
- - -- - -- - - --- ----
5C21-77 41-5

File No. 534-24
--- - -------, -­-

IBM System/34
COBOL

Reference Manual
Program Number 5726-CB 1

• •

- - -- - -- ------ ---- -- ---- ----

c •

SC21-7741-5

File No. S34-24

- , -

IBM System/34
COBOL

Reference Manual
Program Number 5726-CB1

• s

Sixth Edition (July 1985)

This minor revision of SC21·7741 incorporates information relative to the use of the
applications described. Changes or additions to the text and illustrations are indicated
by a vertical line to the left of the change or addition.

This edition applies to release 9, modification 0 of the IBM System/34 COBOL Program
Product (Program 5726-CB1); and to all subsequent releases and modifications until
otherwise indicated in new editions or technical newsletters. Changes are periodically
made to the information herein; these changes will be reported in technical newsletters
or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which I BM operates.
(For example, ideographic support is available only in Far East countries.) Any
reference to an IBM program product in this publication is not intended to state or
imply that only I BM's program product may be used. Any functionally equivalent
program may be used instead.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical er·rors. Use
the Reader's Comment Form at the back of this publication to make comments about
this publication. If the form has been removed, address your comments to IBM
Canada Laboratory, Information Development, Department 849, Don Mills, Ontario,
Canada M3C 1 H7. IBM may use and distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1979,1980, 1983,1985

Preface

This reference manual describes the System/34 COBOL
(Common Business Oriented Language) compiler and
language. This manual provides reference material and
programmer guide information for persons who have
some knowledge of the COBOL language and some
experience in writing COBOL programs. The manual is
organized as follows:

• 	 Chapters 1 through 5 describe the COBOL language
and each of the four divisions: Identification,
Environment, Data, and Procedure. The COBOL
clauses and statements available to the user are
explained.

• 	 Chapter 6 describes the additional functions of the
language that are provided through the various
processing modules.

• 	 Chapter 7 describes the TRANSACTION file support.
A TRANSACTION file allows you to read data from
and write data to a display station or an Interactive
Communications Feature session.

• 	 Chapter 8 describes the system-dependent
considerations.

• 	 Chapter 9 describes how to create, execute, and
debug programs.

• 	 Chapter 10 describes the ideographic support
provided by COBOL.

• 	 Appendix A contains compiler messages.

• 	 Appendix B describes special purpose subroutines
supplied with System/34 COBOL.

• 	 Appendix C contains a COBOL language comparison
across various systems.

• 	 Appendix 0 describes intermediate result fields.

• 	 Appendix E contains sample file-processing
programs.

• 	 Appendix F contains COBOL reserved words.

• 	 Appendix G contains the EBCDIC and ASCII collating
sequences.

• 	 Appendix H contains a file processing summary and
the status key values.

• 	 Appendix I contains a summary of the System/34
COBOL clauses and statements for each division.

• 	 Appendix J contains a summary of display screen
format specifications.

• 	 The Glossary contains definition of terms.

To aid the user, IBM provides several extensions to
ANSI (American National Standards Institute) COBOL,
X3.23-1974. The more significant extensions include:

• 	 Extended data types - computational-3 or packed
decimal. and computational-4 or binary

• 	 Indexed file support for CORE-INDEX

• 	 Additional debugging support of EXHIBIT and TRACE

• 	 Use of apostrophe instead of quotes

Two methods are available to provide a convenient way
to add OCL (Operation Control Language) and
procedures to a source library. One method, SEU
(Source Entry Utility), is described in the SEU Reference
Manual. The other method, the use of the job stream
command (JOBSTR), is described in the System Support
Reference Manual. Refer to Related Publications in this
Preface for the order numbers.

A brief description of the contents of the various
System/34 manuals is contained in the Publications
Summary section of the IBM System/34 Introduction.

Preface iii

System Requirements

For information concerning system requirements, refer to
the IBM System/34 Planning Guide, GC21-5154.

Related Publications

• 	 IBM System/34 Introduction, GC21-5153

• 	 IBM System/34 Bibliography, GH30-0231

• 	 IBM System/34 Master Index, SC21-7739

• 	 IBM System/34 Functions Reference Manual,
SA21-9243

• 	 IBM System/34 System Support Reference Manual,
SC21-5155

• 	 IBM System/34 Operator's Guide, SC21-5158

• 	 IBM System/34 Displayed Messages Guide.
SC21-5159

• 	 IBM System/34 COBOL Reference Summary.
GX21-774f!J

• 	 IBM System/34 Source Entry Utility Reference
Manual, SC21-7657

• 	 IBM System/34 Installation and Modification Reference
Manual: Program Products and Physical Setup,
SC21-7689

• 	 IBM System/34 Overlay Linl<age Editor Reference
Manual. SC21-7707

• 	 IBM System/34 Sort Reference Manual, SC21-7658

• 	 IBM COBOL Coding Form, GX28-14f!J4

• 	 IBM System/34 1255 Magnetic Character Reader
Reference Manual, SC21-7740

• 	 IBM System/34 Interactive Communications, Feature
Reference Manual, SC21-7751

• 	 IBM System/34 Concepts and Design Guide,
SC21-7742

• 	 IBM System/34 Work Station Support Subroutines

Reference Manual, SC21-7810

• 	 IBM Specifications For Magnetic Character Readers.
GX21-9101

• 	 IBM Installation Management Manual: An Introduction
to Structured Programming in COBOL, GC20-1776

• 	 IBM System/34 Screen Design Aid Programmer's
Guide and Reference Manual, SC21-7716

Industry Standards

The System/34 COBOL compiler is designed according
to the following industry standards as understood and
interpreted by IBM, as of September 1978:

• 	 The ANSI COBOl. X3.23-1974 standard. ANS
COBOL is identical to ISO 1989-COBOL, as approved
in February 1978 by the International Organization for
Standardization. The ANS COBOL processing
modules are described in the table under Language
Level in Chapter 1.

• 	 The December 1975 Federal Information Processing
Standard (FIPSPUB 21-1) low-intermediate level.
Additional support is provided for many features at
higher FIPS levels.

The following are exceptions to the standard:

• 	 No position in a key for an indexed random READ
statement or an indexed START statement can be a
hex FF (HIGH-VALUE).

• 	 The user must not place a hex FF (HIGH-VALUE) in
the first position when using delete-capable files.

Portions of this manual are copied from American
National Standards Institute (ANSI) COBOl. X3.23-1974.
This material is reproduced with permission from
American National Standard Programming Language
COBOL, X3.23-1974, copyright 1974 by the American
National Standards Institute. copies of which may be
purchased from the American National Standards
Institute at 1430 Broadway, New York, New York,
10018.

Procedures have been established for the maintenance
of COBOl. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Systems
Languages.

iv

Acknowledgment

The following extract from Government Printing Office
Form Number 1965-0795689 is presented for the
information and guidance of the user:

Any organization interested in reproducing the
COBOL report and specifications in whole or in part,
using ideas taken from this report as the basis for an
instruction manual or for any other purpose, is free to
do so. However, all such organizations are requested
to reproduce this section as part of the introduction
to the document. Those using a short passage, as in
a book review, are requested to mention COBOL in
acknowledgment of the source, but need not quote
this entire section.

COBOL is an industry language and is not the
property of any company or group of companies, or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the
accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in
connection therewith.

Procedures have been established for the maintenance
of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Systems
Languages.

Preface v

vi

Contents

CHAPTER 1. INTRODUCTION.
General Description
Language Level .
Compiler Features
Format Notation .

CHAPTER 2. LANGUAGE CONSIDERATIONS
COBOL Program Structure

The COBOL Divisions .
Clauses and Statements

Structure of the Language
Character-Strings. .
Separators.

Standard COBOL Format .
Special Considerations
Program Spacing . . .
Overall Puncutation Rules

Methods of Data Reference
Qualification
Subscripting and Indexing
Identifier
Condition-Name
Explicit and Implicit References.

Transfers of Control

CHAPTER 3. IDENTIFICATION AND
ENVIRONMENT DIVISIONS

IDENTIFICATION DIVISION
Coding Example
PROGRAM-ID Paragraph
Other Optional Paragraphs

ENVIRONMENT DIVISION
Coding Example

Configuration Section
SOURCE-COMPUTER Paragraph
OBJECT -COMPUTER Paragraph
SPECIAL-NAMES Paragraph.
Coding Example

Input-Output Section
File Processing Summary
FILE-CONTROL Paragraph.
I-O-CONTROL Paragraph .

CHAPTER 4. DATA DIVISION
Data Division Concepts
Data Division Organization .

File Section
Working-Storage Section
Linkage Section

File Description Entry
Coding Example .
BLOCK CONTAINS Clause.
RECORD CONTAINS Clause
LABEL RECORDS Clause
VALUE OF Clause
DATA RECORDS Clause
LINAGE Clause. .
CODE-SET Clause . . .

1-1

1-1

1 -1

1-2

1-3

2-1

2-1

2-1

2-1

2-2

2-3

2-7

2-8

2-10

2-11

2-12

2-12

2-12

2-14

2-14

2-15

2-15

2-16

3-1

3-1

3-1

3-1

3-2

3-3

3-3

3-4

3-5

3-5

3-6

3-7

3-10

3-10

3-13

3-19

4-1

4-1

4-2

4-2

4-2

4-3

4-3

4-4

4-7

4-8

4-8

4-8

4-9

4-10

4-11

Data Description 4-12

Data Description Concepts . 4-12

Classes of Data 4-14

Boolean Data Facilities 4-14

Standard Alignment Rules 4-15

Standard Data Format. 4-15

Character-String and Item Size. 4-15

Signed Data 4-15

Data Description Entry 4-16

Format 2-RENAMES Clause 4-17

Level-Numbers. 4-21

Data-Name or FILLER Clause 4-21

REDEFINES Clause 4-21

USAGE Clause. 4-23

SIGN Clause. 4-27

OCCURS Clause 4-28

SYNCHRONIZED Clause 4-28

JUSTIFIED Clause 4-29

BLANK WHEN ZERO Clause. 4-29

VALUE Clause 4-30

PICTURE Clause 4-32

CHAPTER 5. PROCEDURE DIVISION 5-1

Procedure Division Concepts 5-1

Procedure Division Organization 5-2

Coding Example 5-2

Sample Procedure Division Statements 5-3

Arithmetic Expressions . 5-5

Arithmetic Operators 5-5

Conditional Expressions 5-6

Simple Conditions 5-6

Complex Conditions . 5-11

Declaratives 5-16

EXCEPTION/ERROR Declarative 5-17

Conditional Statements . 5-19

I F Statement . 5-19

INPUT/OUTPUT Statements 5-21

Common Options . 5-21

ACCEPT Statement . 5-24

ACQUIRE Statement 5-26

CLOSE Statement 5-27

DELETE Statement 5-28

DISPLAY Statement 5-29

DROP Statement 5-30

OPEN Statement 5-31

READ Statement 5-33

REWRITE Statement 5-38

START Statement 5-40

WRITE Statement 5-42

Arithmetic Statements 5-49

Arithmetic Statement Operands 5-49

Common Options . 5-50

ADD Statement 5-53

COM PUTE Statement 5-54

DIVIDE Statement 5-55

MULTIPLY Statement 5-57

SUBTRACT Statement 5-58

Contents vii

Data Manipulation Statements 5-58
INSPECT Statement 5-59
MOVE Statement . 5-65
STRING Statement 5-68
UNSTRING Statement 5-72

Procedure Branching Statements 5-78
ALTER Statement 5-78
EXIT Statement 5-79
GO TO Statement 5-80
PERFORM Statement 5-81
STOP Statement 5-92

Compiler- Directing Statements 5-93
ENTER Statement 5-93

CHAPTER 6. ADDITIONAL FUNCTIONS 6-1
TABLE HANDLING 6-2
Table Handling Concepts 6-2

Table Definition 6-2
Table References . 6-3

Data Division-Table Handling 6-9
OCCURS Clause 6-9
USAGE IS INDEX Clause 6-12

Procedure Division-Table Handling 6-12
Relation Conditions 6-12
SEARCH Statement. 6-14
SET Statement . 6-20

SORT/MERGE 6-22
Sort/Merge Concepts 6-22

Sort Concepts 6-23
Merge Concepts 6-23

Sort/Merge Programming Considerations. 6-23
Main Storage Requirements 6-23
Disk Storage Requirements 6-24
Performance Considerations 6-24

Environment Division-SORT/MERGE 6-25
File-Control Paragraph 6-25
I-O-Control Paragraph 6-25

Data Division-SORT/MERGE 6-27
Procedure Division-SORT/MERGE 6-27

MERGE Statement 6-28
SORT Statement 6-29
MERGE Statement and SORT Statement Options. 6-30
RELEASE Statement (Sort function only) . 6-33
RETURN Statement. 6-34

LIBRARY COpy FACILITY 6-35
COPY Statement 6-35

SEGMENTATION FEATURE 6-39
Program Segments 6-39
Segmentation Logic. 6-39
Segmentation Control . 6-40
Executable Object Program Size 6-40

Procedure Division-Segmentation 6-40
Special Considerations-Segmentation 6-40

INTER-PROGRAM COMMUNICATION. 6-42
Subprogram linkage Concepts 6-42
Data Division-Subprogram linkage 6-44

Record Description Entries . 6-44
Data Item Description Entries 6-44

Procedure Division-Subprogram linkage
CALL Statement
EXIT PROGRAM Statement
STOP RUN Statement
Segmentation Consideration

Subprogram linkage Feature Examples .

DEBUGGING FEATURES.

COBOL Source Language Debugging

Compile-Time Switch .

Object-Time Switch

USE FOR DEBUGGING Declarative

DEBUG-ITEM Special Register.

TRACE Statement

EXHIBIT Statement.

FIPS FLAGGER
1975 High FIPS COBOL Flagging
1975 High-Intermediate FIPS COBOL Flagging
1975 Low-Intermediate FIPS COBOL Flagging
1975 Low FIPS COBOL Flagging

CHAPTER 7. TRANSACTION FILE
CONSIDERATIONS AND SAMPLE PROGRAM

Summary of Major Language Extensions
Program Attributes
SRT (Single Requestor Terminal) Program
MRT (Multiple Requestor Terminal) Program
Attaching a Device to a Program
Writing a Program with a Transaction File

Creating a Display Screen Format.

End-of-File Considerations

Special Display Screen Format Considerations .
Overriding Fields in a Format.
Read Under Format
Command Keys

Environment Division
SPECIAL-NAMES Paragraph.
File Control Entry .

Data Division
File Description Entry
Boolean Data Facilities
Data Description Entry-Boolean Data

Procedure Division .
EXCEPTION/ERROR Declaratives .
ACCEPT Statement .
ACQUIRE Statement
CLOSE Statement
DISPLAY Statement
DROP Statement
OPEN Statement
READ Statement
WRITE Statement

Sample COBOL Transaction File Program
(MRTSAM)

M RTSAM Program Logic

M RTSAM Debugging

6-45
6-45 ..J.6-46
6-46
6-46
6-47
6-48
6-48
6-48
6-48
6-49
6-50
6-52
6-54
6-57
6-58
6-58
6·59
6-60

7-1
7-1
7-1
7-2
7-2
7-5
7-5
7-5

7-10
7-10
7-10
7-11 ..J7-12
7-12
7-12
7-16
7-20
7-20
7-20
7-21
7-22
7-22
7-22
7-23
7-23
7-24
7-24
7-24
7-25
7-26

7-30
7-30
7-43

viii

CHAPTER 8. SYSTEM-DEPENDENT

CONSIDERATIONS

• General 	Considerations.
Library-Name, Program-Name, and Text-Name
Source Statements . .
Source Program Library
User- Defined Words .
Files
Disk Data Management
Indexed and Relative File Contents
Adding Records to an Indexed File

Environment Division Considerations
ASSIGN Clause
RESERVE Clause
RERUN Clause
SAME RECORD AREA Clause
SAME AREA or SAME SORT-MERGE AREA Clauses
OBJECT-COMPUTER MEMORY Size Clause.
KEY Clause

Data Division Considerations .

BLOCK CONTAINS Clause.

RECORD CONTAINS Clause

LINAGE Clause.

OCCURS Clause

Item Size

Index and Subscript Literals

Procedure Division Considerations

CALL Statement

COMPUTE Statement

GO TO DEPENDING ON Statement.

INSPECT Statement

SORT/MERGE Statement

STOP Statement ...

UNSTRING Statement

TRANSACTION File. .

CHAPTER 9. CREATING, EXECUTING, AND

DEBUGGING PROGRAMS

General Overview

How a COBOL Program is Processed . .

IBM System/34 COBOL-Supplied Procedure

COBOL Command Statement

COBOLCG Command Statement

COBOLG Command Statement .

COBSYSIN Command Statement

COBMOVE Command Statement

COBOLP Command Statement .

PROCESS Statement

Using COpy Within the PROCESS Statement

The User Library

Storing Procedures and Source Statements

Retrieving COBOL Source Statements . . .

Retrieving an Entire COBOL Source Program

Link-Editing

Execution

Program Linkage

Calling and Called Programs

Linkage Between Modules Produced by System/34

Language Translators

Standard Linkage

8-1

8-1

8-1

8-1

8-1

8-1

8-1

8-1

8-2

8-2

8-2

8-2

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-3

8-4

8-4

8-4

8-4

8-4

8-4

8-4

8-4

8-4

9-1

9-1

9-1

9-3

9-4

9-4

9-5

9-6

9-6

9-7

9-9

9-11

9-12

9-12

9-12

9-12

9-12

9-13

9-14

9-14

9-20

9-22

Program Checkout. 9-23

Debugging Language 9-23

Testing a Program Selectively 9-28

Testing Changes and Additions to Programs 9-28

Program Loops 9-28

Tracing a Loop in a Program 9-29

Errors That Can Cause a Loop . . . 9-29

Abnormal Terminations During Execution 9-30

Abnormal Termination Due to Invalid Address 9-30

Abnormal Termination Due to Invalid Operation 9-30

Main Storage Dumps 9-31

Interpreting a Dump 9-31

Hints for Program Checkout 9-33

Checkpoint/ Restart Facilities 9-47

RERUN Clause . . . 9-47

Taking a Checkpoint 9-48

Restarting a Program 9-48

Interpreting Output 9-49

Compiler Output . . 9-49

Linkage Editor Output 9-55

COBOL Object Program-Execution Output 9-57

Diagnosed Source File 9-60

CHAPTER 10. IDEOGRAPHIC SUPPORT 10-1

How to Specify that You Have Ideographic

Literals 10-1

The Rules for Ideographic Literals 10-1

Examples of Ideographic Literals . 10-2

Compiler Checking of Ideographic Literals 10-2

How to Specify Continuation of Ideographic

Literals 10-2

Testing for Ideographic Support 10-3

Subroutines that Handle Ideographic Data 10-4

Move Ideographic Data and Insert control

Characters-CBINST 10-4

Move Ideographic Data and Remove Control

Characters-CBREMV 10-5

APPENDIX A. COMPILER MESSAGES A-1

Diagnostic Levels A-1

APPENDIX B. SPECIAL PURPOSE SUBROUTINES B-1

1255 Magnetic Ink Character Reader (MICR) Interface B-1

Shutdown Status Test B-3

APPENDIX C. LANGUAGE SUMMARY AND

COMPARISON C-1

Assumptions for System/34 COBOL Language C-1

Summary of System/34 COBOL Language C-2

Summary of Elements in the Nucleus C-3

Summary of Elements in Table Handling Module C-11

Summary of Elements in Sequential 1-0 Module C-12

Summary of Elements in the Relative 1-0 Module C-15

Summary of Elements in Indexed 1-0 Module .. C-18

Summary of Elements in the Sort- Merge Module . C-21

Summary of Elements in the Debug Module C-23

Summary of Elements in the Inter-Program

Communication Module C-24

Summary of Elements in the Segmentation Module C-25

Summary of Elements in the Library Module . . . C-26

Contents ix

APPENDIX D. INTERMEDIATE RESULT FIELDS 0-1
Compiler Calculation of Intermediate Results . 0-2

APPENDIX E. SAMPLE FILE-PROCESSING
PROGRAMS E-1

Sequential File Creation E-1
Sequential File Updating and Extension E-3
Indexed File Creation E-5
Indexed File Updating . E-7
Relative File Creation E-l1
Relative File Updating E-13
Relative File Retrieval E-15
COBOL Sort Example E-18

APPENDIX F. IBM AMERICAN NATIONAL STANDARD
COBOL RESERVED WORDS F-1

Reserved Words Used by the System/34
COBOL Compiler. F-l

Reserved Words Not Used by the System/34 Compiler F-5

APPENDIX G. EBCDIC AND ASCII COLLATING
SEQUENCE G-1

EBCDIC Collating Sequence G-1
ASCII Collating Sequence G-5

APPENDIX H. FILE PROCESSING SUMMARY AND
STATUS KEY VALUES H-1

APPENDIX I. DISPLAY SCREEN FORMAT
SPECIFICATIONS 1-1

S Specifications . 1-1
o Specifications. . 1-5

APPENDIX J. EXAMPLE OF CONVERSION FROM
WORK STATION PRPQ SUPPORT TO NATIVE
COBOL TRANSACTION FILE SUPPORT J-1

GLOSSARY. K-1

INDEX ... X-l

x

Chapter 1. Introduction

GENERAL DESCRIPTION

COBOL (Common Business Oriented Language) is a
programming language that resembles English. As its
name implies, COBOL is especially efficient in the
processing of business problems. COBOL can be
efficiently used to manipulate large files of data in a
relatively simple way. That is, COBOL emphasizes the
description and handling of data items and of
input/output records.

The System/34 COBOL Compiler and Library is an IBM
program product that accepts and compiles COBOL
programs written in accordance with the 1974 standard.
This program product also includes a number of IBM
extensions. The following sections describe the
language level implemented and language-independent
compiler features.

LANGUAGE LEVEL

The table that follows shows the support of each
module provided by System/34 COBOL. The table also
describes each module and explains where System/34
COBOL offers more support to a module than is
specified by the defined level.

The following example explains the notation used to
identify levels of implementation:

1 SEG 0, 2

ILHighest level available
Minimum level required

'-----Module identifier
'------Level supported by System/34 COBOL

System/34
COBOL
Processing
Modules

Nucleus
2 NUC 1, 2

Table Handling
2 TBL 1, 2

Sequential I/O
2 SEa 1, 2

Relative I/O
2 REL 0, 2
(see Note)

Indexed I/O
1 INX 0,2
(see Note)

Module Description

Contains the language elements that
are necessary for internal
processing.

Contains the language elements
necessary for: (1) definition of
ta bles; (2) identification,
manipulation, and use of indexes;
(3) reference to the items within
tables. Provides the ability to define
fixed-length or variable-length
tables of up to three dimensions.
Items in the tables can be referred
to by using a subscript or an index.

Allows definition and access of
sequentially organized external files.

Provides the capability for defining
and accessing disk files in which
records are identified by relative
record numbers. A file can be
accessed randomly and sequentially
in the same COBOL program.

Provides the capability for defining
disk files in which records are
identified by the value of a key and
accessed through an index. IBM
System/34 COBOL Indexed I/O
provides many level 2 functions with
two notable exceptions:

• 	 ALTERNATE RECORD KEYs are
not supported.

• 	 The WRITE statement cannot be
used when ACCESS is DYNAMIC
and the file is opened as 1-0.

Note: This module deviates from the standard as
described in Industry Standards in the Preface.

Introduction 1-1

System/34
COBOL
Processing
Modules

Sort-Merge
2 SRT 0,2

Report Writer°RPW 0,1

Segmentation
1 SEG 0,2

Library
2 LIB 0, 2

Debug
1 DEB 0, 2

Inter-program
Communication
1 IPC 0, 2

Communication°COM 0,2

Module Description

Allows for the inclusion of one or
more sorts in a COBOL program
and for use of the merge facility.

Provides for semiautomatic
production of printed reports.

Provides for the overlaying at object
time of Procedure Division sections.

Allows inclusion of predefined
COBOL text into a program.

Provides a means by which the user
can specify statements and
procedures for debugging.

Provides facilities for a program to
communicate with one or more
other programs. Also provides
capability to transfer control to
another program known at compile
time, and the ability for both
programs to have access to certain
data items.

Provides the ability to access,
process, and create messages or
portions of messages; also provides
the ability to communicate through a
Message Control System with local
and remote communication devices.

COMPILER FEATURES

The following language-independent features are made
available with System/34 COBOL:

• 	 The Diagnosed Source File optionally builds a file that
can be retrieved and displayed at a display station.
The file that is created contains source statements,
merged diagnostics, and summary information. The
file can be moved to a library member by an
IBM-supplied procedure and can then be reviewed
and updated by using SEU.

• 	 Syntax-checking compilation saves machine time
while debugging source syntax errors. The source
program is scanned for syntax errors and such error
messages are generated, but no object code is
produced.

• 	 Prompting screen formats provide ease of entry and
maintenance by the COBOLP command. This
command also allows the specification of parameters
needed for compiling and executing COBOL
programs.

• 	 The sorted cross-reference option provides a listing
of each Data Division name and Procedure Division
paragraph name and indicates the statement numbers
of each reference of the item.

• 	 Interprogram calls allow programs written in
System /34 COBOL to call or be called by other
programs written in System/34 COBOL, System/34
FORTRAN IV, or System/34 Basic Assembler.

• 	 Multiple printer files allow the user to define and use
multiple printer files in the same program.

• 	 The FIPS (Federal Information Processing Standard)
Flagger issues messages identifying nonstandard
elements in a COBOL source program. The FIPS
Flagger makes it possible to ensure that clauses and
statements in a System/34 COBOL source program
conform to a particular level of the 1975 Federal
Information Processing Standard.

• 	 Diagnostic messages below a user-specified level

may be suppressed.

1-2

FORMAT NOTATION

In COBOL, basic formats are prescribed for the various
elements of the language. In this manual, these formats
are presented in a uniform system of notation that is
explained in the following paragraphs. This notation is
designed to assist the programmer in writing his own
COBOL source statements.

• 	 Reserved words are printed entirely in CAPITAL
LETTERS. These words have preassigned meanings
in COBOL. If any reserved word is misspelled, it is
not recognized as a reserved word and may cause an
error in the program. The two types of reserved
words are key words and optional words.
- Key words are required by the syntax of the

format unless the portion of the format containing
them is itself optional. In formats, key words are
shown in UNDERLINED CAPITAL LETTERS. If any
key word is missing, it is considered an error in
the program.
Optional words are included only for readability.
They may be included or omitted without changing
the syntax of the program. Optional words are
CAPITALIZED but not underlined.

• 	 Words printed in lowercase letters represent
information to be supplied by the programmer. All
such words are defined in the text of this manual.

• 	 For easier text reference, some user-defined words
are followed by a hyphen and digit or letter. This
suffix does not change the syntactical definition of
the word.

• 	 Braces ({}) enclosing listed items indicate that one of
the enclosed items is required.

• 	 Square brackets ([]) indicate that the enclosed item
may be used or omitted, depending on the
requirements of the program. When two or more
items are stacked within brackets, one or none of
them may be specified.

• 	 The ellipsis (...) indicates that the immediately
preceding unit may occur once or any number of
times in succession. A unit may be a single
lowercase word or a group of lowercase words and
one or more reserved words enclosed in brackets
and/or braces. When repetition is specified, the
entire unit of which the term is a part must be
repeated if the term is enclosed within brackets or
braces.

• 	 The arithmetic and logical operators (+, -, <, >, =)
that appear in formats are required even though they
are not underlined.

• 	 All punctuation and other special characters
appearing in formats (except braces, brackets,
ellipses, commas, and semicolons) are required by
the syntax of the format when they are shown; if
they are omitted an error occurs in the program.
Additional punctuation may be specified, according to
the punctuation rules given later in this manual.

• 	 The required clauses and (when written) optional
clauses must be written in the sequence shown in the
format unless the associated rules explicitly state
otherwise.

• 	 Comments, restrictions, and clarifications on the use
and meaning of every format are contained in the
description that follows each one.

IBM extensions to ANSI COBOL. X3.23-1974, are
documented in separate paragraphs beginning with the
paragraph heading, mM Extension:

Introduction 1-3

1-4

Chapter 2. Language Considerations

COBOL PROGRAM STRUCTURE

Every COBOL source program is divided into four
divisions. Each division must be placed in proper
sequence, and each must begin with a division header.
(Appendix E shows the general structure of every
COBOL source program.)

In subsequent chapters, the rules for writing COBOL
source programs and methods of data reference are
given.

The COBOL Divisions

The four divisions of a COBOL source program and their
functions in solving a data processing problem are
described in the following paragraphs.

Identification Division

The Identification Division names the program and,
optionally, documents the date the program was written,
the compilation date, and other pertinent information.

Environment Division

The Environment Division describes the computer(s) to
be used and specifies the machine(s) and equipment
features used by the program. This description defines
the relationship of files of data with input/output
devices.

Data Division

The Data Division defines the nature and characteristics
of all data the program is to process: the data used in
input/output operations and the data developed for
internal processing.

Procedure Division

The Procedure Division consists of executable
statements that process the data in the manner the
programmer defines. Statements are executed in the
order they are written unless another order is defined by
the programmer.

Clauses and Statements

Every COBOL source program is written in clauses and
statements, each of which describes a solution to some
specific aspect of the data processing problem.

• 	 Clauses, written in the Environment and Data
Divisions, specify an attribute of an entry. A series of
clauses ending with a period is defined as an entry.

• 	 Statements, written in the Procedure Division, specify
an action to be taken by the object program. A series
of statements ending with a period is defined as a
sentence.

Each clause or statement in the program can be
subdivided into smaller syntactical units called phrases
or options. A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion
of a COBOL clause or statement. An option is a phrase·
that provides the programmer with required or optional
wording, depending on the desired meaning.

Clauses, entries, statements, and sentences can be
combined into paragraphs or sections. Each paragraph
and section defines some larger part of the data
processing problem solution. Specific rules for the
formation of each element are given in the
documentation for each division of the COBOL program.

Clause and Statement Specification Order

When specified, each required or optional clause or
statement (even those treated as documentation) must
be written in the sequence shown in the correct format
unless the associated rules explicitly state otherwise.

Language Considerations 2-1

STRUCTURE OF THE LANGUAGE

In COBOL, the indivisible unit of data is the character.
Fifty-one EBCDIC characters form the COBOL character
set: the 26 letters of the alphabet, the 10 Arabic
numerals, and 15 special characters.

Individual COBOL characters are put together to form
character-strings and separators.

A character-string is a character or sequence of
contiguous characters that form a word, a literal, a
PICTURE character-string, or a comment. A
character-string can be delimited only by a separator.

A separator is a contiguous string of one or more
punctuation characters. A separator can be placed next
to another separator or next to a character-string.

Except for comments and nonnumeric literals (which
may use any character within the EBCDIC set), the 51
characters are the only characters valid in a COBOL
program. Figure 2-1 shows the valid COBOL characters
in ascending EBCDIC sequence and their usage in a
COBOL program.

IBM Extension: A System/34 COBOL
compiler's default option substitutes
an apostrophe (') for a quotation mark
("). Unless the default option is
overridden, the quotation mark cannot
be used. If conformance with the
standard character set is desired, the
programmer must specify the quotation
mark with a PROCESS statement option at
compile time. If the quotation mark is
thus specified, the apostrophe cannot
be used.

Note: Throughout this manual, the apostrophe is used
because it is the default option. In all cases, the
quotation mark can be used only if the default option is
overridden.

COBOL
Character Meaning Use

space punctuation character

decimal point; editing character;
period punctuation character

< 	 less than relation character

left parenthesis punctuation character

+ 	 plus symbol arithmetic operator;
sign; editing character

$ 	 dollar sign editing character

• 	 asterisk arithmetic operator;
editing character

right parenthesis punctuation character

semicolon punctuation character

minus symbol; arithmetic operator;
hyphen sign; editing character

/ stroke or arithmetic operator;
slash editing character

comma punctuation character;
editing character

> greater than relation character

= equal sign relation character;
punctuation character

II or' quotation mark punctuation character
or apostrophe

A-Z alphabet alphabetic character

0-9 Arabic numerals numeric character

Note: All COBOL characters are considered to be
alphanumeric.

Figura 2-1. COBOL Characters and Their Meanings

2-2

Character-Strings

COBOL character-strings form words, literals, PICTURE
character-strings, and comments. Each is described in
the following paragraphs.

COBOL Words

A COBOL word carl be a user-defined word, a
system-name, or a reserved word. A COBOL word can
belong to only one of these classes.

The maximum length of a COBOL word is 30 characters.

User-Defined Words: A user-defined word is a COBOL
word supplied by the programmer. Valid characters in a
user-defined word are:

• A through Z

• 0 through 9

• - (hyphen)

The hyphen may not appear as the first or last character
in a user-defined word.

A list of user-defined word sets, together with rules for
their formation, is given in Figure 2-2. The function of
each user-defined word in any specific clause or
statement is included in the prose description for each
clause or statement.

User-Defined

Word Sets Rules for Formation

alphabet-name Must contain at least one
condition-name alphabetic character. Within
data-name each set, the name must be
record-name unique either because no other
file-name word is made up of an identical
index-name character-string, or because it
mnemonic-name can be made unique through
routine-name qualification. (See the section

Methods of Data Reference.)

library-name 	 Must contain at least one
alphabetic character. The
system uses the first 8
characters as the identifying
name; these first 8 characters,
therefore, must be unique
among library-names.
Text-name must be unique
unless qualified by a
library-name.

program-name 	 Must contain at least one
text-name 	 alphabetic character. The

system uses the first 6
characters as the identifying
name. These first 6 characters,
therefore, must be unique
among program-names.

paragraph-name Need not contain an alphabetic
section-name character. Other rules as in first

paragraph.

level-numbers: Must be a 1- or 2-digit integer.
01-49, 66, 77, 88 Need not be unique.

segment-numbers : Must be a 1- or 2-digit integer.
00-99 Need not be unique.

Figure 2-2. 	 U..r-Defined Word Seta and Rul .. for
Formation

Language Considerations 2-3

System-Names: A system-name is an IBM-defined
name that is used to communicate with the system. A
system-name can be:

• 	 computer-name

• 	 language-name

• 	 implementor-name

• 	 function-name

The function of each system-name is described with the
format in which it appears; each is defined in the
Glossary.

Reserved Words: A reserved word is a COBOL word
with fixed meaning(s) in a COBOL source program. A
reserved word must not be specified as a user-defined
word or as a system-name. Reserved words can be
used only as specified in the formats for a COBOL
source program.

Appendix F gives a complete list of COBOL reserved
words. The section on Format Notation in Chapter 1
gives the conventions used to represent reserved words
in this manual.

There are six types of reserved words:

• 	 Key words

• 	 Optional words

• 	 Connectives

• 	 Special registers

• 	 Special-character words

• Figurative constants

Each type is described in the following paragraphs.

Key words are words that are required within a given
clause, entry, or statement. There are three types of key
words:

• 	 Verbs, such as ADD, READ, WRITE

• 	 Required words, which appear in clause, entry, or
statement formats, such as the word USING in the
MERGE statement

• 	 Words with a specific functional meaning, such as
NEGATIVE or SECTION

Optional Words are words that may be included in a
clause, entry or statement. When an optional word is
omitted, the meaning of the COBOL program is
unchanged.

There are three types of connectives: qualifier, series, or
logical.

• 	 Qualifier connectives (OF, IN) associate a data-name,
condition-name, text-name, or paragraph-name with
its qualifier.

• 	 Series connectives (the comma and semicolon)
optionally link two or more consecutive operands.
(An operand is a data item or literal that is acted
upon by the COBOL program.)

• 	 Logical connectives (AND, OR, AND NOT, OR NOT)
are used in specifying conditions.

Special registers are compiler-generated storage areas
used primarily to store information produced through
one of the specific COBOL features. Each such storage
area has a fixed name and need not be further defined
within the program. These special registers include the
following:

• 	 DEBUG-ITEM (See Debugging Features in Chapter 6.)

.• 	 LINAGE-COUNTER (See LINAGE Clause in
Chapter 4.)

• 	 DATE, DAY, TIME (See ACCEPT Statement in
Chapter 5.)

Special-character words are arithmetic operators
(+ - / • ••) or relation characters « > =). Arithmetic
operators are described under Arithmetic Expressions in
Chapter 5. Relation characters are described in the
relation condition description of the Conditional
Expressions in Chapter 5.

2-4

Figurative constants name and refer to specific constant The singular and plural forms of a figurative constant are
values. equivalent and can be used interchangeably. For

example, if DATA-NAME-1 is a five-character data
The reserved words for figurative constants and their item, either of the following statements will fill
meanings are: DATA-NAME-1 with five spaces:

• 	 ZERO, ZEROES, ZEROS-represents the value 0 or
one or more occurrences of the character 0,
depending on context. Zero can be numeric or
nonnumeric, o~pending on context. For example,
ZERO is considered to be nonnumeric when it is used
in a relational expression in which it is compared to
an alphanumeric data item.

• 	 SPACE, SPACES-represents one or more blanks or
spaces. Must be nonnumeric.

• 	 HIGH-VALUE, HIGH-VALUES-represents one or
more occurrences of the character that has the
highest value in the collating sequence used. For the
EBCDIC (NATIVE) collating sequence, the character is
hex FF; for other collating sequences, the character
used depends on the collating sequence. When used
in a COBOL program, HIGH-VALUE is treated as a
nonnumeric literal.

• 	 lOW-VALUE, lOW-VALUES-represents one or
more occurrences of the character with the lowest
value in the collating sequence used. For the EBCDIC
(NATIVE) collating sequence, the character is hex 00;
for other collating sequences, the character used
depends on the collating sequence. When used in a
COBOL program, lOW-VALUE is treated as a
nonnumeric literal.

• 	 QUOTE, QUOTES-represents one or more
occurrences of the quotation mark character and
must be nonnumeric. The word QUOTE (QUOTES)
cannot be used in place of an apostrophe to enclose
a nonnumeric literal.

• 	 All literal-represents one or more occurrences of the
string of characters composing the literal and must be
nonnumeric. The literal must be either a nonnumeric
literal or a figurative constant other than the All
literal. When a figurative constant is used, the word
All is redundant and is used for readability only. The
figurative constant All literal must not be used with
the DISPLAY, INSPECT, STRING, STOP, or
UNSTRING statements.

MOVE SPACE TO DATA-NAME-1.
MOVE SPACES TO DATA-NAME-1.

In any format, a figurative constant may be substituted
for a nonnumeric literal; only the figurative constant
ZERO (ZEROS, ZEROES) may be substituted for a
numeric literal.

The length of a figurative constant depends on the
context of the program. The following rules apply:

• 	 When a figurative constant is associated with a data
item, the length of the figurative constant
character-string is equal to the length of the
associated data item. This rule applies, for example,
when a figurative constant is moved to or compared
with another item.

• 	 When a figurative constant is not associated with
another data item, the length of the character-string
is one character. This rule applies, for example, in
the DISPLAY, INSPECT, STRING, STOP, and
UNSTRING statements.

Literals

A literal is a character-string with a value that is
specified either by the ordered set of characters of
which it is composed or by a figurative constant. The
three types of literals are nonnumeric, numeric, and
Boolean.

Nonnumeric Literals: A nonnumeric literal is a
character-string that can contain any allowable character
from the EBCDIC set. A nonnumeric literal may contain
a maximum of 120 characters.

A nonnumeric literal must be enclosed by apostrophes.
The enclosing apostrophes are not part of the literal.

Language Considerations 2-5

Any punctuation characters included within a
nonnumeric literal are part of the value of the literal. An
embedded apostrophe must be represented by a pair of
adjacent apostrophes; one apostrophe is then part of
the value of the literal. Each pair of embedded
apostrophes in the literal counts as one character
against the limit of 120 characters.

Every nonnumeric literal is in the alphanumeric category.
Data categories are defined under PICTURE Clause in
Chapter 4.

Numeric Literals: A numeric literal is a character-string
whose characters are selected from the digits 0 through
9, a sign character (+ or -I, and/or the decimal point.
The following rules apply:

• 	 One to 18 digits are allowed.

• 	 Only one sign character is allowed. If a sign
character is included, it must be the leftmost
character of the literal. If the literal is unsigned, it is
considered to have a positive value.

• 	 Only one decimal point is allowed. If a decimal point
is included, it is treated as an assumed decimal point
(not considered a character position in the literal).
The decimal point may appear anywhere within the
literal except as the rightmost character. If the literal
contains no decimal point, it is considered to be an
integer. The word integer appearing in a format
represents a numeric literal of nonzero value that
contains no sign and no decimal point; any other
restrictions are included with the description of the
format.

The value of a numeric literal is the algebraic quantity
expressed by the characters in the literal. The size of a
numeric literal in standard data format characters is
equal to the number of digits specified by the user.

mM Extension:

Boolean Literals: A Boolean
literal contains a single a or 1 and is
enclosed in quotes and immediately
preceded by an identifying B. The
Boolean literal is defined as either
B'O' or B'1'. A Boolean character
occupies one byte. The figurative
constant ZERO can be used as a Boolean
literal, and the reserved word ALL is
valid with a Boolean literal.

PICTURE Character-Strings

A PICTURE character-string consists of COBOL
characters used as symbols in the PICTURE clause. The
choice of symbols determines whether the user-defined
name is Boolean, numeric, alphabetic, or alphanumeric,
and is also used to define edited output fields.

Comments

A comment is a character-string containing any
combination of characters from the EBCDIC set. A
comment serves only as documentation. Comments take
two forms:

• 	 A comment-entry in the Identification Division. For a
further description of a comment entry, see
Identification Division in Chapter 3.

• 	 A comment line (preceded by an asterisk or a slash in
Column 7) in any division of the program. For a
further description of a comment line, see Standard
COBOL Format in this chapter.

2-6

Separators 	 The following rules apply to the formation of separators:

A separator is a string of one or more punctuation
characters. The punctuation characters are shown in
Figure 2-3.

Punctuation
Character Meaning

space

period

left parenthesis

right parenthesis

semicolon

comma

= equal sign

" quotation mark

apostrophe

Figure 2-3. Punctuation Characters

• 	 A space is always a separator except when the space
appears within a nonnumeric literal. When contained
between the opening and closing apostrophe of a
nonnumeric literal, the space is considered part of the
literal. Wherever a space is used as a separator,
more than one space can be used.

• 	 A comma, semicolon, or period that is immediately
followed by a space is a separator. These separators
may appear only where explicitly allowed by COBOL
rules.

• 	 The left and right parentheses are separators.
Parentheses must appear as balanced pairs of left
and right parentheses, delimiting subscripts, indexes,
arithmetic expressions, or conditions.

• 	 The apostrophe is a separator. An opening
apostrophe must be immediately preceded by a space
or a left parenthesis. A closing apostrophe must be
immediately followed by one of the following
separators: space, comma, semicolon, period, or right
parenthesis. Apostrophes must appear as balanced
pairs delimiting nonnumeric literals except when the
literal is continued.

• 	 The pseudo-text delimiter (==) is a separator. An
opening pseudo-text delimiter must be immediately
preceded by a space. A closing pseudo-text delimiter
must be immediately followed by one of the following
separators: space, comma, semicolon, or period.
Pseudo-text delimiters must appear as balanced pairs
delimiting pseudo-text.

Language Considerations 2-7

L

STANDARD COBOL FORMAT IBM ExteDSion~ The user may suppress
sequence checking at compile time.

COBOL programs must be written in the standard
COBOL format, described in the following discussion.
The format is described in terms of an SO-character line. Contiruation Area (Column 7)
The output listing of the source program is printed in
this same format. The COBOL coding form is shown in The continuation area is used to indicate the
Figure 2-4. continuation of words and nonnumeric literals from the

previous line onto the current line, to specify debugging
lines, or to indicate that the text on this line is to be

Sequence Numbers (Columns 1-6) treated as a comment.

Sequence numbers are written in columns 1 through 6.
A sequence number is used to identify numerically each
line to be compiled by the COBOL compiler. The use of
sequence numbers is optional. A sequence number, if
used, must consist of six digits in the sequence number
area (including the preprinted digits in columns 4 and 5).

If sequence numbers are present in the sOurce program,
they must be in ascending order. If sequence numbers
are out of sequence, the compiler accepts them in the
order read and generates a warning message.

~B~=.1 ,m, COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS PAGE OF

PROGRAM GRAPHIC .
CARO FORM #

PROGRAMMER OATE PUNCH

,.:SEOUENCE 81A IB COBOL STATEMENT !IOENTIFICATION
(PAGE) SEFlIAL, • ,

" 01 I I-.l I I 1 I' I j
02 -.l li 1 I! I I I

03 ! I i I I II I , I
04 : I i'

I I Ii I

Columns 1-6 represent the sequence number area.
Column 7 is the continuation area.

Columns 8-11 represent Area A t Used for writing COBOL source statements.
Columns 12-72 represent Area B {
Columns 73-80 are used to identify the program.

Figure 2-4. IBM COBOL Coding Form and Standard COBOL Format

2-8

Area A (Columns 8-11) and Area B (Columns 12-72) The basic skeleton of a COBOL program is shown in
Figure 2-6.

COBOL elements that may begin in Area A and specific
COBOL elements that may follow them are shown in 	 SEOuENCE "i A 18

,PA(,je> IS~RIAL) 81
~

~f6------24, , . 6 , , ,Figure 2-5. " " "
QQ! 01 L.~l:INITI F'% CAT;~ ON D%\I:IS:ION.

~

,
~

. , : • !
I: 	 ,'-H-t- 02
f-~- .• -.~~ , , , ,03 	 Y,

Must be Placement of
+04~ $IDI-.!+RON~llL~T OIVlSr~~ t---~~--+-----Elements That Followed Following , 0 5 ICONFII~U.RjA.LI.oIN '§ErC~-"J'J. .- ----

Begin in Area A Immediately By Elements
--~.

07 j--j!.~UIT-I?:U _P_'!.T SEC.TION.~·~--t~~t-j-
I 08 +f..! L e,. CON ____ROL..Division Header USING Option Same or next

~-line (Area B) .~t\.Af.:Oi~}" ¥I_:~ ~ ..- --- - ---- ----
r-t- l~c.!.l,.J~+~~C TLO_N~__

-.~-f----~Section header, Next line
12 FO I

paragraph header, (Area A) , 1 3 ~ORKj1 N,G' STOiRA,GiE :e'C'T l'O'N', , I :
I , , I14 . pe S'C III P,T JONparagraph-name, 	 iTT

1\ 15 pi J
or (in Procedure 16
 I ~ I ._.. L--- r--~'Division) key word \ 1 7 IPROcleDUR E 01l\Ir510N. I
DECLARATIVES 18V IDE CLIARAT Ives.

. 1 9 I ! i 1Ill' I, ' '
I iSection Header COpy or USE Same or next 	 I 20 ENb IOEel AR'A'T 1vle's.

,
I I 1

,
:

, ISleiclT!IioN!- NIA~IE 'SiEG 11"'1:101\1 i i ' ! i ' , i I I ' statement line (Area B)
IP.A&.A&R A P .Ii ·JiA~e,

f4 lc. 0 1'111' :NTS.Paragraph header Next line
01 IOeB'U~"5T AiTEMIeNTS.

or (Area A) 	 , '~:e ':T1e [ST" ' tro IA , I I I ,1 	 I
~ 1 ' , 	 I Iparagraph-name 	 ! i I i i i , • I , , , " "

USE, if specified)

Figure 2~. ae.ic Skeleton of a COBOL Program

Paragraph Header Environment Same or next

or Division entry or line (Area B)

Paragraph-Name Procedure Division

sentence

(after COpy or

Level Indicator Data-name Same line

Level-number (Area B)

Key Word Declaratives Next line

DECLARATIVES section name (Area A)

Key Words END Section-header Next line

DECLARATIVES (Area A)

Figure 2-6, Sequence of Elements in ANa A and ANa B

Language Considerations 2-9

Special Considerations

Some lines in a COBOL program require additional rules.
The divisional headers and the Data Division entries
have special requirements. A discussion of each follows.

Division Header

A division header must be immediately followed by a
period except when a USING option is specified with a
Procedure Division header. Except for the USING
option, no text may appear on the same line.

Section Header

A section header must be immediately followed by a
period except when Procedure Division segment
numbers are specified. In the Environment and
Procedure Divisions, a section consists of paragraphs.
In the Data Division, a section consists of Data Division
entries.

Paragraph Header, Paragraph-Name

In the Environment Division, a paragraph consists of a
paragraph header followed by one or more entries in
Area B. An entry consists of one or more clauses. In
the Procedure Division, a paragraph consists of a
paragraph-name followed by one or more sentences in
Area B. A sentence consists of one or more statements;
a statement is a syntactically valid combination of a
COBOL verb and its operands. Entries and sentences
must be ended with a period followed by a space.

Successive entries or sentences begin in Area B. The
entries are either on the same line as the last entry or
sentence, or they are on the next succeeding non blank
noncomment line.

Data Division Entries

Each Data Division entry begins with a level indicator or
level-number followed by a space. On the same line is a
data-name in Area B, followed by a sequence of
independent clauses describing the item. Each clause,
except the last, is followed by a space (or optionally by
a comma or semicolon and a space). The last clause in
the entry must be ended with a period followed by a
space.

Successive clauses begin in Area B. The clauses are
either on the same line as the preceding clause, or on
the next succeeding nonblank noncomment line.

A level indicator (FD, SO) must begin in Area A and be
followed by a space. For a further description of level
indicators, see Data Division Organization in Chapter 4.

A level number is a one- or two-digit integer with one of
the following values: 1 through 49, 66, 77, or 88. At
least one space must follow the level-number.

Level-numbers 01 and 77 must begin in Area A. The
associated record-name or item-name must appear in
Area B. Level-numbers 02 through 49, 66, and 88 may
begin in either Area A or Area B.

DECLARATIVES and END DECLARATIVES

In the Procedure Division, the key words
DECLARATIVES and END DECLARATIVES begin and
end the declaratives portion of the source program.
Both of these key words must begin in Area A and be
followed immediately by a period. No other text may
appear on the same line. After the key word END
DECLARATIVES, no text may appear before the
following section header.

2-10

Program Spacing

In writing a COBOL program, rules for indentation,
continued lines, comment lines, debugging lines, and
blank lines must be observed.

Indentation

Within an entry or sentence, successive lines in Area B
may have the same format or may be indented to clarify
program logic. The output listing is indented only if the
input statements are indented. Indentation does not
affect the syntax of the program. The amount of
indentation can be chosen by the programmer, subject
only to the restrictions on the width of Area B.

Continuation of Unes

Any sentence, entry, clause, or phrase that requires
more than one line can be continued in Area B of the
next succeeding noncomment line. The line being
continued is called the continued line; the succeeding
lines are continuation lines. Area A of a continuation
line must contain only spaces.

If there is no hyphen in the continuation area (Column 7)
of a line, the last character of the preceding line is
assumed to be followed by a space.

If there is a hyphen in the continuation area of a line,
the first nonblank character of this continuation line
immediately follows the last nonblank character of the
continued line without any intervening space. However,
this restriction does not apply to nonnumeric literals.

If the continued line contains a nonnumeric literal
without a closing apostrophe, all spaces at the end of
the continued line (through Column 72) are considered
to be part of the literal. The continuation line must
contain a hyphen in the continuation area, and the first
non blank character in Area B must be an apostrophe.
The continuation of the literal begins with the character
immediately following the apostrophe.

Comment Unes

A comment line is any line with an asterisk or slash in
the continuation area of the line. The comment may be
written anywhere in Area A and Area B of that line. The
comment may consist of any combination of characters
from the EBCDIC set.

If an asterisk is placed in the continuation area, this
comment line is printed in the output listing immediately
following the last preceding line.

If the slash is placed in the continuation area, the
current page of the output listing is ejected, and the
comment line is printed on the first line of the next
page.

The asterisk or slash and the comment are produced
only on the output listing. They are treated as
documentation by the compiler.

Successive comment lines are allowed. Each must begin
with an asterisk or slash in the continuation area.

Debugging Lines

A debugging line is any line with a D coded in the
continuation area. Rules for the formation of debugging
lines are given under Debugging Features in Chapter 6.

Blank Unes

Blank lines contain nothing but spaces from Column 7
through Column 72. A blank line may appear anywhere
in a program except immediately preceding a
continuation line.

Language Considerations 2-11

Overall Punctuation Rule.

Any punctuation character included in a PICTURE
character-string, a comment character-string, or a
nonnumeric literal is not considered to be a punctuation
character but rather is considered to be part of the
character-string or literal.

A comma, period, or semicolon followed by a space in
or at the end of a PICTURE character-string is a
separator and will terminate the PICTURE
character-string. The comma and semicolon are used
only for readability.

Punctuation rules for each division of the COBOL source
program follow.

Identification Division

Commas and semicolons can be used in the
comment-entries. The PROGRAM-ID paragraph must
end with a period followed by a space.

Environment Division

Commas or semicolons may separate successive clauses
and successive operands within clauses. The
SOURCE-COMPUTER, OBJECT-COMPUTER,
SPECIAL-NAMES, and I-O-CONTROL paragraphs must
each end with a period followed by a space. In the
FILE-CONTROL paragraph, each file-control entry must
end with a period followed by a space.

Data Division

Commas or semicolons may separate successive clauses
and operands within clauses. File (FD), Sort/Merge file
(SO), and data description entries must each end with a
period followed by a space.

Procedure Division

Commas or semicolons may separate successive
statements within a sentence and successive operands
within a statement. Each sentence and each procedure
must end with a period followed by a space.

METHODS OF DATA REFERENCE

Every user-specified name defining an element in a
COBOL program must be unique, either because no
other name has a character-string of the same value or
because it can be made unique through qualification,
subscripting, or indexing. In addition, references to data
and procedures can be either explicit or implicit. The
rules for qualification and for explicit and implicit
references follow.

Qualification

A name can be made unique if it exists within a
hierarchy of names, and the name can be identified by
specifying one or more higher-level names in the
hierarchy. The higher-level names are called qualifiers,
and the process by which such names are made unique
is called qualification.

Qualification is specified by placing one or more phrases
after a user-specified name. Each phrase consists of the
word OF or IN followed by a qualifier. (OF and IN are
logically equivalent.) The three formats for references
are references to Data Division names, references to
Procedure Division names, and references to COPY
libraries.

Format 1

data-name-' } [{OF}]{ - data-name·2condition-name IN ...

Format 2

paragraph-name [{~:} section-name]

Format 3

text-name [{~:} library-name]

2-12

In Data Division references, all qualifying data-names
must be associated with a level-indicator or
level-number. Therefore, two identical data-names
must not appear as subordinate entries in a group item
unless they can be made unique through qualification.
Names associated with a level-indicator (FD and SD) are
the highest level in the hierarchy. Next highest are those
associated with level-number 01. Names associated
with level-numbers 02 through 49 are at successively
lower levels in the hierarchy.

In the Procedure Division, two identical
paragraph-names must not appear in the same section.
A section-name is the highest and only qualifier
available for a paragraph-name.

The following example illustrates the use of identical
names in a data hierarchy:

01 FIELD-A
02 FIELD-B

05 SUB-1
07 SUB-2

02 FIELD-C
05 SUB-1

02 FIELD-D REDEFINES FIELD-C
05 SUB-3
05 SUB-4

A hierarchy includes all subordinate entries to the next
equal or higher level number. Therefore, in the above
example all entries are in the hierarchy of FIELD-A. All
entries from FIELD-B to but not including FIELD-C are
in the hierarchy of FIELD-B.

In the hierarchy of FIELD-A SUB-1 can be used twice;
once as subordinate to FIELD-B and once as
subordinate to FI ELD-C. When referring to SU B -1, it
must be qualified as SUB-1 OF FIELD-B or SUB-1 OF
FIELD-C. Within FIELD-B or FIELD-C, SUB-1 cannot
be subordinate to itself.

SUB-2, SUB-3, and SUB-4 can also be qualified when
they are referenced. This qualification is optional, as
these fields are already uniquely identified.

In any hierarchy, the name associated with the highest
level must be unique and cannot be qualified. No matter
what qualification is available, no name can be both a
data-name and a procedure-name.

Enough qualification must be specified to make the
name unique; however, it may not be necessary to
specifiy all the levels of the hierarchy. For example, if
more than one file has records that contain the field
EMPLOYEE-NO but only one of the files has a record
named MASTER-RECORD, then specifying
EMPLOYEE-NO OF MASTER-RECORD sufficiently
qualifies EMPLOYEE-NO. EMPLOYEE-NO OF
MASTER-RECORD OF MASTER-FILE is valid but
unnecessary.

Qualification Rules

The following rules for qualification apply:

• 	 Each qualifier must be of a successively higher level
and must be within the same hierarchy as the name it
qualifies.

• 	 The same name must not appear at two levels in a
hierarchy unless it can be qualified.

• 	 If a data-name or condition-name is assigned to
more than one data item, the data item must be
qualified each time it is referenced. This rule has one
exception; the condition-name must not be qualified
when used in a REDEFINES clause.

• 	 A paragraph-name must not be duplicated within a
section. When a paragraph-name is qualified by a
section-name, the word SECTION must not appear.
A paragraph-name need not be qualified when
referred to within the section in which it appears.

• 	 Library-name must be unique in the system.
Therefore, the first eight characters of library-name
must be unique.

• 	 Text-name must be qualified by the library-name of
the library in which it resides, reside in the library
specified on the LIBRARY option of the PROCESS
statement, or reside in the system library if no other
qualification is given.

• 	 When a data-name is being used as a qualifier, it
cannot be subscripted.

• 	 A name can be qualified even when it does not need
qualification.

Language Considerations 2-13

• 	 If more than one combination of qualifiers ensures
uniqueness, then any of these combinations can be
used.

• 	 Duplicate section-names are not allowed.

• 	 A data-name cannot be the same as a section-name
or a paragraph-name.

• 	 If a data-name cannot be made unique by
qualification, duplication of this data-name is not
allowed.

• 	 The complete list of qualifiers for one data-name
must not be the same as a partial list of qualifiers for
another data-name.

Subscripting and Indexing

Subscripts and indexes can be used only when
reference is made to an individual element within a table
of elements that have not been assigned individual
data-names. Subscripting and Indexing are explained
under Table Handling in Chapter 6.

Identifier

An identifier is a term used to reflect that a data-name,
if not unique in a program, must be followed by a
syntactically correct combination of qualifiers, subscripts,
or indices necessary to ensure uniqueness. The general
formats for identifiers are as follows:

Format 1

data-name-' [{ ~:} data-name-2J ... [(subscript-' [, subscript-2 [,subscript-3J])]

Format 2

[{
0 F }] [{ index-name-1 [{±} Iiteral-2J }

data-name-' IN data-name-2 . -. (

- .. literal-1

, {indeX-name-2 [{±} Iiteral-4]} C{i~deX-name-3 [{± } I iteral-6]}]])]
[

Ilteral-3 	 . t IIteral-5

2-14

Restrictions on qualification, subscripting, and indexing
follow:

• 	 A data-name must not be subscripted or indexed
when that data-name is being used as an index,
subscript or qualifier.

• 	 Indexing is not permitted when subscripting is not
permitted.

• 	 An index can be modified only by the SET, SEARCH,
and PERFORM statements. Data items described by
the USAGE IS INDEX clause permit the values
associated with index-names to be stored as a binary
occurrence number. Such data items are called index
data items.

• 	 Literal-1, literal-3, literal-5 in the above format must
be positive numeric integers. Literal-2, literal-4,
literal-6 must be unsigned numeric integers.

Condition-Name

A condition-name is a user-defined word that is
assigned a specific value or range of values. The value
assigned is contained in the set of values that a
conditional variable may possess. A condition-name can
alternatively be a user-defined word that is assigned the
status of an IBM-supplied switch or device.

Each condition-name must be unique, or it must be
made unique through qualification, and / or indexing, or
subscripting.

If qualification is used to make a condition-name
unique, the associated conditional variable can be used
as the first qualifier. If qualification is used, the
hierarchy of names associated with the conditional
variable or the conditional variable itself must be used to
make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its
condition-names also require the same combination of
indexing or subscripting.

The format and restrictions on the combined use of
qualification, subscripting, and indexing of
condition-names are the same as those for identifiers
except that data-name-1 is replaced by
condition-name-1.

In the general formats, condition-name refers to a
condition-name that is qualified, indexed, or subscripted
as necessary.

Explicit and Implicit References

COBOL source program references can be either explicit
or implicit in three instances: data attribute
specification, Procedure Division data references, and
transfers of control.

Data Attribute Specification

Explicit attributes are specified in COBOL coding. If a
data attribute is not an explicit attribute (not specified in
COBOL coding), it takes on a default value. These
default values are implicit attributes.

For example, the ACCESS MODE clause in the
file-control entry need not be specified. If the clause is
omitted, the compiler provides the default value,
ACCESS MODE IS SEQUENTIAL. This clause is then an
implicit attribute. If this same attribute, ACCESS MODE
IS SEQUENTIAL, is specified in the COBOL coding, it is
an explicit attribute.

Procedure Division Data References

Procedure Division statements can refer to data items
either explicity or implicitly.

An explicit reference occurs when the data-name of the
item is written in a COBOL statement or when the
data-name is copied into the program through a COpy
statement. An implicit reference occurs when the
data-name is referred to by a COBOL statement without
the name being written in that statement.

For example, when a USE AFTER STANDARD
EXCEPTION/ERROR PROCEDURE ON INPUT is
specified, an implicit reference is made to each
file-name that identifies an input file. For a further
description, see EXCEPTION/ERROR Declarative in
Chapter 5.

Language Considerations 2-15

TRANSFERS OF CONTROL

In the Procedure Division, program flow transfers control
from statement to statement in the order they are
written unless an explicit control transfer is specified or
no next executable statement exists. (See note below.)
This normal program flow is an implicit transfer of
control.

In addition to the implicit transfers of control between
consecutive statements, implicit transfer of control also
occurs when the normal flow is altered without the
execution of a procedure branching statement. COBOL
provides implicit transfers of control that override the
statement-to-statement transfers of control under the
following conditions:

• 	 After execution of the last statement of a procedure
being executed under control of another COBOL
statement. COBOL statements that control procedure
execution are MERGE, PERFORM, SORT, and USE.

• 	 During SORT or MERGE statement execution when
control is transferred to any input or output
procedure.

• 	 During execution of any COBOL statement that
causes execution of a Declarative procedure.

• 	 At the end of execution of any Declarative procedure.

COBOL also provides explicit transfers of control
through the execution of a procedure branching or
conditional statement. Lists of procedure branching and
conditional statements are given under Procedure
Division Organization in Chapter 5.

Note: The term next executable statement refers to the
next COBOL statement to which control is transferred
according to the rules given above. No next executable
statement can follow:

• 	 The last statement in a Declarative procedure that is
not being executed under control of another COBOL
statement.

• 	 The last statement in a COBOL program when the
procedure in which it appears is not being executed
under control of another COBOL statement.

2-16

Chapter 3. Identification and Environment Divisions

Identification Division

The Identification Division must be the first division in
every COBOL source program. This division names the
object program. (An object program is the output from a
compilation.)

The user may also include the date the program was
written. the date of compilation. and other such
documentary information about the program in the
Identification Division.

Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program·name.

[AUTHOR. [comment.entry] .• J
[INSTALLATION. [comment.entry] .J
[DATE-WRITTEN. [comment.entry] .J
[DATE.COMPILED. [comment-entry] •• .J
[SECURITY. Eomment-entry] •••J

The Identification Division must begin with the words
IDENTIFICATION DIVISION followed by a period and a
space.

Coding Example

PROGRAM-ID Paragraph

The first paragraph of the Identification Division must be
the PROGRAM-ID paragraph. The PROGRAM-ID
paragraph specifies the name by which the object
program is known to the system.

Program-name is a user-defined word that identifies the
object program to the system. A program-name must
include at least one alphabetic character. The system
uses the first 6 characters of program-name as the
identifying name of the program; these first 6
characters. therefore. should be a unique
program-name.

The system expects the first character of program-name
to be alphabetic; if it is numeric. it is converted as
follows:

• 0 is converted to J

• 1-9 is converted to A-I

The system does not allow the hyphen as a
program-name character; therefore. if the hyphen is the
second through sixth character. it is converted to zero.

To avoid such conversi9ns. the programmer should not
specify program-names with leading numerics or
embedded hyphens.

Identification and Environment Divisions 3-1

Other Optional Paragraphs

The other paragraphs are optional; however, if they are
written, they must appear in the order shown in the
format.

The comment-entries serve only as documentation and
do not affect the syntax of the program. The
comment-entries in the optional paragraphs may be any
combination of characters from the EBCDIC set and may
be written in Area B on one or more lines. A hyphen is
not permitted in the continuation area of Identification
Division statements.

The DATE-COMPILED paragraph provides the
compilation date of the source listing. When the
comment-entry is specified, the entire entry is replaced
with the current date. When the comment-entry is
omitted, the compiler adds, the current date to the line
on which DATE-COMPILED is printed.

3-2

Environment Division

The Environment Division, the second division of all
COBOL source programs, identifies the following:

• 	 The computer on which the source program is to be
compiled

• 	 The computer on which the object program is to be
executed

• 	 The specific main storage size required to execute the
object program

• 	 The linkage between the logical concept of the files
and their records, and the physical aspects of the
devices on which data is stored

The Environment Division has two sections: the
Configuration Section and the Input-Output Section.

The following shows the general format of the sections
and paragraphs in the Environment Division, and defines
the order of presentation in the source program.

Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER~ object-computer-entry

[SPECIAL-NAMES. special-names-entry]

[INPUT-OUTPUT SECTION.

FI LE-CONTROL. {file-control-entry}

U-O-CONTROL. input-output-control-entry]] •

The Environment Division must begin with the words
ENVIRONMENT DIVISION followed by a period and a
space.

Coding Example

SEQUENCE 1.! A COBOL STAT! 1a
IPAOE! iSERIAU eI , 	 , . . , "" I~02. 010 EN~I1:~ o~\.i iElNiTl rlvl% ~1:tloIN • I I I I I I I I I
II 020 !co~~1x .Iul" ~!TI%lo Isle e.ITlllo",.1 I I I I I I I I I
I 0 3 0 ~ O!u.IAIc..1E1-1e. o~plu eiAI. l:tl~ -1sl1~ I I I I i I I I

I040 ioSJ ec. T-CbMPU ~e R.. IS", - S3~_
050 ISP eC.iI AL - NA",es. Co1 IS PA <;'E-rr 01'.

) 060 ixN,PUT- ourrp,u.T see. TI.ON.
i(070 IFTIU~ -ic.blN ITIR.bIL 0' I I , I I I I I .. ! I ! i I !I

,) 080 ! ,1~LE ~:T : : , ! i '

i • ,,iJl 09 0 il! I iOR~IA IIl'1rziil ~01.... ~~ I! I . : .

Identification and Environment Divisions 3-3

CONFIGURATION SECTION In the Configuration Section, the comma or semicolon
can optionally separate successive clauses within a

The Configuration Section describes the computer that paragraph. In each paragraph. there must be one
compiles the source program and the computer that period; the period must be placed immediately after the
executes the object program. This section optionally last entry in the paragraph.
relates IBM-defined function names to user-defined
mnemonic-names, specifies the collating sequence to be
used, specifies a substitution for the currency sign, or
interchanges the functions of the comma and the period.

Format

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE]

OBJECT-COMPUTER_ computer-name

[{~R~}], MEMORY SIZE integer 	 CHARACTERS

MODULES

[,PROGRAM COLLATING SEQUENCE IS alphabet.name]

[,SEGMENT-LIMIT IS segment-number] •

[SPECIAL-NAMES. [, function-name-1 IS mnemonic-name]

[function-name-2

~ mnemonic-name,ON STATUS IS condition-name-1 [,OFF STATUS IS condition-name-2]

IS mnemonic-name,OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-1]

ON STATUS ~ condition-name-1 [, OFF STATUS ~ condition-name-2]

OFF STATUS ~ condition-name-2 ~ ON STATUS ~ condition-name-1]

STANDARD-1

NATIVE

, alphabet-name IS

literal-1 [{~~:~UGH} literal·2]

AJ.SQ literal-3 [,ALSO literal-4] •••

{ THROUGH} literal-6
[THRU]]. .

ALSO literal·7 [, ALSO literal-a]

[, CURRENCY SIGN !§ literal-9]

[,DECIMAL-POINT !§COMMA] .J

3-4

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph describes the
computer that compiles the source program. The
computer-name should be coded as: IBM-S34. If the
computer-name is not coded, it is assumed to be
IBM-S34.

With the exception of the WITH DEBUGGING MODE
clause, the SOURCE-COMPUTER paragraph is treated
as documentation. The WITH DEBUGGING MODE
clause is described under Debugging Features in
Chapter 6.

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the
computer that executes the object program.
Computer-name should be the first entry in the
OBJ ECT- COMPUTER paragraph. The computer-name
should be coded as: IBM-S34. If the computer-name is
not coded, it is assumed to be IBM-S34.

Except for the PROGRAM COLLATING SEQUENCE and
MEMORY-SIZE clauses, the OBJECT-COMPUTER
paragraph is treated as documentation.

MEMORY SIZE Clause

The MEMORY SIZE clause can be used to specify the
amount of main storage required to execute the object
program. When the LINK option is specified on the
PROCESS statement, the value specified for the
MEMORY SIZE clause is passed to the overlay linkage
editor. If the MEMORY SIZE clause specifies a region
larger than the unoverlayed size of the object program,
the region size specified is the amount of main storage
that is assigned to the program. When the MEMORY
SIZE clause specifies a region that is not large enough
to contain the object program, overlays are created in
the attempt to fit the program into the size specified. If
the program cannot be successfully overlayed, a
message is displayed giving the operator the choice of
not link-editing or producing a load module that is not
overlayed. It is necessary to allow enough memory space
to compile and link-edit the program. The Overlay Linkage
Editor takes the compiler region size (18K) as the default
for the size of region to link the program, unless:

• 	 A value is placed in the memory size clause.

L · A / / REGION statement is issued before compilation.

If the size thus determined is not sufficient, a message
(SYS-3172) issued by the Overlay Linkage Editor causes
the Overlay linkage editor to increase (if possible) the
region size to allow the link edit.

Note: If the total size of the linked program exceeds 64K,
the program must then be segmented to allow overlaying.
(For more information on the region size, see REGION
Statement in the SSP Reference Manual.)

Regardless of whether WORDS, CHARACTERS, or
MODULES are coded, the value of integer is interpreted
by the compiler as bytes or character spaces.

PROGRAM COLLATING SEQUENCE Clause

The PROGRAM COLLATING SEQUENCE clause
specifies the collating sequence used in a program. The
collating sequence associated with the specified
alphabet-name must be defined in the SPECIAL-NAMES
paragraph. The program collating sequence is used to
determine the truth value of the following nonnumeric
comparisons:

• 	 Those comparisons explicitly specified in relation
conditions.

• 	 Those comparisons explicitly specified in
condition-name conditions.

The PROGRAM COLLATING SEQUENCE clause also
applies to any nonnumeric merge or sort keys unless the
COLLATING SEQUENCE option is specified in the
MERGE or SORT statement.

When the PROGRAM COLLATING SEQUENCE clause is
omitted, the EBCDIC collating sequence is used. See
Appendix G for the complete EBCDIC collating
sequence.

SEGMENT-LIMIT Clause

Segment-number must be an integer ranging in value
from 1 through 49. Segment-nu,mber is treated as
comments. If specified, it must be correct.

• 	 The default value for the work station region size is
changed by means of the SET command.

Identification and Environment Divisions 3-6

SPECIAL-NAMES Paragraph 	 Function-Name-l Clause

The SPECIAL-NAMES paragraph relates IBM-specified Function-name-1 specifies system devices or standard
function-names to user-specified mnemonic-names. This system actions taken by the compiler.
paragraph specifies a collating sequence that is
associated with an alphabet-name, a substitute character The associated mnemonic-name is required. The
for the currency sign, and the interchange of the comma mnemonic-name is formed according to the rules for a
and decimal point in PICTURE clauses and numeric user-defined word and is required to contain at least
literals. 	 one alphabetic character.

Figure 3-1 shows the actions that are associated with
mnemonic-names for function-name-1. Each of these
functions may appear only once in the SPECIAL-NAMES
paragraph.

Function-Nam.1 	 Action

SYSTEM­ When specified, the associated mnemonic-name can be

CONSOLE used in ACCEPT and DISPLAY statements to communicate

with the system console.

REQUESTOR 	 When specified, the associated mnemonic-name can be

used in ACCEPT and DISPLAY statements to communicate

with the user display station.

CSP 	 Suppress spacing after printing a line.

C01 	 Skip to next page.

LOCAL-DATA 	 When specified, the associated mnemonic-name can be

referenced by either an ACCEPT or a DISPLAY statement

that references a display station or MRT procedure. An

ACCEPT or a DISPLAY statement is issued to retrieve data

from, or store data in, a system-managed area that

provides communications with programs that are executed

sequentially within a display station job. The LOCAL-DATA

area is described in the chapter on OCL statements under

the LOCAL statement in the System Support Reference

Manual.

ATTRIBUTE-DATA 	 When specified, the associated mnemonic-name can be

referenced only in an ACCEPT statement. The reference

causes an attribute record that is associated with an

identified display.. station or SSP-ICF session to be input to

the data item coded in the ACCEPT statement. Attribute

records and their required formats are described in

Chapter 7.

Figure 3-1. Choice. of Function-Name-1 and Action Taken

3-6

Function-Name-2 Clause Coding Example

Function-name-2 defines a one-byte program switch.
Function-name-2 can be defined as UPSI-O through
UPSI-7 or as SYSTEM-SHUTDOWN.

UPSI (User Program Status Indicator): Each UPSI is a
User Program Status Indicator switch. At least one
condition-name must be associated with each UPSI
switch specified. UPSI-O through UPSI-7 are COBOL
names that identify program switches defined outside
the COBOL program at execution time. Their contents
are considered to be alphanumeric. A value of zero is
off; a value of one is on. For the external setting of
UPSI switches, see Execution in Chapter 9.

Each switch represents a bit from the S-bit
indicator-settings parameter of the OCL SWITCH
statement as follows:

UPSI-O First bit (leftmost)
UPSI-1 Second bit
UPSI-2 Third bit

UPSI-7 Eighth bit (rightmost)

One condition-name must be associated with each
function-name-2; a second condition-name is optional.
One condition-name can be associated with the ON
status; another can be associated with the OFF status.
Establishing condition-names for the ON or OFF status
of a switch permits testing the setting of that switch.

Each condition-name is formed according to the rules
for a user-defined word, and the condition-name must
contain at least one alphabetic character.

I
COBOL STATE~II

,.,~:e.lor: III - lUI

i iA £- 11'1 rr~ III!. ~ -14 fdrIIllT IAlliT I,'=:

i :"11;, '1 irs IId1 -If! ~~~

I ~ IAIII ~1aI1r -~I1' II~ I 1'1 '

I ir ~IIII _16 Ic.Ir- ~ i'I' ~IT !.alii.IilIA -11
i It' -II' ~IA I!;:;. 14 - Ijlrr1iI-1.o I,~

i :1:11.: It'll ~I!;;.IT ill rr
I WOII- " Irs
i _ir:;11~ IT bl"~ Is Itrr"'iI.I
i ~ k'~~ Is 6111 Irr, ill I:
i ~ 1r1!;;i1 -~ Ie:; II-I!; b:1T .if) ""
I I ~ .. ITIAIr Is IIis ula!

II Ir- ir;tr IAtru II: tr~ " -" i 't. I~~ -[I~ u !s1I -if:: ~IT iII-11
i I Irll\l Ic;trlAIr U& IrI!i ll1 - ,IN

I L-:l-=i: ... IIls -n Is:

The above coding example assigns mnemonic-names to
the most commonly used function-names in the
SPECIAL-NAMES paragraph.

In the Procedure Division, the UPSI switch status is
tested through the associated condition-name(s). Each
condition-name is the equivalent of a level-SS item.
The associated mnemonic-name, if specified, is
considered the conditional variable and can be used for
qualification.

UPSI switches are tested by an IF statement. The
current UPSI values are retrieved from the system and
the test is performed against the switched settings. In
an SRT program, current UPSI values are always
associated with the requestor. In an MRT program, the
current UPSI values are associated with whichever
requestor has successfully executed the most recent
READ operation.

UPSI switches are updated by a SET statement. The
current UPSI values are retrieved from the system and
these switch settings are updated as specified by the
SET. The new switch settings are then returned to the
system for future references.

Identification and Environment Divisions 3-7

Programming Notes: UPSI switches are useful for
processing special conditions within a program, such as
year-beginning or year-ending processing. At the
beginning of the Procedure Division, an UPSI switch can
be tested; if it is ON, the special branch is taken.

SYSTEM-SHUTDOWN: SYSTEM-SHUTDOWN is an
internal switch that is set to the ON status when the
system operator requests the STOP SYSTEM operation.
This switch can then be tested by the program to
terminate the job. The associated ON or OFF
condition-names can be referenced in any conditional
expression.

Alphabet-Name Clause

The alphabet-name clause provides a means of relating
an alphabet-name to a specified character code set or
collating sequence.

The alphabet-name specifies a collating sequence in one
of the following:

• 	 The PROGRAM COLLATING SEQUENCE clause in
the OBJECT-COMPUTER paragraph

• 	 The COLLATING SEQUENCE option of the SORT or
MERGE statement

If NATIVE is specified or the alphabet-name clause is
not written, collating is done using the EBCDIC collating
sequence.

If STANDARD-1 is specified, collating is done as if the
data were translated from EBCDIC into ASCII. For more
information on translating EBCDIC into ASCII, see
Appendix G.

Literal Option: The literal option of the alphabet-name
clause processes internal data in collating sequences
other than NATIVE or STANDARD-1.

When the literal option is specified, the collating
sequence to be used is specified by the user according
to the following rules:

• 	 The order in which literals appear specifies the
ordinal number, in ascending sequence, of the
character(s) in this collating sequence.

• 	 Each numeric literal specified must be an unsigned
integer and must have a value from 1 through 256
(the maximum number of characters in the EBCDIC
character set). The value of each literal specifies the
relative position of a character within the EBCDIC
character set. For example, the literal 112 represents
the EBCDIC character ?, the literal 234 represents the
EBCDIC character Z, the literal 241 represents the
EBCDIC numeric character O. For more information
on which numbers correspond to which letters, see
Appendix G. Note, however, that the numbers in
Appendix G begin at 0 and run to 255. You must
add 1 to the number shown in Appendix G when you
use the literal option.

• 	 Each character in a nonnumeric literal represents that
character in the EBCDIC set. If the nonnumeric literal
contains more than one character, each character,
starting with the leftmost, is assigned a successively
ascending position within this collating sequence.

• 	 Any EBCDIC characters not explicitly specified
assume pOSitions in this collating sequence higher
than any of the explicitly specified characters. The
relative order of the unspecified characters within the
EBCDIC set remains unchanged.

• 	 Within one alphabet-name clause, a given character
must not be specified more than once.

• 	 Each nonnumeric literal associated with a THROUGH
or ALSO option must be one character in length.

3-8

• 	 When the THROUGH option is specified, the
contiguous EBCDIC characters beginning with the
character specified by literal-1 and ending with the
character specified by literal-2 are assigned
successively ascending positions in this collating
sequence. This sequence may be either ascending or
descending within the original EBCDIC sequence. For
example, if the characters Z through A are specified
left to right, then for this collating sequence the
ascending values, left to right, for the capital letters
are: ZVXWVUTSRQPONMLKJIHGFEDCBA.

• 	 When the ALSO option is specified, the EBCDIC
characters specified as literal-1, literal-3, literal-4,
and so on are assigned to the same position in this
collating sequence. For example, if 'D' ALSO 'N'
ALSO 112 ALSO '%' is specified, then for this
collating sequence the characters D, N, ?, and % are
all considered to be in the same position in the
collating sequence.

• 	 The character having the highest ordinal position in
this collating sequence is associated with the
figurative constant HIGH-VALUE. If more than one
character has the highest position because the ALSO
option is specified, the last character specified is
considered to be the HIGH-VALUE character for
procedural statements such as DISPLAY, or as the
sending field in a MOVE statement. If the ALSO
option example given above were specified as the
high-order characters of the collating sequence, then
the HIGH-VALUE character would be %.

• 	 The character having the lowest ordinal position in
this collating sequence is associated with the
figurative constant LOW-VALUE. If more than one
character has the lowest position because the ALSO
option is specified, the first character specified is the
LOW-VALUE character. If the ALSO option example
given above were specified as the low-order
characters of the collating sequence, then the
LOW-VALUE character would be D.

Alphabet-Name Clause Examples: The following
examples illustrate some uses for the alphabet-name
clause.

If PROGRAM COLLATING SEQUENCE IS
USER-SEQUENCE; if the alphabet-name clause is
specified as USER-SEQUENCE IS 'DEF'; and if two
Data Division items are defined as follows:

77 	 ITEM-1 PIC X(3) VALUE 'ABC'.
77 	 ITEM-2 PIC X(3) VALUE 'DEF'.

then the comparison IF ITEM-1 > ITEM-2 is true.

Characters D, E, and F are in ordinal positions 1, 2, and
3 of this collating sequence. Characters A, B, and Care
in ordinal positions 197, 19S, and 199 of this collating
sequence.

If the alphabet-name clause is USER-SEQUENCE IS 1
THRU 247, 251 THRU 256, '7', ALSO'S', ALSO '9'; if
all 256 EBCDIC characters have been specified; and if
the two Data Division items are specified as follows:

77 	 ITEM-1 PIC X(3) VALUE HIGH-VALUE.
77 	 ITEM-2 PIC X(3) VALUE '7S7'.

then both of the following comparisons are true:

IF ITEM-1 = ITEM-2 ...
IF ITEM-2 = HIGH-VALUE ...

They compare as true because the values '7', 'S', and '9'
all occupy the same position (HIGH-VALUE) in this
USER-SEQUENCE collating sequence.

If the alphabet-name clause is specified as
USER-SEQUENCE IS T, 'D', 'F' and a table in the Data
Division is defined as follows:

05 	TABLE-A OCCURS 6 ASCENDING KEY IS

KEY-A INDEXED BY INX-A.

10 FIELD-A .. .

10 KEY-A .. .

and if the contents in ascending sequence of each
occurrence of KEY-A are A, B, C, D, E, G, then the
results of the execution of a SEARCH ALL statement for
this table will be invalid because the contents of KEY-A
are not in ascending order. The proper ascending order
would be E, D, A, B, C, G.

Identification and Environment Divisions 3-9

CURRENCY SIGN Clause

The literal that appears in the CURRENCY SIGN clause
defines the currency symbol to be used in the PICTURE
clause. The literal must be a one-character nonnumeric
literal and must not be any of the following characters:

• 	 Digits 0 through 9

• 	 Alphabetic characters ABC D L P R S V X Z or the
space

• 	 Special characters * + - , . ; () " / =

When the CURRENCY SIGN clause is omitted, only the
dollar sign ($) may be used as the PICTURE symbol for
the currency sign.

DECIMAL POINT IS COMMA Clause

When the DECIMAL POINT IS COMMA clause is
specified, the functions of the period and the comma
are exchanged in PICTURE character-strings and in
numeric literals.

INPUT-OUTPUT SECTION

The Input-Output Section defines each file, identifies its
external storage medium, assigns the file to one or more
input/output devices, and also specifies information
needed for efficient transmission of data between the
external medium and the COBOL program.

The Input-Output Section is divided into two
paragraphs: the FILE-CONTROL paragraph, which
names and associates the files with the external media,
and the I-O-CONTROL paragraph, which defines special
input/output techniques to be used.

Format

[INPUT-OUTPUT SECTION,

FI LE-CONTROL. {file-control-entry}

lJ-O-CONTROL. input-output-control-entry]] •

The exact contents of the Input-Output Section depend
on the file organization and access methods used to
process the file. The following summary gives some
background for the file processing techniques available
in System/34 COBOL.

File Processing Summary

The method used to process a file in a COBOL program
depends on the data organization of the file and on the
access mode used.

Data organization is the permanent logical structure of
the file, established at the time the file is created. Four
types of data organization are available with System/34
COBOL: sequential, indexed, relative, and transaction.
Relative data organization is also known as direct data
organization on System/34.

An access mode is the manner in which records in a file
are to be processed. Three access modes are available:
sequential, random, and dynamic.

Disk File Processing

Figure 3-2 shows the allowable combinations of
program-specified organization and access modes with
disk file organization. Appendix H summarizes which
clauses and statements are required and which clauses
and statements are optional for each access method and
device.

Program- Program­ System/34 Disk File
Specified Specified Organization
Organiza- Access
tion Modes Sequential Indexed Direct

Sequential Sequential X Xl X

Indexed Sequential - X -
Random - X -
Dynamic - X -

Relative Sequential X, X' X
Random X, X, X
Dynamic X, X' X

'The file must be opened as input.

Figure 3-2. Allowable Combinations of Program-Specified
Organization and Access Modes With

System/34 Disk File Organization

3-10

mM Extension:

TRANSACTION File Processing

The TRANSACTION processing facilities
of System/34 COBOL allow the user to
read from and write to System/34
display stations. These facilities
also permit communications with another
application program on the same
System/34 or on another system. COBOL
TRANSACTION processing allows the user
to define a file that supports display
stations and SSP-ICF sessions in any
combination.

TRANSACTION file processing of display
stations interfaces with the formatted
output of SFGR (Screen Format
Generation Routine) and with WSDM (Work
Station Data Management). These
interfaces provide the ability to
support single or mUltiple requestor
programs (SRT/MRT), never ending
programs (NEP), and acquired terminals.
For further information and programming
considerations, refer to the System
Support Reference Manual and Chapter 7.

TRANSACTION file processing of SSP-ICF
sessions provides access to the
System/34 support for interactive
communications. The Interactive
Communications Feature supports
program-to-program communication in the
same or different systems. This
support also includes remote job
initiation. For information about how
the Interactive Communications Feature
works, refer to the Interactive
Communications Feature Reference
Manual.

The following paragraphs describe both the types of
data organization. and the access modes available.

Data Organization for Disk Files

In a COBOL program. data organization for disk files can
be sequential. indexed. or relative. Records can be fixed
or variable in length. Variable length records are stored
on the disk as fixed length records of the maximum size
specified for the file.

Sequential Organization: With this organization. records
are placed in the file consecutively. without keys. in the
physical order established at file creation time. Once
established. this relationship does not change. with the
exception that a file can be extended.

Indexed Organization: With this organization. each
record in the file has one embedded key that is
associated with an index. The index provides a logical
path to the data records according to the contents of
the associated embedded record key data item.

When records are inserted. updated. or deleted. they are
identified solely by the value of their record key. Thus.
the value in each record key data item must be unique
and must not be changed when the record is updated.
The key used for any specific input/output request is
known as the key of reference.

Relative Organization: With this organization. each
record in the file is identified by its relative record
number. The file can be thought of as a serial string of
areas. each of which may contain one logical record.
Each of these areas is. identified by a relative record
number; record storage and retrieval are based on this
number. For example. the first record area is addressed
by relative record number 1. and the 10th record area is
addressed by relative record number 10 whether or not
records have been written in the second through ninth
record areas.

Identification and Environment Divisions 3-11

IBM Extension:

Data Organization for

TRANSACTION Files

In a COBOL program, TRANSACTION files
have TRANSACTION organization. With
this organization, each record is
associated with a session ID, which may
be a display station session or with an
SSP-ICF session. TRANSACTION
organization signifies interactive
input and output records that are not
stored on an external medium.

Access Modes

Three access modes are available in COBOL: sequential.
random. and dynamic.

Sequential Access Mode: This access method allows
records of a file to be read and written in a serial
manner. The order of reference is implicitly determined
by the position of a record in the file.

Random Access Mode: This access method allows
records to be read and written in a
programmer-specified manner. The control of
successive references to the file is expressed by
specifically defined keys supplied by the user.

Dynamic Access Mode: This access method allows a
specific input/output request to determine the access
mode. Thus records may be processed sequentially
and/or randomly.

Access Mode Allowed tor Each File Type

Sequential Files: Files with sequential organization can
be accessed only sequentially. The sequence in which
records are accessed is the order in which the records
were originally written.

Indexed Files: All three access modes are allowed.

In the sequential access mode, the sequence in which
records are accessed is the ascending order of the
record key value.

In the random access mode, the sequence in which
records are accessed is controlled by the programmer.
The desired record is accessed by placing the value of
its record key in the RECORD KEY data item defined for
that file.

In the dynamic access mode. the programmer may
change at will from sequential access to random access
by using appropriate input/output statements.

Relative Files: All three access modes are allowed.

In the sequential access mode, the sequence in which
records are accessed is the ascending order of the
relative record numbers of all records that currently exist
within the file.

In the random access mode. the sequence in which
records are accessed is controlled by the programmer.
The desired record is accessed by placing its relative
record number in a RELATIVE KEY data item. The
RELATIVE KEY must not be defined within the record
description entry for this file.

In the dynamic access mode. the programmer may
change at will from sequential access to random access
by using appropriate input/output statements.

mM Extension:

TRANSACTION Files: Files with
TRANSACTION organization can be
accessed only sequentially. The
sequence in which records are accessed
is the order in which the transactions
are received by the system.

3-12

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph contains one or more
file-control entries. A file-control entry associates a file
in the COBOL program with an external medium, and
this entry allows specification of file organization, access
mode, and other information. The format of a
file-control entry varies with the type of file described.
The formats for the FILE-CONTROL paragraph are as
follows:

Format 1-Sequential File Entries

SELECT [OPTIONAL] file-name

ASSIGN TO assignment·name-' [,assignment.name.2] •

. [AREA J][RESERVE mteger·' AREAS

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-'] •

Format 2-lndexed File Entries

SELECT file-name

ASSIGN TO assignment-name-' [,assignment.name-2] •

. [AREA J][RESERVE mteger-' AREAS

ORGANIZATION IS INDEXED

SEQUENTIAL}]
[ACCESS MODE IS { RANDOM

DYNAMIC

RECORD KEY IS data-name-2

[FILE STATUS IS data-name-'] •

Identification and Environment Divisions 3-13

Format 3-Relative File Entries

SELECT file-name

ASSIGN TO assignment-name-1 [,assignment-name-2] •••

. [AREA]][RESERVE Integer-1 AREAS

ORGANIZATION IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-3]}

{
ACCESS MODE IS {RANDOM}

DYNAMIC' RELATIVE KEY IS data-name-3

[FILE STATUS IS data-name-1] •

Format 4-Sort or Merge File Entry

SE LECT file-name ASSIGN TO assignment-name-1 [,assignment-name-2] ••

When file-name specifies a sort or merge file, only the
ASSIGN clause may follow the SELECT clause in this
file-control entry. The ASSIGN clause associates the
sort or merge file with a storage medium.

Format 5-TRANSACTION File Entry

SELECT file·name

ASSIGN TO assignment·name

ORGANIZATION IS TRANSACTION

[FILE STATUS IS data-name·1 [,data-name-4]]

[ACCESS MODE IS SEQUENTIAL]

[CONTROL-AREA IS data·name-5].

3-14

FILE-CONTROL Paragraph-General Considerations

Each fil~ described in an FD or SO entry in the Data
Division must be described in only one entry in the
FILE-CONTROL paragraph. Each file specified in a
file-control entry must have a file description in the Data
Division.

The key word FILE-CONTROL may appear only once, at
the beginning of the FILE-CONTROL paragraph. The
word FILE-CONTROL must begin in Area A, and it must
be followed by a period and a space.

Each file-control entry must begin in Area B with a
SELECT clause. The order in which other clauses appear
is not significant.

Each clause within a file-control entry can optionally be
separated from the next by a comma or semicolon
followed by a space. Each file-control entry ends with a
period and a space.

Each data-name must appear in a Data Division data
description entry. Each data-name may be qualified but
may not be subscripted or indexed.

mM Extension:

TRANSACTION File
Considerations: The TRANSACTION
file must be named by a file control
entry in the FILE-CONTROL paragraph.
This entry also specifies other
information related to the file. There
may be only one TRANSACTION file in a
program.

SELECT Clause

Each file-name specified in a SELECT clause must have
an FD or SO entry in the Data Division. A file-name
must conform to the rules for a COBOL user-defined
name, must contain at least one alphabetic character,
and must be unique within this program.

Sequential File Considerations: The OPTIONAL phrase
can be specified only for input files with sequential
organization. It must be specified for input files that are
not necessarily present each time the object program is
executed.

ASSIGN Clause (Printer and Disk Files)

The ASSIGN clause associates a file with an external
medium. The assignment-name makes the association
between the file and the external medium.
Assignment-name has the following general stucture:

Device Type-Name.

The valid entries for each field of the assignment-name
vary with the device. The format and valid value for
each field are shown in Figure 3-3. The second and
subsequent assignment-names are treated as comments.

Device Type: 	 PRINTER Printer files

DISK Disk files

Name: 	 1- to a-character field specifying the
external name by which the file is
known to the system. This is the
name that appears in the NAME field

on the OCl FilE or PRINTER
statement.

Note: When COBOL programs use the SORT or

MERGE verbs, a user file cannot have WORK as an

external name. The IBM Sort Utility uses a file by

that name for storing intermediate results.

Figure 3-3. 	 Assignment-Name Field Values for Printer and
Disk Files

Identification and Environment Divisions 3-15

mM Extension:

ASSIGN Clause (TRANSACTION
Files)

The ASSIGN clause associates the
TRANSACTION file with display stations
and/or SSP-ICF sessions through the use
of the assignment-name.
Assignment-name has the following
structure:

T [-Name]

ype -Name-Formats

The values for each field of the
assignment-name are as follows:

Type: 	 WORKSTATION

Name: 	 1- to 8-character name that
specifies the external name
of the display screen format
load member generated by
SFGR that contains the
screen formats. This field
is not required if the file
is to be used with SSP-ICF
sessions only.

Formats: 	 A two-digit numeric value
that is equal to or greater
than the number of formats
in the SFGR load member
referenced in the name
field. The maximum value
and the default value for
the number of formats is 32.

The COBOL compiler
constructs an internal table
to hold information about
each format. The value
specified for formats
determines how many 16-byte
entries are in the internal
table_ The actual number of
formats in your program does
not influence the number of
entries in this internal
table_

RESERVE Clause

The RESERVE clause allows the user to modify the
number of input/output areas (buffers) allocated by the
compiler. This clause specifies that the number of
buffers represented by integer be reserved for a disk file
that is accessed sequentially. Print files use only 1
buffer.

The integer must have a value of 1 or 2. A minimum of
one buffer is required for a file. If this clause is omitted,
a minimum of one buffer area is reserved.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical
structure of the file. The file organization is established
at the time the file is created and cannot subsequently
be changed. When the ORGANIZATION clause is
omitted, ORGANIZATION IS SEQUENTIAL is assumed.

Sequential File Considerations: When ORGAN IZA TION
IS SEQUENTIAL is specified or implied, a
predecessor-successor relationship of the records in the
file is established by the order in which records are
placed in the file when it is created or extended.

Indexed File Considerations: When ORGANIZATION IS
INDEXED is specified, the position of each logical record
in the file is determined by the index created with the
file and maintained by the system. The index is based
on an embedded key within the file's records.

Relative File Considerations: When ORGANIZATION IS
RELATIVE is specified, the position of each logical
record in the file is determined by its relative record
number.

mM Extension:

TRANSACTION File
Considerations: TRANSACTION
organization signifies user-controlled
input and output of records.

3-16

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which
the records of the file are made available for processing.
When this clause is omitted, ACCESS IS SEQUENTIAL
is assumed.

Sequential File ConsJder.t/ons: For files with sequential
organization, records in the file are accessed in the
sequence established when the file is created or
extended. Whether ACCESS IS SEQUENTIAL is
specified or omitted, sequential access is always
assumed.

Indexed File Considerations: For files with indexed
organization, the access mode cen be SEQUENTIAL.
RANDOM, or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied,
records in the file are acceaaed in the sequence of
ascending record key values within the index.

When ACCESS IS RANDOM is specified, the wIue
placed in the record key data item specifies the record
to be accessed.

When ACCESS IS DYNAMIC is specified, records in the

file can be acceaaed sequentially or randomly,

depending on the form of the specific input/output

request.

Relative File Considerations: For files with relative
organization, the access mode can be SEQUENTIAL.
RANDOM, or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied,
records in the file are accessed in the ascending
sequence of relative record numbers of existing records
in the file.

When ACCESS IS RANDOM is specified, the value

placed in the RELATIVE KEY data item specifies the

record to be accessed.

When ACCESS IS DYNAMIC is specified, records in the

file can be accessed sequentially or randomly,

depending on the form of the specific input/output

request.

The RELATIVE KEY phrase specifies the relative record

number for a specific logical record in a relative file.

Data-name-3 is the RELATIVE KEY data item. It must

be defined as an unsigned integer data item from 1 to 7

bytes in length and must not be defined in a record

description entry associated with this relative file. That

is, the RELATIVE KEY is not part of the record.

When ACCESS IS SEQUENTIAL is specified, the

RELATIVE KEY phrase need not be specified unless the

START statement ia uNd. When the START statement

is issued, the system u.. the contents of the

RELATIVE KEY data item to determine the record at

which sequential proceaing is to begin.

If a value is placed in the RELATIVE KEY data item and

a START statement is not i...ed, the value is ignored

and processing begins with the first record in the file.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC

is specified, the RELATIVE KEY phrase must be
specified. For each random processing request, the
contents of the RELATIVE KEY data item are used to
communicate a relative record number to the system.

IBM Exteadoa:

TRANSACTION File
Considerations: For files with
TRANSACTION organization, the only
allowable access mode is SEQUENTIAL.

Id.nti....oli eM ErwiftJNnent Diuilliona 3-17

RECORD KEY Clause (Indexed File)

The RECORD KEY clause must be specified for an
indexed file. The RECORD KEY clause specifies the
data item within the record that is the record key for an
indexed file. The values contained in the record key
data item must be unique among records in the file.

Data-name-2 is the RECORD KEY data item. It must be
described as a fixed-length alphanumeric item within a
record description entry associated with the file. The
data description of data-name-2 and its relative location
within the record must be the seme as the ones used
when the file was defined. Data-name-2 may be any
fixed-length item within the record. It must be 29 bytes
or less in length.

When two or more record descriptions are associated
with a file, a similar field must appear in each
description, and must be in the same relative position
from the beginning of the record, although the same
data-name-2 need not be used for both fields.

Programmi", Notes: No position in the record key
should contain a hex FF (HIGH-VALUE) if the record is
to be retrieved randomly by the indexed key or by the
START verb.

FILE STATUS Clause

The FILE STATUS clause allows the user to monitor the
execution of each input!output request for the file.

Data-name-1 is the status key data item. Data-name-1
must be defined in the Data Division as a two-character
alphanumeric item and must not be defined in the File
Section.

When the FILE STATUS clause is specified, the system
moves a value into the status key data item after each
input!output request that explicitly or implicitly refers to
this file. The value indicates the execution status of the
statement.

!!M ExteIllJion:

TRANSACTION File
Considerations: Data-name-4 is the
extended file status key data item and
may be specified only for a TRANSACTION
file. Data-name-4 must be defined in
the Data Division as a four-character
alphanumeric item and must not be
defined in the File Section.

The extended file status key is used
for major and minor return codes for
SSP-ICF.

CONTROL-AREA Clause
(TRANSACTION Files)

The CONTROL-AREA clause specifies the
data item which receives feed-back
information upon completion of a
TRANSACTION file input/output
operation. The information is in the
fixed format as shown in Figure 3-4.
Each item in the feed-back area is
described as follows:

Bytes 1-2 (Function Key): The
function key is a two-digit number
inserted by the display station
interface that identifies which
function key the operator pressed to
initiate the transaction. This item is
updated only for a READ operation. The
codes are as follows:

00 Enter key·
01-24 COMMAND keys through 24
90 ROLL UP Key
91 ROLL OOWN key
99 Undefined

Bytes 3-4 (Terminal ID): The
symbolic identification of a display
station or SSP-ICF session. This item
is updated for every input/output
operation.

Bytes 5-12 (Reserved): Reserved
for future use.

3-18

FILE-CONTROL.
SELECT SCREEN-FILE ASSIGN TO
WORKSTATION-MYFMTS-12

ORGANIZATION IS TRANSACTION
CONTROL-AREA IS TRANSACTION-CONTROL-AREA.

WORKING-STORAGE SECTION.
01 TRANSACTION-CONTROL-AREA.

03 F-UNCTION-KEY PIC 99.
03 TERMINAL-ID PIC X(2).
03 RESERVED PIC X(S).

Figure 3-4. Sample FILE-CONTROL Paragraph and CONTROL-AREA

I-a-CONTROL Paragraph

The I-O-CONTROL paragraph specifies when
checkpoints are to be taken and what storage areas are
to be shared by different files and optimization
techniques. The I-O-CONTROL paragraph is optional in
a COBOL program.

Format

[I-O-CONTROL.

[RERUN ON assignment-name

EVERY integer-l RECORDS OF file-name-']

SAME [~RD] AREA FOR file-name-2 {, file-name-3} ...]...
[

SORT-MERGE

[APPLY CORE-INDEX TO data-name-' ON file-name-4 [file-name-5] •••]

MULTIPLE FILE TAPE CONTAINS file-name-6

[POSITION integer-2] [, file-name-7

[POSITION integer-3]] •••

The key word I-O-CONTROL can appear only once, at
the beginning of the I-O-CONTROL paragraph. The
word I-O-CONTROL must begin in Area A, and it must
be followed by a period followed by a space.

Each clause within the I-O-CONTROL entry can
optionally be separated from the next by a comma or
semicolon followed by a space. The I-O-CONTROL
entry ends with a period followed by a space.

mM Extension:

rhe clauses in the I-O-CONTROL

paragraph may appear in any order.

Identification and Environment Divisions 3-19

RERUN Clause

The RERUN clause specifies that checkpoint records are
to be taken. A checkpoint record is a recording of the
status of a user program and main storage resources at
desired intervals. The contents of main storage are
recorded on fixed disk at the time of the checkpoint and
can be used to restart the program from that point.

Checkpoint records are written for the first record and
every subsequent integer-l number of records of
file- name-l that are processed. Checkpoint records are
written on fixed disk in the file specified by
assignment-name. This area contains two alternating
checkpoint records, with each checkpoint record
overlaying the oldest checkpoint taken.

Note: All files used in the program must be opened
before the first checkpoint can be taken.

File-name-l represents the file for which checkpoint
records are to be written. It must be described with an FD
or SO file description entry in the Data Division. The value
of integer must not exceed 32767.

Note: File·name·l cannot refer to a TRANSACTION
file.

An assignment-name specified in a RERUN clause may
not duplicate any assignment-name specified in an
ASSIGN clause. The format of the assignment-name
for the RERUN clause is:

DISK-file-name

where file-name is the name of the checkpoint record
file for this job step. This file must be a new file. (The
file-name must not be the label of a file already existing
on the system even if the creation date is different.)

The user must not specify an OCl FilE statement when
providing disk space for checkpoint records, as this file
is allocated by the System/34 SSP.

Multiple RERUN clauses can be specified in a program
as long as each file-name-l is unique. The same
assignment-name should be used for all RERUN
statements in a program.

Checkpoint/ restart is an optional facility of the SSP and
must be specified during system configuration.

SAME Clause

The SAME clause specifies that two or more files are to
use the same main storage area during processing. The
files named in a SAME clause need not have the same
organization or access.

The following discussion describes only the SAME
RECORD AREA and SAME AREA options. The SAME
SORT AREA and SAME SORT-MERGE AREA options
are discussed under SORT-MERGE in Chapter 6.

The SAME RECORD AREA clause specifies that two or
more files are to use the same main storage area for
processing the current logical record. All the files may
be open at the same time. A logical record in the
shared storage area is considered to be both a logical
record of each opened output file in this SAME·
RECORD AREA clause, and a logical record of the most
recently read input file in this SAME RECORD AREA
clause.

For physical sequential files, the area being shared
includes all storage areas assigned to the files if the
SAME AREA clause does not contain the RECORD
option; therefore, it is not valid to have more than one
of the files open at one time.

More than one SAME clause may be included in a

program; however, the following restrictions apply:

• 	 A specific file-name must not appear in more than
one SAME AREA clause.

• 	 A specific file-name must not appear in more than
one SAME RECORD AREA clause.

• 	 If one or more file-names of a SAME AREA clause
appear in a SAME RECORD AREA clause, all of the
file-names in that SAME AREA clause must appear
in that SAME RECORD AREA clause. However, that
.SAME RECORD AREA clause may contain additional
file-names that do not appear in that SAME AREA
clause.

I· The SAME AREA clause may have only one open file
at a time.

3-20

Programming Notes: (1) Specification of the SAME
AREA clause saves space in the object program. Note,
however, the restrictions when this clause is used. (2)
Specification of the SAME RECORD AREA clause does
not necessarily save space in the object program. This
clause allows transfer of data from one file to another
with minimal data manipulation because the
input/output areas of named files are identical, and all
are available to the user.

APPLY Clause

mM Extension: The APPLY clause may be
specified only for an indexed file and
is used to specify that the index is to
be processed in main storage.

The APPLY clause is designed to
increase system performance for
randomly and dynamically accessed
indexed files by allowing the user to
specify that a main storage resident
index is to be built for the files.
Using a main storage resident master
~ndex reduces the time required to

locate a record. This can improve

performance on the START and READ

instructions.

Data-name-1 specifies an area in main
storage in which an index for
file-name-4 and, if specified,
file-name-5, ... is to be built when
the file is opened. Data-name must be
a WORKING-STORAGE item and can be from
3 to 9999 bytes in length. It may not
be an alphanumeric edited item.

Data-name-1 should not be referred to
in Procedure Division statements when
any file associated with it is open.

The same file-name can only be used
once in each clause and cannot appear
in more than one APPLY clause. If
multiple file-names are specified for a
given core index, only one file may be
opened at any given time. When the
REDEFINES clause is also specified, the
two data-names that refer to the same
storage area must not be associated
with two files that are open at the
same time.

Calculation of CORE-INDEX: For efficient processing, the
CORE-INDEX specified should be large enough to
contain one entry for each track in the index plus one
delimiter entry for the CORE-INDEX. The minimum
number of bytes required for a CORE-INDEX entry can be
obtained by using the following formula:

(key length + 3) * (number of tracks + 1)

For example, if file INDEXT has one track that contains
index entries and a key length of 4, the most efficient
storage index is 14 bytes, because:

(4+3) *(1+1)=14

If the file index occupies more than one track, use the
following calculations to determine the amount of storage
to set aside for index entries:

1. 	 Use the CATALOG procedure to find the total
number of records that the file can contain.

2. 	 Determine the entry length by adding 3 to the key
length.

3. 	 Determine the number of keys in each sector by
dividing 256 by the entry length. Drop the
remainder.

4. 	 Determine the number of sectors in the index by
dividing the number of records in the file (the
result of step 1) by the number of keys in each
sector (the result of step 3). Round up the result.

5. 	 Determine the number of tracks in the index by
dividing the number of sectors (the result of step 4)
by 60 if the disk has 27.1 megabytes or less. If the
disk has 63.9 megabytes or more, divide by 64. If
the quotient is not a whole number, round it up to
the next whole number.

To determine the number of megabytes on disk,
the STATUS command can be used to display the
session status. The AVAILABLE DISK SIZE field
on the third session status screen shows the
number of megabytes. (For information on the
Status Session display, see the Operator's GUide.)

If a precise number of tracks is not needed, the
number of sectors can be divided by 60. Using 60
sectors per track allows data management enough
room to construct one entry per track and ensures
that data management will have enough spaces to
create the storage index.

Identification and Environment Divisions 3-21

6. 	 Add 1 to the result of step 5. Multiply this sum by
the result of step 2. This is the number of bytes to
allocate for the CORE-INDEX.

MULTIPLE FILE Clause

The MULTIPLE FilE clause is treated as comments.

3-22

Chapter 4. Data Division

DATA DIVISION CONCEPTS

The Data Division of a COBOL source program
describes all the data to be processed by the object
program. Two types of data can be processed: external
data and internal data.

External Data

External data is contained in files. A file is a collection
of data records existing on some input/output device. A
file can be thought of as a group of physical records; it
can also be thought of as a group of logical records.
The Data Division source statements describe the
relationship between physical and logical records.

A physical record is a unit of data that is treated as an
entity when it is moved into or out of auxiliary storage.
The size of a physical record is determined by the
particular input/output device on which it is stored. The
size does not necessarily have a direct relationship to
the size or content of the logical information contained
in the file.

A logical record is a unit of data whose subdivisions
have a logical relationship. A logical record can itself be
a physical record (that is, be contained completely in
one physical unit of data), several logical records can be
contained within one physical record, or one logical
record can extend across several physical records.

Record description entries, which follow the FD entry for
a specific file, describe the logical records in the file.
These entries also describe the category and format of
data within each field of the logical record and different
values the data might be assigned.

The FD entry specifies the physical aspects of the data
such as the size relationship between physical and
logical records, the size and name(s) of the logical
record(s), and labeling information.

Once the relationship between physical and logical
records has been established, only logical records are
made available to the COBOL program. Thus, in this
manual, a reference to records means logical records
unless the term physical records is used.

Internal Data

Program logic may develop additional data within
storage. Such data is called internal data.

The concept of logical records applies to internal data as
well as to external data. Internal data can thus be
grouped into logical records and be defined by a series
of record description entries. Items that need not be so
grouped can be defined in independent data description
entries.

Data Relationships

The relationships of all data to be used in a program are
defined in the Data Division through a system of level
indicators and level-numbers.

A level indicator, together with its descriptive entry,
identifies each file description in a program. Level
indicators are the highest level of any data hierarchy
with which they are associated.

A level-number, together with its descriptive entry,
indicates the properties of specific data. Level-numbers
can be used to describe a data hierarchy. They can
indicate that this data has a special purpose, and while
they can be associated with and be subordinate to level
indicators, they can also be used independently to
describe internal data or data common to two or more
programs.

Data Division Concepts 4-1

DATA DIVISION ORGANIZATION

The Data Division is divided into three sections: the File
Section, the Working-Storage Section, and the Linkage
Section. Each section has a specific logical function
within a COBOL source program, and each can be
omitted from the source program when that logical
function is not needed.

Format

DATA DIVISION.

[FILE SECTION.

[!ile-descriPtion-entry or sort-merge­

file-descriPtion-entry] •••

{ record-description-entry} •• J
[WORKING-STORAGE SECTION.

[data-item-description-entry]

[record-descriPtion-entry] •• .]

[LINKAGE SECTION.

[data-item-description-entry]

~ecord-description.entry] ••]

In the source program, the Data Division sections must
appear in the order shown.

File Section

The File Section contains a description of all externally
stored data (FD) and a description of each sort-merge
file (SO) used in the program.

The File Section must begin with the header FILE
SECTION followed by a period. The File Section
contains file description entries and sort-merge file
description entries. Each entry is followed by its
associated record description entry (or entries).

In a COBOL program, the file description entries
(beginning with the level indicators FD and SO)
represent the highest level of organization in the File
Section. The file description entry provides information
about the physical structure and identification of a file,
and gives the record-name(s) associated with that file.
For further description of the format and the clauses
required in a file description entry, see File Description
Entry in this chapter. For a complete discussion of the
sort-merge file description entry, see Data
Division-Sort/Merge in Chapter 6.

The record description entry consists of a set of data
description entries that describe the records contained
within a particular file. More than one record description
entry may be specified; each is an alternative description
of the same storage area. For the format and the
clauses required within the record description entry, see
Data Description in this chapter.

Data areas described in the File Section should not be
considered available for processing unless the file
containing the data area is open.

Working-Storage Section

The Working-Storage Section can contain description
records that are not part of data files but are developed
and processed internally. These records are used for
report description, counters, and other functions
necessary in processing data.

The Working-Storage Section must begin with the
section header WORKING-STORAGE SECTION
followed by a period. The Working-Storage Section
contains record description entries and data description
entries for noncontiguous data items.

Data elements in the Working-Storage Section that bear
~ definite hierarchical relationship to one another must
be grouped into records structured by level number.

Noncontiguous items in this section that bear no
hierarchical relationship to one another need not be
grouped into records provided they do not need to be
further subdivided. Instead, they are classified and
defined as noncontiguous elementary items. Each is
defined in a separate data description entry that begins
with the special level number 77. The format of the
data description entry is the same as the format for the
record description entry.

4-2

Linkage Section FILE DESCRIPTION ENTRY

The Linkage Section describes data made available from In a COBOL program, the file description entry (FD
another program. entry) or the sort-merge file description entry (SD entry)

is the highest level of organization in the File Section.
Record description entries and data description entries in
the Linkage Section provide names and descriptions. but
storage within the program is not reserved because the
data area exists elsewhere. Any data description clause
may be used t~ describe items in the Linkage Section
with one exception: the VALUE clause may not be
specified for any items other than level-SS items. For
additional information, see Subprogram Linkage in
Chapter 6.

Format 1-Sequential. Indexed, Relative Files

[FILE SECTION.

[FD file-name

[BLOCK CONTAINS [integer-1 TO] integer-2 {~~~~~~;ERS} J

[RECORD CONTAINS [integer.3 TO] integer-4 CHARACTERS]

LABEL {RECORD IS } {STANDARD}
RECORDS ARE OMITTED

{ data-name-,}[VALUE OF implementor-name-' IS literal-'

{ data.name.2}][, implementor-name-2 IS . Iiteral.2 ..J

RECORD IS }

[DATA { RECORDS ARE data-name-3 [,data·name.4] .. -]

[LINAGE IS {~ata.name-5} LINES rWITH FOOTING AT {~ata.name.6}J
Integer-5 ~ Integer-6

[• LI N ES AT TOP {~ata-name.7}·] LINES AT BOTTOM {~ata.name-8}J J[, -- Integer· 7 ' Integer·S

[CODE·SET IS alphabet.name] •

{record-description.entry} •••] •• .]

Data Division Organization-File Description Entry 4-3

Format 2-TRANSACTION File

FD file-name

[RECORD CONTAINS [integer-3!Q.] integer-4 CHARACTERS]

LABEL { RECORDS ARE} OMITTED
-- RECORD IS

RECORD IS }[DATA { RECORDS ARE data-name-3 [,data-name-4] •••] •

{ record-description-entry} • • •

Coding Example

,.:
ZIA IBSEQUENCE

(PAGE) SERIAL

1 3 •
 •

03 o 1 o 0IATlA: OI VIIsil ON.
02 o IF lLEI SI: CT 10
03 o iF 0 FI LE -N A E
04 01 iR EC RO
05 I iL AI~JEL I~ ORin
06 Oi DIA IlIA IR E. CO RO IS
o 7 io! DE SC RII~ T! N
08

09 I
1 0 i .
1 1 o ~OR KII NG -1~,11 RA (;E ISECT 10N.
1 2 o il 1 IN AM E- DE SCI~IPITt ON.
1 3 o 101 IR EC OR 1)- ESC~ IP111 ON.

The above coding example specifies the most commonly
used clauses for a format 1 file description entry.

4-4

The following example shows the Data Division in a

program.

DATA DIVISION.

FILE SECTION ..

FD INPUT-DATA

BLOCK CONTAINS 1 RECORDS

RECORD CONTAINS 80 CHARACTERS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE GEN-INFO SALES-DATA.

01 	 GEN'-INFO.
03 EMPLOYEE-NAME.

O~> FIRST-NAME PIC X(12).
05 LAST-NAME PIC X(12).

03 SOC-SEC-NUMBER PIC 9(9).

03 CHECK-SSN REDEFINES SOC-SEC-NUMBER PIC X(9) •

03 AGE PIC 99.

03 BIRTH-DATE.

05 F.!·.. MONTH PIC 99.

05 B-DAY PIC 99.
05 B-YEAR PIC 99.

03 ANNUAL-SALARY PIC 9(S)V99.
03 CHECK-SALARY REDEFINES ANNUAL-SALARY PIC X(7).

* 	 THIS REDEFINES WILL BE USED TO SEE IF THE FIELD IS BLANK.
03 RECORD-ID PIC X.
03 FILLER PIC X(31).

01 SALES-DATA.
03 SALES-SSN PIC 9(9).
03 SALES-LOCATION PIC XX.

88 MICHIGAN VALUE IS 'MI'.
BB EASTERN-REGION VALUES ARE 'PA' 'NY'.
88 HEADQUARTERS VALUES ARE 'BA' THRU 'BZ'.

03 TOTAL-COMMISSION PIC 9(S)V99.
03 RECORD-CODE PIC X.
03 FILLER PIC X(61).

FD 	 RECORD-OUT

LABEL RECORDS ARE OMITTED

RECORD CONTAINS 132 CHARACTERS

LINAGE IS 60 LINES

WITH FOOTING 59

LINES AT TOP 3

LINES AT BOTTOM 3

DATA RECORD IS PRINT-OUT

01 PRINT-OUT PIC X(132).

WORKING-STORAGE SECTION.

77 RECORDS-IN PIC 9(6) VALUE ZEROS.

77 DECLARATIVE-ERRORS PIC 9(4) VALUE ZEROS.

77 EOF-SW PIC X VALUE ZERO.

77 BAD-DATA-COUNTER PIC 9(3) VALUE ZERO.

77 CHECK-IT PIC XX.

01 PRINT-FIELDS-EDITED.

03 FILLER PIC X(14) VALUE SPACES.
03 TOTAL-SALARY PIC $$$.$$$.$9BB.
03 COMMISSION-COSTS PIC ,*•. *••.•••. 998.
03 FILLER PIC X(65) VALUE ALL '-'.
03 FILLER PIC X(12) VALUE '---END---JOB'.

01 SALARY-COUNTER PIC 9(6)V99 VALUE ZEROS.

01 COMMISSION-COUNTER PIC 9(6)V99 VALUE ZEROS.

File Description Entry 4-5

L

The file description entry must begin with the level
indicator FD followed by a space.

The clauses that follow file-name are optional in many
cases; the order of their appearance is not significant.

However. at least one record description entry must
follow the FD entry. When more than one record
description entry is specified. each entry implies a
redefinition of the same storage area. The last clause in
the FD entry must be immediately followed by a period
and a space.

mM Extension:

Format 2-TRANSACTION File

Considerations

A file description entrY,consists of a
level indicator (FD), a file-name, and
a series of independent clauses. For a
TRANSACTION file, the independent
clauses allowed are the RECORD CONTAINS
clause, the LABEL RECORDS clause, and
the DATA RECORDS clause. Only the
LABEL RECORDS clause is required.

The LABEL RECORDS clause specifies
whether or not labels are present.
Label records must be omitted for a
transaction file. This clause is
required in every file description
entry.

The RECORD CONTAINS clause and the DATA
RECORDS clause are described under
RECORD CONTAINS Clause and DATA RECORDS
Clause, later in this chapter. The
record definition must be large enough
to hold the largest record defined by
the SFGR formats or SSP-ICF records
processed by the program.

File-Name

The file-name must follow the level indicator. and must
be the same file-name as that specified in the SELECT
clause of the associated file control entry.

The file-name must follow the rules of formation for a
user-defined word; at least one character must be
alphabetic. The file-name must be unique within this
program.

4-6

L

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a
physical record. When the BLOCK CONTAINS clause is
omitted, the compiler assumes that records are not
blocked. Thus, this clause can be omitted when each
physical record contains only one complete logical
record.

The BLOCK CONTAINS clause is used by the compiler
to establish the input/output buffer size for a disk file.
The BLOCK CONTAINS clause has no effect on the
physical formatting of the file as it resides on disk. The
size given or calculated for the BLOCK CONTAINS
clause is rounded up by the compiler to the next higher
multiple of 256, unless the size is a multiple of 256.

Format

.. {RECORDS} J[BLOCK CONTAINS [lnteger-l TO] Integer-2 CHARACTERS

Integer-l and integer-2 must be nonzero unsigned
integers.

When neither the CHARACTERS nor RECORDS option
is specified, the CHARACTERS option is assumed.

RECORDS Option: When the RECORDS option is
specified, the physical record size is expressed as the
number of logical records contained in each physical
record.

The compiler assumes that the block size must provide
for integer-2 records of maximum size, and provides any
additional space needed for control bytes.

Note: Maximum record size is 4096; maximum block
size is 9999.

CHARACTERS Option: When the CHARACTERS option
is specified or implied, the physical record size is
specified as the number of character positions required
to store the physical record no matter what USAGE the
characters within the data record have.

If only integer-2 is specified, it specifies the exact
character size of the physical record. When integer-l
and integer-2 are both specified, they represent,
respectively, the minimum and maximum character size
of the physical record.

The compiler assumes that the block size must provide
for integer-2 characters even when integer-l is provided.

File Description Entry
BLOCK CONTAINS 4·7

L

RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of a
file's data records.

Format

[RECORD CONTAINS [integer.3 TO] integer·4 CHARACTERS]

The RECORD CONTAINS clause is never required
because the size of each record is completely defined in
the record description entries. When this clause is
specified, the following rules apply:

• 	 Integer-3 and integer-4 must be unsigned, nonzero
integers.

• 	 When both integer-3 and integer-4 are specified,
integer-3 specifies the size of the smallest data
record, and integer-4 specifies the size of the largest
data record.

• 	 Integer-4 must not be specified alone unless all the
records are the same size. If all records are the same
size, integer-4 specifies the exact number of
characters in the record.

• 	 The record size must be specified as the number of
character positions needed to store the record
internally; that is, size is specified in terms of the
number of bytes occupied internally by the record's
characters, regardless of the number of characters
used to represent the item within the record. The
size of a record is determined according to the rules
for obtaining the size of a group item. For a further
description of record size, see the USAGE Clause in
this chapter.

Note: When the RECORD CONTAINS clause is omitted,
the record lengths are determined by the compiler from
the record descriptions. When one of the entries within
a record description contains an OCCURS DEPENDING
ON clause, the compiler uses the maximum value of the
variable length item to calculate the record length.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels
are present or omitted. The LABEL RECORDS clause is
required in every FD entry.

Format

RECORD IS } {STANDARD}
{LABEL RECORDS ARE OMITTED

STANDARD Option: The STANDARD option specifies
that labels conforming to system specifications exist for
this file. This option must be specified for disk files.

OMITTED Option: The OMITTED option specifies that
no labels exist for this file. This option must be
specified for files assigned to unit record devices.

VALUE OF Clause

The VALU E OF clause serves only as documentation. It
is used to specify the description of an item in the label
records associated with this file.

Format

VALUE OF implementor.name·' IS {data.name.,}[. literal·'

{ data.name.2}][,implementor·name·2 IS literal-2 ..J

4-8

DATA RECORDS Clause

The DATA RECORDS clause serves only as
documentation for the names of data records associated
with this file. The DATA RECORDS clause is never
required.

Format

{ RECORD IS }
[DATA RECORDS ARE data·name·3 [,data.name.4] ..]

The specification of more than one data-name indicates
that this file contains more than one type of data record.
Two or more record descriptions for this file occupy the
same storage area. These records need not have the
same description or length. The order in which the
data-names are listed is not significant.

File Description Entry

RECORD CONTAINS-DATA RECORDS 4~

LINAGE Clause

The LINAGE clause specifies the depth of a logical page
in terms of the number of lines. This clause also
optionally specifies the line number at which the footing
area begins, as well as the top and bottom margins of
the logical page. There is not necessarily a relationship
between the logical page size and the physical page
size.

Format

[L1NAGEIS {~ata.name-5} LINES rWITH FOOTING AT {~ata-name-6}]
Integer-5 L: Integer·6

[LINES AT TOP {~ata-name-7}] [LINES AT BOTTOM {~ata-name-8}]]
, -- Integer-7' Integer-8

The LINAGE clause may be specified only for printer
files.

All integers must be unsigned. All data-names must be
described as unsigned integer data items.

LINAGE Integer-5/Data-Name-5; Integer-5 or the value
in data-name-5 specifies the number of lines that can be
written and/or spaced on this logical page. The area of
the page that these lines represent is called the page
body. The value must be greater than zero.

WITH FOOTING Option; Integer-6 or the value in
data-name-6 specifies the first line number of the
footing area within the page body. The footing line
number must be greater than zero, but it must not be
greater than the number for the last line of the page
body. The footing area extends between those two
lines. If this option is not specified, the assumed value
is equal to that of the page body (integer-5 or
data-name-5).

LINES AT TOP Option; Integer-7 or the value in
data-name-7 specifies the number of lines in the top
margin of the logical page. If this option is not
specified, zero is assumed.

LINES AT BOTTOM Option: Integer-8 or the value in
data-name-8 specifies the number of lines in the bottom
margin of the logical page. If this option is not
specified, zero is assumed.

Figure 4-1 illustrates the use of each option of the
LINAGE clause.

LINAGE Clause Considerations; The logical page size
specified in the LINAGE clause is the sum of all values
specified in each option except the FOOTING option. If
the LINES AT TOP and/or the LINES AT BOTTOM
options are zero, each logical page immediately follows
the preceding logical page with no additional spacing
provided.

At the time an OPEN OUTPUT statement is executed,
the values of integer-5, integer-6, integer-7, and
integer-8 are used to determine the page body, first
footing line, top margin, and bottom margin of the
logical page for this file. These values are then used for
all logical pages printed for this file during a given
execution of the program.

4-10

L
Data-name-5, data-name-6. data-name-7, and
data-name-8cause the following actions to take place:

• 	 Their values at the time an OPEN OUTPUT is
executed are used to determine the page body. the
first footing line, the top margin, and the bottom
margin for the first logical page only.

• 	 Their values at the time a WRITE ADVANCING
statement causes page ejection are used to determine
the page body. first footing line. top margin. and
bottom margin for the next succeeding logical page
only.

LINAGE-COUNTER Special Register: For each FD entry
containing a LINAGE c~use. a separate
LINAGE-COUNTER special register is generated.
LINAGE-COUNTER is initialized to one when an OPEN
statement for this file is executed. LINAGE-COUNTER is
automatically modified by any WRITE statement for this
file. When linage is specified, the linage counter is set at
the top of the first page body.

When more than one LINAGE-COUNTER special register
is referred to in the PROCEDURE DIVISION. the user
must qualify each LINAGE-COUNTER with its related
file-name. For example, LINAGE-COUNTER OF FILE-A.

The value in LlNAGE-:-COUNTER at any given time is the
line number at which the device is positioned within the
current page. LINAGE-COUNTER may be referred to in
Procedure Division statements; LINAGE-COUNTER must
not be modified by these statements.

(tot
LINES AT TOP integer-7

ma~gin)

Logical
Page Page
Body Depth

WITH FOOTING integer-6

Fo~ting
Are.a

LINAGE integer-5
1

(bottom
LINES AT BOTTOM integer-8

mar~in)

Figure 4-1. LINAGE Clause and Logical Page Depth

CODE-SET Clause

The CODE-SET clause is not required or used by the
System/34 COBOL compiler. If it is inserted in the
source program, the compiler treats this clause as a
comment.

Format

[CODE·SE'T IS alPhabet-name]

File Description Entry
LINAGE 4-11

DATA DESCRIPTION

All the data used in a COBOL program is described
using a uniform system of representation. The basic
concepts of data description are discussed in this
chapter, as well as the actual COBOL clauses used to
describe data.

Data Description Concepts

Most of the data processed by a COBOL program is
presented in hierarchically arranged records. This is
necessary because most data must be divided into
subdivisions for processing. To subdivide such records,
COBOL uses a hierarchical concept of levels.

For example, in a department store's customer file, one
complete record could contain all data pertaining to one
customer. Subdivisions within that record could be:
customer name, customer address, account number,
department number of sale, unit amount of sale, dollar
amount of sale, previous balance, and other pertinent
information.

Level Concepts

Because records must be divided into logical
subdivisions, the concept of levels is inherent in the
structure of a record. Once a record has been
subdivided, it can be further subdivided to provide more
detailed data references.

The basic subdivisions of a record (that is, those fields
that are not further subdivided) are called elementary
items. Thus, a record can be made up of a series of
elementary items, or it may itself be an elementary item.

It may be necessary to refer to a set of elementary
items. Thus, elementary items can be combined into
group items. Groups can be combined into a more
inclusive group that contains two or more subgroups.
Thus, within one hierarchy of data items, an elementary
item can belong to more than one group item. .'

A system of level-numbers specifies the organization of
elementary and group items into records. Special
level-numbers are also used to identify data items used
for special purposes.

Each group and elementary item in a record requires a
separate entry, and each must be assigned a
level-number. The following level-numbers are used to
structure records:

01:

This level-number specifies the record itself and is
the most inclusive level-number possible. A
level-01 entry may be either a group item or an
elementary item.

02-49:

These level-numbers specify group and elementary
items within a record. less inclusive data items
are assigned higher (not necessarily consecutive)
level-numbers.

A group item includes all group and elementary items
following it until a level-number less than or equal to the
level-number of this group is encountered.

All elementary or group items immediately subordinate
to one group item must be assigned identical
level-numbers that are higher than the level-number of
this group item.

Figure 4-2 illustrates the level number concept. Notice
that all groups immediately subordinate to the level-01
entry have the same level-number. Notice also that

•elementary items from different subgroups do not
necessarily have the same level number, and that
elementary items can be specified at any level within the
hierarchy. Figure 4-2 shows the COBOL
record-description entry in the left portion of the figure;
it shows the subdivision of the entry in the right portion
of the figure.

Note: level-numbers 01 through 09 can also be written
as 1 through 9. .

4-12

The items included in the
hierarchy of each level are

The COBOL record description entry is written as follows: indicated below:

01 RECORD-ENTRY. - This entry includes

05 GROUP·1. -This entry includes

10 SU BG ROUP-1. Thi, .n''I' includ..l
15 ELEM-1 PIC

15 ELEM-2 PIC

10 SUBGROUP-2.
 - Thi, .n.'I' includ..l
15 ELEM-3 PIC

15 ELEM-4 PIC

05 GROUP-2. -This entry includes

15 SUBGROUP-3. - Thi, on"v includ..l
25 ELEM-5 PIC

25 ELEM-6 PIC

15 SUBGROUP-4 PIC This entry includes itself

05 GROUP-3 PIC ... This entry includes itself

The storage arrangement is illustrated below:

~--------------------------RECORD-ENTRY-------------------------------'I

GROUP-1-------·r...• -----GROUP-2-rROUP-3..

I-SUBGROUP-1 'I' SUBGROUP-2---.J·".--SUBGROUP-3---t-SUBGROUP~
ELEM-1 ELEM-2 I ELEM-3 ELEM-4 I ELEM-5 I ELEM-6 I I

Figure 4-2. Storage Arrangement of Record Description Entry

Data Description
Data Division Concepts 4-13

Special Level-Numbers

Special level-numbers identify items that do not
structure a record. The following are special
level-numbers:

66:

This level number identifies elementary or group
items described by a RENAMES clause. Such
items regroup previously defined data items.

77:

This level number identifies independent data
description entries in the Working-Storage or
Linkage Section. These items are not subdivisions
of other items, and are not themselves subdivided.

88:

This level number identifies any condition-name
entry that is associated with a particular value of a
conditional variable. An example is given under
VALUE Clause in this chapter.

Note: Level-77 and level-01 entries in the
Working-Storage Section and Linkage Section must be
given unique data-names because neither can be
qualified. If subordinate data-names can be qualified,
they need not be unique.

Indentation

Successive data description entries may begin in the
same column as preceding entries, or they may be
indented according to level-number. Indentation is
useful for documentation, but it does not affect the
action of the compiler.

Classes of Data

All data used in a COBOL program can be divided into
four classes and six categories. Every elementary item
ina program belongs to one of the classes as well as
one of the categories. Every group item belongs to the
alphanumeric class even if the subordinate elementary
items belong to another class and category. Figure 4-3
shows the relationship of data classes and categories.

Level of
Item Class Category

Elementary Alphabetic Alphabetic

Numeric 	 Numeric

Alphanumeric 	 Numeric edited
Alphanumeric edited
Alphanumeric

Boolean 	 Boolean

Group Alphanumeric Alphabetic

Numeric
Numeric edited
Alphanumeric edited
Alphanumeric
Boolean

Figure 4-3. Cla..e. and Categories of Data.

mM Extension:

Boolean Data Facilities

Boolean data provides a means of
modifying and passing the values of the
indicators associated with the display
screen formats. A Boolean value of 0
is the indicator's off status while a
Boolean value of 1 is the indicator's
on status.

A Boolean literal contains a single 0
or 1 and is enclosed in quotes and
immediately preceded by an identifying
B. The Boolean literal is defined as
either B'O' or B'1'. A Boolean
character occupies one byte. The
figurative constant ZERO can be used as
a Boolean literal, and the reserved
word ALL is valid with a Boolean
literal. The Boolean ZERO is the fill
character for Boolean data.

4-14

Standard Alignment Rules

The standard alignment rules for positioning data in an
elementary item depend on the data category of the
receiving item (that is, the item into which the data is
placed).

Numeric Items: When a numeric item is the receiving
item, the following rules apply:

• 	 The data is aligned on the assumed decimal point
and, if necessary, truncated or padded with zeros.
(An assumed decimal point is one that has logical
meaning but does not exist as a character in the
data.)

• 	 If a decimal point is not explicitly specified, the
receiving item is treated as though an assumed
decimal point is specified immediately to the right of
the field. The data is then treated as in the preceding
rule.

Numeric Edited Items: The data is aligned on the
decimal point and, if necessary, truncated or padded
with zeros at either end, except when editing causes
replacement of leading zeros.

Alphanumeric, Alphanumeric Edited, Alphabetic: For
these data categories, the following rules apply:

• 	 The data is aligned at the leftmost character position
and, if necessary, truncated or padded with spaces at
the right.

• 	 If the JUSTIFIED clause is specified for alphanumeric
or alphabetic receiving items, the above rule is modified
as described in the JUSTIFIED clause.

Note: The JUSTIFIED clause must not be specified for
any item for which editing is specified.

Standard Data Format

COBOL makes data description as machine independent
as possible. For this reason, the properties of the data
are described in a standard data format rather than a
machine-oriented format.

The standard data format uses the decimal system to
represent numbers no matter what base is used by the
system. The nonnumeric data can contain any
characters that are in the native character set, that is,
nonnumeric data is not limited to just the COBOL
character set or the nonnumeric COBOL characters.

Character-String and Item Size

In COBOL, the size of an elementary item is determined
through the number of character positions specified in
its PICTURE character-string. In storage, however, the
size is determined by the actual number of bytes the
item occupies as determined by the combination of its
PICTURE character-string and its USAGE clause.

Normally, when an arithmetic item is moved from a
longer field to a shorter one, the compiler truncates the
data to the number of characters represented in the
shorter item's PICTURE character-string.

For example, if a sending field with PICTURE S99999
and containing the value +12345 is moved to a
COMPUTATIONAL receiving field with PICTURE S99,
the data is truncated to +45.

Signed Data

There are two categories of algebraic signs used in
COBOL: operational signs and editing signs.

Operational Signs

Operational signs (+, -) are associated with signed
numeric items and indicate their algebraic properties.
The internal representation of an algebraic sign depends
on the item's USAGE clause and optionally upon its
SIGN clause. Zero is considered a unique value
regardless of the operational sign. An unsigned field is
always assumed to be positive or zero.

Data Description
Classes of Data-Signed Data 4-15

Editing Signs

Editing signs are associated with numeric edited items.
Editing signs are PICTURE symbols (+, -, CR, DB) that
identify the sign of the item in edited output.

DATA DESCRIPTION ENTRY

A record description entry or a data description entry
specifies the characteristics of a particular data item.
The maximum length for any item that is not otherwise
restricted is 32767 bytes. The four general formats are:

Format 1

{ data-name}
level-number FILLER clause

[REDEFINES clause]

[USAGE clause]

[SIGN clause]

[OCCURS clause]

[SYNCHRON IZED clause]

[JUSTIFIED clause]

[BLANK WHEN ZERO clause]

[VA LU E Clause]

~ICTURE Clause]

Format 2-RENAMES Clause

66 data·name·l R ENAM ES data-name-2 [{ THROUGH}]TH R U data-name-3.

Format 3

.. {VALUE IS }. THROUGH} .]
88 condition-name VALUES ARE Iiteral-l [{ THRU ilteral-2

'[{THROUGH} .]]ilteral·3 THRU Ilteral-4 .•.[

4-16

Format 4-Boolean Data

{ data-name}
level-number F I LLE R clause

[REDEFINES claus~

[USAGE claus~

[OCCURS clause]

[sYNCHRONIZED claus!]

[JUSTIFIED claus~

[VALUE claus~

(PICTURE clause]

[INDICATOR clause]

Format 1

This format is used for record description entries in all
sections and for level-71 entries in the Working-Storage
and Linkage Sections. The following rules apply:

• 	 Level-number can be any number from 01 through 49
or 77.

• 	 The clauses can be written in any order, with two
exceptiol'fs:

The data-name/FILLER clause must immediately
follow the level-number.
When specified, the REDEFINES clause must
immediately follow the data-name clause.

• 	 The PICTURE clause must be specified for every
elementary item except index data items.

• 	 The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and
SYNCHRONIZED clauses are valid only for
elementary items.

• 	 Either a space, or a comma or a semicolon followed
by a space, must separate clauses.

• 	 Each record description entry must end with a period
followed by a space.

Format 2-RfNAMfS Clause

The RENAMES clause specifies altemative, possibly
overlapping, groupings of elementary data items. This
clause allows a single data-name to rename a group of
data items within a record.

One ()r more RENAMES entries can be written for a
logical record. All RENAMES entries associated with
one logical record must immediately follow that record's
last data description entry. A level-66 entry cannot
rename a level-01, level-n, level-as, another level-66
entry, or another data-name that contains an
INDICATOR clause.

The compiler does not compensate for internal formats
such as packed decimal, zoned decimal and binary that
are renamed to a different format.

Note: You can use the RENAMES clause to rename an
INDICATOR data item. However, the new data-name
does not have an INDICATOR value associated with it
and cannot be used as an indicator.

Data - name-1 identifies an alternative grouping of data
items. It cannot be used as a qualifier; it can be
qualified only by the names of level indicator entries or
level-01 entries.

Note: Level-number 66 and data-name-1 are not part of
the RENAMES clause itself, and are included in the
format only for clarity.

Data-name-2 or data-name-3 identifies the original
grouping of elementary data items; that is, they must
name elementary or group items within the associated
level-01 entry and must not be the same data-name.
Both data-names may be qualified.

The OCCURS clause must not be specified in the data
entries for data-name-2 and data-name-3, or for any
group entry to which they are subordinate. In addition,
the- OCCURS DEPENDING ON clause must not be
specified for any item occupying storage between
data-name-2 and data-name-3.

Data Description Entry
RENAMES 4-17

Data-Name-2 Option: When data-name-3 is not
specified, data-name-2 can be either a group item or an
elementary item. When data-name-2 is a group item,
data-name-1 is treated as a group item. When
data-name-2 is an elementary item, data-name-1 is
treated as an elementary item.

Data-Name-2 THRU Data-Name.,.3 Option: When
data-name-3 is specified, data-name-1 is a group item
that includes all elementary items:

• 	 Starting with data-name-2 (if it is an elementary item) .
or the first elementary item within data-name-2 (if it
is a group item)

• 	 Ending with data-name-3 (if it is an elementary item)
or the last elementary item within data-name-3 (if it
is a group item).

The key words THRU and THROUGH are equivalent.

The leftmost character in data-name-3 must not precede
that in data-name-2; the rightmost character in
data-name-3 must follow that in data-name-2. This
means that data-name-3 cannot be subordinate to
data-name-2.

Valid and invalid specifications of the RENAMES clause
are given in Figure 4-4.

4-18

COBOL Specifications 	 Storage Layouts

Example 1 (Valid)

01 	 RECORD·I.

05 DN·1 ... RECORD·I
I' 	 'I05 DN·2 ...

05 DN·3 ... I DN·1 DN~2 DN·3 I DN4
 I

DN4 ...

66 DN·6 RENAMES DN·1 THROUGH DN·3. DN-6

05 	

I· ·1
Example 2 (Valid)

01 	 RECORD·II. RECORD·II

05 DN·1. .
 DN·1

10 DN·2 ...
10 	 DN·2A ... I DN·2 DN·2A I DN·5

I : 	 " '1
I

05 	 DN·1A REDEFINES DN·1.

10 DN·3A ... DN·1A
I· 	 ·1
10 	 DN·3 ... I DN·3A I DN·3 I DN·3B I10 DN·3B ...

05 DN·5 ...

66 DN·6 RENAMES DN·2 THROUGH DN·3. I--DN-6-1

Example 3 (Invalid)

01 	 RECORD·III. RECORD·III

05 DN·2.
 DN·2

10 DN·3 ...
10 	 DN·4 ... [DN·3 DN4 I DN·5

I : 	 'I 'I
I05 DN·5 ...

66 DN·6 RENAMES DN·2 THROUGH DN·3. DN·6 is indeterminate

Example 4 (Invalid)

01 	 RECORD·IV. RECORD-IV

05 DN·1.
 DN·11 : 'I 'I10 DN·2A ...

10 DN·2B ...
 DN·2A DN·2B DN·3
10 DN·2C REDEFINES DN·2B. I 	 I I

!-DN-2C--..j15 	 DN·2 ...
15 DN·2D ... IDN.21 DN·2D I

05 Dn·3 ... DN4 is indeterminate

66 	 DN·4 RENAMES DN·1 THROUGH DN·2.

Figure 4-4. Valid and Invalid Specifications of the RENAMES Clause

Data Description Entry
RENAMES 4·19

Format 3

This format describes condition-names. A
condition-name is a user-specified name that associates
value(s) and/or a range(s) of values with a conditional
variable.

A conditional variable is a data item that can assume
one or more values that can, in turn, be associated with
a condition-name. The following rules for
condition-name entries apply:

• 	 Any entry beginning with level-number 88 is a
condition-name entry.

• 	 The condition-name entries associated with a
particular conditional-variable must immediately follow
the conditional variable entry. The conditional variable
can be any elementary data description entry except
another condition-name, index data item, or level-66
entry.

• 	 A condition-name can be associated with a group
item data description entry. The following rules
apply:

The condition-name value must be specified as a
nonnumeric literal or figurative constant.
The size of the condition-name value must not
exceed the sum of the sizes of all the elementary
items within the group.
No element within the group may contain a
JUSTIFIED or SYNCHRONIZED clause.
No USAGE other than USAGE IS DISPLAY may
be specified within the group.

• 	 Condition-names can be specified both at the group
level and at subordinate levels within the group.

• 	 The relation test implied by the definition of a
condition-name at the group level is performed in
accordance with the rules for cOmparison of
nonnumeric operands regardless of the nature of
elementary items within the group.

• 	 Either a space or a comma or a semicolon followed
by a space, must separate successive operands.

• 	 Each entry must end with a period followed by a
space.

• 	 The condition-name must not be qualified when used
in a REDEFINES clause.

Examples of both elementary and group condition-name
entries are given under VALUE Clause in this chapter.

IBM Extension:

Format 4-Boolean Data

This format is used for Boolean data
items in all sections. The following
rules apply:

• 	 USAGE must be defined implicitly or
explicitly as DISPLAY.

• 	 In the OCCURS clause, the
ASCENDING/DESCENDING key is not valid
for Boolean data items.

• 	 The INDICATOR clause must be

specified at an elementary level

only.

• 	 A Boolean data item may be compared
only with another Boolean data item.

• 	 Only EQUAL or NOT EQUAL comparisons
are allowed for Boolean data items.

• 	 Boolean data items must be used for
SFGR indicators with TRANSACTION
files.

4-20

Lavel-Numbers

The level-number specifies the hierarchy of data within a
record and also identifies special-purpose data entries.

Format

level-number

The following rules for level-numbers apply:

• 	 A level-number begins a data description entry. a
regrouped item. or a condition-name entry.

• 	 Level-numbers 01 and 77 must begin in Area A.

• 	 Level-numbers 02-49. 66. and 88 may begin in either
Area A or Area B and must be followed by a space.

• 	 Single-digit level-numbers 1 through 9 may be
substituted for level-numbers 01 through 09.

Data-Name or FILLER Clause

A data-name explicitly identifies the data being
described; the key word FILLER specifies an item that is
never explicitly referenced in the program.

Format

data-name
FILLER

In a data description entry. either the data-name or the
key word FILLER must be the first word following the
level-number. The data-name identifies a data item by
referring to the field. not to a particular value. This data
item -can assume a number of different values during the
course of a program.

A data-name can begin anywhere in Area B. A
data-name requires a period at the end of the entry. and
it must contain at least one alphabetic character.

Entries at level-numbers 01 and 77 in the
Working-Storage and Linkage Sections cannot be
qualified. and therefore require unique data-names.
Subordinate data-names that can be qualified do not
require unique data-names.

The key word FILLER specifies an elementary item in a

record that is never explicitly referred to. The word

FILLER may be written anywhere in Area B. A period is

required at the end of the entry.

In a MOVE CORRESPONDING statement. an ADD

CORRESPONDING statement. or a SUBTRACT

CORRESPONDING statement FILLER items are ignored.

IBM Extemion: A FILLER item can be used
as a group item definition.
Subordinate data items may then be
referenced by the appropriate
data-name.

REDEFINES Clause

The REDEFINES clause indicates that the same storage
area can contain different data items. Redefinition can
save storage by allowing the same area to be used for

. different purposes.

Format

level-number data-name-1 REDEFINES data-name-2

Level-number and data-name-1 are not part of the

REDEFINES clause itself. and are included in the format

only for clarity.

If specified. the REDEFINES clause must be the first
entry following data"'name-1.

The level-number of data-name-1 and data-name-2 must
be identical and must not be level 66 or level 88.

Data-name-2 is the redefined item.

Data-name-1 is the redefining item and is an alternative

description for the data-name-2 area.

Implicit redefinition is assumed when more than one
level-01 entry subordinate to an FD entry is written. In
such level-01 entries. the REDEFINES clause must not
be specified.

Redefinition begins at data-name-1 and ends when a

level-number less than or equal to that of data-name-2

is encountered. No entry having a level-number

numerically lower than those of data-name-1 and

data-name-2 may occur between these entries.

Data Description Entry
Level Numbers-REDEFINES 4·21

In the following example, A is the redefined item, and. 8
is the redefining item. Redefinition begins with 8 and
includes the two subordinate items 8-1 and 8-2.
Redefinition ends when the level-05 item C is
encountered.

05 	A PICTURE X(6).
05 	 8 REDEFINES A.

10 8-1 PICTURE X(2).
10 8-2 PICTURE 9(4).

05 	C PICTURE 99V99.

The data description entry for data-name-2, the
redefined item, cannot contain a REDEFINES clause or
an OCCURS clause. However, the redefined item may
itself be subordinate to an item that contains either
clause. If the redefined item is subordinate to an
OCCURS clause, data-name-2 in the REDEFINES clause
(the redefined item) must not be subscripted or indexed.

The redefined item, the redefining item, and any items
subordinate to them cannot contain an OCCURS
DEPENDING ON clause.

When data-name-1, the redefining item, is specified
with a level-number other than 01, it must specify a
storage area .of the same size as the redefined item
data-name-2.

Multiple redefinitions of the same storage area are
permitted. The entries giving the new descriptions of
the storage area must immediately follow the description
of the redefined area without intervening entries that
define new character positions. Multiple redefinitions
must all us& the data-name of the original entry that
defined this storage area. For example:

05 	A PICTURE 9999.
05 	8 REDEFINES A PICTURE 9V999.
05 	C REDEFINES A PICTURE 99V99.

The redefining entry (identified by data-name-1) and any
subordinate entries must not contain any VALUE
clauses. This rule does not apply to condition-name
entries.

Data items within an area can be redefined without their
lengths being changed. For-example:

05 NAME-2.

10 SALARY PICTURE XXX.

10 SO-SEC-NO PICTURE X(9).

10 MONTH PICTURE XX.

05 	 NAME-1 REDEFINES NAME-2.

10 WAGE PICTURE XXX.

10 EMP-NO PICTURE X(9).

10 YEAR PICTURE XX.

Data items can also be rearranged within an area. For
example:

05 	 NAME-2.

10 SALARY PICTURE XXX.

10 SO-SEC-NO PICTURE X(9).

10 MONTH PICTURE XX.

05 	 NAME-1 REDEFINES NAME-2.

10 EMP-NO PICTURE X(6).

10 WAGE PICTURE 999V999.

10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area
are always in effect; that is, redefinition does not cause
any data to be erased and does not supersede the
previous description. Thus, if 8 REDEFINES A has been
specified, either of the two procedural statements
MOVE X TO 8 and MOVE Y TO A could be executed at
any point in the program.

In the first case, the area described as 8 would assume
the value of X. In the second case, the same physical
area (described now as A) would assume the value of Y.
If the second statement is executed immediately after
the first. the value of Y replaces the value of X in the
one storage area.

4-22

The USAGE of a redefining data item need not be the
same as that of a redefined item. This does not,
however, cause any change in existing data. For
example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE

COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configl:lratio!l of the DISPLAY value 8 is 1111
0000 1111 1000. Redefining 8 does not change the bit
configuration of the data in the storage area. Therefore,
the two statements, ADD B TO A and ADD C TO A
give different results. In the first case, the. value 8 is
added to A (because B has USAGE DISPLAY). In the
second statement, the value -48 is added to A (because
C has USAGE COMPUTATIONAL-4), and the bit
configuration (truncated to 2 decimal digits) in the
storage area has the binary value -48.

Unexpected results may occur when a redefining item is
moved to a redefined item (that i~, if B REDEFINES C
and the fJtatement MOVE B TO C is executed).
Unexpected results may also occur when a redefined
item is moved to a redefining item (from the previous
example, unexpected results occur if the statement
MOVE C TO B is executed).

The REDEFINES clause may be specified for an item
within the scope of any area being redefined (that is, an
item subordinate to a redefined item). For example:

05 	REGULAR-EMPLOYEE.
10 	 LOCATION PICTURE A(8).
10 	 GRADE PICTURE X(4).
10 	 SEMI-MONTHLY-PAY PICTURE

9999V99.
10 	 WEEKLY-PAY REDEFINES

SEMI-MONTHLY-PAY
PICTURE 999V999.

05 	TEMPORARY-EMPLOYEE REDEFINES
REGULAR- EMPLOYEE.

·10 LOCATION PICTURE A(8).
10 	 FILLER PICTURE X(6).
10 	 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause may also be specified for an
item subordinate to a redefining item. For example:

05 	REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

1.0 	 GRADE PICTURE X(4).
10 	 SEMI-MONTHLY-PAY

PICTURE 999V999.

05 	TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 	 LOCATION PICTURE A(8).
10 	 FILLER PICTURE X(6).
10 	 ·HOURLY-PAY PICTURE 99V99.
10 	 CODE-H REDEFINES HOURLY-PAY

PICTURE 9999.

USAGE Clause

The USAGE clause specifies the format of a data item
in storage. The USAGE clause can be specified for an
entry at any level. However, if it is specfied at the
group level, it applies to each elementary item in the
group. The usage of an elementary item cannot
contradict the usage of a group to which the elementary
item belongs.

The USAGE clause specifies the format in which data is
represented in storage. The format may be restricted if
certain Procedure Division statements are used.

Fonnat

COMPUTATIONAL·3
COMP·3
COMPUT ATIONAL-4
COMp·4

[USAGE IS] COMPUTATIONAL
COMp·
DISPLAY
INDEX

When the USAGE clause is not specified at either the
group or elementary level, USAGE IS DISPLAY is
assumed.

Data Description Entry
USAGE 4·23

INDEX Option: The USAGE IS INDEX clause specifies
that the data item named has an indexed format and,
therefore, is an index data item. The index data item is
an elementary item that can be used to save index-name
values for future reference.

The USAGE IS INDEX clause is described in detail
under Table Handling in Chapter 6.

DISPLAY Option: The DISPLAY option can be explicit
or implicit. It specifies that the data item is stored in
character form, one character per eight-bit byte. This
corresponds to the form in which information is
represented for keyboard input or for printed output.
USAGE IS DISPLAY is valid for the following types of
items:

• Alphabetic

• Alphanumeric

• Alphanumeric edited

• Numeric edited

• Zoned decimal (numeric)

• Boolean

Alphabetic, alphanumeric, alphanumeric edited, Boolean,
and numeric edited items afe discussed in the
description of the PICTURE clause later in this chapter.

Zoned Decimal Items: These items are sometimes
referred to as external decimal items. Each digit of a
number is represented by a single byte. The four
high-order bits of each byte are zone bits; the four
high-order bits of the low-order byte represent the sign
of the item. If the number is positive, these four bits
contain a hexadecimal F. If the number is negative,
these four bits contain a hexadecimal D. The four
low-order bits of each byte contain the value of the
digit. When zoned decimal items are used for
computations, the compiler performs the necessary
conversions. The maximum length of a zoned decimal
item is 18 digits.

The PICTURE character-string of a zoned item may
contain only 9s, the operational sign symbol S, the
assumed decimal point V, and one or more Ps.

Examples of zoned decimal items are shown in Figure
4-4.

Computational Options: The term computational refers
to the following options of the USAGE clause:

COMPUTATIONAL or COMP (zoned decimal)

IBM Extension: COMPUTATIONAL-3 or
COMP-3 (packed decimal)

COMPUTATIONAL-4 or COMP-4 (binary)

A computational item represents a value to be used in
arithmetic operations and must be numeric. If the
USAGE of a group item is described with any of these
options, it is the elementary items within the group that
have this usage. The group itself is considered
nonnumeric and cannot be used in numeric operations,
except with the CORRESPONDING option. The maximum
length of a computational item is 18 decimal digits.

The PICTURE of a computational item may contain only:

9 (one or more numeric character positions)

S (one operational sign)

V (one implied decimal point)

P (one or more decimal scaling positions)

4-24

The COMPUTATIONAL option is in zoned decimal
format. Each digit of the number is represented by a
single byte. The four leftmost bits of each byte are zone
bits; the four leftmost bits of the rightmost byte
represent the sign of the item. The four rightmost bits
of each byte contain the value of the digit.

IBM Extension: A zoned decimal item may
contain any of the digits 0 through 9,
plus a sign.

The COMPUTATIONAL-3 option is specified
for packed decimal items. Such an item
appears in storage as two digits per
byte, with the sign contained in the
four rightmost bits of the rightmost
byte. If the number is positive, these
four bits contain a hexadecimal F. If
the number is negative, these four bits
contain a hexadecimal D.

A packed decimal item may contain any
of the digits 0 through 9 plus a sign.
If the PICTURE of a packed decimal item
does not contain an S, the sign
position is occupied by a bit
configuration that is interpreted as
positive, but does not represent an
overpunch.

The COMPUTATIONAL-4· option is specified
for binary data items. Such items have
decimal equivalents consisting of the
decimal digits 0 through 9, plus a
sign.

The amount of storage occupied by a
binary data item depends on the number
of decimal digits defined in its
PICTURE clause:

Digits in Storage
PICTURE Clause Occupied

1 through 4 2 bytes
5 through 9 4 bytes
10 through 18 8 bytes

The leftmost bit of the storage area is
the operational sign.

Examples of packed decimal and binary
items are shown in Figure 4-5.

Data Description Entry
USAGE 4-25

Item Description 	 Value Internal Representation-

Zoned PIC S9999 DISPLAY 	 +1234 F1 F2 F3 F4 .j
Decimal 	 -1234 F1 F2 F3 04

1234 F1 F2 F3 F4

PIC 9999 DISPLAY +1234 F1 F2 F3 F4

-1234 F1 F2 F3 F4

1234 F1 F2 F3 F4

PIC S9999 DISPLAY SIGN, LEADING +1234 F1 F2 F3 F4

-1234 01 F2 F3 F4

1234 F1 F2 F3 F4

PIC S9999 DISPLAY SIGN TRAILING SEPARATE +1234 F1 F2 F3 F4 4E

-1234 F1 F2 F3 F4 60

1234 F1 F2 F3 F4 4E

PIC S9999 DISPLAY SIGN LEADING SEPARATE +1234 4E F1 F2 F3 F4

-1234 60 F1 F2 F3 F4

1234 4E F1 F2 F3 F4

Packed PIC S9999 COMP·3 +1234 01 23 4F

Decimal -1234 01 23 40

PIC 9999 COMp·3 +1234 01 23 4F
-1234 01 23 4F

Binary PIC S9999 COMP4 	 +1234 04 02
-1234 FB 2E

PIC 9999 COMP4 	 +1234 04 02

-1234 04 02

J*The internal representation of each byte is shown as two hex digits. The bit configl,lration for each digit is as follows:

Hex Digit Bit Configuration 	 Hex Digit Bit Configuration

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 0 1101
6 0110 E 1110
7 0111 F 1111

Notes:
1. The leftmost bit of a binary number represents the sign: 0 is positive, 1 is negative.
2. Negative binary numbers are represented in twos complement form.
3. Hex 4E represents the EBCDIC character +. Hex 60 represents the EBCDIC character-.
4. Specification of SIGN TRAILING (without the SEPARATE CHARACTER option) is the equivalent of the

standard action of the compiler.

Figure 4-1. lmamal R.p....ntation of Numeric Items

4-26

SIGN Clause

The SIGN clause specifies the position and mode of
representation of the operational sign for a numeric
entry.

Format

[[SIGN IS] {~~~~~~N~ } [SEPARATE CHARACTER]]

The SIGN clause may be specified only for a signed
numeric data' description entry (that is, one whose
PICTURE character-string contains an S), or for a group
item that contains at least one such elementary entry.
USAGE IS DISPLAY must be specified either explicitly
or implicitly.

Only one SIGN clause may apply to anyone data
description entry. The SIGN clause is required only
when an explicit description of the properties and/or
position of the operational sign is- necessary.

The SIGN clause defines the position and mode of
representation of the operational sign for the numeric
data description entry to which it applies, or for each
signed numeric data description entry subordinate to the
group to which it applies.

If the SEPARATE CHARACTER option is not specified,
then:

• 	 The operational sign is presumed to be associated
with the LEADING or TRAILING digit position
(whichever is specified) of the elementary numeric
data item.

• 	 The character ~ in the PICTURE character-string is
not counted in determining the size of the item (in
terms of standard data format characters).

If the SEPARATE CHARACTER option is specified, then:

• 	 The operational sign is presumed to be the LEADING
01 TRAILING character position (whichever is
specified) of the elementary numeric data item. This
character position is not a digit position.

• 	 The character S in the PICTURE character string is
counted in determining the size of the data item (in
terms of standard data format characters).

• 	+ is the character used for the positive operational
sign.

• 	 - is the character used for the negative operational
sign.

• 	 If one of the character + or - is not present in the
data at object time, an error occurs, and the program
terminates abnormally.

Every numeric data description entry whose PICTURE
contains the symbol S is a signed numeric data
description entry. If the SIGN clause is also specified
for such an entry and. conversion is necessary for
computations or comparisons, the conversion takes
place automatically.

If no SIGN clause is specified for a Signed numeric data
description entry, the position an~ mode of
representation for the operational sign is determined as
explained in the USAGE clause description .

. Data Description Entrv
SIGN 4·27

---- ----

OCCURS Clauae

The OCCURS clause specifies tables whose elements
can be referred to by indexing or subscripting. It is
described under Data Division - Table Handling in
Chapter 6.

IBM ExtemioD:

OCCURS Clause with Boolean Data
Items

If the OCCURS clause and the INDICATOR
clause are both specified at an
elementary level, a table of Boolean
data items is defined with each element
in the table corresponding to an
external indicator.

INDICATOR Clause

The INDICATOR clause is used to
associate an SFGR indicator number with
a Boolean data item. The format is:

INDICATOR integer

Integer must be greater than or equal
to 1, and less than or equal to 99.

The INDICATOR clause must be specified
at an elementary level only.

Since an indicator can contain only a
value of zero or one, it must be
associated only with a Boolean
data-item.

OCCURS Clause with the
INDICATOR Clause: If the OCCURS
clause and the INDICATOR clause are
both specified at an elementary level,
a table of Boolean data items is
defined with each element in the table
corresponding to an external indicator.
The first element in the table
corresponds to the indicator number
specified in the INDICATOR clause, the
second element corresponds to the
indicator which sequentially follows
the indicator specified by the
INDICATOR clause.

For example, if the following is coded:

07 SWITCHES PIC OCCURS 10 TIMES
INDICATOR 16.

then:

SWITCHES (1) corresponds to SFGR

indicator 16,

SWITCHES (2) corresponds to SFGR

indicator 17,

SWITCHES (10) corresponds to SFGR

indicator 25.

SYNCHRON1ZED Clauae

The SYNCHRONIZED clause specifies the alignment of
an elementary item on a proper boundary in storage.

Format

. {SYNCHRONIZED} [LEFT]][SYNC RIGHT

The SYNCHRONIZED clause is treated as
documentation only. The SYNCHRONIZED clause is
never required. It may appear only at the elementary
level. SYNC is an abbreviation for SYNCHRONIZED and
has the same meaning.

4-28

JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning

rules for a receiving item of the alphabetic or

alphanumeric categories.

Format

[
{ JUSTIFIED} RIGHT]

JUST

The JUSTIFIED clause may be specified only at the
elementary level. JUST is an abbreviation for
JUSTIFIED and has the same meaning.

The JUSTIFIED clause must not be specified for a
numeric item or for any item for which editing is
specified. The JUSnFIED clause must not be specified
with level-66 (RENAMES) or level-as (condition-name)
entries.

vyhen the JUSTIFIED clause is specified for a receiving
item, the data is aligned at the rightmost character
position in the receiving item, and:

• 	 If the sending item is larger than the receiving item,
the leftmost characters are truncated.

• 	 If the sending item is smaller than the receiving item,
the unused character positions at the left are filled
with spaces.

When the.JUSTIFIED clause is omitted, the rules for
standard alignment are followed.

The following shows the difference between standard
and justified alignment:

Sending Receiving

Field Field

Alignment Value Value

Standard THE THEflfl

Justified right THE flflTHE

BLANK WHEN ZERO Clause

The BLANK WHEN ZE.RO clause specifies that an item
is to be filled entirely with spaces when its value is zero.

Format

[BLANK WHEN ZERO]

The BLANK WHEN ZERO clause may be specified only
for elementary numeric or numeric edited items. When
it is specified for a numeric item,the item is considered
to be a numeric edited item.

If the BLANK WHEN ZERO clause is spec;:ified, the item
contains nothing but spaces when its value is zero.

The BLANK WHEN ZERO clause must not be specified
for level-66 or level-as items.

IBM Extension: When both the BLANK WHEN
ZERO clause and the asterisk (*) as a
suppression symbol are specified for
the same data description entry, zero
suppression editing overrides the
function of the BLANK WHEN ZERO
clause.

Data Description Entry
OCCURS-BLANK WHEN ZERO 4·29

VALUE Clause

The VALUE clause specifies the initial contents of a data
item, or the value(s) associated with a condition-name.
The two formats for the VALUE clause are as follows:

Format 1

[VALUE IS literal]

Format 2

88 d·· {VALUE IS } I· 11 [{THROUGH} I· 12]con Itlon-name VALUES ARE Itera - THRU Itera ­

[1i..,,'.3 [{~UGH}o''''aI-4]] ...

Level-number 88 and condition-name are not part of the
Format 2 VALUE clause itself, and are included in the
format only for clarity. The use of the VALUE clause
differs with the Data Division section in which it is
specified.

File and Unkage Sections: The VALUE clause must be
used only in condition-name entries.

Working-Storage Section: The VALUE clause is used in
condition-name entries. It is also used to specify the
initial value of any data item; the item assumes the
specified value at the beginning of program execution.
If the initial value is not explicitly specified, it is
unpredictable.

General Considerations

The key words THRU and THROUGH are equivalent.

The VALUE clause must not be specified for any item
whose length is variable.

For group entries, the VALUE clause must not be
specified if the entry or an entry subordinate to it
contains any of the following clauses: JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE
DISPLAY).

The VALUE clause must not conflict with other clauses
in the data description entry or in the data description of
this entry's hierarchy. The following rules apply:

• 	 Wherever a literal is specified, a figurative constant
may be substitued.

• 	 If the item is numeric, all VALUE clause literals must
be numeric literals. If the literal defines the value of a
Working-Storage item, the literal is aligned according
to the rules for numeric moves with one additional
restriction: the literal must not have a value that
requires truncation of nonzero digits. If the literal is
signed, the associated PICTURE character-string must
contain a sign symbol (S).

• 	 All numeric literals in a VALUE clause of an item
must have a value that is within the range of values
indicated by the PICTURE clause for that item. For
example, for PICTURE 99PPP, the literal must be
within the range 1000 through 99000 or zero. For
PICTURE pppgg, the literal must be within the range
.00000 through .00099.

4-30

• 	 If the item is an elementary or group alphabetic,
alphan",meric, alphanumeric edited, or numeric edited
item, all VALUE clause literals must be nonnumeric
literals. The number of characters in the literal must
not exceed the size of the item.

• 	 The functions of the editing characters in a PICTURE
clause are ignored in determining the initial
appearance of the item described. However, editing
characters are included in determining the size of the
item. There$ore, any editing character must be
included in the literal .. For example, if the item is
defined as PICTURE +999.99 and the value is to be
+12.34, then the VALUE clause should be specified
as VALUE '+012:34'.

• 	 A maximum of 32,767 bytes may be initialized by
means of a single VALUE clause.

Format 1 Considerations

This format specifies the initial value of a data item in
storage. Initialization is independent of any BLANK
WHEN ZERO or JUSTIFIED clause specified.

A Format 1 VALUE clause must not be specified for an
entry that contains or is subordinate to an entry that
contains a REDEFINES or OCCURS clause.

If the VALUE clause is specified at the group level, the
literal must be a nonnumeric literal or a figurative
constant. The group area is initialized without
consideration for the subordinate entries within this
group. In addition, the VALUE clause must not be
specified for subordinate entries within this grouJ).

IBM Extension:

Boolean Considerations: The
allowable values for a Boolean literal
are B'O', B'l', and ZERO/So

Format 2 Considerations

This format associates a value, values, and/or range(s)
of values with a condition-name. Each such
condition-name requires a separate level-as entry.

The VALUE clause is required in a condition-name entry
and must be the only clause in the entry. Each
condition-name entry is associated with a preceding
conditional variable. Thus, every level-as entry must
always be pr8ceded either by the entry for the
conditional variable or by another level-as entry when
several condition-names apply to one conditional
variable.. Such level-as entries implicitly have the
PICTURE characteristics of the conditional variable.

Every condition-name can be qualified by the name of
its associated conditional variable and by the qualifier(s)
of the conditional variable. If the associated conditional
variable requires subscripts or indexes, each procedural
reference to the condition-name must be subscripted or
indexed as required for the conditional variable.

When only literlfl-1 is specified, the condition-name is
associated with a single value.

When literal-1, literal-3, and soon are specified, the
condition-name is associated with several single values,

When literal-1 THRU literal-2 is specified, the
condition-name is associated with one range of values.

When literal-1 THRU literal-2, Iiteral-3 THRU literal-4,
and so on are specified, the condition-name is
associated with more than one range of.values. Literal-1
must be less than literal-2, literal-3 less than literal-4,
and so on.

One or more single values and one or more· ranges of
values may be specified in a single Format 2 VALUE
clause.

Data Description Entry
VALUE 4·31

The type of literal in a condition-name entry must be
consistent with the data type of the conditional variable.
In the following example, CITY-COUNTY-INFO,
COUNTY-NO, and CITY are conditional variables; the
associated condition-names immediately follow the
level-number 88. The PICTURE associated with
COUNTY-NO limits the condition-name value to a
2-digit numeric literal. The PICTURE associated with
CITY limits the condition-name value to a a-character
nonnumeric literal. Any values for the condition-names
associated with CITY-COUNTY-INFO cannot exceed 5
characters, and the literal (because this is a group item)
must be nonnumeric:

05 CITY-COUNTY-INFO.
88 BRONX VALUE '03NYC'.
88 BROOKLYN VALUE '24NYC'.
88 MANHATTAN VALUE '31 NYC'.
88 QUEENS VALUE '41NYC'.
88 STATEN-ISLAND VALUE '43NYC'.

10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14 ..
88 KINGS VALUE 24.
88 NEWYORK VALUE 31.
88 RICHMOND VALUE 43.

10 CITY PICTURE X(3).
88 BUFFALO VALUE 'BUF'.
88 NEW-YORK-CITY VALUE 'NYC'.
88 POUGHKEEPSIE VALUE 'POK'.

05 POPULATION...

The following example shows the use of the THRU
option. In this example, the number of miles a person
drives to work each day is categorized.

05 MILEAGE PIC 9(2)V9.
88 LOW VALUE 0 THRU 09.9.
88 MED VALUE 10.0 THRU 19.9.
88 HIGH VALUE 20.0 THRU 99.9.

Condition-names are used procedurally in
condition-name conditions, and are described under
Conditional Expressions in Chapter 5.

PICTURE Clause

The PICTURE clause specifies the general characteristics
and editing requirements of an elementary item.

Format

[{ PICTURE} .]PIC IS character-string.

The PICTURE clause must be specified for every
elementary item except an indexed data item. The
PICTURE clause may be specified only at the elementary
level. PIC is an abbraviation for PICTURE and has the
same meaning.

The character-string is made up of certain COBOL
characters used as symbols. The allowable
combinations determine the category of the data item.
The character-string may contain a maximum of 30
characters.

Symbols Used in the PICTURE Clause

The functions of each PICTURE clause symbol are
defined in the following list. Any punctuation character
appearing within the PICTURE character-string is not
considered a punctuation character, but rather as a
PICTURE character-string symbol.

A Each A in the character-string represents a
character position that can contain only a letter of
the alphabet or a space.

B Each B in the character-string represents a
character position into which the space character
will be inserted.

4-32

P 	 The P indicates an assumed decimal scaling
position, and is used to specify the location of an
assumed decimal point when the point is not
within the number that appears in the data item.
The scaling position character P is not counted in
the size of the data item. Scaling position
characters are counted in determining the
maximum number of digit positions (1B) in numeric
edited items or in items that appear as arithmetic
operands. In any operation converting data from
one forr." of internal representation to another, if
the item being converted is described with the
PICTURE symbol P, each digit position described
by a P is considered to contain the value zero, and
the size of the item is considered to include these
zero digit positions.

For example, PICTURE PPP99 DISPLAY defines a
2-character item whose value is zero or ranges
from .00001 through .~9. PICTURE 99PPP
DISPLAY defines a 2-character item whose value
is zero or ranges from 1000 through 99000.

The scaling position character P can appear only to
the left or right of the other characters in the
string as a continuous string of Ps within a
PICTURE description. The sign character Sand
the assumed decimal point V are the only
characters which Can appear to the left of a
leftmost string of Ps. Because the scaling position
character P implies an assumed decimal point (to
the left of the Ps if the Ps are leftmost PICTURE
characters; to the right of the Ps if the Ps are
rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the
leftmost or rightmost character within such a
PICTURE description.

S The symbol S ·is used in a PICTURE
character-string· to indicate the presence (but not
the representation or, necessarily, the position) of
an operational sign. The sign must be written as
the leftmost character in the PICTURE string. An
operational sign indicates whether the value of an
item involved in an operation is positive or
negative. The symbol S is not counted in
determining the size of the elementary item, unless
an associated SIGN clause specifies the
SEPARATE CHARACTER option.

V The V is used in a character-string to indicate the
location of the assumed decimal point and can
appear only once in a character-string. The V
does not· represent a character position and,
therefore, is not counted in the size of the
elementary item. When the assumed decimal point
is to the right of the rightmost symbol in the
string, the V is redundant.

x Each X in the character-string represents a
character position that may contain any allowable
character from the EBCDIC set.

z Each Z in the character-string represents a leading
numeric character position. When that position
contains a zero, the zero is replaced by a space
character. Each Z is counted in the size of the
item.

mM Extension:

A single 1 indicates a Boolean data
item. If a 1 appears in the PICTURE
character-string, it must be the only
character.

9 Each 9 in the character-string represents a
character position that contains a numeral and is
counted in the size of the item.

Data Description Entry
PICTURE 4-33

o 	 Each zero in the character-string represents a
character position into which the numeral zero will
be inserted. Each zero is counted in the size of the
item.

/ 	 Each slash in the character-string represents a
character position into which the slash character
will be inserted. Each slash is counted in the size
of the item.

Each comma in the character-string represents a
character position into which a comma will be
inserted. This character is counted in the size of
the item. The comma insertion character cannot
be the last character in the PICTURE
character-string.

When a period appears in the character-string, it
is an editing symbol that represents the decimal
point for alignment purposes. In addition, it
represents a character position into which a period
will be inserted. This character is counted in the
size of the item. The period insertion character
cannot be the last character in the PICTURE
character-string.

Note: For a given program, the functions of the
period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma, and
the rules for the comma apply to the period
wherever they appear in a PICTURE clause.

+, -, CR, DB

These symbols are used as editing sign control
symbols. Each symbol represents the character
position into which the editing sign control symbol
will be placed. The symbols are mutually exclusive
in one character-string. Each character used in the
symbol is counted in determining the size of the
data item.

* 	 Each asterisk (check protect symbol) in the
character-string represents a leading numeric
character position into which an asterisk will be
placed when that position contains a zero. Each
asterisk is counted in the size of the item.

mM Extension: Within a given data
description entry, the use of the
check protect symbol overrides the
BLANK WHEN ZERO clause.

'CS' 	The currency symbol in the character-string
represents a character position into which a
currency symbol is to be placed. The currency
symbol in a character-string is represented either
by the symbol $ or by the single character
specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the Environment
Division. The currency symbol is counted in the
size of the item.

Note: Because the currency symbol can be
replaced in the CURRENCY SIGN clause, the term
'CS' is used throughout this book rather than the
actual currency symbol ($).

Figure 4-6 gives the order in which PICTURE clause
symbols must be specified.

4-34

Non-Floating Floating Other Symbols
Symbol Insertion Symbols Insertion Symbols

Second 1
$2 A pi pI 13B 0 , $ 9 S V ~ / tt t}

,{g:} ~} {~I t}l t} $2
XSymbol

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x X x x x x x x

/ x x x x x x x x x x x x x x x x x

, x x x x x x x x x x x x x x x x
Non-Floating

Insertion x x x x x x x x x x

Symbols
 t}

t} x x x x x x x x x x x x x x

CRt x x x x x x x x x x x x x xOBI

$ x

{~} x x x x x x x

{~} x x x x x x x x x x x
Floating

Insertion x x x x x x
t}
Symbols

x x x x x x x x x xt}
$ x x x x x x

p x x x x x x x x x x

9 x x x x X x x x x x x x x x x

A x x x x x
Other X

Symbols
 S

V x x x x x x x x x x x x

p x x x x x x x x x x x x

p x x x x x

I Non-floating insertion symbols + and -, floating insertion symbols Z, ., +, -, and $, and other symbol P appear twice in the above

table_ The leftmost column and uppermost row for each symbol represents its use to the left of the decimal point position_ The

second appearance of the symbol in the table represents its use to the right of the decimal point position.

2$ is the default value for the currency symbol. This value may be replaced by a character specified in the currency SIGN clause. At

least one of the symbols A, X,Z,g,or ·,orat least two of the symbols +, -,or$ must be present in a PICTURE string.

3The character 1 must appear alone in the character string.

An X at an intersection indicates that the symbol(s) at the top of the column may, in a given character-string, appear anywhere to

the left of the symbol (5) at the left of the row.

Braces ({}) indicate items.that are mutually exclusive.

Figure 4-8. PICTURE ClallM Symbol Order

Data Description Entry
PICTURE 4-35

Character-String Representation: The following symbols Numeric items-the following rules apply:
may appear more than once in one PICTURE·
character-string:

A B P X Z 9 0/ , + - • 'CS'

Each time one of these symbols appears in the
character-string, it represents ah occurrence of that
character or set of allowable characters in the data item.

An integer enclosed in parentheses immediately
following any of these symbols specifies the number of
consecutive occurrences of that symbol. The number of
consecutive occurences may notexceec:i 32767.

For example, the following two PICTURE clause
specifications are equivalent:

PICTURE IS $99999.99CR

PICTURE IS $9(5).99CR

The following five symbols may each appear only once
in one PICTURE character-string:

5 	 V . CR DB

Data Categories and PICTURE Considerations: The
allowable combinations of PICTURE symbols determine
the data category of the item. Rules for each category
follow.

Alphabetic items-the following rules apply:

• 	 The PICTURE character-string can contain only the
symbols A and B.

• 	 The contents of the item in standard data format
must consist of any of the 26 letters of the alphabet
and the space character.

• 	 USAGE DISPLAY must be either specified or implied.

• 	 Any associated VALUE clause must specify a
nonnumeric literal.

• 	 The PICTURE character-string can contain only the
symbols 9, P, 5, and V.

• 	 The number of digit positions must range from 1
through 18.

• 	 The contents of a numeric item must be a
combination of the digits 0 through 9. The numeric
item may contain an operational sign. If the PICTURE
contains an 5, the contents of the item are treated as
a positive or negative value, depending on the
operational sign present in the data. If the PICTURE
does not contain an 5, the contents of the item are
treated as an absolute value.

• 	 If a VALUE clause is specified for an elementary
numeric item, the literal must be numeric. If a
VALUE clause is specified for a group item consisting
of elementary numeric items, the group is considered
alphanumeric, and the literal must therefore be
nonnumeric.

• 	 The USAGE of the item can be DISPLAY or
COMPUTATIONAL.

IBM ExteasloD: IBM implementation also
allows the USAGE to be COMPUTATIONAL-3
or COMPUTATIONAL-4.

Examples of numeric items are shown in Figure 4-7.

PICTURE Valid Range of Values

9999 o through 9999
S99 -99 through +99
S999V9 -999.9 through +999.9
PPP999 o through .000999
S999PPP -1000 through -999000 and

+1000 through +999000 or zero

Figure 4-7. Exam.,... of Numeric Items

4-36

L

Alphanumeric items-the following rules apply: Numeric edited items-the following rules apply:

• 	 The PICTURE character-string must consist of either:
The symbol X entirely.
Combinations of the symbols A. X, and 9. The
item is treated as if the character-string contained
only the symbol X. A PICTURE character-string
containing all A's or all 9's does not define an
alphanumeric item.

• 	 The contents of the item in standard data format may
be any allowable characters from the EBCDIC
character set.

• 	 USAGE DISPLAY must be either specified or implied.

• 	 Any associated VALUE clause must specify a
nonnumeric literal.

Alphanumeric edited items-the following rules apply:

• 	 The PICTURE character-string ,can contain the
symbols:

AX9BOI

• 	 The string must contain at least one of the following
combinations:

At least one B and at least one X
At least one 0 and at least one X
At least one X and at least one 1
At least one A and at least one 0
At least one A and at least one 1

• 	 The contents of the item in standard data format may
be any allowable character from the EBCDIC
character set.

• 	 USAGE DISPLAY must be either specified or implied.

• 	 Any associated VALUE clause must specify a
nonnumeric literal. The literal is treated exactly as
specified; no editing is performed.

• 	 Alphanumeric edited items are subject to only one
type of editing-simple insertion using the symbols 0,
B, and I.

• 	 The PICTURE character-string can contain the
following symbols:

B P V Z 9 0 1 , . + - CR DB • 'CS'

The combinations of symbols allowed are determined
from the PICTUR~ clause symbol order allowed (see
Figure 4-41. and the editing rules (see the following
section). The following additional ,rules also apply:

The string must contain at least one of the
following symbols:

BIZ 0 , . • + - CR DB

The number of digit positions represented in the
character-string must be in the range of 1 through
18 inclusive.
The total number of character positions in ~he
string (including editing characters) must not
exceed 30.

• 	 The contents of those character positions
representing digits in standard data format must be

,one of the digits 0 through 9.

• 	 USAGE DISPLAY must be either specified or implied.

• 	 Any associated VALUE clause must specifiy a
nonnumeric literal. The literal is treated exactly as
specified; no editing is performed.

IBM Extension:

Boolean items-the following rule

applies:

• 	 The string must contain a single

character 1.

Data Description Entry
PICTURE 4-37

PICTURE Clause Editing

There are two general methods of performing editing in
a PICTURE clause: by insertion, or by suppression and
replacement.

There are four types of insertion editing: simple
insertion, special insertion, fixed insertion, and floating
insertion. There are two types of suppression and
replacement editing: zero suppression and replacement
with asterisks and zero suppression and replacement
with spaces.

The type of editing allowed for an item depends on its
data category. The type of editing and the insertion
symbols that are valid for each category are shown in
Figure 4-8.

Velid Insertion
Category Type of Editing Symbols

Alphabetic Simple insertion 8

Numeric None None

Alphanumeric None None

Alphanumeric Simple insertion 801
edited

Numeric edited All 80 I ,

Boolean None None

Figure 4-1. Valid Editing for Each· Data Category

Simple Insertion Editing: This type of editing is valid for
alphabetic, alphanumeric edited, and numeric edited
items. The valid insertion symbols for each category are
shown in Figure 4-8.

Each insertion symbol is counted in the size of the item,
and represents the position within the item where the
equivalent characters will be inserted. Examples of
simple insertion editing are shown in Figure 4-9.

PICTURE Value of Data Edited Result

X(10)/XX ALPHANUMER01 ALPHANUMER/01

·X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC

A(5)BA(B) ALPHABETIC ALPHA BETIC

99,B999,Booo 1234 01,234,000

99,999 12345 12,345

Figure 4-9. Exempl.. of Simple InMrtion Editing

Special Insertion Editl",: This type of editing is valid
only for numeric edited items.

The period is the special insertion symbol; it also
represents the actual decimal point for alignment
purposes.

The period insertion symbol is counted in the size of the
item, and represents the position within the item where
the actual decimal point will be inserted.

The actual decimal point and the assumed decimal point
(the symbol VI must not both be specified in one
PICTURE character-string.

4-38

Fixed Insertion Editing: This type of editing is valid only PICTURE Value of Data Edited Result
for numeric edited items. The following insertion
symbols are used: 999.99+ +6555.556 555.55+

'CS' (currency symbol)

+ - CR DB (editing sign control symbols)

• 	 In fixed insertion editing. only one currency symbol
and one editing sign control symbol can be specified
in one PICTURE character-string.

• 	 Unless it is preceded by s + or - symbol. the currency
symbol must be the leftmost character position in the
character-string.

• 	 When either + or - is used as a symbol. it must
represent either the leftmost or rightmost character
position in the character-string.

• 	 When CR or DB is used as a symbol, it must
represent the rightmost two character positions in the
character-string.

• 	 Editing sign control symbols produ€:8 results
depending on the value of the data item as shown in
Figure 4:..10.

Examples of fixed insertion editing are shown in Figure
4-11.

Editing Symbol Resulting
in PICTURE Data Item Resulting
Character Positive Data Item
String or Zero Negative

+ 	 +
space

CR 2 spaces CR
DB 2 spaces DB

Figure 4-10. Editing Sign Control Results

+9999.99 -6555.555 -6555.55
9999.99­ +1234.56 1234.56
$999.99 -123.45 $123.45

-$999.99 -123.456 -$123.45
$9999.99CR +123.45 $0123.45
$9999.990B -123.45 $0123.450B

Figure 4-11. Exampl.. of Fixed InHrtion Editing

Floating Insertion Editing: This type of editing is valid
only for numeric edited items. The following symbols
are used:

'CS' +-

Within one PICTURE character-string. these symbols are
mutually exclusive as floating insertion characters.

Floating insertion editing is specified by using a string of
at least two of the allowable floating insertion symbols
to represent leftmost character positions in which these
characters can be inserted.

The leftmost floating insertion symbol in the
character-string represents the leftmost limit at which
this character can appear in the data item. The
rightmost floating insertion symbol represents the
rightmost limit "at which this character can appear.

The second leftmost floating insertion symbol in the
character-string represents the leftmost limit at which
numeric data can appear within the data item. Nonzero
numeric data may replace all characters at or to the right
of this limit.

Any simple insertion symbols (B 0 / .) within or to the
immediate right of the string of floating insertion
symbols are considered part of the floating
character-string. If the period special insertion symbol is
included within the floating string. it is considered to be
part of the character-string.

Data Description Entry
PICTURE 4-39

In a PICTURE character-string there are two methods to
represent floating insertion editing and to perform
editing:

1. 	 Any or all leading numeric character positions to
the left of the decimal point are represented by
the floating insertion symbol. When editing is
performed, a single floating insertion character is
placed to the immediate left of the first nonzero
digit in the data or of the decimal point, whichever
is farther left. The character positions to the left
of the inserted charactar are filled with spaces.

2. 	 All the numeric charactar positions are represented
by the floating insertion symbol. When editing is
performed, then:
a. 	 If the value of the data is zero, the entire data

item will contain spaces.
b. 	 If the value of the data is nonzero, the result is

the same as in method 1.

To avoid truncation, the minimum size of the PICTURE
character-string must be the sum of:

• 	 The number of character positions in the sending
item

• 	 The number of nonfloating insertion symbols in the
receiving item

• 	 One character for the floating insertion symbol

Examples of floating insertion editing are shown in
Figure 4-12.

PICTURE Value of Data Edited Result

$$$$.99 .123 $.12
$$$9.99 .12 $0.12

$$,$$$,999.99 -1234.56 $1,234.56
++,+++,999.99 -123456.789 -123,456.78
$$,$$$,$$$.99CR -1234567. $1,234,567.00CR

++,+++,+++,+++. 0000.00

Figure ~12. Exampl.. of Floating In ..rtion Editing

Note: A single insertion symbol to the left of a simple or
fIXed insertion symbol followed by a string of floating
insertion symbols is not considered part of the floating
character-string. In the following example, the leftmost
+ in the character-string is considered to be a fixed
insertion symbol and not a floating insertion symbol:

+,+++,+++.++

Zero Suppression and Replacement Editing: This type of
editing is valid only for numeric edited items.

The symbols Z and • are used for zero suppression.
These symbols are mutually exclusive in the PICTURE
clause.

The following symbols are mutually exclusive as floating
replacement symbols in one PICTURE character-string:

Z· + - 'CS' .

Zero suppression editing is specified by using a string of
one or more of the allowable symbols to represent
leftlT!ost character positions in which zero suppression
and replacement editing can be performed.

Any simple insertion symbols (B a / ,) within or to the
immediate right of the string of floating editing symbols
are considered part of the string. If the period special
insertion symbol is included witt!in the floating editing
string, it is considered to be part of the character-string.

L

In a PICTURE character-string, there are two ways to
represent zero suppression and perform editing:

• 	 Any or all of the leading numeric character positions
to the left of the decimal point are represented by
suppression symbols. When editing is performed,
any leading zero in the data that appears in the same
character position as a suppression symbol is
replaced by the replacement character. Suppression
stops at the character farthest left that:

Does not correspond to a suppression symbol.

Contains nonzero data.

Is the decimal point .

• 	 All the numeric character positions in the PICTURE
character-string are represented by the suppression
symbols. When editing is performed and the value of
the data is nonzero, the result is the same as in the
preceding rule. The following rules apply if the value
of the data is .zero:

If Z has been specified, the entire data item

contains spaces.

If • has been specified, the entire data item,

except the actual decimal point, contains asterisks.

mM Extension: The asterisk as a
suppression symbol and the BLANK WHEN
ZERO clause may be specified for the
same entry. The asterisk overrides the
BLANK WHEN ZERO clause if both are
specified.

Examples of zero suppression and replacement editing
are shown in Figure 4-13.

PICTURE Value of Data Edited Result

**** ** 0000.00 **** **
ZZZZ.ZZ 0000.00
ZZZZ.99 0000.00 .00
****.99 0000.00 ****.00
ZZ99.99 0000.00 00.00

Z,ZZZ.ZZ+ +123.456 123.45+
*,***.**+ -123.45 **123.45­

,*,***.**+ +12345678.9 12,345,678.90+
$Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67
$B*, ***, ***. **BBDB -12345.67 $ ***12,345.67 DB

Figure 4-13. Examples of Zero Suppression and

Replacement Editing

Data Description Entry
.PICTURE 4-41

http:12,345.67
http:12345.67
http:12,345.67
http:12345.67
http:12,345,678.90
http:Z,ZZZ.ZZ

4-42

Chapter 5. Procedure Division

PROCEDURE DIVISION CONCEPTS

The Procedure Division is required in every COBOL
source program. The Procedure Division consists of
optional Declaratives and procedures that contain the
sections and/or paragraphs, sentences, and statements
that solve a data processing problem.

Execution begins with the first statements in the
Procedure Division, excluding Declaratives. Unless the
logic flow indicates some other order, statementS are
executed in the order in which they are presented for
compilation. The end of the Procedure Division and the
physical end of the program is that physical position in a
source program after which no further Procedure
Division statements appear.

Dec/aratives

The Declarativ, section provides a method of invoking
procedures that are executed when an exceptional
condition occurs that is to be tested by the COBOL
programmer.

When Declarative sections are specified, they must be
grouped at the beginning of the Procedure Division.
Declarative sections are preceded by the key word
DECLARATIVES and followed by the key words END
DECLARA TIVES.

If Declarative sections are specified, the entire
Procedure Division must be divided into sections.

Procedures

A procedure is a paragraph, group of paragraphs, a
section, or a group of sections within the "Procedure
Division. A procedure.name is a user-defined name that
identifies a section or a paragraph.

A section consists of a section header followed by zero,
one, or more than one sUCC8ssive paragraphs. A
sectlon·header is a section-name followed by the key
word SECTION, an optional priority-number, followed by
a period and a .pace. Priority-numbers are explained
under Segmentation Feature in Chapter 6. A
section·name is a user-defined word that identifies a
section. A section-name, because it cannot be qualified,
must be unique. A section ends immediately before the
next section header, at the end of the Procedure
Division, or, in the Declaratives portion, at the key
words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a
period and a space. Zero, one, or more than one
sUCC8ssive sentences are allowed. A paragraph·name is
a user-defined word that identifies a paragraph. A
paragraph-name, peceuse it can be qualified, need not
be unique. A paragraph ends immediately before the
next paragraph-name or section header, at the end of
the Procedure Division, or, in the Declaratives portion, at
the key words END DECLARATIVES. If one paragraph
in a program is contained within a section, then all
paragraphs must be contained in sections.

A sentence consists of one or more statements
terminated by a period and a space.

A statement is a syntactically valid combination of words
(identifiers, figurative constants, and so on) and symbols
(literals, relational-operators, and so on) beginning with a
COBOL verb.

An identifier consists of the word or words necessary to
make unique reference to a data item through
qualification, subscripting, or indexing. In any Procedure
Division reference except the class test. if the contents
of an identifier are not compatible with the class
specified through its PICTURE clause, results are
unpredictable.

Note: A level-88 (condition-name) entry, because it is
not a data item, cannot be an identifier. The associated
conditional variable, however, can be an identifier.

Procedure Division Concepts 5-1

PROCEDURE DIVISION ORGANIZATION

The structure of the Procedure Division is shown in the
following formats.

Format 1

PROCEDURE DIVISION [USING data-name-l [,data-name-2] oJ.00

[DECLARATIVES.

{ section-name SECTION [segment-number) declarative-sentence0

[paragraph-name. [sentence] ..•]...}. 0 •

S!:!.Q DECLARATIVES.J

{ section-name SECTION [segment-number]

[paragraph-name 0 [sentence] . 0 •] • 0 • }

Format 2

PROCEDURE DIVISI.ON [USING data-name-1 [,data-name-2] 0 0 •] •

{paragraPh-name. [sentence] 0 • 0 } 0 • 0

Coding Example

~- ---
SEQUENCE COB'~iA i·IPAGO ISERIP.U , 1 Ul .-~-"'---,;;----r-------r--, . , 7

,9~~ 0 1 0 P~ioicIE:OlI.iA.1e ~Dr:.: V"IIS!I Ol~'
,

I I I I

II' 020 :OeiC~ IARiAiTIve's. I , !, I i I ! III 1.'

I' , 030 :SE Ie ir'liol-ll-WAME 5 iE'c.rII'oiN.1 I I ' I I I I

040 PAItA~RAP~-NA ~s. !

050 I PROG~AMMXNG ~TAT EMEN r5,. !

. ,

It

060• ~OMMIENTS.

070 J:NiD iPk:~ IL AIAAtr 1,VleJS '1 : 1, II I I,

~080 :SEIc,TJ:o'NI-NA~E 5:£1<: rlXQVO .' i i I, ! , I I
-.
, 090 P"'iRAiilltiA'P ~f-N'A~~L , ' ' ! I I' , I ,
, 100 fROG ~_AAA I:NG STAT eMEN T5

5-2

http:P~ioicIE:OlI.iA.1e
http:DIVISI.ON

Categories of Sentences

There are three categories of sentences: conditional
sentences, imperative sentences, and compiler-directing
sentences.

A conditional sentence is a conditional statement,
optionally preceded by an imperative statement,
terminated by a period and a space.

An imperative sentence is an imperative statement,
which may consist of a series of imperative statements,
followed by a period and a space.

A compiler-directing sentence is a single
compiler-directing statement, followed by a period and a
space.

Categories of Statements

Three categories of statements are used in COBOL:
conditional statements, imperative statements, and
'compiler-directing statements.

A conditional statement specifies that the truth value of a
condition is to be determined, and that the subsequent
action of the object program is dependent on this truth
value. Figure 5-1 lists COBOL conditional statements.

An imperative statement specifies that an unconditional
action is to be taken by the object program. An
imperative statement may also consist of a series of
imperative statements. 	Figure 5-2 lists COBOL
imperative statements.

A compiler-directing statement causes the compiler to
take a specific action during compilation. Figure 5-3 lists
the COBOL compiler-directing statements.

Sample Procedure Division Statements

PROCEDURE DIVISION.

DECLARATIVES.

ERROR-IT SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-DATA.
ERROR-ROUTI NE.

, IF CHECK-IT = '30' ADD i TO DECLARATIVE-ERRORS.
END DECLARATIVES.

BEGIN-NON-DECLARATIVES SECTION.

100-BEGIN-IT •

OPEN INPUT I~PUT-DATA OUTPUT REPORT-OUT.

i10-READ-IT •

READ INPUT-DATA RECORD AT END MOVE 'Y' TO EOF-SW.
ADD i TO RECORDS-IN.

200-MAIN-ROUTINE.
PERFORM PROCESS-DATA UNTIL EOF-SW = 'Y'.
PERFORM FINAL-REPORT THRU FINAL-REPORT-EXIT.
DISPLAY 'TOTAL RECORDS IN = ' RECORDS-IN'.
DISPLAY 'DECLARATIVE ERRORS = »> ' DECLARATIVE-ERRORS.
STOP RUN.

PROCESS-DATA.
IF RECORD-ID = 'G'

PERFORM PROCESS-GEN-INFO

ELSE

I F RECORD-CODE = 'C'-
PERFORM PROCESS-SALES-DATA

ELSE
PERFORM UNKNOWN-RECORD-TYPE.

Decision 	 IF

Input/Output 	 DELETE... .lNVALID KEY

READ AT END

READ .. .lNVALID KEY

REWRITE ... INVALID KEY

START...lNVALID KEY

WRITE...AT END-OF-PAGE

WRITE••• INVALID KEY

Arithmetic 	 ADD..•ON SIZE ERROR

COMPUTE...ON SIZE ERROR

DIVIDE...ON SIZE ERROR

MULTIPLY ... ON SIZE ERROR

SUBTRACT ... ON SIZE ERROR

PrOcedure Branching 	 PERFORM ... UNTIL

Data Movement 	 STRING ... ON OVERFLOW

UNSTRING ... ON OVERFLOW

Table Handling 	 SEARCH

Ordering 	 RETURN ... AT END

Debug 	 EXHIBIT ... CHANGED

Figure 5-1.' Conditiona. Statements and Their Categorie.

Procedure Division Organization 5-3

Arithmetic ADD'
COMPUTE'
DIVIDE'
INSPECT(TALLYING)
MULTIPLY'
SUBTRACT'

Data Movement ACCEPT (DATE, DAY, TIME)
INSPECT (REPLACING)
MOVE
STRING3
UNSTRING3

Ending 	 EXIT PROGRAM
STOP RUN

Input/Output 	 ACCEPT (mnemonic)
ACQUIRE
CLOSE
DELETE2
DISPLAY
DROP
OPEN
REA04
REWRITE2
sere
START2
STOP literQI
WRITE&

'Without the SIZE ERROR option

2Without the INVALID KEY option

SWithout the ON OVERFLOW option
4Without the AT END or INVALID KEY options

&Without the INVALID KEY or END-OF-PAGE options

SWhen used to modify external switch values

Figure 5·2 (Part 1 of 2). Categories of Imperative
Statements

Ordering MERGE
RELEASE
RETURN
SORT

Procedura Branching ALTER
CALL
EXIT
GO
PERFORM

. Table Handling SET

Subprogram Unkage CALL

Debug EXHIBIT
READY TRACE
RESET TRACE

Figure 5·2 (Part 2 of 2). 	 Categories of ImP*'ative
Statements

Ubrary COpy

Declarative USE

Documentation ENTER

Figure 5-3. Categorie. of Compiler-DIrecting Statements

Categories of Expressions

Two categories of expressions are used in COBOL.
arithmetic expressions and conditional expressions.

Arithmetic expressions are used as operands of
conditional or arithmetic statements. Any arithmetic
expression may be preceded by an unary operator.

A conditional expression causes the object program to
select altemative paths of control, depending on the
value of a truth t~t. There are two types of conditional
expressions: simple conditions and complex conditions.
Conditional expressions can be specified in the IF,
PERFORM, and SEARCH statements.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used 8S operands of certain
conditional and arithmetic statements. An arithmetic
expression may consist of any of the following:

1. An identifier described as a_ numeric elementary
item·

2. A numeric literal.

3. Identifiers and literals, as defined in Items 1 and 2,
separated by arithmetic operators.

4. Two arithmetic expressions, as defined in Items 1,
2, and/or 3, separated by an arithmetic operator.

5. An arithmetic expression, as defined in Items 1, 2,
3, and / or 4, enclosed in parentheses.

Any arithmetic expression may be preceded by a unary
operator.

Identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary
items or numeric literals on which arithmetic can be
performed. '

Arithmetic Operators

The five binary arithmetic operators and two unary
arithmetic operators shown in Figure 5-4 may be used in
arithmetic expressions.· The arithmetic operators are
represented by specific characters that must be
preceded and followed by a space.

Binary
Operator Meaning

+ 	 Addition

Subtraction

• Multiplication

/ Division

•• Exponentiation

Unary
O.,.retor Meaning

+ 	 Multiplication by + 1;

retains original

sign

Multiplication by -1;
changes sign

Figure 5-4. Binary and Unary Operators

. Parentheses may be used in arithmetic expressions to
specify the order in which elements are to be evaluated.
Expressions_ within parentheses are evaluated first.
When expressions are contained within a nest of
parentheses, evaluation proceeds from the least inclusive
to the most inclusive set.

When parentheses are not used, or when parenthesized
expressions are at th, same level of inclusiveness, the
following hierarchical order is implied:

1. Unary operator

2. ~ponentiation

3. Multiplication and division

4. Addition and subtraction

When exponentiation is used as an arithmetic operator, the
exponent identifier or literal must be a positive il"!tegral
value.

Arithmetic Expressions 5-5

L

Parentheses either eliminate ambiguities in logic where
consecutive operations appear at the same hierarchical
level or modify the normal hierarchical sequence of
execution when this is necessary. When the order of
consecutive operations at the same hierarchical level is
not completely specified by parentheses. the order is
from left to right.

Figure 5-5 shows permissible arithmetic symbol pairs.
An arithmetic symbol pair is the appearance of two such
symbols in sequence.

An arithmetic expression may begin only with a left
parenthesis. a unary operator. or a variable (that is. an
identifier or literal). An arithmetic expression may end
only with a right parenthesis or a variable. An arithmetic
expression must contain at least one reference to an
identifier or literal. There must be a one-to-one
correspondence between left and right parentheses in an
arithmetic expression; each left parenthesis is placed to
the left of its corresponding right parenthesis.

Second Variable - unary + ()

Symbol (identifier / unary -
or literal)

First -­+
Symbol -
Variable
(identifier - p - - p
or literal)

-/ .. +­ p - P P -
unary + or
unary -

p - - p -
(p - p p -
) - p - - p

p indicetes a permissible pairing
- indicates that the pairing is not permitted

Figure 5-&. Valid Arithmetic Symbol Pairs

CONDITIONAL EXPRESSIONS

A conditional expion C.UMI the object program to
select alternative petha of control, depending on the
truth value of a tnt. Conditionel expressions. can be
specified in IF, PERFORM, and SEARCH statements. A
com:Jitional expntSlion can be Ipecified in simple
conditions and in complex conditionl. Both simple and
complex conditionl can be encIoIed within any number
of paired parenth; parentheleado not change the
category oj the condition.

Simple Condltlona

There are five simple condltionl: dl8l condition,
condition-name condition, reIMion condition, sign
condition, and lWitch-statua condition. A simple
condition hal a truth value of true or fll... When a
simple condition is encIOMd in paired parentheses, its
truth value is not changed.

Class Condition

The cla88 condition determinel whether a dati item is
alphabetic or numeric.

Format

identifier IS[NOT] {:~~HE:~~TIC }

The identifier being teated muat be delcribed implicitly
or explicitly as USAGE DISPLAY. The identifier is
determined to be numeric only if the contents consist of
any combination of the digits 0 through 9, with or
without an oper1ItiQnal lign.

If the PICTURE of the identifier being teated does not
contain an operational lign, the identifier il determined
to be numeric only if the contenta are numeric and an
operational lign il not pntMnt.

If the PICTURE of the identifier being telted does
contain an operMionel lign, the identifier is determined
to be numeric only if the item il an elementary item, the
contents are numeric, and. a valid operational sign is
p.....nt.

5-6

In the EBCDIC collating sequence, valid embedded
operational signs are hex F and D. For items described
with the SIGN IS SEPARATE clause, valid operational
signs are + (hex 4E) and - (hex 60).

The NUMERIC test cannot be used with an identifier
described either as alphabetic or as a group item that
contains one or more signed elementary items. The
identifier being tested is determined to be alphabetic
only if the contents consist of any combination of the
alphabetic characters A through Z and the space.

IBM ExteDSion: The numeric class test can
also be specified for an identifier
that is defined as USAGE IS
COMPUTATIONAL.

The ALPHABETIC test cennot be used with an identifier
described as numeric.

Figure 5-6 shows valid forms of the class test.

Type of Identifier Valid Fol'IM of tha C.... Teet

Alphabetic ALPHABETIC
NOT ALPHABE-TIC

Alphanumeric ALPHABETIC
NOT ALPHABETIC
NUMERIC
NOT NUMERIC

Zoned Decimal NUMERIC
NOT NUMERIC

Figure 5-8. Valid Fonna of the Cia. Teat

Condition-Name Condition

A condition-name condition causes a conditional variable
to be tested to determine whether its value is equal to
any of the values associated with the condition-name
(level-aa item).

Format

condition-name

A condition-name is used in conditions as an
abbreviation for the relation condition, because the
specified condition-name is equal to only one of the
values or ranges of values assigned to the specified
conditional variable. The result of the test is true if one
of the values corresponding to the condition-name
equals the current value of the associated conditional
variable.

If the condition-name is associated with a range of
values or with several ranges of values, the conditional
variable· is tested to determine whether or not its value
falls within the range(s), including the end values. The
result of the test is true if one of the values
corresponding to the condition-name equals the value of
its associated conditional variable.

The following example illustrates the usage of
condition-names and conditional variables:

02 GRADE-ID PIC 99.
88 PRIMARY-OTHER VALUE 1 THRU 3,5,.6.

88 PRIMARY-FOUR VALUE 4.

88 JUNIOR-HI VALUE 7 THROUGH 9.
88 SENIOR-HI VALUE 10 THROUGH 12.

GRADE-ID is the conditional variable, PRIMARY-OTHER,
PRIMARY-FOUR, JUNIOR-HI, and SENIOR-HI are
condition-names. For individual records in the file, only
one of the values specified in the condition-name entries
can be present. To determine the grade level of a
specifiC record, any of the follOWing can be coded:

IF PRIMARY-OTHER ...
(wl:lich tests for values 1, 2, 3, 5, 6)

IF PRIMARY-FOUR ...
(which tests for value 4)

IF JUNIOR-HI. ..
(which tests for values 7, a, 9)

IF SENIOR-HI ...
(which tests for values 10, 11, 12)

Depending on the evaluation of the condition-name
condition, altemative paths of execution are taken by the
object program.

Conditional Expressions 5-7

Relation Condition

A relation condition causes a comparison between two
operands, either of which may be an identifier, a litera~
or an arithmetic expression.

Format

GREATER THAN
LESS THAN

operand·' IS [NOT]
EQUAL TO

>
operand·2

<

Operand-1 is the subject of the relation condition;
operand-2 is the object of the relation condition.
Operand-1 and operand-2 may each be an identifier, a
literal, or an arithmetic expression. The relation
condition must contain at least one reference to an
identifier. Except when two numeric operands are
compared, operand-1 and operand-2 must have the
same USAGE.

The relational operator specifies the type of comparison
to be made. Figure 5-7 shows relational operators and
their meanings. Each relational operator must be
preceded and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than or not
IS [NOT] > greater than

IS [NOT] LESS THAN Less than or not less
IS [NOT] < than

IS [NOT] EQUAL TO Equal to or not equal to
IS [NOT] =

Figure 5-7. Relationel Operators end Their M..nlngs

IBM Extension:

Boolean Considerations: The
valid types of relation conditions that
can be used with Boolean data items are
EQUAL TO and NOT EQUAL TO.

5-8

Rules for numeric and nonnumeric comparisons are
given in· the following paragraphs. If either of the
operands is a group item, nonnumeric comparison rules
apply. Figure 5-8 summarizes the permissible
comparisons.

Second Operand

Fe! ZR
First Operand

BO GR AL AN ANE NE NNL NL ZO BI PO AE IN 101

Group (GR) NN NN NN NN NN NN NN NN

Alphabetic (AL) NN NN NN NN NN NN NN NN

Alphanumeric (AN) NN NN NN NN NN NN NN NN

Alphanumeric edited (AN E) NN NN NN NN NN NN NN NN

Numeric edited (N E) NN NN NN NN NN NN NN NN

Figurative constant (Fe)l
and nonnumeric literal NN NN NN NN NN NN
(NNL)

Figurative constant ZE RO

(ZR) and numeric literal NN NN NN NN NN NU NU NU NU 102

(NL)

Zoned decimal (ZD) NN NN NN NN NN NN NU NU NU NU NU 102

Binary (81) NU NU NU NU NU 102

Packed decimal (PD) NU NU NU NU NU 102

Arithmetic expression (AE) NU NU NU NU NU

Index-name (IN) 102 102 102 102 10 IV

Index data item (IDI) IV IV
Boolean BO

NN = comparison as described for nonnumeric operands.

NU = comparison as described for numeric operands.

10 = comparison as described for two index-names or index data items.

IV = comparison as described for index data hems.

BO = Boolean data items.

1 Fe includes all figurative constants except ZERO.

2Valid only if the numeric item is an integer.

Figure 5-8. Permi..ible Compariaona of Operanda

Conditional Expressions 5-9

Comparison of Numeric Operands: For numeric class
operands, algebraic values are compared. The length
(number of digits) of the operands is not significant.
Zero is considered a unique value, regardless of the
sign. Unsigned numeric operands are considered
positive; regardless of their USAGE, comparison of
numeric operands is permitted.

Comparison of Nonnumeric Operands: A comparison of
two nonnumeric operands or of one numeric and one
nonnumeric operand is made with respect to the binary
collating sequence of the character set in use.

When a nonnumeric and a numeric operand are
compared, the following rules apply:.

• 	 If the nonnumeric operand is a literal or an
elementary data item, the numeric operand is treated
as though it were moved to an alphanumeric
elementary data item of the same size, and the
contents of this alphanumeric data item were then
compared with the nonnumeric operand.

• 	 If the nonnumeric operand is a group item, the
numeric operand is treated as though it were moved
to a group item of the same size, and the contents of
this group item were then C()mpared with the
nonnumeric operand. For further discussion of the
rules for alphanumeric and group move operations,
see the MOVE Statement in this chapter.

Numeric and nonnumeric operands may be compared
only when their USAGE, explicitly or implicitly, is the
same. In such comparisons, the numeric operand must
be described as an integer literal or data item;
non integer literals and data items must not be compared
with nonnumeric operands.

The size of each operand is the total number of
characters in that operand; the size affects the result of
the comparison. There are two kinds of operands to
consider: operands of equal size and operands of
unequal size.

Operands of Equal Size: Characters in corresponding
positions of the two operands are compared, beginning
with the leftmost character and continuing through the
rightmost character.

If all pairs of characters through the last pair test as

. equal, the operands are considered equal. If a pair of

unequal characters is encountered, the characters are

tested to determine their relative positions in the
collating sequence. The operand containing the
character higher in the sequence is considered the
greater operand.

Operands of Unequal Size: If the operands are of
unequal size, the comparison is made as though the
shorter operand were extended to the right with enough
spaces to make the operands equal in size.

Note: Valid comparisons for index-names and index
data items are discussed under Table Handling in
Chapter 6.

Sign Condition

The sign condition determines whether or not the
algebraic value of a numeric operand is less than,
greater than, or equal to zero.

Format

POSITIVE}

operand IS [NOT] { NEGATIVE

~

The operand being tested must be defined as a numeric
identifier or as an arithmetic expression that contains at
least one reference to an identifier.

The operand is POSITIVE if its value is greater than
zero, NEGATIVE if its value is less than zero, and ZERO
if its value is equal to zero. An unsigned operand is
POSITIVE or ZERO.

When NOT is specified, one algebraic test is executed
for the truth value of the sign condition. For example,
NOT ZERO is regarded as true when the operand tested
is positive or negative in value.

5-10

Switch-Status Condition

The switch-status condition determines ·the on or off
status of an UPSI switch.

Format

condition-name

The condition-name must be defined to be associated
with the ON or OFF value of a switch in the
SPECIAL-NAMES paragraph.

The switch-status condition tests the value associated
with the condition-name. The result of the test is true if
the UPSI switch is set to the position corresponding to
condition-name.

Complex Conditions

A complex condition is a condition in which one or more
logical operators act upon one or. more conditions.
Complex conditions include:

• Negated simple conditions

• Combined conditions

• Negated combined conditions

Each logical operator must be preceded and followed by
a space. The logical operators and their meanings are
shown in Figure 5-9.

Logical
Operator Meaning

AND 	 Logical conjunction-the truth value is
true when both conditions are true.

OR 	 Logical inclusive OR-the truth value is
true when either or both conditions are
true.

NOT 	 Logical negation-reversal of truth value
(the truth value is true if the condition
is 1.alse).

Figure 5-9. Logical Operators and Their Meanings

Negated Simple Conditions

A simple condition is negated through the use of the
logical operator NOT.

Format

NOT simple-condition

The simple-condition to be negated can be a class
condition, a condition-name condition, a relation
condition, a sign condition, or a . switch-status condition.
The simple-condition may not be negated if the
condition itself contains a NOT.

The negated simple-condition gives the opposite truth
value as the simple condition. That is, if the truth value
of the simple-condition is true, then the truth value of
that same negated simple-condition is false.

Placing a negated simple-condition within parentheses
does not change its truth value. For example, the
following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

Conditional Expressions 5-11

Combined Conditions

Two or more conditions can be logically connected to
form a combined condition.

Format

con OR d··d··Itlon {{AND} con Itlon } ••

The condition to be combined can be a
simple-condition, a negated simple-condition, a
combined condition, a negated combined condition (that
is, the NOT logical operator followed by a combined
condition enclosed in parentheses). Combinations of the
preceding conditions are specified according to the rules
given in Figure 5-10.

Parentheses are never needed when either AND or OR
(but not both) are used exclusively in one combined
condition. However, parentheses may be needed to find
a final truth value when a combination of AND, OR, and
NOT is used. There must be a one-to-one
correspondence between left and right parentheses with
each left parenthesis to the left of its corresponding
right parenthesis.

Figure 5-10 summarizes the way in which conditions
and logical operators can be combined and
parenthesized. Figure 5-11 illustrates the relationships
between logical operators and conditions C 1 and C2
where C1 and C2 are any conditions as defined above.

5-12

Permissible Position in Conditional Expressions

When Not Leftmost When Not Rightmost
May Be Immediately May Be Immediately

Condition Element Leftmost Preceded By: Followed By: Rightmost

simple-condition yes 	 OR OR yes
NOT AND
AND)

(

OR no simple-condition simple-condition no
AND) NOT . 	 (

NOT yes 	 OR simple-condition no
AND (

(

(yes 	 OR simple-condition no
NOT NOT
AND (

(

) no simple-condition OR yes
) AND

)

Figure 5-10. Valid Combinations of Conditions. Logical Operators. and Parentheses in a Conditional Expression

Values Values NOT NOT NOT NOT
for C1 for C2 C1 AND C2 C1 OR C2 (C1 AND C2) C1 AND C2 (C1 OR C2) C1 OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Figure 5-11. How Logical Operators Affect the Evaluation of Conditions

The truth value of a complex condition depends on the
truth values of the simple conditions and negated simple
conditions that make up the complex con~.ition. The
logical operators te/l the compiler how to combine these
individu~1 truth values.

Conditional Expressions 5-13

Evaluating Conditional Expressions: If parentheses are
used, logical evaluation of combined -conditions proceeds
in the following order:

1. 	 Conditions within parentheses are evaluated first.

2. 	 Within nested parentheses, evaluation proceeds
from the least inclusive condition to the most
inclusive condition.

If parentheses are not used (or are not at the same level
of inclusiveness), the combined condition is evaluated in
the following order:

1. 	 Arithmetic expressions

2. 	 Simple-conditions in the following order:
a. Relation
b. Class
c. Condition-name
d. Switch-status
e. Sign

3. 	 Negated simple-conditions in the same order as
item 2.

4. 	 Combined conditions, in the following order:
a. AND
b. OR

5. 	 Negated combined conditions in the following
order:
a. AND
b. OR

6. 	 Consecutive operands at the same
evaluation-order level are evaluated from left to
right

For example:

A IS NOT GREATER THAN B OR A + B IS EQUAL
TO C AND D IS POSITIVE

This expression is evaluated as if it were enclosed in
parentheses as follows:

(A IS NOT GREATER THAN B) OR (((A+B) IS EQUAL
TO C) AND (D IS POSITIVE)).

The order of evaluation is as follows:

1. 	 (A IS NOT GREATER THAN B) is evaluated, giving
some interm8diate truth value; for example, t1.

2. 	 (A + B) is evaluated, giving some intermediate
result; for example. x.

3. 	 (x IS EQUAL TO C) is evaluated. giving some
intermediate truth value; for example, t2.

4. 	 (D IS POSITIVE) is evaluated. giving some
intermediate truth value; for example, t3.

5. 	 (t2 AND t3) is evaluated. giving some intermediate
truth value; for example, t4.

6. 	 (tl OR t4) is evaluated, giving the final truth value.
and the result of the expression.

Programming Note: Every condition in the expression
will alwavs be evaluated before a final truth value is
determined. The user must ensure that any subscripted
or indexed data items stay within the described bounds
of the table.

5-14

Abbreviated CombIned IWatlon Conditions

When relation-conditions are wnu.n consecutively and
no parenthelel are used within. the conaecutive
sequence, any relation-condition afW the fim can be
abbreviated by either:

• 	 Omiuion of the subject

• 	 Omillion of the subject and relational opemor

FOI'IMt

GREATER THAN
LESS THAN
EQUAL TO

relation-condition { ~D} [NOT] >
<
=

In any consecutive sequence of relation-conditions, both
forms· of abbreviation can be specified. The abbrevilrted
condition is evaluated .. if:

• 	 The last stated subject is the milling subject.

• 	 The last stated relational operator is the milling
relational operator.

• 	 The resulting combined condition must comply with
the rules for element sequence in combined
conditions, as shown in figure &-10.

• 	 The word NOT is considered part of the relational
operator in the forms NOT GREATER THAN, NOT>,
NOT LESS THAN, NOT <, NOT EQUAL TO,
Ind NOT-.

• 	 NOT in Iny other poeition is conaidered I logical
operator, and thul reauiq in I negated
relation-condition.

Figure &-12 lhows examples of Ibbreviated combined
relation-conditionl and their nonabbreviated equivalents.

object •••

Abbreviated
.Combined
Relation-Condition Nonabbreviated Equivalent

A" B AND NOT LESS «A = B) AND (A NOT LESS
THAN e OR 0 THAN e» OR (A NOT LESS

THAN D)

A NOT GREATER (A NOT GREATER THAN B)
THAN B OR e OR (A NOT GREATER

THAN e)

NOT A" B OR e (NOT (A = B) OR (A = e»

NOT (A .. B OR LESS NOT ((A" B) OR (A LESS
THAN e) THAN e»

NOT (A NOT =BAND NOT (((A NOT" B) AND (A
e AND NOT D) NOT a: e» AND (NOT (A

NOT" 0)))

Figure 5-12. 	 Abbreviated Combined Relation-Condition
Equlv.lent

Conditional Expressions 5-15

L

DECLARATIVES

The Declaratives section provides a method of invoking
procedures that are executed when an exceptional
condition occurs that cannot normally be tested by the
COBOL programmer. Declarative procedures are
provided for the processing of exceptional input/output
conditions and debugging procedures.

Format

PROCEDURE DIVISION [USING data·name·1 [,data-name-2] •••] •

[DECLARATIVES.

{section-name SECTION [segment-number] • declarative-sentence [paragraph.name. [sentence] •••] ••• } •••

END DECLARATIVES.]

Declarative procedures are written at the beginning of The USE sentence itself is never executed; instead, the
the Procedure Division in a series of Declarative USE sentence defines the conditions that will cause
sections. Each such section is preceded by a USE execution of the immediately following procedural
sentence that identifies the function of this section. The paragraphs, which specify the actions to be taken. After
series of procedures that follow specify what actions are the procedure is executed, control is retumed to the
to be taken. when the exceptional condition occurs. Each routine that activated it.
Declarative section ends with the occurrence of another
section-name followed by a USE sentence, or with the Within a Declarative procedure, except for the USE
key words END DECLARATIVES. statement itself, there must be no reference to any

nondeclarative procedure.
The entire group of Declarative procedures is preceded
by the key word DECLARATIVES, written on the next Within a Declarative procedure, no statement may be
line after the Procedure Division header; the group is executed that would cause execution of a USE
followed by the key words END DECLARATIVES. The procedure that has been previously invoked and has not
key words DECLARATIVES and END DECLARATIVES yet returned control to the invoking routine.
must each begin in Area A and be followed by a period.
No other text may appear on the seme line. An exit from a Declarative procedure is effected by

executing the last statement in the procedure.
In the Declaratives portion of the Procedure Division,
each section header (with an optional segment number) In this chapter, only the USE AFTER
must be followed by a period and a space, and must be EXCEPTION/ERROR procedure is described. The USE
followed by a USE sentence followed by a period and a FOR DEBUGGING procedure is described under
space. No other text may appear on the same line. Debugging Features in Chapter 6.
There are two forms of the USE sentence:

• USE AFTER EXCEPTION /ERROR

• USE FOR DeBUGGING

5-16

EXCEPTION/ERROR Declarative

The EXCEPTION/ERROR Declarative specifies
procedures for input/output exception or error handlin~
that are to be executed in addition to the standard
system procedures.

Format

file-name-1 [, file-name-2]
INPUT

USE AFTER STANDARD{ EXCEPTION} PROCEDUREON OUTPUT
ERROR

The words EXCEPTION and ERROR are synonymous
and may be used interchangeably.

File-Name Option

This option is valid for sequential. indexed, relative, and
TRANSACTION files. When this 9ption is specified, the
procedure is executed only for the file(s) named. No
file-name can refer to a sort-merge file. For any given
file, only one. EXCEPTION/ERROR procedure may be
specified. For example, if an input file is specifically
named in one EXCEPTION/ERROR procedure, there
must not also be an EXCEPTION/ERROR procedure for
all INPUT files.

INPUT Option

This option is valid for sequential, indexed, and relative
files. When this option is specified, the procedure is
applicable to all files opened in INPUT mode.

OUTPUT Option

This option is valid for sequential, indexed, and relative
files. When this option is specified, the procedure is
applicable to' all files opened in OUTPUT mode.

1-0 Option

This option ia valid for sequential, indexed, relative, and
TRANSACTION files. When this option is specified, the.
procedure is applicable to all files opened in 1-0 mode.

, 	
1-0
EXTEND

EXTEND Option

This option is valid for sequential files only. When this
option is specified, the procedure is applicable to all
files opened in EXTEND mode.

General Considerations

The EXCEPTION/ERROR procedure is executed when
one of the following conditions exists:

• 	 After completing the standard system input/output
error routine.

• 	 Upon recognition of an INVALID KEY or AT END
condition when an INVALID KEY or AT END option
has not been specified in the input/output statement.

• 	 When Status Key 1 is not equal to 0 following an
I/O operation.

After execution of the EXCEPTION/ERROR'procedure,
control is returned to the statement immediately
following the input/output statement that caused the
error.

The EXCEPTION/ERROR procedures are performed
when an input/output error occurs during execution of a
READ, WRITE, _REWRITE, START, DELETE, OPEN,
CLOSE, ACQUIRE, or DROP statement. For example,
these procedures are activated when an input/output
statement fails on a file that is in the open status.

Declaratives 5-17

The EXCEPTION/ERROR procedures are not performed
when the following conditions exist:

• 	 An OPEN statement fails on a file that is not in the
open status.

• 	 A CLOSE statement fails because the file is in the
close status.

• 	 Any input/output statement fails because the file has
not been opened.

Within a Declarative procedure, there must be no
reference to any nondeclarative procedure. In the
nondeclarative portion of the program, there must be no
reference to procedure-names that appear in an
EXCEPTION/ERROR Declarative procedure, except that
PERFORM statements may refer to an
EXCEPTION/ERROR procedure or to procedures
associated with it.

Within an EXCEPTION/ERROR Declarative procedure,
no statement may be executed that causes execution of
a USE procedure that has been previously invoked and
has not yet returned control to the invoking routine.

IBM ExteDlioD:

TRANSACTION File Considerations

In an EXCEPTION/ERROR Declarative for
the TRANSACTION file, only the
file-name or I-O options are allowed.
All other options and all rules are the
same as those for any EXCEPTION/ERROR
Declarative for any file.

Programming Notes

EXCEPTION/ERROR procedures can be used to check
the status key values whenever an input/output error
occurs.

Care should be used in specifying EXCEPTION/ERROR
procedures for any file. Prior to successful completion
of an initial OPEN for any file, the current Declarative
has not yet been established by the object program.
Therefore, if any other I/O stf!ltement is executed for a
file that has never been opened, no Declarative can
receive control. However, if this file has been previously
opened, the last previously established Declarative
procedure receives control.

For example, an OPEN OUTPUT statement establishes a
Declarative procedure for this file, and the file is then
closed without error. During later processing, if a logic
error occurs, control will go to the Declarative procedure
established when the file was opened OUTPUT.

5-18

CONDITIONAL STATEMENTS

A conditional statement specifies that a truth value of a
condition is to be determined, and that the subsequent
action of the object program depends on this truth
value. Figure 5-1 gives a list of the conditional
statements.

Only the IF statement is discussed in this section; the
other conditional statements are discussed elsewhere in
this manual.

IF Statement

The IF statement causes a condition to be evaluated,
and provides for alternative actions in the object
program, depending on that value.

Format

. . {statement-1 }' [{ELSE 'statement-2 }]
!f condition THEN ~ SENTENCE ELSE NEXT SENTENCE

Statement-1 or statement-2 can be anyone of the
following:

• 	 An ilT!perative statement

• 	 A conditional statement

• 	 An imperative statement followed by a conditional
statement

If the condition tested is true, one of the following
actions takes place:

• 	 Statement-1, if specified, is executed. If statement-1
contains a procedure branching statement, control is
transferred according to the rules for that statement.
If statement-1 does not contain a
procedure-branching statement, the ELSE phrase, if
specified, is ignored, and control passes to the next
executable sentence.

• 	 NEXT SENTENCE, if specified, is executed; that is,
the ELSE phrase, if specified, is ignored, and control
passes to the next executable sentence.

If the condition tested is false, one of the following
actions take place:

• 	 ELSE statement-2, if specified, is executed. If
statement-2 contains a procedure-branching
statement, control is transferred according to the
rules for that statement. If statement-2 does not
contain a procedure-branching statement, control is
passed to the next executable sentence.

• 	 ELSE NEXT SENTENCE, if specified; is executed.
Therefore, statement-1, if specified, is ignored;
control passes to the next executable sentence.

• 	 If ELSE clause is omitted, control passes to the next
executable sentence.

• 	 The ELSE NEXT SENTENCE phrase can be omitted if
it immediately precedes the period that ends the
conditional sentence.

Note: When the ELSE clause is omitted, all statements
following the condition and preceding the period for the
sentence are considered to be part. of statement-1.

IBM Extension: THEN is accepted and

ignored if present.

Conditional Statements
IF 	 5-19

Nested IF Statements True

IF 	 conditlon-1 I ,tatemenl1-1
The presence of one or more IF statements within their
initial IF statement constitutes a nested IF statement. False

True
Statement-1 and statement-2 in IF statements can dd
consist of one or more imperative statements and/or a IF! condition.2!

conditional statement. If an I F statement appears as False

.statement-1 or as part of statement-1, it is said to be
True

nested. Nesting statements is much like specifying
subordinate arithmetic expressions enclosed in It .tat.men~-3-1condition-3

parentheses and combined in larger arithmetic False

expressions. I ELSE statement-3-2
I

IF statements contained within IF statements must be -
ELSE statement-2-2considered as paired IF and ELSE combinations,

proceeding from left to right. Thus, any ELSE True

encountered must be considered to apply to the rr=
I F Icondition4immediately preceding IF that has not already paired

with an ELSE. False

Figure 5-13 shows the possible true/false combinations True

for the following nested IF statement: 1condition-5 statemenT.5-1

FalseIF 	conqition-1
statement-1-1 I ELSE statjment-5-2

IF condition-2
IF 	condition-3

statement-3-1
 Next sentence in COBOL source program

ELSE

statement-3-2
 Figure 5-13. Nested IF Statement-True/False

ELSE Combinations
statement-2 - 2

IF condition-4

IF condition-5

statement-5-1

ELSE

statement-5-2.

5-20

Programming Notes: Because their logic is often
difficult to follow, nested IF statements should,
.wherever possible, be avoided in a COBOL program.
Often a series of simple IF statements can be used in
place of the nested IF statement.

For example, the following series of simple IF
statements give results equivalent to those achieved
using the preceding nested IF statement example:

IF condition-1. NEXT SENTENCE

ELSE CO TO PARA-2.

statement-1-1.

IF condition-2 NEXT SENTENCE

ELSE GO TO PARA-1.

IF condition-3 statement-3-1 GO TO PARA-2
ELSE statement-3-2 GO TO PARA-2.

PARA-1.

statement-2-2.

IF condition-4 NEXT SENTENCE

ELSE GO TO PARA-2.

IF condition-5 statement-5-1

ELSE statement-5-2.

PARA-2.

next-executable-statement.

Notice that Figure 5-13 also illustrates the logic flow for
the preceding series of simple I F statements.

INPUT/OUTPUT STATEMENTS

COBOL input/output statements transfer data to and
from files. In COBOL, the unit of data made available to
the program is a record, and the COBOL programmer
need concern himself only with such records. Provision
is automatically made for such operations as the
movemen~ of data into buffers and / or internal storage,
validity checking, error correction (when feasible). and
I,Inblocking and l.1Iocking of records.

The description of the file in the Environment Division
and the !;lata Division governs which input/output
statements are allowed in the Procedure Division.

There is special processing for deleted records (deleted
records are valid only for relative and index files!. and
there are certain restrictions when using deleted records.
For a full explanation of the limitations associated with
deleted record processing see Indexed and Relative File
Contents in Chapter 8.

Common Options

There are several options common to input/output
statements. These are: status key, INVALID KEY
condition. INTO/FROM identifier option. and current
record pointer. The description of these options
precedes the descriptions of the individual statements.

Status Key-General Considerations

If the FILE STATUS clause is specified in the
file-control entry, a value is placed in the specified
status key (the 2-character data item named in the FILE
STATUS clause) during execution of any request on that
file; the value indicates the status of that request. The
value is. placed in the status key before execution of any
EXCEPTION/ERROR Declarative or INVALID KEY/AT
END option associated with the request.

The first character of the status key is known as status
key 1 ; the secon~ character is known as status key 2.
Combinations of possible values and their meanings are
shown in Figure 5-14 and Appendix H.

Input/Output Statements
Common Options

L
5-21

mM Extension:

TRANSACTION File Extended File
Status Key: The extended file
status key for a TRANSACTION file is
four characters long. Characters 1 and
2 contain the ICF major return code;
characters 3 and 4 contain the ICF
minor return code. ICF return codes
are described in the IeF Reference
Manual.

Status Status

Key 1 Key 2 Meaning

o 	 Successful completion
o 	 No further information

Initial READ from a REQUESTOR (IBM Extension)

1 o At end of file (no outstanding invites)

2 Invalid key

1 Sequence error

2 Duplicate key when duplicates are not allowed

3 No record found

4 Boundary violation-indexed or relative file

3 	 Permanent error
o No further information

4 Boundary violation-sequential file

9 	 Other errors (IBM Extensions)
o Invalid update, add, or output operation
1 Undefined access type
2 Logic error (I/O to unopened file, file locked, already OPEN, already CLOSED, or invalid

operation)

4 No current record pointer for. I/O request

5 Invalid or incomplete file information

7 Invalid Op Code

9 Undefined

A STOP requested by system operator

C Acquire operation failed, terminal not in standby mode

o Terminal operator released workstation with INQUIRY key
E SRT program released its requestor, I/O rejected
F Acquire operation failed, either operator signed on is unauthorized or program is

unauthorized to use resources
G Input d~ta rejected, buffer too small
H Acquire operation failed, resource is unavailable or currently owned by another program
I Write operation failed, input data already received by Data Management
N Temporary error (error during session)

Figure &-14. 	Statu. Key Value. and Meaning.

5-22

INVALID KEY Condition

The INVALID KEY condition can occur during execution
of a START, READ, WRITE, REWRITE, or DELETE
statement. When the INVALID KEY condition is
recognized, the actions are taken in the following order:

1. 	 If the FILE-STATUS clause is specified in the
file-control entry, a value is placed into the status
key to indicate an INVALID KEY condition (see'
Figure 5-14).

2. 	 If the INVALID KEY option is specified in .the
statement causing the condition, control is
transferred to the INVALID KEY
imperative-statement. Any EXCEPTION / ERROR
declarative procedure specified for this file is not
performed.

3. 	 If the INVALID KEY option is not specified, but an
EXCEPTION/ERROR declarative procedure is
specified for the file, the' EXCEPTION/ERROR
procedure is executed.

When an INVALID KEY condition occurs, the
input/output statement that caused the condition is
unsuccessful. If the INVALID KEY option is not
specified for a file, an EXCEPTION/ERROR procedure
must be specified.

INTO/FROM Identifier Option

This option is valid for READ, REWRITE, and WRITE
statements. The identifier specified must be the name
of an entry in the Working-Storage Section, the Linkage
Section, or of a record description for another previously
opened file. Record-name/file name and identifier must
not refer to the same storage area. In both options, an
implicit move is executed according to MOVE statement
rules without the CORRESPONDING option.

The following illustrates the use of the INTO/FROM
identifier option in an input/output statement:

READ file-name RECORD INTO identifier.

WRITE record-name FROM identifier.

Current Record Pointer

The current record pointer identifies which record will be
accessed by a sequential input request. The record
identified depends on the statement being executed.
The OPEN, READ, and START statements position the
current record pointer as follows:

• 	 The OPEN statement positions the current record
pointer at the first record in the file.

• 	 For a sequential READ statement, the following
considerations apply:

If an OPEN or a START statement positioned the
current record pointer. the record identified by the
current record pointer is made "vailable.

-	 If a previous READ statement positioned the
current record pointer, the current record pointer is
updated to point to the next existing record in the
file; that record is then made available.

• 	 The START statement positions the current record
pointer at the first record in the file that satisfies the
implicit or explicit comparison specified in the START
statement.

The setting of the current record pointer is affected only
by the OPEN, START. RETURN, and READ statements.
The concept of the current record pointer has no
meaning for random access files. TRANSACTION files,
or output files.

The current record pointer is not used for random
retrieval of input records or for output files.

Input/Output Statements
Common Options 5-23

ACCEPT Statement

The function of the ACCEPT statement is to obtain low
volume data from the device assigned as the system
input device (SYSIN) or from a display station or
SSP-ICF session. ACCEPT statement execution causes
the transfer of data into the specified identifier. There is
no editing or error checking of the incoming data. The
formats of the ACCEPT statement are as follows:

Format 1

ACCEPT identifier [FROM mnemonic.name]

Format 2

DATE}
ACCEPT identifier FROM {	 DAY

TIME

Format 3

ACCEPT identifier·1 FROM mnemonic·name

r1.:--FOR {i~entifier-2}]
literal

Format 1 Considerations

This format is used to transfer data from an input device
to the identifier. The identifier may be a group item, an
elementary alphabetic or alphanumeric item, or a numeric
data item with USAGE DISPLAY or USAGE
COMPUTATIONAL.

If the FROM option is omitted, the system input device
(requesting display station or invoking procedure) is
assumed. If the program is invoked by a procedure, a
record is read from the procedure for each ACCEPT
statement until a /* is encountered. If the records in the
procedure are exhausted or the program is not invoked
by a procedure, the requesting display station is used.
When the FROM option is specified, mnemonic-name
must be associated with an input/output device that is
specified in the SPECIAL-NAMES paragraph. The
input/output device can be the display station console
(REQUESTOR) or the system operator's console
(SYSTEM-CONSOLE). If mnemonic-name is
REQUESTOR and the job is entered by way of the
JOBQ Command, the system .operator's console is used.

When the device is the system input device, the
following rules apply:

• 	 An input record size of 120 characters is assumed.

• 	 If identifier is longer than 120 characters, characters
beyond the length of identifier are truncated.

• 	 If identifier is less than 120 characters long, succeeding
input records are read until the storage area of
identifier is filled. If identifier is not an exact multiple
of 120 characters, that part of the last input record
that does not fit into identifier is truncated.

When the device is the display station keyboard, the
same rules apply as when the device is the system input
device except that the size is 60 characters.

5-24

The source of input data is dependent upon the type of
program initiation as follows:

Method of Mnemonic-name Mnemonic-oame
Program Associated with Associated with Data Source when FROM
Initiation SYSTEM-CONSOLE REQUESTOR

JOSQ System Console System com~ole

SRT System Console Display Station

MRT System Console System Console

Input from the device can be terminated by entering a
record beginning with /*. The /* is moved into the
ACCEPT identifier with blank padding or truncation on
the right. Any subsequent attempt to ACCEPT from the
device is in error and execution will terminate. If the
identifier is longer than the device size and the /* is
entered for a succeeding input record, the identifier is
padded to the r,ight with blanks and the /* is treated as
input to the next ACCEPT from the device.

Format 2 Considerations

This format is used to transfer the system information
(program date and system time) to the identifier, using
the rules for the MOVE statement without the
CORRESPONDING option. Identifier can be a group
item, or an elementary alphanumeric, alphanumeric
edited, zoned decimal, packed decimal, binary, or
numeric edited item.

Option Omitted

Data from next record in the

procedure. If there is no data in

the procedure, the input comes

from the system console.

Display Stbtion

Can produce undesirable
results. Specify the FROM
option.

DATE, DAY, and TIME implicitly have USAGE DISPLAY.
DATE has the implicit PICTURE 9(6). The sequence of
data elements from left to right is: two digits for year of
century, two digits for month of year, two digits for day
of month. Thus July 4, 1976 is expressed as 760704.
DAY has the implicit PICTURE 9(5). The sequence of
data elements from left to right is: two digits for year of
century, three digit~ for day of year. Thus, July 4, 1976
is expressed as 76186. TIME has the implicit PICTURE
9(8). The sequence of data elements from left to right
is: two digits for hour of day, two digits for minute of
hour, two digits for second of minute, two digits for
hundredths of second. Thus, 2:41 p.m. is expressed as
14410000. The time returned is the time when the
ACCEPT statement executed.

Note: Time is always rounded up to the nearest second;
therefore, a hundredths of a second is always expressed
as 00.

The date is the last date specified in OCl for this job
stream, or the current program date if no date has been
specified in OCl since sign-on. If the program is an
MRT, the data is the system date as of job initiation
unless a different date is'explicitly specified in the OCl
for this job stream.

mM Extension:

Format 3 Considerations

This format transfers data from the
local data area or from the attribute
record to identifier-1.

If the mnemonic-name is associated with
LOCAL-DATA, the 256~byte local data
area associated with the requestor
terminal is moved into identifier-1.

Input/Output Statements 5-25

If mnemonic-name is associated with
ATTRIBUTE-DATA, identifier-l must
describe an attribute data record.
(Atrribute data records are described
under SPECIAL-NAMES paragraph in
Chapter 7.) The attributes of the
specified symbolic ID are moved into
identifier-l. The TRANSACTION file
must be open for this request.

The move into identifier-l for both
LOCAL-DATA and ATTRIBUTE-DATA takes
place according to the rules for the
MOVE statement for an alphanumeric
group move without the CORRESPONDING
option.

The FOR option is allowed only when
mnemonic-name is associated with either
ATTRIBUTE-DATA or LOCAL-DATA. Literal
or the contents of identifier-2 is the
symbolic ID of the display station or
SSP-ICF session for which data is
retrieved. A symbolic ID of blanks (or
none specified) retrieves the
attributes or local data from the
requestor for which an input/output
operation was most recently performed.
In a program that has no TRANSACTION
file, the local data is retrieved from
the requestor for SRT batch jobs. The
ID must be a two-character alphanumeric
data item or literal.

Note: If the Program is an MRT
program, there is a local data area for
each requestor and an additional local
data area for the program. Prior to
the successful completion of the first
requestor's first input/output
operation, this MRT local data area can
be accessed. If no TRANSACTION file
was specified, a symbolic ID of blanks
returns the MRT's local data area.

If the mnemonic-name is associated with
either SYSTEM-CONSOLE or REQUESTOR, the
FOR option is not valid.

ACQUIRE statement

The ACQUIRE statement attaches a
display station or SSP-ICF session to
the TRANSACTION file.

Format

{ literal} "
ACQUIRE "d "f" FOR flle·name

I entller --

The value of literal or identifier
specifies the symbolic identification
of a display station or SSP-ICF session
that is to be associated with
file-name. In order to be acquired, a
display station must be in stand-by
mode. In order to acquire an SSP-ICF
session, it must be specified in the
OCL SESSION statement for the job step.

If literal is specified, it must be a
two-character alphanumeric literal. If
identifier is specified, it must refer
to a two-character alphanumeric data
item.

File-name must refer to a file whose
organization is TRANSACTION.

5-26

CLOSE Statement

The CLOSE statement terminates the processing of files
with optional lock.

Format

{ REEL} [WITH NO REWIND]
UNIT FOR REMOVAL

CLOSE file-name-l

ITH {NO REWINO}
W LOCK

{ REEL} [WITH NO REWIND]
UNIT FOR REMOVAL

, fi le-name-2

WITH {NO REWIND}
LOCK

Each file-name designates a file upon which the CL,OSE
statement is to operate. The files need not have the
same organization or access and must not be sort or
merge files.·

A CLOSE statement can be executed only for a file in an
open mode. After successful execution of a CLOSE
statement, the record area associated with the file-name
is no longer available. Unsuccessful execution of a
CLOSE statement leaves availability of the record data
undefined.

After a CLOSE statement is successfully executed for
the file, an OPEN statement for the file must be
executed before any other input/output statement
(except a SORT/MERGE statement with the USING or
GIVING option) can refer explicitly or implicitly to the
file. If the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when the CLOSE statement is executed. If the file is in
an open status and the execution of a CLOSE statement
is unsuccessful, the EXCEPTION/ERROR procedure (if
specified) for this file is executed. If a CLOSE statement
is not executed for an open file before a STOP RUN
statement for this program is executed, results are
unpredictable.

Specification of the lock option ensures that the file
. cannot be opened again in the program.

The REEL/UNIT option, the FOR REMOVAL option, and
the NO REWIND option are treated as comments.

For special considerations concerning spooled printer
files, see Files in Chapter 8.

IBM Extension:

TRANSACTION File Considerations

If a CLOSE statement is executed for
the TRANSACTION file, no.other
statements that reference that file can
be executed_ A TRANSACTION file is
locked when closed, whether or not the
WITH LOCK option is specified.

Programming Note: For TRANSACTION
files, the WITH LOCK option of the
CLOSE statement should be specified.for
documentation_

Input/Output Statements
ACQUIRE-CLOSE 5-27

DELETE Statement

The DELETE statement logically removes a record from
an indexed or relative file. The DELETE statement can
be successfully executed only on a system configured
with extended data management.

Format

DELETE file-name RECORD (iNVALID KEY imperative-statement]

When the DELETE statement is executed, the associated
file must be opened in 1-0 mode. The file also must be
created as delete-capable. This is done by specifying
DFILE-YES when the file is created. (For more
information on creating delete-capable files, see FILE
Statement in the SSP Reference Manual.' File-name
must be defined in an FD entry in the Data Division and
must be the name of an indexed or relative file. After
successful execution of a DELETE statement, the record
is logically removed from the file and can no longer be
accessed. For indexed files, the' space that the record
occupied cannot be used until the file is copied or
reorganized. Execution of the DELETE statement does
not affect the contents of the record area associated
with file-name.

If the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when the DELETE . statement is executed.

Sequential Access Mode

For a file in sequential access mode, the last prior
input/output statement must be a successfully executed
READ statement. When the DELETE statement is
executed, the system logically removes the record
retrieved by that READ statement. The current record
pointer is not affected by execution of the DELETE
statement.

The INVALID ~EY option must not be specified for a
file in sequential access mode. An EXCEPTION/ERROR
pr0gedure may be specified.

Random or Dynamic Access Mode

In random or dynamic access mod!,!, DELETE statement
execution results depend on whether the file
organization is indexed or relative.

Indexed Files: When the DELETE statement is executed
in random or dynamic access mode, the system logically
removes the record identified by the contents of the
RECORD KEY data item. If the file does not contain
such a record, an INVALID KEY condition exists.

Relative Files: When the DELETE statement is executed
in random or dynamic access mode, the system logically
removes the record identified by the contents of the
RELATIVE KEY data item. If the file does not contain
such a record, an INVALID KEY condition exists.

Programming Notes

The DELETE statement logically removes the record
from the file. For relative files, the space is then
available for a new record with the same RELATIVE KEY
value. For indexed files, a new record with the same
RECORD KEY value can then be added. This record is
not written in the space vacated by the deleted record.
The space vacated by the deleted record is unavailable
until the file is copied or reorganized.

5-28

DISPLAY Statement

The DISPLAY statement transfers low-volume data to
an output device.

Format 1

DISPLAY {i~entifier-'} [, i~entif2ier-2J ••• [UPON mnemonic-name]
IIteral-' , literal- .

Format 2

DISPLAY {i~entifier-l} [, identifier-21 ... UPON mnemonic·name
IIteral-' , Iiteral·2 J

rFOR {literal-3 }]
1.:-- identifier-3

Format 1 Considerations

The DISPLAY statement transfers the contents of each
operand to the output device in the left-to-right order in
which the operands are listed. When a DISPLAY
statement is executed, the data contained in the sending
field is transferred to the output device. The size of th~
sending field is the total character count of all operands
listed. If the total character count is less than the device
maximum character count, the remaining rightmost
characters are padded with spaces. If the total character
count exceeds the maximum, as many records are
written as are needed to display all operands. Any
operand being printed when the end of a record is
reached is continued in the next record.

mM Extension: Identifiers described as
USAGE COMPUTATIONAL-3 or USAGE
COMPUTATIONAL-4 are converted to zoned
decimal. No other items require
conversion. Signed noninteger numeric
literals are allowed.

Signed values in numeric fields cause the last character
to show both thfl sign and number. For example, if
SIGN WITH SEPARATE CHARACTER is not specified
and two numeric items have the values -34 and 34,
they are displayed as 3M and 34, respectively. If SIGN
WITH SEPARATE CHARACTER is specified, a + or a ­
sign is displayed as either leading or trailing, depending
on how the number was specified. If a figurative
constant is specified as one of the operands, only a
single occurence of the figurative constant is displayed.

If the UPON option is omitted, data is written to the
current SYSLIST device. When the UPON option is
s'pecified, mnemonic-name must be associated in the
SPECIAL-NAMES paragraph with either the display
station console (REQUESTOR) or the system operator's
console (SYSTEM-CONSOLE). The maximl{m logical
record size is assumed for each device as follows:

Maximum Logical
Device Record Size

SYSLIST 120 characters
Display station 75 characters
System consble 75 characters

Input/Output Statements
DELETE-DISPLAY 5·29

· The location of the output data is dependent upon the
type of program initiation as follows:

Mnemonic-name Mnemonic-name
Method of Associated with Associatttd with .
Initiation SYSTEM-CONSOLE REQUESTOR

JOBQ System console System console

SRT System console Display station

MRT System console System console

IBM Extension:

Format 2 Considerations

This format of the DISPLAY statement is
applicable when mnemonic-name is
associated with the system name
LOCAL-DATA. For a description of the
LOCAL-DATA area, see the LOCAL
statement in the. chapter on OCL
statements in the System Support
Reference Manual.

Literal-lor the content of
identifier-l is written to the 256-byte
local data area associated with the
requestor.

Literal-3 or the contents of
identifier-3 must be the valid symbolic
ID of an attached requestor.
Identifier-3 must be a two-character
alphanumeric data item; literal-3 must
be a two-character nonnumeric literal.

UPON Option

Omitted

Current SYSLIST

device

Current SYSLIST

device

Current SYSLIST

device

DROP Statement

The DROP statement releases a display
station or SSP-ICF session from its
association with the TRANSACTIO~ file.

Format

{ literal} .
.wlQP ·d ·f· .E.B.QM. fIle-nameI entl ler

The value of literal or identifier
specifies the symbolic identification
of the attached display station or
SSP-ICF session that is to be released.

If literal is specified, it must be a
two-character alphanumeric literal. If
identifier is specified, it must refer
to a two-·character alphanumeric data
item.

The DROP statement can only be used
with a TRANSACTION file. At the end of
program execution, all attached display
stations and SSP-ICF sessions are
implicitly released.

5-30

OPEN Statement

The OPEN statement initiates the processing of files. It
also performs checking and/or writing of labels, and
other input/output operations. The format of the OPEN
statement is as follows:

Format 1-Sequential Files

. [REVERSED [REVERSED]]J [.
INPUT flle-name-' WITH NO REWIND ;~lle-name-2 WITH NO REWIND

OPEN OUTPUT file-name-3 [WITH NO REWIND] [,file-name-4 [WITH NO REWIND]]

1-0 file-name-5 [, file-name-6] •••

EXTEND file-namil-7 [, file-name-8]

Format 2-lndexed and Relative Files

INPUT file-name-' [, file-name-2] •
{OPEN OUTPUT file-name-3 [, file-name-4] }1-O.file-name-5 [, file-name-6] •••

Format 3-Transaction Files

Qf§i 1-0 file-name-'

Each file-name designates a file upon which the OPEN
statement is to operate. The files specified need not
have the same organization or access. Each file-name
must be defined in an FD entry in the Data Division, and
must not name a sort or merge file. The FD entry must
be equivalent to the information supplied when the file
was defined.

The successful execution of an OPEN statement
determines the availability of the file and results in that
file being in the open mode. Before successful
execution of the OPEN statement for a given file, no
statement, except for a SORT or MERGE statement with
the USING or GIVING option, that refers explicitly or
implicitly to that file can be executed. The successful
execution of the OPEN statement makes the associated
record area available to the program; it does not obtain
or release the· first data -record.

At least one of the options (INPUT, OUTPUT, 1-0, or
EXTEND) must be specified. More than one file-name
may be specified in each option. The INPUT, OUTPUT,
1-0, or EXTEND options may appear in any order.

The INPUT option permits opening the file for input
operations. The 1-0 option permits opening the file for
both input and output operations. The 1-0 option may
be specified only for mass storage or TRANSACTION
files. The INPUT and 1-0 options must not be specified
when the file has not been already created.

Input/Output Statements
DROP-OPEN 5-31

The OUTPUT option permits opening the file for output
operations. This option can only be specified when the
file is being created. The OUTPUT option must not be
specified for a file that contains records, or that did
contain records that have been deleted.

Programming Note: The FILE OCL statement for an
output file must contain a DISP-NEW parameter for
proper processing.

The EXTEND option is valid only for sequential files and
permits opening the file for output operations. It is
discussed in the following section on Sequential Files.

A file may be opened for INPUT, OUTPUT, 1-0, or
EXTEND in the same program. After the first OPEN
statement execution for a given file, each subsequent
OPEN statement execution must be preceded by a
successful CLOSE file statement execution without the
LOCK option.

If the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when, the OPEN statement is executed.

The REVERSED option is treated as a comment.

The NO REWIND option is treated as a comment.

Format I-Sequential Files

The EXTEND option permits opening the file for output
operations. When an OPEN EXTEND statement is
executed, the file is prepared for the addition of records
immediately following the last record in the file.
Subsequent WRITE statements add records as if the file
had been opened in OUTPUT mode. The EXTEND
option can be specified when a file is being created. It
can also be specified for a file that contains records, or
that did contain records that have been deleted.

The EXTEND option has no meaning for a printer file.
and it is ignored.

Execution of an OPEN INPUT or OPEN 1-0 statement
sets the current record pointer to the first record
existing in the file. If no records exist in the file. the
current record pointer is set so that execution of the
first READ statement results in an AT END condition.

For an input file. if SELECT OPTIONAL is specified in
the file-control entry. OPEN statement execution causes
the object program to check for the presence or
absence of this file. If the file is absent, the first READ
statement for this file causes the AT END condition to
occur.

For special considerations concerning spooled printer
files. see Files in Chapter 8.

Format 2-lndexed and Relative Files

Execution of an OPEN INPUT or OPEN 1-0 statement
sets the current record pointer to the first record
existing in the file; the record with the lowest record key
value (indexed file) or lowest relative record number
(relative file) is considered to be the first record in the
file. If no records exist i:n the file, the current record
pointer is set so that the first Format 1· READ statement
executed results in an AT END condition.

mM Extension:

Format 3-TRANSACTION Files

A TRANSACTION file must be opened with
the 1'-0 phrase.

A TRANSACTION file can be opened only
once in a program.

5-32

L
READ Statement

The READ statement makes a record available to the
object program before execution of any statement
following the READ statement.

For sequential access. the READ statement makes
available the next logical record from a disk file. For
random access. the READ statement makes available a
specified record from a disk file. When the READ
statement is executed. the associated file must be
opened in the INPUT or 1-0 mode. The formats of the
READ statement are as follows:

Format 1-Sequential Access (Sequential Files)

READ file·name RECORD [INTO identifier] [AT END imperative-statement 1

Format 2-Sequential Access (Relative and Indexed Files)

READ file-name [NEXT] RECORD [INTO identifier]

[AT END imperative-statement]

Format 3-Random Access (Relative Files)

READ file-name RECORD [INTO identifier] [INVALID KEY imperative-statement]

Format 4-Random Access (Indexed Files)

READ file-name RECORD [INTO identifier]

[KEY IS data-name]

[I NVALID KEY imperative.statement]

Format &-Sequential Access (TRANSACTION File)

READ file-name RECORD

UNTO identifier-!] [TERMINAL IS {i~entifier-2}J
IIteral-1

[tiQ Q8I8 imperative-statement-U

[AT END imperative-statement-2]

Input/Output Statements
READ 5-33

File-name must be defined in a Data Division FD entry,
and must not name a sort or merge file. If more than
one record description entry is associated with
file- name, these records automatically share the same
storage area; that is, they are implicitly redefined.
Before a READ statement is executed, the storage area
is filled with blanks.

After a READ statement is executed, only those data
items within the range of the current record are
replaced; data items stored beyond that range are
blanks. Figure 5-15 illustrates this concept. If no data
items are defined, the entire record will be blank.

The FD entry for a TRANSACTION file is:

FD INPUT-FILE LABEL RECORDS OMITTED.

01 RECORD-1 PICTURE X(30).

01 RECORD-2 PICTURE X(20).

After RECORD-1 is read, the input area contains:

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234

If RECORD-2 consists of:

01234567890123456789

After RECORD-2 is read, the input area contains:

01234567890123456789~~~~~~~~~~

(Characters in the input area following RECORD-2 are
blank.)

Figure 5-15. 	 READ Statement with Multiple Record
Descriptions

The AT END or INVALID KEY option must be specified
if no impliCit or explicit EXCEPTION/ERROR procedure
is specified for this file.

If the FILE STATUS clause is specified iA the
file-control entry, the associated status key is updated
when the READ statement is executed.

Following unsuccessful READ statement execution, the
contents of the associated record area and the position
of the current record pointer are undefined.

INTO Identifier Option: The INTO identifier option makes
a READ statement equivalent to:

READ file-name RECORD.

MOVE record-name TO identifier.

After successful execution of the READ statement, the
current record becomes available both in the
record-name and identifier.

When the I NTO identifier option is specified, the current
record is moved from the input area to the identifier
area according to the rules for the MOVE statement
without the CORRESPONDING option. Any subscripting
or indexing associated with identifier is evaluated after
the record has been read and immediately before it is
transferred to identifier.

The I NTO identifier option must not be specified when
the file contains records of various sizes, as indicated by
their record descriptions.

5-34

Sequential Access-Format 1 and Format 2

Formats 1 and 2 must be used for all files in sequential
access mode. Execution of a Format 2 READ statement
makes available the next logical record from the file.
The record that is considered next depends upon the file
organization.

NEXT RECORD Option: The next record is the
succeeding logical record in key sequence. For indexed
files, the key sequence is the ascending values of the
current key of reference. For relative files, the key
sequence is the ascending values of relative record
numbers for records that exist in the file.

Before the READ statement is executed, the current

record pointer must be set by a successful OPEN,

. START, or READ statement. When the READ statement
is executed, the record indicated by the current record
pointer is made available, if it is still accessible through
the path indicated by the current record pointer. If the
record is no longer accessible (for example, as a result
of deletion of the record), the current record pointer is
updated to indicate the next existing record in the file,
and that record is made available.

For files in sequential access mode, the NEXT option

can, but need not. be specified.

If the RELATIVE KEY clause is specified for sequentially
accessed relative files, READ statement execution
updates the RELATIVE KEY data item to indicate the
·relative record number of the record being made
available.

AT END Condition: If no next logical record exists in the
file when the READ statement is executed, an AT END
condition occurs, and READ statement execution is
unsuccessful. The following actions are taken, in the
following order:

1. 	 If the FILE STATUS clause is specified, the status
key is updated to indicate an AT END condition.

2. 	 If the AT END option is specified, control is
transferred to the AT END imperative-statement.
Any EXCEPTION/ERROR procedure for this file is
not executed.

3. 	 If the AT END option is not specified, then any
EXCEPTION/ERROR procedure for this file is
executed.

4. 	 If neither the AT END nor the USE option is
specified, a diagnostic message is issued.

When the AT END condition is recognized, a READ
statement for this file must not be executed without first
executing a successful CLOSE statement followed by a
successful OPEN statement for this file.

When the AT END condition is recognized, a sequential
access READ statement for this file must not be
executed without first executing one of the following:

• 	 A successful CLOSE statement followed by a
successful OPEN statement

• 	 A successful START statement for this file

• 	 A successful random access READ statement for this
file

Input/Output Statements
READ 	 5~5

Random Access - Format 3 and Format 4

Format 3 or 4 must be specified for indexed and relative
files in random access mode and also for files in the
dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file
organization as explained in following sections.

Files with Relative Organization: Execution of a Format 3
READ statement sets the current record pointer to the
record whose relative record number is contained in the
RELATIVE KEY data item and makes that record
available. If the file does not contain such a record, the
INVALID KEY condition exists, and READ statement
execution is unsuccessful. The KEY option must not be
specified for relative files.

Files with Indexed Organization: Execution of a Format 4
READ statement causes the value of the key of
reference to be compared with the value of the
corresponding key data item in the file records until the
first record having an equal value is found. The current
record pointer is positioned to this record, which is then
made available. If no record can be identified, an
INVALID KEY condition exists, and READ statement
execution is unsuccessful.

If the KEY phrase is specified on a Format 4 READ
statement, the statement is flagged as unsupported. No
code is.generated for the phrase. The System/34 does
not support multiple keys for an indexed file. Therefore,
specification of the key option is redundant, because the
index file key must be specified with the RECORD KEY
clause in the file-control entry in the Environment
Division.

The RECORD KEY is the key of reference for a request.
When dynamic access is specified, the RECORD KEY is
also used as the key of reference for subsequent
executions of sequential READ statements until a
different key of reference is established.

Dynamic Access

For files with indexed or relative organization, dynamic
access mode may be specified in the file-control entry.
In dynamic access mode, either sequential or random
record retrieval can be specified, depending on the
format used.

If no more logical records exist in the file when the
READ statement is executed, an AT END condition
occurs. The same actions are taken as for files with
sequential organization.

Format 2 with the NEXT option must be specified for
sequential retrieval. All other rules for sequential access
apply.

Format 3 or 4 must be specified for random retrieval.
All other rules for random access apply.

Each successful sequential or random READ updates the
current record pointer to the next logical record.

When DYNAMIC or SEQUENTIAL ACCESS to indexed
files is specified, records added by a user program or
IBM-supplied utility cannot be sequentially or randomly
retrieved until a keysort has been performed by SSP, unless
the (OCL) FILE statement contains an IFILE·YES
parameter. For information concerning when keysorts
are performed, see Key Sorting for Indexed Files in the
Concepts and Design Guide.

5-36

mM Exteosion:

TRANSACTION Files-Format 5

Format 5 must be used for the
TRANSACTION file. Execution of the
Format 5 READ statement makes a record
available from the TRANSACTION file.

The TRANSACTION file must be open in
the 1-0 mode at the time the READ
statement is executed.

Upon successful execution of the READ
statement, the terminal-id and function
key fields of the CONTROL-AREA, if
present, are filled in.

TERMINAL Option

The record to be made available by a
READ statement is determined as
follows:

• 	 If the,TERMINAL, option is specified,
the data record is made available
from literal-1 or the contents of
identifier-2 when identifier-2'
contains a value other than blanks.
Literal-1 or the nonblank contents of
identifier-2 must be the symbolic ID
of an attached display station or
SSP-ICF session. Identifier-1 must
be two-character alphanumeric;
,literal-1 must be two-character
nonnumeric. When either literal-1
or the contents of identifier-2 are
blank, the READ statement executes as
though the TERMINAL, option were
omitted.'

• 	 If the TERMINAL option is omitted,
the defaults are:

If a single display station or
SSP-ICF session is attached to the
file, the default is that display
station or SSP-ICF session.

-	 If multiple display stations and/or
SSP-ICF sessions are attached to
the file, there is no default. The
data record made available is the
first record input from any
attached display station or SSP-ICF
session.

Programming Note: Use of the
TERMINAL option forces the next input
to come from the specified display
station or ssp-rCF session, unless
literal-1 or identifier-2 contain
blanks.

NO DATA Option

When the NO DATA option is specified,
the imperative-statement spec~fied is
executed if a record cannot immediately
be ~ade available at the time of
execution of the READ statement. After
the imperative-statement is executed,
the next sequential statement is
executed.

When the NO DATA option is not
specified, execution is suspended until
a record becomes available.

AT END Condition

The AT END condition occurs when there
are no attached display stations or
SSP-ICF sessions for which an input
operation is currently invited and the
program is not a NEP. The AT END
condition occurs for a NEP when there
are no attached display stations or
SSP-ICF sessions and the system
operator has entered a STOP SYSTEM
command.

Input is implicitly invited with each
WRITE statement but can be suppressed
by an option on the SFGR format or
selected SSp-rCF predefined formats.
When AT END condition occurs, the READ
statement is unsuccessful and
imperative-statement-2 is executed .

Input/Output Statements
READ 	 5~7

REWRITE Statement

The REWRITE statement logically replaces an existing
record in a disk file. When the REWRITE statement is
executed, the associated disk file must be opened in 1-0
mode.

Format

REWRITE record-name [FROM identifier] [INVALID KEY imperative-statement]

Record-name must be the name of a logical record in
the File Section of the Data Division. Record-name must
not be associated with a sort or merge file.
Record-name may be qualified; it must not be
subscripted or indexed. The number of character
positions in record-name must equal the number of
character positions in the record being replaced.

REWRITE statement execution replaces an existing
record in the file with the information contained in
record-name.

After successful execution of a REWRITE statement, the
logical record is no longer available in record-name
unless the associated file is named in a SAME RECORD
AREA clause (in which case the record is also available
as a record of the other files named in the SAME
RECORD AREA clause).

The current record pointer is not affected by execution
of the REWRITE statement.

If the FILE STATUS clause is specified in the file-control
entry, the associated status key is updated when the
REWRITE statement is executed.

For files accessed sequentially, the last input/output
statement successfully executed for the file must be a
READ statement. When the REWRITE statement is
executed, the record retrieved by that READ statement
is logically replaced.

The FROM identifier option makes a REWRITE
statement equivalent to:

MOVE identifier TO record-name

REWRITE record-name

After successful execution of the REWRITE statement
the current record may no longer be available in
record-name, but is still available in identifier.

Sequential Files

The INVALID KEY option must not be specified for a
file with sequential organization. An
EXCEPTION/ERROR procedure may be specified.

Indexed Files

The record to be replaced is specified by the value
contained in the RECORD KEY. When the REWRITE
statement is executed for an indexed file that is
accessed sequentially, the value specified in the
RECORD KEY clause for the REWRITE statement must
equal the value of the RECORD KEY data item in the
last record read from the file. If the file is accessed
randomly or dynamically, any record referenced by the
RECORD KEY clause is rewritten.

5-38

An INVALID KEY condition exists when the access
mode is sequential. and the value contained in the
RECORD KEY of the record to be replaced does not
equal the RECORD KEY data item of the last-retrieved
record from the file.

If this condition exists. the INVALID KEY
imperative-statement is executed. the execution of the
REWRITE statement is unsuccessful. the updating
operation does not take place. and the data in
record-name is unaffected.

Relative Files

For relative files in the sequential access mode. the
INVALID KEY option must not be specifed. An
EXCEPTION/ERROR proced~re may be specified.

When the access mode is random or dynamic. the
record to be replaced is specified in the RELATIVE KEY
data item. If the file ·does not contain the record
specified. an INVALID KEY condition exists. and. if
specified. the INVALID KEY imperative-statement is
executed. The updating operation does not take place.
and the data in record-name is unaffected.

Input/Output Statements
REWR ITE 5-39

START Statement

The START statement provides a means of positioning
within an indexed or relative file for subsequent
sequential record retrieval. When the START statement
is executed, the associated indexed or relative file must
be opened in INPUT or 1-0 mode.

Format

IS EQUAL TO
IS =
IS GREATER THAN

START file-name KEY 	 data-name
IS>
IS!:!QI LESS THAN
IS NOT <

[INVALID KEY imperative-statement]

File-name must name a file with sequential or dynamic
access. File-name must be defined in an FD entry in the
Data Division, and must not name a sort or merge file.

KEY Option.

When the KEY option is not specified, the EQUAL TO
relational operator is implied.

When the KEY option is specified, the comparison
specified in the KEY relational operator is made between
data-name and the corresponding key field associated
with the file's records. Data-name may be qualified; it
may not be subscripted or indexed.

When the START statement is executed, a comparison
is made between the current value in the key data- name
and the corresponding key field in the file's records.
The current record pointer is positioned to the logical
record in the file whose key field satisfies the
comparison.

If the FILE STATUS clause is specfied in the file-control
entry, the associated status key is updated when the
START statement is executed.

INVALID KEY Option

If the comparison is not satisfied by any record in the
. file, an INVALID KEY condition exists; the position of
. the current record pointer is undefined, and (if specified)
the INVALID KEY imperative-statement is executed.

The INVALID KEY option must be specified if no
EXCEPTION/ERROR procedure is explicitly or implicitly
specified for this file.

Indexed Files

When the KEY option is not specified, the key data item
used for the EQUAL TO comparison is the RECORD
KEY. When START statement execution is successfully
completed, the RECORD KEY becomes the key of
reference for subsequent READ statements.

When the KEY option is specified, the key data item
used for the comparison is data-name, which can be:

• 	 The RECORD KEY

• 	 An alphanumeric data item subordinate to a record
key whose leftmost character position corresponds to
the leftmost character position of that record key.
This data item may be qualified.

5-40

The current record pointer is positioned to the first
record in the file whose key field satisfies the
comparison. If the operands in the comparison are of
unequal length, the comparison proceeds as if the longer
field were truncated on the right to the length of the
shorter field. All other numeric and nonnumeric
comparison rules apply except that the PROGRAM
COLLATING SEQUENCE clause, if specified, has no
effect.

When START statement execution is successful, the
RECORD KEY with which the data-name is associated
becomes the key of reference for subsequent READ
statements.

When START statement execution is unsuccessful, the
key of reference is undefined.

Relative Files

When the KEY option is specified, data-name must
specify the RELATIVE KEY.

Whether or not the KEY option is specified, the key data
item used in the comparison is the RELATIVE KEY data
item. The current record pointer is positioned to the
logical record in the file whose key satisfies the
comparison..

Input/Output Statements
START 541

WRITE Statement

The WRITE statement releases a logical record for an
output or input/output file. A WRITE statement can be
specified for:

• TRANSACTION files

• Relative files opened in OUTPUT or 1-0 mode

• Indexed files opened in OUTPUT or 1-0 mode

• Sequential files opened in OUTPUT or EXTEND mode

The formats of the WRITE statement are:

Format 1

WRITE record-name [fROM identifier-l]

{ ~dentifier-2} [LINE J
Integer LINES

{ BEfORE} ADVANCING
AfTER

{ mnemOnic-name}
PAGE

{ END-Of-PAGE}..][AT EOP Imperative-statement

Format 2

WRITE record-name [fROM identifier] [INVALID KEY imperative-statement]

5-42

Format 3-TRANSACTION File

WRITE record-name [fROM identifier-!]

rFORMAT IS {i~entifier-2}J
L: Iiteral-1

rTERMINAL IS {i~entifier-3}J
1.: Iiteral-2

~TARTING AT LINE {i~entifier-4}J

~ Iiteral-3

fBEFORE} ROLLING {LINES} {identifier-5}
\&ill LINE literal-4

{ THROUGH} {identifier-6} {UP }
" THRU literal-5 DOWN

{ Iiteral-6 }" {LINES}
identifier-7 LI N E

nIINDICATOR } {IS } ~
U=ATORS ARE identifier-SJ

Conditional Expressions 5-43

This page is intentionally left blank.

5-44

Record-name must be the name of a logical record in
the File Section of the Data Division. Record-name may
be qualified. Record-name must not be associated with
a sort or a merge file.

The maximum record size for the file is established at
the time the file is created. and cannot subsequently be
changed. User-defined record lengths that are not
compatible with the record length specified in the file
may result in a nonzero file-status at open time and the
following results during output to the file:

• 	 A user-defined length greater than file-specified
• 	 length causes truncation. If the file is empty the

larger record length is used.

• 	 A user-defined length less than file-specified length
causes padding with blanks.

Execution of the WRITE statement releases a logical
record to the file associated with record-name. After the
WRITE statement is executed. the logical record is no
longer available in record-name. unless either of the
following is true:

• 	 The associated file is named in a SAME RECORD
AREA clause. If so. the record is also available as a
record of the other files named in the SAM E
RECORD AREA clause.

• 	 The WRITE statement is unsuccessful due to a
boundary violation (beyond extent).

If either condition is true. the logical record is still
available in record-name.

The current record pointer is not affected by execution
of the WRITE statement.

The number of character positions required to store the
record in a file mSy or may not be the same as the
number of character positions defined by the logical
description of that record in the COBOL program. (See
the descriptions of the PICTURE and USAGE clauses in
Chapter 4.)

If the FILE STATUS clause is specified in the file-control
entry. the assoc!ated status key is updated when the
WRITE statement is executed whether or not execution
is successful.

When an attempt is made to write beyond the externally
defined boundaries of the file. WRITE statement
execution is unsuccessful. and an EXCEPTION/ERROR
condition exists. The status key. if specified. is updated.

and if an explicit or implicit EXCEPTION / ERROR
procedure is specified for the file. the procedure is
executed; if no such procedure is specified. the results
are unpredictable.

FROM identifier Option: The FROM identifier option
makes a WRITE statement equivalent to:

MOVE identifjer TO record-name

WRITE record-name

After successful execution of the WRITE or REWRITE
statement. the current record may no longer be available.
in record-name. but is still available in identifier.

Format 1 Considerations

The ADVANCING and END-OF-PAGE options control
the vertical positioning of each line on a printed page.

For the first WR ITE statement to a printer file. the linage
counter is set at 1. If the line is to be at the top of the·
page. use WRITE line AFTER ADVANCING 0 LINES.

ADVANCING Option: When the ADVANCING option is
omitted. automatic line advancing is provided. The
default statement is AFTER ADVANCING 1 LINE. When
the ADVANCING option is specified. the following rules
apply:

• 	 When BEFORE ADVANCING is specified. the line is
printed before the page is advanced.

• 	 When AFTER ADVANCING is specified for the first
WRITE. a blank page will be printed.

If linage is not specified. the linage counter is unde­
fined until the first WRITE stat!!ment. When AFTER
ADVANCING is specified for the first WRITE. the
linage counter js set at the top of the first page.

• 	 When identifier-2 is specified. the page is advanced
the number of lines equal to the current value in
identifier-2. Identifier-2 must name an elementary
integer data it&m. Identifier-2 may be zero.

• 	 When integer is specified. the page is advanced the
number of lines equal to the value of integer .. Integer
may be zero.

Input/Output Statements
WRITE 5-45

• 	 When a mnemonic-name is specified, a page eject or
space suppression takes place. The mnemonic-name
must be equated with function-name-1 in the
SPECIAL-NAMES paragraph. This option is not valid
if a LINAGE clause is specified in the FD entry for
this file.

• 	 When PAGE is specified, the record is printed on the
logical page BEFORE or AFTER (depending on the
option used) the device is positioned to the next
logical page. If PAGE has no meaning for the device
used, then BEFORE or AFTER ADVANCING 1 LINE is
provided depending on the option specified.

If the FD entry contains a LINAGE clause, the
repositioning is to the first printable line of the next
page as specified in that clause. If the LINAGE
clause is omitted, the repositioning is to line 1 of the
next page.

If the LINAGE clause is specified for this file, the
associated LINAGE-COUNTER special register is
modified during the execution of the WRITE statement,
according to the following rules:

• 	 If ADVANCING PAGE is specified,
LINAGE-COUNTER is reset to 1.

• 	 If ADVANCING identifier-2 or integer is specified,
LINAGE-COUNTER is incremented by the value in
identifier-2 or integer.

• 	 If the ADVANCING option is omitted,
LINAGE-COUNTER is incremented by 1.

• 	 When the device is repositioned to the first printable
line of a new page, LINAGE-COUNTER is reset to 1.

END-OF-PAGE Option: The key words END-OF-PAGE
and EOP are equivalent.

When the END-OF-PAGE option is specified, the FD
entry for this file must contain a LINAGE clause. When
END-OF-PAGE is specified, and the logical end of the
printed page is reached during execution of the WRITE
statement, the END-OF-PAGE imperative-statement is
executed.

The logical end of the printed page is specified in the
associated LINAGE clause.

An END-OF-PAGE condition is reached when execution
of a WRITE END-OF-PAGE statement causes printing or
spacing within the footing area of a page body. This
occurs when execution of such a WRITE stat(lment
causes the value in the LINAGE-COUNTER to equal or
exceed the value specified in the WITH FOOTING
option of the LINAGE clause. The WRITE statement is
executed and then the END-OF-PAGE
imperative-statement is executed.

An automatic page overflow condition is reached
whenever the execution of any given WRITE statement
with or without the END-OF-PAGE option cannot be
completely executed within the current page body. This
occurs when a WRITE statement, if executed, would
cause the value in the LINAGE-COUNTER to exceed the
number of lines for the page body specified in the
LINAGE clause. In this case, the line is printed BEFORE
or AFTER the device is repositioned to the first printable
line on the next logical page, as specified in the LINAGE
clause. If the END-OF-PAGE option is specified, the
END-OF-PAGE imperative-statement is then executed.

The END-OF-PAGE condition and automatic page
overflow condition occur simultaneously when:

• 	 The WITH FOOTING option of the LINAGE clause is
not specified. This happens because there is no
distinction between the END-OF-PAGE condition and
the page overflow condition.

• 	 The WITH FOOTING option is specified, but the
execution of a WRITE statement would cause the
LINAGE-COUNTER to exceed both the footing value
and the page body value specified in the LINAGE
clause.

Format 2 Considerations

This format is valid only for indexed and relative files.

Indexed Files: When the WRITE statement is executed,
the system releases the record. Before the WRITE
statement is executed, the user must set the record key
(the RECORD KEY data item, as defined in the
file-control entry) to the desired value. RECORD KEY
values must be unique within a file.

When ACCESS IS SEQUENTIAL is specified in the
file-control entry, records must be released in ascending
order of RECORD KEY values.

5-46

When ACCESS IS RANDOM or ACCE.SS· IS DYNAMIC
is specified in the file-control entry, records can be
released in any user-specified order. The WRITE
statement cannot be used when ACCESS IS DYNAMIC
is specified and the file is opened in 1-0 mode.

The INVALID KEY Option must be specified if an explicit
or implicit EXCEPTION/ERROR procedure is not
specified for this file.

When the INVALID KEY condition is recognized, WRITE
statement execution is unsuccessful, and the contents of
the record are unaffected. Program execution proceeds
according to the rules for an INVALID KEY condition.
An INVALID KEY condition is caused by any of the
following:

• 	 ACCESS SEQUENTIAL is specified, and the file is
opened OUTPUT; and the value of the record key is
not greater than that for the previous record.

• 	 The file is opened' 1-0, and the value of the record
key equals that of an already existing record.

• 	 When an attempt is made to write beyond the
externally defined boundaries of the file.

Note: The BYPASS-YES parameter on the FILE OCl
statement allows the COEmL programmer to suppress
duplicate key checking when adding a record to an
indexed file. It is the programmer's responsibility to
ensure that duplicate keys are not added. The
BYPASS-YES parameter is not intended as support for
duplicate keys. Specifying the BYPASS-YES parameter
can improve system performance, but results in
nonstandard COBOL file processing. For more
information on the BYPASS-YES parameter, see the
FILE statement in the SSP Reference Manual.

Relative Files: The WRITE statement is valid for both
OUTPUT and 1-0 files.

For OUTPUT files, the WRITE statement causes the
following actions:

• 	 If ACCESS IS SEQUENTIAL is specified, the first
record released has relative record number 1; the
second, number 2; the third, number 3; and so on. If
the RELATIVE KEY is specified in the file-control
entry, the relative record number of the record just
released is placed in the RELATIVE KEY during
execution of the WRITE statement.

• 	 If ACCESS IS RANDOM or ACCESS IS DYNAMIC is
specified, the RELATIVE KEY must contain the
desired relative record number for this· record before
the WRITE statement is issued. When the WRITE
statement is executed, this record is placed at the
specified relative record number position in the file if
this relative record position is vacant.

For 1-0 files, when ACCESS IS RANDOM or ACCESS
IS DYNAMIC is specified, new records are inserted into
the files. The RELATIVE KEY must contain the desired
relative record number for this record before the WRITE
statement is issued. When the WRITE statement is
executed, this record is placed at the specified relative
record number position in the file.

The INVALID KEY Option must be specified if an explicit
or implicit EXCEPTION/ERROR procedure is not
specified for this file ..

When the INVALID KEY condition is recognized, WRITE
statement execution is unsuccessful, and the contents of
the record area are unaffected. Program execution
proceeds according to the rules for an INVALID KEY
condition. An INVALID KEY condition is caused by
either of the following:

• 	 ACCESS IS RANDOM or ACCESS IS DYNAMIC is
specified, and the RELATIVE KEY specifies a record
that already contains data.

• 	 An attempt is made to write beyond the externally

defined boundaries of the file.

Note: This format of the WRITE statement can be
successfully executed only on a system configured with
extended disk data management. The files used must
be created and prcessed as delete-capable files.

Input/Output Statements
WRITE 	 5-47

IBM Extension:

Format 3 Considerations

This format is valid only for the
TRANSACTION file.

The WRITE statement releases a logical
record to the TRANSACTION file. This
file must be opened in the 1-0 mode at
the time the WRITE statement is
executed.

Literal-1 and literal-2 must be
nonnumeric. Literal-3, literal-4,
literal-5, and literal-6 must be
numeric.

Identifier-2 must be an alphabetic or
alphanumeric data item and identifier-3
must an an alphanumeric data item.
Identifier-4, identifier-5,
identifier-6, and identifier-7 must be
elementary numeric items. Identifier-8
must be either an elementary Boolean
data item specified without the OCCURS
clause, or a group item.that has
Boolean data elementary items
subordinate to it.

FORMAT Option

The record specified by the record-name
is sent to the specified or implied
destination using the named format. A
format must be specified for the first
WRITE verb executed. If subsequent
WRITE operations do not include a
FORMAT option, the most recently used
format is used. The FORMAT option
contains the pame of the screen format
used when data is written to the
display station. This format must be
in the format load member. The member
name is specified as part of the
assignment-name in the ASSIGN clause
for the TRANSACTION file.

Writing to the Error Line: If
the format name used for the write
operation is the literal 'ERRLINE',
System/34 COBOL generates a write to
the error line of the display station
instead of a write with format. A line
written to the error line cannot exceed
78 characters in length. A write to
the error line causes the last line of
output on the screen to be saved, and
the output record to replace the bottom
line on the screen. When the operator
presses the RESET key, the original
line reappears.

Note: A WRITE statement that writes to
the error line cannot specify ROLLING
BEFORE or AFTER.

Interactive Communications
Feature: Special format names are
recognized by Data Management that
provide the COBOL. user SSP-ICF
functions. The uses of these special
format names and the functions of ICF
are described in the rCF Reference
Manual. The system defined special
format names begin with two dollar
signs ($$). You should not begin your
display screen format names with $$.

TERMINAL Option

The TERMINAL phrase is used to specify
the destination to which the record is
to be sent. If the TERMINAL option is
not specified for a single device file,
that device is the destination. If the
TERMINAL option is not specified for a
multiple device file, the most recent
source or destination identifier is
used as the destination.

STARTING Option

The STARTING phrase contains the
starting line number for screen formats
that use the variable start line
option. If the value of this element
is less than 01, a value of 01 is
assumed. The maximum value is one less
than the size of the screen. If the
screen format does not specify this
option, Display Station Data Management
(DSDM) ignores this value.

5-48

ROLLING Option

The ROLLING option allows you to move
the data currently displayed on the
display screen. Allor part of the
data on the screen can be rolled up or
down. The lines vacated by the rolled
data are cleared, and can have another
screen format written into them.

Rolling is specified on the WRITE
statement· that is writing a new format
to the display screen. The number of
lines you want to roll, how many lines
you want to roll these lines, and
whether the roll operation is up or
down must be specified.

Note: The value specified by
identifier-5 (or literal-4) must be
less than the value specified by
identifier-6.. (or Ii teral-5).

Rolling ignores field attributes. The
da~a is rolled exactly as it appears on
the display screen. Its associated
attributes (for example, whether it is
an input field or an input/output
field) are not rolled with the data and
are lost. Therefore, after a field has
been rolled, it can no longer be input
capable.

For an example of using the ROLLING
option, see WRITE Statement in
Chapter 7.

INDICATOR Option

The INDICATOR phrase is used to specify
the name'of an area that contains SFGR
indicator information. Display Station
Data Management (DSDM) ignores provided
indicators that are not specified on
the SFGR format. Indicators not
provided in the indicator area are
considered by DSDM to be off.

ARITHMETIC STATEMENTS

Arithmetic statements are used for computations.
Individual operations are specified by the ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements. The
COMPUTE statement may be used to symbolically
combine these operations in a formula.

Arithmetic Statement Operands

The data description of operands in an arithmetic
statement need not be the same. Throughout the
calculation, the compiler supplies any necessary data
conversion and decimal point alignment.

Size of Operands

The maximum size of each operand is 18 decimal digits.
The composite of operands (a hypothetical data item
resulting from the superposition of the operands aligned
by decimal point) must not contain more than 18
decimal digits.

For the ADD and SUBTRACT statements. the composite
of operands is determined by superimposing all
operands in a given statement except those following
the word GIVING.

For the MULTIPLY statement. the composite of
operands is determined by superimposing all receiving
data items.

For the DIVIDE statement. the composite of operands is
determined by superimposing all receiving data items
except the REMAINDER data item.

For the COMPUTE statement, the restriction on
composite of operands does not apply.

For example, the items A. B. and C are defined in the
Data Division as follows:

77 A PICTURE S9(7)V9(5).

77 B PICTURE S9(11)V99.

77 C PICTURE S9(12)V9(3).

Arithmetic Statements
Arithmetic Statement Operands 5-49

If the statement ADD A, B TO C is executed, then the.
composite of operands for this statement consists of 17
decimal digits. It has the following implicit description:

Composite-of-Operands PICTURE S9(12)V9(5).

Overlapping Operands

When operands in an arithmetic statement share part of
their storage (that is, when the operands overlap), the
result of the execution of such a statement is
unpredictable.

Multiple Results

When an arithmetic statement has multiple results,
execution conceptually proceeds as follows:

• 	 The statement performs all arithmetic operations to
find the result to be placed in the receiving items and
stores that result in a temporary location.

• 	 A sequence of statements transfers or combines the
value of this temporary result with each single
receiving field. The statements are considered to be
written in the same left-to-right order that the
multiple results are listed.

For example, executing the following statement:

ADD A, B, C TO c, D(C), E

is equivalent to executing the following series of
statements :

ADD A, B, C GIVING TEMP

ADD TEMP TO C

ADD TEMP TO D(C)

ADD TEMP TO E

TEMP is a compiler-supplied temporary result field.
When the addition operation for D(C) is performe~, the
subscript C contains the new value of C.

Programming Notes

In all arithmetic statements, it is the user's responsibility
to define data with enough digits and decimal places to
ensure accuracy in the final result.

Common Options

There are several options common to the arithmetic
statements. They are the CORRESPONDING option, the
GIVING Option, the ROUNDED option, and the SIZE
ERROR option: Their description precedes the
descriptions of the individual statements.

CORRESPONDING Option

The CORRESPONDING option allows operations to be
performed on elementary items of the same name
simply by specifying the group items to which they
belong.

The CORRESPONDING option is valid in the ADD,
SUBTRACT, and MOVE statements. The abbreviation
CORR is equivalent to the key word CORRESPONDING.

Both identifiers following the key word
CORRESPONDING must name group items. In this
discussion, these identifiers are referred to as d 1 and
d2.

A pair of subordinate data items, one from d1 and one
from d2. correspond if the following conditions are true:

• 	 In an ADD or SUBTRACT statement, both of the
subordinate items are elementary numeric data-items.

• 	 In a MOVE statement, at least one of the subordinate
items is elementary.

• 	 The two subordinate items have the same name and
the same qualifiers up to but not including d1 and d2.

• 	 The subordinate items are not identified by the key
word FILLER.

5-50

• 	 The subord~nate items do not include a REDEFINES,
RENAMES, OCCURS, or USAGE IS INOEX clause in
their descriptions; if such a subordinate item is a
group, the items subordinate to it are also ignored.
However, d1 and d2 themselves may contain or be
subordinate to items containing a REDEFINES or
OCCURS clause in their descriptions.

For example, two data hierarchies are defined as
follows:

05 ITEM-1 OCCURS 6 INDEXED BY X.
10 ITEM-A .. .
10 ITEM-B ...
10 ITEM-C REDEFINES ITEM-B ...

05 ITEM-2
10 ITEM-A .. .
10 ITEM-B .. .
10 ITEM-C ...

If ADD CORR ITEM-2 TO ITEM-1(X) is specified,
ITEM-A and ITEM-A(X) and ITEM-B and ITEM-B(X)
are considered to be corresponding and are added
together. ITEM-C and ITEM-C(X) are not included
because ITEM-C(X) includes a REDEFINES clause in
its data description. ITEM-1 is vl!lid as either d1 or
d2.

• 	 Neither d1 nor d2 is described as a level 66, 77 or 88
item, or as a FILLER or USAGE IS INDEX item.

GIVING Option

If the GIVING option is specified, the value of the
identifier that follows the word GIVING is set equal to
the calculated result of the arithmetic operation.
Because this identifier is not involved in the
computation, it may be a numeric edited item.

ROUNDED Option

After decimal point alignment, the number of places in
the fraction of the result· of an arithmetic operation is
compared with the number of places provided for the
fraction of the resultant identifier.

If the size of the fractional result exceeds the number of
places provided for its. storage, truncation occurs unless
the ROUNDED option is specified. When the
ROUNDED option is specified, the least significant digit
of the resultant identifier has its value increased by 1
whenever the most significant digit of the excess is
greater than or equal to 5.

When the resultant identifier is described by a PICTURE
clause containing rightmost Ps and when the number of
places in the calculated result exceeds the number of
integer positions specified, rounding or truncation occurs
relative to the rightmost integer position for which
storage is allocated.

SIZE ERROR Option

A si%e error condition exists if, after decimal point
alignment, the value of a result exceeds the largest
value that can be contained in the resultant field.
Division by zero and zero raised to the zero power
always causes a size error condition.

In the ADD, SUBTRACT, and COMPUTE statements,
the size error condition applies only to final results. In
the MULTIPLY and DIVIDE statements, the size error
condition applies both to final results and intermediate
results.

I:\rithmetic Statements
Common OPtions 5-51

L

If the ROUNDED option is specified, rounding takes
place before size error checking.

When a size error occurs, the subsequent action of the
program depends on whether or not the SIZE ERROR
option is specified.

If the SIZE ERROR option is not specified and a size
error condition occurs, the value of the affected
resultant identifier is unpredictable. When multiple
receivers are specified, those that do not have a size
error are not affected by receivers that do have the
error.

If the SIZE ERROR option is specified and a size error
condition occurs, the error results are not placed in the
receiving identifier. After completion of the execution of
the arithmetic operation, the imperative-statement in the
SIZE ERROR option is executed.

If an individual arithmetic operation causes a size error
condition for ADD CORRESPONDING and SUBTRACT
CORRESPONDING statements, the SIZE ERROR
imperative-statement is not executed until all of the
individual additions or subtractions have been
completed.

5-52

ADD Statem,.\nt

The ADD statement causes two or more numeric
operands to be summed and the result to be stored.
The formats of the ADD statement are as follows:

Format 1

ADD {identifier.1} [,i~entif2ier-2] ••• TO identifier.m [ROUNDED]

-- literal-1 , literal- - .

[,identifi"er.n [ROUNDED]] ••. [ON SIZE-ERROR imperative.statement]

Format 2

identifier.1} {identifier.2} [, identifier.3]
ADD { , . . 13 .•• -- literal·1 Iiteral·2. , litera -

GIVING identifier-m [ROUNDED] [,identifier.n [ROUNDED]]

[ON SIZE ERROR imperative.statement]

Format 3

~{~ESPONDING} identifier.1 TO identifier·2 [ROUNDED]

[ON ~ ERROR imperative.statement]

In Formats 1 and 2, each identifier, except those In Format 2, at least two operands must precede the
following the key word GIVING must name an key word GIVING. The values of these operands are
elementary numeric item. In Format 2, each identifier added together, and the sum is stored as the new value
following the key word GIVING must name an of identifier-m, and, if specified, identifier-n, and so on.
elementary numeric or numeric edited item. In Format 3,
each identifier must name a group item. In all formats, In Format 3, elementary data items within identifier-1
each literal must be a numeric literal. are added 'to and stored in the corresponding elementary

items within identifier-2.
In Format 1, all identifiers or literals preceding the key
word TO are added together, and this sum is added to If the composite of the operands is 18 digits or less, the
and stored immediately in identifier-m. If specified, the compiler ensures that enough places are carried so that
sum is then added to and stored immediately in no significant digits are lost during execution.
identifier-n, and so on.

Arithmetic Statements
ADD 5-53

COMPUTE Statement

The COMPUTE statement assigns the value 'of an
arithmetic expression to one or more data items.

Format

COMPUTE identifier-1 [ROUNDED] [,identifier-2 [ROUNDED]].

= arithmetic-expression [ON SIZE ERROR imperati~e-statement]

The COMPUTE statement allows the user to combine
arithmetic operations without the restrictions imposed by
the rules for the ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements on the composite of operands or on
receiving data items. (For more information about the
composite of operands, see "Size of Operands" under
Arithmetic Statements in this chapter.)

The identifiers that appear to the left of the equal sign·
must name either elementary numeric items or
elementary numeric edited items.

When the COMPUTE statement is executed, the value
of the arithmetic expression is calculated: then this value
is stored as the new value of identifier-1, identifier-2,
and so on, in turn.

The arithmetic expression may be any meaningful
combination of identifiers, numeric literals, and
arithmetic operators.

An arithmetic expression consisting of a single identifier
or literal allows the user to set identifier-1, and so on, .
equal to the value of that identifier or literal.

Programming Notes

• 	 When arithmetic operations must be combined, the
COMPUTE statement is more efficient than the separate
arithmetic statements written in series.

• 	 The limitation on intermediate result fields exists in the
COMPUTE statement as well as in the ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements.
Refer to Appendix D for a description of intermediate­
result algorithms.

5-54

DIVIDE Stat.rnent

The DIVIDE statement divides one numeric data item
into others and sets the values of data items equal to
the quotient and remainder. The.formats of the DIVIDE
statement are:

Format 1

DIVIDE {:~:~~:~~er-l} INTO identifier-2 [ROUNDED]

[, identifier-3 [ROUNDED]] •• • [ON SIZ"E ERROR imperative-statement]

Format 2

DIVIDE {i~entifi.er-l} {INTO} {i~entifier-2} GIVING identifier-3 [ROUNDED]
IIteral-l BY Ilteral-2

[,identifier.4 [ROUNDED]] ••• [ON SIZE ERROR imperative-statement]"

Format 3

DIVIDE {:~:~~:~~er-l} {~~TO} {:~:~~:~~er-2} GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]

Each identifier eXC:8pt those following the key words In Format 2, the value of identifier-1 or literal-1 is
GIVING and REMAINDER must name an elementary divided into/by the value of identifier-2 or literal-2. The
numeric item. Each identifier following the key words value of the quotient is stored in identifier-3, and (if
GIVING and REMAINDER must name an elementary specified) identifier-4, and 80 on.
numeric or numeric edited item. Each literal must be a
numeric literal. In Format 3, the value of identifier-1 or literal-1 is

divided into/by identifier-2 or literal-2. The value of the
In Format 1, the value of literal-1 or identifier-1 is q~otient is stored in identifier-3, and the value of the
divided into the value of identifier-2; then the quotient is remainder is stored in identifier-4.
placed in identifier-2. If identifier-3 is specified, the
value of literal-lor identifier-1 is divided into
identifier-3; then the quotient is placed in identifier-3,
and 80 on.

Aritmetic Statements
COMPUTE-DIVIDE 5-55

The remainder is defined as the result of subtracting the
product of the quotient and the divisor from the
dividend. If identifier-3 (the quotient) is a numeric edited
field. the quotient used to calculate the remainder is an
intermediate field that contains the unedited quotient.

In addition to the conditions for common options. the
following considerations apply when the ROUNDED and
SIZE ERROR options are used in format 3.

• 	 When the ROUNDED option is specified the quotient
used to calculate the remainder is an intermediate
field which contains the quotient truncated rather
than rounded.

• 	 When the ON SIZE ERROR option is specified and
the size error conditions occurs on the quotient. no
remainder calculation is meaningful. Therefore. the
contents of the quotient field (identifier-3) and the
remainder field (identifier-4) are unchanged.

• 	 When the ON SIZE ERROR option is specified and
the size error occurs on the remainder. the contents
of the remainder field (identifier-4) are unchanged.

Note: In the last two preceding cases. the user must
analyze the results to determine which situation has
actually occurred.

5-56

MULTIPLY S~etement

The MULTIPLY statement causes numeric items to be
multiplied and sets the· values of data items equal to the
results. The formats of the MULTIPLY statement are:

Format 1

MU L TIPL Y { li~entilflier.l } BY identifier·2 [ROUNDED]
Itera· . -

I, identifier-3 [ROUNDED II [ON SIZE ER ROR imperative-statement]

Format 2

MULTIPLY {i~entifier-l} BY {i~entifier-2} GIVING identifier-3 [ROUNDED]
IIteral-l - IIteral-2

[, identifier-4 [ROUNDED]] [ON SIZE ER ROR imperative-statement]

Each identifier except those following the key word
GIVING must name an elementary numeric item. Each
identifier following the key word GIVING must name an
elementary numeric or numeric edited item. Each literal
must be a numeric literal.

In Format 1, the value of identifier-lor literal-l is
multiplied by the value of identifier-2; the product is
then placed in identifier-2. If identifier-3 is specified, the
value of identifier-lor literal-l is multiplied by the value
of identifier-3; the product is then placed in identifier-3,
and so on.

In Format 2, the value of identifier-lor literal-l is
multiplied by the value of identifier-2 or literal-2; the
product is then stqred in identifier-3, and, if specified,
identifier-4, and so on.

Arithmetic Statements
MULTIPLY 5-57

SUBTRACT Statement

The SUBTRACT statement causes either one, or the
sum of two or more numeric items to be subtracted
from one or more numeric items and the result to be
stored. The formats of the SUBTRACT statement are:

Format 1

SU BTRACT {i~entifier-1} [, i~ntifier-2] ••• FROM identifier-3 r ROUNDED]
IIteral-1 ,hteral-2 --- L;

Gidentifier-4 [ROUNDED]] ••• [ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT {identifier-1} [,identifier-2] FROM {identifier-3 }

Iiteral-1 ,literal-2' • • • - Iiteral-3

GIVING identifier-4[ROUNDED] Gidentifier-S[ROUNDED]]

[ON SIZE ERROR imperative-statement]

Format 3

SUBTRACT {=ES~NDING} identifier-1 FROM identifier-2[ROUNDED]

[ON SIZE ERROR imperative-statement]

In Formats 1 and 2, each identifier except those
following the key word GIVING must name an
elementary numeric item. In Format 2,each identifier
following the key word GIVING must name a numeric
elementary or numeric edited elementary item. In
Format 3, each identifier must name a group item. In all
formats, each literal must be a numeric literal.

In Format 1, all identifiers or literals preceding the key
word FROM are added together, and this sum is
subtracted from and stored iMmediately in· identifier-3,
and then, if specified, subtracted from and stored
immediately in identifier-4, and so on.

In Format 2, all identifiers or literals preceding the key
word FROM are added together and this sum is
subtracted from identifier-3 or literal-3. The result of the
subtraction is stored as the new value of identifier-4,
and, if specified, identifier-5, and so on.

In Format 3, elementary data items within identifier-1
are subtracted from and stored in the corresponding
elementary data items within identifier-2.

If the composite of the operands is 18 digits or less, the
compiler ensures that enough places are carried so that
no significant digits are lost during execution.

DATA MANIPULATION STATEMENTS

Movement and inspection of data are the functions of
the following COBOL statements: INSPECT, MOVE,
STRING, and UNSTRING.

When the sending and receiving fields of a data
manipulation statement share a part of their storage
(that is, when the operands overlap), the result of the
execution of such a statement is unpredictable.

5-58

INSPECT Statement

The INSPECT statement specifies that characters in a
data item are to be counted, replaced, or counted and
replaced. The formats of the INSPECT statement are:

Format 1

INSPECT identifier-l TALLYING

{ ALL } {identifier-3}} [. . .]}
,identifier-2FOR, LEADING literal-l {BEFORE}INITIAL{I~entlfler-4} . .. }...

CHARACTERS AFTER literal-2
{ { {

Format 2

INSPECT identifier·l REPLACING

CHARACTERS BY {identifier.6} [{ BEFORE} INITIAL {i~entifier-7}]
.::..:..;.:...:.:..;~o..:...::,-,-= - Ilteral.4 AFTER literal·5

{
ALL } { {identifier-5} BY { identifier-6} ~{BEFORE} INITIAL {i~entifier.7}J}

{ ,LEADING 'Iiteral-3 - literal-4 UAFTER literal-5

FIRST .

Format 3

INSPECT identifier·l TALLYING

{ ALL } {identifier-3} } }
{ {,identifier-2 FOR, { LEADING literal.l [{BEFORE} INITIAL {i~entifier-4}]

CHARACTERS AFTER literal·2

REPLACING

CHARACTERS BY {identifier.6} [{BEFORE} INITIAL {identifi.er.7}]

- literal-4 AFTER literal-5

,{ ffiDING} {, {identifier-5} BY {i~entifier-6} [{BEFORE} INITIAL {identifier-7}] }
{ FIR~T Ilteral-3 - literal-4 AFTER Iiteral-5

Arithmetic Statements
SUBTRACT-INSPEcT 5-59

L

Either the TALLYING or the REPLACING option must be
specified. Both the TALLYING and REPLACING options
may be specified. If both TALLYING and REPLACING
are specified (Format 3), all tallying is performed before
any replacement is made.

Identifier-1 is the inspected item. Identifier-1 must be an
elementary or group item with USAGE DISPLAY.

All other identifiers except identifier-2 '(the count field)
must be elementary alphabetic, alphanumeric, or zoned
decimal items. Each is treated according to its data
category. Each data category is treated IS follows:

• 	 Alphabetic or alphanumeric items are treated as I

character-string.

• 	 Alphanumeric edited, numeric edited, or unsigned
numeric (zoned decimal) items are treated as though
redefined as alphanumeric and the INSPECT
statement refers to the alphanumeric item.

• 	 Signed numeric (zoned decimal) items are treated as
though moved to an unsign~ zoned decimal item of
the same length, and then treated IS though
redefined as alphanumeric. The INSPECT statement
refers to the alphanumeric item.

Each literal must be nonnumeric and may be any
figurative constant except ALL.

The comparision operands of the TALLYING option
(Iiteral-1 or identifier-3, and so on) and/or REPLACING
option (literal-3 or identifier-5, and so on) Ire compared
in the left-to-right order specified in the INSPECT
statement. A maximum of 15 comparison operands may
be specified for each REPLACING and each TALLYING
option.

When the TALLYING/REPLACING operands are the
compared operands, the following comparison rules
apply: ~
1. 	 When both the TALLYING and REPLACING

options are specified, the INSPECT statement is
executed as if an INSPECT TALLYING statement
were specified and immediately followed by an
INSPECT REPLACING statement.

2. 	 The first operand is compared with an equal
number of leftmost contiguous characters in the
inspected item. The operand matches the
inspected characters only if both are equal,
character-for-character.

3. 	 If no match occurs for the first operand, the
comparison is repeated for each successive
operand until either a match is found or all
operands have been acted upon.

4. 	 If a match is found, tallying or replacing takes
place as described in TALLYING/REPLACING
option descriptions. In the inspected item, the first
character following the rightmost matching
character is now considered the leftmost character
position. The process described in comparison
rules 2 and 3 is then repeated. ~

5. 	 If no match is found, the first character in the
inspected item following the leftmost inspected
character is now considered the leftmost character
position. The process described in comparison
rules 2 and 3 is then repeated.

6. 	 The actions taken in comparison rules 1 through
5-which are defined as the comparison cycle-are
repeated until the rightmost character in the
inspected item has either been matched or has
been considered as the leftmost character position.
Inspection then terminates.

Figure 5-16 illustrates INSPECT statement comparisons.

5-60

INSPECT 10-1 TALLYING 10-2 FORALL "u"

REPL.ACING ALL "u" BY ZEROS.

10-1 before

execution I * I * I * 1 0 1 * I * I

I I I I

Execution for I I I 1 TALLYING

TALLYING option: 1 comparison' operand:
I I I

1st

I I I I

comparison rn I I 1= rn

I

I I I I

2nd c:EJ I=rn
comparison

I
I I I

3rd I I
rn I
comparison rn

I
 I

4th I

comparison rn=rnI

I

Execution for REPLACING
REPLACING option: 1 comparison operand:

I

5th rn rn
comparison

I0 I0 I* 101 * I * I

I I I

6th rn 1=8:]comparison

I I I

7th
comparison [ill 1= rn

I I

8th [E]=Wcomparison

. I 0 I 0 I * I 0 I 0 I 0 I

At the end of inspection:

contains: 1 0 1 0 1 * I 0 I 0 I 0 I

Figure 5-18. INSPECT Statement Execution Re.ults

(Tru~)

(False)

(False)

(True)

(True)

(False)

(False)

(True)

10-2

contains:

10-2 before
execution
(initialized by
programmer)

10-2

contains:

10-' chang'" to J

10-1 unchanged

10-, unchanged

10-' chang.d to]

Note: When the BEFORE/AFTER option is specified, the preceding rules are modified as described in the
BEFORE/AFTER option description.

Data Manipulation Statements
INSPECT ~6'

10-1

INSPECT Statement Example

The following example shows an INSPECT statement.

DATA DIVISION.
WORKING-STORAGE SECTION.
01
01

ID-l PIC X(10)
CONTR-i PIC 99

VALUE
VALUE

'ACADEMIANS ' •
00.

01 CONTR-2 PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.
* 	 THIS ILLUSTRATES AN INSPECT STATEMENT WITH 2 VARIABLES.

tOO-BEGIN-PROCESSING.
DISPLAY CONTR-l SPACE CONTR-2.

10t-MAINLINE-PROCESSING.
PERFORM COUNT-IT THRU COUNT-EXIT.
STOP HUN.

CDUNT·-IT.
I NSPECT I D-·· j.

TALLYING CDNTR-i FOR CHARACTERS

BEFORE INITIAL 'AD' CONTR~2 FOR ALL 'MIANS'.
Dl:SPLA'(--COUNTS.

DISPLAY 'CDNTR-i - ' CONTR-i.
DISPLAY 'CONTR~2 - ' CONTH-2.

DISPLAY '*******************EOJ********************'.
COUNT-EXIT. EXIT.

Note: The keywords BEFORE and AFTER should not be used in the same statement.

RESULTANT OUTPUT

00 00
CONTF(-i :::: 02
CONTP--2 ::: 01
*******************EOJ********************

5-62

TALLYING Option

Identifier-2 is the tallying field and must be an
elementary integer item defined without the symbol P in
its PICTURE character-string. It is the programmer's
responsibility to initialize identifier-2 before the INSPECT
statement is executed.

Identifier-3 or literal-1 is the comparison operand. If the
comparison operand is a figurative constant, it is
considered to be a one-character nonnumeric literal.

When the BEFORE/AFTER optiofl is not specified, the
following actions take place when the INSPECT
TALLYING statement is executed:

• 	 If the ALL phrase is specified, the tallying field is
increased by one for each nonoverlapping occurrence
in the inspected item of the comparison operand.
This process begins at the leftmost character position
and continues to the rightmost.

• 	 If the LEADING phrase is specified, the tallying field
is increased by one for each contiguous
nonoverlapping occurrence of the comparison
operand in the inspected item, provided the leftmost
such occurrence is at the point where comparison
began in the first comparison cycle for which the
comparison operand is eligible to participate.

• 	 If the CHARACTERS phrase is specified, the tallying
field is increased by one for each character (including
the space character) in the inspected item. Thus,
execution of the INSPECT TALLYING statement
increases the value in the tallying field by the number
of characters in the inspected item.

REPLACING Option

Identifier-5 or Iiteral-3 is the comparision operand.
Identifier-6 or literal-4 is the repla~ment field.

The comparison operand and the replacement field must
be the same length. The following replacement rules
apply:

• 	 If the comparison operand is a figurative constant, it
is considered to be a one-character nonnumeric
literal. Each character in the inspected item
equivalent to the figurative constant is replaced by
the single-character replacement field, which must be
one character in length.

• 	 If the replacement field is a figu.rative constant, it is
considered to be the same length as the comparison
operand. Each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced
by the replacement field.

• 	 When the comparison operand and replacement
fields are character-strings, each nonoverlapping
occurrence of the comparison operand in the
inspected item is replaced by the character-string
specified in the replacement field.

• 	 Once replacttment has occurred in a given character
position in the inspected item, no further replacement
for that character position is made in this execution
of the INSPECT statement.

When the BEFORE/AFTER option is not specified, the
following actions take place when the INSPECT
REPLACING statement is executed:

• 	 If the CHARACTERS phrase is specified, the
replacement field must be 1 character in length. Each
character in the inspected field is replaced by the
replacement field. This process begins at the
leftmost character and continues to the rightmost.

• 	 If the ALL phrase is specified, each nonoverlapping
occurrence of the comparison operand in the
inspected item is replaced by the replacement field,
beginning at the leftmost character and continuing to
the rightmost.

Data Manipulation Statements
INSPECT 	 5-63

• 	 If the LEADING phrase is specified, each contiguous
nonoverlapping occurrence of the comparison
operand in the inspected item is replaced by the
replacement field, provided that the leftmost such
occurrence is at the point where comparison began in
the first comparison cycle for which this replacement
field is eligible to participate.

• 	 If the FIRST phrase is specified, the leftmost
occurrence of the comparison operand in the .
inspected item is replaced by the replacement field.

BEFORE/AFTER Options

When either of these options is specified, the preceding
rules for counting and replacing are modified.

Identifier-4, identifier-7, literal-2, and literal-5 are
delimiters. Counting and/or replacement of the
inspected item is bounded by their presence; however,
the delimiters themselves are not counted or replaced.

In the TALLYING option, if the delimiter (literal-2) is a
figurative constant it is considered to be 1 character in
length.

In the REPLACING option, if the CHARACTERS phrase
is specified, the delimiter (literal-5 or identifier-7) must
be 1 character in length.

When the BEFORE option is specified, tallying and/or
replacement of the inspected item begins at the leftmost
character and continues until the first occurrence of the
delimiter is encountered. If no delimiter is present in the
inspected item, counting and/or replacement continues
to the rightmost character.

When the AFTER option is specified, counting and / or
replacement of the inspected item begins with the first
character to the right of the delimiter and continues to
the rightmost character in the inspected item. If no
delimiter is present in the inspected item, no counting or
replacement takes place.

INSPECT Statement Examples

The following examples illustrate some uses of the
INSPECT statement. In all instances, the programmer
has initialized the COUNTR field to zero before the
INSPECT statement is executed.

INSPECT ID-1 REPLACING CHARACTERS BY ZERO.

10·1 Before COUNTR After 10-1 After

1234567 o 00000oo
HIJKLMN \ 0 00000oo

INSPECTID-1 TALLYING COUNTR FOR CHARACTERS
REPLACING CHARACTERS BY SPACES.

10-1 Before COUNTR After 10-1 After

1234567 7

HIJKLMN 	 7

INSPECT ID-1 REPLACING CHARACTERS BY ZEROS
BEFORE INITIAL QUOTE.

10-1 aefore COUNTR After 10-1 After

456'ABEL o ()()()'ABEL

ANDES'12 o 00000'12

'TWAS BR o 'TWAS BR

INSPECT ID-1 TALLYING COUNTR FOR CHARACTERS
AFTER INITIAL 'S'REPLACING ALL 'A' BY '0'.

10-1 Before COUNTR After 10-1 After

ANSELM 3 ONSELM

SACKET 5 SOCKET

PASSED 3 POSSED

INSPECT ID-1 TALLYING COUNTR FOR LEADING '0'
REPLACING FIRST 'A' BY '2' AFTER INITIAL 'C'.

10-1 aefore COUNTR After 10-1 After

OOACADEMYOO 2 OOAC2DEMYOO

OOOOALABAMA 4 OOOOALABAMA

CHATHAMOOOO 0 CH2THAMOOOO

5-64

Programming Notes

The INSPECT statement is useful for filling portions or
all of a data item with spaces or zeros. It is also useful
for counting the number of times a specific character
(for example, zero, space, asterisk) occurs in a data
item. In addition, it can be used to translat~ characters
from one collating sequence to another.

MOVE Stateme"t

The MOVE statemel')t transfers data from one area of
storage to one or more other areas. The formats of the
MOVE statement are as follows:

Format 1

MOVE { i~ntilfier-1 } TO identifier-2 [, ident'ifier-3]
-- litera -

Forma~ 2

MOVE { CORRESPONDING} -d -f" 1 TO "d' 'f' 2I entl ler- I entl ler­
-- CORR 	 ­

Identifier-1 and literal-1 are the sending areas.
Identifier-2, identifier-3, and so on are the receiving
areas.

When Format 1 is specified, the identifiers may be
either group or elementary items. The data in the
sending area is moved into the first receiving ar~a
(identifier-2); then it is moved into the second receiving
area (identifier-3), and so on.

When Format 2 is specified, both identifiers must be
group items. CORR is an abbreviation for, and
equivalent to, CORRESPONDING. When
CORRESPONDING is specified, selected items in
identifier-1are moved to identifier-2 according to the
rules for the CORRESPONDING option. The results are
the same as if each pair of CORRESPONDING
identifiers had been referred to in a separate MOVE
statement.

An index data item cannot be specified in a MOVE
statement. Any subscripting or indexing associated with
the sending item is evaluated only once: immediately
before the data is moved to the first receiving field. Any
subscripting or indexing associated with the receiving
items is evaluated immediately before the data is moved
into the receiving field. ,

For example, the result of the statement:

MOVE A (B) TO B, C (B).

is equivalent to

MOVE A (B) TO TEMP.

MOVE TEMP TO B.

MOVE TEMP TO C (B).

where. TEMP has been defined as an intermediate result
item. The subscript B changed in value between the
time the first move took place, and the final move to, C
(B) is executed.

After execution of a MOVE statement, the sending
field(s) contains the same data as before execution.

Elementary Moves

An elementary move is one in which both the sending
and receiving items are elementary items. Each
elementary item belongs to one of the following
categories:

• 	 Numeric-includes numeric data items, numeric
literals, and the figurative constant
ZERO/ZEROS/ZEROES when the receiving item is
numeric.

• 	 Alphabetic-includes alphabetic data .tems and the
figurative constant SPACE/SPACES.

• 	 Alphanumeric-includes alphanumeric data items,
nonnumeric literals, and all figurative constants
except ZERO and SPACE.

• 	 Alphanumeric edited-includes alphanumeric edited

data items.

Numeric edited-includes numeric edited data items.

• 	 Boolean-includes Boolean data items, Boolean

literals, and the figurative constant

ZERO/ZEROS/ZEROES when the receiving item is

Boolean.

Data Manipulation Statements
MOVE 	 5-65

Valid elementary moves are executed accoraing to the
following rules:

• 	 Any necessary conversion of data from one form of
internal representation to another along with any
specified editing in the receiving item takes place
during the move.

• 	 For an alphanumeric, alphanumeric edited, or
alphabetic receiving item:

Justification and any necessary space filling take
place as described in the JUSTIFIED clause.
Unused character positions are filled with spaces.
If the size of the sending item is greater than the
size of the receiving item, excess characters at the
right are truncated after the receiving item is filled.
If the sending item has an operational sign, the
absolute value is used. If the operational sign
occupies a separate character, that character is not
moved, and the size of the sending item is
considered to be one less than its actual size.
If the sending item is Boolean, and the receiving
item is alphanumeric or alphanumeric edited, no
data conversion takes place.

• 	 For a numeric or numeric edited receiving item:
-	 Alignment by decimal point and any necessary

zero filling take place as described under Standard
Alignment Rules in Chapter 4, except where zeros
are replaced because of editing requirements.
The absolute value of the sending item is used if
the receiving item has no operational sign.
If the sending item has more digits to the left or
right of the decimal point than the receiving item
can contain, excess digits are truncated.
The results at object time may be unpredictable if
the sending item contains any nonnumeric
characters.

• 	 For a Boolean receiving item:
- There is no data conversion.
- The source field must be either alphanumeric or

Boolean.

Execution of the MOVE statement does not affect

the association of an indicator number to the data

name.

Note: If the receiving field is alphanumeric or numeric
edited, and the sending field is a scaled integer (that is,
it has a P as the rightmost character in its PICTURE
character-string), the scaling positions are treated as
trailing zeros when the MOVE statement is executed.

Figure 5-17 shows valid and invalid elementary moves
for each category.

5-66

L
Receiving Item Category

Sending
Item
Category Alphabetic Alphanumeric

Alphanumeric
Edited

Numeric
Integer

Numeric
Noninteger

Numeric
Edited Boolean

Alphabetic
and SPACE

YES YES YES NO NO NO NO

Alphanumeric
and Figurative
constant l

YES YES YES YES YES YES YES

Alphanumeric
Edited

YES YES YES NO NO NO NO

Numeric
Integer2

and ZERO
NO YES YES YES YES YES NO

Numeric
Noninteger2 NO NO NO YES YES YES NO

Numeric
Edited

NO YES YES NO NO NO NO

Boolean3 NO YES YES NO NO NO YES

YES = move is valid

NO = move is invalid

1 Includes nonnumeric literals and all figurative constants but SPACE and ZERO.
21ncludes numeric literals

3 Includes the figurative constants ZERO and ALL Boolean-literal.

Figure 5-17. Valid and Invalid Elementary Moves

Group Moves

A group move is one in which one or both of the
sending and receiving fields are a group item. A group
move is treated exactly as though it were an
alphanumeric elementary move except that data is not
converted from one form of internal representation to
another. In a group move, the receiving area is filled
without consideration for the individual elementary items
contained within either the sending area or the receiving
area.

Data. Manipulation Statements
MOVE 5-67

STRING Statement

The STRING statement gives the programmer the ability
to concatenate the partial or complete contents of two
or more data items in a single data item.

Format

identifier-3 }
STRING {identifier.,} [, identifier.2] DELIMITED BY { literal-3

literal-' ,literal-2
SIZE

identifier-6}]
{ 	 identifier-4} [, identifier-5]

[••• DELIMITED BY { literal-6
'literal-4 , I iteral-5

INTO identifier·7 [WITH POINTER identifier-8]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each may be
any figurative constant without the optional word ALL.
When a figurative constant is specified, it is considered
a 1-character nonnumeric literal.

All identifiers except identifier-8 (the POINTER item)
must have USAGE DISPLAY, explicitly or impliCitly.

The sending fields are identifier-1, identifier-2,
identifier-4, identifier-5, or their corresponding literals.

The receiving field is identifier-7, which must be an
elementary alphanumeric item without editing symbols
and without the JUSTIFIED clause in its description.

The delimiters are identifier-3, identifier-6, or their
corresponding literals, or the key word SIZE. The
delimiters specify the character(s) delimiting the data to
be transferred; when SIZE is specified, the complete
sending area is transferred.

When the sending field or any of the delimiters are
elementary numeric items, they must be described as
integers, and their PICTURE character-strings must not
contain the symbol P.

The pointer field is identifier-B, which must be an
elementary integer data item large enough to contain a
value equal to the length of the receiving area plus one.
The pointer field must not contain the symbol P in its
PICTURE character-string.

SIZE

STRING Statement Execution

When the STRING statement is executed, data is
transferred from the sending fields to the receiving field.
The order in which sending fields are processed is the
order in which they are specified. The following rules
apply:

• 	 Characters from the sending fields are transferred to
the receiving field according to the rules for
alphanumeric to alphanumeric elementary moves
except that no space filling is provided.

• 	 When the DELIMITED BY identifier/literal is
specified, the contents of each sending item are
transferred character by character beginning with the
leftmost and continuing until either a delimiter for this
sending field is reached (the delimiter itself is not
transferred) or the rightmost character of this sending
field has been transferred.

• 	 When DELIMITED BY SIZE is specified, each sending
field is transferred in its entirety to the receiving field.

• 	 When the receiving field is filled or when all the
sending fields have been processed, the operation is
ended.

5-68

• 	 When the POINTER option is specified, an explicit
pointer field is available to the COBOL user to control
placement of data in the receiving field. The user
must set the explicit pointer's initial value, which
must not be less than one and not more than the
character count of the receiving field. The pointer
field must be defined as large enough to contain a
value equal to the length of the receiving field plus 1;.
this precludes arithmetic overflow when the system
updates the pointer at the end of the transfer.

• 	 When the POINTER option is not specified, no
pointer is a,vailable to the user. However, an implicit
pointer with an initial value of one is used by the
system.

• 	 When the STRING statement is executed, the initial
pointer value (explicit or implicit) points to the first
character position within the receiving field into which
data is to be transferred. Beginning at that position,
data is then positioned character by character from
left to right. After each character is positioned, the
explicit or implicit pointer is incremented by one. The
value in the pointer field is changed only in this
manner. At the end of processing, the pointer value
alwa'ys indicates one character beyond the last
~haracter transferred into the receiving field .

•

• 	 If, at any time during or after initiation of STRING
statement execution, the pointer value (explicit or
implicit) is less than one or exceeds a value equal to
the length of the receiving field, no more data is
transferred into the receiving field and, if specified,
the ON OVERFLOW imperative-statement is
executed. (The ON OVERFLOW statement is not
exe,cuted unless there was an attempt to move in one
or more characters beyond the end of identifier-7.)

• 	 If the ON OVERFLOW option is not specified~ then
when the preceding conditions occur, control passes
to the next executable statement.

After STRING statement execution is completed, only
that part of the receiving field into which data was
transferred is changed. The rest of the receiving field
contains the data that was present before this execution
of the STRING statement. Figure 5-18 illustrates the
rules of execution for the STRING statement.

Data Manipulation Statements
STRING 	 5-69

STRING statement to be executed:

STRING 10-1
10-4

INTO 10-7

Results:

10-4 at execution

16 17181 9 1*1 0 1
! I I

Third group of
characters moved

I

10-3
(delimiter)
at execution

-"

10-2 DELIMITED BY 10-3
10-5 DELIMITED BY SIZE
WITH POINTER 10-8.

10-5 at execution

(DIEI·*IFIGI
, I I

Fourth group of
characters moved

10-1 atexecution

(112131*14151
! i I

First group of
characters moved

I
I I

.

10-2 at execution

(AI*IBICI

Y
Second group of
characters moved

10-7 after execution (initialized to ALL Z before execution)

10-8
(pointer)
after execution

(initialized to 01 before execution)

Figure 5-18. STRING Statement Execution Results

STRING Statement Example

The following example illustrates some of the
considerations that apply to the STRING statement.

In the Data Division, the programmer has defined the
following fields:

01 RPT-LiNE PICTURE X(120).
01 LlNE-POS PICTURE 99.
01 LINE-NO PICTURE 9(5) VALUE 1.
01 DEC-POINT PICTURE X VALUE ':.

•

In the File Section, he has defined the following input
record:

·01 RCD-Ol.
05 CUST-INFO.

10 CUST-NAME PICTURE X(15).
10 CUST-ADDR PICTURE X(34).

05 BILL-INFO.
10 INV-NO PICTURE X(6).
10 INV-AMT PICTURE $$,$$$.99.
10 AMT-PAID PICTURE $$,$$$.99.
10 DATE-PAID PICTURE X(8).
10 BAL-DUE PICTURE $$,$$$.99.
10 DATE-DUE PICTURE X(8).

5-70

The programmer wants to construct an output line
consisting of portions of the information from RCD-01.
The line is to consist of a line number, customer name
and address, invoice number, date due, and balance
due, truncated to the dollar figure shown.

The record as read in contains the following information:

J.BJ)SMITHf>f>f>f>f>

444f>SPRINGf>ST.,f>CHICAGO,f>ILL.f>f>f>f>f>

A14275

$4,736.85

$2,400.00

09/22/76

$2,336.85

10/22/76

In the Procedure Division, th~ programmer initializes
RPT-LINE to SPACES and sets LlNE-POS (which is to
be used as the POINTER field) to 4. Then he issues this
STRING statement:

• 	 STRING LINE-NO SPACE CUST-INFO
SPACE INV-NO SPACE DATE-DUE
SPACE DELIMITED BY SIZE
BAL-DUE DELIMITED BY DEC-POINT
INTO RPT-LINE WITH POINTER LlNE-POS.

When the statement is executed, the following actions
take place:

1. 	 The field LINE-NO is moved into positions 4
through 8 of RPT- LI NE.

2. 	 A space is moved into position 9.

3. 	 The group item CUST-INFO is moved into
positions 10 through 58.

4. 	 A space is moved into position 59.

5. 	 INV-NO is moved into positions 60 through 65.

6. 	 A space is moved into position 66.

7. 	 DATE-DUE is moved into positions 67 through 74.

8. 	 A space is moved into position 75.

9. 	 The portion of BAL-DUE that precedes the decimal
point is moved into positions 76 through 81.

After the STRING statement has been executed,
RPT-LiNE appears as shown in Figure 5-19.

Column
4 10 25

! ! !
00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL.

60 67 76

! ! !
A14725 10/22/76 $2,336

Figure 5-19. STRING Statement EXample Output Data

Programming Notes

One STRING statement can be written instead of a
series of MOVE statements.

Data Manipulation Statements
STRING 	 5-71

http:2,336.85
http:2,400.00
http:4,736.85

UNSTRING Statement

The UNSTRING statement causes contiguous data in a
sending field to be separated and placed into multiple
receiving fields.

Format

UNSTR I NG identifier-l

[DELIMITED BY [ALL] {i~entifier-2} [OR [ALL] {i~entifier-3}] ..]Iiteral-l '- -- IIteral-2

INTO identifier-4 [,DELIMITER IN identifier.5] [,COUNT IN identifier-6]

[,identifier-7[.DELIMITER IN identifier-a] [,COUNT IN identifier-9]]

[WITH POINTER identifier.l0] [TALLYING IN identifier-ll]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each may be
any figurative constant except ALL literal. When a
figurative constant is specified, it is considered to be a
1-character nonnumeric literal.

Sending Field

Identifier-1 is the ~ending field. It must be an
alphanumeric data item_ Data is transferred from this
field to the receiving fields_

DELIMITED BY Option: This option specifies delimiters
within identifier-1 that control the data transfer_

The delimiters are identifier-2, identifier-3, or their
corresponding literals. Each Identifier or literal specified
represents one delimiter_ No more than 15 delimiters
may be specified. Each must be an alphanumeric data
item.

If a delimiter contains two or more characters, it is
recognized in the sending field only if the delimiter
characters are contiguous and, in the sequence
specified, in the delimiter item.

When two or more delimiters are specified, an OR
condition exists and each nonoverlap ping occurrence of
anyone of the delimiters is recognized in the sending
field in the sequence specified. For example, if
DELIMITED BY AB OR BC is specified, then an
occurrence of either AB or BC in the sending field is
considered a delimiter. An occurrence of ABC is
considered an occurrence of AB, and the search for
another delimiter resumes with C.

When the DELIMITED BY ALL option is not specified,
and two or more contiguous occurrences of any
delimiter are encountered, the current data receiving
field is filled with spaces or zeros according to the
description of the data receiving field.

When the DELIMITED BY ALL option is specified, one
or more contiguous occurrences of any delimiter are
treated as if they were only one occurrence, and this
one occurrence is moved to the delimiter receiving field
(if specified). The delimiting characters in the sending
field are treated as an elementary alphanumeric item and
are moved into the current delimiter receiving field
according to the rules of the MOVE statement.

The DELIMITER IN and COUNT IN options can be
specified only if the DELIMITED BY option is specified.

5-72

http:identifier.l0

. Data Receiving Fields UNSTRING Statement Execution

Identifier-4, identifier-7, and so on, are the data When the UNSTRING statement is initiated, the current
receiving fields and must have USAGE DISPLAY. These data receiving field is identifier-4. Data is transferred
fields can be defined as: from the sending field to the current data receiving field

according to the following rules:
• 	 Alphabetic (without the symbol B in the PICTURE

string)

• 	 Alphanumeric

• 	 Numeric (without the symbol P in the PICTURE
string)

These fields must not be defined as alphanumeric edited
or numeric edited items. Data is transferred to these
fields from the sending field.

DELIMITER IN Option: The delimiter receiving fields are
identifier-5, identifier-S, and so on. These identifiers
must be alphanumeric.

COUNT.IN Option: The data-count fields for each data
transfer are identifier-6, identifier-g, and so on. Each
field holds the count of delimited characters in the
sending field to be transferred to this receiving field; tbe
delimiters are not included in this count. .

POINTER Option: The pointer field is identifier-10; it
contains a value that indicates the relative starting
position in the sending field. When this option is
specified, the user must initialize this field before
execution of the UNSTRING statement to a value' that is
not less than one and not greater than the count of the
sending field.

TALLYING Option: The field-count is identifier-11; it is
incremented by the number of data receiving fields
acted upon in this execution of the UNSTRING
statement. When this option is specified~ the user must
initialize this field before execution of the UNSTRING
statement.

The data-count fields, the pointer field, and the
field-count field must each be integer items without the
symbol P in the PICTURE character-strings.

• 	 If the POINTER option is not specified, the sending
field character-string is examined beginning with the
leftmost character. If the POINTER option is
specified, the field is examined beginning at the
relative character position specified by the value in
the pointer field.

• 	 If the DELIMITED BY option is specified, the
examination proceeds left to right character by
character until a delimiter is encountered. If the end
of the sending field is reached before a delimiter is
found, the examination ends with the last character in
the sending field.

• 	 If the DELIMITED BY option is not specified, the
number of characters examined is equal to the size of
the current data receiving field, which depends on its
data category:

If the receiving field is alphanumeric or alphabetic,
the number of characters examined is equal to the
number of characters in the current receiving field.
If the receiving field is numeric, the number of
characters examined is equal to the number of
characters in the integer portion of the current
receiving field.
If the receiving field is described with the SIGN IS
SEPARATE clause, the characters examined are
one fewer than the size of the current receiving
field.
If the receiving field is described as a
variable-length data item, the number·of characters
examined is determined by the current size of the
current receiving field.

• 	 The examined characters (excluding any delimiter
characters) are treated as an alphanumeric elementary
item, and are moved into the current data receiving
field according to the rules for the MOVE statement.

Data Manipulation Statements
UNSTRING 5-73

http:COUNT.IN

• 	 If the DELIMITER IN option is specified. the
delimiting characters in the sending field are treated
as an elementary alphanumeric item and are moved
to the current delimiter receiving field according to
the rules for the MOVE statement. If the delimiting
condition is the end of the sending field. the current
delimiter receiving field is filled with spaces.

• 	 If the COUNT IN option is specified. a value equal to
the number of examined characters (excluding any
delimiters) is moved into the data count field.
according to the rules for an elementary move.

• 	 If the DELIMITED BY option is specified. the sending
field is further examined. beginning with the first
character to the right of the delimiter.

• 	 If the DELIMITED BY option is not specified. the
sending field is further examined. beginning with the
first character to the right of the last character
examined.

• 	 After data is transferred to the first data receiving
field (identifier-41. the current data receiving field
becomes identifier-7. For each succeeding current
data receiving field. the preceding procedure is
repeated - either until all of the characters in the
sending field have been transferred. or until there are
no more unfilled data receiving fields.

• 	 When the POINTER option is specified. the contents
of the pointer field behaves as if incremented by one
for each examined character in the sending field.
When this execution of the UNSTRING statement is
completed. the pointer field contains a value equal to
its initial value plus the number of characters
examined in the sending field.

• 	 When the TALLYING option is specified and the
execution of the UNSTRING statement is completed.
the tallying identifier contains a value equal to the
initial value plus the number of data receiving areas
acted upon; this count includes any null fields.

• 	 When an overflow condition exists. the execution of
the UNSTRING statement is terminated. If the ON
OVERFLOW option has been specified. that
imperative-statement is executed. If the ON
OVERFLOW option has not been specified. control
passes to the next executable statement. An
overflow condition exists when:
,- An UNSTRING statement is initiated and the value

in the pointer field is less than 1 or greater than
the length of the sending field.
Or. all data receiving fields have been acted upon
during UNSTRING statement execution. and the
sending field still contains unexamined characters.

If any of the UNSTRING statement identifiers are
subscripted or indexed. the subscripts and indexes are
evaluated as follows:

• 	 Any subscripting or indexing associated with the
sending field. the pointer field. or the field-count field
is evaluated only once - immediately before any data
is transferred.

• 	 Any subscripting or indexing associated with the
delimiters. the data and delimiter receiving fields or
the data-count fields. is evaluated immediately before
the transfer of data into the affected data item.

Figure 5-20 illustrates the rules of execution for the
UNSTRING statement.

5-74

The following UNSTRING statement has the execution results shown:

UNSTRING ID-SEND DELIMITED BY DEL-ID OR ALL .*.
INTO 	 ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1

IO-R2 DELIMITER IN IO-D2
ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3
ID-R4 COUNT IN ID-C4

WITH POINTER ID-P

TALLYING IN ID-T

ON OVERFLOW GO TO OFLOW-EXIT.

IO-SEND at execution

1112131*1*141 5 IsI7Is I71 7 IgI0IAIBl c IDIEIFJ

CD

(All the data
receiving fields
are defined as
alphanumeric)

DEL-ID
at execution

ID-R1 after ID-R2 after I D-R3 after I D-R4 after
execution execution execution execution

IO-D1 ID-C1 IO-D2 ID-D3 ID-C3 ID-C4 	 IO-P IO-T

(pointer) (tallying field)

G 0 [] 	 Eli] ~
(after execution) (after (after execution) (after execution ­

execution) both initialized to

01 before execution)

The order of execution is: ® A 7 is placed in ID-D3; IO-R3 is filled
with spaces; no characters are trans­

CD Three characters are placed in IO-R1. ferred, so 0 is placed in 1O-C3.

® Because ALL * is specified, one * is placed ® No delimiter is encountered before 5
in IO-D1. characters fill IO-R4; 5 is placed in

IO-C4.
® Five characters are placed in ID-R2.

(2) ID-P is updated to lS; 10-T is updated
@ A 7 is placed in I D-D2. The current to 05. There are still untransferred char­

receiving field is now ID-R3. acters still existing in ID-SEND, and so
the ON OVERFLOW exit is taken.

Figure 5-20. UNSTRING Statement Execution Results

Data Manipulation Statements
UNSTRING 	 5-75

UNSTRING Statement Example

The following example illustrates some of the
considerations that apply to the UNSTRING statement.

In the Data Division, the programmer has defined the
following input record to be acted upon by the
UNSTRING statement:

01 INV-RCD.
05 CONTROL-CHARS PIC XX.
05 ITEM-INDENT PIC X(20).
05 FILLER PIC X.
05 INV-CODE PIC X(10).
05 FILLER PIC X.
05 NO-UNITS PIC 9(6).
05 FILLER PIC X.
05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.
05 RTL-AMT PIC 9(6).99.

The next two records are defined as receiving fields for
the UNSTRING statement. DISPLAY-REC is to be used
for printed output. WORK- REC is to be used for further
internal processing.

01 	 DISPLAY -REC.
05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE.
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE.
05 DISPLAY - DOLS PIC 9(6).

01 WORK-REC.

05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).

05 WK-PRICE
REDEFINES
FIELD-A PIC 9999V99.

05 INV-CLASS PIC X(3).

The programmer has also defined the following fields
for use as control fields in the UNSTRING statement.

77 DBY-1 PIC X, VALUE IS ':.
77 CTR-1 PIC 99, VALUE IS ZERO.
77 CTR-2 PIC 99, VALUE IS ZERO.
77 CTR-3 PIC 99, VALUE IS ZERO.
77 CTR-4 PIC 99, VALUE IS ZERO.
77 DLTR-1 PICX.
77 DLTR-2 PIC X.
77 CHAR-CT PIC 99, VALUE IS 3.
77 FLDS-FILLED PIC 99, VALUE IS ZERO.

In the Procedure Division, the programmer writes the
following UNSTRING statement to move subfields of
INV-RCD to the subfields of DISPLAY-REC and
WORK-REC:

UNSTRING INV-RCD DELIMITED BY

ALL SPACES OR '/' OR DBY-1

INTO ITEM-NAME COUNT IN CTR-1
INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2

I NV-CLASS

M-UNITS COUNT IN CTR-3

FIELD-A

DISPLAY-DOLS DELIMITER IN

DLTR-2 COUNT IN CTR-4

WITH POINTER CHAR-CT

TALLYING IN FLDS-FILLED

ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before the UNSTRING statement is issued, the
programmer places the value 3 in the CHAR-CT (the
POINTER item), so as not to work with the two control
characters at the beginning of INV-RCD. In DBY-1, a
period is placed for use as a delimiter, and in
FLDS-FILLED (the TALLYING item) the value 0 is
placed. The following data is then read into INV-RCD as
shown in Figure 5-21.

5-76

Column

1 10 20 30 40 50 60

j I I j j j j

ZYFOUR-PENNY-NAILS 707890/BBA

Figure 5-21. UNSTRING Statement Example - Input Data

When the UNSTRING statement is executed. the
• following actions take place:

1. 	 Positions 3 through 18 (FOUR-PENNY-NAILS) of
INV-RCD are placed in ITEM-NAME. left-justified
within the area, and the unused character positions
are padded with spaces. The value 16 is placed in
CTR-1.

2. 	 Because ALL SPACES is specified as a delimiter,
the five contiguous SPACE characters are
considered to be one OCGurrence of the delimiter.

3. 	 PositiQns 24 through 29 (707890) are placed in

INV-NO. The delimiter character / is placed in

DLTR-1, and the value 6 is placed in CTR-2.

4. 	 Positions 31 through 33 are placed in INV-CLASS.
The delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the
SPACE is merely bypassed.

5. 	 Positions 35 through 40 (475120) are examined
and are placed in M-UNITS. The deli'miter is a
SPACE, but because no receiving field has been
defined as a receiving area for delimiters, the
SPACE is bypassed. The value 6 is placed in
CTR-3.

6. 	 Positions 42 through 46 (00122) are placed in
FIELD-A and right-justified within'the area. The
high-order digit position is filled"with a 0 (zero).
The delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the
SPACE is bypassed ..

475120 00122 000379.50

7. 	 Positions 48 through 53 (000379) are placed in
. DISPLAY-DOLS. The period (.) delimiter character

is placed in DLTR-2, and the value 6 is placed in
CTR-4.

8. 	 Because all receiving fields have been acted upon
and two characters of data in INV-RCD have not
been examined, the ON OVERFLOW exit is taken,
and execution of the UNSTRING statement is
completed.

At the end of execution of the UNSTRING statement,

DISPLAY-REC contains the following data:

707890 FOUR-PENNY-NAILS 000379

WORK-REC contains the following data:

475120000122BBA

CHAR-CT (the POINTER field) contains the value 55,
and FLO-FILLED (the TALLYING field) contains the

. value 6.

Programming Notes

One UNSTRING statement can be written instead of a
series of MOVE statements.

Data Manipulation Statements
UNSTRING 	 5-77

http:000379.50

PROCEDURE BRANCHING STATEMENTS·

Statements, sentences, and paragraphs in the Procedure
Division are ordinarily executed sequentially. The
procedure branching statements allow alterations in the
sequence. The procedure branching statements are:
ALTER, EXIT, GO TO, PERFORM, and STOP.

ALTER Statement

Ttle ALTER statement changes the transfer point
specified in a GO TO statement.

Format

ALTER procedure-name-l!Q. [PROCEED TO] procedure-name-2

Gprocedure-name-3 TO [PROCEED TO] procedure-name-4]

Procedure-name-l, procedure-name-3, and so on, must
each name a Procedure Division paragraph that contains
only one sentence. That sentence must be a GO TO
statement without the DEPENDING ON option.

Procedure-name-2, procedure-name-4, and so on, must
each name a Procedure Division section or paragraph.

ALTER statement execution modifies the GO TO
statement in the paragraph named by
procedure-name-l, procedure-name-3, and so on.
Subsequent executions of the modified GO TO
statement(s) cause control to be transferred to
procedure-name-2, and (if specified) procedure-name-4,
and so on. For example:

PARAGRAPH-l.

GO TO BYPASS-PARAGRAPH.

PARAGRAPH-1A.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-l TO PROCEED TO
PARAGRAPH-2.

PARAGRAPH-2.

Before the ALTER statement is executed, when control
reaches PARAGRAPH-l, the GO TO statement transfers
control to BYPASS-PARAGRAPH. After execution of the
ALTER statement, however, the next time control
reaches PARAGRAPH-l, the GO TO statement transfers
control to PARAGRAPH-2.

Programming Notes

The ALTER statement acts as a program switch,
allowing, for example, one sequence of execution during
initialization and another sequence during the bulk of file
processing. Because altered GO TO statements are
difficult to debug, it is preferable to test a switch, and
based on the value of the switch, execute a particular
code sequence.

Segmentation Information

A GO TO statement in a section whose priority is
greater than or equal to 50 must not be referred to by
an ALTER statement in a section with a different
priority. All other uses of the ALTER statement are valid
and are performed.

Modified GO TO statements in independent segments
may sometimes be returned to their initial states. For
further discussion, see Segmentation-Procedure Division
in Chapter 6.

5-78

L

EXIT Statement

The EXIT statement provides a common end point for a
series of procedures.

Format

EXIT [PROGRAM]

The EXIT statement must appear in a sentence by itself,
and this sentence must be the only sentence in the
paragraph. The EXIT statement enables the user to
assign a procedure-name to a given point in a program.

The EXIT statement has no other effect on the
compilation or execution of the program.

The EXIT PROGRAM statement is discussed under
Subprogram Linkage Statements ih Chapter 6.

Programming Notes

The EXIT statement is useful for documenting the end
point in a series of procedures. If an exit paragraph is
written as the last paragraph in a Declarative procedure
or a series of performed procedures, it identifies the
point at which control will be transferred. When control
reaches such an exit paragraph and the associated
Declarative or PERFORM statement is active, control is
transferred to the appropriate part of the Procedure
Division. When control reaches such an exit paragraph
and no associated PERFORM statement or Declarative
procedure is active, control passes through the EXIT
statement to the first statement of the next paragraph.

If an EXIT statement is not written, the end of the
sequence is difficult to determine unless the user knows
the logic of the program.

Branching Statements
ALTER-EXIT 5-79

GO TO Statement

The GO TO statement transfers control from one part of
the Procedure Division to another. The formats of the
GO TO statement are as follows:

Format 1

GO TO [procedu re-name-1]

Format 2

GO TO procedure-name-' [, procedure-name-2] •••• procedure-name-n

DEPENDING ON Identifier

Each procedure-name specified must name a paragraph
or section in the Procedure Division_ Identifier must
name an elementary integer item.

Format .I-Unconditional GO TO

The GO TO statement causes control to be transferred
to the first statement in the paragraph or section named
in procedure-name-1 unless the GO TO statement has
been modified by an ALTER statement.

When a Format 1 GO TO statement appears in a
sequence of imperative statements, it must be the last
statement in the sequence.

When a paragraph is referred to by an ALTER
statement, the paragraph may consist only of a
paragraph-name followed by a Format 1 GO TO
statement.

If procedure-name-1 is not specified in a Format 1 GO
TO statement, an ALTER statement must have been
executed before the execution of the GO TO statement.
The GO TO statement must immediately follow a
paragraph-name and muSt be the only statement in the
paragraph.

Format 2-Conditional GO TO

Control is transferred to one of a series of procedures,
depending on the value of identifier. When identifier has
a value of one, control is transferred to the first
statement in the procedure named by
procedure-name-1; if it has a value of two, control is
transferred to the first statement in the procedure
named by procedure-name-2, and so on.

If the value of identifier is anything other than a value
within the range 1 through n (where n is the number of
procedure-names specified in this GO TO statement),
the GO TO statement is ignored. Instead, control passes
to the next statement in the normal sequence of
execution.

The maximum number of procedure-names permitted
for a Format 2 GO TO statement is 99. The identifier
field can be defined as containing up to 4 bytes.

5-80

L

PERFORM Statement

The PERFORM statement transfers control explicitly to
one or more procedures and implicitly returns control to
the next executabl~ statement after execution of the
specified procedure(s) is completed_ The formats of the
PERFORM statement are as follows:

Format 1

[{ THROUGH}]PERFORM procedure-name-' THRU procedure-name-2

Format 2

[{THROUGH} - .] {i.dentifier-,}
PERFORM procedure-name-' THRU procedure-name-2 TIMES

Integer-'

Format 3

PERFORM procedure-name-' _[{~UGH} procedure-name-2] UNTIL condition-l

Format 4

[{ THROUGH}]PERFORM procedure-name-' THRU procedure-name-2

identifier-2 }
identifier-' " {VARYING {" } FROM Index-name-2
Index-name-' I" 12Itera -

BY { i?entifier-3} UNTIL condition-l
- Ilteral-3 -- ­

identifier-5 }
identifier-4 " {[AFTER {_ } FROM Index-name-5

"mdex-name-4 Iiteral-5

Y{ identifier-6} UNTIL d- - 2B I" 16 con Itlon­- Itera- -- ­

identifier-8 }
[AFTER {~dentifier-7 } FROM { index-name-8"

mdex-name-7 -- Iiteral-8

BY { i?entifier-9} UNTI L condition-3]]

- hteral-9 --- "

Branching Statements
GO TO-PERFORM 5-81

L

Each procedure-name must name a section or paragraph
in the Procedure Division.

When both procedure-name-1 and procedure-name-2
are specified, if either is a procedure-name in a
Declarative procedure, then both must be
procedure-names in the same Declarative procedure.

Each identifier must name a numeric elementary item.

Each literal must be a numeric literal.

Whenever a PERFORM statement is executed, control is
transferred to the first statement of the procedure
named procedure-name-1. Control is always returned to
the statement following the PERFORM statement. The
point from which this control is returned is determined
as follows:

• 	 If procedure-name-1 is a paragraph name and
procedure-name-2 is not specified, the return is made
after the execution of the last statement of
procedure-name-1.

• 	 If procedure-name-1 is a section name and
procedure-name-2 is not specified, the return is made
after the execution of the last sentence of the last
paragraph in that section.

• 	 If procedure-name-2 is specified and it is a paragraph
name, the return is made after the execution of the
last statement of that paragraph.

• 	 If procedure-name-2 is specified and it is a section
name, the return is made after the execution of the
last sentence of the last paragraph in the section.

The only necessary relationship between
procedure-name-1 and procedure-name-2 is that a
consecutive sequence of operations is executed
beginning at the procedure named by procedure-name-1
and .ending with the execution of the procedure named
by procedure-name-2.

When both procedure-name-1 and procedure-name-2
are specified, GO TO and PERFORM statements may
appear within the sequence of statements contained in
these paragraphs or sections. When only
procedure-name-1 is specified, PERFORM statements
may appear within the procedure. A GO TO statement
may also appear, but should not refer to a
procedure-name outside the range of procedure-name-1.
If this is done, results are unpredictable and are not
diagnosed.

When the performed procedures include another
PERFORM statement, the sequence of procedures
associated with the embedded PERFORM statem.ent
must be totally included in or totally excluded from the
performed procedures of the first PERFORM statement.
That is, an active PERFORM statement whose execution
point begins within the range of performed procedures
of another active PERFORM statement must not allow
control to pass through the exit point of the other active
PERFORM statement. In addition, two or more such
active PERFORM statements must not have a common
exit.

When control passes to the sequence of procedures by
means other than a PERFORM statement, control
passes through the exit point to the next executable
statement as if no PERFORM statement referred to
these procedures.

Figure 5-22 illustrates valid sequences of execution for
PERFORM statements.

5-82

PERFORM a THRU m x PERFORM aTHRU m c x

a

d PERFORM fTHRU j

f

~
m

x PERFORM a THRU m

a

f

m

d PERFORM f THRU j

Figure 5-22. Valid PERFORM Statement Execution Sequence.

The preceding rules refer to all four formats of the
PERFORM statement. The following sections give rules
applying to each individual format.

a

d

h·

PERFORM f THRU j

m

f

~

Branching Statements
PERFORM 5-83

Format 1 	 Format 4

Format 1 is the basic PERFORM statement. The
procedure(s) referred to is executed once, and then
control passes to the next executable statement
following the PERFORM statement.

Format 2

Format 2 uses the TIMES option. Identifier-1 must
name an integer item. The procedure(s) referred to is
executed the number of times specified by the value in
identifier-1 or integer-1. Control then passes to the next
executable statement following the PERFORM
statement. The following rules apply:

• 	 If integer-1 or identifier-1 is zero or a negative
number at the time the PERFORM statement is
initiated, control passes to the statement following
the PERFORM statement.

• 	 After the PERFORM statement has been initiated, any
reference to identifier-1 or 'change in the value of
identifier-1 has no effect in varying the number of
times the procedures are executed.

Format 3

Format 3 uses the UNTIL option. The procedure(s)
referred to is performed until the condition specified by
the UNTIL option is true. Control is then passed to the
next executable statement following the PERFORM
statement.

If condition-1 is true at the time the PERFORM
statement is encountered, the specified procedure(s) is
not executed.

Format 4 uses the VARYING option. This option
increments or decrements one or more identifiers or
index-names according to the following rules. Once the
condition(s) specified in the UNTIL option is satisfied,
control is passed to the next executable statement
following the PERFORM statement.

No matter how many variables are specified, the
following rules apply:

• 	 In the VARYING/AFTER options, when an
index-name is specified:

The index-name is initialized and incremented or
decremented according to the rules for the SET
statement. For a description of the SET statement
see Table Handling in Chapter 6.
In the associated FROM option, an identifier must
be described as an integer and have a positive
value; a literal must be a positive integer.
In the associated BY option, an identifier must be
described as an integer; a literal must be a
nonzero integer.

• 	 In the FROM option, when an index-name is
specified:
- In the associated VARYING/AFTER option, an

identifier must be described as an integer. It is
initialized as described in the SET statement.

-	 In the associated BY option, an identifier must be
described as an integer and have a nonzero value;
a literal must be a nonzero integer.

• 	 In the BY option, identifiers and literals must have a
nonzero value.

• 	 Changing the values of identifiers and/or
index-names in the VARYING, FROM, and BY
options during execution changes the number of
times the procedures are executed.

The way in which operands are incremented or
decremented depends on the number of variables
specified. In the following discussion, every reference to
identifier-n refers equally to index-name-n except when
identifier-n is the object of the BY option.

5-84

L
Varying 01lE' Identifier: The following actions take
place: Execution of

PERFORM

1. 	 Identifier-1 is set equal to its starting value, Statement

Exit

Beginsidentifier-2 or literal-2.

2. 	 Condition-1 is evaluated:
a. 	 If it is false, steps 3 through 5 are executed.
b. 	 If it is true, control passes directly to the

statement following the PERFORM statement.
 Set Identifier-1
Equal-to Its

3. 	 Procedure-1 through procedure-2 (if specified) are FROM Value

executed once.

4. 	 Identifier-1 is augmented by identifier-3 (or
literal-31.' and condition-1 is evaluated again.

5. 	 Steps 2 through 4 are repeated until condition-1 is
true.

Figure 5-23 is a flowchart illustrating the logic of the
False

PERFORM statement when one identifier is varied.

Execute
Procedure-1
THRU
Proced u re-2

Augment
Identifier-1
With Its
Current BY
Value

Figure 5-23. Format 4 PERFORM Statement
Logic-Varying Two Identifie,.

Branching Statements
PERFORM 5-85

The following example shows a PERFORM state~ent
varying one identifier. This PERFOR~ logic is executed
100 times.

WORKING-STORAGE SECTION.

77 SUBI PIC 999.

77 TOTAL-HOLD PIC 99 VALUE 57.

77 HOLD-2 PIC 99 VALUE 10.

77 HOLD-THE-SUM PIC 99 VALUE ZERO.

01 TABLE-ELEMENT.

03 ELEMENTS-OF-TABLE OCCURS 100 TIMES PIC 9.

PROCEDURE DIVISION.

100-START-PROCESSING.

* THIS PERFORM LOGIC IS EXECUTED 100 TIMES.

PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT VARYING SUBI
FROM 1 BY 1 UNTIL SUBI } 100.

* THIS ADD STATEMENT IS EXECUTED AFTER PERFORM IS DONE.

ADD TOTAL-HOLD HOLD-2 GIVING HOLD-THE-SUM.

DISPLAY 'TOTAL OF TWO VARIABLES = ' HOLD-THE-SUM.

PERFORM ANOTHER-WAY-TO-INITIALIZE THRU AWTI-EXIT.

* *************************.

THE TABLE WILL BE ALL ZEROS AND SHOULD PRINT AS SUCH.
*

*
* * *************************.

DISPLAY '------------------T~E-------TABLE----------'.

DISPLAY TABLE-ELEMENT.

STOP RUN.

SAMPLE-PERFORM.
MOVE ZEROS TO ELEMENTS-OF-TABLE (SUB1).

PERFORM-EXIT. EXIT.
ANOTHER-WAY-TO-INITIALIZE.

MOVE ZEROS TO TABLE-ELEMENT.
AWTI-EXIT. EXIT.

* ******************END OF PROGRAM**************************

5·86

Varying Two Identifiers: The following actions take
place:

1. 	 Identifier-1 and identifier-4 are set to their initial
values, identifier-2 (or literal-2) and identifier-5 (or
literal-5), respectively.

2. 	 Condition-1 is evaluated:
a. 	 If it is false, steps 3 through 7 are executed.
b. 	 If it is true, control passes directly to the

statement following the PERFORM statement.

3. 	 Condition-2 is evaluated:
a. 	 If it is false, steps 4 through 6 are executed.
b. 	 If it is true, identifier-4 is set to the current

value of identifier-5, and identifier-1 is
augmented by identifier-3 (or literal-3), and step
2 is repeated.

4. 	 Procedure-1 through procedure-2 (if specified) are
executed once.

5. • Identifier-4 is augmented by identifier-6 (or
literal-6).

6. 	 Steps 3 through 5 are repeated until condition-2 is
true.

7. 	 Steps 2 through 6 ar~ repeated until condition-1 is
true.

At the end of PERFORM statement execution,
identifier-4 contains the current value of identifier-5.
Identifier-1 has a value that exceeds the last used
setting by the increment/decrement value (unless
condition-1 was true at the beginning of PERFORM
statement execution, in which case identifier-1 contains
the current value of identifier-2).

Figure 5-24 is a flowchart illustrating the logic of the
PERFORM statement when two identifiers are varied.

Statement Begins

Identifier·'
Identifier-4
Set to Initial
FROM Value

False

Execute
Procedure·1
THRU
Procedure-2

Augment
Identifier-4
With Its
Current
BY Value

Exit

Set Identifier-4
to Its Current
FROM Value

Augment
Identifier·1
With Its
Current
BY Value

Figure 5-24. Format 4 PERFORM Statement

Logio-Varying Three Identifiers

Branchi ng Statements
PERFORM 5-87

The following example shows a PERFORM statement
varying two identifiers. This PERFORM logic is executed
126 times. This program searches a table and gives a
total of female employees.

DATA DIVISION.

r'ILF SECTION.

FD EMPLOYEE-DA1A

BLOCK CONTAINS 1 RECORDS

m:.cmw CUNTAINS no Cllr"f(f.1C:nr;:,'i'

LABEL RECORDS STANDARD

DATA RECORD IS EMPLOYEE-RECURD.

01 EMPLOYEE-RECORD PIC X(80). '

WORKING-STORAGE SECTION.

n fal:mWS ..·IN PIC 9(~» VALUE ZErws.

77 [(If· S~J PIC X VAL.UE 'N'.

OJ 'ICJI.D-·INPUT""I~EC()I:<D.

03 	 EMPLOYEE-SEX PIC 9.

88 MALE VALUE IS 1.

nn FU"IALE !)(lI.l.JE IS' ::~.

03 EMf'LUYFE 'IU1CE PIC 9.

88 RACE-CODES VALUES ARE \ THRU 7.

03 EMPLUYEE-JOB-CLASS PIC 99.

Ul) ,J(illClliSS I)AL.UFS AF<E 01 1I1IW :UL

03 FIlL.ER PIC X(76) VALUE SPACES.

() 1. E h FL.. U'([L _. T A Iii.. I: .

03 [-SEX OCCURS 2 TIMES.

05 [-RACE OCCURS 7 TIMES.

07 E-JUP UCCURS 1.8 TIMES PIC 99.

01 SUI-d. PIC 99.

01 SUFi2 PIC'J9.

OJ S'UH.3 PIC 99.

01 TUI'AL-WUMEN PIC 9(5) VAL.UE ZEROS.

PROCLDURF DIVISION.

, {)()-:\Tl)I:;:T TT,

ill'l: t! 1NPUT Et-IPL.OYEL DAT A OUT I:'U T PI~ I NTEI)""F~EPOI<T •

I-j()l)[llldJS TO EMI~'ur,(EE'-TABL F •

~.' (> () -. i([() l). .1.1 •

1;:[1" II Et'1I'LUY[E ..·nt) T A 1:(FCOf~D I I~ TD HOLD-l Nf'U T -1([COF(1)

AT END MOVE 'Y' TO EUF-SW.

i~ J:o Ii i. T Ii 1\ ECOl;; J) S' -- :r. N •

3 1)1) ..··tii;TNLINE····LUC;IC.
* *************'* •••*****.*.*' •• '.'****.*****••••*.

, THE PERFORM STATEMENT USING TWO VARIABLES WILL DE DONE 126 .
* TIMES BY THE COMPUTER.

PERFORM LOAD-TABLE UNTIL. EOF-SW = 'Y',

PERFORM FIND-NUMBER-OF-WOMEN VARYING SUB2 FROM 1 BY 1
urn J L. Sl.Jt.l;:> > 7
~FTER SUB3 FROM 1 BY 1 UNTIL SUB3) lB.

5-88

L PERFORM WRITE-REPORT THRU WR-EXIT~
DISPLAY 'TOTAL RECORDS IN ' RECORDS-IN.
STOP fd.IN.

LUi~D-·T(~DLE. -
MOVE EMPLOYEE-SEX TO SUBt.
MOVE EMPLOYEE-RACE TO SUB2.
MOVE EMPLOYEE-JOB-CLASS TO SUB3.
ADD 1 TO E-JOB (SUDi SUB2 SUB3).
PEF::FOf::l'j ::.'O()-.. f(EAD-- IT.

FIND-NUMDER-OF-WOMEN.
ADD E-JOB (2SUB2 SUB3) TO TOTAL-WOMEN.

~.If:.: I TF F([F'OI:;:l.
MOVE TOTAL-WOMEN TO PRINT-OUT.
l-JI:<JTE pr;:INT ..·OUT.

l~r\-"E;< IT, EX IT.

Varying Three Identifiers: The actions are the same as
for varying two identifiers except that identifier-7 goes
through the complete cycle each time that identifier-4 is
augmented by identifier-6 or literal-6, which in turn goes
through a complete cycle each time identifier-l is varied.

At the end of PERFORM statemen! execution,
identifier-4 and identifier-7 contain the current values of
identifier-5 and identifier-8,_ respectively. Identifier-l has
a value exceeding its last used setting by one .
increment/decrement value (unless condition-1 was true
at the beginning of PERFORM statement execution, in
which case identifier-1 contains the current value of
identifier-2).

Figure 5-25 is a flowchart illustrating the logic of the
PERFORM statement when three identifiers are varied.

Branching Statements
PERFORM 5-89

The following example shows a PERFORM statemen~
varying three identifiers. This PERFORM Ipgic is
executed 250 times.

WORKING-STORAGE SECTION.

77 SUBi PIC 99.

77 SUB2 PIC 99.

77 SUB3 PIC 99.

77 TEST-IT PIC 99 VALUE 00.

77 TOTAL-RECS PIC 99 VALUE ZEROS.

01 COMPANY-TABLE.

05 DIVISION-IN OCCURS iO TIMES.

iO DIVISION-NAME PIC X(10).

10 DIVISION-NUMBER PIC 9(4).

10 	SECTION-IN OCCURS S TIMES.

15 	UNIT-IN OCCURS S TIMES.
20 UNIT-NAME PIC XeS).
20 UNIT-NUMBER PIC 9(4).

PROCEDURE DIVISION.
lOO-START-PROCESSING.

* **.

* 	 THIS PERFORM LOGIC IS EXECUTED 2S0 TIMES BY THE COMPUTER.

* 	 *******************************.**************************.
PERFORM ZERO-OUT-BIG-TABLE VARYING SUBi FROM 1 BY 1
UNTIL. SUBi. > iO

* 	 SUBt IS VARIED L.AST BY THE COMPUTER.

AFTER SUB2 FROM 1 BY i UNTIL SUB2) 5

* 	 SUB2 IS VARIED ******2ND****** BY THE COMPUTER.

AFTER SUB3 FROM i BY i UNTIL SUB3 > 5.

* 	 ******SUB3 IS VARIED FIRST BY THE COMPUTER******* •

PERFORM ADDRESS-THE-VARIABLES THRU ATV-EXIT.

DISPL.AY 'VARIABLE TEST-IT = ' TEST-IT.
STOP RUN.

ZERO-OUT-BIG-TABLE.

MOVE ZEROS TO UNIT-IN (SUBi, SUB2, SUB3).

ADDRESS-THE-VARIABLES.

IF UNIT-NUMBER OF UNIT-IN OF SECTION-iN OF DIVISION-IN

OF COMPANY-TABLE (3, 4, 5) = 0 ADD i TO TEST-IT.

ATV-·EXIT. EXIT.

5·90

http:DISPL.AY

Execution of
PERFORM
Statement Begins

Identifier-1
I de ntifi er-4
Identifier-7
Set to Initial
FROM Values

False

Execute
Procedure-1
THRU
Procedure-2

Augment
Identifier-7
with Its
Current
BY Value

Exit

Set Identifier-7
to Its Current
FROM Value

Augment
Identifier-4
with Its
Current
BY Value

Set Identifier-4
to Its Cu rrent
FROM Value

Augment
Identifier-1
with Its
Current
BY Value

Figure 5-25_ Format 4 PERFORM Statement Logic-Varying Three Identifiers
Branching Statements
PERFORM 5-91

Programming Notes

The procedures executed by a PERFORM statement are
in effect a closed subroutine that can be entered from
other points in the program.

The Format 4 PERFORM statement is especially useful
in table handling. One Format 4 PERFORM statement
can serially search an entire 3-dimensional table.

Segmentation Information

A PERFORM statement appearing in a permanent
segment can have in its range only one of the following:

• 	 Sections, each of which has a segment number less
than 50.

• 	 Sections or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent
segment can have in its. range only one of the following:

• 	 Sections, each of which has a segment number less
than 50.

• 	 Sections or paragraphs wholly contained within the
same independent segment as the PERFORM
statement.

Control is passed to the performed procedures only
once for each execution of the PERFORM statement.

STOP Statement

The STOP statement halts the object program either
temporarily or permanently.

Format

STOP {RUN}
-- literal

The literal can be numeric or nonnumeric, and can be
any figurative con'stant except ALL literal. If the literal is
numeric, it must be an unsigned integer.

When STOP literal is specified, the literal is
communicated to the operator, and object program
execution is suspended. Program execution is resumed
only after operator intervention.

The action taken by the operator determines whether
the job continues at the next executable statement in
the sequence, the job step is canceled, or the entire job
is canceled.

When STOP RUN is specified, execution of the object
program is terminated, and control is returned to the
system. If a STOP RUN statement appears in a
sequence of imperative statements, it must be the last
or the only statement in the sequence. All files should
be closed before a STOP RUN statement is executed.

An implicit return to the calling program is always
generated after the last statement in the source
program. In a main program, this is equivalent to a
STOP RUN. In a subprogram, this is equivalent to an
EXIT PROGRAM.

For restrictions on the STOP RUN statement in calling
and called programs, see Program Termination
Statements in Chapter 8.

Programming Notes

The STOP literal statement is useful for special
situations when operator intervention is needed during
program execution.

5-92

L
COMPILER-DIRECTING STATEMENT$

Compiler-directing statements provide instructions to the
COBOL compiler. The compiler-directing statements are
COPY, ENTER, and USE.

Only the ENTER statement is discussed in this chapter.
The COpy statement is discussed under Source Program
Ubrary in Chapter 6. The USE statements are discussed
under Debugging Features in Chapter 6.

ENTER Statement

The System/34 COBOL compiler does not allow another
source language to be used in COBOL source programs.
Therefore, the ENTER statement is not required or used
by the System/34 COBOL compiler .

. Format

ENTE R lan9uage~name [routine.name]

If the ENTER statement is inserted in the source
program, it is treated as a comment. Statements in the
ENTERed language must not be included in the source
program.

Branch; ng Statements
ENTER 5·93

5-94

Chapter 6. Additional Functions

System/34 COBOL offers several additional functions
that are useful to programmers who are writing more
advanced applications. The additional functions provided
by System/34 COBOL discussed in this chapter are:

• Table Handling

• SORT-MERGE

• Library Copy Facility

• Segmentation

• Inter-program Communication

• Debugging

• FI PS Flagger

Additional Functions 6-1

Table Handling

Tables are often used in data processing. A table is a
set of logically consecutive items, each of which has the
same data description as the other items in the set. The
items in a table can be described as separate contiguous
items. However, this approach may not be satisfactory
for two reasons. From a documentation standpoint, the
homogeneity of the data items is not apparent;
secondly, repetitive coding 'to reference unique
data-names become a severe problem. Thus, a method
of data reference is used which makes it possible to
refer to all or to part of one table as an entity.

TABLE HANDLING CONCEPTS

In COBOL, a table is defined with an OCCURS clause in
its data description. The OCCURS clause specifies that
the named item is to be repeated as many times as
stated. The item so named is considered a table
element, and its name and description apply to each
repetition (or occurrence) of the item. Because the
occurrences are not given unique data-names, reference
to a particular occurrence can be made only by
specifying the data-name of the table element, together
with the occurrence number of the desired item within
the element.

The occurrence number is known as a subscript and the
technique of supplying the occurrence number of
individual table elements is called subscripting. A related
technique, calied indexing, is also available for table
references. Both subscripting and indexing are
described in the following sections.

Table Definition

COBOL allows tables in one, two or three dimensions.

To define a one-dimensional table, the user writes an
OCCURS clause as part of the definition of a table
element. However, the OCCURS clause must not appear
in the description of a group item that contains the table
element, that is, an OCCURS clause must not be
specified for an 01-level item. For example:

01 TABLE-ONE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-A PIC X(4).
10 ELEMENT-B PIC 9(4).

TABLE-ONE is the group item that contains the table.
ELEMENT-ONE names the table element of a
one-dimensional table that occurs three times.
ELEMENT-A and ELEMENT-8 are elementary items
subordinate to ELEMENT-ONE.

To define a two-dimensional table, a one-dimensional
table is defined within each occurrence of another
one-dimensional table.

For example:

01 TABLE-TWO.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-A PIC X(4).
15 ELEMENT-B PIC 9(4).

ELEMENT-ONE is an element of a one-dimensional
table that occurs three times. ELEMENT-TWO is an
element of a two-dimensional table that occurs three
times within each occurrence of ELEMENT -ONE.
ELEMENT-A and ELEMENT-B are elementary items
subordinate to ELEMENT-TWO.

6-2

L
To define a three-dimensional table, a one-dimensional
table is defined within each occurrence of another
one-dimensional table, which is itself contained within
each occurrence of another one-dimensional table. For
example:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES

PICTURE X(8).

In this example, TABLE-THREE is the group item that
contains the table. ELEMENT-ONE is an element of a
one-dimensional table that occurs three times.
ELEMENT - TWO is an element of a two-dimensional
table that occurs three times within each occurrence of
ELEMENT-ONE. ELEMENT-THREE is an element of a
three-dimensional table that occurs two times within
each occurrence of ELEMENT-TWO. Figure 6-1 shows
the storage layout for TABLE-THREE.

ELEMENT-ONE ELEMENT·TWO
Occu'rs Three Times Occurs Three Times

ELEMENT-TWO (1, 1)

ELEMENT·ONE (1) ELEMENT-TWO (1,2)

ELEMENT-TWO (1,3)

ELEMENT-TWO (2, 1)

ELEMENT-ONE (2) ELEMENT-TWO (2,2)

ELEMENT-TWO (2,3)

ELEMENT-TWO (3, 1)

ELEMENT-ONE (3) ELEMENT-TWO (3,2)

ELEMENT-TWO (3,3)

Figure 8.1 Storage Layout for TABLE-THREE

Table References

Whenever the user refers to a table element, or to any
item associated with a table element the reference must
indicate which occurrence is intended.

For a one-dimensional table, the occurrence number of
the desired element gives the complete information. For
tables of mo~e than one dimension, an occurrence
number for each dimension must be supplied. In the
three-dimensional table defined in the previous
discussion, for example, a reference to
ELEMENT-THREE must supply the occurrence number
for ELEMENT-ONE, ELEMENT-TWO, and
ELEMENT-THREE. Either subscripting or indexing,
described in the following paragraphs~ can be used to
supply the necessary references.

ELEMENT·THREE Byte Dis­
Occurs Two Times placement

o
ELEMENT-THREE (1, 1,1)

8
ELEMENT-THREE (1, 1, 2)

16
ELEMENT-THREE (1,2,1)

24
ELEMENT-THREE (1,2,2)

32
ELEMENT-THREE (1,3,1)

40
ELEMENT-THREE (1,3,2)

48
ELEMENT-THREE (2,1,1)

56
ELEMENT-THREE (2, 1,2)

64
ELEMENT-THREE (2,2,1)

72
ELEMENT-THREE (2,2,2)

80
ELEMENT-THREE (2,3,1)

88
ELEMENT-THREE (2,3,2)

96
ELEMENT-THREE (3, 1,1)

104
ELEMENT-THREE (3,1,2)

112
ELEMENT-THREE (3,2,1)

120
ELEMENT-THREE (3,2,2)

128
ELEMENT-THREE (3,3,1)

136
ELEMENT-THREE (3,3,2)

144

Additional Functions 6-3

Subscripting

Subscripting is a method of providing table references
through the use of subscripts. A subscript is an integer
value that specifies the occurrence number of a table
element. Subscripts can be used only when reference is
made to an individual item within a table element.

Format

{ data.name-1 } [{OF} data.-name-2 ~ ••• (subscript-1 [,subscript-2 [,subscriPt-3]])INcondition-name

Data-name-1 must be the name of a table element, and
can be qualified, if necessary. Note that when
qualification is used, it is data-name-1 that is
subscripted, not data-name-2.

The subscript can be represented either by a literal or a
data-name.

A literal subscript must be an integer, and it must have
a value of one or greater. The literal can have a positive
sign or it may be unsigned. Negative subscript values
are not permitted. For example, the following are valid
literal subscript references to TABLE-THREE:

ELEMENT-THREE (1, 2, 1)

ELEMENT - THREE (2, 2, 1)

A data-name subscript must be described as an
elementary numeric integer data item. A data-name
subscript may be qualifed; it may not be subscripted or
indexed. For example, assuming that SUB1, SUB2, and
SUB3 are all items subordinate to SUBSCRIPT-ITEM,
valid data-name subscript references to TABLE-THREE
are:

ELEMENT-THREE (SUB1, SUB2, SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF
SUBSCRIPT-ITEM, SUB2 OF SUBSCRIPT-ITEM,
SUB3 OF SUBSCRIPT-ITEM)

The set of one to three subscripts must be written
within a balanced pair of parentheses immediately
following data-name-1 or its last qualifier. One or more
spaces may optionally precede the opening parenthesis.

When more than one subscript is specified, each
subscript must be separated from the next by either a
space or a comma and a space.

When more than one subscript is required, the
subscripts are written in the order of successively less
inclusive data dimensions. For example, in the table
reference ELEMENT-THREE (3, 2, 1), the first value (3)
refers to the occurrence within ELEMENT-ONE, the
second value (2) refers to the occurrence within
ELEMENT - TWO, and the third value (1) refers to the
occurrence within ELEMENT-THREE.

The lowest possible subscript value is 1; this value
points to the first occurrence within the table element.
The next sequential elements are pointed to by
subscripts with values 2, 3, and so on. The highest
permissible subscript value in any particular table
element is the maximum number of occurrences
specified in the OCCURS clause. In the example in the
above paragraph, the highest possible subscript value
for ELEMENT-ONE is 3, for ELEMENT-TWO is 3, and
for ELEMENT-THREE is 2.

6-4

The following example shows subscripting using a
3-level table. In this example, UNIT-NUMBER could
also be referenced as UNIT-NUMBER (3, 4, 5).

WORKlNG-STORAGE SECTION.

n SUB1 PIC 99.

77 SUB2 PIC 99.

n SUB3 PIC 99.

77 TEST-IT PIC 99 VALUE 00.

77 TOTAL-RECS PIC 99 VALUE lEROS.

01 COMPANY-TABLE.

05 DIVISION-IN OCCURS 10 TIMES.
10 DIVISION-NAME PIC X(10).
10 DIVISION-NUMBER PIC 9(4).

10 SECTION-IN OCCURS 5 TIMES.

15 UNIT-IN OCCURS 5 TIMES.
20 UNIT-NAME PIC XeS).

20 UNIT-NUMBER PIC 9(4).
PROCEDURE DIVISION.
iOO-START-PROCESSING.

PERFORM ZERO-OUT-BIG-TABLE VARYING SUBI FROM i BY 1
UNTIL.. SUBI } 10

* 	 SUBI IS VARIED LAST BY THE COMPUTER.
AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 5

* 	 SUB2 IS VARIED ******2ND****** BY THE COMPUTER.
AFTER SUB3 FROM 1 BY.l UNTIL SUB3 > s.

* 	 ******SUB3 IS VARIED FIRST BY THE COMPUTER******* •
PERFORM ADDRESS-THE-VARIABLES THRU ATV-EXIT.
DISPLAY 'VARIABLE TEST-IT = ' TEST-IT.
STOP RUN.

ZERO-OUT-BIG-TABLE.

{Subscripting - MOVE ZEROS TO UN IT _. I N (SUB i, SUB2, SUB3).

~' {WDRESS--THE-VARIABLES.
~{ IF UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN

OF COMPANY-TABLE (3, 4, 5) = 0 ADD i TO TEST-IT.

ATV--EXIT. EXIT.

Additional Functions 6-5

L

Indexing

Indexing is the method of providing table references
through the use of indexes. An index is a
compiler-generated storage area used to store table
element occurrence numbers. The index contains a
value that corresponds to an occurence number.

Format

{ 	
data-.n~me } {index-name-1 [{±} literal-2]}

condition-name (I· I 1

Itera ­

,{indeX-name-2 [{±} literal-4]} [, {indeX-name-3 [{±} literal-6]}]])
[

Iiteral-3 	 literal-5

Each index-name identifies an index to be used in table
references. The index-name is specified through the
OCCURS clause.

Each index named is a compiler-generated storage area,
2 bytes in length. Two forms of indexing are provided:
direct and relative.

In direct indexing, the index-name is in the form of a
subscript. In relative indexing, the index-name is
followed by a'space, a + or a -, another space, and an
unsigned numeric literal. The literal is considered to be
an occurrence number, and is converted to an index
value before being added to or· subtracted from the
index-name index.

To be valid during execution, an index value must
correspond to a table element occurrence not less than
one, or greater than the highest permissible occurrence
number. This restriction applies to both direct and
relative indexing.

An index-name must be initialized through a SET;
PERFORM-Format 4, or SEARCH ALL statement before
it is used in a table reference.

One or more index references (direct or relative) can be
specified together with literal subscripts.

Further information on index-names is given later in this
chapter in the description of the INDEXED BY option of
the OCCURS clause.

Restrictions on Subscripting and Indexing

• 	 A data-name must not be subscripted or indexed
when it is being used as a subscript or qualifier.

• 	 Indexing is not permitted when subscripting is not
permitted.

• 	 An index can be modified only by a PERFORM,
SEARCH, or SET statement.

• 	 When a literal is used in a subscript. it must be a
positive or unsigned integer.

• 	 When a literal is used in relative indexing, it must be
an unsigned integer.

Note: If the value of the index or subscript is outside the
range specified in the OCCURS clause, unpredictable
results or abnormal termination may occur. To avoid this
problem, include the following sentence when referencing
tables:

IF field GREATER THAN occurs-integer OR field
LESS THAN 1, PERFORM error-routine, GO TO
END-OF-JOB.

Field is the subscript or index being used, and occurs­
integer is the integer in the OCCURS clause of the table
level being referenced.

6-6

Table Initialization

. A table can contain static values or dynamic values.
Static values remain ,the same through every execution
of the object program. When this is true, the initial
values of table elements can be specified in
Working-Storage in one of two ways:

• 	 The table can be described as a record containing
contiguous subordinate data description entries, each
of which contains a VALUE clause for the initial
value. The record is then redescribed through a
REDEFINES entry tbat contains a subordinate entry
with an OCCURS clause. Because of the OCCURS
clause, the subordinate entries of the redefined entry
are repeated. For example:

01 	 TABLE-ONE.
05 ElEMENT-ONE PICTURE X VALUE '1'.
05 ELEMENT-TWO PICTURE X VALUE '2'.
05 ElEMENT-THREE PICTURE X VALUE '3'.
05 ~LEMENT-FOUR PICTURE X VALUE '4'.

01 TABLE-TWO REDEFINES TABLE-ONE.
05 OCCURS-ElEMENT OCCURS 4 TIMES

P!CTURE X. '

• 	 If the subordinate entries do not require separate
handling, the VALUE of the entire entry can bEi given
in the entry that names the table. The lower level
entries then contain OCCURS clauses, and show the
hierarchical structure of the table. The subordinate
entries must not contain VALUE clauses. For
example:

01 TABLE-ONE VALUE '1234'.
05 TABLE-TWO OCCURS 4 TIMES

PICTURE X.

Dynamic values may change during one execution of the
object program, or from one execution to another. If the
dynamic values are always the same at the beginning of
object program execution, they can be initialized in the
same manner as static values. If the initial 'values
change from one execution to the next, then the table
can be defined without initial values, and the changed
values can be placed in the table before any table
reference is made.

Additional Functions 6-7

The following example shows two ways of initializing a

table with zeros.

Dt-lTA DIVISION.

WORKING-STORAGE SECTION.

77 SUBt PIC 999.

77 TOTAL-HOLD PIC 99 VALUE 57.

77 HOLD-2 PIC 99 VALUE 10.

77 HOLD-THE-SUM PIC 99 VALUE ZERO.

Oi TABLE-ELEMENT. 	 9

03 ELEMENTS-OF-TABLE OCCURS 100 TIMES PIC .

PROCEDURE DIVISION.
iOO-START-PROCESSING.

PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT VARYING SUBt
FROM t BY i UNTIL SUBt } iOO.
ADD TDTAL····HOI... l) HOLD-··;::' GIVING HClLl)·-THE-SLJM.

• 	 THIS ADD STATEMENT IS EXECUTED AFTER THE PERFORM IS DONE.
DISPLAY 'TOTAL OF TWO VARIABLES = ' HClLl)-THE-SLJM.
PERFORM ANOTHER-WAY-TO-INITIALIZE THRLJ AWTI-EXIT.

* 	 *************************.* 	 THE TABLE WILL BE ALL ZEROS AND SHOULD PRINT AS SLJCH.
1(.

* * 	 *************************.
DISPLAY '--------------~---THE-------TABLE----------,.

DISPLAY TABLE-ELEMENT.

STOP RUN.

SAMPl.E -··PERFORM.
MOVE ZEROS TO ELEMENTS-OF-TABLE (SUBi).{

Initializing Table ____

To Zeros \ PERFORM··-EXIT. EXIT.
ANOTHER-WAY-TO-INI1IALIZE~

{ MOVE ZEROS TO TABLE-ELEMENT.
AWTI·-EXIT. EXIT.

6-8

L
DATA DIVISION-TABLE HANDLING

COBOL Data Division clauses used for Table Handling
are the OCCURS clause and the USAGE IS INDEX
clause.

OCCURS Claus.

The OCCURS clause eliminates the need to specify"
separate entries for repeated data items; it also supplies"
the information necessary for the use of subscripts or
indexes. The formats of the OCCURS clause are as
follows:

Format

{" integer-l TO integer-2TIMES DEPENDING ON data-name-l}
[OCCURS.mteger-2 TIMES

ASCENDING }[{ DESCENDING KEY IS data-name-2 [, data-name-3] .] .
[INDEXED BY index-name-l [,index-name-2]

The subject of an OCCURS clause is the data-name of
the data item containing the OCCURS clause. Except for
the OCCURS clause itself, data description clauses used
with the subject apply to each occurrence of the item
described.

Whenever the subject is referred to in a statement other
than a SEARCH statement or is the object of a
REDEFINES clause, the subject must be subscripted or
indexed. When it is subscripted or indexed, the subject
refers to one occurrence within the table element.

Whenever the subject is referred to in a SEARCH
statement or is the object of a REDEFINES clause, the
subject must not be subscripted or indexed. When the
subject is not subscripted or indexed, it represents the
entire table.

The table must contain less than 32768 occurrences,
and the length of the table must be less than 32768
bytes.

...]]
All data-names used in the OCCURS clause may be

qualified; they may not be subscripted or indexed.

All integers must be positive nonzero integers.

The OCCURS clause cannot be specified in a data

description entry that:

• 	 Has a level-01, level-56, level-77, or level-88 number.

• 	 Describes an item of variable size (an item is of

variable size if any subordinate entry contains an

OCCURS DEPENDING ON clause).

• 	 Describes redefined data items. (However, a

redefined item can be subordinate to an item

containing an OCCURS clause.) See the REDEFINES

Clause in Chapter 4.

Additional Functions 6-9

L

Fixed Length Tables

When an OCCURS DEPENDING ON clause is not used,
integer-2 specifies the exact number of occurrences.

Integer-2 must be greater than zero and less than
32768.

Because three subscripts or indexes are allowed, three
nested levels of this format of the OCCURS clause are
allowed.

Variable Length Tables

When the OCCURS DEPENDING ON clause is specified,
integer-1 represents the minimum number of
occurrences, and integer-2 represents the maximum
number of occurrences. The value of integer-1 must be
one or greater; it must also be less than integer-2.
Integer-2 must be less than 32768. The length of the
subject item is fixed; it is only the number of repetitions
of the subject item that is variable.

Data-name-1 specifies the object of the OCCURS
DEPENDING ON clause. The object is the data item
whose current value represents the current number of
occurrences of the subject item. The object of the
OCCURS DEPENDING ON clause:

• 	 Must be described as a positive integer. That is, if
data-name-1 is described as a signed item, then at
execution time it must contain positive data.

• 	 Must not occupy any storage position within the
range of this table. That is, the object must not
occupy any storage position from the first character
position in this table through the last character
position in this record description entry.

• 	 Must contain a value within the range of integer-1

and integer-2, inclusive.

The value of the object of the OCCURS DEPENDING
ON clause specifies that part of the table element
available to the object program. Items whose
occurrence numbers exceed the value of the object are
not available. If, during execution, the value of the
object is reduced, the contents of items whose
occurrence numbers exceed the new value of the object
are unpredictable.

When a group item containing a subordinate OCCURS
DEPENDING ON item is referred to, the "current value of
the object determines which part of the table area is
used in the operation.

In one record description entry, any entry that contains
an OCCURS DEPENDING ON clause may be followed
only by items subordinate to it. The OCCURS
DEPENDING ON clause cannot be specified as
subordinate to another OCCURS clause. However, the
Format 1 OCCURS clause may be specified as
subordinate to the OCCURS DEPENDING ON clause; in
this case, a table of up to three dimensions may be
specified.

ASCENDING/DESCENDING KEY Option

The ASCENDING/DESCENDING KEY option specifies
that the repeated data is arranged in ascending or
descending order according to the values contain in
data-name-2, data-name-3, and so on. The data-names
are listed in their descending order of significance. The
ASCENDING/DESCENDING KEY data items are used
by the SEARCH ALL statement for a search of the table
element.

The order is determined by the rules for comparison of
operands. (See Relation Condition in Chapter 5.)

Data-name-2 must be the name of the subject entry or
the name of an entry subordinate to the subject entry. If
data-name-2 names the subject entry, that entire entry
becomes an ASCENDING/DESCENDING KEY. If
data-name-2 does not name the subject entry, then
data-name-2, data-name-3, and so on:

• 	 Must be subordinate to the subject of the table entry

itself.

• 	 Must not be subordinate to any other entry that

contains an OCCURS clause.

• 	 Must not themselves contain an OCCURS clause.

6-10

The following example illustrates the specification of
ASCENDING/DESCENDING KEY data items:

WORKING-STORAGE SECTION.
77 CURRENT-WEEK PICTURE 99.
01 TABLE-RECORD.

05 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE
EMPLOYEE-NO INDEXED BY A B.
10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.
10 WEEK-RECORD OCCURS 52 TIMES

ASCENDING KEY IS WEEK-NO
INDEXED BY C.
15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATENESSES PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that
entry, and the key for WEEK-RECORD is subordinate to
that subordinate entry.

When the ASCENDING/DESCENDING KEY option is
specified, the following rules apply:

• 	 Keys must be listed in decreasing order of
significance

• 	 The programmer is responsible for ensuring that the
data present in the table is arranged in
ascending/descending key sequence according to the
collating sequence in use

In the preceding example, records in EMPLOYEE-TABLE
must be arranged in ascending order of WAGE-RATE
and in ascending order of EMPLOYEE-NO within
WAGE-RATE. Records in WEEK-RECORD must be
arranged in ascending order of WEEK-NO. If they are
n·ot, SEARCH ALL statement results will be
unpredictable.

INDEXED BY Option

The INDEXED BY option specifies the indexes that can
be used with this table element. The INDEXED BY
option is required if indexing is used to refer to this
table element.

Each index-name must follow the rules for formation of
a user-defined word; at least one character must be
alphabetic. Each index-name specifies an index to be
created by the compiler for use by the program. These
index-names are not data-names and are not identified
elsewhere in the COBOL program; instead, they can be
regarded as private special registers for the use of this
object program only. Therefore, they are not data or
part of any da~a hierarchy; as such, each must be
unique. An IN'DEX-NAME can only be. referenced by a
PERFORM, SET, or SEARCH statement, as a parameter
in the USING phrase in a CALL statement, or in a
relational condition comparison.

Additional Functions 6-11

USAGE IS INDEX Clause

The USAGE IS INDEX clause specifies that the data
item named has an index format. Such an item is an
index data item.

Format

[USAGE IS] INDEX

An index data item is an elementary item that can be
used to save index-name values for future reference.
Through the SET statement, an index data item can be
assigned an index-name value. An index value
corresponds to the displacement for an occurrence
number in the table, that is
(occurrence-number - 1) * entry length.

An index data item can be referred to dire~tly only in a
SEARCH statement, a SET statement, a relation
condition, the USING option of the Procedure Division
header, or the USING option of the CALL statement. An
index data item can be part of a group item referred to
in a MOVE statement or an input/output statement.

An index data item saves values equivalent to table
occurrences; however, it is not itself necessarily defined
as part of any table. Thus, when it is referenced dir.ectly
in a SEARCH or SET statement, or indirectly in a MOVE
or input/output statement, there is no conversion of
values when the statement is executed.

The USAGE IS INDEX clause can be written at any
level. If a group item is described with the USAGE IS
INDEX clause, it is the elementary items within the
group that are index data items; the group itself is not
an index data item, and the group name cannot be used
in SEARCH and SET statements or in relation
conditions. The USAGE clause of an elementary item
cannot contradict the USAGE clause of a group to which
the item belongs.

An index data item cannot be a conditional variable; it
cannot have a subordinate level-SS.

The SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK
WHEN ZERO, or VALUE clauses cannot be use.p to
describe group or elementary items described with the
USAGE IS INDEX clause.

PROCEDURE DIVISION-TABLE HANDLING

In the Procedure Division, the SEARCH and SET
statements can be specified with indexed tables. There
are also special rules involving table handling elements
when they are used in relation conditions.

Relation Conditions

Comparisons involving index-names or index data items
conform to the following rules:

• 	 The comparison of. two index-names is actually the
comparison of the corresponding occurrence
numbers.

• 	 In the comparison of an index-name with a data item
(other than an index data item) or in the comparison
of an index-name with a literal, the occurrence
number that corresponds to the value of the
index-name is compared with the data item or literal.

• 	 In the comparison of an index data item with an
index-name or another index data item, the actual
values are compared without conversion. Results of
any other comparison involving an index data item
are undefined.

Figure 6-2 shows permissible comparisons for
index-names and index data items.

6-12

First
Operand

Second
Operand

Index-name'
Index Data
Item2

Data-name
(numeric
integer only)

Numeric Literal
(integer only)

Index-name' Compare
occurrence
number

Compare without
conversion

Compare
occurrence
number with
data-name

Compare
occurrence
number with
literal

Index Data Item2 Compare
without
conversion

Compare without
conversion

Invalid Invalid

Data-name
(numeric integer
only)

Compare
occurrence
number with
data-name

Invalid

Numeric Literal
(integer only) .

Compare
occurrence
number with
literal

Invalid

,See OCCURS Clause earlier in this chapter.
2See USAGE IS INDEX Clause earlier in this chapter.

Figure 6-2. Permissibl~ Comparisons for Index-Names and Index Data Items

Additional Functions 6-13

L

SEARCH Statement

The SEARCH statement searches a table for an element
that satisfies the specified condition, and adjusts the
associated index to indicate that element. The formats
for the SEARCH statement are:

Format 1

SEARCH identifier-' [VARYING {~dentifier-2 }] [AT END imperative-statement-l]
mdex-name-'

d· . 1 {imperative-statement-2}WH EN
-- con Itlon- NEXT SENTENCE

d" -2 {imperative-statement-3}] [WH EN
__ con ItlOn NEXT SENTENCE

Format 2

SEARCH ALL identifier-1 [AT END imperative-statement-']

data-name-" {:~ :QUAL TO} {:~:~~:~~er-3 } }

WH EN { arithmetic-expression-'

condition-name-1

IS EQUAL TO} {identifier-4 }d 2 {ata-name-	 literal-2
IS =

AN D 	 arithmetic-expression-2

condition-name-2

{ 	imperative-statement-2}

NEXT SENTENCE

The Data Division description of identifier-1 must SEARCH statement execution modifies only the value in
contain an OCCURS clause with the INDEXED BY the index-name associated with identifier-1 (and, if
option. present, of index-name 1 or identifier-2). Therefore, to

search an entire two- or three-dimensional table, a
When specified in the SEARCH statement, identifier-1 SEARCH statement must be executed for each
must refer to all occurrences within the table element; it dimension. Before each execution, SET statements must
must not be subscripted or indexed. be executed to reinitialize the associated index-names.

Identifier-1 can be a data item subordinate to a data In the AT END and WHEN options, control passes to

'item that contains an OCCURS clause; it can be a part the next sentence after the imperative-statement is

of a two- or three-dimensional table. In this case, the executed if any of the specified imperative-statements

data description entry must specify an INDEXED BY do not end with a GO TO statement.

option for each dimension of the table.

6-14

Format 1

Format 1 SEARCH statement execution causes a serial
search to be executed, beginning at the current index
setting.

If the value of the index-name associated with
identifier-1 is not greater than the highest possible
occurrence number, when the search begins the
following actions take place:

1. 	 The condition(s) in the WHEN option are evaluated·
in the order they are written.

2. 	 If none of the conditions are satisfied, the
index-name for identifier-1 is incremented to
correspond to the next table element, and step 1
is repeated.

3. 	 If upon evaluation, one of the WH EN conditions is
satisfied, the search terminates immediately, and
the imperative-statement associated with that
condition is executed. The index-name points to
the table element that satisfied the condition.

4. 	 If the end of the table is reached (that is, the
incremented index-name value is greater than the
highest possible occurrence number) without the
WHEN condition being satisfied, the search
terminates as described in the next para.graph.

If, when the search begins, the value of the index-name
associated with identifier-1 is greater than the highest
possible occurrence number, the search immediately
ends, and, if specified, the AT END
imperative-statement is executed. If the AT END option
is omitted, control passes to the next sentence.

Each WHEN option condition may be any condition as
described under Conditional Expressions in Chapter 5.

VARYING Index-Name-l Option: When the VARYING
index-name-1 option is omitted, the first (or only)
index-name for identifier-1 is used for the search. When
the VARYING index-name-1 option is specified, one of
the following actions takes place:

• 	 If index-name-1 is an index for identifier-1, this index
is used for the search. Otherwise, the first (or only)
index-name is used.

• 	 If index-name-1 is an index for another table element,
then the first (or only) index-name for identifier-1 is
used for the search; the occurrence number
represented by index-name-1 is incremented by the
same amount as the search index-name and at the
same time.

VARYING Identifier-2 Option: When this option is
specified, the first (or only) index-name for identifier-1 is
used for the search.

Identifier-2 must be either an index data item or an
elementary integer item. During the search, one of the
following actions takes place:

• 	 If identifier-2 is an index data item, then whenever
the search index is incremented, the specified index
item is simultaneously incremented by the same
amount.

• 	 If identifier-2 is an integer data item, then whenever
the search index is incremented, the specified data
item is simultaneously incremented by 1.

Figure 6-3 is a flowchart of a Format" SEARCH
operation containing two WHEN Options.

Additional Functions 6-15

••

Execution of
SEARCH Begins

False

Increment Index­
Name for
Identlfiar-1
(index-name·1
if applicable)

Increment Index­
Name-1 (for
"another table)
or Identifier-2

AT END"GT 	 Imperative­ •••
Statemant~1

True WHEN Condition-1 	 •••Imperative­
Statement-2

True WHEN Condltion-2·· Imperative­ •••
Statement-3

• Index satting equals highest permissible occurrance number.
•• These operations are included only when called for in the statement.

••* Each of thase control transfers is to tha next sentance unless the
imperative-ctatement ends with a GO TO statement.

Figure 8-3_ Format 1 SEARCH with Two WHEN options

6-16

Format 2

Format 2 SEARCH ALL statement execution causes a
serial search to be executed, beginning with the first
element of the table. The search index need not be
initialized by SET statements, because its setting is
varied during the search operation. The index used is
always the index that is associated with the first.
index-name specified in the OCCURS clause.

If the WHEN option cannot be satisfied for any setting of
the index within this range, the search is unsuccessful. If
the AT END option is specified, the AT END imperative­
statement is executed, but if the AT END option is not
specified, control is passed to the next sentence; in either
case, the final setting of the index is not predictable.

Note: When such undefined index values are used, error
SYS-0014 could be encountered.

If the WHEN option can be satisfied, control passes to
imperative-statement-2 and the index contains a value
indicating an occurrence that allows the WHEN
condition(s) to be satisfied.

WHEN Condition-Name Option: If the WHEN
condition-name option is specified, each
condition-name specified must have only a single value,
and each must be associated with an
ASCENDING/DESCENDING KEY identifier for this table
element.

WHEN Relation-Condition Option: If WHEN
relation-condition is specified, the following
considerations apply:

• 	 Data-name-1 or data-name-2 must specify an
ASCENDING/DESCENDING KEY data item in the
identifier-1 table element and must be indexed by the
first identifier-1 index-name, along with other
indexes or literals as required. Each data-name can
be qualified.

• 	 Identifier-3 and identifier-4 must not be an
ASCENDING/DESCENDING KEY data item for
identifier-1 or an item that is indexed by the first
index-name for identifier-1.

• 	 Literal-1 or literal-2 must be a positive or unsigned
numeric integer.

• 	 Arithmetic-expression-1 or ~rithmetic-expression-2
can be any of those defined under Arithmetic
Expressions in Chapter 5 with the following
restriction: any identifier in the arithmetic-expression
must not be an ASCENDING/DESCENDING KEY
data item for identifier-1 or an item that is indexed
by the first index-name for identifier-1.

• 	 When an ASCENDING/DESCENDING KEY data item
is specified either explicitly or implicitly in the WHEN
option, then all preceding
ASCENDING/DESCENDING KEY data-names for
identifier-1 must also be specified.

The results of a SEARCH ALL operation are predictable
only when both of the following apply:

• 	 The data in the table is ordered in
ascending / descending key sequence

• 	 The contents of the ASCENDING/DESCENDING
keys specified in the WHEN clause provide a unique
table reference

Programming Notes

Index data items cannot be used as subscripts or
indexes, because of the restrictions on direct reference
to them. The use' of a direct indexing reference together
with a relative indexing reference for the same
index-name allows reference to two different
occurrences of a table element for comparison purposes.

When the object of the VARYING option is an
index-name for another table element, one Format 1
SEARCH statement looks at two table elements at once.

One Format 4 PERFORM statement can search an entire
multidimensional table.

To ensure correct execution of a PERFORM or SEARCH
statement for a variable length table, the programmer
must make sure that the object of the OCCURS
DEPENDING ON clause (data-name-1) contains a value
that correctly specifies the current length of the table.

Additional Functions 6-17

SEARCH Example

The following example searches an inventory table for
items that match those from input data. The key is
INVENTORY-NUMBER.

DATA DIVISION.

FILE SECTION.

FD SALES-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS SALES-REPORTS.

01 	 SALES-REPORTS PIC X(80).
FD 	 PRINTED-REPORT

BLOCK CONTAINS 1 RECORDS

RECORD CONTAINS 132 CHARACTERS

LABEL RECORDS OMITTED

DATA RECORD IS PRINTER-OUTPUT.

01 PRINTER-OUTPUT PIC X(132).

FD INVENTORY-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 40 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS INVENTORY-RECORD.

01 	 INVENTORY-RECORD.
03 I-NUMBER' PIC 9(4).
03 INV-ID PIC X(26).
03 I-COST PIC 9(8)V99.

WORKING-STOR~GE SECTION.

77 EOF-SW PIC X VALUE 'N'.

77 EOF-SW2 PIC X VALUE 'N'.

77 SUBi PIC 99.

77 RECoRDS-NOT-FoUND PIC 9(5) VALUE ZEROS.

77 TOTAL-COSTS PIC 9(10) VALUE ZEROS.

01 HOLD-INPUT-DATA.

03 INVENTORY-NUMBER PIC 9999.
03 PURCHASE-COST PIC 9(4)V99.
03 PURCHASE-DATE PIC 9(6).
03 FILLER PIC X(64).

01 	 PRINTER-SPECS.
03 	 PRINT-LINE.

05 OUTPUT-ITEM-NUMBER PIC ZZZ9.
05 FILLER PIC X(48) VALUE SPACES.
05 TOTAL-COSTS-O PIC $(8).99.

01 PRODUCT-TABLE.

05 	 INVENTORY-NUMBERS OCCURS 50 TIMES

ASCENDING KEY ITEM-NUMBER
INDEXED BY INDEX-i.

07 ITEM-NUMBER PIC 9(4).
07 ITEM-DESCRI~TION PIC X(26).·
07 ITEM-COST PIC 9(8)V99.

6-18

SEARCH Example (Continued)

PROCEDURE DIVISION.
iOO-START-IT .

OPEN INPUT SALES-DATA INVENTORV-PATA OUTPUT PRINTED-REPORT.
MOVE HIGH-VALUES TO PRODUCT-TABLE.

READ-INVENTORV-DATA.
READ INVENTORV-DATA AT END MOVE 'V' TO EOF-SW2.

LOAD-TABLE-ROUTINE.
PERFORM LOAD-IT VARVING SUBl FROM 1.BV 1 UNTIL 'SUBi) 50.

liO-READ-IT .
READ SALES-DATA INTO HOLD-INPUT-DATA AT END

MOVE 'V' TO EOF-SW.
200-MAIN-·ROUTINE.

PERFORM PROCESS-DATA UNTIL EOF-SW = 'V'.
MOVE TOTAL-COSTS TO TOTAL-COSTS-O.
PERFORM WRITE-REPORT THRU WRITE-REPORT-~XIT.
DISPLAV 'RECORDS NOT FOUND = ' RECORDS-NOT-FOUND.
STOP RUN.

PROCESS-:-DATA.
SEARCH ALL INVENTORV-NUMBERS AT END
PERFORM KEV-NOT-FOUND THRU NOT-FOUND-EXIT
WHE~ INVENTORV-NUMBER IS = ITEM-NUMBER (INDEX-i)

MOVE ITEM~NUMBER (INDEX-i) TO OUTPUT-ITEM-NUMBER
MOVE ITEM-COST (INDEX-i) TO TOTAL-COSTS-O

ADD ITEM-COST (INDEX-i) TO TOTAL-COSTS.
PERFORM WRIiE-REPORT THRU WRtTE-REPORT-EXIT.
PERFORM iiO-READ-IT.

t,EY-NOT-·FOUND.
ADD 1 TO RECORDS-NOT-FOUND;

NOT-FOUND-EXIT. EXIT.
LOAD-IT.

MOVE INVENTORY-RECORD TO INVENTORV-NUMBERS (SUBi).
PERFORM READ-INVENTORV-DATA.

WRITE-f~Epmn .
WRITE PRINTER-OUTPUT FROM PRINTER-SPECS.

WRITE-REPORT-EXIT. EXIT.
* *******.END SAMPLE SEARCH PROGRAM*******************~***.

Additional Functions 6-19

L

SET Statement

The SET statement can:

• 	 Establish reference points for table handling
operations by setting index-names to values
associated with table elements

• 	 Transfer values between .index-names and other
elementary data items

• 	 Alter the status of external UPSI switches

• Alter the value of conditional variables

The formats of the SET statement are:

Format 1

identifier-3 }
SET { ~dentifier-1 [,identifier-2] {:}. TO ~ndex-name-3
- mdex-name-1 [,index-name-2] mteger-1

Format 2

UP BY } {identifier-4}SET index-name-4 [, index-name-5] {• •. DOWN BY integer-2

Format 3

SET mnemonic-name.1 [,mnemonic-name-2] • • TO {~~F}

Format 4

SET condition-name-1 [,CO~dition-name-2] ••• TO!B.YE

6-20

Index-names are related to a given table through the
INDEXED BY option of the OCCURS clause.
Index-names specified in the INDEXED BY option are
automatically defined.

Integer-1 and integer-2 may be signed. Integer-1 must
be positive. All identifiers must be either index data
items or numeric ele •.!entary items described as
integers; however. identifier-4 must not name an index
data item.

Format 1 Considerations

When the SET statement is executed. one of the
following actions occurs:

• 	 Index-name-1 is converted to a value that
corresponds to the same table element to which
either index-name3. identifier-3. or integer-1
corresponds. If id'entifier-3 is an index data item. no
conversion takes place.

•• If identifier-1 is an index data item. it is set equal to
either the contents of index-name-3 or identifier-3
when identifier-3 is also an index data item.
Integer-1 cannot be used in this case.

• 	 If identifier-1 is not an index data item. it is set to an
occurrence number that. corresponds to the value of
index-name-3. Neither identifier-3 nor integer-1 can
be used in this case.

Format 2 Considerations

. .
When the SET statement is executed. the contents of
index-name-4 are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number
of occurrences represented by the value of integer-2 or
identifier-4. The value of the index must correspond to
an occurrence number of an element in the associated
table.

mM Extension:

Format 3 Considerations

Each mnemonic-name must be associated
with an external switch (UPSI-O through
UPSI-7), the status of which 'can be
altered .

The status of eaoh external switch is
modified to an 'ON' status if the ON
phrase is specified, or an 'OFF' status
if the OFF phrase is specified.

Format 4 Considerations

Each condition-name must be associated
with a conditional variable.

The literal in the VALUE clause
associated with condition-name is moved
to the conditional variable in
accordance with the rules for
elementary moves. If more than one
literal is sp~cified in the VALUE
clause, the first literal in that VALUE
clause is moved.

Additional Functi'ona 6-21

SORT/MERGE

Arranging records in a particular order or sequence is a
common requirement in data processing; such record
ordering can be accomplished using sorting or merging
operations. While both operations accomplish record
ordering, the functions and capabilities of a sort and a
merge are different.

A sort produces an ordered file from one to eight input
files that may be completely unordered as to sort
sequence. Thus, the sort operation must accept
unordered sort input and produce ordered sort output.

A merge produces an ordered file from two to eight
input files, each of which is already ordered in the
merge sequence.

IBM Extension: Input files do not need to
be sequenced prior to a merge
operation.

COBOL has special language features that assist in sort
and merge operations so that· the user need not
program these operations in detail. The System/34 Sort
Utility must be installed on the system when COBOL
sort/merge functions are executed.

For an explanation of messages that are issued by the
System/34 Sort Utility after it has been invoked by a
COBOL object program, see the Sort Reference Manual
or the Displayed Messages Guide.

SORTIMERGE CONCEPTS

Sorting and merging have always constituted a large
percentage of the workload in business data processing.
COBOL standardizes the specification of these
operations, making them easy to specify and modify. In
addition, the COBOL programmer can alternatively use
the System/34 Sort Utility to perform these operations
as a separate job step. The COBOL language supports
these operations through the file-control entry in the
Environment Division, the SD
(sort-merge-file-description) entry in the Data Division,
and the SORT and MERGE statements in the Procedure
Division.

The sort or merge file is described through the
file-control entry in the Environment Division, and the
SD entry in the Data Division. The sort or merge file is
the working file used during the sort or merge; it can be
considered an internal file. As such, blocking and
internal storage allocation for this file are not under the
control of the COBOL programmer. However, a sort or
merge file, like any file, is a set of records, and a
sort-merge file description can be considered a
particular type of file description.

The sort-merge file is processed through a Procedure
Division SORT or MERGE statement. The statement
specifies the key field(s) within the record upon which
the sort or merge is to be arranged. Keys can be
specified as ascending or descending. When more than
one key is specified, a mixture of the two sequences is
allowed. The sequence of sorted or merged records
conforms to the mixture of keys specified.

6-22

L
Sort Concepts

Through the SORT statement, the COBOL user has
"access to input procedures (used before sorting) and
output procedures (used after sorting) that can add,
delete, alter, edit, or otherwise modify the records in the
input or output files. A COBOL program can contain any
number of sorts, €~ch of them with its own independent
input and/or output procedures. During SORT

statement execution, these procedures are automatically

executed at the specified point in processing; thus, extra

passes through the sort file are avoided.

A' COr.OL program containing a sort is usually organized

so that one or "more input files are read and operated on

by an input procedure. Within the input procedure a

RELEASE statement (analogous to the WRITE

statement) places a record in the sort file. That is, when

input procedure execution is completed, a sort file has

been created by placing records one at a time into the

sort file through the RELEASE statement. If the user

c'oes not wish to modify the records before the sorting

operation begins, the SORT statement USING option

releases the unmodified records to ·the sort file.

After all the input records have been placed in the sort

file, the sorting operation is executed. This operation

arranges the entire set of sort file records in the

sequence specified by the key(s).

After completion of the sorting operation, sorted records

can be made available from the sort file, one at a time,

through a RETURN statement for modification in an

output procedure. If the user does not wish to modify

the sorted records, the SORT statement GIVIN~ option

names the sorted output file.

Note: The Ideographic Sort Utility can be accessed from

your COBOL program by the SORT statement.

However, the Ideographic Sort Utility will not sort

2-byte characters. It will provide a 1-byte EBCDIC sort.

Merge Concepts

Through the MERGE statement, the COBOL user has
access to output procedures (used after merging) that
can modify the records in the output file. The COBOL
program can contain any number of merge operations,
each with its own independent output procedures.
During MERGE statement execution, these procedures
are automatically executed at the specified point in

" processing.

. MERGE statement execution begins the merge
processing. This operation compares keys within the
records cif the input files and arranges the records
within the merged file in the sequence specified by the
key(s).

Merged records can be made available, one at a time,
through a RETURN statement for modification in an
output procedure. If the user does not wish to modify
the merged records, the MERGE statement GIVING
option names the merged output file.

SORT/MERGE PROGRAMMING CONSIDERATIONS

This section describes considerations for performing sort
or merge operations.

Main Storage Requirements

The System/34 Sort Utility is called whenever a COBOL
program uses the sort or merge function. Since the Sort
Utility requires 14 k bytes, at least this much storage
must be allocated to the COBOL program. If the COBOL
program uses less than 14 k bytes, a / / REGION OCL
statement with a size of 14 k bytes or greater should be
specified.

Additional Functions 6-23

Disk Storage Requirements

Whenever an input procedure is used with a SORT
statement or an output procedure is used with a SORT
or MERGE statement, disk space must be available for
COBOL to use for the sort or merge file. A / / FilE
OCl statement must be present for each such sort or
merge file. When both the USING and GIVING options
are specified for a SORT or MERGE statement, the
system automatically allocates an intermediate work area
to hold the sort or merge records. Thus, a / / FilE OCl
statement is not required for such a sort or merge file.

The System/34 Sort Utility called by the COBOL
program requires the following disk work areas:

• 	 An area to hold the COBOL program. The Sort Utility
overlays the COBOL program. Thus, the COBOL
program must be saved on disk before processing
begins. To do this, the Sort Utility allocates a scratch
file large enough to hold the COBOL prqgram. To
determine the size of the scratch file in blocks, the
number of k bytes in the program is multiplied by
0.4. If the product is not a whole number, it is·

rounded up to the next integer.

• 	 A work area in which to perform the sort. This can
be created explicitly by specifying a / / FilE OCl
statement with a NAME-WORK parameter. If this
statement is not used, the Sort Utility allocates a.
scratch file large eno~gh to perform the desired sort
or merge operation. See the Sort Reference Manual
for details on the size of this work file.

Note: A / / RESERVE OCl statement, if used, can
reserve disk space for the scratch files that the Sort
Utility uses. If not enough space. is reserved, an error
message is issued. This message lets the user allocate
more space or cancel the job.

Performance Considerations

Improved performance can generally be obtained by
specifying the USING or GIVING option on the SORT or
MERGE statement. The best performance can generally
be obtained by using both options. This lets the
programmer bypass writing the input records into the
sort or merge work area (via RELEASE statements) and
reading the sorted records from the sort or merge work
area (via RETURN statements).

When using input and output procedures, a BLOCK
CONTAINS clause cannot be specified on the SO
statement for the sort or merge file. System/34 COBOL
always defaults to one record, the minimum blocking
factor. When many records will be processed in an
input or output procedure, a different manner of coding
might better control the blocking.

For example, if file 1 is a very large file that is to be
reformatted, sorted, and written into file 2, a normal
technique would be to write the SORT statement with
an input procedure, GIVING file 2. The input procedure
would read file 1, reformat the data, and release the
records to the sort file. The Sort Utility would then sort
the data in the sort file and write this data into file 2.

Because of the minimum blocking factor on the sort or
merge file, it is possible that a faster-running program
might be obtained by reading file 1, reformatting the
data, and writing the data into file 2 before coding the
SORT statement. The SORT statement could then be
coded USING file 2 and GIVING file 2. In this case,
performance can be improved by either of the following:

• 	 Increasing the value of the BLOCK CONTAINS clause
in your program

• 	 Specifying a .BlOCK CONTAINS clause with a value
greater than one if your program does not already
contain this clause

6-24

L
ENVIRONMENT DIVISION-SORT/MERGE

In the Environment Division, the programmer must write
file-control entries for each file used as input to or
output from a sort or merge operation. The programmer
must also write a file-control entry for each unique
sort-file or merge-file.

File-Control Paragraph

For a description of input and output files of a sort or
merge operation, see the FILE-CONTROL Paragraph in
Chapter 3.

I-O-Control Paragraph

In the I-O-Control Paragraph. the SAME SORT AREA
or SAME SORT-MERGE AREA clause is used.

Format

RECORD]

[SAME [SORT AREA FOR file-name-2 {,file-name.3}
]

SORT-MERGE

The SAME SORT AREA or SAME SORT-MERGE AREA
clause functions to reduce storage area assignment to a
given SORT or MERGE statement.

In the SAME AREA clause, SORT and SORT-MERGE
are equivalent.

The SAME SORT AREA or SAME SORT-MERGE AREA
clause specifies one storage area available for
sortlmerge operations by each named sort or merge
file. That is, the storage allocated for one such
operation is available for reuse in another.

When the SAME SORT AREA or SAME SORT-MERGE
AREA clause is specified, at least one file-name
specified must name a sort or merge file. Files that are
not sort or merge files can also be specified. The
following rules apply:

• 	 More than one SAME SORT AREA or SAME
SORT-MERGE AREA clause can be specified;
however. one sort or merge file must not be named
in more than one such clause.

• 	 If a file that is not a sort or merge file is named in
both a SAME AREA clause and in one or more
SAME SORT AREA or SAME SORT-MERGE AREA
clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA or SAME
SORT-MERGE AREA clause.

• 	 Files named in a SAME SORT AREA or SAME
SORT-MERGE AREA clause need not have the same
organization or access.

• 	 Files named in a SAME SORT AREA or
SORT -MERGE AREA clause that are not sort or
merge files do not share storage with each other
unless the user names them in a SAME AREA or
SAME RECORD AREA clause.

• 	 Files named in a SAME SORT AREA or SAME
SORT -MERGE AREA clause that are not sort or
merge files must not be open during the execution of
a SORT or MERGE statement that refers to a sort or
merge file named in the clause.

Rules for the specification of SAME RECORD AREA
clause are given under I-O-Control Paragraph in
Chapter 3. L

6-25

This page is intentionally left blank.

6-26

DATA DIVISION-SORT/MERGE

In the File Section, the programmer must write an Fb
entry for each file that is input to or output from the
sort/merge operation, as well as a record description
entry. In addition, there must be an SD
(sort-merge-file-description) entry for each sort or
merge file.

Format

[SIJ file-narne

[RECORD CONTAINS ~nteger-1 TO J integer-2 CHARACTERS]

RECORD IS }
[DATA { RECORDS ARE data-name-1 [,data-name-2]

{ record-description-entry} •••J

The level indicator SD identifies the beginning of the SD
entry, and must precede the file-name. The file-name
must specify a sort or merge file.

The clauses that follow file-name are optional. and their
order of appearance is not significant. Both the
RECORD CONTAINS clause and the DATA RECORDS
clause are described in Chapter 4.

One or more record description entries must follow the
SD entry. However, no input/output statements can be
executed for this file.

The following example illustrates the File Section entries
needed for a sort or merge file:

SD SORT-FILE.

01 SORT-RECORD PICTURE X(8Q).

PROCEDURE DIVISION-SORT/MERGE

The Procedure Division contains MERGE and SORT
statements to describe the merge and sort operations
and, optionally, sort input procedures or sort/merge
output procedures. A sort input procedure must contain
a RELEASE statement that makes each record available
to the sorting operation. A sort/merge output procedure
must contain a RETURN statement that makes a
sorted/merged record available to the output procedure.

The Procedure Division can contain more than one
SORT or MERGE statement. These statements can
appear anywhere except in the Declaratives portion or in
the sort input or sort/merge output proeedures.

Files specified in the USING and GIVING options of the
SO~T and MERGE statements must be described
explicitly or implicitly in their file-control entries as
having sequential organization.

USE procedures are not executed if they reference files
specified on a USING or GIVING option of a SORT or
MERGE statement. The USING or GIVING files are not
accessed by COBOL, but by the Sort Utility. If these
files are also referenced in an I/O statement within an
output procedure or a SORT input procedure, a USE
procedure for the file specified is invoked when
necessary.

Additional Functions 6-27

L

MERGE Statement

The MERGE statement combines from two to eight
identically sequenced files that have already been sorted
according to an identical set of ascending/descending
keys on one or more keys. This statement makes
records available in merged order to an output
procedure or output file.

Format

. {ASCENDING } []MERGE file-name-l ON DESCENDING KEY data-name-l ,data-name-2

[ON {~~~~~~~~~G} KEY data-name-3 [, data-name-4] •]

[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4] •••

OUTPUT PROCEDURE ISsection-name-l I{~UGH} section-name-2J}
{

GIVING file-name-5

File-name-l is the name given in the SO entry that·
describes the records being merged. No file-name may
be repeated in the MERGE statement.

When the MERGE statement is executed, all records
contained in file-name-2, file-name-3, and so on, are
accepted by the sort/merge program and then merged
according to the key(s) specified. These files must not
be open when the MERGE statement is executed; they
are automatically opened and closed by the MERGE
operation, and all implicit functions are performed. The
files are closed as if the CLOSE statement is written
without any optional processing.

6-28

SORT Statement

The SORT statement accepts records from one or more
files, sorts them according to the specified key(s), and
makes records available either 'through an output
procedure or in an output file. The maximum number of
files accepted by the SORT statement is eight.

Format

{ ASCENDING } []
SORT file·name-1 ON DESCENDING KEY data·name-1 ,data-name-2

{ ASCENDING} [,data-name-4] [ON DESCENDING KEY data-name-3 .J
[COLLATING SEQUENCE IS alphabet-name]

[{ THROUGH} sectlOn-name-2-] }INPUT PROCEDURE IS section-name-1 THRU

{

USING file-name-2 [, file-name-3] •••

{
J}[{ THROUGH} sectlOn-name-4_OUTPUT PROCEDURE IS section-name-3 THRU

GIVING file-name-4

File-name-l is the name given in the SD entry that
describes the records being so(ted.

When the SORT statement is executed, all records
contained in file-riame-2. file-name-3. and so on are
accepted by the sort I merge program and then sorted
according to the key(s) specified. These input files must
not be open at the time the SORT statement is
executed; they are automatically opened and closed by
the SORT operation, and all implicit functions are
performed. The files are closed as if the CLOSE
statement is written without any optional processing.

Additional Functions 6-29

MERGE Statement and SORT Statement Options

Most SORT/MERGE statement options apply to both
the SORT and the MERGE statements. The common
SORT /MERGE statement options are: the
ASCENDING/DESCENDING KEY option, the
COLLATING SEQUENCE option, the USING option, the
GIVING option, and the OUTPUT PROCEDURE option.
The INPUT PROCEDURE option applies only to the
SORT statements.

ASCENDIN~/DESCENDING KEY Option

This option specifies that records are to be processed in
an ascending or descending sequence based on the
specified sort/merge keys.

Each data-name specifies a KEY data item on which the
sort-merge will be based. Each such data-name must
identify a data item in a record associated with
file-name-1. The following rules apply:

• 	 A specific KEY data item must be physically located
in the same position and hav.e the same data format
in each input file; however, it need not have the
same data.-name.

• 	 If file-name-1 has more than one record description,
then the KEY data items need be described in only
one of the record descriptions.

• 	 KEY data items must be fixed-length items.

• 	 KEY data items must not contain an OCCURS clause
or be subordinate to an item that contains an
OCCURS clause.

• 	 A maximum of 12 KEY data items may be specified.

• 	 The total length of all KEY data items must not
exceed 256 bytes. The maximum length of 256 bytes
may include bytes used by the compiler. Generally,
one additional byte per key is used for each numeric
key specified. For a merge operation, 3 additional
bytes are used to maintain relative record position.
The maximum number of bytes used by the compiler
is 15. Therefore, the user has a minimum of 241
bytes, and possibly all 256 bytes, depending on the
type of operation and the data types of the keys
specified.

• 	 KEY data items may be qualified; they may not be
subscripted or indexed.

The KEY data items are listed in order of decreasing
significance, regardless of how they are divided into
KEY phrases. Using the format as an example,
data-name-1 is the most significant key and records are
processed in ascending or descending order on that key;
data-name-2 is the next most significant key and within
data-name-1 records are processed on data-name-2 in
ascending or descending order. Within data-name-2,
records are processed on data-njime-3 in ascending or
descending order; within data-name-3, records are
processed on data-name-4 in ascending or descending
order.

The direction of the sort/merge operation depends on
the specification of the ASCENDING or DESCENDING
key words as follows:

• 	 When ASCENDING is specified, the sequence is from
the lowest key value to the highest key value.

• 	 When DESCENDING is specified, the sequence is
from the highest key value to the lowest.

• 	 If the KEY data item is alphabetic, alphanumeric,
alphanumeric edited, or numeric edited, the sequence
of key values depends on the collating sequence
used.

• 	 The key comparisons are performed according to the
rules for comparison of operands in a relation
condition. See Relation Condition in Chapter 5.

6-30

COLLATING SEQUENCE Option

This option specifies the collating sequence to be used
in nonnumeric comparisons for the KEY data items in
this sort/merge op'eration.

Alphabet-name must be specified in the
SPECIAL-NAMES paragraph alphabet-name clause.
Anyone of the alphabet-name clause options can be
specified with the following results.

• 	 When NATIVE.is specified, the EBCDIC collating
sequence is used for all nonnumeric comparisons.

• 	 When STANDARD-1 is specified, all nonnumeric
comparisons are made as if the data items were
translated from EBCDIC into ASCII. For more
information on the translation of EBCDIC items into
ASCII, see Appendix G.

• 	 When the literal option is specified, the collating
sequence established by the specification of literals in
the alphab~t-name clause is used for all nonnumeric
comparisons.

When the COLLATING SEQUENCE option is omitted,
the PROGRAM COLLATING SEQUENCE clause (if
specified) in the OBJECT-COMPUTER paragraph
specifies the collating sequence to be used. When both
the COLLATING SEQUENCE option and the PROGRAM
COLLATING SEQUENCE clause are omitted, the
EBCDIC collating sequence is used.

USING Option

When the USING option is specified, all input files are
transferred automatically to file- name-l. At the time
the SORT or MERGE statement is executed, these input
files must not be open; the COBOL compiler opens,
reads, and closes these files automatically. If
EXCEPTION/ERROR procedures are specified for these
files, th"e COBOL compiler makes the necessary linkage
to these procedures.

The input files must have sequential organization.

All inp'ut files must be described in an FD entry in the
Data Division, and their record descriptions must
describe records of the same size as the record
described for the sort or merge file. If the elementary
items that make up these records are not identical, the
user must describe the input records as having an equal
number of character positions as the sort record.

GIVING Option

When the GIVING option is specified, all the sorted or
merged records in file-name-1 are automatically
transferred to the output file (MERGE file-name-5 or
SORT file-name-4). At the time the SORT or MERGE
statement is executed, this output file must not be open;
the COBOL ~ompiler opens, writes, and closes the file
automatically. If EXCEPTION/ERROR procedures are
specified for the output file, the COBOL compiler makes
the necessary linkage to these procedures.

The output file must have sequential organization.

The output file must be described in an FD entry in the
Data Division, and its record description(s) must
describe records of the same size as the record
described for the sort or merge file. If the elementary
items that make up these records are not identical, the
user must describe the output record as having an equal
number of character positions as the sort or merge
record.

Additional Functions 6-31

http:NATIVE.is

SORT INPUT PROCEDURE Option

This option specifies the section-name(s) of a procedure
that is to modify input records before the sorting
operation begins.

Section-name-l specifies the first (or only) section in
the input procedure. Section-name-2 (when specified)
identifies the last section of the input procedure.

The input procedure must consist of one or more
sections that are written consecutively and do not form
a part of any output procedure. The input procedure
must include at least one RELEASE statement in order
to transfer records to the sort-file.

Control must not be passed to the input procedure
except when a related SORT statement is being
executed because the RELEASE statement in the input
procedure has no meaning unless it is controlled by a
SORT statement. The. input procedure can include any
procedures needed to select, create, or modify records.
The following restrictions apply to the procedural
statements within an input procedure:

• 	 The input procedure must not contain any SORT or
MERGE statements.

• 	 The input procedure must not contain ALTER,
GO TO, or PERFORM statements that refer to
procedure-names outside the input procedure. The
execution of a CALL statement to another program
that follows standard linkage conventions, or the
execution of USE declaratives is not considered a
transfer of control outside an input procedure. Hence,
they are allowed to be activated within these
procedures.

• 	 The remainder of the Procedure Division must not
contain any transfers of control to points inside the
input procedure with the exception of the return of
control from a Declaratives Section.

If an input procedure is specified, control is passed to
the input procedure when the SORT program input
phase is ready to receive the first record. the compiler
inserts a return mechanism at the end of the last section
of the input procedure and when control passes the last
statement in the input procedure, the records that have
been released to file-name-l are sorted. The RELEASE
statement transfers records from the Input Procedure to
the sort file, which is then used in the input phase of
the sort operation.

SORT/MERGE OUTPUT PROCEDURE Option

This option specifies the section-name(s) of a procedure
that is to modify output records from the sort or merge
operation.

Section-name-3 specifies the first (or only) section in
the output procedure. Section-name-4 (when specified)
identifies the-last section of the output procedure.

The output procedure must consist of one or more
sections that are written consecutively and do not form
a part of any input procedure. The output procedure
must include at least one -RETURN statement in order to
make sorted/merged records available for processing.

When all the records are sorted / merged, control is
passed to the output procedure. The RETURN
statement in the output procedure is a request for the
next record.

Control must not be passed to the output procedl!re
except when a related SORT or MERGE statement is
being executed because RETURN statements in the
output procedure have no meaning unless they are
controlled by a SORT or MERGE statement. The output
procedure may consist of any procedures needed to
select, modify, or copy the records that are being
returned one at a time from the sort/merge file. There
are three restrictions on the procedural statements
within the output procedure:

• 	 The output procedure must not contain any SORT or
MERGE statements.

• 	 The output procedure must not contain ALTER,
GO TO, or PERFORM statements that refer to
procedure- names outside the output procedure. The

_execution of a CALL statement to another program
that follows standard linkage conventions or the
execution of USE declaratives is not considered
transfers of control outside an output procedure.
Hence, they are allowed to be activated within these
procedures.

• 	 The remainder of the Procedure Division must not
contain any transfers of control to points inside the
output procedure with the exception of the return of
control from a Declaratives Section.

6-32

When an output procedure is specified, control passes
to it after the sort!merge file (file-name-1) has been
placed in sequence by the sort!merge operation. The
COBOL compiler inserts a return mechanism at the end
of the last section in the output procedure; when control
is passed to the last statement in the output procedure,
the return mechanism terminates the sort or merge, and
passes control to the next executable statement after
the SORT or MERGE statement.

SORT or MERGE INPUTjOUTPUT PROCEDURE Control

The INPUT or OUTPUT PROCEDURE options function in
a manner similar to Format 1 of the PERFORM
statement (the simple PERFORM). For example, naming
a section in an OUTPUT PROCEDURE option causes
execution of that section during the sort!merge
operation to proceed as if that section were named in a
PERFORM statement. As with the PERFORM statement,
execution of the section is terminated after execution of
its last statement. The last statement in Input and
Output Procedures can be the EXIT statement. This is
useful for documentation purposes.

. RELEASE Statement (Sort Function Only)

The RE~EASE statement transfers records from an
input!output area to the initial phase of a sort operation.

The RELEASE statement may be specified only within

an input procedure associated with a SORT statement.

Within an input procedure at least one RELEASE

statement must be specified.

When the RELEASE statement is executed, the current
contents of record-name are placed in the sort fite; that
is, made available to the initial phase of the sort
operation.

Format

RELEASE record-name[FROM identifier]

Record-name must specify a record associated with the
SO entry for file-name-1. Record-name may be
qualified.

When the FROM identifier option is specified, the
RELEASE statement is equivalent to the statement
MOVE identifier to record-name followed by the
statement RELEASE record-name. Moving takes place
according to the rules for the MOVE statement without
the CORRESPONDING option.

Identifier and record":name must not refer to the same
storage area.

After the RELEASE statement is executed, the
information in record-name is no longer available unless
file-name-1 is specified in a SAME RECORD AREA
clause, in which case record-name is still available as a
record of the other files named in that clause. When the
FROM identifier option is specified, the information is
still available in identifier.

When control passes from the input procedure, the sort
file consists of all those records placed in it by
execution of RELEASE statements.

Additional Functions 6-33

RETURN Statement

The RETURN statement transfers records from the final
phase of a sort or merge operation to an input/output
area.

The RETURN statement may be specified only within an
output procedure associated with a SORT or MERGE
statement. Within an output procedure at least one
RETURN statement must be specified.

Format

RETURN file·name RECORD [INTO identifier] AT END imperative-statement

When the RETURN statement is executed, the next
record from file-name is made available for processing
by the output procedure.

File-name must be described in a Data Division SO
entry.

If more than one record description is associated with
file';'name, these records automatically share the same
storage; that is, the area is implicitly redefined. After
RETURN statement execution, only the contents of the
current record are available; if any data items lie beyond
the length of the current record, their contents are
undefined.

When the INTO identifier option is specified, the
RETURN statement is equivalent to the statement
RETURN file-name followed by the statement MOVE
record-name TO identifier. Moving takes place
according to the rules for the MOVE statement without
the CORRESPONDING option. Any subscripting or
indexing associated with identifier is evaluated after the
record has been returned and immediately before it is
moved to identifier.

The record areas associated with file-name and identifier
must not be the same storage area.

After all records have been returned from file-name, the
AT END imperative-statement is executed, and no more
RETURN statements may be executed.

6-34

Library Copy Facility

Prewritten source program entries can be included in a
source program at compile time. Thus, an installation
can use standard. file descriptions, record descriptions,
or procedures without recoding them. These entries and
procedures can be saved in user libraries or the system
library. They can be included in the source program by
means of the COPY statement.

COpy Statement

The COpy statement places previously written text in a
COBOL program.

Format

COpy text-name [{ ~: } library-name]

. {==pseUdo-text.,==} {==pseUdo.text-2==}
REPLACI NG Identifier-' BY identl fler-2
~'---":';"";""--~.' Iiteral-' - Ilteral-2

word-' word-2

Compilation of the source program containing COpy If input fro-m more than one library is desired during
statements is logically equivalent to processing all COpy compilation, text-name must be qualified by the OF/IN
statements before processing the resulting source library-name of the library in which it resides. If
program. library-name is not specified, text-name is qualified by

the library specified by the LIBRARY option of the
The effect of processing a COpy statement is that the PROCESS statement. However, if neither of the above
library text associated with text-name is copied into the methods are used, the system library is assumed to
source program, logically replacing the entire COpy contain the source member.
statement beginning with the word COpy and ending
~ith the period, inclusive. When the REPLACING option The library-name must follow the rules for formation of
is not specified, the library text is copied unchanged. a program-name. The first eight characters of the

library-name are used as the identifying name; these
The text-name is the name of the source-member to be first eight characters must therefore, be unique within
copied. The text-name must follow the.· rules for the system. The uniqueness of the text-name and the
formation of a program-name. The first eight characters library-name is determined after the formation and
of the text-name are used as the identifying name; conversion rules for a program-name have been applied.
these first eight characters must, therefore, be unique These rules are given under PROGRAM-ID Paragraph in
within one library. Chapter 3.

Additional Functions 6-35

L

A COPY statement may appear in the source program
anywhere that a character-string or a separator may
appear. However, a COpy statement must not be
specified within the resulting copied text. Each COPY
statement must be preceded by a space, and followed
by a period and a space.

Comment lines may appear in library text. Comment
lines in library text are copied into the source program
unchanged and are interpreted logically as a single
space.

Debugging lines may appear in library text. When a
COpy statement is specified on a debugging line, the
copied text is treated as though it appeared on a
debugging line except that comment lines in the library
text appear as comment lines in the resulting source
program.

The syntactic correctness of the entire COBOL source
program cannot be determined until all COpy
statements have been completely processed, because
the syntactic correctness of the library text cannot be
independently determined.

Library text copied from the library is placed into the
same area of the resultant program as it is in the library.
Library text must conform to the rules for standard
COBOL format.

REPLACING Option

In the REPLACING option, each operand may consist of
one of the following: pseudo-text, an identifier, a literal,
or a COBOL word. When the REPLACING option is
specified, each operand-1 from the library text is
replaced by its associated operand-2.

Pseudo-text is a sequence of character-strings and/or
separators bounded by, but not including, pseudo-text
delimiters (==). Both characters of each pseudo-text
delimiter must appear on one line; however,
character-strings within pseudo-text can be continued.

mM Extension: Division, section, and
paragraph entries, when comprising
pseudo-text-l, may follow format
rules; these entries, when comprising
pseudo-text-2, must follow format
rules. That is, each word in
pseudo-text-2 that is copied into the
program is placed in the same area of
the resultant program as it appears
in pseudo-text-2. Example 2
illustrates this concept.

Pseudo-text-1, which is the library text, must be one or
more words; that is, it must not be null; neither can it
consist solely of the space character and/or of comment
lines.

Pseudo-text-2 may be zero, one, or more words; that is,
it may consist of nulls, space characters, or comment lines.

Each identifier may be defined in any Data Division
section.

Each literal may be numeric or nonnumeric.

Each COBOL word may be any single COBOL word.

Programming Notes

Sequ~nces of code (such as file and data descriptions,
error and exception routines, and so on) that are
common to a number of programs can be cataloged and
used in conjunction with the COPY statement. If naming
conventions are established for such common code,
then the REPLACING option need not be specified. If
the names will change from one program to another,
then the REPLACING option can be used to supply
meaningful names for this program.

6-36

REPLACING Option Processing

When the REPLACING option is specified. the library
text is copied. and each properly matched occurrence of
operand-1 within the library text is replaced by the
associated operand-2.

For purposes of matching. each identifier-1. literal-1. or
word-1 is treated as pseudo-text containing only
identifier-1. literal-1. or word-1 respectively. Separator
spaces in identifiers are optional in both the library text
and the comparison text.

The comparison proceeds as follows:

• 	 Any separator comma. semicolon. and/or space
preceding the .Ieftmost word in the library text is
copied into the source program. Beginning with the
leftmost library text word and the first operand-1
specified in the REPLACING option. the entire

• REPLACING operand that precedes the key word BY
is compared to an equivalent number of contiguous
library text words.

• 	 Operand-1 matches the library text only if the
ordered sequence of text words in operand-1 is
equal. character for character. to the ordered
sequence of library words. For matching purposes,
each occurrence of a comma or semicolon separator
is considered to be a single space. However. when
operand-l consists solely Of a separator comma or
semicolon, it participates in the match as a text word.
In this case. the space following the comma or
semicolon separator can be omitted. Each sequence
of one or more space separators is considered to be
a single space.

• 	 If no match occurs. the comparison is repeated with
each successive operand-1 (if specified) until either a
match is found or there are no further REPLACING
operands.

• 	 Whenever a match occurs between operand-l and
the library text, the associated operand-2 is copied
into the source program in the place of operand-1.

IBM Extension: Operand-2 is copied in
the place of operand-l unless
psuedo-text-2 positioning rules cause
the replacement to be inserted in a
different area.

• 	 When all operands have been compared and no
match is found. the leftmost library text word is
copied into the source program.

• 	 The next successive uncopied library text word is
then considered the leftmost text word. and -the
comparison proces~ is repeated. beginning with the
first operand-l. The process continues until the
rightmost library text word has been compared.

• 	 A comment line occurring in operand-1 and in the
library text is interpreted for matching purposes as a
single space. A comment line appearing in operand-2
is copied unchanged into the source program.

• 	 Debugging lines are not permitted in operand-l.
Debugging lines. however. are permitted in library
text and in operand-2. Text words in a debugging
line are matched as if no 0 appeared in column 7.

• 	 Text words after replacement are placed in the source
program according to standard COBOL format rules.

Notes:
1. 	Arithmetic and logical operators are considered to be

text words and can be replaced only through the
pseudo-text option.

2. 	When a figurative constant is operand-1. it will
match only exactly as specified. For example. if ALL
'AB' is specified in the library text. then 'ABAB' is not
considered a match. Only ALL'AB' is considered a
match.

3. When replacing a PICTURE character-string. the
pseudo-text option must be used. To avoid
ambiguities. pseudo-text-1 must specify the entire
PICTURE clause. including the key word PICTURE or
PIC.

4. When replacing a comment-entry in the Identification
Division. the pseudo-text option must be used.

Additional Functions 6-37

COPY Statement Example

Example 1: In this example, the library entry PAYLIB
consists of the following Data Division entries:

02 	 B PIC S99.
02 	C PIC S9(5)V99.
02 	 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ONB OF A.

The programmer can use the COpy statement in the
Data Division of a program as follows:

01 	 PAYROLL. COpy PAYLIB.

In this program, the library entry is then copied. The
resulting entry is treated as if it had been written as
follows:

01 	 PAYROLL.
02 	B PIC S99.
02 	C PIC S9(5)V99.
02 	D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING· ON B OF A.

To change some (or all) of the names within the library
entry, the programmer can use the REPLACING option:

01 	 PAYROLL. COPY PAYLIB REPLACING A BY
PAYROLL B BY PAY-CODE C BY GROSS-PAY.

In this program, the library entry is copied. The resulting
entry is treated as if it had been written as follows:

01 PAYROLL.
02 PAY-CODE PIC S99.
02 GROSS-PAY PIC S9(5)V99.
02 D PIC S9999 OCCURS 1 TO 52

TIMES DEPENDING ON
PAY-CODE OF PAYROLL.

The changes shown are made only for this program.

The entry as it appears in the library remains unchanged.

Example 2: Library-member A consists of the following
COBOL text:

Area Area
A B

1 1
02 ABC PIC 99.99.

A COpy statement that replaces Area-B level 02 with
Area-A level 01 would be written as follows:

Area Area
A B

1 1

COpy A REPLACING == 02 == BY ==

01 ==
The resulting source would be

Area Area
A B

1 1

01 ABC PIC 99.99

6-38

L

Segmentation· Feature

The Segmentation Feature provides
programmer-controlled storage optimization of the
Procedure Division. by allowing that division to be
subdivided, for overlays both physically and logically.

Although segmentation is not required, the Procedure
Division of a source program is usually written as a
consecutive group ~f sections. Each section is
composed of a series of .closely related operations that
perform a particl.llar function.

When the Segment~tion Feature is used, the entire
Procedure Division must be divided into sections. Each
section in the division must be classified according to
physical and logical attributes by a system of segment
numbers. Segment numbers must be in the range 0
through 99.

Program Segments

Two types of program segments are available:
permal)ent and independent.

Permanent Segments (0-49)

A permanent segment composes the fixed portion
(sometimes called root segment) of the object program.
A permanent segment cannot be overlaid by any other
part of the program. It is always present in its last-used
state.

The fixed portion is the part of the object portion that
logically resides in main storage during execution of the
object program.

Independent Segments (50-99)

An independent segment is defined as the part of the
object program that can overlay or be overlaid by
another independent segment. An independent segment·
is alWays considered to be in its initial state each time it
is made available to the program.

Segmentation Logic

In a segmented program, the sections are classified by a
system of segment numbers. All sections with the same
segment-number constitute a program segment with
that priority. The segment-number must be an integer
ranging in value from 0 through 99. Segments with
segment-numbers ranging from 0 through 49 are called
permanent segments. Segments with segment- numbers
ranging from 50 through 99 are independent segments.
If a segment-humber is omitted from the section header,
the segment-number is assumed to be zero. Sections in
the declaratives portion of the Procedure Division must
contaIn segment-numbers less than 50.

The following criteria should be used in assigning
segment numbers and segment types:

• 	 Frequency of Use-Sections that are used often or
sections that must be available for references at all
times, should be within permanent segments. LASS

frequently used sections should be within
independent segments.

• 	 Frequency of Reference-The more frequently a
section is referred to, the lower its segment number;
the less frequently the section is referred to, the
higher its segment number.

• 	 Logical relationships-Sections that frequently
communicate with each other should be given
identical segment numbers (sections with the same
segment-number do not need to be adjacent in the
source program).

Additional Functions 6-39

Segmentation Control

The logical sequence of the program is the same as the
physical sequence of the program except for specific
transfers of control. A reordering of the object module
is necessary if a given segment has its section scattered
throughout the source program. When the object
module is thus reordered, the compiler provides control
transfers to maintain the logic flow of the source
program. The compiler inserts instructions necessary to
load and/or initialize a segment when necessary. Within
a.source program, control may be transferred to any
paragraph in a section. It is not necessary to transfer
control to the beginning of a section.

Execution of the segmented object program begins in
the fixed portion. All tables, literals, and data buffers
are included in the fixed portion. Called object-time
subroutines are also part of the root segment. When
CALL statements appear in a segmented program,
subprograms are loaded with the fixed portion of the
main program.

If a segmented program calls a subprogram, the CALL
statement may appear in any segment. However, the
overlay linkage editor forces all such subprograms into
the fixed portion.

When a segmented COBOL subprogram contains
independent segments, the following link-edit technique
must be used:

1. 	 Both called and calling programs must be
compiled with the OBJECT option in the
PROCESS statement to create a relocatable
module (subroutine member).

2. 	 The Overlay Linkage Editor is invoked using OCL
or the OLiNK command.

3. 	 The OCL MODULE statement specifies the
mainline module name and the names of any
subprogram modules that contain independent
segments.

Refer to the IBM System/34 Overlay Linkage Editor for
additional information.

Executable Object Program Size

When using the Segmentation Feature, the user can
direct the overlay linkage editor to construct an' object
program of a particular size. The user does this by
specitying the size of main storage available for
execution in the MEMORY SIZE clause of the
OBJECT-COMPUTER paragraph. The overlay linkage
editor then attempts to produce a program that will
utilize the available space, making resident all the
sections that it can based on segment numbers. The
user is informed if the program does not fit in the spa.ce
specified. If the MEMORY SIZE clause is omitted, the
size of the compiler region is assumed.

PROCEDURE DIVISION-8EGMENTATION

In the Procedure Division of a segmented program,
segments are classified by segment-numbers. The
segment-number is included in the section header.

Format

section-name SECTION [segment-number]

Special Considerations-Segmentation

When segmentation is used, there are restrictions on the
ALTER, PERFORM, and SORT and MERGE statements.
Transfer of control, calling programs, and called
programs also require special consideration.

ALTER Statement

A GO TO statement within an independent segment
may be changed only by an AL TERstatement that is
within the same segment. A GO TO statement in a
permanent segment may be changed by an ALTER
statement in any segment of the program.

An altered GO TO statement is always returned to its
original state during program execution except when the
PERFORM statement is in a permanent segment and the
altered GO TO statement is in an independent segment.
The GO TO statement retains its altered state until the
conclusion of the PERFORM statement.

6-40

PERFORM Statement

A PERFORM statement in a permanent segment can
only refer to sections wholly contained within the fixed
portion of the program or sections wholly contained
within one independent segment.

A PERFORM statement in an independent segment can
only refer to sections wholly contained within the fixed
portion of the program or sections wholly contained
within the same independent segment as the PERFORM
statement.

For each execution of a PERFORM statement, control is
passed to the performed procedures only once.

Note: When a PERFORM statement references
procedures within an independent segment, control must
not pass outside that independent segment. Also, when
a PERFORM statement in an independent segment
references the fixed portion, control must not pass to
another independent segment from the fixed portion.
Retum linkages may be destroyed, and a processor
check is likely to occur.

SORT and MERGE Statements

If a SORT or MERGE stat~ment appears in the fixed
portion, then any SORT input procedures or
SORT /MERGE output procedures must appear
completely in either the fixed portion or one independent
segment.

If a SORT or MERGE statement appears in an
independent segment, then any SORT input procedures
or SORT/MERGE output procedures must appear
completely in either the fixed portion or the same
independent segment as the SORT or MERGE
statement.

Transfer of Control

The Segmentation Feature imposes no restrictions on
transfers of control as long as the control path remains
within the range of permanent segments. Permanent
segments are logically identical and can be treated by
the user as though the program were not segmented.

If independent segments are involved in the transfer of
control, restrictions do apply. Independent segments are
loaded into main storage under control of the system
management routines. The user must assume that
logically only one independent segment at a time is
present in main storage. This may not be the case
physically. The user must not execute statements that
depend on the presence of any given independent
segment (other than the one in which the statements
appear) in main storage at any given time.

Calling and Called Programs

The CALL statement may appear anywhere within a
segmented program. When a CALL statement appears
in an independent segment, that segment is in its
last-used state when control is returned to the calling
program.

A called program may not be segmented.

Additional Functions 6-41

Inter-program Communication

Complex data processing problems are often solved by
the use of separately compiled but logically
interdependent programs which, at execution time, form
logical and physical subdivisions of a single run unit. A
run unit is the total machine-language program
necessary to solve a data processing problem; it
includes one or more object programs, and may include
object programs from source programs written in
System/34 FORTRAN IV and System/34 Basic
Assembler.

SUBPROGRAM LINKAGE CONCEPTS

When the solution of a problem is subdivided into more
than one program, the constituent programs must be
able to communicate with each other through transfers
of control and/or through reference to common data.

Transfers of Control

In the Procedure DivisiOri, a calling program can transfer
control to a called program, and a called program may
itself transfer control to yet another called program.
However, a called program must not directly or indirectly
call its caller. For example, if program A calls program
B; program B calls program C; and program C then calls
program A the results are unpredictable.

When control is passed to a called program, execution
proceeds in the normal way. When a called program
processing is completed, the program can either transfer
control back to the calling program, call another
program, or end the run unit.

Common Data

Program interaction may require that both programs
have access to the same data.

In a calling program, the common data items are
described in the same manner as other File and
Working-Storage Section items. Storage is allocated for
these items in the calling program.

In a called program, common data items are described
in the linkage Section. Storage is not allocated to them
in the called program. Because a calling program may
itself be a called program, common data items may be
described in the linkage Section of the calling program.
In this case, storage is not allocated for these items in
the calling program itself, but rather in the program that
called the calling program. For example, program A calls
program B which calls program C. Data items in
program A can be described in the Linkage Sections of
programs Band C, and the one set of data can be
made available to all three programs.

When control is transferred from the calling to the called
program, the programmer must furnish a list of the
common data items in both programs. The sequence of
identifiers in both lists determines the match of
identifiers between the calling and called programs. A
corresponding pair of identifiers in the list names a
single set of data that is available to both programs.
While the called program is executing, any reference to
one of these identifiers is a reference to the
corresponding data of the calling program.

COBOL Language Considerations

In the Data Division of the source programs, the
programmer defines the common data items to be used
by both the calling and called programs. In the calling
program, these items can be defined in the File,
Working-Storage, or Linkage Sections. In the called
program, these items must be defined in the Linkage
Section. Common data items need not have the same
name and data description, but they must contain the
same number of characters.

In the Procedure Division, the list of common data items
is established through the USING option, which names
those data items available to both programs. In the
called program, only those items named in the USING
list of the called program are available from the data
storage of the calling program. Figure 6-4 illustrates this
concept.

A CAll statement in the calling program transfers
control to the first nondeclarative procedural statement
in the called program. When the called program has
completed execution, control is returned to the calling
program by an EXIT PROGRAM statement. The entire
run unit can be ended by a STOP RUN statement in
either program.

6-42

Calling Program Description Called Program Description

WORKING-STORAGE SECTION. LINKAGE SECTION.

01 PARAM-LlST: 01 USING-LIST.

05 PARTCODE PIC A. 10 PART-10 PIC X(5).

05 PARTNO PIC X(4). 10 SALES PIC 9(5).

05 U-SALES PIC 9(5).

PROCEDURE DIVISION

PROCEDURE DIVISION. USING USING-LIST.

CALL 'CALLPG'

USING PARAM-LiST.

Note: In the. calling program, the code for parts (PARTCODE) and the part number (P~RTNO) are referred to
separately. In the called program, the code for parts and the part number are combined into one data item
(PART-I D); therefore in the called program, a reference to PART-lOis the only valid reference to them.

Figure 6-4. Common Data Items in Subprogram Linkage

System Considerations

The main COBOL program and all called programs are
part of the same load module. When control is
transferred to the called program, it is already resident
in storage, and a branch to the called program takes
place. Subsequent executions of the CALL statement
make the called program available in its last-used state.

Note: Through the use of the OLiNK command, it is
possible to write nonresident called programs into the
same area in main storage. For more information on this
process, see Link-Editing with Overlay in Chapter 9.

Additional Functions 6-43

DATA DIVISION-SUBPROGRAM LINKAGE

In the Data Division of a called program. the
programmer specifies in the Linkage Section those data
items that are common with the calling program.

Format

LINKAGE SECTION.

[data.item-descriPtion-entry]

[record-description.entry] ...

The Linkage Section has meaning only if this object
program functions under control of a CALL statement
that contains the USI NG option.

The Linkage Section descfibes data available within the
calling program and referred to in both the calling and
called programs. Items described in the Unkage Section
do not have space allocated for them in the called
program. Procedure Division references to these data
items are resolved at object time by equating the
reference in the called program to the location used in
the calling program. For index-names. no such
correspondence is established. Index-name references
in the calling and called programs always refer to
separate indexes.

Items defined in the Linkage Section can be referred to
in the Procedure Division only if they are one of the
following:

• 	 Operands of a USING option in this program

• 	 Data items subordinate to such a USING option
operand

• 	 Items associated with such a USING operand (such
as condition-names or index-names)

Each Linkage Section record-name and noncontiguous
data-name must be unique. because neither can be
qualified. Descriptions of each clause valid in the
Linkage Section are given under Data Description in
Chapter 4. The following additional considerations
apply.

Record Description Entries

Items that have a hierarchical relationship with one
another must be grouped into level-01 records
according to the rules for formation of record
descriptions. Data description clauses can be used to
complete the description of the entry. Except for
level-SS condition-names. the VALUE clause must not
be specified.

Data Item Description Entries

Items that have no hierarchical relationship with each
other can be defined. as noncontiguous items with
level-number 77. The following clauses are required:

• 	 Level-number 77

• 	 Data-name

• 	 PICTURE or USAGE IS INDEX

Other data description clauses are optional and. when
necessary. can complete the description of the item.
Except for level-SS condition-names. the VALUE clause
must not be specified.

6-44

PROCEDURE DIVISION-8UBPROGRAM LINKAGE

C In the Procedure Division, control is transferred between
COBOL object programs by means of the CALL
statement.

Reference to common data is provided through the
USING option, which can be specified in the CALL
statement and in the Procedure Division header of the
called program.

The EXIT PROGRAM statement allows termination of
called program processing. The STOP RUN statement
allows termination of the run unit.

CAll Statement

The CALL statement causes control to be transferred
from one object· program to another within the run unit.
The calling program' must contain a CALL statement at
the point where another program is to be called.

~ecution of the CALL statement causes control to pass
to the first nondeclarative instruction of the called
program. Control returns to the calling program at the
instruction following the CALL statement.

Called programs themselves c;an contain CALL
. statements, but a ·called program must not contain a
CALL statement that directly or· indirectly calls the
calling program.

A given calling program can call up to 20 subprograms.

Format

CALL literal-l [USING data-name-l [,data-name-2] •••]

Literal-1 must be nonnumeric and must conform to the
rules for formation of a program-name. The first six
characters of the literal are used to make. the
correspondence between the calling program and the
called program. The literal must specify the
program-name of the called subprogram.

CALL statement execution causes control to pass to the

called subprogram. The first time a called program is

entered, its state is that of a fresh copy of the program.

Each subsequent time a called program is entered, the

state is as it was upon the last exit from that program.

Thus, the reinitialization of the following items is the

responsibility of the programmer:

• GO TO statements that have been altered

• Data items

• PERFORM statements

Additional Functions 6-45

L

USING Option

The USING option makes data items from a calling
program available to the called program. If the called
program has no need of data items from the calling
program, the USING option can be omitted. If data
must be passed, the USING option must appear in two
places:

• The CALL statement of the calling program

• The Procedure Division header of the called program.

The identifiers specified in the USING option of the
Procedure Division header must be data items defined in
the Linkage Section of the called program. The
identifiers specified in the calling program can be
defined in the File, Working-Storage, or Linkage Section.

Identifiers must be level 01 or 77 items. They can be
qualified.

mM Extension: The data-names in the
USING option of the CALL statement in
the calling program can have
level-numbers other than 01 or 77.
These data-names can be indexed or
subscripted.

The data-names specified in the USING option of the
Procedure Division header must be data items defined in
the Linkage Section of the called program with a
level-number 01 or 77.

The number of identifiers in the USING option of the
CALL statement must equal the number of data-names
in the USING option of the Procedure Division header.
The maximum number of identifiers, or data-names that
can be specified is 15. If the number of identifiers does
not equal the number of data-names, unpredictable
results may occur. Also, the data descriptions of the
identifiers and data-names must correspond by position.

The names of identifiers and data-names need not
correspond, but the same identifier or data-name must
not appear more than once in the same USING option~

EXIT PROGRAM Statement

The EXIT PROGRAM statement specifies the logical end
of a called program.

Format

paragraph-name. EXIT PROGRAM.

The EXIT statement must be preceded by a
paragraph-name, and it must be the only statement in
the paragraph ..

If control reaches an EXIT PROGRAM statement while
operating under the control of a CALL statement, control
returns to the point in the calling program immediately
following the CALL statement. If control reaches an
EXIT PROGRAM statement and no CALL statement is
active, control passes through the exit point to the first
sentence of the next paragraph.

STOP RUN Statement

The STOP RUN statement is discussed under the STOP
Statement in Chapter 5.

Segmentation Considerations

A CALL statement may appear anywhere within a
segmented program; the compiler ensures that the
proper logic flow is maintained. Therefore, if a CALL
statement appears in an independent segment, that
segment is made available in its last-used state when
control is returned from the called program.

6-46

SUBPROGRAM LINKAGE FEATURE EXAMPLES

The CALL statement is illustrated in the following
program example.

IDENTIFICATION DIVISION.

PROGRAM-ID. CALLSTAT.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 RECORD-2 PIC X.

01 RECORD-1.

05 SALARY PICTURE S9(5)V99.

05 RATE PICTURE S9V99.

05 HOURS PICTURE S99V9.

PROCEDURE DIVISION.

CALL 'SUBPRG' USING RECORD-1, RECORD-2.

STOP RUN.

The following called subprogram is associated with the

preceding calling program.

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBPRG.

DATA DIVISION

LINKAGE SECTION.
01 	 PAYREC.

10 PAY PICTURE S9(5)V99.
10 HOURLY-RATE PICTURE S9V99.
10 HOURS PICTURE S99V9.

77 	 CODE PIC X.

PROCEDURE DIVISION USING PAYREC, CODE.

EXIT PROGRAM.

Processing begins in the calling program, CALLSTAT.
When the first CALL statement is executed, control is
transferred to the first statement of the Procedure
Di.vision in SUBPRG, which is the called program.

When SUBPRG receives control. the values within
RECORD-1 are made available to SUBPRG; however, in
SUBPRG they are referred to as PAYREC. The
data-items within PAYREC and CODE contain the same
number of characters as RECORD-1 and RECORD-2,
although .the descriptions are not identical. When
processing within SUBPRG reaches the EXIT PROGRAM
statement, control is returned to the calling program.

Additional Functions 6-47

Debugging Features

The Debugging Features specify the conditions under
which procedures are to be monitored during program
execution.

COBOL source language debugging statements are
provided. The user decides what to monitor and what
information to retrieve for debugging purposes. The
COBOL debugging features simply provide access to
pertinent information.

COBOL SOURCE LANGUAGE DEBUGGING

COBOL language elements that implement the
Debugging Feature are a compile-time switch (WITH
DEBUGGING MODE), an object-time switch, a USE
FOR DEBUGGING Declarative, the special register
DEBUG-ITEM, and debugging lines that can be written
in the Environment, Data, and Procedure Divisions.

Compile-Time Switch

In the SOURCE-COMPUTER paragraph of the
Configuration Section, the WITH DEBUGGING MODE
clause acts as a compile-time switch.

Format

SOURCE-COMPUTER, computer-name [WITH DEBUGGING MODE] •

The WITH DEBUGGING MODE clause serves as a Object-Time Switch

compile-time switch for the debugging statements
written in the source program. When execution of the object program begins, a prompt

that asks whether the debugging statements are to be

When WITH DEBUGGING MODE is specified, all activated or bypassed is issued to the requesting

debugging sections and debugging lines are compiled as operator (or system operator for a batch job or an MRT

specified in this chapter. When WITH DEBUGGING program). The response acts as an object-time switch.

MODE is omitted, all debugging sections and debugging
lines are treated as documentation. When debugging mode is specified, through the

object-time switch, all the debugging sections and
debugging lines compiled into the object program are
activated.

When debugging mode is suppressed, through the
object-time switch, any USE FOR DEBUGGING
declarative procedures are inhibited. However, all
debugging lines remain in effect.

6-48

. Recompilation of the source program is not required to
activate or deactivate the object-time switch.

When WITH DEBUGGING MODE is not specified in the
SOURCE-COMPUTER paragraph, the object-time switch
is not available.

USE FOR DEBUGGING Declarative

The USE FOR DEBUGGING sentence in the Procedure
Division identifies the items in the source program that
are to be monitored by the associated debugging
Declarative procedure.

Format

USE FOR DEBUGGING ON {procedure.name-1 }
-- . ALL PROCEDURES

[, procedure name 2]

When specified, all debugging sections must be written
immediately after the DECLARATIVES header. Except
for the USE FOR DEBUGGING sentence there must be
no reference to any nondeclarative procedure within the
debugging procedure.

Automatic execution of a debugging section is not
caused by a statement appearing in a debugging
section.

A debugging section is not executed more than once as
the result of the execution of a single statement. For a
PERFORM statement that causes repeated execution of
a procedure, any associated procedure-name debugging
declarative section is executed once for each repetition.

For debugging purposes, each separate occurrence of an
imperative verb within an imperative statement begins a
separate statement.

Statements appearing outside the debugging sections
must not refer to procedure-names defined within the
debugging sections.

Except for the USE FOR DEBUGGING sentence itself,
statements within a debugging declarative section may
refer to procedure-names defined in a different USE
procedure only through the PERFORM statement.
Procedure-names within debugging declarative sections
must not appear in any USE FOR DEBUGGING
sentence.

Figure 6-5 defines the points during program execution
when the USE FOR DEBUGGING procedures are
executed. The procedure-name-n refers to the first and
all subsequent specifications of that type of operand in
one use for DEBUGGING sentence.

USE FOR Upon execution of the following,
DEBUGGING the USE FOR DEBUGGING
operand . procedures are executed

immediately:

procedure­	 Before each execution of the
name-n 	 named procedure. After

execution of every ALTER
statement except ALTER
statements in Declarative
procedures.

ALL 	 Before each execution of every
PROCEDURES 	 nondebugging procedure. After

execution of every ALTER
statement except ALTER
statements in Declarative
procedures.

Figure 6-5. Execution of Debugging Declaratives

When ALL PROCEDURES is specified in a USE FOR
DEBUGGING sentence, procedure-name-1,
procedure-name-2, and so on, must not be specified in
any USE FOR DEBUGGING sentence. The ALL
PROCEDURES option may be specified only once in a
program.

References to the DEB.UG-ITEM special register may
only be made from within a debugging declarative
procedure.

Any procedure-name may appear in only one USE FOR
DEBUGGING sentence, and it may appear only once in
that sentence.

When a USE FOR DEBUGGING operand is used as a
q·ualifier, such reference in the program does not
activate the debugging procedures.

Additional Functions 6-49

L

DEBUG-ITEM Special Register

The DEBUG-ITEM special register provides information
for a debugging declarative procedure. DEBUG-ITEM
has the following implicit description.

01 	 DEBUG-ITEM.
02 DEBUG-LINE
02 FILLER
02 DEBUG-NAME
02 FILLER
02 DEBUG-SUB-1

02 FILLER
02 DEBUG-SUB-2

02 FILLER
02 DEBUG-SUB-3

02 FILLER
02 DEBUG-CONTENTS

PICTURE IS X(6).

PICTURE IS X VALUE SPACE.

PICTURE IS X(30).

PICTURE IS X VALUE SPACE.

PICTURE IS S9999 SIGN IS

LEADING SEPARATE CHARACTER.

PICTURE IS X VALUE SPACE.

PICTURE IS S9999 SIGN IS

LEADING SEPARATE CHARACTER.

PICTURE IS X VALUE SPACE.

PICTURE IS S9999 SIGN IS

LEADING SEPARATE CHARACTER.

PICTURE IS X VALUE SPACE.

PICTURE IS X(n).

The DEBUG-ITEM special register provides information
about the conditions causing debugging section
execution.

Before each debugging section is executed.
DEBUG-ITEM is filled with spaces. The contents of the
DEBUG-ITEM subfields are then updated according to
the rules for the MOVE statement. with one exception:
DEBUG-CONTENTS is updated as if the move were an
alphanumeric to alphanumeric elementary move without
conversion of data from one form of internal
representation to another. After updating. each field
contains:

• 	 DEBUG-LINE: The compiler-generated sequence
number.

• 	 DEBUG-NAME: The first 30 characters of the name
causing debugging section execution. All qualifiers
are separated by the word OF.

• 	 DEBUG-SUB-1. DEBUG-SUB-2. DEBUG-SUB-3:
These fields contain spaces.

• 	 DEBUG-CONTENTS: Data is moved into
DEBUG-CONTENTS as shown in Figure 6-6.

6-50

DEBUG-LINE Contains
Item Causing Debug Number of COBOL DEBUG-NAME DEBUG-CONTENTS

Section Execution Statement Referring to Contains Contains

procedu re-name-n ALTER statement procedure-name-n procedure-name-n in

ALTE R reference TO PROCEED TO .
 phrase

GO TO GO TO statement procedure-name-n blanks

procedu re-name-n

procedure-name-n SORT/MERGE procedure-name-n 'SORT INPUT'

in SORT/MERGE statement 'SORT OUTPUT'

INPUT/OUTPUT 'MERGE OUTPUT'

PROCEDURE as applicable

PERFORM this PERFORM p roced u re-n ame-n 'PERFORM LOOP'

statement transfer statement

of control

procedure-name-n statement causing USE procedure-name-n 'USE PROCEDURE'

in a USE procedure procedure execution

implicit transfer previous statement procedure-name-n 'FAI,..L THROUGH'

from previous executed in previous

sequential sequential procedu re

procedure (see note)

1st execution of 1 st line number of first first 'START PROGRAM'

nondeclarative statement in nondeclarative

procedure the procedure procedure-name

Note: If this paragraph is preceded by a section header and control is passed through the section header,

the statement number refers to the section header.

Figure 6-6_ DEBUG-ITEM Subfield Contents

A simple way to use DEBUG-ITEM for debugging is
demonstrated in Figure 6-7_

SEQUENCE ~IA IB
(PAGEl SERIAL
1 3 • 6 8

o 1 ;pROCF'I"l I~I!; IIV II~ 0 I .

COBOL STATEMENT

o 2 I I .. I I
03 in "­ ·IL~RiA rrl:!: IV ~
04 I ..IA: ~IE. ~T lc:; I:-n ~~ .. b~ Il DiD ,., I:­ 11101:
05 I inr~ IplLIA IDI;~ -tr.TE~
06 I I I

Figure 6-7_ Using DEBUG-ITEM to Trace Program Flow Conditioned by Object-time DEBUG Mode

Additional Functions 6-51

L

Debugging Lines

A debugging line is any line in a source program with a
D coded in column 7 (the continuation area). If a
debugging line contains nothing but spaces in Area A
and Area B, it is considered a blank line.

Each debugging line must be written so that a
syntactically correct program results whether the
debugging lines are compiled into the program or
treated as documentation.

Successive debugging lines are permitted. Debugging
nnes may be continued. However, each continuation line
must contain a D in column 7, and character-strings
must not be broken across two lines.

Debugging lines may be specified only after the
OBJECT-COMPUTER paragraph.

When the WITH DEBUGGING MODE clause is specified
in the SOURCE-COMPUTER paragraph, all debugging
lines are compiled as part of the object program.

When the WITH DEBUGGING MODE clause is omitted,
all debugging lines are treated as documentation.

IBM Extension: Three debug language
statements are added to COBOL to assist
in the debugging of a program. The
statements are READY TRACE, RESET
TRACE, and EXHIBIT. These statements
can be used as often as necessary and
are normally interspersed throughout a
COBOL source program. The output
produced by the TRACE and EXHIBIT
statements is output to the current
SYSLIST device.

TRACE Statement

The formats of the READY TRACE
statement and the RESET TRACE statement
are as follows:

Format

READY TRACE.

RESET TRACE.

The READY TRACE statement causes the
compiler-generated internal statement

. number for each section-name and
paragraph-name to be displayed. These
statement nurr~ers are listed at
execution time when control passes to
these sections and paragraphs. Hence,
the output of the READY TRACE statement
appears as a list of statement numbers.

To reduce the length of the list and
the time taken to generate it, a trace
can be stopped with a RESET TRACE
statement. The READY TRACE-RESET
TRACE combination is helpful in
examining a particular area of the
program where the flow of control is
difficult to determine (for example,
where code consists of a series of
PERFORM statements or nested
conditional statements). The READY
TRACE statement can be coded so that
the trace begins before control passes
.to that area. The RESET TRACE
statement can be coded so that the
trace stops when the program has passed
beyond that area.

6·52

If a TRACE statement appears anywhere
in the source program, a push-down list"
of the last paragraphs and sections
executed is maintained at execution
time. The list is printed when a
paragraph or section is entered and
READY TRACE has just gone into effect.

To ensure that t0is list is maintained
during debugging, the programmer should
insert a TRACE statement at some point
in the Procedure Division. For
example, a RESET TRACE statement can
always be included at the beginning of
the Procedure Division.

After debugging, the user should remove
all TRACE statements from the program
to save both storage and time in the
actual production program.

The following is an example of the
output of the TRACE statement.

STNO. A... B... COBOL SOURCE STATEMENTS ...

30 PROCEDURE DIVISION.
31 SECTION-1 SECTION.
32 PARA-1.
33 DISPLAY 'PARA-1 ENTERED' .
34 READY TRACE.
35 PARA-2.
36 DISPLAY 'PARA-2 ENTERED' .
37 PARA-3.
38 DISPLAY 'PAM-3 ENTERED' .
39 RESET TRACE.
40 PARA-4."
41 DISPLAY' 'PARA-4 ENTERED' .
42 READY TRACE.
43 PARA-5.
44 DISPLAY 'PARA-5 ENTERED' .
45 STOP RUN.

TRACE Output

PARA-1 ENTERED
**STNO=00035, PRECEDING WERE 00032

00031
PARA-2 ENTERED
**STNO=00037
PARA.- 3 ENTERED
PARA-4 ENTERED
**STNO=00043, PRECEDING WERE 00040

00037 000035 00032 00031
PARA-S ENTERED

Additional Functions 6·53

L

EXHIBIT Statement

A user can display upon the current
SYSLIST device the value of a data item
during program execution by using the
EXHIBIT statement.

Format

EXHIBIT {~~:~gED NAMED} identifier·l [identifier-2]

• 	 EXHIBIT NAMED option displays the
names and values of the identifiers
listed in the statement.

• 	 EXHIBIT CHANGED NAMED option displays
the names and values of the
identifiers listed in the statement
only if the value has changed since
the last execution of the statement.
The comparison is based on the
leading 256 character positions of
the identifier. When such a
statement is first executed, all
values are considered changed and are
displayed.

Data values can be used to check the
accuracy of the program. For example,
using EXHIBIT NAMED, the user can
display specified fields from records,
compute the calculations himself, and
compare his calculations with the
output from his program. The coding
for a payroll problem might be:

DATA DIVISION.

01 	 PAYRCDHRS.

05 EMP-NO PIC 999 USAGE IS COMPo

05 RATE-PER-HOUR .. _ .

05 HRSWKD_ ...

05 OVERTIMERHRS

05 GROSS-PAy

PROCEDURE DIVISION.

GROSS-PAY-CALC.

COMPUTE GROSS-PAY = RATE-PER-HOUR *

(HRSWKD + 1.5 * OVERTIMEHRS).

PERFORM TEST1.

NET-PAY-CALC.

TESTl 	 IF (EMP-NO +9) / 10 IS NOT EQUAL TO
EMP-NO / 10 EXHIBIT NAMED
RATE-PER-HOUR, HRSWKD,
OVERTIMEHRS, GROSS-PAY ELSE NEXT
SENTENCE.

EXIT.

6-54

L
This coding causes the values of the
four fields to be listed for the first
and for every tenth data record before
net pay calculations are made. The
output could appear as:

RATE-PER-HOUR = 4.00
HRSWKD = 40.0
OVERTIMEHRS 0.0
GROSS-PAY = 160.00

RATE-PER-HOUR = 4.10
HRSWKD == 40.0
OVERTIMEHRS 1.5
GROSS-PAY = 1'73.23

RATE-PER-HOUR = 3.35
HRSWKD = 40.0
OVERTIMEHRS 0.0
GROSS-PAY = 134.00

Note: Decimal points are included in
tris example for clarity, but actual
printouts-depend on the data
descriptions of the fields in the Data
Division.

The preceding was an example of
checking at regular intervals (every
tenth record). A check of any unusual
conditions can be made by using various
combinations of COBOL statements. For
example:

IF OVERTIMEHRS IS GREATER THAN 2

EXHIBIT NAMED PAYRCDHRS ..•••

In connection w1th the previous
example, this statement could cause the
entire pay record to be displayed
whenever an unusual condition (overtime
exceeding two hours) is encountered.

The EXHIBIT statement with the CHANGED
NAMED option can also be used to
monitor conditions that do not occur at
regular intervals. The names and
values of identifiers are listed only
if the value has changed since the last
execution of the statement.

For example, suppose the program
calculates postage rates to various
cities. The flow of the program might
be:

CALCULATE
RATE FOR
CITY

Additional Functions 6·55

L

The EXHIBIT statement with the CHANGED
NAMED option in the program might be:.

EXHIBIT CHANGED NAMED STATE CITY RATE

The output from the EXHIBIT statement
with the CHANGED NAMED option would
appear as shown in the following
figure. The value of an identifier is
listed only if it has changed since the
previous execution. For example, since
the postage rate to city 02 and city 03
in state 01 are the same, the rate is
not printed for city 03.

STATE = 01

CITY 01

RATE 10

CITY 02

RATE 1S

CITY 03

CITY 04

RATE 10

STATE = 02

CITY 01

CITY 02

RATE 20

CITY = 03

RATE 1S

CITY 04

STATE = 03

CITY 01

RATE = 10

6·56

L

FIPS Flagger

The FIPS Flagger, depending on the compiler option
chosen, identifies source statements and clauses that do
not conform to the federal standard, FIPSPUB 21-1.

1975 FIPS COBOL (Federal Information Processing
Standard COBOL), D,cember 1975-is a compatible
subset of American National Standard COBOL,
X3.23-1974. 1975 FIPS COBOL is subdivided into four
levels: full, high-intermediate, low-intermediate, and
low. Any program written to conform to 1975 FIPS
COBOL must conform to one of these levels of 1975
FIPS COaOL processing. Figure 6-7 shows the 1974
Standard COBOL processing modules included in each
of the levels of 1975 FIPS COBOL.

High Low
Full FIPS Intermediate Intermedlete

1974 Standard Module Module FIPS Module FIPS Module

2 NUC 1,2 2 NUC 1,2 2 NUC 1,2 1 NUC 1.2
(Nucleus)

2 TBl 1.2 2 TBl 1,2 2 TBl 1,2 1 TBl 1.2
(Table Handling)

2 SEQ 1.2 2 SEQ 1.2 2 SEQ 1.2 1 SEQ 1.2
(Sequential 1-0)

2 REl 0.2 2 REl 0.2 2 REl 0.2 1 RElO.2
(Relative 1-0)

2 INX 0.2 2 INX 0.2 - ­
(Indexed 1-0)

2 SRT 0.2 2 SRT 0.2 1 SRT 0.2 ­
(Sort- Merge)

1 RPW 0.1 - - ­
(Report Writer)

2 SEG 0.2 2 SEG 0.2 1 SEG 0.2 1 SEG 0.2
(Segmentation)

2 LIB 0.2 2 LIB 0.2 1 LIB 0.2 1 LIB 0.2
(Library)

2 DEB 0.2 2 DEB 0.2 2 DEB 0.2 1 DEB 0.2
(Debug)

2 IPC 0.2 2 IPC 0.2 2 IPC 0.2 1 IPC 0.2
(Inter-program
Communication)

2 COM 0.2 2 COM 0.2 2 COM 0.2 ­
(Communications)

Figure 6-7. The 1974 Standard and 1975 FIPS COBOL

Low FIPS
Module

1 NUC 1.2

1 TBl 1.2

1 SEQ 1.2

-

-

-

-

-

-

-

-

-

Additional Functions 6-57

L

A compiler option can be specified that causes elements
that exceed a specified level of 1975 FIPS COBOL to be
flagged. The following elements are flagged as
exceeding the COBOL level they are listed under.

1975 High FIPS COBOL Flagging

When flagging for the high FIPS level is specified, the
following IBM Extensions, if present, -are identified.

Global Items

Apostrophe used as quote

Identification Division

Nothing is flagged in the Identification Division.

Environment Division

SYSTEM-CONSOLE, REQUESTOR, CSP, COl,
LOCAL-DATA, ATIRIBUTE-DATA,
SYSTEM-SHUTDOWN, or UPSI-O through UPSI-7
in SPECIAL-NAMES

ORGANIZATION IS TRANSACTION
FILE STATUS with second data-name

CONTROL-AREA clause in FI LE-CONTROL entry
(TRANSACTION files)

Data Division

Unequal level-numbers at same group level
Use of VALUE clause as comment in other than

condition-name entries
Asterisk as zero suppression symbol and BLANK WHEN

ZERO clause in same entry
Numeric literal without sigh in VALUE clause
COMP-3 option of the USAGE clause
COMP-4 option of the USAGE clause
COMPUTATIONAL-3 option of the USAGE clause
COMPUTATIONAL-4 option of the USAGE clause
PICTURE character 1 (Boolean data)
INDICATOR clause
FILLER used as group item

Procedure Division

THEN as separator in an I F statement
FOR clause of ACCEPT or DISPLAY
EXHIBIT statement
TRACE statement
Any reference to a TRANSACTION file (ACQUIRE,

CLOSE, DROP, OPEN, READ, USE, WRITE)
SET mnemonic-name TO ON or OFF
SET condition-name TO TRUE
Indexed or subscripted data-name in USING option of

CALL statement

Data-name with level-number other than 01 or 77 in

USING option of CALL statement

1975 High-Intermediate FIPS COBOL Flagging

When flagging for the high-intermediate FIPS level is
specified, all elements in the preceding list are flagged,
plus the following FIPS high level COBOL source
elements:

Global Items

REPLACING option of COpy statement
OF or IN option of COPY statement

Identification Division

Nothing is flagged in the Identification Division.

Environment Division

SORT or SORT-MERGE option of SAME clause

RECORD KEY clause

INDEXED ORGANIZATION clause in SELECT sentence

RECORD option of SAME clause (indexed or sort files)

ACCESS MODE IS DYNAMIC (indexed files)

RESERVE clause in SELECT sentence (indexed files)

Data Division

Integer-l TO option of BLOCK CONTAINS clause
(indexed files)

6-58

Procedure Division

Noncontiguous segments
MERGE statement

. KEY option of READ statement
Non-declarative portion of program may contain only

SORT and STOP RUN statements if SORT statement
is used

Use of more than one $3RT statement

COLLATING SEQUENCE in SORT statement

SORT using file-name series

Any reference to an indexed file (CLOSE. DELETE,

OPEN. READ. REWRITE, START. USE. or WRITE)

1975 Low-Intermediate FIPS COBOL Flagging

Wher, flagging for the low-intermediate FIPS level is
specified. all elements in the preceding lists are flagged,
plus the following FIPS high-intermediate level COBOL
source elements·:

Global Items

Comma or semicolon as pu~ctuation

Continuation of words or numeric literals

Figurative constant ALL literal

Figurative constant HIGH-VALUES

Figurative constant LOW-VALUES

Figurative constant QUOTES

Figurative constant SPACES

Figurative constant ZEROES

Figurative constant ZEROS

Identification Division

DATE-COMPILED paragraph

Environment Division

RESERVE clause in SELECT sentence (sequential or
relative files)

OPTIONAL in SELECT sentence
RECORD option of SAME clause (sequential or relative

files)
Literal phrase in alphabet-name clause
ACCESS MODE IS DYNAMIC (relative files)
MULTIPLE FILE clause

Data Division

SD level indicator
One-digit level-number
Level-number greater than 10
Data-name beginning with nonalphabetic character
66 or 88 special level-number
Data-name option of VALUE OF clause
ASCENDING or DESCENDING KEY option of OCCURS

clause
DEPENDING ON option of OCCURS clause
LINAGE clause
Nesting of REDEFINES clauses
Value clause with THRU option
RENAMES clause
Integer-1 TO option of BLOCK CONTAINS clause

(sequential or relative files)

Additional Functions 6-59

Procedure Division

Qualification of data-names and paragraph-names
CORRESPONDING option
Unary operators
Use of AND OR and NOT in conditional relation
Condition-name condition
Use of arithmetic and relational symbols

(+, -, *, **, /, >, <, =)

Sign condition
ON OVERFLOW statement
FROM in ACCEPT statement
DAY DATE or TIME in ACCEPT statement
Multiple results in ADD statement
GIVING series in ADD statement
Multiple operands in ALTER statement
COMPUTE statement
UPON option of DISPLAY statement
REMAINDER in DIVIDE statement

INTO or GIVING series of DIVIDE statement
GO TO statement with no object
I F statement nesting
Series in INSPECT statement
BY or GIVING series in MULTIPLY statement
EXTEND option of OPEN statement
UNTIL option of PERFORM statement
VARYING option of PERFORM statement
NEXT option of READ statement (relative files)
RELEASE statement
RETURN statement
SEARCH statement
SORT statement
START statement (relative files)
STRING statement
Multiple results in SUBTRACT statement
GIVING series in SUBTRACT statement
UNSTRING statement
EXTEND option of USE statement
EOP or END-OF-PAGE option of WRITE statement
File-name series in USE statement (relative or sequential

files)
Comparison of operands of unequal size
Multiple results in MULTIPLY statement
File-name series in CLOSE statement (sequential files)
LOCK phrase in CLOSE statement (sequential files)
File-name series in OPEN statement (sequential files)
Identifier or mnemonic-name as WRITE· statement

phrase

1975 Low FIPS COBOL Flagging

When flagging for the low FIPS level is specified, all
elements in the preceding lists are flagged, plus the
following FIPS low-intermediate level COBOL source
elements:

Global Items

Debug items
COpy statement
D in continuation area (debugging lines)

Identification Division

Nothing is flagged in the Identification Division

Environment Division

RANDOM option of ACCESS MODE IS clause
WITH DEBUGGING MODE clause
RELATIVE ORGANIZATION clause in SELECT sentence
RELATIVE KEY clause

Data Division

Linkage Section
Reference to relative files

Procedure Division

USING phrase on Procedure Division header
Segment number on section header
CALL statement

EXIT PROGRAM statement

INVALID KEY option of READ statement
INVALID KEY option of REWRITE statement
USE FOR DEBUGGING statement
DEBUG-ITEM special registers
Any reference to a relative file (OPEN, CLOSE, USE,

DELETE, READ, WRITE, or REWRITE)

6-60

L

Chapter 7. Transaction File Considerations and Sample Program

The TRANSACTION file is an IBM extension that allows
you to read data from and write data to a display
station. You define the constants and fields that appear
on the display screen with display screen format
specifications. You can either enter the display screen
format specifications explicitly or generate them through
the Screen Design Aid. (For more information on SDA,
see the Screen Design Aid Programmer's Guide and
Reference Manual.) These display screen format
specifications are compiled by the $SFGR utility of the
system support program (for more information on
display screen format specifications and the $SFGR
utility, see the System Support Reference Manual).

The TRANSACTION file also allows your program to
pass data to and ~ead data from another application
program through the use of the Interactive
Communications Feature (SSP-ICF). Your program can
communicate with a program running on the same
Sytem/34 or with a program running on another
system. In this chapter, the word device means both
display stations and SSP-ICF sessions. For a further
description and exampl~s of the Interactive
Communications Feature, see the Interactive
Communications Feature Reference Manual.

Note: A TRANSACTION fiie program includes the main
program and all its subprograms.

SUMMARY OF MAJOR LANGUAGE EXTENSIONS

The System/34 COBOL Program Product includes
language extensions that support display stations and
the Interactive Communications Feature without the use
of the System/34 Work Station Support Subroutines
(PRPQ). The major extensions are:

• 	 File definition using the file control entries SELECT
and ASSIG~.

• 	 A new file organization called TRANSACTION. This
file organization allows the user to define one file that
supports one or more display stati9ns, one or more
SSP-ICF sessions, or any combination of display
stations and SSP-ICF sessions.

.• 	Extended file status support for TRANSACTION file
processing.

• 	 The ability to access ATIRIBUTE-DATA and the
display station local data areas through two new
mnemonics that are used with the low-volume
input/output verbs, ACCEPT and DISPLAY.

• 	 Standard error handling with the U$E procedure in
the DECLARATIVES Section and FilE STATUS.

• 	 Extensions to the READ and WRITE verbs perform
additional functions associated with TRANSACTION
file support of display stations and SSP-ICF sessions.

• 	 The ability to acquire and release devices through two
new verbs, ACQUIRE and DROP.

• 	 Support of SFGR indicators via a new data type,
Boolean data.

PROGRAM ATTRIBUTES

COBOL programs that use a TRANSACTION file can
have one or several requestors. A requestor is the
device that initiates, or requests, a program. A program
that allows only one requestor is a single requestor
terminal program (an SRT). A program that allows more
than one requestor is a multiple requestor terminal

-	 program (an MRT).

The SRT and MRT attributes are assigned to a program
on the COBOL command statement or the COMPilE
OCl statement. The number specified for the MRTMAX
parameter of either statement is the maximum number
of requestors that can be attached to the program at
one time. If the MRTMAX parameter value is missing or
equal to zero, the program is an SRT.

Note: To change an SRT program to an MRT program,
the program must be recompiled (using either the
COBOL command statement or the COMPilE OCl
statement) with a MRTMAX value greater than or equal
to one. In addition, the procedure used to execute the
program must be specified as an MRT when you sign
off of SEU.

Transaction File Considerations and Sample Program 7-1

L

SRT (SINGLE REQUESTOR TERMINAL) PROGRAM

An SRT program is specified if the COBOL command
statement or the COMPILE OCL statement does not
include an MRTMAX parameter when the program is
compiled or if an MRTMAX value of 0 is specified.
Although an SRT program allows only one requestor,
'more than one device can execute the program at the
same time. If a second device requests the program,
the system support program loads and initiates a second
copy of the program. A new copy of the program is
loaded for each additional requestor.

An SRT program can have multiple devices attached to
it during execution. In this situation, the requestor calls
the program, and other devices are acquired for the
program through the use of the WORKSTN OCL
statement or the COBOL ACQUIRE statement. A display
station can be acquired if it is not attached to an
executing program and if it is in standby mode. An
SSP-ICF session can be acquired if it is not attached to
a requestor. Any device, whether acquired or a
requestor, can be released from the program through
the use of the DROP statement.

When coding SRT programs, the following should be
considered:

• 	 If the program is called by more than one requestor,

each requestor executes a separate copy of the

program.

• 	 The requestor provides the display station local data

area.

• 	 Program error messages go to the requestor of the

program.

• 	 The program, including any acquired devices, is

suspended via inquiry.

MRT (MULTIPLE REQUESTOR TERMINAL)
. PROGRAM

An MRT program is specified by the MRTMAX
parameter on the COBOL command statement or the
COMPILE OCL statement. The value specified for the
MRTMAX parameter limits the number of requesting
devices that the program can process concurrently. An
MRTMAX value of one is valid and means that only one
device can request the program. In this case, multiple
copies of the program are not initiated when additional
devices use the same procedure to call the M RT
program.

Note: Ordinarily, different MRT procedures should not
be used to call the same MRT program because more
than one copy of the program could be in storage at the
same time.

Each requestor of an MRT program is attached to the
same copy of the program during execution. The first
requestor of an MRT program causes the program to be
loaded and initiated. Each succeeding requestor is
attached to the executing program when a read
operation is performed. If the program is handling the
maximum number of requestors, the system support
program queues the additional requestors. When the
program releases a requestor, the program processes
the next requestor waiting on the queue. For an
example of MRT program logic, see Figure 7-1.

7-2

When coding MRT programs,' the following should be
considered:

• 	 If the program is called by more than one requestor,
the first reql:lestor causes the program to be initiated.

• 	 A COBOL MRT program must provide the data areas
and logic for managing multiple requestors. For an
example of code that supports multiple requestors,
see lines 56, 59,104, and 105 in Figure 7-13.

• 	 After the first requestor, each succeeding requestor is
attached to the program when a read. operation is
performed.

• 	 There should be only one READ operation in an MRT
program.

• 	 Program error messages go to the system console
operator.

• 	 Requestors can leave the program without
suspending the program or other devices.

• 	 When inquiry is used in an MRT program, the
processing of information from the device requesting
the interrupt is suspended. The program continues to
process information from other program:-requesting
devices.

Note: If a display station is released from the program,
input cannot be read from and output cannot be written
to the display station. If you attempt to do so, a return
code is written into the STATUS area or an
execution-time error message is displayed.

Transaction File Considerations and Sample Program 7-3

Initiate Prog

Open

TRANSACTION

File

Identify
Display Station
Assign Work Area

Terminate Program

Ves

2

Release
Display
Station

Ves Clear this Display
Station Area

ProCl.

Se....n

1-Signaled by AT END condition on TRANSACTION file read
2-Released by DROP operation
3-Test for value of 90 in FilE STATUS
4-Test for value of 01 in FilE STATUS

Figure 7-', Sample MRT Logic

7-4

ATTACHING A DEVICE TO A PROGRAM

Any device can be attached to a COBOL program in one
of two ways:

• 	 The device operator calls or requests the program.

• 	 The COBOL program attempts to acquire a specified
device when the ACQUIRE statement is used in the
Procedure Division. A display station can be acquired
if it is not attached to another program and if it is in
standby mode. An SSP-ICF session can be acquired
if it is not attached to an executing program and if it
was specified on the SESSION OCl statement for
the job step. The ATTRIBUTE-DATA can be tested
to see if a device can be acquired.

A display station can be attached to a COBOL program
in one of two additional ways:

• 	 The procedure. that is called to execute the COBOL
program includes a WORKSTN OCl statement with
the parameter REQD-YES. The display station is
attached to the program by SSP (system support
program product) and must be available (in standby
mode) for the program to be initiated.

• 	 The procedure that. is called to execute the COBOL
program includes a WORKSTN OCl statement with
the parameter REQD-NO. REQD-NO indicates that
the COBOL program, rather than SSP, attempts to
acquire the display station. If the acquire attempt by
the COBOL program fails, the display station is
deleted from the file.

If a TRANSACTION file program is initiated from the
input job queue, a display station must be attached to
the program by a WORKSTN OCl statement or by the
ACQUIRE statement. If a display station is not attached
by one of these methods, undesirable results can occur.

WRITING A PROGRAM WITH A TRANSACTION
FILE

Creating a Display Screen Format

The first step in writing a COBOL program.that uses a
TRANSACTION file is to design the display screen
formats that the program uses. You must decide where
on the display screen you want the constants and fields
for each format to appear. You can use the display
screen layout sheet (GX21-9174) as shown in Figure
7 - 2 to help layout the fields.

Once the formats are designed, you must define them to
the System/34 in one of two ways. You can either fill
out the two parts (S specifications and D specifications)
of the display screen format specifications (see Figure
7-3), or you can use the Screen Design Aid (SDA) to
interactively design, define, and compile the display
screen formats.

SDA allows you to define the appearance and attributes
of a display screen format before the format is actually
generated. SDA generates the display screen format
specifications automatically, based on how you designed
your screen formats. You do not have to fill out the
display screen format specification sheets. (For a
complete description of SDA, see the Screen Design Aid
Programmer's Guide and Reference Manual.)

Transaction File Considerations and Sample Program 7-5

L

Display Screen Layout Sheet

COLUMN

1-10 1 11-20 1 21-30 I 31-40 I 41-50 I 51-60 I 61-70 I 71-80
1 7llill!IOJ 1 7 1 7 7

01
I I I I i 1 1 1 1 1 I I I

02
I I I , I , , , , I , , , , I , , I , I , , , I , I ~ I II

03 I L 1 1 1 I 1 I 1 1 1 1 1

04 1 1 1 1 I I I I I I 1 1 1 1 1

1 1 1 1 1 1 I I I 1 1 1
05

I I I
06

1 1 I 1 1 I 1 I 1 1 1 1 1 1 1

07
1 1 , , I , , , I , I , I , , I , , , , I , I , I , , , , I , , , I , I , I I' I 1I I I

1 , , , I , I , , I , , , I I I I I I
08

I , I I I I
09

I I I I 1 I I I I i I I ~ I 1

10
J L J i I 1 1 1 , , I , , , I , , , I , I , ,~I 1 J

11

1 1 1 L j I 1 1 1 I 1 1 1 L 1

'i: 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1o
a:: 13

I , , , I , , , , I , , , , I , , , I , , , , I , , I I , , , , I , , I I , I , I , I , , , , I , , , ,~I 1

14
I , I , , , , I , I, , , , I , , I , , I I , I , , I , I , I I , , , I , , , , I , , , I 1 I 1

I I I I I I

I I

15
I J I 1 1 1 I i 1 1 I I J J 1

16

1 1 I 1 I 1 1 I I 1 1 1 1 1 1

17

I 1 I I 1 I I I I 1 1 1 1 1 1

18

I I I 1 I I I I I I I I 1 1 1

19

I J L 1 I j I I j 1 I I I I I

20
 I . ·11 1 1 1 1 I I 1 1 1 1 1 1

21

1 I I I I I I I I I I 1 1 1 1

22

1 I L J J I 1 I I I I I 1 I j

23

~

. 1I i I 1 1 I 1 1 1 I 1 1 1 1

24

1 I I I 1 1 1 I 1 1 1 1 1 1 1

1-10 11-20 I 21-30 31-40 41-50 51-60 61-70 71-80

1 415I1i17181910 1 41lil6 71819JO 123451617 8191l1lJ 12L314 5161718191011213141516171819101 451617181910 1121: 4 51617181910 1 2 4 51~J71!!1W!

J I I 1 I I

Figure 7-2. Display Screen Layout Sheet

7-6

GX21·9253- UlM 050'

Can5t.nt Data8.;E

Printed In U.S.A.

System/34 Display Screen Format Specifications D
L 	

-No. of sheets per pad may ry slightly

1:1

Reserved Key Mask ~u".::::·! ~:.~

,., .,.,~.s •••,tiS '''0 " '27'" ,,,. ,,,. " , , J , '~l'. 91!!'
II 	 s I U L I I I I I I I I I I I I ! i

Starting
Location

-~N.me
>2

Sequence Field ~ c ~ .. > Reserved
w ,

Number Length ~ '3 d > u I g f
~ c 	 ~ ~0! WSU ~~ i 2 &

C " g 1" !
~ 	 c E .~0~ Field Name i ~ :§ ~ d ~ & I .t r ~ 0: ::> 8 I '2 J .. 5 6 1 8 91011111J141!1161118197021122

17 J" 5 6 7 8 910111,]1)14151617181920]122231 ,. ,,, 3138 39. 4142 344454641. 051 52 Sl~ 55 5158 S96() 6162 63&4 65666168 69101172 7) 14751671181980"
0

0

0

0

0

0

0

! •0

0

0 : I

0

0

0 I

0

0L 0

0

111111:111I111111111111111111111111

Notes:
D 	 The shaded columns are not used by $SFGR to

generate the screen formats to be used by a

COBOL program, This field is not required if the

file is to be used with SSP-ICF sessions only,

II 	The display screen format name used in columns 7

through 14 of the S specification must be entered

on the FORMAT option of the WRITE statement,

Figure 7·3, Display Screen Format Specifications

Transaction File Considerations and Sample Program 7-7

L

The COBOL program treats all the information passed to
it from one screen format as a single record. Each field
in this record must be described on the display screen
format specifications (either coded or generated). The D
specifications describe the fields and their attributes.
You can specify three kinds of fields:

• 	 An output field contains information that cannot be
changed by the operator. For a normal output
operation, the data in the field is supplied either as
part of the field definition when the format is
generated (a constant) or is supplied by the COBOL
program (variable information). If the data is supplied
by the COBOL program, it must be moved into a
record area before it is written to the display screen.
This record area can then be written to the screen at
the same time the format is written. The data must
be sent to the screen in the same order that it is coded
on the D specification for that screen; that is, the order
of the output fields in the output record must be the
same as that coded on the SFGR D specification.

• 	 An input field is a field on the display screen reserved,
for keyboard entry. Data is entered by the display
station operator. The field must be described in the
Data Division. If more than one input field is
specified for a screen, the input fields should be
described in the Data Division in the same order as
they are specified in the D specifications for the
screen format. If the input fields are not in the ord~r
specified in the D specifications, the data could be
gr'ouped differently in the TRANSACTION file record.

• 	 An output/input field is both displayed (output) on the
display screen and read (input) back into the program.
The display station operator can key new data over
the data that is displayed by the program. This data
is then read back into the program.

Note: Exercise caution when referring to an output/input
field; its position in the output record is not necessarily the
same as in the input record.

All three types of fields can be used in the same display
screen format.

Note: The record defined for a TRANSACTION file must
be large enough to accept the data defined for the
screen.

In addition to specifying the type of field, you can
specify a number of other attributes of each field. One
attribute that you can specify is what type of data the
field contains. The types of data that can be specified
are:

• 	 Alphabetic only.

• 	 Numeric only. If special characters are entered in a
numeric' field, the data read by the COBOL program
may not be as expected. The program uses only the
digit portion of each character, forcing the zone
portion to hex F (except for the sign position).

• 	 Alphanumeric.

• 	 Signed numeric (the last position of each field
contains a sign). For signed numeric fields, the length
of the field specified on the display screen format
specifications must be one more than the length
specified in the COBOL program. This allows the
sign to be displayed as a separate character on the
screen.

Among the other attributes that can be specified are the
display intensity, whether the field is a blinking field,
and whether data must be entered into the field before
the record can be returned to the program. These
attributes can be made conditional by specifying an
indicator in the appropriate columns of the D
specifications. If the indicator is on in the program, the
field has the specified attribute. If the indicator is off in
the program, the field does not have the attribute.

The S specifications define the attributes of the display
screen format as a whole. On the S specifications you
can specify the number of lines to be cleared before the
format is written on the display screen, whether or not
to sound an alarm when this format is displayed, and
the starting line of the display format. For a complete
description of what can be specified on the Sand D
specifications, see the $SFGR utility program in the
System Support Reference Manual. For a summary of
the possible entries, see Appendix I in this manual.

When you have completed the display screen format

specifications, use the $MAINT utility program or SEU

, to enter the specifications into a source member. Then
run the screen format generator program ($SFGR utility
program) to process the source specifications. The
name of the format member must appear on the
ASSIGN clause of the File Control entry. For an
example of a File Control entry that associates a screen
format member with a TRANSACTION file, see a in
Figure 7-13. Figure 7-4 shows the steps for creating a
format load member.

7-8

1. Arrange all fields on the layout sheet. just as they will

Layout appear on the display screen.

Sheet

Screen Format
Specifications

SEU or $MAINT

Screen Format
Generator
Program

• 	 Format
Specifications

• 	 Diagnostic
Messages

• 	 Input and
Output Area
Formats. ___

2. 	 Use the completed layout sheet as a guide for filling
out the two parts of the display screen format
specifications.

3. 	 Use SEU or $MAINT to transfer the specifications to
a library source member.

4. 	 Run the screen format generator utility program
($SFGR) by entering the required control statements
or by running the FORMAT procedure. The screen
format generator program produces the following
output:

List of source specifications
Diagnostic messages
List of information about the input and output
records for the format
The display screen format (or formats) in the
specified load member

Figure 7-4. Steps for Creating a Display Screen Format

Transaction File Considerations and Sample Program 7-9

End-of-File Considerations

End-of-file occurs for an SRT or MRT TRANSACTION
file program when there are no attached display stations
or SSP-ICF sessions for which there is an outstanding
invited input operation. A write operation must precede
.each read operation in order for the display station to

. become input-invited. This is required if a subsequent
read operation is to handle the next input record from
that display station.

End-of-file occurs for an NEP TRANSACTION file
program when there are no attached display stations or
SSP-ICF sessions and the operator enters a STOP
SYSTEM command.

When end-of-file occurs, an indication passes back to
the COBOL program. This indication causes the AT END
condition on the READ operation to the TRANSACTION
file or the user exception/error procedure to be
executed (whichever is specified). The AT END
condition allows the programmer to control the program
flow when end-of-file is reached. (For more information
on the AT END condition, see the READ statement in
Chapter 5.)

Note: If the AT END condition is not specified, the user
exception/error procedure is executed. If no
exception/error procedure is specified, the program
halts and an error message that forces program
termination is displayed when end-of-file is reached.

SPECIAL DISPLAY SCREEN FORMAT
CONSIDERATIONS

Overriding Fields in a Format

An override operation allows you to override fields in a
format when you redisplay that same format. To
perform an override function, you must specify an
indicator in the override field, columns 33 and 34 of the
S specification. An override operation is peformed if the
indicator is on when the format is displayed (see Figure
7-5). The entire format is displayed if the indicator is
off when the format is displayed.

During an override operation (the indicator in the
override field, columns 33 and 34, is on) one of the
following occurs:

• 	 Any field that has an indicator specified in the output
field (columns 23 and 24 of the D specification)
remains unchanged if the indicator is off. If data was
keyed into the field, that data is not changed. Any
field that had y, N, or blank specified in columns 23
and 24 is also not changed.

• 	 Any field that has an indicator specified in the output
field (columns 23 and 24) is displayed with data from
the COBOL program when the indicator is on. Any
data that was keyed into the field by the operator is
written over and lost. Output information is displayed
from the same locations in the output record area as
for a normal display.

For all fields, the use of indicator-controlled attributes
such as highlight or reverse image is determined by the
state of that indicator. All field attributes that are not
controlled by indicators are unchanged.

7-10

L

Read Under Format

A read under format allows one program in a procedure
to display a format and the next program in the
procedure to read it, A program displays the format
using a normal output operation and then either goes to
end of job or releases the display station. While the
second program is initiating, the operator keys data into
the displayed format. When the operator presses the
Enter/Rec Adv key, the input information from the
display is sent to the second program.

The following steps occur in a read under format:

1. 	 With a normal output operation, the first program
displays a format at the display station.

2.· 	 The first program goes to end of job (if the
program is an SRT program) or releases the
requesting display station (if the program is an
MRT program). The display station is released
when the DROP operation is executed in the
Procedure Division, or when the program goes to
end of job.

3. 	 The second program is initiated. (Data should not
be passed to the second program from an
INCLUDE OCl statement. For more information
on the INCLUDE OCL statement, see INCLUDE
Statement in Chapter 1 of the System Support
Reference Manual.)

4. 	 The second program performs a normal
TRANSACTION file read operation.

The PROMPT OCl statement also causes a read under
format operation to take place. The PROMPT OCL
statement cannot be used in an MRT program, or a
program run from the input job queue. Fot more
information on the PROMPT OCl statement. see
PROMPT Statement in the System Support Reference
Manual.

For example, you may want to override fields in a .
display if the operator keys incorrect data into a field.
To do this, specify an indicator in columns 33 and 34 of
the S specification, which allows that format to be
overridden. If the operator keys incorrect data into a
field, you can set on the indicator specified in columns
33 and 34 and redisplay the format. If the indicator
specified in columns 23 and 24 of the D specification
for the field is off, the incorrect data is redisplayed
unchanged. If this indicator is on, data from the COBOL
program is displayed in place of the incorrect data. The
attributes specified for the field remain the same.

Indicator in Columns 33 and 34
of the S Specification

OFF

Indicator in
Columns 23
and 24 of
the D
Specification ON

OFF

Output data
comes from the
D specification
(columns 57
through 79)

Output data
comes from the
COBOL program

ON

No change
occurs to
data on the
screen

Output data
comes from
the COBOL
program

Figure 7-&. Effect of Indicators on Output Date During an

Override Operation

Transaction File Considerations and Sample Program 7-11

Command Keys

The display screen format S specification allows you to
enable specific command keys for your program (if
column 28 of the S specification is blank. all command
keys are enabled for a TRANSACTION file program). All
command keys that are not enabled are considered to
be disabled. An error message is displayed when a
disabled command key is pressed. The operator must
press the Error Reset key to unlock the keyboard. and
may then press the correct command key. For more
information on enabling and disabling command keys.
see the summary of the display screen format S
specification in Appendix I or see Display Screen Format
Specifications in the System Support Reference Manual.

Command keys do not set on indicators in the COBOL
program. When a command key is pressed. the number
corresponding to the numeric value of the command key
is placed into the Function Key field of the
CONTROL-AREA. (For example. if command key 7 is
pressed. a 07 is placed in the Function Key field.) It is
the responsibility of the COBOL program logic to test
for command key values in the CONTROL-AREA
Function Key field (for more information on the format
of the CONTROL-AREA. see CONTROL-AREA Clause in
this chapter).

ENVIRONMENT DIVISION

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates IBM-specified
function-names to user-specified mnemonic-names. The
function-names SYSTEM-SHUTDOWN. LOCAL-DATA.
and ATTRIBUTE-DATA have been added for use with
TRANSACTION file processing. The UPSI switch
processing has been expanded. The format and
description of the SPECIAL-NAMES paragraphs are
described under Configuration Section in Chapter 3. The
additional requirements f9r transaction processing are
discussed in the following paragraphs.

Function-Name-l Clause

LOCAL-DATA and ATTRIBUTE-DATA can be specified
in the function-name-1 clause. The associated
mnemonic-name is formed according to the rules for a
user-specified name and is required to contain at "least
one alphabetic character. The following paragraphs
describe the actions associated with LOCAL-DATA and
ATTRIBUTE-DATA.

LOCAL-DATA: The mnemonic-name associated with
LOCAL-DATA can be referenced by either an ACCEPT
or a DISPLAY statement which references an attached
requestor. An ACCEPT or a DISPLAY statement is
issued to retrieve data from. or store data in. a system
managed area that provides communications among
programs that are executed sequentially within a display
station session.

ATTRIBUTE-DATA: The mnenomic-name associated
with ATTRIBUTE-DATA can be referenced only in an
ACCEPT statement. The reference causes an
attribute-record that is related to an identified device to
be input to the data item coded in the ACCEPT
statement. Attribute-records are described in Figure 7-6
and 7-7.

7-12

L

01

SPECIAL-NAMES.

ATIRIBUTE-DATA IS ATIRIBUTES.

TERMINAL-ATIRIBUTES.

ATIRIBUnS OF A TERMINAL RETRIEVED BY ACCEPT

02 TERMINAL-TYPE PICX.

02 TERMINAL-SIZE PICX.

02 TERMINAL-LOCATION PICX.

02 TERMINAL-ON-OFF-UNE PICX.

02 TERMINAL-ALLOCATION-STATUS PICX.

02 TERMINAL-INPUT-STATUS PICX.

02 TERMINAL-DATA-STATUS PICX.

02 TERMINAL-INQUIRY-STATUS PICX.

ACCEPT TERMINAL-ATTRIBUTES FROM ATIRIBUTES.

Definition of Values Returned in Attribute Record for a Work Station:

Byte 1 	 Type of work station terminal

D Display

N Printer

2 Unknown

Byte 2 	 Device size

1 1920-character display screen

2 960-chara~ter display screen

Byte 3 	 Local or remote device

L Local

R Remote

Byte 4 	 Online or offline
o Online

F Offline

Byte 5 	 Device allocation status
A Allocated to this program
E Allocated to another program
V Unallocated available (may be acquired)
N Unallocated not available (command terminal in command mode)
U Unknown

Byte 6 	 Input status
Y Input is allowed (an invite input is outstanding)
N Input is not allowed

Figure 7-6 (Part 1 of 2). Attribute-Record for 8 Work Station

Transaction File Considerations and Sample Program 7-13

SPECIAL-NAMES.
ATTRIBUTE-DATA IS ATTRIBUTES. (Continued)

Definition of Values Returned in Attribute Record for a Work Station (Continued):

Byte 7 Data status
Y Data is currently pending (Enter or a Command/Function key has been pressed)
N Data is not pending

Byte 8 Inquiry Status
Y Display station is in inquiry mode
N Display station is not in inquiry mode

Byte 9 Display type
A Alphanumeric or Katakana

Ideographic

Byte 10 Keyboard type
A Alphanumeric or Katakana

Ideographic

Byte 11 Sign-on mode
A Alphanumeric or Katakana

Ideographic

Bytes 12- Reserved
16

Figure 7-8 (Part 2 of 2). Attribut.Record for a Work Station

7-14

01

SPECIAL-NAMES.
ATTRIBUTE-DATA IS ATTRIBUTES.

SESSION-ATTRIBUTES.
ATTRIBUTES OF A SESSION RHRIEVED BY ACCEPT
02 SESSION-STATUS 	 PICX.
02 INVITE-STATUS 	 PICX.
02 SESSION-NAME 	 PICX(6),

ACCEPT SESSION-ATTRIBUTES FROM ATTRIBUTES.

Definition of Value Returned in Attribute Record for an SSP-ICF Session:

Byte 1
A The SSP-ICF session has a SESSION OCL statement but has not yet

been acquired.

C 	 The SSP-ICF session has been acquired.

R 	 The SSP-ICF session is an evoked session; that is, an evoke has
been iss.ued by the remote system, and the transaction has not yet
ended.

Byte 2
N This SSP-ICF session has not been invited.

This SSP-ICF session has been invited, but no data has been
received.

o This SSP-ICF session has been invited; the data is ready.

Bytes 3 through 8

The 6-character configuration name associated with the SSP-ICF
session.

Figure 7-7. Attribute-Record for an SSP-ICF Session

Transaction File Considerations and Sample Program 7-15

Function-Name-2 Clause

The format of the SPECIAL-NAMES entry for the UPSI
switches is as described under SPECIAL-NAMES
Paragraph in Chapter 3. The processing of the switch is
expanded as follows:

UPSI (User Program Status Indicator) switch: UPSI-O
through UPSI-7 define external switches that are set
and tested externally by the command language, or
internally by a COBOL source statement. UPSI switches
are tested by an IF statement. The current UPSI values
are retrieved from the system and the test is performed
against these switch settings.

When UPSI switches are updated by a SET statement,
the current U PSI values are retrieved from the system
and these switch settings are updated as specified by
the SET. The new switch settings are then returned to
the system for future references.

Note: A separate copy of the settings of the UPSI
switches is kept for each requestor of an MRT program.
When a requestor gains control of the program, the
UPSI switches are automatically set to the values stored
for that requestor.

SYSTEM-SHUTDOWN: SYSTEM-SHUTDOWN is an
internal switch that is set to the ON status when the
system operator causes the system to be in a shutdown
pending state. The associated ON or OFF
condition-names can be referenced in any conditional
expression.

File Control Entry

The TRANSACTION file must be named by a file control
entry in the FILE-CONTROL paragraph. This entry also
specifies other information related to the file. Then~ can
be only one TRANSACTION file in a run unit.

Format

SEL ECT file-name

ASSIGN TO assignment-name

ORGANIZATION IS TRANSACTION

[FI LE STATUS IS data-name-' [, data-name-4]]

[ACCESS MODE IS SEaU ENTIAL]

[CONTROL-AREA IS data-name-5].

7-16

The following File Control entry defines a
TRANSACTION file that is associated with a screen
format member named CBTESTFM. CBTESTFM can
have a maximum of 32 screen formats in it. The FILE
STATUS area is labeled RETN-CODE and the
CONTROL AREA is labeled CNTL-AREA.

FILE-CONTROL.
SELECT SFILE ASSIGN TO WORKSTATION-CBTESTFM-32
ORGANIZATION IS TRANSACTION
FILE STATUS IS RETN-CODE
CONTROL-AREA IS CNTL-AREA.

ASSIGN Clause

The ASSIGN clause associates the TRANSACTION file
with devices through the use of the assignment-name.
Assignment-name has the following structure:

T [Name Jype
-Name-Formats

The value for each field is as follows:

Type: WORKSTATION

Name: 1- to 8-character name that specifies
the ext~rnal name of the SFGR
generated load member that contains
the screen formats. This field is not
. required if the file is to be used with
SSP-ICF sessions only.

Formats: A two-digit numeric value that is equal
to or greater than the number of
formats in the SFGR load member
referenced in the name field. The
maximum value and the default value
for the number of formats is the same,
32.

The COBOL compiler constructs an internal table to hold
information about each format. The value specified by
Formats determines how many 16-byte entries are in
the internal table. The actual number of formats in your
program does not influence the number of entries in this
internal table.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical
structure of a file. TRANSACTION organization signifies
user-controlled input and output of records.

ACCESS MODE Clause

The ACCESS MODE clause is described under
FILE-CONTROL Paragraph in Chapter 3.

FILE STATUS Clause

The FILE STATUS clause defines the area that contains
status keys for a TRANSACTION file. Data-name-1
identifies the ANSI COBOL status keys (status key 1
and status key 2). The possible combinations of status
key 1 and status key 2 are shown in Appendix H .
Data-name-4 identifies the extended FILE STATUS,
which contains display station and SSP-ICF return
codes. The first 2 bytes of the extended FILE STATUS
contain the major return code; the second 2 bytes
contain the minor return code. Extended return codes
for the Interactive Communications Feature are
documented in the Interactive Communications Feature
Reference Manual. Figure 7-8 correlates the ANSI status
keys and the extended FILE STATUS return codes.

Transaction File Considerations and Sample Program 7-17

L

ANSI 	 Major
Status Return
Key Code Explanation j
00 	 00 Normal completion (operation was successful).

03 No data received.
08 Acquire of owned session.

01 	 01 New requestor.
10 	 11 Accept rejected, no invites outstanding.
30 	 80 Permanent error during session. The session has

been terminated. The subsystem must be enabled
before more sessions can be started.

92 81 Session error. Session is terminated, and must be
reacquired to be used.

9A 	 02 Stop system or disable pending.
9C 18 Acquire failed, temporarily not available.

82 Acquire failed.
9D 24 Display station released by operator.
9E 28 SRT attempting to communicate on a session it

previously released.
9F 	 32 Acquire failed, unauthorized user.
9G 	 34 Input rejected, buffer too small.
9H 	 38 Acquire failed, not waitable.
91 04 Output exception

44 Stop invite failed, data available.
9N 83 Session error. Session is still active.

Figure 7-8. ANSI Status Keys and Their Corresponding Major Return Codes j

7-18

L

CONTROL-AREA Clause

The CONTROL-AREA clause specifies the 12-byte data
item which receives feed-back information upon
completion of a TRANSACTION file input operation.
The information is in the fixed format as shown in
Figure 7-9. Each item in the feed-back area is described
as follows:

Bytes 1-2 (Function Key);. The Function Key is a
two-digit numeric' or alphanumeric data item inserted by
the work station interface that identifies which function
key the operator pressed to initiate the transaction. The
codes are as follows:

00 Enter key

01-24 COMMAND keys 1 through 24

90 ROLL UP key

91 ROLL DOWN key

99 Undefined

Bytes 3-4 (Terminal 10): The symbolic identification of
a device. The Terminal ID must be defined as a
two-byte alphanumeric data item.

Bytes 5-12 (Reserved): Reserved for future use.

FilE-CONTROL.
SELECT SCREEN-FilE ASSIGN TO WORKSTATION-MYFMTS-12

ORGANIZATION IS TRANSACTION
CONTROL-AREA IS TRANSACTION-CONTROL-AREA.

WORKING-STORAGE SECTION.
01 TRANSACTION-CONTROL-AREA.

03 FUNCTION,-KEY PIC-99.
03 TERMINAl-ID PIC X(2).
03 RESERVED PIC X(8).

Figure 7·9. Sample FILE·CONTROL Paragraph andCONTROL·AREA

Transaction File Considerations and Sample Program 7-19

DATA DIVISION

File Description Entry

A file description entry consists of a level indicator (FD),
a file-name, and a series of independent clauses. For a
TRANSACTION file, the independent clauses allowed
are the RECORD CONTAINS clause, the LABEL
RECORDS clause, and the DATA RECORDS clause.
Only the LABEL RECORDS clause is required.

Format

FD file·name

[RECORD CONTAINS [integer-3!Q.] integer4 CHARACTERS]

LABEL {RECORDS ARE} OMITTED

-- RECORD IS

RECORD IS }[DATA { RECORDS ARE data-name-3 [data-name-4] • • •] •

The following file description entry might be used for a
TRANSACTION file. The file description entry defines a
record 401 characters long. The name of the record
area is DS-REC.

FD 	 DSFILE
RECORD CONTAINS 401 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS DS-REC.

The LABEL RECORDS clause specifies whether or not
labels are present. Label records must be omitted for a
TRANSACTION file. This clause is required in every file
description entry.

The RECORD CONTAINS clause and the DATA
RECORDS clause are described under RECORDS
CONTAINS Clause and DATA RECORDS Clause in
Chapter 4. The record definition must be large enough
to hold the largest record defined by the SFGR formats
or SSP-ICF records processed by the program.

Boo"'n Data Facilities

Boolean data provides a means of modifying and
passing the values of the indicators associated with the
display screan formats. A Boolean value of 0 is the
indicator's off status while a Boolean value of 1 is the
indicator's on status.

A Boolean literal contains a single 0 or 1 enclosed in
quotes and is immediately preceded by an identifying B.
The Boolean literal is defined as either B'O' or B'1'. A
Boolean character occupies one byte. The figurative
constant ZERO can be used as a Boolean literal, and the
reserved word ALL is valid with a Boolean literal. The
Boolean ZERO is the fill character for Boolean data.

Note: A hex value of FO is considered an off value for
Boolean data types. A hex value of F1 is considered an
on value for Boolean data types.

7-20

Data Description Entry-Boolean Data

The data description entry for Boolean data can contain
the following clauses.

Format

{ data-name}
level-number FILLER clause

[REDEFINES claus~

[USAG E claus~

[OCCURS clause]

[SYNCHRONIZED clause]

[JUSTIFIED clause]

[VALUE claus~

~ICTURE clause

ENDICATOR clause]

Special Considerations

The special considerations for the clauses used with
Boolean data follow. All other rules for clauses are the
same as those for other data 'as described under Data
DescriptiQf1 Entry in Chapter 4,

PICTURE Clause: An elementary Boolean data-name is
defined by a PICTURE containing a single 1.

USAGE: USAGE must be defined implicitly or explicitly
as DISPLAY.

OCCURS Clause: The ASCENDING/DESCENDING key
is not valid for Boolean data items. The OCCURS clause
has special consideration when used with the
INDICATOR clause as described later in this chapter.

If the OCCURS clause and INDICATOR clause are both
specified at an elementary level, a table of Boolean data
items is defined. Each element in the table corresponds
to an external indicator. (For an example of a table of
Boolean data items, see INDICATOR Clause below.)

VALUE Clause: The VALUE clause specifies the initial
content of a Boolean data item. The format is:

[VALUE IS boolean-literal].

INDICATOR Clause: The INDICATOR clause is. used to
associate an SFGR indicator number with a Boolean
data-item.

Format

INDICATOR integer

Integer must be greater than or equal to 1, and less
than or equal to 99.

The INDICATOR clause must be specified at an
elementary level only.

Since an indicator can contain only a value of zero or
one, it may be associated only with a Boolean
data-item.

OCCURS Clause with the INDICATOR Clause: If the
OCCURS clause and the INDICATOR clause are both
specified at an elementary level, a table of Boolean data
items is defined with each element in the table
corresponding to an external indicator. The first element
in the table corresponds to the indicator number
specified in the INDICATOR clause, the second element
corresponds to the indicator which sequentially follows
the indicator specified by the INDICATOR clause.

For example, if the following is coded:

07 SWITCHES PIC 1 OCCURS 10 TIMES
INDICATOR 16.

then:

SWITCHES (1) corresponds to SFGR indicator 16,
SWITCHES (2) corresponds to SFGR indicator 17, ...
SWITCHES (10) corresponds to SFGR indicator 25.

Note: A Boolean data item associated with an SFGR
indicator can be used to REDEFINE another Boolean
data item associated with a different SFGR indicator.
However, if you specify a group-name that contains
both these Boolean data items on a WRITE statement
that has the INDICATORS phrase specified, undesirable
results can occur.

Transaction File Considerations and Sample Program 7-21

PROCEDURE DIVISION

EXCEPTION/ERROR Declarative.

The EXCEPTION/ERROR Declarative specifies
procedures for input-output error handling that are in
addition to the standard procedures provided by the
input-output control system.

Format

USE AFTER STANDARD {EXCEPTION}
-- ERROR

PROCEDUREON {file-name-, [file-name-2] ••• }.
1-0

In an EXCEPTION/ERROR Declarative for
TRANSACTION files only the file-name or 1-0 options
are allowed. All other options and rules are the same as
those for any EXCEPTION/ERROR Declarative for any
file. The options and rules are described under
EXCEPTION/ERROR Declaratives in Chapter 5.

ACCEPT Statement

The ACCEPT statement causes low-volume data to be
made available to the specified data item.

Format

ACCEPT identifier·' FROM mnemonic-name

rL:--FOR {i~entifier-2}]
literal

7-22

If the mnemonic-name is associated with LOCAL-DATA.
the 256-byte local data area associated with the
requestor terminal is moved into identifier-1.

If mnemonic-name is associated with
ATTRIBUTE-DATA, identifier-1 must describe an
attribute data record. (Attribute data records are
described under SPECIAL-NAMES paragraph in this
chapter.) The attributes of the specified symbolic 10 are
moved into identifier-1.

The move into identifier-1 for both LOCAL-DATA and
ATTRIBUTE-DATA takes place according to the rules for
the MOVE statement for an alphanumeric group move
without the CORRESPONDING option.

FOR Option

The FOR option is allowed only when mnemonic-name
is associated with either ATTRIBUTE-DATA or
LOCAL-DATA. literal or the contents of identifier-2 is
the symbolic 10 for which data is retrieved. A symbolic
10 of blanks retrieves the attributes of the requestor for
batch jobs.

If the rtmemonic-name is associated with either
SYSTEM-CONSOLE or REQUESTOR, the FOR option is
not valid. For additional information refer to ACCEPT
Statement in Chapter 5.

ACQUIRE Statement

The ACQUIRE statement attaches a device to the
TRANSACTION file.

Format

{ literal} .ACQUIRE .d ·f· FOR file-name
I entl ler --

The following ACQUIRE statement can be used to
attach a device to a program.

ACQUIRE D5-CURRENT-ID FOR WSFILE.

The value of literal or identifier specifies the symbolic
identification of a device that is to be associated with
file-name. In order to be acquired, a display station
must be in stand-by mode. In order to acquire an
SSP-ICF session, it must be specified in the SESSION
OCL statement for the job step.

If literal is specified, it must be a two-character
alphanumeric literal. If identifier is specified, it must
refer to a two-character alphanumeric data item.

File-name must refer to a file whose organization is
TRANSACTION.

CLOSE Statement

The CLOSE statement terminates the processing of the
TRANSACTION file. All devices that had been acquired
for the TRANSACTION file are released when the file is
closed. Once the TRANSACTION file has been closed,
it cannot be reopened in the same program.

Format

CLOSE file-name-1 [WITH LOCK]

The following CLOSE statement closes a
TRANSACTION file named DSFILE with lock.

CLOSE DSF I LE WITH LOCK.

If a CLOSE statement is executed for the
TRANSACTION file, no other statements that reference
that file can be executed. A TRANSACTION file is
locked when closed.

For general information about closing a file, refer to
CLOSE Statement in Chapter 5.

Programming Note: For TRANSACTION files, the WITH
LOCK option of the CLOSE statement should be
specified for documentation.

Transaction File Considerations and Sample Program 7-23

L

DISPLAY Statement

The DISPLAY statement causes low-volume data to be
transferred to an appropriate hardware device.

Format

DISPLAY {i~entifier-'} [, i~entifier-2J ..• UPON mnemonic-name
IIteral-' ,llteral-2

rFOR {literal-3 }]
1.:-- identifier-3

This format of the DISPLAY statement is applicable
when mnemonic-name is associated with the system
name LOCAL-DATA. If mnemonic-name is associated
with system-name of either SYSTEM-CONSOLE or
REQUESTOR, refer to Display Statement in Chapter 5.

Uteral-1 or the content of identifier-1 is written to the
256-byte local data area associated with the requestor.

Literal-3 or the contents of identifier-3 must be the valid
symbolic 10 .of an attached requestor.

DROP Statement

The DROP statement releases a device from its
association with the TRANSACTION file.

Format

{ literal} .
J2BQp identifier .EB.QM.file-name

The following DROP statement releases a device from
the TRANSACTION file, DSFILE.

DROP OS-CURRENT-ID FROM DSFILE.

The value of literal or identifier specifies the symbolic
identification of the attached device that is to be
released.

If literal is specified, it must be a two-character
alphanumeric literal. If identifier is specified, it must
refer to a two-character alphanumeric data item.

The DROP statement can only be used with a
TRANSACTION file. At the end of program execution,
all attached devices are implicitly released.

OPEN Statement

The OPEN statement initiates the processing of files.
Only one file with organization TRANSACTION is
allowed per program.

Format

~ 1-0 file-name-1 ~le-name-2] ...

A TRANSACTION file must be opened with the 1-0
phrase.

A TRANSACTION file can only be opened once in a
program.

For general information about opening files, refer to
OPEN Statement in Chapter 5.

The following OPEN statement opens the
TRANSACTION file, DSFILE, in I/O mode.

OPEN 1-0 DSFILE.

7-24

L

READ Statement

The READ statement makes a record available from the
TRANSACTION file or allows a new device to be
attached.

The TRANSACTION file must be open in the 1-0 mode
at the time the READ statement is executed.

Format

~ file-name RECORD

U.NTO identifier-U [TERMINAL IS !i?entifier-2}]
\lIteral-1

[~ OAT A imperative-statement- '!l
[AT END imperative-statement-2]

The following READ statement reads from the
TRANSACTION file, DSFILE. The record is read from
the device whose 10 is presently in DS-CURRENT-ID.
This statement specifies both the NO DATA option and
the AT END condition, which are described in the
following write up.

READDSFILE INTO DATA-AREA TERMINAL
D5-CURRENT-ID, NO DATA GO TO
NO-INPUT, AT END GO TO EOJ-EXIT.

Upon successful execution of the READ statement, the
terminal-id and function key fields of the
CONTROL-AREA, if present, are filled in.

Programming Note: A write operation must follow each
read operation in order for the display station to become
input-invited. This is required if a subsequent read
operation is to handle the next input record from that
display station.

TERMINAL Option

The record to be made available by a READ statement is
determined as follows:

• 	 If the TERMINAL option is specified, Iiteral-1 or the
contents of identifier-2 must be the symbolic ID of
an attached device associated with the
TRANSACTION file. The data record is made
available from the device specified.

• 	 If the TERMINAL option is omitted, the defaults are:
- If a single device is attached to the file, the default

is that device.
-	 If multiple devices are attached to the file, there is

no default. The data record made available is the
first record input from any attached device.

Programming Note 1: Use of the TERMINAL option
forces the next input to come from the specified device.
When identifier-2 contains blanks, the READ statement
is executed as though the TERMINAL was not specified.

Programming Note 2: The TERMINAL option should
usually not be specified for an MRT program. When the
TERMINAL option is specified, program execution halts
until a record is available from the device specified by
the TERMINAL option. This can cause the other users
of the program to wait while the record is being entered
at the specified device. If you must specify the
TERMINAL option, you should also specify the
NO DATA option to allow processing to continue if a
record is not curr~ntly available.

NO OATA Option

When the NO DATA option is specified, the
imperative-statement specified is executed if a record
cannot immediately be read from the specified device.
This allows your program to continue processing, rather
than waiting for the operator to complete entering a
record.

When the NO DATA option is not specified, a record is
available to the object program prior to the execution of
any statement following the READ statement.

Transaction File Considerations and Sample Program 7-25

L

AT END Option

The AT END condition occurs when there are no
attached devices for which an input operation is
currently invited and the program is not a NEP. The AT
END condition occurs for a NEP when there are no
attached devices and the system operator has entered a
STOP SYSTEM command.

Input is implicitly invited with each WRITE statement but
can be suppressed by an option on the SFGR format or
selected SSP-ICF predefined formats. When the
AT END condition occurs, the READ statement is
unsuccesful and imperative-statement-2 is executed.

Programming Note: The AT END condition does not
occur when the READ statement includes the
TERMINAL option.

For further discussion of the READ Statement and the
INTO and AT END options, see READ Statement in
Chapter 5.

WRITE Statement

The WRITE statement releases a logical record to the
TRANSACTION file. This file must be opened in the 1-0
mode at the time the WRITE statement is executed.

Format

~ record·name [fROM identifier.!1

rFORMAT IS {i?entifier-2}]
l! IIteral-'

r,..ERMINAL IS {i~entifier-3}J
L:: IIteral-2

fsTARTING AT LINE {i~entifier-4}J
~ 	 IIteral·3

{BEFORE} ROLLING {L.'NES} {identifier.5}·
'-AFTER LINE literal-4

{ THROUGH} {identifier.6} {UP }
THRU literal·5 DOWN

{ 'iteral-6 } {LINES}
identifier-7 LI N E

0I'ND'CATOR 1{'S } ~U=ATORSJ ARE identifier.8J

The following WRITE statement writes a record
(DS-REC) and a format. FMT(lNDX). to the display
station whose ID is presently in DS-CURRENT-ID. The
information is written on the display screen after rolling
the present information up.

WRITE 	 DS-REC FORMAT FMT(lNDX) TERMINAL
D5-CURRENT-ID, AFTER ROLLING
DS-START-LiNE-FOR-ROLL THRU
DS-END-LiNE-FOR-ROLL UP W8-
NUMBER-OF-LlNE8-TO-ROLL.

7-26

http:identifier.8J

Requirements for record-name and the FROM option
are discussed under Write Statement in Chapter 5.

Literal-1 and literal-2 must be nonnumeric. Literal-3,
literal-4, literal-5, and literal-6 must be numeric.

Identifier-2 and identifier-3 must be alphanumeric data
items. Identifier-4, identifier-5, identifier-6, and
identifier-7 must b~ elementary numeric items.
Identifier-8 must be one of the following:

• 	 An elementary Boolean data item specified without
the OCCU RS clause.

• 	 A group item that has elementary Boolean data items
subordinate to it. The group item should not contain
an indicator data item that redefines another indicator
data item within that group item.

FORMAT Option

'I'he record' specified by the record-name is sent to the
specified destination using the named format. A format
must be specified for the first WRITE verb executed. If
subsequent WRITE operations do not include a
FORMAT option, the most recently used format is used.
The FORMAT option contains the name of the screen
format used when data is written to the work station.
This format must be in the format load member. The
member name is specified as part of the
assignment-name in the ASSIGN clause for the
TRANSACTION file.

Writing to the Error Line: If the contents of identifier-2
or the value of literal-1 is ERRLlNE, System/34 COBOL
writes to the error line of the display station instead of
writing a format. A read operation should follow the
write operation. This locks the display station to keep
the error line from being overwritten. The operator
presses the Reset key to return to entry .mode. A write
to the error line causes the last line of output on the
screen to be saved, and the output record to replace the
bottQm line on the screen. When the operator presses
the RESET key, the last line of output on the screen
reappears.

Note: If a WRITE statement specifies a format name of
ERRLlNE, the ROLLING BEFORE and AFTER options
cannot be specified.

Interactive Communications Feature: Special format
names are recognized by Data Management that provide
the COBOL user SSP-ICF functions. The uses of these
special format names and the functions of ICF are
described in the ICF Reference Manual. The
system-defined special format names begin with two
dollar signs ($$), as shown below. (You should not
begin your display screen format names with $$.)

$$EVOK $$TIMER

$$EVOKNI $$NRSP

$$EVOKET $$NRSPNI

$$Sj:ND $$CANL

$$SENDNI $$CANLNI

$$SENDE $$EOS

$$SENDET $$PTPUT

$$SENDFM $$RCD

$$SENDNF $$PTINV

$$FAIL

TERMINAL Option

The TERMINAL phrase specifies the destination to
which the record is to be sent. If the TERMINAL option
is not specified for a single device file, that device is the
destination. If the TERMINAL option is not specified for
a multiple device file, the most recent source or
destination identifier is used as the destination.

STARTING Option

The STARTING phrase contains the starting line number
for screen formats that use the variable start line option.
If the value of this element is less than 01 or greater
than 24, a value of 01 is assumed. If the screen format
does not specify this option, this value is ignored.

Transaction File Considerations and Sample Program 7-27

L

ROLLING Option

The ROLLING option allows you to move the data
presently displayed on the display screen. All or part of
the data on the screen can be rolled up or down. The
lines vacated by the rolled data are cleared, and can
have another screen format written into them.

Rolling is specified on the WRITE statement that is
writing a new format to the display screen. The number
of lines you want to roll, how many lines you want to
roll these lines, and whether the roll operation is up or
down must be specified.

Rolling ignores field attributes.. The data is rolled exactly
as it appears on the display screen. Its associated
attributes (whether it is an input field, an input/output
field, and so on) are not rolled with the data and are
lost. Therefore, after a field has been rolled, it can no
longer be input capable. If you specify ROLLING
BEFORE and part of the new format is moved, this
portion of the format is not input capable.

Note: The value specified by identifier-5 (or literal-4)
must be less than the value specified by identifier-6 (or
literal-5).

Figure 7-10 shows how rolling might be used. An initial
screen format, FMT -1 has been written on the display
screen. The program has processed this screen format,
and is now ready to write the next screen format,
FMT-2, to the display screen. Part of FMT -1 is to be
rolled down two lines before FMT - 2 is written to the
screen.

The following WRITE statement causes part of FMT-1
to be rolled down two lines and writes FMT -2 to the
display screen:

WRITE SCREEN-RECORD, FORMAT FMT-2
AFTER ROLLING LINES 14 THRU 19 DOWN 2
LINES

When this WRITE statement is executed, the following
occurs:

• 	 The contents of lines 14 through 19 are rolled down
two lines, one line at a time.

• 	 The contents of lines 18 and 19 (blank in this example)
are rolled off the window and no longer exist.

• 	 The area vacated by the roll operation is cleared. In
this case, only lines 14 and 15 are cleared.

• 	 After the rolling operation takes place, F~T-2 is
written to the display screen. This format does not
clear the display screen (number of lines to clear,
columns 19 and 20 of the S specification for SFGR
are blank). FMT-2 is written both in the area vacated
by the roll operation, and outside it in an area still
containing data from FMT-1. FMT-2 is written over
the data left from FMT -1. When the contents of the
display screen are returned to the program, only the
input capable fields from FMT -2 are returned.

INDICATOR Option

The INDICATOR phrase specifies the name of an area
that contains indicator information. DSDM ignores
provided indicators that are not specified on the SFGR
format. Indicators not provided in the indicator area are
considered by DSDM to be off.

7-28

___ ________

DISPLAY BEFORE ROLL

UPDATE CUSTOMER ORDER RECORD Line 3

TO END THIS JOB, PRESS CMD KEY 7 Line 8

FMT-1

Lio.e 13
line'''I4'

ENTER CUSTOMER NUMBER: Line 15 These six lines
of FMT·1 rollLine 17 PRESS CMD KEY 3 TO DISPLAY OPTION MENU
down two lines,

--y~~---.--

DISPLAY AFTER THE ROLL DOWN OPERATION

UPDATE CUSTOMER ORDER RECORD
Line 3}

Unchanged

TO END THIS JOB, PRESS CMD KEY 7 Line 8

- .Th~~~

ITEM NU~lB~R ORDERED: ------- Line 12} lines of FMT·2
FMT-2 overlay

QUANTITY ORDERED: ---- Line 14 ' . __ I- _______ . the prevIous lines

Line 16
ENTER CUSTOMER NU~lBER: ~~~ Line 17 } Previous lines 14
PRESS CtlD KEY 3 TO DISPLAY OPTION MEtID Line 19 through 19 after

being rolled down.
Line 21

Figure 7·10. Example of ROLLING Operation

Transaction File Considerations and Sample Program 7-29

SAMPLE COBOL TRANSACTION FILE PROGRAM
(MRTSAM)

MRTSAM, shown in Figure 7-13, supports multiple
requesting terminals. It sets up two individual work
areas and can therefore support two requestors.
Normally, this program should be compiled with a
MRTMAX value of two, which allows only two display
stations to execute this program concurrently.

This program uses two SFGR screen formats, Sl and
S2. (Figure 7-11 shows how the screens are displayed;
Figure 7-12 shows a partial listing of the SFGR
compilation. Sl is a screen that requests the operator to
enter a room number. The program uses the room
number as the relative record number to access a disk
file whose records contain information about the room
(guest information, rate information, and so on). S2 is a
reply screen that displays the information about the
room.

MRTSAM Program Logic

When the program is initiated, it must first open the
files and clear the work areas. Then a READ must be
executed, which on the first cycle through the program
is a read of a blank record from the display station (a
status key value of 01 is written into the Function Key
area). When the TRANSACTION file READ is satisfied,
the display station is allocated a work area identified by
the subscript T. When the display station is released
from the program, its work area is cleared to blanks.

The AT END option is executed when all display stations
have been released from the program. The program
recognizes that no display stations are attached when a
READ operation is attempted and there are no display
stations attached that are capable of sending data (in
other words, there are no display stations for which
there exists an outstanding invite). This test should be
included in all MRT programs.

There are two ways to release a display station from
this program. If the operator presses command key 7,
the program releases the display station and its work
area is cleared. If the display station is released by the
operator using the INQUIRY/CANCEL option, a return
code of 9D is written in the FILE STATUS. This
program tests for this value, and clears the work area
for the display station that was released if a 9D is
present. The 88 conditional RELEASED-BY-INQUIRY is
used for this test.

The indicators in this program are defined as an array
with the first field equated to indicator number 1.
Therefore, a 10 represents indicator 10. In this program,
indicator 10 causes the field ROOMRATE to blink
(indicator lOis set on if the rate for the room is greater
than $20.00). Indicator 6 causes the GUESTNAME field
to blink on the display screen (indicator 6 is set on when
GUESTNAME read from disk is blank).

7-30

GUEST INQUIRY BY ROor1

1 - ENTER ROOM # 001

2 - PRESS ENTER

OR

CMO KEY 7 TO END JOB.

GUEST INQUIRY BY ROOM

ROOM # - 002
RATE $.00
GUEST - *** AVAILABLE ***
STREET -
CITY
STATE

1 - ENTER ROOM #

2 - PRESS ENTER

OR

CNO KEY 7 TO END JOB.

Figure 7·11. Display Screens for Sample Program (MRTSAM)

•

Transaction File Considerations and Sample Program 7-31

C09FMTS - SOURCE MEMBER NA~E

00010SSl
0* 1 2 3 4 5 6 1 8
0* 0123456189012345618901234561d901234567890123456189012345618901234567890

00020DSCREEN 10l02Y Y Y Y C1
00030DFL01 21D526Y Y Y CGUEST INQUIRY BY ROOM
00040DFL02 110926Y C1 - ENTER ROOM #
00060DROOMNO 00030944 YN Y ZY YY Y Y Y
00080DFA0002 00201726Y C2 - PRESS FIELD EXIT
00010DFL04 21934Y COR
00080DFLn5 232126Y CCMD KEY 7 TO END JOB.

0* 1 2 3 4 5 6 1 8
D* 01234561890123456 7 89012345678901234567890123456789012345618901234561890

INPUT BUFFER DESCRIPTIO~

FIELD START END
NAME LENGTH POSITION POSITION

SCREEN 1 1 1
ROOMNO 3 2 4

Figure 7-12 (Part 1 of 2). Display Screen Format Spec.lflcationa Usting for Semple Program (MATSAM)

7-32

COBFMTS - SOURCE MEMBER NAME

00090SS2 N
0* 1 2 3 4 5 6 7 8
0* 01234567890123456789012345678901234567890123456789012345678901234567890

00100DSCREEN 10102Y Y Y Y C2.
00110DFLOI 210528Y Y Y CGUEST INQUIRY BY ROO~
001200FLOOI 70822Y CROOM #­
00250DROOMNUMB00030830Y
0014QDFLOD02 70922Y CRATE
00250DROOMRATEOOD70930Y 10
00160DFL0003 71022Y CGUEST -
00250DGUESTN~M00251030Y 06
001S0DFL0004 71122Y CSTREfT­
00250DSTREET 00251130Y
00200DFL0005 11222Y CCITY
00250DCITY 00151230Y
00220DFL0006 71322Y CSTATE ­
00250DSTATE 00021330Y
00240DFL02 171526Y Cl - ENTER ROOM #
00250DROOMNO 00031544 Y Y ZY YV Y Y Y
00260DFL03 231726Y C2 - PRESS FIELD EXIT
00270DFL04 21934Y COR
00280DFL05 232126Y CCMD KEY 7 TO END JOB.

0* 1 2 3 4 5 6 7 8
D* 012345678901234567890123456789012345678901234567S9012345678901234567890

EXECUTION TIME OUTPUT BUFFER DESCRIPTION

FIELD START END

NAME LENGTH FOS IT ION POSITION

L ROOMNUMB 3 1 3
ROOMRATE 7 4 10

GUESTNAM 25 11 35

STREET 25 36 60

CITY 15 61 75

STATE 2 16 77

INPUT BUFFER DESCRIPTION

FIELD START END

NAME LENGTH pas ITION POS ITION

SCREEN 1 1 1

ROOMNO 3 2 4

KRLLl B - INPUT LIBRARY NAME

KRLLI S - OUTPUT LI BR AR Y NAME

COBFMTS - FORMAT LOAD MEMBER NAME

Figure 7·12 (Part 2 of 2'. Display Screen Format Specifications Usting for Sample Program (MRTSAM'

Transaction File Considerations and Sample Program 7-33

STNO -A ••• B••• COB 0 L SOU R C E S TAT E MEN T S •••••••••• IDENTFCN SEQ/NO S

PROCESS LET,NOHALT

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. MRTSAMPLE.

*---­
3 SECURITY.

THIS IS A SAMPLE MULTIPLE REQUESTING TERMINAL I~RTI PROGRAM
DESIGNED TO RUN ON A SYSTEM/34. A 3 DIGIT ROOM NUMBER IS
ENTERED FROM A DISPLAY STATION ATTACHED TO THE PROGRAM.

THE ROOM NUMBER IS READ FROM THE DISPLAY AND IS USED TO
READ A'FILE WHOSE RECORDS CONTAIN GUEST NAME AND ROOM RATE
INFORMATION. THE PROGRAM DISPLAYS THE GUEST/ROOM INFORMATION
ON THE REQUESTING DISPLAY. ERRORS ARE DISPLAYED WITH THE
WRITE ERROR FUNCTION. YOUR DISPLAY STATION IS RELEASED BY
USING COMMAND KEY 7. THE PROGRAM E~DS WHEN THERE ARE NO
DISPLAY STATIONS ATTACHED TO THE PROGRAM.

TWO SCREENS FORMATS ARE USED lSI, S21 THAT WERE GENERATED
SCREEN FORMAT GENERATOR ROUTINE (SFGRI. THEY ARE STORED IN
FORMAT LOAD MEMBER 'COBFMTS'

*---­
4 ENVIRONMENT DIVISION.

5 CONFIGURATION SECTION.

6 SOURCE-COMPUTER. IBM-S34.

--1 REMOVE * IN COL 7 OF FOLLOWING STATEMENT TO COMPILE DEBUG 1
* STATEMENTS INTO PROGRAM 	 1

--1 WITH DEBUGGING MODE.
OBJECT-COMPUTER. IBM-S34.e7

8 INPUT-OUTPUT SECTION.

q FILE-CONTROL.

10 SELECT GUEST-FILE ASSIGN TO DISK-GSTFILE

ORGANIZATION IS RELATIVE

ACCESS IS RANDOM, RELATIVE KEY IS GUEST-KEY.

SELECT SCREEN-FILE ASSIGN TO WORKSTATION-COBFMTS-02,all
ORGANIZATION IS TRANSACTION,
FILE STATUS IS DS-RETURN-CODE,
CONTROL-AREA IS DS-CONTROL-AREA.

12 DATA DIVISION.

13 FILE SECTION.

14 FD SCREEN-FILE LABEL RECORDS ARE OMITTED.fJ 	15 01 SCREEN-RECORD.
16 05 SCREEN-CODE PIC S9.
17 88 SI-SCREEN VALUE 1.
IB '88 SZ-SCREEN VALUE 2.
19 05 ROOMNO PIC S999.
ZO 05 FILLER PIC X176).

21 FD GUEST-FILE LABEL RECORDS ARE STANDARD.

Z2 01 GUEST-REC.

23 as ROOM-NUMBER PIC S999.

24 05 ROOM-RATE PIC S999V99.

Z5 as GUEST-NAME PIC XI2S).

26 05 STREET-ADD PIC X1251.

27 05 CITY PIC XI15).

Z8 05 STATE PIC xx.

29 05 FILLER PIC X151.

000100
000200
000300
000400
000500
000600
000700
000800
000900
001000
001100
001Z00
001300
001400
001500
001600
001700
001800
001900
OOZOOO
002100
002200
002300
002400
00Z500
00Z600
00Z700
002800
002900
003000
003100
003Z00
003300
003400
003500
003600
003700
003800
003900
004000
004100
004Z00
004300
004400
004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400

Figure 7-13 (Part 1 of 51. TRANSACTION File Sample Program (MRTSAMI

7-34

30 WORKING-STORAGE SECTION.

31 01 ERROR-MESSAGES.

32 03 ERROR-MESSAGE PIC X(781 VALUE SPACES.

33 03 ROOM-HELD-ERROR-MSG PIC X(281 VALUE

'ROOM HELD -- TRY AGAIN LATER'.
34 03 iNVALID-ROOM-NUMBER-MSG PIC X(321 VALUE

'ROOM NUMBER MUST BE FROM 1 TO 10'.
35 03 INVALID-KEY-MSG PIC X(541 VALUE

'ONLY CMD KEY 7 FOR ~ND OF JOB AND ENTEq KEYS ARE VALID'.
36 03 MAX-OISPLAYS-ERROR-MSG PIC X(541 VALUE

'MAXIMUM DISPLAY STATIONS SIGNED-ON TO PROGRAM -- RETRY'.

-------------~--1 TO CHANGE THE NUMBER OF REQUESTORS HANDLED BY PROGRAM 1
* CHANGE - MAX-DISPLAYS-ALLOWED - 10 NEW MAXIMUM NUMBER 1
* CHANGE - SPACE-IN-TABLE - TO MAXIMUM NUMBER LESS 1 I
* CHANGE - MAX-REQUESTORS-ALLOWED - TO NEW MAXIMUM NUMBER 1
* MRTMAX SHOULD BE THE SAME AS MAX-REQUESTORS-ALLOWED 1
* MRTMAX IS SPECIFIED AS A COMPILE OPTION OF 'COBOL' PROC 1
*--1

37 01 PROGRAM-VARIABLES.

38 03 NUMBER-OF-SESSIONS PIC S99.

39 88 MAX-DISPLAYS-ALLOWED VALUE 2.

40 88 SPACE-IN-TABLE VALUES 0 THRU 1.

41 03 MAX-REQUESTORS-ALLOWED PIC S99 VALUE 2.

42 03 GUEST-KEY PIC S999 VALUE ZERO.

43 03 VAll D-ROOM-FLAG PIC X(31.

44 88 VALlD-R.OOM VALUE 'YES'.

45 03 OS-RET URN-CODE PIC xx.
11 	 46 BB END-OF-FILE VALUE '10'.
41 88 NEW-REQUESTOR VALUE '01'.
48 88 SUCESSFUL-READ VALUE '00'.
49 88 RELEASED-BY-INQUIRY VALUE '90'.

50 01 DS-CONTR'JL-AREA.II 51 03 OS-AID-BYTE PIC S99.
52 88 ENTER-KEY VALUE o.
53 88 CMD-KEY7 VALUE 7.
54 03 SESSION-ID PIC xx.
55 03 FI LLER PIC X(081.

--1 HOLD AREAS FOR EACH DISPLAY STATION 	 1

*--1
56 	 01 SAVE-AREAS.

II 57 02 HOLD-AREA OCCURS 1 TO 16 TIMES
DEPENDING ON MAX-REQUESTORS-ALLOWED
INDEXED BY T, T2.

58 03 SAVE-ID PIC xx.

59 03 SAVE-ROOM PIC XXX.

--1 SCREEN S2 OUTPUT AREA 	 1
*------------------------_---------------------------------------1

II 	60 01 S2-0UTPUT-AREA.
61 05 ROOM-NUMBER PIC xxx.
62 05 ROOM-RATE PIC $$$$.99.
63 05 GUEST-NAME PIC X(251.
64 05 STREET-ADD PIC X(251.
65 05 CITY PIC X1151.
66 05 STATE PIC xx.
61 05 FILLER PIC xxx.

006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100
009200
009300
009400
009500
009600
009700
009800
009900
010000
010100
010200
010300
010400
010500
010600
010700
010ROO
010900
011000
011100
o11200
011300
011400
011500
011600
011700
011800
011900
012000
012100
012200
012300
012400
012500
012600
012700
012800
012900

Figure 7-13 (Part 2 of 51. TRANSACTION File Sample Program (MRTSAMI

Transaction File Considerations and Sample Program 7-35

L

*--1
*SCREEN FORMAT INOICATOR TABLE. MAY BE UP TO 99 DIGITS IN SIZE. *
*--1

68 01 SCREEN-INDICATORS.
69 05 IND PIC 1 OCCURS 10 TIMES

INDICATOR 1.

70 PROCEDURE DIVISION.

II 11
72

OECLARATIVES.
DEBUG SECTION.

USE FOR DEBUGGING ON ALL PROCEDURES.
DISPLAY DEBUG-ITE~.

73 END DECLARATIVES.

r:'II 74 MAIN-PROCESSING SECTION.
~ 75 MAINLINE.

76 OPEN INPUT GUEST-FILE
1-0 SCREEN-FILE.

77 MOVE SPACES TO SAVE-AREAS, S2-0UTPUT-AREA.
78 PERFORM PROCESS-TRANSACTIONS

UNTIL END-OF-FILE.
79 CLOSE GUEST-FILE

SCREEN-F ILE.
80 STOP RUN.

--1 THE FOLLOWING PROCEDURES ARE EXECUTED BY PERFORM STATEMENTS 1
* THERE IS NO FALL THROUGH LOGIC I
*--1

81 PROCESS-TRANSACTIONS.
82 MOVE 'NO' TO VALID-ROOM-FLAG.
83 PERFORM GET-ROOM

UNTIL VALID-ROOM OR END-OF-FILE.
84 IF VALID-ROOM
85 PERFORM RETRIEVE-AND-DISPLAY-ROOM-REC.

86 GET-ROOM.1m 87 READ SCREEN-FILE,
88 AT END SET END-OF-FILE TO TRUE.

0 PERFORM DISPLAY-READ-DATA.
89 IF RELEASED-BY-INQUIRY OR SUCESSFUL-READ
90 PERFORM FIND-DISPLAY-IO
'H IF SUCESSFUL-READ AND ENTER-KEY
92 PERFORM VALID-ROOM-TEST
93 ELSE
94 IF CMD-KEY7
95 PERFORM RELEASE-R~QUEST
96 PERFORM BLANK-HOLD-AREA
97 ELSE
98 IF RELEASED-BY-INQUIRY
99 PERFORM BLANK-HOLD-AREA

100 ELSE
101 MOVE iNVALID-KEY-MSG TO ERROR-MESSAGE
102 PERFORM WRITE-ERROR-MESSAGE
103 ELSE
104 IF NEW-REQUESTOR AND SPACE-IN-TABLE
105 PERFORM ADD-NEW-REQUESTOR
106 ELSE
107 IF MAX-DISPLAYS-ALLOWED
108 MOVE MAX-DISPLAYS-ERROR-MSG TO ERROR-MESSAGE
109 PERFORM WRITE-ERROR-MESSAGE
110 DROP SESSION-IO FROM SCREEN-FILE.

013000
013100
013200
013300
013400
013500
013600
013100
013800
013900
014000
014100
014200
014300
014400
014500
014600
014700
014800
014900
015000
015100
015200
015300
015400
015500
015600
015700
015800
015900
016000
016100
016300
016400
016500
016600
016700
016800
016900
017000
011100
017200
017300
017400
017500
017600
017700
017800
017900
018000
018100

·018200
018300
018400
018500
018600
018700
0181300
018900
019000
019100
019200
019300
019400
019500
019600
019700
019800
019900
020000
020100

Figure 7·13 (Part 3 of 5). TRANSACTION File Sample Program (MRTSAM)

7-36

020200
020300
020400
OZ0500
OZ0600
020700
OZ0800
OZ0900
021000
OZ1100
OZlZ00
021300
OZ1400
OZ1500
OZ1600
OZ1700
021800
OZ1900
OZZOOO
02Z100
OZZZOO
OZZ300
OZ2400
02Z500
OZZ600
OZ2700
022800
022900
OZ3000
OZ3100
023Z00
023300
023400
023500
OZ3600
023700
OZ3800
OZ3900
024000
OZ4100
OZ4Z00
024300
OZ4400
024500
OZ4600
024100
OZ4800
OZ4900
OZ5000
OZ5100
OZ5Z00
OZ5300
OZ5400
OZ5500
OZ5600
025700
025800
OZ5900
OZ6000
026100
026200
026300
OZ6400

/
111
112
113
114
115
116
117

m118
119
120
121
122
123
124
125

1Z6
lZ1
128
129

130
131

132
133
134

135
136
131
138
139
140

141
14Z
143
l44

145
146
141
148
149
150
151
15Z
153
154
155

156

VAlID-ROOM-TEST.
IF RODMNO IS NOT GREATER THAN 10 AND ~OT lESS THAN 1

SET VALID-ROOM TO TRUE
PERFORM ROOM-IN-USE-TEST

ELSE

MOVE INVAlID-RODM-NUMBER-MSG TO ERROR-MESSAGE

PERFORM WRITE-ERROR-MESSAGE.

ROOM-IN-USE-TEST.
MOVE SPACES TO SAVE-ROOM ITI
SET TZ TO 1
SEARCH HOLD-AREA VARYING TZ

WHEN SAVE-ROOM ITZ) IS EQUAL TO ROOMNO
MOVE ROOM-HElD-ERROR-MSG TO ERROR-MESSAGE
PERFORM WRiTE-ERROR-MESSAGE
MOVE 'NO' TO VAlID-ROOM-FlAG.

FIND-DISPlAY-ID.
SET T TO 1
SEARCH HOLD-AREA VARYING T

WHEN SAVE-ID ITI IS EQUAL TO SESSION-ID NEXT SENTENCE.

RELEASE-REQUEST.
DROP SESSION-IO FROM SCREEN-FILE.

BLANK-HOLD-AREA.
MOVE SPACES TO SAVE-IO ITI, SAVE-ROOM ITI
SUBTRACT 1 FROM NUMBER-OF-SESSIONS.

ADD-NEW-REQUESTOR.
PERFORM FIND-BLANK-ENTRY
MOVE SESSION-ID TO SAVE-ID ITI.
MOVE ZEROS TO SCREEN-INDICATORS, ROOMNO.
ADD 1 TO NUMBER-OF-SESSIONS.
WRITE SCREEN-RECORD FORMAT IS 'Sl'.

FIND-BLANK-ENTRY.
SET T TO 1
SEARCH HOLD-AREA VARYING T

WHEN SAVE-IO ITI EQUAL SPACES NEXT SENTENCE.

RETRIEVE-AND-OISPlAY-ROOM-REC.
MOVE ROOMNO TO GUEST-KEY.
READ GUEST-FILE, INVALID KEY

MOVE INVAlID-ROOM-NUMBER-MSG TO ERROR-MESSAGE

PERFORM WRITE-ERROR-MESSAGE

MOVE 'NO' TO VAlID-ROOM-FlAG.

IF VALID-ROOM

PERFORM RATE-AND-AVAIlABIlITY-TEST

MOVE ROOMNO TO SAVE-ROOM IT)

MOVE CORRESPONDING GUEST-REC TO S2-0UTPUT-AREA

WRITE SCREEN-RECORD FROM SZ-OUTPUT-AREA

FORMAT 'SZ'

INDICATORS ARE SCREEN-INDICATORS.

MOVE ZEROS TO SCREEN-INDICATORS.

Figure 7·13 (Part 4 of 51. TRANSACTION. File Sample Program (MRTSAMI

Transaction File Considerations and Sample Program 7-37

151 RATE-AND-AVAILABILITY-TEST. 026500
158 IF ROOM-RATE OF GUEST-REC GREATER THAN 20.00 026600
159 MOVE S'l' TO IND (101. 026100
160 IF GUEST-NAME OF GUEST-REC EQUAL SPACES 026800
161 MOVE B'l' TO IND (61 026900
162 MOVE '*** AVAILABLE ***' TO GUEST-NAME OF GUEST-REC. 021000

021100
021200

163 WRITE-ERROR-MESSAGE. 021300
WRITE SCREEN-RECORD FROM ERROR-MESSAGE 0214000 164

FORMAT 'ERRLINE'. 021500
021600
021100

DOISPLAY-REAO-DATA. 021800
D DISPLAY 'KEY USED CODE = " OS-AID-BYTE, 021900
o DISPLAY STATION 10 = " SESSION-IO, 028000
D RETURN CODE ',DS-RETURN-CODE, 028100
o ROOM NUMBER = " ROOMNO.' READ OPERATION'. 028200

PROGRAM SIZE = DATA DIVISION + PROCEDURE DIVISION + LITERALS + DTF/BUF~ERS

3032 616 1455 121 840

NO ERRORS DETECTED FOR THIS COMPILATION

END OF COMPILATION

mo SYS-3130 I MRTSAM MODULE'S MAIN STORAGE SIZE IS

10433 DECIMAL
SYS-3131 I 0000 IS THE START CONTROL ADDRESS OF THIS MODULE
SYS-3134 I MRTSA~ MODULE IS CATALOGED AS A LOAD ~EMBER

KRLLIB IS THE LIBRARY NAME
46 TOTAL NUMBER OF LIBRARY SECTORS

Figure 7-13 (Part 5 of 51. TRANSACTION File Sample Program (MRTSAMI

7-38

The following items describe portions of the sample • An example of debugging code has been included
prograom. The numbers correspond to the numbers on in this program. When debugging is active, the
the listing. DEBUG SECTION causes the name of every

paragraph executed to be displayed. The e To enable debu.gging mode, do not make comments statement just prior to statement 7 causes

on this line. debugging (DEBUG SECTION and any statement
with a D in column 7) to be compiled into the

The FilE-CONTROL entry specifies a file with program when the • in column 7 is removed. D
organization of TRANSACTION. It is associated
with an SFGR load member named COBFMTS See Figure 7-15 for an example of debugging

which can contain two formats. output.

The FD entry further defines the TRANSACTION This is the program mainline. It causes all of theII II
file. The size of othe record is implicitly defined as lower level procedures to be executed until

80 bytes. The record area is used for both input end-of-file occurs.
and output. All 1-0 TRANSACTION files must be
opened as 1-0. One of the rules of structured programming is that II

° all procedures are executed by PERFORM
DS-RETURN-CODE is the data-name specified by statements. There is no fall-through logic.II
the FilE STATUS clause in the FilE-CONTROL
entry. This area is the 2-byte file status return GET-ROOM provides return code II
code data area. The file status values for (DS-RETURN-CODE) and entry key

successf':ll read, end-of-file, initial read of a (DS-AID-BYTE) logic processing. This is the heart
requestor, and requestor released are tested for of MRT logic processing. The debug line
wit~ 88 level condition names. See Appendix H (D in column 7) provides information about the
for a listing of status values. READ when debugging is active. The logic of this

procedure could be simplified if SFGR were used
DS-CONTROl-AREA is the data-name defined by to mask out invalid command keys so that itL II
the control entry for the TRANSACTION fil~. The would not be necessary to test for an invalid key
I D of the display station associated with each in the program. The SPACE-IN-TABLE test
TRANSACTION file input or output operation is (statement 104) would not be necessary if the
returned to the data area SESSION-ID when the MRTMAX parameter specified on the compile
operation is completed. Upon completion of each procedure always had the same value as the
READ operation, the function key used by the maximum number of requestors the program can
display station operator has its corresponding handle.
return code placed in the 2-byte field,
DS-AID-BYTE. The remaining 8 bytes, FillER, For a flowchart of GET-ROOM, see Figure 7-14.
are required for compatibility with IBM System/38
COBOL. This paragraph determines if two different display II

stations are making an inquiry of the same room.
The program- is written to allocate up to 16II
individual data areas to hold data unique by G Refer to "WRITE Statement" in this chapter:

attached display station. Only two data areas are "Writing to the Error Line" under "Format

allocated here, because MAX-REQUESTORS- Option."

AllOWED was set to 2.

Debugging code explained in 7. Debugging was 111
You must determine when unique areas are not active when this compiler listing was
required. You need unique areas when information generated.
about a screen or transaction must be recalled to
process the next screen or transaction from a The additional storage requirement to execute this II
given requestor (for example, batch totals by program with debugging active is approximately
requestor). 30% .

• This is the screen output record area.

Transaction File Considerations and Sample Program 7-39

Subsequent

READ SCREEN-fiLE
AT END
SET END-Of-fiLE
TO TRUE

T

ADD-NEW­
REQUESTOR

F

DROP SESSION-ID
MOVE MAX-DISPLAYS­
ERROR-MSG
DISPLAY ERROR-MESSAGE

Figure 7-14 (Part 1 of 2). Flowchart of GET-ROOM

7-40

FIND
DISPLAY-I 0

T

VALID­
ROOM­
TEST

RELEASE­
REQUEST

BLANK­
HOLD­
AREA

BLANK­
MOVE INVALID-KEY-MSG HOLD­
DISPLAY ERROR-MESSAGE

AREA

Figure 7-14 (Part 2 of 21. Flowchart of GET-ROOM

Transaction File Considerations and Sample Program 7-41

This page is intentionally left blank.

7-42

MRTSAM Debugging

Debugging code (both the DEBUG SECTION and some
additional debugging statements) has been included in
MRTSAM. MRT program logic can be very difficult to
follow. because different requestors can be at different
points in your program. By including debugging code in
your M RT program. you can often save yourself time
when you are trying to find what caused an error.

The DEBUG SECT-ION causes the name of every
paragraph that is executed to be displayed. This
·provides you with a record of how your program
executed. MRTSAM includes additional debugging
statements that display the function key used to enter
data. the display station 10. the return code generated
by the READ statement to the disk file. and the room
number used for this request. This information allows
you to narrow down which display station had an
input/output error.

Figure 7-15 shows an example of the debugging output
for MRTSAM.

Transaction File Considerations and Sample Program 7-43

0000078 MAIN-PROCESSING START PROGRAM
000078 "IAINLINE FALL THROUGH
OOOOBO PROCESS-TRANSACTIONS PERFORM LOOP ~0000B5 GET-ROO~ PERFORM LOOP
000091 DISPLAY-READ-DATA PERFORM LOOP
KEY USED CODE = 00 DISPLAY STATION 10 W4 RETURN CODE = 01 ROOM NUMBER READ OPERATION
000108 ADO-NEW-REQUESTOR PERFORM LOOP
000139 FIND-BLANK-ENTRY PERFORM LOOP
00008S GEI-IlDDt:l PERFORM LOOP

0000091 DISPLAY-READ-DATA PERFORM LOOP
• KEY USED CODE = 00 DISPLAY STATION 10 W4 RETURN CODE = 00 ROOM NU"IBER 001 READ OPERATION

000093 FIND-DISPLAY-ID PERFORM LOOP
000095 VALID-ROOM-TEST PERFORM LOOP
000117 ROOM-IN-USE-TEST PERFORM LOOP
000087 RETRIEVE-ANO-OISPLAY-ROOM-REC PERFORM LOOP
000155 RATE-ANO-AVAILABILITY-TEST PERFORM LOOP
000080 PROCESS-TRANSACTIONS PERFORM LOOP
QO!JOfl:! ~H-BIJIJM P!;RFORM LOOP

~000091 DISPLAY-READ-DATA PERFORM LOOP
KEY USED CODE = 00 DISPLAY STATION 10 W4 RETURN CODE = 00 ROOM NUMBt:R 011 READ OPERATION
000093 FINO-DISPLAY-ID PERFORM LOOP
000095 VALID-ROOM-TEST PERFORM LOOP
000120 WRITE-ERROR-MESSAGE PERFOR" LOOP
QQ0085 !lET-ROOM PERFORM LOOP

8000091 01 SPLAY-READ-DAT A PERFORM LOOP
KEY USED CODE = 00 DISPLAY STATION 10 Wl RETURN CODE = 01 ROOM NUMBFR OOM READ OPERATION
000108 ADD-NEW-REQUESTOR PERFORM LOOP
000139 FINO-BLANK-ENTRY PERFORM LOOP
000085 GET-ROOM PERFORM LOOP

~000091 DISPLAY-READ-DATA PERFORM LOOP
KEY USED CODE = 00 DISPLAY STATION 10 W2 RETURN CODE = 01 ROOM NUMBER 000 READ OPERATION
000112 WRITE-ERROR-MESSAGE PERFORM LOOP
000085 GET-ROOM PERFORM LOOP

0000091 DISPLAY-READ-DATA PERFORM LOOP
KEY USEO CODE = 00 DISPLAY STATION 10 WI RETURN CODE = 00 ROOM NUMBER 004 READ OPERATION
000093 FIND-DISPLAY-ID PERFORM LOOP
000095 VALIO-ROOM-TEST PERFORM LOOP
000111 ROOM-IN-USE-TEST PERFORM LOOP·
000087 RETRIEVE-AND-DISPLAY-ROOM-REC PERFORM LOOP
000155 RATE-AND-AVAILABILITY-TEST PERFORM LOOP
OOOOBO PROCESS-TRANSACTIONS PERFORM LOOP
ooooa:!

4!»000091
~!;I-BCIJM
DISPLAY-READ-DATA

PERFORM
PERFORM

!"OOP
LOOP

KEY USED CODE = 00 DISPLAY STA TION 10 WI RETURN CODE = 00 ROOM NUMBER 001 READ OPERATI ON
000093 FIND-DISPLAY-ID PERFORM LOOP
000095 VALID-ROOM-TEST PERFORM LOOP
000117 ROOM-IN-USE-TEST PERFORM LOOP
000127 wRITE-ERROR-MESSAGE PERFORM LOOP
000085 GH-BIJIJM P,RFORM I.QOf

~000091 OISPLAY-READ-DATA PERFORM LOOP
KEY USED CODE = 02 DISPLAY STATION 10 Wl RETURN CODE = 00 ROOM NUMBER 001 READ OPERATION
000093 FIND-DISPLAY-IO PERFORM LOOP
000105 WRITE-ERROR-MESSAGE PERFORM LOOP
COQ08:! !In-RQQM

~000091 .DISPLAY-READ-DATA
PERFORM
PERFORM

LOOP
L'OOP

KEY USED CODE = 99 DIS,PLAY STATION TO WI RETURN CODE = 90 ROOM NUMBER NLY READ OPERATION
000093 FIND-DISPLAY-ID PERFORM LOOP
000102 BLANK-HOLD-AREA PERFORM LOOP
000085 GET-ROOM PERFORM LOOP

8000091 DISPLAY-READ-DATA PERFORM LOOP
KEY USED CODE = 07 DISPLAY STA TION 10 W4 RETURN CODE = 00 ROOM NUMBER 011 READ OPERATION
000093 FIND-DISPLAY-ID PERFORM LOOP
00009B RELEASE-REQUEST PERFORM LOOP
000099 BLANK-HOLD-AREA PERFORM LOOP
0000B5 GET-ROOM PERFORM LOOP

0000091 01 SPLAY-READ-DAT A PERFOR~ LOOP
KEY USED CODE = 00 DISPLAY STATION 10 RETURN CODE = 10 ROOM NU"IBER 011 READ OPERATION

Figure 7-15. Debugging output for MRTSAM

7-44

MRTSAM Debug Output, Sequence of Events

L • Display station W4 signs on.

Display station W4 enters room number 001. G

• Display station W4 enters room number 011.
INVALID-ROOM-NUMBER-MSG is displayed
using WRITE to ERRLlNE.

G) Display station W1 signs on.

Display station W2 signs on. G
MAX-DISPLAYS-ERROR-MSG is displayed. The
program is written to handle only two requestors.
The program was compiled to handle three
requestors. The difference between the number of
requestors the program can handle and the
number of requestors specified on the compile is a
common error. This program contains a routine
that checks for this error condition.

e
 Display station W1 enters room number 004.
., Display station W1 enters room number 001.
ROOM-HElD-ERROR-MSG is displayed.

• Display station W1 tries to use command key 2 to
release itself from the program.
INVALlD-KEY-MSG is displayed.

• Display station W1 uses INQUIRY and a 3
response to release itself from the program.

• Display station W4 uses command key 7 to
release itself from the program.

End-of-file occurs on the READ. 0

Transaction File Considerations and Sample Program 7-45

7-46

L

Chapter 8. System-Dependent Considerations

This chapter documents the various system-defined
limits and flexibilities that apply to System/34 COBOL.
These items should be considered when writing a
COBOL program for System/34.

GENERAL CONSIDERATIONS

Library-Name, Program-Name, and Text-Name

Unique entries must be specified for library-name,
program-name, and COpy text-name. Although these
names can be up to 30 characters in length, they must
meet the following restrictions:

•• 	 Library-name must be unique within the first 8
characters.

• 	 Progr~m-name must be unique within the first 6
characters.

• 	 COpy text-name must be unique within the first 8
characters.

The remaining characters of each of these names are
used only for documentation.

Source Statements

The maximum number of source statements is 65535. A
source statement is defined as:

Procedure Oivision-a COBOL statement
Other Oivisions-a source line

Source Program Library

I(the OF/IN option of the COpy statement is not
specified; the library defaults to the LIBRARY option of
the PROCESS statement. If the LlB,RARY option is not
specified, the default is #LlBRARY.

User-Defined Words

No more than 32767 user-defined words are allowed in
a program.

Files

A maximum of 25 files (FO or SO) can be defined in a
COBOL program.

Disk Data Management

System/34 offers the flexibility of allowing you to define
and pmcess indexed and relative files as if they were
defined as physical sequential files. You can also define
and process sequential and indexed files as if they were
defined as relative files. For more information on file
organization and access modes, see File Processing
Summary in Chapter 3.

System-Dependent Considerations 8-1

Indexed and Relative File Contents

Position 1 of indexed or relative files cannot contain hex
FF (for NATIVE collating sequence, this corresponds to
HIGH-VALUE). Binary fields (COMPUTATIONAL-4)
should be avoided in position 1, because they could
contain this value.

A record key used by an indexed random READ or
indexed START statement cannot contain hex FF in any
position. Binary fields should also .be avoided. The key
for an indexed file cannot exceed 29 characters.

Adding Records to an Indexed File

When SEQUENTIAL ACCESS to indexed files is
specified, records added by a user program or an
IBM-supplied utility cannot be sequentially retrieved
until a keysort has been performed by SSP. A keysort is
only performed during program initiation when
DISP-OLD is specified on the FILE OCL statement and
SEQUENTIAL or DYNAMIC ACCESS is specified.

When DYNAMIC ACCESS is specified and an indexed
file is opened in 1-0 mode, the WRITE operation is not
allowed. That is, records cannot be added to the file
except when ACCESS is RANDOM.

ENVIRONMENT DIVISION CONSIDERATIONS

APPLY Clause

The APPLY clause can reference a data name no larger
than 9999 bytes.

ASSIGN Clause

The ASSIGN clause associates a file with an external
medium. The assignment-name has the following
format for printer and disk files:

Device Type-Name

Device Type: 	 PRINTER Printer files
DISK .Disk files

Name: A 1- to 8-character field specifying the external
name by which the file is known to the system. This is
the name that appears in the NAME field on the FILE or
PRINTER OCL statement.

IBM Extension:

The assignment-name has the following
format for TRANSACTION files:

Type [-Name]

-Name-Formats

Type: 	 WORKSTATION

Name: 	 1- to 8-character name
that specifies the
external name of the
SFGR generated load
member that contains the
screen formats. This
field is not required if
the file is to be used
with ssp-rCF sessions
only.

Formats: 	 A two-digit numeric
value that is equal to
or greater than the
number of formats in the
SFGR load member
referenced in the name
field. The maximum
value and the default
value for the number of
formats is 32. This
field is not required if
the file is to be used
with SSP-ICF sessions
only.

8-2

L
RESERVE Clause

This clause must specify a value of 1 or 2; a minimum
of one buffer is required for a file. If this clause is
omitted, a minimum of one buffer area is reserved. If
the user specifies a value greater than 2, the compiler
assigns the value 2.

RERUN Clause

The maximum integer value for the integer-1 RECORDS
option is 32767.

All files used in the program must be opened before the
first checkpoint can be taken.

SAME RECORD AREA Clause

A maximum of 15 SAME RECORD AREA clauses can be
defined in a COBOL program.

SAME AREA or SAME SORT-MERGE AREA Clauses

A maximum of 15 SAME AREA clauses can be defined
in a COBOL program. A SAME AREA clause consists of
any SAME AREA clause, any SAME SORT AREA clause,
or any SAME SORT-MERGE clause.

OBJECT-COMPUTER MEMORY SIZE Clause

This clause must specify an integer from 1 to 65536.

KEY Clause

The RELATIVE KEY data-name must have a length of 1
through 7, and RECORD KEY must be 1 through 29
bytes long.

DATA DIVISION CONSIDERATIONS

BLOCK CONTAINS Clause

The maximum block size is 9999 characters.

RECORD CONTAINS Clause

The maximum record length is 4096 bytes.

LINAGE Clause

The maximum size of the logical page is 32767 lines.
The logical page size is the sum of the number of lines
in the body, top margin, and bottom margin.

OCCURS Clause

The literals in the OCCURS clause must have a value of
1 through 32767.

Item Size

If no other restrictions apply, the maximum item size is
32767.

Index and Subscript Literals

An index or subscript literal must have a value of 1
through 32767.

System-Dependent Considerations 8-3

L

PROCEDURE DIVISION CONSIDERATIONS

CALL Statement

A maximum of 20 subroutines can be called by a
program. Called subroutines can also reside in the
overlay area of the executable program. All subroutines
that you want to overlay must have a category number
greater than 7 when link-edited. For a further
description of overlay, refer to Link Editing with Overlay
under Program Linkage in Chapter 9.

Programs containing independent segments must not be
called by another program.

USING Option

A maximum of 15 operands can be specified for the
USING option. If the called subprogram is written in a
language other than COBOL, a CAll statement USING
identifier may be a file-name for a physical sequential
file or a data-item defined in the File, Working-Storage,
or Linkage Section of the calling program. When a
file-name is specified, the identified file must not be
opened in the calling program.

COMPUTE Statement

The maximum size of each operand is 18 decimal digits.
Division by zero always results in a size error condition.

GO TO DEPENDING ON Statement

The maximum number of branch points that can be
specified in one GO TO DEPENDING ON statement is
99.

INSPECT Statement

A maximum of 15 comparison operands
(TALLYING/REPLACING) can be specified in an
INSPECT statement.

SORT/MERGE Statement

No more than 12 KEYS can be specified in any SORT or
MERGE statement. No more than 8 input files can be
specified in any SORT or MERGE statement.

STOP Statement

When STOP literal is specified and the literal is
nonnumeric, the literal is limited to 120 characters.

UNSTRING Statement

A maximum of 15 delimiters can be specified in an
UNSTRING statement, and each delimiter must be an
alphanumeric data item.

TRANSACTION File

If your display station is attached to a TRANSACTION
file and a SYSLIST procedure or OCl statement was
executed, which changed the SYSLIST device to CRT.
undesireable results can occur when low-volume data is
sent to the display station by the COBOL program
(through the use of a low-volume output command.
such as DISPLAY, EXHIBIT, or ACCEPT).

8-4

Chapter 9. Creating, Executing, and Debugging Programs

GENERAL OVERVIEW

A COBOL program is processed by the COBOL compiler
under control of the System Support Program Product
(SSP). The COBOL compiler is a program that translates
COBOL statements into instructions that can be
understood and executed by the system. The SSP is a
,program that controls the operation of the system.

To make the best use of the system, you must know
how to tell the SSP about your COBOL program, how to
define COBOL files, and what kind of output to expect.
This introductory section summarizes basic information
you need in order to use the system and briefly
describes:

1. 	 How a COBOL program is processed

2. 	 Communicating with the system through command
statements or operati.on control language (OCL)

3. 	 Program output

4. 	 Defining COBOL files and other files needed by
the system

How a COBOL Program is Processed

Before your COBOL program can be executed, it must
be converted into a form that can be understood by the
system. The compiler converts the program. The
linkage editor combines the program with whatever
ott)er programs are required to form an executable unit.

The three steps that must be taken to convert and
execute a COBOL program are compilation, link-editing,
and load module execution. The COBOL source
program is the input to the compilation step. The output
is the group of translated statements, called an object
module, which becomes the input to the link-edit step.
The link-editing step combines the object module with
other modules t6 form a load module or object program.
The load module is the program executed in the load
module execution step.

Although these three steps must be taken in sequence
to execute"a program, it is not necessary that they occur
at one time. For example, you can perform the
compilation step only, with the other steps to follow at
a later time. Assume that you have coded a particularly
complex COBOL program. The first time you submit it,
you might only compile it, so that you can correct any
source program errors. The compiler examines each
COBOL statement for correct syntax and issues error
messages for COBOL language violations. After
correcting these errors you could have the program
compiled, link-edited, and executed at one time.

Further assume that you intend to use the program
many times. Once the program is successfully compiled,
it would be pointless for you to compile it every time
you use it. You could choose to store the compiled and
link-edited load module in the library. Then each time
you want to execute the program, you could tell the
system to bypass the compile and link-edit steps and
use the load module as its input. These are some of the
alternatives. you have when executing your program.
You tell the system which alternatives to select through
use of the operation control language statements or
PROCESS statement options.

Using COBOL consists of the general operations
illustrated in Figure 9-1 :

1. 	 Define the job. The programmer defines the job
requirements for the specific task. Usually, the
following questions must be answered when the
job is defined:
a. 	What information is provided as input to the

program?
b. 	What operations are to be performed?
c. 	 What output information should be generated

by the program?

2. 	 Write the source program. After the programmer
defines the job, he develops the COBOL source
program.

Creating. Executing. and Debugging Programs 9-1

http:operati.on

1. 	Job requirements: Define the
a. 	 Input Job
b. 	Processing
c. 	Output

2. 	 Develop source code Write Source
Program

Coding

Sheets

3. 	Record source statements
on disk or diskette, or enter

Record/Update 	 Record Progrem them directly during compile
Progrem 	 On Diskettestep.
on Dlak

4. 	Compile the source state·
ments. The resulting object
module is recorded on disk,

Compiler onand a diagnosed source file
Disk can be created.

Object
Module

5. 	 Link·edltthe object module.
The resulting loed module
is recorded on disk. Linkage Editor

on Disk

Load
Module

6. Execute the program·. The Disk
load module is reed from dllk; Printer }

{
then the input and output are Input Data ' Disk Output Date
processed by the sYltam
under the COBOL program. Key~rd Display Screen

figure .1. Proceaing. COBOL progrem

Piece in
IIbrery
for update

Compile the

Transfer
Program
~~ Disk

Direct Entry

COBOL
Program

Linkage
Editor

Load
Module

9-2

L

3. 	 Record the source statements on disk or diskette.
Statements can also be entered directly during 1he
compile step. After the source program is written,
it is entered on diskette and transferred to disk or
entered into the system library from the keyboard,
using the Source Entry Utility (see SfU Reference
Manual) or $MAINT (see System Support Reference
Manual).

4. 	 Compile the source statements. The source
program, preceded by the required OCL
statements, is processed by the COBOL compiler
under control of the SSP. At the end of this
processing (compilation), the object module is
stored in the library on disk. This program
contains all the instructions required to perform
the job, except referenced and implied subroutines.
If a diagnosed source file was requested, the
COBMOVE· procedure can be used to place the file
in the library. SEU can then be used to correct
compilation errors in the source program.

5. 	 Link-edit the object module. The object module is
processed by the linkage editor under control of
the system control program. This is done to
resolve all addresses and external references. At
the end of this processing (link-editing), the load
module is stored in the library on disk. The object
program is now ready to be executed.

6. 	 Execute the program. The load module is read
from disk; then the input and output are processed
by the system under control of the COBOL
program.

Note: The diagnosed source file discussion and listing
are presented later in this chapter.

IBM SYSTEM/34 COBOL-8UPPLIED PROCEDURES

IBM supplies several library procedures for use with
System/34 COBOL. When the operator enters an
appropriate command statement the IBM-supplied
library procedure is either executed or placed on the
input job queue. For information on how to place a job
on the input job queue, see the Operator's Guide.

Library procedures provide for COBOL compilation and
link-editing, execution of COBOL programs, movement
of a diagnosed source file to a library, and screen
prompts, by using the following command statements:

• 	 COBOL-compile a COBOL program

• 	 COBOLCG-compile and execute a COBOL program

• 	 COBOL~xecute a COBOL program with
user-provided procedure for additional
OCL statements

• 	 COBSYSIN-compile and link-edit a
COBOL program entered from the current
SYSIN device

• 	 COBMOVE-move a COBOL diagnosed source file
to a library

• 	 COBOLP-provide screen prompts for entering,
compiling, executing, and correcting COBOL
programs

Creating. Executing. and Debugging Programs 9-3

COBOL Command Statement COBOLCG Command Statement

To compile and link-edit a COBOL source program. the
operator enters the COBOL command. The command
statement is:

COBOL pgname.size.inlib.outlib.mrtmax,nep.dsf

where:

pgname is the name of the source program to be
compiled (maximum length is 8 characters).

size is the number of blocks allocated for the work
files used by the compiler (each block is 2560
bytes). The maximum value of size is 9999. If this
parameter is not specified. the default is 24
blocks. Generally. one additional block is required
for each 10 program source statements over 200.

inlib specifies the name of the library that contains
the source program. If this parameter is not
specified. the system library (#LlBRARY) is
assumed.

outlib specifies the name of the library that will
contain ·the object and load modules if the
OBJECT and LINK options are not supplied on the
PROCESS statement. If the library is not specified
on the PROCESS statement or by using this
parameter. the default is the system library.

mrtmax identifies the program being compiled as
an MRT program and specifies the maximum
number of active requesting display stations that
can be attached to the program. The maximum
value of rnrtmax is 256. If mrtmax is zero or is
omitted. the program is not an MRT program.

nep indicates whether the program to be compi'-d
is a never-ending program. Valid values are YES
or NO; the default value is NO.

dsf specifies the file label for the diagnosed source
file. If not specified. a diagnosed source file will
not be created.

If the COBOL command statement is entered without
specifying a source program name. a prompting display
(see Figure 9-2. Screen 2) assists you in entering the
parameters to compile and link-edit a COBOL program.

To compile. link-edit. and execute a COBOL program
with one command. the COBOLCG command is used.
The command statement format is:

COBOLCG pgname.size.inlib.outlib.

oclmmbr.userlib.mrtmax.nep.dsf

where:

pgnameis the name of the source program to be
compiled (maximum length is 8 characters).

size is the number of blocks for the work files
used by the compiler. The maximum value of size
is 9999. If this parameter is not specified. the
default is 24 blocks. Generally. one additional
block is required for each 10 program source
statements over 200.

inllb specifies the name of the library that contains
the source program. If this parameter is not
specified. the system library (#LlBRARY) is
assumed.

outlib specifies the name of the library that will
contain the object and load modules if the
OBJECT and LINK options are not supplied on the
PROCESS statement. If the library is not specified
on the PROCESS statement or by using this
parameter. the default is the system library.

oclmmbr optionally specifies the name of the
procedure containing the FILE OCL statements to
be used when executing the designated program.

userllb specifies the library that contains the
COBOL load module to be executed and will also
be used for the oclrnmbr search. If the user1ib
name is not specified. the system first searches
the library specified by the outlib parameter. then
searches the active library. and finally searches the
system library for the load module.

L

mrtmax identifies the program being compiled as
an MRT program and specifies the maximum
number of active requesting display stations that
can be attached to the program. The maximum
value of mrtmax is 256. If mrtmax is zero or is
omitted, the program is not an MRT program.

nep indicates whether the program to be compiled
is a never-ending program. Valid values are YES
or NO; the default value is NO.

dsf specifies the file label for the diagnosed source
file. If not specified, a diagnosed source file will
not be created.

If the COBOlCG command statement is entered without
specifying a source program name. a prompting display
(see Figure 9-2, Screen 4) assists you in entering the
parameters to compile. link-edit; and execute a COBOL
program.

COBOLG Command Statement

To execute a load module and include specialized OCl

statements, the COBOlG command is used. The

command statement format is:

COB01.G pgname,oclmmbr,userlib

where:

pgname is the name of the COBOL load module to
be executed.

oclnvnbr optionally specifies the name of the
procedure containing the FilE OCl statements to
be used when the designated program is exeCuted.

userlib specifies the library that contains the
COBOL load module to be executed and will also
be used for the oclmmbr search. If the userlib'
name is not specified. the system first searches
the active library. and then searches the system
library for the load module.

If the COBOlG command statement is entered without
specifying a program name, a prompting display (see
Figure 9-2, Screen 3) assists you in entering the

. parameters to execute a COBOL program.

Creating. Executing. and Debugging Problems 9-5

L

COBSYSIN Command Statement

To compile and link-edit a COBOL source program that
is entered from the current SYSIN device. The
command statement format is:

COBSYSIN

If the COBSYSIN command is entered from the
keyboard, the user is allowed to enter COBOL source
statements, one at a time. If the COBSYSIN command
is contained in a user-provided procedure, records are
read from the procedure. If the procedure is exhausted,
reading continues from the keyboard.

The last source statement must be followed by a ,­
termination record.

COBMOVE Command Statement

To move a diagnosed source file to a library, the
COBMOVE command is used. The command statement
format is:

COBMOVE dsf,dsflib,dsfret,dsfdel

where:

dsf specifies the file label for the diagnosed source
file. This parameter is required.

dsflib specifies the name of the library that is to
receive the source member. If this parameter is
not specified, the default is the system library.

dsfret specifies the disposition of the source
member in the library. The only valid value is
REPLACE. If this value is not specified, a
displayed message requests replacement if a
module of that name exists.

dsfdel specifies the deletion value. If DELETE is
specified, the diagnosed source file is deleted.

9-6

COBOLP Command Statement

To provide the user with screen prompts for compiling
and executing COBOL programs, the COBOLP command
is used. The command statement format is:

COBOLP

The COBOLP com'11and initiates a menu display (see
Figure 9-2, Screen 1). The response to this menu
determines the next step in this procedure. When
applicable, defaults appear on each displayed line.

Response Action Taken

o This response terminates the COBOLP
procedure.

A prompting display (see Figure 9-2,
Screen 2) assists you in entering the
parameters to compile a COBOL
program. Source program name is a
required parameter. For a further
explartation of these parameters, see
the COBOL command statement.

2 A prompting display (see Figure 9-2,
Screen 3) assists you in entering the
parameters to execute a COBOL
program. Program name is a required
parameter. For a further explanation of
these parameters, see the COBOLG
command statement.

Response Action Taken

3 A prompting display (see Figure 9-2,
Screen 4) assists you in entering the
parameters to compile and execute a
COBOL program. Source program
name is a required parameter. For a
further explanation of these
parameters, see the COBOL, COBOLG,
and COBOLCG command statements.

4 A prompting display (see Figure 9-2,
Screen 5) assists you in entering the
parameters to create or update a
COBOL module. Source name or
procedure module name is a required
parameter.

5 A prompting display (see Figure 9-2,
Screen 6) assists you in entering the
parameters to move a diagnosed
source file to a library. Diagnosed
Source File Label is a required
parameter.

Completion of the requested step (as designated by
Response 1 through 5) causes Screen 1 to be
re-displayed. If no further steps are required, a
response of 0 terminates the COBOLP procedure.

Creating, Executing. and Oebugging Programs 9-7

L

•••

Screen 1

COBOLP PROCEDURE

D - COBOL Extts FrOil COBOL proceSSiftt

1 - COBOL COlI,. lis • COBOL Pl'ogr••

£ - COSOLG Exlcutes • COBOL Prog,••

:s - C08OLC& CMII" lis .nd Ex.cutes • COBOL P,o" ••

it - SEU C"ltes Or U,dates • COBOL noduli

5 - COe.'1OV! I10VIS Oil,nosed SOU,ce Fi 11 To Li bra,,.

EtITER ..a.teER Of OPTION REQUIRED -->

Sc....n J

coeoLG PROCEDUIE OPTIONAL-tO I

Executls • Cc:80L Pl'olra••

N... Of P'09'•• To a. Ellcut.d •••.••••••••••••••••••••• 0 •• o. 0.'

Nu. Of Proc.du,. Cont.intet US.r OCL (01.0 ••••••••••••••••••• 0 ••••

N••• Of Lib,.,,. COfttiinin, Pro,rl. To e. fI.cuted •••••••• tOI0 •• 0 ••

Plice Job on Th. Input Job "'U' (yUINO) NO........ 00 ••••••••••••

'crltn 5

CoeoL SEU PROCEDURE

Creat.s 0' Updates a COBOL I1Odult.

HI•• Of Koduh To C,.at. Or Update •••00 •••••••••• 0

Kodu 1e T1'" (S fo, SOU,c•• p for P,oc.du,..) • 0 S••••••• 0 • • • • • .. • ••

Fo....tb.' MI.. • ... HE;;XT1tA

HI•• Of Library Containing Hodul.............................. 0. ILIBRARY

Screen Z

,COBOL PROCEOI..RE OPTIONAL-tO I

COlipil IS • COBOL Prog..... .

N••• Of Sourc. progra. To e. COII,i led

H••• Of SOUre. Input Libr.,.,. aLIBRARY

N••• Of Objlct OUtPUt Libra,y aUBRARY

Na•• Of elocts '0' C"Pi h .. Work F1 lis '1-9999) 00 Zit

t1'xi"". Nu.bt, of R.questint T....'ft.1s (0-255) 0

Nlvlr !ftdin, protr•• IYI!SINO) •••••••••••••••••••••••••••••••••• NO

H'.e Of Fi 1. To R.c.ivi Ittrg.d Source And DiagnosticS.......... (0)

Pllc, On Input Job QU.ue (Y(SINO) NO

SC"'" 4

COBOLCG PROCEDURE OPTIONAL-CO)

cap; In And Executes I COBOL PrograM.

Ma•• Of IOurc. Pro,,,. To e. Ca,t led

Input Library Fo, Sou.c. "Iaber 0 aLIBRARY

OUtput Lib...,,. for Load ",aber ILIBRARY

Naber Of elocks for Wo.k Fills (1-9999) 24

Hili.......b~' Of R'4IUIstiftg TeNinaIs 10-255) 0

NIver I"dift, P.ogra. UESINO) •••••••••••..•••...••••.•.•••••••• NO

MI•• Of P,ocedure Contlinift, OCL (0)

N••• Of Pile To R'CliVl Merged SOUrce And Dia,nostics (0)

Ha.. Of Lib,.,,. Contl;.in, Pro,ra. To 181 hecuted (OJ

Pllc. on Input Job Queue (YESINO) ••••••••••••.••••••••.•••••••• NO

Screen 6

COBtlOVI! PROCEDURE

t'loves a Dia,nosed Source Fi Ie To. LibrU'y.

Libel For The D;lgnosed Source File

OUtput Librar,. Hanle .. ILIBRARY

To RI,hc. An Existint t1ellber. Enhr REPUtE 101

To RellOve Sou,ce Fi 11. Enter DELETE 101

Figure 9-2. COBOLP Commend Statement Sc....n Prompts

http:Contl;.in

L

PROCESS STATEMENT 	 LIST LIST causes the compiler to

NOLIST print a Procedure Division map. It
The PROCESS statement allows you to specify also directs the linkage editor to
compile-time options unique to COBOL. The PROCESS print a link-edit map if the LINK
statement must be placed before the first source option is specified. No
statement in the COBOL program immediately preceding specification or NOLIST suppresses
the IDENTIFICATION DIVISION header. the LIST option.

The format of the PROCESS statement is as follows: FLAGE FLAGW indicates that all
FLAGW diagnostics are to be listed

PROCESS option-1 [option-2J ... [option-nJ (severity levels W. C, and E).
[COpy statement.] FLAGE indicates that only those

diagnostics with a severity level of
The following rules apply to the PROCESS statement: E are to be listed.

1. 	 The word PROCESS and all options must appear QUOTE QUOTE indicates to the compiler
within positions 8 through 72. Position 7 must be APOST that the double quotation mark (")
left blank. The remaining positions can be used as should be accepted as the
in COBOL source statements. positions 1 through character to delineate literals.
6 for sequence numbers. positions 73 through 80 APOST indicates that the
for identification purposes. 	 apostrophe n should be accepted.

This option also specifies the
2. 	 Options must be separated by one or more blanks character to be generated for the

and/or commas. 	 figurative constant QUOTE(S).

3. 	 Options may appear in any order. If conflicting LlBRARY(libname) LIBRARY controls the processing
options are specifieO. for example LINK and of COBOL COPY statements by
NOLINK. the last option encountered takes specifying the location of the
precedence. 	 source library. It is used only if

IN/OF libname is not specified on
4. 	 The PROCESS statement begins with the word the COpy statement.

PROCESS. Options may appear on more than one
line; however. only the first line may contain the libname specifies the System/34
word PROCESS. 	 library that contains the member to

be copied. If the LIBRARY option
The following list identifies and describes PROCESS is not specified, the system library
statement options. The underscore indicates the default is assumed.
for each option.

CMPAT(COMP) CMPAT(COMP) specifies that
SOURCE SOURCE causes the compiler to NOCMPAT COMPUTATIONAL(COMP) data
NOSOURCE print the COBOL source state­ items are to be encoded in the

ments. NOSOURCE suppresses binary data format used on
the SOURCE option. 	 System /370. No specification or

NOCMPAT suppresses the CMPAT
MAP MAP causes the compiler to print option.
NOMAP a Data Division map. No specifi ­

cation or NOMAP suppresses the 	 CAUTION
MAP option. 	 This option is to be used only,

when compatibility is essential.
Less efficient code is generated
when the CMPAT option is
specified.

Creating, Executing. and Debugging Problems 9-9

LVL(A/B/C/D)

~

OBJECT

(: [,LIB {libname)~
NOOBJECT

Specifies what level of FIPS
flagging is to be used. If flagging
is specified, source clauses and
statements that do not conform
to the s~ecified level of FI PS are
identified.

All FIPS flagging is done
according to the 1975 FIPS
standard.

The corresponding FIPS levels
flagged are:
A = Low
B = Low-Intermediate
C = High-Intermediate
D = Full flPS COBOL flagging

OBJECT specifies that the
nonexecutable object module
created by the compiler is to
be saved in a library after
compilation is completed.

R (replace) or P (prompt) specifies
the disposition of the module. If
this disposition is omitted, a
replace disposition is assumed.

If disposition is P and the module
exi.sts in the library, the system
displays a message and the
operator decides if the duplicate
member is to be replaced.

L1B(libname) specifies the name
of the library where the object
module is to be placed. If this is
omitted, the module is placed in
the library specified by the
OUTLIB parameter on the
COMPILE OCL statement. If
OUTLIB is omitted, the module is
placed in the system library. No
specification or NOOBJECT
suppresses the OBJECT option.

LINK 	 LINK specifies that link-editing

(!! [,LIB (ljbnam8)~ is to be performed and that
P 'J the executable object module

NOLINK is to be saved in a library after
compilation is completed.

R (replace) or P (prompt) specifies
the disposition of the module. If
this disposition is omitted, a
replace disposition is assumed.

If disposition is P and the module
exists in the library, the system
displays a message and the
operator decides if the duplicate
member is to be replaced.

L1B(libname) specifies the name
of the library where the load
module is to be placed. If this
entry is omitted, the module is
placed in the library specified by
the OUTLIB parameter on the
COMPILE OCL statement, the
COBOL command statement, or
the COBOLCG command
statement. If OUTLIB is omitted,
the module is placed in the
system library.

NOLINK specifies that no
executable load module is to be
created. If neither LINK nor
NOLINK is specified, link-editing
is performed, and the executable
module is placed in the library
specified by the OUTLIB
parameter on the COMPILE OCL
statement, the COBOL command
statement, or the COBOLCG
command statement. If the
OUTLIB parameter is omitted, the
module is placed in the system
library.

LET 	 LET suppresses the halt if error
NOLET 	 message CBL 1019 is issued (C

or E level diagnostics detected).
No specification or NOLET
suppresses the LET option.

9-10

gQ.
NOSEQ

SEQ indicates that the compiler
is to check the sequence of the
source module statements. If the
statements are not in sequence, a
message is printed.

SYNTAX
NOSYNTAX

SYNTAX causes the compiler to
perform only syntax checking with
ehsolute suppression of object code
generation, and to produce
appropriate error messages.

NOSYNTAX causes normal
compilation, with both syntax
checking and object code
generation.

XREF
NOXREF

Indicates whether or not a sorted
cross-reference listing is produced.
If XREF is specified, a listing is
produced with data-names and
procedure-names appearing in two
parts in sorted order.

SUBLlB(libname) libname is the library from which
user-supplied subroutines are
obtained by the overlay linkage
editor.

NOHAl T
.!:!lli

Specifies whether compiler
errors should cause a halt or a
message. For these errors, a halt
will be issued unless NOHAlT is
specified. For messages CBl-1000
to CBl-1099, NOHAlT suppresses
the halt and output to the display
station (that is, output is to the
printer only). In addition, the
compiler assumes a 0 response and
continues compilation if it
encounters errors CBl-1021 or
CBl-1022.

J.U!
NOLIB

Indicates whether or not COpy
processing will be needed for this
compilation. If no COpy statements
appear in the source to be compiled,
the specification of NOLIB saves
compilation time.

GRAPHIC Indicates whether or not
NOGRAPH ideographic literals are present in the

COBOL program. For COBOL to
process ideographic literals, you
must have the ideographic version of
the SSP. For more information on
ideographic support see, Chapter 10,
Ideographic Support.

Indicates to the System/34
PRINT

~ ~ sort utility whether or
NOPRINT

not to print its output when the
COBOL SORT statement is
executed.

Using COpy Within the PROCESS Statement

The COBOL COPY statement can be used within the
PROCESS statement to retrieve compiler options
previously stored in a source library and include them in
the PROCESS statement. If the LIBRARY option was
specified, the requested user library is searched for the
source member. If the LIBRARY option was not given,
the system library is searched. COpy can be used, to
include options that override those specified as default
by the compiler. Any PROCESS statement options may
be retrieved with the COPY statement.

Note: If you are copying PROCESS statement options
into your program, the REPLACING option of the COpy
statement is not operational until the PROCESS
statement is finished.

Compiler options may both precede and follow the
COpy statement within the PROCESS statement. The
last encountered occurrence of an option overrides all
preceding occurrences of that option.

The following example shows the use of the COPY
statement within the PROCESS statement. The COPY
statement must be followed by a period. Notice also
that in this example, NOMAP and NOOBJECT override
the corresponding options in the library member:

000001 PROCESS QUOTE MYPROG
000002 cOPY DEFLTS. MYPROG

MAP, SOURCE, OBJECT (R,LlB(MYLIB)). LIST DEFLTS
000004 NOMAP, NOOBJECT FLAGW MYPROG
000010 IDENTIFICATION DIVISION. MYPROG

Creating, Executing, and Debugging Problems 9-11

THE USER LIBRARY

The user library is an area on disk for storing procedures
and source statements. Procedures are groups of OCl
statements used to load programs. Source statements
are sets of data, such as COBOL source programs.

Storing Procedures and Source Statements

To be retrieved from the user library, procedures and
source statements must first be placed in the library.
Statements may be stored in a library by the library
maintenance program.

The copy function of the library maintenance program
has the ability to add or replace a source or procedure
member in the library. This function is particularly useful
because precoded OCl procedures and sets of COBOL
source statements can be stored and made available for
future retrieval.

A complete description of the copy function and the
other functions of library maintenance (allocate, delete,
and rename) can be found in the System Support
Reference Manual. Also see the Source Entry Utility
Reference Manual for information on entering source
statements.

Retrieving COBOL Source Statements

The System/34 COBOL compiler can copy a source
module from a user library into a COBOL program being
compiled. A COBOL source program can be composed
of a combination of uniquely coded source statements,
as well as source statements incorporated into a
program at the time of compilation from the user library.
The presence of the COBOL COpy statement indicates
that source statements are to be included in the source
program.

The library member from which text is copied is
determined as follows:

1. 	 The library specified on the COpy statement takes
precedence.

2. 	 The library specified by the LIBRARY option of the
PROCESS statement takes next higher precedence.

3. 	 The system library (#LlBRARY) is the default if
neither of the above is specified.

Retrieving an Entire COBOL Source Program

The System/34 COBOL compiler can compile an entire
source program directly from the user library instead of
from the system input device. The presence of the OCl
COMPILE statement in the job stream indicates that the
library member identified by the SOURCE parameter is
to be compiled.

All COBOL statements (including the COpy statement)
are allowed in the source library member. The
programmer is responsible for placing the source
program in the library. If special compiler options are
required, a PROCESS statement should precede the
source program in the library.

LINK-EDITING

link-editing is the process of transforming
nonexecutable object modules (compilation output) into
executable load modules. That is, link-editing prepares
the output of compilation for execution.

When the program to be executed consists only of the
output of a single compilation, the programmer can use
the LINK option of the PROCESS statement to request
link-editing at compile time, either explicitly or by
default. The LINK option indicates that link-editing is to
be performed using the nonexecutable object modules
created by the compiler in the compilation just
completed. Output from the link-edit function is placed
in the object library. The programmer must specify the
necessary LINK option parameter to obtain output on
the library of his choice. The LINK option is discussed
in detail under PROCESS Statement earlier in this
chapter.

When the program to be executed consists of
nonexecutable object modules created as a result of
several separate compilations, these nonexecutable
object modules must be transformed into executable
load modules by the overlay linkage editor.

The overlay linkage editor is discussed in detail under
Link Editing with Overlay later in this chapter.

9-12

L

L

EXECUTION

The load module execution executes a COBOL program
that has been compiled and merged with other object
modules into a load module.

load module input consists of either COBOL-supplied
procedures or OC:l statements defining the step, and
any program data to be processed by the load module.
Output consists of program output and execution
messages.

Execution of a module is requested by the presence of
an OCl lOAD statement followed by an OCl RUN
statement in the job stream. The location is determined
by the parameter specified in the LINK option. If neither
LINK nor NOLINK is specified on the PROCESS
statement, link-editing is the default. The name of the
object program must also be specified on the OCl
lOAD statement. This name is the first six characters of
the name specified in the PROGRAM-ID paragraph of
the source program.

In the following example of a procedure, assume that
the name of the procedure is PROC1. The
procedure-name is the name that identifies the
procedure in the library.

I I lOAD ENDMON
I I FilE NAME-DAlTOT,UNIT-F1,RECORDS-1500,
I I RETAIN-P
I I FilE NAME-ACCTOT,LABEl-TOTAl,UNIT-F1,
II DATE-1/04/79
I I SWITCH XXX01XXO
I I RUN

To use this procedure unchanged in the job stream
requires the following statement:

PROC1

The most common OCl statements used for object
module execution are listed and discussed in Figure 9-3.
A complete description of OCl statements can be found
in the System Support Reference Manual.

Statement 	 How Used

I I DATE 	 Supplies the system with the program
date. The ACCEPT statement with the
FROM DATE option can be used to move
the date to a user-specified location
where it is accessible to the programmer.

I I lOAD 	 Identifies the load module (object
program) to be executed,

I I FilE 	 Supplies the system with information
about disk files. A FilE statement must
be supplied for each disk file created or
processed by the COBOL program dur.ing
the execution job step. (For an SD file, a
FilE statement is optional, except when
input procedures are used. When input
procedures are used, the SD file must
have a FilE statement with RETAIN-S.)
The NAME parameter specifies to the
system the file-name used in the ASSIGN
clause in the program. It must be placed
on the first line of the FilE statement.
The LABEL parameter specifies the name
by which the file is identified on disk. If
the LABEL parameter is missing, the name
in the NAME parameter is substituted.

I I SWITCH 	 Sets any or all of the eight external
indicators. These switches are known to
the COBOL programmer as the
function-names UPSI-O through UPSI-7.
Condition-names may be assigned to the
ON or OFF status of these
function-names in the SPECIAL-NAMES
paragraph of the Environment Division.
These condition-names can then be
tested in the Procedure Division.

I I RUN 	 Indicates the end of the OCl statements
for a program. After the system reads a
RUN statement, it loads and executes the
program specified on the OCl lOAD
statement.

/* 	 Indicates the end of any input data being
read from the SYSI N (system input)
device.

Figure 9-3. Statements Used for Object Program Execution

Creating, Executing, and Debugging Problems 9-13

L

PROGRAM LINKAGE

Whenever a program calls another program, linkage
must be established between the two. The calling
program must state the name of the called program and
must specify any data to be passed. The called program
accepts the data and must establish linkage for the
return of control to the calling program.

This section describes the accepted linkage conventions
for calling and called programs written in COBOL, and
the operation of the overlay linkage editor with COBOL
programs. It also describes the overlay structure that
enables different called programs to occupy the same
area of main storage at different times.

Calling and Called Programs

A program that passes control to another program is a
calling program. A program that receives control from a
calling program is a called program. Such programs
must be compiled separately, and the resulting
nonexecutable object modules must then be link-edited
by the overlay linkage editor, so as to produce a single
executable load module.

A called program can also be a calling program; that is,
a called program can, in turn, call another program. In
Figure 9-4 for example, program A calls program B;
program B calls program C. Therefore:

1. A is considered a calling program by B.

2. B is considered a called program by A.

3. B is considered a calling program by C.

4. C is considered a called program by B.

5. B is both a calling and a called program.

Program A -----> Program B -----> Program C

Calling Called
(to B) (by A)

Calling Called
(to C) (by B)

Figure 9-4. Calling and Called Programs

In System/34 COBOL, a called program can call any
other program except one that has directly or indirectly
already called it. In Figure 9-4, for example, program A
can call program B or program C, and program B can
call program C. Program C, however, cannot call
program B (because B called it directly); neither can it
call program A (because A called it indirectly via B). If
program C called program B, program B would be
unable to return to program A. and a loop might result.

Called programs have the option of terminating the
entire program or of returning to their respective calling
programs. The STOP RUN statement is used to
terminate execution; the EXIT PROGRAM statement is
used to return to the calling program. In Figure 9-4,
program A is not a called program; it must issue a
STOP RUN statement at its completion. An EXIT
PROGRAM statement in program A would be bypassed
at execution time and have no effect on program flow.
The use of the STOP RUN and EXIT PROGRAM
statements is shown under Example of Calling and Called
Programs with the USING Option later in this chapter.

In System/34 COBOL, called programs always appear in
their last used state. It is the COBOL programmer's
responsibility to reinitialize work areas and altered GO
TO statements if they are needed in an initial state for
proper reexecution. Conversely, the COBOL programmer
can change data areas or OPEN files in such programs
with the assurance that they will remain that way until
the program is again called.

COBOL CALL Statement Linkage

A calling COBOL program must contain a CALL
statement at the point where another program is to be
called:

CALL 'program-name' [USING identifier-1

[identifier-2] ...].

The CALL statement states the name of the called
program and must specify any data items (identifiers)
that are passed to the called program.

A called COBOL program can contain a USING option in
its Procedure Division header:

PROCEDURE DIVISION [USING data-name-1

[date-name-2] ...].

9-14

The USING option must contain a data-name to
correspond to each identifier in the CALL statement of
the calling program.

• 	 The number of identifiers must be the same as the
number of data-names; if the numbers are unequal,
results are unpredictable.

• 	 The identifiers and data-names must be in the proper
order; this order is positional-not by name. That is,
the first identifier must correspond to the first
data-name, the second to the second, and so on.

• 	 Corresponding identifiers and data-names must be in
the same data-format. One way to do this is to place
all data descriptions that will be used as identifiers or
data-names in the source library and include them in
both calling and called programs with the COBOL
COpy statement.

A called COBOL program must also contain an EXIT
PROGRAM statement if control is to be returned to the
calling program. Tilis statement returns control to the
calling program at the point immediately following the
CALL statement.

For a complete description of the CALL statement and
the USING option, see CALL Statement in Chapter 6.

Identifier References in a Called Program

When a COBOL CALL statement is executed, the calling
program constructs a list of the addresses of the
identifiers specified in the CALL statement. When the
called program is entered, it saves this list. All
subsequent references in the called program to Linkage
Section items are made based on the addresses
contained in this list. Such references are made directly
to the actual data area in the calling program. The
contents of an identifier can be changed before
returning from a called to a calling program.

For example, if the programmer executes a MOVE
operation from one Linkage Section item to another,
data is moved from one location to the other in. the
calling program.

No space is set aside for data items that appear in the
Linkage Section; these items are only used to describe
the format of the CALL identifiers to the COBOL
compiler.

Calling and Called Programs with the USING Option

Figure 9-5 shows two sets of source statements: one
for the calling program, CALLPG, and another for the
called program, SUBPRG.

Processing begins in CALLPG, which is the calling
program. When the statement

CALL 'SUBPRG' USING RECORD-1

is executed, control is transferred to the first statement
of the Procedure Division in SUBPRG, which is the
called program. In the calling program, the identifier of
the USING option is RECORD-1.

When CALLPG tranfers control to SUBPRG, the values
within RECORD-1 are made available to SUBPRG.
Within SUBPRG, however, they are referred to as
PAYREC. The PICTURE clauses for the subfields of
PAYREC (described in Linkage Section of SUBPRG) are
the same as those for RECORD-1.

When processing within SUBPRG reaches the EXIT
PROGRAM statement, control is returned to CALLPG at
the statement immediately following the original CALL
statement. Processing then continues in CALLPG until
the STOP RUN statement is reached. The calling
program is then terminated.

In any given execution of these two programs, if the
values within RECORD-1 are changed between the time
of the first CALL and any reissuing of the CALL, the
values passed at the time of the second CALL will be
the changed, not the original, values. If the programmer
wishes to use the original values, then he must ensure
that they have been saved.

Creating, Executing, and Debugging Problems 9-15

L

Calling Program

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLPG.

· · ·
DATA DIVISION.

· · ·
WORKING-STORAGE SECTION.
01 	 RECORD-l.

03 SALARY
03 RATE
03 HOURS

·
·
·

PICTURE S9(5)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION.

·
· ·
CALL 'SUBPRG' USING RECORD-1.

· · ·
STOP RUN.

Called Program

IDENTIFICATION DIVISION.
PROGRAM~D. SUBPRG.

· · ·
DATA DIVISION.

· · ·
LINKAGE SECTION.
01 	 PAYREC.

02 PAY
02 HOURLY-RATE
02 HOURS

·
· ·

PICTURE S9(5)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION USING PAYREC.

·
·
·
EXIT PROGRAM.

Figure 9-5. Example of Source Statements for Calling and Called Programs

Link-Editing of Calling and Called Programs

Because calling and called programs are compiled
separately, they result in nonexecutable object modules
that must be converted to a single executable load
module by link editing.

Link-editing is the process of preparing the output of
language translators for execution. The program used
for this process is the overlay linkage editor. The
overlay linkage editor performs the following functions:

• 	 Combines separately produced object modules

• 	 Resolves symbolic cross-references among object
modules

• 	 Replaces, deletes, and adds control sections

• 	 Produces a load module 'that is ready to be fetched
into main storage

The overlay linkage editor can operate with or without
an overlay .structure.

External-Names and References

When providing linkage for COBOL programs, the
overlay linkage editor resolves external-names and
external references and combines calling and called
programs.

An external-name is a name that can be referenced by
another program that has been separately compiled and
assembled. For each COBOL program, an
external-name is created from the program-name. An
external reference is a reference that one program
makes to an external-name in another program. In
COBOL, an external reference is created for each CALL
statement (from the program-name field).
External-names and references are listed in an overlay
map produced by the overlay linkage editor, which can
be used by the programmer to check the calling paths if
a link-edited program fails to operate properly.

9-16

Link-Editing Without Overlay

This section discusses the operation of the overlay
linkage editor when no overlay structure is specified.
For example, assume that a COBOL main program,
CBMAIN, at one or more points in its logic, executes
CAll statements to COBOL programs SUBPRA,
SUBPRB, and SUBPRC. Also assume that the module
sizes for main program, subprograms, and required
object-time subroutines are:

Module Size

Program (in bytes)

CBMAIN 5000

SUBPRA 1000

SUBPRB 1500

SUBPRC 2500

Subroutines 2000

No overlay structure need be specified at link-edit time
if 12000 bytes (the sum of the module sizes) or more
are available to execute the program. Usually, COBOL
programs run faster when no overlay structure is
specified. In general, programmers should not use the
overlay structure except when the sum of the module
sizes exceeds the size of available storage. (Sometimes,
however, overlay structures result in a much faster
object program. These cases are discussed under
Link-Editing with Overlay later in this chapter~)

Figure 9-6 is an example of the OCl and COBOL
statements needed to compile and link-edit the
previously mentioned calling and called programs
without specifying an overlay structure. The example
shows the compilation of CBMAIN, SUBPRA, and
SUBPRB, yielding nonexecutable object modules that are
cataloged permanently in the library, MYLIB. It is further
assumed that the nonexecutable object module for
SUBPRC is already in MYLIB. The PROCESS statement
LINK option causes the link-editing of these modules
into an executable load module, cataloged permanently
under the name CBMAIN in the system library. Only the
critical portions of each source program are illustrated.
Finally, the steps required for executiO'n of the object
program are shown.

COBSYSIN
PROCESS OBJECT(P,LlB(MYLlB)).NOLINK
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPRA.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 SUB-ARGUMENT PIC XX.

PROCEDURE DIVISION.

CAll 'SUBPRB' USING SUB-ARGUMENT
EXIT PROGRAM. (or STOP RUN.)

/*
COBSYSIN

PROCESS OBJECT(P,LlB(MYLlB)). NOLINK
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPRB.

DATA DIVISION.

LINKAGE SECTION.

77 MY-ARGUMENT PIC XX.

PROCEDURE DIVISION USiNG MY-ARGUMENT

EXIT PROGRAM. (or STOP RUN.)

/*
COBSYSIN

PROCESS OBJECT(P,LlB(MYLlB)).LlNK(P).
SUBLIB(MYLlB)
IDENTIFICATION DIVISION.
PROGRAM-ID. CBMAIN.
ENVIRONMENT DIVISION

OBJECT-COMPUTER. IBM-S34
MEMORY SIZE 12000 CHARACTERS.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 MAIN-ARGUMENT PIC XX.

PROCEDURE DIVISION.
CAll'SUBPRC'.
CAll'SUBPRA'.
STQP RUN. (EXIT PROGRAM statements

have no effect in main programs)

/*

Figure 9-6 (Part 1 of 2). 	 Example of OCl and COBOL
Statements for Link-Editing
Without Overlay

Creating, Executing, and Debugging Problems 9-17

***** EXECUTE THE OBJECT PROGRAM *****

/ I LOAD CBMAIN

[/ / FI LE Statements. if required 1

/ / RUN

[input data. if required 1

/*

Figure 9-6 (Part 2 of 21. 	 Example of OCl and COBOL
Statement for Link-Editing
Without Overlay

Figure 9-7 is an example of the OLINK procedure
needed to link-edit the previously mentioned calling and
called programs without specifying an overlay structure.
The generated OCl would be used if all programs had
been previously compiled and placed in the object
library as nonexecutable object modules (either by the
OBJECT option or by the $MAINT utility program).

OLINK CBMAIN,MYLlB ..",MYLlB, #COBLIB

Figure 9-7. 	 Example of the OLiNK Procedure for
Link-Editing Without Overlay, when all Modules
Are in the Object Library

Link-Editing with Overlay

If a program is too large to be contained in the main
storage available at execution time, it can still be
executed by means of an overlay structure. (The COBOL
segmentation feature can also be used. This feature is
described in detail under Segmentation Feature in
Chapter 6.)

An overlay structure permits different called programs to
alternately occupy the same storage area. Overlay
structures are created by the overlay linkage editor
under the direction of the programmer. For further
information, refer to the Overlay Linkage Editor
Reference Manual.

Not all programs can be link edited to form overlay
structures. This can be done only if the sum of the sizes
of those programs that must be in main storage
simultaneously does not exceed the size of main storage
available for execution. The location of the COBOL
CAll statements (that is, the logic of the programs)
determines which programs must be in storage
simultaneously.

From the CAll statements, a simple diagram known as
a tree can be constructed. All programs that are called
from any given calling program must be added to the
tree immediately below that calling program. A diagram
of the tree structure of the programs in Figure 9-6 is
given in Figure 9-8.

CBMAIN (5000 bytes)

SUBPRC 	 (2500 bytes) SUBPRA (1000 bytes)

SUBPRB 	 (1500 bytes)

Figure 9-8. 	 Tree Structure Representing Programs
Link-Edited with Overlay

9-18

COBOL object-time subroutines are not shown on the
tree structure in Figure 9-8. They do, however, increase
the size of the final overlay program. The assumption
will be made that the object-time subroutines occupy
2000 bytes.

Once the tree structure of a given program has been put
into the form of a diagram, it is relatively easy to
determine whether a program will fit in the main storage
available. Simply trace each possible path through the
tree, from calling program to called program
(downward), and add the sizes of the modules
encountered plus the amount required for object-time
subroutines. The largest of these sums is the minimum
number of bytes that must be available for the overlay
program.

For example, the tree structure in Figure 9-8 has two
paths, both of which yield a sum of 7500 bytes. Thus,
the overlay program requires at least 9500 bytes (2000
bytes of which are for object-time subroutines). The
program would then be eligible for overlay in 9500 or
more bytes of main storage but not in less than 9500
bytes of main storage.

Making Subprograms Eligible for Overlay: In order to
ensure that a subprogram is eligible for overlay, the
following guidelines must be followed:

• 	 If the called program contains file description entries
(FDs), files should be opened and closed before an
EXIT PROGRAM statement is executed. This
eliminates the possibility of the calling program
issuing a CALL to a subprogram in another overlay
and, therefore, destroying an open file.

• 	 If the called program requires information to be saved.
for the next time it is called, the information must be
saved in an area that is safe from overlay. One
method is to define an area in the main program that
is used exclusively for this purpose. The address of
this common area would be passed from calling to
called programs (preferably always as the first
identifier). The COBOL COpy statement would be
used to include its data description in the Linkage
Section of all subprograms as well as in the
Working-Storage Section of the main program.

Determining the Overlay Stucture: The overlay linkage
editor determines the overlay structure of the overlay
program, based on the following:

• 	 The tree structure of the program

• 	 The amount of storage that will be available at
execution time

• 	 The linkage editor CATEGORY statement(s)

• 	 The linkage editor GROUP statement(s)

The tree structure is determined by the location of the
CALL statements and the sizes of the called programs.

The amount of storage available at execution time must
be specified by the programmer. It is taken from the
CORE parameter of the linkage editor OPTIONS
statement (or COBOL MEMORY SIZE clause if the
COBOL compiler is invoking the linkage editor). If
storage size is omitted, the size of the current region is
used.

The linkage editor CATEGORY statements must be
provided by the programmer. The programmer must
specify a category of 8 through 126 for each
subprogram eligible for overlay (categories 1 through 7
are reserved for system use). A low category number
increases the chance that the overlay linkage editor will
make a module resident if there is enough space to do
so. A high category number decreases that chance.
Thus, the programmer should assign low numbers to
small programs that are called frequently, high numbers
to large programs that are called infrequently, and
numbers in the middle for programs that are of mixed
type.

The linkage editor GROUP statement can optionally be
provided by the programmer. Without this statement,
the overlay linkage editor constructs an overlay structure
based on a generalized algorithm that is designed to
provide good performance over a wide range of
programs. The programmer may, however, be able to
improve on this algorithm by instructing the linkage
editor, with GROUP statements, as to which modules it
should group together. A GROUP statement should be
used whenever two or more called programs are
frequently used together but do not call each other.

The OPTIONS, CATEGORY, and GROUP statements are
described in detail in the Overlay Linkage Editor
Reference Manual.

Creating, Executing, and Debugging Problems 9-19

Statements for Accomplishing Overlay: Assume that the
jobs in Figure 9-6 have been run and the programmer
needs to reduce the size of the executable load module
to allow it to execute in 10 K bytes of main storage
(1 K = 1024 bytes). Further assume that SUBPRA.
SUBPRB. and SUBPRC are all eligible for overlay. The
linkage editor statements illustrated in Figure 9-9 will
construct an overlay program that executes in 10K
bytes. The categories specified in the illustration have
no relevance because there is only one overlay structure
of the given program that will fit in 10 K bytes of main
storage.

/ / LOAD #OLlNK
/ / FILE NAME-$SOURCE.... (same as in
/ / FILE NAME-$WORK.... COBOL procedure)
/ / RUN
/ / PHASE NAME-CBMAIN
/ / OPTIONS STORE-10 K
/ / MODULE NAME-CBMAIN
/ / CATEGORY NAME-SUBPRA,VALUE-20
/ / CATEGORY NAME-SUBPRB.VALUE-20
/ / CATEGORY NAME-SUBPRC.VALUE-40
/ / END

Figure 9-9. OeL for Accomplishing Overlay

When Overlays Are Beneficial: Under certain
circumstances, overlay programs (as well as COBOL
programs that use the segmentation feature) can be
faster than nonoverlay programs. Consider the case of a
program designed to read a large disk file. recording
running statistics. then printing this information in the
form of a graphic chart. Assume that the graphic output
is complex enough to require a large amount of code. In
this situation. an overlay structure should be created;
one program to do the printing, a second program to
read disk and calculate. This structure allows larger
buffer size for the disk access portion, thus potentially
increasing execution speed.

Interfacing with the Overlay Linkage Editor

There are two possible ways of interfacing with the
overlay linkage editor:

1. 	 The System/34 COBOL compiler can interface
with the overlay linkage editor for the programmer.

2. 	 The programmer can interface directly with the
overlay linkage editor by using a stand-alone link
or a separate link step.

The overlay linkage editor uses the current region size or
the value of the MEMORY SIZE clause when the
programmer interfaces through the System/34 COBOL
compiler. However, the programmer can also specify a
larger or smaller region size if he performs a separate
link step as mentioned previously. For additional
information. see the Overlay Linkage Editor Reference
Manual.

LINKAGE BETWEEN MODULES PRODUCED BY
SYSTEM/34 LANGUAGE TRANSLATORS

This section describes standard linkage conventions for
use between modules produced by the System/34
language translators: COBOL, FORTRAN IV, and
Assembler. Programmers using standard linkage
conventions are able to code routines in the language
most appropriate to the function being performed.
Figure 9-10 illustrates the standard linkage convention
described on the following pages.

J

9-20

" ASSEMBLER MODULE (MO"DA) CALLS COBOL MODULE (MODB)

* EXTRN MODB
MODA START X'OOOO'

*
*
*
* B MODB CALL COBOL MODU.LE MODB

DC AL2(PLIST) PARAMETER LIST
CONTROL RETURNS HERE AFTER MODB EXECUTION*

*
*
*
*
* PARAMETER LI ST* PLIST 	 EQU * DC AL2 (SAVA) ADDRESS OF SAVE AREA

DC AL2(PARM1) ADDRESS OF FIRST PARAMETER.

DC AL2(PARM2) ADDRESS OF SECOND PARAMETER

*
*
* DC XL2'FFFF' END OF PARAMETER LIST INDICATOR

* PARAMETERS* PARMl EQU *
DC CL5'FIRST'

PARM2 	 EQU *
DC CL6'SECOND'

*
*
* SAVE AREA* SAVA 	 DC XL1.'BO' INDICATOR BYTE - CALLING PROGRAM IS ASSEMBLER

DC CL6'MODA' CALLING PROGRAM'S NAME
END MOD";

* SAMPLE SYSTEM/34 LINKAGE

** COBOL MODULE (MODC) CALLS ASSEMBLER MODULE (MODD)

* XR:L EQU], EQUATE REGISTER VALUES
XR2 EQU 2
ARR EQU 8
IAR EQU 1.6

* ENTRY MODD
'~ODD 	 START X'OOOO'

ST SAVAR1,XR:L SAVE INDEX REGISTER ONE VALUE
LA SAVA,XRl POINT XRl TO MODD'S SAVE AREA
USING SAVA,XR:L ESTABLIS~ XR:L AS BASE REGISTER
ST SAVAR2(,XR:L),XR2 SAVE INDEX REGISTER TWO VALUE
ST SAVART(,XR1),ARR SAVE ARR VALUE
L SAVART(,XR1),XR2 POINT XR2 TO ARR VALUE
L 1.(,XR2) ,XR2 POINT TO SECOND BYTE OF ADDRESS
ALC SAVART(,XR:L),TWO(,XR!.) JUMP ARR VALUE PAST PARAMETER
L. 3(,XR2) ,XR:L GET ADDR OF PARAM 1 INTO XRl
L 5(,XR2),XR2 GET ADDR OF PARAM 2 INTO XR2

** 	 BODY OF ROUTINE.
* RETURN TO CALLING PROGRAM

* L SAVAR2(,XR1),XR2 RESTORE XR2 VALUE
L SAVAR],(,XR1),XRl RESTORE XRl VALUE
L SAVART,IAR BRANCH TO NEXT SEQ. INSTRUCTION
SAVE AREA* SAVA 	 DC XL1'30'
DC CL6'MODD'

SAVAR1. DC XL2'OO'
SAVAR2 DC XL2'OO'
SAVART DC AL2(OO)

WORK VALUE* TWO 	 DC IL2'2'
END MODD

Figure 9-10. Standard Unkaga

Craating. Executing. and Debugging Problems 9-21

L

Standard Linkage 2. Each module that calls another module must have
one or more parameter lists defined as follows:

Standard Linkage is accomplished as follows: JBytes 0-1 Address of save area in this
1. 	 Each module must have a save area defined as program

follows:

For a subprogram: 	 Bytes 2-3 Address of first parameter

Byte 0 Bit 0 0 Not a main
program Bytes Address of nth parameter

(2n)-(2n+1)Bits 1-3 	 000 FORTRAN IV

001 COBOL

Bytes (2n+2) XL2' FFFF' to indicate end of

011 Assembler
parameter list

Bits 4-7 0000 Reserved

Notes:

Bytes 1-6 	 EBCDIC name, 1. The first 2 bytes, as well as the

left-adjusted end-of-parameter-list indicator (XL2'FFFF') must
be present in all parameter lists. If no

Bytes 7-8 	 Value of index parameters are to be passed, the parameter list
register 1 (XR1)

is only 4 bytes long. In this case, bytes 3 and 4
at entry are hex FFFF.

2. Addresses in parameter lists refer to the first
Bytes 9-10 	 Value of index

byte (byte with the lowest address) of the item.
register 2 (XR2)
at.entry 3. 	 When control reaches a program entry point the

address recall register (ARR) must point to a
Bytes 11-12 	 Return point in 2-byte field containing the first byte of the

calling program parameter list.

For a main program: The assembler language code to call a COBOL
subprogram would normally be as follows:

Byte 0 Bit 0 1 Main program

Bits 1-3 000 FORTRAN IV EXTRN SUBR

001 COBOL B SUBR

DC AL2(PARAMS)
011 	 Assembler
RETNPT 	 EQU * Bits 4-7 	 0000 Reserved

Note: The pointer to the parameter list points toBytes 1-6 	 EBCDIC name,
the left byte of the save area address. left-adjusted

4. 	 Normal return is accomplished by placing in the
Note: Main program refers to the program with the

hardware instruction address register (lAR) a value
highest level of control.

that is two larger than the contents of the ARR
when the program was entered.

5. 	 Index registers 1 and 2 (XR1 and XR2) must be
saved upon entry in the called program's save
area, and restored at exit.

6. 	 The address recall register need not be restored,
but the return address must be determined and
placed in the called program's save area. .j

9-22

PROGRAM CHECKOUT 	 Debugging Lines

COBOL degugging is best accomplished as follows: The user can include debugging lines (any COBOL

• 	 Resolve all compiler diagnostics by eliminating the
cause of all conditional (C) or error, (E) level
messages, and by ensuring that a" warning (W) level
messages are consistent with the desired result (refer
to Appendix A, Compiler Messages,

• 	 Resolve all linkage editor diagnostics by correcting
the option or external reference, as discussed earlier
in this chapter,

• 	 Execute the program.

• 	 Resolve a" system and/or COBOL execution-time
messages or abonormal terminations. (For debugging,
see Debugging Lines, TRACE Statement, EXHIBIT
Statement, and the discussions of loops, processor
checks, and dumps in this chapter. For formats of
the TRACE and EXHIBIT statements, see Chapter 6.)

Note: The use of the TRACE and EXHIBIT
statements will greatly increase the amount of time
required to execute the program.

• 	 Compare output with expected results. Use EXHIBIT
statements to resolve revealed errors.

• 	 Remove all debugging statements from the
debugging program by recompiling after removing the
WITH DEBUGGING MODE clause from the program.

Debugging Language

The COBOL debugging language is designed to aid the
COBOL programmer in producing an error-free program
in the shortest possible time. The sections that follow
discuss the use of the various types of debugging
language and other methods of program checkout.

statment with a D in column 7) in his program to assist
in location logic errors. By including the WITH
DEBUGGING MODE source clause (essentia"y a
compile-time switch), the statemen'ts are made part of
the object code and will be executed in line with the
rest of the program. ,Removal of the WITH '
DEBUGGING MODE clause causes debugging lines to
be treated as comments only; they will not be executed.
A program containing debugging lines must be
syntactically correct in both these modes. (The
execution-time option DEBUG/NODEBUG has no
control over debugging lines; it only affects USE FOR
DEBUGGING declaratives-as explained in the following
paragraphs.)

Declarative Procedures-USE FOR DEBUGGING

The USE FOR DEBUGGING feature provides the user
with the ability to create his own procedures to examine
the internal status of his program during its execution.
The USE FOR DEBUGGING statement identifies which
program elements it wishes to monitor. COBOL then
gives the associated procedure control when these
elements are referenced during execution. The
procedure also is given access to the DEBUG-ITEM
special register, which has been automatically filled with
the pertinent current status information.

The USE FOR DEBUGGING procedures can be
controlled by two switches: the WITH DEBUGGING
MODE source clause for compile-time, and the
object-time switch for execution-time. WITH
DEBUGGING MODE indicates that the procedures are to
be compiled as executable code; if WITH DEBUGGING
MODE is omitted, the procedures are treated only as
comments.

At execution time, a prompt message CBl-3026 is
. issued to set the object-time switch. A response of 0 to
the object-time switch prompt indicates that the
procedures compiled into the code are to be executed; if
a response of 1 is specified, the procedures are
bypassed.

Creating, Executing, and Debugging Problems 9-23

The general rules for USE FOR DEBUGGING declarative
procedures and the DEBUG-ITEM special register can
be found in Chapter 6.

Figure 9-11 shows a simple example of how debugging
can be used. The program contains a debugging phrase
• and a simple declarative.. By removing the WITH
DEBUGGING MODE clause from the CONFIGURATION
SECTION and recompiling, the programmer can disable
the debugging declaratives, even though the declarative
statements are left in the source program.

The output generated by the program is shown in the
figure for an execution with and another without the
object-time debug switch on. The output from the
program run with debugging on contains the count of
records in and out •. The output from the program
run with debugging off does not contain the record
counts •.

Trace and Exhibit

Two additional debugging language statements are
TRACE and EXHIBIT. Either of these statements can be
used as often as necessary. They can be interspersed
throughout the COBOL source program. See Chapter 6
for examples of the use of TRACE and EXHIBIT.

9-24

ST~O -A ••• 6••• C J B) L SOU R C E S TAT E ~ E ~ T S •••••••••• IDENTFCN SE~/NO S

PROCESS QUOTE
1 IDENTIFICATION DIVISION.
2 PRDGRAM-ID. TESTOB.
3 AUTHOR. PROGRAM~E~ NA~E.

4 INSTALLATrON. ROCHESTER
5 DATE-WRITTEN. MA~CH 6.

LABO~ATORY.
1979.

6 DATE-Co~PILED. 04/25/79.
1 ENVIRONMENT DIVISION.
8 CDNFIGURATIJ~ SECTIJN.
9 SOURCE-Co~PUTER. IBM-S34

10 OBJECT-COMPUTER. I8M-S34.

11 SPECIAL-NAMES.

12 REQUESTOR IS DPERATJR.

13 I~PUT-OUTPUT SECTION.

14 FILE-CONTROL.

15 SELECT FILE-l ASSIGN TO

16 SELECT FIlE-Z ASSIG~ TO

11 DATA DIVISIJN.

18 FILE SECTIO~.

19 FO FILE-1

WITH DEBUGGING MODE.1iI

DIS~-SAMPlE.
DISK-SAMPLE.

LA8EL RECJRJS A~E STA~DARO

BLOCK CONTAI~S 5 RECORDS
RECORD CO~T'INS ZO CHARACTERS
DATA RECO~O IS RECORD-I.

20 01 RECORD-I.
21 02 FIELO-A PICTURE IS xezo,.
2Z FD FILE-Z

LABEL RECORDS ARE STANDARD
8LOCK CONTAINS 5 RECORDS
RECJR~ CONTAINS ZO C~ARACTE~S
DATA RECORD IS RECORD-Z.

23 01 RECORD-Z.
Z4 OZ FIELD-A PICTURE IS xezo,.
Z5 WoRKI~G-STORAGE SECTION.
Z6 77 KOUNT PICTU~E S99 COMP SYNC.
Z7 71 ~O~BER PI:TURE S99 COMP SYNC.
28 71 ~EC-IN PICTURE 99999.
29 11 REC-oUT PICTURE 99999.
30 01 FILLER.
31 02 ALPHABET PICTURE xe2~' VALUE -A8CDEFGHIJKLMNOPQRSTJY~Yl-.
32 OZ ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.
33 02 OEPENDE~TS PIC xe261 VALUE -0123401234)123401234012340-.
34 OZ DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES.
35 01 WORK-RECORD.
36 OZ NA~E-FtELD PICTURE X.
31 OZ FILLER PICTURE X VALUE IS SPACE.
38 OZ ~ECO~D-NJ PICTURE 9999.
39 02 FILLER PICTURE X VALUE IS SPACE.
40 02 LOCATION PICTURE AAA VALUE IS -NYC-.
41 OZ FILLER PICTUqE X VALUE IS SPACE.

Figure 9-11 (Part 1 of 3). Example of USE FOR DEBUGGING.

00110
00020
00030
00;)40
00050
00060
OOHO
00180
00090
00100
(jOlla
00120
0.(H30
00140
00150
00160
00170
00180
00190
C0200
oe210
00220
00230
00240
00250
00260
00170
00Z80
00Z90
00300
00310
003Z0
00330
00340
00350
00360
00370
00380
00390
00't00
OOHO
00420
00430
00440
001t50
00't60
00470
00480
00't90

Creating, Executing, and Debugging Problems 9-25

ST~J -A •••B••• C J B J L SOU R C E S TAT EM E N T S •••••••••• IOENTFCN SE~/NO S

~2 02 NO-Of-DEPENDENTS PICTURE xx. 00500
~3 02 FILLER PICTURE XI71 VALUE IS SPACES. 00510
~~ PROCEDURE DIVISIJN. 00520
~5 OECLARATIVES. 00530
~b OEbU~-SECTIJN SECTIJN.I§I 0051t0
~1 USE FJR DEBUGGI~G ON ALL PROCEDURES. 00550
~8 IF OEBUG-NA~E = "STEP-3" ADD 1 TO REC-OUT. 005bO
50 IF DEBUG-~A~E = "STEP-b" ADO 1 TO ~EC-IN. 00570
52 If DEBUG-~A~E = "STEP-8" EXHIBIT NAMED REC-IN REC-OUT. 00580
5~ END D~CLARATIVES. 00590
55 8EGI~ SECTION. 00600

* NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED OOblO
* A~D I~ITIALIZES CJU~TERS. 00b20

5b STEP-I. QPE~ OUTPUT FILE-I. MOVE ZERO TO KOUNT NOMBER. 00b30
* NJTE T~AT TiE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE ODb40
o CJNTAINEO I~ THE FILE. WRITES THEM ON DISK. AND DISPLAYS 00b50
* TiE~ ON THE CONSOLE. OObbO

59 STEP-2. ADD 1 TJ KOUNT, ADD 1 TO NOMBER. ~OVE ALPHA IKOUNTI TO 00b70
~AME-FI ElD. 00b80

b3 ~JVE DEPE~O IKOUNTI TO NO-OF-DEPENDENTS. 00b90
b~ MJVE ~OMBER TO .ECORD-NO. 00700
b5 STEP-3. DISPLAY wJR~-~ECORD UPON OPERATOR. WRITE RECORD-I FROM 00710

WJRK-RECORD. 00720
b8 STEP-~. PERfORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 2b. 00730

* ~JTE THAT TiE FJLLOWI~G CLOSES OUTPUT AND REOPENS IT AS 00140
* I!'\1PUT. 00750

70 STEP-5. CLOSE FILE-I. OPEN INPUT FILE-2. 00760
* ~JTE THAT TiE FOLLOWING 'REA)S BACK THE FILE AND SINGLES OUT 00770
* E~PLOYEES WITH ~o DEPENDENTS. 00780

73 STEP-b. READ FILE-2 RECORD INTO WORK-RECORD AT 'END GO TO STEP-B. 00790
7b STEP-7. IF ~O-OF-DEPENDENTS IS E~UAL TO "0" MOVE "Z" TO 00800
79 NO-OF-DEPENOENTS. EXHIBIT NA~ED WORK-RECORD. GO TO 00B10

STEP-b. 00820
81 STEP-8. CLOSE FILE-2. 00830
83 STOP RUN. 00840

PROGRA~ SIZE = DATA JIVISIJN + PROCEDURE DIVISION' LITERALS + OTF/BUFFERS

28~4 22~ 799 351 1470

NO ERRORS DETECTED FJR THIS :O~PILATION

END OF COMPILATION

SYS-3130 TESTDB ~ODULE'S ~AIN STORAGE SIZE IS

8JZ7 DECIMAL
SYS-3131 I 0000 IS THE START CONTROL ADDRESS OF rHIS MODULE
SYS-3134 I TESTDB ~ODULE IS CATALOGED AS A LOAD MEMBER

BRCLIB IS THE LIBRARY NAME
35 TOTAL NUMBER. OF LIBRARY SECTORS

Figure 9-11 (Part 2 of 3). Example of USE FOR DEBUGGING.

9-26

WORK-RECORD • A 0001 NYC Z

WORK-RECORD • B 0002 NYC 1

WORK-RECORD • C 0003 NYC 2

WORK-RECORD • o 0001t NYC 3

WORK-RECORD • E 0005 NYC It

WORK-RECORD • F 0006 NYC Z

WORK-RECORD • G 0007 NYC 1

WORK-RECORD .. H 0008 NYC 2

WORK-RECORD .. I 0009 NYC 3

WORK-RECORD .. J 0010 NYC It

WORK-RECORD = K 0011 NYC Z

WORK-RECORD • L 0012 NYC 1

WORK-RECORD = M 0013 NYC 2

WORK-RECORD .. N 0011t NYC 3

WORK-RECORD .. 0 0015 NYC It

WORK-RECORD .. P 0016 NYC Z

WORK-RECORD .. 0 0017 NYC 1

WORK-RECORD = R 0018 NYC 2

WORK-RECORD = S 0019 NYC 3

WORK-RECORD .. T 0020 NYC It

WORK-RECORD .. U 0021 NYC Z

WORK-RECORD = V 0022 NYC 1

WORK-RECORD .. 'I 0023 NYC 2

WORK-RECORD .. l(0021t NYC 3

WORK-RECORD .. Y 0025 NYC It

WORK-RECORD .. Z 0026 NYC Z

REt-IN .. 00027

REC-OUT = 00026

WORK-RECORD .. A 0001 NYC Z

WORK-RECORD .. B 0002 NYC 1

WORK-RECORD .. C 0003 NYC 2

WORK-RECORD .. D 0001t NYC 3

WORK-RECORD .. E 0005 NYC It

WORK-RECORD • F 0006 NYC Z

WORK-RECORD • G 0007 NYC 1

WORK-RECORD • -H 0008 NYC 2

WORK-RECORD .. I 0009 NYC 3

WOR"K-RECDRD • J 0010 NYC It

WORK-RECORD • K 0011 NYC Z

WORK-RECORD • L 0012 NYC 1

WORK-R'ECORD .. M 0013 NYC 2

WORK-RECORD .. N 0011t NYC 3

WORK-Ri:G9RD .. 0 0015 NYC It

WORK-RECORD .. P 0016 NYC Z

WORK-RECORD • Q 0017 NYC 1

WORK-RECORD • R 0018 NYC 2

WORK-RECORD .. S 0019 NYC 3

WORK-RECORD .. T 0020 NYC It

WORK-RECORD .. U 0021 NYC Z

WORK-RECOR!) .. V 0022 NYC 1

WORK-RECORD .. 'I 0023 NYC 2

WORK-RECORD .. X 0021t NYC 3

WORK-RECORD .. Y 0025 NYC It

WORK-RECORD = Z 0026 NYC Z

•

II

Figure 9-11 (Part 3 of 3). Example of USE FOR DEBUGGING.

Creating. Executing. and Debugging Problems 9-27

Testing a Program Selectively

A debug packet allows the programmer to select a
portion of the program for testing. The packet can
include test data and can specify operations the
programmer wants performed. When the testing is
completed, the packet can be removed. The flow of
contFOI can be selectively altered by the inclusion of
debug packets, as shown in Figure 9-12.

Start

I

Debug
Packet
For A

B

I

Debug
Packet
For C

Stop

Run

Figure 9-12. Selective Testing of B

In this program, A creates data, B processes it, and C
prints it. The debug packet for A simulates test data. It
is first in the program to be executed. In the packet, the
last statement is GO TO B, which permits A to be
bypassed. After B is executed with the test data,
control passes to the debug packet for C, which
contains a GO TO statement that transfers control to the
end of the program, bypassing C.

Testing Changes and Additions to Programs

If a program runs correctly but changes or additions can
make it more efficient, a debug packet can be used to
test changs without modifying the original source
program.

If the changes to be incorporated are in the midddle of
a paragraph, the entire paragraph, with the changes
included, must be written in the debug packet. The last
statement in the packet should be a GO TO statement
that transfers control to the next procedure to be
executed.

There are usually several ways to perform an operation.
Alternative methods can be tested by putting them in
debug packets.

The source program library facility can be used for
program checkout by placing a source program in a
library (see Chapter 6).

PROGRAM LOOPS

When a program repeatedly executes the same series of
instructions, and it is apparent that this will continue
indefinitely, the program is in a loop. In order to identify
loops, it is necessary to make use of information known
about the program itself, as follows:

• 	 Time-If the actual run time is substantially exceeding
the expected run time, the program may be in a loop.

• 	 I/O actions-If no input/output operations are taking
place and I/O is expected to be taking place
repeatedly, the program is probably in a loop.

9-28

Tracing a Loop in a Program

Frequently, a loop encompasses many instructions in a
program. In this case, the programmer must provide
COBOL statements to allow the loop to be traced.

The COBOL TRACE statement can be used for this
purpose. The simplest method is to execute a READY
TRACE statement as one of the first statements in the
Procedure Division. From then on, the statement
numbers of all paragraphs and sections that are entered
will appear on the listing. From this, the programmer
can deduce the reason for the loop.

Errors That Can Cause a Loop

The following are examples of COBOL language errors
that can cause a loop:

1. 	 A GO TO statement with no procedure-name
following it has not been initialized with an ALTER
statement. The program will loop at the unaltered
GO TO statement. (The IAR will point to the
unaltered GO TO statement.) This problem may be
avoided by coding:

ALT-PARA. GO TO MY-ERROR-ROUTINE.

instead of

ALT -PARA. GO TO.

2. 	 A PERFORM with an UNTIL clause is being
executed, but the condition specified in the UNTIL
clause cannot be met. For example,

PERFORM... UNTIL COUNT LESS THAN ZERO

where COUNT is an unsigned numeric item.

3. 	 Two PERFORM statements are active at the same
time, but they both have the same exit point. For
example,

GO TO MY-EXECUTION.

MY-SECTION SECTION.

MY-FIRST-PARA.

PERFORM MY-LAST-PARA.
MY-LAST-PARA.

DISPLAY 'IN A LOOP'.

MY-EXECUTION SECTION.

MY-EXECUTION-PARA.

PERFORM MY-SECTION.

In this example, the execution of PERFORM
MY-SECTION establishes return linkage at the end
of MY-LAST-PARA, and is then destroyed by the
execution of PERFORM MY-LAST-PARA. This
results in the reentry of MY-EXECUTION
SECTION, causing the loop.

4. 	 A GO TO statement that refers to a previous
procedure-name is executed, but no conditional
statement exists to prevent the same GO TO
statement from being reexecuted. For example,

PARA-1.

MOVE...

MOVE...

MOVE ...

PARA-2.

MOVE...

GO TO PARA-1.

A possible variation is that a conditional statements
exists, but either the condition cannot be met, or the
statement does not branch to (via a GO TO statement) a
paragraph outside the range of the loop.

Creating, Executing, and Debugging Problems 9-29

L

ABNORMAL TERMINATIONS DURING EXECUTION

When the System/34 detects a program condition that
prevents continued operaton. an abnormal termination
results. Invalid address and invalid operation are the
abnormal terminations that are most usually encountered
on System/34.

Abnormal terminations are not frequent when compared
with the incidence of other problems such as loops and
logic errors. and can usually be diagnosed by following
certain rules. The following paragraphs describe
abnormal terminations.

Abnormal Termination Due to Invalid Address

This type of abnormal termination results when the
storage address being referenced is lar,ger than the
available region for the user's program. Message
SYS-0014 is displayed.

The following usually cause this type of abnormal
termination:

• 	 Subscripting or indexing-A field that is being used as
a subscript or index contains an invalid value. that is.
a value less than 1 or greater than the OCCURS
integer for the table. This can cause the calculated
address of the table element to be too great.
resulting in an invalid address. This problem can be
avoided by including the following sentence when
referencing tables:

IF field GREATER THAN occurs-integer OR field
LESS THAN 1. PERFORM error-routine GO TO
END-OF-JOB.

Field is the subscript or index being used and
occurs-integer is the integer in the OCCURS clause of
the table level being referenced.

Note: If field is defined with USAGE IS INDEX clause. or
in the INDEXED BY phrase of an OCCU~S clause. it
cannot be exhibited or displayed.

• 	 CALL USING ... -If the arguments passed in a CALL
statement do not match in number. position. and
description the arguments in the PROCEDURE
DIVISION header. the address calculated for a
particular data reference may be too great. resulting
in an invalid address. This problem can be avoided
only by carefully checking calling and called programs
for correspondence 'of arguments.

Abnormal Termination Due to Invalid Operation

This type of abnormal termination results when the CPU
is attempting to execute an instruction but encounters
an unrecognizable operation code. Message SYS-0015
is displayed.

Invalid operation can result from the same source errors
mentioned for invalid address. since an incorrect address
may lead to data overlaying instructions. In addition. the
following COBOL error may result in an invalid
operation.

In using the segmentation feature. an attempt is made
to return from the root to an independent segment that
has been overlaid. For example.

PROCEDURE DIVISION.
ROOT SECTION O.
A. GO TO SEG-50.
B. PERFORM SEG-6O.
C. STOP RUN.

SEG-50 SECTION 50.
SEG-50-A.

PERFORM B. GO TO C.
SEG-6O SECTION 60.
SEG-6O-A.

DISPLAY 'SEG-6O ENTERED'.

The execution of PERFORM SEG-6O in Paragraph B is
invalid. since SEG-50 is in control (via the PERFORM B
statement). When Paragraph B attempts to return to
SEG-50. it may find it has been overlaid by SEG-6O.
This will result in either an abnormal termination or an
incorrect flow of control.

L

L

MAIN STORAGE DUMPS

When a job is abnormally terminated due to a serious
error in the program, it may be necessary to examine a
dump of main storage to isolate the problem.

Interpreting a Dump

Debugging using dumps is often the fastest method of
finding the cause of certain problems, notably loops and
abnormal terminations.

The following text describes methods of locating various
portions of the COBOL program in a dump. References
are made throughout the text to Figures 9-13 through
9-17. The reverse letters in text correspond to reverse
letters on the figures that indicate the portion of the
listing being discussed.

Note: Many types of bugs are more easily located by
using the COBOL debugging language (for example,
incorrect results) than examining dumps.

It is recommended that. during the debugging stage, the
programmer insert TRACE statements in the program;
the presence of any TRACE statement in the program,
even if unexecuted, causes COBOL to maintain a
statement number list during progrtam execution. This
list can be seen in dumps and is a valuable aid in
debugging loops and abnormal termination.

Locating the Start of a Program

Addresses in COBOL compiler maps are given relative to
the beginning of the program. Thus, to locate data,
files, or instructions, it is necessary first to locate the
program in which they appear.

The overlay linkage editor provides a map that shows
where programs are located in storage. For example,
TESTER wi!! be loaded at 0000, as shown by • in
Figure 9-16.

Determining Paragraphs Executed

The program TESTER purposely contained, at statement 76,
a GO TO statement that results in a loop, G in
Figure 9-13. The range of this loop appears in the
dump, because the program contained a TRACE
statement (note that RESET TRACE had been executed
prior to entering the loop).

The statement number list, which contains statement
numbers of the last few paragraphs or sections
executed before program termination, contains this
information, and can be found as follows:

1. 	 Locate the @CBSTK entry point in the overlay
linkage editor map. (It is the @CB510 subroutine.)
Note that the address is 111 E hex, • in Figure
9-16.

2. 	 Refer to location 111 E in the dump. Note that the
statement number list starts here, and continues
for 98 bytes, • in Figure 9-17.

The list is interpreted into readable characters on
the right side of the page. It indicates that the
paragraph at statement number 76 was being
executed and that it was immediately preceded by
the one at statement 77 (immediately after the
word. WERE). Preceding 77 were 76, 77, 76, and
so on. Therefore, the loop was occuring within
paragraphs 76 and 77, G in Figure 9-17.

3. 	 Refer to the COBOL source listing for the source
code corresponding to these paragraphs, G in
Figure 9-13. It is obvious from this that the cause
of the loop was the statement

GO TO STEP-9.

Creating; Executing. and Debugging Problems 9-31

Locating Data

The Data Division map enables the programmer to
locate data in the dump. The address in the map must
be added to the address in storage at which the phase
starts to determine the address of the data area in
storage, • in Figure 9-14.

For example, the data-name B can be found in the
dump as follows:

1. 	 Locate data-name B in the source program. Note
that it is in statement 42, Cit in Figure 9-13. (This
step is only necessary if you are unsure as to
whether another item also has data-name B.)

2. 	 Locate data-name B in the Data Division map, «I
in Figure 9-14. It can be located either by its
name (NAME) or by its statement number (STNO).
Note that its length (LNTH) is four characters, and
that its left-hand address is 0058 hex bytes into
the program.

3. 	 Locate the program (PROGRAM-ID. TESTER.) in
the overlay linkage editor map. Note that it has
been link edited to start at the location 0000 hex, o in Figure 9-16. Add the location of B (0058) to
the address of TESTER (0000). The data in B may
be found starting at address 0058.

4. 	 Locate 0058 in the dump. The field B starts there,
and is 4 bytes long. It contains the value
5253571 F, ., in Figure 9-17. For the purposes of
demonstration, this is an incorrect result, caused
by redefining a field definded as COMP with a
field defined as COMP-3.

Locating Files and Buffers

A file may be located in storage in a manner similar to
that used to locate data-names.

The FILE-1 file can be found as follows:

1. 	 Locate FILE-1 in the Data Division map, 0 in
Figure 9-14. Since it is a file, it has the F flag to
make it easy to locate. Note that it starts at oo9E
. hex bytes into the program. (The LNGTH field for
files is the logical record length, which is 20; it
may be ignored for purposes of this discussion.)

2. 	 Add the start address of TESTER to the
displacement of FILE-1. The result is 009E hex,
the location of FILE-1 in the dump, • in Figure
9-17.

3. 	 Buffers for a file are located after the file (except
when a SAME AREA clause is specified for the
file). Buffers are allocated in multiples of 256
bytes. Note that buffers can be partially or totally
destroyed in the CLOSE process. Such is the case
with the FILE-1 buffer, the first portion of which
has been overlaid, • in Figure 9-17.

9-32

Debugging Processor Checks by Dumps 	 HINTS FOR PROGRAM CHECKOUT

Occasionally, a processor check occurs in program
execution. The value of the IAR, ARR, XR1 and XR2
should be recorded. The IAR (instruction address
register) or ARR (address recall register) may be pointing
to an instruction within the COBOL program. To
determine if this IS the case, compare their values with
the START ADDRESS, until the module name in which
the processor check occurred is determined. It might be
necessary to refer to the statement number list (see
Determining Paragraphs Executed).

If it is the COBOL program, subtract its start address
from the IAR or ARR value. For example if the IAR
value were 0698 then it would be within TESTER,
whose start address is 0000. The instruction would be
at 0698 into the program.

The statement number can be found by referring to the
Procedure Division map. In this case, the statement
number is 58. The previous statement should be
studied.

Referring to the source listing, statement number 57 can
be examined in detail.

Note that the IAR values can be within a statement. In
this case, the error occurred specifically in that
statement, not in the one preceding.

Note also that the ARR only points to a recently
executed instruction. Thus, it should be used only as an
aid in determining the cause of a failure.

1. 	 Always specify the following compiler options in
the COBOL PROCESS statement:

SOURCE,MAP,LlST,FLAGW, XREF (SOURCE
and FLAGW are defaults)

2. 	 Include a WITH DEBUGGING MODE clause in the
SOURCE-COMPUTER paragraph.

3. 	 Insert a RESET TRACE statement at the beginning
of the Procedure Division (any TRAcE statement,
even if not executed, causes a paragraph/section
to be built).

4. 	 Insert debugging statements in the source
program. Use either USE FOR DEBUGGING
declarative procedures, debugging lines in the main
body of the program, or a combination of both.

5. 	 Compile the program.

6. 	 If debugging declaratives were coded, the
object-time debugging switch must be set to an
on position when executing the object program.

7. 	 After program checkout is complete, the WITH
DEBUGGING MODE clause should be removed.
The program can then be recompiled. All
debugging declarative paragraphs and debugging
lines are treated as comments.

Creating, Executing, and Debugging Problems 9-33

L

STNO ~A ••• B••• COB 0 L SOURCE S TAT EM E N T S , ••• " ••• ,IDENTFCN SEQ/NO S

PROCESS LIST,HAP

1 IDENTIFICATION DIVISION.

2 PROGRAH-III. TESTER.

3 AUTHOR. PROGRAMMER NAME.

4 INSTALLATION. ROCHESTER LAEIORATORY.

5 DATE-WRITTEN. HARCH 6, 1979.

6 DATE-COMPILED. 10/01/81.

7 ENVIRONMENT DIVISION.

8 CONFIGURATION SECTION.

9 SOURCE-COMPUTER. IBH-S34.

10 OBJECT-COHf'UTER. IBH-S34.

11 INPUT-OUTPUT SECTION.

12 FILE-CONTROL.

13 SELECT FILE-1 ASSIGN TO DISK-SAMPLE.

14 SELECT FILE-2 ASSIGN TO DISK-SAMPLE.

15 DATA DIVISION.

16 FILE SECTION.

17 FD FILE-l

LABEL RECORDS ARE STANDARD

BLOCK CONTA~NS 5 RECORDS

RECORD CONTAINS 20 CHARACTERS

DATA RECORD IS RECORD-l.

18 01 RECORD-1.

19 02 FIELD-A PICTURE IS X(20).

20 FD FILE-2

LAElEL. RECORDS ARE STANDARD

BLOCK CONTAINS 5 RECORDS

RECORD CONTAINS 20 CHARACTERS

DATA RECORD IS RECORD-2.

21 01 RECORD-2.

22 02 FIELD-A PICTURE IS X(20).

23 WORKING-STORAGE SECTION.

24 ·01 FILLAR.

25 02 KOUNT PIC S99 COMPo

26 02 ALPHABET PICTURE X(26) VAI.UE 'ABCDEFGHIJKLHNOPQRSTWWXYZ'.

27 02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.

28 02 NUHSR. PIC 899 COMP.

29 02 DEPENDENTS PIC X(26) VALUE '012:M0123-\o123-\o123-\o12340'.·

30 02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES.

31 01 WORK-RECORD.

32 02 NAME-FIELD PICTURE X.

33 02 FILLER PICTURE X VALUE IS SPACE.

34 02 RECORD-NO PICTURE 9999.

35 02 FILLER PICTURE X VALUE IS SPACE.

36 02 LOCATION PICTURE AM VAUJF. IS 'NYC'.

37 02 FILLER PICTURE X VALUE IS SPACE.

38 02 NO-QF-DEPENDENTS PICTURE XX.

39 02 FILLER PICTURE X(7) VALUE IS SPACES.

40 01 RECORDA.

41 02 A PICTURE S9(4) VALUE 1234.

Figure 9-13 (Part 1 of 2). Sample Source Listing

9-34

L

STNO -A.••• B••• C' 0 B 0 L SOU R C EST ATE MEN T S •••••••••• IDENTFCN SED/NO S

42 02 B REDEFINES A PIC11.RE S9(7) COHPUTATIONAL-3. CD
43 DIVISION.
44 BEGIN. READY T~.

.. NOTE THAT THE FOLLOWING OPENS THE OUTPUT ·FILE TO BE CREATED

.. AND INITIALIZES COUNTERS.
46 STEP-I. OPEN OUTPUT FILE-i. HOVE ZERO TO KOUNT NUHBR.

.. NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE

.. CONTAINED IN 1l£ FILE, WRITES THEM ON DISK, AND DISPLAYS

.. TI£H ON THE CONSOLE.
49 STEP-2. ADD 1 TO KOUNT, ADD 1 TO NUHBR, HOVE ALPHA (KOUNT) TO

NAME-FIELD.
53 COMPUTE B - B + 1.
54 HOVE DEPEND (KOUNT) TO NO-DF'-DEPENDENTS.
55 HOVE NUHBR TO RECORD-NO.
56 STEP-3. DISPLAY WORK-RECORD. WRITE RECORD-l FROM

WORK-RECORD.
59 STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 2~.

.. NOTE THAT THE FOLLOWING CLOSES OUTPUT AND REOPENS IT AS

.. INPUT.
61 STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2.

.. NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT

.. EMPLOYEES WITH NO DEPENDENTS.
64 STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-B.
67 STEP-7. IF NO-DF-DEPENDENTS IS EQUAL TO '0' MOVE 'z' TO
70 NO-oF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO

STEP-6.

72 STEP-B. CLOSE FILE-2.

74 RESET TRACE.

1 1_715 STEP-9.

76 STEP-lOt GO TO STEP-9.~

78 STOP RUN.

Figure 9-13 (Part 2 of 2). Sample Source Usting

Creating. Executing. and Debugging Problems 9-35

http:PIC11.RE

IDATA DIVISION MAPI~

STNO 	 ADDR LNTH NAME STNO ADDR LNTH NAME

17 009£ 20 FILE-l I.
D le 0060 20 RECORD-l 19 0060 20 FIELII-A
t:­ 20 032D 20 FILE-2
D 21 0078 20 RECORD-2 22 oo7B 20 FIELD-A
D 24 OOOC 56 FILLAR 25 OOOC 2 KOUNT

26 OOOE 26 ALPHABET 27 000&: 1 ALPHA
2S 0028 2 NUMBR 29 002A 26 DEPENDENTS
30 002A 1 DEPEND

D 	 31 0044 20 WORK-RJ:;CORD 32 0044 1 NAME-FIELD
34 OM6 4 RECORD-NO 36 0049 3 LOCATION
38 oo4F 2 NO-oF-DEPENDENTS

D 40 0058 4 RECORDA 41 0058 4 A
142 0058 4 B Ie

Figure 9-14. Sample Data Division Map

9-36

PRCJCEDlJRE DIVISION HAP

PROCEDURE NN1E STNO ADDR STNO ADM STNO ADDR STHO ADDR STNO ADDR

PROCEDURE DIVISION PRCLOOlE 43 OSBI
BEGIN 44 0613 45 0619
STEP-l 46 061D 47 0623 4S 0621.1
STEP-2 4~ 0639 50 063f' SI 0645 52 0641' 53 0656

54066D SS .067C
STEP-3 56 0686 57 068C 58 0698
STEP-4 59 0680 60 0686
STEP-5 61 0609 62 06DF 6306E7
STEP-6 64 O6F1 65 06P7 66 070D
STEP-7 67 07'11 6S 0717 69 0724 70 0"732 71 0743
STEP-8 72 0747 73 074D 74 0755
STEP-9 75 0759
STEP-l0 76 07F 77076S 79 0769

PROGRAH SIZE - DATA DIVISION + ~~ DIVISION + LITERALS + DTF/BUFFERS

2168 140 50 1530

DIAGNOSTICS

ERRORLVL STNO TYPE TEXT

CBL-0436 W 53 P HIGH-QRDER TRUNCATION HAY OCCUR

o E LEVEL MESSAGES o C LEVEL MESSAGES 1 W LEVEL MESSAGES

END OF COMPILATION

Figure 9-15. Sample Procedure Division Map

Creating. Executing. and Debugging Problems 9-37

L

OVERLAY LINKAGE EDITOR STORAGE USAGE HAP AND CROSS REFERENCE LIST

START OVERLAY CATEGORY NAME AND CODE LENGTH REFERENCEll BY j
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL

10.0.00 	 128 TESTER I. 0.878 2168
0000 TESTER.
0678 0. eCBo.o.o. 0.0.59 89 TESTER @CB59o.

o.8S5 @CBOOl 1ICB59o.

OSDl 0. I!CBOIo. OOAE 174 TESTER

o.8E2 I!CBo.12 TESTER

08DE IJCBo.l1

o.97F 0. I!CBo.60 o.IOC 268 TESTER IJCBo.5o.

0A11 CJCBo.61 !lCBo.5o.

o.ASB 0. QlCB07o. 007E 126 TESTER IJCB050

o.A83 IICBo.71 IICB05o.

0.80.9 	 0. OC83GO OODA 218 TESTER
0.920. 	 IJC8301 TES:rER
0.819 flCB302

o.BE3 0. CJCB35o. 0053 83 TESTER

o.BE3 IJCB35o. TESTER

o.C36 0. CJCB400 o.12A 298 TESTER

o.D6o. 0. I!CB41o. 004A 74 TESTER

o.MA 0. IICB42o. o.22E 558 TESTER IJCB59o. IJCB51o.

o.DBA IICB421 TESTER IJCB59o. OCB51o.

o.DC1 IfCB422

o.De8 eCB423

o.DCF QlCB424 IICB59o.

o.DDo IJCB425 TESTER IICB59o. IJCB51o.

o.FD8 0. (fCB51o. o.IC6 454 TESTER

l0E8 I!CB511 TESTER

j111E 	 IJCBSTKle IJCB600

119E 0. IfCB520 OOOD 13 flCB42o. TESTER IJC~o.

11AB 0. IJCB5S0 o.20D 621 TESTER

11B4 1ICB581

1418 0. eCB590 OOF3 243 TESTER

15o.B 0. IJCB01o. 0067 10.3 IJCB300 TESTER

1572 0. (fCB62o. 0.141 321 ClCr...eo. IJCB51 0. @CB42o. TESTER IJCBl50
 J1iC96o.o.
1665 CJCB621 TESTER

1659 @CBSAV (lCB580 QlCB15o.

1090. IJC8029 flCB510 @CB420 ClC860o.

1&B3 0. CJCBo.5o. o.32A 810. 1JC9070 IJCBo.60 IIC901o. IlCBOOo.

16B9 IICBTBL @CBo.70 (lCBo.6o. IJCB01o. IlCBOo.o.

10CC OCBXRl 1JC9010 IJCBOOO

10Eo IJCBZ31

1799 (lCBGPM (lCB01o. IJCBOOO

17EC CJCBo.51

1-80.2 CJC9POP (lCB010IlCBOOo.

191F (lCBXlT llCB070 IJCB06o. (lCB01o.

192C @CBGOF' IJCB01o. IJCBOOO

19DD 0 eCB34o. 0.210. 528 IJCB41o. (lCB40o. IICB30o.

1BED 0. @CB6o.O 0.13£ 318 IICB340 IJCB620 IICB58o. IlCB4o.o. IICIl35o.

IICB3o.O

lD2B 0. I!CB150 o.OC4 196 flCB59o. IJCB420

1D7o. IlCBVL1 CJCB590 CJCB42o.

ID77 @CBVL2

1D42 CJCBNUM @CB590

1D32 @CBIXl @CB590 @CB420

1~ aCBIX2 IIC9420

ID36 IICBARR 1JC8590 @C9420

1D38. IICBLEN, flCB59o. IIC9420

1D3A IICBAIIR 1JC959o.

1D3C IJCBADL IICB42o.

1.D41 IICBNDD (lCB590

SYS-313o. 1 TESTER MODULE'S MAIN STORAGE SIZE IS
7663 DECIMAL

SYS-3131 I 0.000. IS THE START CONTROL ADDRESS OF THIS MODULE
SYS-3134 I TESTER MODULE IS CATALOGED AS A LOAD MEMBER

+LIBRARY IS THE LIBRARY NAME

33 TOTAL NUMBER OF LIBRARY SECTORS

Figure 9-16 (Part 1 of 41. Sample Overlay Linkage Editor Storage Usage Map. Cross Reference List. and Execution Output

9-38

http:CJCBo.51
http:IJCBo.60
http:CJCBo.5o
http:ClCr...eo
http:IICBo.71
http:CJCBo.61
http:IJCBo.5o
http:I!CBo.60
http:IJCBo.l1
http:I!CBo.12

L

CBL-3024 **STNO- 00046. PRECEDING WERE ()()()44
CBL-3024 **STNO- 00049. PRECEDING WERE 00046 00044
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00046 00044
PI 0001 NYC 0
CBl.-3024 **STNO- 00059. PRECEDING WERE 00056 00049 00046 00044
CBL-3024 **STNO- 00049. PRECEDING WERE 00059 00056 00049 00046.00044
CBl.-302"" **STNO- 00056, PRECEDING WERE 00049 00059 00056 00049 00046 00044
B 0002 -NYC 1
CBl.-3024 **STNO- 00049, PRECEDING WERE 00056 00049 OOOS9 00056 00049 00046 00044
CBL-3024 -STNO- 00056. PRECEDING WERE 00049 00056 00049 00059 00056 00049 00046 00044
C 0003 NYC 2
CBL-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00059 00056 000""9 00046 00044
CBL-3024 **STNO.. 00056, PRECEDING WERE 00049 00056 00049 00056 00049 00059 00056 00049 00046 00044
D 0004 NYC 3
CBL-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00059 00056 00049 00046 00044
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00059 00056 00049 00046
E 0005 NYC 4
CBl.-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00059 00056 00049
CBL-3024 **STNO- 00056, PRECEDING WERE 00049 00056 00049 00056 00049 00056 000""9 00056 00049 00059 00056
F 0006 NYC 0
CBl.-3024 -STND- 00049, PRECEDING WERE 00056 00049 0003& 000""9 00056 00049 ()()056 00049 00056 00049 00059
CBL-3024 *-STNO .. 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
G 0007 NYC 1
CBl.-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00054 00049 00056 00049 00056 00049 '00056 00049 00056
CBL-3024 **STNO- 00056, PRE~lDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
H 0009 NYC 2
CBl.-3024 **STNO- 00049, PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
I 0009 NYC 3
CBL-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 It*STNO- 00056, PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
J 0010 NYC 4
CBl.-3024 It*STNO- 00049, PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 *ltSTNO- Q0056. PRECEDING WERE 00049 00056 00049 00056 00049 000S6 00049 00056 00049 0005& 00049
K 0011 NYC 0
CBL-3024 *ltSTNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 000""9 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
L 0012 NYC 1
CBL-3024 It*STNO- 00049, PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 000S6 00049 00056 00049 00056 00049
H 0013 NYC 2.
CBl.-3024 -STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 *ltSTNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
N 0014 NYC 3
CBL-3024 **STNO- ooo49~ PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
o 0015 NYC 4
CBL-3024 ItttSTNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
.CBL-3024 **STND- 00056. PRECEDING WCRE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
POO16 NYC 0
CBL-3024 It*STNO- 00049, PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 ItItSTNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 000S6 00049 00056 00049 00056 00049
Q 0017 NYC 1
CBL~3024 ItItSTNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBl.-3024 **STNO- 00056, PRECEDING WERE 00049 00056 00049 00056 000""9 00056 00049 00056 00049 00056 00049
R 0018 NYC 2
CBl.-3024 It*STNO- 00049. PRECEDING WERE 00056 00049 00036 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 *ttSTNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 000S6 00049 00056 00049 00056 00049
S 0019 NYC 3
CBL-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056

Figure 9·16 (Part 2 of 4). Sample Overlay Linkage Editor Storage ,Usage Map, Cross Reference list, and Execution Output

Creating. Executing. and bebugging Problems 9-39

CBL.-3024 -STNO- ()()()56, PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
T 0020 NYC 4
CBL-3024 **STNO- 00049. PRECEDING WERE ()()()56 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049
U 0021 NYC 0
CBL-3024 **STNO- ()()().49. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 000S6 00049 00056 00049 00056 00049
V 0022 NYC 1
CBL-3024 **STNO- 00049, PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE 00049 00056 00049 00056 00049 00056 00049 000S6 00049 000S6 00049
W 0023 NYC 2
CBL.-3024 **STNO- 00049. PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 000-...6 00049 00056
CBL.-3024 *ttSTNO- 00056, PRECEDING WERE 00049 00056 00049 00056 00049 ~6 00049 00056 00049 00056 00049
X 0024 NYC 3
CBL-3024 **STNO- 00049. PRECI!DING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 000S6. PRECEDING WERE 00049 OOOW...6 00049 00056 00049 00056 00049 00056 00049 00056 00049
Y 0025 NYC 4
CBL.-3024 **STNO- 00049, PRECEDING WERE 000S6 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 00056. PRECEDING WERE ()()().49 000S6 00049 00056 00049 00056 00049 00056 000...9 00056 00049
Z 0026 NYC 0
CBL.-3024 _STNO- 00061, PRECEDING WERE 00056 00049 00056 00049 00056 00049 00056 00049 00056 00049 00056
CBL-3024 **STNO- 0006". PRECEDING WERE 00061 00056 0:0049 00056 00049 00056 00049 00056 000...9 00056 00049
CBL-302'" **STNQ- 00067. PRECEDING WERE 00064 00061 00056 00049 00056 010049 00056 00049 00056 00049 00056
WORK-RECORD - Po 0001 -NYC Z
CBL.-3024 **STNO- 00064. PRECEDING WERE 00067 ~ 00061 00056 00049 00056 00049 00056 00049 00056 00049
CBL.-3024 **STNO- 00067. PRECEDING WERE 00064 00067 00064 00061 00056 00049 00056 00049 00056 00049 00056
WORK-RECORD - B 0002 NYC 1
CBL-3024 **STNO- 00064. PRECEDING WERE 00067 00064 00067 ooo.r.4 00061 00056 00049 00056 000...9 00056 000...9
CBL-3024 **STNO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00061 00056 00049 00056 00049 00056
,WORK-RECORD - C 0003 NYC 2
CBL.-3024 -STND- 00064, PRECEDING WERE 00067 00064 00067 0006... 00067 00064 00061 00056 00049 00056 000...9
CBL-:3024 **STND-00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00061 00056 00049 00056
WORK-RECORD - D 0004 NYC 3
CBL-3024 ,**STNO- 0006". PRECEDING WERE 00067 00064 00067 00064 00067 0004.4 00067 00064 00061 00056 00049
CBL-3024 **STNO- 00067, PRECEDING WERE 0006... 00067 00064 00067 00064 00067 00064 00067 00064 00061 00056
WORK-RECORD - E 0005 NYC 4
CBL-3024 **STNO- 00064, PRECEDING WERE 00067 00064 00067 00064 00067 0006... 00067 0006... 00067 00064 00061
CBL-302'" **STNO- 00067. PRECEDING WERE 0006... 00067.00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - F 0006 NYC Z
CBL-3024 **STNO- 0006.... PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STNO- 00067, PRECEDING WERE 0006" 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - G 0007 NYC 1 ..)
CBL-3024 **STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 0006... 00067 0006" 00067
CBL-3024 **STNO- 00067, PRECEDING WERE 0006... 00067 00064 00067 0006... 00067 0006... 0006'7 00064 00067 00064
WORK-RECORD - H 0009 NYC 2
CBL-3024 **STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 0006... 00067 0006... 00067
CBL-:3024 **STNO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - I 0009 NYC :3
CBL.-3024 **STNO- ~. PRECEDING WF-RE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 *wSTHa- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 0006...
WORK-RECORD - J 0010 NYC 4
CBL-3024 **STNO- 0006.... PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STNO- 00067, PRECEDING WERE 00064 00067 00064 00067 00044 00067 00064 00067 00064 00067 00064
WORK-RECORD - K 0011 NYC Z
CBL-3024 **STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067

Figure 9-16 (Part 3 of 4). Sample Overlay Linkage Editor Storage Usage Map, Cross Reference List, and Execution Output

9-40

http:STNO-()()().49

CBL-3024 **aTNO- 00067. PRECEDING WERE 0006-4 00067 00064 00067 00064 0006"1 00064 0006'7 00064 00067 00064
WORK-REcORD - L 0012 NYC 1
C9L-3024aTNO- 0006"1. PRECEDING WERE 00067 0006-4 00067 0006-4 00067 00064 00067 00064 00067 00064 00067
CBL-3024STNO- 00067. PRECEDING WERE 0006-4 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - H 0013 NYC 2
CBL-3024 **STHO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064- 00067
CBL-302-4 **aTHO- 09067. PRECEDING WERE 0006-4 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - N 0014 NYC 3
C9L-3024 **STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
C9L-3024 **STNO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD -0 0015 NYC 4
CBL-3024 **STHO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STNOw 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - P 0016 NYC Z
C9L-3024 "*STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STNO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - a 0017 NYC' 1
CBL-3024STHO- 0006-4. PRECEDING WERE 00067 00064 OOQ67 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STHO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - R 0019 NYC 2
C9L-3024 * ..STNe- 00064. PRECEDING WERE 00067 0006-4 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-~024 **STNO- 00067, PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - S 0019 NYC 3
CBL-3024 **STNO- 00064, PRECEDING WE'RE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STHO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 00067 00064 0006'7 00064 00067 00064
WORK-RECORD - T 0020 'NYC 4
CBL-302-4 **STNO- 0006-4. PRECEDING WERE 00067 0006-4 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STNO- 00067, PRECEDING WERE 0006-4 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - U 0021 NYC Z
CBL-3024 **aTNO- 00064, PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **8THO- 00067. PRECEDING WERE 00064 00067 00064 00067 00064 0006"' 00064 00067 00064 00067 0006~
WORK-RECORD - V 0022 NYC 1
CBL-3024 **STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
<:::BL-3024 **STNO- 00067. PRECEDING WERE 0006.. 00067 00064 00067 0006.. 00067 00064 00067 00064 00067 00064
WORK-RECORD - W 0023 NYC 2
CBL-3024 **STHO- 0006... PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
C9L-3024 ..*aTHO- 00067. PRECEDING WERE 0006.. 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - X 002.. NYC 3
CBL-3024 "*STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
C9L-3024 **STNO- 00067. PRECEDING WERE 0006.. 00067 00064 000.7 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - Y 0025 NYC ..
CBL-3024 **aTNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **8THO- 00067. PRECEDING WERE 0006<4 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064
WORK-RECORD - Z 0026 NYC Z
CBL-302" **STNO- 00064. PRECEDING WERE 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064 00067
CBL-3024 **STNO- 00072, PRECEDING WERE 0006.. 00067 00064 00067 00064 00067 00064 00067 00064 00067 00064

Figure 9·16 (Part 4 of 4). Sample Overlay Linkage Editor Storage Usage Map. Cross Reference List. and Execution Output

Creating. Executing. and Debugging Problems 9-41

L

SYSTEM

STORAGE DUI'P HAS BEEN REQUESTED•••

SSP REL 08 HOD 00

MeODE REL 10 HOD 00 PATCH 0929

IAR-0928M-08D3)(l-S2M)(2-00158 PR-8021

ERRTCB S2A8 ERRM:E CURTCB S2M

CURXAM HIC 0016 OP/Q F400 DATE 81/10/01

PROGRAM TESTER PROC:EJ)t.ME

TRACE START/END/OLD£8T ceoO/ESOO/DC90

Figure 9-17 (Pert 1 of iiI. Semple Storage Dump

9-42

http:PROC:EJ)t.ME

TASK STORAGE DUItP TCB 52AB
IAR-Q929 AR-oeD3 Xl-52A8 X2-0058 PR-9021

ADM 00 0<1 08 OC 10 14 1B 1C
0000 35100005 0591FlFO FOF1FBF1 F2F6C1C2 C3C4C5C6 C7CeC9I11 I12D3I14I15 lI6D7I1BD9 - •••••.• lOO1B126A1lCIlEFGHIJI<LHNQI>QR­
0020 E2E3E4E5 E6E7EBE9 F2F6FOF1 F2F3F4FO F1F2F3F4 FOF'lF2F3 ~F~4~F~0F'i!liF2~F~'3F~~~ *STUVWXYZ260123401234012340123401_
0040 F2F3F4FO E94OFOFO F2F640D5 EBC340E9 40404040 40404040 52 71 _2340Z 0026 NYC Z· •••••••• ­
0060 E94OFOFO F2F640DS EBC34OFO 40404040 40<104040 OOOOOOOO E F2F64OD15 _Z 0026 NYC 0 ••••Z 0026 Ntt
0090 E8C34OFO 40404040 40404040 FOF1F2F3 F4F50ooo OOOOOOOO 00600000 .. _YC 0 01.2345 • --
OOAO FF FFFFOO6O 404~4 0200001~ 7 40 ~* .••••••- .•.•••SAMPLE •••••••••
OOCO 27 031F033A F J3B270000001A 3 1 40000000 1 1 ••••••••••••••••• ,.. • •••••••••••
OOEO 03000100 68020000 0B000002 00000001 FFFFOOO3 EB34F400 F4430040 2OA2OOAo •••••••••••••••••••••••4.4•••••••
0100 01200100 OOOOOOOO 000052A8 OOOOOOOO 03390103 390200FA 009E0000 OOOOOOOO ••••••••••••••••••••••••••••••••• tt

0120 40<1040<10 0 •••.••••••••••••••••••••• tt•
00000 00000000 00000000 OOOOOOOO 00000000 OOOOOOOO 00000000 OOOOOOOO *••.•.•..•....••••...•.•••. ~ .••0140

DUPLICATE LINES THRU 0300
0320 ~~~OO 00000000 78000000 OOAOOOOO OOFFFFFF FFOO7840 804eooo2 000014£2 *...•••••...••••.••.••••••••..•8*
0340 lD4D7D3 C5404OO3 BOOSAF03 89000002 0003AF04 ·B7033AFF 03382700 0000lAfE ttAHPLE •••••••••••••••••••••••• I.
0360 000000IA 00000lFF 034OOOF'4 OOOOOOF4 FFOOOOOO 03038900 OOOOOIFF •••••••••••••••4 •••4 •••••••••••• _
0390 0003EB 34f'6OOF7 780().4()20 A200A003 80010000 OOOOOOOO ooe2A800 00000OO3 * •.•.. 6.7••••••••••••••••••.••••• ­
03AO 3311 01038903 2DOOOOO0 OOOOOOOO 4040<1040 Dl54OF0F0 F1F440DS EBC34OF3 N 0014 NYC 3­*................
03C0 !4O_4O'1O 40<104040 D64OFOFO FlF54005 E9C34OF4 40404040 4040<l0<I0 D74OFOFO * 0 0015 NYC 4 P 00­
03E0 1F64OD15 E8C34OFO 4040<10<10 40<1040<10 DB4OFOFO F1F74ODS EBC34OF1 40404040 *16 NYC 0 Q 0017 NYC 1 ­
0400 4040<1040 D94OFOFO F1FB40D5 EBC34OF2 404040<10 40404040 E24OFOFO FlF940 * R 001B NYC 2 S 0019 Ntt
0<120 8C34OF3 40404040 4040<l0<I0 E34OFOFO F2F04ODS EBC34OF4 40404040 40<104040 *YC 3 T 0020 NYC 4 *
0<140 44OFOFO F2F140D5 EBC34OF.o 4.0404040 40<1040<I0 E54OFOFO F2F24OD15 EBC340Fl .u 0021 NYC .0 Y 0022 NYC 1_
0460 404040 40404040 E64OFOFO F2F340DS E8C34OF2 40404040 404040<40 E74OFOFO _ W .0023 NYC 2 X 00_
.0480 2F44ODS EBC34OF3 4040<1040 4040<l0<I0 EB4OFOFO F2F540DS E OF4 40<104040 *24 NYC 3 Y 0025 NYC 4
O<IAO 40<10<1040 E94OFOFO F2F64ODS E9C340F0 40404040 40<1040<IO OOOOOOOO * Z 0026 NYC 0 ~*
04C0 OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO •••••••••• ,.••••••••••••••••••• , •••

DlFLICATE LINES TWRU 05B0
OSAO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOF2B743 9OE3C5E2 E3C15D9OO ()()()()!!400 tt ••••••••••••••••• 2 ••• TESTER ••• ~ ••
05C0 4D020000 OOOOOOOO OOOOOOOO OOOOOOOO 00000000 OOOOOOOO 00000000 OOOOOOOO .(...............................•
OSEO OOOOOOFF 01FFBOOO 00059100 OOOOOOOO OOOOOOCO 871~ 01oeillCC2 01OS9474 *•.•.••••••••••••..•...••••• 8 •••• •
0600 020117408 OCC08715 72C0B710 E80!5E2C0 B7061;JCO IIFOFD800 2C3oII01OS E2COBFOF •••••••••••••Y.8 •••••••Q••••• 8 ••••
0620 D9OO2EC.o ElFOC3600 9EOOOOO4 FF040100 0007770<1 01002907 77C01FOF D8003106 *D••••••••• .- •••••••••••••••••Q.-••*
0640 10000007 78061000 29077BC.o ElFllAB07 791COOOO 4.wFC01F 0BE20000 00077800 ••••••..•••••.•.•.••••••••s ••.••••
0660 9OO600S8 COEIFOB7B 009B0600 58C01IIF11 AB07B31C oooo4FFF 3C4OO()S() 04210049 * •.• $ ••••••••$.· ••••••• 1•••••••••
.0680 OO293AFO 00<I9C01IF OFD8003B COIIIFODIIA 00130057 COIIIFODD6 OCl30073 0057C.o1IIF * •.. O••••• Q•••••••·•• ~ •••O•••••••••
06AO 01l2OOO9E 06ACCOIIIF 01lE3009E COJIIF0680 COBFOFIlB 00390411 07FF07BE 071107FF •••••••••• T ••••••••• Q•••••••••••••
06C0 oooDF2Bl 14C20106 Dl340106 AFCOIIIF06 39340B06 AFCOIIIF06 96COIIIFOF IlBOO3DCO •••2 •• 9 •• J ••••••••••••••••• ~.0 ••••
06E0 IIFOD6000 9EOOFFCO BFOC3603 .2D000008 FFCOIIIFOF IlBOO4OCO llF080903 200703CO ••• - •••••••••••••••••0 •••••••••••
0700 BF070DOC 1300s7oo BBCOIIIF07 11C01llF07 47COBFOF DBOO430D oooo4F07 BFF2010<1 •••••••••••••••••••••0 ••••• 1•• 2 •••
072.0 311400050 COO10732 OCOOOO<lF 07903C4O OOSOCOIIIF 1419OBOB 000A0798 00001300 ••••••••••• 1••••& •••••••••••••••
.0740 570000c0 ElF06F1CO IIIFOFIIBOO 48C01IF0D 6oo32DOO F'F3901OS E2COIIIFOF D8004BCO ••••••• 1 •••Q ••••• - •••••••S •••Q••••
0760 JllFOFIlBOO 4CCOJIIF07 59C01IF11 9ECOWll 9EF41ooo 84OOFOFO F101FFOF 00010000 •••0.<001 ••.•••••*
.0790 01000001 FF280001 00000100 ODF2F6FO E9E6D6D9 I1260D9C5 C3lI6D9C4 OOOOOOOO ••••••••••••••260ZWORK-RECORD •••••
07AO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO •................................•

DlFLICATE LINES THRU 07C0
07E0 OOOOOOOO OOOOOOOO 00000000 OOOOOOOO 00000000 OOOOOOOO OOOOOOOO OOFOFOFO ••••••••••••••••••••••••••••••000.
oeoo OOOOOOOO 00000000 ()()()o()()OO OOOOOOOO •................ :•OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO

. DUPLICATE LINES THRU 0840
0860 OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO F2B706C3 C2FOFOFO •••••••••••••••••••••••••2 •• CBOOOtt
0B80 O63C2COB 9C340116 CCC20116 897_11 7_74 02115C087 1799F2B7 OOCOB719 ••••••••••••••••••••••••••• 2 ••••••
OBAO 2C787oo2 F210097B 4002F290 037AF02D COB71799 7B4007F2 900F5811 19347_ ••••• 2 ••••2 •• :0•••••••2 •• $ ••••••

•••••• ""1 •••••••••••oeco 3115C01lA 395F011A 393CoooB 9CCOB719 02F28706 C3C2FOF1 FOO63CB7 OBFC3CBO 2 •• CB010••••••••
OBEO 09493401 16CCC201 1.6897408 1174040F 740215C0 B71799CO B7192CF2 B0501C13 ••••••• B•••••••••••••••••••• 2.~ •••
0900 097E2DCO B71799C0 B7192C4C 1340097E 7tIOF"3AF2 0<11115800 3E4058oo 1E2D5603 •• - ••••••••• (.(.-' ••2 ••••• (•••••••
0920 1E3E7CF0 3E561E4D 2054E02D 345BOO2D 1E563F2D 40591119 347_4F 5C011A39 ••• 110 ••• (•••••••••••• <S ••••• I •••••
0940 5F011A4F F209037A 9016COB7 19023CBO oeFC3CB7 09487907 OF56E42D 34740<1411 ·""I.. 12•• : ••••••••••••••••••U•••• <.
0960 7BF'84D5E OOOF4DCO B7191Foo FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOF1F2 ..B(, •• (•••••~12.
0990 B706C3C2 FOF6FOO6 340209F9 C202097F 59111934 8_1E78 F02DC201 OOOOAF.o7C8()i,() ••••• Bs...•..~. 8 ••••••
09AO 9191F2B7 14AC0799 91AE0791 91AE0791 91AE.o791 89AE0791 91AF07B9 B9990389 ••• 2 ••••••••••••••••••••••••••••••
09CO 00AE0791 8979F000 D20101EO 9026C201 16897902 3W29OO8 BIIOFB9AF 078991AC •••••••0.k•••••8 •••••• 2 •••••••••••
09E0 ·0791898C 017117003 04F2O<IOC 9C037A7D 0904F204 038C077A 2COOOOOO 91COB719 ••• ~ •• :' •• 2 •••• :' •• 2 •••• : •••••••••
OAOO 1FOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO 0034020A 3FC202OA 08B40882 AFOF08OB ••••••••••••••••••••••8 •••••••••••
01120 9COA6BBC 01347003 04F2O<IOF 9C03347D 0804F204 069C0734 IlCOO6BEIC 000900OO ••••••• ' •• 2 ••••• ' •• 2 ••••••••••••••
OA4O AC004134 ACooSC34 AEOOOBOB F2200ABC 207DAF07 OOOBF2B7 07AC0700 OBBC007D *......••.... 2 •••• ' •••• 2 •••••••• '.
0A60 9A0100AE OOOOOOF2 B11A560B 2D2DF2B7 00560924 24F20903 7A0124E0 20597A01 *••.2 •••••• 2 •••••• 2 •• &•••• $& ••
0A80 2DE08758 780.o2DCO B70oooF2 B706C3C2 FOF7F006 OCOl0AF5 0AF7OC0i5 0AE70B08 tt ••• S••••••• 2 ••CB070••••5.7••• X•• tt
OAAO 9COF0099 01002D7B 0239F290 18890200 F2B71234 080N"SOC 050AE708 026901211 *•••••...•.2 ••••• 2 •••• ·,~••• X••••••
OACO 006B022D oo3C010A FC1EOOOA FC04D201 2DOEOOOA FC0AF9F2. B2143601 0AF93602 tt •••••••••••••• K•••••••92••••• 9 •••
OAEO OAF99903 00019901 OOOOC087 OAD1C201 11oB9COB7 191F191F FFFEFFFF FF690301 * •••••••••.••. ..J9 ••••••••••••••••••
.0900 oo6B029B 03oo.o19B 01F2B706 C3C2F3FO F0093CBO 0953F2B7 093C2OO9 53F2B704 tt ••••••••• 2 •• CB300 ••••• 2 •••••• 2 •• *
0920 3C400953 3C0409I14 3C0B01lE0 34090933 C20106F8 7S020134 02089I19D FFOOF201 ttl •••••M•••••••• 8 ••••••••••••• 2.*
OB40 06BC42OA F2B7i5136 O2OJlE2AC 01OF0175 02019CBO .oBII&010D F2907EBS 41OCF290 2 •••••S •••••••••••••2.- ••• 2 ••
0860 091J84OO1i F2102DF2 876F1I802 OCF29OOF B82009F2 101E8880 09F2101B F2B·I'SA9B •••• 2 ••2.? •• 2 •••••2 ••••• 2 •• 2.! ••

Figure 9-17 (Part 2 of 5). Sample Storage Dump

Creating. Executing. and Debugging Problems 9-43

http:OOOOAF.o7

TASK STORAGE DUHf' TCB 52A9
lAR-092B AR-09D3 X1-52A9 X2-005S PR-9021

ADDR 00 04 09 OC 10 14 19 1C
OlO90 04OCF290 098640010 F21009F2 974lOPBSO OBF29045 F"I010"113 C08719DD 032D8D40 •••2 ••••2 •• 2 •••••2 •• 4 •••••••••••
OBAO OAF201OA BBBOOBCO 10150875 10031OD70 0AF20111O 1OD44OCF2 01153602 OBE2ADOl •• 2 •••••••••••••••2 ••••• 2 ••••• 8 •••
OlOCO 0l55E202 06F20107 3C0601lE0 F2970ABD 410AD001 043C0308 EOC0971B EooB3300 •••8 •• 2 •••••• 2 ••••••••••••••••••••
01lE0 09FFFAF2 9706C3C2· F3F5F007 3"109OBFB 3401OC33 3402OC35 C2010000 750201362 ..CII350............. 10
OCOO 020C319D 01000C2F C091OC24 1050200£0 97003501 OC333502 OC35OEOl OBFBOC2D ••••••••••••••••••••••••••••••••• *
0C20 351OOBF1O C0971BED OBFB0035 00020000 FFFFoooO OOOOF2B7 06C3C2F4 FOF00934 ••••••••••••••••••••••• 2 •• CB4oo •• *
OC40 OaoC46C2 0106EB75 02013402 00093602 OD5B9COl 0A037B10 04F29003 BA4ooo75 •••• 8 ••••••••••••• $ ••••••• 2 ••••••
OC6O 0201B901 ODF29008 C0871BED OC460016 BDOOOOF2 0108C0B7 19EDOC46 0012~I~O *..... 2 ••••••••••••• 2, ••••••••• , ••
ocao OOF2916F BDEOOOF2B1698690 OCF29024 7BlOO4F2 10068620 ODF21019 BB200DBA *.2.? ..2 22 2.......*
OCAO l00D7905 O~2100C 9BI00D78 lOO4F290 03BA200D 782B04F2 902B2COO ODeEOCBC *.•..• 2 •••••••• 2 ••••••••2 •••••••••
OCCO FOOCF401 0402BD4S 0AF2010E 9C4OOABC FFOO8COO OCOD5EF'2 a:7269C40 OASCOOOC .0.4••••••2... • ••••••• J 2",. t •••• -

OCEO ODSEF287 0A784104 F2900~98 OOOC0498 O3OC049C 01070DSS F401040C F4010402 *.J2••••• 2 ••••••••••••••• 4 ••• 4 ••••
0000 BCoooBCO B719D003 2D8DCooo C0910000 BDEOOOF2 0131BCOl lAF40104 1336020D •••••••••••••••••••• 2 ••••• 4 •••••• *
OD2O 5D2CoooD 2C022E00 OD2C02AF 00010110C F0012Coo 0D3E02OF OooD3EOD 5FACoooo .) ••••••••••••••• O••••••••••• ~ ••• *
OD"IO 01BCF10l F29700D2 01057DFF OOC001OC 47009701 FFFFFFF10 FFF3FFF5 FFE3Ooo2 ••• 1.2 •• K•• • •••••••••••••• 3.5.T •• *
ODOO F29706C3 C2F4F1FO 07340BOD 7OC20107 51750201 3"I02OD9F BB010DF2 901BiCOl .2 •• CB410 ••••• 1O ••••••••••••• 2 •••••
0090 070DA7F4 010403BC 4OOAC097. 19D0032O 7D4002F2 0103BCOO 00D20103 7DFFOOCO •••• 4 •••••••••••••2 ••••• K•• • ••• *
ODAO 010D71oo B701FFFF ooolF2B7 06C3C2F4 F2Foo73C oooDECF2 B1203C4D ODECF297 ••••••••••• 2 ••C1042O ••••• 2 ••• (•• 2 ••
OOCO 193C560D ECF29712 3C5CODEC F2970B3C 790DECF2 97043CC9 ODEC340B 10363401 ••••••2 •••••• 2 •••••• 2 ••• 1 •••••••••
ODEO 1D323"102 lD34C201 0E74F297 C9C0971D 704C019A 1D3C3D4A 1D3BF204 141F011D ••••••• 10 ••• 2.1 •••• <••••• 4 •• 2 ••••••
O£OO 397F5COO 9S7FD202 95F40104 0:5SE019A 7F4C009S lO395Eoo 986111202 95F"I0104K..4 ... , .. "<K.. 4 .. .
0£2O OSC202169OF40004 OFD2029D F4010405 99200ACO 10119EF2 B7937COA 5A7C7797 •• 8 ••• 4 ••• K•• 4 •••••••••• 2 •• @.'@ •• *
0£40 F2S7OF7A 4OAAF2El7 0371040AA 7C005A7C 4A9"lOCBO OFD6OFII7 780794710 07AFSCOl .2 .. 1 .2....IJ.!IJCO.P......*.*
0E60 9D94SCOl B5B7C097 1D704COl e91D394C 019F1D3C SCOleBB9 5D01BBe5 F20404SC ••••••••••• <•••• <••••••••) ••• 2 ••••
0E90 019B955E 019De1OSE 019F9BSC 04.;109FOC 6AOF9211 995E01BD 9151'0195 BBSFOIB5 •••• I'" " .. * I '" .~ ••• ~ •• *
OEAO B1D09255 5E019F91 5F019991O 51'019991 OOO200F2 97075001 B5B7D092 5535011D * •••• , •••~ ••• ~•••••• 2 ••) ••••••••••
O£CO 3235021D 3435101D 3674087D F2970AD2 02AAF401 0"105F287 07D20290 F4010406 •••••••••••• ·2•• K•• 4 ••• 2 •• K•• 4 ••••
OEEO OCBOOFD6 OFD75COl eD9~5COl 8587Coe7 OEBD0048 0001000~ 00770077 ~FFFOO6A •••• D.P••••••••••••••••••••••••• :*
OFOO ·0F2S11S9 4001790F 29430001 00000000 ooD80010 OCC3C4F4 F2301709 00004300 ••••••••••••••••••••• C942••••••••
OF20 0141OOF29 00004040 4040"1040 40404040 40404040 40404040 40404040 40404040 •••••••
OF40 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 •

DUPLICATE LINE8 THRU OFAO
OFCO "1040"1040 "10"104040 "10404040 40"10"1040 40"1040"10 40"10_ F28706C3 c2F'5FIFO • 2 •• CBSlo..
OFEO 0634090F ESC20107 5DC20210 F99C011C 01A70411 11E2011A 2F011115 OOF28209 * •••• YB••)9 •• 9 •••••••• S ••••••• 2 •••
1000 1604110A OOC087OF F82E0111 1500E202 02360111 039DFFOO C0010FFS 30001119 * ••••.••• 8 ••••• &•••••••••••• 8 •••••
1020 COO11085 3CFF111B C2021690 F4000~OF C202118F F4010409 C202111E 9D7900cO ••••••••• 8 ••• 4 ••• B••• 4 ••• 8 ••••••••
1040 B1105110D FF02C091. 105CE202 01COB710 3CE20204 9C04oo11 S9F29739 OC6A1199SS 2 ... : .. .
1060 11993C7B 11263C71O 113C3C16 105BC097 10393402 10003402 1OC43402 11BCOF01 •••••••••••••• $ ••••••••••• D•••••• *
1090 11SC11BE o.F01119C 11053C39 1051lE202 01C09710 4A340210 BE340210 BA360211 ••••••••••••••$S•••••4 •••••••••••*
10AO lA3"10210 B80E0410 BA111AOD 0110PB11 1DC09210 ASOC3B11 95117FOC 05114911 ••••••••••••••••••••••••••• " ••••••
lOCO 33OC0411 33110A3D 0005E2F2 91OFC097 0DBAOO6A 119SC097 ODD6F297 043C6A10 •••••••••••52 ••••••• 1••••• 02 ••• 1••
10£0 D335010F EBD09702 340910EF C201060D lC0110CA 01D09702 271003£9 0064000A .L••• Y••••••• 1O •••••••••••••• Y•••••
1100 0001FFFF ooo1FOFO FOF7FOFO FOFOFOF1 FOFOFOFO FFFB0600 060006f'F 118 3C2 CD •......00070000010000. ••••••• • "
1120 D36OF3F0 F2F4405C .5CE2E31l5 D67E4OFO FOFOF7F6 6B40D709 esc .. C9D5C7 • L-3024 ••STNO- 00076, E ING •
1140 E6C5D9C5 4OFOFOFO F7F54OFO FOF0F7F6 4OFOFOFO F7F'540F0 FOFOF7F6 4OFOFOFO .WERE 00075 00076 00075 00076 000
1160 F7F:54OFO FOFOF7F6 4OFOFOFO F7F:54OFO FOFOF7F6 4OFOFOFO F7F54OF0 FOFOF7F .75 00076 00075 00076 00075 00076
1190 4OFOFOFO F7F540"10 404OFFoo 15111DI0 04302411 1E6BFFFF FFFI"2Coo OOOOF2B7 • 00075 • • • • • • • •• • •• • • •• • ••• ••
11AO 06C3C2F5 F2F006F4 000404F2 970AC3C2 F5F9F007 3A90135O 3"1011335 C2011291 •• CB52O.4 ••• 2 •• CBSSO •••• &•••• B••••
11CO 7402807409987502 BeB50201 5E01BeDEO 6C02C302 E202033C 1012OA5F 01D1D14C ••••••••••••• , ••• X.C.8 •••••• ~.JJ<.
11EO 01CCl35E 786OC1F2 900D2COl 11F3014E 01C30000 E2020279 03C1F210 D65F01l<A I ..A2.....3.+.C..SA2.0~" ••
1200 1OA6COOCA 065C01D3 C57B2OC1 F29ooD2C 01121909 4EOs.cAOO 00E20202 E202073B ••XLE..A2.......+8 .. 6 ... *
1220 B0135OF2 90046COl CC010EOO 12OA12OA '7930C7F2 900451'01 CAD91C01 1243CA4C ...&2 .. "G2 .. ~ ..R..... <*
1240 048Fo.OOD 79B0C7CO 9013BF79 9OC7C010 13AF5FOl 8FD97C08 CS3COO12 6F7DOOC4 ••••••• G••••••G•••• ~ •• R9.H ••• ?·.D*
1260 F281077C 10C83COl 126F~Ol BABASEOl C5CSF220 04SE01QA 9F5FOOCS D9COO112 *2•• @.H •••?; ••• J.EE2 •• , •••~.HR ••••
1290 6A79B0C6 F290397B BOC65F00 C6II9F'292 2FSC01CA BA!5E01BA BAl5E01BA BAl5E01BA .1 ..F2....F~.FR2 '''''''' ,,,.
l2AO CASEOl8A MSC01CA D3eiEOICA CA:5E01CA CASE01CA CA5E01CA D'3:5EOl8A CAD08709 """ ,.,.L •••• ;. t.J ••• J' .L •••• •-.,­
12C0 7BB089C0 101401!5E 01Dl1OA5F OOC1D9C0 9711F735 02165938 BOI35OF2 90097B90 •••••••• ,.J.~.AR••• 7 •••••••&2 •••••
12E0 C1F2907B F2972C5E 01C3D179 94CIF290 226C0303 325C01CE C35E01D3 D55E01D1 .A2••2 •• ,.CJ •• A2•• X.L ••••C,.LN,.J.
1300 D55E01CE D55D01CE D1F292F5 5OO1CED3 F294EE79 09C1F210 075C~lB4 C3F29704 .N, •• N) •• J2.5) •• L2 ••••A2 ••••• C2 •••
1320 5C019OC3 7990CFCO 101J5F7B SOCFC202 1103C201 FF44COS7 06730019 FIF1F9Fl •••• C••••••~••• B••• B••••••••• 1191.
13"10 DID100FF ~4000AOO OOFFOOO200000043 OOOOOOOO BCOOFFOO 00000100 02000079 *JJ••••••••••••.••••••••••••••••••
1360 90DOC010 141o.5FOl CCD97C09 C9!'"F01BA BASE01BA BAl5Eoo03 D3F22004 5E01l'ACC~ .. Rtl.H~ ... , ... , .LL2.. , ...*
1380 5FOOC909 COOl1371 5F01D1l<A 5OO1DID7 F2910678 8ODOF290 773C3A13 A97908C1 .~.I-F<.... ~.J.) • .JP2.....2A*
13AO F290043C 3C13A99C 01OOD1CO 97132859 02B8BD58 038CBD58 02PDBE59 02IFBF57 .2••••••••• J ••••••••••••••••••••••
lXO "IOBFD9F2 S23107D04 C9F'204OA 7C04C9F2 97045E01 llAC55700 IFD9C002 13D25F00 ••R2.. ' .H2 .. Il.H2.....E... R...K~••
13£0 CSD9D092 005C04C0 BF!5E01C5 C55C01CA CSSEOIC5 C55EOIC5 C55E01C5 CAC09713 _ ••••••• ; .EE* •• E, .EE, .EE, .E•••••
1400 06399013 5OF21009 C097111ED 13390001 C0971BED 13390027 F29706C3 C2F5F9FO *0...&2 2 ..C10590*

Figure 9-17 (Part 3 of 5), Sample Storage Dump

9-44

TASK STORAGE DUHP TCll 52M

IAR-09211 /IoR-09D3 Xl-52M X2-OO5B PR-B021

ADDR 00 04 09 OC . 10 14 18 lC
1420 0934011D 32C20214 9134081D 3635011D 369COC6E OC7A09oo D2010DB4 01611\£01 •••••• 8 •• ~ ••••••••••).; •• K •••• / •• *
1440 616EBB40 62F29OOC 2EOIID36 72C0971D 42F287OE 2EOIID36 74C0971D 7OBC0159 */), .2••••••••••• 2 ••• t •••••••••• *
1460 ID3A9COI 571D39BB 9062F290 35AF016E 7OBCoool ID3S2DOl ID3B6EF2 0404ACOO * •••••••.•. 2 ••••) •••••••••• >2 •••••
1490 016EBCOI 041D3MC 000201119 0B62F210 09400000 OOOOF29i 56AC0310 044COOOO ••) •••••••••••• 2 •• (•••• 2 •••••• (•••
14<110 0000AC02 lC67C097 ODBAOOOA 079BC097 ODCF0002 1508BB40 62F29027 BC04491[. *••••.•••••.•.......•••.. 2 •••••••
14CO 41AC014D MAC004B 46ACoo79 48AE014D 79C08708 B5OOOOO0 00000008 000000AC •••• C••••••••••• (•••••••••••••••••
14E0 01594DCO 870DCFoo 13OO57C0 970DD6C0 87074309 08000A07 9BOOOO13 00570000 ••• (••••••••••• 0 ••••••••••••••••••
1500 00010006 ooo7407E 400000F2 8706C3C2 F6FIF006 3408156B 34011563 34021567 *••••••••.2 •• CB610 •••• , ••••••••*
1520 2C01156D I1OF0115 6D1571115 01093602 156F1l502 FB360115 6D360215 6OOF0015 •••• _ •••• _ •••••••• ? ••••• _ ••• _ ••••
1540 6C1571F2 B2109CFF 00003601 156F3602 156FC097 153DOCoo 155Dl56D 9Cl30000 *X•• 2 ••••••••• 7 ••• 7 •••••••)._ •••••
1560 C20106FB C202032D C0970BAB FFliWFoo ooo1F297 53C3C2F6 F2F00640 F:5F7F2F6 .S•••B••••••••••••• 2 •• CB620. 5726.
1590 6OC3C2Fl 4OC306D7 E9D9C9C7 CBF.34OC9 C2D44OC3 O6D9L'740 FIF9F7F9 40D3C9C3 .-CBl COPYRIGHT IBH CORP 1979 L[C.
15110 C5D5E2C5 C4~JD4Cl E3C5D9C9 CID34060 4OIr/D906 D7C5D9E3 EB4006C6 40C9C2D4 .ENSED MATERIAL - PROf"ERTY OF IBM.
lSCO FOF761F2 F661.7F8 34091692 4C013416 59340116 59360116 96340116 88D20103 .07/2~/78 •••• <........, •••••••• 1< •••
lSEO 40013016 _2012B 3AOB169D C2021694 F4010401 BOOOI0F2 01OBC202 16A6F401 .(•••• 2 •••••• 8 ••• 4 •••••• 2 •• 8 •••4 ••
1600 0405C202 169OF400 O4OF7D02 ODF2944D F2976C7B BOOOICoo 1·629Ol1OE 00162916 ••• 8 ••• 4 ••• ' ••2. (2."••••••••••• , f­
1620 BD75010C 7501014D 010016BC F2012£OC 00168416 29OF0016 8416BF36 01169434 •• , •••••• (•••• 2 ••••••••••••••••••••
1640 0116SSOC 00165216 94350116 593601.16 944COOOE 0000C201 05B4F297 22C0871B * ••••••••.•••••••. (•••• 8 •••2 ••••••
1660 EDl68200 14350116 591C0116 59341C01 16B2OCOE 01169216 8F75020A 75010BCO •.................................•
1690 87060900 OOFFFDOS BIFFOIFF FF01ooo2 90071694 oo59BFoo 000002£0 OOOOB409 * .••••••••••.••.••••••••••••••.••••
16110 00000900· 10BdDBOO 2OO1C3C2 F6F211B3 010000c3 C2FOF:5FO OBOOOO99 oo06005B •••••••••••CB62 •••••C80SO••••• '••••
16CO OOOOOOFF FFFFFF04 22066DFF 29110300 F1F10006 FOFOFOFO FOFOFOFO FOFOFOFO ••••••••••• _ ••••• 11 ••0000Q0000000•
16E0 F5F2F:5F3 F:5F7FIFF FFFOFOFO FOFOFloo 1416£604 04FOFOFO FOFOFOFO FOFOFOFO • 525:1571 •• 000001."•• W•• ooooooooooo­
1700 FOF:5F2F5 F3f':5F7F.1 E07409DF 5I:ooB21A 54F34C34 5B004D2D 7AF02D7B BOOIF210 *05253~71 •••• * •••• 3(••• (.'0•••• 2 ••
1720 277C1I4AF 7C2E74:5F oo74017D F5007BBO 07F29203 7CBOBA:5F ooB2017C 001AF282 •• g •• g ••~ ••• ·S••••2 •••••~ •••••• 2 ••
1740 2D5CooiA B2F297OA 7BB0017C B3AF5EOO lA017D12 lAF20409 :5FooB21A SEooB29A •••••• 2 •••••••• J ••• • ••2 ••~••• , ••• •
1760 7C2DB47C 4C83:5F00 B4015C00 4C2D5C12 2D4CF297 lC7COOBA 56F22D35 5£1111934 .a••9(.~ <•••• (2 •• CI ••• 2 •• $ ••••
1790 74094FSC 011A39:5F 011A4FF2 09037CBO 1659002D 4DCOS7oo 00340817 EB750211 • •• I· ••• ~ •• 12 •• (J ••••• (•••••••••• t.

t17110 :5F090909 6COI0201 E2020279 7oo2F210 346C0206 02E20203 "lBFEO:5F2 90177BFE .~t .X ••• S ••••• 2 •• %••• s 2
17CO 055E0005 053C1317 D41Eoo17 D4057C00 05SEOI06 OO79OC02 F29OOA6C 0209027£1 •• , ••••••H ••• M.CI •• , •••••• 2 •• X •••••
17E0 0402E202 03740211 COB70S9A 340816CA 340116C6 350116C4 OCOll6C4 ·16C63510 •••s •••••••.••...... F •••D••• D.F •••
1900 16CA79OB 02F2101F SEoo1616 F220037A OBOF7804 02C09019 1F75020D ~010D37 •••••• 2 •• , ••• 2 •• t •••••••••••• ~
1920 3C13191C F287F40D 0116C416 C6P08119 37OC0116 C616C47D ooOlCOOl 170950002.4••• D.F •••••••F.D' ••••••) ...
1940 lA04F204 037CB016 SEoo1616 F22OOC7S 4oo7F290 067AOBOF F297C47B 4oo2F290 ••• 2 •• &•• , ... 2 •••• 2 •• t •• 2.D••2."
1960 037AF02D 56F22D34 74043B79 7002F210 037AF02D 75020679 B002F210 23793002 *.:O•• 2 •••••••• 2 •• :0t •• ~ ••• 2 ••••••
1990 COl00000 lCool892 045C124E 2D54F32D 345C062D 4E782oo2 C010097F C0970ASB t •••••••••• 3 •••••••••••• " •••••
19110 7S200779·013BF290 2076022F BC40011C oo1BC304 782oo2F2 10OBIEOO IBC32FF2 * •••••• 2 ••••••••••C•••• 2 ••••• C.2.
IBCO 205DACOO ooo1F287 561COO19 lC047930 02F21047 782002F2 10153C2D 18EBIFOO ••) •••• 2 •••••••••• 2 ••••• 2 •••••••••
leEO 18EB0478 023BF290 327B2OO0 F2~72C79 30023402 191AF290 06760~2F F2970AIF * •••••• 2 ••••• 2 ••••••••• 2 ••••• 2 ••••
1900 011911104 lE00191A 2F3C4E19 1979023B F290043C 6019183C 0OOOO09C 00002D75 * ••••••••••+ ••••• 2 ••• - ••••••••• t ••

1920 04OF7502 15750113 351016CA 340819DC 787oo2F2 901978F0 02F2907E 75020DE2 •••••••••••••••••••• 2 ••• 0.2.1m ••• s.
1940 02147402" OD6CI22D 007C121A F2976£I5C 001110454 F32D3475 02067402 311798002 ~ •••••" ••• a •• 2 ••••••• 3 ••••••••••• •
1960 F290461C 00197204 793002F2 90037602 2F6C002D 00793002 F2103F79 3OO2F210 .2 •••••••••• 2 ••••••••••••2 ••••• 2 ••
1990 OB5E013B 2F:5F013B 0475023£1 782002F2 lOOB6900 2OOl56F2 2D34F2B7 IDBD6000 •• , •••~ •••• ~ •••• 2 •••••••2 •• 2 •••-.·
19110 F2j)117711 202DF297 11782002 F29007CO 870A11F2 9704C087 OAB37OOO 01COOIH *2 ••••• 2 •••••2 •••••• 2 •••••• • ••••••
19CO 09780102 F290127C F0175800 192D57oo 171B5800 2D177AFO IBC09709 OBF29706 ••••• 2 •• flO ••••••••"••••• :0••••• 2 ••*
19£0 C3C2F3F4 F0073401 1B863402 1BBA3408 1BC63609 1l1C23409 IBBE3501 IBC61COI .C:B340••••••••••••F ••• 8 ••.•••••F •• *
1Il00 IBC60135'011BC636 011BCAIC 011BCCOO OCOI1BBC 1A3FODOl lSCCIBCS C0811BB3 •• F •••• Ft •••••••••••••••••••H••••*
11120 35011BC6 7DAOOOF2 S1187DFF OOF28112 7DEOOOCO SllB7E7D COOOC081 1B7ECOB7 ••••F· •• 2 •• • •• 2 •• • ••••• •• •••••• ••*
11140 IBB33502 1BCC3602 IBC07D40 0AF20109 BCOloolB CEC0871B 937D41OA F20109BC *.t •••••••• ' .2••••••••••• ' •• 2 •••*
lA60 01001BDA COB71l1B3 7D420AF2 011E7DOO OBF2010F 781ooDF2 9009BCOl oolBCECO * •••.•... ' •• 2 •• ' •• 2 ••••• 2*
lA80 871Bl13BC 01oolBOO COB71BB3 7D430AF2 0109BCOl oolBE:zr.o B'71BB37D 440AF201 * ...•••••.••• ' .• 2 ••••••6 •••• ' •• 2.*
lAAO 09BC0100 181l6C097 IBB37D45 0AF20109 BC01001B DECOB71B 937D46OA F20109BC •••••• 0 •••• ' •• 2 ••••••••••• • ••2' •• *
lACO 01OO1BD4 COB71BB3 7D470AF2 0109BC01 ool£IEBCO B71B937D 500AF201 098COI00 •• t.H •••• ' •• 2 •••••• y •••• ·&.2••••• *
11\£0 IBD2C097 1&837060 0AF20109 BC0100lB D4COB71B 837D62OA F201098C 01OO1BD2 _.K •••• '-.2••••••M•••• f ••2 t<..
1900 C0971BB3 7D700AF2 Ot197840 OCF29009 ecOl001B DCCOB71S B3BCOI00 IBD8C0S7 * •••. ' •• 2 •••• 2 ••••••••••• t ••• 0 •••
1920 18B37D75 OAF20109 9COI001B DE~71B B37D99OA COOllS41 aCOloo1£1 E2COB71B •• ~ f •• 2 ••••••••••• ' •••••••••• S ••••
IB40 B37D49OA F201098C 01oo1BD6 C097111B3 7D490AF2 0109BC01 001BDECO 871BB37[' *.' .. 2 •••••• 0 •••• ' •• 2 ••••••••••• '.
IB60 520AF201 098COI00 IBD6C097 11l1l37D53 OACooIIB B38C0100 1BD4COB7 1£1£133502 * •• 2 •••••• 0 •••• ' ••••••••••H •••••• *
1890 IBCC3602 lBC07D40 OAF20109 BCOl00lB CECOB71B B37D41OA F201098C 01oolBI~ *-t ••••• ' .2 ••••••••••• ' •• 2 ••••••••
IBAO C0871BB3 7D990AF2 0109SCOl oolBE2CO 871BB3C2 010751C2 02032DCO 870D9000 * •••• ' •• 2 •••••• 8 •••• 8 ••• 8 •••••••• *

Figure 9-17 (Part 4 of 5). Sample Storage Dump

Creating, EXBcuting, and Debugging Problems 9-45

L

http:593601.16

TASK STORAGE DUMP TCB 52A8
IAR-092B AR-OBD3 X1-52A8 X2-QOsS PR-B021

ADOR 00 04 08 OC 10 14 18 lC
lBCO 01000200 03032000 OOFFFDOO OOFOFOF1 FOF2F1F2 F2F2F3F2 F4F3FOF3 F4F9FOF9
18EO F1F9F2F9 F3F9F4F9 F5F9F6F9 F7F2B706 C3C2F6FO F006C201 1C52340B lC09C202
lCOO 169OF400 040FC202 oo006COl C6037D32 C5F28103 7C3OCl5B5 02016COl 48(01)202
lC20 CAF40104 09D2024E 9D0303AA F2811C8D FFOOF2B1 07E20201 C0871C28 7C4109B5C
1C40 49979B4C 15631CFC D202607C 00A99C03 039D7DAO 4AF28207 SF004A49 BB3OOO9B
lC60 02004A5B 014A4A58 024A4B5B 014B48E2 02015EOO A8AC7D04 ABDOO100 D202ADF4
lC80 01040570 004CF2B1 07D20285 F4010405 D2028DF4 010~0 87119£90 oooo111E
lCAO 40404040 40404040 40404040 40404040 40404040 40404040 ~04040 40404040

DUPLICATE LINES THRU lCCO
lCEO 40404040 40404040 404040FF FOFOFOFO C3C2D360 F3FOF1FB 4078787B 78000143
1000 0002481C AOooo043 00024611].EooooD8 00100CC3 C2F6fOFF FF030000 10043118
1020 lCA048F'F FFOOOOoo 0000OOC3 FlF5F2D5 06110E11 0310DAOO 6A118811 lEOOOOOO
lD40 00003408 10993401 11lE63501 lD361C02 1D3A043C 001D371C 021031"02 C087109A
lD60 OC011D41 1D3AOEOl 1D3611lEC C0871D96 3C001DCC F2B7043C 021DCC34 08109934
lD80 011DE635 011D361C 031D3AOJ C0871D9A 0E011D36 1DEEC087 0£6A3408 lDEA3DFE
lDAO lD39F282 163C001D J9F28409 0E011D3A 1D32F287 060£0l1D 3A1D343B B01D37F2
lDeO 90153880 lD373501 16590201 001EO].lD J83A1E01 lD3A3AOC 011D3ClIo 3AOF011D
lDEO 3C1D3BC2 010E74CO 871D90oo 05000403 0280140C 02168080 BOS069OC 02168080
1EOO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

DUPLICATE LINES THRU lFEO

Figure 9-17 (Part 5 of 5). Sample Storage Dump

* •••••••••••••0010212223243034909*
.19293949S96972 •• C8600.B ••••••• B••
*•. ~ ..•B••• X.F.#.E2 •• a.E ••• X••• K••
•• 4 •••K.+•••• 2 •••••2 •• S•••••• eI ••*
*•.. (.... 1<.-•••••••.• ••2 •• --.4 ••••••
•••« •• ¢¢ •• It ••••• S ••) ••• ' ••••• 1(•• 4_
•••• '.<2•• K•• 4 ••• K•• 4 •••••••••••• *
* •

.OOOOCBL-3018
* *•..............C860 ••••••••• *

* •.........•Cl:J2N•••••••• 1 ••••••• *

...........W••••••••••• 4I •••••••••••

...................... 2 ••••••••••• *

....W•••••••••••••••••••••• 1•••••• *
•••2 •••••• 2.~ ••••••2., •••••• ".,2*
_., •••••••• 1(......................*

* .•. 8 •••••••••••••.•••••••• , ••••• *
*...•.•••••.........•.....•.•.•.. *

9-46

http:X.F.#.E2
http:001EO].lD

CHECKPOINT/RESTART FACILITIES

When a program is expected to run for an extended
period of time, provision should be made for taking
checkpoint information periodically during the run. A
checkpoint is the recording of the status of a program
and main storage. Thus, it provides a means of
restarting a job at a prior checkpoint position rather than
at the beginning, if for any reason processing is
terminated before the normal end of the program. For
example, some malfunction (such as a power failure)
may occur and cause an interruption. Checkpoints are
taken using the COBOL RERUN clause.

Restart is a means of resuming the execution of the
program from a checkpoint rather than from the
beginning. The ability to restart is provided by the
System/34 SSP restart procedure; CRESTART.

The CHECKPOINT/RESTART facility is an optional
System Support Program (SSP) addition. During a full
system configuration, a program additions display
contains the followin~ prompt:

CHECKPOINT/RESTART? (O-NO, 1-YES) •..O

The user must select the CHECKPOINT/RESTART
facility if the COBOL Program Product is to be installed
and the COBOL RERUN clause is to be used. For
additional information on this facility, refer to the
System Support Reference Manual and the Concepts and
Design Guide.

RERUN Clause

The presence of the RERUN clause in the source
program causes the checkpoint facility to be invoked.
When the checkpoint facility is invoked, the following
information is saved:

1. 	 The display station work area (local data area,
UPSI switch settings, print belt image or member
name)

2. 	 The entire nucleus

3. 	 The user's region

4. 	 The off-line multi-volume file control sector (if
used)

Because the COBOL RERUN clause provides linkage to
the checkpoint facility, any warnings and restrictions on
the use of this program also apply to the use of the
RERUN clause. Refer to the System Support Reference
Manual and the Concepts and Design Guide for more
information on restrictions.

Creating. Executing, and Debugging Problems 9-47

Taking a Checkpoint

To take a checkpoint, the programmer must code at
least one RERUN clause in the COBOL program.
Checkpoint information is written in a user-specified
area on the fixed disk. This area contains two
alternating checkpoint records, with each checkpoint
overlaying the oldest checkpoint taken. Thus, restart
uses the last checkpoint taken. The user must not
specify an OCL FILE statement when providing disk
space for checkpoint records, because this file is
allocated by the System/34 SSP.

In designing a program for which checkpoints will be
taken, the programmer should consider that, upon
restarting, the program must be able to continue as
though it had just reached that point in the program at
which the checkpoint occurred. It is the responsibility of
the programmer to get the program from the point of
restart to the point of termination. Therefore. the
programmer should ensure that:

1. 	 File handling will permit easy reconstruction of the
status of the system as it existed at the time the
checkpoint was taken. The user should avoid
updating records directly in master files. For
example, the application could be written such that
an output transaction file is created and is used in
a later (not checkpointed) run that performs the
updates.

2. 	 For files.opened OUTPUT, all records written on
the file at the time the checkpoint is taken should
be unaltered at restart time. For files opened I-a,
care must be taken to design the program so that

. a restart will not duplicate work that has been
completed between checkpoint time and restart
time. For example, suppose that checkpoint 5 is
taken. By adding an amount representing the
interest due, account XYZ is updated on a direct
access file that wes opened 1-0. If the program is
restarted from checkpoint 5 and if the interest is
recalculated and again added to account XYZ,
incorrect results will be produced.

3. 	 If display stations are being used by the program,
the display station must be acquired and/or
opened and the proper format redisplayed. The
programmer should be aware that multiple
requestor terminal (MRT) programs are restarted
as single requestor terminal (SRT) programs.

4. 	 There is enough space on the fixed disk for the
checkpoint record file. Refer to the Installation and
Modification Reference Manual for information
about the size of the checkpoint record file.

5. 	 That no files have DISP-SHR.

Each time a checkpoint is taken, the checkpoint program
issues an informational message to the console/work
station operator. This message indicates that a
checkpoint record was just saved and also gives the
label of the checkpoint record file.

Restarting a Program

To restart a job from a checkpoint, there are a number
of steps and restrictions that must be followed. Refer to
the System Support Reference Manual and the Concepts
and Design Guide for a complete descripton of the
restart requirements.

9-48

L

INTERPRETING OUTPUT

The System/34 American National Standard COBOL
compiler, COBOL object module, overlay linkage editor,
and other system components can produce output in the
form of printed listings; diagnostic and informative
messages; and data files directed to printers, work
stations, or mass storage devices. This section
illustrates the format of this output and describes it.
The same COBOL program is used for each example.

Compiler Output

The output of the compiler job step may include:

• 	 A printed listing of the statements contained in the
source program

• 	 A cross reference of the Data Division and Procedure
Division names

• 	 A Data Division map containing a glossary of
compiler:"generated information

• 	 A Procedure Division map containing the statement
number and relative address of the first generated
instruction for each verb

• 	 An object program size based on compilation
statistics

• 	 Compiler diagnostic messages

• 	 Diagnostic statistics

• 	 An executable or nonexecutable object program

The presence or absence of various types of compiler
output is determined by options specified on the
PROCESS statement. The level of the printed
diagnostic messages depends on the FLAGW or FLAGE
option of the PROCESS statement. All output to be
listed is written to the printer. Page ej~ction fo the
source listing is done by placing the stroke (/1 character
in the continuation area of a comment line.

Figure 9-18 shows the compiler output produced by the
sample program. Each type of output is numbered and
each format within each type is lettered. The text that
follows is an explanation of the figure:

• 	 Compiler options. The PROCESS statement, if
specified, is printed immediately preceeding the
Identification Division header.

II 	The source module listing. The statements in the
source program are listed exactly as submitted,
with the exception of the sequence number coded
in columns 1 through 6. These sequence numbers,
if coded, appear to the right of the source
statements. The source module is not listed if
NOSOURCE is specified.

The following notations may appear on the source
module listing:

C 	 Denotes that the line was included in the
source program with a COpy statement.

S 	 Denotes that the line is out of sequence.
Sequence checking is performed only if
sequence numbers are coded in columns 1
through 6.

o 	 Denotes that an error occurred in this or a
previous line of a PROCESS statement.

• 	 The compiler generated line number. The
numbers are listed to the left of the source
statements. This is the number referenced in
diagnostic messages, the Data Division map, .
and the Procedure Division map. It is also the
number printed as a result of the source
language TRACE statement. Note that a
statement number may span several lines, and
that a line may contain more than one
statement.

., The programmer-specified sequence number.
Sequence numbers coded in columns 1
through 6 on the COBOL coding form appear
to the right of the source statements on the
listing.

Creating, Executing, and Debugging Problems 9-49

• 	 Cross Reference Listings. The cross reference
listing is produced when the XREF option is
specified. The listing consists of separate parts for
Data Division names and Procedure Division
names. Each name is listed along with the
statement numbers that contain references to the
name. Statement numben; followed by an asterisk
define references to the name.

II 	Data Division map. The Data Divison map is listed
when the MAP option is specified. The Data
Division map contains information about names in
the COBOL source program.

• 	 Descriptive code. A descriptive code precedes
specific data items. A list of these codes
follows:

F-Identifies FD level file-names.
D-Identifies 01 level data-names.

• 	 The Statement number. The
compiler-generated statement number is listed
for each data item in the Data Division map.

G The relative address. The relative address of
each data item that appears in the Data
Division map is listed in hex.

o The length. The decimal length of each data
item appearing in tl')e Data Division map is
listed.

Note: No relative address or length is listed in
the Data Division map, and no main storage is
set aside for a nonnumeric level-SS item of
length 1.

e The name. The data-name as specified in the
source program is listed.

• 	 The Procedure Division map. The Procedure
Division map is provided when the LIST option is
specified. It associates a relative address with
each compiler-generated statement number in the
Procedure Division. A compiler-generated
statement number is generated for each
section-name, paragraph-name, and verb in the
Procedure Division.

• 	 Compiler-generated statement number. Note
that some numbers appear in the Procedure
Division map that do not appear on the source
module listing. This is because there are cases
where multiple verbs appear on the same line
or cases where verbs appear on the same line
as paragraph-names. Only the first generated
number appears on each line of the source
module listing, while every number appears in
the Procedure Division map.

• 	 The address. The relative address in hex for
each verb, paragraph-name, or section-name is
listed in the Procedure Division map.

• 	 Compilation statistics. The total size of the
program, in decimal, is provided by the compiler.
This size represents the sum of: the length of the
Data Division, literals, internal data file buffers, and
the amount of code generated by the compiler for
Procedure Division statements.

• 	 Diagnostic messages. The final output of the
compiler consists of the diagnostic messages
generated for errors detected during compilation:

• 	 The statement number. The compiler-generated
statement number associated with the line of
source code in which the error is detected is
listed.

• 	 The error number. A number is associated with
each message issued by the compiler.

9-50

L

• 	 The SfN8flty level. There Ire three severity
levels IS follows:

W-Wlrning. This level indicates that I
possible error WlS praent in the source
program. These wlrning m8181ges Ire lilted if
the FLAGE option is not specified.

C-Conditionll. This level indiCltes thlt In
error WIS mlde but the compiler usuilly
mikes I corrective I ..umption. The
statement containing the error is retained.
Execution can be Ittempted. These conditionll
m8181ges Ire listed if the FLAGE option is not
specified.

E-Error. This level indicates that I serious
error WIS mlde. Usually the compiler mikes
no corrective I ..umption. The statement
containing the error is dropped. Compiletion is
completed, but execution of the program
should not be attempted. If the FLAGE option
is specified, only those diagnostics with I
severity level of E Ire listed.

• 	 Type:

I-Identification or Environment Division or
PROCESS statement diagnostic.

D-Ditl Division dilgnostic.

P-Procedure Division diagnostic.

• 	 The messa.e text. The text identifies the
condition thlt caused the error Ind indicates
the Iction tlken by the compiler.

• 	 DI••nostlc st.tlstlcs. Usta the number of W,
C, Ind E level meueg.., if Iny.

Cruting, Eucuting, and Debugging Problema 9-61

L

••

••

••

I

STNO -A ••• B••• COB 0 L SOU R C E S TAT E MEN T S •••••••••• IDENTFCN SEQ/NO S ~

0 PROCESS QUOTE,LIST,MAP,XREFIDI
1 IDENTIFICATION DIVISION.

2 PROGRA~-ID. TESTPR.

3 AUTHOR. PROGRAMMER NAME.

4 INSTALLATION. ROCHESTER LABORATORY.

5 DATE-WRITTEN. MARCH 6, 1919.

6 DATE-COMPILED. 19/05/01.

1 ENVIRONMENT DIVISION.

8 CONFIGURATION SECTIO~.

9 SOURCE-COMPUTER. IBM-S34.

10 OBJECT-COMPUTER. IBM-S34.
11 SPECIAL-NAMES •.

12 SYSTEM-CONSOLE IS PRINTER.

13 INPUT-OUTPUT SECTION.

14 FILE-CONTROL.

15 SELECT FILE-l ASSIGN TO DISK-SAMPLE.

16 SELECT FILE-2 ASSIGN TO DISK-SAMPLE.

11 DATA DIVISION.

18 FILE SECTION.

19 FD FILE-l

LABEL RECORDS ARE STANDARD

RECORD CONTAINS 20 CHARACTERS

DATA RECORD IS RECORD-I.

20 01 RECORD-I.

21 02 FIELD-A PICTURE IS X(20).

22 FD FILE-2

LABEL RECORDS ARE STANDARD

RECORD CONTAINS 20 CHARACTERS

DATA RECORD IS RECORD-2.

23 01 RECORD-2.

24 02 FIfLD-A PICTURE IS X(20).

25 WORKING-STORAGE SECTION.

26 01 FILLER.

21 05 KOUNT PIC S99 COMP-4.

fJ 	 28 05 ALPHABET PICTURE X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
29 05 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.
30 05 NUMBR PIC S99 COMP-4.
31 05 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340".
32 05 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TI~ES.
33 01 WORK-RECORD.
34 05 NAME-FIELD PICTURE X.
35 05 'FILLER PICTURE X VALUE IS SPACE.

36 05 RECORD-NO PICTURE 9999.

31 05 FILLER PICTURE X VALUE IS SPACE.

38 05 LOCATION PICTURE AAA VALUE IS "NYC".

39 05 FILLER PICTURE X VALUE IS SPACE.

40 05 NO-OF-DEPENDENTS PICTURE XX.

41 05 FILLER PICTURE X(1) VALUE IS SPACES.

42 PROCEDURE DIVISION.

43 BEGIN. READY TRACE.

•••••••••••••••••• * •••
••• THE FOLLOWING PARAGRAPH OPENS THE OUTPUT FILE TO BE CREATED•••
••• AND INITIALIZES COUNTERS. • ••

45 STEP-I. OPEN OUTPUT FILE-I.

41 MOVE ZERO TO KOUNT NUMBR •

••• THE FOLLOWING CREATES INTERNALLY THE RECORDS TO 8E •••
••• CONTAINED IN THE FILE, WRITES THEM ON DISK, AND DISPLAYS •••
••• THEM ON THE CONSOLE. • ••••••• *.* ••••• * •••••••••••••••••••• * •••••• * ••••••••••••••••••••••••

48 STEP-2. ADD 1 TO KOUNT. ADD 1 TO NUMBR.

51 ~OVE ALPHA IKOUNT) TO NAME-FIELD.

52 ~OVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS.

53 MOVE NUMBR TO RECORD-NO.

54 STEP-3. DISPLAY WORK-RECORD.

56 WRITE RECORD-l FRO~ WORK-RECORD.

51 STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.

••• THE FOLLOWING CLOSES OUTPUT AND REOPENS IT AS •••
••• INPUT. • ••
..*•••••

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00210
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00390
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00100
00710

Figure 9-18 (Part 1 of 4). Example of Compiler Output

9-52

59 STEP-5. 00720
60 CLOSE FILE-I. 00130
61 OPEN INPUT FILE-2. 00140

** 00150
*** THE FOLLOWING READS BACK THE FILE AND SINGLES OUT EMPLOYEES*** 00160
*** WITH NO DEPENDENTS. *** 00710
** 00180

62 STEP-6. 00190
63 READ FILE-Z RECORD INTO WORK-RECORD 00800
64 AT END GO TO STEP-8. 00810
65 STEP-1. 00820
66 IF NO-OF-DEPENDENTS IS EQUAL TO "0" 00830
61 MOVE "Z" TO NO-OF-DEPENDENTS. 00840
68 EXHIBIT CHANGED WORK-RECORD. 00850
69 GO TO STEP-6. 00860
10 STEP-8. 00810
11 CLOSE FILE-Z. 00880
12 RESET TRACE. 00890
13 STOP RUN. 00900

II CROSS REFERENCE

DATA NAME REFERENCES

ALPHA 29* 51

AlPHABET 28* 29

DEPEND 32* 5Z

DEPENDENTS 31* 32

FIElD-A
 ZI* 24*

FIlE-l 15 19* 46 60

FIlE-2 16 2Z* 61 63 11

KOUNT 21* 41 49 51 52 58
LOCATION 38*
NAME-FIELD 34* 51
NO-OF-DEPENDENTS 40.* 52 66 61
NUMBR 30* 41 50 53
PRINTER

RECORD-NO 36* 53

RECORD-l 19
L 12*

20* 56
RECORD-2 22 Z3*

WORK-RECORO 33* 55 56 63 68

CROSS REFERENCE

PROCEDURE NAME REFERENCES

BEGIN 43*

STEP-l 45*

STEP-2 48* 58

STEP-3 54* 58

STEP-4 51*

STEP-5 59*

STEP-6 6Z* 69

STEP-1 65*

STEP-8 64 10*

Figure 9·18 (Part 2 of 4). Example of Compiler Output

Creating. Executing. and Debugging Problems 9-53

L

~DATA DIVISION MAPCD • 0 CD
e STNO ADDR LNTH NAME STNO ADDR LNTH NA~E

F 19 0092 20 FILE-1 .j
0 	 20 0058 20 RECORD-1 21 0058 20 FIElD-A
F 	 22 0321 20 FIlE-2
0 	 23 006C 20 RECORD-2 24 006C 20 FIELD-A

27 OOOC 2 KOUNT 28 OOOE 26 ALPHABET
29 OOOE 1 ALPHA 30 0028 2 NU~BR
31 002A 26 DEPENDENTS 32 002A 1 DEPEND

0 	 33 0044 20 WORK-RECORD 34 0044 1 NAME-FIelD
36 0046 4 RECORD-NO 38 004B 3 LOCAtION
40 004F 2 NO-OF-OEPENDENTS

Figure 9-18 (Part 3 of 4). Example of Compiler Output

II PROCEDURE DIVISION MAP

PROCEDURE NAME 	 Osnm ADOR STNO AOOR STNO AOOR STNO AOOR STNO AOOR

PROCEDURE DIVISION PROLOGUE ~05A'5
BEGIN 430607 44 0600

STEP-l 45 0611 46 0611 41 0621

STEP-2 48 0630 49 0643 50 065F 51 061B 52 0686

53 0695

STEP-3 54 06A3 55 06A9 56 06B5

STEP-4 51 06CD 58 0603

STEP-5 59 06F8 60 06FE 61 0106

STEP-6 62 0110 63 0116 64 onc
 j
STEP-l 65 0]30 66 0136 61 0143 68 0151 69 0116

STEP-8 10 011A 11 0180 12 0188 13 078C

~PROGRAM SIZE = DATA DIVISION + PROCEDURE DIVISION + LITERALS + DTF/BUFFERS

2168 128 	 50

II 0 I AGNOS TIC S ... o. CD
ERROR LVL STNO TYPE TEXT

CBL-0439 C 68 P NA~ED MISSING -- ASSUMED

~O 	E LEVEL MESSAGES 1 C LEVEL MESSAGES o W LEVEL MESSAGES

CBL-I019 C OR E LEVEL DIAGNOSTICS DETECTED

ENO OF COMPILATION

Figure 9-18 (Part 4 of 4). Example of Compiler Output

9-54

Linkage Editor Output

The output of the overlay linkage editor consists of:

• 	 A map of the object program after it has been
processed by the linkage editor. The map includes
cross reference information.

• 	 Linkage editor statistics.

• 	 Any diagnostic messages associated with link editing.

• 	 An executable object program which may be
cataloged in the object library. The form that this
object program takes, as well as whether or not it is
to be retained, are options of the PROCESS
statement.

Figure 9-19 is an example of a link editor output listing.
The different types of output are numbered and each
type to be explained is lettered.

• 	 Overlay linkage editor map and cross reference list
The map and cross reference list are produced
following the execution of the overlay linkage
editor when the LIST option is specified on the
cOmpiler PROCESS statement:

• 	 Start address The main storage address, in
hex, of the module or routine named in column
B.

• 	 Category The category of the module, either
as it is in the library, or via a category
override. For a discussion of categories, refer
to Program Linkage earlier in this chapter.

• 	 Name The name of the COBOL object module
and its entry point, as well as the names and
entry points of all object-time routines required
to execute this object module.

CD 	 Code length The length, in decimal and hex, is
provided for the COBOL object module and
object-time routines.

• 	 Cross-reference lists This list provides the
names of all routines or object modules that
refer to the routines named in column C.

• 	 Linkage Editor statistics The total main storage
size required for the executable object program,
the start address of this program, and library
information for cataloging this program in the
object library, are' provided.

Creating, Executing, and Debugging Problems 9-55

I[IOVERLAY LINKAGE EDITOR STORAGE USAGE MAP AND CROSS REFERENCE LIST• G.. •
START OVERLAY CATEGORY NAME AND CODE LENGTH REFERENCED BY

ADDRESS NU~BER AREA ENTRY HEXADECIMAL DECIMAL

0000 128 TESTPR 0818 2168

0000 res TPR

0818 o @CBOOO 0059 89 TESTPR iC8590

0885 iilC3001 TESTPR dlC8590

0801 (1 @C8010 OOAE 114 TESTPR

08E2 iilCB012 TESTPR

080E iilCBO 11 TESTPR

091F .0 @CB060 OlDC 268 TESTPR ;;)CM50

OAII @CB061 dlCB050

OA8B o @cno(l OOAO 160 TESTPR

OAA2 ii)C6301 TESTPR

OA9B iilC6302

OB28 o iilC ~350 0031 49 TESTPR

OB28 iil"Cfl35C TESTPR

OB5C o O1C8400 OlOC 268 TESTPR

OC68 o ilC~410 00'58 88 HSTPR

OCCO o @Cfl420 0206 518 TESTPR @C6590 dlC8510

OCDO @CB421 TESTPR aCP590 ~CB510

OC01 ;'Cfl422

OCDE llC~423

OCE5 iilC3424 iilC'3590

OCEC GlC9425 Tf·STPR ~CB590 ~CB510

OEC6 o ;;)C8510 01C6 454 TESTPR

OF06 GlCE'511 TESTPR

100C iilCASTK @CB600

108C o ;)C8520 0000 1"3 @CB420 TESTPR ~CB600

1099 I) lICP580 0248 5~4 TESTPII

10A2 O1CB5!H

12El o i)C 8590 OOE9 233 TESTPR

13CA. o :;)CO:.610 0061 103 O)c~non TESTPR

1431 o iilC~620 0141 321 @C8580 ~CB51Q @CB420 TESTPR @CB150

@C8600
1524 ;'C3621 TESTPR
1518 @C5SAV @CB580@C815D."\
154F ii)C~629 @C~510 @CB420 @CB60Q ~
1512 o ;;)C B05 0 1)324 1104 O1C8060 @CAOI0 iCBOOO
1518 @Ce.TaL @C'3060 @CBOI0 @CBCOO
1586 @CBXRl ..'("1010 @CBOOO
15A5 aic BZ31
1658 aCBGPM @CBOIO @caooo
16AB ;)C'3051
16C 1 ilC9POP aCBCIO @CI'IOOO
l7DE llC~XIT @C6060 cilCI'\OlO
l7EB <ilC'3GOP @CB010 11CI'\OOO
1896 o @C3340 OlE3 4133 @C8410 O1C8400 ;C8300
lA19 o @C"600 00E3 221 @CD340 llC~620 @CB580 @C9400 @CB300
165C (I @C"!150 00C4 196 @CB59'1 OIC[l420
18A1 :;)CBVL 1 @CB590 oICB420
18A8 @C"VL2

START OVERLAy CATEGO~Y NAME AND CODE. Lf~GTH PEFERE~CED BY
ADDRESS ~U~BER AREA ENTRY HEXADECI~AL DECIMAL

IB13 ;)C dNur~ iilCR590

IP.63 @CSrxl @C8590 ~CB420

lE'~5 llCBIX2 ~C8420

lR61 ;)CSARR .. C8590 ..,C8420

IP69 :;)CBLF.N iiiCP,590 ~CB420

1B6~ ",CSADR 11Ct3590

IB6i) ,j)C~ADL @C94?O

1812 iilCBNDO @CB590

• SYS-3130 TESTPR MOCUL~'S ~AIN STORAGE SIZE IS
1200 DECIMAL

SYS-3131 0000 IS THE STAqr CONTROL ADDRESS QF THIS MODULE
SYS-3134 TESTPR ~ODULf IS CATALnGEO AS A LOAD MEM3ER

~LI8RAPY IS THE LI8RARY NA~E

31 TOTAL NUMqER OF LIBRARY SECTORS

Figure 9-19. Example of • Unkage Editor Output Uating

9-56

COBOL Object Program-Execution Output

The output generated by program execution (in addition
to data written on output files) can include:

Data displayed on the console or on the printer

Messages to the operator

System informative messages

• System diagnostic messages

Figure 9-20 is an example of output from the execution
job step.

D OCL statements. The operation control language
(OCL) statements for the execution job step are
shown.

• Program output on printer. The results of the
execution of the TRACE statement, the DISPLAY
statement, and the EXHIBIT"NAMED CHANGED
statement appear on the program listing. See
TRACE Statement in Chapter 6 for further
information on program output.

Creating, Executing. and Debugging Problems 9-57

I I LOAD TESTPR ..

II FILE NAME-SAMPLE, UNIT-Fl, BLOCKS-lO

II RUN
••STNO= 000"5, PRECEDI~G WERE 000"3
•• STNO= 000"8, PRECEOI~G WERE 000"5 000"3
••STNO= 0005", PRECEOING ~ERE 000"8 000"5 000"3
A 0001 NVC 0
••S TNO'- 00057, PRECEDING ~ERE 0005" ooo"e 000"5 '0'''3
••STNO= 000"8, PRECEDING ~ERE 00057 0005 ... ooo"e 000"5 00043
••STNO= 0005 .. , PRECEOI~G wERE ooo"e 00057 0005" 000"8 000"5 000"3
8 OOOl NVC 1
••STNO= 000,,8, PRECEDING ~ERE 0005" 000"8 00057 0005" 000"8 000"5 000"3
••STNO- ODD!>", PRECEOI~G WERE 000"8 0005" ooo"e '0057 0005" ooo"e 000"5 000"3
C 0003 NVC 2
"STNO= 000"8, PRECEOI~G wERE 0005" 000"8 0005" 000"8 00051 0005~ ooo~e 000"5 000"3
••STNO. 00054, PRECEDING wERE 000"8 0005" COO"8 0005" 000"8 00057 0005" 000"8 000"5 000"3
o 000" NVC 3

••STNO= 00048, PRECEOI~G wERE 0005" 000"8 0005" ooo"e 0005" ooo"e 00057 0005" ooo"e 000"5 000"3

·••STNO= 0005", PRECEOI~G WERE 000"8 0005" 000"8 0005" 000"8 0005... ooo"e 00057 0005" 000"8 000"5 000"3
E 0005 IIIVC "
••STIID= 000"8, pqECEOI~G WERE 0005" 000,,8 0005" OOO"S 0005" ooo"e 0005" 000"8 00057 0005" ooo"e 000"5 000"3
••STNO= 00054, PRECEDING wERE 000"8 0005" 000"8 0005 ... 000"8 0005" ooo"e 0005" 000"8 00057 0005" ooo"e 000,,5
F OOOb NVC 0
•• STNO= 000"8, PRE=EOIN~ WERE 0005 .. 000"8 0005" OOO"S 0005" ooo~e 0005" OOO"S 0005" ooo"e 000S7 0005" OOO~S
••STNO= 0005", PRECEDING WERE 000"8 0005" 000"8 0005" ooo"e 0005~ OOO"S 0005" ooo"e 0005" ooo~e 00051 ODDS ...
G 0007 NVC 1
••STNO= 000"8, PRECEDING wERE 0005 ... 00'''8 0005... '00"8 0005... ooo"e ODDS" ooo"e ODDS" ooo"e 0005" 00'''8 00057
••STNO- 0005", PRECEDING WERE 000"8 0005" 000"8 0005" 000"8 ODDS" 000"8 0005" 000"8 ODDS" ooo"e 0005" 000"8
H 0008 NVC 2
•• STNO= 000"8, PRECEDING WERE 0005" 000"8 0005" 000"8 0005" 000"8 0005" ooO"e 0005" ooo"e 0005" ooo"e 0005"
••STNO= 0005", PRECEDI~G WERE 000"8 0005" 000"8 0005" 000"8 ODDS" ooo"e ODDS" ooo"e 0005" 00'''8 lOl5 ... 000"8
I 0009 NYC 3
••STNO- 000"8, PRECEDING WERE 0005" ooo"e 0005" 000"8 0005.. 000"8 0005 ... ooo"e 'DOS" ooo"e 0005" 00l"8 0005"
••STNO= 0005 .. , PRECEDI~G WERE 000"8 0005" 000"8 0005" 000"8 00054 ooo"e ODDS" ooo"e 0005" 000"8 l005" 000"8
J 0010 NYC "
••STNO= 000"8, PRECEDING WERE 0005" 000"8 ODDS" 000"8 0005" 000"8 ODDS ... ooo"e ODDS" ooo~e 0005" 000"8 0005"
••STNO= 0005 .. , PRECEDING WERE 000"8 0005" 000"8 00054 000"8 0005" oeo"8 ODDS" ooo"e ODDS" 000"8 ODDS" ooo"e
II OOll NYC 0
'.STNO= 000"8, PRECEOI~G WERE 0005" ooo.. e 0005" 000"8 OOOS... ooo"e ODDS" ooo"e ODDS" ooo"e OOOS~ oo,,,e ODDS"
••STNO= 0005", PRECEDING WERE 000"8 0005" 000"8 0005" 000"8 0005" 000~8 ODDS" ooo"e 0005" ooo"e ODDS" ooo~e
L 0012 NYC 1
••STNO= 000"·8, PRECEOI~G wERE 0005" 000"8 0005" ,oo"a 0005" ooo"e 0005" ooo"e ODDS" ooo~e oo's~ 000". 0005~
••STNO= 0005", PRECEOI~G WERE ooo"a 0005" ooo"a '005" 000"8 ODDS ... 000~8 00'5" '00"8 OOOS" ooo"e 0005" ooo~.
H 0013 NYC 2
••STNO= 000"8, PRECEOI~G WERE 0005" 000"8 0005" ooo"a 0005" DOD". ODDS" ooo~e 0005" ooo"e 0005" 00'~8 0005~
••STNO= 0005 ... , PRECEDING WERE 000"8 0005" 000"8 0005" 000~8 0005" ooo"e ODDS" 000"8 0005" ooo~e 0005" ooo~e
101 DOl" NVC 3
••STNO= 000"8, PRECEO[~G WERE 0005" 000"8 0005" ODD'" ~005" ooo~e ODDS" 000"8 0005" ooo~a 0005" 000"8 0005"
••SiNO= 0005 ... , PRECEOI~G WERE 000"8 0005" 000"8 0005" ooo"e 0005... ooo~e 0005" ooo"e 0005~ ooo~a 0005" ooo"a
o 0015 NYC "
•• STNO= 000... 8, PRE=EOI~~ WERE 0005 ... 000.. 8 0005" 000"8 0005 .. 00048 000S4 ooo"e 00054 ooo~e 003S4 00)48 00054
••STNO= 0005", PRECEOI~G WERE 00048 00054 0004e 00054 0004e 0005 .. 0004e 00054 ooo"e 0005" 00048 00'54 000"8
P 0016 NYC 0
•• STNO= 000 ... 8, PRECEDING WERE 0005~ 000"8 0005 ...)o)"a)00S4 ooo"e 0005" 0004e 0005" ooo~e ODD 54 00'4e 00054
••STNO= 0005 ... , PRECEDING WERE 0004e 00054 00048 00054 0004e 00054 0004e 0005" ooo"e ODDS" 0004e 0005 ... ooo"e
Q 0017 NYC 1
••STNO= 000"8, PREtEOI NG WERE 00054 00048 000S4 00.0"8 00054 00048 00054 ooo"e 00054 ooo"e 000S4 ooo"e 0005"
••STNO= 0005", PRECEDING wERE 0004a ODDS" 00048 00054 ooo"e 00054 00048 000S4 ooo~e 00054 00)48'0054 0004e
R 0018 NYC 2
••STNO= 000... 8, PRECEDING WERE 0005" 0004a 000S4 0004e 00054 0004e 0005" 000"8 00054 ooo~e 000S4 oo,~e 00054
••STNO= 0005 .. , PRECEOIIiG wERE 00048 000S4 0004e 00054 0004e 00054 ooo"e 0005" ooo"e 0005" ooo"e 00054 0004e
5 0019 NYC 3
••STNO= 000"8. PRECEDING WERE 00054 0004e 00054 0004e 0005~ 0004' Q0054 ooo"e 00054 0004e 0005" ooo"e. 0005"
••STNO" 0005.... PRECEDING WERE 0004e ODDS" ooo"e 0005" ooo~e 0005" ooo"a lO~S4 ooo~e ODDS" ooo"e 00054 ooo"e
T 0020 NYC ~
••STNo" 000~8. PRECEDI'IIG ~ERE 0005... 00'4e ODDS" Joo~e OOD5" oo~". 000S4 00l4e 000S4 ooo"e 0005." lOl"e 00054
'.STNO.. 0005.... PRECED..:; WERE OOOU ODDS" ooo"e ODDs.. ~oo~e OD05" 0004e 00054 0004e 0005" oo,,,e. '0'54 0004e
U 0021 NYC 0
'.STNO" OOO~'. PRECEDI~G ~ERE 0005... oo~"e 00054 ,o~~e 0005" ooo"e 00054 ooo"e 00054 0004e ODDS" oo,,,e ODDS"
'.STNO" 0005.... PRECEDING WERE 000"8 0005" 0004e OOOS" ooo"e 00054 0004e 000S4 ~004e 000S4 ooo"e '0'5" ooo"e
Y 0022 NYC 1
'.STNO= 000"8. PRECEOI'llG ~ERE 00054 0004e 00054 '0~48 l0054 00'48 00054 00~4e 0005 ... 0004e OOl54 00'''8 ODDS"
'.STNO- 0005.... PRECEDI'II~ WERE ooo"e 00054 ooo"e 00054 00~4a 00054 0004e C0054 ooo"e 00054 oo,,,e lO'54 0004e
W 0023 NYC 2
'.STNO" OOO~'. PRE:EDI 'II~ ~ERE 300S4 0004e 'OD05<1o 000<10' l005... oOl~e 000S4 00048 00054 0004e 00'5")J)1tS lJ"4
••STNO" 0005~. PRECEDIN~ WERE 000"8 00054 0004e 000S4 DOD'" ODDS ... 0004a 00J54 0004a 000S4 0004e DO'S" oo~"e
II 002~ NYC 3
.'STNO" 000~8, PRECEDI'IIG WERE 0005~ 000~8 0005" "~'ItS)0'5'" 00l4e 0005" 000"8 0005~ 00048 00154 '0'''8 OOCS4
."ST~Hl= C0054. PRECEOI~G WERE oco~a noeS4 ooo.~ 0005" ~~l"e 0005" 000"8 0005" 000"8 00054 00)"8 lOl54 J~048
Y 0025 NVC ~
••STNO" OOO~•• PRECEDING WERE 0005\ 000~8 0005" Ol)4a lo054 00148 OOOS .. 00048 00054 ooo"e ~0'54 ,ol4e 0005"
••STNO= 0005.... PRECEDI~:; WERE 0004e 000S4 000"8 00054 OC04e 000S4 00048 0005~ ooo~e 000S4 30,,,e 'D'S... ,004e
Z 002f> NYC "
••STNO= 00059. PRECEDI'IIG WERE OOOS~ OOo\e 0005~)3)4')3l54 ,o,,,e OOOS~ ooo~e 000S4 0004e lO'S" lO'4e ODDS"
••STNO= 000f>2. PRECEDI~G WERJ 00059 00054 000"8 OOOS" ODD'" 00054 ooo"e 0005~ 000~8 000S4 oo,,,e '0'S4 oOl~e
••STNO" 000f>5. PRECEDI'IIG WERE OOob2 00059 ooo~~ ~on4~ l005<1o 00l"8 00054 ooo"e 00054 000~8 OOlS" Owl"e 00054

Figure 9-20 (Part 1 of 2). Example of Output from the Execution Job Step

9-58

WORK-RECORO = A 0001 NYC l
••S1NO= 00062, PRECEOI~G WERE 00065 00062 00059 0005~ 300~8 00~5~ OOO~8 000S4 000~8 ~005~ 00'~8 'O'5~ 000~8 .
••S1NO= 00065. PRECEDING WERE 00062 00065 00062 ~005~ 0005~ 30l~8 '00054 00~48 00054 00048 00054 00148 00054
WORK-RECORD = 8 0002 NYC 1
••S1NO= 00062. PRECEOI~G WERE 00065 00~62 00065 00062 00059 00054 00048 00054 000~8 00054 00048 OOl54 00048
••S1NO= 00065. PRECEOI~G WERE 00062 000~5 00062)0'65 'Ol62 lOl59 00054 00048 00054 00048 00)54 00'48 00054
WORK-RECORD = C 0003 NYC 2
••S1NO= 00062, PRECEDI~G WERE 00065 00)62 00065)0062 30065 00062 00059 00054 00048 00054 00048 00~54 000~8
••S1NO= 00065, PRECEOI~G WERE 00062 00065 00062 00065 00062 00065 00062 00059 00054 00048 00'54 lO'48 00054
WORK-RECORD = D 003~ NYC 3
••S1~0= 00062, PRECEOI~G WERE 00065 00062 00065 ~0362 ~0065 00~62 00065 00062 00059 00054 00048 00054 00~48
••S1NO= 00065, PRECEDING WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00059 00154 000~8 0005~
WORK-RECORO = E 0005 NYC 4
••S1NO= 00062. PRECEDI~. WERE ~0065 00062 00065)0062)0065 00~62 00065 00062 00065 000~2 ~O'5~)0'54 00048
••S1NO= 00065. PRECEDING WERE 00062 00065 00062 00065 00062 00065 l0062 00065 00062 00065 00)62 00159 00054
WORK-RECORD = F 0006 NYC l
••S1NO= 00062. PRECEDING WERE 00065 000~2 00165 '0'62 00065 00062 00065 00062 00065 00062 00)65 ~0~62 00059
••S1NO= 00065, PRECEOI~G WERE 00062 00065 00062)0'65 ~0062 OO~65 00062 00065 00062 00065 00)62 00165 00062
WORK-RECORD = G 0001 NYC 1
••S1NO= 00062, PRECEOI~. WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00'65 '0'62 00065
••S1NO= 00065, PRECEDI~G WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00)62 00)65 00062
WORK-RECORO = H 0008 NYC 2
••S1NO= 00062, PRECEOI~G WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 '0065 00'62 00065
••S1NO= 00065, PRECEOI~G wERE 00062 00065 00062 00065 00062 000~5 00062 00065 00062 00065 00062 00065 00062
WORK-RECORD = I 0009 NYC 3
••S1NO= 00062. PRECEOI~G WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00165 00)62 00065
••S1NO= 00065, PRECEDI~G wERE 00062 00065 00062 00065 '0062 00065 00062 00165 00062 00065 00062 00'65 00062
WORK-RECORD = J 0010 NYC ~
••S1NO= 00062. PRECEDI~. WERE 00065 00062 00065 00)62 00065 00062 00065 00062 00065 00062 00'65 00)62 00065
••S1NO= 00065, PRECEDI~G WERE 00062 00065 00062)0~65 00062 00)65 00062 00~65 00062 00065 00062 00065 00062
WORK-RECORD = K 0011 NYC·l
••S1NO= 00062. PRECFDJN~ wFRF nDn6~ nnn~7 nnn~~ n0062 00065 00062 00065 00062 00065 00062 nnn6S 00'62 00065
•• STNO= 00065. PRECEOI~~ WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00)62 00'65 00062
WORK-RECORD = L 0012 ~YC 1
oOSTNO= 00062. PRECEOI~G WERE 00065 00062 00065 '0062 00065 00062 00065 00062 00'65 '))62 00'65 00062 00065
oOSTNO= 00065. PRECEoIN~ _ERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00162 00065 00062
WORK-RECORD = ~ 0013 NYC.2
.oSTNp= 00062, PRECEDING wERE 00065 000~2 ~OJ65 JJJ62 J0065 00062 00065 00062 00065 00062 00J65 00062 00065
OOSTNO= 00065, PRECEDING WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00~65 00062
WORK-RECORD = N 001~ NYC 3
**STNO= 00062, PRECEol~G WERE 00065 00062 00065 00062 00065 00'62 00065 00062 00065 00062 00'65 00062 00065
o.STNO= 00065. PRECEOING WERE 00062 000b5 00062 00065 00062 00065 00062 00065 00062 00065 00)62 lOJ65 00062
WORK-RECORD = 0 0015 NYC 4
O.STNO= 00062, PR~CEOING WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00'65 00062 00065
.oSTNO= 00065. PRECEOI~G .ERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062
WORK-RECORD = P 0016 NYC I
oOSTNO= 00062, PRECEOING WE~E 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00J65 00062 00'65
oOSTNO= 00065, PRECEol~~ WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00J62 00065 00062
WORK-RECORD = Q 0011 NYC 1
*.STNO= 000b2, PRECEOI~G WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00~65 00062 00065
OOSTNO= 00065, PRECEOI~~ WERE 00062 000b5 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062
WORK-RECORD = R 0018 NYC 2
OOST~O= 00062, PRECEOI~G WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065)0062 00065
oOSTNO= 00065, PRECEOI~G WERE 00Q62 000b5 00062 00065 00062 00065 00062 ~OJ65 J0062 00065 00062 00065 00062
WORK-RECORD = S 0019 NYC 3
oOSTNO= 00062. PRECEoI~G wERE 00065 00J62 00065 JOOb2 00065 00062 000b5 00062 00065 00062 00065 00J62 00065
o.STNO= 00065. PRECEOI~~ WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 OQ065 00062 00065 00062
WORK-RECORD = T 0020 NYC 4
OOSTNO= 00062, PRECEOI~G ~ERE 000b5 00062 00065 ~0062 00065 00062 00065 00062 00065 00062 00165 00~62 00065
*OSTNO= 00065, PRECEOI~G WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00~65 00062
WORK-RECORD = U 0021 NYC I
oOSTNO= 00062, PRECEDING WERE 00065 00062 00065 00062 ~0065 ~0~62 00065 00062 00065 00062 00J65 00J62 00065
o.STNO= 00065, PRECEDING WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00J62 00065 00062
WORK-RECORD = V 0022 NYC 1
oOSTNO= 00062. PRECEoI~G WERE 00065 000~2 00J65 J0062 ~0065 00062 00065 00062 00065 00062 00065 00062 00065
OOSTNO= 00065. PRECEOl~~ WERE 00062 000b5 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062
WORK-RECORD = W 0023 NYC 2
oOST~O= 00062. PRECEDING WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065
.oSTNO= 000b5, PRECEOI~G WERE 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00'62 00065 00062
WORK-RECORD = X 0024 NYC 3
oOSTNO= 00062, PRECEOIN~ WERE 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065
*oSTNO= 00065. PRECEOl~G wERE 00062 000b5 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062
WORK-RECORD = Y 0025 NYC 4
*oSTNO= 000b2, PRECEOI~~ WERE 00065 000b2 00065 00062 00065 00062 00065 00062 00065 00062 00065 00~62 00065
o.STNO= 00065. PRECEOI~~ WERE 00062 000b5 00062 ~0065 00062 00065 00062 00065 00062 00065 00062 00065 00062
WORK-RECORD = Z 0026 NYC l
OOSTNO= 00062. PRECEOI~G wERE 00065 000b2 00065 ~0062 00065 00062 00065 00062 00065 00062 00065 00062 00065
oOSTNO= 00010, PRECEOI~G wERE 00062 000b5 00062 00065 00062 00065 00062 00065 00062 00065 00062 00065 00062

Figure 9-20 (Part 2 of 2). Example of Output from the Execution Job Step

Creating, Executing, and Debugging Problems 9-59

Diagnosed Source File 	 The user invokes this function at compile time, with a
dsf parameter on the COBOL or COBOlCG command.

COBOL optionally builds a file that can be retrieved and

displayed at a display station. Figure 9-21 illustrates a Example:

listing of this file. The content of the file is as follows:

• 	 A $MAINT control statement (/ /COPY), which can
be used to direct the file to a library type and
member name. The library type js always S for
source. The member name is the same as the LABEL
parameter on the OCl FilE statement with the name
$WORK2.

• 	 One line of heading information, identifying the file as
output from the COBOL compiler, with data and time.

• 	 Two lines of compiler error summary information,
containing the total number of errors and Highest
severity.

• 	 Two lines of overlay linkage editor information,
indicating the success or failure of the link step.

• 	 COBOL source statements with compiler diagnostics
embedded at the pertinent point, where possible.

• 	 Additional compiler and link-editor diagnostics and
informational messages. All statements which are
merged with the COBOL source statements to create
the diagnosed source file, including heading and
summary records, have the following code in the first
two positions of the record:

7C: 	 indicates text added as a result of a COBOL
COpy statement.

?R: 	 indicates text added as a result of a COBOL
COpy statement and text modified as a
result of a REPLACING phrase in a COpy
statement.

71: 	 indicates a compiler informational message.
77: 	 indicates a linkage-editor informational

message.

COBOL TESTPR.size,inlib,outlib .. , PRFI lE

If the user is coding OCl instead of using the supplied
procedures, another OCl file statement parameter is
required for $WORK2, and an additional work file,
$WORK3, must be defined.

Example:

/ / FilE NAME-$WORK2,LABEl-dsflabel...

/ / FilE NAME:-$WORK3...

Upon completion of the compilation, the file named
dsflabel is available for immediate examination through the
use of the DISPLAY command (SYSLIST must be
assigned to CRT). The user may prefer to examine and
update the source program in one step through the use
of SEU (Source Entry Utility). To accomplish this, the
diagnosed source file must first be moved to a source
library member. The COBMOVE command provides this
function, or the user can enter either a TOLlBR
command or the OCl and utility control statements for
$MAINT. The SCAN feature of SEU makes it easy to
find the inserted records.

After the source member has been updated to correct
the identified errors, the source member can be
submitted for recompilation. The compiler ignores all
statements containing the insertion code in positions 1
and 2.

9-60

?I IBM SYSTEM/34 ANSI COBOL PRJ~~A~ PRODUCT
?I 6 E LEVEL MESSAGES. 0 C LEVEL MESSAGES 1 W LE~EL MESSAGES
11
?I
?? 2924 DECIMAL IS THE MAIN STJ~~~E SIZE OF THE LJAD MEMBER
00001 PROCESS'LINK,LET,MAP DSFTST
00002 IDENTIFICATION DIVISIO~. DSFTST
00003 PROGRAM-ID. DSFTST. DSFTST
00004 ENVIRQNMENT DIVISIO~. DSFTST
?E CSL-0120 E SOJRCE-CJMPUTER NOT IN CONFIGURATIJN SECTION
00005 SOURCE-COMPUTER. IB~-S34. DSFTST
?E CBL-0120 E JBJECT-COMPUTER NOT IN CONFIGURATION SECTION
00006 OBJECT-COMPUTER. IB~-S34 ~EMJRY 10000 CHARACTERS. DSFTST
00001 INPUT-OUTPUT ·SECTIO~. DSFTST
?E C8L-0161 W E~PTY P~~AGRAPH IN E~VIRJNMENT DIVISION
00008 FILE-CONTROL. DSFTST
00009 DATA DIVISION. DSFTST
00010 FILE SECT10N. DSFTST
00011 ~ORKING-STORAGE SECTIO~. DSFTST
00012 71 NOM-KEY PI: XI lit' VALUE 'FFFFFFFFFFFFFF'. DSFTST
00013 71 NEXT-KEY PI: X114'. DSFTST
?E CBL-0207 E INvALIJ LITERAL.IN VALJE C~AUSE -- CLAUSE IGNORE;)
00014 71 AtPH-3 PIC XXX VALUE 123. DSFTsT
00015 01 GROUP-AREA. DSFTST
00016 03 NUMBERU~O PI: S999 VAL.UE 1. DSFTST
00011 DSFTST
00018 PROCEDURE DIVISION. DSFTST
00019 START-PROG. DSFTSTC
?E CBL-0326 E CO~SOLE IS NOT A DEFINED NAME
00020 ACCEPT NEXT-(EY .FRJM CJNSOLE. [).SFTST
?E CBL-0331 E ~MaE~~JO IS NOT DEFINEJ
00021 IF NEXT-(EY L.ESS T~A~ JM8E~NUO GO TJ END-OF-PRO~RAM. DSFTST
?E CBL-0443 E GRJUP-A~=A INVALID HERE -- NOT NUMERIC
00022 'ADD 1 TO ~RO~P-AREA. DSFTST
00023 MOVE NUM8ERUNO TJ ~O~-'Er. DSFTST
00024 ADD 1 TO NUMBERU~O. DSFTST
00025 GO TO START-PROG. DSFTST
00026 END-OF-PROGRAM. DSFTST
00021 STOP RUN. DSFTST
11SYS-3130 I DSFTST MODuLE'S ~~I~ STORAGE SIZE IS
11 2924 DECIMAl
11SYS-3131 I 0000 IS THE ST~RT :J~TROL ADDRESS JF TriIS ~ODULE
11SYS-3134 I DSFTST MODJLE IS :~T~LJGED AS A LOAD MEMBER
11 AGLIB IS THE LIB~~RY NAME
11 13 TOTAL NUMBE~ JF LIBRARY SECTO~S

Figure 9-21. DiagnOll8d Source File Ullting

Creating, Executing, and Debugging Problems 9-61

http:LITERAL.IN

9-62

Chapter 10. Ideographic Support

The following information describes ideographic support
in COBOL. In order for COBOL to successfully process
ideographic data, you must also have the ideographic
version of the SSP and ideographic-capable input and
output devices.

An ideographic character is a pictogram or graphic that
requires 2 bytes of storage-in contrast with an
alphanumeric character that requires only 1 byte of
storage.

Ideographic support allows the COBOL compiler to
process IBM-supplied or user-defined ideographic
character sets. The basic ideographic character set
contains 3707 characters consisting of 3226 Kanji
characters and 481 additional characters. The basic
ideographic character set is defined in hardware.

Basically, the fact that data is ideographic is transparent
to System/34 COBOL. You must ensure that the
ideographic data is processed properly by your program.

How to Specify that You Have Ideographic Literals

To indicate that you have ideographic literals, specify the
GRAPHIC keyword on-the PROCESS statement:

Entry Explanation

GRAPHIC GRAPHIC indicates to the compiler that
ideographic literals can be present in
the program.

NOGRAPH NOGRAPH is the default. NOGRAPH
indicates that no ideographic literals are
present in the program.

The PROCESS statement is described in Chapter 9.

The Rules for Ideographic Literals

Ideographic liter.als ·follow the rules for nonnumeric
literals, with the following additional requirements:

• 	 A shift-out (5/0) control character (hex OE) must
immediately follow the apostrophe. The 5/0 control
character indicates the start of a string of ideographic
characters.

• 	 The ideographic literal must end with a shift-in (S/Il
control character (hex OF) followed immediately by an
apostrophe. The 5/1 control character indicates the
end of a string of ideographic characters.

Note: In this manual, it is assumed that you are using
apostrophes as the delimiters for literals. For a
description of how to specify that you want to use
double quotation marks as the delimiters for literals, see
the description of the QUOTE/ APOST option of the
PROCESS statement in Chapter 9.

Any ideographic character can be entered in an
ideographic literal. Each ideographic character has a
2-byte hex representation. (An ideographic blank also
occupies 2 bytes.) An ideographic literal should consist
of only ideographic characters; mixing ideographic
characters and standard alphanumeric characters in the
same literal causes the literal to be checked as an
alphanumeric literal.

Because each ideographic character occupies 2 storage
positions, any field that can contain ideographic data
should be defined to have an even number of positions.
Because an ideographic literal must contain both the
5/0 and 5/1 control characters, the minimum length of
an ideographic literal is 2 pOSitions. The maximum
length of an ideographic literal is 120 positions, which
includes the 5/0 and 5/1 control characters. Therefore,
a maximum of 59 ideographic characters can be coded
in a COBOL ideographic literal.

Ideographic Support 10-1

Examples of Ideographic Literals

The following are examples of ideographic literals:

SEQUENCE
IB~IA(PAGE) SERIAL, 3 , ,•

o 1 	 i 1

1
! i

02 	 1 !1 J
03 I 771 IO OL IT-l PIC Xe8)

04 I 1111 10 OL I T- 2 PIt)(1I(nl

05 i
I

06 i

I o 7
 I

08 	 :

1

I
09 I t I I

1 0 I Nn VE 'I~ I ~ 'I TO 10OL

1 1 j ! I i

1 2 i 	 /
1

/
i

These positions contain
an ideographic literal.

Compiler Checking of Ideographic Literals

When the keyword GRAPHIC is specified on the
PROCESS statement and the compiler finds a literal that
begins with an apostrophe immediately followed by the
S/O control character, the compiler checks for a valid
ideographic literal. The following conditions cause a
literal to be diagnosed as an invalid ideographic literal:

• 	 An odd number of bytes are found between the S/O
and S / I control characters.

• 	 The terminating S/I control character is not

immediately followed by an apostrophe.

• 	 The ideographic literal spans multiple source lines and
does not follow the, rules for continuation of
ideographic literals (for more information on
continuation of ideographic literals, see How to
Specify Continuation of Ideographic Literals, below).

If a literal is found to be an invalid ideographic literal, it
is processed by the compiler as a nonnumeric literal.

These positions contain
an ideographic literal.

/
COBOL STATEMENT 	 i IDENTIFICATION

, S
/ 	

7
6 	

1 76lT;!!!

I
 I

~A LUE 15 '[III f)l' . I

I I
VA LU~ IS '~ I~ , I. I

: I
, !
I
,

1\, I

1 1 '

I
I 	 I

1 T- 1 1\ 	 I I

I ' 1
\

\ 	
I

These positions contain
an ideographic literal.

How to Specify Continuation of Ideographic Literals

When there is not room for an ideographic literal on one
line of a COBOL coding form, do all of the following to
indicate that the literal is continued:

• 	 Place a SI I control character in column 71 or column
72 of the continued line.

• 	 Place a - (hyphen) in column 7 (the continuation area)
of the next line.

• 	 Start the continuation line(s) with an apostrophe.

• 	 Continue the literal with a S I 0 control character and
the rest of the literal in Area B of the
continuation line(s).

The S /1 and S / 0 control characters that are used to
indicate continuation are not counted in the length of
the ideographic literal; the initial and final shift characters
are counted.

10-2

• •

L

The following are examples of continued ideographic

literals:

The SII control character is placed in
column 71 or column 72 to indicate

\ I
that the literal is continued on the

, I

next line. (Column 72 must be blank
'First Part of an

Second Part of an 	 if the SII con~ol charaher is placed
Ideograph'IC L't

Ideographic Literal 	 column 71.)
-	 ''co~n ~.

SEQUENCE COBOL STATEMENT "'glA IB / 	 ' "" :11 IDENTIFICATION
(PAGE) SERIAL

1 J 4 1 40"

o 1 I 	 I i'J. I '61'Y : :1
02 I ' I f1 lrllD LII T-5 PlICI I (30) VA I- UE IS I l'i I < ~

-.l
1

03 -j
,

I ~ . , I I I I

04 I I , I , , I I

05 I I I I I, 'I I I I
06 i I !

I
I , 	 , Io 7 I I 'I I j

I 0 8! I , OVE 'I~ , I ~I

I 0 9, [;, 'i~

I, "

TO ID~ LIT -14.
I

I

I
1

! 1 0 I f\ I

, 1 : I
I I i 	 II 1 1 j I l 	 1\' !

Continuation of First Part of an

the literal starts Ideographic Literal I
in Area B.

A h yphen indicates
Second Part of anthat this is a
Ideographic Literal continuation line.

Testing for Ideographic Support 	 The following values are returned in the attribute record
for a display station:

To test whether ideographic support is available to your
program. you can reference the ATTRIBUTE-DATA Byte 9 Display type
mnemonic-name with an ACCEPT statement. A A Alphanumeric or Kat:akana
description of the ATTRIBUTE-DATA mnemonic-name Ideographic
and an example of using the ACCEPT statement are in
Chapter 7 under SPECIAL-NAMES Paragraph. Byte 10 Keyboard type

A 	 Alphanumeric or Katakana
Ideographic

Byte 11 	 Sign-on mode
A Alphanumeric or Katakana
I Ideographic

Bytes 12-16 	 Reserved

Ideographic Support 10-3

SUBROUTINES THAT HANDLE IDEOGRAPHIC
DATA

COBOL provides two subroutines to handle ideographic
data. These subroutines are necessary to move
ideographic data to a field of a different length and
insert or remove the 5/0 and 5/1 control characters.

System/34 requires that ideographic data be enclosed in
the 5/0 and 5/1 control characters. Because you might
need to send ideographic data to or receive ideographic
data from another system that does not require the 5/0
and 5/1 control characters, COBOL provides two
subroutines:

• 	 CBINST-This subroutine moves ideographic data and
inserts the 5/0 and 5/1 control characters.

• 	 CBREMV-This subroutine moves ideographic data
and removes the 5/0 and. 5/1 control characters.

Both subroutines have the same calling sequenca:

CALL {CBINsr\ USING data-name-1, data-name-2,
'CBREMV~
data-name-3, data-name-4, data-name-5

The data-names are elementary items with the following
definition:

data-name Definition Purpoee

data-name-1 PIC X() ••• Sending field
data-name-2 PIC X() •.• Receiving field
data-narne-3 PIC X(1) ..• Return code
data-name-4 PIC 999 USAGE Length of

IS COMP sending field
data-name-5 PIC 999 USAGE length of

IS COMP receiving field

The maximum length of the sending and receiving fields
is 256 bytes.

Move Ideogl'llphicD.ta .nd In..rt Control
Ch.I'IICte....cBINST

CBINST is a move and edit subroutine that moves the
contents of one field into another field. If the 5/0 and
5/1 control characters are not found in the first and last
positions of the field to be moved, CBINST inserts them
into the field when it is moved.

If you want the receiving field to contain all the data
that is in ~e sending field, you must specify a receiving
field length that is 2 positions longer than the length of
the sending field. The 2 extra positions are to hold the
5/0 and 5/1 control characters. If you specify a
receiving field that is longer than the sending field plus
2, the data is padded on the right when it is moved. If
the receiving field is specified either longer or shorter
than the sending field plus 2 positions, the 5/1 control
character is still placed in the correct position (the
rightmost position).

Subroutine CBINST produces return codes to indicate
the status of the move. The following lists these return
codes and their meanings:

Retum
Code Explanation

o Move executed; no errors.

Move executed; padding occurred to
the left of the 5/1 control character.

2 Move executed; data truncated to the
left of the 5/1 control character.

3 Move executed; 5/0 and 5/1 control
characters already present.

4 . Move not executed. Either odd field
length found, length of zero found,
length greater than 256, or invalid
character found in field length.

If more than one return code can be issued, only the
highest return code is returned.

10-4

http:Ideogl'llphicD.ta

Mow ldeogl'llphlc Data and Rernow Control
ChaI'llCten-CBREMV

CBREMV is a move and edit subroutine that moves the
contents of one field to another field. If the S/O and
S/I control characters are found as the first and last
characters in the field. CBREMV removes them.

If you want the receiving field to contain all the data
that was present in the sending field. you must specify
a receiving field length that is 2 positions less than the
length of the sending field. This allows 2 positions for
each ideographic charactar. while removing the S/O and
S/I control charactars (and the 2 positions they
occupied). If you specify a receiving field longer than
the sending field minus 2 positions. all the data from the
sending field is moved and the receiving field is padded
on the right with blanks. If the receiving field is shorter
than the sending field minus 2 positions. the data being
moved is truncated. on the right.

Subroutine CBREMV produces return codes to indicate
the status of the move. The following lists these return
codes and their meanings:

Return
Code Explanation

o Move executed; no errors.

Move executed; padding occurred.

2 Move executed; data truncated.

3 Move executed; S/O and S/I control
characters not found in sending field.

4 Move not executed. Either odd field
length found. length of zero found.
length greater than 256. or invalid
character found in field length.

If more than one return code can be issued, only the
highest return code is returned.

Ideographic Support 1~6

10-6

L

Appendix A. Compiler Messages

Compiler-generated messages indicate conditions
encountered during program compilation. The messages
describe an invalid use of COBOL syntax or a violation
of system requirements. Object-time messages and
displayed compiler messages appear in the Displayed
Message Guide-.

Error messages are listed here in order by message
number and are described using the following format:

Identifying Code 	 Message

CBL~17 C 	 NAME/name/BEGINS
OR ENDS WITH
HVPHEN--ACCEPTED

What the error is 	 Explanation: A COBOL
and what caused it 	 name may have embedded

hyphens, but must not
beg1n or end with a hyphen.

What the compiler Compiler Action: The
did as a result name and all references to

it are accepted.

What the Programmer Response:
programmer can Probable user error.
do to correct it Replace the name and all

references to the name
with a name that does not
begin or end with a hyphen.
(Phase: TEXT)

Two general types of messages are supplied with source
diagnostics produced at compile time.

1. 	 In the first type, an assumption is made and/or a
default is taken. By referencing the statement
number supplied with the message, the
programmer can read the explanation in this
appendix, and the meaning of the message as it
applies to the condition should be clear.

2. 	 In the second type, no assumptions are made
and/or no defaults are taken. Additional text
describing the condition is given at the time the
message is produced on the printer.

Variable content of diagnostic messages is always
included within a pair of slash symbols (/ ... I).

The compiler always attempts to provide full diagnostics
of all source text in the program, even when errors have
been discovered. If the compiler cannot continue on a
given statement because no logic exists to place the
relT)ai""der of the statement in proper context, the
message states that the compiler cannot continue and
that it will ignore the rest of the statement. If this
occurs, the programmer should examine the entire
-statement.

DIAGNOSTIC LEVELS

System/34 COBOL provides the following three levels
of diagnostics:

Code Meaning

W Warning. A possible error was detected in
the source program. Examine the
statement to ensure that no coding
mistake was made.

C Conditional. An error was detected, and
the compiler is taking a recovery that may
(conditionally) yield the correct code
desired by the programmer.

E Error. A serious error was made.
Execution of the program should not be
attempted.

Note: Wand C messages are suppressed when the
PROCESS statement FLAGE option is used (see
PROCESS Statement in Chapter 9).

Compiler Messages A-1

L

CBL-0002 C 	 INVALID CHARACTER IN
COLUMN 7--ASSUMED BLANK

Explanation: A line may contain only D, asterisk,
slash, hyphen, or blank in column 7. One of the
lines in this statement contains an invalid character
in column 7.

Compi/er Action: The line IS processed as if column 7
contained a blank.

Programmer Response: Probable user error. Place a
valid character in column 7 before recompiling.
(Phase: COPY, TEXT)

CBL-0003 C 	CONTINUATION LINE INVALID
AT THIS POINT--COLUMN 7
ASSUMED BLANK

Explanation: A continuation line (hyphen in column 7)
must be immediately preceded by a normal line
(blank in column 7) or by another continuation line.

Compiler Action: The line is processed as if column 7
contained a blank.

Programmer Response: Probable user error. Either
place statements in proper sequence, include any
omitted statements, or remove any interspersed
comment lines before recompiling. (Phase: COPY,
TEXT)

CBL-0004 W CONTINUATION LINE
BLANK--LlNE IGNORED

Explanation: A continuation line (hyphen in column 7)
contains no source code in columns 8 through 72.

Compi/er Action: The continuation line is ignored.

Programmer Response: Probable user error. Either
continue preceding line on continuation line,
remove continuation line, or replace the hyphen in
column 7 with a blank. (Phase: COPY, TEXT)

CBL-0005 C 	FIRST CHARACTER ON
CONTINUATION LINE IN AREA
A--LlNE ACCEPTED

Explanation: Any sentence or entry that requires more
than one line must be continued by starting the
subsequent line(s) in Area B.

Compiler Action: The continuation line is processed
as if it started in Area B.

Programmer Response: Probable user error. Begin
the continuation line(s) in Area B. (Phase: COPY,
TEXT)

CBL-0006 C 	FIRST CHARACTER ON
CONTINUATION LINE NOT
QUOTE(S) - - LITERAL
TERMINATED

Explanation: An apostrophe placed anywhere in Area
B must precede the continuation of a literal. An
apostrophe must be represented by the character
("), if the QUOTE option was specified, or by the
chara~ter(') if the APOST option was specified. If
no option was specified, the character n is
required.

Compiler Action: The literal is terminated at the end
of the line in which it appears. The continuation
line is processed as if it contained a blank in
column 7.

Programmer Response: Probable user error. Ensure
that an apostrophe precedes continuation of literal
in Area B before recompiling. (Phase: COpy,
TEXT)

CBL-0007 C 	NO CONTINUATION OF
NONNUMERIC
LlTERAL--LlTERAL
TERMI'NATED

Explanation: When a nonnumeric is continued from
one lineto another, a hyphen must be placed in
column 7 of the continuation line.

Compiler Action: The literal is terminated at the end
of the line in which it appears.

Programmer Response: Probable user error. End the
literal on the previous line with an apostrophe, or
continue the literal by placing a hyphen in column
7 of the continuation line (and an apostrophe
before the continuation of the literal in Area B.)
(Phase: COPY, TEXT)

CBL-0008 E 	SIZE OF NONNUMERIC
LITERAL EXCEEDS
120--LlTERAl TRUNCATED

Explanation: A nonnumeric literal must be composed
of from 1 to 120 EBCDIC characters (excluding the
quotation mark) enclosed in apostrophes.

Compiler Action: The nonnumeric literal is truncated
to 120 characters.

Programmer Response: Probable user error. Ensure
that the nonnumeric literal contains no more than
120 characters before recompiling. (Phase: COpy,
TEXn

A-2

CBl-0009 C 	EMPTY NONNUMERIC
LlTERAL--ONE BLANK
ASSUMED

Explanation: At least one character, blank or
nonblank, must appear between the opening
apostrophe and the closing apostrophe of a literal.
A literal cannot be specified by apostrophes in
consecutive columns.

Compiler Action: Th~ literal is assumed to contain one
blank.

Programmer Response: Probable user error. Specify
contents of nonnumeric literal before recompiling.
(Phase: TEXT)

CBl-0010 C 	INVALID ITEM IN AREA
A--ACCEPTED AS IF IN AREA B

Explanation: Area A is reserved for the beginning of
division headers, section-names,
paragraph-names, the FD, and level numbers.

Compiler Action: The item is assumed to begin in
Area B.

Programmer Response: Probable user error. Either
begin indicated item in Area B, correct item if it
was intended to be a valid Area B item, or place
the item in the correct division. (Phase: COpy,
TEXT)

CBl-0011 E 	 INVALID NUMERIC
LlTERAL/insert/--IGNORED

Explanation: The given item is not a valid numeric
titeral although it .contains numeric characters.

Compiler Action: The indicated item is discarded.

Programmer Response: Probable user error. Ensure
that the indicated item is a valid word, literal, or
other language element. If it was intended to be a
literal, check for a misplaced or invalid sign, a
misplaced decimal point. or an invalid
decimal-point character. (The period is valid
unless DECIMAL POINT IS COMMA was
specified, in which case the comma is valid.)
(Phase: TEXT)

CBl-0012 E 	COpy INVALID WITHIN A
COPY--IGNORED

Explanation: A COPY statement may not appear
within source text that is itself being included in a
COpy statement.

Compiler Action: The nested COPY clause is ignored.

Programmer Response: Probable user error. Correct
the library member before recompiling. (Phase:
COpy)

CBl-0013 W 'nnnnn' SEQUENCE ERROR{S)
IN PROGRAM

Explanation: The numbers in the source statement
sequence fields (columns 1 through 6) must be in
ascending sequence (except for a blank field and
for statements included via the COPY statement).
The number of occurrences of nonascending
sequence is included in the diagnostic.

Compiler Action: Each statement out of sequence is
indicated by an S on the source listing. Otherwise,
all compiler processing is the same.

Programmer Response: Probable user error.
Rearrange the source programs so that the
statements are in sequence. If they are in proper
sequence, renumber the source statements in the
sequence number field (columns 1 through 6).
(Phase: COpy)

Compiler Messages A-3

CBL-0014 E 	 INVALID CURRENCY SIGN
LlTERAL--IGNORED

Explanation: The currency sign literal may be any
EBCDIC character except the following:

* 	 Multiplication sign
+ 	 Plus sign

Minus sign or hypen
Equal sign

/ 	 Slash ·or division sign
Period
Semicolon
Left parenthesis
Right parenthesis
Comma

• or " Apostrophe or quotation mark
Space Space or blank
Numeric 0-9
Alphabetic A, B, C, D, L, P, R, S, V,X, Z

Compiler Action: The character is not used by the
compiler in scanning PICTURE clauses. The
default character $ is used instead.

Programmer Response: Probable user error.
Substitute a valid character in the CURRENCY
clause before recompiling. (Phase: TEXT, DTA2)

CBL-0015 E 	 INVALID PROGRAM-NAME IN
CALL STATEMENT --IGNORED

Explanation: The program-name nonnumeric literal in
a CALL statement must conform to the rules for
forming a procedure-name.

Compiler Action: The literal is discarded.

Programmer Response: Probable user error. Correct
the nonnumeric literal before recompiling. (Phase:
TEXT)

CBL-0016 W INVALID IDEOGRAPHIC
LITERAL DETECTED,
NONNUMERIC LITERAL
ASSUMED

Explanation: A literal was found that began with an
apostrophe followed immediately by the S/O
control character, but:

An odd number of 1-byte characters were
found between the S/O and the terminating
S / I control characters.

• 	 The terminating S / I control character was not
immediately followed by an apostrophe.

• 	 The ideographic literal spans multiple source
lines and does not follow the rules for
continuation of ideographic literals.

Compiler Action: The literal is processed as if it were
a nonnumeric literal.

Programmer Response: Probable user error. Correct
the literal so that it conforms to the rules for an
ideographic literal. (Phase: TEXT)

CBL-0017 C 	NAME/name/BEGINS OR
ENDS WITH
HYPHEN--ACCEPTED

Explanation: A COBOL name may have embedded
hyphens. but it must not begin or end with a
hyphen.

Compiler Action: The name and all references to it
are accepted.

Programmer Response: Probable user error. Replace
the name and all references to the name with a
name that does not begin or end with a hyphen.
(Phase: TEXT)

A-4

CBL-001S C 	 /Iiteral/CHARACTER MAY NOT
PRECEDE /Iiteral/
CHARACTER--ACCEPTED

Explanation: In COBOL, certain characters may not
precede other characters; for example, a plus sign
may not precede an alphabetic character.

Compiler Action: If either of the characters is a space,
the compiler assumes the space to be omitted. If
neither is a spal.~, the compiler attempts to
construct a valid item or items. If no other
diagnostics are listed for the statement, the
recovery was probably successful.

Note: Th., following are possible characters and their
me<lning:

Period
Left parenthesis
Right parenthesis
Comma or semicolon

* Multiplication (*) or
exponentiation (**) characters

/ Slash (division sign)
+ Plus sign

Minus sign or hyphen
=/GREATER/ Equal sign, greater than, or
LESS THAN less than
Space(s) Spaces or blanks
, or " Apostrophe or quotation mark
Numeric 0,1,2, ... 99
Alphabetic A. B, C, ... Z, or a character

not in the COBOL character s

Programmer Response: Probable user error. Correct
the order of the indicated characters before
recompiling. (Phase: TEXT)

CBL-0019 C 	 /insert/IS INVALID GROUP OF
CHARACTERS--IGNORED

Explanation: The indicated continuous string of
characters does not conform to the rules for
forming a COBOL language element.

Compiler Action: The indicated character string is not
processed by the compiler.

Programmer Response: Probable user error. Correct
the character string so it is a valid COBOL item
before recompiling. (Phase: TEXT)

CBL-0020 E 	 /name or item/EXCEEDS 30
CHARACTERS--TRUNCATED

Explanation: A character string that represents a
PICTURE or a name must not be longer than 30
characters.

Compiler Action: The character string is processed as
though it contained only its first 30 characters.

Programmer Response: Probable user error. If the
item is a PICTURE, use the repetition factor (nnn)
to reduce the length of the character string. If the
item is a name, shorten it and all references to it
to a unique name of 30 or fewer characters.
(Phase: TEXT)

CBL-0021 E 	COpy STATEMENT NOT
TERMINATED WITH PERIOD
AND SPACE--COPY IGNORED

Explanation: A COpy statement must be terminated
by a period.

Compiler Action: The COpy statement is ignored.

Programmer Response: Probable user error. Enter a
period and spaces at the end of the COpy
statement before recompiling. (Phase: COpy)

CBL-0023 E 	LIBRARY MEMBER NOT
FOUND--COPY IGNORED

Explanation: The first eight characters of the
library-name in a COpy statement (after automatic
compiler conversion, when necessary) must
correspond to an'entry in the user's source library.

Compiler Action: The COpy statement is ignored.

Programmer Response: Probable user error. Either
correct'misspelled library-name, ensure that
member is in the source library, insert a LIBRARY
option if the source library is not in the same
libtary as the COBOL compiler, or use the IN/OF
library-name option of the COpy statement.
(Phase: COPY)

Compiler Messages A-5

CBl-0024 E 	 INVALID LIBRARY-NAME
FORMAT--COPY IGNORED

Explanation: The library-name in a COpy statement
must conform to the rules for forming a COBOL
procedure-name.

Compiler Action: The COpy statement is ignored.

Programmer Response: Probable user error. Correct
the spelling of the library-name before
recompiling. (Phase: COpy)

CBl-0025 W INVALID ELEMENT/element/

Explanation: In the PROCESS statement. a character
or set of characters is unexpected in relation to its
preceding items.

Compiler Action: If the element is the first or only
word of another option, the previous option is
discontinued and option processing begins with
the element. If the element does not start an
option, the element is discarded, and option
processing for the previous option continues.

Programmer Response: Probable user error. Correct
the syntax or spelling of the option before
recompiling. (Phase: COpy)

CBl-0026 W INVALID OPTION
AT/keyword/ --OPTIONS
TERMINATED

Explanation: In the PROCESS statement, a COBOL
keyword that is not an option has been
encountered, but an option was still being
processed when this occurred. This error occurs if
an incomplete option precedes a COBOL source
statement.

Compiler Action: The option that precedes the
indicated keyword is discontinued. All options that
are processing are also terminated. The compiler
begins its scan for normal COBOL source
statements with the indicated keyword.

Programmer Response: Probable user error. Correct
the option that immediately precedes the indicated
keyword before recompiling. (Phase: COpy)

CBl-0027 C 	 IDENTIFICATION DIVISION
MISSING

Explanation: The first COBOL source statement must
be IDENTIFICATION DIVISION.

Compiler Action: None.

Programmer Response: Probable user error. Insert
the Identification Division header before the
COBOL source statements (but after the PROCESS
statement, if any) Qr correct the spelling or location
of the word IDENTIFICATION. (Phase: TEXT)

CBl-0028 C PARAGRAPH OUT OF
,SEQUENCE--ACCEPTED

Explanation: Paragraphs in the Identification Division
must be in this order: PROGRAM ID, AUTHOR,
INSTALLATION, DATE-WRITTEN, SECURITY.

Compiler Action:' None.

Programmer Response: Probable user error. Place the
indicated paragraph in the proper sequence.
(Phase: TEXT)

CBl-0029 C 	DUPLICATE
ELEMENT--ACCEPTED

Explanation: A paragraph-name for the Identification
Division and the Identification Division header may
appear only once.

Compiler Action: The current item overrides the

previous one.

Programmer Response: Probable user error. Delete
the duplicate element. (Phase: TEXT)

CBl-0030 C 	 INVALID
ITEM/item/--RESTARTING AT
NEXT KEYWORD IN AREA A

Explanation: The listed item is unexpected in the
Identification Division.

Compiler Action: If the item is a keyword in Area A.
the scan resumes with the item; if not, the scan
resumes at the next keyword in Area A.

Programmer Response: Probable user error. Correct
the syntax of the paragraph or division header in
error, or move the indicated item to its proper
location in the source program. (Phase: TEXT)

A-6

L

CBl-0031 C PROGRAM-ID MISSING

Explanation: The PROGRAM-ID paragraph is required
within the Identification Division.

Compiler Action: The program is processed as though
the program-name CBLOBJ had been specified.

Programmer Response: Probable user error. Place a
PROGRAM-ID paragraph after the Identification
Division header. (Phase: TEXT)

CBl-0032 C 	PERIOD AND SPACE NOT
FOUND--ACCEPTED

Explanation: COBOL paragraph and division headers
of the Identification Division must end with a
lJeriod followed by at least one space.

Compiler Action: Processing continues as though a
period and space had been specified.

Programmer Response: Probable user error. Insert a
period and space after the header. (Phase: TEXT)

CBl-0033 C 	ELEMENT NOT IN AREA
A--ACCEPTED

Explanation: Division and paragraph headers of the
Identification Division must begin in Area A
(columns 1 through 7).

Compiler Action: The header is assumed to begin in
Area A.

Programmer Response: Probable user error. Ensure
that the header begins In Area A before
recompiling. (Phase: TEXT)

CBl-0034 C 	INVALID
PROGRAM-NAME--IGNORED

Explanation: The program-name must conform to the
rules for forming a procedure-name.

Compiler Action: The name is ignored, and processing
continues as though the program-name CBLOBJ
had been specified.

Programmer Response: Probable user error. Correct
the program-name before recompiling. (Phase:
TEXT)

CBl-0035 C 	PARAGRAPH NOT IN
I DENTI FICATION
DIVISION--ACCEPTED

Explanation: The Identification Division header must
precede all paragraphs for the Identification
Division.

Compiler Action: The paragraph is accepted as

though it were in the Identification Division.

Programmer Response: Probable user error. Place the
Identification Division header before all source
statements (and after the PROCESS statement, if
any). (Phase: TEXT)

CBl-0036 C 	INVALID IDENTIFICATION
DIVISION HEADER--ACCEPTED

Explanation: The word DIVISION is required after the
word IDENTIFICATION in Area A.

Compiler Action: The statement is accepted as

though it had been ooded correctly.

Programmer Response: Probable user error. Correct
the Identification Division header. (Phase: TEXT)

CBl-OI05 C 	MISSING PERIOD--ACCEPTED

Explanation: All sentences in a COBOL program must
be terminated with a period.

Compiler Action: The statement is accepted as if it
were terminated by a period.

Programmer Response: Probable user error. Supply
missing period .before recompiling. (Phase: DTA2,
DTA3)

CBl-OI07 E 	SELECT CLAUSE FOR FILE
INVALID OR MISSING--FILE
IGNORED

Explanation: Either no SELECT clause was specified
for the file or the SELECT clause had an invalid

system-name.

Compiler Action: The file is ignored.

Programmer Response: Probable user error. Correct
invalid SELECT clause before recompiling. (Phase:
DTA3)

Compiler Messages A-7

L

CBl-OI08 C 	BLOCK CONTAINS CLAUSE IS
ZERO--UNBLOCKED RECORDS
ASSUMED

Explanation: The computed size of the BLOCK

CONTAINS clause is zero.

Compiler Action: The records are assumed to be
unblocked.

Programmer Response: Probable user error. Correct
invalid BLOCK clause specification before
recompiling. (Phase: DTA3)

CBl-OI09 E 	 BUFFER SIZE EXCEEDED
DEVICE LIMIT --FILE IGNORED

Explanation: The largest record description for the file
is larger than the maximum buffer size allowed.

Compiler Action: The file is ignored.

Programmer Response: Correct invalid record
description before recompiling. (Phase: DTA2,
DTA3)

CBl-OIIO C 	MAXIMUM BLOCKSIZE
EXCEEDED--UNBLOCKED
ASSUMED

Explanation: A BLOCK CONTAINS clause has a block
size greater than 9999.

Compiler Action: The compiler assumes that records
are not blocked.

Programmer Response: Probable user error. Ensure
that the block size is 9999 or less before
recompiling. (Phase: DTA3)

CBl-OIII E 	 MAXIMUM RECORD SIZE
EXCEEDED--CLAUSE IGNORED

Explanation: The RECORD CONTAINS clause has a
record size greater than 4096.

Compiler Action: The RECORD CONTAINS clause is
ignored.

Programmer Response: Probable user error. Ensure
that the record size is 4096 or less before
recompiling. (Phase: DTA3)

CBl-OI12 C 	 INVALID ENVIRONMENT
DIVISION H,EADER--ACCEPTED

Explanation: The word DIVISION or a period and
space are missing from the Environment Division
header.

Compiler Action: The Environment Division header is
assumed to be correct.

Programmer Response: Probable user error. Correct
syntax of indicated statement before recompiling.
(Phase: DTA2)

CBl-OI13 E 	 ENVIRONMENT DIVISION IN
INVALID LOCATION

Explanation: The Environment Division must

immediately follow the Identification Division.

Compiler Action: Processing continues at the next
section or division. All statements up to the next
section or division are ignored; at that point,
processing continues.

Programmer Response: Probable user error. Supply
valid Environment Division header before
recompiling. (Phase: DTA2)

CBl-OI14 E 	 MORE THAN 25 FILES
SPECIFIED--IGNORED

Explanation: The maximum of 25 files was exceeded.

Compiler Action: The file is ignored.

Programmer Response: Probable user error. Reduce
the number of files in the program to 25 before
recompiling. (Phase: DTA2)

CBl-OIIS C 	ENVIRONMENT DIVISION
MISSING--ACCEPTED

Explanation: No Environment Division header was
found.

Compiler Action: The compiler assumes that there is
no Environment Division.

Programmer Response: Include Environment Division
header before recompiling. (Phase: DTA2, DTA3)

A-8

CBl-Oll7 E 	 /keyword/NOT IN
ENVIRONMENT DIVISION

Explanation: The indicated word does not appear in
the Environment Division.

Compiler Action: The statement is ignored, and the
compiler skips to the next section, paragraph, or
division.

Programmer Response: Probable user error. Ensure
that the indicatet' word is in the Environment
Division before recompiling. (Phase: DTA2)

CBl-OllS C 	 /keyword/PARAGRAPH OR
SECTION IN INVALID
LOCATION--ACCEPTED

Explanation: Paragraph-name or section header is not
in proper sequence or is duplicated in the
Environment Division.

Compiler Action: The paragraph-name or section
header is accepted.

Programmer Response: Probable user error. Ensure
that all paragraph-names and section headers are
in proper sequence before recompiling. (Phase:
DTA2)

CBl-Ol19 C 	INVALID CONFIGURATION
SECTION HEADER--ACCEPTED

Explanation: The word SECTION or a period and
space are missing from the Configuration Section.

Compiler Action: The Configuration Section header is
accepted as if it were correct.

Programmer Response: Probable user error. Correct
section header before recompiling. (Phase: DTA2)

CBl-0120 E 	/name or keyword/NOT IN
CONFIGURATION SECTION

Explanation: The indicated name or keyword is not
within the Configuration Section.

Compiler Action: The statement is ignored, and the
compiler skips to the next paragraph section or
division.

Programmer Response: Probable user error. Ensure
that the indicated item is in the Configuration
Section before recompiling. (Phase: DTA2)

CBl-012l W INVALID OBJECT-COMPUTER
OR SOURCE-COMPUTER
NAME--IGNORED

Explanation: The name following
SOURCE-COMPUTER or OBJECT -COMPUTER is
not IBM-S34.

Compiler Action: The paragraph is treated as

comments.

Programmer Response: Probable user error. Supply
valid name before recompiling. (Phase: DTA2)

CBl-0122 C 	INVALID OBJECT-COMPUTER
MEMORY SIZE
CLAUSE--IGNORED

Explanation: The OBJECT-COMPUTER MEMORY
SIZE clause is not an integer from 1 through
65536.

Compiler Action: The MEMORY SIZE clause is
ignored (the size of the current compiler region is
assumed).

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
DTA2)

CBl-0123 E 	 INVALID FUNCTION-NAME IN
SPECIAL-NAMES
PARAGRAPH --IGNORED

Explanation: The function-name is not one of the
following: CONSOLE, REQUESTOR, CQ1, CSP,
UPSI-O, UPSI-1, UPSI-2, UPSI-3, UPSI-4,
UPSI-5, UPSI-6, UPSI-7; or the specified clause
was not a CURRENCY SIGN, DECIMAL-POINT, or
an alphabetic-name clause.

Compiler Action: The name is ignored and the

compiler skips to the next function-name or

clause, if any.

Programmer Response: Probable user error. Correct
the function-name or clause before recompiling.
(Phase: DTA2)

Compiler Messages A-9

CBL-0124 W INVALID SYNTAX IN
SPECIAL-NAMES

Explanation: The word IS is missing from the ON or
OFF STATUS clause in a SPECIAL-NAMES
statement for a switch.

Compiler Action: The statement is ignored; the
compiler scans for the next function-name in the
SPECIAL-NAMES paragraph.

Programmer Response: Probable user error. Correct
the invalid clause before recompiling. (Phase:
DTA2)

CBL-0125 E 	 INVALID MNEMONIC-NAME
OR CONDITION-NAME IN
SPECIAL-NAMES

Explanation: The mnemonic-name or condition-name
in a SPECIAL-NAMES statement is not a valid
data-name.

Compiler Action: The statement is ignored. The
compiler scans for the next function-name in the
SPECIAL-NAMES paragraph.

Programmer Response: Probable user error. Correct
the clause before recompiling. (Phase: DTA2)

CBL-0126 C 	 INVALID SYNTAX IN
CURRENCY SIGN
CLAUSE--ACCEPTED

Explanation: The word IS has been omitted from or is
misplaced in the CURRENCY SIGN clause.

Compiler Action: The clause is assumed to be correct.

Programmer Response: Probable user error. Correct
the syntax of the CURRENCY SIGN clause before
recompiling. (Phase: DTA2)

CBL-0127 C 	DUPLICATE CLAUSE FOUND IN
SPECIAL-NAMES--FIRST ONE
ACCEPTED

Explanation: A duplicate clause is detected in the
SPECIAL-NAMES statement. The first clause is
used.

Compi/er Action: The duplicate clause is ignored.

Programmer Response: Probable user error. Correct
the syntax before recompiling. (Phase: DTA2)

CBL-0128 C 	 INVALID DECIMAL-POINT IS
COMMA CLAUSE--ACCEPTED

Explanation: Either the word IS or the word COMMA
is missing from or misplaced in the
DECIMAL-POINT IS COMMA clause.

Compi/er Action: DECIMAL-POINT IS COMMA is
assumed.

Programmer Response: Probable user error. Correct
the syntax of the DECIMAL-POINT IS COMMA
clause before recompiling. (Phase: DTA2)

CBL-0129 C 	 INVALID INPUT-OUTPUT
SECTION HEADER--ACCEPTED

Explanation: Either SECTION or period and space are
missing from the Input-Output Section header.

Compi/er Action: The header is assumed to be

correct.

Programmer Response: Probable user error. Correct
the invalid statement before recompiling. (Phase:
DTA2)

CBL-0130 E 	 /name or keyword/NOT IN
INPUT -OUTPUT
SECTION--IGNORED

Explanation: Either the 1-0 CONTROL paragraph or
the FILE-CONTROL paragraph is not in the
Input-Output Section.

Compi/er Action: The paragraph is ignored. The
compiler skips to the next section, paragraph, or
division.

Programmer Response: Probable user error. Ensure
that the paragraph is in the Input-Output Section
before recompiling. (Phase: DTA2)

CBL-0131 C 	 INVALID ITEM/name or
keyword/IN FILE-CONTROL
PARAGRAPH--ITEM IGNORED

Explanation: The indicated name or keyword is invalid
as used in the FILE-CONTROL paragraph.

Compi/er Action: The indicated item is ignored.

Programmer Response: Probable user error. Correct
indicated item before recompiling. (Phase: DTA2)

A-10

CBL-OI32 C 	INVALID ITEM/name or
keyword/IN SELECT
CLAUSE--ITEM IGNORED

Explanation: The indicated name or keyword is invalid
as used in the SELECT clause.

Compiler Action: The indicated item is ignored.

Programmer Response: Probable user error. Correct
the invalid name or keyword before recompiling.
(Phase: DTA2)

CBL-OI33 E 	 INVALID FILE-NAME IN
SELECT CLAUSE--CLAUSE
IGNORED

Explanation: The word SELECT was not followed by
a valid file-name. (A name is not a valid file-name
if it is a reserved word, a duplicate of a
data-name, or is not uniquely defined in a valid FD
or SD.)

Compiler Action: The SELECT clause is ignored.

Programmer Response: Probable user error. Correct
invalid file-name before recompiling. (Phase:
DTA2)

CBL-OI34 E 	 IN.VALID SYSTEM-NAME IN
ASSIGN CLAUSE--FILE
IGNORED

Explanation: The format or combinations for

system-name are incorrect.

Compiler Action: The file is ignored.

Programmer Response: Probable user error. Correct
the system-name specification before recompiling.
(Phase: DTA2)

CBL-OI3S E 	MORE THAN ONE
TRANSACTION FILE IN
PROGRAM--FILE IGNORED

Explanation: A SELECT clause has already been
processed for a TRANSACTION file. There may
be only one TRANSACTION file in a program.

Compiler Action: The file is ignored.

Programmer Response: Probable use error. Delete
this file from the program. (Phase: DTA2)

CBL-OI36 E 	 INVALID DATA ITEM IN
CONTROL-AREA--CLAUSE
IGNORED

Explanation: The data-name in the CONTROL-AREA
clause was omitted or was invalid for one of the
following reasons:

• 	 The data-name was not unique.

• 	 The data- name was less than 12 characters
long.

• 	 The data-name was not an alphanumeric item.

• 	 The data-name was not in the
Working-Storage or Linkage Section.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid data-name before recompiling. (Phase:
DTA2)

CBL-OI37 C 	INVALID ACCESS
CLAUSE- -SEQUENTIAL
ASSUMED

Explanation: The word DYNAMIC, RANDOM, or
SEQUENTIAL is missing from the ACCESS MODE
clause.

Compiler Action: ACCESS IS SEQUENTIAL is

assumed.

Programmer Response: Probable user error. Specify
access mode before recompiling. (Phase: DTA2)

CBL-OI3S E 	 INVALID ORGANIZATION
CLAUSE- -SEQUENTIAL
ASSUMED

Explanation: The word RELATIVE, SEQUENTIAL,
INDEXED, or TRANSACTION is missing from or is
misplaced in the ORGANIZATION clause.

Compiler Action: The compiler assumes
ORGANIZATION IS SEQUENTIAL for any further
processing of the affected file.

Programmer Response: Probable user error. Correct
the syntax of the ORGANIZATION clause before
recompiling. (Phase: DTA2)

Compiler Messages A-ll

CBL-0139 E 	 INVALID DATA-NAME IN KEY
CLAUSE--CLAUSE IGNORED

Explanation: The error was caused by one of the
following: the data-name of the key is missing;
the RELATIVE KEY data-name was not in
Working-Storage, or is not a numeric DISPLAY or
COMPUTATIONAL(COMP) data item; the RECORD
KEY is not from 1 to 29 bytes long, or is an edited
field; or the RECORD KEY is not within the record
area of the file to which it belongs.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
DTA2)

CBL-0140 C 	 INVALID RESERVE
CLAUSE--ONE AREA
ASSUMED

Explanation: An invalid value of zero or a non-integer
was specified in the RESERVE clause.

Compiler Action: RESERVE 1 AREA is assumed.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA2)

CBL-0141 E 	 /name or keyword/CLAUSE
DUPLICATED IN SELECT
CLAUSE--FIRST ONE
ACCEPTED

Explanation: The indicated name or keyword has
been duplicated in another SELECT clause.

Compiler Action: The first occurrence is accepted,
and all duplications are ignored.

Programmer Response: Probable user error. Delete
the duplicated name or keyword before
recompiling. (Phase: DTA2)

CBL-0142 E 	 INVALID NUMBER OF
FORMATS IN TRANSACTION
FILE ASSIGN--32 ASSUMED

Explanation: The number of formats in the
TRANSACTION file system-name must not be
greater than 32.

Compiler Action: The compiler assumes 32 formats
for any further processing of the affected file.

Programmer Respone: Probable user error. Correct
the invalid system-name before recompiling.
(Phase: DTA2)

CBL-0143 E 	 NO RELATIVE KEY FOR
RANDOM FILE--FILE
PROCESSED WITHOUT KEY

Explanation: The RELATIVE KEY clause must be
specified for random access direct disk files.

Compiler Action: Results at execution time are

unpredictable.

Programmer Response: Probable user error. Specify
RELATIVE KEY before recompiling. (Phase: DTA2)

CBL-0144 E 	 INVALID KEY TYPE FOR
ACCESS METHOD--KEY
IGNORED

Explanation: A RELATIVE or RECORD KEY has been
specified for the wrong disk file organization or for
a nondisk file.

Compiler Action: The KEY clause is ignored.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA2)

CBL-014S E 	 NO ASSIGN CLAUSE IN
FILE-CONTROL ENTRY--FILE
IGNORED

Explanation: All files used in a program (named in a
SELECT clause) must be assigned to an external
medium by using the ASSIGN clause.

Compiler Action: The file is ignored.

Programmer Response: Probable user error. Supply
ASSIGN clause before recompiling. (Phase: DTA2)

CBL-0146 E 	 INVALID ORGANIZATION FOR
TRANSACTION
PROCESSING--TRANSACTION
ASSUMED

Explanation: The organization clause is missing or
specified RELATIVE, SEQUENTIAL, OR INDEXED,
but the implementor-name is that of a
TRANSACTION file.

Compiler Action: The compiler assumes
ORGANIZATION IS TRANSACTION for any further
processing of the affected file.

Programmer Response: Probable user error. Correct
the invalid ORGANIZATION clause before
recompiling. (Phase: DTA2)

A-12

CBL-0147 C 	 /element/INVALID IN
I-O-CONTROL
PARAGRAPH--IGNORED

Explanation: The indicated element may not appear in
the I-O-CONTROL paragraph.

Compiler Action: The invalid item is ignored.

Programmer Response: Probable user error. Correct
invalid item before recompiling. (Phase: DTA2)

CBL-0148 C 	NUMBER OF SAME AREA
CLAUSES EXCEEDS
15--CLAUSE IGNORED

Explanation: No more than 15 SAME AREA clauses
or 15 SAME SORT/SORT-MERGE AREA clauses
may appear in a program.

Compiler Action: The first 15 SAM E AREA clauses or
15 SAME SORT/SORT-MERGE AREA clauses are
recognized; any more than 15 are ignored.

Programmer Response: Probable user error. Ensure
that no more than 15 SAME AREA clauses appear
before recompiling. (Phase: DTA2)

CBL-0149 C 	 INVALID FILE-NAME IN SAME
AREA CLAUSE--FILE-NAME
IGNORED

Explanation: An invalid file-name was found in the
SAME AREA clause.

Compiler Action: The file-name is ignored.

Programmer Response: Probable user error. Ensure
that file-name is valid in the SAME AREA clause.
(Phase: DTA2)

CBL-01S0 C 	FILE-NAME IN MULTIPLE
SAME AREA
CLAUSES--IGNORED

Explanation: Any file-name may appear in only one
SAME AREA clause.

Compiler Action: The duplicated entry is ignored.

Programmer Response: Probable user error. Ensure
that file-name appears in only one SAME AREA
clause before recompiling. (Phase: DTA2)

CBL-01Sl E 	 FILE-NAME IN MULTIPLE
RERUN CLAUSES--IGNORED

Explanation: A given file-name cannot be specified in
more than one RERUN clause.

Compiler Action: The first RERUN clause for the
indicated file-name is used.

Programmer Response: Probable user error. Ensure
that a given file-name appears in only one RERUN
clause before recompiling. (Phase: DTA2)

CBL-01S2 E 	 INVALID FILE-NAME IN RERUN
CLAUSE--CLAUSE IGNORED

Explanation: The file-name was omitted or was

invalid in a RERUN clause.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
DTA2)

CBL-01S3 E 	 INVALID NUMBER OF
RECORDS IN RERUN
CLAUSE--CLAUSE IGNORED

Explanation: The number of records in the RERUN
clause must not exceed 32,767.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Ensure
that the number of records does not exceed
32,767 before recompiling. (Phase: DTA2)

CBL-01S4 E 	 INVALID SYSTEM-NAME IN
RERUN CLAUSE--CLAUSE
IGNORED

Explanation: The system-name is not
DISK-nnnnnnnn, where nnnnnnnn is an external
name composed of from 1 to 8 characters.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA2)

Compiler Messages A-13

CBl-OI55 C 	SYNTAX ERROR IN RERUN
CLAUSE--ACCEPTED

Explanation: One or more of the required keywords is
missing or misplaced.

Compiler Action: The clause is processed as if the
required keywords were present.

Programmer Response: Probable user error. Include
all required words in the RERUN clause before
recompiling. (Phase: DTA2)

CBl-OI56 E 	 INVALID RESERVE
CLAUSE--CLAUSE IGNORED

Explanation: The RESERVE clause is not valid in a

SELECT statement for a TRANSACTION file.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA2)

CBl-OI57 E 	 INVALID CONTROL-AREA
CLAUSE--CLAUSE IGNORED

Explanation: The CONTROL-AREA clause is not valid
in a SELECT statement for a disk or printer file.
(The CONTROL-AREA clause is valid only for a
TRANSACTION file.)

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA2)

CBl-OI58 C 	MORE THAN TWO RESERVE
AREAS SPECIFIED--TWO
ASSUMED

Explanation: More than two reserve areas were
specified.

Compiler Action: Two reserve areas are assumed.

Programmer Response: Probable user error. Correct
the syntax of the RESERVE clause before
recompiling. (Phase: DTA2)

CBl-OI59 E 	 INVALID OPTIONAL
CLAUSE--CLAUSEIGNORED

Explanation: The OPTIONAL clause is not valid in a

SELECT statement for a TRANSACTION file.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA2)

CBl-OI60 E 	 NO RECORD KEY SPECIFIED
FOR INDEXED FILE--FILE
PROCESSED WITHOUT KEY

Explanation: An indexed file must have a RECORD
KEY speCification.

Compiler Action: The results at execution time are
unpredictable.

Programmer Response: Probable user error. Specify
RECORD KEY before recompiling. (Phase: DTA2)

CBl-0161 W EMPTY PARAGRAPH IN
ENVIRONMENT DIVISION

Explanation: No statements have been found in a
paragraph of the Environment Division.

Compiler Action: The empty paragraph header is
ignored.

Programmer Response: Probable user error. Delete
the paragraph header before recompiling. (Phase:
DTA2)

CBl-0162 E 	 INVALID ACCESS MODE
CLAUSE--SEQUENTIAL
ASSUMED

Explanation: The ACCESS MODE clause specifies
DYNAMIC or RANDOM processing; both of these
modes are incompatible with TRANSACTION file
processing.

Compiler Action: The compiler assumes sequential.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA2)

CBL - 0163 C 	 INVALID LOCATION OF
RELATIVE KEY PHRASE-­
ACCEPTED

Explanation: The RELATIVE KEY IS phrase, when
used, should immediately follow the ACCESS MODE
IS clause.

Compiler Action: The RELATIVE KEY IS phrase is
processed as if it were part of the ACCESS MODE
clause.

Programmer Response: Probable user error. Ensure
that the RELATIVE KEY IS phrase is placed within
the ACCESS MODE IS clause before recompiling.
(Phase: DTA2)

A-14

CBL-OI64 E 	 INVALID FILE STATUS
CLAUSE--CLAUSE IGNORED

Explanation: The keyword STATUS is either missing
from the clause or is misplaced. The keyword FILE
has been found, but the keyword STATUS does
not follow it.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid clause before recompiling. (Phase:
DTA2)

CBL-0165 E 	 INVALID DATA ITEM IN FILE
STATUS--CLAUSE IGNORED

Explanation: The data-name in the FILE STATUS
clause was invalid, either because it was omitted
or because of one of the following:

• 	 The data-name was not unique.

• 	 The data-name was not two characters long.

• 	 The data-name was not an alphanumeric item.

• 	 The data-name was not in the Working-Storage
Section or Linkage Section.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid data-name before recompiling. (Phase:
DTA2)

CBL-0166 C 	 INVALID ELEMENT/name or
keyword/IN
STATEMENT-IGNORED

Explanation: An invalid element has been found in a
section header or paragraph in the Environment
Division.

Compiler Action: The remainder of the header is

ignored.

Programmer Response: Probable user error. Correct
indicated element before recompiling. (Phase:
DTA2, DTA3)

CBL- 0167 E 	 INVALID ALPHABET NAME IN
PROGRAM COLLATING
SEQUENCE CLAUSE--IGNORED

Explanation: The alphabet name in the PROGRAM
COLLATING SEQUENCE clause was invalid
because it was omitted or because it was not
unique.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid alphabet name before recompiling.
(Phase: DTA2)

CBL- 0168 C 	 DUPLICATE CLAUSE IN
OBJECT-COMPUTER
PARAGRAPH

Explanation: A duplicate MEMORY SIZE, PROGRAM
COLLATING SEQUENCE or SEGMENT LIMIT
clause was found in the indicated paragraph.

Compiler Action: The first occurrence is accepted,
and all duplications are ignored.

Programmer Response: Probable user error. Delete
the duplicated clause(s) before recompiling.
(Phase: DT A2)

CBL- 0169 C- SYNTAX ERROR IN
SEGMENT-LIMIT
CLAUSE-ACCEPTED

Explanation: The required keyword IS is either

missing or misplaced.

Compiler Action: The clause is processed as if the
required word were present.

Programmer Response: Probable user error. Include
the word IS in the SEGMENT -LIMIT clause before
recompiling. (Phase: DTA2)

CB~-0170 E 	 INVALID SEGMENT-LIMIT
CLAUSE--NONE ASSUMED

Explanation: The segment number specified on the
SEGMENT-LIMIT clause is either missing or
invalid. It is invalid if it is nonnumeric or not
between 01 and 49, inclusive.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid segment number before recompiling.
(Phase: DTA2)

Compiler Messages A-15

CBl- 0171 E 	 INVALID CLAUSE IN SO FILE
CONTROL ENTRY --CLAUSE
IGNORED

Explanation: The only clauses allowed in an SO entry
are the SELECT and ASSIGN clauses; any other
clauses are invalid.

Compiler Action The clause(s) is ignored.

Programmer Response: Probable user error. Remove
the invalid clause(s) before recompiling. (Phase:
DTA2)

CBl- 0172 E 	 INVALID CLAUSE ON SO FILE
DESCRIPTION--CLAUSE
IGNORED

Explanation: Only a RECORD CONTAINS or DATA
RECORDS clause is allowed to appear on an SO
file description.

Compiler Action The clause(s) is ignored.

Programmer Response: Probable user error. Remove
the invalid clause(s) before recompiling. (Phase:
DTA3)

CBl-0173 E 	 ALPHABET-NAME PREVIOUSLY
DEFINED--CLAUSE IGNORED

Explanation: The ALPHABET-NAME was used in a
previous ALPHABET-NAME clause.

Compiler Action: The clause is ignored and the
compiler skips to the next FUNCTION-NAME or
clause. if any.

Programmer Response: Probable user error. Correct
the ALPHABET-NAME before recompiling. (Phase:
DTA2)

CBl-0174 E 	 PROGRAM COLLATING
SEQUENCE NOT DEFINED

Explantion: The ALPHABET-NAME specified in the
PROGRAM COLLATING SEQUENCE clause was
not defined with an ALPHABET-NAME clause.

Compiler Action: The SPECIAL-NAMES paragraph is
accepted as is.

Programmer Response: Probable user error. Add the
required ALPHABET - NAME clause before
recompiling. (Phase: DTA2)

CBl-0175 E 	 CHARACTER PREVIOUSLY
USED IN THIS COLLATING
SEQU ENCE--CHARACTER
IGNORED

Explanation: The character value specified in the
literal has been used previously in the same
collating sequence.

Compiler Action: The value is ignored and the

compiler continues with the next value/field.

Programmer Response: Probable user error. Correct
the literal before recompiling. (Phase: DTA2)

CBl-0176 E 	 INVALID PHRASE IN
ALPHABET-NAME
CLAUSE--PHRASE IGNORED

Explanation: The ALPHABET-NAME clause contains a
phrase other than: STANDARD-1. NATIVE. or the
literal phrase.

Compiler Action: The phrase is ignored and the
compiler skips to the next FUNCTION-NAME or
clause. if any.

Programmer Response: Probable user error. Correct
the ALPHAB ET- NAME clause before recompiling.
(Phrase: DTA2).

CBl- 0177 E 	 INVALID LITERAL IN
ALPHABET-NAME
CLAUSE--LlTERAL IGNORED

Explanation: The field is one of the following:

• A numeric literal not in the range 1 through
256.

• 	 A non-numeric literal of more than 1 character
after the THROUGH or ALSO phrase.

Compiler Action: The field is ignored and the compiler
skips to the next field.

Programmer Response: Probable user error. Correct
the literal phrase before recompiling. (Phrase:
DTA2)

A-16

CBl-0178 C 	REQUIRED
SOURCE-COMPUTER KEY
WORD NOT FOUND

Explanation: The compiler expects to find the
required SOURCE-COMPUTER paragraph in the
ENVIRONMENT DIVISION. This paragraph was
either not specified correctly or was misplaced.

Compiler Action: The compiler assumes that
SOURCE-COMPUTER. IBM-S34. was specified.

Programmer Response: Probable user error. Specify
the SOURCE-COMPUTER paragraph correctly
before recompiling. (Phase: DTA2)

CBl-0179 C 	REQUIRED
OBJECT-COMPUTER KEY
WORD NOT FOUND

Explanation: The compiler expects to find the
required OBJECT -COMPUTER paragraph in the
ENVIRONMENT DIVISION. This paragraph was
either not specified correctly or was misplaced.

Compiler Action: The compiler assumes that
OBJECT-COMPUTER. IBM-S34. was specified.

Programmer Response: Probable user error. Specify
the OBJECT -COMPUTER paragraph correctly
before recompiling. (Phase: DTA2)

CBl-0180 E 	RELATIVE KEY DATA ITEM
LENGTH GREATER THAN 7--7
ASSUMED

Explanation: System/34 data management does not
allow a relative (direct) file to have a key length
greater than 7 bytes.

Compiler Action: The compiler assumes that the
length of the RELATIVE KEY data item is 7 bytes.

Programmer Response: Probable user error. Ensure
that the length of the RELATIVE KEY data item is
7 or less. (Phase: DTA2)

CBl-0186 E 	 INVALID ACCESS MODE FOR
PRINTER OR SEQUENTIAL
DISK FILE--SEQUENTIAL
ASSUMED

Explanation: The ACCESS clause fora printer or a
sequential disk file was other than SEQUENTIAL.

Compiler Action: The ACCESS clause is ignored and
SEQUENTIAL is assumed.

Programmer Response: Probable user error. Correct
the ACCESS clause before recompiling. (Phase:
DTA2)

CBl-0189 C 	SYNTAX ERROR IN APPLY
CLAUSE--ACCEPTED

Explanation: The required keyword, CORE-INDEX, is
either missing or misplaced.

Compiler Action: The clause is processed as if the
required word were present.

Programmer Response: Probable user error. Include
CORE-INDEX in the APPLY clause before
recompiling. (Phase: DTA2)

CBl-0190 E 	 INVALID FILE-NAME IN APPLY
CORE-INDEX CLAUSE--FILE­
NAME IGNORED

Explanation: Either no file-name was found or the file
was not an indexed file.

Compiler Action: The invalid file-name is ignored, and
any valid file-names are accepted.

Programmer Response: Probable user error. Provide a
valid file-name before recompiling. (Phase: DTA2)

CBl-0191 E 	 INVALID DATA-NAME IN
APPLY CORE-INDEX
CLAUSE--CLAUSE IGNORED

Explanation: The data-name in the APPLY
CORE-INDEX clause was invalid, either because it
was omitted or because of one of the following:

• 	 It was not in the Working-Storage Section.

• 	 It was an alphanumeric edited item.

• 	 It was less than 3 or greater than 9999 bytes in
length.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid data-name before recompiling. (Phase:
DTA2)

CBl-0192 C 	MORE THAN ONE CORE-INDEX
FOR FILE--FIRST ONE
ACCEPTED

Explanation: Only one APPLY CORE-INDEX clause is
allowed per file.

Compiler Action: The first APPLY CORE-INDEX

clause for the file is used.

Programmer Response: Probable user error. Ensure
that only one APPLY CORE-INDEX clause is
specified for the file before recompiling. (Phase:
DTA2)

Compiler Messages 	 A-17

L

CBL-0200 E 	 INVALID LOCATION OF FILE
SECTION

Explanation: The File Section must begin on the line
following the Data Division header.

Compiler Action: The File Section header is ignored,
and the compiler skips to the next section header,
FD, or data item.

Programmer Response: Probable user error. Ensure
that the File Section begins on the line following
the Data Division header before recompiling.
(Phase: DTA1)

CBL-0201 E 	 FD OR SD NOT IN FILE
SECTION

Explanation: The File Section header must precede all
file-control entries (FD, SO).

Compiler Action: The FD / SO is ignored, and the
compiler skips to the next section header, FD, SO,
or data item.

Programmer Response: Probable user error. Ensure
that FD/SD is located in the File Section before
recompiling. (Phase: DTA1)

CBL-0202 E 	 INVALID FILE-NAME
FOLLOWING FD OR SD--FILE
IGNORED

Explanation: Each file description entry must consist
of a level indicator FD or SO, followed by 1:1 unique
file-name and a series of independent clauses.

Compiler Action: The file description is ignored.

Programmer Response: Probable user error. Ensure
that the level indicators are followed by a valid
file-name before recompiling. (Phase: DTA1)

CBL-0203 E 	 INVALID OR MISSING NAME
AFTER LEVEL NUMBER

Explanation: A data-name or the word FILLER must
be the first word following the level number in
each data description entry.

Compiler Action: The level item is ignored.

Programmer Response: Probable user error. Ensure
that a data-name or the word FILLER is the first
word following the level number before
recompiling. (Phase: DTA1)

CBL-0204 E 	 INVALID OCCURS
CLAUSE--CLAUSE IGNORED

Explanation: The literals in the OCCURS clause are
missing or do not have a value of from 1 to
32,768, the second literal is not greater than the
first, the DEPENDING ON clause is not followed
by a date-name, or one of the required keywords
is missing.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the literal(s) before recompiling. (Phase: DTA1)

CBL-0205 E 	 INVALID REDEFINES
CLAUSE--CLAUSEIGNORED

Explanation: No data-name was found, the clause
was preceded by another clause, or the redefining
item describes a variable length table.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid clause before recompiling. (Phase: DTA1)

CBL-0206 E 	 INVALID PICTURE
CLAUSE--CLAUSE IGNORED

Explanation: The PICTURE literal is invalid.

Compiler Action: The data item is ignored.

Programmer Response: Probable user error. Correct
invalid clause before recompiling. (Phase: DTA1)

CBL-0207 E 	 INVALID LITERAL IN VALUE
CLAUSE--CLAUSE IGNORED

Explanation: The error was caused by one of the
following: a numeric literal was specified for a
nonnumeric data item; the number of significant
digits in the numeric literal exceeds the number of
significant digits in the data item; the value is not
within an allowable range for this data item; or an
invalid literal or no literal followed the ALL literal
option.

Compiler Action: The VALUE clause is ignored.

Programmer Response: Probable user error. Correct
invalid literal before recompiling. (Phase: DTA1,
OUT)

A-18

CBL- 0208 E 	 INVALID LEVEL NUMBER--ITEM
IGNORED

Explanation: Either the level number is not 01 through
47, 66, 17, or 88 or the level number of a group
item is invalid.

Compiler Action: The data item is ignored.

Programmer Response: Probable user error. Supply
correct level number before recompiling. (Phase:
DTA1)

CBL-0209 E 	 INVALID OBJECT OF
REDEFINES--CLAUSE IGNORED

Explanation: The object of the REDEFINES clause is
an undefined data-name, contains a REDEFINES
clause, is not at the same level. or is separated
from the statement containing the REDEFINES by
a data item that is not part of a REDEFINES
clause.

Compiler Action: The REDEFINES clause is ignored.

Programmer Respoose: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

CBL-0210 E 	 NUMERIC ITEM EXCEEDS
18-ITEM IGNORED

Explanation: The numeri.c item has more than 18
digits.

Compiler Action: The numeric item is ignored.

Programmer Response: Probable user error. Ensure
that the numeric item does not exceed 18 digits
before recompiling. (Phase: DTA1)

CBL-0211 E 	 VALUE EXCEEDS SIZE OF
ITEM--CLAUSE IGNORED

Explanation: The number of digits to the left of the
decimal point in the numeric literal is greater than
the number of digits to the left of the decimal
point in the data item.

Compiler Action: The VALUE clause is ignored, and
the data item is not initialized.

Programmer Response: Probable user error. Correct
size of item before recompiling. (Phase: DUT)

CBL-0212 E 	 SIZE OF EDITED ITEM EXCEEDS
127--ITEM IGNORED

Explanation: The size of a numeric edited data item
may not exceed 127 characters (bytes) of storage.

Compiler Action: The item is ignored.

Prog;ammer Response: Probable user error. Correct
size of item before recompiling. (Phase: DTA1)

CBL- 0213 E 	 VALUE IN OCCURS
ITEM--VALUE CLAUSE
IGNORED

Explanation: OCCURS and VALUE clauses may not
both be specified for a data item.

Compiler Action: The VALUE clause is ignored.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

CBL- 0214 E 	 INVALID PARENT OF VARIABLE
LENGTH TABLE--TABLE
IGNORED

Explanation: An item containing an OCCURS ...
DEPENDING ON clause is subordinate to an item
containing either another OCCURS clause or a
REDEFINES clause.

Compiler Action: The subordinate OCCURS clause is
ignored.

Programmer Response: Probable user error. Ensure
that no parent of the variable length table contains
an OCCURS clause or REDEFINES clause or that
the subordinate table is of fixed length. (Phase:
DTA1)

CBL- 0215 E 	 NUMBER OF NESTED OCCURS
EXCEEDS LlMIT--FIRST THREE
ACCEPTED

Explanation: Only three nested levels of the OCCURS
clause are allowed.

Compiler Action: All levels of the OCCURS clause
beyond the third are ignored. Execution time
results are unpredictable.

Programmer Response: Probable user error. Ensure
that only three nested levels of the OCCURS
clause are present before recompiling. (Phase:
DTA1)

. Compiler Messages A-19

CBl- 0216 E 	 INVALID INDEX-NAME IN
OCCURS CLAUSE--OPTION
IGNORED

Explanation: INDEXED BY is not followed by a

data-name.

Compiler Action: The INDEXED BY option is ignored.

Programmer Response: Probable user error. Ensure
that INDEXED BY option is followed by a
data-name before recompiling. (Phase: DTA1)

CBl-0217 E 	 77 LEVEL IN FILE
SECTION--ITEM IGNORED

Explanation: Level-77 items may appear only in the
Working-Storage Section or the Linkage Section.

Compiler Action: The item is ignored.

Programmer Response: Change the level number from
77 to 01 before recompiling. (Phase: DTA1)

CBl- 0218 E 	 CONDITIONAL VARIABLE
MISSING--CONDITION-NAME
IGNORED

Explanation: A condition-name (88) had no immediate
qualifier.

Compiler Action: The condition-name (88) is ignored.

Programmer Response: Probable user error. Insert an
immediate qualifier for the condition-name before
recompiling. (Phase: DTA1)

CBl-0219 E 	 NO VALUE IN
CON DITION-NAME--ITEM
IGNORED

Explanation: The VALUE clause was omitted from the
condition-name (88).

Compiler Action: The condition-name is ignored.

Programmer Response: Probable user error. Supply
VALUE clause before recompiling. (Phase: DTA1)

CBl- 0220 E 	 INVALID LOCATION OF
WORKING-STORAGE SECTION

Explanation: The Working-Storage Section header
was either duplicated or preceded by the Linkage
Section header.

Compiler Action: The section header is ignored.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
DTA1)

CBl- 0221 E 	 INVALID LOCATION OF
LINKAGE SECTION

Explanation: The Linkage Section header was

duplicated.

Compiler Action: The second Linkage Section header
is ignored.

Programmer Response: Probable user error. Delete
second Linkage Section header before recompiling.
(Phase: DTA1)

CBl- 0222 E 	 REDEFINES OF ITEM WITH
OCCURS CLAUSE--REDEFINES
IGNORED

Explanation: The item being redefined cannot contain
an OCCURS clause or be subordinate to an item
that contains an OCCURS clause.

Compiler Action: The REDEFINES clause is ignored.

Programmer Response: Probable user error. Remove
the OCCURS clause from the description of the
object of the REDEFINES clause, or eliminate the
use of the REDEFINES clause before recompiling.
(Phase: DTA1)

CBl- 0223 E 	 VALUE IN REDEFINES
ITEM--VALUE CLAUSE
IGNORED

Explanation: The VALUE clause may not be specified
in a data description entry that contains a

. REDEFINES clause or in an entry that is
subordinate to an entry containing a REDEFINES
clause.

Compiler Action: The VALUE clause is ignored.

Programmer Response: Delete the invalid VALUE
clause before recompiling. (Phase: DT A 1)

A-20

CBL- 0224 E 	 NON-UNIQUE
INDEX-NAME--IGNORED

Explanation: A data-name in an INDEXED BY option
may not be defined more than once.

Compiler Action: . The duplicate index-name in the
INDEXED BY option is ignored.

Programmer Response: Probable user error. Make the
index-name unique before recompiling. (Phase:
DTA1)

CBL- 0225 E 	 PRECEDING
ITEM/name/REDEFINES A
SMALLER ITEM

Explanation: The indicated data item (other than an
01 item) redefines a smaller item.

Compiler Action: Sufficient space is allocated for the
larger item. (Both the redefined and redefining
fields will have the same left address.)

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

CBL- 0226 E 	 ITEM SIZE EXCEEDS
32,768--IGNORED

Explanation: An item of over 32,768 bytes was

found.

Compiler Action: The item is ignored.

Programmer Response: Probable user error. Correct
item size before recompiling. (Phase: DTA1)

CBL- 0227 C 	 INVALID INDICATOR
CLAUSE--IGNORED

Explanation: The INDICATOR clause was specified
for a data-item that is not Boolean.

Compiler Action: The INDICATOR clause is ignored.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA1)

CBL- 0228 E 	 NON-UNIQUE FILE-NAME--FILE
IGNORED

Explanation: A file description entry contains a

file-name that was previously defined.

Compiler Action: The file is ignored.

Programmer Response: Probable user error. Ensure
that each file has a unique name before
recompiling. (Phase: DTA1)

CBL-0229 C 	 INVALID
HIERARCHY --ACCEPTED

Explanation: A level item does not have a preceding
level-01 item; a variable length table is not the last
structure within a record description; a level-66
item is not the last item in a record description.

Compiler Action: The items are accepted.

Programmer Response: Probable user error. Correct
the invalid hierarchy before recompiling. (Phase:
DTA1, OUT)

CBL- 0230 E 	 INVALID OBJECT OF OCCURS
.. DEPENDING ON CLAUSE

Explanation: The data description of the object of an
OCCURS ... DEPENDING ON clause does not
define an elementary unedited numeric item, or it
is defined within the structure of the variable
length· table.

Compiler Action: Processing continues with the invalid
item; however, incorrect code will be generated.

Programmer Response: Probable user. error. Correct
the data description of the item before
recompiling. (Phase: OUT)

CBL- 0231 E 	 INVALID CLAUSE IN DATA
DIVISION--FOU N D / element/

Explanation: The indicated element has been found in
the Data Division where its use is invalid.

Compiler Action: The element and aU elements up to
the next section header, level indicator, or level
number are ignored.

Programmer Response: Move invalid item to proper
location or delete before recompiling. (Phase:
DTA1)

Compiler Messages A-21

CBL- 0232 E 	 INVALID CLAUSE IN FD
ENTRY --FOUND / element/

Explanation: The element found was not one of the
following: BLOCK CONTAINS, RECORD
CONTAINS, LABEL RECORDS, LINAGE,
CODE-SET, or DATA RECORDS clause; a period,
or a space.

Compiler Action: The element is ignored, and the
remainder of the FD is processed.

Programmer Response: Probable user error. Delete
invalid element before recompiling. (Phase: DTA3)

CBL- 0233 E 	 VALUE DEFINED IN ITEM WITH
GROUP VALUE--GROUP VALUE
ASSUMED

Explanation; If the VALUE clause is specified in an
entry at the group level, it may not be specified at
subordinate levels within this group.

Compiler Action: The group value is processed, and
the lower level is ignored.

Programmer Response: Probable user error. Before
recompiling, ensure that a VALUE clause does not
appear both on the group level and on a level
subordinate to the group level. (Phase: DTA1)

CBL-0234 C 	 INVALID INDICATOR
VALUE~-CLAUSE IGNORED

Explanation: The value for an INDICATOR clause was
not an integer between 1 and 99.

Compiler Action; The INDICATOR clause is ignored.

Programmer Response: Probable user error. Correct
the incorrect value before recompiling. (Phase:
DTA1)

CBL- 0235 E 	 VALUE CLAUSE INVALID IN
SECTION--IGNORED

Explanation: A VALUE clause was specified for a
non-level 88 item in the File or Linkage Section.

Compiler Action: The VALUE clause is ignored.

Programmer Response; Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

CBL- 0236 E 	 NO PICTURE IN PRECEDING
ELEMENTARY ITEM

Explanation: A higher-level item was found following
a lower-level item with no PICTURE clause.

Compiler Action: The compiler substitutes a dummy
item for the invalid item. The results at execution
time are unpredictable.

Programmer Response: Probable user error. Provide
PICTURE clause before recompiling. (Phase:
DTA1)

CBL-0237 E 	 INVALID CHARACTER IN
PICTURE--ITEM IGNORED

Explanation: The categories of data that can be
described with a PICTURE clause are made up of
certain allowable combinations of characters in the
COBOL character set. A character that is not
allowed has been found in the PICTURE.

Compiler Action: The data item is ignored.

Programmer Response: Probable user error. Correct
invalid PICTURE before recompiling. (Phase:
DTA1)

CBL- 0238 E 	 USAGE AND PICTURE NOT
COMPATIBLE--USAGE IGNORED

Explanation; An alphabetic, alphanumeric, or numeric
edited PICTURE clause has usage other than
DISPLAY.

Compiler Action; The USAGE clause is ignored.

Programmer Response; Probable user error. Specify
USAGE IS DISPLAY before recompiling. (Phase:
DTA1)

CBL-0239 E 	 GROUP CONTAINS PICTURE
CLAUSE-GROUP PICTURE
IGNORED

Explanation: A group item may not have a PICTURE
clause.

Compi/er Action: The PICTURE clause is ignored in
the group data item.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

A-22

L

CBL- 0240 E 	 INVALID VALUE IN GROUP
ITEM

Explanation: A numeric literal has been found as the
value for a group item.

Compiler Action: The VALUE clause is dropped, and
the group item is not initialized.

Programmer Response: Probable user error. Ensure
that the value specified is a figurative constant ·or
a nonnumeric literal before recompiling. (Phase:
DUT)

CBL-0241 E 	 ALPHANUMERIC VALUE
EXCEEDS ITEM SIZE--VALUE
CLAUSE IGNORED

Explanation: The nonnumeric literal in the VALUE
clause must not exceed the size of the
alphanumeric item.

Compi/er Action: The VALUE clause is ignored, and
the data item is not initialized.

Programmer Response: Probable user error. Ensure
that the literal in the VALUE clause is less than or
equal to the item size before recompiling. (Phase:
DUT)

CBL-0242 E 	 FILE NAME APPEARS ON MORE
THAN ONE SAME AREA
CLAUSE

Explanation: One or more of the file-names appearing
on this SAME AREA clause has appeared on at
least one previous SAME AREA clause.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid file-name(s) before recompiling. (Phase:
DTA2)

CBL- 0243 E 	 FILE NAME APPEARS ON MORE
THAN ONE SAME RECORD
AREA CLAUSE

Explanation: One or more of the file-names appearing
on this SAME. RECORD AREA clause has
appeared on at least one previous SAME RECORD
AREA clause.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid file-name(s) before recompiling. (Phase:
DTA2)

CBL- 0244 E 	 FILE NAME(S) APPEARING ON
SAME AREA CLAUSES DO NOT
ALL APPEAR ON SAME
RECORD AREA CLAUSE

Explanation: If one file from a SAME AREA clause
appears on a SAME RECORD AREA clause, all
files named on the SAME AREA clause must
appear on the SAME RECORD AREA clause.

Compi/er Action: The clause is ignored.

Programmer Response: Probable user error. Correct
the invalid file-name(s) before recompiling. (Phase:
DTA2)

CBL- 0245 E 	 DUPLICATED CLAUSE IN DATA
DESCRIPTION--FIRST ONE
ACCEPTED

Explanation: The same clause occurred more than
once in the same data description.

Compiler Action: The first clause is processed, and all
duplications are ignored.

Programmer Response: Probable user error. Delete
duplications before recompiling. (Phase: DTA 1)

CBL- 0246 E 	 USAGE IN ITEM NOT SAME AS
GROUP USAGE--GROUP USAGE
USED

Explanation: The usage of an elementary item may
not contradict the usage of a group to which the
elementary item belongs.

Compi/er Action: The group usage overrides the

elementary usage.

Programmer Response: Probable user error. Correct
usage in elementary item before recompiling.
(Phase: DTA1)

CBL- 0247 E 	 LEVEL ITEMS IN FILE
SECTION--NO PRECEDING FD
OR SD

Explanation: A file description entry must precede the
first level-01 in the File Section.

Compiler Action: Space is allocated for the level-01
item, but there is no corresponding file for I/O
verbs.

Programmer Response: Probable user error. Insert a
valid file description (FD or SD) before the level-01
data item, or remove the level-01 item before
recompiling. (Phase: DTA1)

Compiler Messages A-23

CBL- 0248 E 	 JUSTIFIED OR USAGE CLAUSE
INVALID IN GROUP ITEM WITH
VALUE--CLAUSE IGNORED

Explanation: A VALUE clause cannot be specified for
a group containing items with descriptions
including JUSTIFIED or USAGE.

Compiler Action: The JUSTIFIED or USAGE clause is
ignored.

Programmer Response: Probable user error. Delete
JUSTIFIED, USAGE, or VALUE clause before
recompiling. (Phase: DTA1)

CBL- 0249 E 	 VALUE IN PRECEDING GROUP
ITEM EXCEEDS GROUP ITEM
SIZE

Explanation: The literal specified as a VALUE in a
group item is too large.

Compiler Action: The VALUE clause is dropped, and
the group item is not initialized.

Programmer Response: Probable user error. Ensure
that the length of the literal is less than or equal to
the size of the group item before recompiling.
(Phase: DUn

CBL- 0250 C 	 KEY CLAUSE ON BOOLEAN
ITEM--CLAUSE IGNORED

Explanation: ASCENDING/DESCENDING KEY clause
was specified for a Boolean data-item.

Compiler Action: The ASCENDING/DESCENDING
KEY clause is ignored.

Programmer Response: Probable user error. Remove
the invalid option before recompiling. (Phase:
DTA1)

CBL-0252 C 	 INVALID DATA DIVISION
HEADE~--ACCEPTED

Explanation: The word DIVISION or a period and a
space were omitted or misplaced in the Data
Division header.

Compiler Action: The Data Division header is

assumed to be correct.

Programmer Response: Probable user error. Supply
proper Data Division specification before
recompiling. (Phase: DTA1)

CBL- 0253 C 	 COMPUTED RECORD SIZE NOT
EQUAL TO DEFINED RECORD
SIZE

Explanation: The RECORD CONTAINS clause in the
FD or SO entry contains an integer larger than the
largest 01 record definition or smaller than the
smallest 01 record definition for the file.

Compiler Action: The clause is treated as comments.

Programmer Response: Probable user error. Correct
clause before recompiling. (Phase: DTA3)

CBL- 0254 C 	 INVALID WORD/CHARACTER(S)
/element/ IN
CLAUSE--IGNORED

Explanation: An invalid clause was found in a level
item.

Compiler Action: The compiler skips to the next

keyword or level item.

Programmer Response: Probable user error. Delete
invalid element before recompiling. (Phase: DTA1)

CBL- 0255 C 	 INVALID USAGE
CLAUSE--DISPLAY ASSUMEP

Explanation: The USAGE clause must contain one of
the following keywords: DISPLAY,
COMPUTATIONAL(COMP),
COMPUTATIONAL-3(COMP-3),
COMPUTATIONAL-4(COMP-4), or INDEX.

Compiler Action: The usage is assumed to be

DISPLAY.

Programmer Response: Probable user error. Specify
valid USAGE clause before recompiling. (Phase:
DTA1)

CBL-0256 C 	 INVALID USE OF BLANK WHEN
ZERO CLAUSE--IGNORED

Explanation: The BLANK WHEN ZERO clause may be
specified only at the elementary level for numeric
edited or numeric items; it may not be specified
for level-88 data items and may not be used in
conjunction with • in the PICTURE clause.

Compiler Action: The BLANK WHEN ZERO clause is
. ignored.

Programmer Response: Probable user error. Delete
invalid BLANK WHEN ZERO clause before
recompiling. (Phase: DTA1)

A-24

CBL-02S7 C 	 INVALID USE OF JUSTIFIED
CLAUSE--IGNORED

Explanation: The JUSTIFIED clause may only be
specified at the elementary level for nonnumeric
unedited items.

Compi/er Action: The JUSTIFIED clause is ignored.

Programmer Response: Probable user errQr. Remove
the invalid JUSTIFIED clause before recompiling.
(Phase: DTA1)

CBL-02S8 C 	 INVALID CLAUSE IN 88 LEVEL
ITEM--IGNORED

Explanation: A clause other than VALUE was

specified for a level-SS data item.

Compiler Action: The invalid clause is ignored.

Programmer Response: Probable user error. Delete
invalid clause from level-SS item before
recompiling. (Phase: DTA1)

CBL-02S9 C 	 INVALID CLAUSE IN INDEX
DATA ITEM--IGNORED

Explanation: JUSTIFIED, BLANK, PICTURE, and
VALU E clauses may flot be specified for a data
item with USAGE INDEX.

Compi/er Action: The invalid clause is ignored.

Programmer Response: Probable user error. Delete
invalid clause before recompiling. (Phase: DTA1)

CBL-0260 C 	REDEFINES OF ITEM WITH
REDEFINES
CLAUSE--REDEFINES
ACCEPTED

Explanation: The object of the REDEFINES clause
contains a REDEFINES clause.

-Compiler Action: Both REDEFINES clauses are

accepted.

Programmer Response: Probable user error. Ensure
that the object of both REDEFINES clause is the
same data name before recompiling. (Phase:
DTA1)

CBL-0261 C 	OCCURS IN LEVEL 01 OR 77
ITEM--ACCEPTED

Explanation: The OCCURS clause may not be

specified in a data description entry that is a

level-01 or level-77 number.

Compiler Action: The OCCURS clause is accepted.

Programmer Response: Probable user error. Correct
level number before recompiling. (Phase: DTA1)

CBL-0262 C 	 REDEFINES IN 01 LEVEL IN
FILE SECTION--IGNORED

Explanation: The REDEFINES clause should not be
used in level-01 entries in the File Section because
multiple 01 's are an implicit redefinition.

Compiler Action: The REDEFINES clause is ignored.

Programmer Response: Probable user error. Delete
the REDEFINES clause before recompiling. (Phase:
DTA1)

CBL-0263 C 	 INVALID CLAUSE IN LEVEL-66
ITEM--CLAUSE IGNORED

Explanation: A clause other than RENAMES was
specified for a level-66 data item.

Compiler Action: The invalid clause is ignored.

Programmer Response: Probable user error. Delete
invalid clause from level-66 item before
recompiling. (Phase: DTA1)

CBL-0264 E 	 INVALID RENAMES
CLAUSE--CLAUSE IGNORED

Explanation: The keywords RENAMES or THROUGH
not followed by a data-name, the second
data-name (if present) was the same as the first.
or the RENAMES clause was specified for an item
whose level is other than 66.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid clause before recompiling. (Phase: DTA1)

Compiler Messages A-25

L

CBL-0265 E 	 NO RENAMES IN LEVEL-66
ITEM--ITEM IGNORED

Explanation: The RENAMES clause was omitted from
the level-66 item.

Compi/er Action: The item is ignored.

Programmer Response: Probable user error. Supply
RENAMES clause before recompiling. (Phase:
DTA1)

CBL-0266 E 	 INVALID OBJECT OF RENAMES
CLAUSE--ITEM IGNORED

Explanation: The object of the RENAMES clause is
not an item or valid range of items within the
immediately preceding record description, it
describes an item whose length is variable, or the
renamed items contain or are subordinate to an
occurs clause or are levels 01, 66, 77, or 88.

Compi/er Action: The entire level-66 item is ignored.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

CBL-0267 C 	SECTION IS MISSING IN
SECTION HEADER--ACCEPTED

Explanation: The word SECTION is missing from the
File, Working-Storage, or Linkage Section header.

Compiler Action: The word SECTION is assumed to
be present.

Programmer Response: Probable user error. Correct
section header before recompiling. (Phase: DTA 1)

CBL-0268 C 	 INVALID BLOCK
CLAUSE--IGNORED

Explanation: A syntax error has been found in the
BLOCK CONTAINS clause. The integer is either
missing, misplaced, too large, or specified for a
TRANSACTION file.

Compi/er Action: The clause is ignored.

Programmer Response: Probable user error. Co'rrect
syntax of clause before recompiling. (Phase:
DTA3)

CBL-0269 C 	 INVALID RECORD
CLAUSE--IGNORED

Explanation: A syntax error has been found in the
RECORD CONTAINS clause. The integer is either
missing or misplaced.

Compiler Action: The clause is ignored.

Programmer Response: Probable user error. Correct
syntax of clause before recompiling. (Phase:
DTA3)

CBL-0270 C 	 LABEL CLAUSE FOR FILE
INVALID OR MISSING

Explanation: OMITTED labels were specified for a
disk file, STANDARD labels were specified for a
TRANSACTION file, or the LABEL RECORDS
clause was omitted for the FD entry.

Compiler Action: The file-name is processed as if the
clause were specified correctly.

Programmer Response: Probable user error. Correct
the clause before recompiling. (Phase: DTA3)

CBL-0271 C 	 INVALID
ASCENDING/DESCENDING
KEY PHRASE IN OCCURS
CLAUSE--PHRASEIGNORED

Explanation: No data name was found, a qualifier
connective (IN or OF) not followed by a data
name, or an invalid key has been specified. The
first key must be either the subject of the
OCCURS clause or subordinate to the subject; all
following keys must be subordinate to the subject.
Any key that is not the subject of the OCCURS
clause must not contain or be subordinate to
another OCCURS clause.

Compiler Action: The ASCENDING/DESCENDING
phrase is ignored.

Programmer Response: Probable user error. Correct
the invalid phrase before recompiling. (Phase:
DTA1, DUT)

A-26

CBl-0273 C 	DUPLICATE CLAUSE IN FILE
DESCRIPTION--FIRST ONE
USED

Explanation: More than one specification for a clause
has been found in the file description entry.

Compiler Action: The first clause is used.

Programmer Response: Probable user error. Delete
duplication before recompiling. (Phase: DTA3)

CBl-0280 E 	 PRECEDING
ITEM/name/REDEFINES A
LARGER ITEM

Explanation: The indicated data item (other thijA an
01 item) redefines a larger item.

Compiler Action: The difference in the sizes of the
two iterTl5 is allocated following the smaller item.
(Both the redefined and redefining fields will have
the same left address.)

Programmer Response: Probable user error. Increase
the size of the smaller item before recompiling.
(Phase: DTA1)

CBl-0285 E 	 NO VALID SECTION
PRECEDING DATA
ITEM--WORKING STORAGE
ASSUMED

Explanation: A level item was encountered
immediately following the Data Division header.

Compiler Action: The item is assumed to be in the
Working-Storage Section.

Programmer Response: Probable user error. Provide a
valid section header before recompiling. (Phase:
DTA1)

CBl-0286 E 	 DATA ITEM AFTER FD OR SD
NOT LEVEL 01--FILE IGNORED

Explanation: The first data-item following an FD or
SD entry must have level-01.

Compiler Action: The file is ignored.

Programmer Response: Probable user error. Ensure
that the FD or SD entry is followed by a level-01
record description before recompiling. (Phase:
DTA1)

CBl-0287 E 	 REQUIRED KEYWORD(S)
MISSING FROM SIGN
CLAUSE--CLAUSE IGNORED

Explanation: The SIGN clause did not contain the
words LEADING or TRAILING, or SEPARATE was
not found with the keyword CHARACTER.

Compiler Action: The SIGN clause is ignored.

Programmer Response: Probable user error. Correct
the SIGN clause before recompiling. (Phase:
DTA1)

CBl-0288 E 	SIGN CLAUSE FOR
NON-NUMER!C DISPLAY
ELEMENTARYITEM--CLAUSE
IGNORED

Explanation: A SIGN clause is specified for an
elementary item that is not a numeric display item.

Compiler Action: The SIGN clause is ignored.

Programmer Response: Probable user error. Specify
USAGE IS DISPLAY before recompiling. (Phase:
DTA1)

CBl-0289 E 	SIGN CLAUSE INVALID FOR
ITEM WITH UNSIGNED
PICTURE--SIGN CLAUSE
IGNORED

Explanation: The SIGN clause may be specified only
for a numeric data description eritry whose
PICTURE. contains the character S or for a group
item containing at least one such numeric data
description entry.

Compiler Action: The SIGN clause is ignored.

Programmer Response: Probable user error. Correct
the PICTURE or SIGN clause before recompiling.
(Phase: DTA1)

Compiler Messages A-27

L

CBL-0290 E 	 SIGN CLAUSE IN ELEMENTARY
ITEM DIFFERS FROM SIGN OF
GROUP--GROUP SIGN USED

Explanation: If a group item contains a SIGN clause,
any SIGN clauses within the group must be the
same as the group SIGN clause. The level items in
the group do not have to have a SIGN clause.

Compi/er Action: The group sign is used.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA1)

CBL-0292 C 	 INVALID INTEGER OR
DATA-NAME IN LINAGE
CLAUSE

Explanation: The LINAGE value integer was equal to
zero. If the name of a variable was specified
instead of a numeric literal, the variable is either
not in the DATA DIVISION or is of an invalid type.

Compiler Action: The compiler allows this value to
default to the system value for the number of lines
per page at execution time.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA3)

CBL-0293 C 	 LINAGE CLAUSE SPECIFIED
FOR INVALID
DEVICE--IGNORED

Explanation: The LINAGE clause can only be specified
for a printer.

Compi/er Action: The clause is ignored.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
DTA3)

CBL-0295 W 	PICTURE UNSIGNED AND
VALUE SIGNED--SIGN
IGNORED

Explanation: The literal following the VALUE clause
should not be signed if the PICTURE is unsigned.

Compi/er Action: The sign is ignored.

Programmer Response: . Probable user error. Correct
invalid sign before recompiling. (Phase: DLlT)

CBL-0296 C 	 INVALID INTEGER OR
DATA-NAME IN FOOTING
CLAUSE

Explanation: The FOOTING clause has a syntax error,
the integer value specified is greater than the
LINAGE value, or the value is equal to zero. If the
name of a variable was specified instead of a
numeric literal, the variable is either not in the
DATA DIVISION or is of an invalid type.

Compi/er Action: The FOOTING value is assumed to
be equal to the LINAGE value.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA3)

CBL-0297 C 	 INVALID INTEGER OR
DATA-NAME IN TOP CLAUSE

Explanation: The TOP clause has a syntax error. If
the name of a variable was specified instead of a
numeric literal, the variable is either not in the
DATA DIVISION or is of an invalid type.

Compiler Action: The TOP value is assumed to be
zero.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA3)

CBL-0298 C 	 INVALID INTEGER OR
DATA-NAME IN BOTTOM
CLAUSE

Explanation: The BOTTOM clause has a syntax error.
If the name of a variable was specified instead of
a numeric literal, the variable is either not in the
DATA DIVISION or is of an invalid type.

Compi/er Action: The BOTTOM value is assumed to
be zero.

Programmer Response: Probable user error. Correct
the invalid specification before recompiling.
(Phase: DTA3)

A-28

CBl-0300 E 	 /name/JS DEFINED AS BOTH
PARAGRAPH AND SECTION

Explanation: The indicated name appears as both a
paragraph and a section.

Compiler Action: The duplicate header is ignored. All
procedure references to the name are made to the
first procedure header.

Programmer Response: Probable user error. Correct
or delete the indicated name before recompiling.
(Phase: PR02),

CBl-030l E 	DUPLICATE SECTION/name/

Explanation: The indicated section-name element is
duplicated in the program.

Compiler Action: The duplicate section header is
ignored. All references to the name will be
resolved to the first appearance of the section
header.

Programmer Response: Probable user error. Correct
or'delete indicated name before recompiling.
(Phase: PR02)

CBl-0302 E 	DUPLICATE
PARAGRAPH/name/IN
SECTION

Explanation: Two or more paragraphs within the
same Procedure Division section have the same
name.

Compiler Action: The duplicate paragraph-name is
ignored. All references to the name will be
resolved to the first appearance of the paragraph.

Programmer Response: Probable user error. Correct
or delete indicated name before recompiling.
(Phase: PR02)

CBl-0303 E 	 INVALID QUALIFICATION
OF/name or keyword/

Explanation: The indicated name is improperly

qualified.

Compiler Action: The compiler substitutes a dummy
item for the invalid term, and processing
continues. However, incorrect code will be
generated for the statement.

Programmer Response: Probable user error. Correct
indicated element before recompiling. (Phase:
DTA1, DTA2, DLlT, 	PR01, PROA, PR03)

CBl-0304 E 	 INSUFFICIENT OR MISSING
QUALIFICATION OF/name or
keyword/

Explanation: The indicated name is not unique.

Compiler Action: The compiler substitutes a dummy
item for the invalid item, and proceSSing continues.
However, incorrect code will be generated for the
statement.

Programmer Response: Probable user error. Supply
the missing qualification for the indicated element
before recompiling. (Phase: DTA2, DLlT, PR01,
PROA. PR03)

CBl-030S E 	LEVEL OF QUALIFICATION
EXCEEDS LIMIT

Explanation: Only 51 levels of qualification are
allowed for a data-name, and only 2 levels are
allowed for a procedure-name.

Compiler Action: The compiler substitutes a dummy
item for the invalid item, and processing continues.
However, invalid code will be generated for the
statement.

Programmer Response: Probable user error. Before
recompiling, ensure that level of qualifications does
not exceed the limit. (Phase: DT A2, DLlT, PR01,
PROAl

CBl-0306 E 	 /name/IS INVALID
PARAGRAPH TO ALTER

Explanation: A paragraph referenced by an ALTER
statement must contain only a single GO TO
statement.

Compiler Action: The ALTER statement is not

generated,

Programmer 'Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
PR03)

CBl-0307 C 	PERIOD REQUIRED--PERIOD
ASSUMED

Explanation: The last statement preceding a

paragraph does not end with a period.

Compiler Action: The period is assumed to be

present.

Programmer Response: Probable user error. Supply
required period before recompiling. (Phase: PR01,
PROA, PR02)

Compiler Messages 	 A-29

L

CBL-0308 W 	PROCEDURE DIVISION HEADER
ERROR

Explanation: The Procedure Division must begin with
the header PROCEDURE DIVISION followed by a
period or a USING option. This error also occurs if
the statement following the Procedure Division
header is invalid.

Compiler Action: The keyWords PROCEDURE and
DIVISION are assumed to be correct. The USING
option, if present, is processed as if the two
keywords were correct.

Programmer Response: Probable user error. Correct
error in header before recompiling. (Phase: PR01)

CBL-0309 W 	EXIT MUST BE ONLY
STATEMENT IN· PARAGRAPH

Explanation: A paragraph contains one or more
statements in addition to the EXIT statement.

Compiler Action: Code is generated as if the EXIT
statement were correct.

Programmer Response: Probable user error. Correct
error in statement before recompiling. (Phase:
PR02)

CBL-0310 E 	TOO MANY SUBSCRIPTS OR
INDEXES SPECIFIED
FOR/name/

Explanation: The number of subscript or index
specifications exceeds the level of OCCURS of the
name.

Compiler Action: The subscript or index values are
assumed to be 1.

Programmer Response: Probable user error. Correct
subscript or index specification before recompiling.
(Phase: PROAl

CBL- 0311 E 	TOO FEW SUBSCRIPTS OR
INDEXES SPECIFIED FOR/name
or keyword/

Explanation: The level of OCCURS for the name
exceeds the number of subscripts OF indexes
specified.

Compiler Action: The subscript or index values are
assumed to be 1.

Programmer Response: Probable user error. Correct
subscript or index specification before recompiling.
(Phase: PROAl

CBL-0313 C 	MISSING RIGHT
PARENTHESIS- -STATEMENT
IGNORED

Explanation: Each left parenthesis must be paired
with a right parenthesis.

Compiler Action: The statement is dropped with no
further syntax checking.

Programmer Response: Probable user error. Supply
missing parenthesis before recompiling. (Phase:
PR03)

CBL-0314 E 	 LINKAGE SECTION
NAME/name/NOT IN USING
STATEMENT--IGNORED

Explanation: The indicated item is level-01 (or
level-77) or is subordinate to a level-01 data
description in the Linkage Section whose name
does not appear in the USING option of the
Procedure Division header.

Compiler Action: The compiler substitutes a dummy
item for the invalid item, and processing continues.
However, incorrect code will be generated for the
statement.

Programmer Response: Probable user error. Correct
the USING option before recompiling. (Phase:
PROAl

CBL-0315 E 	 /name or keyword/INVALID
INDEXED OR SUBSCRIPTED
ITEM

Explanation: Either the indicated element is not a
data-name or its data description does not have
an OCCURS clause.

Compiler Action: The expression within parentheses
following the element is discarded.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
PROAl

A-30

CBL- 0316 E 	 /name or literal/NOT
NUMERIC--FOUND IN
ARITHMETIC EXPRESSION

Explanation: The indicated element is neither a
numeric elementary item nor a numeric literal.

Compiler Action: The expression is ignored.

Programmer Response: Probable user error. Replace
the indicated element with a numeric item before
recompiling. (Phase: PR03)

CBL- 0320 E 	 MISSING LEFT
PARENTHESIS--STATEMENT
IGNORED

Explanation: A right parenthesis has been found
without a corresponding left parenthesis.

Compiler Action: The statement is dropped with no
further syntax checking.

Programmer Response: Probable user error. Supply
missing parenthesis before recompiling. (Phase:
PR03)

CBL-0322 E 	 /name/ NOT A GROUP
ITEM--STATEMENT IGNORED

Explanation: Each identifier in a
ADD/SUBTRACT/MOVE statement with the
CORRESPONDING option must identify a group
item.

Compiler Action: The statement is dropped with no
further processing.

Programmer Response: Probable user error. Ensure
that both items are group items. (Phase: PR01)

CBL-0323 W 	NO CORRESPONDING ITEMS
FOUND--STATEMENT IGNORED

Explanation: No corresponding items were found for
the group items specified in a
ADD/SUBTRACT/MOVE statement with the
CORRESPONDING OPtion.

Compiler Action: The statement is dropped.

Programmer Response: Probable user error. Ensure
that there is at least one corresponding item pair.
(Phase PR01)

CBL- 0324 E 	 INVALID OR MISSING
KEYWORDS IN AL TER--TO
ASSUMED

Explanation: An ALTER statement has been found
with a missing or incorrect keyword(s) following
the first procedure-name of a pair.

Compiler Action: The keyword TO is assumed and
replaces all keywords present.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
PR02)

CBL- 0325 E 	 /name or keyword/INVALID AT
THIS POINT

Explanation: An unexpected element was

encountered.

Compiler Action: The compiler ignores the invalid
element and any associated operands. Incorrect
code will be generated for the statement.

Programmer Response: Probable user error. Correct
indicated item before recompiling. (Phase: PR01,
PROA, PR02, PR03)

CBL- 0326 E 	 /insert/IS NOT A DEFINED
NAME

Explanation: An undefined name has been found.

Compiler Action: The compiler substitutes a dummy
item for the undefined name, and processing
continues. However, incorrect code will be
generated for the statement.

Programmer Response: Probable user error. Supply a
valid name before recompiling. (Phase: PR03)

CBL- 0328 C 	 MISSING OR INVALID LITERAL
IN INDEX
SPECI FICATION--FI RST
OCCURRENCE USED

Explanation: An index specification contains a plus or
minus sign that is not followed by a valid numeric
literal.

Compiler Action: All index values are assumed to be
1.

Programmer Response: Probable user error. Correct
invalid literal before recompiling. (Phase: PROAl

Compiler Messages A-31

L

CBL- 0329 E 	 SUBSCRIPT OR INDEX LITERAL
NOT INTEGER

Explanation: A literal was not a positive integer in one
of the following cases:

• 	 Within an index or subscript specification

• 	 Within a SET statement

• 	 Within a VARYING optipn of a PERFORM
statement that references an index-name

• 	 Within a relational condition referencing an
index-name

Compiler Action: If the error occurred within an index
or subscript specification, all indexes or subscripts
are assumed to have a value of 1. If it occurred
elsewhere, a value of 1 is substituted for the
invalid literal.

Programmer Response: Probable user error. Ensure
that the literal is a positive integer before
recompiling. (Phase: PROAl

CBL- 0330 E 	 INVALID LITERAL IN INDEX OR
SUBSCRIPT

Explanation: The subscript or index literal either
exceeds 32,768, is negative or is zero in one of
the following cases:

• 	 Within an index or subscript specification

• 	 Within a SET statement

• 	 Within a VARYING option of a PERFORM
statement that references an index-name

• 	 Within a relational condition referencing an
index-name

Compiler Action: If the error occurred within an index
or subscript specification, all subscripts or indexes
are assumed to have a value of 1. If it occurred
elsewhere and -if the literal was greater than
32,768, a value of 1 is substituted. If it occurred
elsewhere and the literal was negative, its absolute
value is substituted.

Programmer Response: Probable user error. Correct
invalid literal before recompiling. (Phase: PROA,
GEN21

CBL- 0331 E 	 /insert/IS NOT DEFINED IN THE
DATA DIVISION

Explanation: The identifier was not defined.

Compiler Action: The compiler substitutes a dummy
item for the invalid item, and processing continues.
However, incorrect code will be generated for the
statement.

Programmer Response: Probable user error. Supply
valid name before recompiling. (Phase: PROA,
PR031

CBL- 0332 E 	 /name or keyword/IS NOT A
VALID SUBSCRIPT

Explanation: The identifier used as a subscript is
either a nonnumeric data-name or it requires
subscripting itself.

Compiler Action: All subscripts or indexes are

assumed to have a value of 1.

Programmer Response: Probable user error. Supply
subscript item before recompiling. (Phase: PROAl

CBL- 0333 E 	 NAME NOT DEFINED AS
INDEXED BY /name/

Explanation: The indicated name and index b,elong to
different tables. A name may be indexed only by
index-names of the table to which it belongs. In
addition, the index-names must be in the proper
order within the index specifications.

Compiler Action: The value of all subscripts and

indexes is assumed to be 1.

Programmer Response: Probable user error. Correct
invalid index specification before recompiling.
(Phase: PROAl

CBL- 0334 E 	 NO INDEX DEFINED FOR TABLE
IN SEARCH--STATEMENT
IGNORED

Explanation: The Data Division description of the
table to be searched must contain the INDEXED
BY option.

Compiler Action: The statement is dropped.

Programmer Response: Probable user error. Ensure
that the Data Division description of the table to
be searched contains the INDEXED BY option.
(Phase: PR01 I

A-32

CBl-0337 C 	TABLE/name/IN SEARCH
STATEMENT HAS
SUBSCRIPT/INDEX-­
SUBSCRIPT/INDEX IGNORED.

Explanation: The name of the table to be searched
must not be subscripted or indexed.

Compiler Action: The subscript/index(s) is dropped:

Programmer Response: Probable user error. Ensure
that the table specified in the SEARCH statement
is not subscripted or indexed. (Phase: PROAl

CBl-0338 E 	 /name/IS BOTH DATA-NAME
AND PROCEDURE-NAME

Explanation: The indicated name is defined both in
the Data Division and Procedure Division.

Compiler Action: The compiler substitutes a dummy
item for the invalid item, and processing continues.
However, incorrect code will be generated for the
statement.

Programmer Response: Probable user error. Correct
indicated item before recompiling. (Phase: PR02,
PR03)

CBl-0339 C 	 /name/CONTAINS
AMBIGUOUS INDICATOR
ASSOCIATION VALUES

Explanation: The INDICATOR data-item specified in
the WRITE statement is a group item that contains
an indicator definition subordinate to an item
which contains an OCCURS clause. For example:

01 	 INDIC-UST.
05 INDIC-5 PIC 1 INDICATOR 5.
05 A-TABLE OCCURS 10 TIMES.

10 FILLER PIC X(5).

10 INDIC-10 PIC 1 INDICATOR 10.

Compiler Action: The INDICATOR data-item is
accepted. Indicators defined subordinate to an
item with an OCCURS are assigned to their first
occurrence in the table.

Programmer Response: Probable user error. Ensure
that any table subordinate to the INDICATOR
data-item does not contain mixed indicator and
nonindicator elementary items. (Phase: PR011

CBl-0340 E 	ALL FOLLOWED BY INVALID
LITERAL

Explanation: The literal following ALL must be either
a nonnumeric literal or a figurative constant.

Compiler Action: If the literal is numeric, the ALL is
dropped.

Programmer Response: Probable user error. Correct
invalid literal before recompiling. (Phase: PROAl

CBl-0341 E 	 INVALID 'ALL' LlTERAL--'ALL'
IGNORED

Explanation: The figurative constant'ALL literal' is
invalid in a DISPLAY, STRING, or STOP
statement.

Compiler Action: The keyword . ALl' is dropped.

Programmer Response: Probable user error. Ensure
that the figurative constant'ALL literal' is not
specified in a DISPLAY, STRING or STOP
statement. (Phase: PROAl

CBl-0342 C 	 ILLEGAL OPERATOR IN
SEARCH ALL.WHEN
PHRASE--ACCEPTED

Explanation: The conditional operators EQUAL and
AND are the only conditional operators permitted
in the WHEN phrase of a format 2 SEARCH
statement.

Compiler Action: Code is generated as if the illegal
operator.s were legal.

Programmer Action: Probable user error. Ensure that
the WHEN phrase of the format 2 SEARCH
statement contains no conditional operators except
EQUAL and AND. (Phase: PROAl

CBl-0343 C 	MULTIPLE VALUE
CONDITION-NAME IN SEARCH
ALL. ..WHEN
PHRASE--ACCEPTED

Explanation: In Format 2 of the SEARCH statement,
conditiol)-names must be defined as having only a
single value.

Compiler Action: The multiple value condition-name
is accepted. Code is generated to test the multiple
values.

Programmer Response: Probable user error. Ensure
that all referenced condition-names are defined as
having only a single value. (Phase: PROAl

Compiler Messages A-33

L

CBl-0344 E 	 INVALID NAME OR LITERAL
ENTRY IN USING CLAUSE

Explanation: A parameter following the USING option
either was not a name, was a name that did not
appear in the Linkage Section, or was not a 01 or
77 level item for a Procedure Division header.

Compiler Action: If the parameter was not a name,
the remainder of the USING option is ignored. If
the name did not appear in the Linkage Section, or
if the name was not the right level item, that name
is ignored.

Programmer Response: Probable user error. Correct
invalid entry before recompiling. (Phase: PR01)

CBl-0345 C 	NO SECTION-NAME AFTER
PROCEDURE DIVISION
HEADER--ACCEPTED

Explanation: If sections are used within the Procedure
Division, a section header must immediately follow
the Procedure Division header.

Compiler Action: None.

Programmer Response: Probable user error. Before
recompiling ensure that the s!,!ction header
precedes the first paragraph of the Procedure
Division. (Phase: PR02)

CBl-0347 E 	NUMBER OF LINKAGE NAMES
EXCEEDS 15

Explanation: A maximum of 15 parameters may

appear in the USING option.

Compiler Action: All parameters after the first 15 are
ignored.

Programming Response: Probable user error. Before
recompiling, ensure that not more than 15
parameters appear. (Phase: PR01)

CBl-0348 E 	 INVALID ELEMENT AFTER
PROCEDURE
HEADER- -IGNORED

Explanation: Extraneous elements have been found
following a paragraph or section header.

Compiler Action: The extraneous element or elements
are ignored. Processing continues at the next
statement.

Programmer Response: Probable user error. Correct
paragraph header, section header, or incorrect
elements before recompiling. (Phase: PR02)

CBl-0349 E 	 DATA-NAME OR LITERAL
EXPECTED--FOUND/insert/

Explanation: The indicated element was found where
a data-name or literal was required, either in a
subscript or index specification or in a SET
statement.

Compiler Action: If the error occurred inside the
parentheses for a subscript or index item, the
value of all subscript or index items is assumed to
be 1. If the error occurred in a SET statement, the
compiler substitutes a dummy element, and
processing continues; however, incorrect code will
be generated for the statement.

Programmer Response: Probable user error. Replace
indicated element with appropriate data-name or
literal before recompiling. (Phase: PR01, PROAl

CBl-0350 C 	 INVALID OR MULTIPLE NOT(S)
IN CONDITIONAL
EXPRESSION--IGNORED

Explanation: The word NOT may not precede a
condition if the condition itself contains a NOT.

Compi/er Action: Both NOTs are ignored.

Programmer Response: Probable user error. Before
recompiling, ensure that multiple NOTs do not
appear in the conditional expression. (Phase:
PR03)

CBl-0351 E 	 INVALID ABBREVIATED
COMBINED RELATION
CONDITION--STATEMENT
IGNORED

Explanation: The compiler is unable to process the
conditional expression because it is neither a
complete conditional expression or a valid
abbreviated combined relation condition.

Compi/er Action: The statement is dropped.

Programmer Response: Probable user error. Ensure
that the conditional expression is a complete
conditional expression or a valid abbreviated
combined relation condition. (Phase: PR02)

A-34

CBL-0352 E 	MIXED INDEXES AND
• 	 SUBSCRIPTS IN

/name/--FIRST OCCURRENCE
USED

Explanation: The indicated item is invalid because
subscripting and indexing must not be used
together in a single reference.

Compiler Action: The value of all subscripts or
indexes is assumed to be 1.

Programmer Response: Probable user error. Before
recompiling, specify either all subscripts or all
indexes for the indicated item. (Phase: PROAl

CBL-0353 C 	INVALID OBJECT OF

OCCURS... DEPENDING ON

ASSOCIATED WITH

/name/--MAXIMUM SIZE

ASSUMED

Explanation: The object of the
OCCURS ... DEPENDING ON clause is invalid.
(Message CBL-0230 may precede this message.
See Message CBL-0230 for additional
information.)

Compiler Action: The maximum length of the variable
length table is assumed.

Programmer Response: Probable user error. Ensure
that the description of the variable length table
contains a valid OCCURS ... DEPENDING ON
clause. (Phase: PROAl

CBl - 0354 C 	 NO PARAGRAPH NAME AFTER
SECTION OR DIVISON
HEADER--ACCEPTED

Explanation: A paragraph-name should follow section
and Procedure Division header.

Compiler Action: If no section/paragraph name
follows the Procedure Division header, the
statements preceding the first section/paragraph
name will not be executed at execution time.

Programmer Response: Probable user error. Supply
paragraph-name before recompiling. (Phase:
PR021

CBL-0355 E 	TOO MANY ERRORS IN
STATEMENT--NOT ALL
SYNTAX CHECKED

Explanation: The statement contains so many errors
that syntax checking is suspended.

Compiler Action: The entire statement is ignored.

Programmer. Response: Probable user error. Correct
syntax of indicated statement before recompiling.
(Phase: PR01, PROA, PR02, PR03)

CBL-0359 C 	 /name/IS NOT A
FILE-NAME--NAME IGNORED

Explanation: The name specified in the USE ON
EXCEPTION /ERROR sentence is not a file-name.

Compiler Action: The name is ignored. If more than
one name was specified, the other names are
processed in the normal manner.

Programmer Response: Probable user error. Ensure
that all names specified in the USE ON
EXCEPTION/ERROR sentence are file-names.
(Phase: PR01)

CBL-0360 E 	 /name/SPECIFIED MORE THAN
ONCE--IGNORED

Explanation: For any given file, only one
EXCEPTION/ERROR procedure may be specified.

Compiler Action: The file-name is ignored.

Programmer Response: Probable user error. Ensure
that for ar:lY given file. only one
EXCEPTION/ERROR procedure is specified.
(Phase: PR01)

CBL-0361 E 	 NO SECTION PRECEDING
DECLARATIVE
SENTENCE--SENTENCE
IGNORED

Explanation: Each declarative sentence must directly
follow a section header in the Declaratives.

Compiler Action: The declarative sentence is ignored.

Programmer Response: Probable user error. Ensure
that each declarative sentence is directly preceded
by a section header. (Phase: PR01)

Compiler Messages A-35

CBL-0362 C 	 INVALID USE SENTENCE, NO
CONTROLS
SPECIFIED- -SENTENCE
IGNORED

Explanation: A required keyword or file-name was
not specified in the USE ON EXCEPTION/ERROR
sentence.

Compiler Action: The USE sentence is ignored.

Programmer Response: Probable user error. Ensure
that either a file-name or a -keyword is specified in
the USE ON EXCEPTION /ERROR sentence.
(Phase: PR01, PR03)

CBL-0363 E 	 INVALID OR MISSING
SEGMENT NUMBER--USING
PREVIOUS VALID SEGMENT
NUMBER

Explanation: The segment number must be an integer
ranging in value from 0 through 99.

Compiler Action: The segment number of the

previous section is assumed.

Programmer Response: Probable user error. Supply
valid segment number before recompiling. (Phase:
PR02)

CBL-0366 W SEGMENT NUMBER
SIGNED--SIGN IGNORED

Explanation: The segment number must be unsigned.

Compiler Action: The segment number is assumed to
be unsigned.

Programmer Response: Probable user error. Provide
an unsigned segment number before recompiling.
(Phase: PR02)

CBL-0367 W 	SUBPROGRAM MAY NOT BE
SEGMENTED

Explanation: Only the main program may be
segmented. The program being compiled is
assumed to be intended as a subprogram because

- the Procedure Division header contains a USING
option.

Compiler Action: None.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. If any
other program to be linked is segmented. the
program structure must be redesigned. If this is
the only segmented program to be linked. it may
be linked with its calling program without
modification. (Phase: PR02)

CBL-0368 E 	 INVALID
SYNTAX--STATEMENT
DROPPED

Explanation: The compiler was attempting to process
a conditional or arithmetic expression when an
invalid sequence of operands or operators was
encountered.

Compiler Action: The statement is ignored.

Programmer Response: Probable user error. Correct
invalid syntax before recompiling. (Phase: PR01.
PROA. PR03)

CBL-0369 W 	USE SENTENCE NOT ENDED
WITH PERIOD
SPACE- -ACCEPTED

Explanation: The USE sentence must be ended with a
period and a space.

Compiler Action: The missing period and space are
assumed.

Programmer Response: Probable user error. Ensure
that the USE sentence is followed by a period and
a space. (Phase: PR01)

A-36

CBL-0370 E 	 LOGICAL OR ARITHMETIC
EXPRESSION TOO COMPLEX

Explanation: Either a compound condition or an

arithmetic expression exceeds the compiler's

capacity for ~emporary storage.

Compiler Action: The entire statement is dropped.·

Programmer Response: Probable user error. Simplify
the statement either by separating it into two or
more statements or by removing excessive
parentheses. (Phase: PR03)

CBL-0371 C 	/name/ IS INVALID AS AN
INDICATOR DATA-ITEM

Explanation: An INDICATOR data-item must be an
elementary Boolean data-item specified without
the OCCURS clause or a group item that has
elementary Boolean data-items subordinate to it.

Compiler Action: The specified INDICATOR data-item
is accepted, but the indicator association values
generated for this WRITE statement might be
invalid.

Programmer Response: Probable user error. Ensure
that the specifiEid INDICATOR data-item is an
elementary Boolean data-item without the
OCCURS clause or is a group item, (Phase:.
PR01)

CBL-0372 E 	 REQUIRED KEYWORD
MISSING IN 'USE'
SENTENCE--SENTENCE
IGNORED

Explanation: A required keyword was missing in a
USE FOR DEBUGGING sentence.

Compiler Action: The USE FOR DEBUGGING

sentence is ignored.

Programmer Response: Probable user error. Ensure
that all required keywords are specified in the USE
FOR DEBUGGING sentence. (Phase: PR02)

CBL-0373 C 	SECTION/PARAGRAPH
PRECEDES DECLARATIVES
HEADER

Explanation: The keyword DECLARATIVES must be
written on the next line after the Procedure
Division header.

Compiler Action: The section/paragraph name is
accepted. Any reference to this section/paragraph
will produce unpredictable results.

Programmer Response: Probable user error. Ensure
that the Declaratives header immediately follows
the Procedure Division header. (Phase: PR02)

CBL-0374 C 	PROCEDURE NAME INVAUD
AFTER 'ALL
PROCEDURES' --'USE'
SENTENCE IGNORED

Explanation: When ALL PROCEDURES is specified in
a USE FOR DEBUGGING sentence, a procedure
name must not be specified in any USE FOR
DEBUGGING sentence.

Compiler Action: The USE FOR DEBUGGING

sentence is ignored.

Program Response: Probable user error. Ensure that
no procedure names are specified in any USE FOR
DEBUGGING sentence if ALL PROCEDURES is
specified on a USE FOR DEBUGGING sentence.
(Phase: PR03)

CBL-037S W INVALID SEGMENT PRIORITY
FOR DECLARATIVES
SECTION--ZERO ASSUMED

Explanation: Sections in the Declaratives must specify
a segment priority less than 50.

Compiler Actipn: A segment priority of zero is

assumed.

Programmer Response: Probable user error. If a
segment priority is specified, ensure that it is in a
valid format and a value less than 50. (Phase:
PR02)

Compiler Messages A-37

CBl-0376 C 	'USE' SENTENCE DOES NOT
FOLLOW SECTION HEADER

Explanation: In the Declaratives section of the
Procedure Division, a USE sentence must follow a
section header.

Compiler Action: None.

Programmer Response: Probable user error. Ensure
that the Section header in the Declaratives is
followed by a USE sentence. (Phase: PR02)

CBl-0377 E 	SECTION HEADER MUST
IMMEDIATELY FOLLOW 'END
DECLARATIVES'

Explanation: A section header does not immediately
follow the 'END DECLARATIVES:

Compiler Action: The first Section/Paragraph name is
used as the program entry point.

Programmer Response: Probable user error. Ensure
that a Section header follows the 'END
DECLARATIVES'. (Phase: PR02)

CBl-0378 C 	PROCEDURE /name/ IS IN THE
DECLARATIVES SECTION

Explanation: Procedure names within debugging
declarative sections must not appear in any USE
FOR DEBUGGING sentence.

Compiler Action: The procedure-name is ignored.

Programmer Response: Probable user error. Ensure
that procedure-names within debugging
declarative sections do not appear in any USE FOR
DEBUGGING sentence. (Phase: PR03)

CBl-0379 E 	'ALL PROCEDURES' INVALID
AFTER PROCEDURE
NAME--'USE' SENTENCE
IGNORED

Explanation: When ALL PROCEDURES is specified in
a USE FOR DEBUGGING sentence,
procedure.,.names must not be specified in any
USE FOR DEBUGGING sentence.

Compiler Action: The USE FOR DEBUGGING

sentence is ignored.

Programmer Response: Probable user error. Ensure
that ALL PROCEDURES is not specified in a USE
FOR DEBUGGING sentence after procedure-name
h.as been specified in A USE FOR DEBUGGING
sentence. (Phase: PR03)

A-3S

CBl-0380 C 	PROCEDURE NAME /name/
ALREADY
SPECIFIED--IGNORED

Explanation: A procedure-name may appear in only
one USE FOR DEBUGGING sentence, and it may
appear only once in that sentence.

Compiler Action: The procedure-name is ignored.

Programmer Response: Probable user error. Ensure
that a procedure-name is specified only once in
USE FOR DEBUGGING sentences. (Phase: PR03)

CBl-0382 C 	ALL OTHER DECLARATIVE
PROCEDURES MUST FOLLOW
ALL 'USE FOR DEBUGGING'
PROCEDURES--ACCEPTED

Explanation: When specified, all debugging sections
must be written immediatley after the
DECLARATIVES header.

Compiler Action: Normal processing.

Programmer Response: Probable user error. Ensure
that all debugging sections immediately follow the
DECLARATIVES header. (Phase: PR02)

L

CBl-0383 E 	PROCEDURE NAME /name/ IS
AN INVALID PROCEDURE
REFERENCE FOR THIS
SECTION

Explanation: ProcecilJre references must conform to
the following rules:

Within a Declarative procedure, there must be no
reference to any nondeclarative procedure. In the
nondeclarative portion of the program, there must
be no reference to procedure-names that appear
in an EXCEPTION/ERROR Declarative procedure,
except that PERFORM statements may refer to an
EXCEPTION/ERROR procedure or to procedures
associated with it.

Statements appearing outside the debugging
sections must not refer to procedure-names
defined within the debugging sections.

Except for the USE FOR DEBUGGING sentence
itseif, statements within a debugging declarative
section may refer to procedure-names defined in a
different USE procedure only through the

• PERFORM statement.

Compi/er Action: A null procedure reference is
generated.

Programmer Response: Probable user error. Ensure
that all procedure references conform to the above
rules. (Phase: PR03)

CBl-0384 E 	PROCEDURE-1 AND
PROCEDURE-2 NOT IN THE
SAME DECLARATIVES
SECTION

Explanation: In a PERFORM statement, when
procedure-1 THROUGH procedure-2' is specified

and either is a procedure in the declarative section
of the program, then both procedures must be in
the same declarative section.

Compi/er Action: The procedure-names are accepted.
Erroneous code may be generated.

Programmer Response: Probable user error. Ensure
that when PERFORM specifies procedure-names
contained in the declarative section of the
program, both procedure-names are in the same
declarative section. (Phase: PR03)

CBl-0385 C 	MULTIPLE 'USE' SENTENCES
FOLLOW SECTION HEADER

Explanation: Only one USE sentence should follow a
section header in the declaratives section.

Compi/er Action: If the section being processed is a
debug declarative section, all USE" sentences
except the first are ignored.

If the section being processed is an
EXCEPTION/ERROR declarative section, all USE
sentences are accepted and processed.

Programmer Response: Probable user error. Ensure
that only one USE sentences follows a section
header in the declaratives section. (Phase: PR03)

CBl-0386 E 	NO 'END DECLARATIVES'
FOUND

Explanation: A DECLARATIVES statement was found
in the source program but no END
DECLARATIVES statement was detected following
the DECLARATIVES.

Compiler Action: None. Incorrect code will be

generated.

Programmer Response: Probable user error. Ensure
an END DECLARATIVES statement exists after a
DECLARATIVES statement. (Phase: PR02)

CBl-0387 E 	 /name/ IS AN INVALID KEY IN
A SORT/MERGE STATEMENT,
KEY IGNORED

Explanation: A key defined in an ASCENDING/
DESCENDING key clause of a SORT statement
violates one of the restrictions on how it can be
defined.

Compi/er Action: The key is ignored.

Programmer Response: Probable user error.
Determine why the key is not valid and correct the
error. (Phase: PROAl

Compiler Messages A-39

L

CBl-0388 C 	TOTAL LENGTH OF
SORT/MERGE KEYS EXCEED
256 BYTES, LAST KEY(S)
IGNORED

Explanation: The compiler has a maximum of 256
bytes of storage for all keys associated with a
SORT /MERGE statement. This can include some
bytes used internally by the SORT/MERGE utility.
This SORT/MERGE statement exceeded that limit.

Compiler Action: The remaining keys from the point
at which the key length exceeded 256 are ignored.

Programmer Response: Probable user error. Reduce
the number and/or size of the keys specified for
the SORT/MERGE statement. (Phase: PROAl

CBl-0389 E 	 NO VALID
ASCENDING/DESCENDING
KEYS FOUND FOR A
SORT/MERGE STATEMENT

Explanation: The compiler could find no valid keys
specified for a SORT/MERGE statement.

Compiler Action: The compiler will generate a call to
SORT with no keys defined.

Programmer Response: Probable user error. Ensure
that there is at least one valid key specified for a
SORT/MERGE statement. (Phase: PROAl

CBl-0390 E 	SORT VERB ENCOUNTERED
WITH FILE NAMED "WORK"
DEFINED

Explanation: SORT uses a file named WORK to
perform certain functions during execution.
Because the COBOL programmer has defined a file
named WORK, SORT will attempt to use the
programmer's file during execution.

Compiler Action: The program will be generated.
Problems will occur when SORT attempts to use
the WORK file.

Programmer Response: Probable user error. Change
the name of the file from WORK to another. "valid
file name. (Phase: PR02)

CBl-0400 E 	OPEN OPTION INCOMPATIBLE
WitH FILE SPECIFICATION
FOR/name/

Explanation: The OPEN statement is invalid for the
file in question.

Compiler Action: Code is not generated for the OPEN
of this file, but it is generated for all other valid
file-names in the statement.

Programmer Response: Probable user error. Correct
invalid OPEN statement before recompiling.
(Phase: GEN1)

CBl-0401 E 	MISSING KEYWORD INPUT,
EXTEND, OUTPUT, OR 1-0 IN
OPEN STATEMENT

Explanation: One of the required keywords in the
OPEN statement has been omitted.

Compiler Action: All input elements are discarded
until one of the required keywords is found.
Normal processing continues after the keyword is
located.

Programmer Response: Probable user error. Supply
valid keyword before recompiling. (Phase: GEN1)

CBl-0403 E 	START OR DELETE
INCOMPATIBLE WITH FILE
SPECIFICATION FOR/name/

Explanation: A START statement has been issued for
a file that is not a sequentially accessed indexed or
relative file, or a DELETE statement has been
issued for a sequential file.

Compiler Action: No code is generated for the START
statement.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1)

CBl-0405 E 	 READ INCOMPATIBLE WITH
FILE SPECIFICATION
FOR/name/

Explanation: A READ statement has been issued for a
file that can only be opened for output.

Compiler Action: No code is generated for the READ
statement.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1)

A-40

L

CBL-0406 C 	 INTO OPTION INVALID FOR
MULTIPLE LOGICAL RECORDS
OF /name/ --ACCEPTED

Explanation:;he INTO option is invalid for files
containing multiple level-01 records of varying
length in the File Section.

Compiler Action: The first record description. found
for the file is used.

Programmer Response: Probable user error. Correct
invalid READ INTO statement before recompiling.
(Phase: GEN1 r

CBL-0408 E 	WRITE INCOMPATIBLE WITH
FILE SPECIFICATION
FOR/name/

Explanation: A WRITE statement has been issued for
a file described as an input file.

Compiler Action: No code is generated for the WRITE
statement.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1)

CBL-0409 E 	 /insert/INCOMPAlIBLE WITH
FILE SPECIFICATION
FOR/name/

Explanation: Printer options have been specified for a
file that is not a print file (EOP PAGE), an
ADVANCING option has been specified for a file
that is not unit-record output, or the
mnemonic-name used in the ADVANCING option
is unsuitable.

Compiler Action: No code is generated for the WRITE
statement.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
GEN1)

CBL-0410 C 	LINAGE CLAUSE NOT
SPECIFIED
FOR/name/ --END-OF-PAGE
OPTION INVALID

Explanation: An EOP option has been specified for a
file for which no LINAGE clause was specified.

Compiler Action: The EOP option is ignored. The
code intended as an EOP routine will be executed
after each WRITE.

Programmer Response: Probable user err.or. Supply
required LINAGE clause before recompiling.
(Phase: GEN1)

CBL-0411 E 	 REWRITE INCOMPATIBLE
WITH FILE SPECIFrCATION
FOR/name/

Explanation: A REWRITE statement has been issued
for a file that cannot be opened in 1-0 mode.

Compiler Action: No code is generated for the

REWRITE statement.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1)

Compiler Messages A·41

This page is intentionally left blank.

A-42

CBL-0412 W 	MORE THAN ONE USE
PROCEDURE SPECIFIED FOR
FILE/ insert/

Explanation: The file being OPENed has an implicit
USE PROCEDURE defined for INPUT, OUTPUT,
I/O or EXTEND and an explicit USE PROCEDURE
for this file.

Compiler Action:The explicit USE PROCEDURE will be
used for this file.

Programmer Response: Probable user error. If the
implicit USE PROCEDURE was desired, remove
the explicit USE PROCEDURE for this file before
recompiling. (Phase: GEN1)

CBL-0413 E 	 INVALID SECTION-NAME
SPECIFIED FOR SORT/MERGE
INPUT OR OUTPUT
PROCEDURE

Explanation: The name specified in the INPUT or
OUTPUT PROCEDURE is not a section-name.

Compiler Action: Code generation and syntax
checking are discontinued at the point where the
message was issued and are resumed at the next
statement. The completeness of generated code is
unpredictable.

Programmer Response: Probable user error. Correct
invalid section-name before re-compiling. (Phase:
GEN1)

CBL- 0414 E 	 NUMBER OF KEYS IN A SORT
OR MERGE STATEMENT
EXCEEDS 12

Explanation: A thirteenth ASCENDING/DESCENDING
key has been found.

Compiler Action: All keys beyond the twelfth are
discarded without syntax check. Code is generated
for the SORT or MERGE statement. Only the first
twelve keys are used.

Programmer Response: Probable user error. Ensure
that no more than twelve keys are specified before
recompiling. (Phase: GEN1)

CBL-0415 E 	 NUMBER OF FILES IN A SORT
OR MERGE USING CLAUSE
EXCEEDS 8

Explanation: A ninth file has been found after the
USING.

Compiler Action: All files beyond the eighth file are
discarded without syntax check. Code is generated
for the USING clause and the first eight files are
used.

Programmer Response: Probable user error. Ensure
that no more than eight files appear after USING
before recompiling. (Phase: GEN1)

CBL- 0416 W 	/name/ EXCEEDS 256
CHARACTERS--TRU NCATED
FOR COMPARISON

Explanation: The length of the identifier exceeds the
256-character limit of comparison for EXHIBIT
CHANGED.

Compiler Action: Only the leftmost 256 characters are
analyzed to determine whether the value has
changed.

Programmer Response: Check that useful information
is not being discarded by the truncation. (Phase:
GEN2)

CBL- 0418 E 	 NUMBER OF
PROCEDURE-NAMES IN GO TO
DEPENDING ON STATEMENT
EXCEEDS 99

Explanation: The number of procedure-names in the
GO TO ... DEPENDING ON statement is greater
than 99.

Compiler Action: The first 99 procedure-names are
used.

Programmer Response: Probable user error. Before
recompiling, ensure that the number of
procedure-names in the GO TO ... DEPENDING
ON statement does not exceed 99. (Phase:
GENA)

Compiler Messages A-43

L

CBl-0419 E 	 /name/AND/name/ARE IN
DIFFERENT
SEGMENTS--CANNOT ALTER

Explanation: An ALTER statement has been issued
for a GO TO statement in an independent segment
from a segment of different priority.

Compiler Action: No code is generated.

Programmer Response: Probable user error. Correct
statement for ALTER, or revis~ priority numbers
before recompiling. (Phase: GENA)

CBl- 0420 W NUMBER OF DIGITS
IN/name/EXCEEDS
4--TRUNCATED

Explanation: The PICTURE for the integer in the GO
TO ... DEPENDING ON statement has more than
the allowable number of 9s.

Compiler Action: The four low-order digits are used.

Programmer Response: Probable user error. Ensure
that the high-order positions contain no significant
digits, or specify the P.ICTURE for the identifier
again. (Phase: GENA)

CBl-0421 E 	 /name/AND/name/ARE IN
DIFFERENT
SEGMENTS--CAN NOT
PERFORM

Explanation: The PERFORM range includes segments
of unequal priority, or a PERFORM statement in an
independent segment refers to a paragraph in a
different independent segment.

Compiler Action: No code is generated.

Programmer Response: Probable user error. Correct
invalid statement. or revise priority numbers before
recompiling. (Phase: GENA)

CBl-0422 E 	 DEPTH OF VARYING EXCEEDS
3

Explanation: A third AFTER option has been found in
a PERFORM statement.

Compiler Action: The third AFTER option and the
remainder of the statement are ignored. Code is
generated for the statement up to the third
AFTER.

Programmer Response: Probable user error. Delete
third AFTER option before recompiling. (Phase:
GENA)

CBl- 0423 E 	 /insert/IS INVALID CALL
PARAMETER

Explanation: A file-name, procedure-name, keyword,
literal, or index has been found after USING.

Compiler Action: The invalid parameter is counted in
the check for maximum-15 CALL parameters, and
an address of 0000 is entered for it in the
object-time parameter list.

Programmer Response: Probable user error. Supply
valid CALL parameter before recompiling. (Phase:
GEN2)

CBl- 0424 E 	 NUMBER OF PARAMETERS IN
CALL STATEMENT EXCEEDS 15

Explanation: A sixteenth parameter has been found
following USING.

Compiler Action: All parameters beyond the fifteenth
are discarded without syntax check. Code is
generated for the CALL and for the first 15
parameters.

Programmer Response: Probable user error. Ensure
that no more than 15 parameters appear after the
USING before recompiling. (Phase: GEN2)

CBl- 0427 E 	 INVALID MOVE
STATEMENT--/name or
literal/AND/name or
literal/INCOMPATIBLE

Explanation: The sending and receiving fields in the
MOVE statement are incompatible.

Compiler Action: The MOVE is not generated.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN2)

A-44

CBL-0428 E 	 INVALID INDEX
MODIFICATION--/name or
literal/AND/name or
literal/INCOMPATIBLE

Explanation: The two operands of the SET statement
do not form a valid pair (for example, SET index
UP BY index).

Note: This message may also be issued for a
PERFORM VARYING statement, because SET is
implied when the variable is an index.

Compiler Action: The index modification in the SET or
PERFORM statement is not generated.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN2)

CBL-0429 E 	 INVALID RELATIONAL
TEST - - / name or
literal/AND/name or
literal/INCOMPATIBLE

Explanation: An invalid comparison has been made.
For instance, one of the following comparisons
may have been made: arithmetic expression with
alphanumeric data-name, literal with literal, index
data item with binary data-name, and so on.

Compiler Action: No code is generated for the
comparison, or within a compound condition, one
of the fields may arbitrarily be compared with itself
or to zero.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN3)

CBL-0430 W INVALID SIGN TEST
OF/name/--ACCEPTED

Explanation: A NEGATIVE condition has been

specified for an unsigned numeric field.

Compiler Action: The test is generated.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
GEN3)

CBL-0431 E 	 INVALID SIGN TEST
OF /name/ --IGNORED

Explanation: A sign test has been applied to a

nonnumeric field.

Compiler Action: No code is generated except within
a compound condition for which arbitrary code
may be generated.

Programmer Response: Probable user error. Ensure
that indicated element is numeric before
recompiling. (Phase: GEN3)

CBL-0432 E 	 INVALID CLASS TEST OF
/name/

Explanation: Either a numeric test has been requested
for an alphanumeric or computational field, or an
alphabetic test has been requested for a numeric
field.

Compiler Action: Code generation and syntax
checking are discontinued at the point where the
message was issued and are resumed at the next
statement (the true-condition routine). The results
are unpredictable.

Programmer Response: Probable user error. Correct
invalid specification before recompiling. (Phase:
GEN3, PR02)

CBL-0433 C 	CONDITIONAL STATEMENT
INVALID AT THIS
POINT --ACCEPTED

Explanation: A conditional statement has been found
in the same sentence as another conditional
statement.

Compiler Action: The indicated conditional statement
is accepted as written. The second· conditional
statement will be treated as nested within the first.

Programmer Response: Probable user error. Ensure
that no more than one conditional statement is
specified in a sentence before recompiling. (Phase:
GEN1)

Compiler Messages A-45

CBL-0434 E 	LOGICAL EXPRESSION TOO
COMPLEX

Explanation: Too many parentheses have been used.
The level of parentheses in a compound condition
exceeds the compiler's capacity for temporary
storage.

Compiler Action: Code generation and syntax
checking are discontinued at the point where the
message was issued and are resumed at the next
statement (the true-condition routine). The results
are unpredictable.

Programmer Response: Probable user error. Make the
compound condition a series of simple conditions
before recompiling. (Phase: GEN3)

CBL-0435 W DECIMAL ALIGNMENT CAUSES
/name or literal/ TO BE
TREATED AS ZERO

Explanation: The difference in scaling between two
numeric fields in a MOVE or arithmetic statement
is such that all significant digits of one of the two
fields are truncated.

Compiler Action: All fields are aligned on the decimal
point.

Programmer Response: Probable user error. Check
length and scaling of all elements in the statement
before recompiling. (Phase: GEN2, GEN3)

CBL-0436 W HIGH-ORDER TRUNCATION
MAY OCCUR

Explanation: Overflow of high-order digits may cause
significance to be lost. Overflow occurs when
either an intermediate result field or the final result
field is too small to hold possible computed
values. (For more information on intermediate
result fields, see Appendix D.)

Compiler Action: None.

Programmer Response: Probable user error. Ensure
that truncation will not produce incorrect results.
(Phase: GEN2, GEN3)

CBL-0437 W RESULT DOES NOT HAVE
MORE DECIMALS THAN
RECEIVINGFIELD--ROUNDING
IGNORED

Explanation: The size of a fractional result does not
exceed the number of places provided for its
storage. (For example, ADD PIC 99V9 to PIC
99V9 ROUNDED.)

Compiler Action: No rounding takes place.

Programmer Response: Probable user error. Correct
specification before recompiling. (Phase: GEN3)

CBL-0438 C 	 /insert/INVALlD--IGNORED

Explanation: An extraneous element has been found
in an otherwise valid statement.

Compiler Action: The element is dropped, and

processing continues.

Programmer Response: Probable user error. Delete
the extraneous element before recompiling.
(Phase: GEN1, GENA, GEN2, GEN3)

CBL-0439 C 	 /insert/MISSING--ASSUMED

Explanation: A required keyword has been omitted.

Compiler Action: The missing keyword is assumed to
be present.

Programmer Response: Probable user error. Supply
the required keyword before recompiling. (Phase:
GEN1, GENA, GEN2, GEN3)

CBL-0440 E 	OPTION
MISSING--STATEMENT
IGNORED

Explanation: One of several keywords is required for
a decision as to the meaning of some statements.
If such a keyword is missing, the compiler is
unable to make any assumptions.

Compiler Action: No code is generated for the

statement.

Programmer Response: Probable user error. Supply
missing option before recompiling. (Phase: GEN1,
GENA, GEN2, GEN3)

A-46

CBL-0441 E 	 /insert/EXPECTED--/insert/
FOUND--REST OF
STATEMENT IGNORED

Explanation: A source element is completely

unrecognized in the context of its statement.

Compiler Action: Code generation and syntax
checking are discontinued at the pOint where the
message is issued and are resumed at the next
statement.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1, GENA, GEN2, GEN3)

CBL-0442 E 	 /insert/INVALID RECEIVING
FIELD

Explanation: A literal, procedure-name, or file-name
has been specified as a receiving field.

Compiler Action: The data in the sending field of the
MOVE statement or the result of an arithmetic
operation 'will not be stored.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN2, GEN3)

CBL-0443 E 	 /insert/INVALID HERE--NOT
NUMERIC

Explanation: A nonnumeric field has been specified as
an operand for an arithmetic statement.

Compiler Action: Code is not generated or, in some
cases, zero is substituted for the operand.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN3)

CBL-0444 C 	 /name or literal/INVALID
HERE--NOT AN INTEGER

Explanation: An exponent used in an arithmetic
expression must be an integer. An integer is
required for the GO TO ... DEPENDING ON and
·the PERFORM ... TIMES statements. The
element specified contains one or more positions
to the right of the decimal point.

Compiler Action: The decimal positions are truncated
from the exponent. In all other cases, the
indicated element is assumed to have a value of
zero.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GENA, GEN2, GEN3)

CBL-0445 C 	NAMED CHANGED SHOULD BE
CHANGED
NAMED--ACCEPTED

Explanation: The required order in an EXHIBIT

statement is EXHIBIT [CHANGED] NAMED

identifer.

Compi/er Action: The statement is accepted.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN2)

CBL-0446 E 	 /name or literal/INVALID IN
THIS CONTEXT

Explanation: The operand does not fulfill a special
requirement for the statement in question.

Compiler Action: No code is generated.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1, GENA, GEN2, GEN3)

CBL-0447 E 	 STATEMENT INCOMPLETE

Explanation: No statement appears between a test
condition and the end of the statement (for
example, IF A = B); or a statement ends before all
required elements have been found.

Compiler Action: For an incomplete condition, the
next sequential statement is executed whether the
condition is satisfied or not. For other incomplete
statements, results are unpredictable.

Programmer Response: Probable user error. Supply
the missing statement before recompiling. (Phase:
GEN1, GENA, GEN2, GEN3)

Compiler Messages 	 A-47

L

CBL-0448 E 	 ELSE IS UNMATCHED BY
IF--IGNORED

Explanation: Each ELSE must be matched by an IF
statement.

Compiler Action: The unmatched ELSE is ignored,
and the code is generated for the statement
following the ELSE.

Programmer Response: Probable user error. Supply
the missing IF statement, or delete the unmatched
ELSE before recompiling. (Phase: GEN3)

CBL-0449 C 	NEXT SENTENCE CLAUSE
INVALID HERE--ACCEPTED

Explanation: NEXT SENTENCE follows the INVALID
KEY option or AT END.

Compiler Action: Invalid key or end of file causes a
branch to NEXT SENTENCE.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1)

CBL-0450 W 	STATEMENT WILL NOT BE
EXECUTED

Explanation: A statement follows a GO TO or STOP
RUN statement without an intervening period or
ELSE statement.

Compiler Action: Correct code is generated.

Programmer Response: Probable user error. Insert
period or ELSE where required by program logic.
(Phase: GEN1, GENA, GEN2, GEN3)

CBL-0452 E 	ASSUMING/insert/STANDS
FOR/insert/

Explanation: A source element is invalid where it
appears; however, the following element is valid.
indicating that perhaps the invalid element is the
result of a keying error.

Compiler Action: The necessary keyword is assumed.
and the erroneous element is dropped.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN1. GENA, GEN2, GEN3)

CBL-0453 C 	MAXIMUM NUMBER OF
COMPARISON OPERANDS
EXCEEDED--EXCESS IGNORED

Explanation: No more than 15 comparison operands

may be specified for REPLACING option or a

TALLYING option.

Compiler Action: All comparison operands after the

first 15 are ignored.

Programmer Response: Probable user error. Ensure

that the REPLACING option or TALLYING option

contains no more than 15 comparison operands

before recompiling. (Phase: GEN2)

CBL-0454 E 	OPEN OPTION INCOMPATIBLE
WITH RESERVE CLAUSE
FOR/file-name/ --IGNORED

Explanation: OPEN 1-0 or INPUT may not be issued

for an indexed sequential file that is specified with

RESERVE 2 AREAS.

Compiler Action: The OPEN for the specified file is

ignored.

Programmer Response: Probable user error. Delete

the RESERVE clause from the file specification

before recompiling. (Phase: GEN1)

CBL-0456 E 	 NAME OR LITERAL MISSING
BEFORE/insert/

Explanation: A keyword has been found where only

an operand would be valid.

Compiler Action: Syntax checking continues as if a

valid operand had been found. but either no code

or arbitrary code is generated for the statement in

error. Results are unpredictable.

Programmer Response: Probable user error. Correct

invalid statement before recompiling. (Phase:

GEN1. GENA, GEN2. GEN3)

CBL-0457 E 	 INVALID TRANSACTION FILE
TERMINAL 10 LENGTH OR
TYPE

Explanation: The terminal ID must be two characters

in length; a data name specified as a terminal ID

must be alphanumeric; a literal specified as a

terminal ID must be nonnumeric.

Compiler Action: The entire statement is ignored.

Programmer Response: Probable user error. correct. ''~
the item before recompiling. (Phase: GEN1) ...,

A-48

CB.L- 0458 E 	 /insert/ IS NOT DEFINED AS A
TRANSACTION FILE

Explanation: The file name specified on the ACQUIRE
or DROP statement is not defined as a
TRANSACTION file.

Compiler Action: The entire statement is ignored.

Programmer Response: Probable user error. Correct
the invalid file specification before recompiling.
(Phase: GEN1)

CBL- 0459 E 	 PRECEDING ELSE PHRASE
INCOMPLETE-NEXT SENTENCE
ASSUMED

Explanation: ELSE option does not contain a valid
verb.

Compiler Action: Code for NEXT SENTENCE is

generated.

Programmer Response: Correct the invalid ELSE
option before recompiling. (Phase: GEN3)

CBL.... 0460 E 	 MORE THAN 15 DELIMITERS
SPECIFIED--/name or
literal/IGNORED

Explanation: More than 15 delimiters are specified for
an UNSTRING statement.

Compiler Action: All delimiters beyond the fifteenth
are discarded without syntax check. Code is
generated for the UNSTRING with the first 15
delimiters.

Programmer Response: Probable user error. Ensure
that no more than 15 delimiters are specified for
the UNSTRING statement before recompiling.
(Phase: GEN2)

CBL-0461 E 	 'DELIMITER IN' IS NOT VALID
UNLESS 'DELIMITED BY' IS
SPECIFIED--/name or
literal/IGNORED

Explanation: DELIMITER IN phrase is specified

without the DELIMITED BY phrase for an

UNSTRING statement.

Compiler Action: The DELIMITER IN phrase is
discarded without syntax check. Code is generated
for the UNSTRING statement without the
DELIMITER IN phrase.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN2)

CBL- 0462 E 	 'COUNT IN' IS NOT VALID
UNLESS 'DELIMITED BY' IS
SPECIFIED--/name or
literal/IGNORED

Explanation: COUNT IN phrase is specified without
the DELIMITED BY phrase for an UNSTRING
statement.

Compiler Action: The COUNT IN phrase is discarded
without syntax check. Code is generated for the
UNSTRING statement without the COUNT IN
phrase.

Programmer Response: Probable user error. Correct
invalid statement before recompiling. (Phase:
GEN2)

CBL- 0463 C 	 DELIMITER /name or literal/
EXCEEDS 1
CHARACTER--TRUNCATED

Explanation: For INSPECT REPLACING'
CHARACTERS, the size of a delimiter is limited to
one character.

Compiler Action: The leftmost character of the

delimiter is used.

Programmer Response: Reduce size of delimiter
before r-ecompiling. (Phase: GEN2)

Compiler Messages A-49

CBL- 0464 E 	 REPLACING STRING /name or
literal/ SMALLER THAN
REPLACEMENT STRING

Explanation: In an INSPECT statement, the length of
a string to replace exceeds the length of the
replacing string.

Compiler Action: Code generation is discontinued but
syntax checking continues for this statement.

Programmer Response: Probable user error. Correct
size of strings so that they match. (Phase: GEN2)

CBL- 0465 C 	 REPLACING STRING /name or
literal/ LARGER THAN
REPLACEMENT
STRING--TRUNCATED

Explanation: In an INSPECT statement, the length of
a replacement string is exceeded by the length of
the replacing string.

Compiler Action: The replacing string is truncated on
the right to match the size of the replacement
string.

Programmer Response: Probable user error. Correct
size of strings so that they match. (Phase: GEN2)

CBL- 0466 C 	 TERMINAL ID INVALlD--FOR
CLAUSE IGNORED

Explanation: The terminal 10 specified on an ACCEPT
or OISPLA Y statement must be a two-character
alphanumeric field.

Compiler Action: The FOR clause is ignored.

Programmer Response: Probable user error. Correct
the invalid terminal 10 before recompiling. (Phase:
GENA)

CBL- 0467 C 	 BOOLEAN COMPARISON MUST
BE EQUAL OR NOT
EQUAL--EQUAL ASSUMED

Explanation: The relation operator for a relation
condition involving Boolean data must be equal or
not equal.

Compiler Action: The test is generated with equal
assumed.

Programmer Response: Probable user error. Correct
the relation operator before recompiling. (Phase:
GEN3)

CBL- 0468 E 	 INVALID FORMAT NAME
SPECIFIED FOR A
TRANSACTION FILE WRITE

Explanation: The FORMAT NAME must not be
greater than eight characters; a data name
specified as the FORMAT NAME must be
alphanumeric; a literal specified as the FORMAT
NAME must be nonnumeric.

Compiler Action: The entire statement is ignored.

Programmer ResponSe: Probable user error. Correct
the invalid item before recompiling. (Phase:
GEN1)

CBL- 0469 E 	 INCORRECT LINE/LINES
SPECIFIED FOR STARTING/
ROLLING/UP/DOWN CLAUSE

Explanation: The data name specified for lines must
be defined as an elementary numeric item; the
literal specified for lines must a numeric item.

Compiler Action: The entire statement is ignored.

Programmer Response: Probable user error. Correct
invalid item before recompiling. (Phase: GEN1)

CBL- 0470 E 	 INVALID SYSTEM-NAME IN
ASSIGN CLAUSE FOR S/34
COBOL--FILE IGNORED

Explanation: The system-name specified in the

SELECT clause is a nonsupported device on

System/34 COBOL.

Compiler Action: The file is ignored.

Programmer Response: Remove all references to the
invalid device before recompiling. (Phase: OTA2)

CBL-0472 W 	/option/ OPTION NOT
SUPPORTED FOR S/34
COBOL--OPTION IGNORED

Explanation: The option specified on this COBOL
statement is not supported by System/34 COBOL.

Compiler Action: The option is ignored.

Programmer Response: Remove option before

recompiling. (Phase: TEXT)

A-50

CBL- 0473 W 	LIBRARY NAME INVALID OR
LIBRARY NOT
FOUND--LlBRARY IGNORED

Explanation: The library name specified with the
OBJECT, LINK, or SUBLIB parameter of the
PROCESS statement is invalid. The library name
specified with the LIBRARY parameter on the
PROCESS statement is invalid or cannot be
located.

Compiler Action: The option specified on the

PROCESS statement is ignored.

Programmer Response: Correct the invalid name
specified before recompiling the job. (Phase:
COPY)

CBL- 0474 C 	 KEYWORD /keyword/ INVALID
IN THIS DIVISION--IGNORED

Explanation: A keyword has been found in the wrong
division.

Compiler Action: The keyword is ignored.

Programmer Response: Remove keyword before
recompiling. (Phase: TEXT)

CBL- 0475 C 	 EXTRANEOUS DATA ON THE
USE STATEMENT--REST OF
STATEMENT IGNORED

Explanation: Additional text was found on the USE
statement.

Compiler Action: The additional text on the remainder
.of the USE statement is ignored.

Programmer Response: Remove the extraneous data
before recompiling. (Phase: TEXn

CBL- 0476 C 	 DECLARATIVES
MISSING--STATEMENT
IGNORED

Explanation: A declarative sentence (USE statement)
was found without a preceding DECLARATIVE
statement.

Compiler Action: The statement is ignored.

Programmer Response: Place the USE statement and
procedure after a DECLARATIVES statement.
(Phase: TEXT)

CBL- 0477 C 	 DECLARATIVES OR END
DECLARATIVES HAS ALREADY
BEEN
PROCESSED--STATEMENT
IGNORED

Explanation: Another DECLARATIVES statement has
been detected.

Compiler Action: The DECLARA TIVES statement is
ignored.

Programmer Response: Remove th DECLARATIVES
statement before recompiling. (Phase: TEXn

CBL- 0478 C 	 NO DECLARATIVES
SECTION--END DECLARATIVES
IGNORED'

Explanation: An END DECLARATIVES statement has
been found without a matching DECLARATIVES
statement.

Compiler Action: The END DECLARATIVES statement
is ignored.

Programmer Response: Remove the END

DECLARATIVES or supply the missing

DECLARATIVES statement. (Phase: TEXn

CBL-0479 E 	 COpy NOT ALLOWED SINCE
NOLIB
I NDICATED--STATEMENT
IGNORED

Explanation: The NOLIB process option was specified
which implies that COPY statements were not
going to be used by this program.

Compiler action: The COPY statement is ignored.

Program Response: Remove the COpy statement
from the program or remove the NOLIB option
from the PROCESS option statement. (Phase:
COPY, TEXT)

CBl-0480 E 	 INVALID IDENTIFIER IN COpy
STATEMENT--COPY IGNORED

Explanation: Invalid identifier found in COpy

statement with REPLACING clause.

Compiler Action: The COpy statement is ignored.

Programmer Response: Correct the identifier used in
the REPLACING clause of the COPY statement.
(Phase: COPY)

Compiler Messages A-51

CBL- 0481 E 	 INVALID WORD IN COPY
STATEMENT--COPY IGNORED

Explanation: Invalid word found in COPY statement
with REPLACING clause.

Compiler Action: The COpy statement is ignored.

Programmer Response: Correct the word used in the
REPLACING clause of the COpy statement.
(Phase: COPY)

CBL- 0482 E 	 INCOMPLETE IDENTIFIER OR
PSEUDO-TEXT IN COpy
STATEMENT--COPY IGNORED

Explanation: The identifier or pseudo-text in the
REPLACING clause of a COpy statement was
incomplete.

Compiler Action: The COpy statement is ignored.

Programmer Response: Correct the identifier or
pseudo-text in the REPLACING clause of the
COPY statement before recompiling. (Phase:
COpy)

CBL- 0483 E 	 INCOMPLETE COpy
STATEMENT--COPY IGNORED

Explanation: The COPY statement was not complete.

Compiler Action: The COpy statement is ignored.

Programmer Response: Complete the COpy
statement before recompiling. (Phase: COPY)

CBL- 0484 E 	 OVERFLOW OF REPLACING
TABLE--COPY IGNORED

Explanation: The REPLACING table was full; unable
to process the REPLACING clause.

Compiler action: The COpy statement is ignored.

Programmer Response: Increase the region size for
the compiler by using a REGION OCl statement
before recompiling. (Phase: COpy)

CBL- 0485 E 	 EXPECTING 'BY' IN THE COPY
STATEMENT--COPY IGNORED

Explanation: Keyword 'BY' was not found in the
REPLACING clause of the COPY statement.

Compiler Action: The COpy statement is ignored.

Programmer Response: Add the keyword 'SY' to the
REPLACING clause before recompiling. (Phase:
COPY)

CBL- 0486 E 	 PSEUDO-TEXT-1 IS NULL IN
THE COPY STATEMENT--COPY
IGNORED

Explanation: Pseudo-text-1 in the REPLACING clause
of the COpy statement was null. No replacement
could be performed.

Compiler Action: The COpy statement is ignored.

Programmer Response: Correct the pseudo-text-1 in
the REPLACING clause of the COPY statement
before recompiling. (Phase: COPY)

CBL- 0487 E 	 AN ENDING DELIMITER IN THE
COpy STATEMENT IS NOT
FOLLOWED BY A VALID
SEPARATOR--COPY IGNORED

Explanation: A valid separator does not follow the
ending delimeter of pseudo-text in the
REPLACING clause of the COPY statement.

Compiler Action: The COpy statement is ignored.

Programmer Response: Correct the REPLACING
clause of the COpy statement by adding a valid
separator before recompiling. (Phase: COPY)

CBL- 0488 E 	 INVALID ITEM IN AREA A OF
THE COPY STATEMENT--COPY
IGNORED

Explanation: Invalid clauses of the COpy statement
were found starting in area A of the COBOL
statement.

Compiler Action: The COpy statement is ignored.

Programmer Response: Correct the COpy statement
by moving the clauses into area B before
recompiling. (Phase: COPY)

A·52

CBL-0489 E 	 INVALID USE OF COMMA OR
SEMICOLON IN COpy
STATEMENT--COPYIGNORED

Explanation: A comma or semicolon was found in an
unexpected place in a COpy statement with
REPLACING clause.

Compiler Action: The COPY statement is ignored.

Programmer Response: Remove the invalid comma or
semicolon in the COpy statement before
recompiling. (Phase: COpy)

CBL-0490 W DEBUGGING LINES INVALID
WITHIN
PSEUDO-TEXT-1--LlNE
IGNORED

Explanation: A debugging line was found in
pseudo-text-1 of the REPLACING clause of the
COpy statement.

Compiler Action: The debugging line is ignored and
the COPY with REPLACING is performed.

Programmer Response: Remove the debugging line
from pseudo-text-1 in the REPLACING clause of
the COpy statement before recompiling. (Phase:
COpy)

CBL-0491 W OVERFLOW IN COMMENT
BUFFER

Explanation: The maximum of eight comment
statements were exceeded in a text-name being
copied into the COBOL program.

Compiler Action: Stop copying comment statements
from text-name into the COBOL program.

Programmer Response: Remove some of the
comments fr.om text-name before recompiling.
(Phase: COpy)

CBL-0495 C 	A QUOTE/APOSTROPHE MUST
BE THE FIRST ELEMENT OF A
NON-NUMERIC LITERAL

Explanation: A nonnumeric literal was preceded by a
character other than a B for a Boolean literal.

Compiler Action: The literal is not processed by the
compiler.

Programmer Response: Probable user error. Correct
the character string so it is a valid COBOL literal
before recompiling. (Phases: COpy, TEXT)

CBL-0496 E 	 INVALID BOOLEAN
LlTERAL--LlTERAL IGNORED

Explanation: A Boolean literal contained a numeric
other than zero (0) or one (1).

Compiler Action: The Boolean literal is not processed
by the compiler.

Programmer Response: Probable user error. Correct
the character string so that it is a valid COBOL
Boolean literal before recompiling. (Phase: TEXT)

CBL-0500 W WARNING-- /phrase/IS/level/
WHICH EXCEEDS THE FIPS
LEVEL SPECIFIED

Explanation: The phrase is a higher level than
specified on the LVL parameter of the PROCESS
statement. The level of the indicated phrase is
given by the level insert.

Compiler Action: Processing continues.

Programmer Response: If the program must be run
with the level of support specified on the
PROCESS statement, remove the indicated feature
from the program.

CBL-0999 E 	 FATAL COMPILER ERROR

Explanation: A disruptive error has occurred in the
COBOL compiler.

Compiler Action: Compilation is discontinued.

Programmer Response: If this error continues to

occur, contact your program support

representative. (Phase: GEN1, GENA, GEN2,

GEN3)

The following error messages are both printed on the
compile listing and displayed on either the user's work
station (if a work station is attached to the job) or the
system operator's console (if a work station is not
attached to the job). The formatted messages will
appear with a message 10 of CBL- preceding the
messages. These messages all appear with only a
2-option available upon display, unless specifically noted
as otherwise.

Compiler Messages A·53

CBl-IOOO 	 COBOL COMPILER PHASE NOT
FOUND

Explanation: The COBOL compiler was unable to find
and load one of the COBOL compiler phases.

Operator Response: Install the COBOL Program
Product again and rerUn the job. If the problem
persists, contact IBM for programming support.

CBl-IOOI 	 NO DATA OR PROCEDURE
DIVISION FOUND

Explanation: The Procedure or Data Division was not
found while compiling a COBOL program.

Operator Response: Select option 2.

CBl-I003 	 MORE THAN 65,535
STATEMENTS IN PROGRAM

Explanation: The COBOL compiler has detected that
the program contains more than 65535
statements.

Operator Response: Select option 2.

CBl-I004 	COPIED SOURCE MEMBER NOT
FOUND IN LIBRARY

Explanation: The COBOL compiler attempted to copy
a source member into the current source member
being processed. However, the source member to
be copied could not be found in the designated
library.

Operator Response: Select option 2.

CBl-IOOS 	 MORE THAN 32,767 ENTRIES IN
NAME TABLE

Explanation: The COBOL compiler has detected that
the name table contains more than 32767 entries.

Operator Response: Select option 2.

CBl-I006 	OBJECT PROGRAM EXCEEDS
65,535 BYTES

Explanation: The COBOL compiler has determined
that the object program will exceed 65535 bytes.

Operator Response: Select option 2.

CBl-I007 	PERMANENT ERROR READING
PROGRAM SOURCE

Explanation: The COBOL compiler has detected a
permanent I/O error while processing the input
source member.

Operator Response: Select option 2.

CBl-I008 	PERMANENT I/O ERROR ON
PRINTER FILE

Explanation: The COBOL compiler has detected a
permanent I/O error while printing the compiler
output listing.

Operator Response: Select option 2.

CBl-I009 	PERMANENT DISK I/O ERROR

Explanation: The 90BOl compiler has detected a
permanent I/O error on a COBOL compiler disk
work file.

Operator· Response: Select option 2.

CBl-IOIO 	 INSUFFICIENT STORAGE FOR
COMPILATION

Explanation: There is insufficient storage to compile a
COBOL program. A REGION OCl statement can
be used to make more storage available.

Operator Response: Select option 2.

CBl-IOII 	 INSUFFICIENT SPACE IN $WORK
DISK FILE

Explanation: There is insufficient space in the $WORK
disk file to compile your COBOL program.

Operator RespOnse: Select option 2.

Programmer Response: Specify more blocks in the
COMPilE OCl statement or in the COBOL,
COBOlP, or COBOlCG procedure statements.

CBl-IOI2 	 INSUFFICIENT SPACE IN
$SOURCE DISK FILE

Explanation: There is insufficient space in the

$SOURCE disk file to compile your COBOL

program.

Operator Response: Select option 2.

Programmer Response: Specify more blocks in the
COMPilE OCl statement or in the COBOL,
COBOlP, or COBOlCG procedure statements.

A-54

L

CBl-IOI3 	 INSUFFICIENT SPACE IN
$WORK2 DISK FILE

Explanation: There is insufficient space in the
$WORK2 disk file to compile your COBOL
program.

Operator Response: Select option 2.

Programmer Response: Specify more blocks in the
COMPILE OCL statement, or in the COBOL,
COBOLP, or COBOLCG procedure statements.

CBl-IOI4 	 INSUFFICIENT SPACE IN
$WORK3 DISK FILE

Explanation: There is insufficient space in the
$WORK3 disk file to compile your COBOL
program.

Operator Response: Select option 2.

Programmer Response: Specify more blocks in the
COMPILE'OCL statement, or in the COBOL,
COBOLP, or COBOLCG procedure statements.

CBl-IOIS 	 INSUFFICIENT STORAGE FOR
XREF PROCESSING

Explanation: Storage was insufficient to process a tag
table or a reference table completely.

Compiler Action: The compilation has been
terminated.

Programmer Response: Remove the XREF process
option and recompile or specify a larger REGION
size and recompile.

CBl-IOI6 	SUBPROGRAM NAME TABLE
EXCEEDS 20 NAMES

Explanation: The COBOL compiler has detected that
the subprogram name table exceeds 20
subprogram names.

Operator Response: Select option 2.

CBl-IOl7 	PATCH STACK EXCEEDED IN OBJ
PHASE

Explanation: The number of unresolved patch
references and definitions has exceeded the size of
the patch stack. This condition can result from a
lengthy, complex IF statement.

Compiler Action:
Option 2 - The job step is ended. Any new data

created to this point is preserved and
the job can continue with the next job
step.

Programmer Response: If the condition is due to a
lengthy, complex IF statement,. simplifying this IF
statement can eliminate this error. (Phase: OBJ)

CBl-IOI9 	C OR E LEVEL DIAGNOSTICS
DETECTED

Explanation: Error messages that are either C-Ievel
(conditional) or E-Ievel (error) have been issued
and the LET option has not been specified on the
PROCESS statement.

Compiler Action:
Option 0 - Processing continues. The generated

module is passed to the overlay linkage
editor. However, the overlay linkage
editor may not be able to link the
program properly.

Option 2 - The job step is ended. Any new data
created to this is preserved and the job
can continue with the next job step.

Programmer Response: Correct all C-Ievel and

E-Ievel errors.

CBl-I020 	END OF COMPILATION

Explanation: This message is printed on the compiler
output listing when the COBOL compiler has
finished processing. This message is informational
and does not require a response.

Programmer Response: No action is required.

Compiler Messages A-55

L

CBL-I021 INSUFFICIENT STORAGE TO
PROCESS ALL XREF NAMES

Explanation: Insufficient storage to enter all names
into the sorted cross-reference listing.

Compiler Action:
Option 0 - Cross-reference processing is

completed, but not all names will be
listed, and the compilation continues.

Option 1 - Cross-reference processing is
terminated with no listing, and the
compilation continues.

Option 2 - The compilation is terminated, and
message CBL-1015 is logged.

Option 3 - Entire job is terminated.

Programmer Response: Specify a larger REGION size
and then recompile.

CBL-I022 INSUFFICIENT STORAGE TO
PROCESS ALL XREF REFERENCES

Explanation: Insufficient storage to enter all references
into the sorted cross-reference listing.

Compiler Action:
Option 0 - Cross-reference processing is

completed but not all names will have
a complete set of references.
Compilation continues.

Option 1 - Cross-reference processing is
terminated with no listing, and the
compilation continues.

Option 2 - The compilation is terminated and
message CBL-1015 is logged.

Option 3 - Entire job is terminated.

Programmer Response: Specify a larger REGION size
and then recompile.

CBL-I099 UNKNOWN TERMINAL COMPILER
ERROR

Explanation: This message is printed on the compiler
output listing as shown. However, when the
message is displayed, the message prefix is
replaced with "ERRnn -", where nn is the error
number.

Programmer Response: Select option 2, and record
the value of nn for your program support
representative.

COBOL DISPLAYED MESSAGES

COBOL messages that are displayed at a display station
(COBOL object-time messages and displayed compiler
messages) are not described in this manual. For
information on COBOL displayed messages, see the
Displayed Messages Guide.

A·56

Special purpose subroutines are provided to allow you
to utilize special features of the System/34. These
routines are as follows:

• 	 CBMICR, CBMICO, CBEMCR, and CBEMCO
- Read document information, using the 1255 MICR

• 	 CBSTOP
- Interrogates system shutdown status

1255 MAGNETIC INK CHARACTER READER (MICR)
INTERFACE

The COBOL 1255 MICR interface subroutines provide
the user with a method of accessing document
information read by the 1255 MICR. The CBMICR and
CBMICO subroutines provide a function equivalent to
that found in SUBR08. The CBEMCR and CBEMCO
subroutines provide a function equivalent to that found
in SUBR25.

These subroutines provide two ways to process
document information:

1. 	 SUBROB
System and stacker specifications describe the
job to be done by the 1255.

2. 	 SUBR25
A device control language (DCl) program
describes the job to be done by the 1255. The
SUBR25 parameter list is the data management
interface between SUBR25 and the DCl
program. The parameter list takes the place of
the system and stacker specifications in the
COBOL program. The DCl program is a
separate program that runs in the attachment
I/O controller for the 1255.

Appendix B. Special Purpose Subroutines

The 1255 Magnetic Character Reader Reference Manual
contains a description of the following:

• 	 SUBR08 and SUBR25

• 	 System and stacker specifications

• 	 SUBR25 Parameter List and Device Control language
program

• 	 Input record format

The subroutines provide both an open and a read
function. A call to an open subroutine (CBMICO or
CBEMCO) is required before records can be read. When
a call to a read subroutine (CBMICR or CBEMCR)
returns an end-of-file condition, no more records can be
read until a second open call has been executed.
Formats of the subroutine calls are as follows:

• 	 CAll 'CBEMCO' USING data-name-1

• 	 CAll 'CBMICO' USING data-name-1

• 	 CALL 'CBEMCR' USING data-name-2

• 	 CAll 'CBMICR' USING data-name-2

Data-name-1 must refer to a structure having the

folrowing format:

01 	 Data-name-1.
02 Data-name-a PIC 9.
02 Data-name-b PIC 9(4) USAGE IS COMP-4.

VALUE IS integer-1.

02 Data-name-c PIC 9(4) USAGE IS COMP-4.

VALUE IS integer-2.

02 Data-name-d PIC 9(3) USAGE IS COMP-4.

VALUE IS integer-3.
02 Data-name-e PIC X (integer-2).
02 Data-name-f.
02 Data-name-g PIC XX VALUE IS

HIGH-VALUE.

Special Purpose Subroutines 8-1

L

Data-name-a is the return code following each read
operation. Return code values and meanings are:

o- Successful completion

1 - End-of-file condition

3 - Permanent error

Data-name-b is the length of the system and stacker
specifications or SUBR25 parameter list array (contained
in Data-name-f). Integer-1 must be equal to or be a
multiple of the number SO.

Data-name-c is the length of the input buffer (contained
in Data-name-e). Integer-2 must be eight larger than the
desired buffer size in bytes to allow for System/34
boundary alignment. The buffer must be at least large
enough to accommodate ten records.

Data-name-d is the length of the input record. When
this data structure is used with CBMICO. the length
must be 55 bytes and is provided only for proper
spacing of data.

Data-name-e is the input buffer. It must include eight
additional positions for boundary alignment. The size
must agree with the value coded in Data-name-c. No
user references should be made to Data-name-e.

Data-name-f is the system and stacker specifications or
SUBR25 parameter list array. The size of the array must
agree with the value coded in Data-name-b. For a
discussion of the array contents. refer to the 1255
Magnetic Character Reader Reference Manual. Use the
SUBR08 system and stacker specification format for
CBMICO. and use the SUBR25 parameter list format for
CBEMCO.

Data-name-g is the delimiter used by the open

subroutine to check the accuracy of the structure. If
your program contains a variable number of stacker
specifications. be sure to move this field to the position
following the last specification and place the proper
value in Data-name-b before calling the open subroutine.

Data-name-2 is the logical record area into which the
read subroutine places one input record each time the
subroutine is called. The length must be at least 55
bytes for CBMICR and it must not be less than the
value in Data-name-d for CBEMCR. Figure B-1
illustrates the format of the standard 55-character input
record for CBMICR. The input record format for
CBEMCR is user-defined.

B-2

Indicator Stacker User Type Field Serial Transit Account Process Amount
Number Data Validity Number Routing Number Control

Indicators
I I I l I I I I , I

I I I I • r , I.. ;f--
Positions 1 2 3 4 5 9 10 19 20 28 29 38 39 44 45 55

Figure 8-1. Format of the Input Record

SHUTDOWN STATUS TEST

The CBSTOP subroutine is used to determine whether
the system operator has requested system shutdown.
This subroutine is called by the COBOL statement:

CALL 'CBSTOP' USING identifier

where identifier is a one-character numeric item defined
in the Working-Storage or Linkage section of the calling
program. Upon return from CBSTOP, the identifier will
c(~mtain one of the foilowing values:

o- Shutdown has not been requested.

1 - Shutdown has been requested.

Special Purpose Subroutines 8-3

8-4

Appendix C. Language Summary and Comparison

ASSUMPTIONS FOR SYSTEM/34 COBOL 2. A large selection of elements from higher level
LANGUAGE ANS modules are provided, as well as existing and

new IBM extensions. System/3 COBOL and
1. 	 The Low-Intermediate FIPS level of ANS 1974 System/34 COBOL support requirements are used

COBOL is supported, with the exception of to complete this selection. Elements supported
restrictions noted under Indexed and Relative File appear under the column System/34 in the
Contents in Chapter 8. This level requires the Summary of System/34 COBOL LanglJage.
following. processing modules: 1NUC, 1TBL,
1SEQ, 1REL, 1SEG, 1LIB, 1DEB, 1IPC. 3. As required by FIPS, a mechanism is provided for

flagging elements that are not in a given FIPS
Summary of the Four Levels of FIPS COBOL level.

LOW L/I H/I HIGH 4. Compiler options are those provided by System/3
1 2 2 NUC-Nucleus COBOL and System/34 PRPQ COBOL, as well as
1 1 2 2 TBL-Table Handling options for the following:
1 1 2 2 SEQ-Sequential I/O

2 	 2 REL-Relative I/O • Cross-reference listing
2 INX-Indexed I/O
2 SRT-Sort-Merge • Syntax-check only compile (no code generation)

RPW-Report Writer
1 1 2 SEG-Segmentation • Identification of statements that should not be
1 1 2 LI B-Library included for FIPS level adherence

2 2 DEB-Debug

2 2 I PC-Inter- Program

Communication

1 2 2 COM-Communication

Legend:

L/I Low-Intermediate

H/I = High-Intermediate

= Not included in the referenced level

1 = The processing module must be.

implemented at ANS level 1

2 = The processing module must be

implemented at ANS level 2

Language Summary and Comparison C-1

L

SUMMARY OF SYSTEM/34 COBOL LANGUAGE Codes tor Columns

The following description explains the headings and
codes used in the summary of System/34 COBOL
processing modules that appears on the following
pages.

Column Headings

ANS 1 	 1974 ANS COBOL standard, level 1 of
those modules considered for inclusion
in System/34 COBOL

ANS 2 	 1974 ANS COBOL standard, level 2 of
those modules considered for inclusion
in System/34 COBOL

S/3 = 	 System/3 COBOL and System/34
PRPQ COBOL language (ANSI 1968
Standard)

S/34 	 System/34 COBOL language

x 	 Element is allowed (additional notes may
apply)

Element is not allowed

a,b,c, ... 	 Indicated parenthetical note follows

1 	 Allowed, but treated as comments

2 	 Allowed, but with restrictions

3 	 System/3 compiler gives a diagnostic,
but gives proper result

4 	 System/3 compiler supports the same
function, but via different syntax

5 	 ANS 1974 standard indicates this is
partly implementor-defined, or it is
dependent on specific hardware
components

6 	 Allowed, but IBM-defined limits exist (in
accordance with note 5)

7 	 System/3 compiler diagnoses this as an
error

8 	 System/3 compiler does not allow this
to be omitted; if it is omitted, System/3
compiler gives a diagnostic but recovers
according to 1974 ANS COBOL rules

C-2

Summary of Elements in the Nucleus

ANS 1 ANS 2 S/3 S/34 Elements

LANGUAGE CONCEPTS

Character Set

X X X X · Characters used for words: o through 9 and A through Z - (hyphen)

· Characters used in punctuation:

X X X X Space (), equal sign (=), and quote (")

X X X comma and semicolon

X X apostrophe instead of quote (**IBM Extension**)

· Characters used in editing:

X X X X B+- .• Z*$

X X X X o CR DB

X X X /

X X X Characters used in arithmetic operations: + - * / **·
X X X · Characters used in relation conditions: = > <

Separators

X X X · Semicolon and comma

X X X X • Quote ("), period (.), and space ().

Character-strings

· COBOL words

X X X X Words up to 30 characters are supported
·

· User-defined words

X X X X · Data-name

X X X Data-name need not begin with an alpha character ·

X X X X · Level-number

X X X X · Mnemonic-name

X X X X · Paragraph-name

X X X X Program-name
·

X X X X · Routine-name

X X X X · Section-name

X X X · Condition-name

· System-names

X X X X · Computer- name

X X X X · Implementor-name

X X X X Language-name
· · Reserved words

X X X X Key words
·
X X X X Optional words·

Language Summary and Comparison C-3

L

Summary of Elements in the Nucleus (Continued)

ANS 1 	 ANS2 S/3 S/34 Elements

·
Figurative constants:

X 	 X X X ZERO, SPACE

X X X ZEROS, ZEROES, SPACES

X 	 X X X HIGH-VALUE, LOW-VALUE, QUOTE

X X X HIGH-VALUES, LOW-VALUES, QUOTES, ALL literal

X X X Special-character words:·
Arithmetic operators and relational operators

· Connectives

X X X · Qualifier connectives: OF, IN

X X X · Series connectives:

, (separator comma) ; (separator semicolon)

X X X · Logical connectives: AND, OR. AND NOT, OR NOT

X Special register: TALLY (**ANS 1968**)
· · Literals

X X X X · Numeric literals: 1 to 18 digits

X X X X · Nonnumeric literals: 1 to 120 characters

X X X X PICTURE character strings ·
X 	 X X X · Comment-entries

Qualification Rules

X 	 X X X Unqualified references to unique names ·
X 	 X X Qualified references to nonunique names ..J·
X 	 X X Data-names, paragraph-names, condition-names ·
X 	 X · Text-names

Reference Format

X 	 X X X Sequence number · · Continuation of lines

X X X X · Nonnumeric literals

X X X · Words and numeric literals

· Comment lines

X X X X · Asterisk (*) comment line

X ~ X X · Stroke (/) comment line

IDENTIFICATION DIVISION

X X X X · PROGRAM-ID paragraph

X X X X AUTHOR paragraph ·
X 	 X X X INSTALLATION paragraph ·
X 	 X X X DATE-WRITTEN paragraph ·

X 	 X DATE-COMPILED paragraph ·
X 	 X X X · SECURITY paragraph

X REMARKS paragraph (**ANS 1968**)·

Summary of Elements in the Nucleus (Continued)

ANS 1 ANS 2 S/3 S/34

X X X X

X X X X

X5 X5 X X

X5 X5 X X

X X X

X X X X

X X X

X X X

X X X

X5 X5 X

X X

X X X X

X X X X

X5 X5 X X

X X
X-

X

X X

X X X X

X X X X

X
X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X

X X

X X X X

X X X

X X X X

Elements

ENVIRONMENT DIVISION

Configuration Section

· SOURCE-COMPUTER paragraph

· OBJECT -COMPUTER paragraph,

· Computer- name

· MEMORY SiZE clause

• PROGRAM COLLATING SEQUENCE clause

· SPECIAL-NAMES paragraph

· Alphabet-name clause

· STANDARD-l option

· NATIVE option

· Implementor-name option

· Literal option

· CURRENCY SIGN clause

· DECIMAL-POINT clause

· Implementor-name IS mnemonic-name

· ·
· IBM allows Cal, CSP,

IBM allows CONSOLE

IBM allows REQUESTOR, SYSTEM-CONSOLE

· IBM allows UPSI-O through UPSI-7

· ON STATUS IS condition-name

• OFF STATUS IS condition name

· IBM allows LOCAL-DATA, ATTRIBUTE-DATA, SYSTEM-SHUTDOWN

· Implementor-name series

DATA DIVISION

Working-Storage Section

· Data description entry

· BLANK WHEN ZERO clause

· Data-name or FILLER clause

· JUSTIFIED (Or JUST) clause

· Level-number

· Valid (logical) values

· 01 through 10

11 through 49
·
66 (RENAMES)·

· 77

· 88

· Valid (physical) appearance

· Two digits supported O,e. 01, 02, ...)

X X X One-digit abbreviation supported (i.e., 1, 2, ... 9)·
Language Summary and Comparison C-5

Summary of Elements in the Nucleus (Continued) "

ANS 1 ANS 2 S/3 S/34 Elements

X X X X · PICTURE (or PIC) clause

X X X X · Character-string may contain 30 characters

X X X X · Data characters: X 9

X X X X · Data character: A

X X X X · Operational symbol: S

X X X X · Operational symbol: V

X X X X · Operational symbol: P

· Fixed insertion characters:

X X X X B + - . , $

X X X X OCR DB

X X X /
X X X X · Replacement or floating character $ + - Z *
X X X X · Currency sign substitution

X X X X · Decimal point substitution

X X X X · REDEFINES clause

X X X · May be nested

X X · RENAMES clause

X X X X · SIGN clause"

X5 X5 X1 X1 · SYNCHRONIZED (or SYNC) clause

X X X X · USAGE clause

X X X X · DISPLAY

X5 X5 X X · COMPUTATIONAL (or COMP)

X X · COMPUTATIONAL-3 (or COMP-3) (**IBM/Codaysl**)

X X · COMPUTATIONAL-4 (or COMP-4) (**IBM/Codaysl**)

X X X X · VALUE clause

X X X X · Literal

X X · Literal series

X X · Literal-1 THRU literal-2

X X · Literal range series

PROCEDURE DIVISION

X5 Xa Xa Arithmetic Expressions
(a=exponent identifier /Iiteral must be positive integral value)

Conditional Expressions

X X X X · Simple condition

X X X X · Relation condition

X X X X . Relational operators

X X X X · [NOT] GREATER THAN

X X X · [NOT] >

X X X X · [NOT] LESS THAN

X X X · [NOT] <

X X X X · [NOT] EQUAL TO

X X X X · [NOT] =

C-6

Summary of Elements in the Nucleus (Continued)

ANS 1 	 ANS 2 S/3 S/34 Elements

X 	 X X X . Comparison of numeric operands

X 	 X X X . Comparison of nonnumeric operands

X X X . Operands of unequal size are permitted

X X X X · Class condition

X X X · Condition-name condition

X X X Sign condition ·
X 	 X X X · Switch-status condition

X X X Complex condition ·

X 	 X X Logical Operators AND. OR. NOT·
X X X · Negated simple condition

X X X · Combined and negated combined condition

X X · Abbreviated combined relation condition

X X X X Arithmetic Statements

X X X X · Arithmetic operands limited to 18 digits

X X · Multiple results in arithmetic statements

X X X X ACCEPT Statement

X5 X X6 X6 · At least one transfer of data supported

X X X · FROM mnemonic-name phrase

X · FROM CONSOLE phrase (**IBM Extension**)

X X X · FROM DATE phrase

X X FROM DAY phrase ·

X X FROM TIME phrase ·

X X X X ADD Statement

X X X X · Identifier/literal series

X X X X · TO identifier

X X · TO identifier series

X X X X · GIVING identifier

X X · GIVING identifier series

X X X X ROUNDED phrase
·

X 	 X X X · SIZE ERROR phrase

X X CORRESPONDING phrase ·

X X X X ALTER Statement

X X X X Procedure- name
·

X 	 X X · Procedure- name series

X X X COMF!UTE Statement

X5 X X · Arithmetic expression

X X · Identifier series

X X X · ROUNDED phrase

X X X SIZE ERROR phrase·

Language Summary and Comparison C-7

L

Summary of Elements in the Nucleus (Continued)

ANS 1 ANS2 S/3 S/34 Elements J
X X X X DISPLA Y Statement

X5 X X6 X6 At least one transfer of data supported ·
X X · Multiple transfers of data supported

X X X X · Identifier /1 iteral

X X X X · Identifier /literal series

X X X UPON mnemonic-name phrase·
X · UPON CONSOLE phrase (**IBMExtension**)

X X X X DIVIDE Statement

X X X X · INTO identifier

X X · INTO identifier series

X X X X · By identifier /Iiteral

X X X X · GIVING identifier

X X · GIVING identifier series

X X · REMAINDER phrase

X X X X · ROUNDED phrase

X X X X · SIZE ERROR phrase

X X X X ENTER Statement

X X X X EXIT Statement J
X X X X GO TO Statement

X X X · Procedure-name may be omitted

X X X X · DEPENDING ON phrase

X X X X I F Statement

X X X X Imperative-statement may contain multiple imperative verbs ·
X X3 X · Not limited to imperative statements

X X3 X · Nested statements

X X X X · ELSE phrase

X X X X · NEXT SENTENCE phrase

X EXAMINE Statement (**ANS 1968**)

X · Only single-character literals

X · TALLYING phase

X . ALL/LEADING/UNTIL FIRST option

X · REPLACING phrase

X . ALL/LEADING/FIRST /UNTIL FIRST option

c-s

L

L

Summary of Elements in the Nucleus (Continued)

ANS 1 ANS2 S/3 S/34 Elements

X X X INSPECT Statement

X X X · Single-character identifiers or literals

X X Multiple-character identifiers or literals ·
X X X TALLYING phrase ·
X X X . BEFORE/AFTER INITIAL option

X X X · REPLACING phrase

X X X TALLYING and REPLACING phrases ·
X X · TALLYING and REPLACING series

X X X X MOVE Statement

X X X X · TO identifier

X X X X · Identifier series

X X · CORRESPONDING phrase

X X X X MULTIPLY Statement

X X X X · BY identifier

X X · BY identifier series

X X X X · GIVING identifier

X X · GIVING identifier series

X X X X · ROUNDED phrase

X X X X SIZE ERROR phrase·
X NOTE Statement (**ANS 1968**)

X X X X PERFORM Statement

X X X X · Procedure-name

X X X X · THRU phrase

X X X X TIMES phrase ·
X X X UNTIL phrase ·
X X2 X VARYING phrase ·

X' X X X STOP Statement

X X X X · Literal

X X X X · RUN

X X STRING Statement

X X · Identifier/literal series

X · DELIMITED BY phrase

X X POINTER phrase ·
X X · ON OVERFLOW phrase

Language Summary and Comparison e-9

X

L

Summary of Elements in the Nucleus (Continued)

ANS 1 ANS 2 S/3 S/34 Elements J
X X X X SUBTRACT Statement

X X X X • Identifier / literal series

X X X X · FROM identifier

X X · FROM identifier series

X X X X • GIVING identifier

X X · GIVING identifier series

X X X X • ROUNDED phrase

X X X X · SIZE ERROR phrase

X X · COR.RESPONDING phrase

X X UNSTRING Statement

X X · DELIMITED BY phrase

X X • INTO series

X X • DELIMITER phrase

X X . COU NT phrase

X X · POINTER phrase

X X • TALLYING phrase

X X • ON OVERFLOW phrase

C·10

Summary of Elements in Table Handling Module

ANS 1 ANS2 S/3 S/34 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X X X • Index-name

Subscripting

X X X X 1 level supported
·

X 	 X X X 2 or 3 levels supported ·

Indexing

X X X X 1, 2, or 3 levels supported
·

DATA DIVISION

X 	 X X X OCCURS Clause

X 	 X X X · Integer TIMES

X X · Integer-1 TO integer-2 DEPENDING on data-name

X X ASCENDING/DESCENDING data-name ·

X X · Data-name series L
X X · ASCENDING/DESCENDING series

X X X X · INDEXED BY index-name series

X5 X5 X X USAGE IS INDEX Clause

PROCEDURE DIVISION

X X SEARCH Statement

X X VARYING phrase ·

X X AT END phrase ·

X X WHEN phrase ·

X X · WHEN phrase series

X X ALL phrase ·

X X WHEN phrase ·

X X AT EN D phrase ·

X X X X SET Statement

X X X X · Index - name / identifier series

X X X X · Index-name

X X X X UP BY identifier/integer ·

X 	 X X X DOWN BY identifier/integer ·

L X X X X · Index-name series

Language Summary and Comparison C-11

Summary of Elements in the Sequential 1-0 Module

ANS 1 ANS2 S/3 S/34 Elements ~
LANGUAGE CONCEPTS

User-Defined Words

X X X X · File-name

X X X X · Record-name

X X X 1-0 Status

Special Register

X X2 X · LINAGE-COUNTER

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

X X X X · FILE-CONTROL paragraph

X X X X · File control entry

X X X X • SELECT clause

X X • OPTIONAL phrase

X X X X • ASSIGN clause

X . FOR MULTIPLE REEL/UNIT phrase
(**ANS 1968**)

X X X4 X • ORGANIZATION IS SEQUENTIAL clause

X X X X • ACCESS MODE IS SEQUENTIAL clause

X X X · FILE STATUS clause

X X · RESERVE integer AREA(S) clause

X · RESERVE NO/integer ALTERNATE AREA(S) clause
(** ANS 1968**)

X1 · PROCESSING MODE clause (**ANS 1968**)

X1 · FILE-LIMIT clause (**ANS 1968**)

X X X X · I-O-CONTROL paragraph

X X X2 X · RERUN clause

X X X X • SAM E AREA clause

X X X X • SAME AREA series

X X • SAME ~ECORD AREA clause

X X • SAME RECORD AREA series

X5 X1 · MULTIPLE FILE TAPE clause

Co12

Summary of Elements in the Sequential 1-0 Module (Continued)

ANS 1 	 ANS2

X X

X X

X X

X X .. 	 X

X5 X5

X X

X X

X X

X X

X X

X X

X

X

X

X

X X

X X

X5 X5

X5 X5

X X

X

X

X X

X X

X

X5 	 X5

X5

X5

X5

X X

X X

X

X X

S/3

X

X

X

X

X1

X1

X1

X

X

X7

X2

X2

X

X

X1

X1

X

X

X

X

X

X

X

X

X

S/34

X

X

X
X

X

X1

X1

X1

X1

X

X

X

X

X

X

X

X

X

X1

X1

X1

X1

X1

X

X

X

X1

X

X1

X1

X

X

X

X

Elements

DATA DIVISION

FILE SECTION

· File description entry

· Record description e.ntry

• BLOCK CONTAINS clause

· Integer RECOR DS / CHARACTERS

Integer-1 TO integer-2 RECORDS/CHARACTERS ·
· CODE-SET clause

· DATA RECORDS clause

· Data-name

· Data - name series

• 	 LABEL RECORDS clause

· STANDARD

· OMITTED

· LINAGE clause

• FOOTING phrase

• 	 TOP phrase

BOTTOM phrase
· · RECORD CONTAINS clause

Integer-1 TO integer-2 CHARACTERS ·
· VALUE OF clause

Implementor-name IS literal · · 	Implementor-name IS literal series

Implementor-name IS data-name
·
Implementor-name IS 'data-name series ·

PROCEDURE DIVISION

CLOSE Statement

Single file-name ·
· File-name series

REEL/UNIT·
• 	WITH LOCK phrase

WITH NO REWIND phrase · · 	FOR REMOVAL phrase

OPEN Statement

· Single file-name

• File-name series

· INPUT phrase

X5 X1 REVERSED phrase·
X5 X1 • WITH NO REWIND phrase

Language Summary and Comparison C-13

L

Summary of Elements in Sequential 1-0 Module (Continued)

ANS 1 ANS 2 S/3 S/34 Elements

X 	 X X X OUTPUT phrase ·
X5 Xl NO REWIND phrase ·

X5 	 X5 X X · 1-0 phrase

X5 X EXTEND phrase ·
X X · INPUT, OUTPUT, 1-0, EXTEND series

X X X X READ Statement

X X X X · INTO identifier

X X X8 X AT END phrase ·
X5 X5 X4 X REWRITE Statement

X X X X · FROM identifier

X X X USE Statement

X X X EXCEPTION/ERROR PROCEDURE phrase ·
X X X · ON file-name

X X X · ON INPUT

X X X · ON OUTPUT

X X X · ON 1-0

X X · ON EXTEND

X X · ON file-name series

..JX X X X WRITE Statement

X X X X · FROM identifier

X X5 X X BEFORE/AFTER ADVANCING phrase integer ·
X5 	 X5 X X Integer·

X5 X X · Identifier

X5 X5 X X lINE(S) option ·
X5 	 X5 X X · PAGE

X5 X X · Mnemonic-name

X5 X X · AT END-OF-PAGE/EOP phrase

X · INVALID KEY phrase (**ANS 1968**)

C-14

C
Summary of Elements in the Relative 1-0 Module

ANS 1 ANS 2 S/3 S/34 Elements

X

X

X

X

X

X

X

X

X

X

L 	
X

X

X

X

X

X

X

LANGUAGE CONCEPTS

User-Defined Words

X X X · File-name

X X X · Record-name

X X 1-0 Status

ENVIRONMENT DIVISION

INPUT -OUTPUT SECTION

X X X · FILE-CONTROL paragraph

X X X · File control entry

X X X · SELECT clause

X X X • ASSIGN clause

X X4 X • ORGANIZATION IS RELATIVE clause

X X X • ACCESS MODE clause

X X X • SEQUENTIAL

X X · RELATIVE KEY phrase

X X X · RANDOM

X X · RELATIVE KEY phrase

X • ACTUAL KEY phrase (**ANS 1968**)

X X · DYNAMIC

X X · RELATIVE KEY phrase

X X · FILE STATUS clause

X X · RESERVE integer AREA(S) clause

X 	 RESERVE NO/integer ALTERNATE AREA(S) clause ·
(** ANS 1968**)

X1 · FILE-LIMIT clause (**ANS 1968**)

X1 · PROCESSING MODE clause (**ANS 1968**)

X X X · I-O-CONTROL paragraph

X X X · RERUN clause

X X X · SAME AREA clause

X X X · SAME AREA series

X X · SAME RECORD AREA clause

X X · SAME RECORD AREA series

Language Summary and Comparison C·15

X

Summary of Elements in Relative 1-0 Module (Continued)

ANS 1 	 ANS2 S/3 S/34 Elements ~
DATA DIVISION

FILE SECTION

X 	 X X X File description entry ·
X 	 X X X · Record description entry

X 	 X X X · BLOCK CONTAINS clause

X 	 X X X · Integer RECORDS/CHARACTERS

X X · Integer-l TO integer-2 RECORDS/CHARACTERS

X 	 X Xl Xl · DATA RECORDS clause

X 	 X Xl X1 · Data-name

X 	 X X1 X1 · Data-name series

X 	 X X X · LABEL RECORDS clause

X 	 X X X · STANDARD

X 	 X X7 X · OMITTED

X 	 X X X · RECORD CONTAINS clause

X 	 X X X · Integer-1 TO integer-2 CHARACTERS

X5 	 X5 X1 X1 · VALUE OF clause

X5 	 X5 Xl X1 Implementor-name IS literal ·
X5 	 X5 X1 Implementor-name IS literal series ·

X5 X1 · Implementor-name IS data-name

X5 X1 Implementor-name IS data-name series
· 	 J
PROCEDURE DIVISION

X X X X CLOSE Statement

X X X X Single file-name·
X X X X · File-name series

X5 X5 X X WITH LOCK phrase ·
X X X DELETE Statement

X X X · INVALID KEY phrase

X 	 X X X OPEN Statement

X 	 X X X · Single file-name

X 	 X X X · File-name series

X 	 X X X I N PUT phrase ·
X 	 X X X OUTPUT phrase ·
X5 X5 X X · 1-0 phrase

X X X X · INPUT, OUTPUT, and 1-0 series

C-16

L

L

Summary of Elements in Relative 1-0 Module (Continued)

ANS 1 ANS2 S/3 S/34 Elements

X X):(X

X X X X

X X

X X X8 X

X X X8 X

X5 X5 X X

X X X X

X X X X

X1

X X

X X

X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

X X X X

X X X X

X X X8 X

READ Statement

• 	 INTO identifier

NEXT phrase ·
• 	 AT END phrase

INVALID KEY phrase·
REWRITE Statement

· FROM identifier

• INVALID KEY phrase

SEEK Statement (**ANS 1968**)

START Statement

· KEY IS phrase

INVALID KEY phrase·
USE Statement

·
· ·
·

· EXCEPTION/ERROR PROCEDURE phrase

ON file-name

ON INPUT

ON OUTPUT

· ON 1-0

ON file-name series

·
WRITE Statement

FROM identifier

INVALID KEY phrase·

Language Summary and Comparison C-17

L

Summary of Elements in Indexed 1-0 Module

ANS 1 ANS2 8/3 S/34 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X X X · File-name

X X X X • Record-name

X X X 1-0 Status

ENVIRONMENT DIVISION

INPUT -OUTPUT SECTION

X X X X • FILE-CONTROL paragraph

X X X X • File control entry

X X X X • SELECT clause

X X X X • ASSIGN clause

X X X4 X • ORGANIZATION IS INDEXED clause

X X X X • ACCESS MODE clause

X X X X · SEQUENTIAL

X X X X • RANDOM

X X · DYNAMIC

X X X X · RECORD KEY clause ~
X • ALTERNATE RECORD KEY clause

X • WITH DUPLICATES phrase

X • NOMINAL KEY clause (....IBM Extension"")

X X X • FILE STATUS clause

X X X · RESERVE integer AREA(S) clause

X • RESERVE NO/integer ALTERNATE AREA(S) clause
(.... ANS 1968"")

X1 • FILE-LIMIT clause (....ANS 1968"")

X1 · PROCESSING MODE IS clause (""ANS 1968"")

X X X X • I-O-CONTROL paragraph

X X X X · RERUN clause

X X X X • SAME AREA clause

X X X X · SAME AREA series

X X ' . SAME RECORD AREA clause

X X • SAME RECORD AREA series

X X • APPLY CORE-INDEX series (""IBM Extension....)

C-18

L

Summary of Elements in Indexed 1-0 Module (Continued)

ANS 1 ANS 2 5/3 5/34

X X X X

X X X X

X X X X

X X X X

X X

X X X1 X1

X X X1 X1

X X X1 X1

X X X X

X X X X

X X X7 X

X X X X

X X X X

X5 X5 X1 X1

X5 X5 X1 X1

X5 X5 X1

X5 X1

X5 X1

X X X X

X X X X

X X X X

X5 X5 X X

X X X

X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X5 X5 X X

X X X X

Elements

DATA DIVISION

FILE SECTION

· File description entry

· Record description entry

· BLOCK CONTAINS clause

Integer RECORDS / CHARACTERS ·
Integer-1 TO integer-2 RECORDS/CHARACTERS ·

· DATA RECORDS clause

• Data-name

· Data-name series

· LABEL RECORDS clause

· STANDARD

· OMITIED

· RECORD CONTAINS clause

Integer-1 TO integer-2 CHARACTERS ·
• 	VALUE OF clause

Implementor-name IS literal·
Implementor-name IS literal series · · Implementor-name IS data-name

· Implementor-name IS data-name series

PROCEDURE DIVISION

CLOSE Statement

Single file-name ·
· File-name series

WITH LOCK phrase ·
DELETE Statement

INVALID KEY phrase·
OPEN Statement

· Single file-name

• File- name series

· I N PUT phrase

OUTPUT phrase ·
1-0 phrase· · INPUT, OUTPUT, and 1-0 series

Language Summary and Comparison C·19

Summary of Elements in Indexed 1-0 Module (Continued)

ANS 1 ANS2 S/3 S/34 Elements ~
X X X X READ Statement

X X X X · I NTO identifier

X X · KEY IS phrase

X X • NEXT phrase

X X X8 X AT END phrase

X X X8 X · INVALID KEY phrase

X5 X5 X X REWRITE Statement

X X X X · FROM identifier

X X X8 X · INVALID KEY phrase

X X X START Statement

X X4 X · KEY IS phrase

X X8 X • INVALID KEY phrase

X X X USE Statement

X X X · EXCEPTION/ERROR PROCED.URE phrase

X X X ON file-name

X X X · ON INPUT

X X X · ON OUTPUT

X X X · ON 1-0

X X • ON file-name series ~
X X X X WRITE Statement

X X X X · FROM identifier

X X X8 X · INVALID KEY phrase

C-20

Summary of Elements in the Sort-Merge Module

ANS 1 ANS2 S/3 S/34 Elements

LANGUAGE CONCEPTS

User- Defined Words

X X X · File-name

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

X X X · FILE-CONTROL paragraph

X X X · File control entry

X X X · SELECT clause

X X X · ASSIGN clause

X X · I-O-CONTROL paragraph

X X · SAME RECORD AREA clause

X X · SAME RECORD AREA series

X X · SAME SORT/SORT-MERGE AREA clause

X X · SAME SORT/SORT-MERGE AREA series

DATA DIVISION

FILE SECTION

X X X · File description entry

X X X · Record description entry

X X X · DATA RECORDS clause

X X X · Data-name

X X X · Data-name series

X X X · RECORD CONTAINS clause

X X X · Integer-1 TO integer-2 CHARACTERS

PROCEDURE DIVISION

X X MERGE Statement

X X · KEY data-name

X X · Data-name series

X X · ASCENDING series

X X · DESCENDING series

X X · Mixed ASCENDING/DESCENDING

X X · COLLATING SEQUENCE phrase

X X · USING phrase

X X · OUTPUT PROCEDURE phrase

X X · GIVING phrase

Language Summary and Comparison C-21

L

Summary of Elements in the Sort-Merge Module (Continued)

ANS 1 ANS 2 8/3 S/34 Elements ..J
X X X RELEASE Statement

X X X · FROM phrase

X X X RETUR N Statement

X X X · INTO phrase

X X X • AT END phrase

X X X SORT Statement

X X X · Program may contain one SORT statements

X X • Program may contain multiple SORT statement

X X X · KEY data- name

X X X . Data-name series

X X X • ASCENDING series

X X X • DESCENDING series

X X X · Mixed ASCENDING/DESCENDING

X X COLLATING SEQUENCE phrase ·
X X X · INPUT PROCEDURE phrase

X X X USING phrase ·
X X X · OUTPUT PROCEDURE phrase

X X X GIVING phrase ·

Co22

L

Summary of Elements in the Debug Module

ANS 1 ANS2 S/3 S/34

X X X

X X X

X X X

X X X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

X X X

Elements

LANGUAGE CONCEPTS

Special Registers

· DEBUG-ITEM

ENVIRONMENT DIVISION

CONFIGURATION SECTION

· SOURCE-COMPUTER paragraph

• WITH DEBUGGING MODE clause

PROCEDURE DIVISION

USE FOR DEBUGGING Statement

· Procedure-name

· Procedure-name series

• ALL PROCEDURES

· ALL REFERENCES OF identifier series

· File-name series

· Cd-name series

EXHIBIT Statement (**IBM Extension**)

• NAMED/CHANGED NAMED option

· Identifier series

READY TRACE Statement (**IBM Extension**)

RESET TRACE Statement (**IBM Extension")

ALL DIVISIONS

Debugging Lines

(permitted after the OBJECT -COMPUTER paragraph)

language Summary and Comparison C.23

L

Summary of Elements in the Inter-Program Communication Module

ANS 1 ANS 2 S/3 S/34 Elements

DATA DIVISION

X X X X Linkage Section

PROCEDURE DIVISION

Procedure Division Header

X X X X USI NG phrase·
(a=At least f;ve data-names must be supported)

X X X X CALL Statement

X X X X · Literal

X · Identifier

X X X X USING phrase · (a-At least five data-names must be supported)

X ON OVERFLOW phrase ·
X CANCEL Statement

X X X X EXIT PROGRAM Statement

C·24

C

L

Summary of Elements in the Segmentation Module

ANS 1 ANS 2 S/3 S/34 	 Elements

LANGUAGE CONCEPTS

User-Defined Words

X X X X 	 · Segment-number

ENVIRONMENT DIVIS!ON

CONFIGURATION SECTION

· OBJECT -COMPUTER paragraph

X 	 X . SEGMENT-LIMIT clause

PROCEDURE DIVISION

X X X X Segment- Numbers

X X X X Fixed segment-number 0-49
·
X X X 	 X Independent segment-number 50-99·

X X Sections with same number need not be contiguous ·

Language Summary and Comparison C·25

Summary of Elementa in the Ubrary Module

"

ANS 1 ANS2 S/3 S/34 Elements 	 ~
LANGUAGE CONCEPTS

User· Defined Words

X5 	 X5 X X • Text-name
X5 X • Library-name

ALL DIVISIONS

X X X X COpy Statement

X X X X • Text-name
X X • OF/IN library-name
X X • REPLACING phrase

C-28

This appendix discusses the conceptual compiler
algorithms for determining the number of integer and
decimal places reserved for intermediate results. The
following abbreviations are used:

number of integer places carried for an
intermediate result.

d - number of decimal places carried for an
intermediate result.

dmax -	 in a particular statement, the larger of either:

• 	 The number of decimal places needed for
the final result field.

• 	 The maximum number of decimal places
defined for any operand except exponents
and divisors.

op1 - first operand in a generated arithmetic
statement.

op2 - second operand in a generated arithmetic
statement.

d1,d2 - number of decimal places defined for op1 or
op2,. respectively.

ir 	 intermediate result field obtained from the
execution of a generated arithmetic
statement or operation. Ir1, ir2, and so on
represent successive intermediate results.
These intermediate results are generated
either in registers or in storage locations.
Successive intermediate results can have the
same location.

Appendix 0: Intennediate Result Fields

When an arithmetic statement contains only a,single pair
of operands, no intermediate results are generated.
Intermediate results are possible in the following cases:

1. 	 In an ADD or SUBTRACT statement containing
multiple operands immediately following the verb

2. 	 In a COMPUTE statement specifying a series of
arithmetic operations

3. 	 In arithmetic expressions contained in an IF or
PERFORM statement

4. 	 In the GIVING option with multiple result fields for
the ADD, SUBTRACT, MULTIPLY, DIVIDE, or
COMPUTE statements

In such cases, the compiler treats the statement as a
succession of operations. For example, the following
statement:

COMPUTE Y = A + B * C - 0 / E + F ** G

is replaced by

F**G yielding ir1

MULTIPLY B BYC yielding ir2

DIVIDE E INTO 0 yielding ir3

ADDA TO ir2 yielding ir4

SUBTRACT ir3 FROM ir4 yielding ir5

ADD ir5 TO ir1 yielding Y

Intermediate Result Fields 0-1

Compiler Calculation of Intermediate Results

The number of integer places in an intermediate result
(ir) is calculated as follows:

• 	 The compiler first determines the maximum value. that
the ir can contain by performing the statement in
which the ir occurs.
- If an operand in this statement is a data-name,

the value used for the data-name is equal to the
numerical value of the PICTURE for the data-name
(for example, PICTURE 9V99 has the value 9.99).
If an operand is a literal, the actual value of the
literal is used.
If an operand is an intermediate result. the value
determined for the intermediate result in a
previous arithmetic operation is used.

-	 If the operation is division:
a. 	 If op2 is a data-name, the value used for op2 is

the minimum nonzero value of the digit in the
PICTURE for the data-name (for example,
PICTURE 9V99 has the value 0.01).

b. 	 If op2 is an intermediate result, the intermediate
result is treated as though it had a PICTURE,
and the minimum nonzero value of the digits in
this PICTURE is used.

c. 	 If the ROUNDED option is used, the number of
decimal places in an ir increases by 1.

• 	 When the maximum value of the ir is determined by
the above procedures, i is set equal to the number of
integers in the maximum value.

• 	 The number of decimal places contained in an ir is
calculated as:

Operation 	 Decimal Places

+ or -	 d1 or d2, whichever is greater

* d1 + d2

/ d1 -.d2 or dmax, whichever is

greater

•• 	 dmax if op2 is nonintegral or a
data-name; d1 * op2 if op2 is an
integral literal

Note: The user must define the operands of any
arithmetic statement with enough decimal places to give
the desired accuracy in the final result.

The following illustration indicates the action of the
compiler when handling intermediate results:

V

i

alue
of
+ d

Value
of
d i

Value
of

+ dmax Action Taken

<19
= 19

Any
Value

Any value ; integer and d
decimal places
are carried for ir

>19 <dmax

=dmax

Any value 19 - d integer
and d decimal
places are
carried for ir
(See Note.)

>dmax <19 ; integer and 19
- i decimal
places are
carried for ir

;; 19

>19 19 - dmax
integer and dmax
decimal places
are carried for ir
(See Note.)

Note: High-order integers may be truncated.

Figure 0-1. Compiler Action on Intermediate Results

0-2

Appendix E. Sample File-Processing Programs

The programs in this appendix illustrate the fundamental
programming techniques associated with each type of
file organization. They are intended to be used for
planning purposes only, and to illustrate the
input/output statements necessary for certain access
methods. Other COBOL features (the use of
condition-names and the PERFORM statement, for
example) are used only incidentally. The programs are:

• Sequential File Creation

• Sequential File Updating and Extension

• Indexed File Creation

• Indexed File Updating

• Relative File Creation

• Relative File Updating

• Relative File Retrieval

• COBOL SORT Example

Sequential File Creation

This program creates a sequential file by extracting
employee salary records. The input records are arranged
in ascending order by employee number. The output file
has the identical order.

Note: The program-id used by the system is CRTSEQ.

Sample File-Processing Programs E-1

L

5

10

15

20

25

30

35

STNO -A•••B••• COB 0 L SOU R C E S TAT E MEN T S •••••••••• IDE~TFCN SEQ/NO S

PROCE SS SOURCE
1 IDENTIFICATI~ DIVISION.
2 PROGRAM-ID. CRTSEQUENTIAL.

3 ENVIRONMENT DIVISION.
• CONFIGURATION SECTION.

SOURCE-COMPUTER. 18~S34.

6 OBJECT-COMPUTER. IBM-S34.
7 'INPUT-OUTPUT SECTION.
8 F ILE-CONTRDL.
9 SELECT OUT-FILE

ASSIGN TO DISK-MSTFILE.

DATA DIVISION.
II FILE SECTION.
12 FD OUT-FILE

LA8EL RECORDS ARE STANDARD.
13 01 OUT-REC.
I. 05 OUT-RECTYPE PICTURE xx.

05 OUT-EMPLOYEE-NUMBER PIC TUR E 91 6 , •
16 05 OUT-EMPLOYEE-NAME PICTURE xl 28 J.
17 oS OUT-EMPLOYEE-CODE PICTURE 9.
18 05 OUT-EMPLOYEE-SALARY PICTURE 916,V99.
19 WORK 1NG-S TOR AGE SECTION.

01 INP-REC.
21 05 INP-RECTYPE PICTURE xx.
22 88 INP-EMPLOYEE VALUES °H1" THRU °HS".
23 88 THE-END-OF-INPUT VALUE %°.
24 05 I NP-EMPLOVEE-NUM8ER PICTURE 9(6).

05 I NP-EMPLOVEE-NAME PICTURE X(28J.
26 05 I NP-EMPLOVEE-CODE PICTURE 9.
27 05 I NP-EMPLOVEE-SALARY PICTURE 9(6IV99.

28 PROCEDURE DIVISION.

29 TOP-LOGIC-PARA.
OPEN OUTPUT OUT-FILE.

31 ACCEPT INP-REC.
32 PERFORM PROCESS-DATA· UNTIL THE-ENO-OF-INPUT.
33 CLOSE OUT-FILE.
34 STOP RUN.

PROCESS-DATA.
36 IF INP-ENPLOVEE
31 WRITE OUT-REC FROM INP-REC
38 ELSE DISPLAV I INVALID RECORD --_>1 INP-REC.
.0 ACCEPT INP-REC.

0001
0002
0003
000.
0005
0006
0007
0008
0009
0010
0011
0012
0013
001.
0015
0016
0017
0018
0019
0020
0021
0022
0023
002.
0025
0026
0027
0028
0029
0030
0031
0032
0033
003.
0035
0036
0031
0038
0039
0040
0041
0042
0043
004.
00.5
0046
0047

E-2

Sequential File Updating and Extension

This program updates and extends the MST-FI LE. The
INP-FILE, which was also created by CRTSEQUENTIAL,
and the MST-FILE area each read. When a match is found
between INP-EMPLOYEE-NUMBER and
MST-EMPLOYEE-NUMBER, the input record replaces
the original record. After the MST-FILE has been
completely processed, new employee records are added
at the end of the file.

Nate: The program-id used by the system is UPDTSE.

STNO -A•••B••• COB 0 L SOU R C E S TAT E MEN T S •••••••••• IDE~TFCN SEQ/NO S

PROCESS SOURCE 0001
1 IDENTIFICATION DIVISION. 0002
2 PROGRAM-ID. UPDTSEQUENTIAL. 0003

000_
3 ENVIRONMENT OIVISION. 0005
4 CONFIGURATION SECTION. 0006
5 SOURCE~COMPUTER. IBM-S34. 0007
6 OBJECT-COMPUTER. IBM-S34. 0008
7 INPUT~OUTPUT SECTION. 0009
8 FILE-CONTROL. 0010
9 SELECT INP-FILE 0011

ASSIGN TO DISK-INPFILE. 0012
10 SELECT MST-FILE 0013

ASSIGN TO OISK-MSTFILE. 0014
0015

11 DATA DIVISION. 0016
12 FILE SECTION. 0017
13 FD I NP-F ILE 0018

LABEL RECORDS ARE STANDARD. 0019
14 01 INP-REC. 0020
15 05 I NP-RECTY"PE PICTURE xx. 0021
16 05 I NP-EMPLOYEE-NUMBER PICTURE 9(6 •• 0022
17 as I NP-EMPLOYEE-NAME PICTURE X(28,. 0023
18 05 1 NP-EMPLOYEE-CODE PICTURE 9. 0024
19 05 INP-EMPLDYEE-SALARY PICTURE 9(6IV99. 0025
20 FD NST-FILE 0026

LABEL RECORDS ARE STANDARD. 0027
21 01 NST-REC. 0028
22 as MST-RECTYPE PICTURE xx. 0029
23 as MST-EMPLDYEE-NUMBER PICTURE 9(6'. 0030
24 as MST-EMPLOYEE-NAME PICTURE X(281. 0031
25 05 MST-EMPLOYEE-CODE PICTURE 9. 0032
26 05 MST-EMPLOYEE-SALARY PICTURE 9'C6'V99. 0033
27 WORKING-STORAGE SECTION. 0034
28 01 THE-INPUTIND PICTURE X VALUE SPACE. 0035
29 88 THE-END-OF-INPUT VALUE "E". 0036
30 01 THE-MASTERIND PICTURE X VALUE SPACE. 0037
31 88 fHE-END-OF-MASTER VALUE "E". 0038
32 01 THE-MSTTYPE PICTURE xx VALUE "MI". 0039

0040
33 PROCEDURE DIVISION. 0041
34 TOP-LOGIC-PARA. 0042
35 OPEN INPUT INP-FILE 0043

1-0 MST-FILE. 0044
36 PERFORM READ-INPUT. 0045
37 PERFORM READ-MASTER. 0046
38 PERFORM PROCESS-PARA UNTIL THE-END-OF-INPUT. 0047
39 CLOSE INP-FILE 0048

NST-FILE. 0049
40 STOP RUN. 0050

Sample File- Processing Programs E-3

STNO -A•••B ••• COB 0 L SOU R .C E S TAT E M E ~ T S •••••••••• IDE~TFCN SEQ/NO S

.1 READ-INPUT. 0051

.2 READ INP-FILE 0052
AT END SET THE-END-OF-INPUT TO TRUE. 0053

•• READ-MASTER. 005•
• 5 READ MST-FILE 0055
.6
.7

AT END SET THE-END-OF-MASTER
CLOSE MST-FILE

TO TRUE 0056
0057

.8 OPEN EXTEND MST-FILE. 0058

.9 PROCESS-PARA. 0059
50 IF THE-ENO-OF-MASTER 0060
51 MOVE THE-MSTTYPE TO INP-RECTYPE 0061
52 WRITE MST-REC FROM INP-REC 0062
53 PERFORM READ-INPUT 0063
5. ELSE IF NST-EMPLOYEE-NUMBER LESS THAN INP-EMPLOYEE-NUMBER 006.
56 PERFORM READ-MASTER 0065
57 ELSE IF MST-EIIPLOYEE-NUM8ER = INP-EMPLOYEE-NUMBER 0066
59 MOVE THE-MSTTVPE TO INP-RECTYPE 0067
60 REWRITE MST-REC FROM INP-REC 0068
61 PERFORM READ-INPUt 0069
62 PERFORM READ-MASTER 0070
63 ELSE DISPLAY -ERROR RECORD-->- INP-EMPLOYEE-NUMBER. 0071

E-4

Indexed File Creation

This program creates an indexed file of summary
records for bank depositors. The key within each
indexed file record is OUT-RECKEY (the depositor's
account number); the input records are ordered in
ascending sequence upon this key. Records are read
from the input file and transferred to the indexed file
record area. The indexed file record is then written.

Note: The program-id used by the system is CRTIND.

Sample File-Processing Programs E-5

L

0005

0010

0015

0020

0025

0030

0035

0040

0045

0050

0055

STNO -A•••B••• COB 0 L SOURCE 5 TAT ENE N T S •••••••••• IDE~TFCN SEQ'NO S

PROCESS SOURCE
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CRT INDEXED.

3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. IBN-S34.
6 OBJECT-COMPUTER. IBM-S34.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT INP-FILE

ASSIGN TO DISK-INPFILE.
10 SELECT OUT-FILE

ASSIGN TO DISK-MSTFILE
ACCESS IS SEQUENTIAL
ORGANIZATION IS INDEXED
RECORD KEY IS OUT-RECKEY
FILE STATUS IS OUT-STATUS.

11 DATA DIVISION.
12 FILE SECTION.
13 FD I NP-FILE

LABEL RECORDS ARE STANDARD.
14 01 lNP-REC.
15 05 I NP-RECKEY PICTURE xC 10 ••
16 05 INP-NANE PICTURE XC 20 ••
17 OS I NP-BAL PICTURE S9CS.V99.
18 FO OUT-FILE

LABEL RECORDS ARE STANDARD.
19 01 OUT-REC.
20 05 OUT-RECKEY PICTURE XC 10 t.
21 05 OUT-FLO 1 PICTURE XII0,.
22 05 OUT-NAME PICTURE xC 20'.
23 05 OUT-BAL PICTURE S9CS'V99.
24 WORKING-STORAGE SECTION.
25 01 THE-INPU~IND PICTURE X VALUE SPACE.
26 88 THE-END-OF-INPUT VALUE eE -.
27 01 OUT-STATUS PICTURE xx.

28 PROCEDURE DIVISION.

29 TOP-LOGIC-PARA.
30 OPEN INPUT INP-FILE

OUTPUT OUT-F ILE.
31 READ INP-FILE
32 AT END SET THE-END-OF-INPUT TO TRUE.
33 PERFORM PROCESS-DATA UNTIL THE-ENO-OF-INPUT.
34 CLOSE INP-FILE

OUT-F ILE.
35 STOP RUN.

36 PROCESS-DATA.

37 MOVE INP-RECKEY TO OUT-RECKEY.

38 MOVE INP-NAME TO OUT-NAME.

39 MOVE INP-BAL TO WT-BAL.·

40 MOVE SPACES TO OUT-FLDI.

41 WRITE OUT-REC

42
 INVALID KEY DISPLAY -WRITE FAILED FOR KEy - OUT-AECKEY.
43 READ INP-FILE
44 A T END SET THE-ENO-OF-INPUT TO TRUE.

0001
0002
0003
0004­

0006
0007
0008
0009

001l
0012
0013
0014

0016
0017
0018
0019

0021
0022
0023
0024

0026
0027
0028
0029

0031
0032
0033
0034

0036
0037
0038
0039

0041
0042
0043
004.

0046
0047
0048
0049

0051
0052
0053
0054

0056
0057
0058
0059

.0060

J

E-6

L
Indexed File Upddng

This program, using dyn.mic accea, updates the
indexed file cre.ted in the CRTINDEXED program.

The input records contain the key for the record, the
depositor n.me••nd the amount of the transection.

When the input record is re.d, the program testa
whether this is a transection record (in which ca.., all
fields of the record .re filled, or • record requesting
sequenti.1 retriev.1 of • specific generic cl... (in which
case, only the UPD-GENFLD of the input record
contains d.ta'.

R.ndom .cce.. is used for the upd.ting .nd printing of
the tr.nsection records. Sequenti.1 8CC8II is used for
the retrieval and printing of .11 records within one
generic cl

Note: The program-id used by the system is UPDTIN.

Semple FiIe-ProCllling1I1I E-7

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

STNO -A •••B ••• COB a L SOU R C E S TAT E MEN T S •••••••••• ID~~TFCN SEQ/NO S

PROCE SS SOURCE ,.jIDENTIFICATION DIVISION.
2 PROGRAM-ID. UPDTINDEXED.

3 ENVIRONMENT DIVISIO~.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. IBM-S34.
6 OBJECT-COMPUTER. IBM-S34.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT MST-FILE

ASSIGN TO DISK-MSTFILE
ACCESS IS DYNAMIC
ORGANIZATION IS INDEXED
RECORD KEY IS NST-KEY
FILE STATUS IS MST-STATUS.

10 SELECT UPD-FILE
ASSIGN TO DISK-UPDFILE.

11 SELECT PRT-FILE
ASSIGN TO PRINTER-PRTFILE.

12 DATA DIVISION.
13 FILE SECTION.
14 FD NST-FILE

LABEL RECORDS ARE STANDARD.
IS 01 MST-REC.
16 05 MST-KEY.
17 10 MST-GENFLD PICTURE XiS).
18 10 MST-DETFLD PICTURE X(st.
19 05 NST-FLDI PICTURE X(10,.
20 05 NST-NAME PICTURE X120t.
21 05 NST-BAL PICTURE S9(5tV99.
22 FD UPD-FILE

LABEL RECORDS ARE STANDARD.
23 01 UPD-REC.
24 05 UPD-KEY.
25 10 UPD-GENFLD PICTURE X(S,.
26 10 UPD-DETFLD PICTURE X(5'.
27 05 UPD-NAME PICTURE X(20,.
28 05 UPD-AMT PICTURE S9(5IV99.
29 FD PRT-F ILE

LABEL RECORDS ARE OMITTED
LINAGE IS 51 LINES WITH FOOTING AT 48.

30 01 PRT-REC.
31 05 PRT-KEY PICTURE X(lO).
32 05 PRT-NAME PICTURE B(5'X(20,.
33 05 FILLER PICTURE X(5'.
34 05 PRT-BAL PICTURE SSSS.SSS.99-.
35 05 FILLER PICTUREX(5J.
36 05 PRT-AMT PICTURE SSSS.SSS.99-.

E-8

L
STNO "":,,,4 ••• 8 ••• COB o L SOU R C E S TAT E MEN T S •••••••••• IDE~TFCN SEQ/NO S

37 05 FILLER PICTURE xl 51.

38 05 PRT-flEwBAL PICTURE SSSS.SSS.99-.

39 WORKING-STORAGE SECT ION.

40 01 PAGE-HEAO.

41 05 FILLER PICTURE xl3BI VALUE SPACES.

42 05 FILLER PICTURE Xl131

VALUE 'UPOATE REPORT'.
43 05 FILLER PICTUHE XC3Bt VALUE SPACES.
44 01 PAGE-FOOT.
45 05 FILLER PICTURE. XI811 VALUE SPACES.
46 05 FILLER PICTURE XC61 VALUE 'PAGE .'.
41 05 PAGE-NUMBER PICTURE 99 V.ALUE ZERO.
48 01 ERROR-MESSAGE.
49 0.5 ERR-NAME 	 PICTURE xC 11 •

50. 05 FILLER PICTURE XX VALUE SPACES.

51 05 MST-STATUS PICTURE XX.

52 88 MST-GDSTATUS VALUE ZERO.

53 0.1 THE-INDICATOR PICTURE X VALUE SPACE.

54 88 THE-END-OF-INPUT VALUE 'E' •.

55 01 THE-OPNAMES.

56 05 THE-REAO-D PICTURE XC 7' VALUE 'READ-D '.

51 05 THE-START PICTURE XC11 VALUE 'START '.
58 05· THE-READ-S PICTURE xl71 VALUE 'READ-S '.
59 05 THE-REWRI TE 	 PICTURE XI 71 VALUE 'REWR ITE'.

60 PROCEOURE OIVISION.

61 TOP-LOGIC-PARA.
62 OPEN 	 INPUT UPD-FILE

1-0 NST-FILE

OUTPUT PRT-FILE.

63 PERFORM PAGE-START.

64 READ UPD-FILE

65 AT END SET THE-END-OF-INPUT TO TRUE.

66 PERFORM PROCESS-DATA UNTIL THE-END-OF-INPUT.

67 CLDSE UPD-FILE

MST-F ILE

PRT-FILE.

68 STOP RUN.

69 PROCESS-DATA.

70 IF UPD-DETFLD EQUAL SPACES

71 PERFORM SEQUENTIAL-PROCESS

72 ELSE PERFORM DYNAMIC-PROCESS.

74 READ UPD-FILE

75 AT END SET THE-END-OF-INPUT TO TRUE.

76 SEQUENTIAL-PROCESS.

77 MOVE UPD-GENFLD TO MST-GENFLD

18 START MST-FILE KEY = MSJ-GENFLD

79 INVALID KEY MOVE HIGH-VALUE TO NST-GENFLD.

0051
0052
0053
00.54
0.0.55
0.0.56
0.057
0.0.58
0059
00.60.
00.61
0.0.62
0.0.63
0.0.64
0.0.65
0.0.66
0067
0068
0069
0.070
0.0.71
00.72
0.0.73
0.074
0.0.75
00.76
00.77
0078
00.79
00.80
Oo.Bl
0.0.82
0083
0084
0085
0096
0.087
0.0.88
00.89
0.0.90.
0.091
0092
0093
00.94­
0.0.95
0.0.96
0.0.97
0.0.98
0099
0.100.
0101

Sample File-Processing Programs E-9

L

http:SSSS.SSS.99

STNO -A•••8 ••• C 0 8 0 L SOURC-e S TAT E MEN T S •••••••••• IDE~TFCN SEQ/NO S

80 IF NOT MST-GDSTATUS

81 MOVE THE-START TO ERR-NAME

82 DISPLAY ERROR-MESSAGE.

83 PERFORM SEQUENT I AL-PROCESS-Al 0

UNTIL UPD-GENFLD NOT EQUAL NST-GENFLD.

84 SEQUENTIAL-PRDCESS-AIO.

85 READ MST-FILE NEXT RECORD

86 AT END MOVE HIGH-VALUE TO NST-GENFLD.

87 IF UPD-GENFLD EQUAL MST-GENFLD

88 MOVE NST-KEY TO PRT-KEY

89 MOVE NST-NANE TO PRT-NAME

90 MOVE MST-BAL TO PRT-NEWBAL

91 PERFORM PRINT-DETAIL.

92 OYNAMI'C-PROCESS.

93 MOVE UPD-KEY TO NST-KEY.

94 READ MST-FILE

95 INVALID KEY MOVE HIGH-VALUE TO NST-KEY.

96 IF NOT MST-GDSTATUS

97 MOVE THE-READ-O TO ERR-NAME

98 DISPLAY ERROR-MESSAGE

99 SET MST-GDSTATUS TO TRUE

lOa ELSE NOVE NST-KEY TO PRT-KEY
102 MOVE NST-NAME TO PRT-NAME
103 MOVE NST-BAL TO PRT-BAL
104 NOVE UPD-AMT TO PRT-AMT
105 ADD UPD-AMT TO NST-BAL
106 MOVE NST-BAL TO PRT-HEWBAL
107 PERFORN PRINT-DETAIL
108 REWRITE NST-REC
109 INVALID KEY MOVE HIGH-VALUE TO NST-KEY.
110 IF NOT NST-GOSTATUS
III MOVE THE-REWRITE TO ERR-NANE
112 DISPLAY ERROR-MESSAGE.

PRINT-DETAIL.

WR HE PRT-REC

AT END-OF-PAGE PERFORN PAGE-END

THRU PAGE-STAin.

116 MOVE SPACES TO PRT-REC.
117 PAGE-END.
118 ADO 1 TO PAGE-NUMBER.
119 WRITE PRT-REC FROM PAGE-FOOT AFTER ADVANCING 3.
120 PAGE-START.
121 WRITE PRT-REC FROM PAGE-HEAD AFTER ADVANCING PAGE.
122 MOVE SPACES TO PRT-REC.

0102
0103
010.
01.05
0106
0107
0108
0109
0110
Olll
0112
0113
0114
01"15
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0.131
0132
0133
0134
0135
0136
0137
0138
0139
01.0
0141
0142
0143
0144
0145
0146
0.47

E-10

Relative File Creation

This program creates a relative file of summary sales
records using sequential access. Each record contains a
5-year summary of unit and dollar sales for one week of
the year; there are 51 records within the file, each
representing one week.

Each input record represents the summary sales for one
week of one year. The records for the first week of the
last five years (in ascending order) are the first five input
records. The records for the second week of the last
five years are the next five input records,and so forth.
Thus, five input records fill one output record.

The RELATIVE KEY for the OUT-FILE is not specified
because it is not required for sequential access unless
the START statement is used. (For updating, however,
the key is INP-WI;:EK.)

Note: The program-id used by the system is CRTREL.

Sample File-Processing Programs E-11

STNO -A•••B••• COB 0 L SOU R C E S TAT E MEN T S •·••••••••• IDE~TFCN SEa/NO S

PROCESS SOURCE
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CRTRELATIVE.

3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. IBM-S34.
6 OBJECT-COMPUTER. IBM-S34.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT INP-FILE

ASSIGN TO DISK-INPFILE.
10 SELECT OUT-FJLE

ASSIGN TO DISK-SUMFILE
ACCESS IS SEOUENTIAL
ORGANIZATION IS RELATIVE
FILE STATUS IS OUT-STATUS.

11 DATA DIVISION.
12 FILE SECTION.
13 FD I NP-FILE

LABEL RECORDS ARE STANDARD.
14 01 INP-REC.
15 05 INP-YEAR PICTURE 99.
16 05 INP-WEEK PICTURE 99.
17 05 INP-UN1T-SALES PICTURE S9(6 ••
18 05 I NP-DOLLAR-SALES PICTURE S9(9.V99.
19 FD OUT-F ILE

LABEL RECORDS ARE STANDARD.
20 '01 OUT-REC.
21 05 OUT-DATA OCCURS 5 TIMES INDEXED BY OUT-IND.
22 10 OUT-YEAR PICTURE 99.
23 10 OUT-WEEK PICTURE 99.
24 10 OUT-UN IT-SALES PICTURE S9(6 ••
25 10 OUT-DOLLAR-SALES PICTURE S9(9.V99.
26 WORKING-STORAGE SECTION.
27 01 .THE-INPUTIND PICTURE X VALUE SPACE.
28 88 THE-END-OF-INPUT VALUE .E·.
29 01 OUT-STATUS PICTURE xx.
30' PROCEDURE DIVISION.
31 TOP-LOGIC-PARA.
32 OPEN INPUT INP-FILE

OUTPUT OUT-F I LE.
33 SET OUT-IND TO I.
34 READ INP-FILE
35 AT END SET THE-END-OF-INPUT TO TRUE.
36 PERFORM PROCESS-DATA UNTIL THE-END-OF-INPUT.
37 CLOSE INP-FILE

OUT-F ILE.
38 STOP RUN.
39 PROCESS-DATA.
40 MOVE INP-REC TO OUT-DATA (OUT-IND ••
4. IF OUT-INC NOT = 5
42 SET OUT-IND UP BY 1
43 ELSE SET OUT-IND TO
45 WRITE OUT-REC
46 INVALID KEY DISPLAY ·WRITE FAILED· OUT-STATUS.
47 READ INP-FILE
48 AT END SET THE-END-OF-INPUT TO TRUE.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
00 II
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0.030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
,041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058

.0059

E-12

Relative File Updating

This program uses sequential access to update the file
of summary sales records created in the CRTRELAT'IVE
program. The updating program adds a record for the
new year and peletes the oldest year's records from the
MST-FILE.

The input record represents the summary sales record
for one week of the preceding year. The RELATIVE KEY
for the SUM-FILE is present in the input record as
UPO-WEEK. The RELATIVE KEY is used to check that
the record was correctly written.

Note: The program-id used by the system is UPOTRE.

Sample File-Processing Programs E-13

STNO -A•••B••• COB 0 L SOU R C E 5 TAT E MEN T S •••••••••• IOEhTFCN SEQ'NO 5

PROCE SS SOURCE
10ENTIFICATION DIVISION.

2 PROGRAM-ID. UPDTRELATIVE.

3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. IBM-S3".
6 OBJECT-COMPUTER. IBM-534.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT SUM-FILE

ASSIGN TO DISK-SUMFILE
ACCESS IS SEQUENTIAL
ORGANIZATION IS RELATIVE
FILE STATUS IS SUM-STATUS.

10 SELECT UPD-FILE
ASSIGN TO DISK-UPDFILE.

11 DATA DIVISION.
12 FILE SECTION.
13 FD SUM-FILE

LABEL RECORDS ARE STANDARD.
14 01 SUM-REC PICTURE X(105'.
15 FO UPD-FILE

LA8EL RECORDS ARE STANDARD.
16 01 UPD-REC.
17 05 UPD-YEAR PICTURE 99.
18 05 UPD-WEEK PICTURE 99.
19 05 UPD-UNIT-SALES PICTURE 59(6'.
20 05 UPD-DOLLAR-SALES PICTURE S9(9'V99.
21 WORKING-STORAGE SECTION.
22 01 "ORK-RECORO.
23 02 FILLER PICTURE X(211.
24 02 OUT-REC.
25 05 FILLER PICTURE xC 84'.
26 05 WORK-INFO.
27 10 WORK-YEAR PICTURE 99.
28 10 WORK-WEEK PICTURE 99.
29 10 WORK-UNITSALES PICTURE S9(6'.
30 10 WORK-DOLLAR-SALES PICTURE S9(9'V99.
31 01 THE-INDICATOR PICTURE X VALUE SPACE.
32 88 THE-END-OF-INPUT VALUE 'E' •
33 01 ERROR-MESSAGE.
34 05 FILLER PICTURE X130, VALUE

'REWRITE ERROR - FILE STATUS = '.
35 05 SUM-STATUS PICTURE XX~

36 PROCEDURE DIVISION.
37 TOP-LOGIC-PARA.
38 OPEN INPUT UPD-FILE

1-0 SUM-FILE.
39 READ SUM-FILE INTO WORK-RECORD
40 AT END SET THE-END-DF-INPUT TO TRUE.
41 READ UPD-FILE INTO WORK-INFO
42 AT END SET THE-ENO-OF-INPUT TO TRUE.
43 PERFORM PROCESS-PARA UNTIL THE-END-OF~INPUT.
44 CLOSE UPD-FILE

SUM-FILE.
45 STOP RUN.
46 PROCESS-PARA.
47 REWRITE SUM-REC FROM OUT-REC.
48 IF SUM-STATUS NOT = ZERO
49 DISPLAY ERROR-MESSAGE.
50 READ SUM-FILE INTO WORK-RECORD
51 AT END SET THE-END-OF-INPUT TO TRUE.
52 READ UPD-FILE INTO WORK-INFO
53 AT END SET THE-END-OF-INPUT TO TRUE.

E-14

0001
0002
0003
000"
0005
0006
0007
0008
0009
0010
0011
0012
0013
001"
0015
0016
0017
0018
0019
0020
0021
0022
0023
002"
0025
0026
0027
0028
0029
0030
0031
0032
0033
003"
0035
0036
0037
0018
0039
00"0
OO'U
00"2
00"3
00""
00"5
00"6
00"7
00"8
00"9
0050
0051
0052
0053
005"
0055
0056
0057
0058
0059
0060
0061
0062
0063
006"
0065
0066
0067

,j

L

Relative File Retrieval

This program, using dynamic access, retrieves the
summary file created by the CRTRELATIVE program.

The records of the INP-FILE contain one required field
(lNP-WEEK), which is the RELATIVE KEY for
RELATIVE-FILE, and one optional field
(lNP-ENO-WEEK). An input record containing data in
INP-WEEK and spaces in INP-ENO-WEEK requesta a
printout for that one specific SUM-REC; the record is
retrieved through random access. An input record
containing data in both INP-WEEK and
INP-ENO-WEEK requests a printout of all the
SUM-FILE records within the RELATIVE KEY range of
INP-WEEK through INP-ENO-WEEK, inclusive; these
records are retrieved through sequential access.

Note: The program-id used by the system is RTRVRE.

Sample File-Processing Programs E-15

0010

0020

0030

0040

0050

STNO -A•••B••• COB 0 L SOU R C E S TAT E MEN T S •••••••••• IDENTFCN SEQ/NO S

PROCE SS SOURCE
1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. RTRVRELATIVE.

3 ENVIRONMENT DIVISION.
• CONFIGURATION SECTION.
5 SOURCE-COMPUTER. IBM-S3••
6 OBJECT-COMPUTER. IBM-S3••
7 INPUT-OUTPUT seCTION.
8 FILE-CONTROL.
9 SELECT SUM-FILE

ASSIGN TO DISK-SUMFILE
ACCESS IS DYNAMIC
ORGANIZATION IS RELATIVE
RELATIVE KEY IS INP-WEEK
FILE STATUS IS SUM-STATUS.

10 SELECT INP-FILE
ASSIGN TO DISK-INPFILE.

11 SELECT PRT-FILE
ASSIGN TO PRINTER-PRTFILE.

12 DATA DIVISION.
13 FILE SECTION.
14 FD SUM-FILE

LABEL RECORDS ARE STANDARD.
15 Ot SUM-REC.
16 05 SUM-DATA OCCURS 5 TIMES tNDEXED BY SUM.
17 10 SUM-YEAR PICTURE 99.
18 10 SUM-WEEK PICTURE .99.
19 10 SUM-UNIT-SALES PICTURE 5916'.
20 10 SUM-DOLLAR-SALES PICTURE S919'V99.
21 FO I NP-FILE

LABEL RECOROS ARE STANDARD.
22 01 INP-REC.
23 05 INP-WEEK PICTURE 99.
24 05 I NP-END-WEEK PICTURE 99.
25 FO PRJ-F ILE

LABEL RECORDS ARE OMITTED.
26 01 PRT-REC.
27 05 PRT-WEEK PICTURE 99.
28 05 PRT-YEAR PICTURE B(5,99.
29 05 PRT-UNIT-SALES PICTURE 815'99.
30 05 FILLER PICTURE XIS ••
31 05 PRT-DOLLAR-SALES PICTURE SSSS.SSS.SSS.99.
32 WORKING-STORAGE SECTION.
33 01 THE-INDICATOR PICTURE X VALUE SPACE.
34 88 THE-ENO-OF-INPUT VALUE "e".
35 01 SUM-STATUS PICTURE xx.

36 PROCEOURE DIVISION.
37 TOP-LOGIC-PARA.

OOOt
0002
0003
000.
0005
0006
0007
0008
0009

0011
0012
0013
OOH
00t5
0016
0017
0018
0019

0021
0022
0023
0024
0025
0026
0027
0028
0029

0031
0032
0033
0034
0035
0036
0037
00.38
0039

0041
0042
0043
0044
0045
0046
00.7
0048
0049

E-16

STNO -A•••B••• COB 0 L SOU RC E S TAT E MEN T S •••••••••• IDE~TFCN SEQ/NO S

38 OPEN 	 INPUT SUM-FILE INP-FILE
OUTPUT PRT-FILE.

39 READ 	 INP-FILE
40 AT' END SET THE-END-OF-INPUT TO TRUE.
41 PERFORM PROCESS-INPUT UNTIL THE-END-OF-INPUT.
42 CLOSE 	 SUM-FILE

INP-F ILE
PRT-F ILE.

43 STOP 	 RUN.
44 PROCESS-INPUT.
45 IF INP-END~WEEK EQUAL SPACES
46 PERFORM RANDOM-PROCESS
47 ELSE 	 PERFORM SEQUENTIAL-PROCESS.
49 READ 	 INP-FILE
50 AT END SET THE-END-OF-INPUT TO TRUE.
51 RANDOM-PROCESS.
52 READ 	 SUM-FILE
53 INVALID KEY MOVE HIGH-VALUE TO SUM-YEAR (11.
54 IF SUM-YEAR ell NOT EQUAL HIGH-VALUE
55 PERFORM PRINT-SUMMARY.
56 SEQUENTIAL-PROCESS.
57 READ SUM-FILE
58 INVALID KEY MOVE HIGH-VALUE
59 PERFORM SEQUENTIAL-PROCESS-A10

UNT I L SUM- YEAR C1) GREATER'
60 SEQUENTIAL-PROCESS-AIO.

61 PERFORM PRINT-SUMMARY.

62 READ SUM-FILE NEXT RECORD

63 AT END MOVE HIGH-VALUE

64 PRINT-,SUMMARY.

65 PERFORM PRINT-SUMMARV-AIO

UNTIL SUM > 5.
66 PRINT-SUMMARY-A10.
67 MOVE SUM-YEAR (SUMI
68 MOVE SUM-WEEK (SUMI
69 MOVE SUM-UNIT-SALES (SUMI TO
70 MOVE SUM-DOLLAR-SALES (SUM) TO
71 WRITE PRT-REC AFTER ADVANCING

TO SUM-YEAR (11.

THA N 1NP-END-WEE K.

TO SUM-YEAR ell.

VARYING SUM FROM 1 BY I

TO

TO

PRT-YEAR.
PRT-.WEEK.

PRT-UNIT-SALES.
PRT-DOLLAR-SALES.

2.

0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088

Sample File-Processing Programs E-17

COBOL Sort Example

This program prints a report from the sorted output of
two disk files. The INPUT-FILE and the INPUT-FILE2
are merged together into the SORT-FILE and then
sorted in ascending sequence on SORT-FIELD2 and
descending sequence on SORT-FIELD1.

The OUTPUT PROCEDURE option of the SORT
statement is used to print the report. Note that the sort
input files must not be OPEN and must be described as
sequential organization. The System/34 will allow
indexed and relative files to be described as sequential
input only files. Note also that the OUTPUT
PROCEDURE must reference a SECTION.

00010 PROCESS OBJECT,LET,LIST
00020 IDENTIFICATION DIVISION.
00030 PROGRAM-ID. SORT1.
00040 INSTALLATION. ROCHESTER MARKET SUPPORT CENTER,
00050 SAMPLE COBOL SORT PROGRAM, SORTS TWO INPUT FILES AND PRINTS
00060 A REPORT USING THE OUTPUT PROCEDURE OPTION.
00070
00080 ENVIRONMENT DIVISION.
00090 CONFIGURATION SECTION.
00100 SOURCE-COMPUTER. IBM-S34.
00110 OBJECT-COMPUTER. IBM-S34.
00120 INPUT-OUTPUT SECTION.
00130 FILE-CONTROL.
00140 SELECT SORT-FILE ASSIGN TO DISK-SORTWORK.
00150 SELECT INPUT-FILE ASSIGN TO DISK-ITEMMAST.
00160 SELECT INPUT-FILE2 ASSIGN TO DISK-OLDITEMS.
00170 SELECT PRINT-FILE ASSIGN TO PRINTER-COBPNT01.
00180
00190 DATA DIVISION.
00200 FILE SECTION.
00210 SD SORT-FILE.
00220 01 SORT-REC.
00230 03 SORT-FIELDl PIC XXXX.
00240
00250

03
03

FILLER
SORT-FIELD2

PIC
PIC

X(1241.
9999.

00260 FD INPUT-FILE LABEL RECORDS ARE STANDARD.
00270
00280

01
FD

FILE-REC
INPUT-FILE2

PIC X(1321.
LABEL RECORDS ARE STANDARD.

00290
00300

01
FD

FILE-REC2
PRINT-FILE

PIC X(1321.
LABEL RECORDS ARE OMITTED.

00310
00320

01 PRINT-REC
WORKING-STORAGE

PIC
SECTION.

X(1321.

00330
00340 PROCEDURE DIVISION.
00350 START-PROGRAM SECTION.
00360 MAIN-FUNCTION.
00370 OPEN OUTPUT PRINT-FILE.
00380 SORT SORT-FILE ASCENDING KEY SORT-FIELD2
00390
00400

ON DESCENDING' KEY
USING INPUT-FILE,

SORT-FIELD],
INPUT-FILE2

00410 OUTPUT PROCEDURE IS PRINT-REPORT.
00420 CLOSE PRINT-FILE.
00430 STOP RUN.
00440 PRINT-REPORT SECTION.
00450 PRINT-FUNCTION.
00460 RETURN SORT-FILE INTO PRINT-REC AT END GO TO FINISHED.
00470 WRITE PRINT-REC AFTER ADVANCING 1 LINE.
00480 GO TO PRINT-FUNCTION
00490 F INI SHED. EXIT.

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORB

SORB

SORB

SORB

SORTl

SORTl

SORTl

SORTl

SORB

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORTl

SORB

SORTl

SORTl

SORTl

SORB

E-18

L

Appendix F. IBM American National Standard COBOL Reserved Words

No word in the following two lists should appear as a
programmer-defined name.

RESERVED WORDS USED BY THE SYSTEM/34
COBOL COMPILER

Words preceded by an asterisk (.) are not included in
the American National Standard COBOL, X3.23-1974.
reserved word list.

ACCEPT

ACCESS

·ACQUIRE
ADD
ADVANCING
AFTER
AL.L
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND

·APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT

·ATTRIBUTE-DATA
AUTHOR

BEFORE

BLANK

BLOCK

BOTTOM

BY

CALL
·CHANGED
CHARACTER
CHARACTERS
CLOSE
CODE-SET
COLLATING
COMMA
COMP

·COMP-3
·COMP-4
COMPUTATIONAL

·COMPUTATIONAL-3
·COMPUTATIONAL-4
COMPUTE

CONFIGURATION

CONTAINS

·CONTROL-AREA
COpy

CORR

CORRESPONDING

COUNT

·CORE-INDEX
·CSP
CURRENCY

·C01

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3

IBM American National Standard COBOL Reserved Words F-1

DEBUGGING IDENTIFICATION

DECIMAL- POINT IF

DECLARATIVES 1-0

DELETE I-O-CONTROL
 ,-J
DELIMITED IN

DELIMITER INDEX

DEPENDING INDEXED

DESCENDING -INDIC

DISPLAY -INDICATOR

DIVIDE -INDICATORS

DIVISION INITIAL

DOWN INPUT

-DROP INPUT-OUTPUT
DYNAMIC INSPECT

INSTALLATION

ELSE INTO

END INVALID

END-OF-PAGE IS

ENTER

ENVIRONMENT JUST

EOP JUSTIFIED

EQUAL

ERROR KEY

EVERY

EXCEPTION LABEL

-EXHIBIT LEADING
EXIT LEFT
EXTEND LESS

LINAGE ,J
FD LINAGE-COUNTER

FILE LINE

FILE-CONTROL LINES

FILLER LINKAGE

FIRST -LOCAL-DATA

FOOTING LOCK

FOR LOW-VALUE

-FORMAT LOW-VALUES
FROM

MEMORY

GIVING MERGE

GO MODE

GREATER MODULES

MOVE

HIGH-VALUE MULTIPLE

HIGH-VALUES MULTIPLY

F-2

L
-NAMED·

NATIVE
NEGATIVE
NEXT
NO
NOT
NUMERIC

OBJECT -COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORGAN IZATION
OUTPUT
OVERFLOW

PAGE
PERFORM
PIC
PICTURE
PLUS
POINTER
POSITIVE
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID

QUOTE
QUOTES

RANDOM
READ
RECORD
RECORDS
REDEFINES
REEL
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES

REPLACING
-REQUESTOR
RERUN
RESERVE
RESET
RETURN
REVERSED
REWJND
REWRITE
RIGHT

-ROLLING
ROUNDED
RUN

SAME
SD
SEARCH
SECTION
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
START

-STARTING
STATUS
STOP
STRING
SUBTRACT
SYNC
SYNCHRONIZED

-SYSTEM -CONSOLE
-SYSTEM-SHUTDOWN

IBM American National Standard COBOL Reserved Words F-3

L

TALLYING ·UPSI-5

TERMINAL ·UPSI-6

THAN ·UPSI-7
 ~.J

-THEN USAGE
THROUGH USE
THRU USING
TIME
TIMES VALUE
TO VALUES
TOP VARYING

-TRACE
TRAILING WHEN

-TRANSACTION WITH
-TRUE WORIlS

WORKING-STORAGE

UNIT WRITE

UNSTRING

UNTIL ZERO

UP ZEROES

UPON ZEROS

-UPSI-O
-UPSI-1
-UPSI-2
-UPSI-3
-UPSI-4

,j

F-4

L
RESERVED WORDS NOT USED BY THE
SYSTEM/34 COBOL COMPILER

The reserved words in the following lilt are not "lied by
the System/34 COBOL compiler and should not be "lied
if compatibility with other Americln National Standard
COBOL compilers and CODASYL COBOL is desired.

CANCEL

CD

CF

CH

CLOCK-UNITS

COBOL

CODE

COLUMN

COMMUNICATION

CONTROL

CONTROLS

DE

DESTINATION

DETAIL

DISABLE

DUPLICATES

EGI

EMI

ENABLE

ESI

FINAL

GENERATE

GROUP

HEADING

INDICATE

INITIATE

LAST
LENGTH
LIMIT
LIMITS
LINE-COUNTER

MESSAGE

NUMBER

PAGE-COUNTER
PF
PH
POSITION
PRINTING

QUEUE

RD
RECEIVE
REFERENCES

REPORT
REPORTING
REPORTS
RF
RH

SEND
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUM
SUPPRESS
SYMBOLIC

TABLE
TAPE
TERMINATE
TEXT
TYPE

IBM American National Standard COBOL Reserved Words F-5

L

F·6

L

Appendix G. EBCDIC and ASCII Collating Sequences

The ascending collating sequences for both the EBCDIC
(Extended Binary Coded Decimal Interchange Code) and
ASCII (American National Standard [X3.4-1977] Code
for Information Interchange) character sets are given in
this appendix. Decimal positions within the sequence
are given, as well as the binary representation, symbol,
meaning for each character, and corresponding decimal
position within the other sequence.

Note: When you are using the literal option of the
alphabet-name clause, you must add 1 to the number
shown in this appendix to sp&cify the corresponding
character. nhe numbers in this appendix run from 0
through 255; the numbers in the literal option run from
1 through 256.)

EBCDIC and ASCII Collating Sequences G-1

EBCDIC COLLATING SEQUENCE

Collating Bit
Sequence Configuration Symbol

o oooooooo

64 01000000 SP

74 01001010 ¢

75 01001011
76 01001100 <

77 01001101
78 01001110 +
79 01001111
80 01010000 &

,90 01011010
91 01011011 $
92 01011100 •
93 01011101
94 01011110

...,95 01011111
96 01100000
97 01100001 /

106 01101010
107 01101011
108 01101100 %
109 01101101
110 01101110 >

111 01101111 7

Meaning

Space

Cent sign

Period, decimal point
Less-than sign

Left parenthesis

Plus sign

Vertical bar, logical OR
Ampersand

Exclamation point

Dollar sign
Asterisk

Right parenthesis
Semicolon

Logical NOT
Minus, hyphen

Slash

Broken vertical bar

Comma
Percent sign
Underscore
Greater-than sign

Question mark

Corresponding ASCII
Collating Sequence
Number

o

32

91
46
60
40
43
33
38

93
36
42
41
59
94
45 ~.)
47

124
44
37
95
62
63

G-2

Corresponding
Collating Bit ASCII Collating
Sequence Configuration Symbol Meaning Sequence Number

121 01111001 Grave accent 96
122 01111010 Colon 58
123 01111011 # Number sign 35
124 01111100 @ At sign 64
125 01111101 Apostrophe, prime 39
126 01111110 Equal sign 61
127 01111111 " Quotation mark 34

129 10000001 a 97
130 10000010 b 98
131 10000011 c 99
132 10000100 d 100
133 10000101 e 101
134 10000110 f 102
135 10000111 g 103
136 10001000 h 104
137 10001001 105

145 10010001 j 106
146 10010010 k 107
147 10010011 108
148 10010100 m 109
149 10010101 n 110
150 10010110 0 111
151 10010111 112I?
152 10011000 q 113
153 10011001 r 114

161 10100001 Tilde 126
162 10100010 s 115
163 10100011 t 116
164 10100100 u 117
165 10100101 v 118
166 10100110 w 119
167 10100111 x 120
168 10101000 Y 121
169 10101001 z 122

EBCDIC and ASCII Collating Sequences G-3

Corresponding
Collating Bit ASCII Collating
Sequence Configuration Symbol· Meaning Sequence Number ~.J
192 11000000 { left brace 123

193 11000001 A 65

194 11 ()()()()1 0 B 66

195 11 ()()()()11 C 67

196 11000100 D 68

197 11000101 E 69

198 11000110 F 70

199 11000111 G 71

200 11001000 H 72

201 11001001 73

208 11 01 ()()()() } Right brace 125

209 11010001 J 74

210 11010010 K 75

211 11010011 l 76

212 11010100 M 77

213 11010101 N 78

214 11010110 0 79

215 11010111 P 80

216 11011000 Q 81

217 11011001 R 82

224 11100000 \ Reverse slant 92
 ,.j
226 11100010 S 83

227 11100011 T 84

228 11100100 U 85

229 11100101 V 86

230 11100110 W 87

231 11100111 X 88

232 11101000 Y 89

233 11101001 Z 90

240 1111 ()()()() 0 48

241 11110001 1 49

242 11110010 2 50

243 11110011 3 51

244 11110100 4 52

245 11110101 5 53

246 11110110 6 54

247 11110111 7 55

248 11111000 8 56

249 11111001 9 57

,J 255

G-4

ASCII COLLATING SEQUENCE

Corresponding
Collating Bit EBCDIC Collating
Sequence Configuration Symbol Meaning Sequence Number

0 00000000 Null 0

32 00100000 SP Space 64
33 00100001 I Exclamation point' 79
34 00100010 " Quotation mark 127
35 00100011 # Number sign 123
36 00100100 $ Dollar sign 91
37 00100101 % Percent sign 108
38 00100110 & Ampersand 80
39 00100111 Apostrophe, prime 125
40 00101000 (Left parenthesis 77

41 00101001) Right parenthesis 93
42 00101010 * Asterisk 92
43 00101011 + Plus sign 78
44 00101100 Comma 107
45 00101101 - Minus, Hyphen 96
46 00101110 Period, decimal point 75
47 00101111 / Slash 97
48 00110000 0 240
49 00110001 1 241
50 00110010 2 242
51 00110011 3 243
52 00110100 4 244
53 00110101 5 245
54 00110110 6 246
55 00110111 7 247
56 00111000 .8 248
57 00111001 9 249
58 00111010 : Colon 122
59 00,.11011 Semicolon 94
60 00111100 < Less-than sign 76
61 00111101 = Equal sign 126
62 00111110 > Greater-than sign 110
63 00111111 ? Question mark 111
64 01000000 @ At sign 124

'The corresponding EBCDIC symbol is I (logical OR).

EBCDIC and ASCII Collating Sequences G-5

L

Corresponding
Collating Bit EBCDIC Collating
Sequence Con"figuration Symbol Meaning Sequence Number

65 01000001 A 193
66 01000010 B 194
67 01000011 C 195
68 01000100 D 196
69 01000101 E 197
70 01000110 F 198
71 01000111 G 199
72 01001000 H 200
73 01001001 I 201
74 01001010 J 209
75 01001011 K 210
76 01001100 L 211
77 01001101 M 212
78 01001110 N 213
79 01001111 0 214
80 01010000 P 215
81 01010001 Q 216
82 01010010 R 217
83 01010011 S 226
84 01010100 T 227
85 01010101 U 228
86 01010110 V 229
87 01010111 W 230
88 01011000 X 231
89 01011001 Y' 232
90 01011010 Z 233
91 01011011 [Opening bracket' 74
92 01011100 \ Reverse slant 224
93 01011101] Closing bracket2 90
94 01011110 1\ Circumflex, 95

., Logical NOT

95 01011111 Underscore 109-
96 01100000 \ Grave accent 121

'The corresponding EBCDIC symbol is It (cent sign).
2The corresponding EBCDIC symbol is ! (exclamation point).

G-6

Corresponding
Collating Bit EBCDIC Collating
Sequence Configuration Symbol Meaning Sequence Number

97 01100001 a 129
98 01100010 b 130
99 01100011 c 131
100 01100100 d 132
101 01100101 e 133
102 01100110 f 134
103 01100111 1359
104 01101000 h 136
105 01101001 i 137
106 01101010 j 145
107 01101011 k 146
108 01101100 I 147
109 01101101 m 148
110 01101110 n 149
111 01101;11 0 150
112 01110000 151P
113 01110001 q 152
114 01110010 r 153
115 01110011 5 162
116 01110100 t 163
117 011 ;0101 u 164
118 01110110 v 165
119 01110111 w 166
120 01111000 x 167

•121 01111001 Y 168
122 01111010 z 169
123 01111011 1 Left Brace 192
124 01111100 I Vertical line' 106
125 01111101 } Right Brace 208

~126 01111110 Tilde 161

'The corresponding EBCDIC symbol is : (broken vertical line).

EBCDIC and ASCII Collating Sequences G-7

G-8

L

Appendix H. File Processing Summary and Status Key Values

This appendix illustrates, through the use of the first
four figures, the various required and optional entries
used with sequential, relative, indexed, and
TRANSACTION files. Figure H-5 contains status key
values and their meanings.

Environment Division

ASSIGN
Device Function SELECT system-name

Printers Print file-name 	 PRINTER­
external-name

Read

DISK-
Disk Create file-name

external-name

Read and
Update

Disk Extend file-name 	 DISK-name

Sort file-name 	 DISK-name

Figure H·' (Part' of 2). Sequential File.

Required Entries

Data Division

FD Entry

file-name
LABEL RECORDS

OMITTED

file-name
LABEL RECORDS
STANDARD

file-name
LABEL RECORDS

STANDARD

SO file-name

Procedure Division

OPEN CLOSE

OUTPUT file-name
file-name [WITH LOCK]

INPUT file-name
file-name [WITH LOCK]

OUTPUT
file-name

1-0 file-name

EXTEND
file-name file-name

N/A N/A

File Processing Summary and Status Key Values H-'

Optional Entries

Environment Division Data Division Procedure Division

OpenSPECIAL-
ModeDevice Function NAMES RESERVE Other CI4Iuses FD Entry Clauses Input/Output Verbs

ACCESS BLOCK CONTAINS WRITE record-name
SEQUENTIAL RECORD CONTAINS [FROM]
SAME AREA LINAGE IS ~ BEFORE AFTER
RERUN FOOTING ADVANCING

CSP3 1 FILE STATUS LINES AT TOP r-'02 nOutputPrinters Print
C01 2 LINES AT BOTTOM 	 integer

mnemonic-name
PAGE

DA~~~D-OF-PAGEn
Disk Read

ACCESS BLOCK CONTAINS 	 READ file-name
Input

1 SEQUENTIAL RECORDS [INTO] AT END
CONTAINS

Create

OutputSAME AREA DATA RECORDS 	 WRITE record-name'
2

RERUN 	 [FROM]

Read and

Update

FILE STATUS VALUE OF CODE READ file-name
OPTIONAL SET [INTO]

AT END
REWRITE

record-name2

[FROM]

ACCESS BLOCK CONTAINS
Disk Extend

SEQUENTIAL RECORD CONTAINS

SAME AREA DATA RECORDS 	 WRITE file-name
1 	 Extend

RERUN 	 [FROM]

FILE STATUS VALUE OF CODE
2

OPTIONAL SET

MERGE
RECORD CONTAINS SORT N/ASort 	 N/A N/A N/A

, DATA RECORDS 	 RELEASE/
RETURN

,Create

2Update

3The 3284 Printer cannot perform suppress printing

Figure H-1 (Part 2 of 21. Sequential File.

H-2

1-0

Required Entries
Organization

Environment Division 	 Data Division Procedure Division

ASSIGN
System- KEY

ACCESS IS SELECT 	 name Clause FD Entry OPE!,! CLOSE

RELATIVE [SEQUENTIAL] file-name 	 DISK- RELATIVE File-name Input file- file-name
external- LABEL name [LOCK]
name RECORDS

STANDARD

1-0 file­
name

RANDOM file-name 	 DISK- RELATIVE file-name Input file­
external- LABEL name
name RECORDS

STANDARD

file- name
[LOCK]

Output
file- name

1-0 file­
name

Figure H-2 (Part' of 21. Relative Fil ..

File Processing Summary and Status Key Values H-3

Optional Entries

--.

Environment
Division Data Division Procedure Division

Valid Optional Open
Organization Clauses FD Entry Clauses Input/Output Verbs Mode

RELATIVE SAME AREA BLOCK CONTAINS READ file-name [INTO]

(Sequential) RERUN RECORD CONTAINS AT END
 Input

FILE STATUS 	 DATA RECORDS
START file-name [KEY IS]

OPTIONAL 	 VALUE OF
INVALID KEY

CODE-SET
READ file-name [INTO]
AT END

REWRITE record-name [FROM] 1-0

START file- name KEY IS
INVALID KEY

RELATIVE SAME AREA BLOCK CONTAINS READ file-name [INTO]

(Random) RERUN RECORD CONTAINS INVALID KEY

FILE STATUS 	 DATA RECORDS Input
VALUE OF
CODE-SET

WRITE record-name
Output[FROM]'

INVALID KEY

READ file-name [INTO]
INVALID KEY

WRITE record-name [FROM P 1-0
INVALID KEY

REWRITE record-name [FROM P

'Create and Add

2Add Only

3Update Only

Figure H-2 (Part 2 of 2). Relative File.

H-4

Required Entrl.

Environment Divi.ion Data Divi.ion
Organization

ASSIGN
Syatem- KEY

ACCESS IS SELECT neme Cleu_ FD Entry

INDEXED [SEQUENTIAL] file-name DISK- RECORD file-name
external- LABEL
name RECORDS

STANDARD

RANDOM file-name 	 DISK- RECORDS file-name
extemal- LABEL
name RECORDS

STANDARD

DYNAMIC file-name 	 DISK- RECORD file-name
extemal- LABEL
name RECORDS

STANDARD

Figure H-3 (Pert 1 of 2). Indexed File.

Procedure Divi.ion

OPEN

INPUT
file-name

CLOSE

file-name
[LOCK]

OUTPUT
file-name

1-0
file-name

INPUT
file-name

fil.e-name
[LOCK]

1-0
file-name

INPUT
1-0

file-name

File Processing Summary and Status Kev Values H·5

Optional Entries

Environment
Organization Division Data Division Procedure Division

Valid Optional Open

Clauses FD Entry Clause Input/Output Verbs Mode

INDEXED SAME AREA BLOCK CONTAINS READ file-name [INTO]
(Sequential) RERUN m RECORDS AT END

FILE STATUS RECORD CONTAINS Input

DATA RECORDS START file-name [KEY IS]
VALUE OF INVALID KEY

RESERVE 1 CODE-SET WRITE record-name [FROM] 1

SAME AREA INVALID KEY Output

RERUN

READ FILE-name [INTO]
AT END

REWRITE record-name [FROM]2 1-0
INVALID KEY

SAME AREA START file-name [KEY IS]
RERUN INVALID KEY

INDEXED APPLY BLOCK CONTAINS READ file-name [INTO]
(Random) CORE-INDEX m RECORDS INVALID KEY

SAME AREA RECORD CONTAINS Input
RERUN DATA RECORDS
FILE STATUS VALUE OF

CODE-SET

READ file-name [INTO]
INVALID KEY

WRITE record-name [FROM P 1-0
INVALID KEY

REWRITE record-name [FROM] 3

INVALID KEY

INDEXED APPLY BLOCK CONTAINS READ file-name NEXT RECORD Input

(Dynamic) CORE-INDEX m RECORDS READ file-name [INTO] or

SAME AREA RECORD CONTAINS INVALID KEY 1-0

RERUN DATA RECORDS REWRITE record-name [FROM]
FILE STATUS VALUE OF INVALID KEY 1-0

CODE-SET

1Create

2Update

3Add

Figure H-3 (Part 2 of 2)_ Indexed File.

H-6

Required Entries

Environment Division Data Division

ASSIGN
SELECT system-name ORGANIZATION FD Entry

file-name WORKSTATION TRANSACTION file-name
LABEL, RECORDS
OMITIED

Figure H-4 (Part 1 of 21. TRANSACTION FiI ••

Environment Division

SPECIAL- NAMES FILE CONTROL

LOCAL-DATA FILE STATUS
ATIRIBUTE-DATA ASSIGN WORKSTATION­

name-formats
number-of-formats

ACCESS SEQUENTIAL
CONTROL AREA

Figure H-4 (Part 2 of 21. TRANSACTION Files

Optional Entries

Procedure Division

OPEN CLOSE

1-0 file-name file-name
[WITH LOCK]

Procedure Division

Input/Ouput Verbs

ACQUIRE
DROP
READ file-name [INTO]

[TERMINAL] [NO DATA]
[AT END]

WRITE record-name
[FROM] [FORMAT]
[TERMINAL] [STARTING]
[ROLLING] [INDICATOR]

ACCEPT FROM [FOR]
DISPLAY UPON [FOR]

Data Division

FD Entry Clauses

RECORD CONTAINS
DATA RECORDS
Data Description Entry
Boolean data item

[INDICATOR]

File Processing Summary and Status Key Valuas H·7

Status Status
Key 1 Key 2 Meaning

0 Successful completion
0 No further information

Initial READ from a REQUESTOR (IBM Extension)

0 At end of file (no outstanding invites)

2 Invalid key
1 Sequence error
2 Duplicate key when duplicates are not allowed
3 No record found
4 Boundary violation-indexed or relative file

3 Permanent error
0 No further information
4 Boundary violation-sequential file

9 Other errors (IBM Extensions)
0 Invalid update, add, or output operation
1 Undefined access type
2 Logic error (I/O to unopened file, file locked, already OPEN, already CLOSED, or

invalid operation)
4 No current record pointer for I/0 request
5 Invalid or incomplete file information
7 Invalid Op Code
9 Undefined
A STOP requested by system operator
C Acquire operation failed, terminal not in standby mode
0 Terminal operator released work station with INQUIRY key
E SRT program released its requestor, I/O rejected
F Acquire operation failed, either operator signed on is unauthorized or program is

unauthorized to use resources
G Input data rejected, buffer too small
H Acquire operation failed, resourr.e is unavailable or currently owned by another

program
I Write operation failed, input data already received by Data Management
N Temporary error (error during session)

Figure H-5. Status Key Values and Meanings

•

H-8

S SPECIFICATIONS

Columns Name

1·5 Seguence number

6 Form type

7

7·14 Format name

15-16

17-18 Start linE!' number

19-20 	 Number of lines
to clear

21 	 Lowercase

22 	 Return input

23-24

25-26 Sound alarm

Entry

Line number

S

*

Display
screen
format name

Blank

01-24

V
(column 17)

00·24

Y

N or blank

Y or blank

N

Blank

Y
(column 25)

N (column
25) or blank

01-99

Appendix I. Display Screen Format Specifications

Explanation

Entry used to number the specification lines.

Identification for an S specification.

Asterisk in this column identifies this line as a comment line.

Name of the display screen format that the $SFGR utility program

creates from the Sand D specifications.

Number of the line at which the display begins.

Start line number is determined by the user program.

Number of lines to clear, including and following the starting line.
The specified number of lines are cleared, beginning with the start
line specified in columns 17 and 18.

With the Shift key, operators key uppercase characters. Without the

Shift key, operators key lowercase characters.

Operators key uppercase characters only.

Input fields on this display are returned to the user program, even if
the operator enters no data.

Input fields on this display are not returned to the user program
unless the operator enters data in one or more of the fields. Then all
input fields are returned to the program.

The alarm sounds when this display appears.

The alarm does not sound when this display appears.

The alarm sounds when this display appears only if the specified
indicator is on.

Display Screen Format Specifications 1·1

S SPECI'FICATIONS (Continued)

Columns Name Entry Explanation

27 Enable function y The function control keys identified by numbers in the key mask
keys entr~ (columns 64 through 79) are enabled (allowed). If the key

mask entry contains no numbers, all function control keys are
disabled.

N The function control keys identified by numbers in the key mask
entry are disabled (not allowed). If the key mask entry contains
no numbers, all function control keys are enabled. If the operator
presses a disabled function control key, an error message is
displayed; The operator can then press the Error Reset key, followed
by the correct function key.

R The function control key mask that is active for the display station
is retained when this format is displayed.

Blank All function control keys are enabled. In this case, the key mask
entry must not contain any numbers.

Note: Function control keys that are not masked off and that
are not supported by the program cause an error message to be
displayed, which indicates that an invalid key was pressed.

28 Enable command y The command keys identified by alphabetic characters in the key
keys mask entry (columns 64 through 79) are enabled (allowed). If

the key mask entry contains no alphabetic characters, all
command keys are disabled.

N The command keys identified by alphabetic characters in. the key
mask entry are disabled (not allowed). If the key mask entry
contains no alphabetic characters, all command keys are enabled.
If the operator presses a disabled command key, an error message
is displayed. The operator can then press the Error Reset key,
followed by the correct command key.

R The command key mask that is active for the display station is
retained when this format is displayed.

Blank All command keys are enabled. In this case, the key mask entry
must not contain any alphabetic characters.

1·2 S Specifications

S SPECIFICATIONS (Continued)

Columns Name

29-30 Blink cursor

31·32 Erase input fields

33-34 Override fields

35-36 Suppress input

137-63

Entry

y

(column 29)

N (column
29) or blank

01-99

Y
(column 31)

N (column
31) or blank

01-99

Y

(column 33)

N (column
33) or blank

01-99

Y
(column 35)

N (column
35)or blank

01-99

Blank

Explanation

The cursor blinks when this display appears.

The cursor does not blink.

The cursor blinks only if the specified indicator is on.

All unprotected input fields on thp. screen are erased, the keyboard is
unlocked, and no output occurs. All 0 specifications are ignored.
The use of Y is not recommended.

The input fields are not erased.

All unprotected input fields on the screen are erased and the
keyboard is unlocked if the specified indicator is on.

An override operation is performed. The use of Y is not
recommended.

The operation is not an override operation.

An override operation is performed if the specified indicator is on.
An override operation allows the screen to remain unchanged except
for those fields that have indicators specified for them in columns
23 and 24 of the 0 specification, and those indicators are on. See
Special Display Format Consideratio.ns in Chapter 7 for a description
of an override operation. The record displayed by COBOL is exactly
the same whether or not override is specified when the indicator in
columns 23 and 24 of the 0 specification is on.

No input is returned to the user program until a format is displayed
with suppress input specified as N or with the specified indicator off.

Input is retu~ned to the user program.

Input to the user program is suppressed if the specified indicator is on.

Display Screen Format Specifications 1-3

L

http:Consideratio.ns

S SPECIFICATIONS (Continued)

Columns Name Entry Explanation

64·79 Key mask 	 The key mask is a string of numbers and/or alphabetic characters
that identify keys to be enabled or disabled when this format is
displayed. The key mask must begin in column 64 and cannot
contain embedded blanks. The numbers and alphabetic characters
can be intermixed.

Numbers in the key mask identify function control keys:

Number Function Control Key

Print
2 ROLLt
3 ROLL-!­
4 Clear
5 Help
6 Record Backspace

Note: COBOL recognizes only key numbers 2 and 3 (the ROLL
keys). COBOL does not support key numbers 1,4,5, and 6.

Alphabetic characters in the key mask identify command keys:

Alphabetic

Character Command Keys ,J~

A 1
B 2
C 3
D 4
E 5
F 6
G 7
H 8
I 9
J 10
K 11
L 12
M 13
N 14
P 15
Q 16
R 17
S 18
T 19
U 20
V 21
W 22
X 23
Y 24

1-4 S Specifications

D SPECIFICATIONS

Columns Name

1-5 Sequence number

6 Form type

7

7-12 Field name

13-14

15-18 Field length

19-20 Line number

21-22 Horizontal position

23-24 Output data

Entry

Line number

D

*

Field name

Blank

Blank

1·1919

01-nn

01-80

Y
(column 23)

N (column
23) or blank

01-99

Explanation

Entry used to number the specification line.

Identification for a 0 specification.

Asterisk in this column identifies this line as a comment line.

Name of an input field, output field, or output/input field.

This 0 specification line specifies only constant data.

The entry must be right-justified, but leading zeros are not required.

Relative line number on which data appears. The actual line number
is start line number (column 17 and 18 on the S specification) plus
this line number, minus one.

nn (maximum) =24 - starting line number

Column number of the first position of the field. Columns 19
through 22 cannot be 0101.

If constant data or a message identification code is also specified
in columns 57 through 79, that constant data or the specified
message is displayed in the field.

If no constant data or message identification code is specified in
columns 57 through 79, data from the user program output record
is displayed.

The field is not an output field.

If the specified indicator is on when the format is displayed, data
supplied by the user program is displayed in the field.

If the specified indicator is off when the format is displayed, data
specified in columns 57 through 79 is displayed. If no data is
specified in columns 57 through 79, blanks are displayed.

If the user program performs an override operation and the specified
indicator is on, data supplied by the user program is displayed in the
field. See Special Display Format Considerations in Chapter 7 for a
description of the override operation.

If the user program performs an override operation and the specified
indicator is off, the field is unchanged.

Blank

Display Screen Format Specifications 1-5

25

D SPECIFICATIONS (Continued)

Columns Name Entry Explanation

~~
26 Input allowed Y The operator can enter information into the field from the keyboard.

N or blank The operator cannot enter information into the field from the
keyboard.

27 Data type 	 A The field can contain only alphabetic data.

B or blank The field can contain only alphameric data.

K The field can contain Katakana characters.

N The field can contain only numeric data. Commas, a period, a plus
sign, or a minus sign can also be entered in this field.

S The field can contain only signed numeric data; the last position of
the field is reserved for a sign. Only decimal digits (0 through 9)
can be entered in the field. The field can be from 2 to 16 characters
long.

28 Mandatory fill Y Operators must key all or key none of the field.

N or blank Operators can key all, none, or part of the input field.

Note: Mandatory fill and adjust/fill (column 31) cannot be specified
for the same field. ~~

29 Mandatory entry Y Operators must enter at least one character or a blank in the input
field.

N or blank Operators can bypass the input field.

30 Self check 	 T The input field is a modulus 10 self-check field.

E The input field is a modulus 11 self-check field.

Blank The input field is not a self-check field.

1-6 0 Specifications

o SPECIFICATIONS (Continued)

Columns Name Entry Explanation

31 Adjust/fill z Information entered into the field is right-justified, and unused
positions are filled with zeros_

B Information entered into the field is right-justified, and unused
positions are filled with blanks.

Blank For signed-numeric fields, the information entered in the field is
right-justified and blank fill is assumed. For all other fields, the
information entered in the field is unchanged.

Note: Mandatory fill (column 28) and adjust/fill cannot be specified
for the same field.

Display Screen Format Specifications '-7

L

36

D SPECIFICATIONS (Continued)

Columns Name

32·33 	 Position cursor

34 	 Enable Dup

35 	 Controlled field
exit

Auto record advance

37·38 	 Protect field

Entry

Y
(column 32)

N (column
32) or blank

01·99

Y

N or blank

Y

N or blank

Y

N or blank

Y
(column 37)

'N (column
37) or blank

01·99

Explanation ..J
Cursor appears at the first position of the input field when this
format is displayed.

Cursor does not appear at the first position of the input field.

Cursor appears at the first position of the input field only if the
specified indicator is 00.

When the Dup key is pressed, the position of the cursor and the
remainder of the field are filled with the duplicate character value
(hex 1Cl. which is displayed as an asterisk (*). The duplicate
characters must be processed by the user porgram.

The Dup key has no effect in the field.

Cursor does not leave the input field until the operator presses a
field exit key (Field Adv, Enter/Rec Adv, Field Exit, Field +, Field ­
[if the field is a signed·numeric field], Field Backspace, Home,
Erase Input, or Dup).

Cursor automatically skips to the next unprotected field when the
operator keys the last position of the field.

The input fields on the screen automatically return to the user
program when one of the following occurs:
• 	 The operator enters the last character in the field.
• 	 The cursor is in the input field and the operator presses the

Field Exit, Field +, or Field - key (if the field is a signed·numeric
field).

Automatic record advance does not occur for this field.

The cursor skips the field.

The cursor does not skip the field.

The cursor skips the field if the specified indicator is on.

Note: If an override operation is used, this indicator is ignored.

1-8 0 Specifications

o SPECIFICATIONS (Continued'

Columns N.....

39-40 High intensity

41-42 Blink field

43-44 Nondisplay

. 45-46 Reversa image

47-48 Underline

Entry

Y
(column 39)

N.(column
39) or blll'lk

01-99

Y
(column 41)

N(coIumn
41) or blank

01-99

Y
(column 43)

N (column
43) or blank

01-99

Y
(column 45)

N (column
45) or blank

01-99

Y
(column 47)

N (column
47) or blank

01-99

Explllllltion

The field is displayed with high intensity.

The field is displayed with normal intensity.

The field is displayed with high intensity if the specified indicator
is on.

Notrl: High intensity, reverse image (columns 45-46), and underline
(columns 47-48) cannot all be specified for the same field at the
same time.

The field blinks.

The field does not blink.

The field blinks if the specified indicator is on when the format i~
displayed.

The field is nondisplay; that is, information in the field when the
format is displayed or information entered into the field by the
operator is not visible on the screen.

The information in the field is displayed;

The field is a nondisplay field if the specified indicator is on when
the format is displayed.

The characters in the field appear as dark characters on a light
background.

The characters in ttle field appear as light characters on a dark
background.

The ch.racters in the field appear as dark characters on a light
background if the specified indicator is on when the format is
displayed.

The field is underlined.

The field is not underlined.

The field is underlined if the specified indicator is on.

Display Screen Format Specifications I.e

L

D SPECIFICATIONS (Continued)

Columns Name

49 Column separators

50-55

56 Constant type

57-79 Constant data

80 Continuation

Entry

Y

N or blank

Blank

C

M

Blank

x

Explanation

Each character position in the field is preceded by a column
separator (a vertical line). The column separator does not require an
additional character position.

Column separators are not used.

The constant information in columns 57 throu!tl 79 is to be
displayed in' the output field. C is required only if columns 57
throu!tl 79 are blank and you want to display all blanks in the field.
C is invalid if an indicator is specified in columns 23 and 24.

A message identification code and a message member identifier are
entered in columns 57 throu!tl 79.

If columns 57 throu!tl 79 contain constant information, that
information is displayed. If columns 57 throu!tl 79 are blank, then
information from the program output record area is displayed.

This field specifies the information to be placed in an output or
output/input field when the format is generated. If information is
to be placed in the field, columns 57 throu!tl 79 should contain one
of the following:
• 	 The actual information to be displayed .
• 	 A four-digit message identification code in columns 57 through

60 and a 2-character message member identifier in columns 61
and 62.

Notes:
1. 	 If column.s 57 throu!tl 79 are blank and .the field is an output

field (Y in column 23), then information from the program
output record is displayed.

2. 	 If a message identification code is specified in columns 57
throu!tl 79, then only 6 bytes need be reserved for the field in
the program output ~rd area.

If more than 23 characters of data are required, an X in column 80
indicates that the record is continued. Use columns 7 through 79 of
the following record for the continued constant data.

Note: A comment cannot follow a record with X in
column SO.·

1-10 0 Specifications

Appendix J. Example of Conversion from Work Station PRPQ Support to Native
COBOL TRANSACTION File Support

This appendix is provided to help demonstrate the
difference between the Work Station PRPQ support for
display stations and SSP-ICF sessions and the
TRANSACTION file support provided by native COBOL.
Figure J-l is the listing of the screen formats that are
used for both programs. Figure J-2 is the listing of the
Work Station PRPQ program. Figure J-3 is the listing of
the native COBOL TRANSACTION file program.

The major differences between the two programs are:

• 	 The native COBOL program requires a
TRANSACTION file specification in the
ENVIRONMENT and DATA divisions, rather than a
work station parameter list (WS-PARM-LlST).

• 	 Subroutine CALLs are replaced by COBOL verbs.

For a detailed explanation of the COBOL language that
replaces the work station subroutines, see Chapter 7,
TRANSACTION File Considerations and Sample Programs.

Example of Conversion from Work Station PRPQ Support to Native COBOL TRANSACTION File Support J-1

L

SZ ITEM 0124 03
0 17 2 bY CENTER ITEM NUMBER
OITEMNO b 225 Y Y Y Y
0 13 233Y CCOR / TO ENOl J

INPUT BUFFER DESCRIPTION

FIELD START END

NAME LENGTH POSI nON POSITION

ITEMNO 	 6 1 b

SSHOWITEM 100 	 N
o 8 5 3Y Y I TEM NO.
D 22 514Y Y DESCRIPTION
o 9 541 Y 	 Y PRICE
o b 553Y 	 Y ONHAND
o b 562Y Y SOLO

OITEMNO 6 b 3Y

OONHANO b 653Y

DPENOING 6 662Y

DPRICE 9 641Y

DOESC 22 614Y

SYS-5077 	W FORMAT CONTAINS FIELDS, PART OF A FIELD, OR AN AlTRIBUTE ON
A LINE NOT CLEARED BY THE .FORMAT.

EXECUTION TIME OUTPUT BUFFER DESCRIPTION

fIELD START END

NAME LENGTH POSITION POS IlION

ITEMNO b 1 6

ONHANO 6 7 12

PENDING 6 13 18

PRICE 9 19 Z7

OESC 22 28 49

SZERROR 2400 N
OMSG 14 1 2Y Y

SYS-5077 W FORMAT CONTAINS fIELDS, PART OF A FIELD, OR AN ATTRIBUTE ON
A LINE NOT CLEARED BY THE FORMAT.

EXECUTION TIME OUTPUT BUFFER DESCRIPTION

FIELD START t:Nu

NAME LENGTH POSITION POS I nON

MSG 	 14 1 14

Figure J-1. Screen .Formats for INQRM Sample Programs

J-2

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. INQRYI.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-OOMPUTER. IBM-S34.
6 OBJECT-COMPUTER. IBM-S34.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT DISK-FILE ASSIGN TO DISK-INV

ORGANIZATION IS INDEXED
ACCE,SS IS RANDOM
RECORD KEY ITEMNO
FILE STATUS IS DISK-RET-CODE .

. 10 DATA DIVISION.
11 FILE SECtION.
12 FD DISK-FILE

LABEL RECORDS ARE STANDARD.
13 01 DISK-REC.
14
15
16
17
18
19

05 ITEMNO
OS ONHAND
OS PENDING
05 PRICE
05 DESC

WORK,ING-STORAGE

PIC
PIC
PIC
PIC
PIC

SECT I ON.

X(6).
XeS).
9(5).
9(S)V99.
X(22).

20 77 DISK-RET-CODE PIC XX.
21 88 RECORD-FOUND VALUE '00'.
22 01 WS-PARM~_IST.

23 OS FMT-LOAD-MEMBER PIC X(8) VALUE 'INQRYFMT'.
24 OS INPUT-LEN PIC S9(4) VALUE 49.
2S OS NUM-OF-INDS PIC S99.
26 OS FMT-NAME PIC X(8).
27 OS WSID PIC XX.
28 05 START-LINE PIC 99 VALUE 1.
29 OS CBL-RET-CODE PIC XX.
30 05 AID-BYTE PIC 99.
31 OS NO-ROLL-LINES PIC 99.
32 OS TOP-ROLL-LINE PIC 99.
33 OS END-ROLL-LINE PIC 99.
34 OS SYS-RET-CODE PIC X(4).
3S OS WORK-AREA PIC X(4).
36 OS WS-RECORD.
37 10 ITEMNUM PIC 9(6).
38 10 EOF-FLAG REDEFINES ITEMNUM.
39 1S EOF PIC X.
40
41
42
43

10
10

88 END-OF-FILE
15 FILLER" PIC X(S).

ONHAND PIC Z(5)-.
PENDING PIC Z(5)-.

VALUE '/'.

44 10 PRICE PIC ZZ,ZZZ.99.
4S 10 DESC PIC X(22).

Figure J-2 (Part 1 of 2). Work Station PRPQ Program

Example of Conversion from Work Station PRPQ Support to Native COBOL TRANSACTION File Support J-3

L

46 01 ERR-MSG PIC X(14) VALUE
'ITEM NOT FOUND'.

47 PROCEDURE DIVISION.
48 OOO-CONTROL.
49 PERFORM 100-HOUSEKEEPING.
50 PERFORM 200-ACCEPT-INQRYS UNTIL END-OF-FILE.
51 PERFORM 300-WRAP-UP.
52 STOP RUN.
53 100-HOUSEKEEPING.
54 OPEN INPUT DISK-FILE.
55 CALL 'WSOPEN' USING WS-PARM-LIST.
56 CALL 'WSREAD'.
57 MOVE 'ZITEM' TO FMT-NAME.
58 CALL 'WSRITE' USING WS-RECORD.
59 CALL 'WSREAD'.
60 200-ACCEPT-INQRYS.
61 MOVE ITEMNUM TO ITEMNO.
62 READ DISK-FILE INTO WS-RECORD
63 INVALID KEY PERFORM 250-REC-NOT-FOUND.
64 IF RECORD-FOUND
65 PERFORM 220-RECORD-FOUND.
66 CALL 'WSREAD'.
67 220-RECORD-FOUND.
68 MOVE CORRESPONDING DISK-REC TO WS-RECORD.
69 MOVE 'ZITEM' TO FMT-NAME.
70 CALL 'WSRITE' USING WS-RECORD.
71 MOVE 'SHOWITEM' TO FMT-NAME.
72 CALL 'WSRITE' USING WS-RECORD.
73 250-REC-NOT-FOUND.
74 MOVE 'ZERROR' TO FMT-NAME.
75 CALL 'WSRITE' USING ERR-MSG.
76 300-WRAP-U~.
77 CLOSE DISK-FILE.
78 CALL 'WSCLOS'.

PROGRAM SIZE = DATA DIVISION + PROCEDURE DIVISION + LITERALS + DTF/BUFFERS

1776 503 76 1024

NO ERRORS DETECTED FOR THIS COMPILATION

END OF COMPILATION

Figure J-2 (Part 2 of 2). Work Station PRPQ Program

J-4

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. INQRY.

3 ENVIRON~ENT DIVI~ION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. IBM-S34.

6 OBJECT-COMPUTER. IBM-S34.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT DISK-FILE ASSIGN TO DISK-INV

ORGA~llATION IS INDEXED
ACCESS IS RANDOM
RECORD KEY lTEMNO
FILE STATUS IS DISK-RET-CODE.

10 SELECT WORKSTN ASSIGN TO WORKSTATION-INQRYFMT-3
ORGANIlATION IS TRANSACTION
FILE STATUS IS CBl-RET-CODE. SVS-RET-CODE
CONTROL-AREA IS WS-CONTROL.

11 DATA DIV I SION.
12 FILE SECTIUN.
13 FD DISK-FILE

LABEL RECORDS ARE STANDARD.
14 01 DISK-REC.
15 05 ITEMNG PIC X161.
16 05 ONHAND PIC 9151.
17 05 PENDING PIC 9151.
18 05 PR IC E PIC 9151V99.
19 05 DESC PIC X1221.
20 FD wOKKSTN

lABEL RECORDS ARE O~H TTED.
21 01 WS-RECORD.
22 05 ITEHNUH PIC 9161.
23 05 EOF-FlAG REDEFINES I TEMf\.oUH.
24 Ie EOF PIC x.
25 88 END-OF-FIlE VALUE ' /, .
26 10 FIllER PIC XI 5 1 •
27 05 ONHAND PIC lI51-.
28 0.5 PENDING PIC lISI-.

29 05 PRICE PIC lZ,ZlZ.99.

3C 05 DESC PIC X1221.

31 C1 ERR-RECORD PIC X1141.

32 WORKING-STORAGE SEC TI ON.

33 77 DISK-RET-CODE PIC XX.

34 88 RECORD-FOUND VALUE '0\.1'.

35 01 wS-CONTROl.

36 05 AID-BYTE PIC 99.

37 05 WSID PIC xx.

38 05 FIllER PIC X(81.

39 01 RET-CODE'S.

40 as CBl-RET-CODE PIC xx.

41 05 SVS-RET-CODE PIC X141.

42 01 ERR-MSG PIC XI 141 VALUE

, ITEM NOT FOUND'.

Figure J-3 (Pert 1 of 2). Converted Native COBOL Program

Example of Conversion from Work Station PRPQ Support to Native COBOL TRANSACTION File SuPPOrt J-6

http:lZ,ZlZ.99

/
43 PROCEDURE UIVISIuN.
44 DOD-CONTROL.
45 PERFORM 100-HOUSEKEEPING.
46 PERFORM 20u-ACCEPT-INQRYS UNTIL END-OF-FIlE.
41 PERFORM 300-wRAP-UP.
48 STOP RUN.
49 lOD-HOUSEKEEPING.
50 OPEN INPUT DISK-FILE, l-o wORKSTN.
51 READ WURKSTN.
52 wRITE wS-RECORD

FORMAT IS 'ZITEM'.
53 READ WORKSTN.
54 200-AtCE~T-INQRYS.
55 MOVE ITEMNUM TO ITEMNO.
56 READ DISK-FILE INTO wS-RECORD
57 INVALID ~EY PERFORM 2SU-REC-NOT-FOUND.
58 IF RECORD-FOUND
59 PfRFORM l20-RECORD-FOUND.
60 READ WORKSTN.
61 220-RECORD-FOUND.
62 MOVE CORRESPONDING DISK-REC TO WS-RECORD.
63 wRITE ~S-RECORD

FORMAT IS 'ZITEM'.
64 WRITE wS-RECORD

FORMAT IS 'SHOwITEM'.
65 2SG-REC-NOT-FOUNO.
66 wRITE ERR-RECORD

FROM ERR-MSG FORMAT IS 'ZERROR'.
61 30G-wRAP-UP.
68 CLOSE DISK-FILE wORKSTN.

PROGRAM SllE = DATA DIVISION + PROCEDURE DIVISION + LIT~RALS + OTF/BUfFERS

1902 145 5('4 16 1111

NO ERRORS DETECTED FOR THIS COMPILATION

END OF COMPILATLO~

Figure J-3 (Part 2 of 21. Converted Native COBOL Program

J-6

Glossary

abbreviated combined relational condition: A
combined condition that omits a common subject, or a
common subject and common relational operator, from a
consecutive sequence of relation conditions.

access mode: A method used to read a specific logical
record from, or to write a specific logical record to, a file
assigned to an input/output device. Access can be
sequential (records are referred to one after another in
the order in which they appear on the file). it can be
random (the individual records can be referred to in a
nonsequential manner), or it can be dynamic (records
can be accessed sequentially or randomly, depending on
the form of the specific input/output request).

actual decimal point: The physical representation,
using the decimal point character (. or ,), of the decimal
point position in a data item. The actual decimal point
appears in printed reports and requires a storage
position· in a data item. Contrast with assumed decimal
point.

alphabet-name: A user-defined word, in the
SPECIAL-NAMES paragraph, that names a character
set and/or collating sequence.

alphabetic character: A character that is one of the 26
characters of the alphabet or a space. Alphabetic
characters are uppercase.

alphanumeric character: Any character in the computer's
character set.

alphanumeric edited character: An alphanumeric data
item whose PICTURE character-string contains at least
one B, 0, or 1.

American National Standard Code for Information
Interchange (ASCII): The standard code use,d for
information interchange between data ·processing
systems, data communications systems, and associated
equipment. The code uses a coded character set
consisting of 7-bit coded characters (8 bits including
parity check). The ASCII set consists of control
characters and graphic characters.

American National Standards Institute (ANSI): An
organization sponsored by the Computer and Business
Equipment Manufacturers Association for the purpose of
establishing voluntary industry standards.

ANSI: American National Standards Institute.

arithmetic expression: An arithmetic expression can be
an identifier for a numeric elementary item, a numeric
literal, such identifiers and literals separated by an
arithmetic operator, or an arithmetic expression enclosed
in parentheses.

arithmetic operator: A symbol (1 character or a
2-character set) that indicates the arithmetic operation
to be performed. Arithmetic operators include: +
(addition), - (subtraction), * (multiplication), / (division),
** (exponentiation).

ascending key: The values by which data is ordered
from the lowest value to the highest value of the key in
accordance with the rules for comparing data items.

ascending key sequence: The arrangement of data in
order from the lowest value of the key field to the
highest value of the key field. Contrast with descending
key sequence.

ASCII: American National Standard Code for
Information Interchange.

assignment-name: A word that associates a file-name
with an external device.

assumed decimal point: A logical decimal point
position that does not occupy a storage position in a
data item. It is used to align a value for calculations.
Contrast with actual decimal point.

Glossary K -1

L

AT END condition: A condition that occurs at the
following times:

• 	 During the execution of a READ statement for a
sequentially accessed file.

• 	 During the execution of a RETURN statement when
no next logical record exists for the associated sort or
merge file.

• 	 During the execution of a SEARCH statement when
the search operation terminates without satisfying the
condition specified in any of the associated WHEN
phrases.

basic ideographic character set: An ideographic
character set defined by IBM that contains 3707
characters consisting of 3226 Kanji characters and 481
additional characters which include Katakana, Hiragana,
the alphabet (A through Z and a through z), numerics (0
through 9), roman numerals (I through Xl. Greek,
Russian, and special.symbols. The basic ideographic
character set is defined in hardware for each
ideographic-capable printer and display station.

binary item: A numeric data item that is represented
internally in binary notation (that is, as a number in the
base 2). Internally, each bit of the item is a binary digit
with the sign as the leftmost bit.

block: A unit of data that is moved into or out of the
computer. Synonymous with physical record.

Boolean data-type: A category of data items that are
limited to a value of 1 or O.

Boolean literal: See literal.

boundary violation: A condition that occurs when an
output operation attempts to output more characters than
is physically possible for a particular hardware device.

buffer: A portion of main storage into which data is
read or from which it is written.

called program: A program that is the object of a CALL
statement combined at object time with the calling
program to produce a run unit.

calling program: A program that executes a CALL to
another program.

character: One 6f a set of indivisible symbols that can
be arranged in sequence to express information.

character set: All the valid COBOL characters.

character string: A sequence of characters that form a
COBOL word, a literal, a PICTURE character-string, or a
comment-entry.

checkpoint: A reference point in a program at which
information about the program is recorded such that the
program can be restarted at this reference point.

checkpoint records: Records that contain the status of
a job and the system at the time the records are written
by the checkpoint facility. These records provide the
information necessary for restarting a job without having
to return to the beginning of the job.

checkpoint record file: A disk file containing a
collection of checkpoint records.

checkpoint restart: The process of resuming a job at a
checkpoint after the job step terminated abnormally.

checkpoint/restart facility: A facility for restarting the
execution of a program at some point other than the
beginning, after the program was terminated due to a
program or system failure. The restart begins at a
checkpoint and uses checkpoint records to reinitialize
the job.

class condition: A condition that states that the
content of an item is all alphabetic or all numeric.

clause: An ordered set of consecutive COBOL
character-strings whose purpose is to specify an
attribute of an -entry.

COBOL: Cammon Business Oriented Language.

K-2

COBOL character set: The following 51 characters:

Character Meaning

D, 1, ..., 9 digit
A. B, ..., Z letter

space (blank)
+ plus sign

minus sign (hyphen)

* asterisk

/ stroke (virgule, slash)
equal sign

$ currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis

> greater than symbol
< less than symbol

collating sequence: The sequence in which the
characters that are acceptable in a computer are ordered
for sorting, merging, and comparing.

column: A character position within a print line. The
columns are numbered from 1, by 1, starting at the
leftmost character position of the print line and
extending to the rightmost position of the print line.

combined condition: A condition that is the result of
connecting two or more conditions with the AN D or the
OR logical operator.

comment: An annotation in the Identification Division
or Procedure Division of a COBOL source program. A
comment is ignored by the compiler. As an IBM
extension, comments may be included at any point in a
COBOL source program.

comment-entry: An entry in the Identification Division
that is not translated by the compiler.

comment line: A source program line that is not
translated by the compiler. The comment line can be
used to document the program. A special form of the
comment line can be used to cause page ejection before
the comment line is printed.

Common Business Oriented Language (COBOL): A
high-level programming language, similar to English,
that is used primarily for commercial data processing.

compilation time: The time at which a COBOL
compiler attempts to translate a source program into an
object program.

compiler: A program that translates a program written
in a high-level language into a machine language
program.

compiler-directing statement: A statement that causes
the compiler to take a specific action during compilation,
rather than causing the object program to take a
particular action during execution.

complex condition: A condition in which one or more
logical operators (AND, OR, or NOT) act upon one or
more conditions. Complex conditions include negated
simple conditions, combined conditions, and negated
combined conditions.

compound condition: A statement that tests two or
more relational expressions. It may be true or false.

computer-name: A system-name that identifies the
computer upon which the program is to be compiled or
run.

condition: An expression in a program for which a truth
value can be determined at execution time. Conditions
include the simple conditions (relation condition, class
condition, condition-name condition, switch-status
condition, sign condition) and the complex conditions
(negated simple conditions, combined conditions,
negated combined conditions).

condition-name: A name assigned to a specific value,
set of values, or range of values, within the complete
set of values that a conditional variable can possess. Or,
it is the name assigned to a status of an IBM-defined
switch.

condition-name condition: A condition which states
that the value of a conditional variable is a member of
the set of values assigned to a condition-name
associated with the conditional variable.

conditional expression: A simple condition or a
complex condition specified in an IF, PERFORM, or
SEARCH statement. (See simple condition and complex
condition.)

conditional statement: A statement that causes the
truth value of a condition to be determined and controls
program execution depending on this truth value.

Glossary K-3

conditional variable: A data item, one or more values
of which has a condition-name assigned to it.

CONFIGURATION SECTION: A section of the
Environment Division of the COBOL program. It
describes the overall specifications of computers.

connective: A word or a punctuation character that
does one of the following:

• 	 Associates a data-name, a paragraph-name, a
condition-name, or a text-name with its qualifier

• 	 Lines two or more operands in a series

• 	 Forms a conditional expression

contiguous items: Consecutive elementary or group
items in the Data Division that are contained in a single
data hierarchy.

currency sign: The character $.

currency symbol: The character defined by the
CURRENCY SIGN clause in.the SPECIAL-NAMES
paragraph. If no CURRENCY SIGN clause is present,
the currency sign is used. See currency sign.

current record: The record that is available in the
record area associated with the file.

current record pointer: A conceptual entity that is
used in sequential retrieval of the next record.

data clause: A clause that appears in a data description
entry in the Data Division and provides information
describing a particular attribute of a data item.

data description entry: A Data Division entry that
describes the characteristics of a data item.

DATA DIVISION: One of the four main component
parts of a COBOL program. The Data Division describes
the files to be used in the program and the records
contained within the files. It also describes any internal
Working-Storage records that will be needed.

data hierarchy: The arrangement of data into levels,
some of which are subordinate to others (a group item).

data item: A character or a set of contiguous
characters (excluding literals in either case) defined as a
unit of data by the COBOL program.

data-name: A user-defined word that names a data
item. When used in the general formats, data-name
represents a word that can be neither subscripted,
indexed, nor qualified unless specifically permitted by
the rules of that format. (See identifier.) An index-name
is not a data-name.

debugging line: A COBOL statement executed only
when the WITH DEBUGGING MODE clause is specified.
Oebugging lines can help determine the cause of an
error.

debugging section: A Declaratives section that receives
control when an identifier, file-name, or
procedure-name is encountered in the Procedure
Division.

declaratives: A set of one or more special-purpose
sections, written at the beginning of the Procedure
Division, that can be used for input/output error
checking or debugging.

declarative-sentence: A compiler-directing sentence
that specifies when a debugging section or an
exception/error procedure is to be executed.

delimiter: A. character or a sequence of contiguous
characters that identifies the end of a string of
characters and separates that string of characters from
the following string of characters. A delimiter is not part
of the string of characters that it delimits.

descending key: The values by which data is ordered
from the highest value to the lowest value of the key, in
accordance with the rules for comparing data items.

descending key sequence: The arrangement of data in
order from the highest value of the key field to the
lowest value of the key·field. Contrast with ascending
key sequence.

digit: Any of the characters 0 through 9.

direct file: See relative file.

display screen: The part of a display station on which
data, messages, or other information is displayed.

display screen format: A two-part table that defines a
display presented by display station data management.
Display screen formats are generated and placed in a
library load member by the $SFGR utility program.

K-4

L
display station: An input/output device that contains a
display screen on which data is displayed, and an
attached keyboard from which data is entered. It can be
used to request jobs or enter data. A display station can
be designated as the system console or as a command
or data display station at system configuration time.

display station local deota area: A 256-byte area on
disk that can be used to pass information between jobs
and job steps during a session. A separate local data
area exists for each command display station.

division: One of the four major parts in a COBOL
program: IJentification, Environment, Data, or
Procedure.

division header: The reserved words and punctuation
that indicate the beginning of one of the four divisions
of a COBOL program.

dynamic access: An access mode in which records can
be r~ad from or written to a file in a non-sequential
manner (see random access) and read from a file in a
sequential manner (see sequential ,access) during the
scope of the same OPEN statement.

EBCDIC: Extended binary-coded decimal interchange
code.

EBCDIC character: Anyone of the symbols included in
the a-bit EBCDIC (extended-binary coded decimal
interchange code) set. All COBOL characters are
included.

editing character: A single character or a fixed
2-character combination used to format output.

elementary item: A data item that is described as not
being logically subdivided.

entry: Any descriptive set of consecutive clauses
terminated by a period, written in the Identification,
Environment, or Data Division of a COBOL source
program.

ENVIRONMENT DIVISION: One of the four main
component parts of a COBOL program. The
Environment Division describes the computers upon
which the source program is compiled and those on
which the object program is executed; it also provides a
linkage. between the logical concept of files and their
records, and the physical aspects of the devices on
which files are stored.

execution time: The time at which the machine
instructions of the object program are executed.

exponent: A number, indicating to which power
an'other number (the base) is to be raised.

EXTEND mode: An open mode in which records are
added to the end of a sequ,ential file.

extended binary-coded decimal interchange code
(EBCDIC): A set of 256 eight-bit characters.

external decimal item: See zoned decimal item.

figurative constant: A reserved word that represents a
numeric or character value, . or a string of repeated
values. The word can be used instead of a literal to
represent the value.

FILE-CONTROL: The name and header of an
Environment Division paragraph in which the data files
for a given source program are named and assigned to
specific input/output devices.

file description entry: An entry in the File Section of
the Data Division that contains information about the
identification, the physical structure, and the record
name of a file.

file-name: A name, associated with a file, defined in a
file description entry or in a sort-merge file description
entry.

file organization: The permanent file structure
established at the time a file is created.

FILE SECTION: A section of the Data Division that
contains descriptions of all externally stored data (or
files) used in a program. Such information is given in
one or more file description entries.

function-name: A name, defined by IBM, that identifies
system logical units, system-supplied information,
printer and card punch control characters, or program
switches.

group item: A named set of contiguous elementary or
group items.

hierarchy: A hierarchy is a set of entries that includes
all subordinate entries to the next equal or higher level
number.

Glossary K-5

IDENTIFICATION DIVISION: One of the four main
component parts of a COBOL program. The
1dentification Division identifies the source program and
the object program and, in addition, may include such
documentation as the author's name, the installation
where written, and the date written.

identifier: A data-name that is unique or is made
unique by a combination of qualifiers, subscripts, or
indexes.

ideographic character: A pictogram or graphic that
requires 2 bytes of storage. Contrast with alphanumeric
character.

ideographic character set: A character set that
contains pictograms or graphics that can be used to
represent ideas.

ideographic support: The combination of hardware and
software elements that allow the use of ideographic
data On the System/34.

imperative statement: A statement that specifies that
an action is to be taken unconditionally. An imperative
statement can .consist of a series of imperative
statements.

implementor-name: A system-name that identifies the
external medium of a COBOL file and the name by
which it is known to the system.

independent data item: A data item in the
Working-Storage Section that has no relationship with
other data items.

index: A computer storage position or register, the
contents of which identify a particular element in a set
of elements.

index data item: A data item in which the contents of
an index can be saved.

index-name: A user-defined word that names an index.
An index-name is not a data-name.

indexed data-name: A data-name, followed by one or
more index-names enclosed in parentheses, that
references an element or a set of elements in a table.

indexed file: A file with indexed organization.

indexed organization: The file· structure in which each
record is identified by the value of one or more keys
within that record.

indicator: An internal switch that an object program
uses to determine what to do when a particular event
occurs.

input file: A file that is opened in the input mode.

input mode: An open mode where records can be read
from the file.

INPUT PROCEDURE: A procedure that provides
special processing of records when they are released to
the sort function.

input-output file: A file that is opened in the 1-0
mode.

INPUT-OUTPUT SECTION: In the Environment
Division, the section that names the files and external
media needed by an object program. It also provides
information required for the transmission and handling
of data during the execution of an object program.

integer: A numeric data item or literal that does not
include any character positions to the right of the
decimal point. Where the term integer appears in
formats, integer must be an unsigned numeric literal and
must be nonzero unless the rules for that format
explicitly state otherwise.

internal decimal item: See packed decimal item.

INVALID KEY condition: An execution-time condition
in which the value of a key for an indexed or relative file
does not give correct reference to the file (see
input/output statements in the text of the manual for
the specific error conditions involved).

Interactive Communications Feature (SSP-ICF): A
feature of the SSP that includes interactive support for
BSC and SNA communications as well as
communications between programs within the system.

1-0 mode: An open mode in which records can be read
from, written to, or deleted from the file.

K-6

I-O-CONTROL: The name and the header for an
Environment Division paragraph in which object program
requirements for specific input/output techniques are
specified. These techniques include rerun checkpoints,
the sharing of same areas by several data files, and the
use of a storage-resident cylinder index.

key: A data item that identifies the location of a record,
or a set of data items that is used to place data in
ascending or descending key sequence.

key word: A reserved word that is required by the
syntax of a COBOL statement or entry.

language-name: A system-name that specifies a
particular programming language.

level indicator: Two alphabetic characters, FD or SD,
that identify the type of file description entry.

level number: A numeric character (1 through 9) or
2-character set (01 through 49, 66, 77, 88) that begins
a data description entry, and establishes its level in a
data hierarchy. Level-numbers 66, 77, and 88 identify
special properties of a data description entry.

library-name: A user-defined wor.d that names a
library.

LINKAGE SECTION: A section of the Data Division
that describes data made available from another
program.

literal: A character string whose value is given by the
characters themselves. For example, the numeric literal
7 has the value 7; the nonumeric literal
"CHARACTERS", the value CHARACTERS; and the
Boolean literal B "1", the value 1.

logical operator: A reserved word that defines the
logical connection between conditions or negates a
condition: OR (logical connective-either or both), AND
(logical connective-both), and NOT (logical negation).

logical order: The order in which records are
sequentially read from a file. For sequential and relative
files, the logical order corresponds to the physical order
of the records in the file. For indexed files, the logical
order is based on the order of the keys in the index
portion of the file.

logical record: The most inclusive data item. The level
number for a logical record is 01.

main program: The highest-leveJ program involved in a
run unit.

main storage: Storage within the processing unit of the
computer.

mass storage: A storage medium disk in which data
can be collected and maintained.

mass storage file: A collection of records assigned to
a mass storage device.

merge file: The temporary file that contains all the
records to be merged by a MERGE statement. The
merge file is created and can be used only by the merge
function.

mnemonic-name: A user-defined word associated with
a function-name in the Environment Division.

mode: See access mode.

MRT: Multiple requestor terminal.

multiple requestor terminal (MRT) program: A
program that can process requests from more than one
requesting display station concurrently. Compare with
single requestor terminal (SRT) program.

name: A word that defines a COBOL operand. A name
is composed of not more than 30 characters.

native character set: The default character set
associated with the computer specified in the
OBJECT-COMPUTER paragraph.

native collating sequence: The default collating
sequence associated with the computer specified in the
OBJECT-COMPUTER paragraph.

negated combined condition: The NOT logical
operator immediately followed by a parenthesized
combined condition.

negated condition: A condition whose truth value is
negated by the NOT logical operator. If the condition is
true, the negated condition is false. If the condition is
false, the negated condition is true.

negated simple condition: The NOT logical operator
immediately followed by a simple condition.

Glossary K-7

L

nest: To incorporate a structure or structures of some
kind into a structure of the same kind. For example, to
nest one loop (the nested loop) within another loop (the
nesting loop); to nest one subroutine (the nested
subroutine) within another suroutine (the nesting
subroutine).

next executable sentence: The sentence to which
control is transferred after execution of the current
statement is complete.

next executable statement: The statement to which
control is transferred after execution of the current
statement is complete.

next record: The record that logically follows the
current record of a file.

noncontiguous item: A data item in the
Working-Storage Section of the Data Division that bears
no relationship with other data items.

nonnumeric item: A data item that Is alphanumeric,
alphabetic, or Boolean.

nonnumeric literal: See literal.

numeric character: A character from the set of digits 0
through 9.

numeric edited item: A numeric item whose PICTURE
character-string contains valid editing characters.

numeric item: An item whose contents must be
numeric. If signed, the item can also contain a
representation of an operational sign.

numeric literal: See literal.

OBJECT-COMPUTER: The name of an Environment
Division paragraph in which the computer upon which
the object program will be run is described.

object program: A set of instructions in
machine-executable form. The object program is
produced by a compiler from a source program.

object time: See execution time.

open mode: The state of a file after execution of an
OPEN statement for that file and before the execution of
a CLOSE statement for that file. The particular open
mode is specified in the OPEN statement as either
INPUT, OUTPUT, 1-0, or EXTEND.

operand: The object of a verb or an operator; that is,
an operand "is the data or equipment governed or
directed by a verb or operator. J
operational sign: An algebraic sign, associated with a
numeric data item or a numeric literal, that indicates
whether the item is positive or negative.

optional word: P\ reserved word included in a specific
format only to improve the readability of a COBOL
statement or entry.

output file: A file that is opened in either the output
mode or extend mode.

output. mode: An open mode in which records can be
written to a file.

OUTPUT PROCEDURE: A procedure that provides
special processing of records when they are returned
from the sort or merge function.

overflow condition: A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

overlay: To use the same area of storage for more than
one procedure. See Segmentation Feature in Chapter 6.

packed decimal format: A format in which each byte
(except the rightmost byte) within a field represents two
digits, 0 through 9. The rightmost byte contains one
digit and the sign. For example, the decimal value +123
is represented as 0001 0010 0011 1111. Contrast with
zoned decimal format.

packed decimal item: A numeric data item that is
represented internally in packed decimal format.

pad: To fill unused positions in a field with data, usually
zeros or blanks.

paragraph: In the Procedure Division, a
paragraph-name follQwed by a period and a space and
by zero, one, or more sentences. In the Identification
and Environment divisions, a paragraph header followed
by zero, one, or more entries.

paragraph header: A reservec;l word, followed by a
period and a space, that indicates the beginning of a
paragraph in the Identification and Environment
divisions.

K-8

paragraph-name: A user-defined word that identifies
and begins a paragraph in the Procedure Division.

parameter: A variable or a literal that is used to pass
data values between calling and called programs.

phrase: An ordered set of one or more consecutive
COBOL character-strings that forms part of a clause or
a Procedure Division statement.

physical record: A unit of data that is moved into or
out of the computer. Synonymous with block.

procedure: One or more successive paragraphs or
sections within the Procedure Division, which directs the
computer to perform some action or series of actions.

PROCEDURE DIVISION: One of the four main
component parts of a COBOL program. The Procedure
Division contains instructions for solving a problem. The
Procedure Division may contain imperative-statements,
conditional statements, paragraphs, procedures and
sections.

procedure-name: A paragraph-name or a
section-name in the Procedure Division.

process: Any operation or combination of operations
on data.

program-name: A user-defined word that identifies a
COBOL source program.

pseudo-text: A sequence of character-strings and/or
separators bounded by, but not including, pseudo-text
delimiters. Pseudo-text is used in the COpy
REPLACING statement for replacing text strings.

pseudo-text delimiter: Two contiguous equal signs
(==) used to delimit pseudo-text.

punctuation character: Much as in English, a character
used to separate COBOL elements or to identify a
particular type of COBOL element: a comma, semicolon,
period, quotation mark, left or right parenthesis, or
space.

qualified name: A name that has been made unique by
addition of one or more qualifiers.

qualifier: A name used to uniquely identify another
name. Group data-names, section-names, and
library-names can be used as qualifiers to form qualified
names.

random access: An access mode in which specific
logical records can be read from, written to, or deleted
from a file in a nonsequential manner.

record: A set of one or more related data items that are
grouped for processing. Records can be defined for an
input/output device or for internal processing.

record area: A storage area in which a record
described in. a record description entry in the File
Section is processed.

record description entry: The total set of data
'description entries associated with a particular record.

record key: A key whose contents identify a record
within an indexed file.

record-name: A data-name for a record described in a
record description entry.

relation character: One of the characters that
expresses a relationship between two operands:
= (equal to). > (greater than), < (less than).

relation condition: A condition that relates two
arithmetic expressions and/or data items.

relational operator: A reserved word, a relation
character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation
characters used to construct a relation condition.

relative file: A file with a relative organization.
Synonymous with direct files.

relative key: An unsigned integer data item that can be
used. directly by the system to locate a record in a file.
Also known as relative record number.

relative organization: The file· structure in which each
record is uniquely identified by a positive integer value
that specifies the record's ordinal position in the file.

reserved word: A predefined word used in a COBOL
source program for syntactical purposes. It must not
appear in a program as a user-defined name or as a
system-name.

routine: A set of statements in a program that causes
the computer to perform an operation or series of
related operations.

Glossary K-9

run unit: A set of one or more object programs that
function as a unit at execution time to provide a problem
solution.

5/1 control character: See shift-in (S/I) control
character.

5/0 control character: See shift-out (S/O) control
character.

section: A set of zero, one, or more paragraphs or
entries, called a section body, preceded by a section
header. Each section consists of the section header and
the related section body.

section header: A combination of words followed by a
period and a space that indicates the beginning of a
section in the Environment, Data or Procedure Division.

section-name: A user-defined word that names a
section in the Procedure Division.

sector: A physical record on a storage device; it has a
fixed length of 256 bytes.

sentence: A sequence of one or more statements; the
last statement ends with a period followed by a space.

separator: A punctuation character used to delimit
character-strings.

sequential access: An access mode in which records
are read from, written to, or deleted from a file based
on the logical order of the records in the file.

sequential file: A file with sequential organization.

sequential organization: The file structure in which the
logical order of records in the file is determined by the
order in which the records were first placed in the file.

sequential processing: The processing of logical
records in the order in which records are accessed.

serial search: A search in which the members of a set
are consecutively examined, beginning with the first
member and ending with the last member.

SEU: Source entry utility.

shift-in (5/11 control character: A character that
indicates the end of a string of ideographic characters.
The shift-in control character is represented by hex OF.
Contrast with shift-out (S/O) control character.

shift-out (5/0) control character: A character that
indicates the start of a string of ideographic characters.
The shift-out control character is represented by hex OE.
Contrast with shift-in (S/I) control character.

sign condition: A condition that states that the
algebraic value of a data item is less than, equal to, or
greater than zero.

simple condition: Any single condition chosen from the
set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition

single requestor terminal (SRT) program: A program
than can have only one requesting display station at a
time. Contrast with multiple-requestor terminal (MRT)
program.

sort file: The temporary file that contains all the
records to be sorted by a SORT statement. The sort file
is created and can be used only by the sort function.

sort-merge file description entry: An entry in the File
Section that describes a sort file or a merge file.

SOURCE-COMPUTER: The name of an Environment
Division paragraph describing the computer upon which
the source program will be compiled.

Source Entry Utility (SEU): A portion of the Utilities
Program Product that the operator uses to enter and
update procedures and source programs in a library.

source program: A set of instructions that must be
compiled before being executed.

special character: A COBOL character that is neither
numeric nor alphabetic. Special characters in COBOL
include the space (), and the period (.), as well as the
following:

+-*/=$,")(;<>

special registers: Compiler-generated data items used
to store information produced by specific COBOL
features (for example, the DEBUG-ITEM special
register).

K-10

special-character word: A reserved word that is an
arithmetic operator or a relation character.

SPECIAL-NAMES: The name of an Environment
Division paragraph and the paragraph itself in which
names supplied by IBM are related to mnemonic-names
specified by the programmer. In addition, this paragraph
can be used to exchange the functions of the comma
and the period or to specify a substitution character for
the currency sign in the PICTURE string.

SRT: Single requestor terminal.

SSP: System Support Program Product.

SSP utility program: An SSP control program used by
programmers in their daily system operations. For
example, SSP utility programs can be used to copy files
or initialize diskettes.

SSP-ICF: System Support Program Interactive
Communications Feature.

SSP-ICF session: A logical information route between
a System/34 application and a remote subsystem.

SSP-Interactive Communications Feature (SSP-ICF):
See Interactive Communications Feature.

standard data format: The format in which data is
described as to how it appears when it is printed, rather
than how it is stored by the computer.

statement: A syntactically valid combination of words
and symbols, beginning with a verb, that is written in the
Procedure Division.

subject of entry: A data-name or reserved word that
appears immediately after a level indicator or level
number in a Data Division entry. It serves to reference
the entry.

subprogram: A called program.

subscript: A positive integer whose value refers to a
particular element in a table.

subscripted data-name: A data-name that has been
made unique through the use of a subscript.

switch-status condition: A condition which ·states that
a switch is currently on or off.

SYSTEM-CONSOLE: A COBOL function name
associated with the operator's keyboard / display.

system-name: An IBM-defined name that has a
predefined meaning to the COBOL compiler.
System-names include computer-names.
language-names, device-names, and function-names.

table: A set of logically consecutive data items that are
defined in the Data Division by means of the OCCURS
clause.

table element: A data item that can be referenced in a
table.

test condition: A statement that taken as a whole, may
be either true or false, depending on the circumstances
existing at the time the expression is evaluated.

text-name: A user-defined word that identifies library
text.

text-word: Any character-string or separator, except
the space, in copied COBOL source or in pseudo-text.

TRANSACTION file: An input/output file used to
communicate with work stations or for intersystem
communications.

unary operator: A plus sign (+1 or a minus sign (-I,
which precedes a variable or a left parenthesis in an
arithmetic expression and which has the effect of
multiplying the expression by +1 or -1, respectively.

UPSI: User program status indicator.

UPSI switch: A program switch that performs the
functions of a hardware switch. Eight are provided:
UPSI-O through UPSI-7.

user-defined word: A word, required by a clause or a
statement. that must be supplied by the user in a clause
or statement.

user program status indicator (UPS!): One of a set of
eight switches that can be set by and passed between
application programs and procedures.

variable: A data item whose value can be changed
during execution of the program.

verb: A COBOL reserved word that expresses an action
to be taken by a COBOL compiler or an object program.

Glossary K-11

word: A character-string of not more than 30
characters, which forms a user-defined word, a
system-name, or a reserved word.

work station: A device that lets a person transmit
information to or receive information from a computer,
or both, as needed to perform his job; for example; a
display station or a printer.

WORKING·STORAGE SECTION: A section-name (and
the section itself) in the Data Division. The section
describes records and noncontiguous data items that are
not part of external files but are developed and
processed internally. It also defines data items whose
values are assigned in the source program.

zoned decimal format: A format for representing
numbers, in which the digit is contained in bits 4
through 7 and the sign is contained in bits 0 through 3
of the rightmost byte; bits 0 through 3 of all other bytes
contain 1 s (hex F). For example, in zoned decimal
format, the decimal value of +123 is represented as
1111 0001 1111 0010 1111 0011. Contrast with packed
decimal format.

zoned decimal item: A numeric data item that is
represented internally in zoned decimal format.

K-12

abbreviated combined relation condition

description 5-15

non abbreviated equivalents 5-15

abnormal termination

during execution 9-30

improper indexing 6-6

improper subscripting 6-6

ACCEPT statement

data transfer 5-24

DATE 5-24

DAY 5-24

description 5-24

formats 5-24

mnemonic-name in 3-6

system information transfer 5-24

TIME 5-24

TRANSACTION file 5-24, 5-26, 7-22

ACCESS IS DYNAMIC

relative key required 3-1 i

WRITE statement 5-47

ACCESS IS RANDOM

relative key required 3-17

WRITE statement 5-47

ACCESS IS SEQUENTIAL

relative key optional with 3-17

WRITE statement 5-46

ACCESS MODE clause

default is SEQUENTIAL 3-17

description 3-17

formats 3-13.3-14

access modes

listed 3-12

description 3-12

acknowledgment v

ACQUIRE statement

description 5-26

example 7-23

format 5-26, 7-23

actual decimal point

specification 4-38

ADD statement

common options 5-50

composite of operands 5-49

description 5-53

formats 5-53

adding records to an indexed file 8-2

ADVANCING option

of WRITE statement 5-46

AFTER ADVANCING option

of WRITE statement 5-45

AFTER option of INSPECT statement 5-64

algebraic comparison

relation condition 5-8

sign test uses 5-10

algebraic sign, description 4-15

alignment rules

alphabetic items 4-15

alphanumeric edited items 4-15

alphanumeric items 4-15

decif)'lal point in arithmetic

statements 4-15

in an elementary MOVE statement 5-66

JUSTIFIED clause modifies 4-29

numeric edited items 4-15

numeric items 4-15

ALL figurative constant 2-5

ALL literal figurative constant

description 2-5

ALL PROCEDURES option (DEBUGGING) 6-49

alphabet-name

CODE-SET clause specification 4-11

formation rules 2-3

alphabet-name clause

COLLATING SEQUENCE option and 3-8

description 3-8

format 3-4

literal option 3-8

NATIVE OPTION 3-8

PROGRAM COLLATING SEQUENCE clause

and 3-8

STANDARD-1 option 3-8

alphabetic characters

COBOL character set 2-2

in CURRENCY SIGN clause 3-10

meaning 2-2

ALPHABETIC class test rules 5- 7

alphabetic item

alignment rules 4-15

PICTURE clause considerations 4-36

alphanumeric edited item

alignment rules 4-15

PICTURE clause considerations 4-37

alphanumeric item

JUSTIFIED clause and 4-29

PICTURE clause considerations 4-37

RECORD KEY data item 3-18

status key 3-18

ALSO option of alphabet-name clause 3-9

ALTER statement

description 5-78

format 5-78

segmentation considerations 5-78.6-38

altered GO TO statement 5-78.5-80
American National Standard COBOL

extensions to, by IBM 1-3

publications iv

Index

Index X-1

AND logical connective assignment:"name
definition 2-4 ASSIGN clause
in combined condition 5-12 description 3-15

AND NOT as logical connective 2-4 formats 3-13,3-14
ANS COBOL reserved words F-1 RERUN clause 3-20
ANSI status keys versus extended return TRANSACTION file 3-16
codes 7-18 assumed decimal point

apostrophe alignment in numeric item 4-15
enclosing nonnumeric literal 2-5 definition 4-15
used as quotes 2-2 asterisk (·1

APPLY clause 3-21 begins cO(Tlment line 2-11
Arabic numeral precedes comment line 2-6

definition 2-2 AT END condition
in COBOL character set 2-2 and SEARCH statement 6-15

Area A, Columns 8 through 11 2-9 EXCEPTION/ERROR Declarative and 5--17
arithmetic expression READ statement considerations 5--35,5-37

COMPUTE statement operand 5-54 AT END option
description 5-5 of SEARCH ALL statement 6-17
in relation condition 5-8 status key 5-21
in sign test 5-10 attaching a device to program 7-5
in WHEN option of SEARCH ALL 6-17 ATTRIBUTE-DATA 3-6,7-12
operatC?rs used 5-5

arithmetic operation order rules 5-5
arithmetic operations, combining 5-54
arithmetic operator

discussiOn 5-5
exponentiation 5-5
list of 2-2
pairing 5-6 BEFORE ADVANCING option

arithmetic statement operands WRITE statement 5-46
overlapping 5-50 BEFORE/AFTER option of INSPECT
size of 5-49 statement 5-64

arithmetic statements binary item
ADD statement 5-53 USAGE clause considerations 4-25
common options 5·50 binary operators 5-5
COMPUTE statement 5-54 bit configuration of hexadecimal
CORRESPONDING 5-50 digits 4-26
DIVIDE statement 5-55 blank line
GIVING 5·51 description 2-11
multiple results 5-50 BLANK WHEN ZERO clause
M U L TI PLY statement 5-57 description 4-29
operands· 5-49 format 4-29
ROUNDED option 5-51 VALUE clause considerations 4-31
SUBTRACT statement 5-58 BLOCK CONTAINS clause

arithmetic symbol pair list 5-6 description 4-7
ASCENDING/DESCENDING KEY option format 4-7

of OCCURS clause blocking, automatic 5-21
description 6-10 Boolean
formats 6-9 data facilities

SORT/MERGE 6-30 allowable values 4-31
ASCII description 4-14,7-20

alphabet-name clause and 3-8 rules for 4-20
COLLATING SEQUENCE option and 6·31 format 7-21
collating sequences G-1, G-5 glossary entry for K-2
PRO·GRAM COLLATING SEQUENCE clause 3-8 INDICATOR clause

ASSIGN clause description 7-21
description 3-15 format 7-21
formats 3-13,3-14 with OCCURS clause hable) 7-21
TRANSACTION file 3~16 literals

assigning index values 6-21 description of 2-6, 7-20
rules for 4-20,4-31

moves 5-65,5-66

J

X-2

Boolean (continued)

OCCURS clause 4-28, 7-21

PICTURE clause 4-33, 7-21

relational conditions 5-8

bottom page margin in LINAGE clause 4-10

boundary alignment 4-28

boundary violation

definition K-2

status key value 5-22

braces indicate required items 1-3

brackets indicate optional items 1-3

calculation of CORE-INDEX 3-21

CALL statement

description 6-45

formats 6·45

segmentation considerations 6-41,6-46

subprogram linkage concepts 6-45

USING option 6-46

called subprogram

segmentation considerations 6-41

calling and called programs

CALL statement linkage 9-14

determining overlay structure 9-19

external-names and references 9-16

general description 9-14

identifier references 9-·15

interfacing with overlay linkage

editor 9-20

link-editing of 9-16

link-editing with overlay 9-18

link-editing without overlay 9-17

STOP RUN and EXIT PROGRAM

statements 9-14

USING option requirements 9-15

calling program

segmentation considerations 6·41

capital letters, reserved words 1-3

categories of data, concepts 4-14

categories of statements 5-3

character codes and CODE-SET clause 4-11

character set, COBOL definition 2-2

character-string

and item size 4-15

definition 2-2

detailed description 2-3

in INSPECT statement 5-60

representation in PICTURE clause 4-36

characters allowed

COBOL program 2-2

nonnumeric literal 2-5

numeric literal 2-6

user-defined word 2-3

CHARACTERS option of BLOCK CONTAINS

clause 4-7

CHARACTERS option of INSPECT

statement 5-63

characters used in PICTURE clause 4-32

checkout, program 9:..23, 9-33

checkpoint/ restart facilities

RERUN clause 9-47

restarting a program 9-48

specifying a checkpoint 3-20, 9-48

class condition

description 5-6

EBCDIC signs in 5-7

format 5-6

class test rules 5-6

classes of data, concepts 4-14

clause, definition 2-1

clauses, sequence of 1-3

CLOSE statement

description 5-27

FOR REMOVAL option 5-27

formats 5-27

LOCK option 5-27

REEL UNIT option 5-27

TRANSACTION file 5-27, 7-23

COBOL character set
description 2-2

COBOL coding form example 2-8

COBOL definitions

clause 2-1

paragraph 2-1

section 2-1

statement 2-1

terminology K...;1

COBOL industry standards iv

COBOL language, structure of 1-1

COBOL program structure

general description 2-1

COBOL statements, debugging declarative

and 6-49

COBOL-supplied procedures

COBMOVE command statement 9-6

COBOL command statement 9-4

COBOLCG command statement 9-4

COBOLG command statement 9-5

COBOLP command statement 9-7

COBSYSIN command statement 9-6

COBOL terms K·1
COBOL words

listed F-1

detailed description 2-3

CODE-SET clause

description 4-11

format 4-11

CODE-SET clause as documentation 4-11

COLLATING SEQUENCE option

alphabet-name clause and 3-8

of SORT/MERGE statements 6-31

collating sequences, EBCDIC and ASCII G-1

column 7

continuation area 2-8

D denotes debugging line 6-52

columns 1 through 6 for sequence
numbers 2-8

combined arithmetic operations 5-54

combined condition

description 5-12

format 5-12

Index X-3

L

comma (,) COMPUTE statement
character, definition 2-2

in Configuration Section 3-4

in data description entry 4-20

in File-Control entry 3-15

in I-O-CONTROL paragraph 3-19

separator, rules for using 2-7

series connective 2-4

comma and decimal point,

interchanging 3-10

command keys

enabling/disabling 7-12

testing for 7-12

command statement screen prompts 9-8

comment

detailed description 2-6

punctuation characters valid in 2-12

comment Character-string, definition 2-2

comment-entry

as a comment 2-6

detailed description 2-11

in Identification Division

format 3-1

replacing 6-37

common options, arithmetic statements

CORRESPONDING 5-50

GIVING option 5-51

ROUNDED option 5-51

SIZE ERROR option 5-51

common processing facilities

current record pointer 5-23

INTO/FROM options 5-23

invalid key condition 5-23

status key 5-21

comparison of COBOL language C-1

comparison rules

INSPECT statement 5-60

START statement 5-40

compilation date in source listing 3-2

compilation, WITH DEBUGGING MODE 6-48

compiler action on intermediate

results 0-1

compiler-directing statement

definition 5-3

tYpes of 5-4, 5-93

compiler features 1-2

compiler messages A-1

complex conditions

combined conditions 5-12

negated simple conditions 5-11

composite of operands

ADD statement execution and 5-53

arithmetic statements 5-49

description 5-49

SUBTRACT statement execution and 5-58

COMPUTATIONAL item

USAGE clause considerations 4-24

description 5-54

format 5-54

computer- name
 J
as system-name 2-4

form of 3-5

c~ncatenating data items 5-68

concepts

data description 4-12

Sort/Merge 6-22

concepts, segmentation

control 6-40

fixed segments 6-39

independent segments 6-39

logic 6-39

concepts, subprogram linkage

common data 6-42

control transfers 6-42

language considerations 6-42

system considerations 6-43

·condition

complex 5-11

in IF statement 5-19

simple 5-6

condition-name

condition 5-7

definition 2-15

Description 4-20

Format 3 4-20

formation rules 2-3

qualification format 2-12

switch-status condition 5-11

VALUE clause considerations 4-30

condition-name condition

description 5-7

example 5-7

format 5-7

PROGRAM COLLATING SEQUENCE clause 3-5

condition-nam!l entry

associated values 4-31

general format 4-16

conditional expressions

complex conditions 5-11

evaluation rules 5-14

in PERFORM statement 5-84

permissible element sequences 5-13

simple conditions· 5-6

conditional GO TO statement 5-80

conditional PERFORM statement 5-84

conditional statement

categories of 5-3

definition 5-3

IF statement

descriptipn 5-19

fqrmat 5-19

nested IF statement 5-20

conditional variable

condition-name condition tests 5-7

condition-name entries 4-31

definition 4-20

FILLER allowed as name 4-20

X-4

Configuration Section

description 3-4

format 3-4

connective words, detailed

description 2-4

considerations, system dependent

DATA DIVISION considerations

BLOCK CONTAINS clause 8-3

index and subscript literals 8-3

item size 8-3

LINAGE clause 8-3

OCCURS clause 8-3

RECORD CONTAINS clause 8-3

ENVIRONMENT DIVISION considerations

APPLY clause 8-2

ASSIGN clause 8-2

KEY clause 8-3

OBJECT-COMPUTER MEMORY SIZE

clause 8-3

RERUN clause 8-3

RESERVE clause 8-3

SAME AREA or SAME SORT-MERGE AREA

clause 8-3

SAME RECORD AREA clause 8-3

general considerations

disk data management 8-1

files 8-1

indexed and relative file

contents 8-2

library-name 8-1

program-name 8-1

source program library 8-1

source statements 8-1

text-name 8-1

user-defined words 8-1

PROCEDURE DIVISION considerations

CALL statement 8-4

COM PUTE statement 8-4

GO TO DEPENDING ON statement 8-4

INSPECT statement 8-4

SORT /MERGE statement 8-4

STOP statement 8-4

UNSTRING statement 8-4

contents of DEBUG-ITEM special

register 6-50

continuation area

column 7 2-8

D denotes debugging line 6-52

continuation line, definition 2-11

CONTROL-AREA clause, TRANSACTION 3-18

control flow

PERFORM statement and 5-84

SEARCH ALL statement and 6-17

control of segmentation 6-40

control return, in PERFORM statement 5-82

control transfer

changed by ALTER statement 5-78

PERFORM statement 5-84

subprogram linkage concepts 6-42

control transfer rules

Declarative procedures 5-16

explicit, GO TO statement 5-80

control transfers, explicit and
implicit 2-16

conventions, standard linkage 9-22

conversion of data

DISPLAY statement and 5-29

COpy statement

description 6-35

example.. 6-38

format 6-35

options 6-35

REPLACING option 6-36

COpy, within PROCESS statement 9-11

CORE-INDEX, calculation of 3-21

CORRESPONDING option

description 5-50

FILLER items ignored 4-21

MOVE statement considerations 5·65

COUNT IN option of UNSTRING

statement 5-73

CR (credit) PICTURE symbol

description 4-34

sign control symbol 4-39

creating a program 9-1

creating display screen format

steps for 7-9

using display screen format

specifications 7-5

using SDA 7-5

currency sign

definition 2-2

fixed insertion symbol 4-39

floating insertion symbol 4-39

CURRENCY SIGN clause

description 3-10

format 3-4

valid characters 3-10

with PICTURE character-string 4-34

current record pointer

description 5-23

START statement 5-40

o specifications 1-5

data alignment

in an elementary MOVE

statement 5-66

nonnumeric items 4-15

numeric items 4-15

data attribute specification 2-15

data categories

PICTURE clause and 4-36

data classes, description 4-14

Index X-5

L

data conversion data record size specification 4-9

DISPLAY statement and 5-29

in an elementary MOVE statement 5-66

data-count fields in UNSTRING

statement 5-73

data description

arithmetic statement operands 5-49

concepts 4-12

data description entry

general description 4-16

general formats 4-16

Data Division

coding sample 4-5

concepts 4-1

data description 4-12

entries, specification of 2 -10

file description entry 4-2, 4-3

general description 2-1

organization

description 4-2

format 4-16

punctuation in 2-12

sortl merge considerations 6-27

subprogram linkage concepts 6-44

table handling considerations

OCCURS clause 6-9

USAGE IS INDEX clause 6-12

IRANSACTION file 3-11

data hierachies

concepts of 4-12

used in qualification 2-12

data item

description entry concepts 4-12

figurative constant length and 2-5

data item description entry

ADD statement considerations 5-53

breaking apart 5-72

concatenating 5-68

general description 4-16

general format 4-2

joining together 5-68

MOV.E statement considerations 5-65

subject of OCCURS clause 6-9

SUBTRACT statement considerations 5-58

data manipulation statements

INSPECT statement 5-59

MOVE statement 5-65

STRING statement 5-68

UNSTRING statement 5-72

data-name

formation rules 2-3

qualification format 2-12

restriction on duplications of 2-13

subscript, definition 6-4

data-name clause

description 4-21

format 4-21

order of specification 4-17

data organization, description 3-11

data receiving fields (UNSTRING) 5-73

DATA RECORDS clause

description 4-9

format 4-9
 J

data reference, methods of 2-12

data references in Procedure

Division 2-15

data relationships 4-1

data transfer

ACCEPT statement 5-24

DISPLAY statement 5-29

STRING statement 5-68

UNSTRING statement 5-72

data tru ncation

ACCEPT statement 5-24

nonnumeric items 4-15

numeric items 4-15

DATE-COMPILED paragraph

description 3-2

format 3-1

DATE, DAY, TIME, examples of special register 2-4

date of compilation in source listing 3-2

DATE, ACCEPT statement 5-25

DAY, ACCEPT statement 5-25

DB (debit) PICTURE symbol

and numeric edited items 4-37

description 4-34

sign control symbol 4-39

DEBUG-ITEM special register

description 6-50

example 6-51

format 6-50

subfield contents 6-50

debugging a program 9-23

description 9-23

MRT program example 7-43

debugging features

compile-time switch 6-48

object-time switch 6-48

USE FOR DEBUGGING procedures 6-49

debugging mode as compile-time

switch 6-48

debugging statements

EXHIBIT 6-54

TRACE 6-52

decimal point (.)

alignment of numeric-edited items 4-15

alignment of numeric items 4-15

and comma, interchanging 3-10

in elementary MOVE statement 5-66

in numeric literal 2-6

DECIMAL POINT IS COMMA clause

comma and period PICTURE symbols 4-34

description 3-10

format 3-4

declarative procedures

common exit point 5-79

debugging 6-49

MERGE statement 6-28

SORT statement 6-29

X-6

Declaratives

EXCEPTION/ERROR 5-17

FOR DEBUGGING 649

general description 5-1

general format 5-16

section requirements when used 5-1

DECLARATIVES key word

begins Declaratives 5-1

begins in Area A 2-10,2-11

decrementing index-name values 6-21

decrementing operands 5-84

default attributes are implicit 2-15

DELETE statement (input/output)

description 5-28

format 5-28

indexed file 5-28

random access 5-28

relative file 5-28

sequential access 5-28

DELIMITED BY ALL option (UNSTRING)

description 5-72

DELIMITED BY option

and STRING statement execution 5-68

delimiter

in STRING statement 5-68

in UNSTRING statement 5-72

dependencies, system 8-1

DEPENDING ON option of OCCURS clause

description 6-10

format 6-9

DESCENDING KEY option of OCCURS

clause 6-10

diagnosed source file 9-60

diagnostic levels A-1

direct indexing, description 6-6

disk storage requirements for sort or merge

operations 6-24

DISPLAY option of USAGE clause

description 4-24

,display screen format

creating 7-5

definition K-4

description of entries

D specifications 1-5

S specifications 1-1

layout sheet 7-6

specifications

example of 7-32

processing 7-8

sheet 7-7

used with TRANSACTION file 3-11

DISPLAY statement

description 5-29

figurative constant length of 2-5

format 5-29

mnemonic-name and 3-6

display station (see TRANSACTION file
processing)

displayed messages A-54

DIVIDE statement

description 5-55

format 5-55

format 3 considerations 5-56

division header 2-10

division operator 5-5

documentation, comments as 2-6

documenting end of procedures 5-79

dollar sign ($) (see currency sign)

dollar sign character, definition 2-2

DROP statement

example 7 - 24
format 5-30, 7-24

dumps, main storage 9-31

duplicate keys

INVALID KEY condition 5-47

suppressing duplicate key checking 547

duplication of data-name, restriction

on 2-13

dynamic access

DELETE statement 5-28

READ statement 5-36

WRITE statement 5-47

dynamic access mode

description 3-12

indexed files 3-12

relative files 3-12

relative key required 3-17

dynamic values in a table 6-7

EBCDIC character set

COBOL characters 2-2

default for alphabet-name clause 3-8

NATIVE option 3-8

EBCDIC collating sequence

alphabet-name clause and 3-8

and HIGH-VALUE figurative constant 2-5

and sort/merge option 6-31

list of characters G-2

LOW-VALUE figurative constant 2-5

editing character 2-2

editing in an elementary MOVE

statement 5-66

editing sign control symbols 4-39

editing sign, description 4-16

editing through PICTURE clause 4-38

elementary item

alignment rules 4-15

as subscript 6-4

classes and categories 4-14

description 4-12

level-number concepts 4-12

MOVE statement operand 5-65

Index X-7

L

elementary moves EXCEPTION/ERROR Declarative

description 5-65

ellipsis indicates repetition 1-3

embedded PER FORM statements 5-82

END.DECLARATIVES key words

ends Declaratives 5-1

end of execution

STOP RUN statement 5-92

end-of-file considerations, TRANS-

ACTION file 7-10

end of procedures, documenting 5-79

ENTER statement as documentation 5-93

entry, definition 2-1

Environment Division

coding example 3-3

Configuration Section 3-4

File,Control entry, sort/merge 6-25

File-Control paragraph 3-13

function of 3-3

general description 2-1, 3-3

I-O-Control entry, sort/merge 6-25

I-O-CONTROL paragraph 3-19

Input-Output Section 3-10

punctuation in 2-12

Sort/Merge considerations 6-25

SPECIAL-NAMES paragraph 3-6

equal sign (=)

definition 2-2

separator, rules for using 2-7

error cond itions
caused by loop's 9-28

evaluation results, conditional statements 5-14

examples (see also sample programs)

COpy statement 6-38

Data Division map 9-36,9-54

diagnosed source file 9-61

evaluating conditions 5-14

execution output 9-58

fixed insertion editing 4-39

floating insertion editing 4-40

INSPECT statement 5-62,5-64

Linkage Editor listing 9-56

Overlay Linkage Editor map 9-38

Procedure Division map 9-37, 9-54

record description concepts 4-13

REDEFINES clause 4-22

RENAMES clause 4-19

simple insertion editing 4-38

source listing 9-3~, 9-52

storage dump 9-42

STRING statement 5-70,5-71

subprogram linkage 6-47

subscripting 6-5

UNSTRING statement 5-76

USE FOR DEBUGGING 9-25

zero suppression and replacement

editing 4-41

description 5-17

EXTEND option 5-17

file-name option 5-17
 J
format 5-17

1-0 option 5-17

status key 5-21

~XCEPTION/ERROR procedure

and GIVING option for sort/merge 6-31

and USI NG option for sort/merge 6-31

CLOSE statement 5-27

DELETE statement and 5-28

REWRITE statement

considerations 5-38

START statement considerations 5-40

TRANSACTION file 5-17,7-22

executing a program 9-1

execution flow

ALTER statement changes 5-78

general rule 5-1

PERFORM statement changes 5-83

SEARCH ALL statement and 6-17

SEARCH statement 6-14,6-16

STOP statement halts 5-92

execution results
INSPECT statement examples 5-61,5-64
STRING statement 5-70,5-71
UNSTRING statement examples 5-75,5-77

execution rules

INSPECT statement 5-60

PERFORM statement 5-84

ROUNDED option 5-51

SIZE ERROR option 5-51

STR I NG statement 5-69

UNSTRING statement 5-73

USE FOR DEBUGGING procedure 6-49

execution sequence, PERFORM
statement 5-85, 5-87, 5-91

execution status, status key usage 3-18

execution suspension

STOP statement provides '5-92

executiolT time (see object time)

execution, load module 9-13

EXHIBIT statement

CHANGED NAMED option 6-54

NAMED option 6-54

examples 6-54, 6:56

use of EXHIBIT statement 9-24

exit point rules for performed

procedures 5-82

EXIT PROGRAM statement

CALL statement and 6-42

description 6-46

format 6-46

subprogram linkage concepts 6-46

X-8

EXIT statement

description 5-79

format 5-79

explicit attribute, description 2-15

explicit control transfer, GO TO

statement 5-80

exponentiation operator 5-5

EXTEND option of OPEN statement

description 5-32

extensions, how printed 1-3

external data concepts 4-1

external decimal item (see zoned decimal

item)

FD entry

definition 4-1

description 4-2

F I LE-CONTRO L paragraph requ ired

for 3-15

format 4-3

implicit redefinition 4-21

LABEL RECORDS clause required 4-8

OPEN statement and 5-31

field-count field, in UNSTRING
statement 5-73

fields, intermediate result D-1

figurative constant

detailed description 2-5

functions of 2-5

File-Control entry

ACCESS MODE clause 7-17

ASSIGN clause 7-17

CONTROL-AREA clause 7-19

file processing entries 3-13

FI LE STATUS clause 7-17

format 7-16

sort/merge considerations 6-25

TRANSACTION file 3-19,7-16

FILE-CONTROL paragraph

formats 3-13, 3-14

fu net ion of 3-15

File Description (FD) entry

description 4-3

FI LE-CONTROL paragraph required

for 3-15

format 4-3

format 1 coding example 4-4

general description 4-1

general format 4-3

LABEL RECORDS clause required 4-8

TRANSACTION file 4-4, 7-20

File Description (SD) entry

concepts 6-22

Data Division 6-27

FI LE-CONTROL paragraph required

for 3-15

format 6-27

Environment Division 6-25

File-Control entry 6-25

File Description (SO) entry (continued)

I-O-Control entry 6-25

Procedure Division

MERGE statement 6-28

RELEASE statement 6-33

RETURN statement 6-34

SORT/MERGE statement options 6-30

SORT statement 6-29

sample program E-18

file label specification 4-8

file-name

CLOSE sta,ement operand 5-27

DELETE statement operand 5-28

formation rules 2-3

in FD entry 4-6

OPEN statement specification 5-31

READ statement considerations 5-34

SD entry operand 6-27

SELECT clause operand

description 3-15

formats 3-13

sort/merge file operand 6-25

SORT statement operand 6-29

START statement specification 5-40

file processing summary H-1,3-10
File Section

general description 4-3

general format 4-3

VALUE clause considerations 4-30

FILE STATUS clause

CLOSE statement 5-27

DELETE statement 5-28

description 3-18

formats 3-13

INVALID KEY condition and 5-21

READ statement and 5-34

REWRITE statement and 5-38

START statement and 5-40

TRANSACTION file 5-22, 7-17

file status key values 5-22

file, definition 4-1

FILLER key word

description 4-21

order of specification 4-17

FIPS Flagger

standard modules used 6-57

1975 flagging 6-57

FIRST option of INSPECT REPLACING
statement 5-64

fixed insertion editing 4-39

fixed insertion symbols 4-39

description 4-39

fixed length record

size specification 4-7

fixed length table

description 6-10

fixed page spacing, LINAGE clause 4-10

Index X-9

fixed portion IBM extensions 1-1, 1-3

segmented program 6-39

floating insertion editing 4-39

footing area, LINAGE clause 4-10

format notation, description 1-3

FORMAT option, TRANSACTION file

description 5-48,7-27

with SSP-ICF 7-27

FROM identifier option

REWRITE statement considerations 5-38

WRITE statement considerations 5-45

FROM option

ACCEPT statement 5-24

RELEASE statement 6-33

function-name

as system-name 2-4

SPECIAL-NAMES paragraph 3-6

values 3-6

function-name-1 clause

description 3-6

format 3-4

function-name-2 clause

description 3-7

format 3-4

switch-status condition and 3-7

general description of S/34 COBOL 1-1

GET-ROOM flowchart 7-40

GIVING option

arithmetic statements 5-51

SORT IMERGE statements . 6-31

GO TO statement 5-80

group moves 5-67

hexadecimal digit bit configurations 4-26

HIGH-VALUE figurative constant 2-5

hyphen (-)

allowed in user-defined word 2-3

character, definition 2-2

in continuation area, meaning 2-11

in program-name, conversion of 3-1

I-O-CONTROL paragraph

description 3-19

formats 3-19
 J
.order of clauses optional 3-19

sort/merge considerations 6-25

1-0 files

EXCEPTION/ERROR Declarative 5-17

1-0 option of OPEN statement

description 5-31

indexed file considerations 5-32

relative file considerations 5-32

IBM extensions 1-1,1-3
ICF (see Interactive Communications
Feature)

Identification Division

description 3-1

format 3-1

punctuation in 2-12

identifier

ACCEPT statement operand 5-24

breaking apart 5-72

definition 5-1

DISPLAY statement operand 5-29

in sign test 5-10

INSPECT statement operand 5-60

replacing characters in 5-60

ideographic support 10-1

I F statement

description 5-19

format 5-19

nested 5-20

imperative-statement

categories of 5-4

definition 5-3

implicit attribute, description 2-15

implicit control transfers 2-16

IN as qualifier connective 2-4, 2-12

incrementing index-name values 6-21

incrementing operands

PERFORM VARYING rules 5-84

indentation, to clarify logic 2-11

independent segment

calling and called programs 6-41

definition 6-39

index

definition 6-6

description 6-6

index-name

assigning values 6-21

comparison rules 6-12

definition 6-6

in PERFORM statement 5-84

rules of formation 2-3, 6-12

SET statement operand 6-21

index-name values 6-21

INDEX usage

description 6-12

X-10

L
INDEXED BY option INSPECT Statement

OCCURS clause ALL literal figurative 2-5

description 6-11 BEFORE/ AFTER option 5-64

formats 6-S comparisons illustration 5-64

SEARCH statement requirements 6-14

indexed data item

comparison rules 6-12

definition 6-12

indexed file

adding records 8-2

APPLY clause 3-21

format 3-13

INDEXED 1-0 module, 1974 Standard 1-1

indexed organization 3-11

indexing

definition 6-6

description 6-6

INDEXED BY option rules 6-11

restrictions 2-15

INDICATOR option, TRANSACTION file ·5-49
7-28

industry standards. COBOL iv

initialization

data items with INSPECT statement 5-60

DEBUG-ITEM special register 6-50

indexed file considerations 5-32

LINAGE-COUNTER 4-11

of index 6-6

of table values 6-7

input file

current record pointer used 5-23

for sort/merge 6-31

INPUT option

EXCEPTION/ERROR Declarative 5-17

of OPEN statement

description 5-31

relative file considerations 5-32

input/output errors

EXCEPTION / ERROR Declarative and 5-17

INPUT/OUTPUT PROCEDURE control 6-33

Input-Output Section

detailed description 3-10

format 3-10

input/output statements

ACCEPT statement 5-24

CLOSE statement 5-27

common options 5-21

DELETE statement !i-28

DISPLAY statement 5-29

OPEN statement 5-31

READ statement 5-33

REWRITE statement 5-38

START statement 5-40

WRITE statement 5-42

insertion editing

description 4-38

description 5-59

examples 5-62,5-64

figurative constant length in 2-5

formats 5-59

REPLACING option 5-63

TALLYING option 5-63

INSTALLATION paragraph as documentation

example 3-1

format 3-1

integer item

RELATIVE KEY data item 3-17

status key 3-18

inter-program communication 6-42

Interactive Communications Feature liCF)

attaching session to program 7-5

attribute record 7-15

intermediate result fields D-1

intermediate results

SIZE ERROR option and 5-51

internal data concepts 4-1

internal decimal item (see packed decimal

item)
internal representation

of numeric items 4-26

operational sign 4-15

INTO/FROM identifier option 5-23

INTO identifier option of READ

statement 5-34

INTO option of RETURN statement 6-34

INVALID KEY condition

actions taken 5-23

EXCEPTION/ERROR Declarative and 5-17

statements that recognize 5-23

INVALID KEY option

DELETE statement and 5-28

REWRITE statement 5-39

START statement considerations 5-40

status key 5-21

WRITE statement 5-47

joining data items together 5-68

JUSTIFIED clause

description 4-29

format 4-29

VALUE clause considerations 4-30

Index X-11

L

KEY option

of OCCURS clause 6-10

of READ statement 5-36

of START statement 5-~0

key word, detailed description 2-4

key words, printed as underlined

capitals 1-3

key, status 5-22

keysort, indexed file restrictions 8-2

LABEL RECORDS clause

description 4-8

format 4-8

required entry 4-8

label specification 4-8

language concepts, subprogram

linkage 6-40

Janguage- name

as system-name 2-4

in ENTER statement 5-93

language structure, description 1 -1

language summary and comparison C-1

language transla,ors 9-20

left parenthesis

character definition 2-2

separator, rules for using 2-7

length of figurative constant 2-5

less than «) character

,definition 2-2

when required in formats 1-3

level concepts 4-12

level indicator

as qualifier 2-13

begins in Area A 2-10

definition 4-1

level-66 entry 4-17

level number
concepts

description 4-12

illustration 4-13

definition 4-1

description 4-21

format 4-21

formation rules 2-3

REDEFINES specifications and 4-21

rules for 4-21

01 and 77 begin in Area A 2-10

02-49,66, 88 begins in Area A or

B 2-10

level-01 item

implicit redefinition 4-21

level-01 records 4-12

level 02-49 item 4-12

level-66 entry

description 4-17

general description 4-17

general format 4-16

level-77 entry

general description 4-17

general format 4-16

level-77 item J
Linkage Section considerations 6-44

level-88 entry

description 4-20

general format 4-16

level-88 item

VALUE clause consiQerations 4-30, 4-31

Library

source program 6-35

library maintenance program 9-12

LIBRARY module 1-2

library-name '2-3, 6-35

library, user 9-12

LINAGE clause

description 4-10

format ,4-10

LINAGE-COUNTER special register

and 4-11

logical page depth illustrated 4-11

with WRITE END-OF-PAGE 5-46

WRITE ADVANCING PAGE statement and 5-46

LINAGE-COUNTER special register

description 4-11

WRITE statement rules for 5-46

line advancing
WRITE statement rules 5-46

line continuation 2-11

line-number, LINAGE-COUNTER value 4-11

LINES AT BOTTOM option of LINAGE

clause 4-10

LINES AT TOP option of LINAGE clause 4-10

link-editing 9-12

Linkage Section

general description 4-3

level-77 and level-01 'names unique 4-14

subprogram linkage

concepts 6-44

description 6-44

VALUE clause considerations 4-30

linkage, program 9-14

linkage, standard conllentions 9-22

literal

(see also Boolean)

as character-string 2-2

detailed description 2-5

in condition-name entry 4-32

in relation condition 5-10

INSPECT statement operand 5-60

option of alphabet-name clause 3-8

load module execution 9=-13
concepts 6-42

LOCAL-DATA 3-6,7-12

LOCK option

CLOSE statement 5-27

logic of segmentation 6-39

X-12

logical connectives, detailed
description 2-4

logical operators, meaning 5-11
logical page positioning

LINAGE-COUNTER and 4-10
logical page size

LINAGE clause specifies 4-10
logical record

BLOCK CONTAINS clause
and 4-7

definition 4-1

level concepts 4-12

size specification 4-7

loops. program 9-28
LOW-VALUE/LOW-VALUES figurative constant

description 2-5
lower-case. user-defined words printed
in 1-3

Magnetic Character Reader (MICR)
interface 8-1

main storage dumps 9-31
main storage requirements for sort or merge
operations 6-23

manual organization. description iii
margins of pages in LINAGE clause 4-11
maximum length

COBOL word 2-3

data description entry 4-16

nonnumeric literal 2-5

numeric literal 2-6

of table 6-10

PICTURE character-string 4-32

table element 6-10

VALUE clause initialization 4-31

maximum number
characters in numeric PICTURE item 4-36
delimiters in UNSTRING statement 5-72
digits in numeric edited item 4-37
GO TO statement procedure-names 5-80
lines on printed page 4-10

maximum value
of an index 6-6
subscript 6-4

memory size determination 3-5
merge

concepts 6-23
definition 6-22

merge programming considerations (see
sort/merge programming considerations)

MERGE statement
description 6-28
format 6-28
options 6-30
segmentation considerations 6-41
sort/merge OUTPUT PROCEDURE 6-33

messages. compiler A-1
messages. displayed A-54
methods of data reference 2-12
minimum size

numeric PICTURE item 4-36
minimum value

index 6-6
subscript 6-4

minus sign (-:-)
floating insertion symbol 4-39
in numeric literal 2-6
sign control symbol 4-39

minus symbol (-) character.
definition 2- 2

minus symbol. when required in
formats 1-3

mnemonic- name
as qualifier 3-7
formation rules 2-3

MOVE statement
Boolean 5-65, 5-66
CORRESPONDING option 5-65
description 5-65
elementary moves 5-65
formats 5-65
group moves 5-67
summary reference table 5-67

MOVE statement. implicit
INTO/FROM identifier option 5-23

MRT program (see multiple requestor
terminal program)

MULTIPLE FILE clause
description 3-22
format 3-19

multiple redefinitions allowed 4-22
multiple requestor terminal program

assigning MRT attribute 7-2
example of debugging output for 7-44
local data areas 7-44
program logic 7-4
sample program 7-30

multiple results. arithmetic
description 5-50
execution rules 5-50

multiplication operator 5-5
MULTIPLY statement

description 5-57
formats 5-57

NATIVE option
COLLATING SEQUENCE option 6-31
of alphabet-name clause 3-8

negated simple condition
description 5~11
format 5-11

Index X-13

L

negative numeric data object program (continued)
SIGN clause and 4-27

nested IF statement

description 5-20

examples 5-21

next executable statement
definition 2-16

NEXT option of READ statement 5-35

NEXT SENTENCE in IF statement 5-19

NO REWIND option of CLOSE statement 5-27

NO REWIND option of OPEN statement 5-32

nonnumeric item

ALL literal figurative constant 2-5

HIGH-VALUE figurative constant 2-5

LOW-VALUE figurative constant 2-5

QUOTE figurative constant 2-5

SPACE, SPACES figurative constant 2-5

ZEROS figurative constant 2-5

nonnumeric literal

alphabet-name clause 3-8

detailed description 2-5

punctuation characters in 2-6

NOT logical connective

meaning 5-11

placement in conditions 5-13

NUCLEUS module, 1974 Standard 1-1

n~merals, in COBOL character set 2-2

numeric category, numeric literal 2-6

numeric characters

allowed in user-defined word 2-3

definition 2-2

list of 2-2

NUMERIC class test rules 5-7

numeric edited item

alignment rules 4-15

PICTURE clause 4-37

numeric first character in

program-name 3-1

numeric item

internal representation of 4-26

PICTURE clause considerations 4-36

ZERO, ZEROES, ZEROS figurative

constant 2-5

numeric literal

DECIMAL POINT IS COMMA clause and 3-10

OBJECT -COMPUTER paragraph

description 3-5

format 3-4

PROGRAM COLLATING SEQUENCE clause 3-5

object of OCCURS DEPENDING ON clause

description 6-10

object program

definition 3-1

execution suspension (STOP) 5-92

object time

debugging switch 6-48
 J
occurrence number

definition 6-2

index-name 6-12

subscript identifiers 6-4

OCCURS clause

ASCENDING/DESCENDING KEY option 6-10

Boolean data type 4-28, 7 - 21

DEPENDING ON option 6-10

description 6-9

fixed-length tables 6-10

formats 6-9

INDEXED BY option 6-11

variable-length tables 6-10

OLiNK procedure 9-,~8

omission of optional words allowed 2-4

OMITIED option of LABEL records 4-8

ON OVERFLOW option

and STRING statement execution 5-69

and UNSTRING execution 5-74

ON SIZE ERROR option, DIVIDE statement 5-56

one operand, varying 5-85

OPEN INPUT statement

indexed file considerations 5-32

relative file considerations 5-32

OPEN OUTPUT statement

LINAGE clause used for 4-10

OPEN statement

CLOSE statement 5-27

description 5-31

formats 5-31

indexed files 5-32

initializes LINAGE-COUNTER 4-11

relative files 5-32

sequential files 5-32

sets current record pointer 5-23

TRANSACTION file 5-31,5-32,7-24

operand length

relational comparisons 5-10

operands

overlapping 5-50

operation control language (OCL) 9-1

operation order for arithmetic

expressions 5-5

operational sign

description 4-15

in an elementary MOVE statement 5-66

in class test 5-7

in numeric PICTURE item 4-36

S PICTURE symbol specifies 4-33

SIGN clause 4-27

OPTIONAL phrase of SELECT clause

description 3 -15

format 3-13

optional word

detailed description 2-4

OR as logical connective 2-4

printed as capitals 1-3

options, PROCESS statement 9-9

X-14

OR condition, multiple UNSTRING 5-72

OR logical operator meaning 5-11

OR NOT as logical connective 2-4

order of clauses

I-O-CONTROL paragraph 3-19

order of paragraphs, Identification

Division 3-2

order of symbols in PICTURE clause 4-35

ordering records using sort/merge 6-22

ORGANIZATION clause

default is SEQUENTIAL 3-16

formats 3-13

TRANSACTION file 3-14

Organization of Manual, description iii

Organization of transaction file 3-12

output device, DISPLAY statement 5-29

output file

SAME clause and 3-20

OUTPUT option

EXCEPTION / ERROR Declarative 5-17

OPEN statement 5-32

output procedure for sort/merge

description 6-30

output, system

compiler 9-49

di(gnosed source file 9-60

Linkage Editor 9-55

program execution output 9-57

overflow condition

and UNSTRING execution 5-74

in a STRING statement 5-69

overlay linkage editor 9-20

overlay usage 9-16,9-18

override operation 7-10

packed decimal item

internal representation 4-26

USAGE clause considerations 4-25

padding of numeric-edited items 4-15

padding with spaces

in a move 5-66

nonnumeric items 4-15

page advancing rules, WRITE
statement 5-46

page body, definition 4-10

page end, LINAGE clause specifies 5-46

page margins in LINAGE clause 4-11

PAGE option of WRITE ADVANCING

statement 5-46

page overflow

WRITE END-OF-PAGE considerations 5-46

page positioning

LINAGE-COUNTER and 4-11

page size, LINAGE clause specifies 4-10

paragraph

description 5-1

paragraph header, specification of 2-10
paragraph-names

definition 5-1

formation rules 2-3

GO TO statement and 5-80

qualification format 2-12

restriction on duplication of 2-13

parentheses
separators, rules fnr IIsinf) 2-7

PERFORM example 5-86, 5-88, 5-90

PERFORM statement 5-81

conditional PERFORM 5-84

description 5-81

equivalent to sort/merge 6-33

examples 5-86, 5-88,5-90

for table search 6-17

formats 5-81

initializes index 6-6,6-7

segmentation considerations 6-41

TIMES option 5-84

UNTIL option 5-84

VARYING option 5-84

performance considerations for sort or

merge operations 6-24

performed procedures

common exit point valid 5-79,5-82

execution rules 5-84

period (.)

character, definition 2-2

in Configuration Section 3-4

in data description entry 4-17

in File-Control entry 3-15

in I-O-CONTROL paragraph 3-19

separator, rules for using 2-7

permanent segment, definition 6-39

permissible comparisons

relation-condition 5-9

phrase, definition 2-1

physical page size

logical page size and 4-10

physical record size

BLOCK CONTAINS clause and 4-7

specifications 4-7

physical record, definition 4-2

PICTURE character-string

DECIMAL PO.INT IS COMMA clause and 3-10

item size and 4-15

punctuation characters in 2-6

PICTURE clause

Boolean data type 7-21

character-string representation 4-36

data categories and 4-36

description 4-32

editing in 4-38

editing sign function 4-16

fixed insertion editing 4-39

floating insertion editing 4-39

Index X-15

PICTURE clause (continued)
format 4-32
simple insertion editing 4-38
special insertion editing 4-38
symbol order 4-35
symbols used 4-32
VALUE clause considerations 4-30
zero suppression and replacement 4-40

plural figurative constant 2-5
plus sign

character definition 2-2
in numeric literal 2-6
sign clause and 4-27
when required in formats 1-3

POINTER option
and STRING statement execution 5-69
and UNSTRING execution 5-73

positive data and sign control 4-39
positive numeric data

SIGN clause and 4-27
unsigned data assumed to be 4-15

procedure
Declarative

EXCEPTION/ERROR 5-17

for debugging 6-49

general description 5-16

general format 5-16

definition 5-1
procedure branching statement

ALTER statement 5-78
GO TO statement 5-80
in IF statement 5-19
PERFORM statement 5-81
STOP statement 5-92

Procedure Division
arithmetic expressions 5-5
arithmetic statements 5-49
coding, sample 5-2
conditional expressions 5-6
conditional statements 5-19
data manipulation statements 5-58
data references in 2-15
declaratives 5-16
formats 5-2
general description 2-1
input/output statements 5- 21
LINAGE-COUNTER and 4-11
organization 5-2
procedure branching
statements 5-78,5-80

procedure-name
ALTER statement operand 5·78
definition 5-1
GO TO statement operand 5-80
PERFORM statement operand 5-82

procedures, COBOL-supplied 9-3
PROCESS statement 9-9
processing a program 9-1

processing of files, initiating 5-31
processing summaries, file H-1
program changes and additions,
testing 9-28

program checkout 9-23, 9-33
PROGRAM COLLATING SEQUENCE clause

alphabet-name clause and 3-8
condition-name condition and 3-5
description 3-5
format 3-4
relation condition ~nd 3-5
SPECIAL-NAMES paragraph and 3-6

program execution debugging switch 6-48
PROGRAM-ID paragraph

description 3-1
format 3-1

program linkage 9-14
program loops 9-28
program-name

descri"ption of 3-1
formation rules 2-3

program segments
definition 6·39
fixed

permanent 6-39
independent 6·39

program structure, general 2-1
program switch

ALTER statement as 5-76
program syntax, debugging line 6-52
prompts, screen 9-8
PRPO, work station J-1
pseudo-text

replacement rules 6-36
pseudo-text delimi1:er

(==) separator, rules for using 2-7
publications, list of related iv
punctuation character

defined as separator 2-2
list of 2-2
within nonnumeric literal 2-6

punctuation rules 2-12

qualification
CORRESPONDING OPtion rules 5-50
definition 2-12
of UPSI condition­ names 3-7
restrictions 2-15
rules 2-13

qualifier connectives 2-4
qualifier, definition 2-12
quotation mark

and QUOTE figurative constant 2-5
definition 2-2
separator 2-7

X-16

QUOTE, QUOTES figurative constant 2-5

quotient, in division 5-55

random access

DELETE statement b-28

mode 3-12

indexed files 3-17

READ statement and 5-36

relative files 3-17

WRITE statement 5-47

READ statement

description 5-33

formats 5-33

INTO identifier option and 5-23

random access 5-36

sequential access 5-35

sets current record pointer 5-23

TRANSACTION file 5-33, 7-25

read under format
description 7 -11
Ising PROMPT OCl statement 7-11

READY /RESET TRACE statement 6-52

READY TRACE statement 6-52

receiving field

alignment rules and 4-15

in group MOVE statement 5-67

in STRING statement 5-68

in UNSTRING statement 5-73

MOVE statement 5-65

record (see logical record)
RECORD CONTAINS clause

description 4-8

format 4-8

record description entry

as RENAMES clause qualifier 4-17

definition 4-1

sort/ merge output file 6-30

record-description level-number concepts

description 4-12

illustration 4-13

RECORD KEY

REWRITE statement 5-38

START statement 5-40

RECORD KEY clause

description 3-18

format 3-13

record key in indexed file

function of 3-12

record level concepts 4-12

record-name

formation rules 2-3

multiple READ statements and 5-34

RELEASE statement operand 6-33

REWRITE statement 5-38

WRITE statement considerations 5-45

record sequencing using sort/merge 6-22

record size

ACCEPT statement 5-24

established at file creation time 5-45

RECORD CONTAINS clause specifies 4-8

REWRITE statement considerations 5-38

sort/merge output file

considerations 6-32

RECORDS option of RERUN clause

description 3-20

format 3-19

redefined item, definition 4-21

REDEFINES clause

description 4-21

examples 4-22, 4-23

format 4-21

reference to data 2-12

relation character

list of 2-2

relation condition

Boolean 5-8

description 5-8

format 5-8

nonnumeric operand comparisons 5-10

numeric operand comparisons 5-10

PROGRAM COLLATING SEQUENCE clause 3-5

relational operator meanings 5-8

table handling rules 6-12

relational operator
in abbreviated combined relation
condition 5-15

meaning of 5-8

relative file organization,

description 3-11

relative files

File-Control entry

description 3-13

format 3-13

RELATIVE 1-0 module, 1974 Standard 1-1

RELATIVE KEY

START statement 5-41

WRITE statement considerations 5-47

RELEASE statement

description 6-33

format 6-33

REMAINDER option of DIVIDE statement

execution rules 5-55

format 5-55

RENAMES clause

data-name-2 option 4-17, 4-18

data-name-2 THRU data-name-3

option 4-18

description 4-17

format 4-16

level-66 item 4-14

specification examples 4-19

repetitive execution of PERFORM

statement 5-84

Index X-17

replacement editing

description 4-40

zero suppression and 4-40

replacement rules for library-text 6-36

REPLACING option

of COPY statement 6-36

of INSPECT statement 5-63

processing 6-37

required items indicated by braces 1-3

required words, detailed description 1-3

RERUN clause

description 3-20

formats 3-19

RESERVE clause format 3-13

reserved word

detailed description 2-4

list of F-1

printed as capital letters 1-3

RESET TRACE statement 6-52

retrieving source statements or

programs 9-12

RETURN statement for sort/merge

description 6-34

format 6-34

REVERSED option of OPEN statement 5-32

REWRIT'E statement '

• description 	 5-38

format 5-38

FROM identifier option and 5-23

indexed files 5-38

relative files 5-39

sequential files 5-38

right-padding of items 4-15

right parenthesis ())

definition 2-2

ru les for using 2-7

ROLLING option, TRANSACTION file

description 5-49, 7-28

example 7 - 28

ROUNDED option

ADD statement 5-51

COMPUTE statement 5-51

description 5-51

DIVIDE statement 5-51,5-56

execution rules 5-51

MULTIPLY statement 5-51

SUBTRACT statement 5-61

routine-name

formation rules 2-3

in ENTER statement 5-93

rules for qualification 2-13

rules, punctuation 2-12

run unit

CALL statement transfers control 6-42

S specifications 1-1
SAME clause

description 3-20

format 3-19

RELEASE statement and 6-33

sample programs (see also examples)

indexed file creation E-5

indexed file updating, E-7

relative file creation E-11

relative file retrieval E-15

relative file updating E-13

sequential file creation E-1

sequential file updating and

extension E-3

sort/merge E-18

screen prompts, command statement 9-8

SD entry

and MERGE statement file-name 6-28

and RELEASE statement record-name 6-33

and RETURN statement file-name 6-34

and SORT statement file-name 6-27

description 4-2, 6-27

FILE-CONTROL paragraph required

for 3-15

format 6-27

search example 6-18

SEARCH statement

description 6-14

execution considerations 6-16

formats 6-14

section

definition 5-1

description '5-1

section header

definition 5-1

in Declarative procedures 5-16

specification of 2-10

section-name

ALTER statement and 5-76

as qualifier 2-12

definition 5-1

formation rules 2-3

restriction on duplication of 2-14

SECURITY paragraph example 3-1

SEGMENT-LIMIT clause 3-5

segment number

description 6-39

formation rules 2-3

logic of specification 6-39

segment number, in Declaratives 5-16

segmentation feature concepts

control 6-40

program segments 6-39

Procedure Division 6-40

special considerations 6-40

transfers of control 6-41

segmentation information

ALTER statement 5-78

PERFORM statement 6-92

X-18

storing procedures and statements 9-12

STRING statement

ALL literal figurative constant

restriction 2-5

description 5-68

examples 5-70,5-71

format 5-68

structure of COBOL program, general

description 2-1

subfield contents of DEBliG-ITEM special

register 6-51

subject

of abbreviated combined

relation-condition 5-15

of OCCURS clause, definition 6-9

of relatil)n condition, definition 5-8

subprogram linkage feature

common data 6-42

concepts

CALL statement 6-42

control transfers 6-42

language considerations 6-42

system considerations 6-43

Data Division, Linkage Section 6-44

examples 6-47

[XIT PROGRAM statement 6-46

CALL statement 6-46

USING option, CALL statement 6-46

subroutines, special purpose 8-1

subscript, definition 6-2

subscripting

description 6-4

invalid for File-Control entry

data-names 3-15

restriction for qualifiers 2-15

substitution field of INSPECT

REPLACING 5-63

SUBTRACT statement

common options 5-50

description 5-58

formats 5-58

subtraction operator 5-5

summary and comparison, language C-1

suppression of sequence checking 2-8

switch-status condition

description 5-11

format 5-11

symbol order in PICTURE clause 4-35

symbols used in PICTURE clause 4-32

SYNCHRONIZED clause

description 4-28

format 4-28

SYNCHRONIZED clause as documentation 4-28

syntax of program

debugging lines and 6-52

system considerations, subprogram linkage 6-43

system console

ACCEPT statement and 5-24

DISPLAY statement 5-29

system-dependent considerations
DATA DIVISION considerations

BLOCK CONTAINS clause 8-3

index and subscript literals 8-3

item size 8-3

LINAGE clause 8-3

OCCURS clause 8-3

RECORD CONTAINS clause 8-3

ENVIRONMENT DIVISION considerations

APPLY clause 8-2

ASSIGN clause 8-2

KEY clause 8-3

OBJECT-COMPUTER MEMORY SIZE

clause 8-3

RERUN clause 8-3

RESERVE clause 8-3

SAME AREA or SAME SORT-MERGE AREA

clause 8-3

SAME RECORD AREA clause 8-3

general considerations

disk data management 8-1

files 8-1

indexed and relative file

contents 8-2

library-name 8-1

program-name 8-1

source program library 8-1

source statements 8-1

text-name 8-1

user-defined words 8-1

PROCEDURE DIVISION considerations

CALL statement 8-4

COMPUTE statement 8-4

GO TO DEPENDING ON statement 8-4

INSPECT statement 8-4

SORT/MERGE statement 8-4

STOP statement 8-4

UNSTRING statement 8-4

system information transfer, ACCEPT statement

DATE 5-25

DAY 5-25

TIME 5-25

system input device, ACCEPT

statement 5-24

system-name

description 2-4

system output 9-49

SYSTEM-SHUTDOWN switch 7-16

Index X-21

table, definition 6-2

table element, definition 6-2

table handling

Data Division 6-9

OCCURS clause 6-9

Procedure Division 6-12

relation conditions 6-12

SEARCH statement 6-14

SET statement 6-20

table definition 6-2

table initialization 6-7

table references 6-3

UP/DOWN BY option 6-21

USAGE IS INDEX clause 6-12

tabfe handling concepts

table definition 6-2

table initialization 6-7

table references

indexing 6-6

subscripting 6-4

TABLE HANDLING module, 1974 Standard 1-1

table, initializing example 6-8

table layout, example 6-3

table of valid and invalid moves 5-67

table references

and SEARCH ALL results 6-17

indexing 6-6

subscripting 6-4

table values, defining 6-7

TALLYING option

INSPECT statement 5-63

UNSTRING statement 5-73

TERMINAL option, TRANSACTION. file 5-48, 7-25

termination of execution

EXIT PROGRAM statement 6-46

STOP RUN statement 5-92

terminology definitions K-1

testing a program selectively 9-28

text-name

COpy statement operand 6-35

formation rules 2-3

qualification format 2-13

THEN (in IF statement) 5-19

THRU option 4-32

TIME, ACCEPT statement 5-24

TIMES oPtion of PERFORM statement 5-84

TO option, SET statement 6-20

top page margin in LINAGE clause 4-10

TRACE statement

READY statement 6-52

RESET statement 6-52

use of TRACE statement 9-24

TRAILING option of SIGN clause

description 4-27

TRANSACTION file processing

ACCEPT statement

considerations 5-26

format 5-24, 7-22

ACQUIRE statement

example 7-23

format 7-23

TRANSACTION file processing (continued)

ASSIGN clal,lse 3-16,8-2

CLOSE statement

example 7-23

format· 5-27, 7-23

CONTROL-AREA clause

description 3-18,7-19

format of information 7-19

data organization 3-12

DROP statement

example 7-24

format 5-30, 7-24

end-of-file considerations 7-10

Environment Division considerations 7-12

EXCEPTION/ERROR 5-18,7-22

FILE-CONTROL entry

example 3-19,7-19

format 7-16

file description (FD) entry

considerations 4-6

format 4-4, 7-20

FILE STATUS clause

description 5-22,7-17

status keys H-8, 5-22

format for 3-14

FORMAT option

description 5-48, 7-27

with SSP-ICF 7-27

INDICATOR option 5-49,7-28

input field 7-8

introduction to 3-11,3-12,7-1

named by file control entry 3-15

OPEN statement

considerations 5-32

example 7-24

format 5-31,7-24

organization 3-12

output field 7-8

output/input field 7-8

override operation 7-10

program attributes 7-1

READ statement

AT END option 7-26

considerations 5-37

examples 7-25

format 5-33, 7-25

NO DATA option 7-25

TERMINAL option 7-25

read under format 7-11
ROLLING option

description 5-49, 7-28

example 7-29

sample program 7-30

sequential considerations 3-12,3-17

SET statement

considerations 6-21

formats 6-20

X-22

TRANSACTION file processing (continued)
SSP-ICF

attribute record for 7-15

description 7-1

STARTING option 5-48,7-27

Summary of extensions 7-1

Summary of processing H - 7

TERMINAL option 5-48,7-27

work station attribute record 7-13

WRITE statement

considerations 5-48

example 7-26

format 5-43, 7-26

transfer of control

ALTER statement change 5-78

and sort/merge OUTPUT PROCEDURE 6-33

explicit and implicit 2-16

segmentation feature 6-41

sort INPUT PROCEDURE 6-32

subprogram linkage 6-42

transfer of data

in a STRING statement 5-68

into DEBUG-ITEM special register 6-50

translators, language 9-20

truncation

in numeric items 4-15

JUSTI F I ED clause and 4-29

truncation of data

ACCEPT statement 5-24

in an elementary MOVE statement 5-66

in floating insertion editing 4-39

ROUNDED option 5-51

VALUE clause restrictions 4-30

truth value, description 5-13

truth table for logical operators 5-13

twos complement form 4-26

unary operators

listed 5-5

use 5-6

unblocked files, BLOCK CONTAINS
clause 4-7

unblocking, automCjtic 5-21

unconditional GO TO Statement 5-80

underlined capital letters, key words

as 1-3

unsigned numeric literal considered

positive 2-6

unsigned operand

considered positive or zero 4-15

UNSTRING statement

data receiving fields 5-73

description 5-72

examples 5-76

execution rules 5-73

figurative constant length in 2-5

format 5-72

sending field 5-72

UNTIL option of PERFORM statement 5-84

UP/DOWN option, SET statement 6-21

UPON option of DISPLAY statement 5-29

UPSI switches 3-7

and switch-status condition 5-11

setting 7-16

SPECIAL-NAMES paragraph 3-7

updating 7 -16

UPSI-O through UPSI-7 as

function-names 3-7

USAGE clause

and numeric PICTURE items 4-36

computational options 4-24,4-25

description 4-23

DISPLAY option 4-24

format 4-23

operational sign representation

and 4-15

zoned decimal items 4-24

USAGE IS INDEX clause

description 6-12

format 6-12

USE AFTER EXCEPTION/ERROR procedure 5-16

USE FOR DEBUGGING feature 6-49,9-23

user-defined word

detailed description 2-3

formation rules 2-3

printed in lower case 1-3

user library 9-12

user-specified collating sequences 3-8

USING option

SORT/MERGE statement

description 6-31

USING option, subprogram linkage

format 6-45

V PICTURE element 4-33

valid and invalid elementary move

table 5-67

valid characters in CURRENCY SIGN

clause 3-10

VALUE clause

example of condition-name entries 4-32

format 4-30

VALUE OF clause 4-8

value of numeric literal 2-6

variable length table

description 6-10

format 6-9

varying operands in PERFORMING

statement 5-85

VARYING option

PERFORM statement 5-84

SEARCH statement 6-15

Index X-23

..

verbs

as key word 2-4

in compiler-directing statements 5-4

in conditional statements 5-3

in imperative statements 5-4

WHEN option of SEARCH ALL statement 6-17

WITH DEBUGGING MODE clause 9-23

WITH FOOTING option of LINAGE clause

-description 4-10

WITH NO REWIND option of CLOSE 5-27

word

as character string 2-2

definition 2-3

detailed description 2-3

reserved, detailed description 2-4

words, reserved F-1

work station attribute record 7-13

work station PRPQ conversion J-1

work station support (see TRANSACTION

file)
Working-Storage Section

general de.scription 4-2

general format 4-2

level-77 and level-01 names unique 4-14

VALUE clause considerations 4-30

WRITE ADVANCING statement

description 5-45

LINAGE clause and 4-11

WRITE statement

ADVANCING option 5-45

description 5-42

END-OF-PAGE option 5-46

format 5-42

FROM identifier option and 5-23

indexed and relative files 5-46

INVALID KEY option 5-47

modifies LINAGE-COUNTER 4-11

sequential files 5-46

TRANSACTION file 5-43, 5-48, 7-26

X PICTURE element 4-33

Z PICTURE element 4-33

zero (0)

as unique value 4-15

insertion symbol 4-34

ZERO figurative constant 2-5

zero filling

INSPECT statement 5-65

zero suppression and replacement editing

description 4-40

examples 4-41

ZERO, ZEROES, ZEROS figurative

constant 2-5

zones decimal item

description 4-24

00-99 segment numbers, formation

rules 2-3

01 	 level-number

description 4-12

illustration 4-13

01-49 level-.numbers, formation rules 2-3

02-49 level-number concepts

description 4-12

illustration 4-13

1974 Standard COBOL

definition iv

1975 FIPS COBOL and 6-57

1975 FIPS COBOL flagging

high 6-58

high-intermediate 6-58

low 6-60

low-intermediate 6-59

66 	level number

concepts 4-14

formation rules 2-3

general description 4-17

general format 4-16

77 	level 'lumber

concepts 4-14

formation rules 2-3

88 	level number

concepts 4-14

formation rules 2-3

general descr-iption 4-14

X-24

READER~COMMENTFORM
IBM System/34 SC21-7741-5
COBOL Reference Manual

Please use this form only to identify publication errors or to request changes in publications. Direct any requests
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so
on. to your I BM representative or to your nearest I BM branch office.

D If your comment does not need a reply (for example, pointing out a typing error) check this box
and do not include your name and address below. If your comment is applicable, we will include it
in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s) :

Please contact your ne!!rest IBM branch office to request additional

publication••

Name

Company or

Organization __________________

Address
IBM may use and distribute any of the information you supply
in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

City State Zip Code
No postage necessary if mailed in th,e U.S.A.

SC21·7741-5

J
n ..c:

FOld and tape Please do not staple

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY •••

International Business Machines Corporation
Development Laboratory
Information Development, Department 532
Rochester, Minnesota 55901

Fold and tape Please do not staple

International Business Machines Corporation

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Fold and tape

-------- ----- - --- - ---- - - ---===-=':'= ®

International Business Machines Corporation

co
~
en
~
ro
3
W
-I>
(')

o
co
o
r
Jl
~
ro
;;;
" ro "

'"
~

c "
'"
-n
co
z
o
en
w
-I>
N
-I>

SC21-7741-05

SC21-7741-5

