<
e
<
™
n
S
2
-
w

SC21-7741-5

A . - S . .
o — SC21-7741-8

- @ @am e s e

- @ e Soaasses

- e .. File No. S34-24

- @ o= s == e am

S SR SN W -

e —

IBM System/34
COBOL

Reference Manual
Program Number 5726-CB1

Sixth Edition (July 1985)

This minor revision of SC21-7741 incorporates information relative to the use of the
applications described. Changes or additions to the text and illustrations are indicated
by a vertical line to the left of the change or addition.

This edition applies to release 9, modification 0 of the IBM System/34 COBOL Program
Product (Program 5726-CB1); and to all subsequent releases and modifications until
otherwise indicated in new editions or technical newsletters, Changes are periodically
made to the information herein; these changes will be reported in technical newsletters
or in new editions of this publication.

References in this publication to |BM products, programs, or services do not imply
that IBM intends to make these available in all countries in which 1BM operates.
{For example, ideographic support is available only in Far East countries.) Any
reference to an |BM program product in this publication is not intended to state or
imply that only 1BM's program product may be used. Any functionally equivalent
program may be used instead.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of I1BM
publications and for technical information about the system should be made to
your |BM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use

the Reader’'s Comment Form at the back of this publication to make comments about
this publication. If the form has been removed, address your comments to | BM
Canada Laboratory, Information Development, Department 849, Don Mills, Ontario,
Canada M3C 1H7. I1BM may use and distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1979, 1980, 1983, 1985

This reference manual describes the System/34 COBOL
(Common Business Oriented Language) compiler and
language. This manual provides reference material and
programmer guide information for persons who have
some knowledge of the COBOL language and some
experience in writing COBOL programs. The manual is
organized as follows:

« Chapters 1 through 5 describe the COBOL language
and each of the four divisions: Identification,
Environment, Data, and Procedure. The COBOL
clauses and statements available to the user are
explained.

+ Chapter 6 describes the additional functions of the
language that are provided through the various
processing modules.

« Chapter 7 describes the TRANSACTION file support.
A TRANSACTION file allows you to read data from
and write data to a display station or an Interactive

Communications Feature session.

« Chapter 8 describes the system-dependent
considerations.

« Chapter 9 describes how to create, execute, and
debug programs.

« Chapter 10 describes the ideographic support
provided by COBOL.

« Appendix A contains compiler messages.

« Appendix B describes special purpose subroutines
supplied with System/34 COBOL.

« Appendix C contains a COBOL language comparison
across various systems.

« Appendix D describes intermediate result fields.

« Appendix E contains sample file-processing
programs.

Preface

« Appendix F contains COBOL reserved words.

« Appendix G contains the EBCDIC and ASCII collating
sequences.

« Appendix H contains a file processing summary and
the status key values.

+ Appendix | contains a summary of the System/34
COBOL clauses and statements for each division.

« Appendix J contains a summary of display screen
format specifications.

« The Glossary contains definition of terms.

To aid the user, IBM provides several extensions to
ANSI (American National Standards Institute) COBOL,
X3.23-1974. The more significant extensions include:

+ Extended data types — computational-3 or packed
decimal, and computational-4 or binary

« Indexed file support for CORE-INDEX
« Additional debugging support of EXHIBIT and TRACE
« Use of apostrophe instead of quotes

Two methods are available to provide a convenient way
to add OCL (Operation Control Language) and
procedures to a source library. One method, SEU
(Source Entry Utility), is described in the SEU Reference
Manual. The other method, the use of the job stream
command (JOBSTR), is described in the System Support
Reference Manual. Refer to Related Publications in this
Preface for the order numbers.

A brief description of the contents of the various

System/34 manuals is contained in the Publications
Summary section of the IBM System/34 Introduction.

Preface iii

System Requirements

For information concerning system requirements, refer to

the IBM System/34 Planning Guide, GC21-5154.

Related Publications

IBM Systern/34 Introduction, GC21-5153
IBM System/34 Bibliography, GH30-0231
IBM System/34 Master Index, SC21-7739

IBM System/34 Functions Reference Manual,
SA21-9243

IBM System/34 System Support Reference Manual,
SC21-5155

IBM System/34 Operator's Guide, SC21-5158

IBM System/34 Displayed Messages Guide,
SC21-5159

IBM System/34 COBOL Reference Summary,
GX21-7746

IBM System/34 Source Entry Utility Reference
Manual, SC21-7657

IBM System/34 Installation and Modification Reference
Manual: Program Products and Physical Setup,
SC21-7689

IBM Systemn/34 Overlay Linkage Editor Reference
Manual, SC21-7707

IBM System/34 Sort Reference Manual, SC21-7658
IBM COBOL Coding Form, GX28-1464

IBM System/34 1255 Magnetic Character Reader
Reference Manual, SC21-7740

IBM Systern/34 Interactive Communications: Feature
Reference Manual, SC21-7751

IBM System/34 Concepts and Design Guide,
SC21-7742

IBM System/34 Work Station Support Subroutines
Reference Manual, SC21-7810

« IBM Specifications For Magnetic Character Readers,
GX21-9101

» IBM Installation Management Manual: An Introduction
to Structured Programming in COBOL, GC20-1776

» IBM System/34 Screen Design Aid Programmer's
Guide and Reference Manual, SC21-7716

industry Standards

The System/34 COBOL compiler is designed according
to the following industry standards as understood and
interpreted by IBM, as of September 1978:

« The ANSI COBOL, X3.23-1974 standard. ANS
COBOL is identical to ISO 1989-CQBOL, as approved
in February 1978 by the International Organization for
Standardization. The ANS COBOL processing
modules are described in the table under Language
Level in Chapter 1.

» The December 1975 Federal Information Processing
Standard (FIPSPUB 21-1) low-intermediate level.
Additional support is provided for many features at
higher FIPS levels.

The following are exceptions to the standard:

» No position in a key for an indexed random READ
statement or an indexed START statement can be a
hex FF (HIGH-VALUE).

« The user must not place a hex FF {HIGH-VALUE) in
the first position when using delete-capable files.

Portions of this manual are copied from American
National Standards Institute (ANSI) COBOL, X3.23-1974.
This material is reproduced with permission from
American National Standard Programming Language
COBOL, X3.23-1974, copyright 1974 by the American
National Standards Institute, copies of which may be
purchased from the American National Standards
Institute at 1430 Broadway, New York, New York,
10018.

Procedures have been established for the maintenance
of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Systems
Languages.

Acknowledgment

The following extract from Government Printing Office
Form Number 1965-0795689 is presented for the
information and guidance of the user:

Any organization interested in reproducing the
COBOL report and specifications in whole or in part,
using ideas taken from this report as the basis for an
instruction manual or for any other purpose, is free to
do so. However, all such organizations are requested
to reproduce this section as part of the introduction
to the document. Those using a short passage, as in
a book review, are requested to mention COBOL in
acknowledgment of the source, but need not quote
this entire section.

COBOL is an industry language and is not the
property of any company or group of companies, or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the COBOL Committee as to the
accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in
connection therewith.

Procedures have been established for the maintenance
of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive
Committee of the Conference on Data Systems
Languages.

Preface

\'

Contents

CHAPTER 1. INTRODUCTION 1-1 Data Description 4-12
General Description e e e e e e 1-1 Data Description Concepts 4412
Language Level 1-1 Classesof Data 4414
Compiler Features P A 1-2 Boolean Data Facilites 4-14
Format Notation e e e e e 1-3 Standard Alignment Rules 4-15
Standard Data Format 4-15
CHAPTER 2. LANGUAGE CONSIDERATIONS 2-1 Character-String and Item Size 4-15
COBOL Program Structure e .. 24 SignedData 4-15
The COBOL Divisions 2-1 Data Description Entry e e e e 4-16
Clauses and Statements 2-1 Format 2—RENAMES Clause - S Vi
Structure of the Language 2-2 Level-Numbers 4-21
Character-Strings 2-3 Data-Name or FILLER Clause 4-21
Separators 2-7 REDEFINES Clause 4-21
Standard COBOL Format e 2-8 USAGEClause 4-23
Special Considerations e e e . 2-10 SIGN Clause T 4-27
Program Spacing e e 2-11 OCCURS Clause e e e e 4-28
Overall Puncutation Rules L. . 212 SYNCHRONIZED Clause 4-28
Methods of Data Reference L. 2-12 JUSTIFIED Clause 4-29
Qualification 2-12 BLANK WHEN ZERO Clause 4-29
Subscripting and Indexing 2-14 VALUEClause 4-30
Identifier e e e . 2-14 PICTURE Clause 4-32
Condition-Name 2-15
Explicit and Implicit References, . . 2-15 CHAPTER 5. PROCEDURE DIVISION 51
Transfers of Control 2-16 Procedure Division Concepts 5-1
Procedure Division Organization 5-2
CHAPTER 3. IDENTIFICATION AND Coding Example 5-2
ENVIRONMENTDIVISIONS 3- Sample Procedure Division Statements 5-3
IDENTIFICATION DIVISION R - Arithmetic Expressions 5-5
Coding Example - Arithmetic Operators 5-5
PROGRAM-ID Paragraph - Conditional Expressions A 5-6
Other Optional Paragraphs - Simple Conditions 5-6

ENVIRONMENT DIVISION

wwwww:f:wwwww
NOOOAOPWWN= = A

- Complex Conditions 5-11
Coding Example Declaratives 5-16
Configuration Section e e - EXCEPTION/ERROR Declarative 5-17
SOURCE-COMPUTER Paragraph . - Conditional Statements 5-19
OBJECT-COMPUTER Paragraph e e e e - IF Statement 5-19
SPECIAL-NAMES Paragraph - INPUT/OUTPUT Statements 5-21
Coding Example e e e e - CommonOptions 5-21
Input-Output Section 3-10 ACCEPT Statement 5-24
File Processing Summary 3-10 ACQUIRE Statement 5-26
FILE-CONTROL Paragraph e e 3-13 CLOSE Statement 5-27
I-O-CONTROL Paragraph e 3-19 DELETE Statement 5-28
DISPLAY Statement 5-29
CHAPTER 4. DATADIVISION 41 DROP Statement e e e e 5-30
Data Division Concepts 4-1 OPEN Statement 5-31
Data Division Organization 4-2 READ Statement b-33
File Section e e e e e e 4-2 REWRITE Statement 5-38
Working-Storage Section 4-2 START Statement 5-40
Linkage Section e e e 4-3 WRITE Statement 5-42
File Description Entry O 4-3 Arithmetic Statements b-a9
Coding Example e e e 4-4 Arithmetic Statement Operands 5-49
BLOCK CONTAINS Clause 4-7 CommonOptions 5-50
RECORD CONTAINS Clause . . e 4-8 ADD Statement 5-53
LABEL RECORDS Clause 4-8 COMPUTE Statement e e 5-54
VALUE OF Clause e 4-8 DIVIDE Statement 5-55
DATA RECORDS Clause 4-9 MULTIPLY Statement b-b7
LINAGE Clause 4-10 SUBTRACT Statement 5-58
CODE-SET Clause 4-11

Contents vii

Data Manipulation Statements
INSPECT Statement
MOVE Statement .
STRING Statement .
UNSTRING Statement
Procedure Branching Statements
ALTER Statement
EXIT Statement
GO TO Statement
PERFORM Statement .
STOP Statement .
Compiler-Directing Statements
ENTER Statement

CHAPTER 6. ADDITIONAL FUNCTIONS

TABLE HANDLING
Table Handling Concepts .
Table Definition
Table References . -
Data Division—Table Handllng ..
OCCURS Clause .
USAGE IS INDEX Clause
Procedure Division—Table Handling
Relation Conditions . .
SEARCH Statement .
SET Statement .
SORT/MERGE
Sort/Merge Concepts
Sort Concepts
Merge Concepts .
Sort/Merge Programming Consnderatlons
Main Storage Requirements
Disk Storage Requirements
Performance Considerations
Environment Division—~SORT/MERGE
File-Control Paragraph
|-O-Control Paragraph
Data Division—-SORT/MERGE .
Procedure Division—~SORT/MERGE
MERGE Statement
SORT Statement .

MERGE Statement and SORT Statement Optlons .

RELEASE Statement (Sort function only) .
RETURN Statement .
LIBRARY COPY FACILITY
COPY Statement .
SEGMENTATION FEATURE
Program Segments .
Segmentation Logic .
Segmentation Control .
Executable Object Program Size
Procedure Division—Segmentation .
Special Considerations—Segmentation .
INTER-PROGRAM COMMUNICATION .
Subprogram Linkage Concepts
Data Division—Subprogram Linkage
Record Description Entries .
Data Item Description Entries

viii

5-58
5-59
5-65
5-68
5-72
5-78
5-78
5-79
5-80
5-81
5-92
5-93
5-93

o
]
PROOOWNNORNNNOOWNNN

IO)Q?"O')O)Q

=]
]
NNNNNNDNNDNNODND= ==

'
N
(3]

mmmmmmmm?mmmmmmm

'
N NN
N oo

6-27
6-28
6-29
6-30
6-33
6-34
6-35
6-35
6-39
6-39
6-39
6-40
6-40
6-40
6-40
6-42
6-42
6-44
6-44
6-44

Procedure Division—Subprogram Linkage
CALL Statement
EXIT PROGRAM Statement
STOP RUN Statement
Segmentation Consideration .
Subprogram Linkage Feature Examples .
DEBUGGING FEATURES . .
COBOL Source Language Debugglng
Compile-Time Switch .
Object-Time Switch o
USE FOR DEBUGGING Declaratwe ..
DEBUG-ITEM Special Register .
TRACE Statement
EXHIBIT Statement .
FIPS FLAGGER
1975 High FIPS COBOL FIagglng
1975 High-Intermediate FIPS COBOL Flaggmg

1975 Low-Intermediate FIPS COBOL Flagglng .

1975 Low FIPS COBOL Flagging .

CHAPTER 7. TRANSACTION FILE

CONSIDERATIONS AND SAMPLE PROGRAM

Summary of Major Language Extensions .
Program Attributes
SRT (Single Requestor Termlnal) Program
MRT (Multiple Requestor Terminal) Program
Attaching a Device to a Program
Writing a Program with a Transaction F|Ie

Creating a Display Screen Format .

End-of-File Considerations .
Special Display Screen Format ConSIderatlons .

Overriding Fields in a Format .

Read Under Format .

Command Keys
Environment Division

SPECIAL-NAMES Paragraph

File Control Entry .
Data Division .

File Description Entry .

Boolean Data Facilities

Data Description Entry—Boolean Data
Procedure Division . . .

EXCEPTION/ERROR Declaratlves .

ACCEPT Statement .

ACQUIRE Statement

CLOSE Statement

DISPLAY Statement

DROP Statement .

OPEN Statement .

READ Statement .

WRITE Statement .. .
Sample COBOL Transaction F|Ie Program
(MRTSAM) .

MRTSAM Program Loglc

MRTSAM Debugging

6-45
6-45
6-46
6-46
6-46
6-47
6-48
6-48
6-48
6-48
6-49
6-50
6-52
6-54
6-57
6-58
6-58
6-59
6-60

' o N
OOUIUIUOINN == =

I\I\I\ITI\J\I\I

N~
]
-

NNNNSNNNNNNY
LI N | '

NNNNNNNNDNN

OOPPPRWWNNN

\ITI\I
P Ww
w oo

C

CHAPTER 8. SYSTEM-DEPENDENT
CONSIDERATIONS
« General Considerations
Library-Name, Program-Name, and Text Name
Source Statements
Source Program Library
User-Defined Words

Files . . . e e e e e e e e e

Disk Data Management .

Indexed and Relative File Contents

Adding Records to an Indexed File
Environment Division Considerations .

ASSIGN Clause

RESERVE Clause . .

RERUN Clause . . .

SAME RECORD AREA Clause

OBJECT-COMPUTER MEMORY Size Clause .
KEY Clause

Data Division Consrderatlons PN
BLOCK CONTAINS Clause
RECORD CONTAINS Clause .
LINAGE Clause . . .
OCCURS Clause
Item Size .

Index and Subscript therals .
Procedure Division Considerations
CALL Statement

COMPUTE Statement . . .

GO TO DEPENDING ON Statement
INSPECT Statement L.
SORT/MERGE Statement .

STOP Statement . .
UNSTRING Statement
TRANSACTION File .

CHAPTER 9. CREATING, EXECUTING, AND

DEBUGGING PROGRAMS

General Overview .
How a COBOL Program is Processed . .
IBM System/34 COBOL-Supplied Procedure . .
COBOL Command Statement
COBOLCG Command Statement
COBOLG Command Statement . .
COBSYSIN Command Statement . .

COBMOVE Command Statement

COBOLP Command Statement .
PROCESS Statement .

Using COPY Within the PROCESS Statement
The User Library P

Storing Procedures and Source Statements

Retrieving COBOL Source Statements . . .

Retrieving an Entire COBOL Source Program . .
Link~Editing
Execution
Program Linkage

Calling and Called Programs R
Linkage Between Modules Produced by System/34
Language Translators . e e
Standard Linkage

SAME AREA or SAME SORT-MERGE AREA Clauses

©
1 [YR D D N T D T I A Y R R B |
PAADPAPPIPIPLUWWWWWWWWWWWWNRNNNS = 2 0o aaa

oococococncooooocooommmmmm?mmmmmmmmmmmmmmmm

1 ||‘P
NSOV APW=a D

[{e Qe (e}
11 O WYY o
- = 1

Program Checkout
Debugging Language
Testing a Program Selectively

Testing Changes and Additions to Programs e

Program Loops
Tracing a Loop in a Program . .
Errors That Can Cause a Loop

Abnormal Terminations During Execution

Abnormal Termination Due to Invalid Address
Abnormal Termination Due to Invalid Operation
Main Storage Dumps
Interpreting a Dump
Hints for Program Checkout Lo
Checkpoint/Restart Facilites
RERUN Clause
Taking a Checkpoint
Restarting a Program
Interpreting Output
Compiler Output R
Linkage Editor Qutput

COBOL Object Program—Executlon Output

Diagnosed Source File

CHAPTER 10. IDEOGRAPHIC SUPPORT

How to Specify that You Have Ideographic
Literals
The Rules for Ideographlc L|terals

Examples of Ideographic Literals
Compiler Checking of Ideographic Literals

How to Specify Continuation of Ideographic

Literals

Testing for Ideographic Support
Subroutines that Handle Ideographic Data

Move Ideographic Data and Insert control

Characters—CBINST ..

Move Ideographic Data and Remove Control

Characters-CBREMV

APPENDIX A. COMPILER MESSAGES

Diagnostic Levels
APPENDIX B. SPECIAL PURPOSE SUBROUTINES
1255 Magnetic Ink Character Reader (MICR) Interface
Shutdown Status Test
APPENDIX C. LANGUAGE SUMMARY AND
COMPARISON
Assumptions for System/34 COBOL Language
Summary of System/34 COBOL Language . .
Summary of Elements in the Nucleus
Summary of Elements in Table Handling Module . .
Summary of Elements in Sequential I-O Module
Summary of Elements in the Relative |-O Module
Summary of Elements in Indexed I1-O Module
Summary of Elements in the Sort-Merge Module .
Summary of Elements in the Debug Module .
Summary of Elements in the Inter-Program
Communication Module .
Summary of Elements in the Segmentation Module .
Summary of Elements in the Library Module

Contents ix

APPENDIX D. INTERMEDIATE RESULT FIELDS . . D-1
Compiler Calculation of Intermediate Results D-2

APPENDIX E. SAMPLE FILE-PROCESSING

PROGRAMS E-1
Sequential File Creation E-1
Sequential File Updating and Extension E-3
Indexed File Creation E-5
Indexed File Updating E-7
Relative File Creation E-11
Relative File Updating e v« ... E-13
Relative File Retrieval E-15
COBOL SortExample E-18

APPENDIX F. IBM AMERICAN NATIONAL STANDARD

COBOL RESERVEDWORDS F-1

Reserved Words Used by the System/34

COBOL Compiler F-1
Reserved Words Not Used by the System/34 Compiler . F-5

APPENDIX G. EBCDIC AND ASCII COLLATING

SEQUENCE G-1
EBCDIC Collating Sequence G-1
ASCIl Collating Sequence G-5

APPENDIX H. FILE PROCESSING SUMMARY AND
STATUSKEY VALUES H-1

APPENDIX |. DISPLAY SCREEN FORMAT
SPECIFICATIONS I-
S Specificationso
D Specifications, . .

APPENDIX J. EXAMPLE OF CONVERSION FROM
WORK STATION PRPQ SUPPORT TO NATIVE
COBOL TRANSACTION FILE SUPPORT J-1

GLOSSARYo oo K-1

GENERAL DESCRIPTION

COBOL (Common Business Oriented Language) is a
programming language that resembles English. As its
name implies, COBOL is especially efficient in the
processing of business problems. COBOL can be
efficiently used to manipulate large files of data in a
relatively simple way. That is, COBOL emphasizes the
description and handling of data items and of
input/output records.

The System/34 COBOL Compiler and Library is an IBM
program product that accepts and compiles COBOL
programs written in accordance with the 1974 standard.
This program product also includes a number of IBM
extensions. The following sections describe the
language level implemented and language-independent
compiler features.

LANGUAGE LEVEL

The table that follows shows the support of each
module provided by System/34 COBOL. The table also
describes each module and explains where System/34
COBOL offers more support to a module than is
specified by the defined level.

The following example explains the notation used to
identify levels of implementation:

1SEGO, 2

Highest level available

Minimum level required

Module identifier

Level supported by System/34 COBOL

Chapter 1. Introduction

System/34

COBOL

Processing

Modules Module Description

Nucleus Contains the language elements that
2NUC1, 2 are necessary for internal

processing.

Table Handling
27TBL1, 2

Contains the language elements
necessary for: (1) definition of
tables; (2) identification,
manipulation, and use of indexes;
(3) reference to the items within
tables. Provides the ability to define
fixed-length or variable-length
tables of up to three dimensions.
Items in the tables can be referred
to by using a subscript or an index.

Sequential 1/0

Allows definition and access of

2SEQ1, 2 sequentially organized external files.
Relative 1/0 Provides the capability for defining
2 RELO, 2 and accessing disk files in which
(see Note) records are identified by relative
record numbers. A file can be
accessed randomly and sequentially
in the same COBOL program.
Indexed 1/0 Provides the capability for defining
1INXDO, 2 disk files in which records are
(see Note) identified by the value of a key and

accessed through an index. IBM
System/34 COBOL Indexed 1/0
provides many level 2 functions with
two notable exceptions:

« ALTERNATE RECORD KEYs are
not supported.

« The WRITE statement cannot be
used when ACCESS is DYNAMIC
and the file is opened as 1-0.

Note: This module deviates from the standard as
described in Industry Standards in the Preface.

Introduction 1-1

System/34

COBOL

Processing

Modules Module Description
Sort-Merge Allows for the inclusion of one or
2SRTO, 2 more sorts in a COBOL program

and for use of the merge facility.

Report Writer

Provides for semiautomatic

ORPWO, 1 production of printed reports.
Segmentation Provides for the overlaying at object
1SEGO, 2 time of Procedure Division sections.
Library Allows inclusion of predefined
2LIBO, 2 COBOL text into a program.

Debug Provides a means by which the user
1DEBO, 2 can specify statements and

procedures for debugging.

Inter-program
Communication
1IPCO, 2

Provides facilities for a program to
communicate with one or more
other programs. Also provides
capability to transfer control to
another program known at compile
time, and the ability for both
programs to have access to certain
data items.

Communication
OCOMO, 2

Provides the ability to access,
process, and create messages or
portions of messages; also provides
the ability to communicate through a
Message Control System with local
and remote communication devices.

1-2

COMPILER FEATURES

The following language-independent features are made
available with System/34 COBOL:

« The Diagnosed Source File optionally builds a file that
can be retrieved and displayed at a display station.
The file that is created contains source statements,
merged diagnostics, and summary information. The
file can be moved to a library member by an
iIBM-supplied procedure and can then be reviewed
and updated by using SEU.

» Syntax-checking compilation saves machine time
while debugging source syntax errors. The source
program is scanned for syntax errors and such error
messages are generated, but no object code is
produced.

» Prompting screen formats provide ease of entry and
maintenance by the COBOLP command. This
command also allows the specification of parameters
needed for compiling and executing COBOL
programs.

« The sorted cross-reference option provides a listing
of each Data Division name and Procedure Division
paragraph name and indicates the statement numbers
of each reference of the item.

« Interprogram calls allow programs written in
System/34 COBOL to call or be called by other
programs written in System/34 COBOL, System/34
FORTRAN IV, or System/34 Basic Assembler.

« Multiple printer files allow the user to define and use
multiple printer files in the same program.

« The FIPS (Federal Information Processing Standard)
Flagger issues messages identifying nonstandard
elements in a COBOL source program. The FIPS
Flagger makes it possible to ensure that clauses and
statements in a System/34 COBOL source program
conform to a particular level of the 1975 Federal
Information Processing Standard.

« Diagnostic messages below a user-specified level
may be suppressed.

FORMAT NOTATION

In COBOL, basic formats are prescribed for the various
elements of the language. In this manual, these formats
are presented in a uniform system of notation that is
explained in the following paragraphs. This notation is
designed to assist the programmer in writing his own
COBOL source statements.

» Reserved words are printed entirely in CAPITAL
LETTERS. These words have preassigned meanings
in COBOL. If any reserved word is misspelled, it is
not recognized as a reserved word and may cause an
error in the program. The two types of reserved
words are key words and optional words.

— Key words are required by the syntax of the
format unless the portion of the format containing
them is itself optional. In formats, key words are
shown in UNDERLINED CAPITAL LETTERS. If any
key word is missing, it is considered an error in
the program.

— Optional words are included only for readability.
They may be included or omitted without changing
the syntax of the program. Optional words are
CAPITALIZED but not underlined.

« Words printed in lowercase letters represent
information to be supplied by the programmer. All
such words are defined in the text of this manual.

« For easier text reference, some user-defined words

The ellipsis (. . .) indicates that the immediately
preceding unit may occur once or any number of
times in succession. A unit may be a single
lowercase word or a group of lowercase words and
one or more reserved words enclosed in brackets
and/or braces. When repetition is specified, the
entire unit of which the term is a part must be
repeated if the term is enclosed within brackets or
braces.

The arithmetic and logical operators (+, -, <, >, =)
that appear in formats are required even though they
are not underlined.

All punctuation and other special characters
appearing in formats (except braces, brackets,
ellipses, commas, and semicolons) are required by
the syntax of the format when they are shown; if
they are omitted an error occurs in the program.
Additional punctuation may be specified, according to
the punctuation rules given later in this manual.

The required clauses and (when written) optional
clauses must be written in the sequence shown in the
format unless the associated rules explicitly state
otherwise.

Comments, restrictions, and clarifications on the use
and meaning of every format are contained in the
description that follows each one.

are followed by a hyphen and digit or letter. This
suffix does not change the syntactical definition of
the word.

Braces ({}) enclosing listed items indicate that one of
the enclosed items is required.

Square brackets ([]) indicate that the enclosed item
may be used or omitted, depending on the
requirements of the program. When two or more
items are stacked within brackets, one or none of
them may be specified.

IBM extensions to ANSI COBOL, X3.23-1974, are
documented in separate paragraphs beginning with the
paragraph heading, IBM Extension:

Introduction 1-3

COBOL PROGRAM STRUCTURE

Every COBOL source program is divided into four
divisions. Each division must be placed in proper
sequence, and each must begin with a division header.
(Appendix E shows the general structure of every
COBOL source program.)

In subsequent chapters, the rules for writing COBOL
source programs and methods of data reference are
given.

The COBOL Divisions

The four divisions of a COBOL source program and their
functions in solving a data processing problem are
described in the following paragraphs.

Identification Division

The ldentification Division names the program and,
optionally, documents the date the program was written,
the compilation date, and other pertinent information.

Environment Division

The Environment Division describes the computer(s) to
be used and specifies the machine(s) and equipment
features used by the program. This description defines
the relationship of files of data with input/output
devices.

Data Division

The Data Division defines the nature and characteristics
of all data the program is to process: the data used in
input/output operations and the data developed for
internal processing.

Chapter 2. Language Considerations

Procedure Division

The Procedure Division consists of executable
statements that process the data in the manner the
programmer defines. Statements are executed in the
order they are written unless another order is defined by
the programmer.

Clauses and Statements

Every COBOL source program is written in clauses and
statements, each of which describes a solution to some
specific aspect of the data processing problem.

« Clauses, written in the Environment and Data
Divisions, specify an attribute of an entry. A series of
clauses ending with a period is defined as an entry.

« Statements, written in the Procedure Division, specify
an action to be taken by the object program. A series
of statements ending with a period is defined as a
sentence.

Each clause or statement in the program can be
subdivided into smaller syntactical units called phrases
or options. A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion
of a COBOL clause or statement. An option is a phrase
that provides the programmer with required or optional
wording, depending on the desired meaning.

Clauses, entries, statements, and sentences can be
combined into paragraphs or sections. Each paragraph
and section defines some larger part of the data
processing problem solution. Specific rules for the
formation of each element are given in the
documentation for each division of the COBOL program.

Clause and Statement Specification Order
When specified, each required or optional clause or
statement (even those treated as documentation) must

be written in the sequence shown in the correct format
unless the associated rules explicitly state otherwise.

Language Considerations 2-1

STRUCTURE OF THE LANGUAGE

In COBOL, the indivisible unit of data is the character.
Fifty-one EBCDIC characters form the COBOL character
set: the 26 letters of the alphabet, the 10 Arabic
numerals, and 15 special characters.

Individual COBOL characters are put together to form
character-strings and separators.

A character-string is a character or sequence of
contiguous characters that form a word, a literal, a
PICTURE character-string, or a comment. A
character-string can be delimited only by a separator.

A separator is a contiguous string of one or more
punctuation characters. A separator can be placed next
to another separator or next to a character-string.

Except for comments and nonnumeric literals (which
may use any character within the EBCDIC set), the 51
characters are the only characters valid in a COBOL
program. Figure 2-1 shows the valid COBOL characters
in ascending EBCDIC sequence and their usage in a
COBOL program.

IBM Extension: A System/34 COBOL
compiler's default option substitutes
an apostrophe (') for a quotation mark
("). Unless the default option is
overridden, the quotation mark cannot
be used. If conformance with the
standard character set is desired, the
programmer must specify the quotation
mark with a PROCESS statement option at
compile time. If the quotation mark is
thus specified, the apostrophe cannot
be used.

Note: Throughout this manual, the apostrophe is used
because it is the default option. In all cases, the
quotation mark can be used only if the default option is
overridden.

2-2

COBOL
Character

0-9

Meaning
space

decimal point;
period

less than
left parenthesis

plus symbol

dollar sign

asterisk

right parenthesis
semicolon

minus symbol;
hyphen

stroke or
slash

comma

greater than
equal sign
quotation mark
or apostrophe
alphabet

Arabic numerals

Use
punctuation character

editing character;
punctuation character

relation character
punctuation character

arithmetic operator;
sign; editing character

editing character

arithmetic operator;
editing character

punctuation character
punctuation character

arithmetic operator;
sign; editing character

arithmetic operator;
editing character

punctuation character;
editing character

relation character

relation character;
punctuation character

punctuation character

alphabetic character

numeric character

Note: All COBOL characters are considered to be

alphanumeric.

Figure 2-1. COBOL Characters and Their Meanings

Character-Strings

COBOL character-strings form words, literals, PICTURE
character-strings, and comments. Each is described in
the following paragraphs.

COBOL Words
A COBOL word can be a user-defined word, a

system-name, or a reserved word. A COBOL word can
belong to only one of these classes.

The maximum length of a COBOL word is 30 characters.

User-Defined Words: A user-defined word is a COBOL
word supplied by the programmer. Valid characters in a
user-defined word are:

« A through Z
« 0 through 9
« - (hyphen)

The hyphen may not appear as the first or last character
in a user-defined word.

A list of user-defined word sets, together with rules for
their formation, is given in Figure 2-2. The function of
each user-defined word in any specific clause or
statement is included in the prose description for each
clause or statement.

User-Defined

Word Sets Rules for Formation

Must contain at least one
alphabetic character. Within

alphabet-name
condition-name

data-name each set, the name must be
record-name unique either because no other
file-name word is made up of an identical
index-name character-string, or because it

mnemonic-name
routine-name

can be made unique through
qualification. (See the section
Methods of Data Reference.)

Must contain at least one
alphabetic character. The
system uses the first 8
characters as the identifying
name; these first 8 characters,
therefore, must be unique
among library-names.
Text-name must be unique
unless qualified by a
library-name.

library-name

Must contain at least one
alphabetic character. The
system uses the first 6
characters as the identifying
name. These first 6 characters,
therefore, must be unique
among program-names.

program-name
text-name

paragraph-name
section-name

Need not contain an alphabetic
character. Other rules as in first
paragraph.

level-numbers:
01-49, 66, 77, 88

Must be a 1- or 2-digit integer.
Need not be unique.

segment-numbers: |Must be a 1- or 2-digit integer.

00-99 Need not be unique.

Figure 2-2. User-Defined Word Sets and Rules for
Formation

Language Considerations 2-3

System-Names: A system-name is an IBM-defined
name that is used to communicate with the system. A
system-name can be:

e computer-name

« language-name

« implementor-name

« function-name

The function of each system-name is described with the

format in which it appears; each is defined in the
Glossary.

Reserved Words: A reserved word is a COBOL word
with fixed meaning(s) in a COBOL source program. A
reserved word must not be specified as a user-defined
word or as a system-name. Reserved words can be
used only as specified in the formats for a COBOL
source program.

Appendix F gives a complete list of COBOL reserved
words. The section on Format Notation in Chapter 1

gives the conventions used to represent reserved words

in this manual.

There are six types of reserved words:
» Key words

« Optional words

« Connectives

« Special registers

+ Special-character words

o Figurative constants

Each type is described in the following paragraphs.

2-4

Key words are words that are required within a given
clause, entry, or statement. There are three types of key
words:

« Verbs, such as ADD, READ, WRITE

« Required words, which appear in clause, entry, or
statement formats, such as the word USING in the
MERGE statement

« Words with a specific functional meaning, such as
NEGATIVE or SECTION

Optional Words are words that may be included in a
clause, entry or statement. When an optional word is
omitted, the meaning of the COBOL program is
unchanged.

There are three types of connectives: qualifier, series, or
logical.

« Qualifier connectives (OF, IN) associate a data-name,
condition-name, text-name, or paragraph-name with
its qualifier.

« Series connectives (the comma and semicolon)
optionally link two or more consecutive operands.
{An operand is a data item or literal that is acted
upon by the COBOL program.)

» Logical connectives (AND, OR, AND NOT, OR NOT)
are used in specifying conditions.

Special registers are compiler-generated storage areas
used primarily to store information produced through
one of the specific COBOL features. Each such storage
area has a fixed name and need not be further defined
within the program. These special registers include the
following:

+ DEBUG-ITEM (See Debugging Features in Chapter 6.)

o LINAGE-COUNTER (See LINAGE Clause in
Chapter 4.)

o DATE, DAY, TIME (See ACCEPT Statement in
Chapter 5.)

Special-character words are arithmetic operators

(+ - / * *=*) or relation characters (< > =). Arithmetic
operators are described under Arithmetic Expressions in
Chapter 5. Relation characters are described in the
relation condition description of the Conditional
Expressions in Chapter 5.

<9

Figurative constants name and refer to specific constant
values.

The reserved words for figurative constants and their
meanings are:

« ZERO, ZEROES, ZEROS—represents the value O or
one or more occurrences of the character O,
depending on context. Zero can be numeric or
nonnumeric, uspending on context. For example,
ZERO is considered to be nonnumeric when it is used
in a relational expression in which it is compared to
an alphanumeric data item.

« SPACE, SPACES—represents one or more blanks or
spaces. Must be nonnumeric.

+« HIGH-VALUE, HIGH-VALUES—-represents one or
more occurrences of the character that has the
highest value in the collating sequence used. For the
EBCDIC (NATIVE) collating sequence, the character is
hex FF; for other collating sequences, the character
used depends on the collating sequence. When used
in a COBOL program, HIGH-VALUE is treated as a
nonnumeric literal.

« LOW-VALUE, LOW-VALUES-represents one or
more occurrences of the character with the lowest
value in the collating sequence used. For the EBCDIC
(NATIVE) collating sequence, the character is hex 00;
for other collating sequences, the character used
depends on the collating sequence. When used in a
COBOL program, LOW-VALUE is treated as a
nonnumeric literal.

« QUOTE, QUOTES-represents one or more
occurrences of the quotation mark character and
must be nonnumeric. The word QUOTE (QUOTES)
cannot be used in place of an apostrophe to enclose
a nonnumeric literal.

« ALL literal-represents one or more occurrences of the
string of characters composing the literal and must be
nonnumeric. The literal must be either a nonnumeric
literal or a figurative constant other than the ALL
literal. When a figurative constant is used, the word
ALL is redundant and is used for readability only. The
figurative constant ALL literal must not be used with
the DISPLAY, INSPECT, STRING, STOP, or
UNSTRING statements.

The singular and plural forms of a figurative constant are
equivalent and can be used interchangeably. For
example, if DATA-NAME-1 is a five-character data
item, either of the following statements will fill
DATA-NAME-1 with five spaces:

MOVE SPACE TO DATA-NAME-1.
MOVE SPACES TO DATA-NAME-1.

In any format, a figurative constant may be substituted
for a nonnumeric literal; only the figurative constant
ZERO (ZEROS, ZEROES) may be substituted for a
numeric literal.

The length of a figurative constant depends on the
context of the program. The following rules apply:

« When a figurative constant is associated with a data
item, the length of the figurative constant
character-string is equal to the length of the
associated data item. This rule applies, for example,
when a figurative constant is moved to or compared
with another item.

« When a figurative constant is not associated with
another data item, the length of the character-string
is one character. This rule applies, for example, in
the DISPLAY, INSPECT, STRING, STOP, and
UNSTRING statements.

Literals

A literal is a character-string with a value that is
specified either by the ordered set of characters of
which it is composed or by a figurative constant. The
three types of literals are nonnumeric, numeric, and
Boolean.

Nonnumeric Literals: A nonnumeric literal is a
character-string that can contain any allowable character
from the EBCDIC set. A nonnumeric literal may contain
a maximum of 120 characters.

A nonnumeric literal must be enclosed by apostrophes.
The enclosing apostrophes are not part of the literal.

Language Considerations 2-5

Any punctuation characters included within a
nonnumeric literal are part of the value of the literal. An
embedded apostrophe must be represented by a pair of
adjacent apostrophes; one apostrophe is then part of
the value of the literal. Each pair of embedded
apostrophes in the literal counts as one character
against the limit of 120 characters.

Every nonnumeric literal is in the alphanumeric category.
Data categories are defined under PICTURE Clause in
Chapter 4.

Numeric Literals: A numeric literal is a character-string
whose characters are selected from the digits O through
9, a sign character (+ or -), and/or the decimal point.
The following rules apply:

« One to 18 digits are allowed.

« Only one sign character is allowed. If a sign
character is included, it must be the leftmost
character of the literal. If the literal is unsigned, it is
considered to have a positive value.

« Only one decimal point is allowed. If a decimal point
is included, it is treated as an assumed decimal point
(not considered a character position in the literal).
The decimal point may appear anywhere within the
literal except as the rightmost character. If the literal
contains no decimal point, it is considered to be an
integer. The word integer appearing in a format
represents a numeric literal of nonzero value that
contains no sign and no decimal point; any other
restrictions are included with the description of the
format.

The value of a numeric literal is the algebraic quantity
expressed by the characters in the literal. The size of a
numeric literal in standard data format characters is
equal to the number of digits specified by the user.

2-6

IBM Extension:

Boolean Literals: A Boolean
literal contains a single 0 or 1 and is
enclosed in quotes and immediately
preceded by an identifying B. The
Boolean literal is defined as either
B'0' or B'1'. A Boolean character
occupies one byte. The figurative
constant ZERO can be used as a Boolean
literal, and the reserved word ALL is
valid with a Boolean literal.

PICTURE Character-Strings

A PICTURE character-string consists of COBOL
characters used as symbols in the PICTURE clause. The
choice of symbols determines whether the user-defined
name is Boolean, numeric, alphabetic, or alphanumeric,
and is also used to define edited output fields.

Comments

A comment is a character-string containing any
combination of characters from the EBCDIC set. A
comment serves only as documentation. Comments take
two forms:

+ A comment-entry in the ldentification Division. For a
further description of a comment entry, see
Identification Division in Chapter 3.

« A comment line (preceded by an asterisk or a slash in
Column 7) in any division of the program. For a
further description of a comment line, see Standard
COBOL Format in this chapter.

9

9

Separators

A separator is a string of one or more punctuation
characters. The punctuation characters are shown in
Figure 2-3.

Punctuation
Character Meaning
space
period
(left parenthesis
j right parenthesis
; semicolon
, comma
= equal sign

quotation mark
apostrophe

Figure 2-3. Punctuation Characters

The following rules apply to the formation of separators:

« A space is always a separator except when the space
appears within a nonnumeric literal. When contained
between the opening and closing apostrophe of a
nonnumeric literal, the space is considered part of the
literal. Wherever a space is used as a separator,
more than one space can be used.

« A comma, semicolon, or period that is immediately
followed by a space is a separator. These separators
may appear only where explicitly allowed by COBOL
rules.

« The left and right parentheses are separators.
Parentheses must appear as balanced pairs of left
and right parentheses, delimiting subscripts, indexes,
arithmetic expressions, or conditions.

« The apostrophe is a separator. An opening
apostrophe must be immediately preceded by a space
or a left parenthesis. A closing apostrophe must be
immediately followed by one of the following
separators: space, comma, semicolon, period, or right
parenthesis. Apostrophes must appear as balanced
pairs delimiting nonnumeric literals except when the
literal is continued.

« The pseudo-text delimiter (==) is a separator. An
opening pseudo-text delimiter must be immediately
preceded by a space. A closing pseudo-text delimiter
must be immediately followed by one of the following
separators: space, comma, semicolon, or period.
Pseudo-text delimiters must appear as balanced pairs
delimiting pseudo-text.

Language Considerations 2-7

STANDARD COBOL FORMAT

COBOL programs must be written in the standard
COBOL format, described in the following discussion.

The format is described in terms of an 80-character line.

The output listing of the source program is printed in
this same format. The COBOL coding form is shown in
Figure 2-4.

Sequence Numbers (Columns 1-6)

Sequence numbers are written in columns 1 through 6.
A sequence number is used to identify numerically each
line to be compiled by the COBOL compiler. The use of
sequence numbers is optional. A sequence number, if
used, must consist of six digits in the sequence number
area (including the preprinted digits in columns 4 and 5).

If sequence numbers are present in the source program,
they must be in ascending order. If sequence numbers
are out of sequence, the compiler accepts them in the
order read and generates a warning message.

IBM Extension: The user may suppress
sequence checking at compile time.

Continuation Area (Column 7)

The continuation area is used to indicate the
continuation of words and nonnumeric literals from the
previous line onto the current line, to specify debugging
lines, or to indicate that the text on this line is to be
treated as a comment.

IBN

4

[

COBOL Coding Form

SYSTEM

PUNCHING INSTRUCTIONS PAGE OF

PROGRAM

GRAPHIC »

CARD FORM #

PROGRAMMER] DATE

PUNCH

SEQUENCE 5|

| \enTIFICATION
3| A COBOL STATEMENT !
I‘PAGEl gsmnkg g f —x E— -5 —3 T R 3 L} 7] B8 1] = '—Ej 72 75
0NN T L] I | 1] l
o2 [y 1171 [L | N | NERRERN l
sl T[] RN L 1 il | HERERAREN
NICONIEEENERNRERIREREEER REEE W il ERRNRRRENRER []

Columns 1-6 represent the sequence number area.
Column 7 is the continuation area.

Columns 8-11 represent Area A
Columns 12-72 represaent Area B
Columns 73-80 are used to identify the program.

‘ Used for writing COBOL source statements.

Figure 2-4. IBM COBOL Coding Form and Standard COBOL Format

2-8

Area A (Columns 8-11) and Area B (Columns 12-72)

COBOL elements that may begin in Area A and specific

COBOL elements that may follow them are shown in

Figure 2-5.

Elements That
Begin in Area A

Must be
Followed
immediately By

Placement of
Following
Elements

Division Header

USING Option

Same or next
line (Area B)

Section header,
paragraph header,
paragraph-name,
or (in Procedure
Division) key word

Next line
(Area A)

paragraph-name
(after COPY or
USE, if specified)

DECLARATIVES

Section Header COPY or USE Same or next
statement line (Area B)
Paragraph header |Next line
or (Area A)

Paragraph Header

Environment

Same or next

or Division entry or |line (Area B)
Paragraph-Name |Procedure Division

sentence
Level Indicator Data-name Same line
Level-number (Area B)
Key Word Declaratives Next line
DECLARATIVES |section name (Area A)
Key Words END | Section-header Next line
DECLARATIVES (Area A)

Figure 2-5. Sequence of Elements in Area A and Area B

The basic skeleton of a COBOL program is shown in

Figure 2-6.
SEQUENCE g‘A }a
IPAGE! [ISERIAL) O
' 3le 6[7te Z- %6 W " Fi) 2 36 Q.
01/0 ' | IroENITIFzlcaTI/oN Dlzvzsion.| | L
o T T ¢ (: | S
NECERE 1T ! X M Al
(loa | ENvIRONMENT Dbrvilszon.
) [°5 | CONFIGURATION SECTION.
I ERCT I T 4 R
Yo7 !IN‘Pu;T-OuTE_u_T SECITION)
08 ILE- CONTROL|
Y jose. TE FU e A
("o | paTa nrv:_s_:plnf._f R
'1 | FILE| SECITION. 4[**** [
[12 FD__|
U1 | workzNG-[sTorlnGE IsEcT1oN. i T
/114 11 peEScRipTioN [1 r 1
N\ Tis 91 | ‘ ;
L e [& | v
"\17 PrROCEDURE DIVISION,
¥ ['s | pEcLARATIVES.
SRR AESARSSS ARENE ERAREARERARED
.20 [END IbECLARATZVES]. H EIIME
i crlzion-ame| SECTTON. | | R RN
PARAGRAPH - NAME .
{ }CQ NT S|
D[l . ﬂe[aiu 'lSTA:TEIM "‘Tf-\ ‘ | | —
i X oV ‘T ‘T‘;' ro AL . . il H i
PR S M il i B BONRARNN ENRARA SRR
e

4 ¢ 8 12

18 20

24

7

Figure 2-8. Basic Skeleton of a COBOL Program

Language Considerations

2-9

Special Considerations

Some lines in a COBOL program require additional rules.
The divisional headers and the Data Division entries
have special requirements. A discussion of each follows.

Division Header

A division header must be immediately followed by a
period except when a USING option is specified with a
Procedure Division header. Except for the USING
option, no text may appear on the same line.

Section Header

A section header must be immediately followed by a
period except when Procedure Division segment
numbers are specified. In the Environment and
Procedure Divisions, a section consists of paragraphs.
In the Data Division, a section consists of Data Division
entries.

Paragraph Header, Paragraph-Name

In the Environment Division, a paragraph consists of a
paragraph header followed by one or more entries in
Area B. An entry consists of one or more clauses. In
the Procedure Division, a paragraph consists of a
paragraph-name followed by one or more sentences in
Area B. A sentence consists of one or more statements;
a statement is a syntactically valid combination of a
COBOL verb and its operands. Entries and sentences
must be ended with a period followed by a space.

Successive entries or sentences begin in Area B. The

entries are either on the same line as the last entry or

sentence, or they are on the next succeeding nonblank
noncomment line.

2-10

Data Division Entries

Each Data Division entry begins with a level indicator or
level-number followed by a space. On the same line is a
data-name in Area B, followed by a sequence of
independent clauses describing the item. Each clause,
except the last, is followed by a space (or optionally by
a comma or semicolon and a space). The last clause in
the entry must be ended with a period followed by a
space.

Successive clauses begin in Area B. The clauses are
either on the same line as the preceding clause, or on
the next succeeding nonblank noncomment line.

A level indicator (FD, SD) must begin in Area A and be
followed by a space. For a further description of level
indicators, see Data Division Organization in Chapter 4.

A level number is a one- or two-digit integer with one of
the following values: 1 through 49, 66, 77, or 88. At
least one space must follow the level-number.

Level-numbers 01 and 77 must begin in Area A. The
associated record-name or item-name must appear in
Area B. Level-numbers 02 through 49, 66, and 88 may
begin in either Area A or Area B.

DECLARATIVES and END DECLARATIVES

In the Procedure Division, the key words
DECLARATIVES and END DECLARATIVES begin and
end the declaratives portion of the source program.
Both of these key words must begin in Area A and be
followed immediately by a period. No other text may
appear on the same line. After the key word END
DECLARATIVES, no text may appear before the
following section header.

9

Program Spacing

In writing a COBOL program, rules for indentation,
continued lines, comment lines, debugging lines, and
blank lines must be observed.

Indentation

Within an entry or sentence, successive lines in Area B
may have the same format or may be indented to clarify
program logic. The output listing is indented only if the
input statements are indented. Indentation does not
affect the syntax of the program. The amount of
indentation can be chosen by the programmer, subject
only to the restrictions on the width of Area B.

Continuation of Lines

Any sentence, entry, clause, or phrase that requires
more than one line can be continued in Area B of the
next succeeding noncomment line. The line being
continued is called the continued line; the succeeding
lines are continuation lines. Area A of a continuation
line must contain only spaces.

If there is no hyphen in the continuation area (Column 7)
of a line, the last character of the preceding line is
assumed to be followed by a space.

If there is a hyphen in the continuation area of a line,
the first nonblank character of this continuation line
immediately follows the last nonblank character of the
continued line without any intervening space. However,
this restriction does not apply to nonnumeric literals.

If the continued line contains a nonnumeric literal
without a closing apostrophe, all spaces at the end of
the continued line (through Column 72) are considered
to be part of the literal. The continuation line must
contain a hyphen in the continuation area, and the first
nonblank character in Area B must be an apostrophe.
The continuation of the literal begins with the character
immediately following the apostrophe.

Comment Lines

A comment line is any line with an asterisk or slash in
the continuation area of the line. The comment may be
written anywhere in Area A and Area B of that line. The
comment may consist of any combination of characters
from the EBCDIC set.

If an asterisk is placed in the continuation area, this
comment line is printed in the output listing immediately
following the last preceding line.

If the slash is placed in the continuation area, the
current page of the output listing is ejected, and the
comment line is printed on the first line of the next

page.

The asterisk or slash and the comment are produced
only on the output listing. They are treated as
documentation by the compiler.

Successive comment lines are allowed. Each must begin
with an asterisk or slash in the continuation area.
Debugging Lines

A debugging line is any line with a D coded in the
continuation area. Rules for the formation of debugging
lines are given under Debugging Features in Chapter 6.
Blank Lines

Blank lines contain nothing but spaces from Column 7
through Column 72. A blank line may appear anywhere

in a program except immediately preceding a
continuation line.

Language Considerations 2-11

Overall Punctuation Rules

Any punctuation character included in a PICTURE
character-string, a comment character-string, or a
nonnumeric literal is not considered to be a punctuation
character but rather is considered to be part of the
character-string or literal.

A comma, period, or semicolon followed by a space in
or at the end of a PICTURE character-string is a
separator and will terminate the PICTURE
character-string. The comma and semicolon are used
only for readability.

Punctuation rules for each division of the COBOL source
program follow.

Identification Division

Commas and semicolons can be used in the
comment-entries. The PROGRAM-ID paragraph must
end with a period followed by a space.

Environment Division

Commas or semicolons may separate successive clauses
and successive operands within clauses. The
SOURCE-COMPUTER, OBJECT-COMPUTER,
SPECIAL-NAMES, and I-O-CONTROL paragraphs must
each end with a period followed by a space. In the
FILE-CONTROL paragraph, each file-control entry must
end with a period followed by a space.

Data Division

Commas or semicolons may separate successive clauses
and operands within clauses. File (FD), Sort/Merge file

(SD), and data description entries must each end with a
period followed by a space.

Procedure Division
Commas or semicolons may separate successive
statements within a sentence and successive operands

within a statement. Each sentence and each procedure
must end with a period followed by a space.

2-12

METHODS OF DATA REFERENCE

Every user-specified name defining an element in a
COBOL program must be unique, either because no
other name has a character-string of the same value or
because it can be made unique through qualification,
subscripting, or indexing. In addition, references to data
and procedures can be either explicit or implicit. The
rules for qualification and for explicit and implicit
references follow.

Qualification

A name can be made unique if it exists within a
hierarchy of names, and the name can be identified by
specifying one or more higher-level names in the
hierarchy. The higher-level names are called qualifiers,
and the process by which such names are made unique
is called qualification.

Qualification is specified by placing one or more phrases
after a user-specified name. Each phrase consists of the
word OF or IN followed by a qualifier. (OF and IN are
logically equivalent.) The three formats for references
are references to Data Division names, references to

Procedure Division names, and references to COPY
libraries.

Format 1
data-name-1 OF
{ condntion-name} [{'L\‘ }data-name-2] T
Format 2
OF A
paragraph-name IN section-name

Format 3

OF{ ..
text-name m library-name

In Data Division references, all qualifying data-names
must be associated with a level-indicator or
level-number. Therefore, two identical data-names
must not appear as subordinate entries in a group item
unless they can be made unique through qualification.
Names associated with a level~indicator (FD and SD) are
the highest level in the hierarchy. Next highest are those
associated with level-number 01. Names associated
with level-numbers 02 through 49 are at successively
lower levels in the hierarchy.

In the Procedure Division, two identical
paragraph-names must not appear in the same section.
A section-name is the highest and only qualifier
available for a paragraph-name.

The foliowing example illustrates the use of identical
names in a data hierarchy:

01 FIELD-A

02 FIELD-B

05 SUB-1
07 SUB-2

02 FIELD-C
05 SUB-1

02 FIELD-D REDEFINES FIELD-C
05 SuUB-3
05 SUB-4

A hierarchy includes all subordinate entries to the next
equal or higher level number. Therefore, in the above
example all entries are in the hierarchy of FIELD-A. All
entries from FIELD-B to but not including FIELD-C are
in the hierarchy of FIELD-B.

In the hierarchy of FIELD-A, SUB-1 can be used twice;
once as subordinate to FIELD-B and once as
subordinate to FIELD-C. When referring to SUB-1, it
must be qualified as SUB-1 OF FIELD-B or SUB-1 OF
FIELD-C. Within FIELD-B or FIELD-C, SUB-1 cannot
be subordinate to itself.

SUB-2, SUB-3, and SUB-4 can also be qualified when
they are referenced. This qualification is optional, as
these fields are already uniquely identified.

In any hierarchy, the name associated with the highest
level must be unique and cannot be qualified. No matter
what qualification is available, no name can be both a
data-name and a procedure-name.

Enough qualification must be specified to make the
name unique; however, it may not be necessary to
specifiy all the levels of the hierarchy. For example, if
more than one file has records that contain the field
EMPLOYEE-NO but only one of the files has a record
named MASTER-RECORD, then specifying
EMPLOYEE-NO OF MASTER-RECORD sufficiently
qualifies EMPLOYEE-NO. EMPLOYEE-NO OF
MASTER-RECORD OF MASTER-FILE is valid but
unnecessary.

Qualification Rules
The following rules for qualification apply:

« Each qualifier must be of a successively higher level
and must be within the same hierarchy as the name it
qualifies.

« The same name must not appear at two levels in a
hierarchy unless it can be qualified.

« |If a data-name or condition-name is assigned to
more than one data item, the data item must be
qualified each time it is referenced. This rule has one
exception; the condition-name must not be qualified
when used in a REDEFINES clause.

« A paragraph-name must not be duplicated within a
section. When a paragraph-name is qualified by a
section-name, the word SECTION must not appear.
A paragraph-name need not be qualified when
referred to within the section in which it appears.

« Library-name must be unique in the system.
Therefore, the first eight characters of library-name
must be unique.

« Text-name must be qualified by the library-name of
the library in which it resides, reside in the library
specified on the LIBRARY option of the PROCESS
statement, or reside in the system library if no other
qualification is given.

« When a data-name is being used as a qualifier, it
cannot be subscripted.

« A name can be qualified even when it does not need
qualification.

Language Considerations 2-13

« If more than one combination of qualifiers ensures
uniqueness, then any of these combinations can be
used.

+ Duplicate section-names are not allowed.

+ A data-name cannot be the same as a section-name
or a paragraph-name.

+ |If a data-name cannot be made unique by
qualification, duplication of this data-name is not
allowed.

« The complete list of qualifiers for one data-name
must not be the same as a partial list of qualifiers for
another data-name.

Subscripting and Indexing

Subscripts and indexes can be used only when
reference is made to an individual element within a table
of elements that have not been assigned individual
data-names. Subscripting and Indexing are explained
under Table Handling in Chapter 6.

Identifier

An identifier is a term used to reflect that a data-name,
if not unique in a program, must be followed by a
syntactically correct combination of qualifiers, subscripts,

or indices necessary to ensure uniqueness. The general
formats for identifiers are as follows:

Format 1

OF . . .
data-name-1 [’E] data-name-2] “ .. [(subscr|pt-1 [,subscrlpt-2 [,subscnpt-B]])]

Format 2

index-name-1 +\ literal-2
data-name-1 [[IQNE] data-name-2] ce ({ [{)]}

literal-1

Sy 1]

Restrictions on qualification, subscripting, and indexing
follow:

« A data-name must not be subscripted or indexed
when that data-name is being used as an index,
subscript or qualifier.

« Indexing is not permitted when subscripting is not
permitted.

« An index can be modified only by the SET, SEARCH,
and PERFORM statements. Data items described by
the USAGE IS INDEX clause permit the values
associated with index-names to be stored as a binary
occurrence number. Such data items are called index
data items.

« Literal-1, literal-3, literal-5 in the above format must
be positive numeric integers. Literal-2, literal-4,
literal-6 must be unsigned numeric integers.

Condition-Name

A condition-name is a user-defined word that is
assigned a specific value or range of values. The value
assigned is contained in the set of values that a
conditional variable may possess. A condition-name can
alternatively be a user-defined word that is assigned the
status of an IBM-supplied switch or device.

Each condition-name must be unique, or it must be
made unique through qualification, and/or indexing, or
subscripting.

If qualification is used to make a condition-name
unique, the associated conditional variable can be used
as the first qualifier. If qualification is used, the
hierarchy of names associated with the conditional
variable or the conditional variable itself must be used to
make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its
condition-names also require the same combination of
indexing or subscripting.

The format and restrictions on the combined use of
qualification, subscripting, and indexing of
condition-names are the same as those for identifiers
except that data-name-1 is replaced by
condition-name-1.

In the general formats, condition-name refers to a
condition-name that is qualified, indexed, or subscripted
as necessary.

Explicit and Implicit References

COBOL source program references can be either explicit
or implicit in three instances: data attribute
specification, Procedure Division data references, and
transfers of control.

Data Attribute Specification

Explicit attributes are specified in COBOL coding. If a
data attribute is not an explicit attribute (not specified in
COBOL coding), it takes on a default value. These
default values are implicit attributes.

For example, the ACCESS MODE clause in the
file-control entry need not be specified. If the clause is
omitted, the compiler provides the default value,
ACCESS MODE IS SEQUENTIAL. This clause is then an
implicit attribute. If this same attribute, ACCESS MODE
IS SEQUENTIAL, is specified in the COBOL coding, it is
an explicit attribute.

Procedure Division Data References

Procedure Division statements can refer to data items
either explicity or implicitly.

An explicit reference occurs when the data-name of the
item is written in a COBOL statement or when the
data-name is copied into the program through a COPY
statement. An implicit reference occurs when the
data-name is referred to by a COBOL statement without
the name being written in that statement.

For example, when a USE AFTER STANDARD
EXCEPTION/ERROR PROCEDURE ON INPUT is
specified, an implicit reference is made to each
file-name that identifies an input file. For a further
description, see EXCEPTION/ERROR Declarative in
Chapter 5.

Language Considerations 2-15

TRANSFERS OF CONTROL

In the Procedure Division, program flow transfers control
from statement to statement in the order they are
written unless an explicit control transfer is specified or
no next executable statement exists. (See note below.)
This normal program flow is an implicit transfer of
control.

In addition to the implicit transfers of control between
consecutive statements, implicit transfer of control also
occurs when the normal flow is altered without the
execution of a procedure branching statement. COBOL
provides implicit transfers of control that override the
statement-to-statement transfers of control under the
following conditions:

« After execution of the last statement of a procedure
being executed under control of another COBOL
statement. COBOL statements that control procedure
execution are MERGE, PERFORM, SORT, and USE.

« During SORT or MERGE statement execution when
control is transferred to any input or output

procedure.

« During execution of any COBOL statement that
causes execution of a Declarative procedure.

« At the end of execution of any Declarative procedure.

2-16

COBOL also provides explicit transfers of control
through the execution of a procedure branching or
conditional statement. Lists of procedure branching and
conditional statements are given under Procedure
Division Organization in Chapter 5.

Note: The term next executable statement refers to the
next COBOL statement to which control is transferred
according to the rules given above. No next executable
statement can follow:

« The last statement in a Declarative procedure that is
not being executed under control of another COBOL
statement.

« The last statement in a COBOL program when the
procedure in which it appears is not being executed
under control of another COBOL statement.

Chapter 3. Identification and Environment Divisions

Identification Division Coding Example

The Identification Division must be the first division in *| sEQUENCE ‘E;A) 1)5 oottt

every COBOL source program. This division names the R ! i [S

object program. (An object program is the output from a o1lo1a :IDENWIFI'CA" oN. DIV}}E,!_QL‘_.,,' SN R

compilation.) 0200 PRO %hm 0. EAMP‘-.E_J--_-.J-_.,-.+~ % —
3o, ﬁuT A PROGRAMMER. | |

A —,oao g.usrlnLLArxom ROCHESTER LAB.
- (_lo50| DATE-WRITTEN. od/11/14, |
_.060 DATE compn.eo 06/18/19,

070, SECURITY. NON-CONFIDENTIAL..

The user may also include the date the program was
written, the date of compilation, and other such
documentary information about the program in the
Identification Division.

PROGRAM-ID Paragraph
Format
The first paragraph of the Identification Division must be
the PROGRAM-ID paragraph. The PROGRAM-ID
paragraph specifies the name by which the object
program is known to the system.

IDENTIFICATION DIVISION,

PROGRAM:ID. program-name,

AUTHOR [c omment-en try]] Program-name is a user-defined word that identifies the

object program to the system. A program-name must
include at least one alphabetic character. The system
uses the first 6 characters of program-name as the
] identifying name of the program; these first 6
characters, therefore, should be a unique
program-name.

INSTALLATION. [commententry]

The system expects the first character of program-name
to be alphabetic; if it is numeric, it is converted as
follows:

[DATE-WRITTEN, [comment entry]]

DATE-COMPILED. [commententry] .] o o
. is converted to

[SECURITY. E:omment-entry]] * 1-9is converted to A-I

The system does not allow the hyphen as a
program-name character; therefore, if the hyphen is the

The Identification Division must begin with the words second through sixth character, it is converted to zero.
IDENTIFICATION DIVISION followed by a period and a
space. To avoid such conversions, the programmer should not

specify program-names with leading numerics or
embedded hyphens.

Identification and Environment Divisions 3-1

Other Optional Paragraphs

The other paragraphs are optional; however, if they are
written, they must appear in the order shown in the
format.

The comment-entries serve only as documentation and
do not affect the syntax of the program. The
comment-entries in the optional paragraphs may be any
combination of characters from the EBCDIC set and may
be written in Area B on one or more lines. A hyphen is
not permitted in the continuation area of ldentification
Division statements.

The DATE-COMPILED paragraph provides the
compilation date of the source listing. When the
comment-entry is specified, the entire entry is replaced
with the current date. When the comment-entry is
omitted, the compiler adds, the current date to the line
on which DATE-COMPILED is printed.

3-2

Environment Division Format

The Environment Division, the second division of all ENVIRONMENT DIVISION.,
COBOL source programs, identifies the following:

CONFIGURATION SECTION, ,

+ The computer on which the source program is to be

compiled SOURCE-COMPUTER. source-computer-entry
« The computer on which the object program is to be OBJECT-COMPUTER. object-computer-entry
executed

[SPECIAL-NAMES. special-names-entry]

« The specific main storage size required to execute the
object program

[INPUT-OUTPUT SECTION.
« The linkage between the logical concept of the files
and their records, and the physical aspects of the FILE-CONTROL, {file-control-entry) S
devices on which data is stored
[I;CM . input-output-control-entry]] .
The Environment Division has two sections: the

Configuration Section and the Input-Output Section.
The Environment Division must begin with the words

The following shows the general format of the sections ENVIRONMENT DIVISION followed by a period and a
and paragraphs in the Environment Division, and defines Space.
the order of presentation in the source program.

Coding Example

I

SEQUENCE giA is COBOL STAT!
(PAGE} [ISERIAL)| O
1 3|4 e[71g E' 16 20 24 Fr] a2 36 7] .
002/0 10 ENVTRoNMENT] p:MszoN. T T
(1o 29[lcloniealurlar'zlol[sklclrizlow. | [[[[T[T T]TT]
03 0| siouirlcel-[clomplulreR.. | [z/em- | RN

040 BT ECT-CIOMPUTER. IiBM-sgaw. :
050 SPECIAL - NAME[S. Clol Iis PAlGE -ToP.
060 TNPUT-OUTPUT| SECTION|
070| FlthE-iconrirpl].] ([
0sol | | | seLEkT I~ P |
090 H!O‘RE‘AIIV;ZAEI_‘ON/:\‘J" RIS

~

[(-

Identification and Environment Divisions 3-3

CONFIGURATION SECTION In the Configuration Section, the comma or semicolon

can optionally separate successive clauses within a

The Configuration Section describes the computer that paragraph. In each paragraph, there must be one
compiles the source program and the computer that period; the period must be placed immediately after the
executes the object program. This section optionally last entry in the paragraph.

relates IBM-defined function names to user-defined
mnemonic-names, specifies the collating sequence to be
used, specifies a substitution for the currency sign, or
interchanges the functions of the comma and the period.

Format

CONFIGURATION SECTION,

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] .

OBJECT-COMPUTER. computer-name

WORDS
,MEMORY SIZE integer { CHARACTERS
MODULES
[,PROGRAM COLLATING SEQUENCE IS alphabet-name]

[,SEGMENT-LIMIT IS segment-number] .

[SPECIAL-NAMES. [,function-name-1§mnemonic-name] .o

[function-name-2
(IS mnemonic-name ,ON STATUS |S condition-name-1 [,OFF STATUS |S condition-name-2]

IS mnemonic-name ,OFF STATUS |S condition-name-2 [,% STATUS |S condition-name-1]

ON STATUS IS condition-name-1 [, OFF STATUS IS condition-name-2]

| OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name-1]

—

(STANDARD-1

NATIVE
,alphabet-name IS THROUGH]) .. i
literal-1 {THRU literal-2
) ALSO literal-3 [,ALSQ literal-4] . . .

THROUGHY .
literal-5 [{ THRU } literal-6]

ALSO literal-7 [,ALSO literal-8] . . .

L
[, CURRENCY SIGN IS literal-9]

.

[,DECIMAL-POINT IScOMMAT]]

3-4

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph describes the
computer that compiles the source program. The
computer-name should be coded as: IBM-S34. If the
computer-name is not coded, it is assumed to be
IBM-S34.

With the exception of the WITH DEBUGGING MODE
clause, the SOURCE-COMPUTER paragraph is treated
as documentation. The WITH DEBUGGING MODE
clause is described under Debugging Features in
Chapter 6.

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the
computer that executes the object program.
Computer-name should be the first entry in the
OBJECT-COMPUTER paragraph. The computer-name
should be coded as: IBM-S34. If the computer-name is
not coded, it is assumed to be IBM-S34.

Except for the PROGRAM COLLATING SEQUENCE and
MEMORY-SIZE clauses, the OBJECT-COMPUTER
paragraph is treated as documentation.

MEMORY SIZE Clause

The MEMORY SIZE clause can be used to specify the
amount of main storage required to execute the object
program. When the LINK option is specified on the
PROCESS statement, the value specified for the
MEMORY SIZE clause is passed to the overlay linkage
editor. If the MEMORY SIZE clause specifies a region
larger than the unoverlayed size of the object program,
the region size specified is the amount of main storage
that is assigned to the program. When the MEMORY
SIZE clause specifies a region that is not large enough
to contain the object program, overlays are created in
the attempt to fit the program into the size specified. If
the program cannot be successfully overlayed, a
message is displayed giving the operator the choice of

not link-editing or producing a load module that is not
overlayed. It is necessary to allow enough memory space

to compile and link-edit the program. The Overlay Linkage
Editor takes the compiler region size (18K) as the default
for the size of region to link the program, unless:

o A value is placed in the memory size clause.
* A//REGION statement is issued before compilation.

e The default value for the work station region size is
changed by means of the SET command.

If the size thus determined is not sufficient, a message
(SYS—3172) issued by the Overlay Linkage Editor causes
the Overlay linkage editor to increase (if possible) the
region size to allow the link edit.

Note: If the total size of the linked program exceeds 64K,
the program must then be segmented to allow overlaying.
(For more information on the region size, see REG/ON
Statement in the SSP Reference Manual.)

Regardless of whether WORDS, CHARACTERS, or
MODULES are coded, the value of integer is interpreted
by the compiler as bytes or character spaces.

PROGRAM COLLATING SEQUENCE Clause

The PROGRAM COLLATING SEQUENCE clause
specifies the collating sequence used in a program. The
collating sequence associated with the specified
alphabet-name must be defined in the SPECIAL-NAMES
paragraph. The program collating sequence is used to
determine the truth value of the following nonnumeric
comparisons:

« Those comparisons explicitly specified in relation
conditions.

« Those comparisons explicitly specified in
condition-name conditions.

The PROGRAM COLLATING SEQUENCE clause also
applies to any nonnumeric merge or sort keys unless the
COLLATING SEQUENCE option is specified in the
MERGE or SORT statement.

When the PROGRAM COLLATING SEQUENCE clause is
omitted, the EBCDIC collating sequence is used. See
Appendix G for the complete EBCDIC collating
sequence.

SEGMENT-LIMIT Clause
Segment-number must be an integer ranging in value

from 1 through 49. Segment-number is treated as
comments. If specified, it must be correct.

Identification and Environment Divisions 3-5

SPECIAL-NAMES Paragraph Function-Name-1 Clause

The SPECIAL-NAMES paragraph relates IBM-specified Function-name-1 specifies system devices or standard
function-names to user-specified mnemonic-names. This system actions taken by the compiler.
paragraph specifies a collating sequence that is

associated with an alphabet-name, a substitute character The associated mnemonic-name is required. The

for the currency sign, and the interchange of the comma mnemonic-name is formed according to the rules for a
and decimal point in PICTURE clauses and numeric user-defined word and is required to contain at least
literals. one alphabetic character.

Function-Name-1

SYSTEM-

CONSOLE

REQUESTOR

CSsP

Co1

LOCAL-DATA

ATTRIBUTE-DATA

Figure 3-1 shows the actions that are associated with
mnemonic-names for function-name-1. Each of these
functions may appear only once in the SPECIAL-NAMES
paragraph.

Action

When specified, the associated mnemonic-name can be
used in ACCEPT and DISPLAY statements to communicate
with the system console.

When specified, the associated mnemonic-name can be
used in ACCEPT and DISPLAY statements to communicate
with the user display station.

Suppress spacing after printing a line.
Skip to next page.

When specified, the associated mnemonic-name can be
referenced by either an ACCEPT or a DISPLAY statement
that references a display station or MRT procedure. An
ACCEPT or a DISPLAY statement is issued to retrieve data
from, or store data in, a system-managed area that
provides communications with programs that are executed
sequentially within a display station job. The LOCAL-DATA
area is described in the chapter on OCL statements under
the LOCAL statement in the System Support Reference
Manual.

When specified, the associated mnemonic-name can be
referenced only in an ACCEPT statement. The reference
causes an attribute record that is associated with an
identified display. station or SSP-ICF session to be input to
the data item coded in the ACCEPT statement. Attribute
records and their required formats are described in
Chapter 7.

Figure 3-1. Choices of Function-Name-1 and Action Taken

Function-Name-2 Clause

Function-name-2 defines a one-byte program switch.
Function-name-2 can be defined as UPSI-0 through
UPSI-7 or as SYSTEM-SHUTDOWN.

UPSI (User Program Status Indicator): Each UPSI is a
User Program Status Indicator switch. At least one
condition-name must be associated with each UPSI
switch specified. UPSI-0 through UPSI-7 are COBOL
names that identify program switches defined outside
the COBOL program at execution time. Their contents
are considered to be alphanumeric. A value of zero is
off; a value of one is on. For the external setting of
UPSI switches, see Execution in Chapter 9.

Each switch represents a bit from the 8-bit
indicator-settings parameter of the OCL SWITCH
statement as follows:

UPSI-0 First bit (leftmost)
UPSI-1 Second bit

UPSI-2 Third bit

UPSI-7 Eighth bit (rightmost)

One condition-name must be associated with each
function-name-2; a second condition-name is optional.
One condition-name can be associated with the ON
status; another can be associated with the OFF status.
Establishing condition-names for the ON or OFF status
of a switch permits testing the setting of that switch.

Each condition-name is formed according to the rules
for a user-defined word, and the condition-name must
contain at least one alphabetic character.

Coding Example

-0
IA I. COBOL STATEM
i) T) yi) T 5 =
PR P NAMEELL] LT L T
| - DAIT ~ATT!
| ~ N
Hile y- 'yl
T e T -,
EEERVYITAR -IDATA-
| N
| D o TCHI,
HA TDpliN-
! - - H-@,
'. I’ T -DON,
!) F et F
! =SWLTCH -1,
ARk T -DN,
| | _HET T - .

The above coding example assigns mnemonic-names to
the most commonly used function-names in the
SPECIAL-NAMES paragraph.

In the Procedure Division, the UPSI switch status is
tested through the associated condition-name(s). Each
condition-name is the equivalent of a level-88 item.
The associated mnemonic-name, if specified, is
considered the conditional variable and can be used for
qualification.

UPSI switches are tested by an IF statement. The
current UPSI values are retrieved from the system and
the test is performed against the switched settings. In
an SRT program, current UPSI values are always
associated with the requestor. In an MRT program, the
current UPSI values are associated with whichever
requestor has successfully executed the most recent
READ operation.

UPSI switches are updated by a SET statement. The
current UPSI values are retrieved from the system and
these switch settings are updated as specified by the
SET. The new switch settings are then returned to the
system for future references.

Identification and Environment Divisions 3-7

Programming Notes: UPSI switches are useful for
processing special conditions within a program, such as
year-beginning or year-ending processing. At the
beginning of the Procedure Division, an UPSI switch can
be tested; if it is ON, the special branch is taken.

SYSTEM-SHUTDOWN: SYSTEM-SHUTDOWN is an
internal switch that is set to the ON status when the
system operator requests the STOP SYSTEM operation.
This switch can then be tested by the program to
terminate the job. The associated ON or OFF
condition-names can be referenced in any conditional
expression.

Alphabet-Name Clause

The alphabet-name clause provides a means of relating
an alphabet-name to a specified character code set or
collating sequence.

The alphabet-name specifies a collating sequence in one
of the following:

« The PROGRAM COLLATING SEQUENCE clause in
the OBJECT-COMPUTER paragraph

« The COLLATING SEQUENCE option of the SORT or
MERGE statement

If NATIVE is specified or the alphabet-name clause is
not written, collating is done using the EBCDIC collating
sequence.

If STANDARD-1 is specified, collating is done as if the
data were translated from EBCDIC into ASCII. For more
information on translating EBCDIC into ASCII, see
Appendix G.

3-8

Literal Option: The literal option of the alphabet-name
clause processes internal data in collating sequences
other than NATIVE or STANDARD-1.

When the literal option is specified, the collating
sequence to be used is specified by the user according
to the following rules:

« The order in which literals appear specifies the
ordinal number, in ascending sequence, of the
character(s) in this collating sequence.

« Each numeric literal specified must be an unsigned
integer and must have a value from 1 through 256
(the maximum number of characters in the EBCDIC
character set). The value of each literal specifies the
relative position of a character within the EBCDIC
character set. For example, the literal 112 represents
the EBCDIC character ?, the literal 234 represents the
EBCDIC character Z, the literal 241 represents the
EBCDIC numeric character 0. For more information
on which numbers correspond to which letters, see
Appendix G. Note, however, that the numbers in
Appendix G begin at O and run to 255. You must
add 1 to the number shown in Appendix G when you
use the literal option.

« Each character in a nonnumeric literal represents that
character in the EBCDIC set. If the nonnumeric literal
contains more than one character, each character,
starting with the leftmost, is assigned a successively
ascending position within this collating sequence.

« Any EBCDIC characters not explicitly specified
assume positions in this collating sequence higher
than any of the explicitly specified characters. The
relative order of the unspecified characters within the
EBCDIC set remains unchanged.

« Within one alphabet-name clause, a given character
must not be specified more than once.

« Each nonnumeric literal associated with a THROUGH
or ALSO option must be one character in length.

When the THROUGH option is specified, the
contiguous EBCDIC characters beginning with the
character specified by literal-1 and ending with the
character specified by literal-2 are assigned
successively ascending positions in this collating
sequence. This sequence may be either ascending or
descending within the original EBCDIC sequence. For
example, if the characters Z through A are specified
left to right, then for this collating sequence the
ascending values, left to right, for the capital letters
are: ZYXWVUTSRQPONMLKJIHGFEDCBA.

When the ALSO option is specified, the EBCDIC
characters specified as literal-1, literal-3, literal-4,
and so on are assigned to the same position in this
collating sequence. For example, if ‘D’ ALSO ‘N’
ALSO 112 ALSO ‘%’ is specified, then for this
collating sequence the characters D, N, ?, and % are
all considered to be in the same position in the
collating sequence.

The character having the highest ordinal position in
this collating sequence is associated with the
figurative constant HIGH-VALUE. If more than one
character has the highest position because the ALSO
option is specified, the last character specified is
considered to be the HIGH-VALUE character for
procedural statements such as DISPLAY, or as the
sending field in a MOVE statement. If the ALSO
option example given above were specified as the
high-order characters of the collating sequence, then
the HIGH-VALUE character would be %.

The character having the lowest ordinal position in
this collating sequence is associated with the
figurative constant LOW-VALUE. If more than one
character has the lowest position because the ALSO
option is specified, the first character specified is the
LOW-VALUE character. If the ALSO option example
given above were specified as the low-order
characters of the collating sequence, then the
LOW-VALUE character would be D.

Alphabet-Name Clause Examples: The following
examples illustrate some uses for the alphabet-name
clause.

If PROGRAM COLLATING SEQUENCE IS
USER-SEQUENCE; if the alphabet-name clause is
specified as USER-SEQUENCE IS ‘DEF’; and if two
Data Division items are defined as follows:

77 ITEM-1 PIC X(3) VALUE ‘ABC'.
77 ITEM-2 PIC X(3) VALUE 'DEF'.

then the comparison IF ITEM-1 > ITEM-2 is true.

Characters D, E, and F are in ordinal positions 1, 2, and
3 of this collating sequence. Characters A, B, and C are
in ordinal positions 197, 198, and 199 of this collating
sequence.

If the alphabet-name clause is USER-SEQUENCE IS 1
THRU 247, 251 THRU 256, ‘7°, ALSO ‘8, ALSO '9’; if
all 256 EBCDIC characters have been specified; and if
the two Data Division items are specified as follows:

77 ITEM-1 PIC X(3) VALUE HIGH-VALUE.
77 ITEM-2 PIC X(3) VALUE '787".

then both of the following comparisons are true:

IF ITEM-1 = ITEM-2 . ..
IF ITEM-2 = HIGH-VALUE . . .

They compare as true because the values ‘7°, '8, and ‘9’
all occupy the same position (HIGH-VALUE) in this
USER-SEQUENCE collating sequence.

If the alphabet-name clause is specified as
USER-SEQUENCE IS ‘'E’, ‘D', ‘'F’ and a table in the Data
Division is defined as follows:

05 TABLE-A OCCURS 6 ASCENDING KEY IS
KEY-A INDEXED BY INX-A.
10 FIELD-A . ..
10 KEY-A ...

and if the contents in ascending sequence of each
occurrence of KEY-A are A, B, C, D, E, G, then the
results of the execution of a SEARCH ALL statement for
this table will be invalid because the contents of KEY-A
are not in ascending order. The proper ascending order
would be E, D, A, B, C, G.

Identification and Environment Divisions 3-9

CURRENCY SIGN Clause

The literal that appears in the CURRENCY SIGN clause
defines the currency symbol to be used in the PICTURE
clause. The literal must be a one-character nonnumeric
literal and must not be any of the following characters:

« Digits O through 9

« Alphabetic characters ABCDLPRSVXZor the
space

+ Special characters * + -, . ; ()" / =

When the CURRENCY SIGN clause is omitted, only the
dollar sign ($) may be used as the PICTURE symbol for
the currency sign.

DECIMAL POINT IS COMMA Clause

When the DECIMAL POINT IS COMMA clause is
specified, the functions of the period and the comma
are exchanged in PICTURE character-strings and in
numeric literals.

INPUT-OUTPUT SECTION

The Input-Output Section defines each file, identifies its
external storage medium, assigns the file to one or more
input/output devices, and also specifies information
needed for efficient transmission of data between the
external medium and the COBOL program.

The Input-Output Section is divided into two
paragraphs: the FILE-CONTROL paragraph, which
names and associates the files with the external media,
and the |-O-CONTROL paragraph, which defines special
input/output techniques to be used.

Format

[INPUT-OUTPUT SECTION.
FILE-CONTROL. {filecontrol-entry)} . . .

E-O-CONTROL R input-output-control-entry]] R

The exact contents of the Input-Output Section depend
on the file organization and access methods used to
process the file. The following summary gives some
background for the file processing techniques available
in System/34 COBOL.

File Processing Summary

The method used to process a file in a COBOL program
depends on the data organization of the file and on the
access mode used.

Data organization is the permanent logical structure of
the file, established at the time the file is created. Four
types of data organization are available with System/34
COBOL: sequential, indexed, relative, and transaction.
Relative data organization is also known as direct data
organization on System/34.

An access mode is the manner in which records in a file
are to be processed. Three access modes are available:
sequential, random, and dynamic.

Disk File Processing

Figure 3-2 shows the allowable combinations of
program-specified organization and access modes with
disk file organization. Appendix H summarizes which
clauses and statements are required and which clauses
and statements are optional for each access method and
device.

Program- |Program- |System/34 Disk File

Specified |Specified |Organization

Organiza- | Access

tion Modes Sequential |Indexed |Direct

Sequential | Sequential X X! X

Indexed Sequential - X -
Random - X -
Dynamic - X -

Relative Sequential X! X! X
Random X! X! X
Dynamic X! X! X

'The file must be opened as input.

Figure 3-2. Allowable Combinations of Program-Specified
Organization and Access Modes With

System/34 Disk File Organization

C

C

IBM Extension:
TRANSACTION File Processing

The TRANSACTION processing facilities
of System/34 COBOL allow the user to
read from and write to System/34
display stations. These facilities
also permit communications with another
application program on the same
System/34 or on another system. COBOL
TRANSACTION processing allows the user
to define a file that supports display
stations and SSP-ICF sessions in any
combination.

TRANSACTION file processing of display
stations interfaces with the formatted
output of SFGR (Screen Format
Generation Routine) and with WSDM (Work
Station Data Management). These
interfaces provide the ability to
support single or multiple requestor
programs (SRT/MRT), never ending
programs (NEP), and acquired terminals.
For further information and programming
considerations, refer to the System
Support Reference Manual and Chapter 7.

TRANSACTION file processing of SSP-ICF
sessions provides access to the
System/34 support for interactive
communications. The Interactive
Communications Feature supports
program-to-program communication in the
same or different systems. This
support also includes remote job
initiation. For information about how
the Interactive Communications Feature
works, refer to the Interactive
Communications Feature Reference
Manual.

The following paragraphs describe both the types of
data organization, and the access modes available.

Data Organization for Disk Files

In a COBOL program, data organization for disk files can
be sequential, indexed, or relative. Records can be fixed
or variable in length. Variable length records are stored
on the disk as fixed length records of the maximum size
specified for the file.

Sequential Organization: W.ith this organization, records
are placed in the file consecutively, without keys, in the
physical order established at file creation time. Once
established, this relationship does not change, with the
exception that a file can be extended.

Indexed Organization: With this organization, each
record in the file has one embedded key that is
associated with an index. The index provides a logical
path to the data records according to the contents of
the associated embedded record key data item.

When records are inserted, updated, or deleted, they are
identified solely by the value of their record key. Thus,
the value in each record key data item must be unique
and must not be changed when the record is updated.
The key used for any specific input/output request is
known as the key of reference.

Relative Organization: With this organization, each
record in the file is identified by its relative record
number. The file can be thought of as a serial string of
areas, each of which may contain one logical record.
Each of these areas is identified by a relative record
number; record storage and retrieval are based on this
number. For example, the first record area is addressed
by relative record number 1, and the 10th record area is
addressed by relative record number 10 whether or not
records have been written in the second through ninth
record areas.

Identification and Environment Divisions 3-11

IBM Extension:

Data Organization for
TRANSACTION Files

In a COBOL program, TRANSACTION files
have TRANSACTION organization. With
this organization, each record is
associated with a session ID, which may
be a display station session or with an
SSP-ICF session. TRANSACTION
organization signifies interactive
input and output records that are not
stored on an external medium.

Access Modes

Three access modes are available in COBOL: sequential,
random, and dynamic.

Sequential Access Mode: This access method allows
records of a file to be read and written in a serial
manner. The order of reference is implicitly determined
by the position of a record in the file.

Random Access Mode: This access method allows
records to be read and written in a
programmer-specified manner. The control of
successive references to the file is expressed by
specifically defined keys supplied by the user.

Dynamic Access Mode: This access method allows a
specific input/output request to determine the access
mode. Thus records may be processed sequentially
and/or randomly.

Access Mode Allowed for Each File Type

Sequential Files: Files with sequential organization can
be accessed only sequentially. The sequence in which
records are accessed is the order in which the records
were originally written.

Indexed Files: All three access modes are allowed.

In the sequential access mode, the sequence in which
records are accessed is the ascending order of the
record key value.

In the random access mode, the sequence in which
records are accessed is controlled by the programmer.
The desired record is accessed by placing the value of
its record key in the RECORD KEY data item defined for
that file.

In the dynamic access mode, the programmer may
change at will from sequential access to random access
by using appropriate input/output statements.

Relative Files: All three access modes are allowed.

In the sequential access mode, the sequence in which
records are accessed is the ascending order of the
relative record numbers of all records that currently exist
within the file.

In the random access mode, the sequence in which
records are accessed is controlled by the programmer.
The desired record is accessed by placing its relative
record number in a RELATIVE KEY data item. The
RELATIVE KEY must not be defined within the record
description entry for this file.

In the dynamic access mode, the programmer may
change at will from sequential access to random access
by using appropriate input/output statements.

TRANSACTION Files: Files with
TRANSACTION organization can be
accessed only sequentially. The
sequence in which records are accessed
is the order in which the transactions
are received by the system.

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph contains one or more
file-control entries. A file-control entry associates a file
in the COBOL program with an external medium, and
this entry allows specification of file organization, access
mode, and other information. The format of a
file-control entry varies with the type of file described.
The formats for the FILE-CONTROL paragraph are as
follows:

Format 1-Sequential File Entries

SELECT [OPTIONAL] file-name

ASSIGN TO assignment-name-1 [,assignment-name~2] e

. AREA
[RESERVE integer-1 AREAS]]

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[F|LE STATUS IS data-name-1] .

Format 2-Indexed File Entries

SELECT file-name

ASSIGN TO assignment-name-1 [,assignment-name-2] . e

. AREA
[RESERVE integer-1 [AREAS]]

ORGANIZATION IS INDEXED

SEQUENTIAL
ACCESS MODE IS{ RANDOM
DYNAMIC
RECORD KEY IS data-name-2

[FILE STATUS IS data-name-1] .

Identification and Environment Divisions

3-13

Format 3-Relative File Entries
SELECT file-name

ASSIGN TO assignment-name-1 [,assignment-name-2] .o

. AREA
[&wmww-‘ AREAS]]

ORGANIZATION IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-3]

ACCESS MODE IS
- RANDOM
{M} ,RELATIVE KEY IS data-name-3

[FILE STATUS IS data-name-1] .

Format 4-Sort or Merge File Entry

SELECT file-name ASSIGN TO assignment-name-1 [,assignment-name-Z] “ .

When file-name specifies a sort or merge file, only the
ASSIGN clause may follow the SELECT clause in this
file-control entry. The ASSIGN clause associates the
sort or merge file with a storage medium.
Format 5~-TRANSACTION File Entry

SELECT file-name

ASSIGN TO assignment-name

ORGANIZATION IS TRANSACTION

[FILE STATUS IS data-name-1 [, data-name-4]]
[AccESS MODE IS SEQUENTIAL]

[cONTROL-AREA IS dataname5].

FILE-CONTROL Paragraph—General Considerations

Each fild described in an FD or SD entry in the Data
Division must be described in only one entry in the
FILE-CONTROL paragraph. Each file specified in a
file-control entry must have a file description in the Data
Division.

The key word FILE-CONTROL may appear only once, at
the beginning of the FILE-CONTROL paragraph. The
word FILE-CONTROL must begin in Area A, and it must
be followed by a period and a space.

Each file-control entry must begin in Area B with a
SELECT clause. The order in which other clauses appear
is not significant.

Each clause within a file-control entry can optionally be
separated from the next by a comma or semicolon
followed by a space. Each file-control entry ends with a
period and a space.

Each data-name must appear in a Data Division data
description entry. Each data-name may be qualified but
may not be subscripted or indexed.

IBM Extension:

TRANSACTION File
Considerations: The TRANSACTION
file must be named by a file control
entry in the FILE-CONTROL paragraph.
This entry also specifies other
information related to the file. There
may be only one TRANSACTION file in a
program.

SELECT Clause

Each file-name specified in a SELECT clause must have
an FD or SD entry in the Data Division. A file-name
must conform to the rules for a COBOL user-defined
name, must contain at least one alphabetic character,
and must be unique within this program.

Sequential File Considerations: The OPTIONAL phrase
can be specified only for input files with sequential
organization. It must be specified for input files that are
not necessarily present each time the object program is
executed.

ASSIGN Clause (Printer and Disk Files)

The ASSIGN clause associates a file with an external
medium. The assignment-name makes the association
between the file and the external medium.
Assignment-name has the following general stucture:

Device Type-Name.

The valid entries for each field of the assignment-name
vary with the device. The format and valid value for
each field are shown in Figure 3-3. The second and
subsequent assignment-names are treated as comments.

Device Type: PRINTER Printer files
DISK Disk files
Name: 1- to 8-character field specifying the

external name by which the file is
known to the system. This is the
name that appears in the NAME field
on the OCL FILE or PRINTER
statement.

Note: When COBOL programs use the SORT or
MERGE verbs, a user file cannot have WORK as an
external name. The IBM Sort Utility uses a file by
that name for storing intermediate resuits.

Figure 3-3. Assignment-Name Field Values for Printer and
Disk Files

Identification and Environment Divisions 3-15

IBM Extension:

ASSIGN Clause (TRANSACTION
Files)

The ASSIGN clause associates the
TRANSACTION file with display stations
and/or SSP-ICF sessions through the use
of the assignment-name.

Assignment-name has the following
structure:

Type -Name
-Name-Formats

The values for each field of the
assignment-name are as follows:
Type: WORKSTATION

Name: 1- to 8-character name that
specifies the external name
of the display screen format
load member generated by
SFGR that contains the
screen formats. This field
is not required if the file
is to be used with SSP-ICF
sessions only.

Formats: A two-digit numeric value
that is equal to or greater
than the number of formats
in the SFGR load member
referenced in the name
field. The maximum value
and the default value for
the number of formats is 32.

The COBOL compiler
constructs an internal table
to hold information about
each format. The value
specified for formats
determines how many 16-byte
entries are in the internal
table. The actual number of
formats in your program does
not influence the number of
entries in this internal
table.

RESERVE Clause

The RESERVE clause allows the user to modify the
number of input/output areas (buffers) allocated by the
compiler. This clause specifies that the number of
buffers represented by integer be reserved for a disk file
that is accessed sequentially. Print files use only 1
buffer.

The integer must have a value of 1 or 2. A minimum of
one buffer is required for a file. If this clause is omitted,
a minimum of one buffer area is reserved.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical
structure of the file. The file organization is established
at the time the file is created and cannot subsequently
be changed. When the ORGANIZATION clause is
omitted, ORGANIZATION IS SEQUENTIAL is assumed.

Sequential File Considerations: When ORGANIZATION
IS SEQUENTIAL is specified or implied, a
predecessor-successor relationship of the records in the
file is established by the order in which records are
placed in the file when it is created or extended.

Indexed File Considerations: When ORGANIZATION IS
INDEXED is specified, the position of each logical record
in the file is determined by the index created with the
file and maintained by the system. The index is based
on an embedded key within the file's records.

Relative File Considerations: When ORGANIZATION IS
RELATIVE is specified, the position of each logical
record in the file is determined by its relative record
number.

IBM Extension:

TRANSACTION File
Considerations: TRANSACTION
organization signifies user-controlled
input and output of records.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which
the records of the file are made available for processing.
When this clause is omitted, ACCESS IS SEQUENTIAL
is assumed.

Sequential File Considerations: For files with sequential
organization, records in the file are accessed in the
sequence established when the file is created or
extended. Whether ACCESS IS SEQUENTIAL is
specified or omitted, sequential access is always
assumed.

Indexed File Consideratioﬁs: For files with indexed
organization, the access mode can be SEQUENTIAL,
RANDOM, or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied,
records in the file are accessed in the sequence of
ascending record key values within the index.

When ACCESS IS RANDOM is specified, the value
placed in the record key data item specifies the record
to be accessed.

When ACCESS IS DYNAMIC is specified, records in the
file can be accessed sequentially or randomly,
depending on the form of the specific input/output
request.

Relative File Considerations: For files with relative
organization, the access mode can be SEQUENTIAL,
RANDOM, or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied,
records in the file are accessed in the ascending
sequence of relative record numbers of existing records
in the file.

When ACCESS IS RANDOM is specified, the value
placed in the RELATIVE KEY data item specifies the
record to be accessed.

When ACCESS IS DYNAMIC is specified, records in the
file can be accessed sequentially or randomly,
depending on the form of the specific input/output
request.

The RELATIVE KEY phrase specifies the relative record
number for a specific logical record in a relative file.

Data-name-3 is the RELATIVE KEY data item. It must
be defined as an unsigned integer data item from 1 to 7
bytes in length and must not be defined in a record
description entry associated with this relative file. That
is, the RELATIVE KEY is not part of the record.

When ACCESS IS SEQUENTIAL is specified, the
RELATIVE KEY phrase need not be specified unless the
START statement is used. When the START statement
is issued, the system uses the contents of the
RELATIVE KEY data item to determine the record at
which sequential processing is to begin.

If a value is placed in the RELATIVE KEY data item and
a START statement is not issued, the value is ignored
and processing begins with the first record in the file.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC
is specified, the RELATIVE KEY phrase must be
specified. For each random processing request, the
contents of the RELATIVE KEY data item are used to
communicate a relative record number to the system.

IBM Extension:
TRANSACTION File
Considerations: For files with

TRANSACTION organization, the only
allowable access mode is SEQUENTIAL.

Identification snd Environment Divisions 3-17

RECORD KEY Clause (Indexed File)

The RECORD KEY clause must be specified for an
indexed file. The RECORD KEY clause specifies the
data item within the record that is the record key for an
indexed file. The values contained in the record key
data item must be unique among records in the file.

Data-name-2 is the RECORD KEY data item. It must be
described as a fixed-length alphanumeric item within a
record description entry associated with the file. The
data description of data-name-2 and its relative location
within the record must be the same as the ones used
when the file was defined. Data-name-2 may be any
fixed-length item within the record. It must be 29 bytes
or less in length.

When two or more record descriptions are associated
with a file, a similar field must appear in each
description, and must be in the same relative position
from the beginning of the record, although the same
data-name-2 need not be used for both fields.

Programming Notes: No position in the record key
should contain a hex FF (HIGH-VALUE) if the record is
to be retrieved randomly by the indexed key or by the
START verb.

FILE STATUS Clause

The FILE STATUS clause allows the user to monitor the
execution of each input/output request for the file.

Data-name-1 is the status key data item. Data-name-1
must be defined in the Data Division as a two-character
alphanumeric item and must not be defined in the File
Section.

When the FILE STATUS clause is specified, the system
moves a value into the status key data item after each
input/output request that explicitly or implicitly refers to
this file. The value indicates the execution status of the
statement.

3-18

IBM Extension:

TRANSACTION File
Considerations: Data-name-4 is the
extended file status key data item and
may be specified only for a TRANSACTION
file. Data-name-4 must be defined in
the Data Division as a four-character
alphanumeric item and must not be
defined in the File Section.

The extended file status key is used
for major and minor return codes for
SSP-ICF.

CONTROL-AREA Clause
(TRANSACTION Files)

The CONTROL-AREA clause specifies the
data item which receives feed-back
information upon completion of a
TRANSACTION file input/output
operation. The information is in the
fixed format as shown in Figure 3-4.
Each item in the feed-back area is
described as follows:

Bytes 1-2 (Function Key): The
function key is a two-digit number
inserted by the display station
interface that identifies which
function key the operator pressed to
initiate the transaction. This item is
updated only for a READ operation. The
codes are as follows:

00 Enter key

01-24 COMMAND keys 1 through 24
90 ROLL UP Key

91 ROLL DOWN key

99 Undefined

Bytes 3-4 (Terminal ID): The
symbolic identification of a display
station or SSP-ICF session. This item
is updated for every input/output
operation.

Bytes 5-12 (Reserved): Reserved
for future use.

FILE-CONTROL.
SELECT SCREEN-FILE ASSIGN TO
WORKSTATION-MYFMTS-12
ORGANIZATION IS TRANSACTION
CONTROL-AREA IS TRANSACTION-CONTROL-AREA.

WORKING-STORAGE SECTION.

01 TRANSACTION-CONTROL-AREA.
03 FUNCTION-KEY PIC 99.
03 TERMINAL-ID PIC X(2).
03 RESERVED PIC X(8).

Figure 3-4. Sample FILE-CONTROL Paragraph and CONTROL-AREA
I-O-CONTROL Paragraph

The I-O-CONTROL paragraph specifies when

checkpoints are to be taken and what storage areas are

to be shared by different files and optimization

techniques. The I-O-CONTROL paragraph is optional in
a COBOL program.

Format
[1o-conTROL.

RERUN ON assignment-name

EVERY integer-1 RECORDS OF file-name-1] . . .

RECORD

SAME | SORT AREA FOR file-name-2 {, file-name-3} . ..

SORT-MERGE

[APPLY CORE-INDEX TO data-name-1 ON file-name-4 [file-name-5]

~

MULTIPLE FILE TAPE CONTAINS file-name-6
[POSITION integer-2] [, file-name-7

[POSITION integer-3]] . oo .

The key word I-O-CONTROL can appear only once, at
the beginning of the I-O-CONTROL paragraph. The
word |-O-CONTROL must begin in Area A, and it must
be followed by a period followed by a space.

Each clause within the I-O-CONTROL entry can
optionally be separated from the next by a comma or
semicolon followed by a space. The I-O-CONTROL
entry ends with a period followed by a space.

IBM Extension:

The clauses in the I-0O-CONTROL

paragraph may appear in any order.

Identification and Environment Divisions

3-19

RERUN Clause

The RERUN clause specifies that checkpoint records are
to be taken. A checkpoint record is a recording of the
status of a user program and main storage resources at
desired intervals. The contents of main storage are
recorded on fixed disk at the time of the checkpoint and
can be used to restart the program from that point.

Checkpoint records are written for the first record and
every subsequent integer-1 number of records of
file-name-1 that are processed. Checkpoint records are
written on fixed disk in the file specified by
assignment-name. This area contains two alternating
checkpoint records, with each checkpoint record
overlaying the oldest checkpoint taken.

Note: All files used in the program must be opened
before the first checkpoint can be taken.

File-name-1 represents the file for which checkpoint
records are to be written. It must be described with an FD
or SD file description entry in the Data Division. The value
of integer must not exceed 32767.

Note: File-name-1 cannot refer to a TRANSACTION
file.

An assignment-name specified in a RERUN clause may
not duplicate any assignment-name specified in an
ASSIGN clause. The format of the assignment-name
for the RERUN clause is:

DISK-file-name

where file-name is the name of the checkpoint record
file for this job step. This file must be a new file. (The
file-name must not be the label of a file already existing
on the system even if the creation date is different.)

The user must not specify an OCL FILE statement when
providing disk space for checkpoint records, as this file
is allocated by the System/34 SSP.

Multiple RERUN clauses can be specified in a program
as long as each file-name-1 is unique. The same
assignment-name should be used for all RERUN
statements in a program.

Checkpoint/restart is an optional facility of the SSP and
must be specified during system configuration.

3-20

SAME Clause

The SAME clause specifies that two or more files are to
use the same main storage area during processing. The
files named in a SAME clause need not have the same
organization or access.

The following discussion describes only the SAME
RECORD AREA and SAME AREA options. The SAME
SORT AREA and SAME SORT-MERGE AREA options
are discussed under SORT-MERGE in Chapter 6.

The SAME RECORD AREA clause specifies that two or
more files are to use the same main storage area for
processing the current logical record. All the files may
be open at the same time. A logical record in the
shared storage area is considered to be both a logical
record of each opened output file in this SAME
RECORD AREA clause, and a logical record of the most
recently read input file in this SAME RECORD AREA
clause.

For physical sequential files, the area being shared
includes all storage areas assigned to the files if the
SAME AREA clause does not contain the RECORD
option; therefore, it is not valid to have more than one
of the files open at one time.

More than one SAME clause may be included in a
program; however, the following restrictions apply:

» A specific file-name must not appear in more than
one SAME AREA clause.

« A specific file-name must not appear in more than
one SAME RECORD AREA clause.

« If one or more file-names of a SAME AREA clause
appear in a SAME RECORD AREA clause, all of the
file-names in that SAME AREA clause must appear
in that SAME RECORD AREA clause. However, that
.SAME RECORD AREA clause may contain additional
file-names that do not appear in that SAME AREA
clause.

¢« The SAME AREA clause may have only one open file
at a time.

»

Programming Notes: (1) Specification of the SAME
AREA clause saves space in the object program. Note,
however, the restrictions when this clause is used. (2)
Specification of the SAME RECORD AREA clause does
not necessarily save space in the object program. This
clause allows transfer of data from one file to another
with minimal data manipulation because the
input/output areas of named files are identical, and all
are available to the user.

APPLY Clause

IBM Extension: The APPLY clause may be
specified only for an indexed file and
is used to specify that the index is to
be processed in main storage.

The APPLY clause is designed to
increase system performance for
randomly and dynamically accessed
indexed files by allowing the user to
specify that a main storage resident
index is to be built for the files.
Using a main storage resident master
idindex reduces the time required to
locate a record. This can improve
performance on the START and READ
instructions.

Data-name-1 specifies an area in main
storage in which an index for
file-name-4 and, if specified,
file-name-5, is to be built when
the file is opened. Data-name must be
a WORKING-STORAGE item and can be from
3 to 9999 bytes in length. It may not
be an alphanumeric edited item.

Data-name-1 should not be referred to
in Procedure Division statements when
any file associated with it is open.

The same file-name can only be used
once in each clause and cannot appear
in more than one APPLY clause. If
multiple file-names are specified for a
given core index, only one file may be
opened at any given time. When the
REDEFINES clause is also specified, the
two data-names that refer to the same
storage area must not be associated
with two files that are open at the
same time.

Calculation of CORE-INDEX: For efficient processing, the
CORE-INDEX specified should be large enough to
contain one entry for each track in the index plus one
delimiter entry for the CORE-INDEX. The minimum
number of bytes required for a CORE-INDEX entry can be
obtained by using the following formula:

(key length + 3) * (number of tracks + 1)

For example, if file INDEXT has one track that contains
index entries and a key length of 4, the most efficient
storage index is 14 bytes, because:

(4+3) *(1+1)=14

If the file index occupies more than one track, use the
following calculations to determine the amount of storage
to set aside for index entries:

1. Use the CATALOG procedure to find the total
number of records that the file can contain.

2. Determine the entry length by adding 3 to the key
length.

3. Determine the number of keys in each sector by
dividing 256 by the entry length. Drop the
remainder.

4. Determine the number of sectors in the index by
dividing the number of records in the file (the
result of step 1) by the number of keys in each
sector (the result of step 3). Round up the result.

5. Determine the number of tracks in the index by
dividing the number of sectors (the result of step 4)
by 60 if the disk has 27.1 megabytes or less. If the
disk has 63.9 megabytes or more, divide by 64. If
the quotient is not a whole number, round it up to
the next whole number.

To determine the number of megabytes on disk,
the STATUS command can be used to display the
session status. The AVAILABLE DISK SIZE field
on the third session status screen shows the
number of megabytes. (For information on the
Status Session display, see the Operator's Guide.)

If a precise number of tracks is not needed, the
number of sectors can be divided by 60. Using 60
sectors per track allows data management enough
room to construct one entry per track and ensures
that data management will have enough spaces to
create the storage index.

Identification and Environment Divisions 3-21

6. Add 1 to the result of step 5. Multiply this sum by
the result of step 2. This is the number of bytes to
allocate for the CORE-INDEX.

MULTIPLE FILE Clause

The MULTIPLE FILE clause is treated as comments.

3-22

DATA DIVISION CONCEPTS

The Data Division of a COBOL source program
describes all the data to be processed by the object
program. Two types of data can be processed: external
data and internal data.

External Data

External data is contained in files. A file is a collection
of data records existing on some input/output device. A
file can be thought of as a group of physical records; it
can also be thought of as a group of logical records.
The Data Division source statements describe the
relationship between physical and logical records.

A physical record is a unit of data that is treated as an
entity when it is moved into or out of auxiliary storage.
The size of a physical record is determined by the
particular input/output device on which it is stored. The
size does not necessarily have a direct relationship to
the size or content of the logical information contained
in the file.

A logical record is a unit of data whose subdivisions
have a logical relationship. A logical record can itself be
a physical record (that is, be contained completely in
one physical unit of data), several logical records can be
contained within one physical record, or one logical
record can extend across several physical records.

Record description entries, which follow the FD entry for
a specific file, describe the logical records in the file.
These entries also describe the category and format of
data within each field of the logical record and different
values the data might be assigned.

The FD entry specifies the physical aspects of the data
such as the size relationship between physical and
logical records, the size and name(s) of the logical
record(s), and labeling information.

Once the relationship between physical and logical
records has been established, only logical records are
made available to the COBOL program. Thus, in this
manual, a reference to records means logical records
unless the term physical records is used.

Chapter 4. Data Division

Internal Data

Program logic may develop additional data within
storage. Such data is called internal data.

The concept of logical records applies to internal data as
well as to external data. Internal data can thus be
grouped into logical records and be defined by a series
of record description entries. Items that need not be so
grouped can be defined in independent data description
entries.

Data Relationships

The relationships of all data to be used in a program are
defined in the Data Division through a system of level
indicators and level-numbers.

A level indicator, together with its descriptive entry,
identifies each file description in a program. Level
indicators are the highest level of any data hierarchy
with which they are associated.

A level-number, together with its descriptive entry,
indicates the properties of specific data. Level-numbers
can be used to describe a data hierarchy. They can
indicate that this data has a special purpose, and while
they can be associated with and be subordinate to level
indicators, they can also be used independently to
describe internal data or data common to two or more
programs.

Data Division Concepts 4-1

DATA DIVISION ORGANIZATION

The Data Division is divided into three sections: the File
Section, the Working-Storage Section, and the Linkage
Section. Each section has a specific logical function
within a COBOL source program, and each can be
omitted from the source program when that logical
function is not needed.

Format

DATA DIVISION,

[FILE SECTION.

[file-description-entry or sort-merge-
fiIe-description-entry] . e

{ record-description-entry) ..]

[WORKING-STORAGE SECTION.
[data-item-description-entry] . e
[record-description-entry] .]

[LINKAGE SECTION,

[data-item-description-entry] e

[record-description-entry] ..]

In the source program, the Data Division sections must
appear in the order shown.

File Section

The File Section contains a description of all externally
stored data (FD) and a description of each sort-merge
file (SD) used in the program.

The File Section must begin with the header FILE
SECTION followed by a period. The File Section
contains file description entries and sort-merge file
description entries. Each entry is followed by its
associated record description entry (or entries).

4-2

In a COBOL program, the file description entries
(beginning with the level indicators FD and SD)
represent the highest level of organization in the File
Section. The file description entry provides information
about the physical structure and identification of a file,
and gives the record-name(s) associated with that file.
For further description of the format and the clauses
required in a file description entry, see File Description
Entry in this chapter. For a complete discussion of the
sort-merge file description entry, see Data
Division—Sort/Merge in Chapter 6.

The record description entry consists of a set of data
description entries that describe the records contained
within a particular file. More than one record description
entry may be specified; each is an alternative description
of the same storage area. For the format and the
clauses required within the record description entry, see
Data Description in this chapter.

Data areas described in the File Section should not be
considered available for processing unless the file
containing the data area is open.

Working-Storage Section

The Working-Storage Section can contain description
records that are not part of data files but are developed
and processed internally. These records are used for
report description, counters, and other functions
necessary in processing data.

The Working-Storage Section must begin with the
section header WORKING-STORAGE SECTION
followed by a period. The Working-Storage Section
contains record description entries and data description
entries for noncontiguous data items.

Data elements in the Working-Storage Section that bear
a definite hierarchical relationship to one another must
be grouped into records structured by level number.

Noncontiguous items in this section that bear no
hierarchical relationship to one another need not be
grouped into records provided they do not need to be
further subdivided. Instead, they are classified and
defined as noncontiguous elementary items. Each is
defined in a separate data description entry that begins
with the special level number 77. The format of the
data description entry is the same as the format for the
record description entry.

Linkage Section

The Linkage Section describes data made available from
another program.

Record description entries and data description entries in
the Linkage Section provide names and descriptions, but
storage within the program is not reserved because the
data area exists elsewhere. Any data description clause
may be used t~ describe items in the Linkage Section
with one exception: the VALUE clause may not be
specified for any items other than level-88 items. For
additional information, see Subprogram Linkage in
Chapter 6.

Format 1-Sequential, Indexed, Relative Files

[FILE SECTION,

[FD file-name

[BLOCK CONTAINS [integer-1 TO] integer-2 {

FILE DESCRIPTION ENTRY

In a COBOL program, the file description entry (FD
entry) or the sort-merge file description entry (SD entry)
is the highest level of organization in the File Section.

RECORDS
CHARACTERS

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

RECORD IS STANDARD
M{RECORDSARE} {OMITTED }

VALUE OF implementor-name-1 IS ¢ .
— literal-1

data-name-1

Clement 2 g {dataname2
» Implementor-name- literal-2 T

[DATA {m IS E} data-name-3 [,data-name-4] ..]

RECORDS AR

[LINAGE IS {f’ata'"ame"r’} LINES [,WITH FOOTING AT {d"t"'"a’"e‘e}]

integer-5

integer-6

,LINES AT Top {dat@name-71 1 [' | |\eg AT poTTOM {22t name-8
— \integer-7 ——) integer-8

[CODE-SET IS alphabet-name

(record-description-entry) ..] ..]

Data Division Organization—File Description Entry 4-3

Format 2-TRANSACTION File
ED file-name

[RECORD CONTAINS [integer-3 I(_)J integer4 CHARACTERS]

RECORDS ARE
LABEL { RECORD IS

RECORD IS
[DATA {RECORDS ARE } data-name-3 [,data-name-4] ce] .

} owrreo

(record-description-entry} P

Coding Example

T T
SEQUENCE ;| R s

(‘uas; .e:snlA‘Lm___h_,___“ - — -
0f3[o]1]0[D/ATTIA; DITIV[T[S[T[ON.
o[2]o[[FlILE| [SE/C[TIT/ON].
o[3[of F[p[| FIT|LE[-INAME
ol4lo] REEC/ORD] L
0/sof | [LABEL] RECORDI AN
ole[0] | 'DATIA [RELIORO] TSI~
o[7/f |01/ | |DE'SCIRTIPTTON S~~~ .
08 | 1 .
olo] [!
1lo] [! .
1]1/0] WORK:I NiG-[STIORIAGE! [SEC/TILON.
1120 77/ | NAME[~[DESICRT PTIT/ON]. | |
1]3[0] 10/2] ['RECO[RDD|-DIES/CRIIPTI[ON].

The above coding example specifies the most commonly
used clauses for a format 1 file description entry.

4-4

C

The following example shows the Data Division in a

program.

DATA DIVISION.
FILLE SECTION.

FD

01

04

FD

0t

INFUT-DATA

ELOCK CONTAINS 4 RECORDS

RECORD CONTAINS 80 CHARACTERS

LAREL RECORDS ARE STANDARD

DATA RECORDS ARE GEN-INFQ SALES-DATA.

GEN-INFO.
03 EMFLOYEE-NAME.
05 FIRST-NAME FIC X(12).
05 LAST-NAME FIC X(i2).

03 SOC~SEC-NUMRER FIC 9(9).
03 CHECK-SSN REDEFINES SOC-SEC-NUMERER FIC X(9).

03 AGE FIC 929.
03 BRIRTH-DATE.
05 E-MONTH FIC 99.
05 B-DAY FIC 99.
05 B-YEAR FIC 99.
03 ANNUAL-SALARY FIC 9(3)V99.

03 CHECK-SALARY REDEFINES ANNUAL-SALARY FIC X(7).
THIS REDEFINES WILL RE USED TO SEE IF THE FIELD IS ELANK.

03 RECORD-ID FIC X.

03 FILLER FIC X(34).
SALES-DATA.

03 SALES-SSN FIC 9¢(9).

03 SALES~-LOCATION FIC XX.

88 MICHIGAN VALUE IS 'MI'.
88 EASTERN-REGION VALUES ARE 'FA' 'NY'.
88 HEADQUARTERS VALUES ARE 'RA' THRU 'RZ'.

03 TOTAL-COMMISSION FIC 9(3)V99.

03 RECORD-CODE FIC X.

03 FILLER FIC X(é61i).
RECORD-0OUT

LABEL RECORDS ARE OMITTED
RECORD CONTAINS 132 CHARACTERS
LINAGE IS 60 LINES

WITH FOOTING 59

LINES AT TOP 3

LINES AT BOTTOM 3

DATA RECORD IS PRINT-0OUT

FRINT-OUT FIC X(132).

WORKING-STORAGE SECTION.

77
&s
77
77
77
01

01
04

RECORDS—-IN FIC 9(6) VALUE ZEROS.
DECLARATIVE-ERRORS FIC 9(4) VALUE ZEROS.
EOF-SW FIC X VALUE ZERO.
BAD-DATA-COUNTER FIC 2(3) VALUE ZERO.
CHECK-IT FIC XX.
FRINT-FIELDS-EDITED.

03 FILLER FIC X(i14) VALUE SFACES.

03 TOTAL-SALARY FIC $%$%,%%%.$9BER.

03 COMMISSION-COSTS FIC $xx, xx%, xxx, 99K,

03 FILLER FIC X(653) VALUE AL '-'.

03 FILLER FIC X(i2) VALUE '---END---JOR'.
SALARY-COUNTER FIC 92(6)V99 VALUE ZEROS.
COMMISSION-COUNTER FIC 92(&6)V99 VALUE ZEROS.

File Description Entry

4.5

The file description entry must begin with the level
indicator FD followed by a space.

The clauses that follow file-name are optional in many
cases; the order of their appearance is not significant.

However, at least one record description entry must
foliow the FD entry. When more than one record
description entry is specified, each entry implies a
redefinition of the same storage area. The last clause in
the FD entry must be immediately followed by a period
and a space.

IBM Extension:

Format 2-TRANSACTION File
Considerations

A file description entry consists of a
level indicator (FD), a file-name, and
a series of independent clauses. For a
TRANSACTION file, the independent
clauses allowed are the RECORD CONTAINS
clause, the LABEL RECORDS clause, and
the DATA RECORDS clause. Only the
LABEL RECORDS clause is required.

The LABEL RECORDS clause specifies

whether or not labels are present.

Label records must be omitted for a
transaction file. This clause is

required in every file description

entry.

The RECORD CONTAINS clause and the DATA
RECORDS clause are described under
RECORD CONTAINS Clause and DATA RECORDS
Clause, later in this chapter. The
record definition must be large enough
to hold the largest record defined by
the SFGR formats or SSP-ICF records
processed by the program.

4-6

File-Name

The file-name must follow the level indicator, and must
be the same file-name as that specified in the SELECT
clause of the associated file control entry.

The file-name must follow the rules of formation for a
user-defined word; at least one character must be
alphabetic. The file-name must be unique within this
program.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a
physical record. When the BLOCK CONTAINS clause is
omitted, the compiler assumes that records are not
blocked. Thus, this clause can be omitted when each
physical record contains only one complete logical
record.

The BLOCK CONTAINS clause is used by the compiler
to establish the input/output buffer size for a disk file.
The BLOCK CONTAINS clause has no effect on the
physical formatting of the file as it resides on disk. The
size given or calculated for the BLOCK CONTAINS
clause is rounded up by the compiler to the next higher
multiple of 256, unless the size is a multiple of 256.

Format

[BLOCK CONTAINS [integer-1 TO] integer-2 {

Integer-1 and integer-2 must be nonzero unsigned
integers.

When neither the CHARACTERS nor RECORDS option
is specified, the CHARACTERS option is assumed.

RECORDS Option: When the RECORDS option is
specified, the physical record size is expressed as the
number of logical records contained in each physical
record.

The compiler assumes that the block size must provide
for integer-2 records of maximum size, and provides any
additional space needed for control bytes.

Note: Maximum record size is 4096; maximum block
size is 9999.

RECORDS
CHARACTERS

CHARACTERS Option: When the CHARACTERS option
is specified or implied, the physical record size is
specified as the number of character positions required
to store the physical record no matter what USAGE the
characters within the data record have.

If only integer-2 is specified, it specifies the exact
character size of the physical record. When integer-1
and integer-2 are both specified, they represent,
respectively, the minimum and maximum character size
of the physical record.

The compiler assumes that the block size must provide
for integer-2 characters even when integer-1 is provided.

File Description Entry
BLOCK CONTAINS 4-7

RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of a
file’s data records.

Format

[RECORD CONTAINS [integer-3 TO | integer-4 CHARACTERS]

The RECORD CONTAINS clause is never required
because the size of each record is completely defined in
the record description entries. When this clause is
specified, the following rules apply:

« Integer-3 and integer-4 must be unsigned, nonzero
integers.

« When both integer-3 and integer-4 are specified,
integer-3 specifies the size of the smallest data
record, and integer-4 specifies the size of the largest
data record.

« |nteger-4 must not be specified alone unless all the
records are the same size. If all records are the same
size, integer-4 specifies the exact number of
characters in the record.

» The record size must be specified as the number of
character positions needed to store the record
internally; that is, size is specified in terms of the
number of bytes occupied internally by the record’'s
characters, regardless of the number of characters
used to represent the item within the record. The
size of a record is determined according to the rules
for obtaining the size of a group item. For a further
description of record size, see the USAGE Clause in
this chapter.

Note: When the RECORD CONTAINS clause is omitted,
the record lengths are determined by the compiler from
the record descriptions. When one of the entries within
a record description contains an OCCURS DEPENDING
ON clause, the compiler uses the maximum value of the
variable length item to calculate the record length.

4-8

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels
are present or omitted. The LABEL RECORDS clause is
required in every FD entry.

Format
RECORD IS STANDARD
~ABEL { RECORDS ARE} {mﬁo—}

STANDARD Option: The STANDARD option specifies
that labels conforming to system specifications exist for
this file. This option must be specified for disk files.

OMITTED Option: The OMITTED option specifies that
no labels exist for this file. This option must be
specified for files assigned to unit record devices.

VALUE OF Clause

The VALUE OF clause serves only as documentation. |t
is used to specify the description of an item in the label
records associated with this file.

Format

[VALUEQE implementor-name-1 IS {data-name-1}

literal-1

implementor 218 data-name-2
,implementor-name literal-2

C

DATA RECORDS Clause

The DATA RECORDS clause serves only as
documentation for the names of data records associated
with this file. The DATA RECORDS clause is never
required.

Format

RECORD IS
[DATA {RECORDS ARE} data-name-3 [,data-name-4]

The specification of more than one data-name indicates
that this file contains more than one type of data record.
Two or more record descriptions for this file occupy the
same storage area. These records need not have the
same description or length. The order in which the
data-names are listed is not significant.

File Description Entry
RECORD CONTAINS—DATA RECORDS 49

LINAGE Clause

The LINAGE clause specifies the depth of a logical page
in terms of the number of lines. This clause also
optionally specifies the line number at which the footing
area begins, as well as the top and bottom margins of
the logical page. There is not necessarily a relationship
between the logical page size and the physical page
size.

Format

[LINAGE IS {d“a'"ame"s} LINES [,WITH FOOTING AT { data-name-6 }]

integer-5

integer-6

Lines AT Top {9@name 7V T e AT poTTOM {datename8
i integer-7 ————\integer-8

The LINAGE clause may be specified only for printer
files.

All integers must be unsigned. All data-names must be
described as unsigned integer data items.

LINAGE Integer-5/Data-Name-5: Integer-5 or the value
in data-name-5 specifies the number of lines that can be
written and/or spaced on this logical page. The area of
the page that these lines represent is called the page
body. The value must be greater than zero.

WITH FOOTING Option: Integer-6 or the value in
data-name-6 specifies the first line number of the
footing area within the page body. The footing line
number must be greater than zero, but it must not be
greater than the number for the last line of the page
body. The footing area extends between those two
lines. If this option is not specified, the assumed value
is equal to that of the page body (integer-5 or
data-name-5).

LINES AT TOP Option: Integer-7 or the value in
data-name-7 specifies the number of lines in the top
margin of the logical page. If this option is not
specified, zero is assumed.

4-10

LINES AT BOTTOM Option: Integer-8 or the value in
data-name-8 specifies the number of lines in the bottom
margin of the logical page. If this option is not
specified, zero is assumed.

Figure 4-1 illustrates the use of each option of the
LINAGE clause.

LINAGE Clause Considerations: The logical page size
specified in the LINAGE clause is the sum of all values
specified in each option except the FOOTING option. If
the LINES AT TOP and/or the LINES AT BOTTOM
options are zero, each logical page immediately follows
the preceding logical page with no additional spacing
provided.

At the time an OPEN OUTPUT statement is executed,
the values of integer-5, integer-6, integer-7, and
integer-8 are used to determine the page body, first
footing line, top margin, and bottom margin of the
logical page for this file. These values are then used for
all logical pages printed for this file during a given
execution of the program.

Data-name-5, data-name-6, data-name-7, and
data-name-8 cause the following actions to take place:

« Their values at the time an OPEN OUTPUT is
executed are used to determine the page body, the
first footing line, the top margin, and the bottom
margin for the first logical page only.

« Their values at the time a WRITE ADVANCING
statement causes page ejection are used to determine
the page body, first footing line, top margin, and
bottom margin for the next succeeding logical page
only.

LINAGE-COUNTER Special Register: For each FD entry
containing a LINAGE clause, a separate
LINAGE-COUNTER special register is generated.
LINAGE-COUNTER is initialized to one when an OPEN
statement for this file is executed. LINAGE-COUNTER is
automatically modified by any WRITE statement for this
file. When linage is specified, the linage counter is set at
the top of the first page body.

When more than one LINAGE-COUNTER special register
is referred to in the PROCEDURE DIVISION, the user
must qualify each LINAGE-COUNTER with its related
file-name. For example, LINAGE-COUNTER OF FILE-A.

The value in LINAGE-COUNTER at any given time is the
line number at which the device is positioned within the
current page. LINAGE-COUNTER may be referred to in
Procedure Division statements; LINAGE-COUNTER must
not be modified by these statements.

T
. (top
LINES AT TOP integer-7 margin)
t
Logical
Page Page
Body Depth
WITH FOOTING integer-6
Footing
Are'a
INAGE integer-5
L integer (;:t
LINES AT BOTTOM integer-8 om
mar'gm)

Figure 4-1. LINAGE Clause and Logical Page Depth

CODE-SET Clause

The CODE-SET clause is not required or used by the
System /34 COBOL compiler. If it is inserted in the
source program, the compiler treats this clause as a
comment.

Format

[CODE-SET IS alphabet-name]

File Description Entry
LINAGE 4-11

DATA DESCRIPTION

All the data used in a COBOL program is described
using a uniform system of representation. The basic
concepts of data description are discussed in this
chapter, as well as the actual COBOL clauses used to
describe data.

Data Description Concepts

Most of the data processed by a COBOL program is
presented in hierarchically arranged records. This is
necessary because most data must be divided into
subdivisions for processing. To subdivide such records,
COBOL uses a hierarchical concept of levels.

For example, in a department store’s customer file, one
complete record could contain all data pertaining to one
customer. Subdivisions within that record could be:
customer name, customer address, account number,
department number of sale, unit amount of sale, dollar
amount of sale, previous balance, and other pertinent
information.

Level Concepts

Because records must be divided into logical
subdivisions, the concept of levels is inherent in the
structure of a record. Once a record has been
subdivided, it can be further subdivided to provide more
detailed data references.

The basic subdivisions of a record (that is, those fields
that are not further subdivided) are called elementary
items. Thus, a record can be made up of a series of
elementary items, or it may itself be an elementary item.

It may be necessary to refer to a set of elementary
items. Thus, elementary items can be combined into
group items. Groups can be combined into a more
inclusive group that contains two or more subgroups.
Thus, within one hierarchy of data items, an elementary
item can belong to more than one group item. .

4-12

Level-Numbers

A system of level-numbers specifies the organization of
elementary and group items into records. Special
level-numbers are also used to identify data items used
for special purposes.

Each group and elementary item in a record requires a
separate entry, and each must be assigned a
level-number. The following level-numbers are used to
structure records:

01:

This level-number specifies the record itself and is
the most inclusive level-number possible. A
level-01 entry may be either a group item or an
elementary item.

02-49:

These level-numbers specify group and elementary
items within a record. Less inclusive data items
are assigned higher (not necessarily consecutive)
level-numbers.

A group item includes all group and elementary items
following it until a level-number less than or equal to the
level-number of this group is encountered.

All elementary or group items immediately subordinate
to one group item must be assigned identical
level-numbers that are higher than the level-number of
this group item.

Figure 4-2 illustrates the level number concept. Notice
that all groups immediately subordinate to the level-01
entry have the same level-number. Notice also that
elementary items from different subgroups do not
necessarily have the same level number, and that
elementary items can be specified at any level within the
hierarchy. Figure 4-2 shows the COBOL
record-description entry in the left portion of the figure;
it shows the subdivision of the entry in the right portion
of the figure.

Note: Level-numbers 01 through 09 can also be written
as 1 through 9.

C

C

The COBOL record description entry is written as follows:

01 RECORD-ENTRY.

05

05

05

GROUP-1.

10 SUBGROUP-1.
15 ELEM-1
15 ELEM-2

10 SUBGROUP-2.
15 ELEM-3
15 ELEM4

GROUP-2.

15 SUBGROUP-3.
25 ELEM-5
25 ELEM-6

15 SUBGROUP4

GROUP-3 PIC

PIC

PIC

PIC

PiC

PIC

PIC

PIC

The storage arrangement is illustrated below:

The items included in the

hierarchy of each level are

indicated below:
<«——This entry includes —

<«——This entry includes —

This entry includes —

o

<+——This entry includes —

- -

<+——This entry includes —

<+——This entry includes

This entry includes itself J

This entry includes itself -

RECORD-ENTRY
GROUP-1 GROUP-2 +GROUP-3+
SUBGROUP-1 SUBGROUP-2 SUBGROUP-3 SUBGROUP-4+
ELEM-1 ELEM-2 ELEM-3 ELEM-4 ELEM-5 ELEM-6

Figure 4-2. Storage Arrangement of Record Description Entry

Data Description
Data Division Concepts

413

Special Level-Numbers

Special level-numbers identify items that do not
structure a record. The following are special
level-numbers:

66:

This level number identifies elementary or group
items described by a RENAMES clause. Such
items regroup previously defined data items.

77:

This level number identifies independent data
description entries in the Working-Storage or
Linkage Section. These items are not subdivisions
of other items, and are not themselves subdivided.

88:

This level number identifies any condition-name
entry that is associated with a particular value of a
conditional variable. An example is given under
VALUE Clause in this chapter.

Note: Level-77 and level-01 entries in the
Working-Storage Section and Linkage Section must be
given unique data-names because neither can be
qualified. If subordinate data-names can be qualified,
they need not be unique.

Indentation

Successive data description entries may begin in the
same column as preceding entries, or they may be
indented according to level-number. Indentation is
useful for documentation, but it does not affect the
action of the compiler.

4-14

Classes of Data

All data used in a COBOL program can be divided into
four classes and six categories. Every elementary item
in a program belongs to one of the classes as well as
one of the categories. Every group item belongs to the
alphanumeric class even if the subordinate elementary
items belong to another class and category. Figure 4-3
shows the relationship of data classes and categories.

Level of
Item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric
Alphanumeric Numeric edited
Alphanumeric edited
Alphanumeric
Boolean Boolean
Group Alphanumeric Alphabetic
Numeric

Numeric edited
Alphanumeric edited
Alphanumeric
Boolean

Figure 4-3. Classes and Categories of Data.
IBM Extension:
Boolean Data Facilities

Boolean data provides a means of
modifying and passing the values of the
indicators associated with the display
screen formats. A Boolean value of 0
is the indicator's off status while a
Boolean value of 1 is the indicator's
on status.

A Boolean literal contains a single 0
or 1 and is enclosed in quotes and
immediately preceded by an identifying
B. The Boolean literal is defined as
either B'0' or B'1'. A Boolean
character occupies one byte. The
figurative constant ZERO can be used as
a Boolean literal, and the reserved
word ALL is valid with a Boolean
literal. The Boolean ZERO is the fill
character for Boolean data.

9

Standard Alignment Rules

The standard alignment rules for positioning data in an
elementary item depend on the data category of the
receiving item (that is, the item into which the data is
placed).

Numeric Items: When a numeric item is the receiving
item, the following rules apply:

« The data is aligned on the assumed decimal point
and, if necessary, truncated or padded with zeros.
(An assumed decimal point is one that has logical
meaning but does not exist as a character in the
data.)

« If a decimal point is not explicitly specified, the
receiving item is treated as though an assumed
decimal point is specified immediately to the right of
the field. The data is then treated as in the preceding
rule.

Numeric Edited Items: The data is aligned on the
decimal point and, if necessary, truncated or padded
with zeros at either end, except when editing causes
replacement of leading zeros.

Alphanumeric, Alphanumeric Edited, Alphabetic: For
these data categories, the following rules apply:

« The data is aligned at the leftmost character position
and, if necessary, truncated or padded with spaces at
the right.

o |If the JUSTIFIED clause is specified for alphanumeric
or alphabetic receiving items, the above rule is modified
as described in the JUSTIFIED clause.

Note: The JUSTIFIED clause must not be specified for
any item for which editing is specified.

Standard Data Format

COBOL makes data description as machine independent
as possible. For this reason, the properties of the data
are described in a standard data format rather than a
machine-oriented format.

The standard data format uses the decimal system to
represent numbers no matter what base is used by the
system. The nonnumeric data can contain any
characters that are in the native character set, that is,
nonnumeric data is not limited to just the COBOL
character set or the nonnumeric COBOL characters.

Character-String and Item Size

In COBOL, the size of an elementary item is determined
through the number of character positions specified in
its PICTURE character-string. In storage, however, the
size is determined by the actual number of bytes the
item occupies as determined by the combination of its
PICTURE character-string and its USAGE clause.

Normally, when an arithmetic item is moved from a
longer field to a shorter one, the compiler truncates the
data to the number of characters represented in the
shorter item’s PICTURE character-string.

For example, if a sending field with PICTURE S99999
and containing the value +12345 is moved to a
COMPUTATIONAL receiving field with PICTURE S99,
the data is truncated to +45.

Signed Data

There are two categories of algebraic signs used in
COBOL: operational signs and editing signs.

Operational Signs

Operational signs (+, -) are associated with signed
numeric items and indicate their algebraic properties.
The internal representation of an algebraic sign depends
on the item’s USAGE clause and optionally upon its
SIGN clause. Zero is considered a unique value
regardless of the operational sign. An unsigned field is
always assumed to be positive or zero.

Data Description
Classes of Data—Signed Data 4-15

Editing Signs

Editing signs are associated with numeric edited items.
Editing signs are PICTURE symbols (+, -, CR, DB) that
identify the sign of the item in edited output.

DATA DESCRIPTION ENTRY

A record description entry or a data description entry
specifies the characteristics of a particular data item.

The maximum length for any item that is not otherwise
restricted is 32767 bytes. The four general formats are:

Format 1

| I-numbe data-name claus
evel-nu r FILLER clause

[REDEFINES clause]
[usAGE clause]

[siGN clause]

[occuns clause]
[sYNCHRONIZED clause]
[QUSTIFIED clause]

[BLANK WHEN ZERO clause]
[VALUE clause]

[PICTURE clause]

Format 2-RENAMES Clause

66 data-name-1 RENAMES data-name-2 [{ W} data-name<3] .

Format 3

88 diti %LU—EB literal-1 THRO—UGH literal-2
condition-name § /A1 UES ARE THRU

. THROUGH) .
[Ilteral-3 [{ THRU }Ilteral-4]] e e

4-16

Format 4-Boolean Data

data-name
level-number {FILLER } clause

[REDEFINES clause]
[USAGE clause]
[occuRs clause]
[SYNCHRONIZED clause]
[busTIFIED clause]
[vALUE clause]
[PICTURE clause]

[INDICATOR clause]

Format 1

This format is used for record description entries in all
sections and for level-77 entries in the Working-Storage
and Linkage Sections. The following rules apply:

« Level-number can be any number from 01 through 49
or 77.

« The clauses can be written in any order, with two
exceptioris:
— The data-name/FILLER clause must immediately
follow the level-number.
— When specified, the REDEFINES clause must
immediately follow the data-name clause.

« The PICTURE clause must be specified for every
elementary item except index data items.

« The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and
SYNCHRONIZED clauses are valid only for
elementary items.

« Either a space, or a comma or a semicolon followed
by a space, must separate clauses.

« Each record description entry must end with a period
followed by a space.

Format 2—RENAMES Clause

The RENAMES clause specifies alternative, possibly
overlapping, groupings of elementary data items. This
clause allows a single data-name to rename a group of
data items within a record.

One or more RENAMES entries can be written for a
logical record. All RENAMES entries associated with
one logical record must immediately follow that record’s
last data description entry. A level-66 entry cannot
rename a level-01, level-77, level-88, another level-66
entry, or another data-name that contains an
INDICATOR clause.

The compiler does not compensate for internal formats
such as packed decimal, zoned decimal and binary that
are renamed to a different format.

Note: You can use the RENAMES clause to rename an
INDICATOR data item. However, the new data-name

does not have an INDICATOR value associated with it

and cannot be used as an indicator.

Data-name-1 identifies an alternative grouping of data
items. It cannot be used as a qualifier; it can be
qualified only by the names of level indicator entries or
level-01 entries.

Note: Level-number 66 and data-name-1 are not part of
the RENAMES clause itself, and are included in the
format only for clarity.

Data-name-2 or data-name-3 identifies the original
grouping of elementary data items; that is, they must
name elementary or group items within the associated
level-01 entry and must not be the same data-name.
Both data-names may be qualified.

The OCCURS clause must not be specified in the data
entries for data-name-2 and data-name-3, or for any
group entry to which they are subordinate. In addition,
the OCCURS DEPENDING ON clause must not be
specified for any item occupying storage between
data-name-2 and data-name-3.

Data Description Entry
RENAMES 4-17

Data-Name-2 Option: When data-name-3 is not
specified, data-name-2 can be either a group item or an
elementary item. When data-name-2 is a group item,
data-name-1 is treated as a group item. When
data-name-2 is an elementary item, data-name-1 is
treated as an elementary item.

Data-Name-2 THRU Data-Name-3 Option: When
data-name-3 is specified, data-name-1 is a group.item
that includes all elementary items:

« Starting with data-name-2 (if it is an elementary item)
or the first elementary item within data-name-2 (if it
is a group item)

+ Ending with data-name-3 (if it is an elementary item)
or the last elementary item within data-name-3 (if it
is a group item).

The key words THRU and THROUGH are equivalent.

The leftmost character in data-name-3 must not precede
that in data-name-2; the rightmost character in
data~name-3 must follow that in data-name-2. This
means that data-name-3 cannot be subordinate to
data-name-2.

Valid and invalid specifications of the RENAMES clause
are given in Figure 4-4.

4-18

C

COBOL Specifications
Example 1 (Valid)

01 RECORD-I.
05 DN-1...
05 DN-2...
05 DN-3...
05 DN4. ..

66 DN-6 RENAMES DN-1 THROUGH DN-3.

Example 2 (Valid)

01 RECORD-II.

05 DN-1. -
10 DN-2...
10 DN-2A. ..

05 DN-1A REDEFINES DN-1.
10 DN-3A. ..
10 DN-3...
10 DN-3B...

05 DN-5...

66 DN-6 RENAMES DN-2 THROUGH DN-3.

Example 3 (Invalid)

01 RECORD-III.
05 DN-2.
10 DN3...
10 DN-4...
05 DN-5...

66 DN-6 RENAMES DN-2 THROUGH DN-3.

Example 4 (Invalid)

01 RECORD-IV.
05 DN-1.
10 DN-2A. ..
10 DN-2B. ..
10 DN-2C REDEFINES DN-2B.
15 DN-2...
15 DN-2D...
05 Dn-3. ..

66 DN-4 RENAMES DN-1 THROUGH DN-2,

Storage Layouts

RECORD-I
DN-1 DN:2 DN-3 DN4
DN-6

+——————RECORD-| | ————

DN-1
DN-2 DN-2A DN-5
DN-IA——————
DN-3A DN-3 DN-3B
DN-6

+—RECORD-||| ————+

DN-2

DN-3

DN4

DN-5

DN-6 is indeterminat.e

e——RECORD-|V ————————

DN-1

DN-2A

DN-2B

DN-3

je—DN-2C —

DN44 is indeterminate

Figure 4-4. Valid and Invalid Specifications of the RENAMES Clause

Data Description Entry
RENAMES

419

Format 3

This format describes condition-names. A

condition-name is a user-specified name that associates

value(s) and/or a range(s) of values with a conditional
variable.

A conditional variable is a data item that can assume

one or more values that can, in turn, be associated with

a condition-name. The following rules for
condition-name entries apply:

« Any entry beginning with level-number 88 is a
condition-name entry.

« The condition-name entries associated with a

particular conditional-variable must immediately follow
the conditional variable entry. The conditional variable

can be any elementary data description entry except

another condition-name, index data item, or level-66

entry.

« A condition-name can be associated with a group
item data description entry. The following rules
apply:

— The condition-name value must be specified as a
nonnumeric literal or figurative constant.

— The size of the condition~-name value must not
exceed the sum of the sizes of all the elementary
items within the group.

— No element within the group may contain a
JUSTIFIED or SYNCHRONIZED clause.

— No USAGE other than USAGE IS DISPLAY may
be specified within the group.

« Condition-names can be specified both at the group
level and at subordinate levels within the group.

« The relation test implied by the definition of a
condition-name at the group level is performed in
accordance with the rules for comparison of
nonnumeric operands regardless of the nature of
elementary items within the group.

4-20

Either a space or a comma or a semicolon followed
by a space, must separate successive operands.

Each entry must end with a period followed by a
space.

The condition-name must not be qualified when used
in a REDEFINES clause.

Examples of both elementary and group condition-name
entries are given under VALUE Clause in this chapter.

IBM Extension:
Format 4-Boolean Data

This format is used for Boolean data
items in all sections. The following
rules apply:

e USAGE must be defined implicitly or
explicitly as DISPLAY.

e In the OCCURS clause, the
ASCENDING/DESCENDING key is not valid
for Boolean data items.

e The INDICATOR clause must be
specified at an elementary level
only.

e A Boolean data item may be compared
only with another Boolean data item.

e Only EQUAL or NOT EQUAL comparisons
are allowed for Boolean data items.

e Boolean data items must be used for
SFGR indicators with TRANSACTION
files.

Level-Numbers

The level-number specifies the hierarchy of data within a
record and also identifies special-purpose data entries.

Format
level-number
The following rules for level-numbers apply:

+ A level-number begins a data description entry, a
regrouped item, or a condition-name entry.

¢ Level-numbers 01 and 77 must begin in Area A.

o Level-numbers 02-49, 66, and 88 may begin in either
Area A or Area B and must be followed by a space.

« Single-digit level-numbers 1 through 9 may be
substituted for level-numbers 01 through 09.

Data-Name or FILLER Clause

A data-name explicitly identifies the data being
described; the key word FILLER specifies an item that is
never explicitly referenced in the program.

Format

data-name
FILLER

In a data description entry, either the data-name or the
key word FILLER must be the first word following the
level-number. The data-name identifies a data item by
referring to the field, not to a particular value. This data
item can assume a number of different values during the
course of a program.

A data-name can begin anywhere in Area B. A
data-name requires a period at the end of the entry, and
it must contain at least one alphabetic character.

Entries at level-numbers 01 and 77 in the
Working-Storage and Linkage Sections cannot be
qualified, and therefore require unique data-names.
Subordinate data-names that can be qualified do not
require unique data-names.

The key word FILLER specifies an elementary item in a
record that is never explicitly referred to. The word
FILLER may be written anywhere in Area B. A period is
required at the end of the entry.

In a MOVE CORRESPONDING statement, an ADD
CORRESPONDING statement, or a SUBTRACT
CORRESPONDING statement, FILLER items are ignored.

IBM Extension: A FILLER item can be used
as a group item definition.
Subordinate data items may then be
referenced by the appropriate
data-name.

REDEFINES Clause

The REDEFINES clause indicates that the same storage
area can contain different data items. Redefinition can

save storage by allowing the same area to be used for

different purposes.

Format

level-number data-name-1 REDEFINES data-name-2
Level-number and data-name-1 are not part of the
REDEFINES clause itself, and are included in the format

only for clarity.

If specified, the REDEFINES clause must be the first
entry following data-name-1.

The level-number of data-name-1 and data-name-2 must

be identical and must not be level 66 or level 88.
Data-name-2 is the redefined item.

Data-name-1 is the redefining item and is an alternative
description for the data-name-2 area.

Implicit redefinition is assumed when more than one
level-01 entry subordinate to an FD entry is written. In
such level-01 entries, the REDEFINES clause must not
be specified.

Redefinition begins at data-name-1 and ends when a
level-number less than or equal to that of data-name-2
is encountered. No entry having a level-number
numerically lower than those of data-name-1 and
data-name-2 may occur between these entries.

Data Description Entry
Level Numbers—REDEFINES 4-21

In the following example, A is the redefined item, and. B
is the redefining item. Redefinition begins with B and
includes the two subordinate items B-1 and B-2.
Redefinition ends when the level-05 item C is
encountered.

05 A PICTURE X(6).
05 B REDEFINES A,
10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).
05 C PICTURE 99Vv989.

The data description entry for data-name-2, the
redefined item, cannot contain a REDEFINES clause or
an OCCURS clause. However, the redefined item may
itself be subordinate to an item that contains either
clause. If the redefined item is subordinate to an
OCCURS clause, data-name-2 in the REDEFINES clause
(the redefined item) must not be subscripted or indexed.

The redefined item, the redefining item, and any items
subordinate to them cannot contain an OCCURS
DEPENDING ON clause.

When data-name-1, the redefining item, is specified
with a level-number other than 01, it must specify a
storage area of the same size as the redefined item
data-name-2.

Multiple redefinitions of the same storage area are
permitted. The entries giving the new descriptions of
the storage area must immediately follow the description
of the redefined area without intervening entries that
define new character positions. Multiple redefinitions
must all use the data-name of the original entry that
defined this storage area. For example:

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9v999.
05 C REDEFINES A PICTURE 99Vv99.

The redefining entry (identified by data-name-1) and any
subordinate entries must not contain any VALUE

clauses. This rule does not apply to condition-name
entries.

4-22

Data items within an area can be redefined without their
lengths being changed. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data items can also be rearranged within an area. For
example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 EMP-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area
are always in effect; that is, redefinition does not cause
any data to be erased and does not supersede the
previous description. Thus, if B REDEFINES A has been
specified, either of the two procedural statements
MOVE X TO B and MOVE Y TO A could be executed at
any point in the program.

In the first case, the area described as B would assume
the value of X. In the second case, the same physical

area (described now as A) would assume the value of Y.

If the second statement is executed immediately after
the first, the value of Y replaces the value of X in the
one storage area.

9

The USAGE of a redefining data item need not be the
same as that of a redefined item. This does not,
‘however, cause any change in existing data. For
example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.

05 C REDEFINES B PICTURE S99 USAGE
COMPUTATIONAL-4.

05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configuration of the DISPLAY value 8 is 1111
0000 1111 1000. Redefining B does not change the bit
configuration of the data in the storage area. Therefore,
the two statements, ADD B TO A and ADD C TO A
give different results. In the first case, the value 8 is
added to A (because B has USAGE DISPLAY). In the
second statement, the value -48 is added to A (because
C has USAGE COMPUTATIONAL-4), and the bit
configuration (truncated to 2 decimal digits) in the
storage area has the binary value -48.

Unexpected results may occur when a redefining item is
moved to a redefined item (that is, if B REDEFINES C
and the statement MOVE B TO C is executed).
Unexpected results may also occur when a redefined
item is moved to a redefining item (from the previous
example, unexpected results occur if the statement
MOVE C TO B is executed).

The REDEFINES clause may be specified for an item
within the scope of any area being redefined (that is, an
item subordinate to a redefined item). For example:

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE
9999Vv99.

10 WEEKLY-PAY REDEFINES
SEMI-MONTHLY-PAY
PICTURE 999Vv999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause may also be specified for an
item subordinate to a redefining item. For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY
PICTURE 9999.

USAGE Clause

The USAGE clause specifies the format of a data item
in storage. The USAGE clause can be specified for an
entry at any level. However, if it is specfied at the
group level, it applies to each elementary item in the
group. The usage of an elementary item cannot
contradict the usage of a group to which the elementary
item belongs.

The USAGE clause specifies the format in which data is
repraesented in storage. The format may be restricted if
certain Procedure Division statements are used.

Format

COMPUTATIONAL-3

COMP-3

COMPUTATIONAL-4
CoMP-4

[usaGe 1] | CompuTATIONAL

COMP

DISPLAY

INDEX }

—

- S

When the USAGE clause is not specified at either the
group or elementary level, USAGE IS DISPLAY is
assumed.

Data Description Entry
USAGE 4-23

INDEX Option: The USAGE IS INDEX clause specifies
that the data item named has an indexed format and,
therefore, is an index data item. The index data item is
an elementary item that can be used to save index-name
values for future reference.

The USAGE IS INDEX clause is described in detail
under Table Handling in Chapter 6.

DISPLAY Option: The DISPLAY option can be explicit
or implicit. It specifies that the data item is stored in
character form, one character per eight-bit byte. This
corresponds to the form in which information is
represented for keyboard input or for printed output.
USAGE IS DISPLAY is valid for the following types of
items:

« Alphabetic

« Alphanumeric

« Alphanumeric edited

« Numeric edited

« Zoned decimal (numeric)
« Boolean

Alphabetic, alphanumeric, alphanumeric edited, Boolean,
and numeric edited items are discussed in the
description of the PICTURE clause later in this chapter.

Zoned Decimal items: These items are sometimes
referred to as external decimal items. Each digit of a
number is represented by a single byte. The four
high-order bits of each byte are zone bits; the four
high-order bits of the low-order byte represent the sign
of the item. If the number is positive, these four bits
contain a hexadecimal F. If the number is negative,
these four bits contain a hexadecimal D. The four
low-order bits of each byte contain the value of the
digit. When zoned decimal items are used for
computations, the compiler performs the necessary
conversions. The maximum length of a zoned decimal
item is 18 digits.

4-24

The PICTURE character-string of a zoned item may
contain only 9s, the operational sign symbol S, the
assumed decimal point V, and one or more Ps.

Examples of zoned decimal items are shown in Figure
4-4.

Computational Options: The term computational refers
to the following options of the USAGE clause:

COMPUTATIONAL or COMP (zoned decimal)

IBM Extension: COMPUTATIONAL-3 or
COMP-3 (packed decimal)

COMPUTATIONAL-4 or COMP-4 (binary)

A computational item represents a value to be used in
arithmetic operations and must be numeric. If the
USAGE of a group item is described with any of these
options, it is the elementary items within the group that
have this usage. The group itself is considered
nonnumeric and cannot be used in numeric operations,
except with the CORRESPONDING option. The maximum
length of a computational item is 18 decimal digits.
The PICTURE of a computational item may contain only:

9 (one or more numeric character positions)

S (one operational sign)

V (one implied decimal point)

P (one or more decimal scaling positions)

The COMPUTATIONAL option is in zoned decimal
format. Each digit of the number is represented by a
single byte. The four leftmost bits of each byte are zone
bits; the four leftmost bits of the rightmost byte
represent the sign of the item. The four rightmost bits
of each byte contain the value of the digit.

IBM Extension: A zoned decimal item may
contain any of the digits 0 through 9,
plus a sign.

The COMPUTATIONAL-3 option is specified
for packed decimal items. Such an item
appears in storage as two digits per
byte, with the sign contained in the
four rightmost bits of the rightmost
byte. If the number is positive, these
four bits contain a hexadecimal F. If
the number is negafive, these four bits
contain a hexadecimal D.

A packed decimal item may contain any
of the digits 0 through 9 plus a sign.
If the PICTURE of a packed decimal item
does not contain an S, the sign
position is occupied by a bit
configuration that is interpreted as
positive, but does not represent an
overpunch.

The COMPUTATIONAL-4 option is specified
for binary data items. Such items have
decimal equivalents consisting of the
decimal digits 0 through 9, plus a
sign.

The amount of storage occupied by a
binary data item depends on the number
of decimal digits defined in its
PICTURE clause:

Digits in Storage
PICTURE Clause Occupied
1 through 4 2 bytes
5 through 9 4 bytes
10 through 18 8 bytes

The leftmost bit of the storage area is
the operational sign.

Examples of packed decimal and binary
items are shown in Figure 4-5.

Data Description Entry
USAGE 4-25

Item Description Value Internal Representation*
Zoned PIC S9999 DISPLAY +1234 F1 F2 F3 F4
Decimal -1234 F1 F2 F3 D4
1234 F1 F2 F3 F4
PIC 9999 DISPLAY +1234 F1 F2 F3 F4
-1234 F1 F2 F3 F4
1234 F1 F2 F3 F4
PIC S9999 DISPLAY SIGN LEADING +1234 F1 F2 F3 F4
-1234 D1 F2 F3 F4
1234 F1 F2 F3 F4
PIC S9999 DISPLAY SIGN TRAILING SEPARATE +1234 F1 F2 F3 F4 4E
-1234 F1 F2 F3 F4 60
1234 F1 F2 F3 F4 4E
PIC S9999 DISPLAY SIGN LEADING SEPARATE +1234 4E F1 F2 F3 F4
-1234 60 F1 F2 F3 F4
1234 4E F1 F2 F3 F4
Packed PIC S9999 COMP-3 +1234 01 23 4F
Decimal -1234 01 23 4D
PIC 9999 COMP-3 +1234 01 23 4F
-1234 01 23 4F
Binary PIC S9999 COMP4 +1234 04 D2
-1234 FB 2E
PIC 9999 COMP4 +1234 04 D2
-1234 04 D2

*The internal representation of each byte is shown as two hex digits. The bit configuration for each digit is as follows:

Hex Digit

NOoOOSdWN-=0

Notes:

Bit Configuration

0000
0001
0010
0011
0100
0101
0110
0111

Hex Digit

MTMOO®@>» ©O©®

1. The leftmost bit of a binary number represents the sign: 0 is positive, 1 is negative.
2. Negative binary numbers are represented in twos complement form.
3. Hex 4E represents the EBCDIC character +. Hex 60 represents the EBCDIC character -.

4. Specification of SIGN TRAILING (without the SEPARATE CHARACTER option) is the equivalent of the

standard action of the compiler.

Figure 4-5. Internal Representation of Numeric items

4-26

Bit Configuration

1000
1001
1010
1011
1100
1101
1110
111

9

SIGN Clause

The SIGN clause specifies the position and mode of
representation of the operational sign for a numeric
entry.

Format

TRAILING

[[sienis] {"EAD'NG }[SEPARATE CHARACTER]]

The SIGN clause may be specified only for a signed
numeric data description entry (that is, one whose
PICTURE character-string contains an S), or for a group
item that contains at least one such elementary entry.
USAGE IS DISPLAY must be specified either explicitly
or implicitly.

Only one SIGN clause may apply to any one data
description entry. The SIGN clause is required only
when an explicit description of the properties and/or
position of the operational sign is necessary.

The SIGN clause defines the position and mode of
representation of the operational sign for the numeric
data description entry to which it applies, or for each
signed numeric data description entry subordinate to the
group to which it applies.

If the SEPARATE CHARACTER option is not specified,
then:

« The operational sign is presumed to be associated
with the LEADING or TRAILING digit position
{(whichever is specified) of the elementary numeric
data item.

« The character S in the PICTURE character-string is
not counted in determining the size of the item (in
terms of standard data format characters).

If the SEPARATE CHARACTER option is specified, then:

« The operational sign is presumed to be the LEADING
or TRAILING character position (whichever is
specified) of the elementary numeric data item. This
character position is not a digit position.

o The character S in the PICTURE character string is
counted in determining the size of the data item (in
terms of standard data format characters).

o + is the character used for the positive operational
sign.

« - is the character used for the negative operational
sign.

« |If one of the character + or - is not present in the
data at object time, an error occurs, and the program
terminates abnormally.

Every numeric data description entry whose PICTURE
contains the symbol S is a signed numeric data
description entry. If the SIGN clause is also specified
for such an entry and conversion is necessary for
computations or combarisons, the conversion takes
place automatically.

If no SIGN clause is specified for a signed numeric data
description entry, the position and mode of
representation for the operational sign is determined as
explained in the USAGE clause description.

Data Description Entry
SIGN 4-27

OCCURS Clause

The OCCURS clause specifies tables whose elements
can be referred to by indexing or subscripting. It is
described under Data Division — Table Handling in
Chapter 6.

IBM Extension:

OCCURS Clause with Boolean Data
Items

If the OCCURS clause and the INDICATOR
clause are both specified at an
elementary level, a table of Boolean
data items is defined with each element
in the table corresponding to an
external indicator.

INDICATOR Clause
The INDICATOR clause is used to
associate an SFGR indicator number with

a Boolean data item. The format is:

INDICATOR integer

Integer must be greater than or equal
to 1, and less than or equal to 99.

The INDICATOR clause must be specified
at an elementary level only.

Since an indicator can contain only a
value of zero or one, it must be
associated only with a Boolean
data-item.

4-28

OCCURS Clause with the
INDICATOR Clause: If the OCCURS
clause and the INDICATOR clause are
both specified at an elementary level,
a table of Boolean data items is
defined with each element in the table
corresponding to an external indicator.
The first element in the table
corresponds to the indicator number
specified in the INDICATOR clause, the
second element corresponds to the
indicator which sequentially follows
the indicator specified by the
INDICATOR clause.

For example, if the following is coded:

07 SWITCHES PIC 1 OCCURS 10 TIMES
INDICATOR 16.

then:
SWITCHES (1) corresponds to SFGR
indicator 16,
SWITCHES (2) corresponds to SFGR
indicator 17, . .
SWITCHES (10) corresponds to SFGR
indicator 25.

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of

an elementary item on a proper boundary in storage.

Format

SYNCHRONRED LEFT
SYNC NGHT

The SYNCHRONIZED clause is treated as
documentation only. The SYNCHRONIZED clause is
never required. It may appear only at the elementary
level. SYNC is an abbreviation for SYNCHRONIZED and
has the same meaning.

JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning
rules for a receiving item of the alphabetic or
alphanumeric categories.

Format

JUSTIFIED
[{JUST }RIGHT]

The JUSTIFIED clause may be specified only at the
elementary level. JUST is an abbreviation for
JUSTIFIED and has the same meaning.

The JUSTIFIED clause must not be specified for a
numeric item or for any item for which editing is
specified. The JUSTIFIED clause must not be specified
with level-66 (RENAMES) or level-88 (condition-name)
entries.

When the JUSTIFIED clause is specified for a receiving
item, the data is aligned at the rightmost character
position in the receiving item, and:

« If the sending item is larger than the receiving item,
the leftmost characters are truncated.

« If the sending item is smaller than the receiving item,
the unused character positions at the left are filled
with spaces.

When the JUSTIFIED clause is omitted, the rules for
standard alignment are followed.

The following shows the difference between standard
and justified alignment:

Sending Receiving

Field Field
Alighment Value Value
Standard THE THEBD
Justified right THE BHTHE

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clausg specifies that an item
is to be filled entirely with spaces when its value is zero.

Format

[BLANK WHEN ZERO]

The BLANK WHEN ZERO clause may be specified only
for elementary numeric or numeric edited items. When
it is specified for a numeric item, the item is considered
to be a numeric edited item.

If the BLANK WHEN ZERO clause is specified, the item
contains nothing but spaces when its value is zero.

The BLANK WHEN ZERO clause must not be specified
for level-66 or level-88 items.

IBM Extension: When both the BLANK WHEN
ZERO clause and the asterisk (*) as a
suppression symbol are specified for
the same data description entry, zero
suppression editing overrides the
function of the BLANK WHEN ZERO
clause.

Data Description Entry
OCCURS—BLANK WHEN ZERO 4-29

VALUE Clause

The VALUE clause specifies the initial contents of a data
item, or the value(s) associated with a condition-name.
The two formats for the VALUE clause are as follows:

Format 1

[VALUE Isiiterai]

Format 2

VALUE IS

Level-number 88 and condition-name are not part of the
Format 2 VALUE clause itself, and are included in the
format only for clarity. The use of the VALUE clause
differs with the Data Division section in which it is
specified.

File and Linkage Sections: The VALUE clause must be
used only in condition~-name entries.

Working-Storage Section: The VALUE clause is used in
condition-name entries. it is also used to specify the
initial value of any data item; the item assumes the
specified value at the beginning of program execution.
If the initial value is not explicitly specified, it is
unpredictable.

General Considerations
The key words THRU and THROUGH are equivalent.

The VALUE clause must not be specified for any item
whose length is variable.

4-30

. . THROUGH)Y ..
88 condition-name {VALUES ARE} literal-1 [{THRU } I|teral-2]

. THROUGH) ..
[Ilteral-3 [{THRU }Ilteral-4]] e e o

For group entries, the VALUE clause must not be
specified if the entry or an entry subordinate to it
cantains any of the following clauses: JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE
DISPLAY).

The VALUE clause must not conflict with other clauses
in the data description entry or in the data description of
this entry’s hierarchy. The following rules apply:

« Wherever a literal is specified, a figurative constant
may be substitued.

« If the item is numeric, all VALUE clause literals must
be numeric literals. If the literal defines the value of a
Working-Storage item, the literal is aligned according
to the rules for numeric moves with one additional
restriction: the literal must not have a value that
requires truncation of nonzero digits. If the literal is
signed, the associated PICTURE character-string must
contain a sign symbol (S).

« All numeric literals in a VALUE clause of an item
must have a value that is within the range of values
indicated by the PICTURE clause for that item. For
example, for PICTURE '99PPP, the literal must be
within the range 1000 through 99000 or zero. For
PICTURE PPP99, the literal must be within the range
.00000 through .00099.

C

« |f the item is an elementary or group alphabetic,
alphanumeric, alphanumeric edited, or numeric edited
item, all VALUE clause literals must be nonnumeric
literals. The number of characters in the literal must
not exceed the size of the item.

« The functions of the editing characters in a PICTURE
clause are ignored in determining the initial
appearance of the item described. However, editing
characters are included in determining the size of the
item. Therefore, any editing character must be
included in the literal.” For example, if the item is
defined as PICTURE +999.99 and the value is to be
+12.34, then the VALUE clause should be specified
as VALUE '+012.34".

« A maximum of 32,767 bytes may be initialized by
means of a single VALUE clause.

Format 1 Considerations

This format specifies the initial value of a data item in
storage. Initialization is independent of any BLANK
WHEN ZERO or JUSTIFIED clause specified.

A Format 1 VALUE clause must not be specified for an
entry that contains or is subordinate to an entry that
contains a REDEFINES or OCCURS clause.

If the VALUE clause is specified at the group level, the
literal must be a nonnumeric literal or a figurative
constant. The group area is initialized without
consideration for the subordinate entries within this
group. In addition, the VALUE clause must not be
specified for subordinate entries within this group.

IBM Extension:
Boolean Considerations: The

allowable values for a Boolean literal
are B'0', B'1', and ZERO/S.

Format 2 Considerations

This format associates a value, values, and/or range(s)
of values with a condition-name. Each such
condition-name requires a separate level-88 entry.

The VALUE clause is required in a condition-name entry
and must be the only clause in the entry. Each
condition-name entry is associated with a preceding
conditional variable. Thus, every level-88 entry must
always be préceded either by the entry for the
conditional variable or by another level-88 entry when
several condition-names apply to one conditional
variable. Such level-88 entries implicitly have the
PICTURE characteristics of the conditional variable.

Every condition-name can be qualified by the name of
its associated conditional variable and by the qualifier(s)
of the conditional variable. If the associated conditional
variable requires subscripts or indexes, each procedural
reference to the condition-name must be subscripted or
indexed as required for the conditional variable.

When only literdl-1 is specified, the condition-name is
associated with a single value.

When literal-1, literal-3, and so on are specified, the
condition-name is associated with several single values.

When literal-1 THRU literal-2 is specified, the
condition-name is associated with one range of values.

When literal-1 THRU literal-2, literal-3 THRU literal-4,
and so on are specified, the condition-name is
associated with more than one range of values. Literal-1
must be less than literal-2, literal-3 less than literal-4,
and so on.

One or more single values and one or more ranges of
values may be specified in a single Format 2 VALUE
clause.

Data Description Entry
VALUE 4-31

The type of literal in a condition-name entry must be
consistent with the data type of the conditional variable.
In the following example, CITY-COUNTY=-INFO,
COUNTY-NO, and CITY are conditional variables; the
associated condition-names immediately follow the
level-number 88. The PICTURE associated with
COUNTY-NO limits the condition-name value to a
2-digit numeric literal. The PICTURE associated with
CITY limits the condition-name value to a 3-character
nonnumeric literal. Any values for the condition-names
associated with CITY-COUNTY-INFO cannot exceed 5
characters, and the literal (because this is a group item)
must be nonnumeric:

05 CITY-COUNTY-INFO.

88 BRONX VALUE ‘O3NYC’.
88 BROOKLYN VALUE '24NYC'.
88 MANHATTAN VALUE ‘31NYC'.
88 QUEENS VALUE ‘41NYC'.
88 STATEN-ISLAND VALUE ‘43NYC'.
10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14..
88 KINGS VALUE 24.
88 NEW YORK VALUE 31.
88 RICHMOND VALUE 43.
10 CITY PICTURE X(3).
88 BUFFALO VALUE ‘BUF.

88 NEW-YORK-CITY VALUE 'NYC'.
88 POUGHKEEPSIE VALUE 'POK'.
05 POPULATION. . .

The following example shows the use of the THRU
option. In this example, the number of miles a person
drives to work each day is categorized.

05 MILEAGE PIC 9(2)Vv9.
88 LOW VALUE 0 THRU 09.9.
88 MED VALUE 10.0 THRU 19.9.
88 HIGH VALUE 20.0 THRU 99.9.

Condition-names are used procedurally in

condition-name conditions, and are described under
Conditional Expressions in Chapter 5.

4-32

PICTURE Clause

The PICTURE clause specifies the general characteristics
and editing requirements of an elementary item.

Format

PICTURE _
[{ PIC } IS character-strmg]

The PICTURE clause must be specified for every
elementary item except an indexed data item. The
PICTURE clause may be specified only at the elementary
level. PIC is an abbreviation for PICTURE and has the
same meaning.

The character-string is made up of certain COBOL
characters used as symbols. The allowable
combinations determine the category of the data item.
The character-string may contain a maximum of 30
characters.

Symbols Used in the PICTURE Clause

The functions of each PICTURE clause symbol are
defined in the following list. Any punctuation character
appearing within the PICTURE character-string is not
considered a punctuation character, but rather as a
PICTURE character-string symbol.

A Each A in the character-string represents a
character position that can contain only a letter of
the alphabet or a space.

B Each B in the character-string represents a
character position into which the space character
will be inserted.

»

The P indicates an assumed decimal scaling
position, and is used to specify the location of an
assumed decimal point whén the point is not
within the number that appears in the data item.
The scaling position character P is not counted in
the size of the data item. Scaling position
characters are counted in determining the
maximum number of digit positions (18) in numeric
edited items or in items that appear as arithmetic
operands. In any operation converting data from
one form of internal representation to another, if
the item being converted is described with the
PICTURE symbol P, each digit position described
by a P is considered to contain the value zero, and
the size of the item is considered to include these
zero digit positions.

For example, PICTURE PPP99 DISPLAY defines a
2-character item whose value is zero or ranges
from .00001 through .00099. PICTURE 99PPP
DISPLAY defines a 2-character item whose value
is zero or ranges from 1000 through 99000.

The scaling position character P can appear only to
the left or right of the other characters in the
string as a continuous string of Ps within a
PICTURE description. The sign character S and
the assumed decimal point V are the only
characters which can appear to the left of a
leftmost string of Ps. Because the scaling position
character P implies an assumed decimal point (to
the left of the Ps if the Ps are leftmost PICTURE
characters; to the right of the Ps if the Ps are
rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the
leftmost or rightmost character within such a
PICTURE description.

The symbol S is used in a PICTURE
character-string to indicate the presence (but not
the representation or, necessarily, the position) of
an operational sign. The sign must be written as
the leftmost character in the PICTURE string. An
operational sign indicates whether the value of an
item involved in an operation is positive or
negative. The symbol S is not counted in
determining the size of the elementary item, unless
an associated SIGN clause specifies the
SEPARATE CHARACTER option.

The V is used in a character-string to indicate the
location of the assumed decimal point and can
appear only once in a character-string. The V
does not represent a character position and,
therefore, is not counted in the size of the
elementary item. When the assumed decimal point
is to the right of the rightmost symbol in the
string, the V is redundant.

Each X in the character-string represents a
character position that may contain any allowable
character from the EBCDIC set.

Each Z in the character-string represents a leading
numeric character position. When that position
contains a zero, the zero is replaced by a space
character. Each Z is counted in the size of the
item.

IBM Extension:

A single 1 indicates a Boolean data
item. If a 1 appears in the PICTURE
character-string, it must be the only
character.

Each 9 in the character-string represents a
character position that contains a numeral and is
counted in the size of the item.

Data Description Entry
PICTURE 4-33

Each zero in the character-string represents a
character position into which the numeral zero will
be inserted. Each zero is counted in the size of the
item.

Each slash in the character-string represents a
character position into which the slash character
will be inserted. Each slash is counted in the size
of the item.

Each comma in the character-string represents a
character position into which a comma will be
inserted. This character is counted in the size of
the item. The comma insertion character cannot
be the last character in the PICTURE
character-string.

When a period appears in the character-string, it
is an editing symbol that represents the decimal
point for alignment purposes. In addition, it
represents a character position into which a period
will be inserted. This character is counted in the
size of the item. The period insertion character
cannot be the last character in the PICTURE
character-string.

Note: For a given program, the functions of the
period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma, and
the rules for the comma apply to the period
wherever they appear in a PICTURE clause.

+I =

'cS’

CR, DB

These symbols are used as editing sign control
symbols. Each symbol represents the character
position into which the editing sign control symbol
will be placed. The symbols are mutually exclusive
in one character-string. Each character used in the
symbol is counted in determining the size of the
data item.

Each asterisk (check protect symbol) in the
character-string represents a leading numeric
character position into which an asterisk will be
placed when that position contains a zero. Each
asterisk is counted in the size of the item.

IBM Extension: Within a given data

description entry, the use of the

check protect symbol overrides the
BLANK WHEN ZERO clause.

The currency symbol in the character-string
represents a character position into which a
currency symbol is to be placed. The currency
symbol in a character-string is represented either
by the symbol $ or by the single character
specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the Environment
Division. The currency symbol is counted in the
size of the item.

Note: Because the currency symbol can be
replaced in the CURRENCY SIGN clause, the term
‘CS’ is used throughout this book rather than the
actual currency symbol ($).

Figure 4-6 gives the order in which PICTURE clause
symbols must be specified.

9

Non-Floating Floating Other Symbols
Insertion Symbols Insertion Symbols
1 CR US| S TP PPN PO A 1|pt |13
+\ [+ + g+ 1
ol /. |- [iH{Noel & (2B T |8 [0 |x |S|VI[P]|P
x | x [x [x]|x x [x | x [x[x]|x|[x]x|x X X
0 fIx |x|x|x|x]x x| x| x| x| x| x| x|x|x X X
/ Ix | x| x|x|x]x x| x| x| x| x| x| x]x|x x X
S lx x| x| x| x| x Xx [x| x| x|x| x| x|]x X X
Non-Floating
Insertion Jllx x| x| x X x | x X X X
Symbols { +}
{*’} X | x| x| x|x x| x| x x| x| x x| x| x
R
x | x| x
DR X [X [x| x|x X | x| x x| x| x
$ X
{E} x | x| x| x X x | x
{E} x | x| x| x|[x]x x| x| x X X
Floating
Insertion {"‘} x | x| x| x X X
Symbols {+} x [x| x| x| x X x | x X X
$ x| x| x| x X X
PlIx|[x|x]|x|x]x X| X X X
9 Ix | x| x| x| x| X X | x X X X | x| x| x X
A x | x| x X | x
Other X
Symbols S
ViIx|x]| x| x X x| x X X X X X
PHx | x| x| x b x| x X X X X X
P X X x| x X

the left of the symbol(s) at the left of the row.

Braces ({ }) indicate items that are mutually exclusive.

1Nan-floating insertion symbols + and -, floating insertion symbols Z, *, +, -, and $, and other symbol P appear twice in the above
table. The leftmost column and uppermost row for each symbol represents its use to the left of the decimal point position. The
second appearance of the symbol in the table represents its use to the right of the decimal point position.
$ is the default value for the currency symbol. This value may be replaced by a character specified in the currency SIGN clause. At
least one of the symbols A, X, Z,9, or *, or at least two of the symbols +, -, or $ must be present in a PICTURE string.

3The character 1 must appear alone in the character string.

An X at an intersection indicates that the symbol(s) at the top of the column may, in a given character-string, appear anywhere to

Figure 4-6. PICTURE Clause Symbol Order

Data Description Entry

PICTURE

435

Character-String Representation: The following symbols
may appear more than once in one PICTURE:
character-string:

ABPXZ90/,+-*'CS

Each time one of these symbols appears in the
character-string, it represents an occurrence of that
character or set of allowable characters in the data item.

An integer enclosed in parentheses immediately
following any of these symbols specifies the number of
consecutive occurrences of that symbol. The number of
consecutive occurences may not exceed 32767.

For example, the following two PICTURE clause
specifications are equivalent:

PICTURE IS $99999.99CR
PICTURE IS $9(5).99CR

The following five symbols may each appear only once
in one PICTURE character-string:

S V.CR DB

Data Categories and PICTURE Considerations: The
allowable combinations of PICTURE symbols determine
the data category of the item. Rules for each category
follow.

Alphabetic items—the following rules apply:

« The PICTURE character-string can contain only the
symbols A and B.

« The contents of the item in standard data format
must consist of any of the 26 letters of the alphabet
and the space character.

« USAGE DISPLAY must be either specified or implied.

« Any associated VALUE clause must specify a
nonnumeric literal.

4-36

Numeric items—the following rules apply:

« The PICTURE character-string can contain only the
symbols 9, P, S, and V.

« The number of digit positions must range from 1
through 18.

« The contents of a numeric item must be a
combination of the digits O through 9. The numeric
item may contain an operational sign. If the PICTURE
contains an S, the contents of the item are treated as
a positive or negative value, depending on the
operational sign present in the data. If the PICTURE
does not contain an S, the contents of the item are
treated as an absolute value.

« If a VALUE clause is specified for an elementary
numeric item, the literal must be numeric. If a
VALUE clause is specified for a group item consisting
of elementary numeric items, the group is considered
alphanumeric, and the literal must therefore be
nonnumeric.

« The USAGE of the item can be DISPLAY or
COMPUTATIONAL.

IBM Extension: IBM implementation also
allows the USAGE to be COMPUTATIONAL-3
or COMPUTATIONAL-4.

Examples of numeric items are shown in Figure 4-7.

PICTURE Valid Range of Values
9999 0 through 9999

S99 ~-99 through +99

S999V9 -999.9 through +999.9
PPP999 0 through .000999
S999PPP -1000 through -999000 and

+1000 through +999000 or zero

Figure 4-7. Examples of Numeric Items

Alphanumeric items—the following rules apply:

« The PICTURE character-string must consist of either:

— The symbol X entirely.

— Combinations of the symhols A, X, and 9. The
itemn is treated as if the character-string contained
only the symbol X. A PICTURE character-string
containing all A’s or all 9's does not define an
alphanumeric item.

« The contents of the item in standard data format may
be any allowable characters from the EBCDIC
character set.

« USAGE DISPLAY must be either specified or implied.

« Any associated VALUE clause must specify a
nonnumeric literal.

Alphanumeric edited items—the following rules apply:

« The PICTURE character-string can contain the
symbols:

AX9BO0/

« The string must contain at least one of the following
combinations:

At least one B and at least one X

At least one O and at least one X

At least one X and at least one /

At least one A and at least one O

At least one A and at least one /

« The contents of the item in standard data format may
be any allowable character from the EBCDIC
character set.

« USAGE DISPLAY must be either specified or implied.

« Any associated VALUE clause must specify a
nonnumeric literal. The literal is treated exactly as
specified; no editing is performed.

« Alphanumeric edited items are subject to only one
type of editing—simple insertion using the symbols O,
B, and /.

Numeric edited items—the following rules apply:

« The PICTURE character-string can contain the

following symbols:
BPVZ90/,.+-CRDB*'CS

The combinations of symbols allowed are determined

from the PICTURE clause symbol order allowed (see

Figure 4-4), and the editing rules (see the following

section). The following additional rules also apply:

— The string must contain at least one of the
following symbols:

B/Z0,.*+-CRDB

— The number of digit positions repreésented in the
character-string must be in the range of 1 through
18 inclusive.

— The total number of character positions in the
string (including editing characters) must not
exceed 30.

The contents of those character positions
representing digits in standard data format must be

.one of the digits O through 9.

USAGE DISPLAY must be either specified or implied.
Any associated VALUE clause must specifiy a
nonnumeric literal. The literal is treated exactly as
specified; no editing is performed.

IBM Extension:

Boolean items—-the following rule
applies:

e The string must contain a single
character 1.

Data Description Entry
PICTURE 4-37

PICTURE Clause Editing

There are two general methods of performing editing in
a PICTURE clause: by insertion, or by suppression and
replacement.

There are four types of insertion editing: simple
insertion, special insertion, fixed insertion, and floating
insertion. There are two types of suppression and
replacement editing: zero suppression and replacement
with asterisks and zero suppréssion and replacement
with spaces.

The type of editing allowed for an item depends on its
data category. The type of editing and the insertion
symbols that are valid for each category are shown in
Figure 4-8.

Valid Insertion

Category Type of Editing Symbols
Alphabetic Simple insertion B
Numeric None None
Alphanumeric None None
Alphanumeric Simple insertion BO/
edited

Numeric edited Al BO/,
Boolean None None

Figure 4-8. Valid Editing for Each Data Category

4-38

Simple Insertion Editing: This type of editing is valid for
alphabetic, alphanumeric edited, and numeric edited
items. The valid insertion symbols for each category are
shown in Figure 4-8.

Each insertion symbol is counted in the size of the item,
and represents the position within the item where the
equivalent characters will be inserted. Examples of
simple insertion editing are shown in Figure 4-9.

PICTURE Value of Data Edited Result
X(10)/XX ALPHANUMERO1 | ALPHANUMER/01
-X(5)BX(7) ALPHANUMERIC (ALPHA NUMERIC
A(5)BA(5) ALPHABETIC ALPHA BETIC
99,8999,B000 | 1234 01, 234, 000
99,999 12345 12,345

Figure 4-9. Examples of Simple Insertion Editing

Special Insertion Editing: This type of editing is valid
only for numeric edited items.

‘The period is the special insertion symbol; it also
represents the actual decimal point for alignment
purposes.

The period ingertion symbol is counted in the size of the
item, and represents the position within the item where
the actual decimal point will be inserted.

The actual decimal point and the assumed decimal point
(the symbol V) must not both be specified in one
PICTURE character-string.

Fixed Insertion Editing: This type of editing is valid only
for numeric edited items. The following insertion
symbols are used:

‘'CS’ (currency symbol)
+ - CR DB (editing sign control symbols)

« In fixed insertion editing, only one currency symbol
and one editing sign control symbol can be specified
in one PICTURE character-string.

« Unless it is preceded by & + or - symbol, the currency
symbol must be the leftmost character position in the
character-string.

« When either + or - is used as a symbol, it must
represent either the leftmost or rightmost character
position in the character-string.

« When CR or DB is used as a symbol, it must
represent the rightmost two character positions in the
character-string.

« Editing sign control symbols prod_uce results
depending on the value of the data item as shown in
Figure 4-10.

Examples of fixed insertion editing are shown in Figure
4-11.

Editing Symbol Resulting

in PICTURE Data Item Resulting
Character Positive Data Item
String or Zero Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Figuri 4-10. Editing Sign Control Resuits

PICTURE Value of Data Edited Result
999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99- +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
$9999.99CR +123.45 $0123.45
$9999.99DB -123.45 $0123.45DB

Figure 4-11. Examples of Fixed Insertion Editing

Floating Insertion Editing: This type of editing is valid
only for numeric edited items. The following symbois
are used:

'CS" + -

Within one PICTURE character-string, these symbols are
mutually exclusive as floating insertion characters.

Floating insertion editing is specified by using a string of
at least two of the allowable floating insertion symbols
to represent leftmost character positions in which these
characters can be inserted.

The leftmost floating insertion symbol in the
character-string represents the leftmost limit at which
this character can appear in the data item. The
rightmost floating insertion symbol represents the
rightmost limit at which this character can appear.

The second leftmost floating insertion symbol in the
character-string represents the leftmost limit at which
numeric data can appear within the data item. Nonzero
numeric data may replace all characters at or to the right
of this limit.

Any simple insertion symbols (B 0 / ,) within or to the
immediate right of the string of floating insertion
symbols are considered part of the floating
character-string. If the period special insertion symbol is
included within the floating string, it is considered to be
part of the character-string.

Data Description Entry
PICTURE 4-39

In a PICTURE character-string there are two methods to
represent floating insertion editing and to perform
editing:

1. Any or all leading numeric character positions to
the left of the decimal point are represented by
the floating insertion symbol. When editing is
performed, a single floating insertion character is
placed to the immediate left of the first nonzero
digit in the data or of the decimal point, whichever
is farther left. The character positions to the left -
of the inserted character are filled with spaces.

2. All the numeric character positions are represented
by the floating insertion symbol. When editing is
performed, then:

a. If the value of the data is zero, the entire data
item will contain spaces.

b. If the value of the data is nonzero, the result is
the same as in method 1.

To avoid truncation, the minimum size of the PICTURE
character-string must be the sum of:

« The number of character positions in the sending
item

« The number of nonfloating insertion symbols in the
receiving item

« One character for the floating insertion symbol

Examples of floating insertion editing are shown in
Figure 4-12.

PICTURE Value of Data Edited Result
$$$%$.99 123 $.12
$$$9.99 12 $0.12

5,$$$,999.99 -1234.56 $1,234.56
++,+++,999.99 -123456.789 -123,456.78

$$,$$$,$$$.99CR -1234567,
e 0000.00

$1,234,567.00CR

Figure 4-12. Examples of Floating Insertion Editing

Note: A single insertion symbol to the left of a simple or
fixed insertion symbol followed by a string of floating
insertion symbols is not considered part of the floating
character-string. In the following example, the leftmost
+ in the character-string is considered to be a fixed
insertion symbol and not a floating insertion symbol:

+, 44+

Zero Suppression and Replacement Editing: This type of
editing is valid only for numeric edited items.

The symbols Z and * are used for zero suppression.
These symbols are mutually exclusive in the PICTURE
clause.

The following symbols are mutually exclusive as floating
replacement symbols in one PICTURE character-string:

Z*+-°Cs .

Zero suppression editing is specified by using a string of
one or more of the allowable symbols to represent
leftmost character positions in which zero suppression
and replacement editing can be performed.

Any simple insertion symbols { B 0 / ,) within or to the
immediate right of the string of floating editing symbols
are considered part of the string. If the period special
insertion symbol is included within the floating editing
string, it is considered to be part of the character-string.

C

In a PICTURE character-string, there are two ways to
represent zero suppression and perform editing:

« Any or all of the leading numeric character positions

to the left of the decimal point are represented by
suppression symbols. When editing is performed,
any leading zero in the data that appears in the same
character position as a suppression symbol is
replaced by the replacement character. Suppression
stops at the character farthest left that:

— Does not correspond to a suppression symbol.

— Contains nonzero data.

— s the decimal point.

All the numeric character positions in the PICTURE
character-string are represented by the suppression
symbols. When editing is performed and the value of
the data is nonzero, the result is the same as in the
preceding rule. The following rules apply if the value
of the data is zero:
— If Z has been specified, the entire data item
contains spaces.
— If * has been specified, the eritire data item,
except the actual decimal point, contains asterisks.
IBM Extension: The asterisk as a
suppression symbol and the BLANK WHEN
ZERO clause may be specified for the
same entry. The asterisk overrides the
BLANK WHEN ZERO clause if both are
specified.

Examples of zero suppression and replacement editing
are shown in Figure 4-13.

PICTURE Value of Data Edited Result
****.** 0000'00 *lli.ﬁﬁ
27222.272 0000.00
2272.99 0000.00 .00
**¥* 09 0000.00 **¥* 00
22799.99 0000.00 00.00
2,222.27+ +123.456 123.45+
R Ry -123.45 **123.45
FHORERE MER FEL O 412345678.9 12,345,678.90+

$2,222,22Z.ZZCR +12345.67 $ 12,345.67
gB* *** *** **BBDB .12345.67 $ ***12,345.67 DB

Figure 4-13. Examples of Zero Suppression and

Replacement Editing

Data Description Entry
PICTURE

441

http:12,345.67
http:12345.67
http:12,345.67
http:12345.67
http:12,345,678.90
http:Z,ZZZ.ZZ

PROCEDURE DIVISION CONCEPTS

The Procedure Division is required in every COBOL
source program. The Procedure Division consists of
optional Declaratives and procedures that contain the
sections and/or paragraphs, sentences, and statements
that solve a data processing problem.

Execution begins with the first statements in the
Procedure Division, excluding Declaratives. Unless the
logic flow indicates some other order, statements are
executed in the order in which they are presented for
compilation. The end of the Procedure Division and the
physical end of the program is that physical position in a
source program after which no further Procedure
Division statements appear.

Declaratives

The Declarative section provides a method of invoking
procedures that are executed when an exceptional
condition occurs that is to be tested by the COBOL
programmer.

When Declarative sections are specified, they must be
grouped at the beginning of the Procedure Division.
Declarative sections are preceded by the key word
DECLARATIVES and followed by the key words END
DECLARATIVES.

If Declarative sections are specified, the entire
Procedure Division must be divided into sections.

Procedures

A procedure is a paragraph, group of paragraphs, a
section, or a group of sections within the ‘Procedure
Division. A procedure-name is a user-defined name that
identifies a section or a paragraph.

Chapter 5. Procedure Division

A section consists of a section header followed by zero,
one, or more than one successive paragraphs. A
section-header is a section-name followed by the key
word SECTION, an optional priority-number, followed by
a period and a space. Priority-numbers are explained
under Segmentation Feature in Chapter 6. A
section-name is a user-defined word that identifies a
section. A section-name, because it cannot be qualified,
must be unique. A section ends immediately before the
next section header, at the end of the Procedure
Division, or, in the Declaratives portion, at the key
words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a
period and a space. Zero, one, or more than one
successive sentences are allowed. A paragraph-name is
a user-defined word that identifies a paragraph. A
paragraph-name, because it can be qualified, need not
be unique. A paragraph ends immediately before the
next paragraph-name or section header, at the end of
the Procedure Division, or, in the Declaratives portion, at
the key words END DECLARATIVES. If one paragraph
in a program is contained within a section, then all
paragraphs must be contained in sections.

A sentence consists of one or more statements
terminated by a period and a space.

A statement is a syntactically valid combination of words
(identifiers, figurative constants, and so on) and symbols
(literals, relational-operators, and so on) beginning with a
COBOL verb.

An identifier consists of the word or words necessary to
make unique reference to a data item through
qualification, subscripting, or indexing. In any Procedure
Division reference except the class test, if the contents
of an identifier are not compatible with the class
specified through its PICTURE clause, results are
unpredictable.

Note: A level-88 (condition-name) entry, because it is

not a data item, cannot be an identifier. The associated
conditional variable, however, can be an identifier.

Procedure Division Concepts 5-1

PROCEDURE DIVISION ORGANIZATION

The structure of the Procedure Division is shown in the
following formats.

Format 1

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] . .]

[DECLARATIVES,

(section-name SECTION [segment-number] . declarative-sentence

[paragraph-name. [sentence] . .] e) Ce

END DECLARATIVES.]

{section-name SECTION [segment-number] .

[paragraph'name. [sentence] « o] . . .} .« o .

Format 2

PROCEDURE DIVISION [USING data-name-1 [,data-name-2 | . .] .

{paragraph-name. [sentence] o o e } .« ..

Coding Example

SEQUENCE A |8 coB
(PAGE] [ISERIALY

LN 1 P37 s S - [T 7 7} %
oo 10| ProciepuRE prhrsizlon, [[11T [
i 1020 becklarATIvESL | | | BN

1\ [030] skcit'ron|-vame| seiclrzon] [[]]] 1
[oso] pARAGRAPH -NAMES.| | !
) [ose[| PROGRAMMING S TATEMEN|TS. .
[Josolly COMMENTS|

EARAREP b 1Py j

[l lo70] enp, PECi ARATIIVE'S
080| sEC TION-NAME| SEC/TTON].
090 PARAGRAPH-NAMES. | | ;| | | |
¥y oo PROGR AMMIING [STATEMENTS

|
=11

http:P~ioicIE:OlI.iA.1e
http:DIVISI.ON

Categories of Sentences

There are three categories of sentences: conditional
sentences, imperative sentences, and compiler-directing
sentences.

A conditional sentence is a conditional statement,
optionally preceded by an imperative statement,
terminated by a period and a space.

An imperative sentence is an imperative statement,
which may consist of a series of imperative statements,
followed by a period and a space.

A compiler-directing sentence is a single
compiler-directing statement, followed by a period and a
space.

Categories of Statements

Three categories of statements are used in COBOL:
conditional statements, imperative statements, and
‘compiler-directing statements.

A conditional statement specifies that the truth value of a
condition is to be determined, and that the subsequent
action of the object program is dependent on this truth
value. Figure 5-1 lists COBOL conditional statements.

An imperative statement specifies that an unconditional
action is to be taken by the object program. An
imperative statement may also consist of a series of
imperative statements. Figure 5-2 lists COBOL
imperative statements.

A compiler-directing statement causes the compiler to
take a specific action during compilation. Figure 5-3 lists
the COBOL compiler-directing statements.

Sample Procedure Division Statements

FROCEDURE DIVISION.
DECLARATIVES.
ERROR-IT SECTION.
USE AFTER STANDARD
ERROR-ROUTINE.
" IF CHECK-IT = '30' ADD i TO DECLARATIVE-ERROKS.
END DECLARATIVES.
KEGIN-NON-DECLARATIVES SECTION.
100-REGIN-IT.
OFEN INFUT INFUT-DATA OUTPUT REPORT-OUT.
110-READ-IT.)
READ INFUT-DATA RECORD AT END MOVE 'Y' TO EOF-SW.
ADD 1 TO RECORDS-IN.
200-MAIN-ROUTINE.
FERFORM FROCESS~DATA UNTIL EOF-SW = 'Y'.
FERFORM FINAL-REFORT THRU FINAL-REPORT-EXIT.
DISFLAY 'TOTAL RECORDS IN = ' RECORDS-IN.

ERROR FROCEDURE ON INPUT-DATA.

DISFLAY 'DECLARATIVE ERRORS = »>>)> ' DECLARATIVE-ERROKS.

STOF RUN.
FROCESS~DATA.
IF RECORD-ID = 'G’
PERFORM FROCESS-GEN-INFO

E
IF RECORD-CODE = ‘C'"
FERFORM PROCESS-SALES-DATA
ELSE
PERFORM UNKNOWN-RECORD-TYPE.

Decision IF

DELETE....INVALID KEY
READ....AT END
READ...INVALID KEY
REWRITE...INVALID KEY
START...INVALID KEY
WRITE...AT END-OF-PAGE
WRITE...INVALID KEY

Input/Output

Arithmetic ADD...ON SIZE ERROR
COMPUTE...ON SIZE ERROR
DIVIDE...ON SIZE ERROR
MULTIPLY...ON SIZE ERROR

SUBTRACT...ON SIZE ERROR

Procedure Branching PERFORM...UNTIL

STRING...ON OVERFLOW
UNSTRING...ON OVERFLOW

Data Movement

Table Handling SEARCH

Ordering RETURN...AT END

Debug EXHIBIT...CHANGED

Figure 5-1. Conditional Statements and Their Categories

Procedure Division Organization 5-3

Arithmetic ADD!'
COMPUTE!
DIVIDE!
INSPECT(TALLYING)
MULTIPLY?
SUBTRACT!
Data Movement ACCEPT (DATE, DAY, TIME)
INSPECT (REPLACING)
MOVE
STRING?
UNSTRING?

Ending EXIT PROGRAM
STOP RUN

Input/Output ACCEPT (mnemonic)

ACQUIRE

CLOSE

DELETE?

DISPLAY

DROP

OPEN

READ*

REWRITE?

SET®

START?

STOP literal

WRITE®

Without the SIZE ERROR option

2without the INVALID KEY option

3without the ON OVERFLOW option

4without the AT END or INVALID KEY options
Swithout the INVALID KEY or END-OF-PAGE options
SWhen used to modify external switch values

Figure 5-2 (Part 1 of 2). Categories of Imperative
Statements

Ordering MERGE
RELEASE
RETURN
SORT

Procedure Branching ALTER
CALL
EXIT
GO
PERFORM

Table Handling SET

Subprogram Linkage CALL

Debug EXHIBIT
READY TRACE
RESET TRACE
Figure 5-2 (Part 2 of 2). Cataegories of Imperative
Statements
Library COPY
Declarative USE
Documentation ENTER

Figure 5-3. Categories of Compiler-Directing Statements

Categories of Expressions

Two categories of expressions are used in COBOL.
arithmetic expressions and conditional expressions.

Arithmetic expressions are used as operands of
conditional or arithmetic statements. Any arithmetic
expression may be preceded by an unary operator.

A conditional expression causes the object program to
select alternative paths of control, depending on the
value of a truth test. There are two types of conditional
expressions: simple conditions and complex conditions.
Conditional expressions can be specified in the IF,
PERFORM, and SEARCH statements.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used as operands of certain
conditional and arithmetic statements. An arithmetic
expression may consist of any of the following:

1. An identifier described as a_numeric elementary
itemn.

2. A numeric literal.

3. Identifiers and literals, as defined in Items 1 and 2,
separated by arithmetic operators.

4. Two arithmetic expressions, as defined in items 1,
2, and/or 3, separated by an arithmetic operator.

5. An arithmetic expression, as defined in Items 1, 2,
3, and/or 4, enclosed in parentheses.

Any arithmetic expression may be preceded by a unary
operator.

Identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary
items or numeric literals on which arithmetic can be
performed.

Arithmetic Operators

The five binary arithmetic operators and two unary
arithmetic operators shown in Figure 5-4 may be used in
arithmetic expressions. The arithmetic operators are
represented by specific characters that must be
preceded and followed by a space.

Binary
Operator Meaning
+ Addition
Subtraction
* Multiplication
Division
bl Exponentiation
Unary
Operator Meaning
+ Multiplication by + 1;
retains original
sign

- Multiplication by -1;
changes sign

Figure 54. Binary and Unary Operators
Parentheses may be used in arithmetic expressions to
specify the order in which elements are to be evaluated.
Expressions. within parentheses are evaluated first.
When expressions are contained within a nest of
parentheses, evaluation proceeds from the least inclusive
to the most inclusive set.
When parentheses are not used, or when parenthesized
expressions are at the same level of inclusiveness, the
following hierarchical order is implied:
1. Unary operator
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction
When exponentiation is used as an arithmetic operator, the

exponent identifier or literal must be a positive integral
value.

Arithmetic Expressions 55

Parentheses either eliminate ambiguities in logic where
consecutive operations appear at the same hierarchical
level or modify the normal hierarchical sequence of
execution when this is necessary. When the order of
consecutive operations at the same hierarchical level is
not completely specified by parentheses, the order is
from left to right.

Figure 5-5 shows permissible arithmetic symbol pairs.
An arithmetic symbol pair is the appearance of two such
symbols in sequence.

An arithmetic expression may begin only with a left
parenthesis, a unary operator, or a variable (that is, an
identifier or literal). An arithmetic expression may end
only with a right parenthesis or a variable. An arithmetic
expression must contain at least one reference to an
identifier or literal. There must be a one-to-one
correspondence between left and right parentheses in an
arithmetic expression; each left parenthesis is placed to
the left of its corresponding right parenthesis.

Second | Variable |* unary + ()
Symbol | (identifier |/ unary -
or literal) |**
First
Symbol -
Variable
(identifier - p - - p
or literal)
il A] - P P |~
unary + or _ _ -
unary - P
(p - p
) - P -
p indicates a permissible pairing
- indicates that the pairing is not permitted

Figure 5-5. Valid Arithmetic Symbol Pairs

CONDITIONAL EXPRESSIONS

A conditional expression causes the object program to
select alternative paths of control, depending on the
truth value of a test. Conditional expressions can be
specified in IF, PERFORM, and SEARCH statements. A
conditional expression can be specified in simple
conditions and in complex conditions. Both simple and
complex conditions can be enclosed within any number
of paired parentheses; parentheses do not change the
category of the condition.

Simple Conditions

There are five simple conditions: class condition,
condition-name condition, relation condition, sign
condition, and switch-status condition. A simple
condition has a truth value of true or false. When a
simple condition is enclosed in pesired parentheses, its
truth value is not changed.

Class Condition
The class condition determines whether a data item is

alphabetic or numeric.

Format

identifier IS NOT] {::_’:"::;gn c }

The identifier being tested must be described implicitly
or explicitly as USAGE DISPLAY. The identifier is
determined to be numeric only if the contents consist of
any combination of the digits O through 9, with or
without an operational sign.

If the PICTURE of the identifier being tested does not
contain an operational sign, the identifier is determined
to be numeric¢ only if the contents are numeric and an
operational sign is not present. ’

If the PICTURE of the identifier being tested does
contain an operationsl sign, the identifier is determined

'to be numeric only if the item is an elementary item, the

contents are numeric, and a valid operational sign is
present.

Iin the EBCDIC collating sequence, valid embedded
operational signs are hex F and D. For items described
with the SIGN IS SEPARATE clause, valid operational
signs are + (hex 4E) and - (hex 60).

The NUMERIC test cannot be used with an identifier
described either as alphabetic or as a group item that
contains one or more signed elementary items. The
identifier being tested is determined to be alphabetic
only if the contents consist of any combination of the
alphabetic characters A through Z and the space.

IBM Extension: The numeric class test can
also be specified for an identifier
that is defined as USAGE IS
COMPUTATIONAL.

The ALPHABETIC test cannot be used with an identifier
described as numeric.

Figure 5-6 shows valid forms of the class test.

Valid Forms of the Class Test

ALPHABETIC
NOT ALPHABETIC

ALPHABETIC

NOT ALPHABETIC
NUMERIC

NOT NUMERIC

NUMERIC
NOT NUMERIC

Type of Identifier
Alphabetic

Alphanumeric

Zoned Decimal

Figure 5-8. Valid Forms of the Class Test

Condition-Name Condition

A condition-name condition causes a conditional variable
to be tested to determine whether its value is equal to
any of the values associated with the condition-name
(level-88 item).

Format
condition-name

A condition-name is used in conditions as an
abbreviation for the relation condition, because the
specified condition-name is equal to only one of the
values or ranges of values assigned to the specified
conditional variable. The result of the test is true if one
of the values corresponding to the condition-name
equals the current value of the associated conditional
variable.

If the condition-name is associated with a range of
values or with several ranges of values, the conditional
variable is tested to determine whether or not its value
falls within the range(s), including the end values. The
result of the test is true if one of the values
corresponding to the condition-name equals the value of
its associated conditional variable.

The following example illustrates the usage of
condition-names and conditional variables:

02 GRADE-ID PIC 99.
88 PRIMARY-OTHER VALUE 1 THRU 3, 5, 6.

88 PRIMARY-FOUR VALUE 4.
88 JUNIOR-HI VALUE 7 THROUGH 9.
88 SENIOR-HI VALUE 10 THROUGH 12.

GRADE-ID is the conditional variable, PRIMARY-OTHER,
PRIMARY-FOUR, JUNIOR-HI, and SENIOR-HI are
condition-names. For individual records in the file, only
one of the values specified in the condition-name entries
can be present. To determine the grade level of a
specific record, any of the following can be coded:

IF PRIMARY-OTHER...
(which tests for values 1, 2, 3, 5, 6)
IF PRIMARY-FOUR...
(which tests for value 4)
IF JUNIOR-HL...
(which tests for values 7, 8, 9)
IF SENIOR-HIL...
(which tests for values 10, 11, 12)

Depending on the evaluation of the condition-name

condition, alternative paths of execution are taken by the
object program.)

Conditional Expressions 5-7

Relation Condition

A relation condition causes a comparison between two
operands, either of which may be an identifier, a literal,
or an arithmetic expression.

Format

(GREATER THANW
LESS THAN

EQUAL TO

operand-1 IS [NOT]‘ ? operand-2

AV

Operand-1 is the subject of the relation condition;
operand-2 is the object of the relation condition.
Operand-1 and operand-2 may each be an identifier, a
literal, or an arithmetic expression. The relation
condition must contain at least one reference to an
identifier. Except when two numeric operands are
compared, operand-1 and operand-2 must have the
same USAGE.

The relational operator specifies the type of comparison
to be made. Figure 5~-7 shows relational operators and
their meanings. Each relational operator must be
preceded and followed by a space.

Relational Operator Meaning

Greater than or not
greater than

IS [NOT] GREATER THAN
IS [NOT] >

IS [NOT] LESS THAN Less than or not less
Is [NOT] < than

IS [NOT] EQUAL TO
IS [NOT] =

Equal to or not equal to

Figure 5-7. Relational Operators and Their Meanings
IBM Extension:

Boolean Considerations: The
valid types of relation conditions that
can be used with Boolean data items are
EQUAL TO and NOT EQUAL TO.

Rules for numeric and nonnumeric comparisons are
given in-the following paragraphs. If either of the

operands is a8 group item, nonnumeric comparison rules
apply. Figure 5-8 summarizes the permissible

comparisons.
Second Operand

. d FC! | 2R

First Operan BO | GR | AL | AN |ANE [NE[NNL|{NL |2D | BI | PD | AE | IN | IDI
Group (GR) NN | NN | NN| NN [NN| NN [NN [NN

Alphabetic (AL) NN | NN.| NN NN [NN| NN [NN [NN

Alphanumeric (AN) NN | NN | NN| NN [NN| NN |[NN | NN

Alphanumeric edited (ANE) NN |NN | NN NN |[NN|[NN [NN | NN

Numeric edited (NE) NN [NN | NN| NN |[NN| NN |[NN | NN

Figurative constant (FC)!

and nonnumeric literal NN [NN | NN| NN [NN NN

(NNL)

Figurative constant ZERO

(ZR) and numeric literal NN | NN | NN | NN |NN NU |NU | NU | NU [i0?
(NL)

Zoned decimal (ZD) NN | NN NN NN [NN| NN [NU |NU |NU | NU | NU |I0?
Binary (BI) NU [NU [NU | NU | NU [i0?
Packed decimal (PD) NU [NU [NU | NU [NU [10?
Arithmetic expression (AE) NU |[NU |NU [NU | NU
Index-name (IN) 10% |10% [10? | 102 0| Iv
Index data item (IDl) IV | IV
Boolean BO

NN = comparison as described for nonnumeric operands.

NU
10

v
BO

Boolean data items.

comparison as described for numeric operands.
comparison as described for two index-names or index data items.
comparison as described for index data items.

lgc includes all figurative constants except ZERO.
2valid only if the numeric item is an integer.

Figure 5-8. Permissible Comparisons of Operands

Conditional Expressions

59

Comparison of Numeric Operands: For numeric class
operands, algebraic values are compared. The length
(number of digits) of the operands is not significant.
Zero is considered a unique value, regardless of the
sign. Unsigned numeric operands are considered
positive; regardless of their USAGE, comparison of
numeric operands is permitted.

Comparison of Nonnumeric Operands: A comparison of
two nonnumeric operands or of one numeric and one
nonnumeric operand is made with respect to the binary
collating sequence of the character set in use.

When a nonnumeric and a numeric operand are
compared, the following rules apply:

« |If the nonnumeric operand is a literal or an
elementary data item, the numeric operand is treated
as though it were moved to an alphanumeric
elementary data item of the same size, and the
contents of this alphanumeric data item were then
compared with the nonnumeric operand.

« If the nonnumeric operand is a group item, the
numeric operand is treated as though it were moved
to a group item of the same size, and the contents of
this group item were then compared with the
nonnumeric operand. For further discussion of the
rules for alphanumeric and group move operations,
see the MOVE Statement in this chapter.

Numeric and nonnumeric operands may be compared
only when their USAGE, explicitly or implicitly, is the
same. In such comparisons, the numeric operand must
be described as an integer literal or data item;
noninteger literals and data items must not be compared
with nonnumeric operands.

The size of each operand is the total number of
characters in that operand; the size affects the result of
the comparison. There are two kinds of operands to
consider: operands of equal size and operands of
unequal size.

5-10

Operands of Equal Size: Characters in corresponding
positions of the two operands are compared, beginning
with the leftmost character and continuing through the
rightmost character.

If all pairs of characters through the last pair test as

. equal, the operands are considered equal. If a pair of

unequal characters is encountered, the characters are
tested to determine their relative positions in the
collating sequence. The operand containing the
character higher in the sequence is considered the
greater operand.

Operands of Unequal Size: If the operands are of
unequal size, the comparison is made as though the
shorter operand were extended to the right with enough
spaces to make the operands equal in size.

Note: Valid comparisons for index-names and index
data items are discussed under Table Handling in
Chapter 6.

Sign Condition

The sign condition determines whether or not the
algebraic value of a numeric operand is less than,
greater than, or equal to zero.

Format
POSITIVE
operand IS [NOT] { NEGATIVE
ZERO

The operand being tested must be defined as a numeric
identifier or as an arithmetic expression that contains at
least one reference to an identifier.

The operand is POSITIVE if its value is greater than
zero, NEGATIVE if its value is less than zero, and ZERO
if its value is equal to zero. An unsigned operand is
POSITIVE or ZERO.

When NOT is specified, one algebraic test is executed
for the truth value of the sign condition. For example,
NOT ZERO is regarded as true when the operand tested
is positive or negative in value.

Switch-Status Condition
The switch-status condition determines the on or off
status of an UPSI switch.
Format

condition-name
The condition-name must be defined to be associated
with the ON or OFF value of a switch in the
SPECIAL-NAMES paragraph.
The switch-status condition tests the value associated
with the condition-name. The result of the test is true if
the UPSI switch is set to the position corresponding to
condition-name.
Complex Conditions
A complex condition is a condition in which one or more
logical operators act upon one or. more conditions.
Complex conditions include:
« Negated simple conditions
« Combined conditions
« Negated combined conditions
Each logical operator must be preceded and followed by

a space. The logical operators and their meanings are
shown in Figure 5-9.

Logical

Operator Meaning

AND Logical conjunction—the truth value is
true when both conditions are true.

OR Logical inclusive OR-the truth value is
true when either or both conditions are
true.

NOT Logical negation—reversal of truth value
(the truth value is true if the condition
is faise).

Figure 5-9. Logical Operators and Their Meanings

Negated Simple Conditions

A simple condition is negated through the use of the
logical operator NOT.

Format
NOT simple-condition

The simple-condition to be negated can be a class
condition, a condition-name condition, a relation
condition, a sign condition, or a switch-status condition.
The simple-condition may not be negated if the
condition itself contains a NOT.

The negated simple-condition gives the opposite truth
value as the simple condition. That is, if the truth value
of the simple-condition is true, then the truth value of
that same negated simple-condition is false.

Placing a negated simple-condition within parentheses
does not change its truth value. For example, the
following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

Conditional Expressions 5-11

Combined Conditions

Two or more conditions can be logically connected to
form a combined condition.

Format

.. AND -
condition {{_Qﬂ }condltlon } PN

The condition to be combined can be a
simple-condition, a negated simple-condition, a
combined condition, a negated combined condition (that
is, the NOT logical operator followed by a combined
condition enclosed in parentheses). Combinations of the
preceding conditions are specified according to the rules
given in Figure 5-10.

Parentheses are never needed when either AND or OR
(but not both) are used exclusively in one combined
condition. However, parentheses may be needed to find
a final truth value when a combination of AND, OR, and
NOT is used. There must be a one-to-one
correspondence between left and right parentheses with
each left parenthesis to the left of its corresponding
right parenthesis.

Figure 5-10 summarizes the way in which conditions
and logical operators can be combined and
parenthesized. Figure 5-11 illustrates the relationships
between logical operators and conditions C1 and C2
where C1 and C2 are any conditions as defined above.

~

Permissible Position in Conditional Expressions

When Not Leftmost
May Be Immediately

When Not Rightmost
May Be Immediately

)

Condition Element |Leftmost Preceded By: Followed By: Rightmost
simple-condition yes OR OR yes
NOT AND
AND)
(
OR no simple-condition simple-condition no
AND) NOT
. (
NOT yes OR simple-condition no
AND (
(
(yes OR simple-condition no
NOT NOT
AND (
(
) no simple-condition OR yes
) AND

Figure 5-10. Valid Combinations of Conditions, Logical Operators, and Parentheses in a Conditional Expression

Values Values NOT NOT NOT NOT
forC1l forC2 ([C1ANDC2 C10ORC2 (C1ANDC2) C1ANDC2 (C1IORC2 C1O0ORC2
True True True True False False False True
False True False True True True False True
True False False True True False False False
False False False False True False True True

Figure 5-11. How Logical Operators Affect the Evaluation of Conditions

The truth value of a complex condition depends on the
truth values of the simple conditions and negated simple
conditions that make up the complex condition. The
logical operators tell the compiler how to combine these

individual truth values.

Conditional Expressions

5-13

Evaluating Conditional Expressions: If parentheses are
used, logical evaluation of combined .conditions proceeds
in the following order:

1. Conditions within parentheses are evaluated first.

2. Within nested parentheses, evaluation proceeds
from the least inclusive condition to the most
inclusive condition.

If parentheses are not used (or are not at the same level
of inclusiveness), the combined condition is evaluated in
the following order:

1. Arithmetic expressions

2. Simple-conditions in the following order:
a. Relation

. Class

. Condition-name

. Switch-status

. Sign

o

® Qo

3. Negated simple-conditions in the same arder as
item 2.

4. Combined conditions, in the following order:
a. AND
b. OR

5. Negated combined conditions in the following
order:
a. AND
b. OR

6. Consecutive operands at the same
evaluation-order level are evaluated from left to
right

5-14

For example:

A IS NOT GREATER THAN B OR A + B IS EQUAL
TO C AND D IS POSITIVE

This expression is evaluated as if it were enclosed in
parentheses as follows:

(A IS NOT GREATER THAN B) OR (((A+B) IS EQUAL
TO C) AND (D IS POSITIVE)).

The order of evaluation is as follows:

1. (A IS NOT GREATER THAN B) is evaluated, giving
some intermediate truth value; for example, t1.

2. (A + B) is evaluated, giving some intermediate
result; for example, x.

3. (x IS EQUAL TO C) is evaluated, giving some
intermediate truth value; for example, t2.

4. (D IS POSITIVE) is evaluated, giving some
intermediate truth value; for example, t3.

5. (t2 AND t3) is evaluated, giving some intermediate
truth value; for example, t4.

6. (t1 OR t4) is evaluated, giving the final truth value,
and the result of the expression.

Programming Note: Every condition in the expression
will always be evaluated before a final truth value is
determined. The user must ensure that any subscripted
or indexed data items stay within the described bounds
of the table.

Abbrevisted Combined Relation Conditions

When relation-conditions are written consecutively and
no parentheses are used within.the consecutive
sequence, any relation-condition after the first can be
abbreviated by either:

+ Omission of the subject

« Omission of the subject and relational operator
Format

[GREATER THAN 1
LESS THAN
| fanD EQUAL TO .
relation-condition { OR } [M] S objectf . . .
<
t= — P

In any consecutive sequence of relation-conditions, both

forms of abbrevistion can be specified. The abbrevisted
condition is evaluated as if:

« The last stated subject is the missing subject.

» The last stated relational operator is the missing
relational operator.

« The resulting combined condition must comply with
* the rules for element sequence in combined
conditions, as shown in Figure 5-10.

« The word NOT is considered part of the relational
operator in the forms NOT GREATER THAN, NOT >,
NOT LESS THAN, NOT <, NOT EQUAL TO,
and NOT =,

« NOT in any other position is considered a logical
operator, and thus results in a negated
relation-condition.

Figure 5-12 shows examples of abbreviated combined
relation-conditions and their nonabbreviated equivalents.

Abbreviated
.Combined
Relation-Condition

Nonabbreviated Equivalent

A = B AND NOT LESS
THAN C OR D

A NOT GREATER
THANBORC

NOTA=BORC

NOT (A = B OR LESS
THAN C)

NOT (A NOT = B AND
C AND NOT D)

((A = B) AND (A NOT LESS
THAN C)) OR (A NOT LESS
THAN D)

(A NOT GREATER THAN B)
OR (A NOT GREATER
THAN C)

(NOT (A =B) OR (A =C))

NOT ((A = B) OR (A LESS
THAN C))

NOT (((A NOT = B) AND (A
NOT = C)) AND (NOT (A
NOT = D))

Figure 5-12. Abbreviated Combined Relation-Condition

Equivalent

Conditional Expressions 5-15

DECLARATIVES

The Declaratives section provides a method of invoking
procedures that are executed when an exceptional
condition occurs that cannot normally be tested by the
COBOL programmer. Declarative procedures are
provided for the processing of exceptional input/output
conditions and debugging procedures.

Format

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] . .] .

[DECLARATIVES,

{section-name SECTION [segment-number] . declarative-sentence [paragraph-name. [sentence] ...] . e) ...

END DE.CLARATIVES.]

Declarative procedures are written at the beginning of
the Procedure Division in a series of Declarative
sections. Each such section is preceded by a USE
sentence that identifies the function of this section. The
series of procedures that follow specify what actions are
to be taken when the exceptional condition occurs. Each
Declarative section ends with the occurrence of another
section-name followed by a USE sentence, or with the
key words END DECLARATIVES.

The entire group of Declarative procedures is preceded
by the key word DECLARATIVES, written on the next
line after the Procedure Division header; the group is
followed by the key words END DECLARATIVES. The
key words DECLARATIVES and END DECLARATIVES
must each begin in Area A and be followed by a period.
No other text may appear on the same line.

In the Declaratives portion of the Procedure Division,
each section header (with an optional seagment number)
must be followed by a period and a space, and must be
followed by a USE sentence followed by a period and a
space. No other text may appear on the same line.
There are two forms of the USE sentence:

- USE AFTER EXCEPTION/ERROR

- USE FOR DEBUGGING

5-16

The USE sentence itself is never executed; instead, the
USE sentence defines the conditions that will cause
execution of the immediately following procedural
paragraphs, which specify the actions to be taken. After
the procedure is executed, control is returned to the
routine that activated it.

Within a Declarative procedure, except for the USE
statement itself, there must be no reference to any
nondeclarative procedure.

Within a Declarative procedure, no statement may be
executed that would cause execution of a USE
procedure that has been previously invoked and has not
yet returned control to the invoking routine.

An exit from a Declarative procedure is effected by
executing the last statement in the procedure.

In this chapter, only the USE AFTER
EXCEPTION/ERROR procedure is described. The USE
FOR DEBUGGING procedure is described under
Debugging Features in Chapter 6.

EXCEPTION/ERROR Declarative

The EXCEPTION/ERROR Declarative specifies
procedures for input/output exception or error handling
that are to be executed in addition to the standard
system procedures.

Format
EXCEPTION
USE AFTER STANDARD {—ERROR

file-name-1 [, file-name-2 |
INPUT

The words EXCEPTION and ERROR are synonymous
and may be used interchangeably.

File-Name Option

This option is valid for sequential, indexed, relative, and
TRANSACTION files. When this option is specified, the
procedure is executed only for the file(s) named. No
file-name can refer to a sort-merge file. For any given
file, only one. EXCEPTION/ERROR procedure may be
specified. For example, if an input file is specifically
named in one EXCEPTION/ERROR procedure, there
must not also be an EXCEPTION/ERROR procedure for
all INPUT files.

INPUT Option

This option is valid for sequential, indexed, and relative
files. When this option is specified, the procedure is
applicable to all files opened in INPUT mode.

OUTPUT Option

This option is valid for sequential, indexed, and relative
files. When this option is specified, the procedure is
applicable to all files opened in OUTPUT mode.

1-0 Option

This option is valid for sequential, indexed, relative, and

TRANSACTION files. When this option is specified, the.

procedure is applicable to all files opened in 1-O mode.

} PROCEDURE ON¢ OUTPUT

o
EXTEND

EXTEND Option

This option is valid for sequential files only. When this
option is specified, the procedure is applicable to all
files opened in EXTEND mode.

General Considerations

The EXCEPTION/ERROR procedure is executed when
one of the following conditions exists:

« After completing the standard system input/output
error routine.

« Upon recognition of an INVALID KEY or AT END
condition when an INVALID KEY or AT END option
has not been specified in the input/output statement.

« When Status Key 1 is not equal to O following an
1/0 operation.

After execution of the EXCEPTION/ERROR ‘procedure,
control is returned to the statement immediately
following the input/output statement that caused the
error.

The EXCEPTION/ERROR procedures are performed
when an input/output error occurs during execution of a
READ, WRITE, REWRITE, START, DELETE, OPEN,
CLOSE, ACQUIRE, or DROP statement. For example,
these procedures are activated when an input/output
statement fails on a file that is in the open status.

Declaratives 5-17

The EXCEPTION/ERROR procedures are not performed
when the following conditions exist:

« An OPEN statement fails on a file that is not in the
open status.

« A CLOSE statement fails because the file is in the
close status.

« Any input/output statement fails because the file has
not been opened.

Within a Declarative procedure, there must be no
reference to any nondeclarative procedure. In the
nondeclarative portion of the program, there must be no
reference to procedure-names that appear in an
EXCEPTION/ERROR Declarative procedure, except that
PERFORM statements may refer to an
EXCEPTION/ERROR procedure or to procedures
associated with it.

Within an EXCEPTION/ERROR Declarative procedure,
no statement may be executed that causes execution of
a USE procedure that has been previously invoked and
has not yet returned control to the invoking routine.

IBM Extension:
TRANSACTION File Considerations

In an EXCEPTION/ERROR Declarative for
the TRANSACTION file, only the
file-name or I-O options are allowed.
All other options and all rules are the
same as those for any EXCEPTION/ERROR
Declarative for any file.

5-18

Programming Notes

EXCEPTION/ERROR procedures can be used to check
the status key values whenever an input/output error
occurs.

Care should be used in specifying EXCEPTION/ERROR
procedures for any file. Prior to successful completion
of an initial OPEN for any file, the current Declarative
has not yet been established by the object program.
Therefore, if any other 1/0 statement is executed for a
file that has never been opened,no Declarative can
receive control. Howaever, if this file has been previously
opened, the last previously established Declarative
procedure receives control.

For example, an OPEN OUTPUT statement establishes a
Declarative procedure for this file, and the file is then
closed without error. During later processing, if a logic
error occurs, control will go to the Declarative procedure
established when the file was opened OUTPUT.

9

CONDITIONAL STATEMENTS

A conditional statement specifies that a truth value of a
condition is to be determined, and that the subsequent
action of the object program depends on this truth
value. Figure 5-1 gives a list of the conditional
statements.

Only the IF statement is discussed in this section; the
other conditional statements are discussed elsewhere in
this manual.

IF Statement

The IF statement causes a condition to be evaluated,

and provides for alternative actions in the object
program, depending on that value.

Format

IF condition THEN { NEXT SENTENCE

statement-1 ELSE statement-2
ELSE NEXT SENTENCE

Statement-1 or statement-2 can be any one of the
following:

« An imperative statement
« A conditional statement

« An imperative statement followed by a conditional
statement

If the condition tested is true, one of the following
actions takes place:

« Statement-1, if specified, is executed. If statement-1
contains a procedure branching statement, control is
transferred according to the rules for that statement.
If statement-1 does not contain a
procedure-branching statement, the ELSE phrase, if
specified, is ignored, and control passes to the next
executable sentence.

« NEXT SENTENCE, if specified, is executed; that is,
the ELSE phrase, if specified, is ignored, and control
passes to the next executable sentence.

If the condition tested is false, one of the following
actions take place:

« ELSE statement-2, if specified, is executed. If
statement-2 contains a procedure-branching
statement, control is transferred according to the
rules for that statement. If statement-2 does not
contain a procedure-branching statement, control is
passed to the next executable sentence.

o ELSE NEXT SENTENCE, if specified, is executed.
Therefore, statement-1, if specified, is ignored;
control passes to the next executable sentence.

o |f ELSE clause is omitted, control passes to the next
executable sentence.

¢ The ELSE NEXT SENTENCE phrase can be omitted if
it immediately precedes the period that ends the
conditional sentence.

Note: When the ELSE clause is omitted, all statements
following the condition and preceding the period for the
sentence are considered to be part of statement-1.

IBM Extension: THEN is accepted and
ignored if present.

Conditional Statements
IF 5-19

Nested IF Statements

The presence of one or more IF statements within their
initial IF statement constitutes a nested IF statement.

Statement-1 and statement-2 in IF statements can
consist of one or more imperative statements and/or a
conditional statement. If an IF statement appears as
statement-1 or as part of statement-1, it is said to be
nested. Nesting statements is much like specifying
subordinate arithmetic expressions enclosed in
parentheses and combined in larger arithmetic
expressions.

IF statements contained within |IF statements must be
considered as paired IF and ELSE combinations,
proceeding from left to right. Thus, any ELSE
encountered must be considered to apply to the
immediately preceding IF that has not already paired
with an ELSE.

Figure 5-13 shows the possible true/false combinations
for the following nested IF statement:

IF condition-1
statement-1-1
IF condition-2
IF condition-3
statement-3-1
ELSE
statement-3-2
ELSE
statement-2-2
IF eondition-4
IF condition-5
statement-5-1
ELSE
statement-5-2.

True

IF | condition-1 statement-1-1

False

True

IF | condition-2

False

" True

IF | condition-3 31

False

ELSE | 1t-3-2

‘" ELSE statement-2-2

True

IF | condition4

False

True

IF| condition-5 smemen!-5-1 —]

False

ELSE statement-5-2

—— Next sentence in COBOL source program

Figure 5-13. Nested IF Statement-True/False
Combinations

Programming Notes: Because their logic is often
difficult to follow, nested IF statements should,
.wherever possible, be avoided in a COBOL program.
Often a series of simple IF statements can be used in
place of the nested IF statement.

For example, the following series of simple IF
statements give results equivalent to those achieved

using the preceding nested IF statement example:

IF condition-1 NEXT SENTENCE
ELSE CO TO PARA-2.

statement-1-1.

IF condition-2 NEXT SENTENCE
ELSE GO TO PARA-1.

IF condition-3 statement-3-1 GO TO PARA-2
ELSE statement-3-2 GO TO PARA-2.

PARA-1.
statement-2-2.

IF condition-4 NEXT SENTENCE
ELSE GO TO PARA-2.

IF condition-5 statement-5-1
ELSE statement-5-2.

PARA-2.

next-executable-statement.

Notice that Figure 5-13 also illustrates the logic flow for
the preceding series of simple IF statements.

INPUT/OUTPUT STATEMENTS

COBOL input/output statements transfer data to and
from files. In COBOL, the unit of data made available to
the program is a record, and the COBOL programmer
need concern himself only with such records. Provision
is automatically made for such operations as the
movement of data into buffers and/or internal storage,
validity ch'ecking, error correction (when feasible), and
unblocking and blocking of records.

The description of the file in the Environment Division
and the Data Division governs which input/output
statements are allowed in the Procedure Division.

There is special processing for deleted records (deleted
records are valid only for relative and index files), and
there are certain restrictions when using deleted records.
For a full explanation of the limitations associated with
deleted record processing see Indexed and Relative File
Contents in Chapter 8.

Common Options

There are several options common to input/output
statements. These are: status key, INVALID KEY
condition, INTO/FROM identifier option, and current
record pointer. The description of these options
precedes the descriptions of the individual statements.

Status Key—General Considerations

If the FILE STATUS clause is specified in the
file-control entry, a value is placed in the specified
status key (the 2-character data item named in the FILE
STATUS clause) during execution of any request on that
file; the value indicates the status of that request. The
value is placed in the status key before execution of any
EXCEPTION/ERROR Declarative or INVALID KEY /AT
END option associated with the request.

The first character of the status key is known as status
key 1; the second character is known as status key 2.
Combinations of possible values and their meanings are
shown in Figure 5-14 and Appendix H.

Input/Output Statements
Common Options 5-21

IBM Extension:

TRANSACTION File Extended File
Status Key: The extendéd file
status key for a TRANSACTION file is
four characters long. Characters 1 and
2 contain the ICF major return code;
characters 3 and 4 contain the ICF
minor return code. ICF return codes
are described in the ICF Reference
Manual.

Status Status
Key 1 Key 2 Meaning

0] Successful completion
No further information
1 Initial READ from a REQUESTOR (IBM Extension)

1 0 At end of file (no outstanding invites)

2 Invalid key

Sequence error

Duplicate key when duplicates are not allowed
No record found

Boundary violation—indexed or relative file

pWON=

3 Permanent error
No further information
4 Boundary violation—sequential file

o

9 Other errors (IBM Extensions)

Invalid update, add, or output operation

Undefined access type

Logic error {I/0 to unopened file, file locked, already OPEN, already CLOSED, or invalid
operation)

No current record pointer for. I/0O request

Invalid or incomplete file information

Invalid Op Code

Undefined

STOP requested by system operator

Acquire operation failed, terminal not in standby mode

Terminal operator released work station with INQUIRY key

SRT program released its requestor, 1/0 rejected

Acquire operation failed, either nperator signed on is unauthorized or program is
unauthorized to use resources

Input data rejected, buffer too small

Acquiré operation failed, resource is unavailable or currently owned by another program

Write operation failed, input data already received by Data Management

Temporary error (error during session)

N -0

TMOO»ONO N

2T IO

Figure 5-14. Status Key Values and Meanings

5-22

INVALID KEY Condition

The INVALID KEY condition can occur during execution
of a START, READ, WRITE, REWRITE, or DELETE
statement. When the INVALID KEY condition is
recognized, the actions are taken in the following order:

1. If the FILE-STATUS clause is specified in the
file-control entry, a value is placed into the status
key to indicate an INVALID KEY condition (see
Figure 5-14).

2. If the INVALID KEY option is specified in the
statement causing the condition, control is
transferred to the INVALID KEY
imperative-statement. Any EXCEPTION/ERROR
declarative procedure specified for this file is not
performed.

3. If the INVALID KEY option is not specified, but an
EXCEPTION/ERROR declarative procedure is
‘specified for the file, the EXCEPTION/ERROR
procedure is executed.

When an INVALID KEY condition occurs, the
input/output statement that caused the condition is
unsuccessful. If the INVALID KEY option is not
specified for a file, an EXCEPTION/ERROR procedure
must be specified.

INTO/FROM Identifier Option

This option is valid for READ, REWRITE, and WRITE
statements. The identifier specified must be the name
of an entry in the Working-Storage Section, the Linkage
Section, or of a record description for another previously
opened file. Record-name/file name and identifier must
not refer to the same storage area. In both options, an
implicit move is executed according to MOVE statement
rules without the CORRESPONDING option.

The following illustrates the use of the INTO/FROM
identifier option in an input/output statement:

READ file-name RECORD INTO identifier.

WRITE record-name FROM identifier.

Current Record Pointer

The current record pointer identifies which record will be
accessed by a sequential input request. The record
identified depends on the statement being executed.
The OPEN, READ, and START statements position the
current record pointer as follows:

« The OPEN statement positions the current record
pointer at the first record in the file.

« For a sequential READ statement, the following
considerations apply:

— If an OPEN or a START statement positioned the
current record pointer, the record identified by the
current record pointer is made available.

— If a previous READ statement positioned the
current record pointer, the current record pointer is
updated to point to the next existing record in the
file; that record is then made available.

« The START statement positions the current record
pointer at the first record in the file that satisfies the
implicit or explicit comparison specified in the START
statement.

The setting of the current record pointer is affected only
by the OPEN, START, RETURN, and READ statements.
The concept of the current record pointer has no
meaning for random access files, TRANSACTION files,
or output files.

The current record pointer is not used for random
retrieval of input records or for output files.

Input/Output Statements
Common Options 5-23

ACCEPT Statement

The function of the ACCEPT statement is to obtain low
volume data from the device assigned as the system
input device (SYSIN) or from a display station or
SSP-ICF session. ACCEPT statement execution causes
the transfer of data into the specified identifier. There is
no editing or error checking of the incoming data. The
formats of the ACCEPT statement are as follows:

Format 1
ACCEPT identifier [FROM mnemonic-name]
Format 2

DATE
ACCEPT identifier FROM { DAY
TIME

Format 3

ACCEPT identifier-1 FROM mnemonic-name

[FOR {ifientifier-Z}]
— — Uliteral

5-24

Format 1 Considerations

This format is used to transfer data from an input device
to the identifier. The identifier may be a group item, an
elementary alphabetic or alphanumeric item, or a numeric
data item with USAGE DISPLAY or USAGE
COMPUTATIONAL.

If the FROM option is omitted, the system input device
(requesting display station or invoking procedure) is
assumed. If the program is invoked by a procedure, a
record is read from the procedure for each ACCEPT
statement until a /* is encountered. If the records in the
procedure are exhausted or the program is not invoked
by a procedure, the requesting display station is used.
When the FROM option is specified, mnemonic-name
must be associated with an input/output device that is
specified in the SPECIAL-NAMES paragraph. The
input/output device can be the display station console
(REQUESTOR) or the system operator's console
(SYSTEM-CONSOLE). If mnemonic-name is
REQUESTOR and the job is entered by way of the
JOBQ Command, the system operator's console is used.

When the device is the system input device, the
following rules apply:

« An input record size of 120 characters is assumed.

o |f identifier is longer than 120 characters, characters

beyond the length of identifier are truncated.

¢ If identifier is less than 120 characters long, succeeding

input records are read until the storage area of
identifier is filled. If identifier is not an exact multiple
of 120 characters, that part of the last input record
that does not fit into identifier is truncated.

When the device is the display station keyboard, the
same rules apply as when the device is the system input
device except that the size is 60 characters.

The source of input data is dependent upon the type of
program initiation as follows:

Method of Mnemonic-name Mnemonic-name

Program Associated with Associated with Data Source when FROM

Initiation SYSTEM-CONSOLE | REQUESTOR Option Omitted

JOBQ System Console System console Data from next record in the
procedure. If there is no data in
the procedure, the input comes
from the system console.

SRT System Console Display Station Display Station

MRT Sysfem Console System Console Can produce undesirable
results. Specify the FROM
option.

Input from the device can be terminated by entering a
record beginning with /*. The /* is moved into the
ACCEPT identifier with blank padding or truncation on
the right. Any subsequent attempt to ACCEPT from the
device is in error and execution will terminate. If the
identifier is longer than the device size and the /* is
entered for a succeeding input record, the identifier is
padded to the right with blanks and the /* is treated as
input to the next ACCEPT from the device.

Format 2 Considerations

This format is used to transfer the system information
(program date and system time) to the identifier, using
the rules for the MOVE statement without the
CORRESPONDING option. Identifier can be a group
item, or an elementary alphanumeric, alphanumeric
edited, zoned decimal, packed decimal, binary, or
numeric edited item.

DATE, DAY, and TIME implicitly have USAGE DISPLAY.
DATE has the implicit PICTURE 9(6). The sequence of
data elements from left to right is: two digits for year of
century, two digits for month of year, two digits for day
of month. Thus July 4, 1976 is expressed as 760704.
DAY has the implicit PICTURE 9(5). The sequence of
data elements from left to right is: two digits for year of
century, three digits for day of year. Thus, July 4, 1976
is expressed as 76186. TIME has the implicit PICTURE
9(8). The sequence of data elements from left to right
is: two digits for hour of day, two digits for minute of
hour, two digits for second of minute, two digits for
hundredths of second. Thus, 2:41 p.m. is expressed as
14410000. The time returned is the time when the
ACCEPT statement executed.

Note: Time is always rounded up to the nearest second;
therefore, a hundredths of a second is always expressed
as 00.

The date is the last date specified in OCL for this job
stream, or the current program date if no date has been
specified in OCL since sign-on. If the program is an
MRT, the data is the system date as of job initiation
unless a different date is'explicitly specified in the OCL
for this job stream.

IBM Extension:
Format 3 Considerations

This format transfers data from the
local data area or from the attribute
record to identifier-1.

If the mnemonic-name is associated with
LOCAL-DATA, the 256-byte local data
area associated with the requestor
terminal is moved into identifier-1.

Input/Output Statements 5-25

If mnemonic-name ‘is associated with
ATTRIBUTE-DATA, identifier-1 must
describe an attribute data record.
(Atrribute data records are described
under SPECIAL-NAMES paragraph in
Chapter 7.) The attributes of the
specified symbolic ID are moved into
identifier-1. The TRANSACTION file
must be open for this request.

The move into identifier-1 for both
LOCAL-DATA and ATTRIBUTE-DATA takes
place according to the rules for the
MOVE statement for an alphanumeric
group move without the CORRESPONDING
option.

The FOR option is allowed only when
mnemonic-name is associated with either
ATTRIBUTE-DATA or LOCAL-DATA. Literal
or the contents of identifier-2 is the
symbolic ID of the display station or
SSP-ICF session for which data is
retrieved. A symbolic ID of blanks (or
none specified) retrieves the
attributes or local data from the
requestor for which an input/output
operation was most recently performed.
In a program that has no TRANSACTION
file, the local data is retrieved from
the requestor for SRT batch jobs. The
ID must be a two-character alphanumeric
data item or literal.

Note: 1If the program is an MRT
program, there is a local data area for
each requestor and an additional local
data area for the program. Prior to
the successful completion of the first
requestor's first input/output
operation, this MRT lacal data area can
be accessed. If no TRANSACTION file
was specified, a symbolic ID of blanks
returns the MRT's local data area.

If the mnemonic-name is associated with

either SYSTEM-CONSOLE or REQUESTOR, the
FOR option is not valid. '

5-26

ACQUIRE Statement

The ACQUIRE statement attaches a
display station or SSP-ICF session to
the TRANSACTION file.

Format

literal

ACQUIRE {identifier

} FOR file-name

The value of literal or identifier
specifies the symbolic identification
of a display station or SSP-ICF session
that is to be associated with
file-name. In order to be acquired, a
display station must be in stand-by
mode. In order to acquire an SSP-ICF
session, it must be specified in the .
OCL SESSION statement for the job step.

If literal is specified, it must be a
two-character alphanumeric literal. If
identifier is specified, it must refer
to a two-character alphanumeric data
item.

File-name must refer to a file whose
organization is TRANSACTION.

CLOSE Statement

The CLOSE statement terminates the processing of files
with optional lock.

Format

REEL
UNIT

WITH {&stmg

WITH NO REWIND
FOR REMOVAL

{onir

CLOSE file-name-1

d

-

WITH NO REWIND 7

LOCK

REEL
UNIT

NO REWIND
WITH {LOCK }

FOR REMOVAL
, file-name-2

Each file-name designates a file upon which the CLOSE
statement is to operate. The files need not have the
same organization or access and must not be sort or
merge files..

A CLOSE statement can be executed only for a file in an
open mode. After successful execution of a CLOSE
statement, the record area associated with the file-name
is no longer available. Unsuccessful execution of a
CLOSE statement leaves availability of the record data
undefined.

After a CLOSE statement is successfully executed for
the file, an OPEN statement for the file must be
executed before any other input/output statement
(except a SORT/MERGE statement with the USING or
GIVING option) can refer explicitly or implicitly to the
file. If the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when the CLOSE statement is executed. If the file is in
an open status and the execution of a CLOSE statement
is unsuccessful, the EXCEPTION/ERROR procedure (if
specified) for this file is executed. If a CLOSE statement
is not executed for an open file before a STOP RUN
statement for this program is executed, results are
unpredictable.

~

Specification of the lock option ensures that the file

-cannot be opened again in the program.

The REEL/UNIT option, the FOR REMOVAL option, and
the NO REWIND option are treated as comments.

For special considerations concerning spooled printer
files, see Files in Chapter 8.

IBM Extension:
TRANSACTION File Considerations

If a CLOSE statement is executed for
the TRANSACTION file, no other
statements that reference that file can
be executed. A TRANSACTION file is
locked when closed, whether or not the
WITH LOCK option is specified.

Programming Note: For TRANSACTION
files, the WITH LOCK option of the
CLOSE statement should be specified for
documentation.

Input/Output Statements

ACQUIRE—CLOSE 5-27

DELETE Statement

The DELETE statement logically removes a record from
an indexed or relative file. The DELETE statement can’
be successfully executed only on a system configured
with extended data management.

Format

DELETE file-name RECORD [I NVALID KEY imperative-statement]

When the DELETE statement is executed, the associated
file must be opened in I-O mode. The file also must be
created as delete-capable. This is done by specifying
DFILE-YES when the file is created. (For more
information on creating delete-capable files, see FILE
Statement in the SSP Reference Manual.) File-name
must be defined in an FD entry in the Data Division and
must be the name of an indexed or relative file. After
successful execution of a DELETE statement, the record
is logically removed from the file and can no longer be
accessed. For indexed files, the space that the record
occupied cannot be used until the file is copied or
reorganized. Execution of the DELETE statement does
not affect the contents of the record area associated
with file-name.

If the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when the DELETE -statement is executed.

Sequential Access Mode

For a file in sequential access mode, the last prior
input/output statement must be a successfully executed
READ statement. When the DELETE statement is
executed, the system logically removes the record
retrieved by that READ statement. The current record
pointer is not affected by execution of the DELETE
statement.

The INVALID KEY option must not be specitied for a

file in sequential access mode. An EXCEPTION/ERROR
procedure may be specified.

5-28

Random or Dynamic Access Mode

In random or dynamic access mode, DELETE statement
execution resuits depend on whether the file
organization is indexed or relative.

Indexed Files: When the DELETE statement is executed
in random or dynamic access mode, the system logically
removes the record identified by the contents of the
RECORD KEY data item. If the file does not contain
such a record, an INVALID KEY condition exists.

Relative Files: When the DELETE statement is executed
in random or dynamic access mode, the system logically
removes the record identified by the contents of the
RELATIVE KEY data item. If the file does not contain
such a record, an INVALID KEY condition exists.

Programming Notes

The DELETE statement logically removes the record
from the file. For relative files, the space is then
available for a new record with the same RELATIVE KEY
value. For indexed files, a new record with the same
RECORD KEY value can then be added. This record is
not written in the space vacated by the deleted record.
The space vacated by the deleted record is unavailable
until the file is copied or reorganized.

DISPLAY Statement

The DISPLAY statement transfers low-volume data to
an output device.

Format 1
identifier-1 , identifier-2
M{Iiteram } [,Iiteral-2]
Format 2

identifier-1 identifier-21] .
DisPLAY {literal-1 } [literal-2]
literal-3]
identifier-3
Format 1 Considerations

The DISPLAY statement transfers the contents of each
operand to the output device in the left-to-right order in
which the operands are listed. When a DISPLAY
statement is executed, the data contained in the sending
field is transferred to the output device. The size of the
sending field is the total character count of all operands
listed. If the total character count is less than the device
maximum character count, the remaining rightmost
characters are padded with spaces. If the total character
count exceeds the maximum, as many records are
written as are needed to display all operands. Any
operand being printed when the end of a record is
reached is continued in the next record.

IBM Extension: Identifiers described as
USAGE COMPUTATIONAL-3 or USAGE
COMPUTATIONAL-4 are converted to zoned
decimal. No other items require
conversion. Signed noninteger numeric
literals are allowed.

. [UPON mnemonic-name]

UPON mnemonic-name

Signed values in numeric fields cause the last character
to show both the sign and number. For example, if
SIGN WITH SEPARATE CHARACTER is not specified
and two numeric items have the values -34 and 34,
they are displayed as 3M and 34, respectively. If SIGN
WITH SEPARATE CHARACTER is specified, a + or a -
sign is displayed as either leading or trailing, depending
on how the number was specified. If a figurative
constant is specified as one of the operands, only a
single occurence of the figurative constant is displayed.

If the UPON option is omitted, data is written to the
current SYSLIST device. When the UPON option is
specified, mnemonic-name must be associated in the
SPECIAL-NAMES paragraph with either the display
station console (REQUESTOR) or the system operator's
console (SYSTEM-CONSOLE). The maximum logical
record size is assumed for each device as follows:

Maximum Logical
Device Record Size
SYSLIST
Display station
System console

120 characters
75 characters
75 characters

Input/Output Statements
DELETE-DISPLAY 5-29

The location of the output data is dependent upon the
type of program initiation as follows:

Mnemonic-name

Mnemonic-name

Method of Associated with Associated with - UPON Option
Initiation SYSTEM-CONSOLE REQUESTOR Omitted

Current SYSLIST
JoBQ System console System console device

Current SYSLIST
SRT System console Display station device

. Current SYSLIST
MRT System console System console device
IBM Extension: DROP Statement

Format 2 Considerations

This format of the DISPLAY statement is

applicable when mnemonic-name is
associated with the system name
LOCAL-DATA. For a description of the
LOCAL-DATA area, see the LOCAL
statement in the chapter on OCL
statements in the System Support
Reference Manual.

Literal-1 or the content of

identifier-1 is written to the 256-byte

local data area associated with the
requestor.

Literal-3 or the contents of

identifier-3 must be the valid symbolic

ID of an attached requestor.
Identifier-3 must be a two-character

alphanumeric data item; literal-3 must

be a two-character nonnumeric literal.

5-30

The DROP statement releases a display
station or SSP-ICF session from its
association with the TRANSACTION file.

Format

literal
identifier

DROP { EROM file-name

The value of literal or identifier
specifies the symbolic identification
of the attached display station or
SSP-ICF session that is to be released.

If literal is specified, it must be a
two-character alphanumeric literal. If
identifier is specified, it must refer
to a two-character alphanumeric data
item.

The DROP statement can only be used
with a TRANSACTION file. At the end of
program execution, all attached display
stations and SSP-ICF sessions are
implicitly released.

OPEN Statement
The OPEN statement initiates the processing of files. It
also performs checking and/or writing of labels, and

other input/output operations. The format of the OPEN
statement is as follows:

Format 1-Sequential Files

REVERSED

OPEN

1-O file-name-5 [,file-name-ﬁ] e

(EXTEND file-name-7 [,file-name-8] “ e

Format 2-Indexed and Relative Files

INPUT file-name-1 [,file-name-2 | . ..
OPEN {4 QUTPUT file-name-3 [, file-name4 | . . .
-0 file-name-5 [, file-name-6].--

Format 3-Transaction Files

OPEN |-O file-name-1

Each file-name designates a file upon which the OPEN
statement is to operate. The files specified need not
have the same organization or access. Each file-name
must be defined in an FD entry in the Data Division, and
must not name a sort or merge file. The FD entry must
be equivalent to the information supplied when the file
was defined.

The successful execution of an OPEN statement
determines the availability of the file and results in that
file being in the open mode. Before successful
execution of the OPEN statement for a given file, no
statement, except for a SORT or MERGE statement with
the USING or GIVING option, that refers explicitly or
implicitly to that file can be executed. The successful
execution of the OPEN statement makes the associated
record area available to the program; it does not obtain
or release the first data record.

¢ . " REVERSED 3
INPUT file-name-1 [WITH NO REWIND] [,ﬁle-name 2 [WITH NO REWIND]] oo

OUTPUT file-name-3 [WITH NO REWIND] [,file-name-4 [wiTH NO REWIND]]

At least one of the options (INPUT, OUTPUT, I-0, or
EXTEND) must be specified. More than one file-name
may be specified in each option. The INPUT, OUTPUT,
1-0, or EXTEND options may appear in any order.

The INPUT option permits opening the file for input
operations. The 1-O option permits opening the file for
both input and output operations. The |-O option may
be specified only for mass storage or TRANSACTION
files. The INPUT and 1-O options must not be specified
when the file has not been already created.

Input/Output Statements
DROP—-OPEN 5-31

The OUTPUT option permits opening the file for output
operations. This option can only be specified when the
file is being created. The OUTPUT option must not be
specified for a file that contains records, or that did
contain records that have been deleted.

Programming Note: The FILE OCL statement for an
output file must contain a DISP-NEW parameter for
proper processing.

The EXTEND option is valid only for sequential files and
permits opening the file for output operations. It is
discussed in the following section on Sequential Files.

A file may be opened for INPUT, OUTPUT, 1-0, or
EXTEND. in the same program. After the first OPEN
statement execution for a given file, each subsequent
OPEN statement execution must be preceded by a
successful CLOSE file statement execution without the
LOCK option.

if the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when the OPEN statement is executed.

The REVERSED option is treated as a comment.

The NO REWIND option is treated as a comment.

Format 1—Sequential Files

The EXTEND option permits opening the file for output
operations. When an OPEN EXTEND statement is
executed, the file is prepared for the addition of records
immediately following the last record in the file.
Subsequent WRITE statements add records as if the file
had been opened in OUTPUT mode. The EXTEND
option can be specified when a file is being created. It
can also be specified for a file that contains records, or
that did contain records that have been deleted.

The EXTEND option has no meaning for a printer file,
and it is ignored.

5-32

Execution of an OPEN INPUT or OPEN -0 statement
sets the current record pointer to the first record
existing in the file. If no records exist in the file, the
current record pointer is set so that execution of the
first READ statement resuits in an AT END condition.

For an input file, if SELECT OPTIONAL is specified in
the file-control entry, OPEN statement execution causes
the object program to check for the presence or
absence of this file. If the file is absent, the first READ
statement for this file causes the AT END condition to
occur.

For special considerations concerning spooled printer
files, see Files in Chapter 8.

Format 2—indexed and Relative Files

Execution of an OPEN INPUT or OPEN |-O statement
sets the current record pointer to the first record
existing in the file; the record with the lowest record key
value (indexed file) or lowest relative record number
(relative file) is considered to be the first record in the
file. If no records exist in the file, the current record
pointer is set so that the first Format 1 READ statement
executed results in an AT END condition.

IBM Extension:
Format 3-TRANSACTION Files

A TRANSACTION file must be opened with
the I-0 phrase.

A TRANSACTION file can be opened only
once in a program.

-

READ Statement

The READ statement makes a record available to the
object program before execution of any statement
following the READ statement.

For sequential access, the READ statement makes
available the next logical record from a disk file. For
random access, the READ statement makes available a
specified record from a disk file. When the READ
statement is executed, the associated file must be
opened in the INPUT or 1-O mode. The formats of the
READ statement are as foliows:

Format 1-Sequential Access (Sequential Files)

READ file-name RECORD [INTO identifier] [AT END imperative-statement]

Format 2-Sequential Access (Relative and Indexed Files)

READ file-name [NEXT] RECORD [INTO identifier]

[AT END imperative—statement]

Format 3—Random Access (Relative Files)

READ file-name RECORD [INTO identifier] [INVALID KEY imperative-statement]

Format 4-Random Access (Indexed Files)
READ file-name RECORD [INTO identifier]

[K_E_Y IS data-name]

[INVALID KEY imperative-statement]

Format 5-Sequential Access (TRANSACTION File)

READ file-name RECORD

[INTO identifier-1] [TERMINAL IS {ide"ﬁﬁe"z}]

literal-1

[N_Q DATA imperative-statement-ﬂ

[AT END imperative-statement-Z]

Input/Output Statements
READ

5-33

File-name must be defined in a Data Division FD entry,
and must not name a sort or merge file. If more than
one record description entry is associated with
file-name, these records automatically share the same
storage area; that is, they are implicitly redefined.
Before a READ statement is executed, the storage area
is filled with blanks.

After a READ statement is executed, only those data
items within the range of the current record are
replaced; data items stored beyond that range are
blanks. Figure 5-15 illustrates this concept. If no data
items are defined, the entire record will be blank.

The FD entry for a TRANSACTION file is:
FD INPUT-FILE LABEL RECORDS OMITTED.
01 RECORD-1 PICTURE X(30).
01 RECORD-2 PICTURE X(20).

After RECORD-1 is read, the input area contains:
ABCDEFGHIJKLMNOPQRSTUVWXYZ1234

If RECORD-2 consists of:
01234567890123456789

After RECORD-2 is read, the input area contains:
01234567890123456789pbbbbbbbbb

(Characters in the input area following RECORD-2 are
blank.)

Figure 5-15. READ Statement with Multiple Record
Descriptions

5-34

The AT END or INVALID KEY option must be specified
if no implicit or explicit EXCEPTION/ERROR procedure
is specified for this file.

If the FILE STATUS clause is specified in the
file-control entry, the associated status key is updated
when the READ statement is executed.

Following unsuccessful READ statement execution, the
contents of the associated record area and the position
of the current record pointer are undefined.

INTO Identifier Option: The INTO identifier option makes
a READ statement equivalent to:

READ file-name RECORD.
MOVE record-name TO identifier.

After successful execution of the READ statement, the
current record becomes available both in the
record-name and identifier.

When the INTO identifier option is specified, the current
record is moved from the input area to the identifier
area according to the rules for the MOVE statement
without the CORRESPONDING option. Any subscripting
or indexing associated with identifier is evaluated after
the record has been read and immediately before it is
transferred to identifier.

The INTO identifier option must not be specified when
the file contains records of various sizes, as indicated by
their record descriptions.

Sequential Access—Format 1 and Format 2

Formats 1 and 2 must be used for all files in sequential
access mode. Execution of a Format 2 READ statement
makes available the next logical record from the file.

The record that is considered next depends upon the file
organization.

NEXT RECORD Option: The next record is the
succeeding logical record in key sequence. For indexed
files, the key sequence is the ascending values of the
current key of reference. For relative files, the key
sequence is the ascending values of relative record
numbers for records that exist in the file.

Before the READ statement is executed, the current
record pointer must be set by a successful OPEN,
START, or READ statement. When the READ statement
is executed, the record indicated by the current record
pointer is made available, if it is still accessible through
the path indicated by the current record pointer. If the
record is no longer accessible (for example, as a result
of deletion of the record), the current record pointer is
updated to indicate the next existing record in the file,
and that record is made available.

For files in sequential access mode, the NEXT option
can, but need not, be specified.

If the RELATIVE KEY clause is specified for sequentially
accessed relative files, READ statement execution
updates the RELATIVE KEY data item to indicate the
‘relative record number of the record being made
available.

AT END Condition: If no next logical record exists in the
file when the READ statement is executed, an AT END
condition occurs, and READ statement execution is
unsuccessful. The following actions are taken, in the
following order:

1. If the FILE STATUS clause is specified, the status
key is updated to indicate an AT END condition.

2. If the AT END option is specified, control is
transferred to the AT END imperative-statement.
Any EXCEPTION/ERROR procedure for this file is
not executed.

3. If the AT END option is not specified, then any
EXCEPTION/ERROR procedure for this file is
executed.

4, If neither the AT END nor the USE option is
specified, a diagnostic message is issued.

When the AT END condition is recognized, a READ
statement for this file must not be executed without first
executing a successful CLOSE statement followed by a
successful OPEN statement for this file.

When the AT END condition is recognized, a sequential
access READ statement for this file must not be

executed without first executing one of the following:

« A successful CLOSE statement followed by a
successful OPEN statement

« A successful START statement for this file

« A successful random access READ statement for this
file

Input/Output Statements
READ 5-35

Random Access—Format 3 and Format 4

Format 3 or 4 must be specified for indexed and relative
files in random access mode and also for files in the
dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file
organization as explained in following sections.

Files with Relative Organization: Execution of a Format 3
READ statement sets the current record pointer to the
record whose relative record number is contained in the
RELATIVE KEY data item and makes that record
available. If the file does not contain such a record, the
INVALID. KEY condition exists, and READ statement
execution is unsuccessful. The KEY option must not be
specified for relative files.

Files with Indexed Organization: Execution of a Format 4
READ statement causes the value of the key of
reference to be compared with the value of the
corresponding key data item in the file records until the
first record having an equal value is found. The current
record pointer is positioned to this record, which is then
made available. If no record can be identified, an
INVALID KEY condition exists, and READ statement
execution is unsuccessful.

If the KEY phrase is specified on a Format 4 READ
statement, the statement is flagged as unsupported. No
code is.generated for the phrase. The System/34 does

not support multiple keys for an indexed file. Therefore,
specification of the key option is redundant, because the
index file key must be specified with the RECORD KEY
clause in the file-control entry in the Environment
Division.

The RECORD KEY is the key of reference for a request.
When dynamic access is specified, the RECORD KEY is
also used as the key of reference for subsequent
executions of sequential READ statements until a
different key of reference is established.

5-36

Dynamic Access

For files with indexed or relative organization, dynamic
access mode may be specified in the file-control entry.
In dynamic access mode, either sequential or random
record retrieval can be specified, depending on the
format used.

If no more logical records exist in the file when the

READ statement is executed, an AT END condition

occurs. The same actions are taken as for files with
sequential organization.

Format 2 with the NEXT option must be specified for
sequential retrieval. All other rules for sequential access
apply.

Format 3 or 4 must be specified for random retrieval.
All other rules for random access apply.

Each successful sequential or random READ updates the
current record pointer to the next logical record.

When DYNAMIC or SEQUENTIAL ACCESS to indexed
files is specified, records added by a user program or
IBM-supplied utility cannot be sequentially or randomly
retrieved until a keysort has been performed by SSP, unless
the (OCL) FILE statement contains an IFILE-YES
parameter. For information concerning when keysorts

are performed, see Key Sorting for Indexed Files in the
Concepts and Design Guide.

C

IBM Extension:
TRANSACTION Files-Format 5

Format 5 must be used for the
TRANSACTION file. Execution of the
Format 5 READ statement makes a record
available from the TRANSACTION file.

The TRANSACTION file must be open in
the I-O mode at the time the READ
statement is executed.

Upon successful execution of the READ
statement, the terminal-id and function
key fields of the CONTROL-AREA, if
present, are filled in.

TERMINAL Option

The record to be made available by a
READ statement is determined as
follows:

e If the TERMINAL option is specified,
the data record is made available
from literal-1 or the contents of
identifier-2 when identifier-2-
contains a value other than blanks.
Literal-1 or the nonblank contents of
identifier-2 must be the symbolic ID
of an attached display station or
SSP-ICF session. Identifier-1 must
be two-character alphanumeric;
literal-1 must be two-character .
nonnumeric. When either literal-1
or the contents of identifier-2 are
blank, the READ statement executes as
though the TERMINAL option were
omitted.

e If the TERMINAL option is omitted,
the defaults are:

— If a single display station or
SSP-ICF session is attached to the
file, the default is that display
station or SSP-ICF session.

- If multiple display stations and/or
SSP-ICF sessions are attached to
the file, there is no default. The
data record made available is the
first record input from any
attached display station or SSP-ICF
session.

Programming Note: Use of the
TERMINAL option forces the next input
to come from the specified display
station or SSP-ICF session, unless
literal-1 or identifier-2 contain
blanks.

NO DATA Option

When the NO DATA option is specified,
the imperative-statement specified is
executed if a record cannot immediately
be made available at the time of
execution of the READ statement. After
the imperative-statement is executed,
the next sequential statement is
executed.

When the NO DATA option is not
specified, execution is suspended until
a record becomes available.

AT END Condition

The AT END condition occurs when there
are no attached display stations or
SSP-ICF sessions for which an input
operation is currently invited and the
program is not a NEP. The AT END
condition occurs for a NEP when there
are no attached display stations or
SSP-ICF sessions and the system
operator has entered a STOP SYSTEM
command.

Input is implicitly invited with each
WRITE statement but can be suppressed
by an option on the SFGR format or
selected SSP-ICF predefined formats.
When AT END condition occurs, the READ
statement is unsuccessful and
imperative-statement-2 is executed.

Input/Output Statements
READ 5-37

REWRITE Statement

The REWRITE statement logically replaces an existing
record in a disk file. When the REWRITE statement is
executed, the associated disk file must be opened in |-O
mode.

Format

REWRITE record-name [FROM identifier] [INVALID KEY imperative-statement]

Record-name must be the name of a logical record in
the File Section of the Data Division. Record-name must
not be associated with a sort or merge file.
Record-name may be qualified; it must not be
subscripted or indexed. The number of character
positions in record-name must equal the number of
character positions in the record being replaced.

REWRITE statement execution replaces an existing
record in the file with the information contained in
record-name.

After successful execution of a REWRITE statement, the
logical record is no longer available in record-name
unless the associated file is named in a SAME RECORD
AREA clause (in which case the record is also available
as a record of the other files named in the SAME
RECORD AREA clause).

The current record pointer is not affected by execution
of the REWRITE statement.

If the FILE STATUS clause is specified in the file-control
entry, the associated status key is updated when the
REWRITE statement is executed.

For files accessed sequentially, the last input/output
statement successfully executed for the file must be a
READ statement. When the REWRITE statement is
executed, the record retrieved by that READ statement
is logically replaced.

5-38

The FROM identifier option makes a REWRITE
statement equivalent to:

MOVE identifier TO record-name
REWRITE record-name

After successful execution of the REWRITE statement,
the current record may no longer be available in
record-name, but is still available in identifier.

Sequential Files

The INVALID KEY option must not be specified for a
file with sequential organization. An
EXCEPTION/ERROR procedure may be specified.

Indexed Files

The record to be replaced is specified by the value
contained in the RECORD KEY. When the REWRITE
statement is executed for an indexed file that is
accessed sequentially, the value specified in the
RECORD KEY clause for the REWRITE statement must
equal the value of the RECORD KEY data item in the
last record read from the file. If the file is accessed
randomly or dynamically, any record referenced by the
RECORD KEY clause is rewritten.

An INVALID KEY condition exists when the access
mode is sequential, and the value contained in the
RECORD KEY of the record to be replaced does not
equal the RECORD KEY data item of the last-retrieved
record from the file.

If this condition exists, the INVALID KEY
imperative-statement is executed, the execution of the
REWRITE statement is unsuccessful, the updating
operation does not take place, and the data in
record-name is unaffected.

Relative Files

For relative files in the sequential access mode, the
INVALID KEY option must not be specifed. An
EXCEPTION/ERROR procedure may be specified.

When the access mode is random or dynamic, the
record to be replaced is specified in the RELATIVE KEY
data item. If the file ‘does not contain the record
specified, an INVALID KEY condition exists, and, if
specified, the INVALID KEY imperative-statement is
executed. The updating operation does not take place,
and the data in record-name is unaffected.

Input/Output Statements
REWRITE

5-39

START Statement

The START statement provides a means of positioning
within an indexed or relative file for subsequent
sequential record retrieval. When the START statement
is executed, the associated indexed or relative file must
be opened in INPUT or I-O mode.

Format

N\

(1S EQUAL TO

IS =

IS GREATER THAN

IS >

IS NOT LESS THAN
IS NOT <)

.

START file-name | KEY ¢

.

[INVALID KEY imperative-statement]

File-name must name a file with sequential or dynamic
access. File-name must be defined in an FD entry in the
Data Division, and must not name a sort or merge file.

KEY Option

When the KEY option is not specified, the EQUAL TO
relational operator is implied.

When the KEY option is specified, the comparison
specified in the KEY relational operator is made between
data-name and the corresponding key field associated
with the file’s records. Data-name may be qualified; it
may not be subscripted or indexed.

When the START statement is executed, a comparison
is made between the current value in the key data-name
and the corresponding key field in the file's records.

The current record pointer is positioned to the logical
record in the file whose key field satisfies the
comparison.

If the FILE STATUS clause is specfied in the file-control
entry, the associated status key is updated when the
START statement is executed.

| data-name

INVALID KEY Option

If the comparison is not satisfied by any record in the
file, an INVALID KEY condition exists; the position of
the current record pointer is undefined, and (if specified)
the INVALID KEY imperative-statement is executed.

The INVALID KEY option must be specified if no
EXCEPTION/ERROR procedure is explicitly or implicitly
specified for this file.

Indexed Files

When the KEY option is not specified, the key data item
used for the EQUAL TO comparison is the RECORD
KEY. When START statement execution is successfully
completed, the RECORD KEY becomes the key of
reference for subsequent READ statements.

When the KEY option is specified, the key data item
used for the comparison is data-name, which can be:

« The RECORD KEY

- An alphanumeric data item subordinate to a record
key whose leftmost character position corresponds to
the leftmost character position of that record key.
This data item may be qualified.

The current record pointer is positioned to the first
record in the file whose key field satisfies the
comparison. If the operands in the comparison are of
unequal length, the comparison proceeds as if the longer
field were truncated on the right to the length of the
shorter field. All other numeric and nonnumeric
comparison rules apply except that the PROGRAM
COLLATING SEQUENCE clause, if specified, has no
effect.

When START statement execution is successful, the
RECORD KEY with which the data-name is associated
becomes the key of reference for subsequent READ
statements.

When START statement execution is unsuccessful, the
key of reference is undefined.

Relative Files

When the KEY option is specified, data~name must
specify the RELATIVE KEY.

Whether or not the KEY option is specified, the key data
item used in the comparison is the RELATIVE KEY data
item. The current record pointer is positioned to the
logical record in the file whose key satisfies the
comparison. -«

Input/Qutput Statements
START 5-41

WRITE Statement

The WRITE statement releases a logical record for an

output or input/output file. A WRITE statement can be
specified for:

TRANSACTION files

Relative files opened in OUTPUT or I-O mode

L4

Indexed files opened in OUTPUT or I-O mode

Sequential files opened in OUTPUT or EXTEND mode

The formats of the WRITE statement are:
Format 1

WRITE record-name [FROM identifier-1]

identifier-2 LINE
integer } LINES

{ mnemonic-name }
PAGE

{ﬁgﬂ

AFTER } ADVANCING

[AT {E—?,—E—QE—P'E'} imperative-state ment]

Format 2

WRITE record-name [F ROM identifier] [INVALID KEY imperative-statement]

5-42

Format 3-TRANSACTION File

WRITE record-name [FROM identifier-1]
identifier-2
[F BMAT IS {Iiteral-1 }]

TERMINAL IS ifje"t'f'er'a}]
—_— literal-2

STARTING AT LINE { 'dentifier-4
—— literal-3

[(BEFORE\ ROLLING fLINESY [identifier-5
AFTER LINE § \literal-4
THROUGH} {identifierG {

\THRU literal-5 DOWN

{Iiteral-ﬁ } {LINES}
L identifier-7 LINE

=

[(INDICATOR 1S
INDICATORS ¢ 4 ARE ¢ identifier-8
| LINDIC

Conditional Expressions 5-43

This page is intentionally left blank.

544

Record-name must be the name of a logical record in
the File Section of the Data Division. Record-name may
be qualified. Record-name must not be associated with
a sort or a merge file.

The maximum record size for the file is established at
the time the file is created, and cannot subsequently be
changed. User-defined record lengths that are not
compatible with the record length specified in the file
may result in a nonzero file-status at open time and the
following results during output to the file:

« A user-defined length greater than file-specified
' length causes truncation. If the file is empty the
larger record length is used.

« A user-defined length less than file-specified length
causes padding with blanks.

Execution of the WRITE statement releases a logical
record to the file associated with record-name. After the
WRITE statement is executed, the logical record is no
longer available in record-name, unless either of the
following is true:

« The associated file is named in a SAME RECORD
AREA clause. If so, the record is also available as a
record of the other files named in the SAME
RECORD AREA clause.

« The WRITE statement is unsuccessful due to a
boundary violation (beyond extent).

If either condition is true, the logical record is still
available in record-name.

The current record pointer is not affected by execution
of the WRITE statement.

The number of character positions required to store the
record in a file may or may not be the same as the
number of character positions defined by the logical
description of that record in the COBOL program. (See
the descriptions of the PICTURE and USAGE clauses in
Chapter 4.)

If the FILE STATUS clause is specified in the file-control
entry, the associated status key is updated when the
WRITE statement is executed whether or not execution
is successful.

When an attempt is made to write beyond the externally
defined boundaries of the file, WRITE statement
execution is unsuccessful, and an EXCEPTION/ERROR
condition exists. The status key, if specified, is updated,

and if an explicit or implicit EXCEPTION/ERROR
procedure is specified for the file, the procedure is
executed; if no such procedure is specified, the results
are unpredictable.

FROM Identifier Option: The FROM identifier option
makes a WRITE statement equivalent to:

MOVE identifijer TO record-name
WRITE record-name

After successful execution of the WRITE or REWRITE
statement, the current record may no longer be available.
in record-name, but is still available in identifier.

Format 1 Considerations

The ADVANCING and END-OF-PAGE options control
the vertical positioning of each line on a printed page.

For the first WRITE statement to a printer file, the linage
counter is set at 1. If the line is to be at the top of the
page, use WRITE line AFTER ADVANCING O LINES.

ADVANCING Option: When the ADVANCING option is
omitted, automatic line advancing is provided. The
default statement is AFTER ADVANCING 1 LINE. When
the ADVANCING option is specified, the following rules
apply:

« When BEFORE ADVANCING is specified, the line is
printed before the page is advanced.

* When AFTER ADVANCING is specified for the first
WRITE, a blank page will be printed.

If linage is not specified, the linage counter is unde-
fined until the first WRITE statement. When AFTER
ADVANCING is specified for the first WRITE, the
linage counter js set at the top of the first page.

« When identifier-2 is specified, the page is advanced
the number of lines equal to the current value in
identifier-2. ldentifier-2 must name an elementary
integer data item. Identifier-2 may be zero.

« When integer is specified, the page is advanced the
number of lines equal to the value of integer. Integer
may be zero.

Input/Output Statements
WRITE 5-45

« When a mnemonic-name is specified, a page eject or
space suppression takes place. The mnémonic-name

must be equated with function-name-1 in the

SPECIAL-NAMES paragraph. This option is not valid

if a LINAGE clause is specified in the FD entry for
this file.

« When PAGE is specified, the record is printed on the

logical page BEFORE or AFTER (depending on the
option used) the device is positioned to the next
logical page. If PAGE has no meaning for the device

used, then BEFORE or AFTER ADVANCING 1 LINE is

provided depending on the option specified.

If the FD entry contains a LINAGE clause, the
repositioning is to the first printable line of the next
page as specified in that clause. If the LINAGE

clause is omitted, the repositioning is to line 1 of the

next page.

If the LINAGE clause is specified for this file, the
associated LINAGE-COUNTER special register is
modified during the execution of the WRITE statement,
according to the following rules:

- If ADVANCING PAGE is specified,
LINAGE-COUNTER is reset to 1.

« If ADVANCING identifier-2 or integer is specified,
LINAGE-COUNTER is incremented by the value in

identifier-2 or integer.

» If the ADVANCING option is omitted,
LINAGE-COUNTER is incremented by 1.

« When the device is repositioned to the first printable

line of a new page, LINAGE-COUNTER is reset to 1.

END-OF-PAGE Option: The key words END-OF-PAGE
and EOP are equivalent.

When the END-OF-PAGE option is specified, the FD
entry for this file must contain a LINAGE clause. When
END-OF-PAGE is specified, and the logical end of the
printed page is reached during execution of the WRITE
statement, the END-OF-PAGE imperative-statement is
executed.

The logical end of the printed page is specified in the
associated LINAGE clause.

5-46

An END-OF-PAGE condition is reached when execution
of a WRITE END-OF-PAGE statement causes printing or

spacing within the footing area of a page body. This
occurs when execution of such a WRITE statement
causes the value in the LINAGE-COUNTER to equal-or
exceed the value specified in the WITH FOOTING
option of the LINAGE clause. The WRITE statement is
executed and then the END-OF-PAGE
imperative-statement is executed.

An automatic page overflow condition is reached
whenever the execution of any given WRITE statement
with or without the END-OF-PAGE option cannot be
completely executed within the current page body. This
occurs when a WRITE statement, if executed, would

cause the value in the LINAGE-COUNTER to exceed the

number of lines for the page body specified in the

LINAGE clause. In this case, the line is printed BEFORE
or AFTER the device is repositioned to the first printable
line on the next logical page, as specified in the LINAGE

clause. If the END-OF-PAGE option is specified, the
END-OF-PAGE imperative-statement is then executed.

The END-OF-PAGE condition and automatic page
overflow condition occur simultaneously when:

« The WITH FOOTING option of the LINAGE clause is
not specified. This happens because there is no

distinction between the END-OF-PAGE condition and

the page overflow condition.

« The WITH FOOTING option is specified, but the
execution of a WRITE statement would cause the
LINAGE-COUNTER to exceed both the footing value
and the page body value specified in the LINAGE
clause.

Format 2 Considerations

This format is valid only for indexed and relative files.

Indexed Files: When the WRITE statement is executed,

the system releases the record. Before the WRITE

statement is executed, the user must set the record key

(the RECORD KEY data item, as defined in the

file-control entry) to the desired value. RECORD KEY

values must be unique within a file.

When ACCESS IS SEQUENTIAL is specified in the

file-control entry, records must be released in ascending

order of RECORD KEY values.

5

9

<9

When ACCESS IS RANDOM or ACCESS IS DYNAMIC
is specified in the file-control entry, records can be
released in any user-specified order. The WRITE
statement cannot be used when ACCESS IS DYNAMIC
is specified and the file is opened in I-O mode.

The INVALID KEY Option must be specified if an explicit
or implicit EXCEPTION/ERROR procedure is not
specified for this file.

When the INVALID KEY condition is recognized, WRITE
statement execution is unsuccessful, and the contents of
the record are unaffected. Program execution proceeds
according to the rules for an INVALID KEY condition.
An INVALID KEY condition is caused by any of the
following:

« ACCESS SEQUENTIAL is specified, and the file is
opened OUTPUT, and the value of the record key is
not greater than that for the previous record.

« The file is opened'1-0, and the value of the record
key equals that of an already existing record.

« When an attempt is made to write beyond the
externally defined boundaries of the file.

Note: The BYPASS-YES parameter on the FILE OCL
statement allows the COBOL programmer to suppress
duplicate key checking when adding a record to an
indexed file. It is the programmer’s responsibility to
ensure that duplicate keys are not added. The
BYPASS-YES parameter is not intended as support for
duplicate keys. Specifying the BYPASS-YES parameter
can improve system performance, but results in
nonstandard COBOL file processing. For more
information on the BYPASS-YES parameter, see the
FILE statement in the SSP Reference Manual.

Relative Files: The WRITE statement is valid for both
OUTPUT and 1-0 files.

For OUTPUT files, the WRITE statement causes the
following actions:

« If ACCESS IS SEQUENTIAL is specified, the first
record released has relative record number 1; the
second, number 2; the third, number 3; and so on. If
the RELATIVE KEY is specified in the file-control
entry, the relative record number of the record just
released is placed in the RELATIVE KEY during
execution of the WRITE statement.

« If ACCESS IS RANDOM or ACCESS IS DYNAMIC is
specified, the RELATIVE KEY must contain the
desired relative record number for this record before
the WRITE statement is issued. When the WRITE
statement is executed, this record is placed at the
specified relative record number position in the file if
this relative record position is vacant.

For I-0 files, when ACCESS IS RANDOM or ACCESS
IS DYNAMIC is specified, new records are inserted into
the files. The RELATIVE KEY must contain the desired
relative record number for this record before the WRITE
statement is issued. When the WRITE statement is
executed, this record is placed at the specified relative
record number position in the file.

The INVALID KEY Option must be specified if an explicit
or implicit EXCEPTION/ERROR procedure is not
specified for this file..

When the INVALID KEY condition is recognized, WRITE
statement execution is unsuccessful, and the contents of
the record area are unaffected. Program execution
proceeds according to the rules for an INVALID KEY
condition. An INVALID KEY condition is caused by
either of the following:

« ACCESS IS RANDOM or ACCESS IS DYNAMIC is
specified, and the RELATIVE KEY specifies a record
that already contains data.

« An attempt is made to write beyond the externally
defined boundaries of the file.

Note: This format of the WRITE statement can be
successfully executed only on a system configured with
extended disk data management. The files used must
be created and prcessed as delete-capable files.

Input/Output Statements
WRITE 5-47

IBM Extension:
Format 3 Considerations

This format is valid only for the
TRANSACTION file.

The WRITE statement releases a logical
record to the TRANSACTION file. This
file must be opened in the I-O mode at
the time the WRITE statement is
executed.

Literal-1 and literal-2 must be
nonnumeric. Literal-3, literal-4,
literal-5, and literal-6 must be
numeric.

Identifier-2 must be an alphabetic or
alphanumeric data item and identifier-3
must an an alphanumeric data item.
Identifier-4, identifier-5,
identifier-6, and identifier-7 must be
elementary numeric items. Identifier-8
must be either an elementary Boolean
data item specified without the OCCURS
clause, or a group item that has
Boolean data elementary items
subordinate to it.

FORMAT Option

The record specified by the record-name
is sent to the specified or implied
destination using the named format. A
format must be specified for the first
WRITE verb executed. If subsequent
WRITE operations do not include a
FORMAT option, the most recently used
format is used. The FORMAT option
contains the pame of the screen format
used when data is written to the
display station. This format must be
in the format load member. The member
name is specified as part of the
assignment-name in the ASSIGN clause
for the TRANSACTION file.

5-48

Writing to the Error Line: 1f
the format name used for the write
operation is the literal 'ERRLINE',
System/34 COBOL generates a write to
the error line of the display station
instead of a write with format. A line
written to the error line cannot exceed
78 characters in length. A write to
the error line causes the last line of
output on the screen to be saved, and
the output record to replace the bottom
line on the screen. When the operator
presses the RESET key, the original
line reappears.

Note: A WRITE statement that writes to
the error line cannot specify ROLLING
BEFORE or AFTER.

Interactive Communications
Feature: sSpecial format names are
recognized by Data Management that
provide the COBOL user SSP-ICF
functions. The uses of these special
format names and the functions of ICF
are described in the ICF Reference
Manual. The system defined special
format names begin with two dollar
signs ($$). You should not begin your
display screen format names with $$.

TERMINAL Option

The TERMINAL phrase is used to specify
the destination to which the record is
to be sent. If the TERMINAL option is
not specified for a single device file,
that device is the destination. If the
TERMINAL option is not specified for a
multiple device file, the most recent
source or destination identifier is
used as the destination.

STARTING Option

The STARTING phrase contains the
starting line number for screen formats
that use the variable start line
option. 1If the value of this element
is less than 01, a value of 01 is
assumed. The maximum value is one less
than the size of the screen. If the
screen format does not specify this
option, Display Station Data Management
(DSDM) ignores this value.

ROLLING Option

The ROLLING option allows you to move
the data currently displayed on the
display screen. All or part of the
data on the screen can be rolled up or
down. The lines vacated by the rolled
data are cleared, and can have another
screen format written into them.

Rolling is specified on the WRITE
statement- that is writing a new format
to the display screen. The number of
lines you want to roll, how many lines
you want to roll these lines, and
whether the roll operation is up or
down must be specified.

Note: The value specified by
identifier-5 (or literal-4) must be
less than the value specified by
identifier-6. (or literal-5).

Rolling ignores field attributes. The
data is rolled exactly as it appears on
the display screen. Its associated
attributes (for example, whether it is
an input field or an input/output
field) are not rolled with the data and
are lost. Therefore, after a field has
been rolled, it can no longer be input
capable.

For an example of using the ROLLING
option, see WRITE Statement in
Chapter 7.

INDICATOR Option

The INDICATOR phrase is used to specify
the name of an area that contains SFGR
indicator information. Display Station
Data Management (DSDM) ignores provided
indicators that are not specified on
the SFGR format. Indicators not
provided in the indicator area are
considered by DSDM to be off.

ARITHMETIC STATEMENTS

Arithmetic statements are used for computations.
Individual operations are specified by the ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements. The
COMPUTE statement may be used to symbolically
combine these operations in a formula.

Arithmetic Statement Operands

The data description of operands in an arithmetic
statement need not be the same. Throughout the
calculation, the compiler supplies any necessary data
conversion and decimal point alignment.

Size of Operands

The maximum size of each operand is 18 decimal digits.
The composite of operands (a hypothetical data item
resulting from the superposition of the operands aligned
by decimal point) must not contain more than 18
decimal digits.

For the ADD and SUBTRACT statements, the composite
of operands is determined by superimposing all
operands in a given statement except those following
the word GIVING.

For the MULTIPLY statement, the composite of
operands is determined by superimposing all receiving
data items.

For the DIVIDE statement, the composite of operands is
determined by superimposing all receiving data items

except the REMAINDER data item.

For the COMPUTE statement, the restriction on
composite of operands does not apply.

For example, the items A, B, and C are defined in the
Data Division as follows:

77 A PICTURE S9(7)V9(5).
77 B PICTURE S9(11)V99.

77 CPICTURE S9(12)V9(3).

Arithmetic Statements
Arithmetic Statement Operands 5-49

If the statement ADD A, B TO C is executed, then the
composite of operands for this statement consists of 17
decimal digits. It has the following implicit description:

Composite-of-Operands PICTURE S9(12)V9(5).

Overlapping Operands
When operands in an arithmetic statement share part of
their storage (that is, when the operands overlap), the

result of the execution of such a statement is
unpredictable.

Multiple Resuits

When an arithmetic statement has multiple resuits,
execution conceptually proceeds as follows:

« The statement performs all arithmetic operations to
find the result to be placed in the receiving items and
stores that result in a temporary location.

« A sequence of statements transfers or combines the
value of this temporary result with each single
receiving field. The statements are considered to be
written in-the same left-to-right order that the
multiple results are listed.

For example, executing the following statement:

ADD A, B,CTOC, D(C), E

is equivalent to executing the following series of
statements:

ADD A, B, C GIVING TEMP
ADD TEMP TO C
ADD TEMP TO D(C)
ADD TEMP TO E
TEMP is a compiler-supplied temporary result field.

When the addition operation for D(C) is performed, the
subscript C contains the new value of C.

5-60

Programming Notes

In all arithmetic statements, it is the user’s responsibility
to define data with enough digits and decimal places to
ensure accuracy in the final resuit.

Common Options

There are several options common to the arithmetic
statements. They are the CORRESPONDING option, the
GIVING Option, the ROUNDED option, and the SIZE
ERROR option; Their description precedes the
descriptions of the individual statements.

CORRESPONDING Option

The CORRESPONDING option allows operations to be
performed on elementary items of the same name
simply by specifying the group items to which they
belong.

The CORRESPONDING option is valid in the ADD,
SUBTRACT, and MOVE statements. The abbreviation
CORR is equivalent to the key word CORRESPONDING.

Both identifiers following the key word
CORRESPONDING must name group items. In this
discussion, these identifiers are referred to as d1 and
d2.

A pair of subordinate data items, one from d1 and one
from d2, correspond if the following conditions are true:

« In an ADD or SUBTRACT statement, both of the
subordinate items are elementary numeric data-items.

« In a MOVE statement, at least one of the subordinate
items is elementary.

« The two subordinate items have the same name and

the same qualifiers up to but not including d1 and d2.

. The subordinate items are not identified by the key
word FILLER.

9

C

« The suborainate items do not include a REDEFINES,
RENAMES, OCCURS, or USAGE IS INDEX clause in
their descriptions; if such a subordinate item is a
group, the items subordinate to it are also ignored.
However, d1 and d2 themselves may contain or be
subordinate to items containing a REDEFINES or
OCCURS clause in their descriptions.

For example, two data hierarchies are defined as
follows:

05 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C REDEFINES ITEM-B ...
05 ITEM-2

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C ...

If ADD CORR ITEM-2 TO ITEM-1(X) is specified,
ITEM-A and ITEM-A(X) and ITEM-B and ITEM-B(X)
are considered to be corresponding and are added
together. ITEM-C and ITEM-C(X) are not included
because ITEM-C(X) includes a REDEFINES clause in
its data description. ITEM-1 is valid as either d1 or
d2.

« Neither d1 nor d2 is described as a level 66, 77 or 88
item, or as a FILLER or USAGE IS INDEX item.

GIVING Option

If the GIVING option is specified, the value of the
identifier that follows the word GIVING is set equal to
the calculated result of the arithmetic operation.
Because this identifier is not involved in the
computation, it may be a numeric edited item.

ROUNDED Option

After decimal point alignment, the number of places in
the fraction of the result of an arithmetic operation is

compared with the number of places provided for the
fraction of the resultant identifier.

If the size of the fractional result exceeds the number of
places provided for its. storage, truncation occurs unless
the ROUNDED option is specified. When the
ROUNDED option is specified, the least significant digit
of the resultant identifier has its value increased by 1
whenever the most significant digit of the excess is
greater than or equal to 5.

When the resultant identifier is described by a PICTURE
clause containing rightmost Ps and when the number of
places in the calculated result exceeds the number of
integer positions specified, rounding or truncation occurs
relative to the rightmost integer position for which
storage is allocated.

SIZE ERROR Option

A size error condition exists if, after decimal point
alignment, the value of a result exceeds the largest
value that can be contained in the resultant field.
Division by zero and zero raised to the zero power
always causes a size error condition.

In the ADD, SUBTRACT, and COMPUTE statements,
the size error condition applies only to final results. In
the MULTIPLY and DIVIDE statements, the sizé error
condition applies both to final results and intermediate
results.

Arithmetic Statements
Common Options 5-61

If the ROUNDED option is specified, rounding takes
place before size error checking.

When a size error occurs, the subsequent action of the
program depends on whether or not the SIZE ERROR
option is specified.

If the SIZE ERROR option is not specified and a size
error condition occurs, the value of the affected
resultant identifier is unpredictable. When multiple
receivers are specified, those that do not have a size
error are not affected by receivers that do have the
error.

If the SIZE ERROR option is specified and a size error
condition occurs, the error results are not placed in the
receiving identifier. After completion of the execution of
the arithmetic operation, the imperative-statement in the
SIZE ERROR option is executed.

If an individual arithmetic operation causes a size error
condition for ADD CORRESPONDING and SUBTRACT
CORRESPONDING statements, the SIZE ERROR
imperative-statement is not executed until all of the
individual additions or subtractions have been
completed.

5-52

ADD Statem.ant
The ADD statement causes two or more numeric

operands to be summed and the result to be stored.
The formats of the ADD statement are as follows:

Format 1

ADD {'de"“f'e’“1} ["de"“f'er'z] . .. TO identifier-m [ROUNDED

literal-1 ,literal-2

[,identiffer-n [ROUNDED]] . [ON SIZE ERROR imperative-statement]

Format 2

ADD identifier-1 identifier-2 , identifier-3
— \literal-1 * \literal-2 ,literal-3

GIVING identifier-m [ROUNDED] [,identifier-n [ROUNDED]] ..

[ON SIZE ERROR imperative-statement]

Format 3

ADD

CORRESPONDING
CORR

[ON SIZE ERROR imperative-statement]

In Formats 1 and 2, each identifier, except those
following the key word GIVING must name an
elementary numeric item. In Format 2, each identifier
following the key word GIVING must name an
elementary numeric or numeric edited item. In Format 3,
each identifier must name a group item. In all formats,
each literal must be a numeric literal.

In Format 1, all identifiers or literals preceding the key
word TO are added together, and this sum is added to
and stored immediately in identifier-m. If specified, the
sum is then added to and stored immediately in
identifier-n, and so on.

} identifier-1 E identifier-2 [ROUNDED]

In Format 2, at least two operands must precede the
key word GIVING. The values of these operands are
added together, and the sum is stored as the new value
of identifier-m, and, if specified, identifier-n, and so on.

In Format 3, elementary data items within identifier~1
are added 'to and stored in the corresponding elementary
items within identifier-2.

If the composite of the operands is 18 digits or less, the
compiler ensures that enough places are carried so that
no significant digits are lost during execution.

Arithmetic Statements
ADD 5-563

COMPUTE Statement

The COMPUTE statement assigns the value of an
arithmetic expression to one or more data items.

Format

COMPUTE identifier-1 [ROUNDED] [,identifier-2 [rounpeD]] -

= arithmetic-expression [ON SIZE ERROR imperative-statement]

The COMPUTE statement allows the user to combine
arithmetic operations without the restrictions imposed by

the rules for the ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements on the composite of operands or on
receiving data items. (For more information about the
composite of operands, see ‘’Size of Operands’’ under
Arithmetic Statements in this chapter.)

The identifiers that appear to the left of the equal sign
must name either elementary numeric items or
elementary numeric edited items.

When the COMPUTE statement is executed, the value
of the arithmetic expression is calculated; then this value
is stored as the new value of identifier-1, identifier-2,
and so on, in turn.

5-54

The arithmetic expression may be any meaningful
combination of identifiers, numeric literals, and
arithmetic operators.

An arithmetic expression consisting of a single identifier
or literal allows the user to set identifier-1, and so on,
equal to the value of that identifier or literal.

Programming Notes

e When arithmetic operations must be combined, the
COMPUTE statement is more efficient than the separate
arithmetic statements written in series.

¢ The limitation on intermediate result fields exists in the
COMPUTE statement as well as in the ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements.
Refer to Appendix D for a description of intermediate-
result algorithms.

DIVIDE Statament

The DIVIDE statement divides one numeric data item
into others and sets the values of data items equal to
the quotient and remainder. The.formats of the DIVIDE
statement are:

Format 1

identifier-1
ral-1

[,idemiﬁer-s [ROUNDED]]

DIVIDE{

Format 2

literal-1 literal-2

} INTO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]

DIVIDE {'dem'f'” 1} { 'NTO} {if’e"t'fie"z} GIVING identifier-3 [ROUNDED]

[, identifier-4 [ROUNDED]]

Format 3

[ON SIZE ERROR imperative-statement]~

DIVIDE {'f’em'f'e’ 1} {'NTO} {'d"""f'e"z} GIVING identifier-3 [ROUNDED]

literal-1 literal-2

REMAINDER identifier-4 [ON SIZE ERROR imperative—statement]

Each identifier except those following the key words
GIVING and REMAINDER must name an elementary
numeric item. Each identifier following the key words
GIVING and REMAINDER must name an elementary
numeric or numeric edited item. Each literal must be a
numeric literal.

In Format 1, the value of literal-1 or identifier-1 is
divided into the value of identifier-2; then the quotient is
placed in identifier-2. If identifier-3 is specified, the
value of literal-1 or identifier-1 is divided into
identifier-3; then the quotient is placed in identifier-3,
and so on.

In Format 2, the value of identifier-1 or literal-1 is
divided into/by the value of identifier-2 or literal-2. The
value of the quotient is stored in identifier-3, and (if
specified) identifier-4, and so on.

In Format 3, the value of identifier-1 or literal-1 is
divided into/by identifier-2 or literal-2. The value of the
qt_xotient is stored in identifier-3, and the value of the
remainder is stored in identifier-4.

Aritmetic Statements
COMPUTE-DIVIDE 5-65

The remainder is defined as the result of subtracting the
product of the quotient and the divisor from the
dividend. If identifier-3 (the quotient) is a numeric edited
field, the quotient used to calculate the remainder is an
intermediate field that contains the unedited quotient.

In addition to the conditions for common options, the
following considerations apply when the ROUNDED and
SIZE ERROR options are used in format 3.

« When the ROUNDED option is specified the quotient
used to calculate the remainder is an intermediate
field which contains the quotient truncated rather
than rounded.

« When the ON SIZE ERROR option is specified and
the size error conditions occurs on the quotient, no
remainder calculation is meaningful. Therefore, the
contents of the quotient field (identifier-3) and the
remainder field (identifier-4) are unchanged.

« When the ON SIZE ERROR option is specified and
the size error occurs on the remainder, the contents
of the remainder field (identifier-4) are unchanged.

Note: In the last two preceding cases, the user must

analyze the results to determine which situation has
actually occurred.

5-56

MULTIPLY S.atement

The MULTIPLY statement causes numeric items to be
multiplied and sets the values of data items equal to the
results. The formats of the MULTIPLY statement are:

Format 1

identifier-1

MULTIPLY .. BYidentifier-Z[ROUNDED]
———— | literal-1 - } — —_—

[,identifier-3 [ROUNDED]] “ e [ON SIZE ERROR imperative-statement]

Format 2

identifier-1 identifier-2 . .
MULTIPLY { literal.1 }B_Y { literal-2 } GIVING identifier-3 [ROUNDED]

[,identifier-4 [ROUNDED]] .. . [ON SIZE ERROR imperative-statement]

Each identifier except those following the key word
GIVING must name an elementary numeric item. Each
identifier following the key word GIVING must name an
elementary numeric or numeric edited item. Each literal
must be a numeric literal.

In Format 1, the value of identifier-1 or literal-1 is
multiplied by the value of identifier-2; the product is
then placed in identifier-2. If identifier-3 is specified, the
value of identifier-1 or literal-1 is multiplied by the value
of identifier-3; the product is then placed in identifier-3,
and so on.

In Format 2, the value of identifier-1 or literal-1 is
multiplied by the value of identifier-2 or literal-2; the
product is then stored in identifier-3, and, if specified,
identifier-4, and so on.

Arithmetic Statements
MULTIPLY 5-57

SUBTRACT Statement

The SUBTRACT statement causes either one, or the
sum of two or more numeric items to be subtracted
from one or more numeric items and the result to be
stored. The formats of the SUBTRACT statement are:

Format 1

 SUBTRACT {ldentlfler- } [,ldentlfler-2

literal-1 literal-2

[, identifier-4 [ROUNDED]]

Format 2

SUBTRACT identifier-1 ,identifier-2 .
literal-1 ,literal-2

... FROM

] . . . FROM identifier-3 [ROUNDED]

. [ON SIZE ERROR imperative-statnment]

identifier-3
literal-3

GIVING identifier-4 [ROUNDED] [,idemiﬁer-s [rounDED]]

[ON SIZE ERROR imperative-statement]

Format 3

CORRESPONDING
CORR

SUBTRACT {

[ON SIZE ERROR imperative-statement]

In Formats 1 and 2, each identifier except those
following the key word GIVING must name an
elementary numeric item. In Format 2, each identifier
following the key word GIVING must name a numeric
elementary or numeric edited elementary item. In
Format 3, each identifier must name a group item. In all
formats, each literal must be a numeric literal.

In Format 1, all identifiers or literals preceding the key
word FROM are added together, and this sum is
subtracted from and stored immediately in.identifier-3,
and then, if specified, subtracted from and stored
immediately in identifier-4, and so on.

In Format 2, all identifiers or literals preceding the key
word FROM are added together and this sum is
subtracted from identifier-3 or literal-3. The result of the
subtraction is stored as the new value of identifier-4,
and, if specified, identifier-5, and so on.

5-68

} identifier-1 FROM identifier-2[ROUNDED]

In Format 3, elementary data items within identifier-1
are subtracted from and stored in the corresponding
elementary data items within identifier-2.

If the composite of the operands is 18 digits or less, the
compiler ensures that enough places are carried so that
no significant digits are lost during: execution.

DATA MANIPULATION STATEMENTS

Movement and inspection of data are the functions of
the following COBOL statements: INSPECT, MOVE,
STRING, and UNSTRING.

When the sending and receiving fields of a data
manipulation statement share a part of their storage
(that is, when the operands overlap), the result of the
execution of such a statement is unpredictable.

INSPECT Statement

The INSPECT statement specifies that characters in a
data item are to be counted, replaced, or counted and
replaced. The formats of the INSPECT statement are:

Format 1

INSPECT identifier-1 TALLYING

ALL identifier-3 .
. fier-)
,identifier-2 FOR ,{ { LEADING } {Iitera|-1 }} [{%%} INITIAL {;i:;:.':' 4}] }
CHARACTERS —_—
Format 2
INSPECT identifier-1 REPLACING
identifier-6 BEFORE identifier-7

CHARACTERS BY {

literal-4

Hi

AFTER

}INITIAL{

literal-5

/]

9 ALL . g . g . L gn 4
—_— identifier-5 identifier-6 BEFORE identifier-7
>4 LEADING ’ {Iiteral-3 }ﬂ{literaM } [{AFTER } INITIAL {Iiteral-5 }]}
FIRST
L J
Format 3
INSPECT identifier-1 TALLYING
ALL identifier-3 . e
,identifier2 FORY | { LEADING} { literal-1 } [{%,—E:%} INITIAL {',de""f'er"‘} .
CHARACTERS AFTER literal-2

REPLACING

identifier-6

N

BEFORE identifier-7
CHARACTERS BY T ——
CHARACTERS BY {Iiteral-4 } [{AFTER } INITIAI'{Iiter.:'al~5 }]
ALL identifier-5 identifi 6 BEFORE identifier-7
) LEADING : - } { ifier- identifier-
? FIRST {’ {I|teral-3 BY literal-4 AFTER INITIAL literal-5 ’

Arithmetic Statements i
SUBTRACT—INSPECT 5-59

Either the TALLYING or the REPLACING option must be
specified. Both the TALLYING and REPLACING options
may be specified. If both TALLYING and REPLACING
are specified (Format 3), all tallying is performed before
any replacement is made.

Identifier-1 is the inspected item. Identifier-1 must be an
elementary or group item with USAGE DISPLAY.

All other identifiers except identifier-2 ‘(the count field)
must be elementary alphabetic, alphanumeric, or zoned
decimal items. Each is treated according to its data
category. Each data category is treated as follows:

« Alphabetic or alphanumeric items are treated as a
character-string.

« Alphanumeric edited, numeric edited, or unsigned
numeric (zoned decimal) items are treated as though
redefined as alphanumeric and the INSPECT
statement refers to the alphanumeric item.

« Signed numeric (zoned decimal) items are treated as
though moved to an unsigned zoned decimal item of
the same length, and then treated as though
redefined as alphanumeric. The INSPECT statement
refers to the alphanumeric item.

Each literal must be nonnumeric and may be any
figurative constant except ALL.

The comparision operands of the TALLYING option
(literal-1 or identifier-3, and so on) and/or REPLACING
option (literal-3 or identifier-5, and so on) are compared
in the left-to-right order specified in the INSPECT
statement. A maximum of 15 comparison operands may
be specified for each REPLACING and each TALLYING
option.

5-60

When the TALLYING/REPLACING operands are the
compared operands, the following comparison rules
apply:

1. When both the TALLYING and REPLACING
options are specified, the INSPECT statement is
executed as if an INSPECT TALLYING statement
were specified and immediately followed by an
INSPECT REPLACING statement.

2. The first operand is compared with an equal
number of leftmost contiguous characters in the
ingpected item. The operand matches the
inspected characters only if both are equal,
character-for-character.

3. If no match occurs for the first operand, the
comparison is repeated for each successive
operand until either a match ‘is found or all
operands have been acted upon.

4, If a match is found, tallying or replacing takes
place as described in TALLYING/REPLACING
option descriptions, In the inspected item, the first
character following the rightmost matching
character is now considered the leftmost character
position. The process described in comparison
rules 2 and 3 is then repeated.

5. If no match is found, the first character in the
inspected item following the leftmost inspected
character is now considered the leftmost character
position. The process described in comparison
rules 2 and 3 is then repeated.

6. The actions taken in comparison rules 1 through
5—-which are defined as the comparison cycle—are
repeated until the rightmost character in the
inspected item has either been matched or has
been considered as the leftmost character position.
Inspection then terminates.

Figure 5-16 illustrates INSPECT statement comparisons.

INSPECT ID-1 TALLYING ID-2 FOR ALL ““##"

REPLACING ALL “++" BY ZEROS.

(ID-1 before o o]0

execution

Execution for |
TALLYING option: |
|

st
comparison

2nd
comparison

3rd
comparison

comparison

Execution for
REPLACING option:

|
|
|
ath |
|
|
|
|

5th

| comparison

0|0 |*|O|*
6th . « | o
comparison I |
7th - 0l »
comparison
8th .
comparison

At the end of inspection:

ID-1
contains:

ID-2 before 0
execution
(initialized by
TALLYING programmer)
comparison operand: ID-2
contains:
* | # (True) 1
* | - (False) 1
* | » (False) 1
* | (True) 2
REPLACING
comparison operand:
* | (True) ID-1 changed to —
L (False) ID-1 unchanged
L (False) ID-1 unchanged
* (True) ID-1 changed to —l
ID-2
contains: 2

Figure 5-16. INSPECT Statement Execution Results

L Note: When the BEFORE/AFTER option is specified, the preceding rules are modified as described in the

BEFORE/AFTER option description.

Data Manipulation Statements
INSPECT

5-61

INSPECT Statement Example

The following example shows an INSPECT statement.

DATA DIVISTON.

WORKING-STORAGE SECTICON.

04 ID-1 FIC X(i0) VALUE 'ACADEMIANS'.
04 CONTR~4 FIC 99 VALUE 00.

014 CONTR-2 FIC 99 VALUE ZEROS.

FROCEDURE DIVISION.
* THIS TLLUSTRATES AN INSFECT STATEMENT WITH 2 VARIARLES.
100-REGIN~FROCESSING.
DISFLAY CONTR-i1 SFACE CONTR-2.
SOL-MAINLINE-FROCESSING.
FERFORM COUNT-IT THRU COUNT-EXIT.
STOF RUN.
COUNT-IT.
INSFECT TD-14
TALLYING CONTR-4 FOR CHARACTERS

REFORE INITIAL 'AD' CONTR-2 FOR ALL '"MIANS'.
DISFLAY-COUNTS.

DISFLAY 'CONTR-4 = ' CONTR-i.

DISFLAY 'CONTR=-2 = ' CONTR-2.

DISFLAY " %% 633 3 3 9 96 3 36 6 3 3 36 3 () 19696 5 3 3636 26 26 % X MM IEHHH NN |
COUNT-EXIT. EXIT.

Note: The keywords BEFORE and AFTER should not be used in the same statement.

RESULTANT OUTPUT

00 00
CONTR-1 = 02
CONTR-2 = 01

2 2 3 I 3 2 I A W W 36 36 96 I 36 36 36 9 3 F () L) 2 3 I 3636 36 3 3 36 36 I I 3 3 9 ¥ M 6 2 X

5-62

C

TALLYING Option

Identifier-2 is the tallying field and must be an
elementary integer item defined without the symbol P in
its PICTURE character-string. It is the programmer's
responsibility to initialize identifier-2 before the INSPECT
statement is executed.

Identifier-3 or literal-1 is the comparison operand. If the
comparison operand is a figurative constant, it is
considered to be a one-character nonnumeric literal.

When the BEFORE/AFTER option is not specified, the
following actions take place when the INSPECT
TALLYING statement is executed:

« If the ALL phrase is specified, the tallying field is
increased by one for each nonoverlapping occurrence
in the inspected item of the comparison operand.
This process begins at the leftmost character position
and continues to the rightmost.

« If the LEADING phrase is specified, the tallying field
is increased by one for each contiguous
nonoverlapping occurrence of the comparison
operand in the inspected item, provided the leftmost
such occurrence is at the point where comparison
began in the first comparison cycle for which the
comparison operand is eligible to participate.

« If the CHARACTERS phrase is specified, the tallying
field is increased by one for each character (including
the space character) in the inspected item. Thus,
execution of the INSPECT TALLYING statement
increases the value in the tallying field by the number
of characters in the inspected item.

REPLACING Option

Identifier-5 or literal-3 is the comparision operand.
Identifier-6 or literal-4 is the replacement field.

The comparison operand and the replacement field must
be the same length. The following replacement rules

apply:

« |f the comparison operand is a figurative constant, it
is considered to be a one-character nonnumeric
literal. Each character in the inspected item
equivalent to the figurative constant is replaced by
the single-character replacement field, which must be
one character in length.

« If the replacement field is a figurative constant, it is
considered to be the same length as the comparison
operand . Each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced
by the replacement field.

« When the comparison operand and replacement
fields are character-strings, each nonoverlapping
occurrence of the comparison operand in the
inspected item is replaced by the character-string
specified in the replacement field.

« Once replacement has occurred in a given character
position in the inspected item, no further replacement
for that character position is made in this execution
of the INSPECT statement.

When the BEFORE/AFTER option is not specified, the
following actions take place when the INSPECT
REPLACING statement is executed:

« |f the CHARACTERS phrase is specified, the
replacement field must be 1 character in length. Each
character in the inspected field is replaced by the
replacement field. This process begins at the
leftmost character and continues to the rightmost.

« If the ALL phrase is specified, each nonoverlapping
occurrence of the comparison operand in the
inspected item is replaced by the replacement field,
beginning at the leftmost character and continuing to
the rightmost.

Data Manipulation Statements
INSPECT 5-63

« |f the LEADING phrase is specified, each contiguous
nonoverlapping occurrence of the comparison
operand in the inspected item is replaced by the
replacement field, provided that the leftmost such
occurrence is at the point where comparison began in
the first comparison cycle for which this replacement
field is eligible to participate.

« If the FIRST phrase is specified, the leftmost
occurrence of the comparison operand in the -
inspected item is replaced by the replacement field.

BEFORE/AFTER Options

When either of these options is specified, the preceding
rules for counting and replacing are modified.

Identifier-4, identifier-7, literal-2, and literal-5 are
delimiters. Counting and/or replacement of the
inspected item is bounded by their presence; however,
the delimiters themselves are not counted or replaced.

In the TALLYING option, if the delimiter (literal-2) is a
figurative constant it is considered to be 1 character in
length.

In the REPLACING option, if the CHARACTERS phrase
is specified, the delimiter (literal-5 or identifier-7) must
be 1 character in length.

When the BEFORE option is specified, tallying and/or
replacement of the inspected item begins at the leftmost
character and continues until the first occurrence of the
delimiter is encountered. If no delimiter is present in the
inspected item, counting and/or replacement continues
to the rightmost character.

When the AFTER option is specified, counting and/or
replacement of the inspected item begins with the first
character to the right of the delimiter and continues to
the rightmost character in the inspected item. If no
delimiter is present in the inspected item, no counting or
replacement takes place.

5-64

INSPECT Statement Examples

The following examples illustrate some uses of the
INSPECT statement. In all instances, the programmer
has initialized the COUNTR field to zero before the
INSPECT statement is executed.

INSPECT ID-1 REPLACING CHARACTERS BY ZERO.

ID-1 Before COUNTR After ID-1 After
1234567 0 0000000
HIJKLMN v 0 0000000

INSPECT ID-1 TALLYING COUNTR FOR CHARACTERS
REPLACING CHARACTERS BY SPACES.

ID-1 Before COUNTR After ID-1 After
1234567 7
HIJKLMN 7

INSPECT ID-1 REPLACING CHARACTERS BY ZEROS
BEFORE INITIAL QUOTE.

ID-1 Before COUNTR After ID-1 After
456'ABEL 0 000'ABEL
ANDES’'12 0 0000012

"TWAS BR 0 ‘TWAS BR

INSPECT ID-1 TALLYING COUNTR FOR CHARACTERS
AFTER INITIAL ‘S'/REPLACING ALL ‘A’ BY ‘O'".

ID-1 Before COUNTR After ID-1 After
ANSELM 3 ONSELM
SACKET 5 SOCKET
PASSED 3 POSSED

INSPECT ID-1 TALLYING COUNTR FOR LEADING ‘0O’
REPLACING FIRST ‘A’ BY ‘2" AFTER INITIAL 'C'.

1D-1 Before COUNTR After 1D-1 After

OOACADEMYO00 2 O0AC2DEMY00
OOOOALABAMA 4 OO0CALABAMA
CHATHAMOOO00 0 CH2THAMO000

Programming Notes

The INSPECT statement is useful for filling portions or
all of a data item with spaces or zeros. It is also useful
for counting the number of times a specific character
(for example, zero, space, asterisk) occurs in a data
item. In addition, it can be used to translate characters
from one collating sequence to another.

MOVE Statement

The MOVE statement transfers data from one area of
storage to one or more other areas. The formats of the
MOVE statement are as follows:

Format 1
MOVE{ 'f“""“f'e"]}To identifier-2 [,identifier-3] . . .
— | literal —_

Format 2

CORRESPONDING
MOVE {c——onn

Identifier-1 and literal-1 are the sending areas.
Identifier-2, identifier-3, and so on are the receiving
areas.

} identifier-1 TO identifier-2

When Format 1 is specified, the identifiers may be
either group or elementary items. The data in the
sending area is moved into the first receiving area
(identifier-2); then it is moved into the second receiving
area (identifier-3), and so on.

When Format 2 is specified, both identifiers must be
group items. CORR is an abbreviation for, and

equivalent to, CORRESPONDING. When
CORRESPONDING is specified, selected items in
identifier-1 are moved to identifier-2 according to the
rules for the CORRESPONDING option. The results are -
the same as if each pair of CORRESPONDING

identifiers had been referred to in a separate MOVE
statement.

An index data item cannot be specified in a MOVE
statement. Any subscripting or indexing associated with
the sending item is evaluated only once: immediately
before the data is moved to the first receiving field. Any
subscripting or indexing associated with the receiving
items is evaluated immediately before the data is moved
into the receiving field.

For example, the result of the statement:
MOVE A (B) TO B, C (B).
is equivalent to
MOVE A (B) TO TEMP.
MOVE TEMP TO B.
MOVE TEMP TO C (B).

where. TEMP has been defined as an intermediate result
item. The subscript B changed in value between the
time the first move took place, and the final move to C
(B) is executed.

After execution of a MOVE statement, the sending
field(s) contains the same data as before execution.

Elementary Moves

An elementary move is one in which both the sending
and receiving items are elementary items. Each
elementary item belongs to one of the following
categories:

+ Numeric—includes numeric data items, numeric
literals, and the figurative constant
ZERO/ZEROS/ZEROES when the receiving item is
numeric.

» Alphabetic—includes alphabetic data items and the
figurative constant SPACE/SPACES.

« Alphanumeric—includes alphanumeric data items,
nonnumeric literals, and all figurative constants
except ZERO and SPACE.

« Alphanumeric edited—includes alphanumeric edited
data items.

+ Numeric edited—includes numeric edited data items.

+ Boolean—includes Boolean data items, Boolean
literals, and the figurative constant
ZERO/ZEROS/ZEROES when the receiving item is
Boolean.

Data Manipulation Statements
MOVE 5-65

Valid elementary moves are executed according to the
following rules:

« Any necessary conversion of data from one form of
internal representation to another along with any
specified editing in the receiving item takes place
during the move.

« For an alphanumeric, alphanumeric edited, or
alphabetic receiving item:

— Justification and any necessary space filling take
place as described in the JUSTIFIED clause.
Unused character positions are filled with spaces.

— If the size of the sending item is greater than the
size of the receiving item, excess characters at the
right are truncated after the receiving item is filled.

— If the sending item has an operational sign, the
absolute value is used. If the operational sign
occupies a separate character, that character is not
moved, and the size of the sending item is
considered to be one less than its actual size.

— If the sending item is Boolean, and the receiving
item is alphanumeric or alphanumeric edited, no
data conversion takes place.

5-66

« For a numeric or numeric edited receiving item:

— Alignment by decimal point and any necessary
zero filling take place as described under Standard
Alignment Rules in Chapter 4, except where zeros
are replaced because of editing requirements.

— The absolute value of the sending item is used if
the receiving item has no operational sign.

— If the sending item has more digits to the left or
right of the decimal point than the receiving item
can contain, excess digits are truncated.

— The resuits at object time may be unpredictable if
the sending item contains any nonnumeric
characters.

For a Boolean receiving item:

— There is no data conversion.

— The source field must be either alphanumeric or
Boolean.

— Execution of the MOVE statement does not affect
the association of an indicator number to the data
name.

Note: If the receiving field is alphanumeric or numeric
edited, and the sending field is a scaled integer (that is,
it has a P as the rightmost character in its PICTURE
character-string), the scaling positions are treated as
trailing zeros when the MOVE statement is executed.

Figure 5-17 shows valid and invalid elementary moves
for each category.

9

Receiving Item Category

Sending
Item Alphanumeric Numeric Numeric Numeric
Category Alphabetic | Alphanumeric Edited Integer Noninteger | Edited Boolean
Alphabetic

Y YES NO NO NO NO
and SPACE YES ES
Alphanumeric
and Figurative YES YES YES YES YES YES YES
constant!
Alphanumeric ||y pq YES YES NO NO NO NO
Edited
Numeric
Integer? NO YES YES YES YES YES NO
and ZERO
Numeric NO NO NO YES YES YES NO
Noninteger .
Numeric NO YES YES NO NO NO NO
Edited ,
Boolean® NO YES YES NO NO NO YES

YES = move is valid
NO = move is invalid

1 Includes nonnumeric literals and all figurative constants but SPACE and ZERO.
2)ncludes numeric literals

3 Includes the figurative constants ZERO and ALL Boolean-literal.

Figure 5-17. Valid and Invalid Elementary Moves

Group Moves

A group move is one in which one or both of the
sending and receiving fields are a group item. A group
move is treated exactly as though it were an
alphanumeric elementary move except that data is not
converted from one form of internal representation to
another. In a group move, the receiving area is filled
without consideration for the individual elementary items
contained within either the sending area or the receiving
area.

Data Manipulation Statements
MOVE 5-67

STRING Statement

The STRING statement gives the programmer the ability
to concatenate the partial or complete contents of two
or more data items in a single data item.

Format

STRING { identifier-1 } [,identifier-2

literal-1 ,literal-2

identifier-3

] ... DELIMITED BY ! literal-3

SIZE

identifier-6

{ 'dem'f'er'4} ["dem'f'er's] ... DELIMITED BY { literal-

literal-4 ,literal-5

INTO identifier-7 [WITH POINTER identifier-8]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each may be
any figurative constant without the optional word ALL.
When a figurative constant is specified, it is considered
a 1-character nonnumeric literal.

All identifiers except identifier-8 (the POINTER item)
must have USAGE DISPLAY, explicitly or implicitly.

The sending fields are identifier-1, identifier-2,
identifier-4, identifier-5, or their corresponding literals.

The receiving field is identifier-7, which must be an
elementary alphanumeric item without editing symbols
and without the JUSTIFIED clause in its description.

The delimiters are identifier-3, identifier-6, or their
corresponding literals, or the key word SIZE. The
delimiters specify the character(s) delimiting the data to
be transferred; when SIZE is specified, the complete
sending area is transferred.

When the sending field or any of the delimiters are
elementary numeric items, they must be described as
integers, and their PICTURE character-strings must not
contain the symbol P.

The pointer field is identifier-8, which must be an
elementary integer data item large enough to contain a
value equal to the length of the receiving area plus one.
The pointer field must not contain the symbol P in its
PICTURE character-string.

5-68

SIZE

STRING Statement Execution

When the STRING statement is executed, data is
transferred from the sending fields to the receiving field.
The order in which sending fields are processed is the
order in which they are specified. The following rules
apply:

« Characters from the sending fields are transferred to
the receiving field according to the rules for
alphanumeric to alphanumeric elementary moves
except that no space filling is provided.

+ When the DELIMITED BY identifier/literal is
specified, the contents of each sending item are
transferred character by character beginning with the
leftmost and continuing until either a delimiter for this
sending field is reached (the delimiter itself is not
transferred) or the rightmost character of this sending
field has been transferred.

« When DELIMITED BY SIZE is specified, each sending
field is transferred in its entirety to the receiving field.

« When the receiving field is filled or when all the
sending fields have been processed, the operation is
ended.

C

« When the POINTER option is specified, an explicit

pointer field is available to the COBOL user to control
placement of data in the receiving field. The user
must set the explicit pointer’s initial value, which
must not be less than one and not more than the
character count of the receiving field. The pointer
field must be defined as large enough to contain a

value equal to the length of the receiving field plus 1;.

this precludes arithmetic overflow when the system
updates the pointer at the end of the transfer.

When the POINTER option is not specified, no
pointer is available to the user. However, an implicit
pointer with an initial value of one is used by the
system.

When the STRING statement is executed, the initial
pointer value (explicit or implicit) points to the first
character position within the receiving field into which
data is to be transferred. Beginning at that position,
data is then positioned character by character from
left to right. After each character is positioned, the
explicit or implicit pointer is incremented by one. The
value in the pointer field is changed only in this
manner. At the end of processing, the pointer value
always indicates one character beyond the last
character transferred into the receiving field.

« If, at any time during or after initiation of STRING
statement execution, the pointer value (explicit or
implicit) is less than one or exceeds a value equal to
the length of the receiving field, no more data is
transferred into the receiving field and, if specified,
the ON OVERFLOW imperative-statement is
executed. (The ON OVERFLOW statement is not
executed unless there was an attempt to move in one
or more characters beyond the end of identifier-7.)

« If the ON OVERFLOW option is not specified, then
when the preceding conditions occur, control passes
to the next executable statement.

After STRING statement execution is completed, only
that part of the receiving field into which data was
transferred is changed. The rest of the receiving field
contains the data that was present before this execution
of the STRING statement. Figure 5-18 illustrates the
rules of execution for the STRING statement.

Data Manipulation Statements
STRING 5-69

STRING statement to be executed:

STRING ID-1 1D-2 DELIMITED BY ID-3
ID4 ID-5 DELIMITED BY SIZE
INTO ID-7 WITH POINTER ID-8.

ID-5 at execution

LI
Fourth group of
characters moved

Results:
ID-4 at execution ID-1 at-execution ID-2 at execution
6({718(9|*|0 112|3|*|4 (b A|l*|B
L T i — L'l"‘
Third group of First group of Second group of
characters moved characters moved characters moved
|
1D-3
(delimiter)
at execution
T w L] Bl
E] 1]2[3[al6[7][8]a]*[o]D] E]*[F[G

ID-7 after execution (initialized to ALL Z beforé execution)

ID-8
(pointer)
after execution

116

(initialized to 01 before execution)

Figure 5-18. STRING Statement Execution Results

STRING Statement Example

The following example illustrates some of the
considerations that apply to the STRING statement.

In the Data Division, the programmer has defined the
following fields:

01 RPT-LINE PICTURE X(120).

01 LINE-POS PICTURE 99.

01 LINE-NO PICTURE 9(5) VALUE 1.
01 DEC-POINT PICTURE X VALUE *.".

5-70

01 RCD-01.
05 CUST-INFO.
10 CUST-NAME
10 CUST-ADDR

10 INV-NO

10 INV-AMT
10 AMT-PAID
10 DATE-PAID
10 BAL-DUE
10 DATE-DUE

In the File Section, he has defined the following input

PICTURE X(15).
PICTURE X(34).

PICTURE X(6).
PICTURE $$,$$$.99.
PICTURE $$,$$$.99.
PICTURE X(8).
PICTURE $$,$$$.99.
PICTURE X(8).

The programmer wants to construct an output line
consisting of portions of the information from RCD-01.
The line is to consist of a line number, customer name
and address, invoice number, date due, and balance
due, truncated to the dollar figure shown.

The record as read in contains the following information:

J.B.bSMITHBBDDD

4445SPRINGBST., bCHICAGO, BILL.BEBBD
A14275

$4,736.85

$2,400.00

09/22/76

$2,336.85

10/22/76

In the Procedure Division, the programmer initializes
RPT-LINE to SPACES and sets LINE-POS (which is to
be used as the POINTER field) to 4. Then he issues this
STRING statement:)

. STRING LINE-NO SPACE CUST-INFO
SPACE INV-NO SPACE DATE-DUE
SPACE DELIMITED BY SIZE
BAL-DUE DELIMITED BY DEC-POINT
INTO RPT-LINE WITH POINTER LINE-POS.

When the statement is executed, the following actions
take place:

1.

The field LINE-NO is moved into positions 4
through 8 of RPT-LINE.

A space is moved into position 9.

The group item CUST-INFO is moved into
positions 10 through 58.

A space is moved into position 59.

INV-NO is moved into positions 60 through 65.

A space is moved into position 66.

DATE-DUE is moved into positions 67 through 74.
A space is moved into position 75.

The portion of BAL-DUE that precedes the decimal
point is moved into positions 76 through 81.

After the STRING statement has been executed,
RPT-LINE appears as shown in Figure 5-19.

Column
4

|

OQOOI J.B. SMITH 444 SPRING ST., CHICAGO, ILL.

60

l

Al4725 10/22/76 $2,336

10 25

! |

67 76

|

Figure 5-19. STRING Statement Example Output Data

Programming Notes

One STRING statement can be written instead of a
series of MOVE statements.

Data Manipulation Statements
STRING 5-71

http:2,336.85
http:2,400.00
http:4,736.85

UNSTRING Statement

The UNSTRING statement causes contiguous data in a
sending field to be separated and placed into multiple
receiving fields.

Format

UNSTRING identifier-1

identifier-2 identifier-3
[DELIMITED By[AaLL] {Iiteral-1 } [,@ [ALL] {“tml_2 }] e]

INTO identifier-4 [, DELIMITER IN identifier-5] [[,COUNT IN identifier-6]

[,identifier.7 [, DELIMITER IN identifier8] [,COUNT IN identifier-Q]] -

[wiTH POINTER identifier-10] [TALLYING IN identifier-11]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each may be
any figurative constant except ALL literal. When a
figurative constant is specified, it is considered to be a
1-character nonnumeric literal.

Sending Field

Identifier-1 is the sending field. It must be an
alphanumeric data item. Data is transferred from this
field to the receiving fields.

DELIMITED BY Option: This option specifies delimiters
within identifier-1 that control the data transfer.

The delimiters are identifier-2, identifier-3, or their
corresponding literals. Each identifier or literal specified
represents one delimiter. No more than 15 delimiters
may be specified. Each must be an alphanumeric data
item.

If a delimiter contains two or more characters, it is
recognized in the sending field only if the delimiter
characters are contiguous and, in the sequence
specified, in the delimiter item.

5-72

When two or more delimiters are specified, an OR
condition exists and each nonoverlapping occurrence of
any one of the delimiters is recognized in the sending.
field in the sequence specified. For example, if
DELIMITED BY AB OR BC is specified, then an
occurrence of either AB or BC in the sending field is
considered a delimiter. An occurrence of ABC is
considered an occurrence of AB, and the search for
another delimiter resumes with C.

When the DELIMITED BY ALL option is not specified,
and two or more contiguous occurrences of any
delimiter are encountered, the current data receiving
field is filled with spaces or zeros according to the
description of the data receiving field.

When the DELIMITED BY ALL option is specified, one
or more contiguous occurrences of any delimiter are
treated as if they were only one occurrence, and this
one occurrence is moved to the delimiter receiving field
(if specified). The delimiting characters in the sending
field are treated as an elementary alphanumeric item and
are moved into the current delimiter receiving field
according to the rules of the MOVE statement.

The DELIMITER IN and COUNT IN options can be
specified only if the DELIMITED BY option is specified.

http:identifier.l0

. Data Receiving Fields

Identifier-4, identifier-7, and so on, are the data
receiving fields and must have USAGE DISPLAY. These
fields can be defined as:

« Alphabetic (without the symbol B in the PICTURE
string)

« Alphanumeric

« Numeric (without the symbol P in the PICTURE
string)

These fields must not be defined as alphanumeric edited
or numeric edited items. Data is transferred to these
fields from the sending field.

DELIMITER IN Option: The delimiter receiving fields are
identifier-5, identifier-8, and so on. These identifiers
must be alphanumeric.

COUNT . IN Option: The data-count fields for each data
transfer are identifier-6, identifier-9, and so on. Each
field holds the count of delimited characters in the
sending field to be transferred to this receiving field; the
delimiters are not included in this count. ‘

POINTER Option: The pointer field is identifier-10; it
contains a value that indicates the relative starting
position in the sending field. When this option is
specified, the user must initialize this field before
execution of the UNSTRING statement to a value that is
not less than one and not greater than the count of the
sending field.

TALLYING Option: The field-count is identifier-11; it is
incremented by the number of data receiving fields
acted upon in this execution of the UNSTRING
statement. When this option is specified, the user must
initialize this field before execution of the UNSTRING
statement.

The data-count fields, the pointer field, and the
field-count field must each be integer items without the
symbol P in the PICTURE character-strings.

UNSTRING Statement Execution

When the UNSTRING statement is initiated, the current
data receiving field is identifier-4. Data is transferred
from the sending field to the current data receiving field
according to the following rules:

« If the POINTER option is not specified, the sending
field character-string is examined beginning with the
leftmost character. If the POINTER option is
specified, the field is examined beginning at the
relative character position specified by the value in
the pointer field.

« |If the DELIMITED BY option is specified, the
examination proceeds left to right character by
character until a delimiter is encountered. If the end
of the sending field is reached before a delimiter is
found, the examination ends with the last character in
the sending field.

« If the DELIMITED BY option is not specified, the
number of characters examined is equal to the size of
the current data receiving field, which depends on its
data category:

— If the receiving field is alphanumeric or alphabetic,
the number of characters examined is equal to the
number of characters in the current receiving field.

— If the receiving field is numeric, the number of
characters examined is equal to the number of
characters in the integer portion of the current
receiving field.

— If the receiving field is described with the SIGN IS
SEPARATE clause, the characters examined are
one fewer than the size of the current receiving
field.

— If the receiving field is described as a
variable-length data item, the number -of characters
examined is determined by the current size of the
current receiving field.

« The examined characters (excluding any delimiter
characters) are treated as an alphanumeric elementary
item, and are moved into the current data receiving
field according to the rules for the MOVE statement.

Data Manipulation Statements
UNSTRING 5-73

http:COUNT.IN

If the DELIMITER IN option is specified, the
delimiting characters in the sending field are treated
as an elementary alphanumeric item and are moved
to the current delimiter receiving field according to
the rules for the MOVE statement. If the delimiting
condition is the end of the sending field, the current
delimiter receiving field is filled with spaces.

If the COUNT IN option is specified, a value equal to
the number of examined characters (excluding any
delimiters) is moved into the data count field,
according to the rules for an elementary move.

If the DELIMITED BY option is specified, the sending
field is further examined, beginning with the first
character to the right of the delimiter.

If the DELIMITED BY option is not specified, the
sending field is further examined, beginning with the
first character to the right of the last character
examined.

After data is transferred to the first data receiving
field (identifier-4), the current data receiving field
becomes identifier-7. For each succeeding current
data receiving field, the preceding procedure is
repeated — either until all of the characters in the
sending field have been transferred, or until there are
no more unfilled data receiving fields.

When the POINTER option is specified, the contents
of the pointer field behaves as if incremented by one
for each examined character in the sending field.
When this execution of the UNSTRING statement is
completed, the pointer field contains a value equal to
its initial value plus the number of characters
examined in the sending field.

5-74

« When the TALLYING option is specified and the
execution of the UNSTRING statement is completed,
the tallying identifier contains a value equal to the
initial value plus the number of data receiving areas
acted upon; this count includes any null fields.

« When an overflow condition exists, the execution of
the UNSTRING statement is terminated. If the ON
OVERFLOW option has been specified, that
imperative-statement is executed. If the ON
OVERFLOW option has not been specified, control
passes to the next executable statement. An
overflow condition exists when:

— An UNSTRING statement is initiated and the value
in the pointer field is less than 1 or greater than
the length of the sending field.

— Or, all data receiving fields have been acted upon
during UNSTRING statement execution, and the
sending field still contains unexamined characters.

If any of the UNSTRING statement identifiers are
subscripted or indexed, the subscripts and indexes are
evaluated as follows:

« Any subscripting or indexing associated with the
sending field, the pointer field, or the field-count field
is evaluated only once — immediately before any data
is transferred.

« Any subscripting or indexing associated with the
delimiters, the data and delimiter receiving fields or
the data-count fields, is evaluated immediately before
the transfer of data into the affected data item.

Figure 5-20 illustrates the rules of execution for the
UNSTRING statement.

The following UNSTRING statement has the execution results shown:

UNSTRING ID-SEND DELIMITED BY DEL-ID OR ALL “*’

INTO ID-R1DELIMITER IN ID-D1 COUNT IN ID-C1 (All the data
ID-R2 DELIMITER IN ID-D2 receiving fields
ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3 are defined as
ID-R4 COUNT IN ID-C4 alphanumeric)

WITH POINTER ID-P
TALLYING IN ID-T
ON OVERFLOW GO TO OFLOW-EXIT.

ID-SEND at execution DEL-ID
at execution
1({213|*|*|4(5(6|7(8]|?|?|9|0|A|B|C|D|E|F

r | — —
1/2|3(b|b|b 415(6]7|8|b b|b|b 9|0|A|B(C

ID-R1 after ID-R2 after ID-R3 after ID-R4 after

execution execution execution execution

ID-D1 ID-C1 ID-D2 ID-D3 ID-C3 ID-C4 ID-P ID-T

(pointer) (tallying field)

O & O O O B (DB b

(after execution) (after (after execution) (after execution —
execution) both initialized to
01 before execution)

The order of execution is: @ A ? is placed in ID-D3; ID-R3 is filled
with spaces; no characters are trans-
@ Three characters are placed in ID-R1. ferred, so O is placed in ID-C3.
@ Because ALL * is specified, one * is placed @ No delimiter is encountered before 5
in ID-D1. . characters fill ID-R4; 5 is placed in
ID-C4.

@ Five characters are placed in ID-R2.
(?) 1D is updated to 18; ID-T is updated
@ A ?is placed in ID-D2. The current to 05. There are still untransferred char-
receiving field is now ID-R3. acters still existing in ID-SEND, and so
the ON OVERFLOW exit is taken.

Figure 5-20. UNSTRING Statement Execution Results

Data Manipulation Statements
UNSTRING 5-75

UNSTRING Statement Example

The following example illustrates some of the
considerations that apply to the UNSTRING statement.

In the Data Division, the programmer has defined the
following input record to be acted upon by the
UNSTRING statement:

01 INV-RCD.
05 CONTROL-CHARS PIC XX.
05 ITEM-INDENT PIC X(20).
05 FILLER PIC X.
05 INV-CODE PIC X(10).
05 FILLER PIC X.
05 NO-UNITS PIC 9(6).
05 FILLER PIC X.
05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.
05 RTL-AMT PIC 9(6).99.

The next two records are defined as receiving fields for

the UNSTRING statement. DISPLAY-REC is to be used
for printed output. WORK-REC is to be used for further
internal processing.

01 DISPLAY-REC.

05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE.
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE.
05 DISPLAY-DOLS PIC 9(6).
01 WORK-REC.
05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).
05 WK-PRICE
REDEFINES
FIELD-A PIC 9999V99.
05 INV-CLASS PIC X(3).

5-76

The programmer has also defined the following fields
for use as control fields in the UNSTRING statement.

77 DBY-1 PIC X, VALUE IS ".".

77 CTR-1 PIC 99, VALUE IS ZERO.
77 CTR-2 PIC 99, VALUE IS ZERO.
77 CTR-3 PIC 99, VALUE IS ZERO.
77 CTR-4 PIC 99, VALUE IS ZERO.
77 DLTR-1 PIC X.

77 DLTR-2 PIC X.

77 CHAR-CT PIC 99, VALUE IS 3.

77 FLDS-FILLED PIC 99, VALUE IS ZERO.
In the Procedure Division, the programmer writes the
following UNSTRING statement to move subfields of
INV-RCD to the subfields of DISPLAY-REC and
WORK-REC:

UNSTRING INV-RCD DELIMITED BY
ALL SPACES OR ‘/’ OR DBY-1
INTO ITEM-NAME COUNT IN CTR-1
INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2
INV-CLASS
M-UNITS COUNT IN CTR-3
FIELD-A
DISPLAY-DOLS DELIMITER IN
DLTR-2 COUNT IN CTR-4
WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before the UNSTRING statement is issued, the
programmer places the value 3 in the CHAR-CT (the
POINTER item), so as not to work with the two control
characters at the beginning of INV-RCD. In DBY-1, a
period is placed for use as a delimiter, and in
FLDS-FILLED (the TALLYING item) the value O is
placed. The following data is then read into INV-RCD as
shown in Figure 5-21.

Column
1 10 20 30

L

ZYFOUR-PENNY-NAILS

707890/BBA 475120 00122

40 50 60

I

000379.50

Figure 5-21. UNSTRING Statement Example — Input Data .

When the UNSTRING statement is executed, the
following actions take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of
INV-RCD are placed in ITEM-NAME, left-justified
within the area, and the unused character positions
are padded with spaces. The value 16 is placed in
CTR-1.

2. Because ALL SPACES is specified as a delimiter,
the five contiguous SPACE characters are
considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in
INV-NO. The delimiter character / is placed in
DLTR-1, and the value 6 is placed in CTR-2.

4. Positions 31 through 33 are placed in INV-CLASS.
The delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the
SPACE is merely bypassed.

5. Positions 35 through 40 (475120) are examined
and are placed in M-UNITS. The delimiter is a
SPACE, but because no receiving field has been
defined as a receiving area for delimiters, the
SPACE is bypassed. The value 6 is placed in
CTR-3.

6. Positions 42 through 46 (00122) are placed in
FIELD-A and right-justified within the area. The
high-order digit position is filled"with a O (zero).
The delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the
SPACE is bypassed. .

7. Positions 48 through 53 (000379) are placed in
- DISPLAY-DOLS. The period (.) delimiter character
is placed in DLTR-2, and the value 6 is placed in
CTR-4.

8. Because all receiving fields have been acted upon
and two characters of data in INV-RCD have not '
been examined, the ON OVERFLOW exit is taken,
and execution of the UNSTRING statement is
completed.

At the end of execution of the UNSTRING statement,
DISPLAY-REC contains the following data:

707890 FOUR-PENNY-NAILS 000379
WORK-REC contains the following data:
475120000122BBA

CHAR-CT (the POINTER field) contains the value 55,
and FLD-FILLED (the TALLYING field) contains the

“value 6.

Programming Notes

One UNSTRING statement can be written instead of a
series of MOVE statements.

Data Manipulation Statements
UNSTRING 5-77

http:000379.50

PROCEDURE BRANCHING STATEMENTS -

Statements, sentences, and paragraphs in the Procedure
Division are ordinarily executed sequentially. The
procedure branching statements allow alterations in the.
sequence. The procedure branching statements are:
ALTER, EXIT, GO TO, PERFORM, and STOP.

ALTER Statement
The ALTER statement changes the transfer point

specified in a GO TO statement.

Format

ALTER procedure-name-1 TO [PROCEED T_O_] procedure-name-2

[, procedure-name-3 TO [PROCE ED m] procedure-name-4] ...

Procedure-name-1, procedure-name-3, and so on, must
each name a Procedure Division paragraph that contains
only one sentence. That sentence must be a GO TO
statement without the DEPENDING ON option.

Procedure-name-2, procedure-name-4, and so on, must
each name a Procedure Division section or paragraph.

ALTER statement execution modifies the GO TO
statement in the paragraph named by
procedure-name-1, procedure-name-3, and so on.
Subsequent executions of the modified GO TO
statement(s) cause control to be transferred to
procedure-name-2, and (if specified) procedure-name-4,
and so on. For example:

PARAGRAPH-1.
GO TO BYPASS-PARAGRAPH.
PARAGRAPH-1A.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-1 TO PROCEED TO
PARAGRAPH-2.

PARAGRAPH-2.

5-78

Before the ALTER statement is executed, when control
reaches PARAGRAPH-1, the GO TO statement transfers
control to BYPASS-PARAGRAPH. After execution of the
ALTER statement, however, the next time control
reaches PARAGRAPH-1, the GO TO statement transfers
control to PARAGRAPH-2.

Programming Notes

The ALTER statement acts as a program switch,
allowing, for example, one sequence of execution during
initialization and another sequence during the bulk of file
processing. Because altered GO TO statements are
difficult to debug, it is preferable to test a switch, and
based on the value of the switch, execute a particular
code sequence.

Segmentation Information

A GO TO statement in a section whose priority is
greater than or equal to 50 must not be referred to by
an ALTER statement in a section with a different
priority. All other uses of the ALTER statement are valid
and are performed.

Modified GO TO statements in independent segments
may sometimes be returned to their initial states. For
further discussion, see Segmentation-Procedure Division
in Chapter 6.

EXIT Statement

The EXIT statement provides a common end point for a
series of procedures.

Format

exIT [PROGRAM] .

The EXIT statement must appear in a sentence by itself,
and this sentence must be the only sentence in the
paragraph. The EXIT statement enables the user to
assign a procedure-name to a given point in a program.

The EXIT statement has no other effect on the
compilation or execution of the program.

The EXIT PROGRAM statement is discussed under
Subprogram Linkage Statements in Chapter 6.

Programming Notes

The EXIT statement is useful for documenting the end
point in a series of procedures. If an exit paragraph is
written as the last paragraph in a Declarative procedure
or a series of performed procedures, it identifies the
point at which control will be transferred. When control
reaches such an exit paragraph and the associated
Declarative or PERFORM statement is active, control is
transferred to the appropriate part of the Procedure
Division. When control reaches such an exit paragraph
and no associated PERFORM statement or Declarative
procedure is active, control passes through the EXIT
statement to the first statement of the next paragraph.

If an EXIT statement is not written, the end of the
sequence is difficult to determine unless the user knows
the logic of the program.

Branching Statements
ALTER—EXIT 5-79

GO TO Statement

The GO TO statement transfers control from one part of
the Procedure Division to another. The formats of the
GO TO statement are as follows:

Format 1

GO TO [procedu re-name-1]

Format 2

GO TO procedure-name-1 [,procedure-name-2] C e

DEPENDING ON identifier

Each procedure-name specified must name a paragraph
or section in the Procedure Division. ldentifier must
name an elementary integer item.

Format 1—Unconditional GO TO

The GO TO statement causes control to be transferred
to the first statement in the paragraph or section named
in procedure-name-1 unless the GO TO statement has
been modified by an ALTER statement.

When a Format 1 GO TO statement appears in a
sequence of imperative statements, it must be the last
statement in the sequence.

When a paragraph is referred to by an ALTER
statement, the paragraph may consist only of a
paragraph-name followed by a Format 1 GO TO
statement.

If procedure-name-1 is not specified in a Format 1 GO
TO statement, an ALTER statement must have been
executed before the execution of the GO TO statement.
The GO TO statement must immediately follow a
paragraph-name and must be the only statement in the
paragraph.

5-80

, procedure-name-n

Format 2—Conditional GO TO

Control is transferred to one of a series of procedures,
depending on the value of identifier. When identifier has
a value of one, control is transferred to the first
statement in the procedure named by
procedure-name-1; if it has a value of two, control is
transferred to the first statement in the procedure
named by procedure-name-2, and so on.

If the value of identifier is anything other than a value
within the range 1 through n (where n is the number of
procedure-names specified in this GO TO statement),
the GO TO statement is ignored. Instead, control passes
to the next statement in the normal sequence of
execution.

The maximum number of procedure-names permitted
for a Format 2 GO TO statement is 99. The identifier
field can be defined as containing up to 4 bytes.

PERFORM Statement

The PERFORM statement transfers control explicitly to
one or more procedures and implicitly returns control to
the next executable statement after execution of the
specified procedure(s) is completed. The formats of the
PERFORM statement are as follows:

Format 1
' THROUGH
PERFOR - - —_— - -
ERFORM procedure-name-1 [{THRU } procedure-name 2]
Format 2
THROUGH\ _ identifier-1

PERFORM procedure-name-1 [{THRU } procedure-name-2] {integer-l } TIMES

Format 3

THROUGH

THRU } procedure~name-2] UNTIL condition-1

PERFORM procedure-name-1 - [{

Format 4

THROUGH

THRU } procedure-name-2]

PERFORM procedure-name-1 [{

identifier-2 }

VARYING {?de"“"e” } FROM{ index-name-2
— | index-name-1 J — | ..
literal-2

gy { identifier-31 \T 1L condition-1
— | literal-3 —_—

identifier-4 identifier-5
AFTER { \dentifier- } FROM{ index-name-5
——— | index-name-4 .
literal-5

gy [identifierB X\ condition-2
— | literal-6 —_—

. g identifier-8
[AFTER {fde""f'e” } FROM{ index-name-B}
index-name-7 .
literal-8

BY { :gee'r‘::f:"g } UNTIL condition-3]]

Branching Statements
GO TO—PERFORM

5-81

Each procedure-name must name a section or paragraph
in the Procedure Division.

When both procedure-name-1 and procedure-name-2
are specified, if either is a procedure-name in a
Declarative procedure, then both must be
procedure-names in the same Declarative procedure.

Each identifier must name a numeric elementary item.
Each literal must be a numeric literal.

Whenever a PERFORM statement is executed, control is
transferred to the first statement of the procedure
named procedure-name-1. Control is always returned to
the statement following the PERFORM statement. The
point from which this control is returned is determined
as follows:

« If procedure-name-1 is a paragraph name and
procedure-name-2 is not specified, the return is made
after the execution of the last statement of
procedure-name-1.

« |f procedure-name-1 is a section name and
procedure-name-2 is not specified, the return is made
after the execution of the last sentence of the last
paragraph in that section.

« If procedure-name-2 is specified and it is a paragraph
name, the return is made after the execution of the
last statement of that paragraph.

« If procedure-name-2 is specified and it is a section

name, the return is made after the execution of the
last sentence of the last paragraph in the section.

5-82

The only necessary relationship between
procedure-name-1 and procedure-name-2 is that a
consecutive sequence of operations is executed
beginning at the procedure named by procedure-narne-1
and ending with the execution of the procedure named
by procedure-name-2.

When both procedure-name-1 and procedure-name-2
are specified, GO TO and PERFORM statements may
appear within the sequence of statements contained in
these paragraphs or sections. When only
procedure-name-1 is specified, PERFORM statements
may appear within the procedure. A GO TO statement
may also appear, but should not refer to a
procedure-name outside the range of procedure-name-1.
If this is done, results are unpredictable and are not
diagnosed.

When the performed procedures include another
PERFORM statement, the sequence of procedures
associated with the embedded PERFORM statement
must be totally included in or totally excluded from the
performed procedures of the first PERFORM statement.
That is, an active PERFORM statement whose execution
point begins within the range of performed procedures
of another active PERFORM statement must not allow
control to pass through the exit point of the other active
PERFORM statement. In addition, two or more such
active PERFORM statements must not have a common
exit.

When control passes to the sequence of procedures by
means other than a PERFORM statement, control
passes through the exit point to the next executable
statement as if no PERFORM statement referred to
these procedures.

Figure 5-22 illustrates valid sequences of execution for
PERFORM statements.

X PERFORM a THRU m X PERFORM a THRU m

a a
d PERFORM f THRU j d PERFORM f THRU j
f h
j m
LT
m
_

X PERFORM a THRU m

. d PERFORM f THRU j

Figure 5-22. Valid PERFORM Statement Execution Sequences

The preceding rules refer to all four formats of the
PERFORM statement. The following sections give rules
applying to each individual format.

Branching Statements
PERFORM

5-83

Format 1

Format 1 is the basic PERFORM statement. The
procedure(s) referred to is executed once, and then
control passes to the next executable statement
following the PERFORM statement.

Format 2

Format 2 uses the TIMES option. Identifier-1 must
name an integer item. The procedure(s) referred to is
executed the number of times specified by the value in
identifier-1 or integer-1. Control then passes to the next
executable statement following the PERFORM

statement. The following rules apply:

« If integer-1 or identifier-1 is zero or a negative
number at the time the PERFORM statement is
initiated, control passes to the statement following
the PERFORM statement.

« After the PERFORM statement has been initiated, any
reference to identifier-1 or ‘change in the value of
identifier-1 has no effect in varying the number of
times the procedures are executed.

Format 3

Format 3 uses the UNTIL option. The procedure(s)
referred to is performed until the condition specified by
the UNTIL option is true. Control is then passed to the
next executable statement following the PERFORM
statement.

If condition-1 is true at the time the PERFORM

statement is encountered, the specified procedure(s) is
not executed.

5-84

Format 4

Format 4 uses the VARYING option. This option
increments or decrements one or more identifiers or
index-names according to the following rules. Once the
condition(s) specified in the UNTIL option is satisfied,
control is passed to the next executable statement
following the PERFORM statement.

No matter how many variables are specified, the
following rules apply:

« In the VARYING/AFTER options, when an
index-name is specified:

— The index-name is initialized and incremented or
decremented according to the rules for the SET
statement. For a description of the SET statement
see Table Handling in Chapter 6.

— In the associated FROM option, an identifier must
be described as an integer and have a positive
value; a literal must be a positive integer.

- In the associated BY option, an identifier must be
described as an integer; a literal must be a
nonzero integer.

« In the FROM option, when an index-name is
specified:

— In the associated VARYING/AFTER option, an
identifier must be described as an integer. It is
initialized as described in the SET statement.

- In the associated BY option, an identifier must be
described as an integer and have a nonzero value;
a literal must be a nonzero integer.

+ In the BY option, identifiers and literals must have a
nonzero valus.

» Changing the values of identifiers and/or
index-names in the VARYING, FROM, and BY
options during execution changes the number of
times the procedures are executed.

The way in which operands are incremented or
decremented depends on the number of variables
specified. In the following discussion, every reference to
identifier-n refers equally to index-name-n except when
identifier-n is the object of the BY option.

)

Varying One Identifier: The following actions take
place:

1. Identifier-1 is set equal to its starting value,
identifier-2 or literal-2.

2. Condition-1 is evaluated:
a. If it is false, steps 3 through 5 are executed.
b. If it is true, control passes directly to the
statement following the PERFORM statement.

3. Procedure-1 through procedure-2 (if specified) are
executed once.

4.. Identifier-1 is augmented by identifier-3 (or
literal-3), and condition-1 is evaluated again.

5. Steps 2 through 4 are repeated until condition-1 is
true.

Figure 5-23 is a.flowchart illustrating the logic of the
PERFORM statement when one identifier is varied.

Execution of
PERFORM
Statement
Begins

. Set Identifier-1
Equal-to Its
FROM Value

Test
Condition-1

Execute
Procedure-1
THRU
Procedure-2

Augment
Identifier-1
With Its
Current BY
Value

Figure 5-23. Format 4 PERFORM Statement
Logic—Varying Two Identifiers

Branching Statements
PERFORM 5-85

The following example shows a PERFORM statement
varying one identifier. This PERFORM logic is executed
100 times.

WORKING-STORAGE SECTION.

77 SURL FIC 999.

77 TOTAL~-HOLD FIC 99 VALUE 57.

77 HOLD-2 FIC 99 VALUE 10.

7?7 HOLD-THE-SUM FIC 99 VALUE ZERO.

04 TARLE-ELEMENT. .
03 ELEMENTS-0OF-TARLE OCCURS £00 TIMES FIC 9.

FROCEDURE DIVISION.

100~-START-FROCESSING.

* THIS FERFORM LOGIC IS EXECUTED 100 -TIMES.
FERFORM SAMPLE-FERFORM THRU FERFORM-EXIT VARYING SURA{
FROM 1 BY 4 UNTIL SUEiL > 400.

* THIS ADD STATEMENT IS EXECUTED AFTER FPERFORM IS DONE.
ADD TOTAL-HOLD HOLD-2 GIVING HOLD-THE-SUM.
DISFLAY 'TOTAL OF TWO VARIABLES = ' HOLD-THE-SUM.

FERFORM ANOTHER-WAY-TO-INITIALIZE THRU AWTI-EXIT.
9636 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 6 36 36 96 MM,

THE TAKLE WILL BE ALL ZEROS AND SHOULD FRINT AS SUCH.

a

*K

2 3 3 3 I J I F J W I I F 3 I I I W I W I I W WX,
DISFLAY '=rwmmmmmmm e mm e THE = = TABL E e oo
DISFLAY TABLE-ELEMENT.
STOP RUN.
SAMFLE-FERFORM.
MOVE ZEROS TO ELEMENTS-OF-TARLE (SUE1).

X K XK X

FERFORM-EXIT. EXIT.
ANOTHER-WAY--TO-INITIALIZE.
MOVE ZEROS TO TABLE-ELEMENT.

AWTI-EXIT. EXIT.
* WHWHNHHWNHHNXNXNNNUREND OF FROGRAM KK I 3 536 3 36 3 36 36 9636 36 3 3 36 3 36 96 96 36 36 0 %

5-86

Varying Two Identifiers: The following actions take
place:

1.

Identifier-1 and identifier-4 are set to their initial
values, identifier-2 (or literal-2) and identifier-5 (or
literal-5), respectively.

Condition-1 is evaluated:

a. If it is false, steps 3 through 7 are executed.

b. If it is true, control passes directly to the
statement following the PERFORM statement.

Condition-2 is evaluated:

a. If it is false, steps 4 through 6 are executed.

b. If it is true, identifier-4 is set to the current
value of identifier-5, and identifier-1 is
augmented by identifier-3 (or literal-3), and step
2 is repeated.

Procedure-1 through procedure-2 (if specified) are
executed once.

Identifier-4 is augmented by identifier-6 (or
literal-6).

Steps 3 through 5 are repeated until condition-2 is
true.

Steps 2 through 6 are repeated until condition-1 is
true.

At the end of PERFORM statement execution,
identifier-4 contains the current value of identifier-5.
Identifier-1 has a value that exceeds the last used
setting by the increment/decrement value (unless
condition-1 was true at the beginning of PERFORM
statement execution, in which case identifier-1 contains
the current value of identifier-2).

Figure 5-24 is a flowchart illustrating the logic of the
PERFORM statement when two identifiers are varied.

xacution o
PERFORM
Statement Begins

Identifier-1
Identifier4
Set to Initial
FROM Value

@_

Test
Condition-1

Test

Condition-2

Execute
Procedure-1
THRU
Procedure-2

Augment
Identifier4
With Its
Current

BY Value

Set Identifier4
to Its Current
FROM Value

Augment
Identifier-1
With Its
Current
BY Value

Figure 5-24. Format 4 PERFORM Statement
Logic—Varying Three Identifiers

* Branching Statements

PERFORM 5-87

The following example shows a PERFORM statement
varying two identifiers. This PERFORM logic is executed
126 times. This program searches a table and gives a
total of female employees.

DATA
FMTLE
ED

04

DIVISTION.

SECTION.

EMPLOYEE-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARATUTERS
LAREL RECORDS STANDARD

DATA RECORD IS EMFLOYEE-RECURD.
EMFLLOYEE-RECORD FIC X(80).

WORKTNG-STORAGE SECTION.

77
o
01

(031

01
01
01
ol

FROC

RECORDS-IN FIC 9(5%) VALUE ZEROS.
FOF-SW FIC X VALUE 'N'.
HOED~INFUT~-RECORD .
03 EMFLOY SEX PIC 9.

88 MALE LALUE IS §.

88 FEMALE VALUE 1§ 2.
03 EMPLOYERE-RACE FIC 9.

88 RACLE-CODES VALUES ARE 1 THRU 7.
03 EMPLOYEE-JOBR-CLASS PIC 99.

88 JOB~-CLASS VALUES ARE 04 THRU 1.
O3 FILLER FTC X{76) VALUE SFACES.
EMFLOYEE-TARBLE .
03 E~-SEX OQCCURS 2 TIMES.

0% E~-RACE OCCURS 7 TIMES.

07 E-J0F QUCURS 48 TIMEY FIC 99.

SURL FYIC 99.
SUBD2 FIC 99.
SURZ FIC 99.
TOVAL-WOMEN FIC 9(5) VALUE ZEROS.
EDURE DIVISTON.

AOO-STAORT-TT .

200

R IATO R

5-88

NEEN TNFUT EMPLOYEE-DATA OUTFUT FRINTED-REFUORT.
HOWVE ZERQS TO EMPLOYEE-TARLE.

READ- LT.

FEAD EMELOYEE-DATA RECORD INTO HOLD-1INFUT-RECORD
AT END MOVE "Y' TO EOF-SW.

ALD 4 TO RECORDS-IN.

FATHLTNE-1L.OGTT .

P F T IR TSR AT IR ILETEET ST ERAE LTS IT LTS N

JYORM STATEMENT USING TWO VARTARLES W1LL BE DONE
THE COMFUTER.

THE P
TIHES BY

FOI I3 NI H DK DI T3 I IE I K6 IC K6 M NI MK 3 3 I 36 96w 3 3 2N
FERFORM LOAD-TARLE UNTIL EQF-SW = "Y',
FERFIRM FIND-NUMRBER-OF~WOMEN VARYING SUR2 FROM 4 0Y

UNT I SUR2 > ¥
AFTER SURZ FROM 4 BY § UNTIL SUR3Z > 49,

126

C

FERFORM WRITE-REFORT THRU WE-EXTT .
DISFLAY 'TOTAL RECORDS IN ' RECORDS-IN.
STOF RUN.

LOAD-TARLE .

MOVE EMPLOYEE-SEX TO SURSL.

MOVE 1.0Y CE TO SUR2.

MOVE - JOR=-CLASS TO SUR3,

ADD (SURL SUR2 SUR3).

f D-IT.

ADD E-JOR (2 SUB2 SUB3) TO TOTAL-WOMEN.
WRETITE~REFORT.

MOVE TOTAL-WOMEN TO FRINT-OUT.

WRITE FRINT-0UT.
WR-EXTT. EXIT.

Varying Three Identifiers: The actions are the same as
for varying two identifiers except that identifier-7 goes
through the complete cycle each time that identifier-4 is
augmented by identifier-6 or literal-6, which in turn goes
through a complete cycle each time identifier-1 is varied.

At the end of PERFORM statement execution,
identifier-4 and identifier-7 contain the current values of
identifier-5 and identifier-8, respectively. Identifier-1 has
a value exceeding its last used setting by one
increment/decrement value (unless condition-1 was true
at the beginning of PERFORM statement execution, in '
which case identifier-1 contains the current value of
identifier-2).

Figure 5-25 is a flowchart illustrating the logic of the
PERFORM statement when three identifiers are varied.

Branching Statements
PERFORM

5-89

The following example shows a PERFORM statement
varying three identifiers. This PERFORM logic is
executed 250 times.

WORKING-STORAGE SECTION.

77 SURL FIC 99.

77 SUR2 FIC 99.

77 SUER3 FIC 99.

77?7 TEST-IT FIC 99 VALUE 00.

77 TOTAL-RECS FIC 99 VALUE ZEROS.

04 COMFANY-TARLE.

05 DIVISION-IN OCCURS 10 TIMES.
10 DIVISTON-NAME FIC X(410).
10 DIVISION-NUMRER FIC 9(4).
10 SECTION-IN OCCURS 5 TIMES.

15 UNIT-IN OCCURS 5 TIMES.
20 UNIT-NAME FIC X(5).
20 UNIT-NUMRER FIC 9(4).
FROCEDURE. DIVISION.
100-START-FROCESSING.

® P06 3 9636 069636 06 2636 3066 3636 6 36 3636 36 36 6 36 3663 I 36 36 36 636 I 6 3 36 963 0K 9636 3 306 3 96 36 36 3 06 3 906 N,
* THIS FERFORM LOGIC IS EXECUTED 250 TIMES EY THE COMPUTER.
* BH I I e I I I I I I I I I I I I I I I I I I I NI I I I,

FPERFORM ZERO-0OUT-RIG-TARLE VARYING SUEL FROM 1 BY {4
UNTIL SURL > 10
* SURL IS VARIED LAST RY THE COMFUTER.
AFTER SUR2 FROM 4 RY 4 UNTIL SUR2 > 5
* SUB2 IS VARIED #x%x%xx2ND*x%x*#%% RY THE COMFUTER.
AFTER SUR3 FROM 4 RY 4 UNTIL SUR3 > 5.
* *xxxxxSUR3 IS VARIED FIRST RY THE COMPUTER*%%%x%x% |
FERFORM ADDRESS-THE-VARIARLES THRU ATV-EXIT.
DISFLAY 'VARIARLE TEST-IT = ' TEST-IT.
STOF RUN.
ZERO-OUT-RIG-TARLE.
MOVE ZEROS TO UNIT-IN (SURi, SUE2, SUR3).
ADDRESS-THE-VARIARLES.)
IF UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN
OF COMFANY-TARBLE (3, 4, 5) = 0 ADD 4 TO TEST-IT.

ATV-EXIT. EXIT.

5-90

http:DISPL.AY

Execution of
PERFORM

Statement Begins

Identifier-1
Identifier4
Identifier-7
Set to Initial
FROM Values

Test
Condition-1

Test

Condition-2

True

Test
Condition-3

E

xecute Set Identifier-7
Procedure-1
THRU to Its Current
Procedure-2 FROM Value
Augment Augment
Identifier-7 Identifier4
with Its with Its
Current Current
BY Value BY Value

Figure 5-25. Format 4 PERFORM Statement Logic—Varying Three Identifiers

Set Identifier4
to Its Current
FROM Value

Augment
Identifier-1
with Its
Current
BY Value

Branching Statements
PERFORM

5-91

Programming Notes

The procedures executed by a PERFORM statement are
in effect a closed subroutine that can be entered from
other points in the program.

The Format 4 PERFORM statement is especially useful
in table handling. One Format 4 PERFORM statement
can serially search an entire 3-dimensional table.

Segmentation Information

A PERFORM statement appearing in a permanent

segment can have in its range only one of the following:

« Sections, each of which has a segment number less
than 50.

« Sections or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent

segment can have in its range only one of the following:

« Sections, each of which has a segment number less
than 50.

« Sections or paragraphs wholly contained within the
same independent segment as the PERFORM

statement.

Control is passed to the performed procedures only
once for each execution of the PERFORM statement.

5-92

STOP Statement

The STOP statement halts the object program either
temporarily or permanently.

Format

STOP {RUN }

— |\ literal

The literal can be numeric or nonnumeric, and can be
any figurative constant except ALL literal. If the literal is
numeric, it must be an unsigned integer.

When STOP literal is specified, the literal is
communicated to the operator, and object program
execution is suspended. Program execution is resumed
only after operator intervention.

The action taken by the operator determines whether
the job continues at the next executable statement in
the sequence, the job step is canceled, or the entire job
is canceled.

When STOP RUN is specified, execution of the object
program is terminated, and control is returned to the
system. If a STOP RUN statement appears in a
sequence of imperative statements, it must be the last
or the only statement in the sequence. All files should
be closed before a STOP RUN statement is executed.

An implicit return to the calling program is always
generated after the last statement in the source

. program. In a main program, this is equivalent to a

STOP RUN. In a subprogram, this is equivalent to an
EXIT PROGRAM.

For restrictions on the STOP RUN statement in calling
and called programs, see Program Termination
Statements in Chapter 8.

Programming Notes
The STOP literal statement is useful for special

situations when operator intervention is needed during
program execution.

COMPILER-DIRECTING STATEMENTS

Compiler-directing statements provide instructions to the
COBOL compiler. The compiler-directing statements are
COPY, ENTER, and USE.

Only the ENTER statement is discussed in this chapter.
The COPY statement is discussed under Source Program
Library in Chapter 6. The USE statements are discussed
under Debugging Features in Chapter 6.

ENTER Statement

The System /34 COBOL compiler does not allow another
source language to be used in COBOL source programs.
Therefore, the ENTER statement is not required or used

by the System/34 COBOL compiler.

. Format

ENTER language-name [routine-name] .

If the ENTER statement is inserted in the source
program, it is treated as a comment. Statements in the
ENTERed language must not be included in the source
program.

Branching Statements

ENTER

5-93

Chapter 6. Additional Functions

System/34 COBOL offers several additional functions
that are useful to programmers who are writing more
advanced applications. The additional functions provided
by System/34 COBOL discussed in this chapter are:

« Table Handling

« SORT-MERGE

« Library Copy Facility

« Segmentation

« Inter-program Communication

« Debugging

« FIPS Flagger

Additional Functions 6-1

Table Handling

Tables are often used in data processing. A table is a
set of logically consecutive items, each of which has the
same data description as the other items in the set. The
items in a table can be described as separate contiguous
items. However, this approach may not be satisfactory
for two reasons. From a documentation standpoint, the
homogeneity of the data items is not apparent;
secondly, repetitive coding to reference unique
data-names become a severe problem. Thus, a method
of data reference is used which makes it possible to
refer to all or to part of one table as an entity.

TABLE HANDLING CONCEPTS

in COBOL, a table is defined with an OCCURS clause in
its data description. The OCCURS clause specifies that
the named item is to be repeated as many times as
stated. The item so named is considered a table
element, and its name and description apply to each
repetition (or occurrence) of the item. Because the
occurrences are not given unique data-names, reference
to a particular occurrence can be made only by
specifying the data-name of the table element, together
with the occurrence number of the desired item within
the element.

The occurrence number is known as a subscript and the
technique of supplying the occurrence number of
individual table elements is called subscripting. A related
technique, called indexing, is also available for table
references. Both subscripting and indexing are
described in the following sections.

Table Definition
COBOL allows tables in one, two or three dimensions.

To define a one-dimensional table, the user writes an
OCCURS clause as part of the definition of a table
element. However, the OCCURS clause must not appear
in the description of a group item that contains the table
element, that is, an OCCURS clause must not be
specified for an 01-level item. For example:

01 TABLE-ONE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-A PIC X(4).
10 ELEMENT-B PIC 9(4).

TABLE-ONE is the group item that contains the table.
ELEMENT-ONE names the table element of a
one-dimensional table that occurs three times.
ELEMENT-A and ELEMENT-B are elementary items
subordinate to ELEMENT-ONE.

To define a two-dimensional table, a one-dimensional
table is defined within each occurrence of another
one-dimensional table.

For example:

01 TABLE-TWO.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-A PIC X(4).
15 ELEMENT-B PIC 9(4).

ELEMENT-ONE is an element of a one-dimensional
table that occurs three times. ELEMENT-TWO is an
element of a two-dimensional table that occurs three
times within each occurrence of ELEMENT-ONE.
ELEMENT-A and ELEMENT-B are elementary items
subordinate to ELEMENT-TWO.

J

C

To define a three-dimensional table, a one-dimensional
table is defined within each occurrence of another
one-dimensional table, which is itself contained within
each occurrence of another one-dimensional table. For
example:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES
PICTURE X(8).

In this example, TABLE-THREE is the group item that
contains the table. ELEMENT-ONE is an element of a
one-dimensional table that occurs three times.
ELEMENT-TWO is an element of a two-dimensional
table that occurs three times within each occurrence of
ELEMENT-ONE. ELEMENT-THREE is an element of a
three-dimensional table that occurs two times within
each occurrence of ELEMENT-TWO. Figure 6-1 shows
the storage layout for TABLE-THREE.

Table References

Whenever the user refers to a table element, or to any
item associated with a table element the reference must
indicate which occurrence is intended.

For a one-dimensional table, the occurrence number of
the desired element gives the complete information. For
tables of more than one dimension, an occurrence
number for each dimension must be supplied. In the
three-dimensional table defined in the previous
discussion, for example, a reference to
ELEMENT-THREE must supply the occurrence number
for ELEMENT-ONE, ELEMENT-TWO, and
ELEMENT-THREE. Either subscripting or indexing,
described in the following paragraphs, can be used to
supply the necessary references.

ELEMENT-ONE ELEMENT-TWO ELEMENT-THREE Byte Dis-
Occurs Three Times Occurs Three Times Occurs Two Times placement
- 0
ELEMENT-THREE (1, 1, 1)
ELEMENT-TWO (1, 1) 8
ELEMENT-THREE (1,1, 2) -
' ELEMENT-THREE (1, 2, 1)
ELEMENT-ONE (1) ELEMENT-TWO (1, 2) 24
ELEMENT-THREE (1, 2, 2) 32
ELEMENT-THREE (1, 3, 1)
ELEMENT-TWO (1, 3) 40
ELEMENT-THREE (1, 3, 2) 48'
ELEMENT-THREE (2, 1, 1)
ELEMENT-TWO (2, 1) 56
ELEMENT-THREE (2, 1, 2) 64
ELEMENT-THREE (2, 2, 1)
ELEMENT-ONE (2) ELEMENT-TWO (2, 2) - 72
. ELEMENT-THREE (2, 2, 2) 80
ELEMENT-THREE (2, 3, 1)
ELEMENT-TWO (2, 3) 88
ELEMENT-THREE (2, 3, 2) - %
ELEMENT-THREE (3, 1, 1)
ELEMENT-TWO (3, 1) 104
ELEMENT-THREE (3, 1, 2) 12
ELEMENT-THREE (3, 2, 1)
ELEMENT-ONE (3) ELEMENT-TWO (3, 2) 120
ELEMENT-THREE (3, 2, 2) 128
ELEMENT-THREE (3, 3, 1)
ELEMENT-TWO (3, 3) 136
ELEMENT-THREE (3, 3, 2) 144

Figure 6.1 Storage Layout for TABLE-THREE

Additional Functions 6-3

Subscripting

Subscripting is a method of providing table references
through the use of subscripts. A subscript is an integer
value that specifies the occurrence number of a table
element. Subscripts can be used only when reference is
made to an individual item within a table element.

Format

{data-name-1

OF . . .
condition-name} [{m } data-name-Z] . e (subscr|pt-1 [,subscnpt-Z [,subscr|pt-3]])

Data-name-1 must be the name of a table element, and
can be qualified, if necessary. Note that when
qualification is used, it is data-name-1 that is
subscripted, not data-name-2.

The subscript can be represented either by a literal or a
data-name.

A literal subscript must be an integer, and it must have

a value of one or greater. The literal can have a positive
sign or it may be unsigned. Negative subscript values
a