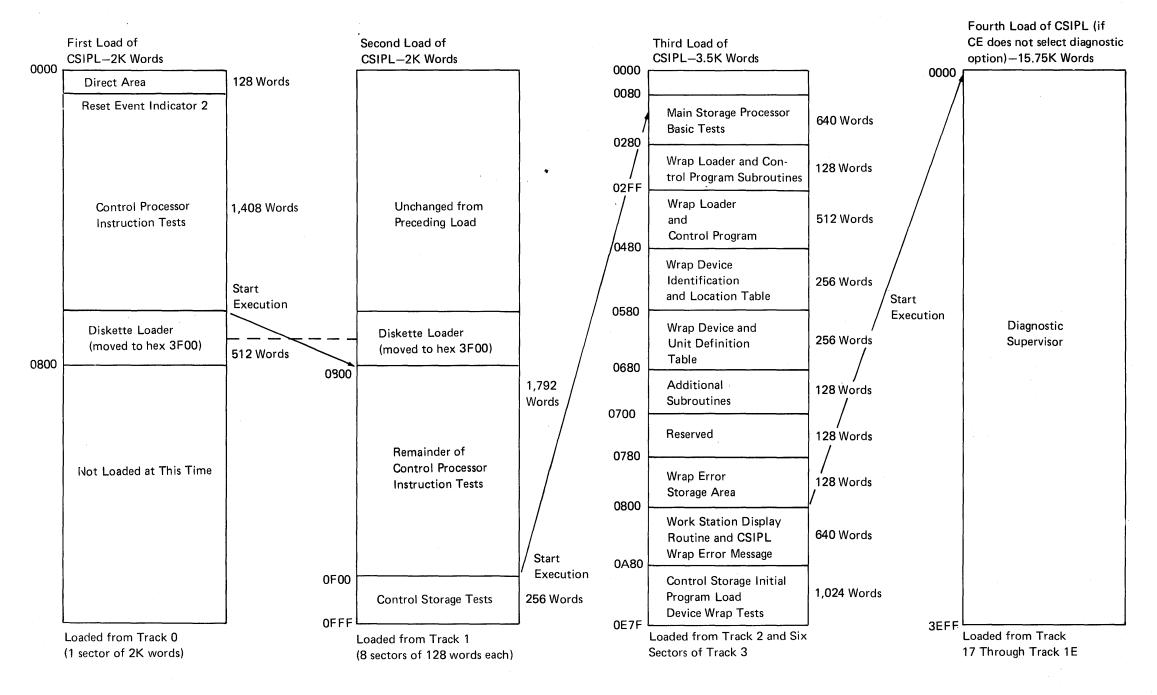
If all tests run correctly, bits 5, 6, and 7 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- The Console Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).
- Error messages are stored in control storage at hexadecimal addresses 07A0 through 07BF and may also appear on the system console display screen.

See Error Indications or Display Light Sequence in this chapter.

Load 4: The diskette loader loads 15.75K words (8 tracks) into control storage at hexadecimal addresses 0000 through 3EFF. These words contain the diagnostic supervisor necessary to run selected diagnostic device tests.


Then, perform the following tasks:

- 1. Load control storage from diskette by an interrupt-level-mode operation.
- 2. Software set the microaddress register (MAR) to hexadecimal 0000 and execute the instructions to initialize the diagnostic supervisor.
- When the load operation is complete, the З. MAIN MENU message appears on the system console display screen.

Diagnostic options may be selected by the CE by using the address switches on the CE panel. For various switch settings and options, see CSIPL Switch Options later in this section.

2-16

Diskette CSIPL Diagnostic Sequence

Diskette Timing (Level 1 Attachment)

The following charts show the sequence of events on a diskette control storage initial program load operation.

ι.,

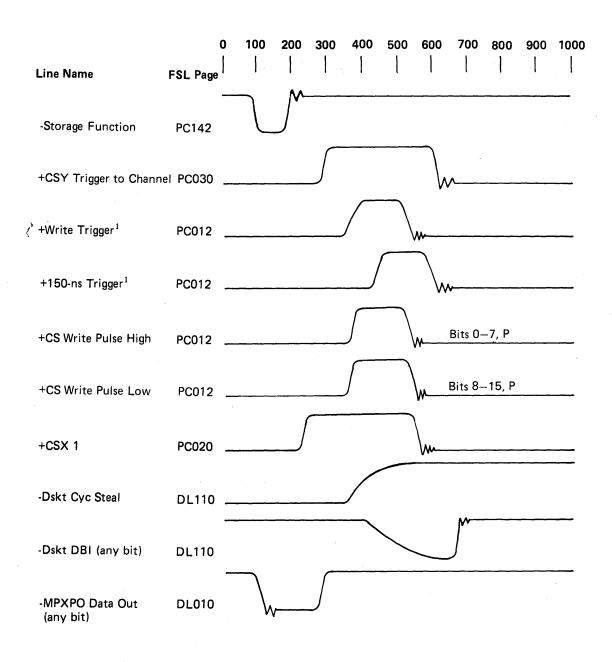
For all scope probes, ground AA2-L2J12 (DL510) + CSIPL to Dskt. Grounding this pin prevents the reset of the 'seek counter' latch and can be used to hold the head on one track.

Set the CSIPL switch to the Diskette position.

Set the Mode Selector switch to the Insn Step/Dply LSR position.

Set the Store Sel switch to the Ctl position and the Add Comp switch to the Stop position.

Set the four Address/Data switches to zero.


Sync scope Ext/DC (-) AA2-L2G07 20 ms/div (DL110) - Dskt Cyc Steal.

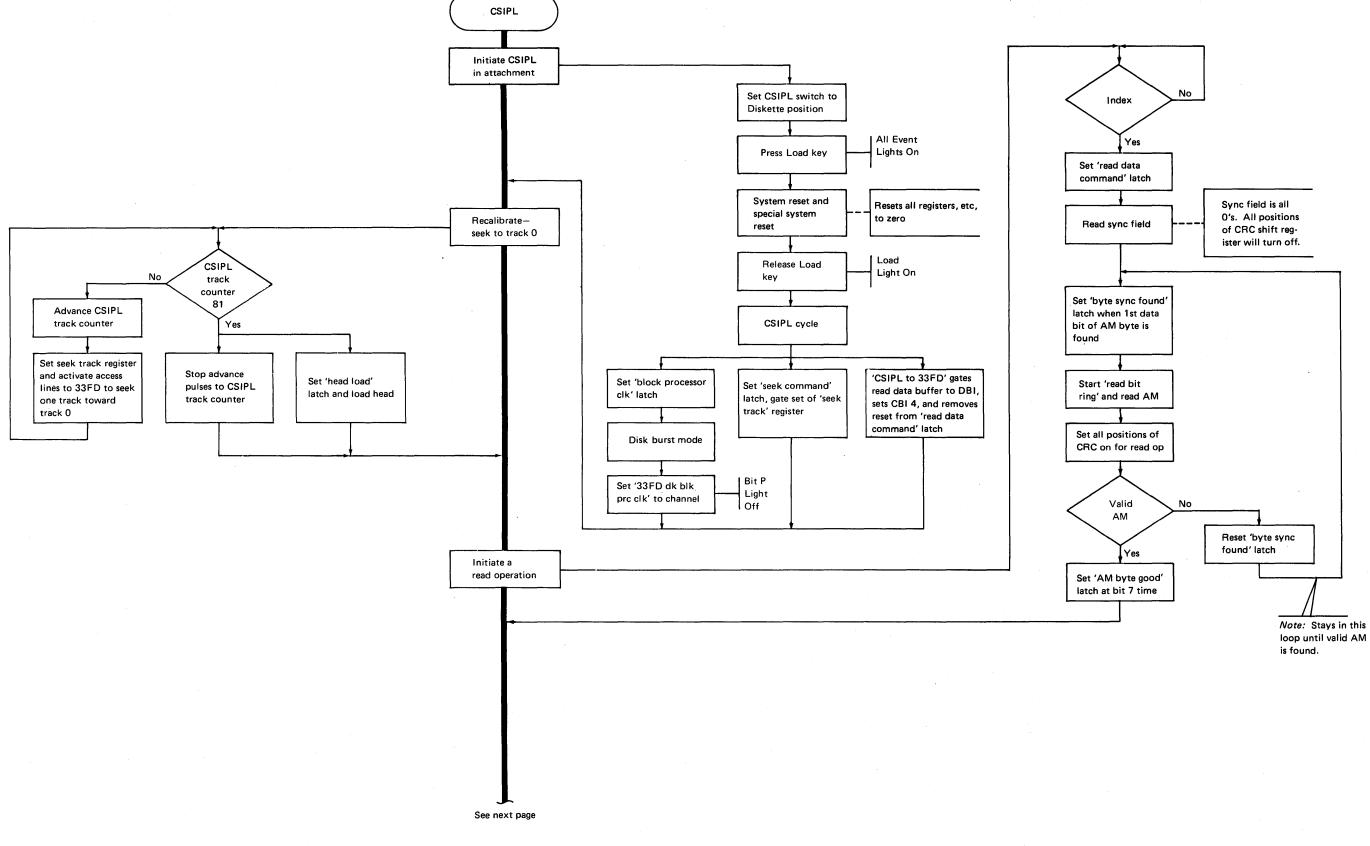
Press the Load switch repeatedly.

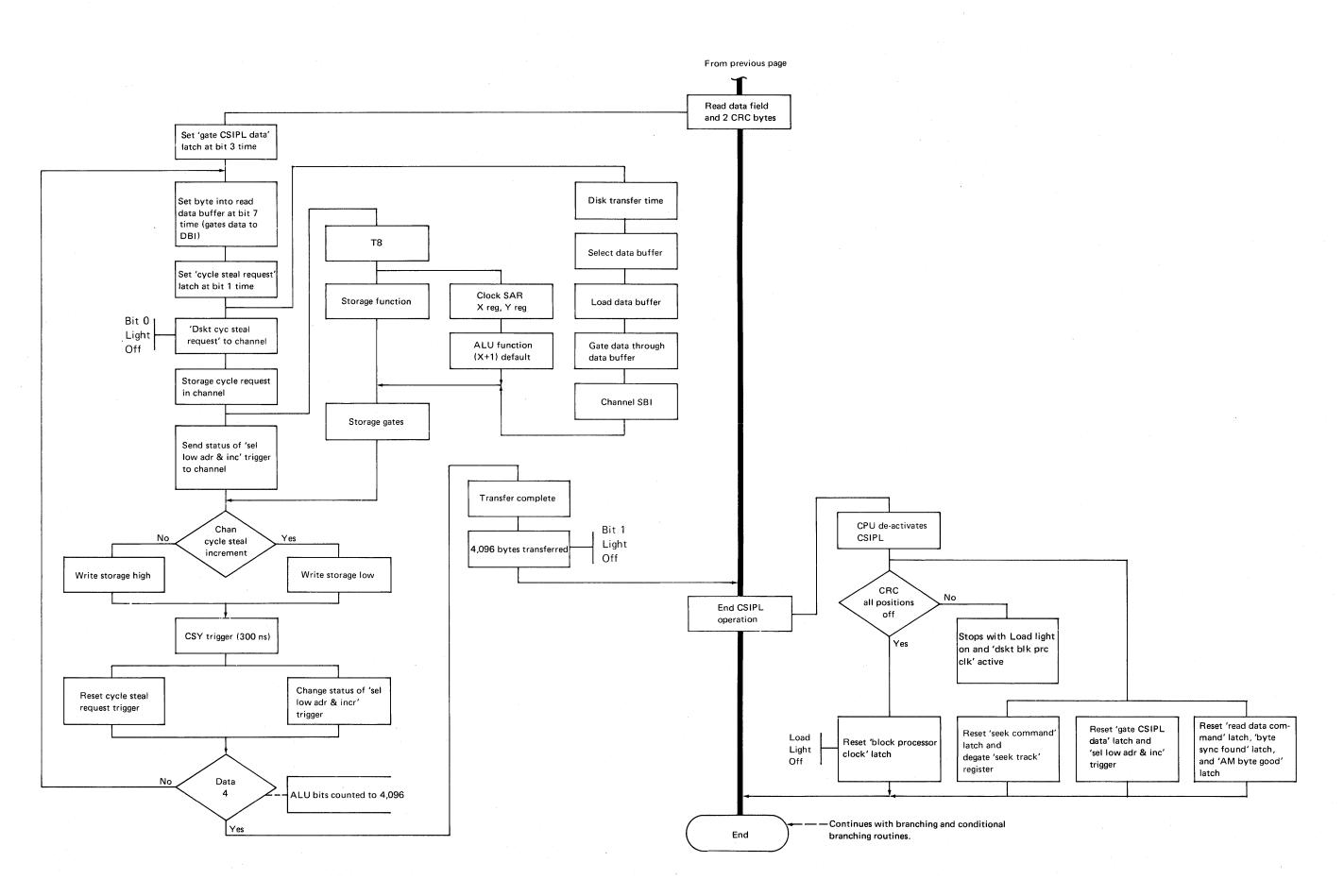
		0	20	40	60	80	100	120	140	160	180	200
Line Name	FSL Page	9					j	1	I	l	1	. 1
+33FD Index SS	DX010	L										
- CSIPL Cycle	PC022										<u> </u>	
-Block Proc Clock	PC508											
+All CRC Generate Pos Off ¹ Track 0 +All CRC Generate Pos Off ¹	DL420	N			2К	Words			M_	/	N	
Track 4*	DL420	5	12 1	512	512	512 5	12 7 5	12 5	12			
-Byte Sync Found ¹	DL220	1_										
-Dskt Cyc Steal	DL110	M	mm	WWW	WWW	WW	WWW	WWW	W			
-Dskt Sel (Low) Addr and Inc	r DL110	Ŵ	WWW	WWW	WWW	WW	MM	MMM	W			
-Storage Function	PC142	Ŵ	WWW		MW	WW	$\wedge \wedge \rangle$	MWW	W			
+CS Write Pulse Low	-⁄PC012	_M	WWW	WWW	MIM	MM		WW	ML			
+CS Write Pulse High	PC012	_N	WW	WWW	WWW	• • • • •	MM nis will		W			
+Data 4 (ALU) ¹	PC260						ita tran	•	-)			
-Transfer Complete	PC022								γ			
-Load Indicator	PC022	<u></u>	<u></u>	- <u></u>			<u></u>					
+Dskt Standard Read Data	DM010	_M	#####	WWW			WWW	₩₩₩₩	₩			L
+33FD Raw Read Data	DX010	W	WWW	MMM	WWW	WWW	WWW	www	MMM	MMM	\sim	W
+2F Osc Data Window	DM020	₩	WW	WWW	\mathbb{W}	WW	MMM	MM	\mathbb{W}	MMM	WW	W

Storage Cycle for Diskette

Jumper AA1-H2S07 to ground (+ carry in) (PC260), which causes all data to be loaded into control storage at hexadecimal location 0000.

*Manually crank head to track 4.


¹ These lines cannot be probed.


Jumper AA2-L2J12 to ground (DL510).

Set the CSIPL switch to the Diskette position.

Sync scope Ext/DC (-) AA1-F2J05 - storage function 100 ns/div, 2V/div.

Diskette Timing (Level 2 Attachment)

The following charts show the sequence of events on a diskette control storage initial program load operation.

Set the CSIPL switch to the Diskette position.

Set the Store Sel switch to the Ctl position and the Add Comp switch to the Stop position.

Set the four Address/Data switches to zero.

Sync score Ext/DC (-) AA2-L2G07 10 ms/div (72MD) or 20 ms/div (33FD/53FD) (FL110)-Dskt Cyc Steal Req.

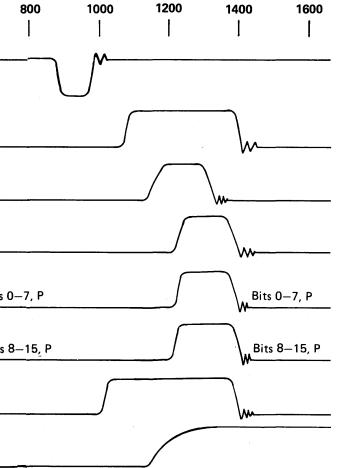
Press the Load switch repeatedly.

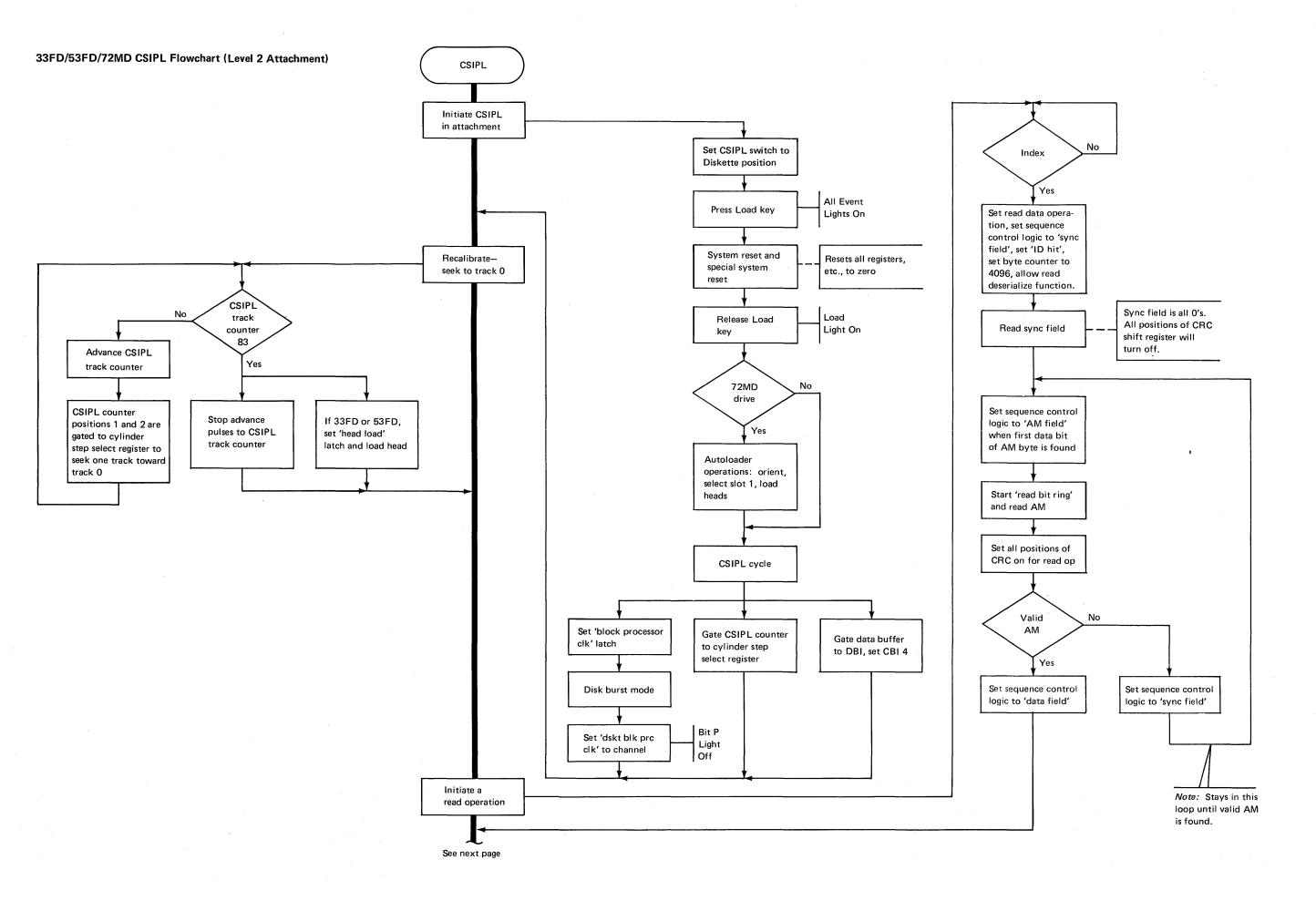
Storage Cycle for Diskette

Jumper AA1-H2S07 to ground (+ carry in) (PC260), which causes all data to be loaded into control storage at hexadecimal location 0000.

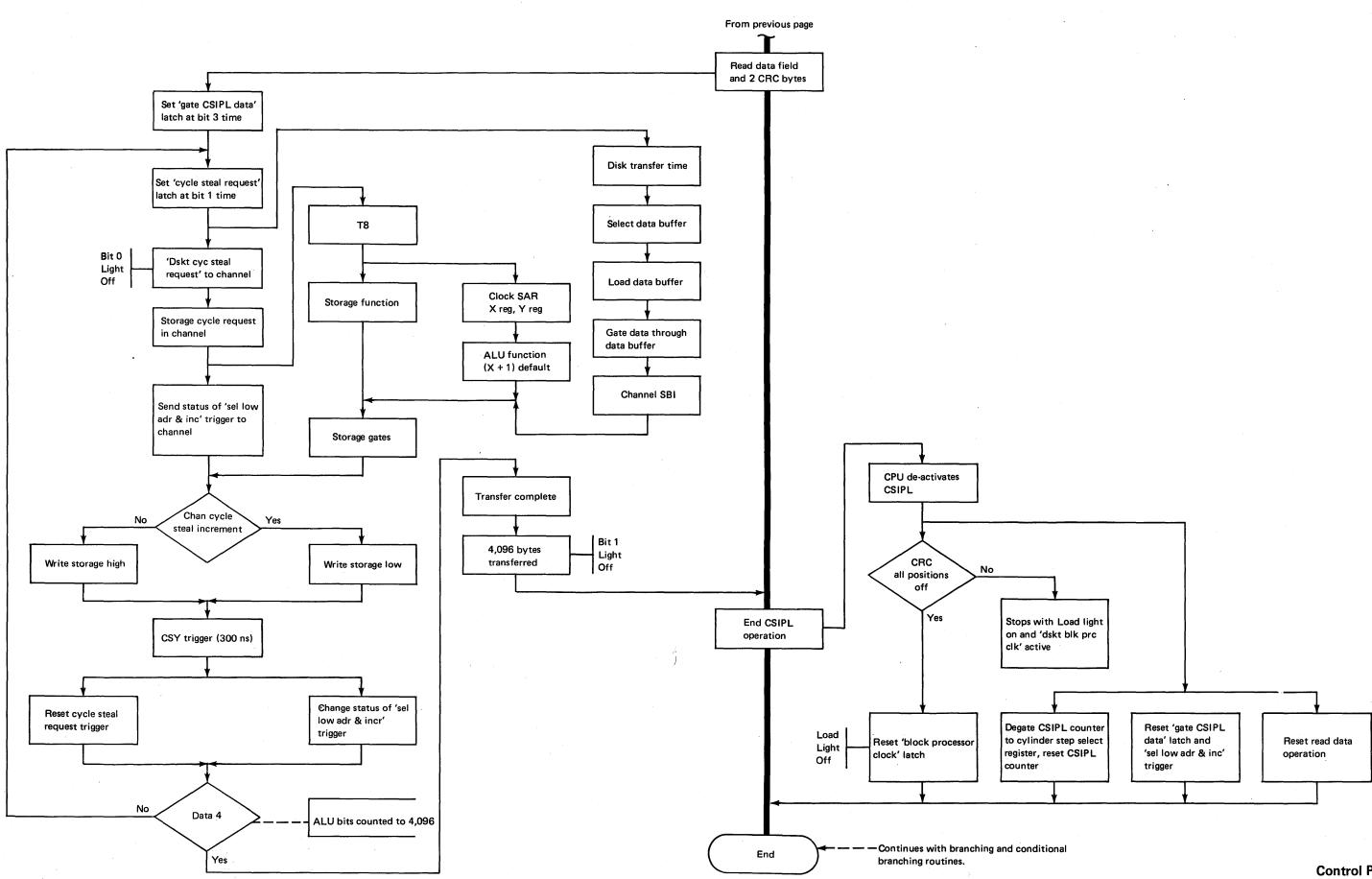
Set the CSIPL switch to the Diskette position.

		0 0	10 20	20 40	30 60	40 80	50 100	60 120	70 140	80 160	90 180	100 200	72MD 33FD/53FD
Line Name	FSL Page	,	1		I		Ι		1	1		1	
+33FD Index SS	FL560	Ĺ								_			
- CSIPL Cycle	PC022											****	
-Block Proc Clock	PC508		·										
-Dskt Cyc Steal Req	FL110	Y	****	WW	WWW	WW	WWW	www	W				4.
-Dskt Sel (Low) Addr and Inc	r FL110	γ	WWW	WWW	WWW	WW		WW	M				
-Storage Function	PC142	Ŋ	WWW	MW	WW	WW	ŴŴ	YWW	W				
+CS Write Pulse Low	PC012		WWW	MW	WWW	$\mathcal{M}\mathcal{M}$		www	ML				
+CS Write Pulse High	PC012		MMM	// ///			•	• •	M				
+Data 4 (ALU) ¹	PC260						his will ata trar	•	-/_				
-Transfer Complete	PC022								-γ				
-Load Indicator	PC022							· · · · · ·					


	0	200	400	600
Line Name	FSL Page		1	
-Storage Function	PC142			
+CSY Trigger to Chann	nel PC030	∫		h-
+Write Trigger ¹	PC012			\ <u></u>
+150-ns Trigger ¹	PC012			~~~
+CS Write Pulse High	PC012	<u> </u>		W Bits
+CS Write Pulse Low	PC012			M Bits
+CSX 1	PC020			h
-Dskt Cyc Steal Reg	FL110			


¹These lines cannot be probed.

Set the Add Comp switch to the Run position.


Sync scope Ext/DC (-) AA1-F2J05 - storage function 200 ns/div, 2V/div.

Press the Load switch.

2-22

Error Indications

If you press the Load switch and the correct display does not appear in the specified time (less than 90 seconds) and the display lights do not reset to off, you should suspect a machine failure.

Check the setting of the CE panel switches; then, check that the correct diskette is inserted in the machine correctly.

There are two types of machine errors: wrap test errors and processor check errors.

Wrap test errors: If the control storage initial program load diagnostic wrap test finds an error in a device adapter, the system console usually can be used to display the error as shown.

If this display appears, the same information is in the main program level work registers (1-6) and in control storage at hexadecimal locations 07A0-07BF.

If the display option is not taken, the wrap test errors remain in control storage at hexadecimal locations 07A0-07BF.

1 WRAP ERROR DISPLAY

2 AABBCCDD AABBCCDD 4ABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD 3 AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD 4 PRESS 'ENTER' TO CONTINUE SYS-0019 ERROR

Note: Initial program load uses only the top four lines on the console display.

Header decode for wrap errors is as follows:

AA	Device Identification
BB	Device Address
СС	Unit Address
DD	Wrap Module Number (for
	diskette and line printer, DD
	equals the TU that failed)

Wrap Error AABBCCDD Device

020000XX	Main Storage Brosseer
020000	Main Storage Processor
A0A000XX	62EH Disk Drive A
A0B000XX	62EH Disk Drive B
A1A000XX	62PC Disk Drive A
A1A001XX	62PC Disk Drive B
CAC000XX	Work Station Attachment
COCOXXXX	Work Station
D0D000XX	Diskettes (Level 1)
D1D000XX	Diskettes (Level 2)
E2E000XX	3262 Line Printer
EOEOOOXX	5211 Line Printer
80XX01XX	Data Communications
525000XX	1255 Magnetic Character Reader

Processor Check Errors: The control storage initial program load diagnostic tests find an error and force a processor check (processor check halt instruction). The low-order byte of work register 3 contains the number of the failing routine when the failure occurs in routine 09 or above. Check the display lights (byte 0 on the CE panel) to determine when the failure occurred. See Section 99 of the 5340 System Unit Maintenance Manual to determine which specific function of the machine failed.

A control processor check during normal operation (running under control of SSP) will do a log operation of that error under the following conditions and sequence:

- 1. A control processor check occurs during normal operation (interrupt level 0 instruction stop condition).
- 2. The system operator does an IPL with no processor check (problem is intermittent).
- 3. Error information (from normal operation) is stored in control storage while executing the CSIPL (first load-2K word control processor diagnostic routines 1 through 19).
- 4. After the system operator has completed the IPL sign-on message task, the error information is logged from control storage to one complete sector on the disk.
- 5. IPL is completed with the log information on the disk as shown in the following error history table.

2-24

A main storage processor check causes an interrupt level 5 to the control processor and the error log operation is then executed by the control processor. The following information is contained in the error history table:

ERROR HISTORY TABLE FOR CONTROL PROCESSOR

		BYT	BYT												
PCR	ΙL	0	1	WRO	WR1	WR2	WR3	WR4	WR5	WR6	WR7	MAR	MAB	DATE	TIME
• • •							HEX .							YYMMDD	HHMMSS
C 2	07	24	00	0000	24C2	0A02	8000	0000	674D	9200	2020	0000	21B0	770518	150200
C 2	07	04	00	0000	04C2	0A02	8000	0000	674D	9200	2020	0000	21B0	770518	145500
92	07	08	00	A2F1	0892	1140	0200	0000	0000	0000	0006	A2F2	2144	770518	145200
C2	00	02	00	1000	02C2	1CAC	3800	0000	0000	A200	0008	159B	1597	770518	144800
01	07	80	00	00E0	8001	00F7	0080	0000	0000	9200	8000	0000	2144	770518	144600
Α2	07	02	00	23FF	02A2	033D	4078	1040	1043	1001	0040	23B0	231C	770518	143800
91	07	BO	00	0000	B091	EEA2	2000	0000	0041	A228	2027	0152	0146	770518	111500
92	07	08	00	88C0	0892	0000	0080	0000	0000	9228	0008	88C1	21AA	770518	101500
C2	07	38	00	011C	38C2	BEA3	BEA3	BEA3	BEA3	0000	227E	227E	21A9	770518	083400
Α2	07	20	00	0840	20A2	5AFA	A2F1	0000	0000	0000	2021	21D0	21AE	770518	082500
Α2	07	20	00	0E00	20A2	0141	BEA3	0000	0000	0000	0000	21A8	21B0	770518	081500
22	07	08	00	0177	0822	0000	0000	21B4	B180	21B5	C3F2	F3B5	21B4	770518	080300
***	***>	****	****	****	*****	*****	* END	OF T/	ABLE >	*****	*****	*****	*****	******	*****

PCR Processor Condition Register IL Interrupt Level Byte 0 Control Processor Check Byte Information Byte 1 Channel Check Byte Information WR0. WR1 WR2 WR3 Contents of the Work Registers Specified by the Interrupt Level Value WR4 WR5 WR6 WR7

MAR Microaddress Register contents of present Interrupt Level MAB Microaddress Backup Register contents of present Interrupt Level

Note: The 16 most current errors are stored.

ERROR HISTORY TABLE FOR MAIN STORAGE PROCESSOR PROG STATUS FAIL. ATRS IAR ARR XR1 XR2 OP1 OP2 IR 01 02 OP Q MR SR 0 2 3 ADDR. DATE TIME HEX HEX YYMMDD HHMMSS C801 0003 C818 D270 D24C CB56 01 0D 08 00 01 06 01 04 8A 03 000000 770519 150550 C801 0003 0F11 D678 0639 0F10 01 00 01 FF 01 06 01 04 A8 00 000000 770519 150518

IAR Instruction Address Register ARR Address Recall Register XR1 Index Register 1 XR2 Index Register 2 OP1 Operand 1 OP2 Operand 2 ATRS/IR Address Translation Register used by the Instruction Address Register ATRS/01 Address Translation Register used by Operand 1 ATRS/02 Address Translation Register used by Operand 2 **OP** Operation Code Q Q-byte Register Contents PROG/MR Program Mode Register PROG/SR Program Status Register STATUS/0 Main Storage Processor Register Status Byte 0 STATUS/2 Main Storage Processor Register Status Byte 2 STATUS/3 Main Storage Processor Register Status Byte 3

Note: The 16 most current errors are stored.

This page intentionally left blank.

2-26

See Section	tch Options 99 of the 5340 System Unit	EEOO	Loads and executes the main storage processor MAP diagnostic integration programs (see paragraph 99-015).	Option for FFX Device Addres (Hexadecimal)	s
CSIPL optic	e Manual for references given below. ons that can be changed by use of s/Data switches are:	FF00	Bypasses all wrap tests and skips control processor tests that are affected by the system configuration. Used to do a special	00	By tes
Address/D Switch			load from a diskette that has not been configured. Use this setting if a CE	02	Ma
Settings F100	Function Performed Bypasses wrap tests and executes work		diskette from another system with a different storage or system configuration	52	12
	station MDI MAPs (see paragraph 99-062).		is used. Also use this setting if additional storage is being added to the system and the CE diskette has not yet been given	80 A0	Co 62
F101	Bypasses wrap tests and executes work station TU select (see paragraph 99-064).		the correct configuration.	A1	62
F180	Runs work station diagnostics and prints results (step mode) (see paragraph 99-062).	0000	Normal position-runs all wrap tests.	во	62
F181	Bypasses wrap tests, executes work station TU select, and prints results (see paragraph 99-064).			C0 CA	W
F800	Loads the diagnostic supervisor from disk (use this option to run MDI tests for the diskette).			D0	Di
FA01	Stops after the first load and permits changing of the Address/Data switches to FB01 or FC01.			EO	Pri
FA02	Stops after the second load and permits changing of the Address/Data switches to FB02 or FC02.				
FB01	Loops on CSIPL number 1 and stops on errors.				
FB02	Loops on CSIPL number 2 and stops on errors.				
FC01	Loops on CSIPL number 1 and bypasses errors.			,	
FC02	Loops on CSIPL numbers 1 and 2 and bypasses errors.				
FDXX	Loops on CSIPL routine xx (routines 9 through 64 only) (see paragraph 99-020).				
FEXX	Loops on CSIPL routine xx and bypasses errors (except errors in routines that test control storage or main storage) (see paragraph 99-020 for a list of valid routine xx numbers).				
FFXX	Bypasses selected wrap tests indicated for the device with an identification of xx (see paragraph 99-060 for a complete list as shown on this page).				

Functions

Bypasses configuration tests and wrap tests

Main storage processor

1255 (MICR)

Communications

62EH disk A wrap test

62PC disk A or B wrap test

62EH disk B wrap test

Work station wrap test

Work station controller wrap test

.

Diskette wrap test

Printer wrap test

Instructions

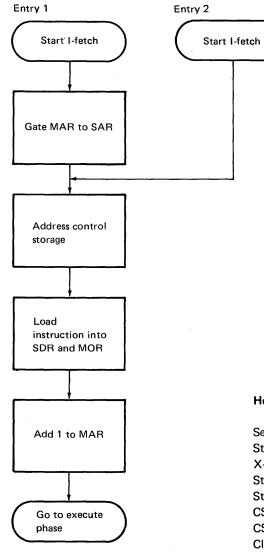
The System/34 control storage program performs the following functions:

- · Reads, decodes, and operates on data and system instructions in main storage that are not executed by the main storage processor. The supervisor call (SVC) instruction executed by the main storage processor sets interrupt level 5 in the control processor.
- Performs I/O operations for the system attachments.
- · Performs console operations.
- Performs diagnostic operations.
- · Performs task management functions.

The control storage program performs functions in the system operation. Each function has many instruction steps and may use several routines or part of a routine to complete its task. These instructions are executed in a specific sequence. To change the sequence, a branch-and-link instruction can be used to permit branching to another routine. A branch-and-link instruction stores a link address, which is the address of the next sequential instruction to be executed in the branched-from routine. The program can then return to the instruction after the branch-and-link instruction. Jump instructions and branch instructions are also used to change the instruction sequence. These instructions are described later in this section.

Each instruction is a 16-bit word that represents a machine instruction. This instruction has specific fields specified for controlling data flow of the system. A zone digit is the hexadecimal value represented in the 4 high-order bits (bits 0-3) of a byte. A numeric digit is the hexadecimal value represented in the 4 low-order bits (bits 4-7) of a byte. System/34 uses 20 basic instructions. Bits 0-3 of the instruction identify the type of instruction. The 20 instructions are described under Instruction Execution later in this section.

Instruction Times


Instructions are executed in two times: an instruction fetch time (I-time) and an execution time (E-time). During I-time, the control processor:

- · Loads a control storage address from the microaddress register (MAR) into the storage address register (SAR).
- Addresses the control storage address in SAR.
- · Gates the instruction from this address into the storage data register (SDR) and micro-operation register (MOR).
- Adds 1 to the microaddress register (MAR).

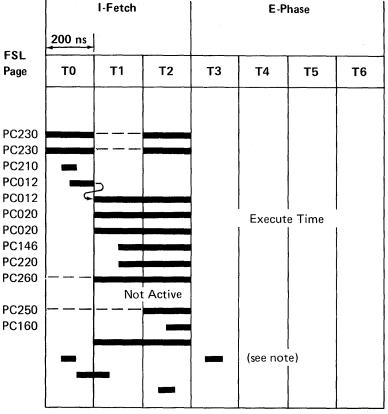
For specific events that occur during the execution time, see the specific instruction description later in this section.

Sequence and Timing

A printout of the instructions may be obtained by using the diagnostic utilities program (see paragraph 99-055 of the 5340 System Unit Maintenance Manual). Module name identification may be indexed by using Section 4 of the Control Storage Logic Manual. Shown below is a sample printout.

Hex XXXX

Select LSR (MAR)


Stg Gate High/Low from LSR	I
X-Reg from Stg Gate High/Low	F
Stg Function	F
Storage Cycle ¹	F
CSX	F
CSY	F
Clock MOR	ſ
Clock SDR	F
Set ALU Mode (X + carry)	F
Carry In	
ALU Gate High/Low from ALU High/Low	F
Write LSR High/Low (MAR)	F
Clock SAR Check	
Clock SDR Check	
Clock Stg Gate Check	
Clock ALU Gate Check	

¹This line cannot be probed.

Note: SDR check after T2 actually is gated during E-cycle time T3.

Instruction Loop

00	50FF	тм	
01	50FF	ТМ *	
02	0000	В	

Scope Setup

prizontal	= 0.1μ s/div uncalibrated to display one 'phase A'
	cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Routine Printout

Module Name

Control S	Storage Routine Name
IC1 HCSTG -	MACROPROCESSOR STG ERROR RECOVERY
R LOC OBJ	STMT SOURCE STATEMENT
	6823 ************************************
1F28 A765 1F29 AF08 1F2A 4A97 1F2B 4297 1F2C 7280 1F2D EA71 1F2E C763 1F2F 2638 1F30 2F00	6827 HCIARSTGLIWR7(L),HP1AR@6828LIWR7(H),HCXLT16829RMPRO(WR7),WR2(H),-16830RMPRO(WR7),WR2(L),-16831DECWR26832STD1HCSTG@,WR26833CIWR7(L),HPIAR@-26834JZHCSTGCOR6835RETRN,
	<pre>6837 ************************************</pre>
1F31 4A97 1F32 4297 1F33 72D3 1F34 672F 1F35 4AD7 1F36 42D7 1F37 0FD2	6848HCRSTIDXRMPRO(WR7),WR2(H),-1READ INDEX6849RMPRO(WR7),WR2(L),-1REGISTER6850ARWR2,WR3(L)ADD DISPLACEMENT TO INDEX REG VALU6851ZARWR7(L),WR7(H)MOVE @ OF DESTINATION REGISTER6852WMPRO(WR7),WR2(H),-1RESTORE DESTROYED6853WMPRO(WR7),WR2(L),-1REGISTER6854BHC3CONTREGISTER
	Source Statement: Name Field—Column 1, length 8 Operation Field—Column 10, length 5

2

.

.

: 1). 2

Mnemonic Listing

Instruction	Mnemonic	Operation Code	Function or Instruction Definition
Branch	В	0	
Branch and link	BAL	1	
Jump on condition		2	Bits 4-7 specify
(includes a group			the jump condition
of instruction sets)			
Jump on carry	JCY		0000
Jump on high	JH		0001
Jump on low	JL		0010
Jump on equal	JE		0011
Jump on positive	JP		0100
Jump on all ones	JO		0100
Jump on negative	JN		0101
Jump on mixed	JM		0101
Jump on zero	JZ		0110
Jump on flag	JFLG		0111
Jump on service	JSR	1 . · ·	1000
request			
Jump on not high	JNH		1001
Jump on not low	JNL	l.	1010
Jump on not equal	JNE		1011
Jump on not	JNP		1100
positive			
Jump on not	JNN		1 1 0 1
negative			·
Jump on not zero	JNZ		1110
Return	RETRN	<u> </u>	1111
Jump on input/output	JIO	3	
condition			
Input/output storage		4	Bit 8 = 0
Write to control	WTCH/L	· 4	
storage high/low	WICH/L		
from input/output			
Read from control	RDCH/L		
storage high/low	NDCH/L		
to input/output			
Write to main storage	WTM		
from input/output			
Read from main storage	RDM		
to input/output	110111	+	
• • • • • • • • • • • • • • • • • • • •			
Storage		4	Bit 8 = 1
Load from	LC	ł	
control storage			
Store to	STC	1	
control storage			
	· · · · · · · · · · · · · · · · · · ·		-
		¥	
and the second			

Instruction	Mnemonic
Storage (continued)	
Load from	LM
main storage	
Store to	STM
main storage	
Register control	
Load main	WMPR
storage processor	
register	
Sense main	RMPR
storage processor	
register	
Test mask	ТМ
Logical/arithmetic 1	
Zero and add	ZAR
register	
Exclusive OR	XR
OR	OR
AND register	NR
AND complement	NCR
OR complement	OCR
Decrement	DEC
register by 1	-
Add registers	ACYR
with carry	
Subtract	SR
register	
Add register	AR
Shift left	SLL
logical	
Subtract	SCYR
with borrow	
Increment	INC
register by 1	
Logical/arithmetic 2	
Zero and add	ZAR
register	
Exclusive OR	XR
OR	OR
AND register	NR
AND complement	NCR
OR complement	OCR

Code	Instruction Definition
Ŧ	
4	Bit 8 = 1
	Bits 9-12 = 1010
	Bits 9-12 = 0010
Ļ	
5	
6	Bits 8-11 specify
I	the function
	0010
	0001
	0011
	0110
	0101
	0111
	1000
	1001
	1100
	1011
	<u>1011</u> 1011
	1110
	1111
<u>+</u>	
7	Bits 8-11 specify
	the function
	0010
	0001
	0011
	0110
	0101
	0111

Function or

Instruction

Operation

Instruction	Mnemonic	Operation Code	Function or Instruction Definition	
Logical/arithmetic 2 (continued)				
Decrement register by 1	DEC	7	1000	
Add registers with carry	ACYR		1001	
Subtract register	SR		1100	2 bytes from 2 bytes
	SR		1010	1 high or low byte from 2 bytes Bit 12 = 0: Low Bit 12 = 1: High
Add register	AR		1011	2 bytes to 2 bytes Bit 12 = 0: Low Bit 12 = 1: High
	AR		1101	1 high or low byte to 2 bytes
Shift left	SLLD		1011	
logical double				
Subtract with borrow	SCYR		1110	
Increment	INC		1111	
register by 1		<u>+</u>	·	
Set bits off	SBF	8		
Set bits on	SBN	9		
Load immediate	LI	А		
Input/output immediate		B	Bits 8-11 speci the function	fy
Input/output load	IOL		0000	
Input/output control load	IOCL		1000	-
Input/output sense	IOS		0100	
Input/output control sense	IOCS		1100	
Control processor load function	MPLF		1010	
Control processor	MPS		0110	
sense		<u> </u>		
Compare immediate	CI	С		
Subtract immediate	SI	D		
Add immediate	AI	D	Assembler mn only	emonic

Instruction	Mnemonic	Operation Code	Function or Instruction Definition	
Storage direct	•	E		
Load register	L		Bit 4 = 0 Bit 8 = 0	
Store register	ST	<u>↓</u>	Bit 4 = 1 Bit 8 = 0	
Move local storage register	MVR	E .	Bit 8 = 1	
Hexadecimal branch Branch numeric	HBN	F	Bit 15 = 1	
Branch zone	HBZ	<u>+</u>	Bit 15 = 0	
Hexadecimal move Shift right logical Shift right logical double	SRL SRLD	F	Bits 9, 10 = 00 Bits 9, 10 = 01	
Move zone to zone Move zone to numeric	MZZ MZN	<u> </u>	Bits 9, 10 = 10 Bits 9, 10 = 11	
	-			
	- N			
.:				
	•			
· · · · ·				

.

INSTRUCTION EXECUTION

Signals, Gating Lines, and Logical Functions for Timing Charts

Local Storage Registers (High and Low)

- Selected by the '+LSR address bit 0-5' lines
- See FSL page PC230
- Active and can be probed at the T-time(s) when an LSR is selected for reading or writing
- Loaded by the '-write LSR high' or '-write LSR low' lines

Storage Gates (High and Low)

- Selected by the '+stg gt lo/hi bit 0-1' lines
- See FSL page PC230
- Active and can be probed at the T-time(s) when the storage gates are ready and receiving input from the system
- Decoded as follows:

Storage Gate High		+Storage Gate Hi Bit 0 Fixed A1H2G03 +Storage Gate Hi Select Bit 1 A1H2G08
Bit 0	Bit 1	Register Gated Through
0	0	LSR High 0-7,P (G1)
0	1	SDR High 0-7,P (G2)
1	0	SBI Bits 8-15,P (G3) SBO High 0-7,P
1] 1	Bits 0-3 X-Reg Hi (G4)
		4-7 SDR
		P Storage Gate Hi Generate P Bit
Storage Gate Low		+Storage Gate Lo Bit 0 A1H2D06 +Storage Gate Lo Bit 1 A1H2D11
Bit 0	Bit 1	Bogister Coted Through
BILU		Register Gated Through
0	0	LSR Low 8-15,P (G1)
		LSR Low 8-15,P (G1) SDB Low 8-15 P (G2)
0		LSR Low 8-15,P (G1)

Micro-Operation Register and Storage Data Registers (High and Low)

- Clocked by the '+CSY trg new' line
- See FSL page PC146
- X-Registers (High and Low)
- Clocked by the '+clock SAR and X reg' line
- See FSL page PC210


Y-Registers (High and Low)

- Clocked by the '+T3 and phase A' line
- See FSL page PC210

- Status 1 Gate
- Gated out by selecting the '+status function 0-1' and '+status sel 0-2' lines
- See FSL page PC314
- Decoded as follows:

Statu	s Gate Higl	1	
Card 0	Function 01	Select 012	Lines Gated Through
0	00	000	Display Storage Gate High
0	00	001	Spare
0	00	010	Display Control Processor Check
0	00	011	Display Processor Condition Register (PCR)
0	00	100	Default Display Events (if not single cycle)
0	00	101	Sense Console Switches 1 and 2
0	00	110	Sense Control Processor Check
0	00	111	Sense Processor Condition Register (PCR)
0	01	XXX	I/O Control
0	10	XXX	Clock Processor Condition Register (1-3)
0	11	XXX	Clock Processor Condition Register (1-7)
1	1X	XXX	Display Storage Gate High
1	0X	X01	Display Console Switches 1 and 2
			- + Status Sel 2 A1-J2B05 - + Status Sel 1 A1-J2D07

L+ Status Sel 0	A1-J2D05
+ Status Function 1	A1-J2D04
+ Status Function 0	Å1-J2B03

Status 2 Gate-

- Gated out by selecting the '+status function 0-1' and '+status sel 0-2' lines
- See FSL pages PC402 and PC404
- Decoded as follows:

Card 0	Function 01	Select 012	Lines Gated Through	
1	00	X00	Sense Console Status	
1	00	X01	Sense/Display Console Switches	3 and 4
1	00	X10	Sense Clock Low	
1	00	011	Sense Clock High	
1	00	111	Sense Interrupt Level Backup B	yte
1	01	XXX	I/O Load	
1	1X	XXX	Gate Switches 3 and 4 (bits 4-7	PC422
			+ Status Sel 2 + Status Sel 1 + Status Sel 0 + Status Function 1 + Status Function 0	A1-K2M06 A1-K2M05 A1-K2P06 A1-K2P04 A1-K2G12

Arithmetic and Logic Unit

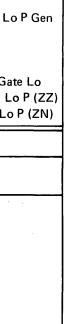
- Gated out by selecting the '+ALU func bit 0-3' lines
- See FSL page PC260
- Decoded as follows:

Select ALU Mode			
Bits			
0-3	Function Gated Through		
0000	Not Used–Force ALU Hi/Lo, Not Carry		
0001	X OE Y		
0010	Y		
0011	X OR Y		
0100	Not Used		
0101	X and Not Y		
0110	X and Y		
0111	X or Not Y		
1000	X-1 +Carry		
1001	X+Y +Carry		
1010	X-Y 16/8		
1011	X+Y 16-X or 8-Y		
1100	X-Y 16 or 8		
1101	X+Y 16/8		
1110	X-Y-1 +Carry		
1111	X+Carry		
++++			
-	- +ALU Func Bit 3 A1H2B09		
	+ALU Func Bit 2 A1H2D09		
	- +ALU Func Bit 1 A1H2D10		
L	+ALU Func Bit 0 A1H2B03		
	+Carry In A1H2S07		

Arithmetic and Logic Unit Gates (High and Low)

- Gated out by selecting the '+ALU gate hi/lo sel 0-2' lines
- See FSL page PC250
- Decoded as follows:

-						
ALU Gate Low						
Bits						
0-2	Gate	Function Gated Through				
000	G0	ALU Lo 8-15, Predict P Lo				
001	G1	SBO Lo 8-15, SBO Lo P1				
010	G2	ALU Hi 7, ALU Lo 8-14, ALU L				
011	G3	ALU Lo 8-14, ALU Lo P Gen				
100	G0	ALU Lo 8-15, Predict P Lo				
101	G1	SBO Lo 8-15, SBO Lo P1				
110	G6	Gate Lo 8-11 from Y Lo 8-11/G				
		12-15 from ALU Lo 8-11/ALU I				
111	G7	Y Reg 8-11, ALU 12-15, ALU L				
ALU	Gate High					
Bits						
0-2	Gate	Function Gated Through				
000	G0	ALU Hi 0-7, Predict P Hi				
001	G1	SBO Hi 0-7, SBO Hi P				
010	G2	ALU Hi 0-6, ALU Hi P Gen				
011	G3	ALU Gate Lo 8-15, P				
100	G3	ALU Gate Lo 8-15, P				
101	G3	ALU Gate Lo 8-15, P				
101						
110	G3	ALU Gate Lo 8-15, P				
	G3 G3	ALU Gate Lo 8-15, P ALU Gate Lo 8-15, P				
110	G3	ALU Gate Lo 8-15, P				
110	G3 +ALU	ALU Gate Lo 8-15, P Gate Hi/Lo Sel 2 A1H2G07				
110	G3 +ALU +ALU	ALU Gate Lo 8-15, P				


Note: The storage gates, the ALU, and the ALU gates have default data paths when no-bit select values are used. During default operations, the gating times are a function of the data present at the circuit input.

Unit

Default Selection

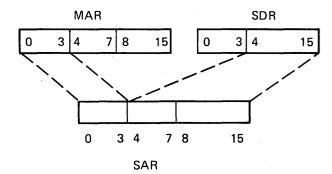
LSR high
LSR low
ALU high
ALU low
X-register plus 1

In the following instruction descriptions, lines in the timing charts that cannot be probed are included so that a better understanding of the data flow and the circuit timings can be maintained. These lines are noted with a superscript number.

Branch (B)

0	0	0	0	-	Branch Address	
0			3	4		15

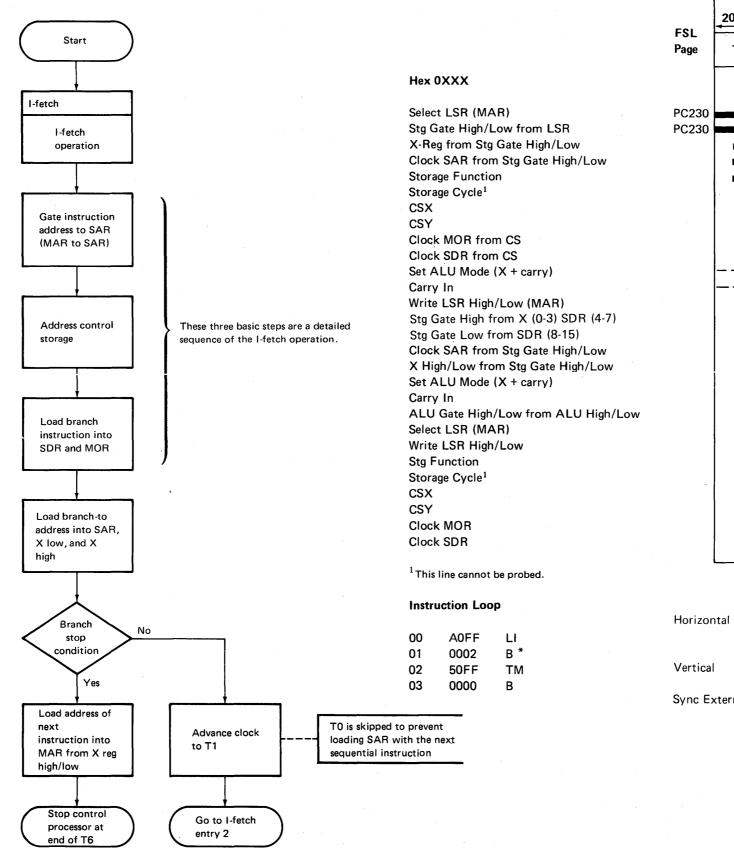
This instruction is used for an unconditional branch operation. It permits branching to any one of the 4,096 word addresses in one control storage segment. There are four 4K-word segments in control storage:

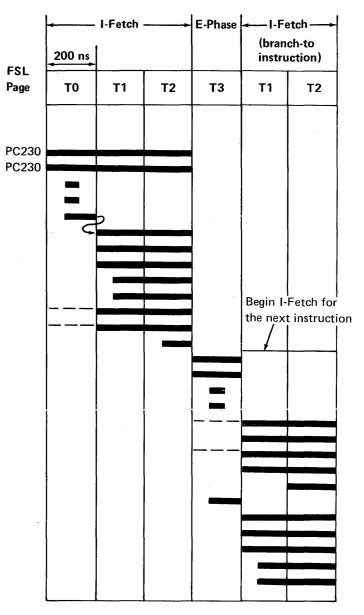

Segment 0-hexadecimal addresses 0000 through 0FFF

Segment 1-hexadecimal addresses 1000 through 1FFF

Segment 2-hexadecimal addresses 2000 through 2FFF

Segment 3-hexadecimal addresses 3000 through 3FFF


Branch Address (Bits 4-15): This is a 12-bit branch address. These 12 bits and X-high bits 0-3 replace the comparable 16 bits in the storage address register (SAR), and the branch address becomes the address of the next sequential instruction. The microaddress register (MAR) is then updated during time T2 of the next cycle.



Condition Code

No change .

Sequence and Timing

= $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

Vertical

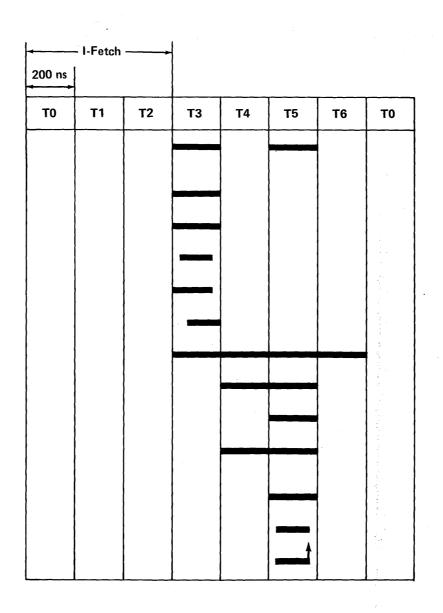
Scope Setup

= 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Branch (Stop Condition) (B)

Clock times T4, T5, and T6 can be taken if the control processor is executing a branch instruction and the 'run' latch is reset (branch stop condition) by one of the following:


- A control storage address compare with the Add Comp switch on the CE panel set to the Stop position
- Instruction step mode selected by setting the Mode Selector switch to any Insn Step position (not process condition)
- Processor check stop condition as a result of a processor check

Setting the Mode Selector switch to the Insn Step/Dply LSR position permits single stepping through a branch instruction. Any attempt to single step through a branch that is located in the last valid address of control storage causes a not valid control address check.

Timing of CP Functions	FSL Page
Select LSR (MAR)	PC230
Select Storage Gate High [from X high (0-3)/ from SDR high (4-7)]	PC230
Select Storage Gate Low (from SDR low)	PC230
Clock Low and X High (SAR, don't care)	PC210
Clock Storage Gate Check	PC230
Select Storage Gate Check	PC230
Control Storage Access	PC130
Storage Cycle	PC012
Clock SDR	PC220
ALU Function (pass)	PC260
Select ALU Gate High/Low (from ALU high/low)	PC250
Write LSR High/Low	PC160
Clock ALU Gate Check	PC160

Timing of Control Processor Functions for

Branch (Stop Condition)

Branch and Link (BAL)

0	0	0	1		Branch Address				
0			3	4		15			

This instruction is used for an unconditional branch-and-link operation. It permits branching to any address inside a 4,096-word address block in a control storage segment. Each segment is 4K words long, and there are four 4K-word segments in control storage of 16K words:

Segment 0-hexadecimal addresses 0000 through 0FFF

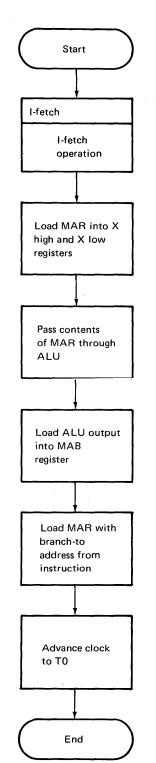
Segment 1-hexadecimal addresses 1000 through 1FFF

Segment 2-hexadecimal addresses 2000 through 2FFF

Segment 3-hexadecimal addresses 3000 through 3FFF

Branch Address (Bits 4-15): This is a 12-bit branch address that replaces the comparable 12 bits in the microaddress register (MAR).

When this instruction is executed, the address in the microaddress register (of the next sequential instruction) is kept in the microaddress backup register (MAB). The address in the microaddress backup register is the link address. The 12-bit branch address in the branch-and-link instruction replaces the address in the microaddress register. The address placed in the microaddress register is the next instruction that is to be executed.

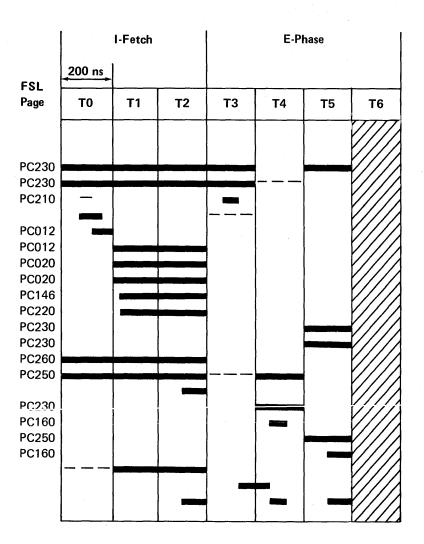

A return instruction is used to return to the next sequential instruction following the branch-and-link instruction. The return instruction causes the address kept in the microaddress backup register to be placed into the microaddress register.

The microaddress register now contains the instruction following the branch-and-link instruction.

Condition Code

No change

Sequence and Timing


Hex 1XXX

Select LSR (MAR) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Clock SAR from Stg Gate High/Low Storage Function Storage Cycle¹ CSX CSY Clock MOR Clock SDR Stg Gate High from X (0-3) SDR (4-7) Stg Gate Low from SDR (8-15) Set ALU Mode (X + carry) ALU Gate High/Low from ALU High/Low Write LSR High/Low (MAR) Select LSR (MAB) Write LSR High/Low (MAB) ALU Gate High/Low from Stg Gate High/Low Write LSR High/Low (MAR) Carry In Clock Stg Gate Check Gated Clock ALU Gate Check Trigger

¹ This line cannot be probed.

Instruction Loop

00	A0FF	LI
01	50FF	ТМ
02	1000	BAL*

Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A'
		cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

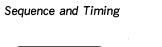
This page intentionally left blank.

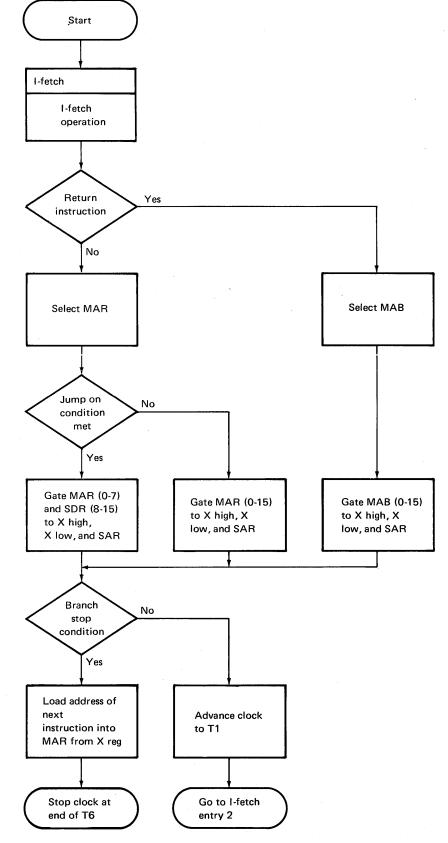
Jump on Condition (JC)

0	0	1	0	Con	Condition		Address	
0			3	4	7	8		15

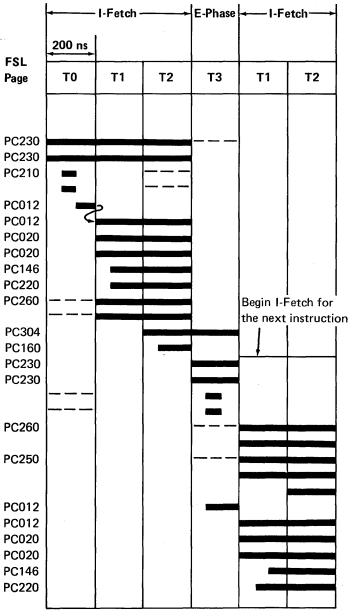
This instruction permits branching inside a page boundary (256-word limit of hex 00 through hex FF) (specified by bits 8-15) if the condition specified by bits 4-7 is met. If the condition is met, the 8-bit page address replaces the comparable bits in the microaddress register (MAR) and the storage address register (SAR) to form the address of the next instruction to be executed.

Condition Tested (Bits 4-7): Indicates the function to be tested as follows:


Bits 4-7	Mnemonic	Test Condition
0000	JCY	Carry
0001	JH	High (condition code bit 5)
0010	JL	Low (condition code bit 6)
0011	JE	Equal (condition code bit 7)
0100	JP	Positive (condition code bit 1)
0100	JO	All ones (condition code bit 1)
0101	JN	Negative (condition code bit 2)
0101	JM	Mixed (condition code bit 2)
0110	JZ	Zero (condition code bit 3)
0111	JFLG	Flag
1000	JSR	Service request
1001	JNH	Not high
1010	JNL	Not low
1011	JNE	Not equal
1100	JNP	Not positive
1101	JNN	Not negative
1110	JNZ	Not zero
1111	RETRN	Return


Page Address (Bits 8-15): Permits branching inside a page boundary (256-word limit of hex 00 through hex FF) in control storage only. The page address replaces the 8 low-order bits in the microaddress register when the tested condition is met.

Note: For the return condition (bits 4-7 equal 1111), the page address is not used. In this case, the microaddress backup register is selected for the address of the next instruction to be executed.


Condition Code

No change

FSL Т0 Page Hex 2XXX Select LSR (MAR) PC230 PC230 Stg Gate High/Low from LSR PC210 X-Reg from Stg Gate High/Low Clock SAR from Stg Gate High/Low Storage Function PC012 Storage Cycle¹ PC012 CSX PC020 CSY PC020 Clock MOR from CS PC146 Clock SDR from CS PC220 Set ALU Mode (X + carry) PC260 Carry In PC304 CPU Branch Condition Met Write LSR High/Low (MAR) PC160 PC230 Stg Gate High from X (0-3) SDR (4-7) Stg Gate Low from SDR (8-15) PC230 Clock SAR from Stg Gate High/Low X High/Low from Stg Gate High/Low Set ALU Mode (X + carry) PC260 Carry In ALU Gate High/Low from ALU High/Low PC250 Select LSR (MAR) Write LSR High/Low PC012 Stg Function Storage Cycle¹ PC012 PC020 CSX CSY PC020 PC146 Clock MOR Clock SDR

¹This line cannot be probed.

Instruction Loop

00	A0FF	LI
01	50F F	ТМ
02	2304*	JE
03	BEA3	Check Halt
04	0000	В

Horizontal	= 0.1 μ s/div uncalibrated to display one 'phase A'
	cycle per division on chan 2.

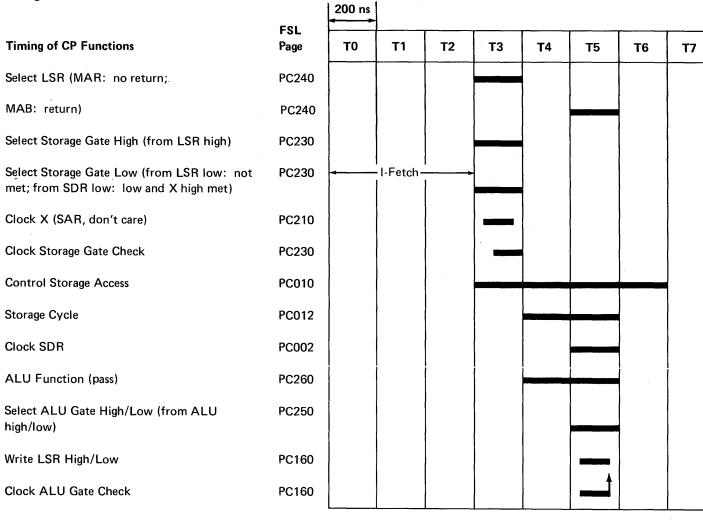
Scope Setup

Vertical = 0.2V/div using X10 probes.

Sync External = - address compare' looking at the instruction referenced with an asterisk (*).

2

Jump on Condition (Stop Condition) (JC)


Clock times T4, T5, and T6 can be taken if the control processor is executing a jump-on condition and the 'run' latch is reset by one of the following:

- A control storage address compare with the Add Comp switch on the CE panel set to the Stop position
- Instruction step mode selected by setting the Mode Selector switch to any Insn Step position (not process condition)
- Processor check stop condition as a result of a processor check

Setting the Mode Selector switch to the Insn Step/Dply LSR position permits single stepping through a jump-on-condition instruction. Any attempt to single step through a jump-on condition that is located in the last valid address of control storage, control storage segment, or 256-byte block (hex 00 through hex FF), causes a not valid control address check.

The function of the condition tested (bits 4-7) is the same as for the jump-on-condition instruction.

Timing

2-40

This page intentionally left blank.

Logical/Arithmetic 1 (XR, ZAR, OR, NCR, NR, OCR, DEC, ACYR, SR, AR, SCYR, INC)

0	1	1	0	H1	Reg	1	Functi	on	H2	Reg 2	2
0			3	4	5	7	8	11	12	13	15

This instruction performs logical and arithmetic type functions that are performed in the arithmetic and logic unit (ALU). The logical/arithmetic 1 instruction is for 1-byte operations only.

H1 (Bit 4): Indicates which byte of the selected local storage register (register 1) is to be used in the current function:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register is operand 1 of the function and is changed at the end of the function.

Function (Bits 8-11): Determines the basic logical or arithmetic function to be performed.

H2 (Bit 12): Indicates which byte of the selected local storage register (register 2) is to be used in the current function:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register is operand 2 of the function. The selected register is not changed by the operation being performed.

Condition Code for Logical Operations

On logical operations, two actions are performed:

- The logical operation (OR, AND, exclusive OR, and so on) is performed.
- Register 1 contents are combined, using an OR operation, with the ones complement of register 2 contents. This is shown as (register 1 or not register 2).

The condition code is set as follows to show the results of *both* operations, except when the result of the logical operation is zeros (bit 3 of the processor condition register):

- Positive (bit 1 of the processor condition register)—Set if the result of the logical operation is not equal to zero, and (register 1 or not register 2) is equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is not equal to all ones.
- Negative (bit 2 of the processor condition register)—Set if the result of the logical operation is not equal to all zeros, and (register 1 or not register 2) is not equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is equal to all ones.
- Zero (bit 3 of the processor condition register)-Set if the result of the logical operation is equal to all zeros. Reset if the result of the logical operation is not equal to all zeros.

Condition Code for Arithmetic Operations

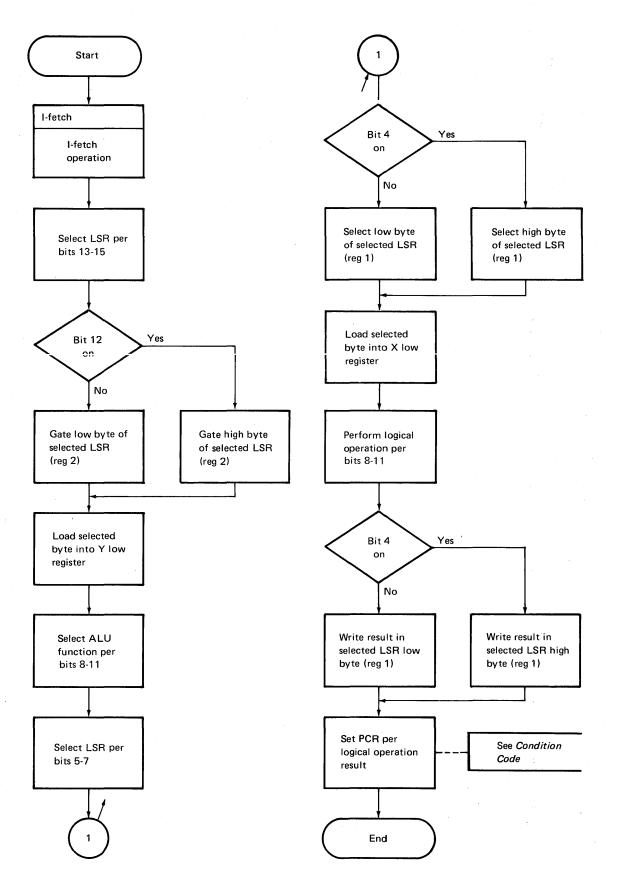
Note: Borrow and carry in the processor condition register have the following meanings:

Borrow	=	No carry
Carry	= '	No borrow

- Positive (bit 1 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has a carry. Reset if the result is zero or there is no carry.
- Negative (bit 2 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has no carry. Reset if the result is zero or there is a carry.
- Zero (bit 3 of the processor condition register)-Set if the result of the arithmetic operation is equal to zero. Reset if the result is not equal to zero.
- Carry (bit 4 of the processor condition register)-Set if the arithmetic operation results in a carry. Reset by the I/O immediate instruction (reset carry-set equal function), by system reset, or if the operation results in no carry.
- High (bit 5 of the processor condition register)-Same as positive (bit 1).
- Low (bit 6 of the processor condition register)-Same as negative (bit 2).
- Equal (bit 7 of the processor condition register)-Reset if the result of the operation is not equal to zero. Set only by the I/O immediate instruction (reset carry-set equal function), or by system reset.

Logical/Arithmetic Functions

Bits 8 9 10 11	Mnemonic	Function	Description	Exar	mple		Bits 9 10 11	Mnemonic	Function	Description
0 0 0 0 0 0 0 1	XR	Not used R1 (XOR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an exclusive OR function and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 <u>0 0 1 1 0 1 0 1</u> 1 0 0 0 1 0 0 1	1 (001	ACYR	R1 + R2 + C → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The contents of the X and Y registers are added together and then ad to the result of the carry trigger from a provious operation. The result is placed in th R1 location.
0010	ZAR	R2+0 → R1	The contents of R2 are placed in the R1 location.	R2 +0 R1	1 0 1 1 1 1 0 0 <u>0 0 0 0 0 0 0 0 0</u> 1 0 1 1 1 1 0 0	1 (010		Not used	
0011	OR	R1 (OR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an OR function and the result is placed in the R1	R1 R2 R1	10111100 00110101 10111101	. 1 () 1 1 ¹	AR	R1+R2→R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The contents of the X and registers are added together in the ALU ar the result is placed in the R1 location.
0100		Not used	location.			1	100	SR	R1 - R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in
0101	NCR.	R1 (AND)	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the	R1 <u>R2</u> R2	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 <u>1 1 0 0 1 0 1 0</u>					the Y register. The Y register contents are subtracted from the X register contents, a the result is placed in the R1 location.
			Y register (R2), performs an AND function on the X and Y registers, and the result is	R1	1000100		101		Not used	
0110	NR	R1 (AND) R2 → R1	placed in the R1 location. The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an AND function on the X and Y registers, and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0	1	1 1 0 ²	SCYR	$R1 - R2 - \overline{C} \rightarrow R1$	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The Y register contents are subtracted from the X register contents. The carry trigger from a previous operation is complemented and then subtracted from the R1 result.
0111	OCR	R1 (OR) R2→ R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register contents (R2), performs an OR function on the X and Y registers, and the result is placed in the R1 location.	R1 R2 R2 R1	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 <u>1 1 0 0 1 0 1 0</u> 1 1 1 1 1 1 1 0	1	111	INC	R1+1→R1	location. The contents of R1 are placed in the X register. The 'carry in' line is activated by the instruction and 1 is added to the conte of the X register by the ALU. The result is placed in the R1 location.
1 0 0 0	DEC	R1-1→ R1	The contents of R1 are placed in the X register. This data is gated in the ALU. The ALU performs an X minus 1 function and the result is placed in the R1 location.	R1 - 1 R1	1 0 1 1 1 1 0 0 <u>0 0 0 0 0 0 0 1</u> 1 0 1 1 1 0 1 1	shi		sition to the le		nift left logical function can be executed. This function can be executed. This function (bit 7) to be replaced with a zero. Mnemonic = \$


.

Example

in and added pre- n the	R1 R2 +C R1	$\begin{array}{c}1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \\ \hline 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \\ \hline 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \\ \hline 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \\ \hline 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \\ \hline \end{array}$
in and Y J and	R1 R2 R1	1 0 1 1 1 1 0 0 <u>0 0 1 1 0 1 0 1</u> 1 1 1 1 0 0 0 1
in are s, and	R1 R2 R1	1 0 1 1 1 1 0 0 <u>0 0 1 1 0 1 0 1</u> 1 0 0 0 0 1 1 1
regis- e Y b- The is om the R1	R1 R2 C_ R1	$ \begin{array}{r} 10111100\\ \underline{00110101}\\100001111\\1\\\underline{0}\\10000111 \end{array} $
d by ontents ult is	R1 + 1 R1	10111100 <u>00000001</u> 10111101
function c = SLL.	causes	the & bits to be
		From a l

From a previous ______ operation

Sequence and Timing

E-Phase 200 ns FSL T0 Т1 T2 Page Т3 Т4 **T**5 Т6 PC230 PC230 PC210 PC230 PC230 PC212 Basic I-Fetch/ PC160 PC056 PC160 PC300 PC300 PC146 PC160

I-Fetch

Scope Setup

- = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex 693A

Select LSR (operand 2)	PC
Stg Gate High from LSR	PC
Stg Gate Low from Stg Gate High	PC
Y Low from Stg Gate Low (Y high, don't care)	PC
Select LSR (operand 1)	PC
Stg Gate High from LSR	PC
Stg Gate Low from Stg Gate High	PC
X Low from Stg Gate Low (X high, don't care)	PC
Set ALU Mode (X or Y) (see Note 1)	PC
ALU Gate High/Low from ALU High/Low	PC
Write LSR High	PC
Clock PCR (bits 1, 2, 3)	PC
Clock PCR (bits 4, 5, 6, 7)	PC
Clock Stg Gate Check	PC
Clock ALU Gate Check	PC

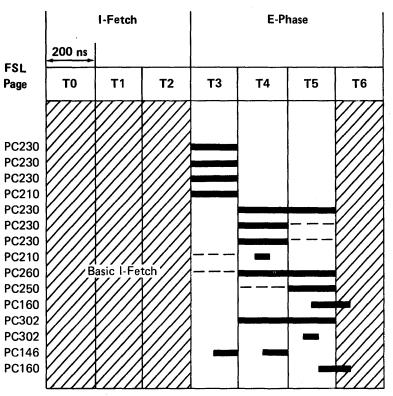
Instruction Loop

00	AOFF	LI
01	693A	LA1 (OR) * (see Note 2)
02	0000	В

Notes:

- 1. ALU mode setting will vary with the setting of the function bits (8-11).
- 2. This instruction uses the high byte of each operand.

Hex 6132


Select LSR (operand 2) Stg Gate High/Low from LSR X Low from Stg Gate Low (Y high, don't care) Select LSR (operand 1) Stg Gate High/Low from LSR Y Low from Stg Gate Low (X high, don't care) Set ALU Mode (X or Y) (see Note 1) ALU Gate Low from ALU Low (ALU gate high, don't care) Write LSR Low Clock PCR (bits 1, 2, 3) Clock PCR (bits 4, 5, 6, 7) Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	AOFF	LI
01	6132	LA1 (OR) * (see Note 2)
02	0000	В

Notes:

- 1. ALU mode setting will vary with the setting of the function bits (8-11).
- 2. This instruction uses the low byte of each operand.

Scope Setup

- = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Logical/Arithmetic 2 (XR, ZAR, OR, NCR, NR, OCR, DEC, ACYR, SR, AR, SCYR, INC)

01	1 1 Reg	1	Function	H2	Reg 2	
0	345	7	8 11	12	13 1	5

This instruction performs logical and arithmetic type functions. The logical/arithmetic 2 instruction always uses both bytes of operand 1 and one or both bytes of operand 2, as determined by the function. Both bytes of operand 2 are used unless the instruction is SR with a function modifier of hexadecimal A, or the instruction is AR with a function modifier of hexadecimal B. In the exception instructions, the selected byte (hi or lo) of operand 2 performs a logical or arithmetic operation on the low-order byte of operand 1.

When the operand 2 high byte is selected, the high byte of data is moved into the low-order data position of the storage gate. Then, Stg Gate Lo is moved to Y Reg Lo and Y Reg Hi is not gated.

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Both bytes of the selected local storage register represent operand 1. The selected local storage register is changed at the end of the function being performed.

Function (Bits 8-11): Determines the basic logical or arithmetic function to be performed.

H2 (Bit 12): Indicates which byte of the selected local storage register (register 2) is to be used in the current function:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected local storage register is operand 2 of the function. The selected local storage register is not changed by the operation being performed.

Condition Code for Logical Operations

On logical operations, two actions are performed:

- The logical operation (OR, AND, exclusive OR, and so on) is performed.
- · Register 1 contents are combined, using an OR operation, with the ones complement of register 2 contents. This is shown as (register 1 or not register 2).

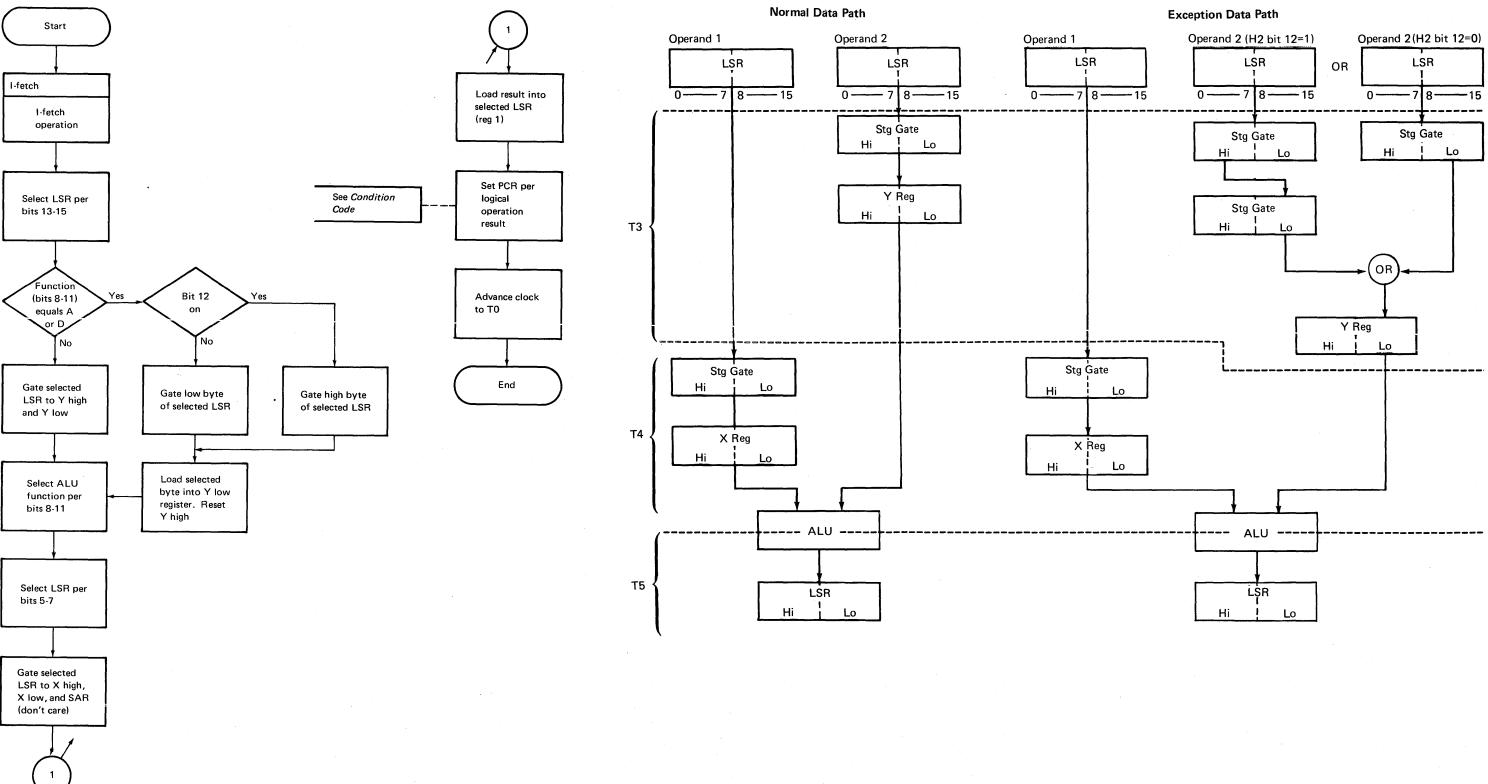
The condition code is set as follows to show the results of both operations, except when the result of the logical operation is zeros (bit 3 of the processor condition register):

- Positive (bit 1 of the processor condition register)-Set if the result of the logical operation is not equal to zero, and (register 1 or not register 2) is equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is not equal to all ones.
- Negative (bit 2 of the processor condition register)-Set if the result of the logical operation is not equal to all zeros, and (register 1 or not register 2) is not equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is equal to all ones.
- · Zero (bit 3 of the processor condition register)-Set if the result of the logical operation is equal to all zeros. Reset if the result of the logical operation is not equal to all zeros.

Condition Code for Arithmetic Operations

Note: Borrow and carry in the processor condition register have the following meanings:

- Borrow = No carry Carry = No borrow
- · Positive (bit 1 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has a carry. Reset if the result is zero or there is no carry.
- Negative (bit 2 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has no carry. Reset if the result is zero or there is a carry.
- Zero (bit 3 of the processor condition register)-Set if the result of the arithmetic operation is equal to zero. Reset if the result is not equal to zero.
- Carry (bit 4 of the processor condition register)-Set if the arithmetic operation results in a carry. Reset by the I/Oimmediate instruction (reset carry-set equal function), by system reset, or if the operation results in no carry.
- High (bit 5 of the processor condition) register)-Same as positive (bit 1).
- Low (bit 6 of the processor condition register)-Same as negative (bit 2).
- Equal (bit 7 of the processor condition register)-Reset if the result of the operation is not equal to zero. Set only by the I/O immediate instruction (reset carry-set equal function) or by system reset.


Logical/Arithmetic Functions

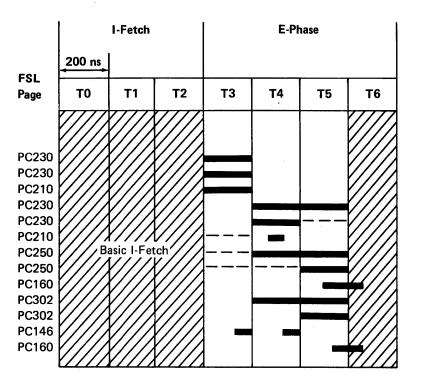
Bits

						Bits					
Bits						8 9 10 11	Mnemonic	Function	Description	Exar	nple
891011 0000	Mnemonic	Function Not used	Description	Exar	nple	1001	ACYR	R1 + R2 + C → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The contents of the two	R1 R2	1011110011001101 0011010110101001 111100100
0001	XR	R1(XOR)R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an exclusive OR function and the result is placed in the R1 location.	R2	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0			н т. Т	registers are added together and added to the result of the carry trigger from a previous operation. The result is placed in the R1 location.	+C R1	1 1111001001110111
0010	ZAR	R2+0→R1	The contents of R2 are placed in the R1 location.	+ 0	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0	1010	SR	R1 – R2 → R1 1 byte	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The Y register contents are subtracted from the X register contents and the result is placed in the R1 location.	R1 R2 R1	1011110011001101 <u>10101001</u> 1011110000100100
0011	OR		The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an OR function and the result is placed in the R1 location.	R2	1011110011001101 <u>001101011010001</u> 1011110111	1 0 1 1 ¹	AR	R1 + R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The contents of the two registers are added together in the ALU and the result is placed in the R1 location.		1011110011001101 0011010110101001 111100100
0100		Not used				1 1 0 0	SR	R1 - R2 → R1	Same as (1010) SR.	R1	1011110011001101
0 1 0 1	NCR	R1 (AND) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register contents (R2), performs an AND function on the register contents, and the result is placed in the R1 location.	R2 R2	$\begin{array}{c}1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ $	1 1 0 1	AR	$R1 + R2 \rightarrow R1$ 1 byte	Same as (1011) AR.	R2 R1 R1 R2 R1	$\begin{array}{c} 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0$
0 1 1 0	NR	R1 (AND) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an AND function and the result is placed in the R1 location.	R2	1011110011001101 0011010110101001 0011010010	1 1 1 0 ²	SCYR	R1 – R2 – C → R1	The contents of R1 are placed in the X regis- ter; the contents of R2 are placed in the Y register. The Y register contents are sub- tracted from the X register contents; the carry trigger from a previous operation is comple- mented and then subtracted from the result.	R1 R2 C_ -C R1	$ \begin{array}{c} 1011110011001101\\ \underline{00110101101001}\\ 1000011100100100\\ 0\\ \underline{1}\\ 1000011100100011\\ 1000011100100011\\ \end{array} $
0 1 1 1	OCR	R1 (OR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register contents (R2), performs an OR function on the register contents, and the result is placed in the R1 location.	R2 R2	1011110011001101 0011010110101001 <u>1100101001010110</u> 111111011011111	1 1 1 1	INC	R1 + 1 → R1	The final result is placed in the R1 location. The contents of R1 are placed in the X register. The 'carry in' line is activated by the instruction, and this is added to the contents of the X register by the ALU. The result is placed in the R1 location.	R1 +1 R1	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0
1000	DEC	R1 - 1 → R1	The contents of R1 are placed in the X register. This data is gated in the ALU. The ALU performs an X minus 1 function and the result is placed in the R1 location.	- 1			to the left and t		ft left logical double function can be executed. This fu to be replaced with a zero. Mnemonic = SLLD.	inction	causes the 16 bits to be shifted

2

From a previous operation

Hex 7132


Select LSR (operand 2) Select Stg Gate High/Low from LSR Y High/Low from Stg Gate High/Low Select LSR (operand 1) Stg Gate High/Low from LSR X High/Low from Stg Gate High/Low Set ALU Mode (X or Y) (see Note 1) ALU Gate High/Low from ALU High/Low Write LSR High/Low Clock PCR (bits 1, 2, 3) Clock PCR (bits 4, 5, 6, 7) Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	50FF	ТМ
01	7132	LA2 (OR) * (see Note 2)
02	0000	В

Notes:

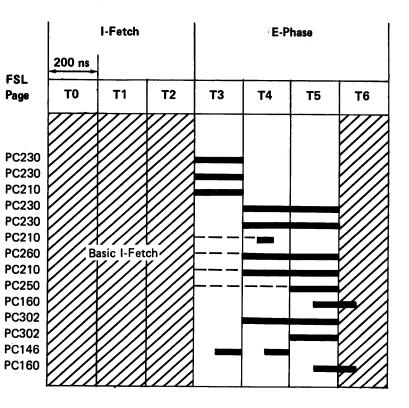
- 1. ALU mode setting will vary with the setting of the function bits (8-11).
- 2. This instruction uses both bytes of both operands.

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex 71D2

Select LSR (operand 2)	PC
Stg Gate High/Low from LSR	PC
Y High/Low from Stg Gate High/Low	PC
Select LSR (operand 1)	PC
Stg Gate High/Low from LSR	PC
X High/Low from Stg Gate High/Low	PC
Set ALU Mode (X+Y) (see Note 1)	PC
Reset Y High	PC
ALU Gate High/Low from ALU High/Low	PC
Write LSR High/Low	PC
Clock PCR (bits 1, 2, 3)	PC3
Clock PCR (bits 4, 5, 6, 7)	PC
Clock Stg Gate Check	PC1
Clock ALU Gate Check	PC1


Instruction Loop

00	50FF	ТМ	
01	71D2	LA2 (X+Y) * (see Note 2)	
02	0000	В	

Notes:

1. ALU mode setting will be either X+Y or X-Y.

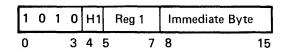
2. These are the only two LA2 instructions that use only 1 byte from operand 2.

Scope Setup

- = 0.1 μ s/div uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Load Immediate (LI)

Sequence and Timing


I-fetch

bits 5-7

in X low

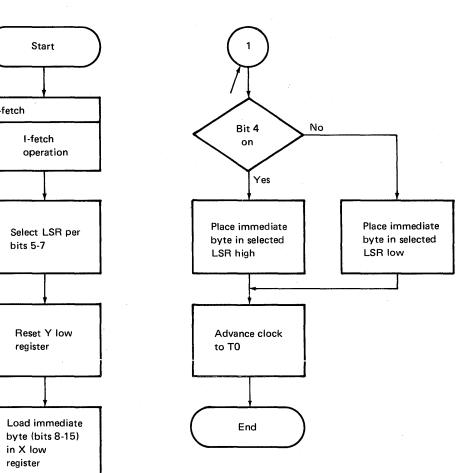
register

Pass immediate byte through ALU

This instruction takes the data in the immediate byte (bits 8-15) and loads the data directly into the selected register of the local storage register stack. Data can be placed into the high- or low-order byte of the selected register.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 0: Low-order byte


H1 = 1: High-order byte

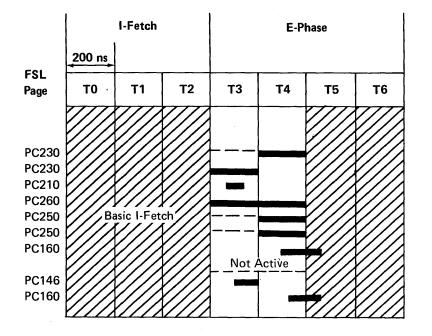
Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Immediate Byte (Bits 8-15): The immediate byte of the instruction is loaded into the selected local storage register.

Condition Code

No change

Hex A9XX


Select LSR Stg Gate High/Low from SDR High/Low X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low Write LSR High Carry In

Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	AOFF	LI	
01	A9FF	LI* (see note)	
02	0000	В	

Note: This instruction uses the high byte of the LSR.

Scope Setup

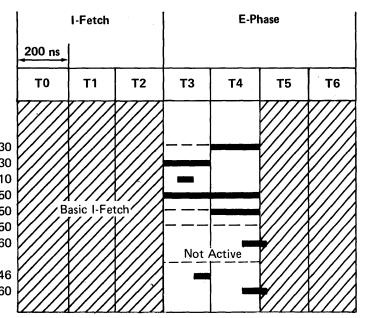
= $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex A1XX

Select LSR	PC230
Stg Gate High/Low from SDR High/Low	PC230
X-Reg from Stg Gate High/Low	PC210
Set ALU Mode (X + carry)	PC250
ALU Gate Low from ALU Low	PC250
ALU Gate High from ALU Gate Low	PC250
Write LSR Low	PC160
Carry In	
Clock Stg Gate Check	PC146
Clock ALU Gate Check	PC160


Instruction Loop

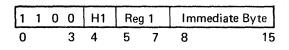
00	A0FF	LI	
01	A1FF	LI * (see note)	Horizo
02	0000	В	

Note: This instruction uses the low byte of the LSR.

FSL

Page

Scope Setup


= $0.1 \,\mu\text{s}/\text{div}$ uncalibrated to display one 'phase A' ontal cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

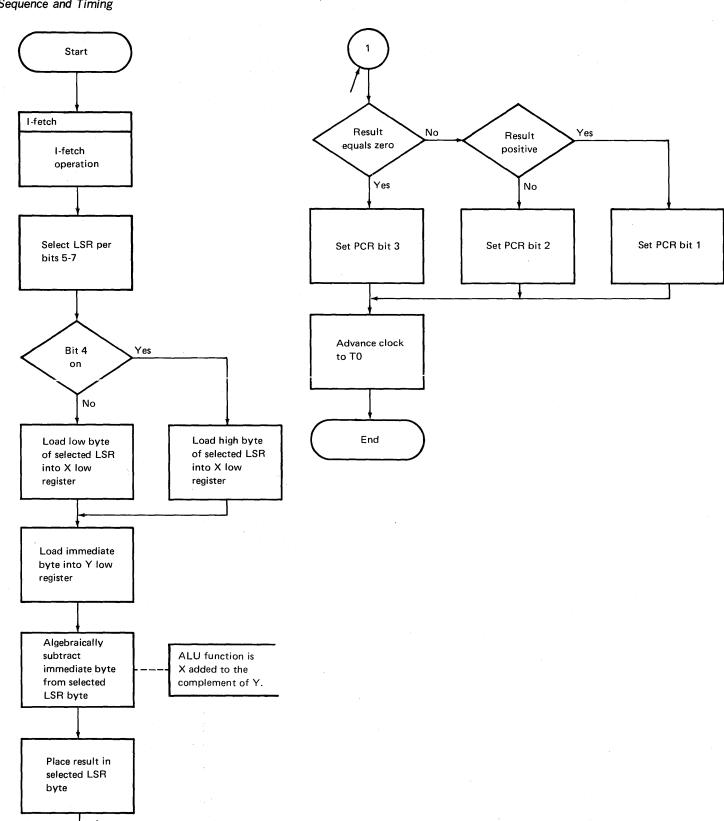
Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Compare Immediate (CI)

Sequence and Timing

This instruction compares the 8 bits of data in the selected local storage register with the comparable 8 bits of data in the immediate byte. The results of the compare are set in the processor condition register. The selected local storage register is not changed by the compare immediate instruction.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used in the compare:


Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

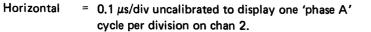
Immediate Byte (Bits 8-15): Contains the data to be compared with the data in the selected local storage register.

Condition Code

The condition code is set as follows:

- Positive (bit 1 of the processor condition register)-Register data is larger than the data field.
- Negative (bit 2 of the processor condition register)-Register data is less than the data field.
- Zero (bit 3 of the processor condition register)-Register data is equal to the data field.

2-52


I-Fetch E-Phase 200 ns FSL т0 **T1** Т2 Т3 Т4 **T**5 Т6 Page PC230 PC230 PC210 PC210 Basic I-Fetch PC260 PC260 PC250 PC302 PC146

Scope Setup

C1FF CI * (see note) 01 02 0000 В

LI

Note: This instruction uses the low byte of the LSR.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex C9XX

Selec	t LSR		PC230
Stg G	Gate High fr	om LSR	PC230
Stg C	Gate Low fr	om Stg Gate High	PC230
Y Lo	w from SD	R Low (Y high, don't care)	PC210
X Lo	w from Stg	Gate Low (X high, don't care)	PC210
Set A	LU Mode (X-Y-1+carry)	PC250
ALU	Gate Low	from ALU Low (don't care)	PC250
ALU	Gate High	from ALU Gate Low (don't care)	PC250
Cloc	k PCR (bits	1, 2, 3)	PC320
Carry	/		l l
Cloc	k Stg Gate (Check	PC146
			Ľ
Instr	uction Loop		
00	A0FF	LI	
01	C9FF	CI * (see note)	Horizont
02	0000	В	

Note: This instruction uses the high byte of the LSR.

Vertical

FSL

Page

Hex C1XX

Stg Gate High/Low from LSR

Set ALU Mode (X-Y-1+carry)

ALU Gate Low from ALU Low

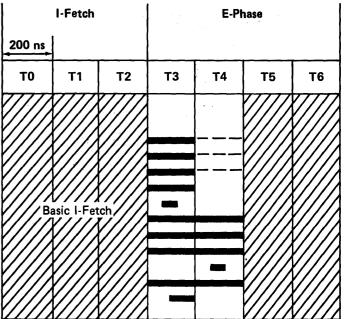
ALU Gate High from ALU Low

Clock PCR (bits 1, 2, 3)

Clock Stg Gate Check

A0FF

Instruction Loop


Y Low from SDR Low (Y high, don't care)

X Low from Stg Gate Low (X high, don't care)

Select LSR

Carry

00

Scope Setup

tal = $0.1 \,\mu\text{s}/\text{div}$ uncalibrated to display one 'phase A' cycle per division on chan 2.

= 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Subtract Immediate/Add Immediate (SI, AI)

1	1	0	1	H1	Reg	1	Immediate	Byte
0			3	4	5	7	8	15

The data in the immediate byte of this instruction is subtracted from the data in the specified local storage register (register 1).

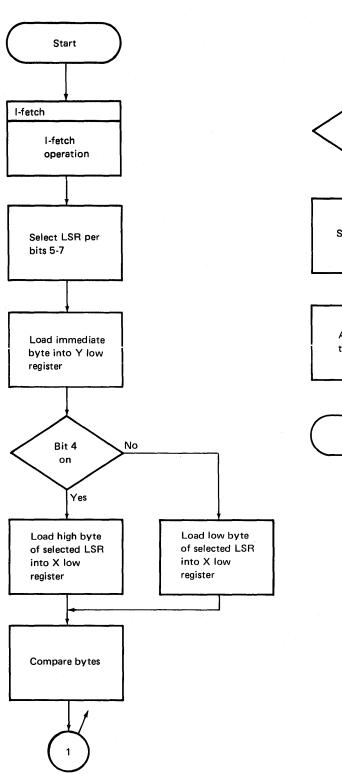
The add immediate instruction is valid for the control storage program only. To add immediate, the immediate data must be complemented by the assembler and then inserted in the immediate field of the instruction (complement subtract = addition). The immediate field then becomes a constant and is coded before assembly with the value to be used.

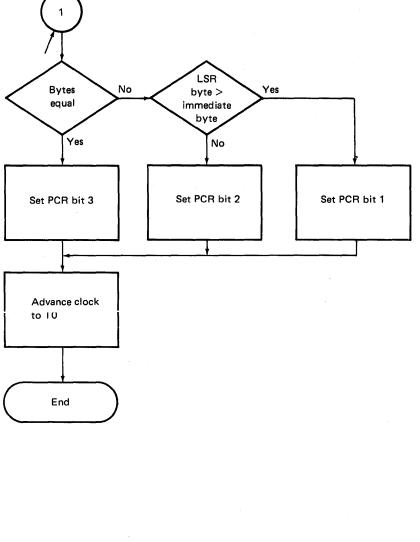
These instructions can also be used to compare two operands by testing the condition code after executing the instruction.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used in the subtract operation:

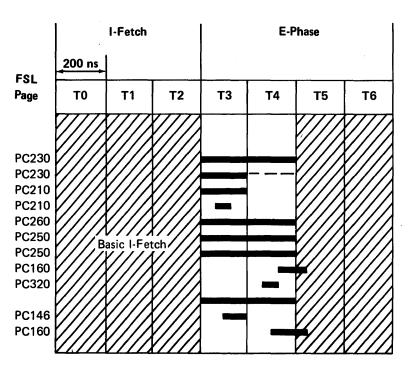
H1 = 0: Low-order byte

H1 = 1: High-order byte


Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.


Immediate Byte (Bits 8-15): Contains the data to be subtracted from the data in the selected local storage register.

Condition Code


The condition code is set as follows:

- Positive (bit 1 of the processor condition register)–Register data is larger than the data field.
- Negative (bit 2 of the processor condition register)-Register data is less than the data field.
- Zero (bit 3 of the processor condition register)-Register data and the data field are equal.

Sequence and Timing

Scope Setup

- D100 SI * (see note)
- Note: This instruction uses the low byte of the LSR.
- Horizontal = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' ' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex D9XX

Select LSR	PC230
Stg Gate High from LSR	PC230
Stg Gate Low from Stg Gate High	PC230
Y Low from SDR Low (Y high, don't care)	PC210
X Low from Stg Gate Low (X high, don't care)	PC210
Set ALU Mode (X-Y-1+carry)	PC260
ALU Gate High/Low from ALU High/Low	PC260
Write LSR High	PC160
Clock PCR (bits 1, 2, 3)	PC302
Clock Stg Gate Check	PC146
Clock ALU Gate Check	PC160
Carry	-

Instruction Loop

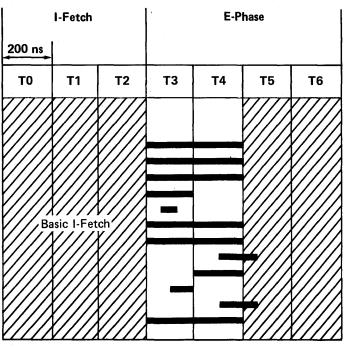
00	A9FF	LI	
01	D900	SI * (see note)	Horizon
C2	0000	В	

Note: This instruction uses the high byte of the LSR.

Vertical

FSL

Page


Hex D1XX

Select LSR

Stg Gate High/Low from LSR Y Low from SDR Low (Y high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X – Y – 1 + carry) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low (don't care) Write LSR Low Clock PCR (bits 1, 2, 3) Carry Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00 A1FF LI 01 02 0000 В

Scope Setup

= 0.1 μ s/div uncalibrated to display one 'phase A' ' ntal cycle per division on chan 2.

= 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Test Mask (TM)

0	1	0	1	Н1	Re	g 1		Mask	
0			3	4	5	7	8		15

This instruction tests the bits in 1 byte of a work register. A mask byte in the instruction identifies the bits to be tested. As a result of this test, one of the three following conditions will be found and this condition is set in the processor condition register:

- Positive = Ones-The tested bits are all equal to 1 (processor condition register bit 1 is set on).
- Negative = Mixed–The tested bits are a combination of ones and zeros (processor condition register bit 2 is set on).
- Zero = Zeros–The tested bits are all equal to 0 (processor condition register bit 3 is set on).

H1 (Bit 4): Selects the low- or high-order byte of the register:

H1 = 0: Low-order byte

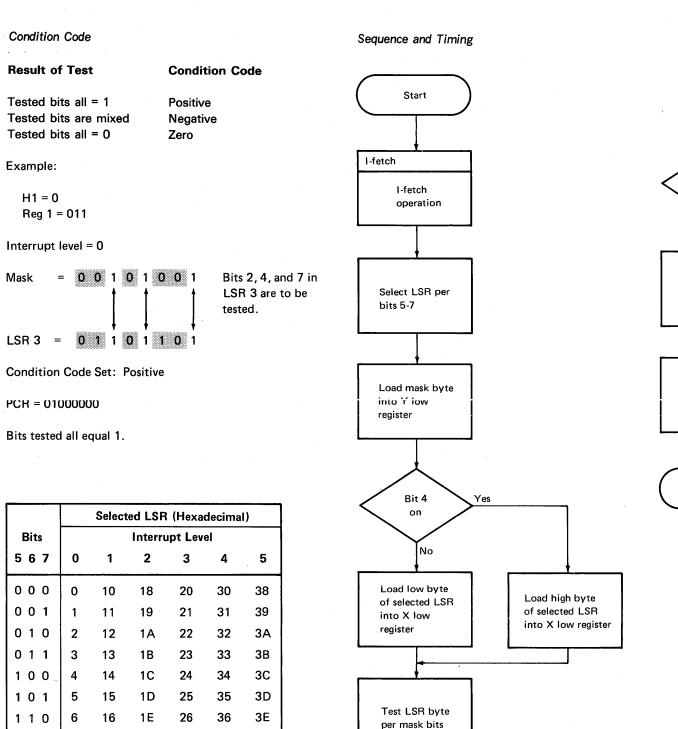
H1 = 1: High-order byte

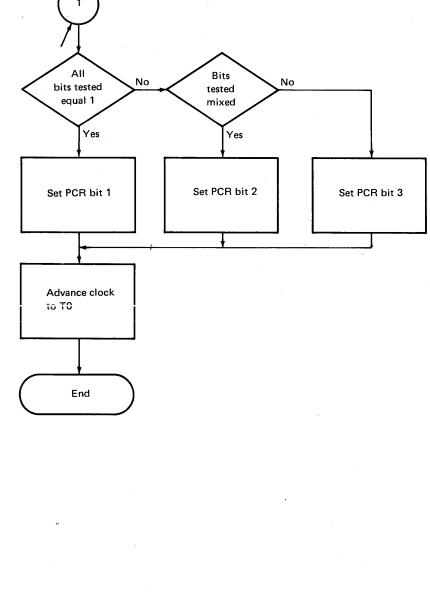
Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Mask (Bits 8-15): Any bit set to 1 indicates that the comparable bit in the selected byte is to be tested. Any bit set to 0 indicates that the comparable bit is to be ignored.

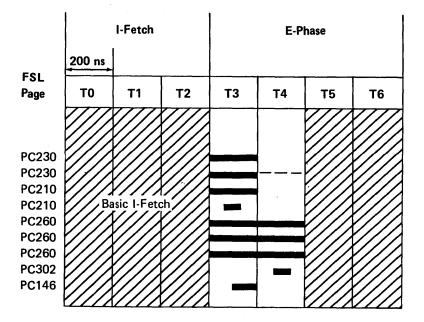
7

1.1.1


17


1F

27


37

3F

2-56

Scope Setup

- Horizontal = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Hex 59XX

Select LSR	PC230
Stg Gate High from LSR	PC230
Stg Gate Low from Stg Gate High	PC230
Y Low from SDR Low (Y high, don't care)	PC210
X Low from Stg Gate Low (X high, don't care)	PC210
Set ALU Mode (X and Y)	PC260
ALU Gate Low from ALU Low	PC250
ALU Gate High from ALU Gate Low	PC260
Clock PCR (bits 1, 2, 3)	PC302
Clock Stg Gate Check	PC146

Instruction Loop

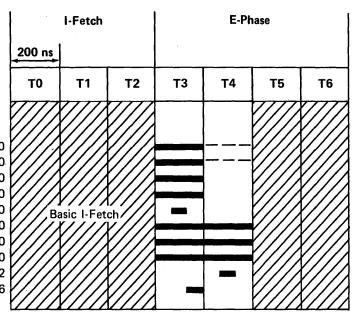
00	A9FF	LI	
01	59FF	TM * (see note)	Horizon
02	0000	В	

Note: This instruction uses the high byte of the LSR.

FSL

Page

Hex 51XX


Select LSR

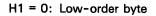
Stg Gate High/Low from LSR Y Low from SDR Low (X high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X and Y) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low Clock PCR (bits 1, 2, 3) Clock Stg Gate Check

Instruction Loop

00	A1FF	LI
01	51FF	TM * (see note)
02	0000	В

Note: This instruction uses the low byte of the LSR.

Scope Setup


- ntal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

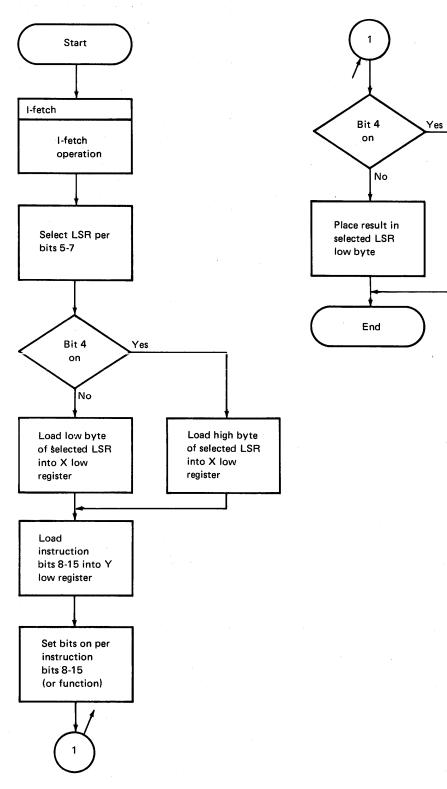
Set Bits On (SBN)

1	0	0	1	H1	Re	g 1	Data	
0			3	4	5	7	8	15

This instruction sets bits in the high- or low-order byte of the selected local storage register to 1.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 1: High-order byte


Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The byte of the register is combined, using an OR operation, with the data in the data field.

Data (Bits 8-15): The 8 bits of this field are compared with the 8 bits in the selected register. Any bit in the data field that is set to 1 causes the same bit in the selected register to be set to 1. Any bits in the data field that are set to 0 do not affect any bits in the selected register.

Condition Code

No change

Sequence and Timing

Place result in

selected LSR

high byte

2-58

I-Fetch E-Phase 200 ns FSL Page Т0 Т2 Т3 Т4 Т6 T1 Т5 PC230 PC230 PC210 PC210 Basic I-Fetch PC260 PC250 PC250 PC160 PC146 PC160

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Hex 99XX

Select LSR	PC230
Stg Gate High from LSR	PC230
Stg Gate Low from Stg Gate High	PC230
Y Low from SDR Low (Y high, don't care)	PC210
X Low from Stg Gate Low (X high, don't care)	PC210
Set ALU Mode (X or Y)	PC260
ALU Gate Low from ALU Low	PC250
ALU Gate High from ALU Low	PC250
Write LSR High	PC160
Clock Stg Gate Check	PC146
Clock ALU Gate Check	PC160

Instruction Loop

00	A9FF	LI	
01	99FF	SBN * (see note)	
02	0000	В	Horizor

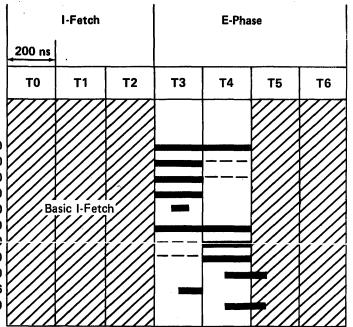
Note: This instruction uses the high byte of the LSR.

Vertical

FSL

Page

Hex 91XX


Select LSR

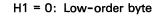
Stg Gate High/Low from LSR Y Low from SDR Low (Y high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X or Y) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low (don't care) Write LSR Low **Clock Stg Gate Check** Clock ALU Gate Check

Instruction Loop

00	A1FF	LI
01	91FF	SBN * (see note)
02	0000	В

Note: This instruction uses the low byte of the LSR.

Scope Setup


- = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' ontal cycle per division on chan 2.
- = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

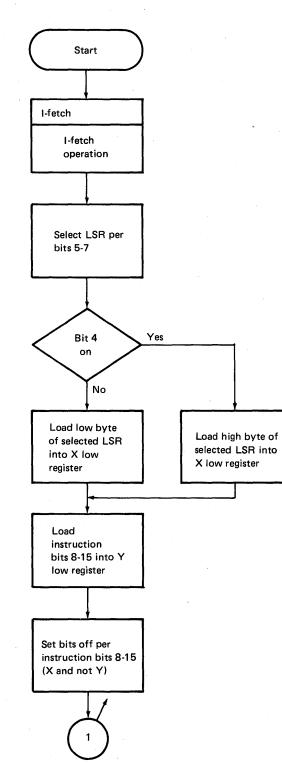
Set Bits Off (SBF)

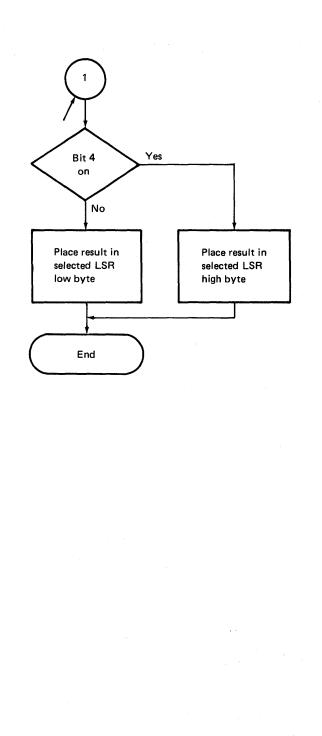
1	0	0	0	H1	Reg	y 1	Data	
0			3	4	5	7	8	15

This instruction resets bits in the high- or low-order byte of the selected register in the local storage register stack.

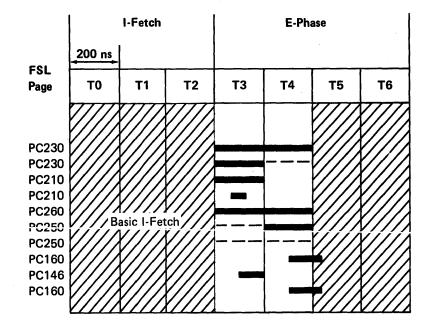
H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 1: High-order byte


Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The contents of the register are ANDed with the complement of the data in the data field.


Data (Bits 8-15): The 8 bits in this field are compared with the 8 bits of the selected register. Any bit in the data field that is set to 1 causes the same bit in the selected register to be set to 0. Any bits in the data field that are set to 0 do not affect any bits in the selected register.

Condition Code


No change

Sequence and Timing

2-60

Scope Setup

A1FF LI 00 01 81FF SBF * (see note) 0000 В 02

Note: This instruction uses the low byte of the LSR.

- Horizontal = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' cycle per division on chan 2.
 - = 0.2V/div using X10 probes.

Vertical

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex 89XX

Select LSR	PC230
Stg Gate High from LSR	PC230
Stg Gate Low from Stg Gate High	PC230
Y Low from SDR Low (Y high, don't care)	PC210
X Low from Stg Gate Low (X high, don't care)	PC210
Set ALU Mode (X and not Y)	PC260
ALU Gate Low from ALU Low	PC250
ALU Gate High from ALU Gate Low	PC250
Write LSR High	PC160
Clock Stg Gate Check	PC146
Clock ALU Gate Check	PC160

Instruction Loop

00	A9FF	LI	
01	89FF	SBF * (see note)	Horizont
02	0000	В	

Note: This instruction uses the high byte of the LSR. Vertical

FSL

Page

Hex 81XX

Write LSR Low

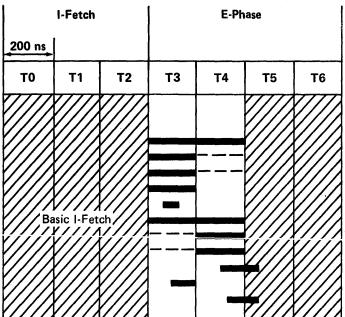
Instruction Loop

Clock Stg Gate Check

Clock ALU Gate Check

Stg Gate High/Low from LSR

Set ALU Mode (X and not Y)


ALU Gate Low from ALU Low

ALU Gate High from ALU Gate Low

Y Low from SDR Low (Y high, don't care)

X Low from Stg Gate Low (X high, don't care)

Select LSR


Scope Setup

= $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' ntal cycle per division on chan 2.

= 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

This page intentionally left blank.

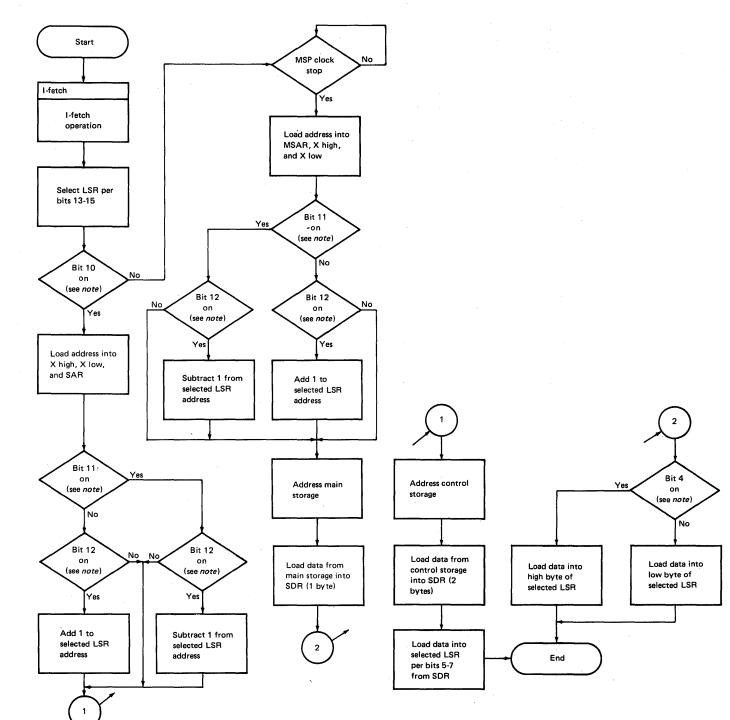
Storage (LC, LM, STC, STM)	W (Bit 9): Identifies t to be moved:
LC(load from control storage)STC(store to control storage)LM(load from main storage)STM(store to main storage)	W = 0: Read from s local storage regi
0 1 0 0 H1 Reg 1 1 W C D V Reg 2	W = 1: Move from stack and write to
0 3 4 5 7 8 9 10 11 12 13 15 This instruction permits access to either control	C (Bit 10): Selects m storage:
storage or main storage. Data can be moved to or from the local storage registers.	C = 0: Selects main
	C = 1: Selects cont
H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used: H1 = 0: Low-order byte	<i>D (Bit 11):</i> Indicates storage register (specif be increased or decrea
H1 = 1: High-order byte	D = 0: Increase the register by the va
Bit 4 is not used when bit 10 is on. When bit 10 is on, both the high- and low-order bytes are selected.	D = 1: Decrease the register by the va
Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Data is moved to	V (Bit 12): Indicates in the local storage reg 13-15) should be incre
or from this register.	V = 0: The selected not changed (regi
<i>Bit 8:</i> If bit $8 = 1$, the operation code (bits 0-3) of the control storage instruction is changed. If bit $8 = 0$, the instruction is an I/O storage instruction.	V = 1: The address storage register is by 1 as determine field D (register 2

W (Bit 9): Identifies the direction the data is to be moved:	In	str	uct	ion	Li	st
	Bi	te				
W = 0: Read from storage and move to the local storage register stack			9	10) 11	1
	Х	1	0	1	0	
W = 1: Move from the local storage register						
stack and write to storage	х	1	0	1	1	
	v	1	^	1	^	
	^		U	1	U	
C (Bit 10): Selects main storage or control storage:	х	1	1	1	0	
	·					
C = 0: Selects main storage	Х	1	1	1	1	
C = 1: Selects control storage	X	1	1	1	0	1
	н	1	0	0	0	
D (Bit 11): Indicates if the address in the local						
storage register (specified by bits 13-15) should	н	1	0	0	1	
	••	•	Ŭ	Ŭ	•	
be increased or decreased:			~	~	~	
	н	1	U	0	U	
D = 0: Increase the selected local storage						
register by the value of field V	н	1	1	0	0	
D = 1: Decrease the selected local storage	н	1	1	0	1	
register by the value of field V						
	н	1	1	0	0	(
	••	•	•	•	-	
	ه ا	na	hn	for	Ri	+ .
V (Bit 12): Indicates the amount the address		ge		101		
in the local storage register (specified by bits		x				,
13-15) should be increased or decreased:			-			1
		Н	= ():		1

V = 0:	The	sele	cted	local	storage	register	is
not	chan	ged	(regi	ster 2	2).		

s in the selected local is increased or decreased ned by the bit setting of 2).

Register 2 (Bits 13-15): Selects one of the eight work registers assigned to the current interrupt level that contains the storage address of the data. The address in the specified local storage register may be updated as specified by bit 11 (field D) and bit 12 (field V).


Li	st		
) 11	12	Mne- monic	Description
0	1	LC	Load from control storage, increase register 2 by 1.
1	1	LC	Load from control storage, decrease register 2 by 1.
0	0	LC	Load from control storage, no change to register 2.
0	1	STC	Store to control storage, increase register 2 by 1.
1	1	STC	Store to control storage, decrease register 2 by 1.
0	0	STC	Store to control storage, no change to register 2.
0	1	LM	Load from main storage, increase register 2 by 1.
1	1	LM	Load from main storage, decrease register 2 by 1.
0	0	LM	Load from main storage, no change to register 2.
0	1	STM	Store to main storage, increase register 2 by 1.
1	1	STM	Store to main storage, decrease register 2 by 1.
0	0	STM	Store to main storage,
Bi	t 4:		no change to register 2.

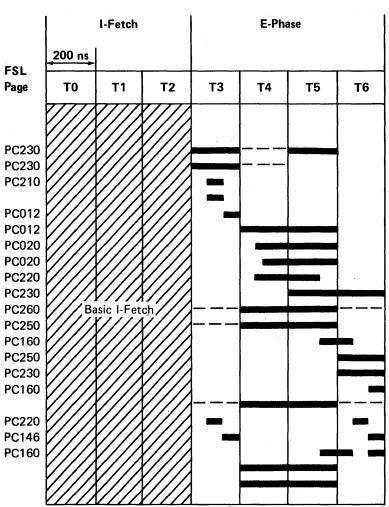
X:	Not used
H = 0:	Low-order byte
H = 1:	High-order byte

Condition Code

No change

Sequence and Timing for Reading from Storage (LC, LM)

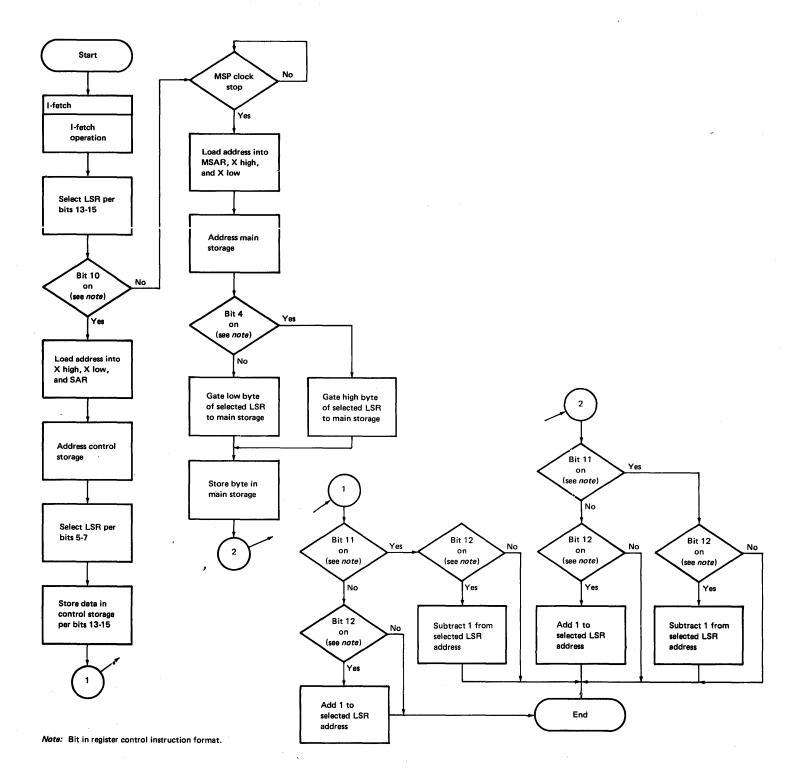
Note: Bit in register control instruction format.


Hex 41AA

Sele	ct LSR (add	lress)	P							
Stg	Gate High/L	ow from LSR	P							
X High/Low from Stg Gate High/Low										
SAR from Stg Gate High/Low										
Stg	Function		Ρ							
Stor	age Cycle ¹		P							
CSX			P							
CSY	,		P							
Cloc	k SDR fron	n CS	P							
Stg	Gate High/L	.ow from SDR High/Low	P							
Set /	ALU Mode	(X + carry) (see Note 1)	P							
ALU	J Gate High,	Low from ALU High/Low	P							
Writ	e LSR High	/Low (address)	P							
ALU	J Gate High,	Low from Stg Gate High/Low	P							
Sele	ct LSR (dat	a)	P							
Write LSR High/Low (data)										
Carr	у									
Cloc	k SDR Che	ck	P							
Cloc	k Stg Gate	Check	P							
Cloc	k ALU Gate	e Check	P							
	Storage Add									
Ctl S	Storage SAF	R P Check								
¹ Thi	s line cannot	be probed.								
Insti	ruction Loo	p .								
00	A2FF	LI								
01	AA01	LI								
02	41AA	LC * (see Note 2)	н							
03	0000	В								
Note	es:		V							
1. A	LU mode s	etting may be pass or X-1 carry, depending								
	n the instru		S							

2. Control storage operation uses a forced 2-byte data path.

FSL


2-64

Scope Setup

= 0.1 μ s/div uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2. = 0.2V/div using X10 probes. Vertical Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

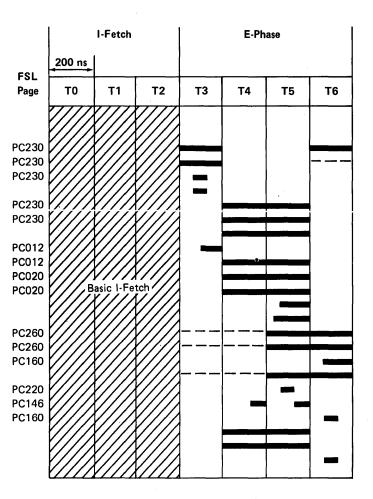
Sequence and Timing for Writing into Storage (STC, STM)

Hex 41EA

Select LSR (address) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low (address) SAR from Stg Gate High/Low Select LSR (data) Stg Gate High/Low from LSR CS from Stg Gate High/Low Stg Function Storage Cycle¹ CSX CSY +CS Write Pulse High +CS Write Pulse Low Set ALU Mode (X + carry) (see Note 1) ALU Gate High/Low from ALU High/Low Write LSR High/Low (address) Carry Clock SDR (echo check) Clock Stg Gate Check Clock ALU Gate Check Ctl Storage Address Check Ctl Storage SAR P Check Clock SDR Check

¹ This line cannot be probed.

Instruction Loop

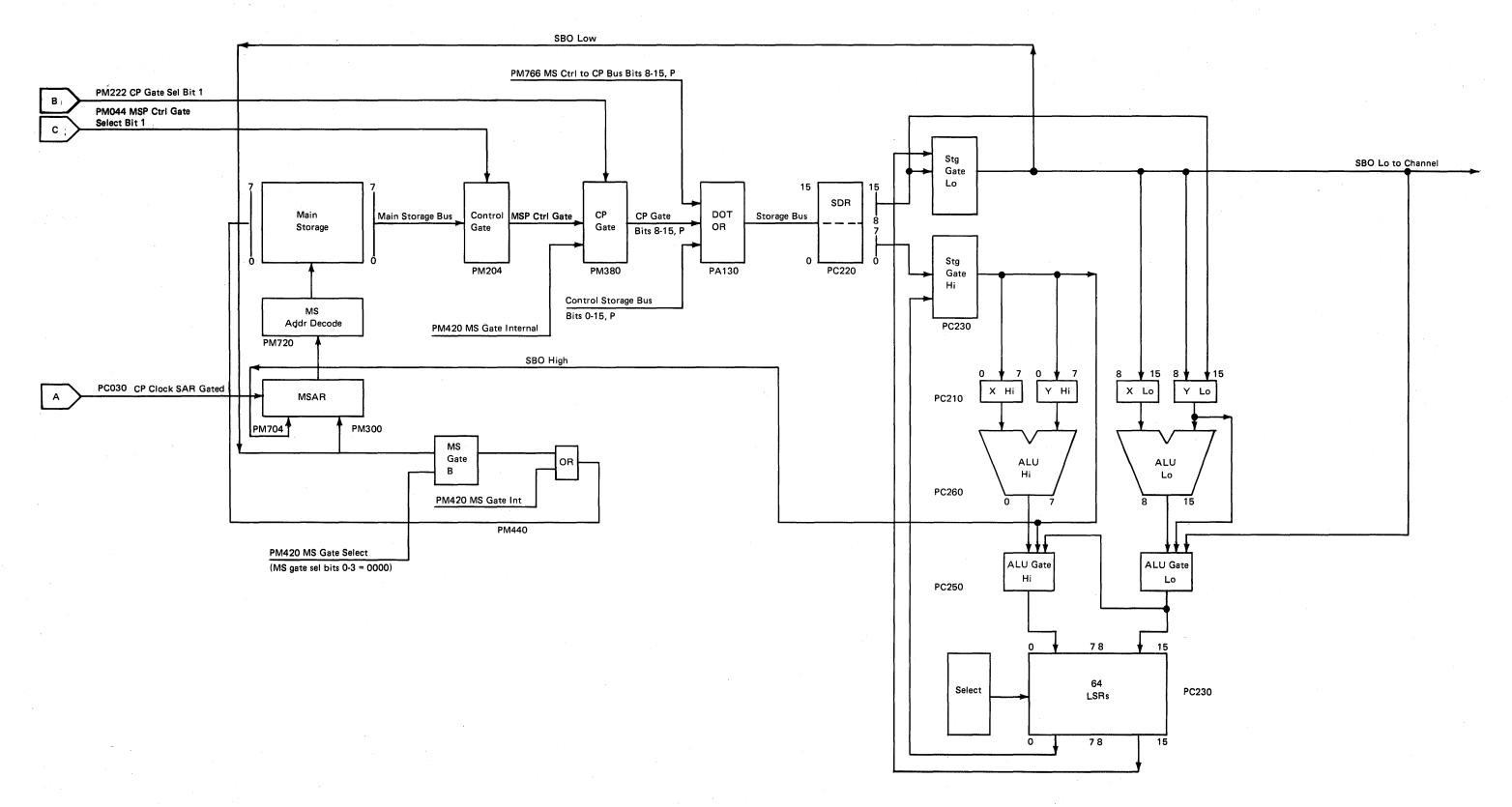

00	A2FF	LI
01	AA01	LI
02	A100	LI
03	A900	LI
04	41 E A	STC * (see Note 2)
05	0000	В

Notes:

1. ALU mode setting may be X+carry or X-1+carry,

depending on the instruction.

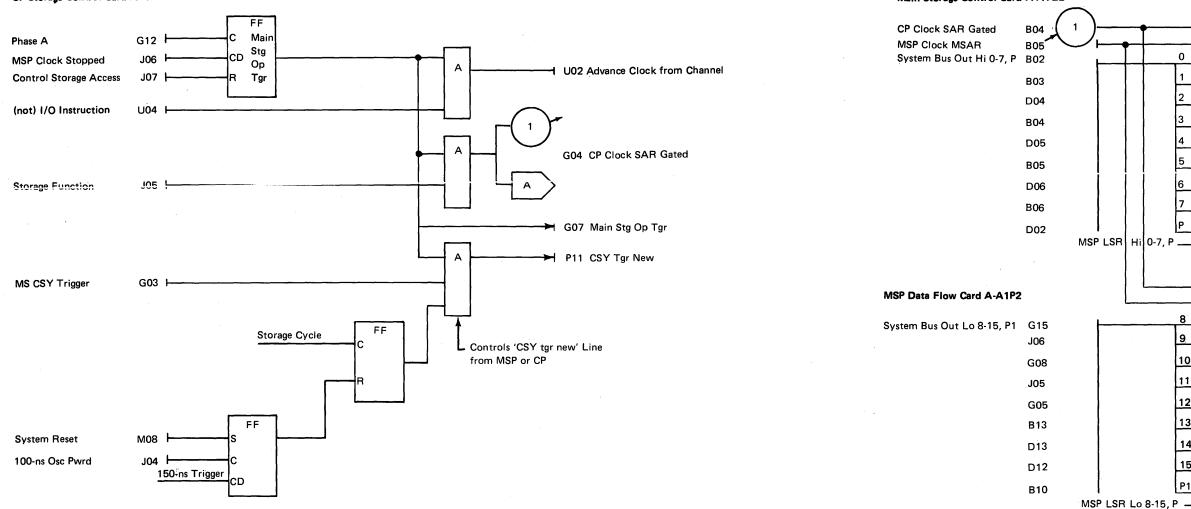
2. Control storage operation uses a forced 2-byte data path.



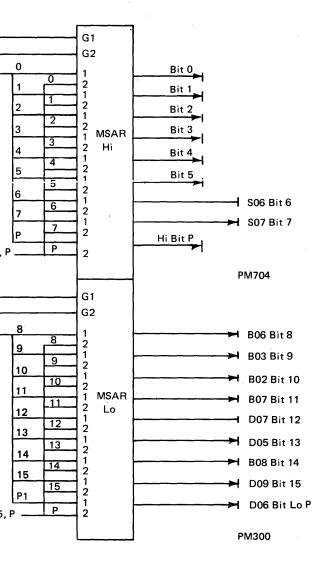
Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A	•
		cycle per division on chan 2.	

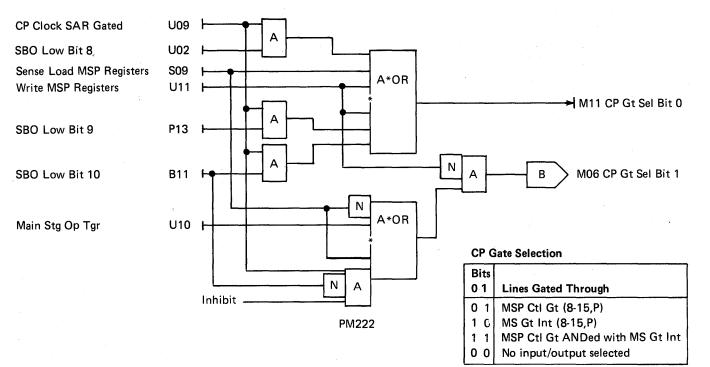
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).


Main Storage Access by Control Processor

Control Processor Control of MSAR


CP Storage Control Card A-A1F2

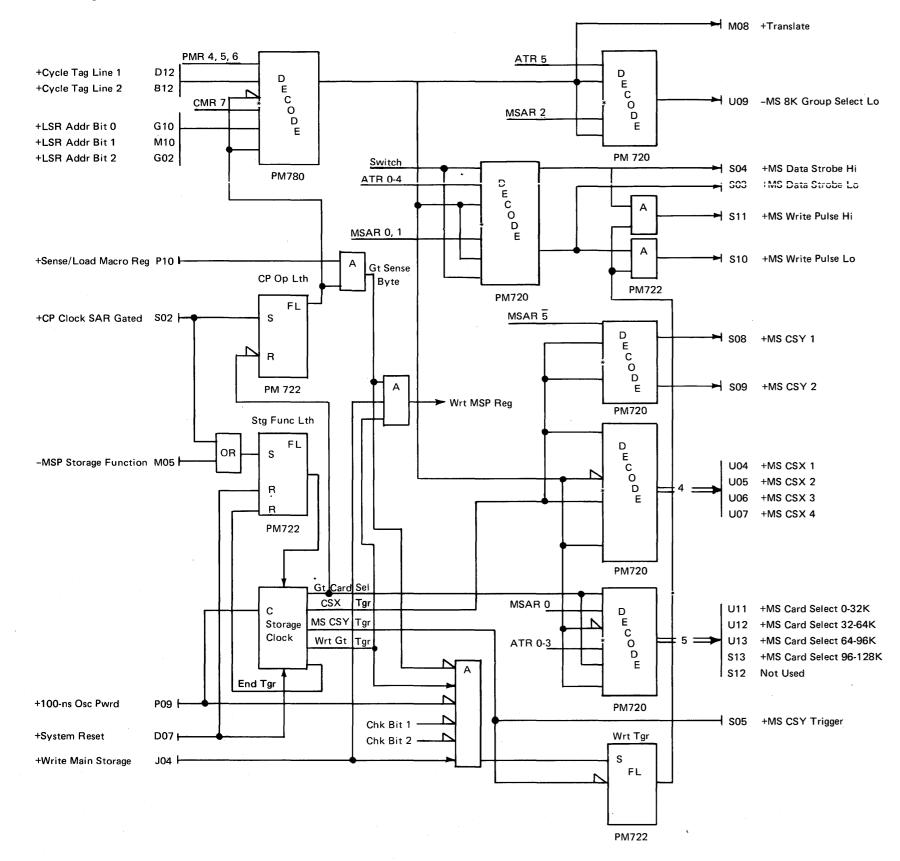
Main Storage Control Card A-A1Q2


PC030

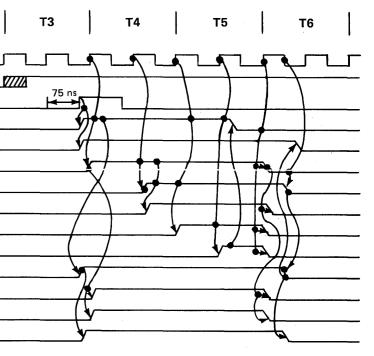
2

MSP Bus Line Control

MSP Control Card A-A1N2



2-68


Main Storage Address Decoding

MSP Storage Control Card A-A102

+100-ns Clk	
+ATR 5	
+CP Clk SAR Gated	
+Stg Function Lth	
+CP Op Lth	
+CSX Tgr	
+CSY Tgr	
+CSY Sig	
+Wr Gt Tgr	
+End Tgr	
+Gt Card Sel	
+CSX 1, 2, 3, 4	
+CSY 1, 2	
+MS Card Select (one of five lines)	

2

Loa	d from Main Storage (LM)		200 ns							Storage
Step		FSL Page	то	T1	T2	тз	T4	T5	Т6	
1	Select LSR (addr) (bits 13-15)	PC230								0100H1
2	Select Stg Gate Hi/Lo (from LSR hi/lo)	PC230								0 3 4 1
3	Clock Stg Gate Check	PC146								
4	Clock X Hi, X Lo, SAR	PC210								
5	Clock MSAR	PC030								LM = 418A
6	Select ALU Mode (X+carry)	PC230								Increment A
7	ALU Gate Hi/Lo (from ALU hi/lo)	PC250								<i>Register 1 (B</i> current inter
8	Select LSR (addr) (bits 13-15)	PC230								data will be v
9	Write LSR Hi/Lo (address)	PC160								<i>Register 2 (B</i> current inter
10	Clock ALU Gate Check	PC160								storage addre
11	Main Stg Op Trigger	PC030								Steps 1-5 clo the selected
12	Control Gate from Main Storage	PM204								Steps 6-10 ir
13	CP Gate from Control Gate	PM380								Steps 11-21
14	Clock SDR (from CP gate)	PC220					-			selected LSR
15	Select Stg Gate Hi/Lo (from SDR hi/lo)	PC230								
16	Select ALU Gate Lo (from stg gate lo)	PC250								
17	Clock Stg Gate Check	PC146					1			
18	Select ALU Gate Hi (from ALU gate lo)	PC250								
19	Clock ALU Gate Check	PC160								
20	Select LSR (data) (bits 5-7)	PC230								
21	Write LSR Hi if Bit 4=1, Lo if Bit 4=0	PC230								
			L	J	1		I	1		

Instruction Loop

00 AA01 LI Load Main Storage Address A200 LIĴ 01 LM* Load from Main Storage and 02 418A Increment Address (reg 2) 03 0000 В Branch

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2. Vertical = 0.2 V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

01	00	H1	Reg	1	1	W	С	D	V	Reg
0			5							

A Load from Main Storage and : Address (reg 2)

(Bits 5-7): Selects an LSR, for the terrupt level, that the main storage be written to.

(Bits 13-15): Selects an LSR, for the terrupt level, that contains the main dress.

clock the main storage address from ed LSR (reg 2) to MSAR.

increment the address (reg 2).

21 gate the main storage data to the SR (reg 1).

≀eg 2 15

Store to Main Storage (STM)

Step		Page	Т0	T1	T2	Т3	T4
1	Select LSR (addr) (bits 13-15)	PC230					-
2	Select Stg Gate Hi/Lo (from LSR hi/lo)	PC230					
3	Clock Stg Gate Check	PC146				-	
4	Clock X Hi, X Lo, SAR	PC210					
5	Clock MSAR	PC030		-		-	-
6	Main Storage Op Trigger	PC030					
7	Select LSR (data) (bits 5-7)	PC240					
8	Select Stg Gate Hi (from LSR hi)	PC230					
9	Select Stg Gate Io (from LSR Io if bit 4=0, from stg gate hi if bit 4=1)	PC230					
10	Select MS Gate B (from SBO)	PM440					
11	Write Main Storage	PC030					
12	CSY Trigger New	PC030					-
13	Set ALU Mode (X+carry)	PC230					
14	ALU Gate Hi/Lo (from ALU hi/lo)	PC250					
15	Select LSR (addr) (bits 13-15)	PC230					
16	Write LSR Hi/Lo (addr)	PC160					
17	Clock ALU Gate Check	PC160					

200 ns

FSL

τ. T5 Т6

Instruction Loop

00	A155	LI	Load Data into WR 1 (L)
01 02	AA01 A200	LI }	Load MS Address into WR 2
03	41CA	STM	*Store to Main Storage and Increment Address (WR 2)
04	0000	B	Branch

Scope Setup

Horizontal	 0.1 μs/div uncalibrated to display one 'phase A' cycle per division on chan 2.
Vertical	= 0.2 V/div using X10 probes.

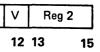
Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Storage

0	1	0	0	H1	Reg 1	1	wc	D
0			_	4			9 10	

STM = 41CA Store to Main Storage and Increment Address (reg 2)

Register 1 (Bits 5-7): Selects an LSR, for the current interrupt level, that contains the data to be written into main storage.


Register 2 (Bits 13-15): Selects an LSR, for the current interrupt level, that contains the main storage address where register 1 will be written.

Steps 1-4 clock the main storage address from the selected LSR (reg 2) to MSAR.

Steps 5-9 gate the data from the selected LSR (reg 1) to main storage.

Steps 10-12 clock the data into main storage.

Steps 13-17 increment the address (reg 2).

This page intentionally left blank.

Register Control (WMPR, RMPR)

WMPR (load main storage processor register) RMPR (sense main storage processor register)

0 1	00	H1	Reg	g 1	1	w	0	1	0	Reg	2
0	3	4	5	7	8	9	10	11	12	13	15

This instruction moves 1 byte of data between a local storage register and a main storage processor register.

H1 (Bit 4): Selects the low- or high-order byte of the local storage register specified by bits 5-7 (register 1):

H1 = 0: Low-order byte

H1 = 1: High-order byte

Note: Specific main storage processor registers can be loaded only from the high-order byte.

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Data is moved to or from a main storage processor register.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 1.

W (Bit 9): Identifies the direction the data is to be moved:

W = 0: Move the data from the selected main storage processor register to the selected local storage register

W = 1: Move the data from the selected local storage register to the selected main storage processor register

Bit 10: Bit 10 is always a 0.

Bit 11: Bit 11 is always a 1. Therefore, register 2 is always decreased by 1.

.

Bit 12: Bit 12 is always a 0. Bits 11 and 12 change the operation code (bits 0-3). For this instruction, register 2 is always decreased by 1.

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack used by the present interrupt level that contains the address of the main storage processor register to load data into or to read data from.

Instruction List

Bits	Mne-	
4 8 9 10 11 12	monic	Description
H 1 1 0 1 0	WMPR	Load main storage processor reg- ister, decrease register 2 by 1.
H 1 0 0 1 0	RMPR	Sense main storage processor reg- ister, decrease register 2 by 1.

Condition Code

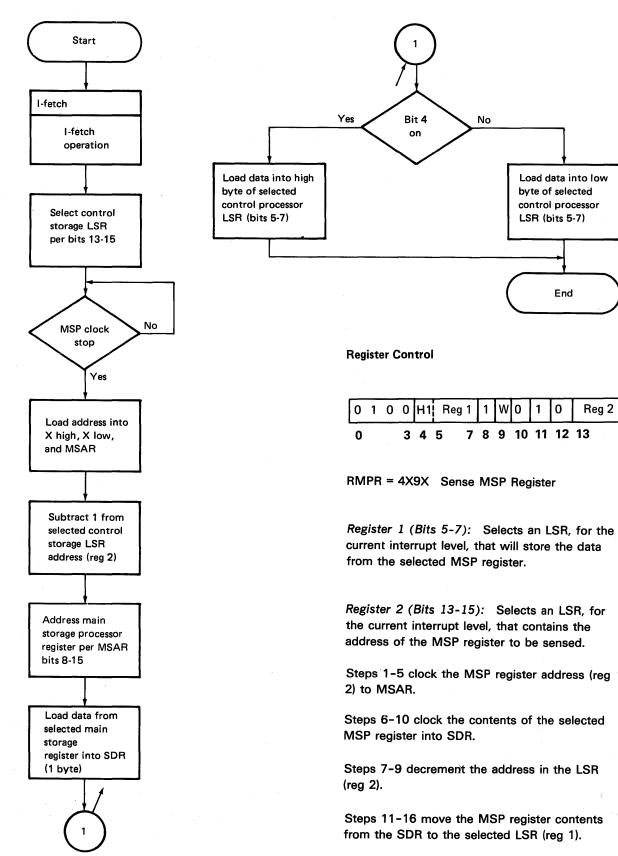
No change

MSAR Low Byte

Storage Control Commands CCR (configuration control register ACR-Low (address compare register ACR-High (address compare register ACR-E (address compare extend) BMR (backup mode register) Status byte 3 CMR (control mode register) PMR (program mode register)

Status Registers PSR (program status register) Status byte 0 Status byte 1 Status byte 2 Q-byte (real)

Main Storage Processor Registers Operand 1 Operand 2 IAR (instruction address register) Q-register Op register XR1 XR2 ARR (address recall register) PSR (program status register addres not a valid PSR LCRR (length count recall register) R-byte if not executable


Expanded ATRs Task ATRs I/O ATRs

¹ Data is loaded into MSAR from the selected control processor LSR high byte only.

Bits	8	9	10	11	12	13	14	15	Restrictions
	0	0	1	1	1	х	х	x	
						0	0	0	Load high only ¹
· ·						0	0	1	Load high only ¹
						0	1	0	Load high only ¹
						0	1	1	Load high only ¹
						1	0	0	Load high only ¹
						1	0	1	Sense only
						1	1	0	Load high only ¹
						1	1	1	Load high only ¹
	0	1	0	0	0	0	х	х	
	٠						0	0	
							0	1	Sense only
							0	1	Load only
							1	0	Sense only
							1	1	Sense only
	0	1	1	0	X	х	х	х	
					0	0	0	н	H = 1 specifies
					0	0	1	н	the high byte
					0	1	0	н	
					0	1	1	0	
					0	1	1	1	
	۰.				1	0	0	Н	
					1	0	1	н	
					1	1	0	Н	•
					1	1	1	0	
					1	1	1	1	
	1	0	х	х	x	х	X	x	Load high only ¹
	1	1	0	Х	Х	Х	Х	X	Load high only ¹
	1	1	1	Х	х	Х	Х	х	Load high only ¹

Sequence and Timing

Sense MSP Register

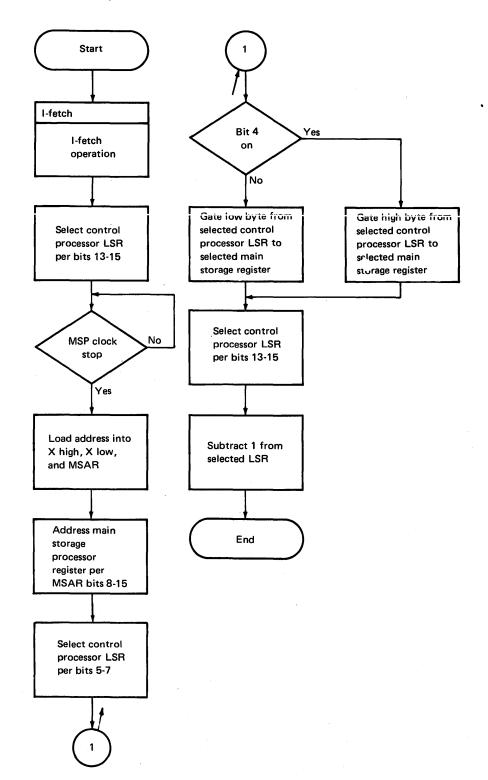
Sens	200 ns			
Step		FSL Page	то	T1
1	Select LSR (bits 13-15)	PC230		
2	Storage Gate Hi/Lo (from LSR hi/lo)	PC230		
3	Clock Stg Gate Check	PC146		
4	Clock X Hi, X Lo, SAR	PC210		
5	Clock MSAR	PC030		
6	Sense Load MSP Regs	PC030		
7	ALU Mode (X-1)	PC260		
8	ALU Gate Hi/Lo (from ALU hi/lo)	PC250		
9	Write LSR Hi/Lo (address)	PC160		
10	Clock SDR (CSY trigger)	PC220		
11	Select Stg Gate Hi/Lo (from SDR hi/lo)	PC230	,	
12	Select ALU Gate Lo (from stg gate lo)	PC250		
13	Select ALU Gate Hi (from ALU gate lo)	PC250		
14	Clock ALU Gate Check	PC160		
15	Select LSR (bits 5-7)	PC240		
16	Write LSR (hi if bit 4=1, lo if bit 4=0) (data)	PC230		

Instruction Loop

15

00	A238	LI	Load MSP Reg Addr into WR 2 (L) Hex 38=CCR	н
01	4192	RMPR*	Read CCR into WR 1 (L)	v
02	0000	В	Branch	v

Horizontal cycle per division on chan 2. Vertical = 0.2 V/div using X10 probes.


T2	Т3	Т4	Т5	Т6
	-			
				-
	-			
	I			
				·
			-	
				

Scope Setup

= $0.1 \,\mu\text{s}/\text{div}$ uncalibrated to display one 'phase A'

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Load MSP Register

						<u> </u>		<u> </u>				
0 1	0	0	H1	R	eg 1	1	W	0	1	0	Re	eg 2
0		3	4	5	7	8	9	10	11	12	13	15
wм	PR	= 4	4XC	X	Loa	d N	1SF	P Re	gist	er		
curr	ent	int	erru	ıpt		, th	at	cont	ains	s the		r the ta to
the	curi	en	t in	terr	13- <u>1</u> upt l SP re	eve	el, t	hat	con	tain	s the	
					the I o M:			egis	ter a	addı	ess	from
					data ^o reg			the	LSI	R (re	eg 1)	to
Ster add					reme	ent	the	M	SP r	egis	ter	
					n to writ				-			
1.	A	CR	(Hi	i, Lo	o, or	Ex	t)					
2.	C	CR										
3.	BI	MR	1									
4.	CI	MļR	ł									
5.	P	ИR										

02

03

0000 B

49D2 WMPR* Write to MSP Reg (CCR)

Branch

. *

Load	d MSP Register			200 ns				×		
Step			FSL Page	то	T1	Т2	тз	Т4	T5	Т6
1	Select LSR Hi/Lo (bits	13-15)	PC230							
2	Select Stg Gate Hi/Lo	PC230								
3	Clock Stg Gate Check		PC146							
4	Clock X Hi, X Lo, SAF	3	PC210							
5	Clock MSAR		PC030							
6	Sense Load MSP Reg		PC030							
7	Select LSR (bits 5-7)		PC240							
8	Select Stg Gate Hi (fro	m LSR hi)	PC230							
9	Select Stg Gate Lo (fro from stg gate hi if bit 4	om LSR lo if bit 4=0, =1)	PC230							
10	Write MSP Registers		PC030							
11	ALU Mode (X-1)		PC260				 -			
12	ALU Gate Hi/Lo (from	n ALU hi/lo)	PC250							
13	Clock ALU Gate Check	ĸ	PC160							
14	Write LSR Hi/Lo (addr	ress)	PC160							
Instr	uction Loop					Scope S	etup			
00	A907 LI Load	l Data into WR 1 (H)	(reg 1)	Horizonta	al =	0.1 µs/di	v uncalibr	ated to d	isplay or	e 'phase A'
01		MSP Reg Addr into 2 (L) (reg 2) Hex 38=(CCR	Vertical			division o			

2

Vertical = 0.2 V/div using X10 probes.

Sync External = -- 'address compare' looking at the instruction referenced with an asterisk (*).

Storage Direct (L, ST)

L (load register)

ST (store register)

1	1	1	0	W,	Reg 1	1	0	SAR	
0			3	4	5	7	8	9	15

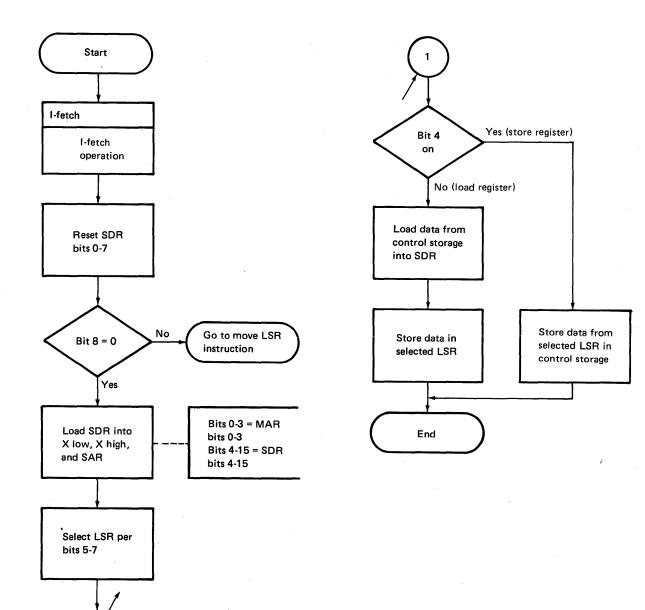
This instruction has direct access to any of the first 128 addresses in the current 4K-word block of addresses of control storage (the fixed storage area) during read or write operations, and moves 2 bytes of data to or from control storage.

W (*Bit 4*): Indicates if a read or write operation is to occur:

- W = 0: Read from control storage to the selected register
- W = 1: Write to control storage using the selected register for source

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Moves 2 bytes of data between this register and control storage.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 0.


Storage Address Register (Bits 9-15): Specifies one of the first 128 locations of the 4K-word block in control storage in which the current instruction is loaded. These 7 bits replace the comparable 7 bits in the storage address register. Bits 4 through 8 of the storage address register are set to zero. Bits 0-3 are left as is and point to the current 4K-word block of addresses.

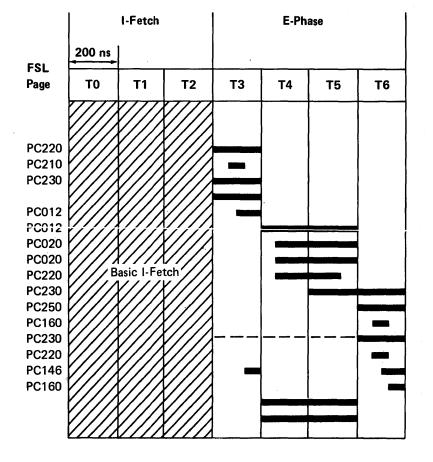
Condition Code

No change

Sequence and Timing for:

Reading from Control Storage-L (load register) \overline{W} riting into Control Storage-ST (store register)

L (load register)

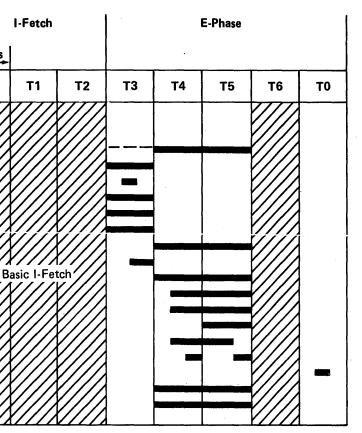

Hex E17F

+Reset SDR High A1H2P07 Clock X High (MAR data from T0) Stg Gate High from X (0-3) SDR (4-7) Clock \$AR from Stg Gate High/Low Stg Function Storage Cycie¹ CSX CSY Clock SDR Stg Gate High/Low from SDR High/Low ALU Gate High/Low from Stg Gate High/Low Write LSR High/Low from ALU Gate High/Low Select LSR (data) **Clock SDR Check** Clock Stg Gate Check Clock ALU Gate Check Ctl Stg Address Check Ctl Stg SAR P Check

¹This line cannot be probed.

Instruction Loop

00	A1FF	LI
01	E17F	L *
02	0000	В


Scope Setup

- Horizontal = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -- 'address compare' looking at the instruction referenced with an asterisk (*).

ST (store register)

Hex E97F	FSL Page	200 ns T0
Select LSR (data)	PC230	
Reset SDR High A1-H2 P07	PC220	////
Clock X High (MAR data from T0)	PC210	
Stg Gate High from X (0-3) SDR (4-7)	PC230	
Stg Gate Low from SDR (8-15)	PC230	////
Clock SAR from Stg Gate High/Low		
Stg Gate High/Low from LSR	PC230	////
Stg Function	PC012	
Storage Cycle ¹	PC012	////E
CSX	PC020	
CSY	PC020	\///
CS Write Pulse High/Low		////
Clock SDR (echo check)	PC146	////
Clock Stg Gate Check	PC160	
Clock SDR Check (see note)		V///
Ctl Stg Address Check		X////
Ctl Stg SAR P Check		
¹ This line cannot be probed.		
<i>Note:</i> SDR check from this instruction is actually set at T0 of the next instruction.		

Insti	ruction Loc	p	Horizontal	=
00	A155	LI	Vertical	=
01	A955	LI		
02	E97F	ST *	Sync Extern	al =
03	0000	В		

Scope Setup

= 0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

= 0.2V/div using X10 probes.

- - 'address compare' looking at the instruction referenced with an asterisk (*).

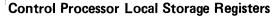
Move Local Storage Register (MVR)

1	1	1	0	Reg 1		1	S	Reg	2	
0			3	4	7	8	9	10		15

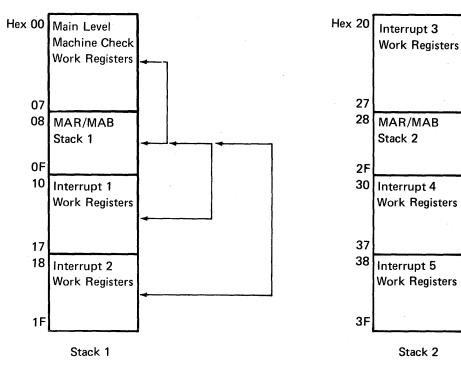
This instruction moves 2 bytes of data from one local storage register to another local storage register. This instruction permits access to any of the 64 local storage registers in the stack. For example, data can be moved either from register 1 to register 2 or from register 2 to register 1; data movement is controlled by the setting of bit 9.

Register 1 (Bits 4-7): Selects one of 16 local storage registers. The group selected is determined by the present interrupt level. Eight of these registers are always the microaddress register or the microaddress backup register stack (specified by bit 4 = 1). The other eight local storage registers are the work registers associated with the interrupt level selected. These registers are selected by specifying 0-7 in the register 1 field and then selecting from a group of eight registers assigned to each interrupt level (1-5) or the main program level interrupt. Hardware automatically selects stack 1 or stack 2 because of the interrupt level. Hardware then adds hex 00 or hex 10 for stack 1 and hex 20 or hex 30 for stack 2 to the register 1 bits to come up with the real hex address of the local storage register selected.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 1.

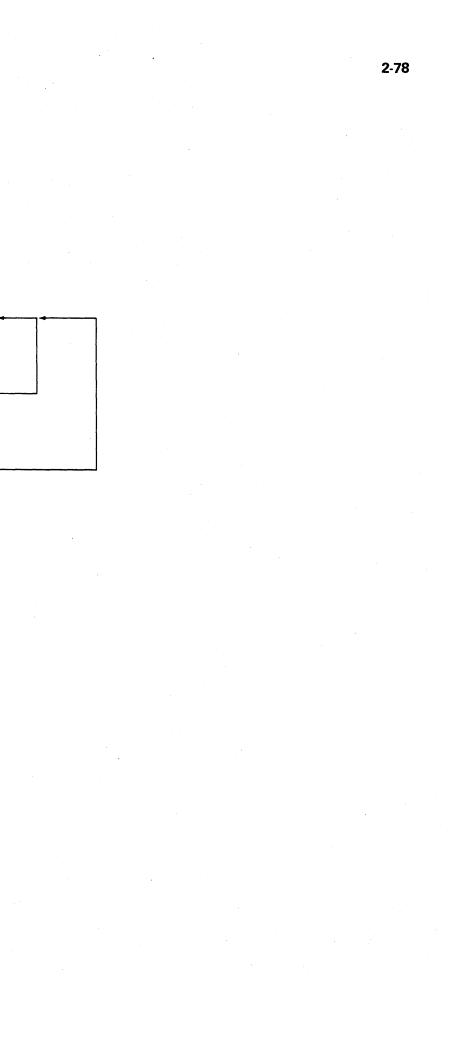

S (Bit 9): Indicates the direction the data is to be moved:

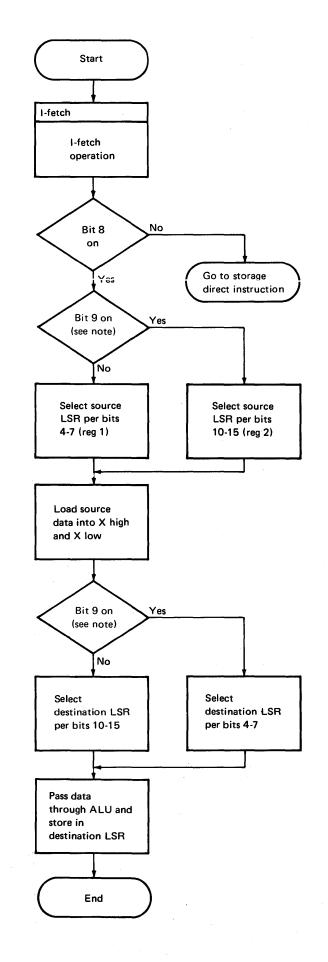
- S = 0: Register 1 is the source register and
 2 bytes of data are moved from register 1 to register 2.
- S = 1: Register 2 is the source register and 2 bytes of data are moved from register 2 to register 1.


Register 2 (Bits 10-15): The 6 bits of this field select one of the 64 local storage registers in the data flow (bit 10 = 0). Two bytes of data are moved to or from this field, as determined by the bit setting of the S field.

Condition Code

No change




Valid Field Register Specifications

Valid combinations of local storage registers that can be specified in the register 1 field of the move local storage registers are:

- If in main level or machine check, registers 00-07 and 08-0B can be specified.
- If in interrupt level 1, registers 10-17 and OC-OD can be specified.
- If in interrupt level 2, registers 18-1F and OE-OF can be specified.
- If in interrupt level 3, registers 20-27 and 28-29 can be specified.
- If in interrupt level 4, registers 30-37 and 2C-2D can be specified.
- If in interrupt level 5, registers 38-3F and 2E-2F can be specified.

			I-Fetch		ĺ	E-Ph	ase		
	FSL	200 ns							•
	Page	то	Т1	Т2	Т3	Т4	Т5	Т6	
Hex E182									
Select LSR (source)	-PC230								
Stg Gate High/Low from LSR	PC230								
X-Reg from Stg Gate High/Low	PC210								
Set ALU Mode (X + carry)	PC260								
Carry				Not	Active				
ALU Gate High/Low from ALU High/Low	PC250								
Select LSR (destination)	PC230				1 1				
Write LSR High/Low	PC160								
Clock Stg Gate Check	PC146								
Clock ALU Gate Check	PC160								
Instruction Loop	I			[L			J	
00 A1FF LI				Scope	Setup				

00	AIFF	LI	
01	A9FF	LI	
02	E182	MVR *	
03	0000	В	

Note: Bit 9 determines the source field:

If bit 9 = 0, bits 4-7 specify the source LSR; bits 10-15 specify the destination LSR.

If bit 9 = 1, bits 10-15 specify the source LSR; bits 4-7 specify the destination LSR.

Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Control Processor 2-79

÷.

Hexadecimal Branch (HBN, HBZ)

HBN (numeric) HBZ (zone)

1 1 1 1 H1 Reg 1 MAR' 0 ///// Z 0 3 4 5 7 8 11 12 13 14 15

This instruction operates as a 16-way branch without prerequisites. Either the zone or digit part of the high- or low-order byte of the selected register replaces bits 12-15 of the control storage microaddress register. Bits 8-11 of the control storage microaddress register are replaced by the bits contained in the hexadecimal branch instruction (bits 8-11).

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used in the hexadecimal branch:

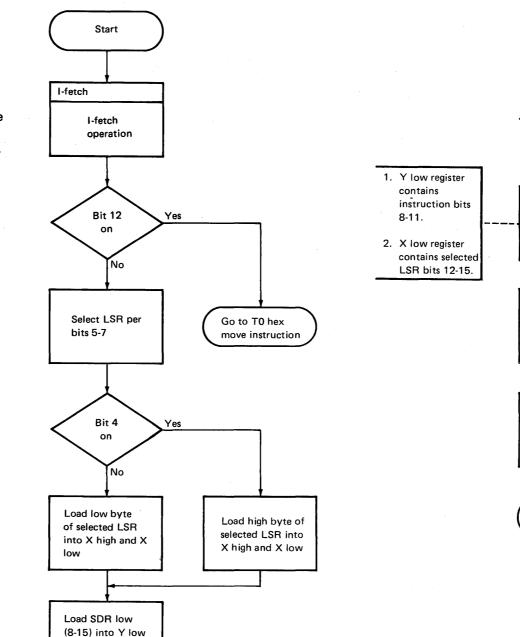
H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The zone or digit part of the selected register replaces bits 12-15 of the control storage microaddress register.

MAR' (Bits 8-11): Replaces bits 8-11 of the control storage microaddress register. Bits 0-7 of the control storage microaddress register are not changed by this instruction.

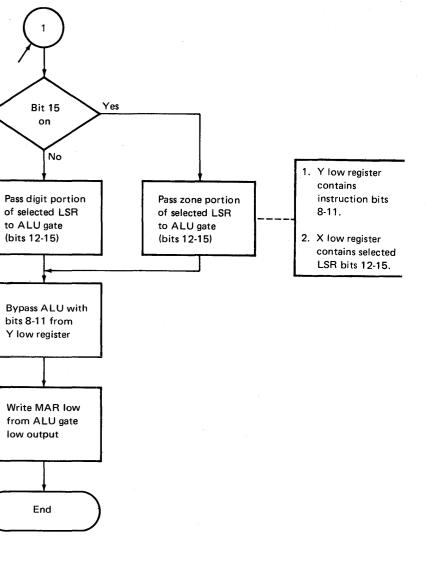
Bit 12: Changes the operation code (bits 0-3). Bit 12 is always a 0.

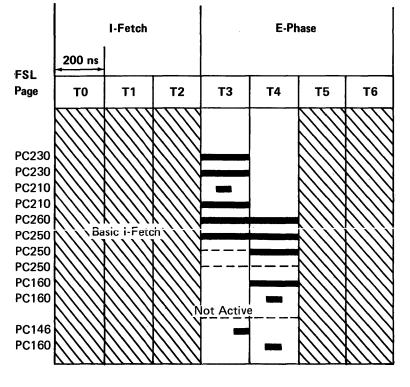

Bits 13 and 14: Not used in this instruction.

Z (Bit 15): Causes either the zone or numeric part of the selected register to be used in the hexadecimal branch function:

- Z = 0: The numeric part of the data byte of the selected register replaces bits 12-15 of the control storage microaddress register.
- Z = 1: The zone part of the data byte of the selected register replaces bits 12-15 of the control storage microaddress register.

Condition Code





Sequence and Timing

register instruction

(bits 8-15)

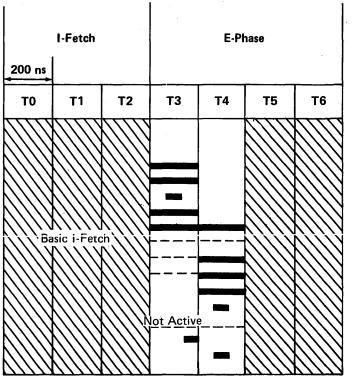
Scope Setup

Horizontal	=	$0.1\mu s/div$ uncalibrated to display one 'phase A' cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -- 'address compare' looking at the instruction referenced with an asterisk (*).

			FSL Page				
Hex I	F101						
Selec	t ['] LSR		PC230				
Stg G	iate High/L	_ow from LSR High/Low	PC230				
Clock	X-Reg fro	om Stg Gate High/Low	PC210				
Clock	Clock Y Low from SDR Low (Y high, don't care)						
	Set ALU Mode (X + carry)						
	ALU Gate High from ALU High						
ALU	Gate Low	(8-11) from Y Low (8-11)	PC250				
		(12-15) from ALU Low (8-11)	PC250				
	t LSR (MA		PC160				
Write	LSR Low	,	PC160				
Carry	,						
•	c Stg Gate	Check	PC146				
	ALU Gat		PC160				
Instru	uction Loo	P					
00	A103	LI					
01	F101	HBZ *	Horizor				


00	/1100		
01	F101	HBZ *	Horizont
02	BEA3	Proc	
03	0000	В	
			Vertical

Hex F100

Select LSR Stg Gate High/Low from LSR Clock X-Reg from Stg Gate High/Low Clock Y Low from SDR Low (Y high, don't care) Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate Low (12-15) from ALU Low (12-15) ALU Gate High from ALU High Select LSR (MAR) Write LSR Low Carry Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A103	LI
01	F100	HBN *
02	BEA3	Proc
03	0000	В

ntal

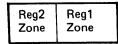
= 0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

= 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Hexadecimal Move (SRL, SRLD, MZZ, MZN)

SRL	(shift right logical)
SRLD	(shift right logical double)
MZZ	(link register 2 zone to register 1 numeric)
MZN	(link register 2 zone to register 1 zone)


11	1 1	H1	Reg	1	I	Function	H2	1	Reg	2
0	3	4	5	78	9	10	11	12	13	15

This instruction performs the following functions:

- Shift right logical (SRL) 8 bits of register (register 1).
- Shift right logical double (SRLD) 16 bits of register (register 1).
- · Link the zone part of register 2 to the numeric part of register 1 (MZZ) and put the results into register 1 in the following format:

Reg2 Reg1 Zone Numeric

• Link the zone part of register 2 to the zone part of register 1 (MZN) and put the results into register 1 in the following format:

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 0: Low-order byte

H1 = 1: High-order byte

The H1 field is not used for shift-right-logical-double instructions.

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Bit 8: Not used in this instruction.

Function (Bits 9 and 10): Specifies one of the following functions:

- Bits 9 and 10 = binary 00: Register 1 shift right logical (SRL). The 8 bits of the selected byte are moved one position to the right. The high-order (leftmost) bit is replaced with. a 0. The register 2 and H2 fields of the hexadecimal move instruction are not used for shift-right-logical functions.
- Bits 9 and 10 = binary 01: Register 1 shift right logical double (SRLD). The 16 bits of the selected register are moved one position to the right. The high-order bit (bit 0) is replaced with a 0. The H1, H2, and register 2 fields of the hexadecimal move instruction are not used for shift-right-logical-double functions.
- Bits 9 and 10 = binary 10: Link the zone part of register 2 to the zone part of register 1 (MZN). The zone digit of the register specified in register 2 is moved to the zone position of the register specified by register 1, and the zone digit of the register specified in register 1 is moved to the numeric position of the register specified in register 1. The results are put in the register specified by register 1 and have the following format:

Reg2	Re	eg1
Zone	Zo	one
Examp	le:	

Result

1111 0110

0110 1000 1111 0010 • Bits 9 and 10 = binary 11: Link the zone part of register 2 to the numeric part of register 1 (MZZ). The zone digit of the register specified in register 2 is moved to the zone position of the register specified in register 1, and the numeric digit of the register specified by register 1 remains the same. The results are put in the register specified by register 1 and have the following format:

Reg2 Zone	Re Nu	g1 ımeric		
Examı	ole:	Register 1 Register 2	0110 1111	
		Result	1111	10

(register 1)

H2 (Bit 11): Indicates which byte of the selected register (specified by register 2) in the local storage register stack is to be used:

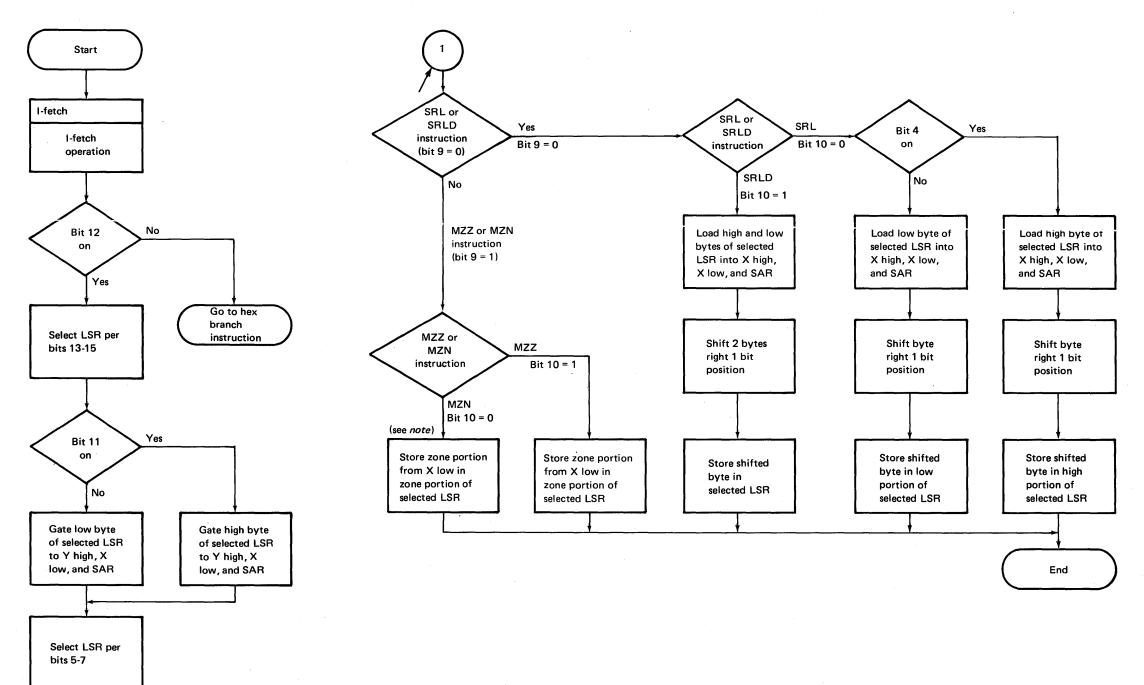
H2 = 0: Low-order byte

H2 = 1: High-order byte

The H2 field is not used in the shift-right-logical and shift-right-logical-double functions.

Bit 12: Changes the operation code (bits 0-3). Bit 12 is always a 1.

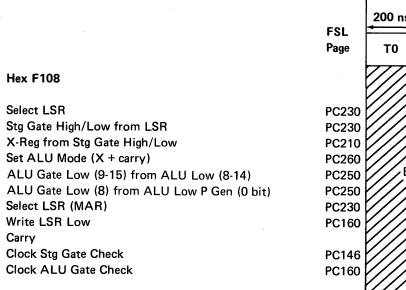
Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The register 2 field is not used in the shift-right-logical and shift-right-logical-double functions.


Condition Code

No change

001 010

1111 1001

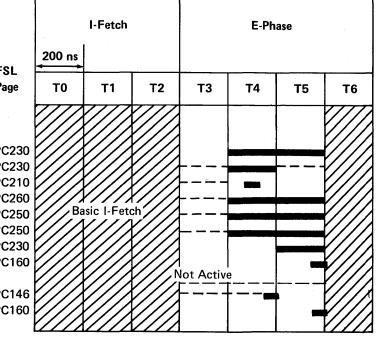

Sequence and Timing

Note: The zone portion of the selected LSR is also placed in the numeric portion of the selected LSR.

2

1

Instruction Loop


Hex F108

Select LSR

Carry

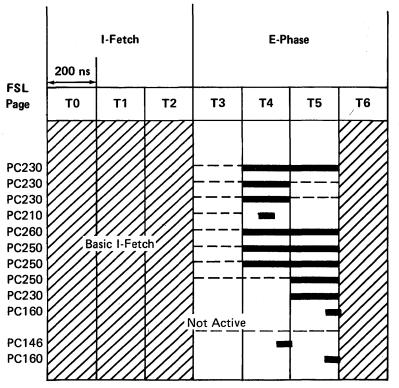
00	A155	LI
01	A000	LI
02	F108	SRL * (see note)
03	0000	В

Note: This instruction uses the low byte of the LSR.

Scope Setup

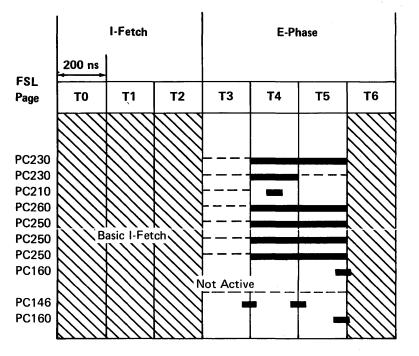
Horizontal	= 0.1 μ s/div uncalibrated to display one 'phase A'	
	cycle per division on chan 2.	

- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).


Select LSR	PC2
Stg Gate High from LSR	PC2
Stg Gate Low from Stg Gate High	PC2
X-Reg from Stg Gate High/Low	PC2
Set ALU Mode (X + carry)	PC2
ALU Gate Low (9-15) from ALU Low (8-14)	PC2
ALU Gate Low (8) from ALU Low P Gen (0 bit)	PC2
ALU Gate High from ALU Gate Low	PC2
Select LSR (MAR)	PC2
Write LSR High	PC1
Carry	
Clock Stg Gate Check	PC1
Clock ALU Gate Check	PC1

Instruction Loop

Hex F908


00	A155	LI	
01	A900	LI	
02	F908	SRL * (see note)	Hor
03	0000	В	

Note: This instruction uses the high byte of the LSR.

Scope Setup

- = 0.1 μ s/div uncalibrated to display one 'phase A' rizontal cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Scope Setup

Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex F128

Select LSR

Write LSR High

Instruction Loop

A155

A900

F128

0000

Carry

00

01

02

03

Stg Gate High/Low from LSR

Set ALU Mode (X + carry)

Clock Storage Gate Check Clock ALU Gate Check

X-Reg from Stg Gate High/Low

ALU Gate Low (9-15) from ALU Low (8-14)

ALU Gate High (1-7) from ALU High (0-6)

ALU Gate Low (8) from ALU High (7)

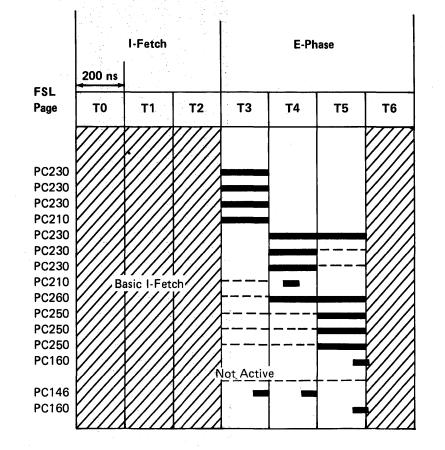
LI

LI

В

SRLD *

2


Hex F95A

Select LSR (operand 2) Stg Gate High from LSR High Stg Gate Low from Stg Gate High Y-Reg from Stg Gate High/Low Select LSR (operand 1) Stg Gate High from LSR High Stg Gate Low from Stg Gate High X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate High (12-15) from X Low (8-11) ALU Gate High from ALU High Write LSR High Carry Clock Storage Gate Check Clock ALU Gate Check

Instruction Loop

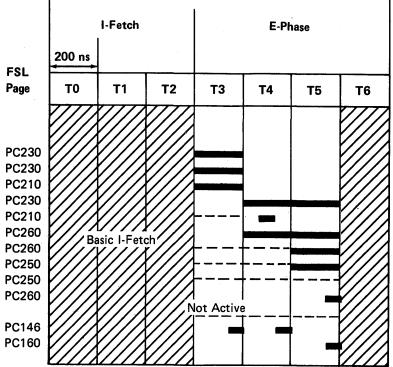
00	A9C1	LI
01	·AAE1	LI
02	F95A	MZZ * (see note)
03	0000	В

Note: This instruction uses the high byte of both operands.

Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A
		cycle per division on chan 2.
Vertical	=	0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).


Page

Select LSR (operand 2)	PC2
Stg Gate High/Low from LSR	PC2
Y-Reg from Stg Gate High/Low	PC2
Select LSR (operand 1)	PC2
X-Reg from Stg Gate High/Low	PC2
Set ALU Mode (X + carry)	PC2
ALU Gate Low (8-11) from Y Low (8-11)	PC2
ALU Gate Low (12-15) from ALU Low (8-11)	PC2
ALU Gate High from ALU Gate Low	PC2
Write LSR Low	PC2
Carry	
Clock Storage Gate Check	PC1
Clock ALU Gate Check	PC1
Instruction Loop	

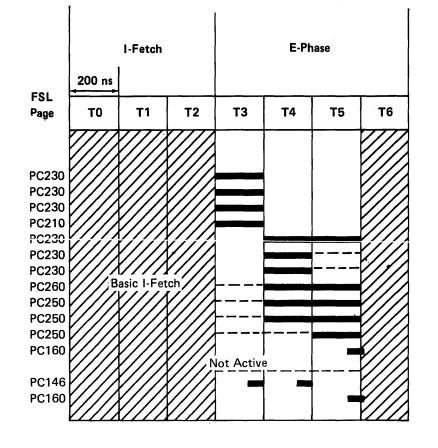
Hex F14A

00	A1C1	LI	Scope Setup
01	A2E1	LI	
02	F14A	MZZ * (see note)	Horizontal = 0.1μ s/div uncalibrated to display one 'phase A'
03	0000	В	cycle per division on chan 2.

Note: This instruction uses the low byte of both operands.

Vertical = 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).


Hex F97A

Select LSR (operand 2) Stg Gate High from LSR Stg Gate Low from Stg Gate High Y-Reg from Stg Gate High/Low Select LSR (operand 1) Stg Gate High from LSR Stg Gate Low from Stg Gate High Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate Low (12-15) from ALU Low (12-15) ALU Gate High from ALU Gate Low Write LSR High Carry Clock Storage Gate Check Clock ALU Gate Check

Instruction Loop

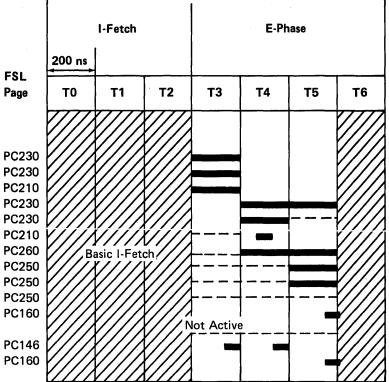
00	A9C1	LI
01	AAE1	LI
02	F97A	MZN * (see note)
03	0000	B

Note: This instruction uses the high byte of both operands.

Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A'
		cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.


ŀ

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Hex F16A

Selec	PC2					
Stg (PC2					
Y-Re	PC2					
Selec	PC23					
Stg (Gate High/	Low from LSR	PC2			
X-Re	eg from Stg	g Gate High/Low	PC2			
Set A	ALU Mode	(X + carry)	PC26			
ALU	Gate Low	/ (8-11) from Y Low (8-11)	PC2			
ALU	Gate Low	(12-15) from ALU Low (12-15)	PC2			
ALU	Gate High	n from ALU Gate Low	PC2			
Write	PC1					
Carr	y					
Cloc	k Stg Gate	Check	PC14			
Cloc	k ALU Gat	te Check	PC10			
Instr	uction Loc	q				
00	A1C1	LI				
01	A2E1	LI				
02	F16A	MZN * (see note)	Hori			
03 0000 B						

Note: This instruction uses the low byte of both operands.

Scope Setup

- = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' rizontal cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

I/O Immediate

	10	11	Мос	difier	Fur	nction	Н2	Reg	2	
,	0	3	4	7	8	11	12	13	 15	

The I/O immediate instruction has four main functions:

- Move 1 byte of data between the local storage registers and the I/O devices
- Direct control of the channel and the I/O functions that may or may not include data movement
- Direct control of the control processor functions
- Direct control of the main storage processor functions

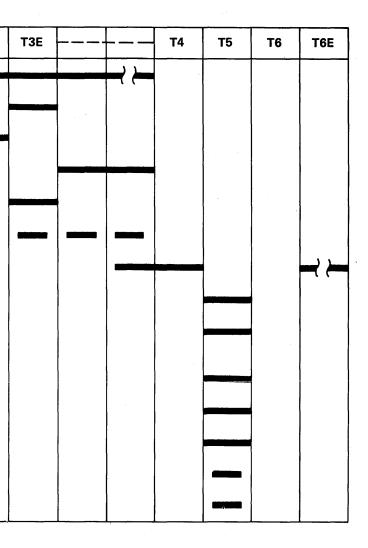
Modifier (Bits 4-7): The modifier bits rely on the device usage and are sent to the I/O attachment. These bits, along with the command bus out (CBO) bits, specify what is to be done.

Function (Bits 8-11): The function bits are sent to the port where they are decoded as one of the following commands: load, sense, control load, or control sense. This command is then sent to the I/O attachment on the 'command bus out' lines.

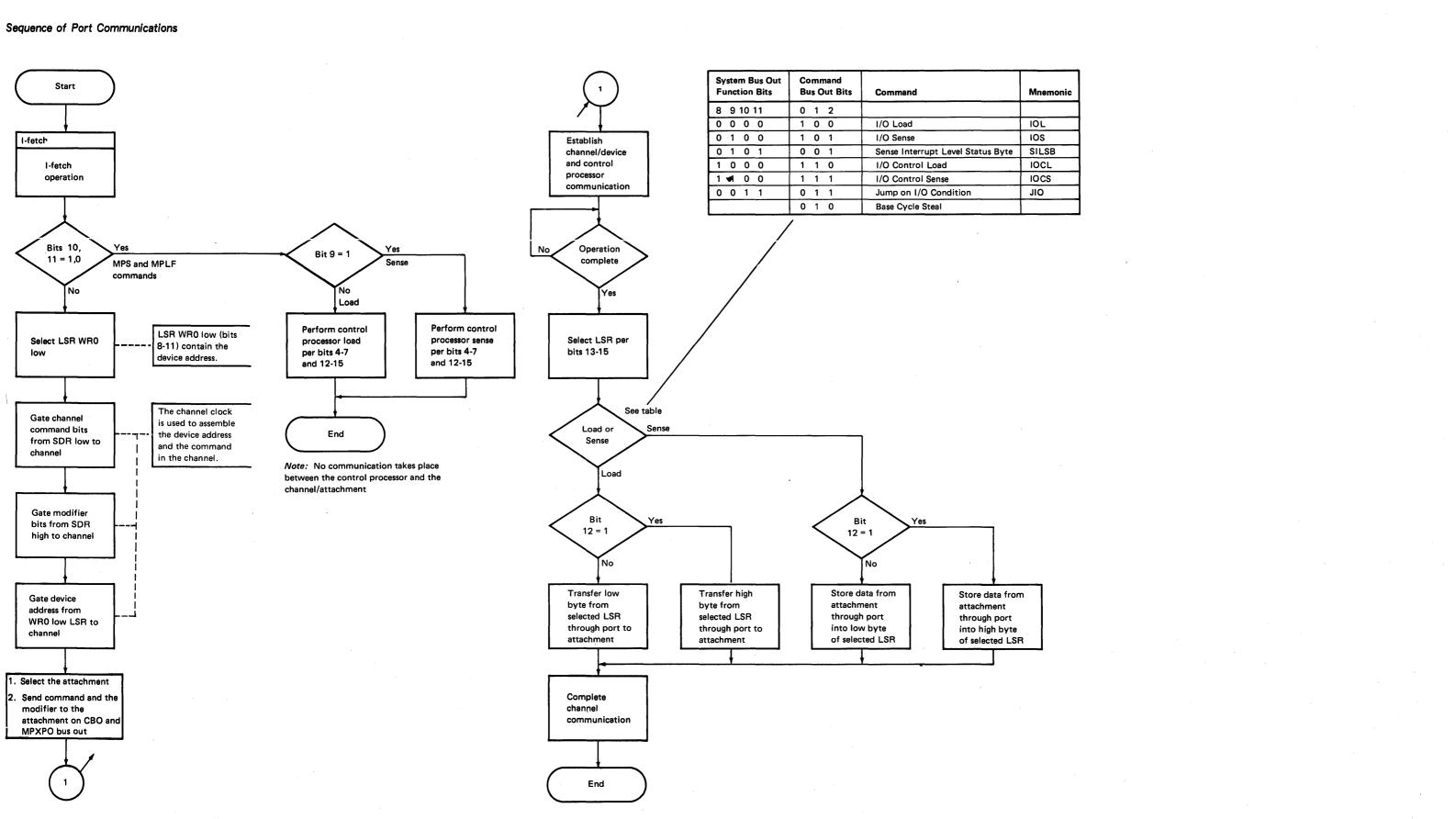
If bits 10 and 11 = binary 10, the command does not go to the port but remains in the control processor. For a bit definition of the sense information, see the control processor sense chart in this section. H2 (Bit 12): Selects the high- or low-order byte of the selected local storage register.

H2 = 0: Low-order byte

H2 = 1: High-order byte


Reg 2 (Bits 13-15): This field selects one of the eight work registers in the local storage register stack for the current interrupt level. This register is used for the byte of data or control information that is to be sent or received.

Note: For control processor control instructions, bits 12–15 are used as a second set of modifier bits.


Timing of CP Functions	FSL	200 ns		
	Page	то	T1	Т2
Select LSR (WR0)	PC240			
SDR High				
SDR Low	•			
LSR Low	PC230		I-Fetch	
Select Storage Gate High (from SDR high)	PC230			
Clock X Low, X High, SAR	PC210			
Advance Time	PC518			
Select LSR (bits 13, 14, 15)	PC240			
Select Storage Gate High (from LSR high)	PC230		1	
Select Storage Gate Low (from channel bus: 9=1; from LSR: 9=0)	PC230			
Select ALU Gate Low (from storage gate low)	PC250			
Select ALU Gate High (from ALU gate low)	PC250			
Write LSR Low (9=1, 12=0)	PC160			
Write LSR High (9, 12=1)	PC160			

Note: A more complete description of the I/O immediate commands can be found under *Commands* in the *Channel* section of this manual.

Timing of CP Functions

Т3

2

I/O Immediate Instructions

_

, U		noai		31140	1							
	2	3		67	Function 8 9 10 11	Address of LSR Used by Instruction 12 13 14 15	WR0 Device Address Device Type			Function 8 9 10 11	Address of LSR Used by Instruction 12 13 14 15	WR0 Device Address Device Type
1 C	1	1	XX	XX	0 0 0 0 I/O Load (IOL)	Z Z Z Z (WR0 = 00) Y R R R (WR0 ≠ 00)	00 =Channel (see instruction list)50 =Unit record (MICR) 125580 =CommunicationsA0 =Disk AB0 =Disk BC0 =Work stationD0 =DisketteE0 =Line printer	See note	X X X X For diag- nostic purposes only	1 1 0 0 I/O Control Sense (IOCS)	YRRR	00 =Channel50 =Unit record (MICR) 125580 =CommunicationsA0 =Disk AB0 =Disk BC0 =Work stationD0 =DisketteE0 =Line printer
.1 () 1	1	XX	××	0 1 0 0 I/O Sense (IOS)	Y R R R	00 = Channel (see chart and instr lis 50 = Unit record (MICR) 1255 80 = Communications A0 = Disk A B0 = Disk B C0 = Work station D0 = Diskette E0 = Line printer	Legend:	Y = High Z = Note R = Selec	ndent on speci or low byte of required or use ted LSR value rupt level	selected LSR d] .
1 () 1	1	хх	хх	0 1 0 1 Sense Inter- rupt Level Status Byte (SILSB)	YRRR	*0 = Channel (see chart and instr lis *Interrupt level of data	Note: See		in the approp this manual.	riate	
1 () 1	1	XX	××	0 1 1 0 Control Processor Sense (MPS)	YRRR	N/A (see chart and instruction list)					
1 (1	x x	××	1 0 0 0 I/O Control Load (IOCL)	x	00 =Channel (see instruction list)50 =Unit record (MICR) 125580 =CommunicationsA0 =Disk AB0 =Disk BC0 =Work stationD0 =DisketteE0 =Line printer	See note				
1 () 1	1	хх	××	1 0 1 0 Control Processor Load Function (MPLF)	x	N/A (see instruction list)					

. 2-90 . ____

Control Processor Sense (MPS)

The contents of these bytes or switches are moved to an LSR. This data can then be used by the program.

4567	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0 0 1 1 Interrupt status	Invalid logout					Interrupt code	Interrupt code	Interrupt code
0 1 0 0 Console status byte	Stop key	Main storage address compare	Overlap off	MSIPL device select switch	I/O request	Sys step mode	Go flag	Micro- interrupt check
0 1 0 1 Address/ Data switches 3 and 4	Switch 3 8	Switch 3 4	Switch 3 2	Switch 3	Switch 4 8	Switch 4 4	Switch 4 2	Switch 4 1
0 1 1 0 I/O clocks low byte	8.19 ms	16.38 ms	32.77 ms	65.54 ms	131.1 ms	262.1 ms	524.3 ms	1s
0 1 1 1 I/O clocks high byte	32 μs	64 µs	128 µs	256 μs	512 μs	1.02 ms	2.05 ms	4.10 ms
1 0 0 1 Address/ Data switches 1 and 2	Switch 1 8	Switch 1 4	Switch 1 2	Switch 1 1	Switch 2 8	Switch 2 4	Switch 2 2	Switch 2 1
1 0 1 0 CPU error byte	SDR P check	MOR P check	Storage gate P check	ALU gate P check	Control storage invalid addr/ SAR check	Microloop time-out/ SAR check	Main' storage invalid addr/ MSAR check	Main storage excep- tion/ MSAR check
1 0 1 1 PCR	Flag	Plus	Minus	Zero	Carry log	High log	Low log	Equal log

Control Processor Sense (Interrupt Status/Code)

The interrupt code indicates which hardware interrupt level the control processor was executing on when the error occurred that caused the logout. A decode of the interrupt code in terms of a hardware interrupt level is as follows:

Interrupt Code (Bits 5-7) Hardware Interrupt Level 0 5 4/Base cycle steal 2 Base cycle steal/Burst cycle steal 3 4 2 5 1/Burst cycle steal 0/Main level

I/O Sense (IOS)

By checking channel check byte bit steal check), the CE can determine i interrupt was caused by a hardware cycle steal operation.

	IC	os (Ch	anne	el/Port)		
	4	5	6	7	Bit 0	Bit 1	Bit
Sense Port Register	0	0	0	0			
Sense Port Error Byte	0	0	0	1	MPXPO bus out	Invalid device address	DB *Pc

6 = 1 f the level o					
t 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
	Data	i			
BI check	I/O time-out check	CBI/DBI not zero	System bus out P check	Cycle steal check	Invalid port

Valid I/O Immediate Instructions (Numeric Sequence by Instruction)

N	lumeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic
								B7AX	В	7	А	X	Reset event light 7	MPLF							
	00X	В	0	0	Х	Start fixed interval timer	IOL	B80X	в	8	.0	Х	Disable main storage	IOL	BFA5	В	F	А	5	Set 'stop' latch	MPLF
	04R	В	0	4	R	Sense port register	IOS						processor level 5 request		BFA6	В	F	А	6	Reset 'retry' latch, reset	MPLF
В	05R	В	0	5	R	Sense interrupt level	SILSB	B8AX	В	8	A	х	Set flag	MPLF						control processor loop	
						status byte		B90X	В	9	ο	х	Enable main storage pro-	IOL						time-out, and set go	
В	06R	В	0	6	R	Reserved	MPS						cessor interrupt level 5		BFA7	В·	F	А	7	Set retry	MPLF
В	08X	В	0	8	X	Disable extended time-out	IOCL						request		BFA8	В	F	Α	8	Enable I/O clocks	MPLF
В	0AR	В	0	Α	R	Load PCR (from high byte	MPLF	B96R	В	9	6	R	Address/Data switches 1-2	MPS	BFA9	В	F	А	9	No-op	MPLF
						of register only)		B9AF	В	9	А	F	No-op	MPLF	BFAA	В	F	А	А	Reset I/O clocks	MPLF
В	10X	В	1	0	Х	Disable main storage pro-	IOL	BAOF	В	A-F	0	F	No-op	IOL	BFAB	В	F	А	В	Disable I/O clocks	MPLF
						cessor level 5 interrupt		BA6R	В	А	6	R	Common processor check	MPS	BFAC	В	F	А	С	No-op	MPLF
В	14R	В	1	4	R	Sense port error byte	IOS						byte 0		BFAD	В	F	А	D	Reset control processor	MPLF
В	16R	В	1	6	R	No-op	MPS	BAAF	В	Α	А	F	No-op	MPLF						working	
В	18R	В	1	8	R	Load port register	IOCL	BB6R	В	В	6	R	Control processor	MPS	BFAE	В	F	А	Е	Processor wait	MPLF
B	1AX	В	1	А	Х	Reset carry-set equal	MPLF						condition reg (PCR)			**					
В	20X	В	2	0	Х	Reset main storage pro-	IOL	BBAF	В	В	А	F	Reset flag	MPLF	Reg 2 Leg	jend					
						cessor level 5 interrupt		BCAF	В	C	A	F	No-op	MPLF	X = 1	Don't car	е				
В	26R	В	2	6	R	No-op	MPS	BDAF	B	D	A	F	No-op	MPLF	R = \$	Specify r	egister				
В	28X	В	2	8	· X	Reset port check	IOCL	BEAO	B	E	A	0	No-op	MPLF							
В	2AX	В	2	А	Х	Reset event light 2	MPLF	BEA1	B	F	A	1	Set I/O service request	MPLF							
В	30X	В	3	0	Х	Reset fixed interval	IOL	BEA2	B	F	A	2	Reset I/O service request	MPLF							
						timer interrupt		BEA3	B	F	A	3	Processor check halt	MPLF							
В	36R	В	3	6	R	Sense interrupt status	MPS	BEA4	B	F	A	4	Disable checks	MPLF							
В	38X	В	3	8	Х	Enable extended time-out	IOCL	BEA5	B	F	Δ	5	Enable interrupts	MPLF							
В	3AX	В	3	А	Х	Reset event light 3	MPLF	BEA6	B	F	Δ	6	Disable interrupts	MPLF							
В	40X	В	4	0	Х	Enable main storage pro-	IOL	BEA7	B	F	Δ	7	Enable checks	MPLF							
						cessor level 5 interrupt		BEA8	B	F	A	, 8	Reset main storage	MPLF							
В	46R	В	4	6	R	Console status byte	MPS	52/10	2	-		Ũ	processor								
В	48X	В	4	8	Χ.	Reset interrupt level 5	IOCL	BEA9	в	Е	А	9	Turn on System In Use	MPLF							
						request		22/10	2	-	~	U	light								
В	4AX	В	4	А	Х	Reset event light 4	MPLF	BEAA	в	Е	А	А	Turn off System In Use	MPLF							
В	50X	В	5	0	Х	Stop fixed interval timer	IOL	82703	2	-		~~	light								
В	56R	В	5	6	R	Address/Data switches 3-4	MPS	BEAB	в	Е	А	в	Start main storage	MPLF							
В	58X	В	5	8	Х	Set channel odd parity	IOCL	527.6	2	-		5	processor								
В	5AX	В	5	А	Х	Reset event light 5	MPLF	BEAC	В	F	Δ	С	No-op	MPLF							
В	60X	В	6	0	Х	No-op	IOL	BEAD	B	E	Δ	D	No-op	MPLF							
В	66R	В	6	6	R	I/O clocks low byte	MPS	BEAE	B	Ē	Δ	E	No-op	MPLF							
В	68X	В	6	8	Х	Set channel even parity	IOCL	BFAO	B	F	A	0	Set control processor	MPLF							
В	6AX	В	6	А	Х	Reset event light 6	MPLF		-				working								
В	70X	В	7	0	Х	Set main storage pro-	IOL	BFA1	в	F	Á	1	Reset 'stop' latch	MPLF							
						cessor level 5 interrupt		BFA2	B	F	A	2	Reset 'machine check	MPLF							
В	76R	В	7	6	R	I/O clocks high byte	MPS		-	-		-	interrupt' latch								
	78X	В	7	8	х	Set interrupt level 5	IOCL	BFA3	В	F	А	3	Reset 'go' latch	MPLF							
						request		BFA4	В	F	A	4	Enable control processor	MPLF							
									-	-			loop time-out								
													toop and out								

ς.

Valid I/O Immediate Instructions (Alphabetic Sequence by Description)

Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code
B96R	В	9	6	R	Address/Data switches 1-2	MPS	BEA0	в	Е	А	0	No-op	MPLF	B28X	В
B56R	В	5	6	R	Address/Data switches 3-4	MPS	BFAC	В	F	А	С	No-op	MPLF	BFA6	В
BA6R	В	А	6	R	Common processor check	MPS	BFA9	В	F	А	9 [.]	No-op	MPLF		
					byte 0		B60X	В	6	0	Х	No-op	IOL .		
B46R	В	4	6	R	Console status byte	MPS	B 9AF	В	9	А	F	No-op	MPLF	BFA1	В
BB6R	В	B	6	R	Control processor	MPS	BEA3	В	Е	А	3	Processor check halt	MPLF	B05R	В
					condition reg (PCR)		BFAE	В	F	А	Е	Processor wait	MPLF	20011	-
BEA4	В	E	А	4	Disable checks	MPLF	B06R	В	0	6	R	Reserved	MPS	B36R	В
BFAB	В	F	Α	В	Disable I/O clocks	MPLF	B16R	В	1	6	R	No-op	MPS	B14 R	В
BEA6	В	E	А	6	Disable interrupts	MPLF	B26R	В	2	6	R	No-op	MPS	B04 R	В
B10X	В	1	0	х	Disable main storage	iOL	B1AX	В	1	А	X	Reset carry-set equal	MPLF	B68X	В
					processor level 5		BFAD	В	F	Α	D	Reset control processor	MPLF	B58X	В
					interrupt							working		BFA0	В
B80X	В	8	0	Х	Disable main storage	IOL	B2AX	В	2	А	Х	Reset event light 2	MPLF		
					processor level 5 request		B3AX	В	3	А	Х	Reset event light 3	MPLF	B8AX	В
B08X	В	0	8	х	Disable extended time-out	IOCL	B4AX	В	4	А	Х	Reset event light 4	MPLF	BEA1	B
BEA7	В	Ε	А	7	Enable checks	MPLF	B5AX	В	5	А	Х	Reset event light 5	MPLF	B78X	B
BFA4	В	F	А	4	Enable control processor	MPLF	B6AX	В	6	А	Х	Reset event light 6	MPLF		_
					loop time-out		B7AX	В	7	А	Х	Reset event light 7	MPLF	B70X	В
B38X	В	3	8	Х	Enable extended time-out	IOCL	B30X	В	3	0	Х	Reset fixed interval timer	IOL		-
BFA8	В	F	А	8	Enable I/O clocks	MPLF						interrupt		BFA7	В
BEA5	В	Е	А	5	Enable interrupts	MPLF	BBAF	В	В	А	F	Reset flag	MPLF	BFA5	В
B40X	В	4	0	Х	Enable main storage	IOL	BFA3	В	F	А	3	Reset 'go' latch	MPLF	B00X	В
					processor level 5		BFAA	В	F	А	А	Reset I/O clocks	MPLF	BEAB	В
					interrupt		BEA2	В	Е	А	2	Reset I/O service request	MPLF		
B90X	В	9	0	Х	Enable main storage	IOL	B48X	В	4	8	Х	Reset interrupt level 5	IOCL	B50X	В
					processor interrupt							request		BEAA	В
					level 5 request		BFA2	В	F	А	2	Reset 'machine check	MPLF		
B76R	В	7	6	R	I/O clocks high byte	MPS						interrupt' latch		BEA9	В
B66 R	В	6	6	R	I/O clocks low byte	MPS	BEA8	В	Е	А	8	Reset main storage	MPLF		
BOAR	В	0	А	R	Load PCR (from high byte	MPLF						processor			
					of register only)		B20X	В	2	0	Х	Reset main storage	IOL		
B18R	В	1	8	R	Load port register	IOCL						processor level 5 interrupt			
BAAF	В	А	А	F	No-op	MPLF									
BA0F	В	A-F	0	F	No-op	IOL									
BCAF	В	С	Α	F	No-op	MPLF									
	-	-		F											

MPLF

MPLF

MPLF

MPLF

BDAF

BEAC

BEAD

BEAE

В

В

В

В

•

D

Е

Е

Е

F

С

D

Е

No-op

No-op

No-op

. No-op

Α

Α

A A

Mod	Funct	Reg 2	Description	Mnemonic
•				
2	8	X	Reset port check	IOCL
F	A	6	Reset 'retry' latch, reset control processor loop time-out, and set go	MPLF
F	А	1	Reset 'stop' latch	MPLF
0	5	R	Sense interrupt level status byte	SILSB
3	6	R	Sense interrupt status	MPS
1	4	R	Sense port error byte	IOS
0	4	R	Sense port register	IOS
6	8	х	Set channel even parity	IOCL
5	8	х	Set channel odd parity	IOCL
F	А	0	Set control processor working	MPLF
8	А	х	Set flag	MPLF
E	А	1	Set I/O service request	MPLF
7	8	х	Set interrupt level 5 request	IOCL
7	0	Х	Set main storage processor level 5 interrupt	IOL
F	А	7	Set retry	MPLF
F	А	5	Set 'stop' latch	MPLF
0	0	х	Start fixed interval timer	IOL
E	А	В	Start main storage processor	MPLF
5	0	х	Stop fixed interval timer	IOL
Е	A	A	Turn off System In Use light	MPLF
E	Α	9	Turn on System In Use light	MPLF

.

I/O Load or I/O Control Load (IOL, IOCL)

10	11	Moc	lifier	Fur	oction	H2	Reg	2
0	3	4	7	8	11	12	13	15

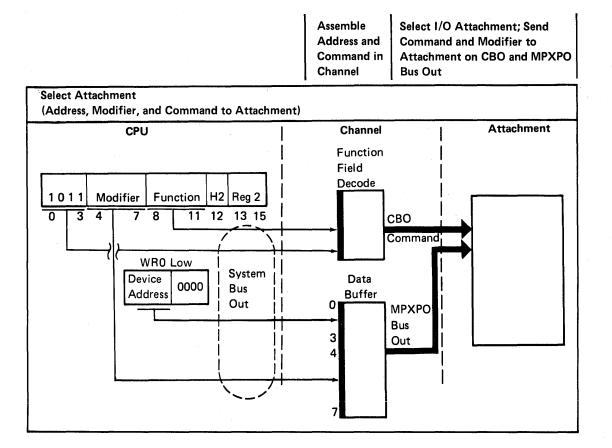
This part of the I/O immediate instruction moves 1 byte of data or control information from a local storage register to the I/O attachment.

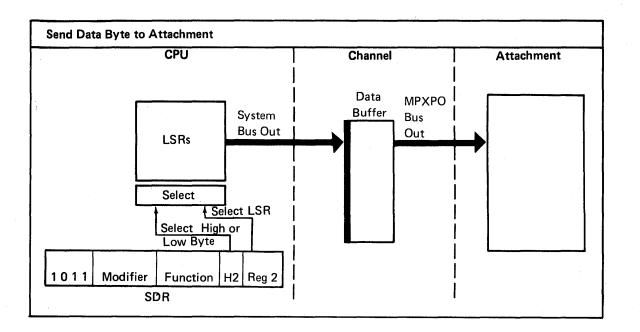
Modifier (Bits 4-7): The modifier bits are specified for the device and are sent to the I/O attachment with the command. These bits specify what is to be done with the data byte.

Function (Bits 8-11): The function bits are sent to the channel where they are decoded as either the load or control load command. This command is then sent to the I/O attachment on the 'command bus out' lines.

Bits 8-11 = 0000 for IOL

Bits 8-11 = 1000 for IOCL


H2 (Bit 12): Selects the low- or high-order byte of the selected local storage register of the current interrupt level:


H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register contains the byte of data or control information that is to be sent to the I/O attachment.

Note: A more complete description of the I/O load and I/O control load commands may be found under *Commands* in the *Channel* section of this manual.

Timing of CP/Channel Functions

		200 ns ←→																			
	501	то	T1	Т2	Т3	T3A	тзв	T3E					T4	Т5	Т6						
	FSL Page							C07	COF	COE	C06	C12				C13	C17	C1F	C1E	C16	C02
I/O Instruction	PC138																				
Stg Gate Hi/Lo from SDR (instr)	PC230					<u> </u>		<u> </u>													
Strobe SDR Lo Data (function to SBO)	PC502				_						<u>_</u>										
CBO Decode from SBO	PC542																				
Stg Gate Lo from Stg Gate Hi	PC230																				
																					*
Load Data Buffer (modifier bits)	PC526								<u>.</u>			·	·								
Select LSR (WR0 address)	PC230																			·	<u> </u>
Stg Gate Hi/Lo from LSR	PC230																				
Strobe LSR Data	PC526																				
2						 					· · · · · · · · · · · · · · · · · · ·										
Data Buffer from SBO (address)	PC502																 				
Control Out Pwrd (from channel)	PC510		Basic									· ·									
Service In (from I/O)	PC502		I-Fetch																		
Service Out Pwrd (from channel)	PC510																				
																					<u></u>
CBO Bits Active	PC542																				
Modifier Bits to Data Buffer	PC502																				
Address Bits to Data Buffer	PC502																				
Modifier Bits to MPXPO Bus Out	PC506																				
								······													
Address Bits to MPXPO Bus Out	PC506																				
Mod. and Address Bits Sent to I/O																					
Advance Time from Channel	PC518																				
Strobe Pwrd	PC510																				
	FC910																				
Data Gated to Data Buffer																			······		
Data Gated to MPXPO Bus Out									Device /	Address								Da	ta		

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

The first 'strobe pwrd' pulse after the rise of the 'control out pwrd' line signals the I/O attachment that the device address and the command information on the 'command bus out' and 'MPXPO bus out' lines are valid. The rise of the 'service in' line signals the port that the I/O attachment has taken the information from the 'command bus out' and 'MPXPO bus out' lines and is ready to receive data.

The first 'strobe pwrd' pulse after the rise of the 'service out pwrd' line signals the I/O attachment that the data byte on the 'data bus out' lines is valid. The fall of the 'service in' line signals the port that the I/O attachment has taken the data byte from the 'MPXPO bus out' lines.

I/O Sense or I/O Control Sense (IOS, IOCS)

10	11	Modifie	r	Fun	ction	H2	Re	g 2
0	3	4	7	8	11	12	13	15

This part of the I/O immediate instruction moves 1 byte of data or status type information from the I/O attachment to a local storage register.

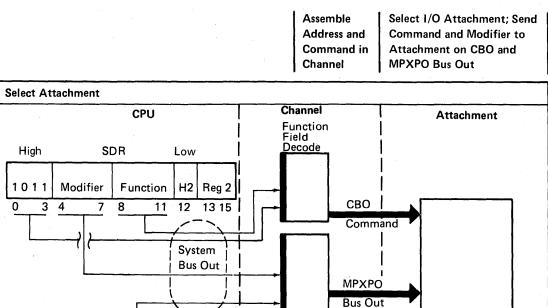
0

Modifier (Bits 4-7): The modifier bits are specified by the device and are sent to the I/O attachment with the command. These bits specify which data byte is to be sent.

Function (Bits 8-11): The function bits are sent to the port where they are decoded as either the sense or control sense command. This command is then sent to the I/Oattachment on the 'command bus out' lines.

Bits 8-11 = 0100 for IOS

Bits 8-11 = 1100 for IOCS


H2 (Bit 12): This bit is used to select the low- or high-order byte of the selected local storage register:

H2 = 0: Low-order byte

H2 = 1: High-order byte


Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The byte of data being sent from the I/O attachment is placed in this local storage register.

Note: A more complete description of the I/O sense and I/O control sense commands may be found under Commands in the Channel section of this manual.

Data

Buffer

11 12 15

0000

Device

Address

WR0 Low

2-96

Timing of CP/Channel Functions

		200 ns									Print	er IOS	1								
	FSL Page	то	T1	Т2	тз	ТЗА	тзв	ТЗЕ С07	COF	COE	C06	C12	Т4	Т5	Т6	C13	C17	C1F	C1E	C16	C02
I/O Instruction	PC138																				
Stg Gate Hi/Lo from SDR (instr)	PC230					L															
Strobe SDR Lo Data (function to SBO)	PC502																				
CBO Decode from SBO	PC542																				
Stg Gate Lo from Stg Gate Hi	PC230																		_		
Load Data Buffer (modifier bits)	PC526																				
Select LSR (WRO address)	PC230																				
Stg Gate Hi/Lo from LSR	PC230							1													
Strobe LSR Data	PC526																				i
Data Buffer from SBO (address)	PC502																	-7.			
Control Out Pwrd (from channel)	PC510		Basic																		
Service In (from I/O)	PC502		I-Fetch																		
Service Out Pwrd (from channel)	PC510																				
CBO Bits Active	PC542																				
Modifier Bits to Data Buffer	PC502											·									
Address Bits to Data Buffer	PC502																				
Modifier Bits to MPXPO Bus Out	PC506																				
Address Bits to MPXPO Bus Out	PC506													· ·							
Mod. and Address Bits Sent to I/O					!																
Advance Time from Channel	PC518																				
Strobe Pwrd	PC510																				
Data Gated to Data Buffer																					
Data Gated to MPXPO Bus Out							-														

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

The first 'strobe pwrd' pulse after the rise of the 'control out pwrd' line signals the I/O attachment that the device address and the command information on the 'command bus out' and 'MPXPO bus out' lines are valid.

The rise of the 'service in' line signals the port that the I/O attachment has taken the information from the 'command bus out' and 'MPXPO bus out' lines. The rise of the 'service in' line also signals the port that the data byte on the 'MPXPO data in' lines is valid. The rise of the 'service out pwrd' line signals the I/O attachment that the channel has taken the byte from the 'MPXPO data in' lines.

Sense Interrupt Level Status Byte (SILSB)

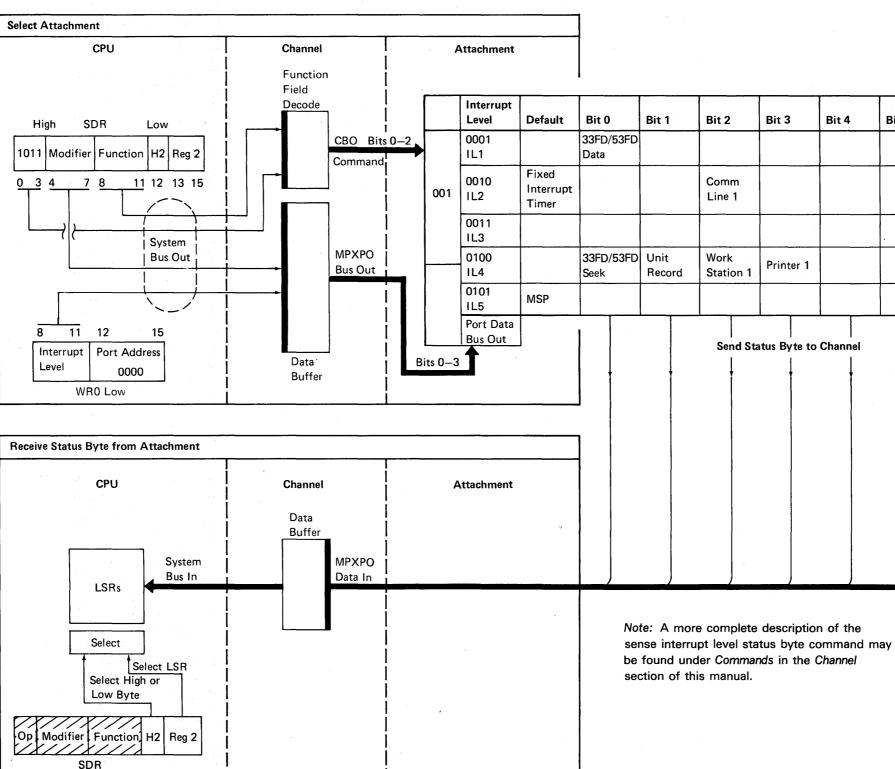
10	11	Mod	lifier	Fun	ction	H2	Reg	2
0	3	4	7	8	11	12	13	15

This function of the I/O immediate instruction moves 1 byte of status information from the I/O attachment to the selected local storage register. This status byte determines which devices are requesting service on a given interrupt level.

Modifier (Bits 4-7): The modifier bits are specified for each device and are sent to the I/O attachment with the command. These bits specify what is to be done with the data byte.

Function (Bits 8-11): The function bits are sent to the channel where they are decoded along with the operation code as a sense interrupt level status byte command. This command is then sent to the I/O attachment on the 'command bus out' lines.

Bits 8-11 = 0101


H2 (Bit 12): Selects the low- or high-order byte of the selected LSR of the current interrupt level:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register stores the byte of status (information containing the device causing the interrupt level) received from the I/O attachment.

WR0 Low (Bits 8-11): Contains the interrupt level hexadecimal value used by the I/O attachment to select the status byte of information to be stored in the selected local storage register.

Bit 4	Bit 5	Bit 6	Bit 7
		Disk 2	Disk 1
		Data	Data
		Disk 2 . Seek	Disk 1 Seek
Channel			

Control Processor Load Function (MPLF)

1 0	11	Мо	difier	Fui	nction	Н2	Reg	2	
0	3	4	7	8	11	12	13	15	5

This function of the I/O immediate instruction does not go to the channel but remains in the control processor. It performs functions (such as loading registers), sets/resets conditions, and enables/disables conditions.

Modifier (Bits 4-7): Specifies the type of load function to be performed by the command.

Function (Bits 8-11): Decoded by the control processor as an internal load function when bits 10 and 11 are equal to binary 10.

Modifier 2 (Bits 12-15): Combines with bits 4-7 to specify the type of load function to be performed by the command.

Control Processor Sense (MPS)

10	11	Mo	difier	Fu	nction	H2	Reg	2	
0	3	4	7	8	11	12	13	15	;

This function of the I/O immediate instruction does not go to the channel but remains in the control processor. A byte of data is moved to a local storage register to be used by the program. The byte contains one of the following:

Console status

Address/Data switches 1-4

Processor condition register

Interrupt status

Modifier (Bits 4-7): Selects the byte of data or status to be moved to the selected local storage register.

Function (Bits 8-11): Decoded by the control processor as an internal sense function when bits 10 and 11 are equal to binary 10.

H2 (Bit 12): Selects the low- or high-order byte of the selected local storage register for the current interrupt level:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register stores the byte of data to be used by the program.

Control Processor Sense (MPS)

.

The contents of these bytes or switches are

moved to an

LSR. This

program.

data can then

be used by the

4567	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0 0 1 1 Interrupt status	Invalid Iogout	-				Interrupt code	Interrupt code	Interrupt code
0 1 0 0 Console status byte	Stop key	Main storage address compare	Overlap off	MSIPL device select switch	I/O request	Sys step mode	Go flag	Micro- interrupt check
0 1 0 1 Address/ Data switches 3 and 4	Switch 3 8	Switch 3 4	Switch 3 2	Switch 3 1	Switch 4 8	Switch 4 4	Switch 4 2	Switch 4 1
0 1 1 0 I/O clocks Iow byte	8.19 ms	16.38 ms	32.77 ms	65.54 ms	131.1 ms	262.1 ms	524.3 ms	1s
0 1 1 1 I/O clocks high byte	32 µs	64 μs	128 μs	256 µs	512 μs	1.02 ms	2.05 ms	4.10 ms
1 0 0 1 Address/ Data switches 1 and 2	Switch 1 8	Switch 1 4	Switch 1	Switch 1 1	Switch 2 8	Switch 2 4	Switch 2 2	Switch 2 1
1 0 1 0 CPU error byte	SDR P check	MOR P check	Storage gate P check	ALU gate P check	Control storage invalid addr/ SAR check	Microloop time-out/ SAR check	Main` storage invalid addr/ MSAR check	Main storage excep- tion/ MSAR check
1 0 1 1 PCR	Flag	Plus	Minus	Zero	Carry log	High log	Low log	Equal log

I/O Storage (WTCL, WTCH, RDCL, RDCH, WTM, RDM)

WTCL (I/O load from control storage low) WTCH (I/O load from control storage high) RDCL (I/O store to control storage low) RDCH (I/O store to control storage high) WTM (I/O load from main storage) RDM (I/O store to main storage)

0	1 0	0	Modifier		0	Ŵ	С	D	v	Reg 2	
0		3	4	7	8	9	10	11	12	13 1	5

This instruction moves 1 byte of data between either main storage or control storage and the I/O attachment.

Modifier (Bits 4-7): Specifies the control field for the I/O attachment. The field is moved to the attachment through the port. Bit 4 of this field is used in the control processor to select the high- or low-order byte of control storage. When main storage is being addressed, bit 4 is not used by the control processor.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 0.

W (Bit 9): Identifies the direction the data is to be moved.

W = 0: Read data from storage and move it to the I/O attachment

W = 1: Write data to storage from the I/O attachment

C (*Bit 10*): Selects main storage or control storage.

C = 0: Main storage

D (Bit 11): Indicates if the address in the local storage register (specified by bits 13-15) is to be increased or decreased.

- D = 0: Increase the selected local storage register by the value of field V
- D = 1: Decrease the selected local storage register by the value of field V

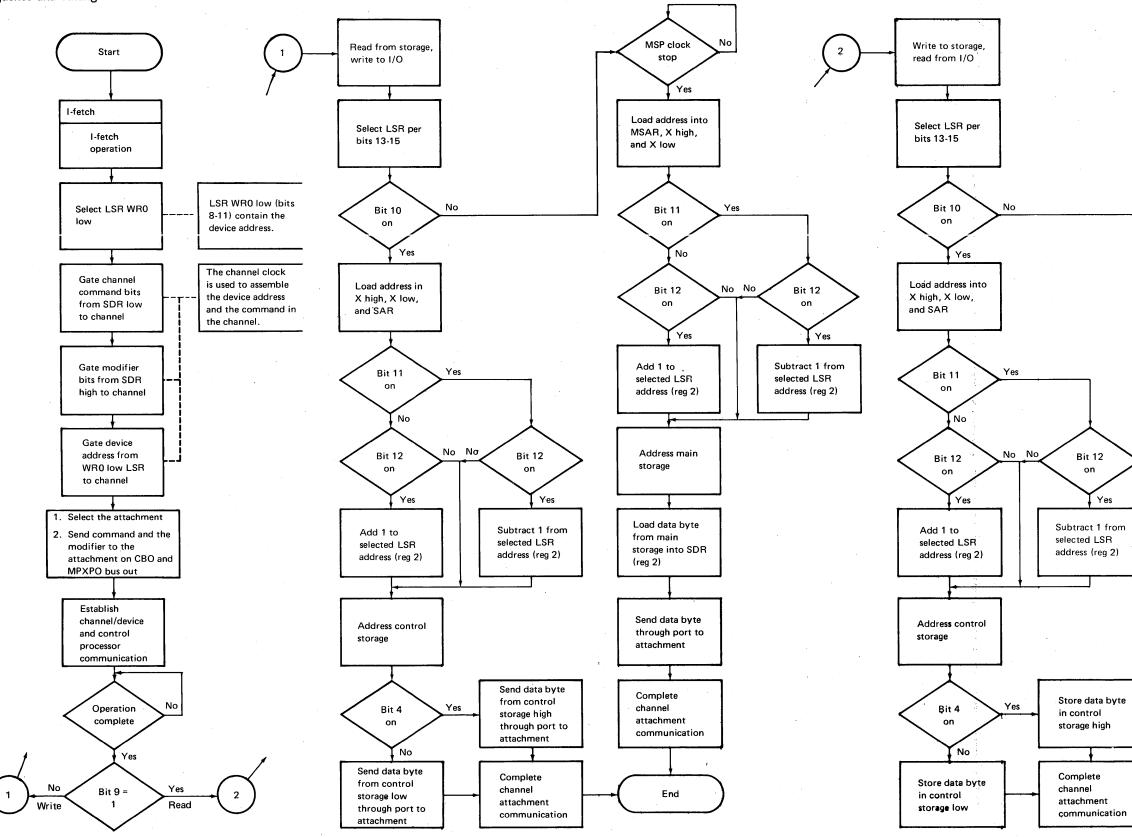
Note: Bits 8–11 are sent to the port where they are decoded as either the load command or the sense command. The command is then sent to the I/O attachment on the 'command bus out' lines.

V (Bit 12): Indicates the amount the address in the local storage register (specified by bits 13-15) should be increased or decreased. If V = 0, the address in the selected local storage register is not changed. If V = 1, the address in the selected local storage register is decreased or increased by 1, as specified by the bit setting of field D.

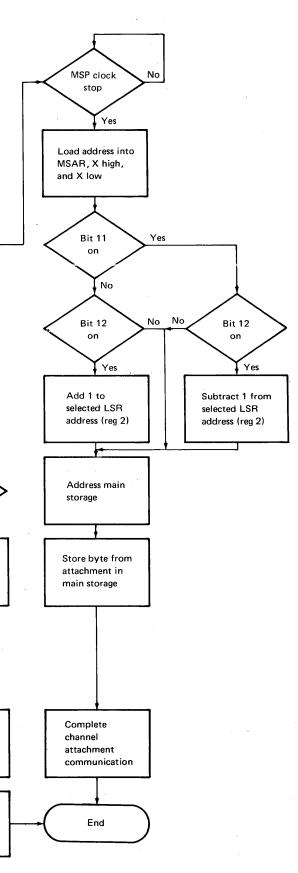
Register 2 (Bits 13-15): Selects one of the eight local storage registers assigned to the current interrupt level that contains the storage address needed to move the data. The address in the specified local storage register may be updated as specified by bit 11 (field D) and bit 12 (field V).

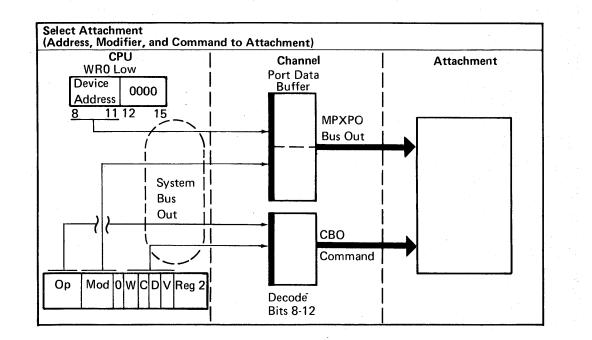
Condition Code

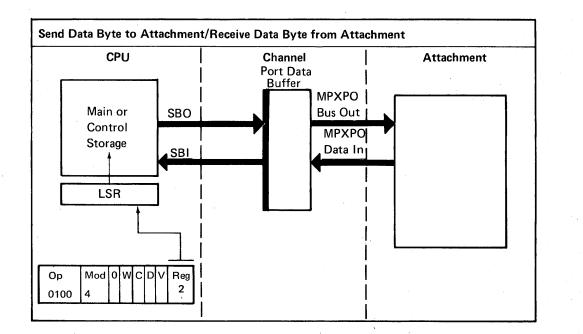
No change

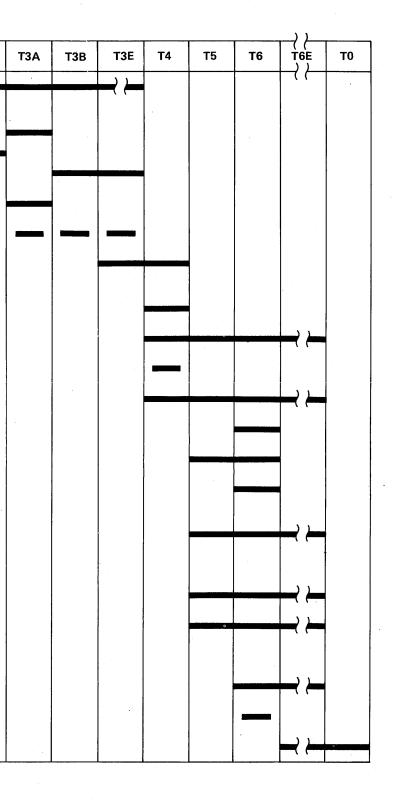

Note: A more complete description of the I/O storage commands may be found under *Commands* in the *Channel* section of this manual.

Instruction List


....


Bits		
4 8 9 10 11 12 0 0 1 1 0 1 1 0 1 1 0 1	Mnemonic RDCL RDCH	Description I/O store to control storage, increase register 2 by 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RDCL RDCH	I/O store to control storage, decrease register 2 by 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RDCL RDCH	I/O store to control storage, no change to register 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WTCL WTCH	I/O load from control storage, increase register 2 by 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WTCL WTCH	I/O load from control storage, decrease register 2 by 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WTCL WTCH	I/O load from control storage, no change to register 2
X 0 1 0 0 1	RDM	I/O store to main storage, increase register 2 by 1
X 0 1 0 1 1	RDM	I/O store to main storage, decrease register 2 by 1
X 0 1 0 0 0	RDM	I/O store to main storage, no change to register 2
X 0 0 0 1	WTM	I/O load from main storage, increase register 2 by 1
X 0 0 0 1 1	WTM	I/O load from main storage, decrease register 2 by 1
X 0 0 0 0 0	WTM	I/O load from main storage, no change to register 2
Lewend for D't As		


Legend for Bit 4: X: Not used Sequence and Timing


2

Timing of CP FunctionsPageT0T1T2Select LSR(WR0)PC240II			200 ns		
Select Storage Gate Low (from storage gate high, from SDR low, from LSR low)PC230Select Storage Gate High (from SDR high)PC230Clock X Low, X High, SARPC210Advance TimePC518Select Storage Gate High/Low (from LSR high/low)PC230Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC230Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate High (from SDR high: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134	Timing of CP Functions	FSL Page	то	Т1	Т2
storage gate high, from SDR low, from LSR low)PC230Select Storage Gate High (from SDR high)PC230Clock X Low, X High, SARPC210Advance TimePC518Select Storage Gate High/Low (from LSR high/low)PC230Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC230Select Storage Gate High (from SDR 	Select LSR(WR0)	PC240			
from LSR Iow)PC230Select Storage Gate High (from SDR high)PC230Clock X Low, X High, SARPC210Advance TimePC518Select Storage Gate High/Low (from LSR high/low)PC240Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4,9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134	-				
Select Storage Gate High (from SDR high)PC230Clock X Low, X High, SARPC210Advance TimePC518Select Storage Gate High/Low (from LSR high/low)PC240Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC230Select Storage Gate Low (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4,9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134	from SDR low,				
Clock X Low, X High, SARPC210I.FetchAdvance TimePC518Select Storage Gate High/Low (from LSR high/low)PC240Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134Write Storage High (4, 9, 10=1)PC134	from LSR low)	PC230			
Advance TimePC518Select Storage Gate High/Low (from LSR high/low)PC240Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC230Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134Write Storage High (4, 9, 10=1)PC134	Select Storage Gate High (from SDR high)	PC230			
Select Storage Gate High/Low (from LSR high/low)PC240Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134	Clock X Low, X High, SAR	PC210	I-F	I etch I	
high/low)Select LSR (bits 13, 14, 15)PC230Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134	Advance Time	PC518	-		
Clock X Low, X High, SARPC210ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4,9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134		PC240			
ALU (± 1 or pass)PC260ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134	Select LSR (bits 13, 14, 15)	PC230			
ALU Gate High/Low (from ALU high/low)PC250Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC134Write Storage High (4, 9, 10=1)PC134	Clock X Low, X High, SAR	PC210			
Storage CyclePC012Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC230Write Storage High (4, 9, 10=1)PC134	ALU (± 1 or pass)	PC260			
Clock SDR (write trigger)PC220Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC230Write Storage High (4, 9, 10=1)PC134	ALU Gate High/Low (from ALU high/low)	PC250			
Select Storage Gate High (from SDR high: 9=0; from channel bus: 9=1)PC230Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)PC230Write Storage High (4, 9, 10=1)PC134	Storage Cycle	PC012			
high: 9=0; from channel bus: 9=1)Select Storage Gate Low (from channel bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0)Write Storage High (4, 9, 10=1)PC134	Clock SDR (write trigger)	PC220			
bus: 9=1; from low: 4, 9=0 or 9, 10=0; from storage gate high: 4, 10=1; 9=0) Write Storage High (4, 9, 10=1) PC134		PC230			
	bus: 9=1; from low: 4, 9=0 or 9, 10=0; from	PC230			
	Write Storage High (4, 9, 10=1)	PC134		-	
Write Storage Low (4=0, 9=1 or 9=1, 10=0) PC134	Write Storage Low (4=0, 9=1 or 9=1, 10=0)	PC134			
ALU Gate High/Low (from ALU high/low) PC250	ALU Gate High/Low (from ALU high/low)	PC250			
Write LSR High/Low (write trigger/phase B) PC160	Write LSR High/Low (write trigger/phase B)	PC160	- 		
Advance Time PC518	Advance Time	PC518			

Т3

.

	FSL Page		ess and nand in				tachment; t on CBO				fier ¹						Se	nd Data	Byte to A	ttachmei	nt							
CPU Clock	PC110	T3 200 ns	тза	тзв	ТЗЕ		[<u> </u>	<u>ډ</u>					Т4	Т5	Т6	T6E	-			(5 5					TO	Т1
I/O Instruction	PC138	200 hs	-		,			,	<u>ب</u>												(\$;	 					
Port Clock	PC526	C00	C09	C03	C07	C0F	COE	C06 \	S. C07	COF	COE	C06	C12	C10	C18	C19	C13	C17	C1F	C1E	C16	\$ C17	C1F	C1E	C16	C02		
SDR Low to Channel	PC220																					•						
SDR High to Channel	PC220																											
WR0 Low to Channel	PC230	ŀ																										
Device Address and Modifier to MPXPO Bus Out	PC506							,	;												•							
Command to CBO	PC542								<u>, </u>																			
Control Out Pwrd	PC510		-					,	<u>, </u>																			
Strobe Pwrd	PC510	:						- <u>-</u>	<u>}</u>												(s s						
Service In	PC518																				(; ;						
Select LSR	PC240							i																			-	
Storage Cycle	PC230							-													-							
Gate SDR to Channel	PC220																				14 g							
Data to MPXPO Bus Out	PC024															- -						\$ }						
Service Out Pwrd	PC510																					\$ }						
Advance Time	PC518																											

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

Jump on I/O Condition (JIO)

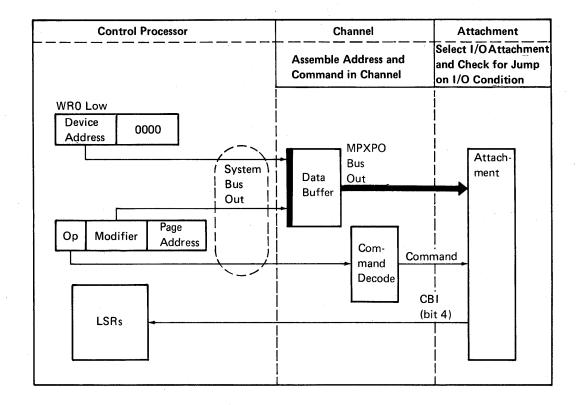
	0	0	1	1	Mod	lifier	Pag	e Address
(0			3	4	7	8	15

This instruction tests I/O conditions. If the condition tested is active, this instruction causes a jump to the address specified by the page address (bits 8-15). If the condition tested is not active, the next sequential instruction is executed.

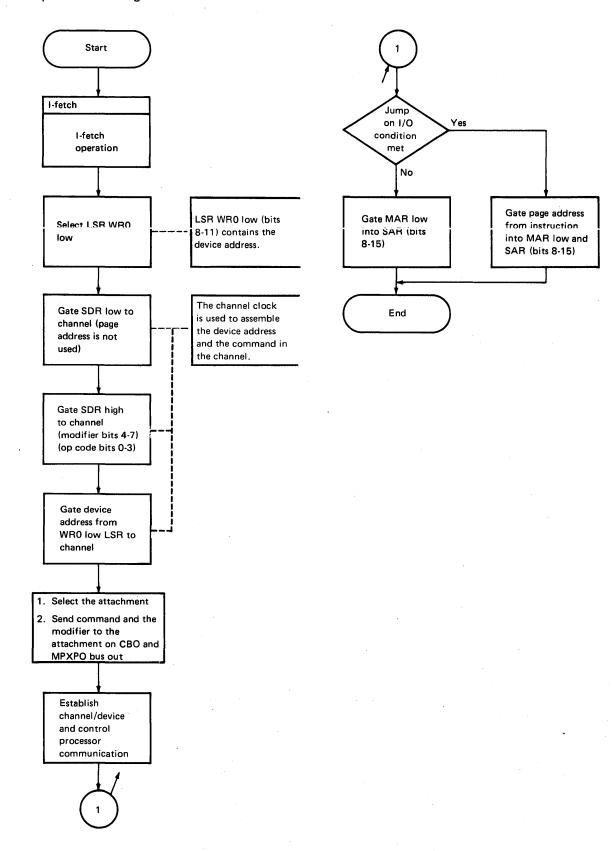
The operation code (bits 0-3) is sent to the port where the bits are decoded as a jump-on-1/O-condition command. This command is then sent to the 1/O attachment through the port.

Modifier (Bits 4-7): Specifies the control field for the I/O devices. The I/O device being used determines how this field is used. The modifier field is moved to the I/O attachment through the port.

Some of the modifier combinations make a common code for those conditions that are used by most I/O attachments. The modifier usage is specified as follows:


Modifier Field Setting 4 5 6 7	Description
0000	Adapter check
0001	Adapter not ready
0010	Busy condition 1
0011	Busy condition 2
0100	Interrupt enabled
0101	Diagnostic real
0110	Diagnostic not real
0 1 1 1 through 1 1 1 1	Available for I/O attachment needs

Page Address (Bits 8-15): Permits a jump inside a page boundary (256-word limits hex 00 through hex FF) in control storage only. The page address must be located on the same page boundary as the jump on I/O condition. This field replaces the 8 low-order bits in the microaddress register if the I/O device indicates that the jump condition is met. The 'CBI bit 4' port line determines if the I/O condition is met.


Condition Code

No change

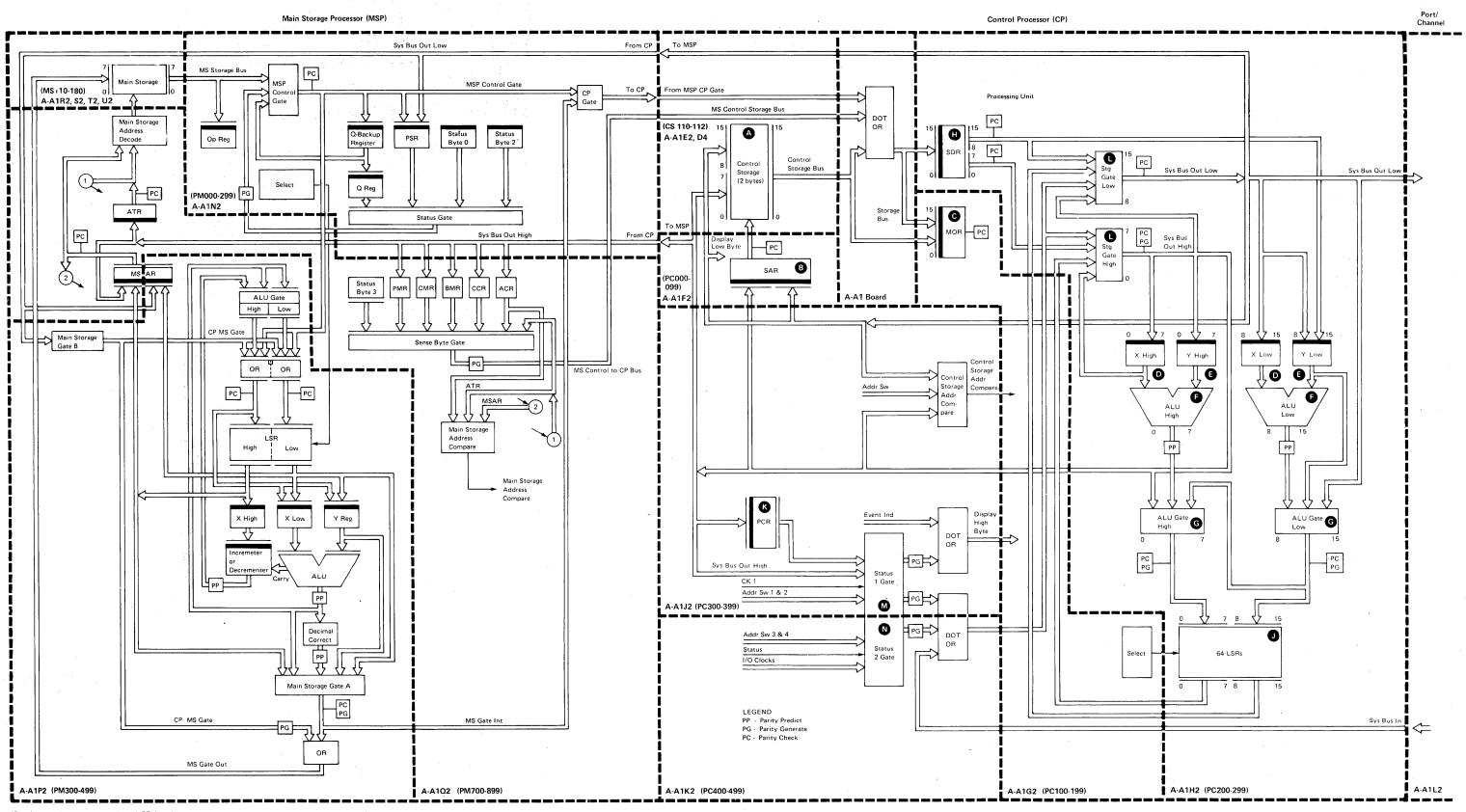
Note: A more complete description of the jump-on-I/O-condition command may be found under *Commands* in the *Channel* section of this manual.

Sequence and Timing

		200 ns	
Timing of CP Functions	FSL Page	то	T1
Select LSR (WR0)	PC240	-	
Select Storage Gate Low (from storage gate high,			
from SDR low,			
from LSR low)	PC230		
Select Storage Gate High (from SDR high)	PC230		
Clock X Low, X High, SAR	PC210	l I-Fe	rtch
Clock Storage Gate Check	PC230		
Advance Time	PC518		
Select Storage Gate Low (from SDR low: jump on I/O condition met; from LSR low: jump on I/O condition not met	PC230		
Select LSR (MAR)	PC240		
Select ALU Gate Low (from storage gate low)	PC250		
Write LSR Low (jump on I/O condition met)	PC160		
Clock ALU Gate Check	PC160		

Т3	T3E	Т4	Т5	Т6	T6E
	·				
				t	

Т2


This page intentionally left blank.

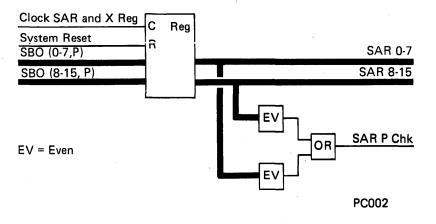
	FSL Page	Assemble Address and Command in Channel			Select I/O Attachment; Send Command and Modifier ¹ to Attachment on CBO and MPXPO Bus Out							Send Data Byte to Attachment															•	
CPU Clock	PC110	T3 200 ns	тза	тзв	ТЗЕ			<u> </u>	<u>}</u>					T4	Т5	Т6	T6E				{	· · · · · ·					TO	T1
I/O Instruction	PC138	200 113		 					<u>ب</u>													, ;						
Port Clock	PC526	C00	C09	C03	C07	COF	COE	C06 \$	ς C07	C0F	COE	C06	C12	C10	C18	C19	C13	C17	C1F	C1E	C16	\$ C17	C1F	C1E	C16	C02		
SDR Low to Channel	PC220																1									1		
SDR High to Channel	PC220																											
WR0 Low to Channel	PC230								••																			
Device Address and Modifier to MPXPO Bus Out	PC506								<u> </u>											-								
Command to CBO	PC542								;											[_					
Control Out Pwrd	PC510								;				-												· .			
Strobe Pwrd	PC510							<u> </u>			1	_										· ·						
Service In	PC518																					; ;						
Select LSR	PC240									i:																		
CBI Valid (bit 4)	PC510							<u> </u>																				
Write LSR (BOC met)	PC160													1				<u> </u>		<u> </u>		; <u>;</u>				<u></u>		
CBI 4 Valid to CPU	PC510			-		1																,						
Select SDR (BOC met)	PC230		-																		(· ····						
or LSR (BOC not met)	PC240	s,																· · ·				, , ,						
Service Out Pwrd	PC510																				,	, ,						
Advance Time	PC518									l		· · · ·																

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

FUNCTIONAL UNITS

1.1

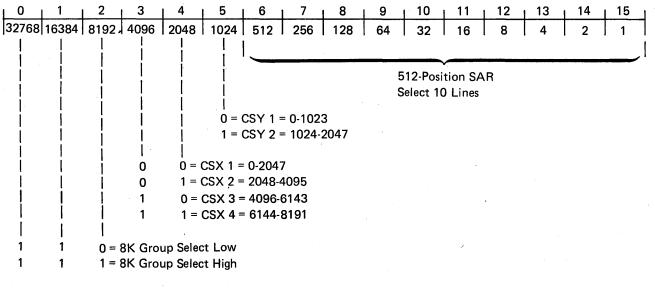
*Data flow bus lines may not pass through FRUs as shown


Control Storage

Control storage contains 16K addresses; each address is 2 bytes wide. Control storage is loaded from the disk during normal operations, or from the diskette when diagnostic programs are being run. When control storage is loaded, it contains the control storage programs that are used to support system programs.

Storage Address Register

The storage address register (SAR) is a 16-bit register used to address control storage. This register holds all storage addresses that are moved from the local storage register or generated from local storage register, X high register, or storage data register data. The data moved into the storage address register does not change during the storage cycle.


Storage Address Register

Micro-Operation Register G

The micro-operation register (MOR) is a 16-bit register that holds each control storage instruction as it is taken from control storage. The instruction is decoded to control the data flow (for example, gate selection, arithmetic and logic unit operations, local storage register selection, and setting the processor condition register).

SAR Decoding Control Storage

0 = 0-16K Card Select

0

2

X-Registers and Y-Registers D and E

These four registers are the buffer input to the two control processor arithmetic and logic units (ALU). The X-high and Y-high registers are input to ALU high and the X-low and Y-low registers are input to ALU low.

The X-registers are buffers for base constants into the ALU.

The Y-registers are buffers for changing constants into the ALU.

Arithmetic and Logic Units

There are two arithmetic and logic units (ALUs) in the control processor. ALU high uses bits 0-7 when 2-byte data fields are used. ALU low uses bits 8-15 when either 1-byte or 2-byte data fields are used. The ALUs always send 2 bytes of data to the local storage register (LSR) input bus. When 2 bytes are used in the ALU operation, both bytes (high and low) are placed on the LSR input bus and are, at the same time, written into bits 0-7 and bits 8-15 of the LSR. When the ALU output is only 1 byte, the byte is sent to both the high and low LSR input bus lines. In these cases, the instruction selects only 1 byte to be written into an LSR. The ALU performs the following functions:

Function	Fun	ction	Carry In		
	F0	F1	F2	F3	
Y→X(ZAR)	0	0	0	0	*
X XR Y	0	0	0	1	*
X OR Y	0	0	1	1	*
X AND (not) Y	0	1	0	1	*
X AND Y	0	1	1	0	*
X OR (not) Y	0	1	1	1	*
X minus one	1	0	0	0	0
X plus Y plus-					
carry	1	0	0	1	С
X minus Y					
(16/8)	1	0	1	-0	1
X plus Y					
(16 or 8)	1	0	1	1	0
X minus Y minus					
(16 or 8)	1	1	0	0	1
X plus Y (16/8)	1	1	0	1	0
X minus Y	1	1	1	0	С
X plus one					
(carry in)	1	1	1	1	1

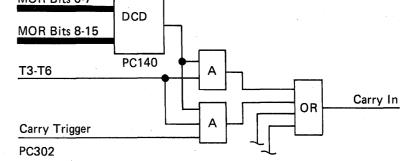
Legend for Function:

16/8-First field 16 bits, second field 8 bits

16 or 8-Both fields 16 bits or both fields 8 bits

Legend for Carry In:

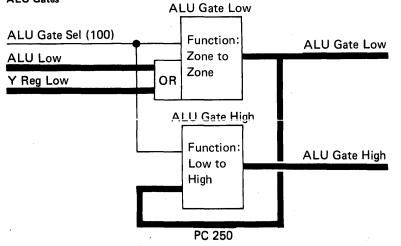
- C = Carry used (carry trigger from an earlier operation)
- 1 = Force carry to 1 (by hardware, T-times, and instruction)
- 0 = Force carry to 0
- * = Not used


Any data sent to the ALU is first loaded into the X-high and Y-high registers for the low bytes. The X-registers supply the data for one operand, and the Y-registers supply the data for the other operand that is used in the current ALU operation. The instruction and its function determine if 1 or 2 bytes are affected by the ALU.

The ALU does arithmetic operations with two 16-bit words, one 16-bit word plus or minus one 8-bit byte, or one 8-bit byte plus or minus one 8-bit byte. The instruction, logical/arithmetic 1, is used for 8-bit by 8-bit arithmetic operations. The logical/arithmetic 2 instruction is used for 16-bit by 16-bit arithmetic and 16-bit by 8-bit arithmetic operations. In 16-bit by 8-bit arithmetic, the 'reset Y high reg' line (generated on the data flow card) resets the 8 bits of the Y-register that are not used.

Instructions that cause an increase or decrease of the X-register contents are executed by resetting the Y-high and Y-low registers and then forcing a carry in to the ALU. This causes only the X-register to be affected by the instruction.

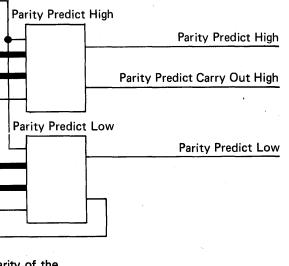
The output of the ALU always sends 2 bytes of data to the LSR stack input bus. If 2 bytes are needed by the ALU operation, both bytes are placed directly on the LSR input bus and are, at the same time, written into the LSR stack. If only 1 byte was operated on by the ALU, the result (1 byte) is sent to both the high and low input buses. Only the byte selected by the instruction is written into the LSR stack.



Arithmetic and Logic Unit Gates G

ALU gate high and ALU gate low control the path of the ALU data. The lines that select the data path are generated by a decode of the micro-operation register bits and the T-times.

ALU Gates



Arithmetic and Logic Unit Parity Predict

Parity Predict Circuits

ALU Function 0	DCD	
ALU Function 1	000	
ALU Function 2		
ALU Function 3	!	
X Reg High		
Y Reg High		
		Γ
X Reg Low		
Y Reg Low	· · · ·	
Carry In		
· · · · · · · · · · · · · · · · · · ·		

Parity predict circuits predict the parity of the result of the ALU operation. This predicted parity is compared against the parity generated. If there is a difference, a parity check results.

Storage Data Register 🕀

The storage data register (SDR) is a 16-bit register that is an intermediate buffer for all instructions and data bytes taken from control storage and main storage (under control of the control processor or I/O operations). Each instruction is 2 bytes wide and, therefore, uses all 16 bit positions.

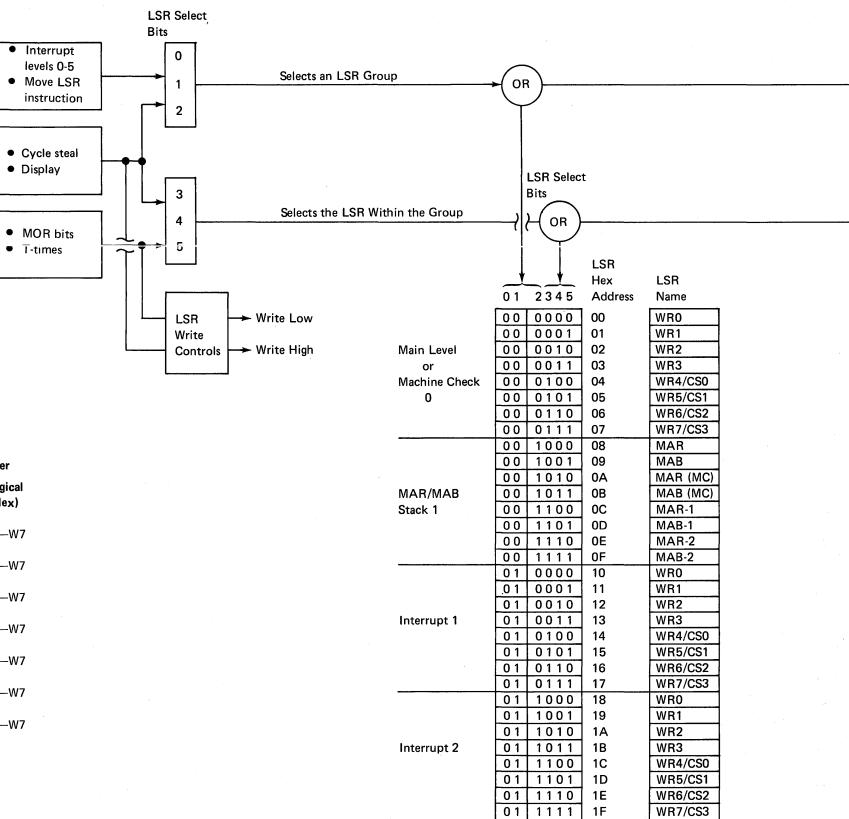
The storage data register high-order bits (0-7) are gated through the storage gate high register to the high-order X-register and Y-register and then to the arithmetic and logic unit (ALU). The storage data register low-order bits (8-15) are gated to the low-order X-register and Y-register and then to the ALU.

2-112

Local Storage Registers

The control processor uses the local storage regivters (LSRs) as:

- Data buffers and address registers for control storage
- Operand registers for internal calculations
- I/O control registers that can be loaded from the I/O attachments or from which data can be sent to the I/O attachments

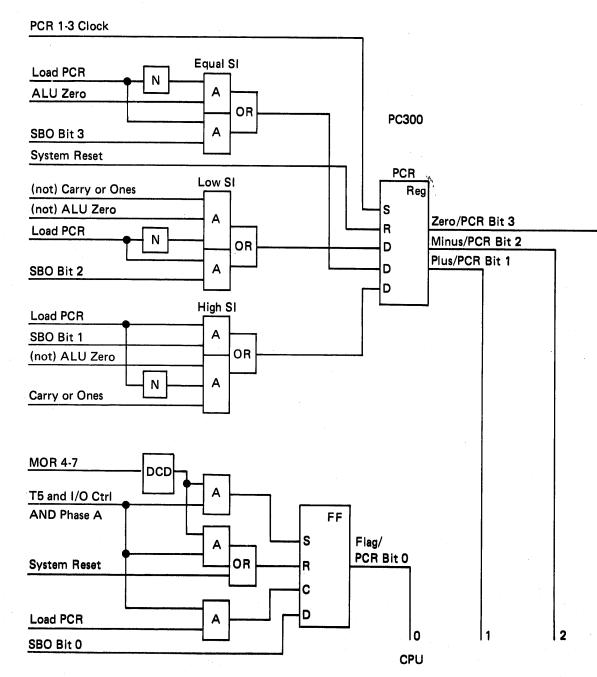

The local storage register stack contains 64 two-byte registers. Bits 0-7 of each register are the high local storage register and bits 8-15 of each register are the low local storage register.

The 64 local storage registers are divided into seven interrupt level groups. The current interrupt level determines which group is used.

The interrupt levels associated with the local storage registers are:

	Microaddress	Microaddress Backup	Work F	Register
Interrupt Level	Register (Hex)	Register (Hex)	Physical (Hex)	Logical (Hex)
0	0A	0B	00—07	W0W7
1	0C	0D	10—17	W0–W7
2	0E	0F	18—1F	W0W7
3	28	29	20—27	W0–W7
4	2C	2D	30–37	W0W7
5	2 E	2F	38—3F	W0W7
MPL	08	09	0007	W0W7

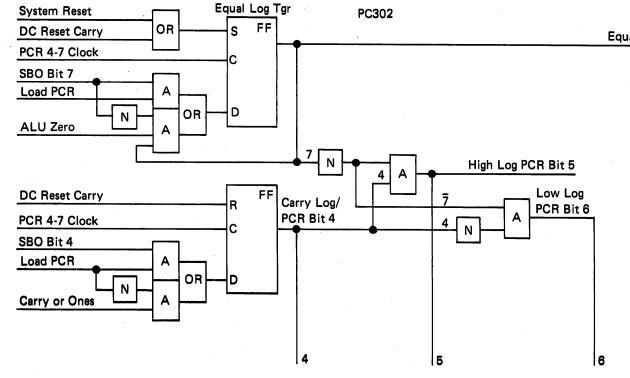
Note: Interrupt levels are shown in priority order.

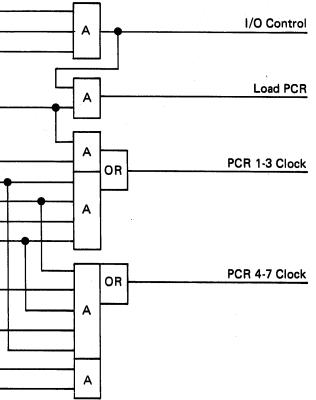


	LSR		
	Select		
	Bits		
	\sim		
		LSR	
	<u> </u>	Hex	LSR
	01 2345	Address	Name
	10 0000	20	WR0
	10 0001	21	WR1
	10 0010	22	WR2
Interrupt 3	10 0011	23	WR3
	10 0100	24	WR4/CS0
	10 0101	25	WR5/CS1
	10 0110	26	WR6/CS2
	10 0111	27	WR7/CS3
	10 1000	28	MAR-3
	10 1001	29	MAB-3
	10 1010	2A	Spare
MAR/MAB	10 1011	2B	Spare
Stack 2	10 1100	2C	MAR-4
	10 1101	2D	MAB-4
	10 1110	2E	MAR-5
	10 1111	2F	MAB-5
	11 0000	30	WRO
	11 0001	31	WR1
	11 0010	32	WR2
Interrupt-4	11 0011	33	WR3
	11 0100	34	WR4/CS0
	11 0101	35	WR5/CS1
	11 0110	36	WR6/CS2
	11 0111	37	WR7/CS3
	11 1000	38	WR0
	11 1001	39	WR1
		2.4	WR2
	11 1010	3A	1 11116
Interrupt 5	11 1010 11 1011	3A 3B	WR3
Interrupt 5			
Interrupt 5	11 1011	3B	WR3
Interrupt 5	11 1011 11 1100	3B 3C	WR3 WR4/CS0

Processor Condition Register

The processor condition register (PCR) contains the processor conditions that are tested by the jump-on-condition instruction. The processor condition register is changed by system reset, program loading, or instructions that change register bits. These conditions are changed by the instructions that perform the add, subtract, test mask, compare immediate, subtract immediate, and R1-linked-with-R2 functions.


The processor condition register clocks gate the data into the processor condition register.


(PC 312) Status Function 1 (not) Status Card 2 (not) Status Function 0

MOR Bits 4 AND 5 AND 6 AND 7

T5 and I/O Control AND Phase A	
Phase A	
Status Function 0	
T4-T6	
(not) Status Card 2	
Status Function 1	
Т5	
MOR Bits 4 AND 5 AND 6 AND 7	

3

Equal Log PCR Bit 7

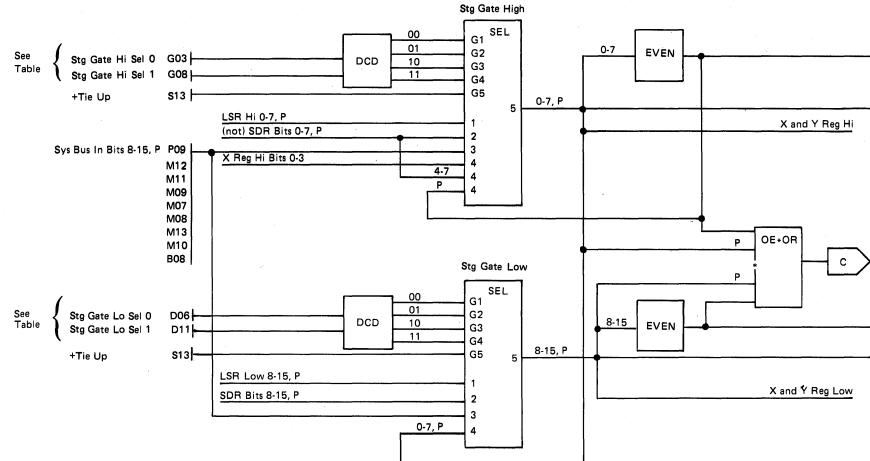
7

Processor Condition Register

PCR		Flag Bit 0	Positive Bit 1	Negative Bit 2	Zero Bit 3	Carry Bit 4	High Bit 5	Low Bit 6	Equal Bit 7
L/A1 or L/A2 Logical	Set		R1 or $\overline{R2}$ = all ones and result \neq all zeros	Result \neq all zeros and R1 or R2 \neq all ones	Results = all zeros		· · · · · · · · · · · · · · · · · · ·		
	Reset		Result = all zeros or R1 or $R2 \neq all$ ones	Result = all zeros or R1 or $\overline{R2}$ = all ones	Result ≠ all zeros				
L/A1 or L/A2 Arithmetic	Set	• .	Result has a carry and result ≠ zero	Result has no carry and result ≠ zero	Result = zero	Result had a carry (add) A borrow (sub)	Result has a carry and result ≠ zero	Result has no carry and result ≠ zero	
	Reset		Result = no carry or result = zero	Result has a carry or result = zero	Result ≠ zero	No carry (add) result had a borrow (sub)	Result has no carry or result = zero	Result has carry or result = zero	Result≠zero
Test Mask	Set		Tested bits = all ones	Tested bits \neq all ones and tested bits \neq all zeros	All tested bits = zero (or no bits tested)				
	Reset		Tested bits ≠ all ones or tested bits = all zeros	Tested bits = all ones or tested bits = all zeros	Tested bits ≠ zero or tested bits = all ones				
Compare or Subtract Immediate	Set		Register data is greater than immediate data	Register data is less than immedïate data	Register data is equal to immediate data				
	Reset		Register data is not greater than immediate data	Register data is not less than immediate data	Register data is not equal to immediate data				
I/O Immediate	Set			· · · · · · · · · · · · · · · · · · ·					Equal set on
Reset Carry — Set Equal	Reset					Carry set off	Decoded from carry and equal and set off	Decoded from carry and equal and set off	
I/O Immediate Load	Set	Loaded bit 0 is on	Loaded bit 1 is on	Loaded bit 2 is on	Loaded bit 3 is on	Loaded bit 4 is on	Loaded bit 4 is on and bit 7 off	Loaded bit 4 off and bit 7 off	Loaded bit 7 is on
	Reset	Loaded bit 0 is off	Loaded bit 1 is off	Loaded bit 2 is off	Loaded bit 3 is off	Loaded bit 4 is off	Loaded bit 4 off or loaded bit 7 on	Loaded bit 4 on or loaded bit 7 on	Loaded bit 7 is off
POR/Reset	Set								Equal set on
Key/Reset MCI	Reset	Set off	Set off	Set off		Carry set off	Decoded from bits 4 and 7 and set off	Decoded from bits 4 and 7 and set off	
I/O Immediate Flag Latch	Set Reset	Set on Set off							

4

Control Processor 2-115


...

Storage Gate High/Low

The storage gates select data coming from the SDR, LSR, system bus in, and X-register available to system bus out and to the X- and Y-registers.

The selected bits are generated in the control processor control card by the MOR bits and T-times.

CP Data Flow Card A-A1H2

PC230

Storage Gate High

Sel 0 1	Lines Gated Through
00	LSR High
01	SDR Bits 0-7
10	SBI Bits 8-15
11	X-Reg High Bits 0-3 and SDR Bits 4-7

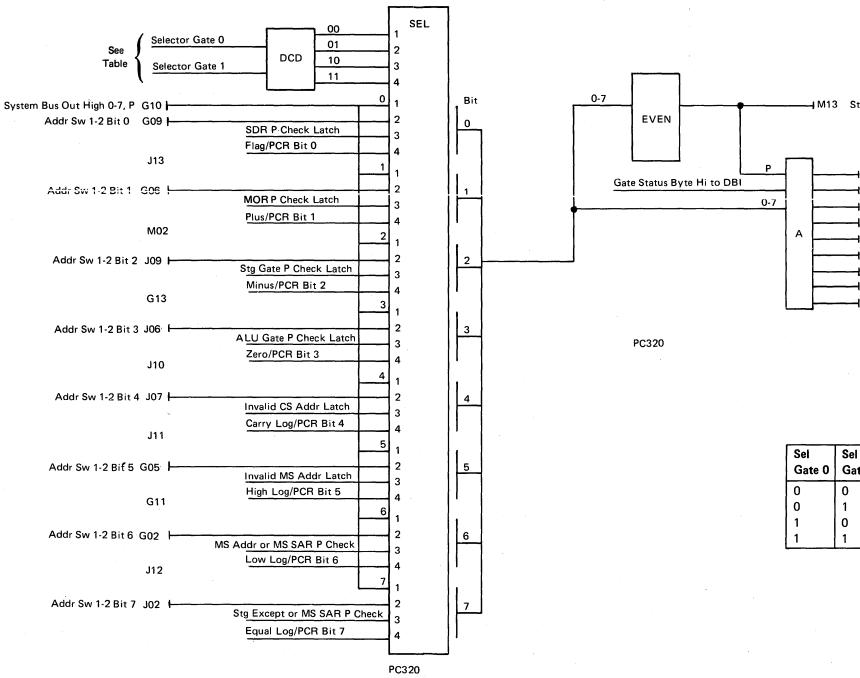
Storage Gate Low

Sel 0 1	Lines Gated Through
00	LSR Low
01	SDR Bits 8-15
10	SBI Bits 8-15
11	Stg Gate High Bits 0-7

- G05 Stg Gate Hi Gen P Bit

	D12 D09	System Bus Out High 0-7, P
	B12	
	B06	
	B07	
	B05	
]	B11	
	D05	

D02 Stg Gate P Check

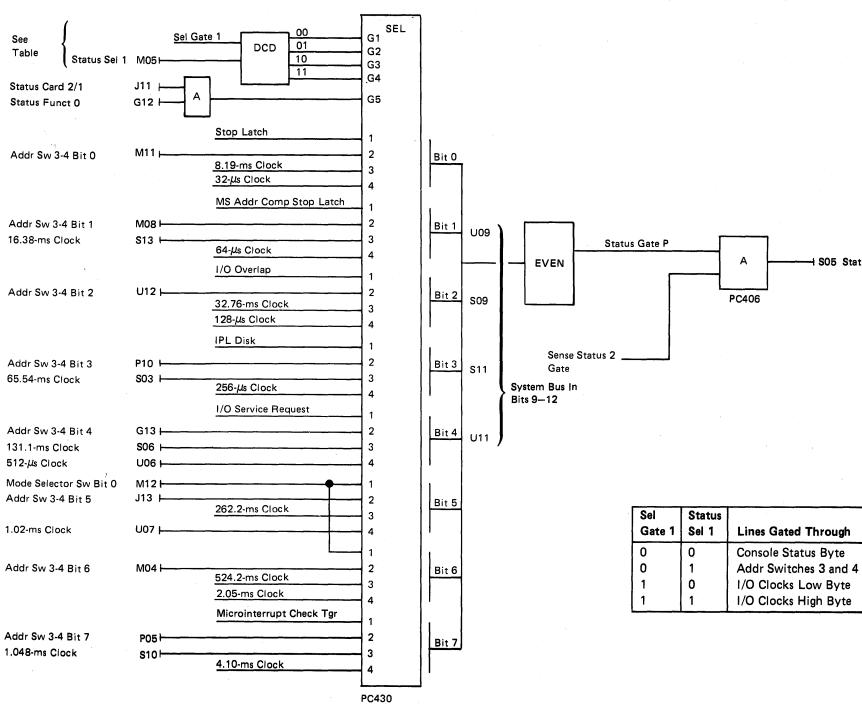

U11 Stg Gate Low Gen P Bit U02 System Bus Out Low 8-15,P U04 S02 S04 U09 U10 S08 Is10

Status 1 Gate 🛛

The status 1 card gates the system bus out high 0-7 bits, address switches 1 and 2, CP checks error byte, and the processor condition register to the storage gates high/low. Also, the event indicators, display high byte bits 0-7 and P, branch on condition, and control storage address compare high logic are controlled by this card.

Status 1 Gate Parity Generation

-IM13 Status Gate High Bit P


I U 09	Status 1	Bit 0	
1 S08	Status 1	Bit 1	
	Status 1	Bit 2	
 S05	Status 1	Bit 3	System Bus In
	Status 1	Bit 4	Bits 8–15, P
 S06	Status 1	Bit 5	
	Status 1	Bit 6	
U05	Status 1	Bit 7	
U02	Status 1	Bit P	
)	

Sel Gate 1	Lines Gated Through
0	SBO High 0-7
1	Addr Switches 1 and 2
0	CP Error Byte
1	PCR

Status 2 Gate 🕥

The status 2 card gates the address switches 3 and 4, console status byte, and I/O clocks, high/low byte. Also, the display low byte bits 12-15 and P, address compare low logic and sync, and start-stop-run logic are controlled by this card.

Status 2 Gate Parity Generation CP Status 2 Card A-A1K2

- SO5 Status 2 Bit P (System Bus In Bit P)

ERROR CONDITIONS

The control processor program determines the cause of an I/O hardware error other than a control processor error. When an I/O error is found, the control processor attempts the operation again by executing the instruction, program, or task. However, some system errors stop the system. In some cases, a recovery is possible only by loading the system main storage programs again.

Control Processor Checks

When a hardware error is found in the control processor (CP), a bit is set in the CP check register latches to indicate an error. This register can be sensed by an I/O immediate instruction (control processor sense–MPS). This instruction loads the contents of the CP check register into the specified LSR work register so the control processor check conditions can be sensed. These checks can also be displayed in the byte 0 lights on the CE panel by setting the Mode Selector switch to the Insn Step/Dply Chks position.

Any CP or port errors cause a CP machine check interrupt, processor check condition, and stops the MSP clocks.

MSP hardware checks cause an interrupt level 5 request to the CP and stop the MSP clock. Three MSP conditions cause the 'MSP hardware checks' line to become active. MSP status byte 2 must be sensed by a register control instruction (RMPR). Then, a CE panel display of the selected LSR work register can determine which of the three conditions caused the error. The conditions are as follows:

- 1. Control gate check (status byte 2 bit 1)
- 2. LSR gate check (status byte 2 bit 2)
- Main storage gate check (status byte 2 bit 3)

Processor Error Byte (Display Byte 0)

Bit Error Cause

1

4

5

6

7

- 0 Storage data Parity in the storage data register parity register is not correct. check
- Micro-operation Parity in the micro-operation register parity register is not correct. check
- 2 Storage gate Parity at the output of the parity check storage gate is not correct.
- 3 ALU gate parity The parity expected does not check match the parity generated at the ALU gate.
 - Illegal controlControl storage was addressedstorageoutside its limits. Bits 4 and 5address/both on indicates that parity instoragethe storage address register isaddressnot correct.registerregister
 - Control storage
programThe control storage program
remained in a loop for more
than 7 seconds. Bits 4 and 5
both on indicates that parity in
registeraddress
registerboth on indicates that parity in
the storage address register is
not correct.
 - Illegal mainThe real or translated mainstoragestorage address used by theaddress/maincontrol storage program isstoragegreater than the main storageaddresssize of the system. Bits 6 andregister7 both on indicates that parityin the main storage addressregister is not correct.
 - StorageThe control storage programexception/addressed a not valid addressmain storagetranslation register; that is, anaddressaddress translation register con-registertaining hexadecimal FF. Bits6 and 7 both on indicates thatparity in the main storageaddress register is not correct.

Decode of Bits 6 and 7

Bits 6 7	CMR Bit 7	PMR Bit 7	Cause
10	0	*	Invalid main storage address (real)
10	1	*	Invalid main storage address (translate)
01	1	*	Storage protect
01	*	1	MSP tried to alter PMR while PMR bit 7 = 1
11	*	*	MSAR parity check
11	1	*	ATR parity check

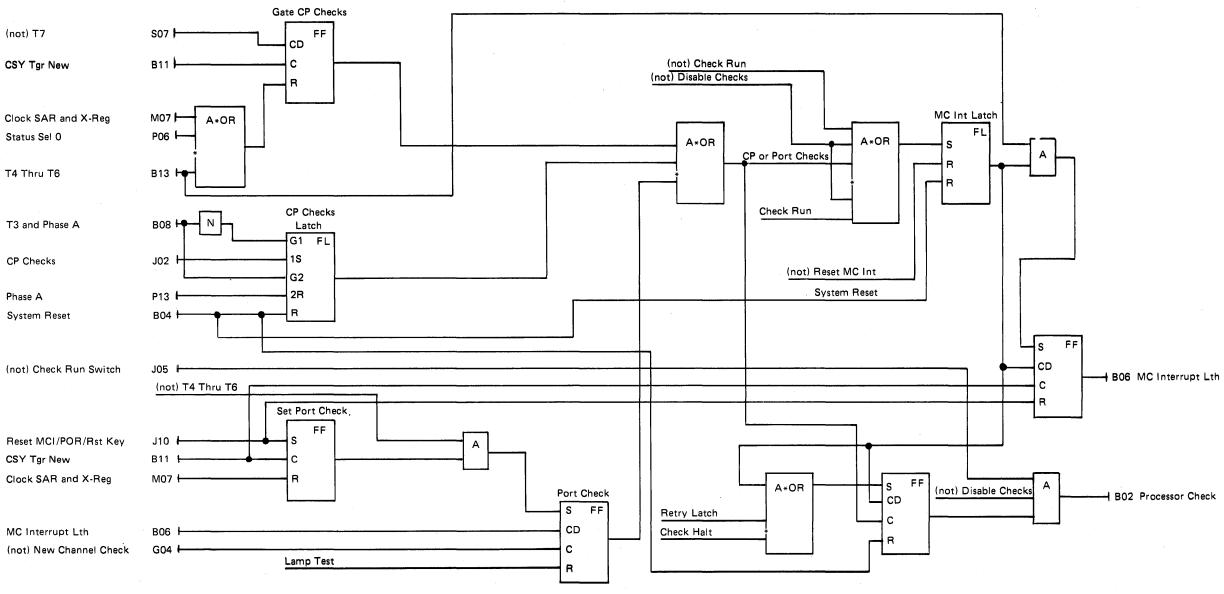
Legend: * = don't care

Processor Errors

As a result of a control processor hardware error, the system programs must be loaded again. When the Load switch is pressed, special initial program load routines determine if the processor was in a processor check halt state before the Load switch was pressed. A routine then records the error information in the control processor error recording area and on the disk.

For each error, the following data is recorded:

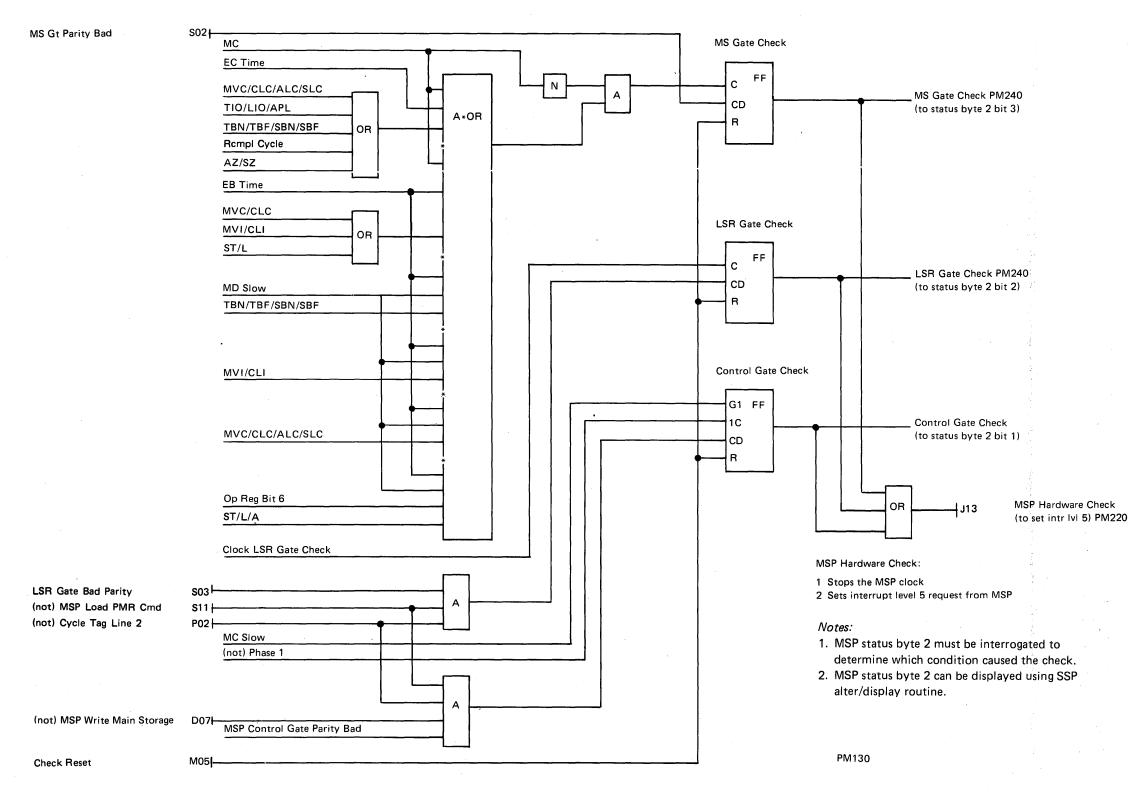
- The processing level on which the error occurred
- The contents of the control processor microaddress register of the level on which the error occurred
- The contents of the microaddress backup register of the level on which the error occurred
- The contents of the work registers of the level on which the error occurred
- The contents of the processor condition register
- · The processing unit checks byte
- The port checks byte
- · The time and date of the logout

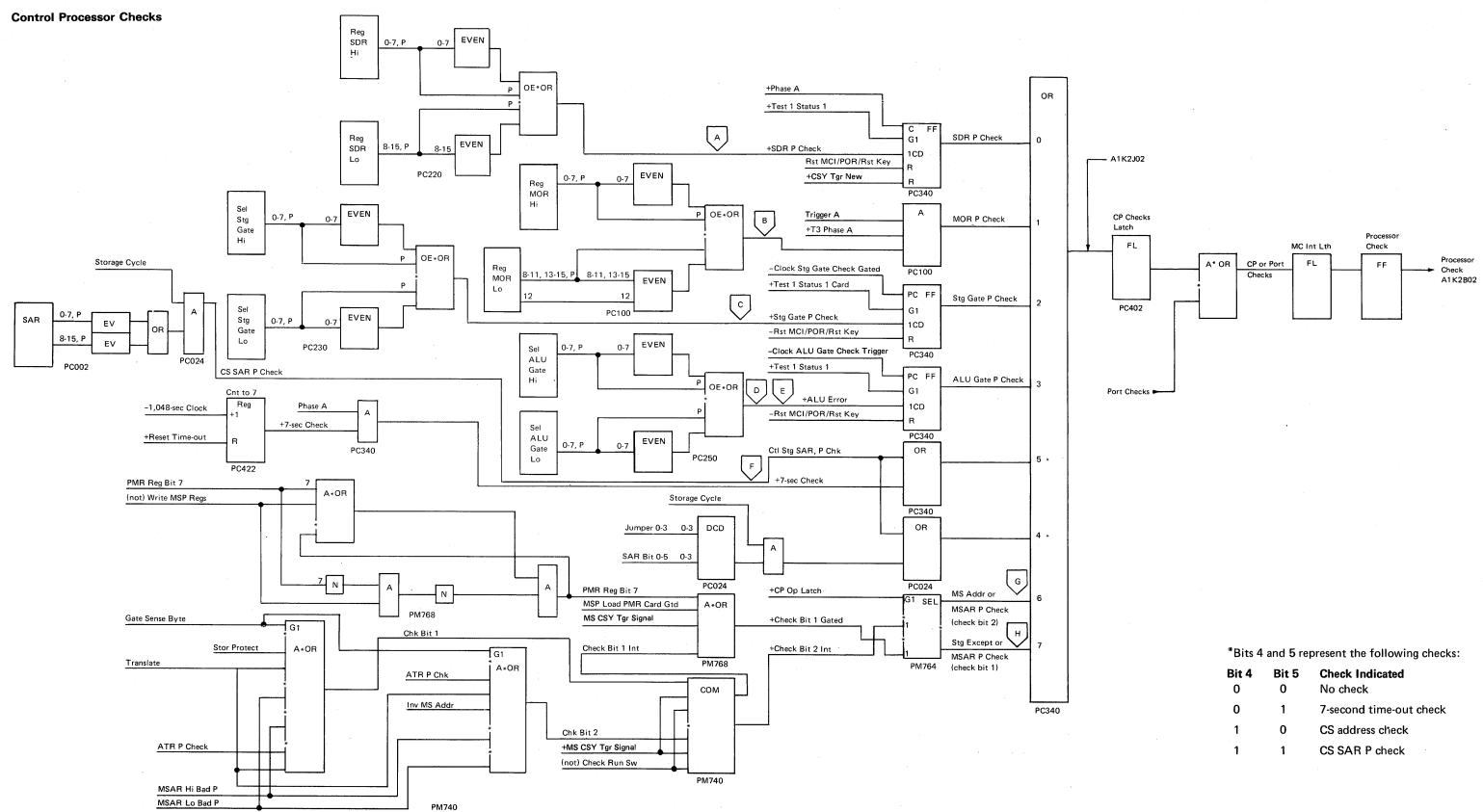

The recorded data does not change as a result of pressing the Load switch to load and run these special diagnostic routines after an error. Therefore, the recorded information indicates the state of the control processor when the error occurred, except for time and date.

Examples of the error history tables for the control processor and the main storage processor can be found under *Error Indications* earlier in this section.

Error Conditions (Second Level)

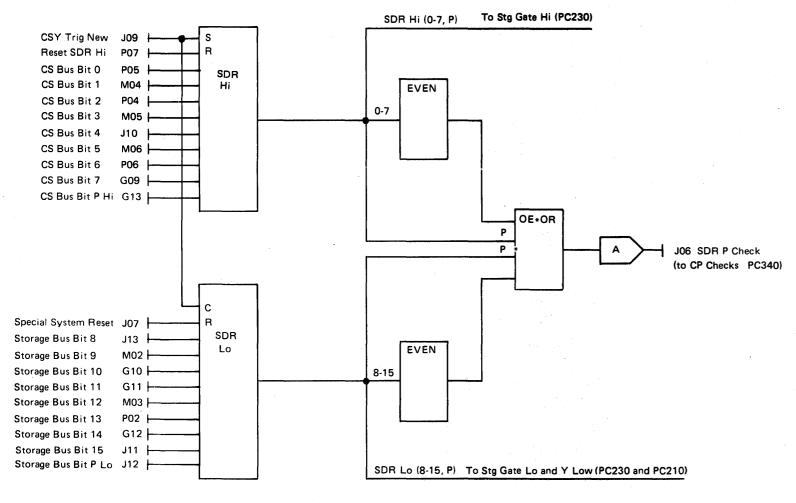
Errors associated with the main storage processor and the control processor are shown on the following pages. The control processor checks (second level) are also shown individually and are key-coded and referenced to the second-level diagram. Machine Check Interrupt and Processor **Check Generation**


CP Status 2 Card A-A1K2


PC402

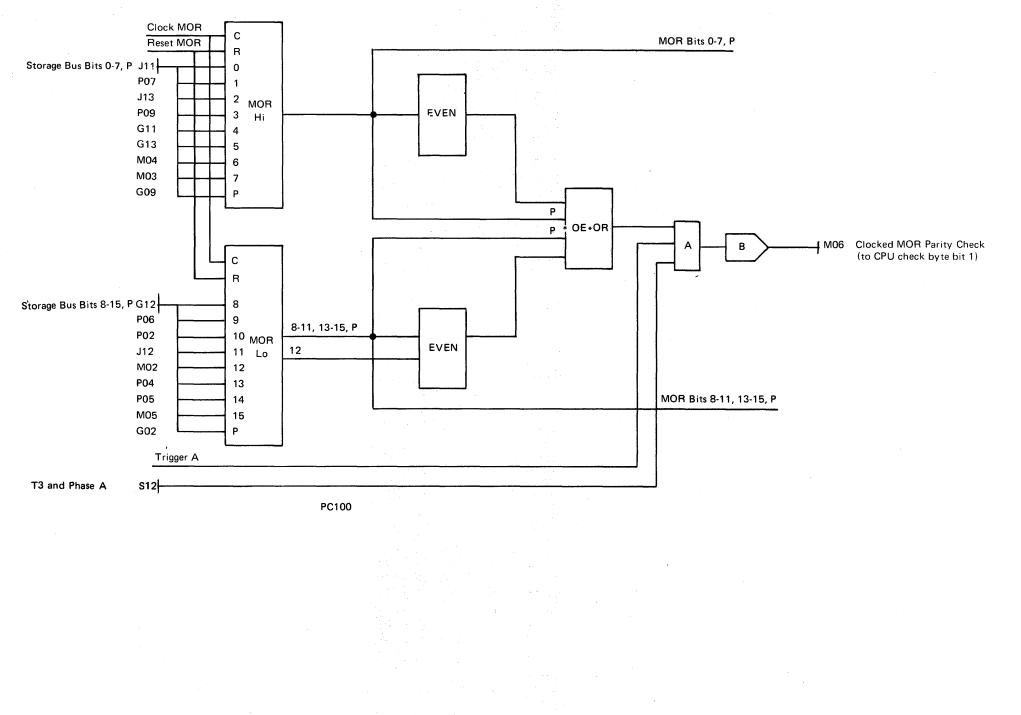
PC422

MSP Control Card A-A1N2


2

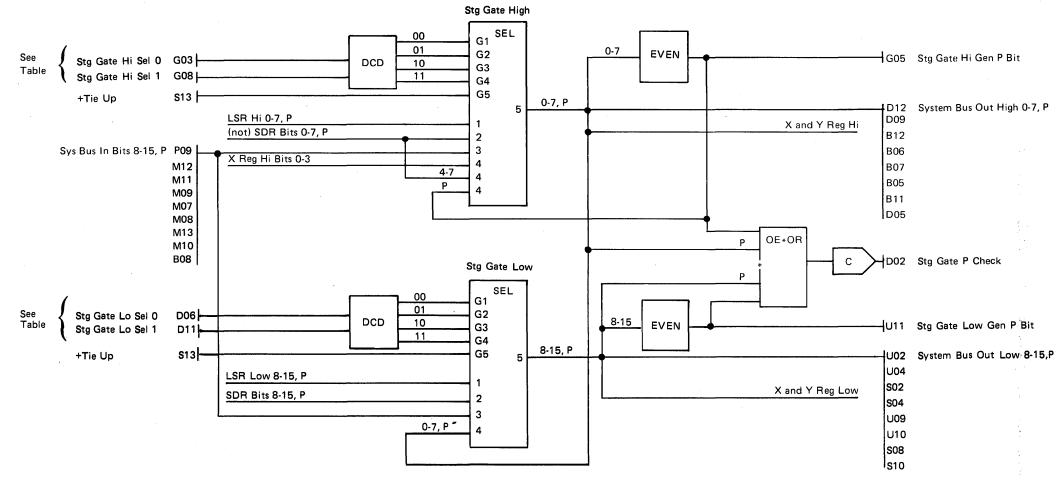
*Bits 4	Bits 4 and 5 represent the following checks:		
Bit 4	Bit 5	Check Indicated	
0	0	No check	
0	1	7-second time-out check	
1	0	CS address check	
1	1	CS SAR P check	

SDR Parity Check Generation


CP Data Flow Card A-A1H2

PC220

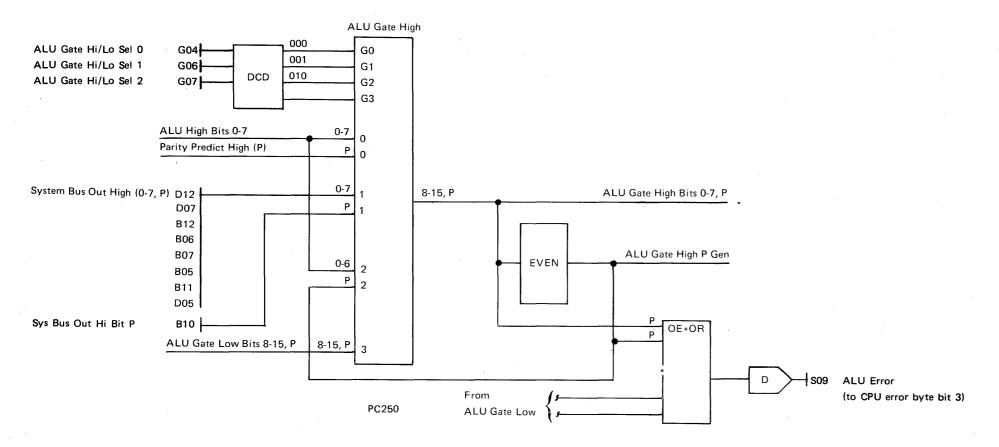
MOR Parity Check


CP Control Card A-A1G2

Storage Gate High/Low Parity Check and Generation

PC230

Storage Gate High

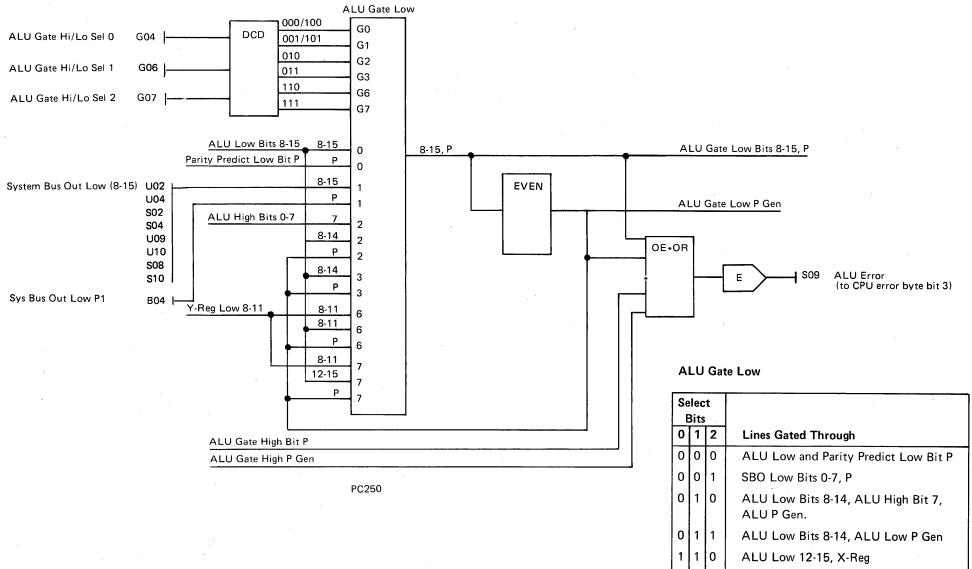

Sel	
01	Lines Gated Through
00	LSR High
01	SDR Bits 0-7
10	SBI Bits 8-15
11	X-Reg High Bits 0-3 and SDR Bits 4-7

Storage Gate Low

Sel O 1	Lines Gated Through	
00	LSR Low	
01	SDR Bits 8-15	
10	SBI Bits 8-15	
11	Stg Gate High Bits 0-7	

ALU Gate High Parity Check and Generation

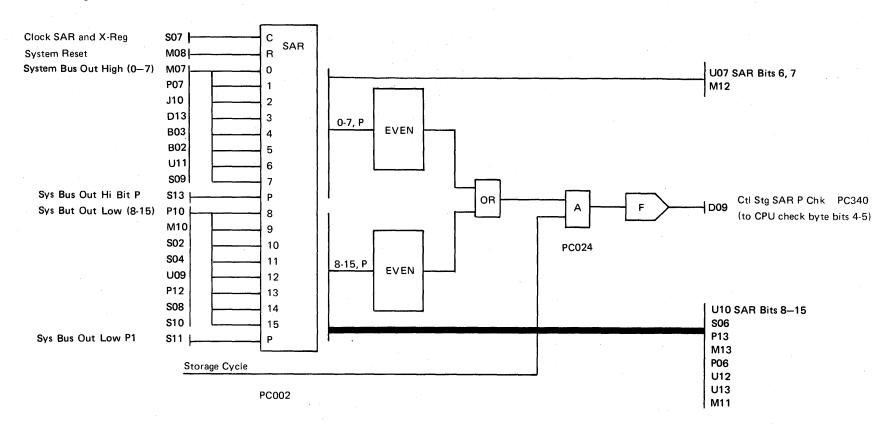
CP Data Flow Card A-A1H2


ALU Gate High

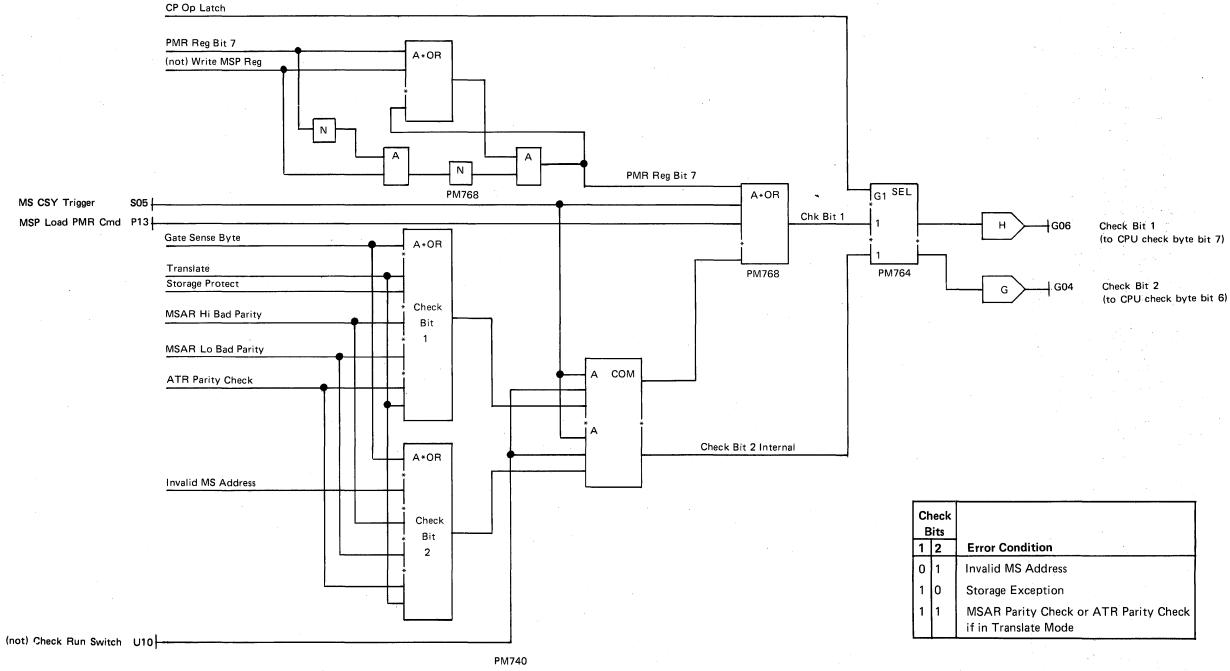
	Select Bits		
0	1	2	Lines Gated Through
0	0	0	ALU High Bits 0-7, Parity Predict
0	0	1	SBO 0-7, P
0	1	0	ALU High Bits 0-6, ALU Hi P Gen
0	1	1	h
1	0	0	ALU Gate Low
1	1	0	Bits 0-7, P
1	1	1	J

2-126

ALU Gate Low Parity Check and Generation


CP Data Flow Card A-A1H2

1 1 1 Y-Reg Low 8-11, ALU Low 12-15, ALU P Gen


Control Storage SAR Parity Check

CP Storage Control Card A-A1F2

MSP Check Bits 1 and 2

MS Control Card A-A1Q2

2

This page intentionally left blank.

