
- - -- - ------- - - ---- - --- - -
5C21 -77 05-3 - - - - - File No. 534-21--

..

IBM System/34
Basic Assembler and
Macro Processor

Reference Manual
Program Nwnber 5728-AS1

•

•

- ---- - - ---- - --- -
•

..... !SC21-7705-3-* - - !,

L - - - - - File No. S34-21 -- --- i· - •

IBM System/34
Basic Assembler and
Macro Processor

Reference Manual
Program Number 5726-AS1

Fourth Edition (January 1982)

This is a major revision of, and obsoletes, SC21-7705-2 and Technical
Newsletters SN21-8019 and SN21-8175. Changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change or addition.

This edition applies to release 8, modification 0 of the IBM System/34 Basic
Assembler and Macro Processor Program Product (Program 5726-AS1) and to all
sJ,Jbsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Changes are periodically made to the information herein;
changes wll be reported in technical newsletters or in new editions of this
publication.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 532, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever, You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1977, 1978, 1979, 1982

•

PURPOSE OF THE MANUAL

The Basic Assembler and Macro Processor Reference
Manual is a reference manual for the programmer writing
assembler programs for the IBM System/34. This
manual is not intended to teach an inexperienced
assembler programmer how to code assembler
programs.

Readers are expected to use the manuals listed under
Related Publications in this Preface for further
information on how to code basic assembler language
programs. For example, for a complete description of
the formats of System/34 machine instruction
statements that can be used in assembler programs, see
the IBM System/34 Functions Reference Manual.

This program provides ideographic support when used
with the ideographic version of the SSP and with the
hardware devices that version supports.

HOW THIS MANUAL IS ORGANIZED

This publication is organized as follows:

• 	 Chapter 1 explains the assembler functions and how
these functions are executed.

• 	 Chapter 2 presents the assembler language coding
conventions and programming conventions. The
assembler language format is described, as well as
the three types of terms used to code the
statements.

• 	 Chapter 3 describes the assembler instruction
statements.

• 	 Chapter 4 describes the machine instruction
statements and lists their mnemonic operation codes.

Preface

• 	 Chapter 5 explains the macro processor and the
coding of macroinstruction definitions.

• 	 Chapter 6 describes the IBM-supplied
macroinstructions and the general rules for coding
macroinstructions.

• 	 Chapter 7 contains programming considerations,
information about assembler control statements, data
files, OCL, and data management considerations.

• 	 Chapter 8 lists and explains all printed messages
issued by the assembler and the macro processor.

• 	 Appendix A shows a sample program. Appendix A
also shows two IBM-supplied macroinstruction
definitions and related macroinstruction expansions.

• 	 Appendix B shows the coded character set for
EBCDIC (extended binary coded decimal interchange
code).

A glossary provides a list of both new and familiar
terms.

Note: Because the manual is arranged for reference
purposes, certain terms appear, of necessity, earlier in
the manual than the discussions explaining them; The
reader who encounters a problem of this sort should
refer to the index, which will direct the reader to the
term's definition or explanation.

iii

SYSTEM REQUIREMENTS

Refer to the IBM System/34 Planning Guide,
GC21-5154, for the System/34 assembler compiler
requirements.

PREREQUISITE PUBLICATIONS

• 	 IBM System/34 Introduction, GC21-5153

• 	 IBM System/34 Planning Guide, GC21-5154

• 	 IBM System/34 System Support Reference Manual,
SC21-5155

REl..ATED PUBLICATIONS

• 	 IBM System/34 Assembler Reference Summary,
GX21-7674

• 	 IBM System/34 Concepts and Design Guide,
SC21-7742

• 	 IBM System/34 Installation and Modification Reference
Manual: Program Products and Physical Setup,
SC21-7689

• 	 IBM System/34 System Data Areas and Diagnostic
Aids Manual, LY21-0049

• 	 IBM System/34 Data Communications Reference
Manual, SC21-7703

• 	 IBM System/34 Interactive Communications Feature
Reference Manual, SC21-7751

• 	 IBM System/34 Sort Reference Manual, SC21-7658

• 	 IBM System/34 Ideographic Sort Reference Manual,
SC21-7850

• 	 IBM System/34 1255 Magnetic Character Reader
Reference Manual. SC21-7740

• 	 IBM System/34 Scientific Macroinstruction Reference
Manual, SA21 -9275

• 	 IBM System/34 Overlay Linkage Editor Reference
Manual, SAal-7707

• 	 IBM System/34 Functions Reference ManutJ/,
SA21-9243

• 	 IBM System/34 Bibliography, GH30-0231

• 	 IBM System/34 Displayed Messages Guide,
SC21-5159

• 	 IBM System/34 Master Index, SC21-7739

ASSEMBLER CODING MATERIAL

IBM System/34 Basic Assembler Coding Form,
GX21-9279

"

iv

Contents

CHAPTER 1. INTRODUCTION •..••
IBM System/34 Basic Assembler Language

Asaembler Language Statements . . .

CHAPTER 2. ASSEMBLER LANGUAGE
Asaembler Language Source Program Records
Character Set.
Coding Conventions

Assembler Language Statement Entries
Identification Sequence Entry

Asaembler Program Conventions
Expressions
Terms
Addressing
Program Linking References

CHAPTER 3. ASSEMBLER INSTRUCTION
STATEMENTS • • .

Symbol Definition . . .
EQU-Equate Symbol

Data Definition
DC-Define Constant
OS-Define Storage .

Listing Control
TITLE-Identify Assembly Output
EJECT-Start New Page
SPACE-Space Listing
PRINT-Control Program Listing

Program Control Statements . . .
ISEQ-Input Sequence Checking
ORG-Set Location Counter .. .
START-Start Assembly
USING-Uae Index Register for Base

Displacement Addressing
DROP-Drop Index Register as Base Register
ENTRY-Identify Entry-Point Symbol
EXTRN-Identify External Symbols
ICTL-Input Format Control
END-End Asaembly

CHAPTER 4. MACHINE INSTRUCTION
STATEMENTS

Name Entry
Mnemonic Operation Entry
Operand Entry

1-1 CHAPTER Ii. MACROINSTRUCTION DEFINITIONS &-1

1-1 Macroinstruction Coding Conventions 5-1

1-1 Sequence Symbol 5-1

Self-Defining Terms 5-1

2-1 Character String . . 5-1

2-1 Character Expression 5-1

2-1 Substring 5-2

2-1 Alphameric Value 5-2

2-2 Variable Symbol . 5-2

2-2 Count Function 5-4

2-3 Arithmetic Expression 5-4

2-4 Continuation 5-4

2-5 Concatenation . . . 5-4

2-8 Defining Macroinstructions 5-5

2-11 Definition Control Statement Format 5-6

Macroinstruction Format 5-6

Macroinstruction Definition Control Statements 5-7

3-1 Header (MACRO) . 5-7

3-2 Prototype 5-7

3-2 Global 5-9

3-2 Local 5-10

3-3 Table (TABLE) 5-10

3-6 Table-Definition (TABDF) 5-11

3-6 Text (TEXT) 5-11

3-6 Comment 5-12

3-7 Conditional Branch (AIF) 5-12

3-7 Unconditional Branch Record (AGO) 5-14

3-7 Set Arithmetic (SETA) 5-14

3-8 Set Binary (SETB) 5-15

3-8 Set Character (SETC) 5-15

3-8 Asaembly No Operation (ANOP) 5-15

3-9 Measage (MNOTE) . 5-16

Logical End (MEXIT) 5-17

3-10 Physical End (MEND) 5-17

3-10 Sample Definition of a User Macroinstruction. 5-18

3-11

3-11

3-13

3-13

4-1

4-1

4-1

4-6

v

CHAPTER 6. MACROINSTRUCTION STATEMENTS. 6-1

CHAPTER 7. PROGRAMMING CONSIDERATIONS. 7-1
WRITING MACROINSTRUCTIONS 6-1

Assembler Control Statements 7-1
MACROINSTRUCTIONS SUPPLIED BY IBM 6-2

HEADERS Statement 7-1
 ..JSYSTEM SERVICES MACROINSTRUCTIONS 6-4

System Log Support. 6-4

Generate a Parameter List for a Message

Displayed by System Log ($LMSG) 6-5

Generate Displacements for System Log ($LOGD) 6-8

Generate the Linkage to the System Log ($LOG) 6-8

General SSP Support 6-8

Generate Parameter List and Displacements for

$FIND ($FNDP) 6-8

Find a Directory Entry ($FIND) 6-9

Load or Fetch a Module ($LOAD) . . . 6-10

Snap Dump of Main Storage ($SNAP) 6-10

Information Retrieval ($INFO) 6-11

Generate a Checkpoint Parameter List ($CKEO) . 6-13

Establish a Checkpoint ($CKPT) 6-13

Inverse Data Move ($INV) 6-15

End of Job ($EOJ) 6-15

INPUT/OUTPUT MACROINSTRUCTIONS 6-16

General I/O Support 6-17

Allocate Space or Device ($ALOC) 6-17

Prepare a Device or File for Access ($OPEN) 6-18

Prepare a Device or File for Termination ($CLOS) 6-19

Generate DTF Offsets ($DTFO) . . . 6-19

Printer Support 6-20

Define the File for a Printer ($DTFP) 6-20

Construct a Printer Put Interface ($PUTP) 6-21

Disk Device Support 6-22

Define the File for Disk ($DTFD) . . . 6-22

Construct a Disk Get Interface ($GETD) 6-27

Construct a Disk Put Interface ($PUTD) 6-28

Disk Sort Support 6-30

Generate a Loadable Sort Parameter List ($SRT) 6-30

Construct a Loadable Sort Interface ($SORT) . 6-31

Timer Support 6-32

Generate Timer Request Block ($TRB) . 6-32

Set Interval Timer ($SIT) 6-32

Return Interval Time ($RIT) 6-33

Return Time and Date ($TOD) 6-33

Display Station Support 6-33

Define the File for Display Station ($DTFW) 6-34

Construct a Display Station Input/Output

Interface ($WSIO) 6-37

Generate Override Indicators for Display

Station ($WIND) 6-44

Generate Labels for Display Station ($WSEO) 6-44

~ Statement .. 7.:'f

Execution Information . . . 7-3

Procedures for Assembler 7-3

Data Files Used by the Assembler 7-4

Assembler Listing 7-5

Control Statements 7-5

External Symbol List (ESL) 7-5

Object Code and Source Program Listing 7-5

Page Headings. . . 7-6

Diagnostics 7-6

Cross-Reference List 7-6

Object Program 7-7

Record Formats 7-7

Macroinstruction Coding Restrictions 7-8

Macroinstruction Definition Restrictions 7-8

Disk Data Management Considerations 7-8

Access Methods 7-8

Data Management Control Blocks and Buffers 7-11

Allocating and Opening the File 7-12

Accessing Records in the File 7-12

Display Station Data Management Considerations 7-19

GET and ACI Return Codes 7-19

ACO Return Codes 7-19

STI Return Codes 7-20

Return Codes for All Operations Except GET, ACI,

ACO, and STI 7-20

CHAPTER 8. PRINTED MESSAGES 8-1

Macroinstruction Statement Errors 8-1

Macro Processor 8-8

Assembler 8-12

APPENDIX A. SAMPLES A-1

Sample Assembler Program A-1

Sample Macroinstructions A-3

Definition of $PUTP A-3

Definition of $LOG . . . A-4

Expansions of $PUTP and $LOG A-4

APPENDIX B. EBCDIC B-1

GLOSSARY C-1

INDEX . .. X-1

vi

Chapter 1. Introduction

•

The IBM System/34 Basic Assembler and Macro
Processor Program Product consists of two distinct
parts: the assembler processor and the macro
processor. The macro processor is the first to scan the
source program. When it encounters 11 macroinstruction
statement, the macro processor refers to a previously
coded and stored macroinstruction definition and uses
the information in that definition and the parameters
coded in the macroinstruction statement to expand the
macroinstruction statement into a series of assembler
instruction statements and/or machine instruction
statements. These statements are inserted in the source
program and the original macroinstruction statement is
modified to appear as a comment.

The IBM-supplied macroinstructions perform both
system services and input/output device support.

After the macro processor has expanded each
macroinstruction statement in the source program, the
assembler receives control. The assembler translates the
machine instruction statements into a form usable by
the IBM System/34 and assigns relative storage
addresses to all statements, constants, and storage
areas.

Thus, the principal function of the IBM System/34 Basic
Assembler and Macro Processor program product is to
translate assembler language source programs into
machine language object programs. Therefore, to write
source programs to be assembled by the program
product, you must be familiar with the basic assembler
language.

IBM SYSTEM/34 BASIC ASSEMBLER LANGUAGE

The IBM System/34 Basic Assembler language is a
symbolic programming language and must be translated
into a form usable by the computer before execution.
This computer-usable form is called machine language
or object code. The IBM System/34 Basic Assembler
language provides a convenient method for representing,
on a one-for-one basis, machine instruction statements
and related data necessary to write a program for
execution by any model of the IBM System/34.

This one-for-one relationship to machine language
makes the assembler language versatile. Further
versatility is available because the assembler
programmer can refer to instructions, data areas, and
other program elements by symbolic names, as well as
actual machine addresses. Also available are the
EBCDIC bit pattern, binary arithmetic capabilities, and
access to SSP blocks such as DTFs and lOBs. The only
restrictions to be considered are machine restrictions. It
is possible to write some programs that will execute
faster because in unique situations a programmer may
see ways to code more efficiently than the routine
procedures a compiler would generate.

Assembler language Statements

The basic assembler language is composed of
assembler language statements that use symbols, called
mnemonics, to represent the operation codes of three
types of assembler language statements. The three
types of assembler language statements are as follows:

1. 	 Machine instruction statements represent machine
language instructions on a one-for-one basis. The
symbolically represented machine instruction
statements are translated into executable machine
language code by the assembler processor.

2. 	 Assembler instruction statements control the
functions of the assembler. Each assembler
instruction statement causes the assembler to
perform a specific operation during the assembly
process but is not translated into executable
machine language code by the assembler
processor.

3. 	 Macroinstruction statements represent a sequence
of machine and/or assembler instruction
statements. Each macroinstruction statement
causes the macro processor to select and/or
modify assembler language statements found in
the definition of the macroinstruction.

Figure 1-1 shows an example of each type of assembler
language statement.

Introduction 1·1

11

11M.,...," _ -CadInt F..... 	 OX21·1127"0
....'"1~i"U,S.".IBM

I I

J I I ILl I J I I

I ""'AM

.~ . "

. r.. • : .~,~. i i.L I~l :':i~® f.t.MhhH-t-VJt..~+.m
j ~ .- ~ !

I 	 I I =::' :..',-4-+1 +.-+ '.'-' -; Hr~1
I I I .; :. I f· ':. : ,'.

; Io ttltttttm~~WJMtiMnl{ 	 I " ';:'; i' i ~t+'4
!1 • I

i;'! :11 ,:;Ii I~l~t#
f: 	 I • H--t-H+.f!· t±: Htt

, I I

1

n" .. ",. " " •,,' M •• II ,,, ,, M , ...

<D Machine instruction statement.

®Assembler instruction statement.

oMacroinstruction statement.

Figure 1-1. Example of Assembler Language Statement Type.

1-2

Chapter 2. Assembler Language

In order to code in assembler language, the programmer CHARACTER SET

must become familiar with certain definitions, coding
conventions, instructions, and other features of the Source statements are written uSing the following

language. This chapter deals with these items. characters:

Letters A through Z, and $, #, @

ASSEMBLER LANGUAGE SOURCE PROGRAM Digits o through 9

RECORDS Special characters + - , . * 0 . blank

A source program is a sequence of assembler language In addition, any valid character available on the input

statements. The body of each record is composed of device may be designated between single quotes, and in

two parts. The first part contains the assembler remarks and comments. Note that not all print belts

language statement, which is normally in columns 1-87. available on System/34 have all the special characters

The column following the assembler language listed above. The assembler will accept all characters as

statement, column 88, must always be blank. The input, but those characters not on the print belt will not

second part of the record contains the optional be printed.

identification-sequence number that is normally in
columns 89-96.

CODING CONVENTIONS

The input format control (lCTL) assembler instruction
can change the columns defined as the assembler A coding sheet that contains suggested columns for

language statement. The input sequence checking each entry is provided. The coding form is shown in

(lSEQ) assembler instruction can change the columns Figure 2-1. Space is provided at the top for program

defined as identification sequence number in the .source identification and instructions to the operator; this

program. These assembler instructions are explained in information does not become part of the source

Chapter 3. program. The coding examples in this book do not
show this part of the form.

IBM System/34 Besic Assembler Coding Form

PROGRAM I KEYING GRAPHIC I I I I I I i ! 'AOf 0'

PROQRAMMER I DATE I IfliSTRUCTtONS ICHAR.&.CTUI 1 I CARD ELECTRO NUM8ER
I I I I I I 	 I

STATEMENT
I......,I"'.',,,~

N.m. 0".""00'1 OllO',.Nt R.m.,k • s...~.....
, . ," .., Iii" 1 'jI4,.tfo .' .~ , .• 20 . "'415 .. ".- Ih I"~ 10" J .. J.I j4 J., IL ' • .111 J""O~l V 4)44 ~~4', 4'',!ioO ~I ',} ',] ',4 !n ',,, '.>' ~H ~46G',' .,' b1q 6!>',bl" ,,~.,," 10" I , '01" "./, lij I,ao~' ~.',,".~"~'.~"

-1~IIIIII I Tr I I I II Ii I I I I I III! I I I i L I1I11I1

I I I I 	 , IK I I I III I i I I I I I j I I II I ! I I I I I I I i I 	 I I TTl I ' lY JIlILIL

I I T

I
I 	

Assembler Language Statement H+ i Blank- OptionalIri--+--+-+
I 	 I-I , ' I 	 I I 11'1 --, 	 I ' IidentificationH I I P~Ltl#~t ' I I T 1 Ir~l, 1 II 1L t-

I,...+ ~ i I I I 	 I I I , ISequence
, I

i It I I i
j

I
T
I I I

I
I I I I I ,

1
I I'

, Number
~----T-it t· : I r I

!

i I 	 [I"
I

- II I T -r--H 	
,

f .1 	
hti

I I IT 11 Ii--.H---+ ~--~
, I 	 I I I I , I i . I

1 	 I , . ,~" + 	
i I iT

~~ ~L .
' I1 I-~ i t jc +I

H.l L, LI-;...1,:- ;
I

T TT I+-4 t 	 -++ rl-T
,! I I I Ii I I I, I I I I

-t

~- I I 	 .•+j -f -t ~. T-1-t-+- ---
I •I J. I I

'~:+0r iiI i~+ I 	
, F -fu -+-t

~+-+-,jl i jT t ~[Jj ! .- --'-ll ~I ! +.~ I' -i l t-rt I; --+-.

-~,
I
i

I I i
I

. I -~t~ 	 I

! !

~

I i

i

i'.-.~t
! I II I I I i 	 . : ,lr 	 . ~~ it 1

-~I+',tr~ 	 -; t ~ 	 Ii
-- ~I ..--++]

I I 	 I I I!tt jEt)~H-	 --
Ii I I 	 I--s::r:-+-+

#~ ~ltlll 	
~ -"- ~t::+" Jl ,: ~l; ,r L.l. 1 I ~l -~tH I LJ.LJ I I I : . I ~ .

, 16 h 20 oJ!> 	 404 4 _J.4 4!> 4 • 4~.~ 50 ' ',j "4 ;5 k ,,~60 "J "4 6 r;;I',8b~7" ""I!>~" '.'

Figure 2-1. Sample Coding Sheet.

Assembler Language 2·1

http:OllO',.Nt

Assembler Language Statement Entries

Assembler language statements may consist of from
one to four entries. They are from left to right: a name
entry, an operation entry, an operand entry, and a
remarks entry. See Figure 2-2 for an example of each.

The delimiter that separates individual entries is one or
more blanks. Operands can contain a blank only when a
constant is defined and enclosed in apostrophes. For
example:

Nlm. Operat.on Operlnd

J 4 !> Ii , .'j 10 11 12 13 14 Ei 16 11 Hl 192021 222324252627 28 2~ 30 3132333435363138

I II)ItI ~lLIf' I ,.1 I ~~ 17 '17Iljll S I/~ • I'
,

1
I

i I
I I L

Name Entry

A name is a symbol created by the programmer to
identify an assembler language statement, storage area,
or value. The name entry, if allowed, is optional except
on the equate (EQU) instruction. The symbol may be
from one to eight characters with the exception of the
name entry used in a START instruction. The name
entry in a START instruction is limited to six characters.
See START Instruction in Chapter 3 for more
information.

The first character of the name entry must appear in
column 1 and must be a letter. (See Character Set
earlier in this chapter.) The remaining characters may be
letters or digits, but not special characters. The name
entry, if used, must be followed by at least one blank. If
column 1 is blank, the assembler program assumes no
name has been entered. (See Figure 2-2.)

Operation Entry

The operation entry is the mnemonic operation code
specifying the machine instruction, assembler
instruction, or macroinstruction desired. An operation
entry is mandatory and may not start in column 1. Valid
mnemonic operation codes consist of from one to five
characters. The operation entry must be followed by at
least one blank. (See Figure 2-2.)

Operand Entry

Operand entries identify and describe data to be acted
upon by the operation, by indicating such things as
storage locations, registers, affected masks, storage
ar~a lengthJ>L-Qrtypes. ofdata..O*ffilfldsare requirecf
for all machine instruction statements and for certain
assembler instruction statements. An operand is defined
as a term or an arithmetic combination of terms. (See
Terms in this chapter.)

Operand entries must be separated by commas, and no
blanks may intervene between operands and the
commas that separate them. The last operand must be
followed by at least one blank.

Remarks Entry

Remarks are descriptive items of information about the
program. Any valid character available on the input
device may be used in writing a remark. The remark
follows the operand and must be separated from it by at
least one blank. Remarks cannot extend beyond the end
column. (See Figure 2-2.)

Comment Statements

An entire statement field, columns 1-87, may be used
for a comment by placing an asterisk (*) in column 1.
Extensive comment entries may be written by using a
series of lines with an asterisk in column 1 of each line.
Comments may appear anywhere in the source program
and are printed in the assembly listing, but do not have
any effect on the execution or main storage
requirements of the program. (See Figure 2-2.)

Identification Sequence Entry

The optional identification sequence entry is used to
enter program identification and/or statement sequence
characters. To aid in keeping source statements in
order, the programmer may number the records in this
field. These characters are placed in their respective
records and during the assembly the programmer may
request the assembler to verify this sequence by use of
the input sequence (lSEQ) assembler instruction.

2-2

http:Operat.on

I

(;X219179.

IBM Syltem/34 Basic Assembler Coding Form

'.00... I""G IG••"'" I I I I I I I I •••• o.
I---=:-,.oo=,.••.. ------------------'I0--,-.----jl ",:,U,,'O"ICH···"'·I I I I I I I=-- I

I ! I. i'
I ~R[I: I ill1 +-f'~-+ II l1li111 II

I

Figure 2-2. Entry Examples of Assembler Language Statements

L ASSEMBLER PROGRAM CONVENTIONS

I

A term is a single symbol, a self-defining value, or a

location counter reference. A term is used only in the

operand field of an assembler language statement. The
three types of terms are described under Terms in this
section.

An expression consists of one or more terms. The
operand fields of assembler language instructions
consist of one or more expressions.

Terms and expressions are classed as either absolute or
relocatable. A term or expression is absolute if its value
is not changed when the assembled program in which it
is used is relocated in main storage. A term or
expression is relocatable if its value is changed when
the program in which it is used is relocated.

Program relocation is the loading of an assembled
program (object program) into a different area of main
storage from that which was originally assigned by the
assembler. The difference in bytes between the
originally assigned address of the object program and
the address of the relocated object program is the
amount of relocation. The addresses assigned to a"
statements and data in the relocated program are
changed by the amount of relocation.

Programs are assembled to begin at address 0000,
unless the START statement specifies a different
address. If a program is not started on a 2K boundary,
however, a dump of the program at execution time
shows the program as beginning at the next lowest 2K
boundary.

Assembler Language 2-3

http:I---=:-,.oo

Expressions

The rules for coding an expression are:

1. 	 Two terms or two operators must not be used
consecutively in an expression.

2. 	 Parentheses cannot be used in an expression.

3. 	 Only absolute terms can be used in a multiplication
operation.

4. 	 Blanks are not allowed in an expression.

5. 	 An expression must be of the form A or Ate when
it contains an external symbol. A is the symbol
used as the operand of an EXTRN statement, and
e is an absolute expression. Any symbol equated
to an expression of this form cannot be used in an
expression of more than one term.

If there is more than one term in the expression, the
terms are reduced to a single value as follows:

1. 	 Each term is evaluated separately.

2. 	 Arithmetic operations are then performed in a
left-to-right sequence, except that multiplication is
performed before addition or subtraction.
Example: A + B*C would be evaluated as A +
(B*C), not (A + B)*C. The result would be the
value of the expression.

3. 	 The intermediate result of the expression
evaluation is a 3-byte, or 24-bit value.
Intermediate results must be in the range of _224
through 224_1.

Negative values are carried in the twos complement
form. The final value of the expression is the truncated,
rightmost 16 bits of the result. In an address constant.
the amount of truncation and the length of the result
depend on the length of the constant. The value of the
expression before truncation must be in the range of
-65536 through +65535. A negative result is considered
to be a 2-byte positive value.

Absolute Expressions: An absolute expression is one
whose value is unaffected by program relocation.

An absolute term may be a nonrelocatable symbol, or
any of the self-defining terms. All arithmetic operations
are permitted between absolute terms.

An absolute expression can contain relocatable terms or
a combination of relocatable and absolute terms under
the following conditions:

1. 	 The expression must contain an even number of
relocatable terms.

2. 	 The relocatable terms must be paired and each
pair must consist of terms with opposite signs.
The paired terms need not be adjacent.

3. 	 Relocatable terms cannot be used in a
multiplication operation.

2-4

Pairing relocatable terms with opposite signs cancels the
effect of the relocation, because both terms would be
relocated by the same value. Therefore, the value
represented by the paired terms would, in effect, remain
constant regardless of the program relocation. For
example, in the absolute expression A - Y + X, A is an
absolute term and X and Yare relocatable terms. If A
equals 50, Y equals 25, and X equals 10, the value of
the expression would be 35. If X and Yare relocated by
a factor of 100, their values would become 110 and
125, respectively. However, the expression would still
evaluate as 35 (50 - 125 + 110 = 35).

Relocatable Expressions: A relocatable expression is one
whose value changes by the amount of relocation when
the program in which it is used is relocated. Every
relocatable expression must reduce to a positive value.

A relocatable expression can be a combination of
relocatable and absolute terms under the following
conditions:

1. 	 There must be an odd number of relocatable
terms.

2. 	 A" relocatable terms, except one, must be paired
and each pair must consist of terms with opposite
signs. The paired terms need not be adjacent.

3. 	 The unpaired term must not be immediately
preceded by a minus sign.

4. 	 Relocatable terms cannot enter into a
multiplication operation.

A" terms in a relocatable expression are reduced to a
single value, which is the value of the unpaired
relocatable term after it has been adjusted (displaced) by
the values of the other terms in that expression. For
example, in the expression W - X + Y where W, X, and
Yare relocatable terms; and W = 10, X = 3, Y = 1
before relocation; the result is the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant
value of the expression would be increased by the
amount of relocation (100), giving the expression a value
of 108.

In the following expression, a combination of absolute
and relocatable terms are used: A + F*G - D + B. A, D,
and Bare relocatable terms; F and G are absolute
terms. When given the values A = 3, B = 2, D = 5, F =
1, and G = 4, the result would be a relocatable value of
4. The multiplication occurs first. resulting in 4; then the
addition and subtraction of the other terms, including
the result of the multiplication, is performed in a
left-to-right direction. The result of the arithmetic
operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be
determined by adding the amount of relocation to a"
relocatable terms.

Terms

Every term represents a value. This value may be
assigned by the assembler (for symbols and for location
counter references) or may be inherent in the term itself
(that is, the term may be self-defining). An arithmetic
combination of terms, an expression, is reduced to a
single value by the assembler.

Symbolic Terms

A symbolic term is a character or combination of
characters used to represent a storage location, a
register, or an arbitrary value.

Symbols, through their uses as name entries and
operand entries, provide the programmer with an easy
way to name and reference a program element. The
assembler assigns values to symbols appearing as name
entries in a source statement. The values assigned to
symbols in the name entry of the machine instruction
statement are the addresses of the leftmost bytes of the
storage records containing the statements. The values
assigned to symbols naming storage areas and
constants are the addresses of the rightmost bytes of
the storage fields containing these items. The symbols
naming them are considered relocatable terms because
the addresses of these items may change upon
relocation. A length attribute is also assigned by the
assembler.

Assembler Language 2·5

A symbol that is a name entry in the equate symbol
(EQU) assembler instruction statement is assigned the
value designated in the operand entry of the statement.
Since the operand entry may represent a relocatable
value or an absolute value, the symbol is considered a
relocatable term or an absolute term, depending upon
the value it is equated to. The length attribute of the
symbol on an EQU instruction is obtained from the
operand entry.

The value of a symbol may not be negative and may not
exceed 216_1 (65535).

A symbol is said to be defined when it appears as the
name entry of a source statement or the operand of an
EXTRN. EQU statements require that a symbol
appearing in the operand entry be previously defined. In
this case, the symbol, before its use in the operand,
must have appeared as a name entry in a prior
statement.

A symbol may be defined only once in an assembly.
That is, each symbol used as the name of a statement
or operand of an EXTRN must be unique within that
assembly.

Self-Defining Terms

A self-defining term is one whose value is inherent in
the term. It is not assigned a value by the assembler.
For example, the decimal self-defining term 15
represents a value of 15.

There are four types of self-defining terms: decimal,
hexadecimal, binary, and character. Use of one of these
terms is the decimal, hexadecimal, binary, or character
representation of the corresponding machine-language
binary value or bit configuration. The length attribute of
a self·defining term is always one.

Self-defining terms are the means of specifying machine
values or bit configurations without equating the values
to symbols and using the symbols.

Self-defining terms may specify such program elements
as immediate data, masks, registers, addresses, and
address increments. The type of term selected (decimal,
hexadecimal, binary, or character) depends on what is
being specified.

The use of a self-defining term is quite distinct from the
use of a data constant. When a self-defining term is
used in a machine-instruction statement, its value is
assembled into the instruction. When a data constant is
referred to in the operand of an instruction, its address
is assembled into the instruction.

Self-defining terms are always right-justified; truncation
or padding with zeros, if necessary, occurs on the left.

2·6

Decimal Self-Defining Terms: A decimal self-defining
term is a decimal number written as a sequence of
decimal digits. High-order zeros may be used (for
example, 007). Limitations on the value of the term
depend on its use. For example, a decimal term that
represents an address should not exceed the size of
storage. In any kase. a decimal term may not consiSl of
more than five digits or exceed 216_1 (65535). A
decimal self-defining term is assembled as its binary
equivalent. Some examples of decimal self-defining
terms are: 8, 147,4092, and 00021. In the following
example, a decimal self-defining term is used in a move
immediate (MVI) machine instruction. The 1-byte area
referenced by the symbol, COST, would contain the
decimal value 25 (binary 00011001) after execution of
the instruction.

Name Operation Operand

1 2 3 .. 5 6 7 B 9 10 11 12 13 14 IS 16 17 18 1920 21 '11 23 24 25 26 n <'8 29)) 31 32 33 :>4

16. IDU~ srr 2.5IMI"~ I
I

1
Itaf-

-

u

Hexadecimal Self-Defining Term: A hexadecimal
self-defining term consists of one to four hexadecimal
digits enclosed by apostrophes and preceded by the
letter X. An example is X' 409' .

Each hexadecimal digit is assembled as its 4-bit binary
equivalent. Thus, a hexadecimal term used to represent
an 8-bit mask would consist of two hexadecimal digits.
The maximum value of a hexadecimal term is X' FFFF.

- -

L
The hexadecimal digits and their bit patterns are as
follows:

Digit Bit Pattern

0000
0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

0

The following is an example of the use of a hexadecimal
self-defining term. The 1-byte area referenced by the
symbol SWITCH would contain the hexadecimal value
FO (binary 11110000) after execution of the instruction.

Name Operation Operand

1 2]4~678 9 10 11 12 13 14 I~ 16 11 18 1920 21 'l2 2J 24 2S 26 21 28 :?9 :J) 31 J? JJ JA

BlfI~ MIVII ~.1.1.[1 IHI"IX' l':Ij'

t-

Binary Self-Defining Term: A binary self-defining term
is written as an unsigned sequence of ones and zeros
enclosed in apostrophes and preceded by the letter B,
as follows: B'1 00011 01'. This term would appear in
storage as shown, occupying one byte. A binary term
may represent up to 16 bits.

Binary representation is used primarily in designating bit
patterns of masks or in logical operations.

The following example illustrates a binary term used as
immediate information in a move immediate (MVI)
machine instruction. The byte of immediate information
specified will replace the byte of information referenced
by the symbol BETA.

Name Operation Ooerand
1 , J • , 6 , 8 9 10 II 12 13 14 15 16 17 18 1920 11 n 13 14 2'5]6 21 78 19 J) 31 32 JJ J4

MO ~E fllVI BEITA 18' fll1 I'

I
-

~.

f- + J

Character Self-Defining Term: A character self-defining
term consists of one or two characters enclosed by
apostrophes and preceded by the letter C. All letters,
decimal digits, and special characters may be used in a
character term. In addition, any remaining valid
character (character available on the input device) may
be designated. The following are examples of character
self-defining terms:

C'/, C'AB' C'13'

Because of the use of apostrophes in the assembler
language as syntactic characters, the following rule must
be observed when using an apostrophe in a character
term:

For each apostrophe desired in a character
self-defining term, two apostrophes must be written.
For example, the character value A' would be written
as 'A"'.

Each character in the character sequence is assembled
as its 8-bit code equivalent. The two apostrophes that
must be used to represent an apostrophe are assembled
as an apostrophe.

In the following example, a dollar sign ($) would be
moved into the 1-byte field at REPORT.

Name Operation Operand
1 , J ., 6 , 8 9 10 " 12 13 14 ,~ 16 17 18 192021 12 23 24 2'5 26 17 16 ;>9]) 31 32 3334

ID~IE Lrr~ ~Yl I c,' I'

-t

---~1-Ii
_T .1 .I I 1-

Assembler Language 2-7

Location Counter Reference

A location counter is used to assign storage addresses.
It is the assembler's equivalent of the instruction counter
in the computer. As each assembler language statement
or data area is assembled, the location counter is
incremen~ed the number of bytes used by the
assembled item. Thus, it always points to the next
available location. If a statement defining an instruction
is named by a symbol. the value attribute of the symbol
is the value of the location counter before addition of
the length. If the statement defines storage or a
constant, the value attribute of the symbol is one less
than the value of the location counter after addition of
the length.

The location counter setting can be controlled by using
the START and ORG assembler control statements. The
maximum value for the location counter is 216_1 (65535).

The programmer may refer to the current value of the
location counter at any place in a program by using an
asterisk (*) as a term in an operand. The asterisk
represents the location of the first byte of currently
available storage. For example:

Source Generated
Location counter = 1100

Relocatable
LAB2 DC AL2 (*) 1100
LAB2 DC AL2 (LAB2) 1101

Nonrelocatable LAB2 DC AL2 (1100) 1100

Expressions

An expression is an arithmetic combination of terms.
Two types of expressions are used, absolute and
relocatable. The arithmetic operators are:

+ addition
- subtraction
* multiplication

The following are examples of valid expressions:

AREA+X'2D' N-25 5*C' *+ 15

AREA's value N's value Decimal 5 Current
plus a minus a times the value of
hexadecimal decimal 25 hexadecimal the
2D 40 (character location

blank = counter
hexadecimal plus a
40) decimal

15

Addressing

The two methods of addressing available allow the
assembler programmer to access any part of storage.
These methods are direct addressing and base
displacement addressing. The relative addressing
technique can be used with both methods.

Direct Addressing

The direct addressing method allows the programmer to
represent a 16-bit instruction address by using an
expression as an operand entry. The assembler places
the value of the expression in the machine instruction
which it generates.

Two bytes are always used in the machine instruction
for a direct address. A direct address is indicated by the
absence of a register in the operand.

Figure 2-3 shows an example of direct addressing.

Base Displacement Addressing

Base displacement addressing involves setting up a base
address from which other addresses can be calculated.
This base address must be placed in an index register
before the index register is used for addressing. One
byte is used in the machine instruction for a base
displacement address and is indicated by the presence
of a register in the operand. Anyone value of an index
register allows access to 256 storage positions.

You can code the USING statement to make the
contents of an index register the basis for base
displacement addressing. You can code the DROP
statement to terminate base displacement addressing.
For information about the USING and DROP statements,
see their descriptions in Chapter 3.

Figure 2-4 shows examples of base displacement
addressing.

2-8

ERR LOC 09JECT CODE ADDR STHT SOURCE STATEHENT
0000 1 EXAHP START 0

2 PRINT NODATA
4 •••
5 • •
6 • AN EXAHPLE OF DIRECT ADDRESSING. •
7 • •
B •••

10 HVC NAHE2,NAHE1 HOVE "NAHE" OF AREAl TO "MAHE" OF AREA28882 88 6~ 88i~ 88~~ HVE11
OOOC OC OE 0078 0046 12 HV ~~Y~~:~~9~1 R8~t :E~9~: 8~ =It~l f8 :E~9~: 8~ ~It~~

0012 14 AREA1 ~~U •CL30'JOHN J. SHITH III' "NAHEM OF AREAl
~~is ~~~~~;~g~~!~~I~~ 88~~ i~ ~v9~1 BE El:~~:ft8@H~ntR' :E~Y~: B~ a~~al

0047 19 AREA2
0047 0064 20 NAHE2 5~U •CL30
0065 006C 21 PHON2 DS CLOB :~~B': 8~ ==~=~ 006D 0079 22 CITY2 DS C~15 "CITY" OF AREA2

0000 23 END E AHP

Figure 2·3. Example of Direct Addr_ng

Assembler Language 2-9

tRR 	 LOC OBJECT CODE ADDR STMT SOURCE STATEMENT
0000 	 EXAMP1 START 0 ~ PRINT NODATA

4-...._.............-.........._.....-........._-.-._.-.-..-.
5 •6 • AN EXaMPLE OF BASE-DISPLACEMENT ADDRESSING WITH THE •* 	 ~
7 • "USIN " INSTRUCTION. *8 •9 ...-..........-.._......•..*

0000 	C2 01 0014 11 LA AREA1.R1 POINT TO HOVING "FROH" FIELD
0014 12 USING AREA1. R1 SET TO USE LABELS AS DISPLACEHENTS FROM AREA1

0004 C2 02 0049 14 LA AREA2,R2 POINT TO MOVING "TO" FIELD

0014 15 USING AREA1,R2 SET TO USE LABELS OF AREA1 AS DISPLACEMENTS INTO

16,. AREA2.

0008 9C 1D 1D 1D 18 HVC NAHE(,R2),NAHE(,R1) MOVE "NAME II OF AR~A1 TO "NAME- SF AREA~
OOOC 	 9C 07 25 25 19 HVC PHON(,R2),PHON(,R1) HOVE ·PHON" OF AR A1 TO "PHON" F AREA
0010 	9C OE 34 34 20 MVC CITY(,R2),CITY(,R1) MOVE "CITY" OF AREA1 TO "CITY" OF AREA2

0014 22 AREA1
0014 	D1D6C8D540D14B40 0031 23 NAHE g~u •CL30'JOHN J. SHITH III' "NAME" OF AREA1
0032 	F2F8F860F5F3F9F2 0039 24 PHON DC CL08 '288-5392 , I'PHON" OF AREA1
003A 	 D9D6C3C8C5E2E3C5 0048 25 CITY DC CL15' ROCHESTER' "CITY· OF AREA1

0049 27 AREA2 g~u *0049 0066 28 CL30 	 "NAHE" OF AREA2
0067 006E 29 DS CL08 	 "PHON" OF AREA2
006F 007D 30 DS CL15 	 IICITY" OF AREA2

32 R1 1 	 E8 UATE FOR REGISTER 1E!U

0000 34 E D EXAHP1

888~ 33 R2 E U 2 	 E UATE FOR REGISTER 2

ERR 	 LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

0000 1 EXAMP2 START 0
2 PRINT NODATA

4 .*.*•••*••••**•••••*.*•••••••*••••**•••*.***.*.*_**.*.******************

5 * 	 * 6 " AN EXAMPLE OF BASE DISPLACEMENT ADDRESSING 	 *
'l * USING "EQUATES'" *
8 * * 9 .*._.*._*...._**_.**.__ *••_*••_.**._**••_____*••••_.*.MM**MM ••**M*.M __ ** J

0000 C2 01 0014 11 LA AREA1,Rl 	 POINT TO HOVING "FROH" FIELD

0004 C<' 02 004'1 13 LA AREA2,R2 	 POINT TO MOVING liTO" FIELIl
0008 9C 11l ill 11l 15 MVC NAHE(30,R2),NAMEI,Rl) MOVE "NAME" OF AREAl TO "NAME" OF AREA2
oooe 9C 07 25 25 16 MVC PHONIOB,R2),PHONI,Rl) MOVE "PHON" OF AREAl TO "PHON" OF AREA2
0010 9C OE 34 :~4 17 MVC CITYI15,R2),CITYI.Rl) MOVE "CITY" OF AREA1 TO "CITY" OF AREA2

0014 19 AREAl EQU * 0014 D1D6CBD540D14B40 0031 20 DC CUO'JOHN J. SMITH II I' "NAME" OF AREA1
0032 F2FBFB60F5F3F9F2 0039 21 IlC CL08' 288-,5392 ' "PHON" OF AREAl
003A D91l6C3C8C5E2E3C5 004B 22 DC CUS' ROCHESTEF(' "CllY" OF AREAl

0049 24 Af(EA2 EI~U *0049 0066 :~5 IlS CL30 	 "NAME" OF AREA2
0067 006E :!6 IlS CL08 	 "PHON" OF AREA:'
006F oo'm ::7 liS CLlS 	 "CITY" OF AREA2

0011l 29 NAME EQU 29 	 IINAME!! IlISPLACEMENT INTO AREAS ~ 2
0025 30 PHON EQLJ NAME+8 	 "PI-iON" DISPLACEMENT INTO AREAS ~ 2
0034 ;31 CITY EQU PHON+15 	 "CITY" DISPLACEMENT INTO AREAS ~ 2

OOOl, 33 I~l 1 	 E8 UATE FOR REGISTER 1EB U0002 34 R2 E U 2 	 E UATE FOR REGISTER 2
()OOO 35 ENIl EXAM!":,

Figure 2-4. Examples of Base Displacement Addressing

2-10

http:CITYI15,R2),CITYI.Rl
http:AREA1.R1

Relative Addressing

Relative addressing is the technique of addressing
instructions and data areas by designating their location
in relation to the location counter or to some symbolic
location. This type of addressing is always in bytes,
never in bits or instructions. Thus the expression *+4
specifies an address that is 4 bytes greater than the
current value of the location counter. In the sequence of
instructions shown in the following example, the
instruction with the operation code ZAZ has i1 length of
6 bytes, the instruction AZ has a length of 5 bytes, and
the instruction with MVI has a length of 4 bytes in
storage. Using relative addressing, the location of the
AZ machine instruction can be expressed in two ways:
AAA+6 or BACK-5.

Name Operation Operand
1 :1 3 .. 50 6 7 8 9 fa 11 12 13 14 Hi 16 17 18 1920 21 n 23 1425 2i> 17 :.l8 19 :D 31 31 JJ J4

[j~[j t2IAll
!All If II Itll

~I II ~~Il 'IJ: ~,
•
•
•
~

:

I -I

Instruction Addressing

A symbol used as a name entry in a machine-instruction
statement addresses the leftmost byte of storage
occupied by that instruction.

Data Addressing

A symbol used as a name entry in a data definition
instruction (see DC - Define Constant and OS - Define
Storage) addresses the rightmost byte of storage
occupied by or reserved for that data.

Program Linking References

Symbols may be defined in one program and referred to
in another, thus linking independently assembled
programs.

The linkages can be made only if the assembler is able
to provide information about the linkage symbols to the
overlay linkage editor, which resolves these linkage
references at link edit time. The assembler places the
necessary information in the external symbol list (ESL)
on the basis of the linkage symbols identified by the
ENTRY and EXTRN instructions. These symbolic
linkages are described as linkages between independent
assemblies. The name of a START statement (the
module name) also has an external attribute and may be
used for program linking.

The linkage symbol is identified to the assembler by
means of the ENTRY assembler instruction. Once a
linkage symbol is identi'fied in a program as a symbol
that names an entry point. another program may use
that symbol in a branch operation or as a data
reference.

Similarly, the program that uses a symbol defined in
some other program must identify it by the EXTRN
assembler instruction because the symbol is used by the
first program to link to the point identified by the
symbol in the second program. The formats of the
EXTRN and ENTRY assembler control instructions are in
Chapter 3.

Assembler Language 2-11

J

2·12

Chapter 3. Assembler Instruction Statements

Assembler instruction statements are requests to the
assembler to perform certain operations during assembly

• time. Assembler instruction statements, in contrast to
machine instruction statements, are not translated into
machine language. Some, such as DS and DC, do
cause storage areas to be set aside for constants and
other data. Others, such as EQU and SPACE, are
effective only at assembly time; they generate nothing in
the object program and have no effect on the location
counter.

There are four types of assembler instruction
statements: symbol definition, data definition, listing
control, and assembler processor control. This chapter
explains each assembler instruction statement in detail.
For a complete list of the assembler instruction
statements and their operations, see Figure 3-1.

Operation
Type Code Operation

Symbol EQU Equate symbol
definition
instruction

Data definition DS Define storage
instructions DC Define constant

Listing control TITLE Identify assembly
instructions output

EJECT Start new page

SPACE Space listing

PRINT Control program listing

Assembler ISEQ Input sequence
Processor checking
control

I

instructions

ORG Set location counter

START Start assembly

USING Use index register for
base-displacement
addressing

DROP Drop index register for
base-displacement
addressing

ENTRY Identify entry- point
symbol

EXTRN Identify external
symbol

ICTL Input format control

END End assembly

Figure 3·1. Assembler Instruction Statements

Assembler Instruction Statements 3·1

SYMBOL DEFINITION

EQU-Equate Symbol

The EQU assembler Instruction statement is used to
define a symbol by assigning it to the value, length, and
relocatability attributes of an expression in the operand
field. The format of the EQU control statement is as
follows:

Name Operand

1734~678 9 10 1~~2a,t;or4 15 16 17 18 '920]1 2'113 24 25 :l6 27 28 29 lJ 31 31 JJ ~

111 Uti F~IU IIII IIJ J U
I I I I I r I. I_I I

IA Symbol I IAn Expression I
I

I I I I I II I I I I I I I I I I
I I I I I I I I I I I I I I I I I I
I I I . I I I I I I I I I I I I I I

The expression in the operand field may be absolute or
relocatable. Any symbols appearing in the expression
must be previously defined. The name and operand field
entries are required.

The symbol in the name field is given the same value,
length, and relocatability attributes as the expression in
the operand field. The value attribute of the symbol is
the value of the expression. The length attribute of the
symbol is that of the leftmost or only term of the
expression. When an * or a self-defining term is used
as an operand, the length attribute is one.

The following example illustrates how this instruction
can be used to equate a symbol with the contents of
the operand:

N,me Operand

1 ., 3 4 5 6 1 8 , ,. 1~~rlt;or4 15 16 11 18 19:m 11 11 23 14 25 16 '27 28 29 lJ 31 :32 33 Jot

~IAT)C' InJ~I
I II) I' IU III
srr 1X 13 ' 530

AV Tf:srr!tX \I~ f- I'

12 ~Iu 2

MAX has the value of TEST+X'3FC' (X'102'+X'3FC' or
X'4FE') any time it is, used in the program. The symbol
STEST has the value of the first (leftmost) byte of the
data area reserved by the DC instruction. Since the

_Ji¥ffiboLon the DC- (TESnhas the value of the rightmost
byte, this type o,f EQU is useful for addressing the
leftmost byte. The symbol REG2 in any statement is the
same as using the number 2.

EQU is used· (0 equate symbols to register numbers,
immediate data, and other arbitrary values. To reduce
programming time and improve documentation, the
programmer can equate symbols to frequently used
expressions and then use the symbols as operands in
place of the expressions.

DATA DEFINITION

There are two data definition assembler instruction
statements: define constant (DC) and define storage
(OS). These assembler language statements are used to
enter data constants into storage, and to define and
reserve areas of storage. Name entries may be used so
that other program statements can refer to the
generated fields using the same symbols. The length
attribute of the symbol is the length of the storage or
constant area. In the following example, 35 bytes of
storage are allocated and A is pointing to the rightmost
byte of the DC.

Nom. Operltion Ope'.'"I. , , . , ti .; 10 11 I;> 13 14 IS 16 l' II:! 19 20 21 22 23 2~ 25 :<'6 27 28 2'-' 30 31 32 J) 34

~ I I 10 .~r! - l,! BeL
I I

I

! I I ,

3-2

DC-Define Constant

The DC assembler language instruction is used to
reserve areas of storage, assign names to those areas,
and then initialize those areas with desired values. This
desired value may be one of seven types of constants:
storage address, binary, character, decimal, hexadecimal,
integer, and floating point.

The format is as follows:

Nome Operand

I 1 J .. S 6 1 8 9 10 ,,:~ra,t~or4 IS 1611 18 19 ~ 21 12132425 26'27 28 29 3).)1 J:l JJ J4

111.Llll 10,(' I I I I

A Symbol One Operand as Described II
or Blank

lUI 	I II
I I I i 	I I I

I I I

Name

The name entry is optional. The symbol in the name
field of the DC instruction statement is the name of the
constant. The value attribute of the symbol naming the
DC instruction is the address of the rightmost byte of
the constant.

Operand

The operand consists of four subfields. The first three
describe the constant and the fourth provides the
constant. No blanks are permitted within any of the
subfields (unless provided as characters in a character
constant) or between the subfields. Subfield 1 is
optional. Subfields 2, 3, and 4 must be present in the
operand field.

The subfields are written in the following sequence:

Sequence Subfield

Duplication factor

2 Type

3 Length

4 Constant

Operand Subfield 1: Duplication Factor: The duplication
factor may be omitted. If specified, the constant is
generated the number of times indicated by the factor.
The factor must be specified by an unsigned, decimal
value. 1 through 65535. The duplication factor is applied
after the constant is fully assembled; that is, after it has
been developed into its proper format.

Operand Subfield 2: Type: The type subfield defines the
type of constant being specified. From the type
specification. the assembler determines how it is to
interpret the constant and translate it into the
appropriate machine format. The type is specified by a
letter code as follows:

I = Integer
X = Hexadecimal
D = Decimal
A = Address
B = Binary
F = Floating Point
C = Character

Operand Subfield 3: Length: The third subfield
describes the number of bytes required by the constant.

The entry for this subfield may be written two ways:

1. 	 Ln. where n is an unsigned, decimal value. The

value of n is as follows:

n = 1-256 for I. B, C, X constants

n = 1-31 for D constants

n = 1-3 for A constants

n = 4 or 8 for F constants

2. 	 L (absolute expression). where an absolute
expression is enclosed in parentheses. The value
limits for the absolute expression are the same as
those for n in the previous paragraph. A location
counter reference is not allowed in this expression.
Refer to Assembler Program Conventions in
Chapter 2 for information about expressions.

Assembler Instruction Statements 3-3

Operand Subfield 4; Constant: This subfield supplies the The constant types, their identification letters, and an
constant described by the subfields that precede it. A example of each follow. Unless otherwise specified, the
data constant (all types except A) is enclosed in maximum length is 256.
apostrophes. An address constant (type A) is enclosed
in parentheses.

Constant 10
Type Letter Example Explanation

Integer I IL2'15' Negative numbers are inserted into storage in twos
complement notation. If the constant is not the specified
length, the constant is padded or truncated on the
left-positive constants are padded with zeros, negative
constants with ones. The length of the constant is limited to
4 bytes, and the value must be within the range of _(232) +1
to 232 -1. You cannot use the high-order bit as a sign bit if
the value is outside the range _(231) +1 to 231 -1.

Decimal D DL5'125.66' This constant is stored in zoned decimal format. The decimal
point is used only for documentation; it is ignored by the
assembler. If the constant is not the specified length,
padding with decimal zeros or truncation occurs on the left.
Each decimal digit occupies one byte of storage. The
maximum length is 31.

Binary B BL1'10110' If the constant is not the specified length, padding with binary
zeros or truncation occurs on the left. Each digit occupies one
bit of storage; eight digits occupy one byte of storage.

Character C CL14'CHARACTER DATA' If the constant is not the specified length, padding with
blanks or truncation occurs on the right. Each character,
including blanks, occupies one byte of storage.

Hexadecimal X XL3'ABC55' If the constant is not the specified length, padding with zeros
or truncation occurs on the left. Each two digits oceupy one
byte of storage.

Floating Point F (single)
FL4'52.56E-3'
(double)
FL8'9237.7734E- 69'

The only valid lengths for floating point constants are 4 and
8. If the constant is not the specified length, padding with
binary zeros or truncation occurs on the right. Floating point
numbers have two components: a mantissa and an exponent.
The mantissa is a signed or unsigned decimal number. Its
decimal point can appear at the beginning, at the end, or
within the decimal number. The exponent consists of the
letter E, followed by a signed or unsigned decimal integer.
Note that there are no assembler floating point instructions.
Floating point is supported for scientific macroinstructions.

Address A AL2(BETA) BET A could be an external reference. If the constant is not
the specified length, padding with zeros or truncation occurs
on the left. The maximum length is 3.

J

3·4

Examples of the DC instructions for each of the
constant types are given in Figure 3-2. The object code
generated for these constants is also shown.

ERR l.OC OBJECT CODE ADDR STMT SOURCE STATEMENT

0000 3E26 0001
0002 26 0002
0003 OOOOOF 0005
0006 FFFFF1 OOOS
0009 F1F2F5 0008
OOOC F5 OOOC
OOOD FOFOF1F2F5 0011
0012 FOFOF1F2D5 0016
0017 89 0017
001S 000089 001A
001B 1C 0018
001C C4C1E3C140404040 0023
0024 C4C1 0025
0026 3F 0026
0027 000F12 0029
002A 23 002A
002B 43100000 002E
002F 482540BE 0032
0033 3B448S2F 0036
0037 C310000000000000 003E
OOlF 4310000000000000 0046
0047 4B25408E40000000 004E
004F 04D2 0050
0051 34 0051
0052 0000F1 0054
0055 FB2E 0056
0057 FOFO 0058

3 INTi
4 INT2
5 INT3
6 INT4
7 DEC1
S DEC2
9 DEC3

10 DEC4
11 BIN1
12 8IN2
13 8IN3
14 CHR1
15 CHR2
16 HEX1
17 HEX2
1S HEX3
19 FL Ti
20 FLT2
21 Fl.T3
22 FLT4
23 FLT5
24 FLT6
25 ADD1
26 ADD2
27 ADD3
28 ADD4
29 ADD5

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

IL2'15910'
IU'15910'
ILl'+15'
IL3'-15'
Dl.3'1.25'
DU' 125'
DLS'125'
DLS'-125 t

BI.1 '10001001'
BLl' 10001001 '
BL1'111100011100'
CLS'DATA'
CL2'DATII'
XL1'3F'
XL3'F12'
Xli' F123'
FL4'256'
FL4'256E+10'
FL4'2S.6E-S'
FLS'-2S6'
FLS'256.0'
FL8' 256ElO'
AL2(1234)
Ali (X ' 1234 ')
Al.3(X'F1')
AL2(-1234)
AL2(X'FFFF'-X'OFOF')

INTEGER-NORMAL
INTEGER-TRUNCATED
l~f~g~~:~~8~TfC~cIF~~gD~DPADDED
DECIMAL-NORMAL WITH DECIMAL POINT
DECIMAL-TRUNCATED
DECIMAL-PADDED
DECIMAL-NEGATIVE a. PADDED
tI~~~~:~g~~~~
BINARY-TRUNCATED
CHARACTER-PADDED
~~~~~f~i~Al~~~~~lED 
HEXADECIMAL-PADDED 
HEXADECIMAL-TRUNCATED 
~t8~fI~g ~81~f:~I~8t~ ~~~EI~I8~:~2H~e~TED 
FLOATING POINT-SINGLE PRECISION,NEG EXPONENT
FLOATING POINT-DOUBLE PRECISION,NEGATIVE 
~t8~lI~g ~8I~l:g8H=t~ ~~~gl~18=:~~~A~bTPOINT
ADDRESS-DECIMAL
ADDRESS-HEXADECIMAL,TRUNCATED
ADDRESS-HEXADECIMALAPADDED 
~gg~~~~:~~~6re~6NEG TIVE 

Figura 3·2. DC Instructions 

Assembler Instruction Statements 3·5 



OS-Define Storage 

The DS assembler language instruction is used to 
reserve areas of stor~{;Jeand to a~sign !!Eimes to~ose 
areas. The format of the DS instruction is as follows: 

N,me Operand
1 :2 3 .. ~ 6 1 8 9 10 ,yP,j.,tjOi4 15 16 11 18 19:1) 21 22 23 2425 26 27 28 29 ..lJ 31 32 33 )4 

lllLlll.l DS [[ [[ [[ I[ [[ [[ [[ [[ 
~ 

:1 A Symbol I One Operand Written in the J 
or Blank Format Described Below 

LJ I I j I tt=I I I I I
I I I I IJ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 

I I I I I I I I I I I I I I I I I I 

The format of the DS operand is similar to that of the 
DC operand. Subfields 1 to 3 are employed and are 
written in the same sequence as for the DC operand. 
Subfield 1 (duplication factor) is optional; subfields 2 
and 3 (type and length) are required. The name field 
entry is optional. 

Storage areas of more than 256 bytes may be reserved 
by use of the duplication factor in a OS instruction. If a 
duplication factor is included in the operand, the total 
amount of storage assigned to the constant field is the 
duplication factor times the length. This product is 
limited to 65535. 

LISTING CONTROL 

The listing control instructions help the programmer 
document the assembler listing so it will be more 
readable. These instructions are TITLE, EJECT, SPACE, 
and PRINT. 

TITLE-Identify Assembly Output 

The TITLE instruction identifies the assembly listing. 
The fomlatof the -TITLE 1nstruction is as fonows: 

N,,",, Operand
1 1 3 4 5 6 7 8 9 10 IY~'2a,t~o~4 lJ 311516 17 18 1920 11 22 2J 24 25 26 27 28 :l9 32 33 )C 

lJ lULL 

rI Name or I 
rr: I [TILlE IIIII U II IIII J 

.1 A Sequence of Characters _ 
Blank .1 Enclosed in Apostrophes 

I I I I I I I I I L I I I I I I I I I I I 
! I II I I I 
I . I I I 

11 [ L [ [ I [ [ I i I [ [ 
11111111111111 

The name field may contain up to eight alphabetic or 
numeric characters in any combination. The name of the 
first TITLE instruction is printed on the header line of all 
listings. The names of all subsequent TITLE instructions 
are ignored. 

The operand field contains a sequence of characters 
enclosed in apostrophes. Each single apostrophe 
desired as a character in the constant must be 
represented by a pair of apostrophes. The contents of 
the operand field are printed beneath the IBM Assember 
heading on each page of the assembly listing. 

A program may contain more than one TITLE 
instruction. Each TITLE statement provides the heading 
for pages in the assembly listing that follow it, until 
another TITLE statement is encountered. Each TITLE 
statement advances the listing to a new page before the 
heading is printed. The TITLE instruction is not printed 
in the source listing. 

3·6 



EJECT-Start New Page 

The EJECT operation causes the next line of the listing 
to appear at the top of a new page. This instruction 
provides a convenient way to separate routines in the 
program listing. The format of the EJ ECT operation 
statement is as follows: 

Name Operand 

1 1 3 .. 5 6 1 8 910 l~r,t;or4 ~~n~a~~n»~~~na~~~~n~ 


J III IJ I I I I I (J...!lJ 
Blank 1 .~ 

1 
I I I I I I 

I I I I I I 


The EJECT operation statement will not be printed in 
the listing. The name and operand fields must be blank. 

SPACE-Space Listing 

The SPACE operation is used to insert one or more 
blank lines in the listing. The format of the SPACE 
control statement is as follows: 

Name Operand 
11345678 9 10 1~~a,t~or4 1516 17 18 1920 21 2223 2. 25 26 21 28 29 J) 31 32 33 301 

l_lll~ I I I I I I I I I I I I I IT 

c;;]
..!. 

I 1_A Decimal Value or Blank 


lllII 

J 1 I I I 1IIIIIIITTTlTl 

I I I I I I I I I I I I I I I I I I I 


I I I I I I I I I I I I I 

The name field must be blank. An unsigned decimal 
value is used to specify the number of blank lines that 
are to be inserted. If the operand contains a blank, a 
zero, or a one, 'one blank line will be inserted. If the 
value of the operand exceeds the number of lines 
remaining on the current page, the instruction has the 
same effect on the listing as an EJECT operation. The 
SPACE operation, like the EJECT and TITLE operations, 
is not listed on the assembler listing, but does increase 
the statement counter by one. 

Note: The assembler checks the first 87 bytes of the 
source statement unless you use ICTL to change the 
source record format. If you have no operand on the 
SPACE instruction, sequence numbers or comments 
appearing before byte 87 will cause assembly errors. 

PRINT-Control Program Listing 

The programmer can control the printing of an assembly 
listing by using the PRINT operation. A program can 
have any number of PRINT instructions. Each PRINT 
instruction controls the listing until the next PRINT 
instruction is encountered. 

Name Operation Operand 
1 1345518 9 10 11 12 13 14 IS 'I 17 18 1920 21 22 23 2.41 25 26 17 28 29 l) 31 32 3J Jo4 

I I I Pia INT I . I I I 

~~ IOperand I 
I 

I 
I 

Assembler Instruction Statements 3·7 



The operand field can include one entry from each of 
the following groups (one, two, or three operands): 

1. 	 ON: A listing is printed. 
OFF: No listing is printed. 

2. 	 DATA: Constants are printed out in full on the 
assembler listing. 
NODATA: Only the leftmost 8 bytes of the 
constants are printed on the assembler listing. 

3. 	 GEN: Print operations generated by the macro 
processor if not overridden by other print control 
statements (PRINT OFF). 
NOGEN: Suppress printing of statements 
generated by the macro processor. 

Operand entries must be separated by a comma. 

The ON, GEN, and DATA conditions are assumed by 
the assembler unless otherwise specified by a PRINT 
instruction. If an operand is omitted, it is assumed to be 
unchanged and continues according to the last 
specification. 

PROGRAM CONTROL STATEMENTS 

ISEQ-Input Sequence Checking 

The ISEQ instruction is used to check the sequence of 
source records. Sequence checking begins with the first 
record after the ISEQ instruction. The sequence entry is 
read from the position identified by the ISEQ operand. 
The sequence entry on the next record is then compared 
to previous sequence value. The ISEQ statement has 
the following effect: 

1. 	 The sequence entries on source statement records 
are checked for ascending order. 

2. 	 Statements that are out of order and statements 
without sequence entries are flagged in the 
assembler listing. 

3. 	 The total number of flagged statements is noted at 
the end of the assembler listing. 

For example, with sequence values of 13, 27, 31, 6, 8, 
45, 47, t;, and 48, the record numbered 6 and the 
record without a sequence value would be out of 
sequence. These two records are flagged in the error 
field of the listing, and a statement at the end of the 
listing shows that two records were out of sequence. 

The assembler does not check the sequence unless 
requested to do so by the ISEQ statement. 

The following is the ISEQ instruction format: 

Name .Operation Operand 

1 .. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 16 1920 71 21 2J 24 25 1ti 11 28 29 :J) 31 32 33 14 


I I I I IllSlfll I I I I I I I I I I I I I I I I 

IBlank I ./ Two Decimal Values of theJ= 
Form L,R or Blank 

I I " I " I I I I I I I I I 
I I 

I I I ! ! ! ! ~HlHlH1 
The name field entry must be blank. The operands L 
and R, respectively, specify the leftmost and rightmost 
columns of the field on the source record to be 
checked. L, R must be within the range of columns 73 to 
96 inclusive. The length of the field (R-L+1) must be 1 
to 8. An ISEQ statement with a blank operand 
terminates the checking. Checking may be resumed 
with another ISEQ STATEMENT. Columns to be 
checked must not be before the end column. 

Note: Statements generated by the macro processor are 
not tested for sequence. 

ORG-Set Location Counter 

The ORG instruction alters the setting of the location 
counter. By altering the setting of the location counter, 
you can specify storage boundaries. For example, you 
can use the ORG instruction to set the location counter 
so that an input buffer is aligned on an 8-byte 
boundary. 

The format of the ORG instruction is as follows: 

Blank operand: 

Name Operation Operand 

1 2 3 .. 5 6 7 8 9 10 11 12 13 14 1516 11 16 1920 21 22 13 14 25 16 17 18 29 l'J 31 ]1 33 J4 


I I I I I IRrl I I I I I 

IBlank I 	 IBlankl

fTTil IJlgII II 	I III 
I I I I 	 I I I I I I 

Expression A as operand: 

Name Qperstion Operand 

1 1 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 1920 21 n 13 14 25 26 27 ]8 29 .xl 31 32 33 301 


1J-'JJ ~~~ IA 

+--1 Blank 1 

+--iTiTi 


I I II 	I 
I I I I I 	 I 1 

3-8 



Expression A as operand optionally followed by two 
absolute expressions Band C: 

....... 

1 	 l' J 4 !I 6 1 8 910 l~;·,t;or• 15 " 17 18 1920 71 2:'~~~25 26 21 28 29 .1J 31 32 33 lot 

~l-'Jl nm ~ 8 ". 

IBlank I 
TTTT! 

II I I I 

I I I I I 

The location counter is set to the smallest value that is 
greater than or equal to A, and is also C more than a 
multiple of B. The expression A may be either absolute 
or relocatable; Band C must be decimal values. The 
default values for Band Care 1 and 0 respectively. For 
example: 

Current 
Location New Location 
Counter A B C Counter 

275 * 100 50 350 
340 * 100 50 350 
350 * 100 50 350 
504 * 256 0 512 
750 1000 1000 

Any symbols in the expression must have been 
previously defined. An ORG operation may reduce the 
location counter for the purpose of redefining the 
current program, but must not be used to specify a 
location below the starting location counter value. If the 
previous ORG statement has reduced the location 
counter to redefine the current program, an ORG 
statement with an omitted operand can then be used to 
restore the location counter to the previous maximum 
assigned address plus one. 

Location
• 

Counter Address Name Operation Operand 

0064 0069 SYMBOL DC 1CL6" 
oo6A 0325 FILLIN OS 7CL1OO 
ooCE ORG FILLlN-599 

ooCE 01F9 DATA DC 15OCL2'AZ' 
0326 ORG 

END 

START-Start Assembly 

The START instruction specifies an initial location 
counter value for the program. The format of the 
START instruction statement is as follows: 

N.me 	 Operand 
:1 • !t 1 8 910 I~Ply·,1;0i..1 J 6 m~n~a~nnn~~~"~~~H»n~ 

1l11~1 l I I I I I I I I I L 

A Svmboll IA Self·Defining Term or Blank l_ 
or Blank I 

I 
I I I I I I I 

111111 I 


The assembler uses the self-defining term specified by 
the operand as the initial location counter value of the 
program. If a symbol names the START instruction, the 
symbol is established as the name of the object 
program (the name symbol on the START instruction is 
limited to a maximum of 6 characters). If a symbol 
name is not specified, the object program is assigned 
the default name ASMOBJ and a diagnostic message is 
issued. 

For example, either of the following statements could be 
used to indicate an initial assembly location of 2040. In 
addition, the first statement establishes MAIN as the 
object module name. 

N.me .,!pe:r81ion Operand 
1234567. 

IS'. "I" "" 1< ~ "''' ,. ~ ~ 31 " n J4 

M~U4 '~. ~~ ,. I' 

If the operand is omitted, the assembler sets the initial 
location counter value of the program at zero. 

Note: The START instruction may not be preceded by 
any type of assembler language statement that may 
either affect or depend upon the setting of the location 
counter. If no START instruction appears in the 
program, the initial location counter value will begin at 
zero. 

Assembler Instruction Statements 3·9 



USING-Use Index Register for Base Displacement 
Addressing 

The USING operation indicates that an index register is 
to be used for base displacement addressing. This 
instruction also specifies the relocatable value that the 
assembler uses to compute base displacements for base 
displacement addressing. 

Notes: 
1. 	A USING instruction does not load the register 

specified. It is the programmer's responsibility to see 
that the specified base address value is placed in the 
register. 

2. 	The USING statement is not required if you code 
only absolute displacLments. 

Name Operation Operand 

1 , 3- .. 5 6 7 8 9 10 11 12 1:' 14 1516 17 18 1920 2'1 22 23 24 25 76 n 28 29 .lJ 31 J:< 33 :s4 


US I, Nli 1-'1Jl 	 I 
~ 	 +
Blank ~ -f 

tTIT 	 I I I I 	 1Tf 
1 I I 	 I I I i 

R must be an absolute expression with the value 1 or 2. 
V is a relocatable expression whose value must be in 
the range 0 to 65535. The operand R specifies the 
index register that can be assumed to contain the base 
address represented by the operand V. If the 
programmer changes the value in an index register 
currently used as a base register and wishes the 
assembler to compute displacement from this new 
value, the assembler must be told the new value by 
means of another USING statement. Two USING 
instructions may be used to have the two index registers 
as base registers to two different portions of main 
storage. 

An example of how to use the USING instruction in 
base displacement addressing is given in Chapter 2 
under Addressing. 

DROP-Drop Index Register as Base Register 

The DROP operation specifies a previously available 
index register that may no longer be used as a base 
register. 

Name 	 Operand
9 10 1~~jralt~or41 2' 	 3 .. 5 6 7 8 151611 18 192D 7L1LlJ--2.'l-25 2fi_2L28 29-lJ 3-1 ~aa-3<I 

l1Tl1 n~10IP IJ 1 


:1 Blank I 
 ~ 

I 'ti-I I I 	 I I I l-
I I I I I 	 I I I 

R must be an absolute expression with the value 1 or 2. 
The expression value indicates which index register, 
previously referenced in a USING statement, is now 
unavailable for base register use. 

It is not necessary to use a DROP operation when the 
base address being used is changed by a USING 
statement, nor are DROP statements needed at the end 
of the source program. 

• 

3-10 



ENTRY-Identify Entry-Point Symbol 

The ENTRY operation identifies linkage symbols that are 
defined in this program and can be referenced from 
other programs. 

Name 
9 10 1~~2ra,t~or4 1~116 111 :;> 3 	 .. ., 6 7 8 18 1920 2' ]?~r;~d25 26 27 28 29 .:J) 31 32 3J 34 


.11 ~I Ie I I I I I I I I /11 j I / I I I ,I 


~one Relocatable Symbol that AlsoIBlank I 
Appears in this Program 

1 1 
1 I I I 1 LU 	R=R=trn

1 1 1 1 1 1 1 1 1 1 1 1 I I 
, I 1111111111111 

The symbol in an ENTRY operand field can be 
referenced by another program provided that program 
uses the same symbol in the operand of an EXTRN 
statement. The symbol used in the operand field, for 
both EXTRN and ENTRY instructions, has a maximum 
limit of 6 characters. See EXTRN Statement in this 
chapter. The following example identifies the statements 
named SINE and TAN as entry points to the program. 

Name 	 Operand 
1 :1 J 	 .. '5 6 , B 9 10 ,ypl~al~or4 1516 t7 18 1920 21 n13 2425 :l6 21 78 29 .:J) 31 32 JJ 34 

t~ IIlHY SI ~I; 
t~11111 'I' rTlU 

t-

I 

... 


EXTRN-Identify External Symbols 

This operation identifies symbols used in the current 
program that are defined in another program. Each 
symbol in the operand of an EXTRN control statement 
must be identified by an ENTRY control statement or be 
the module name in some other program. The symbol 
used in the operand field, for both EXTRN and ENTRY 
instructions, has a maximum of 6 characters. 

, . 

Name 
1 , 3 	 4 ., 6 7 B 9 10 1~~~ra,t!or4 1~J1617 18 1920 21 2~~r~~25 26 2728 2'9 Xl)! J2 3334 

E~ rTRNI I. I I I I I 	 I 
~ 
Blank 	 One Relocatable Symbol Not Found 

in the Name Field of the Current 
Program Optionally Followed by 
an Absolute Expression in 
Parentheses 

_1 	

~I+

The external symbol cannot be used in a name field in 
the same program that describes that symbol as an 
EXTRN. The name field entry of the EXTRI\I statement 
must be blank. 

An EXTRN subtype can be specified for the EXTRN 
symbol by following the symbol with an absolute 
expression enclosed in parentheses. The value of the 
absolute expression cannot be less than zero nor more 
than 255. Any symbol in the expression must have been 
previously defined. For an explanation of the subtype 
values and their meanings, see the Overlay Linkage 
Editor Reference Manual . 

Assembler I nstruction Statements 3-11 



Figure 3-3 shows how ENTRY and EXTRN can be used 
to make two or more programs act as one program 
through sharing data and control. The main program 
defines symbols A, B, and C and identifies them as 
entry points. These same symbols are identified as 
EXTRNs (external symbols) in the subroutine. This 
allows the subroutine to use these symbols just as it 
would if the symbols had been defined in the 
subroutine. SUBR01, on the other hand, is defined and 
identified as an entry point by the subroutine and as an 
EXTRN, external symbol, by the main routine. These 
four symbols-A, B, C, and SUBR01- can now be used 
interchangeably by both the main routine and the 
subroutine. 

I PROGRAM 

PROGRAMMER 

""m, Ope,.tion Op.rlnd 

1;1345678 9 10 11 12 13 14 151611 1819202122 23 24 25 26 21 28 29 30 3132333435 36 J 

Mil lIN pITAilZT (/, 

~~ rr~y A 
~~ ITR'\j f1 

~ ,1.KIT ~~ DU lH< 

~T~~ ~l'4 ll. 


It 

A ''''I. 

} 
I 

~I Itt. ,,,..A iZ)t! 
~t'3 ft.' ~r-rr~' 

'! is f'/~ 

,( 
~N !tYrr~IJI 

I ;> J 4 ':! f, I 8 y 1011 12131415161718192021 n 23 24 25 26 2/282930313233343536 

Main Routine 

Figura 3-3. Example ENTRY and EXTRN Statements 

The main routine has control first. It executes 
instructions and then branches to SUBR01, which is 
defined as an entry point in the subroutine. Instructions 
in the subroutine are executed. Notice that the 
subroutine uses symbols A, B, and C, which were 
defined in the main routine. Control is then passed back 
to the main routine. 

Note: The actual resolution of symbols between 
programs is performed by the overlay linkage editor and 
not by the assembler. 

I PROGRAM 

PROGRAMMER 

N.me Op....tion .",..,nd 

123456189 Q 11 12 I31415 16 11 181920 2122232425 26 27282930 3132333435 36 3 

IgtA a~ tr~ 17 ~ 
I 

X t4 
/'3 

~T I' 
It 7 R.E ITU l( ~13 ,8 

VI! ~JJ I Til ) , ,41 sl.c:: 
:Ai 
~ 

(14 1(14 
I'l'(~) ,AI(~ 

~Ir. lEI'. /7'1 I 

I"~ 6) lE I 
Ie~TrJ f{~ 
~'M .<i~ ~ 

lil·~ 

~~ ~' 
, 

rl/17 It; 
S 

,; 

l1::il~ 
N~ 

I ;> "J 4 ~ (, I 8 !j 1011 12 13 14 1~ 16 17 '8 19202122 23 24 25 26 27 28 29 30 3132333.35 36. 

Subroutine 

J 

3·12 

http:3132333.35


ICTL-Input Format Control 

The ICTL instruction allows the programmer to alter the 
normal format of his source program statf-ments. The 
ICTL statement must precede all other source 
statements in the source program and may be used only 
once. An invalid or illegal ICTL instruction ends the 
assembly. The format of the ICTL instruction statement 
is as follows: 

Name Operation Operand 
1 :1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 71 22 23 24 25 26 2J 2'8 ::/'9 II 31 37 ]] ~ 

I"TL I, I I I I I I I I II U 

~I Blank I 112 Decimal Values of the Form b,e 

I I 
I I 
I I , I 

Operand b specifies the begin column for the source 
statement. It must be from 1 to 48, inclusive. Operand 
e specifies the end column of the source statement. It 
must be from 49 to 96, inclusive. The column after the 
end column must always be blank. 

If no ICTL statement is used in the source program, the 
assembler assumes that the begin column is 1, and the 
end column is 87. 

Note: ICTL must be the first source statement in the 
source program, including comment statements. The 
assembler control statements OPTIONS and/or 
HEADERS, however, must precede the ICTL and all 
other source statements. The HEADERS and OPTIONS 
statements are described in Chapter 6. 

END-End Assembly 

The END instruction terminates the assembly of a 
program. The END instruction must always be the last 
statement in the source program. The format of the 
END instruction statement is as follows: 

Name Operation Operand 
1 :1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 t7 18 19 20 21 11 23 24 25 16 21 28 19 Jl 31 32 JJ 304 

I:IN D I, I I I I 1IIII1II U I 

r-I Blank I IBlank or a Relocatable ExpreSSionl1r- . 
I-

I tt. 
The operand of this instruction can contain: 1) a blank, 
or 2) an expression (usually a name field entry) which 
specifies the address to which control is transferred 
after the program is loaded. This is usually the name 
given on the START instruction. If the operand is blank, 

control is transferred to the address identified by the 
START instruction. 

If the operand is blank and you want to put a comment 
on the instruction, code a comma as the operand. For 
example: 

...... a-....~tiOfl , J 


ENlo S~ I> IOF E.1l<. AMpiE 

1 • , ., ., 1011 12 1314 1516 11 1S 1920 2122232. 2S 26 21 28 29 30 31323334 16 36 

Note: The assembler checks the first 87 bytes of the 
source statement unless you use ICTL to change the 
source record format. If you have no operand on the 
END instruction, sequence numbers or comments 
appearing before byte 87 will cause assembly errors. 

Assembler I nstruction Statements 3-13 



3-14 




Machine instruction statements represent machine 
instructions on a one-for-one basis. The assembler 
translates ,these symbolic representations into machine 
language usable by the computer. Machine irlStruction 
statements differ from assembler instruction statements 
in that the machine instruction statements are 
executable parts of the program logic (such as MVI, ST, 
LA!. while assembler instruction statements are simply 
orders to the assembler, each statement directing a 
specific operation (such as DC, START, SPACE). 

The format of a machine instruction statement is closely 
related to the format of a machine language instruction 
that results from the assembly process. 

A mnemonic operation code is used in place of the 
actual machine language operation code, and one or 
more operands provide the information required by the 
machine instruction. A comment and a sequence entry 
may be included in the machine instruction statements, 
but they do not become part of the object code. 

Name Entry 

Any machine instruction statement may be named by a 
symbol. which other assembler statements can use as 
an operand. The value attribute of the symbol is the 
address of the leftmost byte assigned to the assembled 
instruction. The length attribute is the length of the 
instruction. 

Chapter 4. Machine Instruction Statements 

Mnemonic Operation Entry 

The mnemonic operation codes are designed to be 
easily-remembered codes that remind the programmer 
of the functions performed by the instructions. The IBM 
System/34 Basic Assembler and Macro Processor 
Program Product provides mnemonic and extended 
mnemonic operation codes. The complete set of 
mnemonic codes is listed in Figures 4-1 and 4- 2. For 
the operand formats see Figure 4-3. For the formats of 
the instructions when they are in main storage, see 
Figure 4-4. 

Extended mnemonic codes are provided for the 
convenience of the programmer. They are unlike other 
mnemonic codes in that part of the information usually 
provided in the operand is in the extended mnemonic 
code itself. Extended mnemonic codes allow the 
following: 

1. 	 Conditional branches (BC) and jumps (JC) can be 
specified mnemonically, requiring only a branch 
address as an operand. 

2. 	 Half-byte moves (MVX) can be specified 

mnemonically, requiring only addresses as 

operands. 


Extended mnemonic codes are not part of the set of 
machine instructions, but are translated by the 
assembler into the corresponding operation and operand 
combinations. 

Machine Instruction Statements 4·1 

L 



Mnemonic Operation 
Instruction 


Zero and add zoned decimal 


Add zoned decimal 


Subtract zoned decimal 


Move hex character 


Move characters 


Compare logical characters 


Add logical characters 


Subtract logic characters 


I nsert and test characters 


Edit 


Move immediate 


Compare logical immediate 


Set bits on masked 


Set bits off masked 


Test bits on masked 


Test bits off masked 


Store register 


Load register 


Add to register 


Branch on condition 


Load address 


Load program mode register 


Supervisor call 

Transfer control 


Jump on condition 


Code 

ZAZ 

AZ 

SZ 

MVX 

MVC 

CLC 

ALC 

SLC 

ITC 

ED 

MVI 

CLI 

SBN 

SBF 

TBN 

TBF 

ST 

L 

A 

BC 

LA 

LPMR2 

SVC 
XFER 

JC 

Operand Formats1 

Type 1 


Type 1 


Type 1 


Type 2 

Type 2 

Type 2 

Type 2 

Type 2 

Type 2 

Type 2 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 3 

Type 4 
Type 4 
Type 4 

Type 5 

J 


1Machine-instruction operands are divided into five types. The characteristics of each type 
are as follows: 

Type 1: Two-operand format in which a length is explicit or implied in both operands. 
Type 2: Two-operand format in which a length can be explicit in either operand, but not in 

both. If length is not explicit in either operand, the assembler uses the implied 
length of operand one. 

Type 3: Two-operand format in which a length cannot be specified. 
Type 4: Two-operand format in which data operands are immediate data. 
Type 5: Two-operand format in which operand one is used by the assembler to calculate a 

positive displacement and operand two is immediate data. 
2Privileged instruction 

Figure 4-1. Mnemonic Operation Codes 

4-2 



Mnemonic 
Operation Hexadecimal 

Instruction Code Q-Code' 

Move hexadecimal character (MVX) 

Move to zone from zone MZZ X'OO' 

Move to numeric from zone MNZ X'02' 

Move to zone from numeric MZN X'01' 

Move to numeric from numeric MNN X'03' 

Branch on condition (BC) 

Branch B X'8T 

Branch high BH X'84' 

Branch low Bl X'82' 

Branch equal BE X'81' 

Branch not high BNH X'04' 

Branch not low BNl X'02' 

Branch not equal BNE X'01' 

Branch overflow zoned BOZ X'88' 

Branch overflow logical BOl X'AO' 

Branch no overflow zoned BNOZ X'08' 

Branch no overflow logical BNOl X'20' 

Branch true BT X'10' 

Branch false BF X'9O' 

Branch plus BP X'84' 

Branch minus BM X'82' 

Branch zero BZ X'S1' 

Branch not plus BNP X'04' 

Branch not minus BNM X'02' 

Branch not zero BNZ X'01' 

Jump on condition (JC) 

Jump J X'8T 

Jump high JH X'84' 

Jump low Jl X'82' 

Jump equal JE X'S1' 

Jump not high JNH X'04' 

Jump not low JNl X'02' 

Jump not equal JNE X'01' 

Jump overflow zoned JOZ X'88' 

Jump overflow logical JOl X'AO' 

Jump no overflow zoned JNOZ X'~S' 

Jump no overflow logical JNOl X'20' 

Jump true JT X'10' 

Jump false JF X'9O' 

Jump plus JP X'84' 

Jump minus JM X'82' 

Jump zero JZ X'81' 

Jump not plus JNP X'04' 

Jump not minus JNM X'02' 

Jump not zero JNZ X'01' 

'The hexadecimal Q-codes for the extended mnemonic operation codes are the 

contents of the Q-byte in related System/34 machine instructions, For a 

description of the System/34 machine instructions, see the Functions Reference 
Manual, 

Figure 4-2. Extended Mnemonic Operation Codes 

Machine Instruction Statemp.nts 4-3 



Type Instructions Possible Operand Formats 

1 ZAZ,AZ,SZ A,A A(L),A 

A,A(L) A(L),A(L) 

A,DCR) A(L),D(,R) 

A,D(L,R) A(L),D(L,R) 

2 MVC,CLC,ALC A,A A(L),A 

SLC,ITC,ED A,A(L) A(L),D(,R) 

A,D('R) A,D(L,R) 

MVX A,A(I) A(I),A 

A,D(I,R) A(I),D('R) 

3 MVI,CLI,SBN A,I 

SBF,TBN,TBF,BC 

L,ST,A,LA A,R 

4 LPMR' 1,1 

SVC, XFER 

5 JC A,I 

, Privileged instruction 

Code Meaning 	 Acceptable For 

A Address 	 Relocatable expression, 

absolute expression, or 
self-defining value 

D Displacement 	 Relocatable expression, 

absolute expression, or 
self-defining value 

L Length 	 Absolute expression or 
self-defining value 

R Register 	 Absolute expression or 
self-defining value 

Immediate data Absolute expression or 
(bit masks, self-defining value 
condition bit 

masks, or 
control bits to 
be used in the 
instruction) 

Figure 4-3. Operand Formats 

4-4 

D(,R),A D(L,R),A 

D(,R),A(L) D(L, R),A( L) 

D(, R)' D(, R) D(L,R),D(,R) 

D(,R),D(L,R) D(L,R),D(L,R) 

D('R),A D(L,R),A 

D(, R),A(L) D(L,R),D(,R) 

D(,R),D(,R) D(, R), D(L, R) 

D(,Rl,A(I) D(I,R),A 

D('R)'D(I,R) D(I,R),D(,R) 

D('R),I 

D('R),R 



Mnemon.'c Op . . 	 Qorat'on Cod 


lone byte) 


B :1'~'Fo--=1 .".Bits 4·1r'" I 	 lone F;"'iSocond ~:'.:;,th0-3 • byte' 
0 1 2 3 4 5 6 7 8 9 A 8 C 0 E f IO. I Q I---O".Ond--l 

0 lAl AZ SZ MV. ED .TC MVC CLC ALC SLC 	 2 Byte, 2 Bytes Direct 6 
I JDuect 

'·Byte DlsP 
1 lAZ AZ SZ MVX ED 'Te MVe CLC ALC SlC 	 5 XlIndt!xert by XA, I 

'·Byte- OISP
2 ZAZ Al Sl MVX ED .TC MVC CLC ALC SLC 	 5 X2

Indell.ed by XA2 I 
3 ST L A TBN TBF S8N 58' MV, ClI 	 4~ 
4 ZAZ Al Sl MVX ED ITC MVC CLC ALC SLC 	 1 ·BY!I' 2 By tes Direct 5 Xl 


Displacement 
 J 
1-BYle 015115 lAZ Al SZ MV' ED ITC MVC eLC ALC SLC 	 Inde)(ed 4 Xl Xl
Indexed by XA t 

hv XHl ,·Byte DlsP
6 ZAZ AZ SZ MVX ED .TC MVC CLC ALC SLC 	 4 Xl X2

Indexed by XA2 


7 ST L A T8N TBF S8N S8F MV, ClI 3 Xl
>< 
8 lAZ Al SZ MV' ED ITC MVC CLe ALC SLC 	 1 Avtl~ '2 Byte, DireCT 5 '2 

[)15p laCefnf!nl 
1-eVH' DlsP9 lAZ AZ 5l. MVX ED ,TC MvC CLC ALC SLC 	 Itl(it!lI.ed 4 X2 Xl
In(jexl!c1 by XR' 

by XA2 , 3'1'1" DisrA ZAZ Al SZ MVX ED ITC MVC CLC ALC SLC 	 4 X2 XlInOI')(eci by XR? 

B ST L A TBN TB' S8N 58' MV, ClI 	 X2 

X 
>< 3 

C 8C LA 	 2 By tes Direct 4 


'·Bvte DlsP
D 8C LA 	 3 Xl
Indexed by XR 1 


E 8C LA 
 '·Bvte D!sp 
3 X2

Indexed by XA2 


• JC SVC XFER LPMR 3
.>< 

Figure 4-4. Main Storage Instruction Formats 

Machine Instruction Statements 4-5 

http:Itl(it!lI.ed
http:Indell.ed


Operand Entry 

Some operands are written as single fields, and other 
operands are written as single fields followed by one or 
two subfields. For example, addresses may consist of 
the contents of an index register and a displacement. 
An operand that specifies an index and displacement is 
written as a displacement field followed by an index 
register subfield, as follows: 

40(.2) 

A comma must separate operands. Parentheses must 
enclose a subfield or subfields, and a comma must 
separate two subfields within parentheses. The 
following rules apply for subfields: 

• 	 If both subfields are omitted, the separating comma 
and the parentheses must also be omitted. 

• 	 If the first subfield in the sequence is omitted, the 
comma that separates it from the second subfield is 
written. The parentheses must also be written. 

• 	 If the second subfield in the sequence is omitted, the 
comma that separates it from the first subfield must 
be omitted. The parentheses must be written. 

Fields and subfields in an operand may be represented 
either by absolute or by relocatable expressions, 
depending on what the field requires. 

Blanks may not appear in an operand unless provided 
by a character self-defining term. 

For base displacement addressing, the base must be 
specified in the second subfield. 

When a length specification is not included in an 
operand requiring a length, the assembler uses the 
implied length. The implied length is the length attribute 
of the first term of the affected operand, as follows: 

Term or Expression 	 Length Attribute 

Name on a machine Length, in bytes, of the 
instruction instruction. 

Location counter 	 Length, in bytes, of the 
reference (*) 	 instruction in which it 

appears, except for EQU 
where the length attribute 
is one. 

Expression 	 Length attribute of the 
leftmost term in the 
expression. 

Self-defining term 	 Length attribute is one. 

START name entry 	 Length attribute is one. 

The operand formats for the machine instructions are 
given in Figure 4-3. 

Notes: 
1. 	For the extended mnemonics of the MVX instruction, 

the Q code is inherent in the mnemonic and the I 
field is not used. 

2. 	 For the extended mnemonics of the BC and JC 
instructions, the Q code is inherent in the mnemonic 
and the second operand is not used. 

3. 	When a relocatable symbol is used as the first 
operand on a JC instruction, the assembler computes 
the displacement from the current value of the 
location counter. 

4. 	When a relocatable symbol is used in the 
displacement field in a base-displacement 
specification D(L,R) or D(.R). then the assembler 
computes the displacement from the base register 
value specified in a current USING instruction. 

5. 	When the length is not specified in the operands of a 
Type 1 or Type 2 (excluding MVX) instruction, the 
assembler uses the implied length of the operands. 
The implied length of both operands is used in Type 
1. 	The implied length of operand 1 is used in Type 2. 

6. Following an EDIT instruction, a conditional branch 
that tests the second operand for positive, negative, 
or zero might not work correctly unless the equal or 
zero condition is forced on before the edit. 

4-6 



L 

• 


Macroinstruction statements represent predetermined 
sequences of machine and/or assembler instruction 
statements. Before a macroinstruction statement can be 
coded, a macroinstruction definition must have been 
defined and must reside in the assembler library 
(#ASMUB). This macroinstruction definition is either 
coded by the user or supplied by IBM. For the 
IBM-supplied macroinstructions, see Chapter 6 in this 
manual. 

The macroinstruction definition is composed of definition 
control statements. These control statements specify 
values for the symbolic parameters appearing in the 
prototype statement of the associated macroinstruction 
definition. Each of the definition control statements, 
details about symbols, terms, expressions and 
mnemonics, and how to define a macroinstruction are 
discussed in this chapter. 

MACROINSTRUCTION CODING CONVENTIONS 

Sequence Symbol 

Sequence symbols provide labels that can be branched 
to and therefore determine the sequence in which macro 
definition statements are processed. 

A sequence symbol is written as a period followed by 
an alphabetic character, $, #, or @' followed by as 
many as five alphabetic or numeric characters. 

Self-Defining Terms 

There are four types of self-defining terms: decimal, 
hexadecimal, binary, and character. These terms 
represent machine language values, bit configurations, or 
immediate data in arithmetic expressions. Self-defining 
terms are always right-justified. Padding with zeros or 
truncating, if necessary, occurs on the left. Self-defining 
terms are always positive and may not exceed 65,535. 

Decimal Self-Defining Term: An unsigned integer 
written as a string of decimal digits. High-order zeros 
may be used. The decimal term is converted to its 
binary equivalent. 

Chapter 5. Macroinstruction Definitions 

Hexadecimal Self-Defining Term: One to four 
hexadecimal digits enclosed in apostrophes and 
preceded by the letter X. Each digit is converted to its 
binary equivalent. 

Binary Self-Defining Term: An unsigned sequence of 
ones and zeros enclosed in apostrophes and preceded 
by the letter B. The rightmost 16 digits specified are 
used to generate the 2-byte binary value. 

Character Self-Defining Term: One or two characters 
enclosed in apostrophes and preceded by the letter C. 
Any of the 256 hexadecimal combinations may be used, 
including all letters, digits, and special characters. To 
represent an apostrophe in a term, two apostrophes 
must be entered. Each character is converted to its 
binary equivalent, except as noted for apostrophes. 

Character String 

A character string can include special characters and 
blanks and is enclosed by single apostrophes. When a 
character string is decoded, enclosing apostrophes are 
removed. Half of the number of apostrophes appearing 
within the string are removed; so for every apostrophe 
that is to appear in a decoded character string, two 
apostrophes must be coded in succession. A decoded 
character string may be from 1 to 50 bytes long. 

Note: Special characters refers to the special characters 
available in the System/34 character set. 

Character Expression 

A character expression is a term, null term, or 
combination of terms that is enclosed in single 
apostrophes and that may be reduced to a character 
string from zero to 50 bytes in length. Terms are either 
literal strings of any of the 256 hexadecimal 
combinations possible for each byte, except an 
ampersand (&), or are variable symbols. A null term is 
indicated by two consecutive single apostrophes. If an 
apostrophe is required as a data character, it must be 
entered as two consecutive apostrophes inside the 
delimiting apostrophes. In multiterm expressions, all the 
rules of concatenation apply. (See Concatenation in this 
chapter.) 

Macroinstruction Definitions 5-1 



Substring 

A substring is a method of selecting specific characters 
from a character string defined in a character 
expression. A substring is specified as (m,n) where m 
and n are each a valid arithmetic expression. The start 
character of the substrin!=) is m; the length of the 
substring is n. The following rules apply to specifying 
substrings: 

1. 	 The value of m may not be less than or equal to 
zero. 

2. 	 The value of n may not be less than zero. 

3. 	 If the value of n is zero or if the value of m is 
greater than the length of the character string, the 
substring has no value. 

4. 	 If the value of n is greater than the remaining 
length of the character string, the substring is all 
the remaining characters of the character string. 

In a substring notation, there must be no blanks 
between the closing single apostrophe of the character 
string and the left parenthesis of the substring. 

Example of substring: 

The original character string &CHAR is 
ABCDEFGHIJKL. 

The desired substring is DEFGH (five characters 
beginning with position 4). 

The substring is coded as '&CHAR' (4,5). 

Alphameric Value 

An alphameric value is a continuous string of alphameric 
characters (not enclosed by apostrophes). When an 
alphameric value is processed (decoded). commas, 
blanks, dashes, and equal signs become delimiters. A 
decoded alphameric value may be from 1 to 50 bytes 
long. 

Variable Symbol 

A variable symbol is written as an ampersand (&) 
followed by an alphabetic character, $, #, or @' and 
followed by as many as five characters. The characters 
can be any combination of alphabetic, numeric, or $, #, 
@ (otl:ler special characters and blanks cannot be used). 
There are two types of variable symbols: symbolic 
parameters and set symbols. The relationship between 
these types is: 

Symbolic parameters 

1. 	 Positional parameters 

2. 	 Keyword parameters 

Set symbols 

1. 	 Global 
a. Arithmetic 
b. Binary 
c. Character 

2. 	 Local 
a. Arithmetic 
b. Binary 
c. Character 

Symbolic Parameter 

Positional or keyword symbolic parameters are assigned 
values by the macroinstruction statements, prototype 
statements, and table records. The values assigned to 
symbolic parameters cannot be changed by the macro 
processor. 

Positional Parameters: Positional parameters appear 
prior to keyword parameters in the prototype record. 
Each positional parameter is written as an & followed by 
an alphabetic character, $, #, or @, followed by as 
many as five alphabetic or numeric characters. 
Positional parameters appear on user macroinstructions 
as parameter values positioned prior to keywords and in 
the same sequence that they had in the prototypes. 

Keyword Parameters: Keyword parameters appear after 
positional parameters in the prototype record. Each 
keyword parameter is written as an & followed by an 
alphabetic character, $, #, or @, followed by five 
alphabetic or numeric characters. 

5·2 



Keyword parameters appear on user macroinstruction 
statements with the label of the prototype definition 
statement excluding the lead &, followed by a dash, 
followed by the parameter value. 

The difference between keyword parameters and 
positional parameters is that the keyword in a keyword 
parameter must always be followed by a dash (-). An 
example of a macroinstruction that contains Bnly 
keyword parameters is: 

$EXP1 &PLlST-2,&NOTE-

An example of a macroinstruction that contains only 
positional parameters is: 

$EXP2 &A,&B 

An example of a macroinstruction that contains both 
positional and keyword parameters is: 

$EXP3 &C,&D,&PLlST-3 

Set Symbol 

A set symbol is a storage area defined by global or local 
records. The values assigned to these symbols may be 
changed by the macro processor by use of set records. 

Three different kinds of set symbols can be used: 

1. 	 Arithmetic set symbols are defined by GBLA 
(arithmetic global) and lCLA (arithmetic local) 
records and are assigned values by SETA (set 
arithmetic) records. 

2. 	 Binary set symbols are defined by GBlB (binary 
global) and lClB (binary local) records and are 
assigned values by SETB (set binary) records. 

3. 	 Character set symbols are defined by GBlC 
(character global) and lClC (character local) 
records and are assigned values by SETC (set 
character) records. 

Global: A global is a set symbol defined with a global 
statement. This symbol will have a storage area 
assigned to it only once for each program assembled. 
The same set symbol may be defined in other 
macroinstruction definitions called out in the program, 
but the storage area will remain as that of the original. 
The use of globals is a primary means of passing 
information to macroinstruction definitions called later in 
the program. 

Note: Be careful when using globals, because they 
retain their values and spaces in the symbol table even 
when not being used. The use of globals when not 
needed may cause needless symbol table overflow. 

Local: A local is a set symbol (storage area) that retains 
its value only during the expansion of a single 
macroinstruction definition. Each time a symbol appears 
on a local record, it is treated as though it is the first 
definition of the symbol in the program. These symbols 
are used to retain values which may be used later in the 
same macroinstruction definition. 

&SYSNDX 

&SYSNDX must not be used as a variable set symbol. 
&SYSNDX is a system variable that may be 
concatenated with other characters to create unique 
names for macroinstruction definition statements and 
generated assembler source instructions. The three-digit 
number 001 is the value assigned to &SYSNDX when 
the first macroinstruction statement is processed. The 
value is increased by one for each subsequent 
macroinstruction processed in the program. 

&SYSNDX can have a maximum value of 999. 
Therefore, the number of macroinstructions in one job 
must not exceed 999 when &SYSNDX is used. (No 
diagnostic messages exist for the incorrect use of 
&SYSNDX.) 

Note: &SYSNDX cannot be used as a keyword or 
positional parameter. 

Attribute 

Attribute refers to the kind of value assigned a variable 
symbol in the variable symbol table (VST). Variable 
symbols can be assigned the following kinds of values: 

Numeric value 
Character string value 
Null value 
Binary value 

Macroinstruction Definitions 5-3 



Count Function 

The count function determines the length, in bytes, of 
the value assigned to a symbolic parameter. This length 
is obtained by: K' label of symbolic parameter. 

Example: If &LlST equals ABCDEFG, then K'&LlST 
equals 7. 

The user may refer to the count function only in the 
operand of a macro processor control statement (for 
example, AIF or SETA). 

Arithmetic Expression 

An arithmetic expression is a term or series of terms 
separated by operators. The valid terms for an 
arithmetic expression are variable symbols, self-defining 
terms, or count functions. The valid operators in an 
arithmetic expression are addition (+), subtraction H, 
multiplication (-I. and division (f). Parenthesized 
expressions are supported up to three nested levels. 

The following rules apply to arithmetic expressions: 

1. 	 Two or more terms must be separated by 
operators. 

2. 	 Two or more operators must be separated by 
terms. 

3. 	 No more than three nested levels of parentheses 
are allowed. 

4. 	 P'trentheses must be balanced; that-is, for each 
left parenthesis there must be a right parenthesis. 

5. 	 Unless a left parenthesis is the first element in the 
expression, it must be immediately preceded by an 
operator or another left parenthesis. 

6. 	 A left parenthesis must be immediately followed 
by a term or another left parenthesis. 

7. 	 A right parenthesis must be immediately preceded 
by a term or another right parenthesis. 

8. 	 A right parenthesis must be immediately followed 
by an operator or another right parenthesis unless 
it is the end of the expression. 

Arithmetic expressions are evaluated using 24-bit signed 
arithmetic (a 3-byte field ranging from -8,388,608 to 
8,388,607). An expression is reduced to a single value 
as follows: 

1. 	 Parenthesized expressions are evaluated from the 
innermost set of parentheses outward. 

2. 	 All multiplication and division is performed before 
addition and subtraction. All operations are 
performed from left to right. 

Continuation 

Continuation is supported for prototype records only. A 
nonblank character in position 72 and a comma after the 
last operand indicate that a continuation of the 
prototype record follows. At least one operand 
beginning in position 16 must appear on every 
continuation of a prototype record. Columns 1 through 
15 must be blank. Up to five continuation lines are 
allowed for any prototype record, which allows a 
maximum of six lines to be entered for each prototype 
record. 

Concatenation 

Separate values physically combined so that they appear 

as one value are said to be concatenated. 

Concatenation occurs under any of the following 

conditions: 


1. 	 A symbolic parameter or set symbol immediately 
precedes or foHows-another symbolic parametel or 
set symbol with no intermediate delimiter. 

2. 	 Characters immediately precede a symbolic 
parameter or set symbol with no intermediate 
delimiter. 

3. 	 Characters are joined to a preceding symbolic 
parameter or set symbol by an intermediate 
period. 

AIF records permit concatenation of symbolic 
parameters or set symbols and character strings only. 
Model records and assembler source instructions permit 
concatenation of symbolic parameters or set symbols 
and alphameric values only. 



Defining Macroinstructions 

Definition control statements are used to code 
macroinstruction definitions. The values established in 
the definition control statements are used by the macro 
processor to generate assembler and/or machine 
instruction statements. Figure 5-1 lists the definition 
control statements in the order that they must appear in 
a macroinstruction definition. For the complete list of 
macroinstruction definition mnemonics available for use 
in defining macroinstructions, see Figure 5-2. 

MACRO (required) 

Prototype (required) 

Global declares 

Local declares 

Table 

Table definitions 

TEXT (required) 


macro logic 

MEXIT 

MEND (required) 


Figure 5-1. 	 Sequence of Definition Control Statements 

in a Macroinstruction Definition 

Mnemonic Record Type 

MACRO Header 

None (macro title Prototype 
used) 

GBLA Global arithmetic 

GBLB Global binary 

GBLC Global character 

LCLA Local arithmetic 

LCLB Local binary 

LCLC Local character 

TABLE Table 

TABDF Table definition 

TEXT Text 

* or .* Comment 

AIF Conditional branch 

AGO Unconditional branch 

SETA Set arithmetic 

SETB Set binary 

SETC Set character 

ANOP No-op 

MNOTE Message 

MEXIT Trailer (logical end) 

MEND Trailer (physical end) 

Figure 5-2. Definition Control Mnemonics 

Macroinstruction Definitions 5-5 



Definition Control Statement Format 

A definition control statement may contain up to four 
entries: name, operation, operands, and remarks. The 
first three entries (name, operation, and operands) are 
position-dependent and most begin In positions 1, 10, 
and 16 respectively. The remarks entry may occur in 
any position following the operands if at least one blank 
is provided for separation. 

Macroinstruction Format 

The format of a macroinstruction is: 

Name Operation Operand 
1 1 3 4 5 6 7 8 9 10 11 12 1:1 14 15 16 t7 18 1920 21 22 23 1425 16 ]7 ~ 29 :J) 31 32 JJ J4 36 

A Symbol or Mnemonic Zero or More One Blank 
Not Used Operands of the Must Separate 

Form Described, a Remark 
Separated by from the Last 
Commas Operand 

LllIlllll 
I /I I I I I " 
I I I I I I I I I I ~t t~~tttH 

Name: If the name entry on the macroinstruction 
contains a symbol and a symbolic parameter appears in 
the name entry of the associated prototype record, the 
symbolic parameter is assigned the value of the symbol 
in the macroinstruction. (See Prototype in this chapter.) 

If the name entry on the macroinstruction contains a 
symbol and the name entry of the associated prototype 
record does not contain a symbolic parameter, the 
symbol in the name is ignored. 

If the name entry on the macroinstruction is not used 
and a symbolic parameter appears in the name entry of 
the associated prototype record, the symbolic parameter 
is assigned a null value. The length of the name entry is 
8 bytes with blanks padded on the right. 

Operation: The mnemonic operation code must be 
identical to the mnemonic operation code of the 
associated prototype record. 

Operands: The operand may contain keyword and/or 
positional parameter operands. 

The value assigned a keyword or positional parameter in 
a macroinstruction is a$sjgned to the corresponding 
symbolic parameter defined in the associated prototype 
record. 

A symbolic parameter defined without a value in a 
prototype record is assigned a null value with an 
undefined attribute, unless an operand referring to the 
corresponding keyword or positional parameter appears 
in the associated macroinstruction. 

A keyword parameter defined with a value in a 
prototype record retains the assigned value, unless an 
operand containing the corresponding keyword appears 
in the associated macroinstruction. 

The keyword parameters may be written in any order; 
however, positional parameters must be in the sequence 
specified on the prototype statement and must occur 
before any keyword parameters. 

Keyword Parameter Operands: Each keyword operand 
must consist of a keyword immediately followed by a 
dash, immediately followed by the value assigned to the 
keyword. 

Each keyword appearing in the operand must 
correspond to one of the symbolic parameters appearing 
in the operand of the associated prototype record. (Eacb 
symbolic parameter in the associated prototype record 
does not require a corresponding keyword in the 
macroinstruction.) A keyword corresponds to a symbolic 
parameter when the characters in the keyword are 
identical to the characters following the ampersand in 
the symbolic parameter. 

J 


• 

5-6 



L 
Positional Parameter Operands: A positional parameter 
operand corresponds to a keyword value; that is, just 
the value is given and not the keyword. Commas in 
succession are used to indicate the omission of 
positional parameters and null value assignment. 

An example of a macroinstruction statement and its 
relationship to the prototype definition control statement 
is: 

.. 
STATEMENT 

Name 05Nratlon Op,nncl 
, .91 :1 3 4 5 G 011 1:1 13 14 

.A~ T'i! 51 ";, ~~~I~1"""" 25,."" ~~~'~~I:i~~M1~I"I"·~;~~·:;y"p:·2 J"" 
IJ lJ •. 

~ Macroinstruction Statement ~~il 'Y Is, ) ~11 .. It.! I 
I I I I I I ill I I I [ I r I 1 I' I I 
I I I I I I I I I I I I I I I I I I I I 

&DAT1 is assigned 'YES' by the macroinstruction. 

&DAT2 is assigned null value by omission. 

&DAT3 is assigned '8' by prototype default. 

&DAT4 is assigned '12' by the macroinstruction. 


MACROINSTRUCTION DEFINITION CONTROL 

STATEMENTS 


Header (MACRO) 


The header statement denotes the beginning of a macro 

definition and must be the first control record in the 

definition. A maximum of one comment record (asterisk 

in position 1) can precede the header record. A 

comment record preceding a header record is not 

generated as source output. The format of the header 

record is: 


Name .~peration Operilnd 
12345678 15 16 11 18 19 20 21 22 23 '24 25 16 21 28 29 :II 31 31 33 301

9~~~j~=1 Not Used I INot Used I 

-+ 

Prototype 

The prototype statement defines the mnemonic 
operation code that must appear and the parameters 
that may appear on the corresponding macroinstruction 
statements. The mnemonic operation code in the 
definition prototype statement is the same one used to 
code a macroinstruction statement in the assembler 
source program. By varying the values assigned to 
parameters, the user can vary the sequence of 
assembler source instructions generated for each user 
macroinstruction. 

Macroinstruction Definitions 5·7 



The prototype record must be the second control record 
in a macro definition. The format of the prototype 
record is: 

ST.viMENT 

N.... Oper.tion .",..... R....... 

1234!561' 9 1011 121314 '5 ,. 17 18 19202122232.25:H1 27 28 29 30 31 32333436 36 37383940 4142434441 .a 41484950 5' 525354555657585980 6162636465 66 67 68697071 72 73 7~ 75 

A Symbolic 
Parameter or 

f- Symbol Positional 
Parameters 

- Nonblank 
_ Character or 

Not Used Followed by Not Used 
Keyword 
Parameters 

I I I I I I I 
1M' 

No"", Oper.lion 0 ....... "emerq 
1 2 3 .. :; 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 2S 26 27 28293031 323334 36 36 37 as 39 40., 42 43 44 45 45 47 48 49 60 51 52 53 54 66 56 57 58 59 60 61 62636465 66 61 68 69 7071 72 13 74 75 

&D6. ,I I - ~ Id_ ~ II 1.0 "10 TI~ rilE e
Jp A'II M§- MUIArt 1ll 1111, ORIIl 

Name: The symbolic name entry of the prototype 
statement is optional. If the keyword prototype record is 
continued, the name and operation entries must not be 
repeated on the continuation records. 

Operation: The symbol in the operation entry is the 
mnemonic operation code that must appear in all user 
macroinstruction statements that refer to this 
macroinstruction definition. The operation mnemonic 
must not be more than five characters long. If the 
keyword prototype record is continued, the operation 
entry must not be repeated on the continuation records. 

Operand: The mnemonic operand consists of positional 
and/or keyword symbolic parameters separated by 
commas. A blank indicates the end of the operands. 

Positional parameters are represented by variable 
symbol names. Positional parameters must precede any 
keyword parameters in the prototype statement. Each 
positional parameter is followed by a comma. 

Keyword parameters are variable symbol names 
followed by a dash and immediately following the dash: 
a parameter value, a comma, or, if keyword parameter is 
the last parameter in a macroinstruction, a blank. If a 
parameter value is included, the value is used as the 
default value. If a parameter value is not included, a null 
value is used as the default value. 

A comment may be entered following the operands as 
long as at least one blank exists as a delimiter between 
it and the operands. 

If the prototype statement is continued, at least one 
operand beginning in position 16 must appear on every 
continuation record. The preceding example shows a 
continued prototype statement. 



- -

Global 

Three types of global statements can be used in 
macroinstruction definitions to define global set 
symbols. These types of global statements are 
arithmetic, binary and character. A global set symbol is 
a set symbol whose value is available to all 
mactroinstructions in an assembler source program. If 
used, a global statement must be the first definition 
control statement following the prototype statement. 
Global statements can be specified in any order and 
more than one of each type can be used. 

A global set symbol is established when the first 
specification of a symbol name is given in a global 
record. Subsequent global records may specify the 
same symbol name, but the global is not reestablished. 
Subsequent declares of the symbol must specify it as 
the same type, either arithmetic, binary, or character. 

Arithmetic Global (GBLA) 

The arithmetic global specifies an arithmetic set symbol. 
Arithmetic set symbols are initialized to 3 bytes of 
hexadecimal zeros. The 3-byte field remains through all 
value assignments. The format of the arithmetic global 
record is: 

Name Operand 
1 '} 3 4 !> 6 1 8 9 10 1~~'28,t;or4 1516 11 18 1920 '" n 23 ]4 25 26 27 18 29 :JJ 31 32 33 l" 

One or More Global Arithmetic INot Used I G8L~ 
Symbols Separated by Commas 

I
1-1 Example: I IA~IIGI8 WI A1 I~GL U 

i 

I I I 

• 

Binary Global (GBLB) 

The binary global specifies a binary set symbol. When 
binary set symbols are defined, they are initialized to 
zero. The variable can be set to either zero or one by 
SETB records. The format of the binary global record is: 

Name Operation Operand 

1 7 3 4 f> 6 1 8 9 10 11 12 13 14 IS 16 11 18 1920 .. , 22 23 24 25 7'6 n 18 29 .xl 31 32 33 )<t 


INot Used I fi8 LA 
lOne or More Globel Binary Set 

-ISymbols Separated by Commas 

=1 Example: 1 1i8I A 1& ..~,I fit IAllil 11117 
, 

1 

1-1 
I 

Character Global (GBLC) 

The character global specifies a character set symbol. 
When a character set symbol is defined, it is given a 
zero length. A zero- to 8-byte character field can be 
assigned by the SETC record. The assigned characters 
may be any of the 256 hexadecimal combinations 
possible for one byte. The format of the character 
global record is: 

Operand 
1 ] 3 4 S 6 1 8 g 10 1~p,ra,t~of4 15 16 17 18 1920 71 :n 23 2425 ]6 n 18 29 .D Jl 31 JJ )4 :Ii 16 

Name 

INot Used I 118 LC 
One or More Global Character 

-h Set Symbols Separated by Commas 

H-+, 
I('& r. IAI1:1 Example: I 1~18ILC 

- +j 

I I 1 

Macroinstruction Definitions 5·9 



Local 

Three types of local records can be used in 
macroinstruction definitions to generate local set 
symbols: arithmetic, binary, and character. If used, they 
must be the first--eontrol"-statermmfs foRowlng the global 
mnemonics, if globals are used, or the first control 
records following the prototype record, if globals are not 
used. Local mnemonics can be specified in any order 
and more than one of each type can be used. 

Local set symbols are established and initialized in each 
macroinstruction definition in which they appear. 

Arithmetic Local (LCLA) 

The arithmetic local mnemonic specifies an arithmetic 
set symbol. Each arithmetic set symbol specified is 
initialized to 3 bytes of hexadecimal zeros and remains 
as a 3-byte field. The format of the arithmetic local 
record is: 

N.... O~and 
12J.S618 910 ,~~ia,t~or4 1& 16 11 18 1920 21 2223 14 2S 26 21 28 2'9 .Jl 31 J1 ]J Jill& 36 

~ 
One or More Local Arithmetic Set 
Symbols Separated by Commas 

INot Used I u: 
I I I I I I I 
I I I I I I I ~ 

I ,~I Example: I lit IA I. If .. a II ft~ II I~ 
- - --j

1111111 
1111111 ,-I I 

Binary Local (LCLB) 

The binary local specifies a binary set symbol. The 
binary set symbol is initialized to zero. The format of 
the binary local record is: 

N..... Operand 

, .. J , !; 6 1 8 g 10 1~~2alt~o~ I!; 16 17 18 19 20 21 21 2:1 2' 25 16 n 28 29 .Jl 31 32 JJ J." 


~ 8 
- Not Used One or More Local Binary Set 

-
Symbols Separated by Commas I I I I I 

11 I I L 

IExamPle: I LIB Lf lIB 0 ILIZ 
.. - - 

1\ 1\ I - -- . ,I I I I I I I 

Character Local (LCLC) 

The character local specifies a character set symbol. 
Each character set symbol is initialized to a null value 
and zero length. It may then be changed to a chMactef 
value of from zero to 8 characters. The format of the 
character local record is: 

: 
No... Ooerand 


1 9 10 1~~rll~Or4 1& 16 11 I. 19:L1O 21 21 23 2' 25 ~ 21 78 19 .Jl 31 37 JJ J.oI E 36
" J " !> 6 1 8 

tl11C 
INot Used I One or More Local Character " Set Symbols Separated by Commas1L 

~- + 
'CIL If IIIIExamPle: I 1

-t--- - 

.. _, -- - 

-
I 

-
I L hl ~ 

j 

Table (TABLE) 

A table statement is used to assign a value to a 
positional or keyword symbolic parameter. A table 
statement must be followed by at least one Jtable-definition statement. The format of the table 
record is: 

Name Operand 
1 , J .• 6 , B , 10 1~~~·lt;or4 IS I' 11 18 't 20 21 21 73 2' 25 16 n 28 29 .]) 31 31 33 :M 


ITAIII IL '£ 

~ INO! useerl IASvmbOlic Parameter I" 


- . 

-f-

- f--l- ~ 


- - .- - -t- • 

6-10 



L 
Table-Definition (TABDF) 	 In this example if the user enters a yes for the first 

positional parameter (&DATll. then &DAT1 is assigned 

Table-definition statements assign values to symbolic the value 1. If the user makes no data entry for the first 
parameters given on table records. The value given in a positional parameter. then &DAT1 is assigned the value 

table-definition statement is assigned to the symbolic 9. 

parameter given in the previous table statement if one 

of the following conditions is satisfied: 


Text (TEXT) 

1. 	 The argument of the table-definition statement 
matches the value previously assigned'to the A text statement must be present in every 
symbolic parameter by the macroinstruction or macroinstruction definition. The text statement denotes 
prototype record. the beginning of conditional processing instructions. 

The definition control records that can appear before the 

2. 	 Positions 1 and 2 of the argument of the text record in the jobstream are: header. prototype. 
table-definition record are occupied by global. local. table. and table-definition records. Any of 
apostrophes and no value has been previously these records appearing after the text statement are 
assigned to a symbolic parameter by the considered invalid. and errors result. The format of the 
macroinstruction or prototype record. text statement is: 

3. 	 The argument of the table-definition statement is 
Name Operand 

1 2 3 .. 5 6 7 8 9 10 1?~ialt~o~4 IS 16 17 18 19 20 21 27 23 2 .. 25 26 27 28 29 :I) 31 32 33 )4blank. A blank argument assigns the specified 

value to a parameter if the parameter entered does 
 INot Used I r1EIU 

!INot Used I 
not match an argument specified in a preceding 

TABDF statement. 


At least one table-definition statement must follow each 

table record. The format of the table definition record 

is: 


Name Operand 

1 6 1 8 9 10 1~~;alt~o~4 15 16 11 18 1920 21 22 23 242S 26 17 28 29 .D 31 32 33 30'
2 J " 5 

-IArgument I rr~ISDlf 
Ivaluel 

Argument: A string of characters with no embedded 

blanks. The argument may be taken from the prototype 


• record or a user macroinstruction . 

Value: A character string or an alphameric constant. 

Following is an example of lines from a macro definition 

that define a table or table record: 


STATEMENT 

N.... Oper.lion Operend 

1 2 3 4 	 5 6 1 I 9 10 " 12 13 14 '" 6 17 18 192021 2223242526272829303132333435 36 :31 38 39 40 41 4243 

\tiL I~~~ IT~ I!: rr 1A111 ~~~1T:l ~ID l4IrrI~ ~II= EIDIII T/4
ITlA Bt..I~ ~1T1.1 


IY~Is IWIIPlrlF 

IT~ If 


, I ITA 8lJ>IJ 

Macroinstruction Definitions 5·11 



Comment 

Source output comments: These comments can appear 
after the TEXT record and before the first trailer record 
(MEND). These comments are written out as part of the 
macroinstruction expansion. The format of a source 
output comment is: 

2 ............... 71 

* Desired comment 

One comment of this format can appear before the 
header record, but it is not generated as source output. 

Comments internal to the macro definition: These 
comments can appear after the header record and 
before the first trailer record (MEND). These comments 
are not included in the macro expansion. The format of 
an internal macro comment is: 

1 23...............71 

* Desired comment 

Conditional Branch (AIF) 

AIF conditionally alters (forward or backward) the 
sequence in which macro definition records are 
processed. The AIF record may appear any place after 
the TEXT statement. The format of the AIF statement 
is: 

Name Operand
10 ,~Ple.;811~On 

I 2 3 • 5 6 7 8 9 14 15 .n~m~~HHH~.n.R~~nn~~. 

IJIIII= 
A~equence A Logical Expression Enclosed in 
Symbol or Parentheses Immediately Followed 
Not Used by a Sequence Symbol 

I 
I I I 
~ I I J 

Operand: The logical expression is evaluated to 
determine whether it is true or false. If the expression is 
true, the record named by the sequence symbol in the 
operand is the next record processed by the macro 
processor. If the logical expression is false, the next 
sequential instruction of the macro definition is 
processed. 

Whenever AIF operands of unequal length are compared 
(after assigned values have been substituted for 
symbolic parameters), the lengths, and not the content, 
of the operands are compared. Otherwise, three kinds 
of comparisons of content are possible: 

1. Type attribute (T) checking 

2. Binary condition checking 

3. Value checking 

5·12 



Type Attribute (1') Checking: The user may refer to the 
type attribute only in the operand of the AIF record. 
Attribute checking cannot be performed with set 
symbols. 

Condition 

AI F (T'&name (NE~ 
, EOJ 

'N') ,sequence symbol 

AI F (T'&name {~~} 'U') ,sequence symbol 

AIF (T'&name {~~} '0') ,sequence symbol 

AIF (T'&name {~~} ") ,sequence symbol 

AI F (T'&name {~~} T'&name 1) ,sequence symbol 

Note: No concatenation of symbols in an AIF operand is 
supported in T processing. If concatenation is 
specified, an error results. 

Binary Condition Checking: The format for binary 
condition checking is: 

AIF (&symbol).sequence symbol 

This format is valid only if &symbol is a binary set 
symbol. See Set Binary Record (SETB) in this chapter. 
If &symbol has a value of 1, the AIF condition is 
assumed true, and a branch forward or backward to the 
sequence symbol is taken. Otherwise, processing 
continues with the next sequential instruction. 

Meaning 

Test &name for a numeric value. 

Test &name for a character 
string value. 

Test &name for a null value (no 
value assigned). This null test 
is recommended. 

Test &name for a null value (no 
value assigned). This null test 
is not recommended. 

This test determines whether 
or not &name and &name 1 
have the same attribute. 

Macroinstruction Definitions 5·13 



Value Checking 

1 GT 
GEcount function, 	 count function, }]

AIF [ { &symbol, or' . (blank) 	 EQ (brank) { &symbol, or .sequence symbol 
NE'character expression' 	 'character expression' 
LT 
LE 

Note: &symbol = any symbolic parameter or set symbol: 

GT =greater than 
GE = greater than or equal 
EQ =equal 
N E = not equal 
L T = less than 
LE = less than or equal 

Concatenation of symbolic parameters, set symbols, and 
character strings is supported for an AIF record. 

Unconditional Branch Record (AGO) 

The AGO record unconditionally alters (forward or 
backward) the sequence in which macro definition 
records are processed. The AGO record causes a 
branch forward or backward to the record whose name 
matches the sequence symbol given in the operand of 
the AGO record. 

The AGO record may appear any place after the TEXT 
record and before the MEND record. The format of the 
AGO record is: 

Name Oper,illnd 

1 .. 3 4 5 6 7 B 9 10 ,,,:~e.;a,t~o~4 IS 16 17 18 1920 21 n 23 242S 76 n 2'8 29 .J) JI J} JJ ;j4 


1a~1I' 
A Sequence IA Sequence Symbol ISymbol or 
Not Used 

1 
I 
I 

-

I 

... 	 i .  ~I 

Set Arithmetic (SETAl 

The SETA record assigns a value to the arithmetic set 
symbol referenced in the name field. The 3-byte 
hexadecimal value assigned is derived from an 
evaluation of the operand field. The SETA record may 
appear any place after the TEXT record. The format of 
the SETA record is: 

Name Operand 

1 .. 3 .. !II 6 1 8 9 10 1~~e.;a,1;O~4 IS 16 17 18 1920 11 22 23 2425 26 21 28 29 .J) 31 32 33 Jot 


SII: T~ 

An Arithmetic An Arithmetic Expression I 

Set Symbol 


I 
I r- r-H-

1- J - LL 	 I LL~. 

Operand: The arithmetic expression may contain 
arithmetic, character, and / or binary set symbols. Any 
character set symbols used must have a value of from 
one to eight decimal digits. Binary set symbols are 
either zero or 1, and &SYSNDX is given a hexadecimal 
representation of its current value. The values assigned 
by the SETA records must be in the range of 
-8,388,608 to 8,388,607. If you use the count function 
as an operand, it must appear alone. 

5·14 



- - ---- - -

Set Binary (SETB) 

The SETB record assigns a value of zero or 1 to the 
binary set symbol referenced in the name field. The 
SETB record may appear any place after the TEXT 
record. The format of the SETB record is: 

, Name Operand 

2 3 .. 5 6 7 8 910 1~~.,t;or4 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 XI 31 32 33 J4 


~Ie rTlS 1~.L.L·iA Binary o or 1 

Set Symbol 


I 

Set Character (SETC) 

The SETC statement assigns a zero- through 
8-character value to the character set symbol referenced 
in the name field. The character value assigned is 
derived from an evaluation of the operand field. If the 
derived value contains more than eight characters, only 
the first eight characters are used. 

The SETC record may appear any place after the TEXT 
record. The assigned characters may be any of the 256 
hexadecimal combinations possible for one byte. The 
format of the SETC record is: 

Name Operand, '1 3 .. 5 6 1 B 9 10 1~~ra,t~or4 g~n~~~"nn.~~n~m~~.D~ 

Sf:r" 1
A Character A Character Expression 1
Set Symbol (may include substring 


notation) 


-

Operand: The character expression, which may include 
substring notation, may contain character, arithmetic, 
and binary set symbols. Null values can be assigned in 
the character expression by specifying two consecutive 
single apostrophes or by specifying only Variable 
symbols that already have null values. 

Arithmetic set symbols used in the character expression 
are converted to only their significant decimal digits in 
the string. All leading zeros are dropped, and, if the 
value of the arithmetic set symbol is zero, a single 
decimal zero is used. Binary set symbols appear as 
either zero or 1, and &SYSNDX is given its current value 
in three decimal digits. 

Assembly No Operation (ANOP) 

The ANOP statement may be used to provide a name 
(sequence symbol) to which AIF and AGO statements 
may branch. ANOP may appear any place after the 
TEXT statement and before the MEND statement. The 
format of the ANOP statement is: 

OperandI, , 3 .. S 6 1 8 g~n.m~"nn.~~D~m~~.D~ 
Name 910 1,;,,;-;r.,t~or4 

f1N "101 
A Sequence Not UsedI I
Symbol 

I 

I 

Macroinstruction Definitions 5-15 



Message (MNOTE) 

The M NOTE statement may be used by the programmer 
to generate a message and to indicate the error severity, 
if any, to be associated with the message. The MNOTE 
statement may appear any place after the TEXT 
statement. The format of the MNOTE statement is: 

Name 	 Operlondt~~II,t~or4 m~n~~~~nnM~~n~~~~n~~1 2 3 04 !i 6 1 8 9 10 

'MN TE 
A Sequence SC 
Symbol or SC:Message' 
Not used SC,MIC code number, 

msg member type 

I 

Operand: 

SC =Severity code (two digits 00-99) 

Severity codes are divided into the following 
classifications: 

SC < 08 	 The macro processor generates 
the message as an assembler comment 
(* in position 1), and no 
error condition occurs. 

SC = 08 	 The macro processor generates a 
special assembler statement that 
will cause the message to be printed 
on the assembler source listing 
with a warning (W-error). 

SC > 08 	 The macro processor generates 
the message as an assembler comment 
without an * in column 1. This will 
cause the assembler to flag that 
statement as a hard error (M-error). 

'Message' 	One to 50 characters enclosed 
in apostrophes with no embedded 
apostrophes. This message will 
eventually occur as coded on the 
assembler source listing. 

MIC code A four-digit code which identifies 
number the message member within the 

message member type. 

Note: Message member type for the MNOTES for 
IBM-supplied macroinstructions i_s ASM. 

Examples: 

1. 	 An M NOTE instruction which causes a W error 
and a comment on the source listing: 

Name 
1 , 3 • 	 , 6 7 8 9 10 1~pl~a,t~or4 15jUi 17 18 1920 21 1f~r;~25 26 27 28 29 J) 31 32 3J ~ 15 36 31,
.I.SII:~ ~I !TIl: III ~E jl:ljll IT 

-

2. 	 An MNOTE instruction which causes an M error 
and generates message #56 as obtained from the 
user message member set: 

Name Operand 

1 234~678 9 10 1~~a,t~o~4 lS' 17 18 1 20 21 71 13 14 25 16 '11 28 19 J) 31 31 33 JoI 


.l~IE~ fIlN OrrlE tl'l 11851. 

. L

3. 	 An MNOTE instruction which causes an M error 
but no message: 

Name Operand 

1 , 3 ., 6 7 8 9 10 1~~r8,t~0r.. 15 16 17 18 1920 21 22 13 24 25 16 27 28 19 3) 31 32 33 )II 


.I~IE 	 ~IZ 

J 

5-16 



- -

Logical End (MEXIT) 

The MEXIT statement denotes that macro definition 
processing ends with this record. The format of the 
M EXIT record is: 

A Sequence 
Symbol or 
Not Used 

~1-~1-~~-r+1-r+~~~~~+-~r+-t-r+t-r+-rr: 

~++-r+"-HHrrr++i-r+~~Hrr++++1-H~·Hr~' 

I I 

Physical End (MEND) 

The MEND statement denotes the end of, and must be 
the last control record in, the macro definition. 
Processing of the macro definition ends when this 
record is encountered. 

The format of the MEND record is: 

O~.ndName , 10 1~·lt;or41 134So678 I!) 16 11 18 19 3J 11 11 13 14 2S 2'6 11 28 29 XI 31 J2' 33 ~ 

fIIEI I 
A Sequence Not Used i 

Symbol or I I 
iNot Used 

I 
-

I J 

Macroinstruction Definitions 6-17 



SAMPLE DEFINITION OF A USER For a description of how to code macroinstruction 
MACROINSTRUCTION statements, see Chapter 6. For an example of 

IBM-supplied macroinstruction definitions, see Sample 
Figure 5-1 shows the definition of a user-defined Macroinstructions in Appendix A. 
macroinstruction that generates instructions to move 
more than 256 bytes of data. Figure 5-2 shows an 
assembled program in which the user-defined 
macroinstruction is issued. The macroinstruction is 
issued several times in the program to demonstrate how 
parameters specified in the macroinstruction determine 
which lines of code are generated from the 
macroinstruction definition. 

MACRO 
~MOVL !.TO, 

tE~~StH, 
~ADDR-

LCLA !.WRKLNG 
LCLA !.WRKLM!
LCLB !.sw 

!.WRKADfm
SPACE 

!.SW SETB 0 SET EDIT SWITCH OFF.. •. IF THERE IS AN EDIT ERROR 
.. IT IS SET TO ONE AND NO 

.* •• INSTRUCTIONS WILL BE GENERATED

.*_A.A••**A._*•••A. ___ •• _ ••___ ._••_. __ *_*._*_..**•••_••**AA*A*.A.A••*•••• 
• w * ._ CHECK PARAMETER ONE, TO ADDRESS LABEL. 

· .. -_-------_.._*---*---_._-----_._-_._._-------_._-------*--------------AIF (T'!.TO NE 'O').MVtOO! IF FIRST PARM ENTERED,.. .. GO CHECK ITS LENGTH, ELSE 
.* ..WRITE OUT AN ERROR MESSAGE 

.. AND SET ON THE EDIT SWITCH SO. •. THAT NO CODE IS GENERATED. ·.- HNOTE 08,'PARM ! (TO ADDR) MAY NOT BE OMITTED.
!oSW SETB 1 SET EDIT ERROR SWITCH ON . AGO .HVtOO: GO CHECK THE 'FROM' ADDRESS 

.MV~OOI ANOP 

AJF ("'~TO l.T '7') .MV~002 IF THE NUMBER OF CHARACTERS IN 
.• PARM 1 IS 6 CHARACTERS OR LESS.-. .• IT IS OK, ELSE SET ON THE 
.• ERROR SWITCH . 

·.. MNOTE 08, 'F'ARM 1 (ro ADDR) MUST BE 6 CHARACTERS OR LESS. 
bS';,I s[ ril 1
.*.• *~*.*~******************************.*************** ••*•••AA ••••••••• 

. - * .- CHECK PARAMETER TWO, FROM ADDRESS LABEL W 
,. _____ • _____*_______ • __ *_....**._.*_*___..•_* ___ * ••_.A•......•.....*•••·
. MVt002 ANOF' . AIF (T'~FR[)M NE '0' ).MVt003 IF SECOND PARM ENTERED,


.• GO CHECK ITS LENGTH, ELSE 

.. WRITE OUT AN ERROR MESSAGE·- .. AND SET ON THE EDIT SWITCH SO·- •. THAT NO CODE IS GENERATED.· .- IiNOTE 08,' PARM 2 (Ff,OM ADI)R) MAY NOT-Bt--{II'IITTED.
&SW SETB 1 SET EDIT ERROR SWITCH ON . AGO ·.MVt004 GO CHECK THE LENGTH F'ARAMETER 
.Mvt003 ANUP 

AIF (I\'&FROM U '-").MV~004 IF THE NUHBER OF CHARACTEr,s IN 
.• PARM 2 IS 6 CHARACTERS OR LESS...

• W ::f~Rfi~ ~~ITER:E SET ON THE 

· - MNOTE 08, 'PARM 2 (FROM ADDR) MUST BE 6 CHARACTERS OR LESS.' 
&SW SE HI 1..**********************************************************************.. ._ CHECK PARAMETER THREE, LENGTH OF MOVE. * 
• - W.*********************************************************************** 
· MVt004 ANOF'

AIF (T'!.LENGTH NE '0' ).HV~OOS IF LENGTH PARM ENTERED.- ::B2If~EO~~ l~ f~R~~MR~!~AG~LSE·- •. AND SET ON THE EDIT SWITCH SO · ·. - •• THAT NO CODE IS GENERATED. 
·- MNOTE OB, 'PARM 3 (LENGTH) HAY NOT BE OMITTED. 
&SW SETB 1 SET EDIT ERROR SWITCH ON

AGO .HVt006 GO SEE IF ALL EDITS PASSED • 
. · MVtOOS ANOP . AIF (T'!.LENGTH EQ 'N').HVt006 IF THE LENGTH PARH IS NUMERIC

•. IT IS OK, OTHERWISE
•. SET ON THE ERROR SWITCH ·.*  MNOT.E 08, 'F'ARM 3 (LENGTH) MUST BE NUMERIC. 

~SW SETB· 1 

* 

Figure 5-1 (Part 1 of 2). Sample Macroinstruction Definition 

5·18 



.--**.*-*.*********.******._**._._*._._-_•••_*._._-*_••**._._*-_._.*••

.*._ CHECK THE EDIT SWITCH. •* 

.* • .***************-**-.*.**********-*._*-**---**-*_.**_.•*-.*.*.•••_-* •••* .MVt006 ANOF'
AIF (6.SW) . HVtEX IT IF THE EDIT SWITCH IS ON EXIT 

.* ::A~~ 2e~~~ AND DO NOT GENERATE.*

.* __ ** ___ **_*.__ ••***._.___ •••__•__ ._._••_.___ •••••• •••••••__ *_ •a*·*** •• _ 

.* .* GENERATE THE NECESSARY MOVE INSTRUCTIONS. _ 

.*.** ...._*_ ...*_....*-.***•.•.*._.*......*.__ .-._--*.•--*._-•.•*---*--••*
a.WRKL.NG SETA a.LENGTH SET TO TOTAL NUMBER OF BYTES 
~~5~taop ~~~~ ~LENGTH-1 SET TO NUMBER TO HOVE MINUS ONE 

AIF (a.WRKLNG LT '257').MVOEND IF THERE ARE LESS THAN 257 
.* : :m~Sc~~M~~N~~ijE60I=Eo~~VED.
.*. ::A~GlRH~l~O~$60~~~~~I~~D 
.* ::£~C§~~~E THE NUMBER REMAINING..- MVC a.TO+a.WRKLM1(256),a.FROM+a.WRKLHl 
t~m~r nt~ t~m~B:rs6 

AGO . MVtLOOF' 
.MV~END ANOP

MVC a.TO+a.WRKLM1(a.WRKLNG),a.FROM+a.WRKLM1
.*a·_···_··*·.-*_····_**•••--__•·__ ••·_*·_._*__••_••••__••*•••_••_•••••_• 
.* .* CHECK PARAMETER FOUR, ADORESS TO BE LOADED IN REGISTER ONE * 
a ••*··__._..._.__...._.._------_._..._---_..-••-._._._._..-_____..__.___.* 
.* AIF (T'a.ADDR EQ 'O').MV'EXIT.~~KF'~~MI1 ¥~SA~M~~t~8NAlH~~R~~ 

..

.* 
AIF ('a.ADDR'(1,l) NE 'a').MVOLDAD IF THE FIRST CHARACTER 

::B[Nfft~~E4AIEo~BT • s' GO 

.-
.*
.* ::6~~l~~flI~NLO~l TION 
.* ::~fb~2,CHARACTERS TWO THRU 

i.~RKAD SElC 'MDDR' (2. 7) SET STRING TO IGNORE THE '@' 
L a.WRKAD 1
AGO .MVtEXh MACRO IS DONE, EXIT MACRO

.MVOLDAD ANOP
LA a.ADDR,1

.MVOEXIT ANOF'
MEXIT
MEND 

Figure 5-1 (Part 2 of 2). Sample Macroinstruction Definition 

IBM SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 04 

ERR LOC 08JECT CODE AD DR STHT SOURCE STATEMENT 05-09-79 TIHE 13.37 PAGE 2 

0000 1 START X'OOOO' 

888~ 8E FF 8m 8mFF 
3 -
5+
6+ 

aMOVL 

~~E 

HERE,THERE,512 

~~~~!~~~i~~~l:t~~~~!~~~ 
B * IIHOVL HERE,THERE, 224,ADDR-HERE

OOOC
0012

OC
C2

DF
01

0107
0028

0307 10+
11+

HVC
LA

HERE+223(224),THERE+223
HERE,1

13 * IIMOVL HERE,THERE,400,ADDR-IIHEREADR
0016
001C
0022

OC
OC
35

FF
SF
01

01B'1
00B7
0027

03B?
02B7

15+
16+
17+19 _

MVC
MVC
L
IPHOVL

HERE+399(256),THERE+399
HERE+143(144),THERE+143
HEREADR,1
HERE,TOOHANY, 375

21 *08 PARM 2 (FROH ADDR) MUST BE 6 CHARACTERS OR LESS. *MNOTE
23 • IPMOVL HERE,THERE

W 25 *OS PARM 3 (LENGTH) HAY NOT BE OMITTED. -"NOTE

0026 0028 0027 27 HEREADR DC AL2(HERE)

0028
0028
0227

29
30

HERE 6~U -2CL256

0228
0228
0427

32
33

THERE 6~U *2CL256

0428
0428
0627

35
36

TOOMANY ~~U -2CL256
FFFF 38 END

Figure 5-2. Use of Sample Macroinstruction

Macroinstruction Definitions 5-19

http:a.WRKL.NG

5-20

Chapter 6. Macroinstruction Statements

A macroinstruction is a source statement that generates
a predetermined set of assembler statements each time
the macroinstruction is used. The IBM System/34 Basic
Assembler and Macro Processor Program Product
provides macroinstructions which perform both system
services and input/output device support. By using
these macroinstructions, you can perform both system
and input/output operations with less coding.

Writing Macroinstructions

You code macroinstructions as follows:

Name Operation 	 Operands Continuation

Symbol Macro 	 No Operands Any Nonblank
or Blank Name 	 or One or More Character if

Separated by Continuation is
Commas Being Used

The name field can contain any valid assembler
language symbolic name beginning in column 1. The
name is assigned to the first byte of generated code.
Since the name is optional, it is shown below in
brackets.

The desired mnemonic operation code (macroinstructioll
name) must appear as specified in that
macroinstruction's description. The operation code must
start in column 10.

Keyword
Dash

r----r----r--------.~~ Parameter•
NAME-module[,fIND·address) [,PACK- IS]

/T 7+
Operand 	 Optional Default I Option

Operand Value List

Operands specify the available services and options that
you want to use. The operands must start in column 16.
Macroinstructions supplied by IBM use only keyword
operands. The following conventions apply to the
IBM-supplied macroinstructions:

• 	 Each operand consists of a keyword followed by a
dash and a parameter.

• 	 Keywords-those shown in capital letters-are coded
exactly as shown in this chapter.

• 	 The parameter part of the operand must immediately
follow the dash.

• 	 Parameters-those shown in lowercase letters-indicate
information you must supply.

• 	 An option list for a keyword parameter is specified as
follows:

KEYWORD-A/ B / C

This list indicates that options A, B, or C are the only
valid options for the keyword parameter. When the
options Y /N are given in a macroinstruction, Y
indicates a yes response, N indicates a no response.

• 	 Commas separate the operands; blanks cannot be
left between operands.

• 	 The keyword operands may be written in any order.

Optional operands are indicated in this chapter by
enclosing the operand within brackets
[KEYWORD-parameter]. If em operand is not
specified, the default value is used. A default value is
selected for any optional keyword that is omitted. The
default value is indicated in this chapter by a line under
the default option. For example, [KEY-A/B/C]
indicates that option A is the default value.

No operands can be specified beyond column 71. If
continuation is required, column 72 must contain a
nonblank character and the last operand before
continuation must be followed by a comma and a blank.
If the comma is in column 71, the blank is not required.
An operand cannot be divided and continued on the
next line. The operands of the continued field must
begin in column 16. for an exampte of continuation
coding, see Figure 6-1.

Macroinstruction Statements 6-1

A comment must be separated from the operand or
comma by at least one blank space. A comment cannot
be inserted between operands on a one-line
macroinstruction. Figure 6-2 shows examples of
comments used with macroinstructions. On the
assembler listing, all comments on the generated code
are aligned by the macro processor to begin in column
40. Any comments too long to be contained in columns
40 through 71 are truncated from the right.

'""M'NT
~ Nome ~O~~.'!.

3l " J7 3J J6 ,-",~ ~ "53 107 ~'61i':: " ' .. an' 12 7!"a

IU~M~I1 II DIJliD II'~ Iti~ ll·I~ltMf~E-I~~MD." All II" 15It12 lilt~ I. i 11 II ~

~111Ilt-II IBlIIIF11 121,

11I§I.~ I-I~I.

~I.

I

!
1M!! I.

1

Figure 6-1. Continuation Coding Examples

STATEMENT

ill! lilt!1111 II 11 IT II ~II rr II I II IrE If

IIIIU 1.1Il1lil1S1, II ,Ii II n E IJ ISrr U~IT 'r'
I'I!

5_« It: I. II L ~ IIIf IN II~ IT 1I I~ II~K~ UlaJ IllSnll ~ -

-

~L tiS 1.111 'JT. it It II It .5
Milt - Hill." ~II& III

~~

- - I
,~

Hi- 1'1
I I I I I

Figure 6-2. Comments on Macroinstructions

Macroinstructions Supplied By IBM

The macroinstructions provided by the IBM System/34
Basic Assembler and Macro Processor Program Product
and the functions they perform are shown below.

Note: Communications macroinstructions are described
in the Data Communications Reference Manual and the
Interactive Communications Feature Reference Manua/.
Scientific macroinstructions are described in the J
Scientific Macroinstruction Reference Manual.

6-2

Device Type
Supported

System Log

General SSP

General I/O

Printer

Disk

Disk Sort

Timer

Display Station

Macroinstruction
Name

$LMSG

$LOGD

$LOG

$FNDP

$FIND

$LOAD

$SNAP

$INFO

$CKEQ

$CKPT

$INV

$EOJ

$ALOC

$OPEN

$CLOS

$DTFO

$DTFP

$PUTP

$DTFD

$GETD

$PUTD

$SRT

$SORT

$TRB

$SIT

$RIT

$TOD

$DTFW

$WSIO

$WIND

$WSEQ

Function

Generate parameter list for message displayed by system log

Offsets in log parameter list

Linkage to system log

Generate find parameter list

Find a directory entry

Load or fetch a module

Snap dump of main storage

System information retrieval

Generate a parameter list for checkpoint requests

Establish a checkpoint

Inverse data move

Linkage to end of job

Allocate disk space or device

Prepare a device or file for access

Prepare a device or file for termination

Generate DTF offsets for all devices, including data communications

Define the file for a printer

Construct a printer PUT interface

Define the file for disk

Construct a disk GET interface

Construct a disk PUT interface

Generate a loadable sort parameter list

Construct sort interface

Generate timer request block

Set timer interval

Return / cancel timer interval

Return time and date

Define the file for display station

I/O requests to display station

Generate indicators for PUT and PUT overrides

Generate labels and values for display station device-dependent values

Figure 6-3. Macroinstructions Supplied by IBM

Macroinstruction Statements 6-3

System Services Macroinstructions

Use system services macroinstructions when you want
to communicate with the System Support Program
Product (SSP). These macroinstructions can do the
following:

• 	 Log and write error messages

• 	 Obtain object modules from disk and load them into
main storage

• 	 Pass control to modules in main storage

• 	 Determine the location of an object module on disk

• 	 Terminate the current job

The system services macroinstructions are divided into
these groups:

1. 	 System log macroinstructions provide support for
and linkage to system log functions.

$LMSG

$LOGD

$LOG

2. 	 General SSP macroinstructions provide linkage to
system functions.

$FNDP $CKEQ

$FIND $CKPT

$LOAD $INV

$SNAP $EOJ

$INFO

SYSTEM LOG SUPPORT

Specifying a $LOG macroinstruction in your program
generates a call to system log. (System log is a group
of system output routines that provide communication
between the operator and the system.) You may want
to use system log to notify the operator of error
conditions, error recovery procedures, and the validity of
previous operator responses to halts. If the operator
selects an invalid option in response to a halt, the
response is not accepted by system log. Instead, the
halt is displayed again with another message indicating
that the response is invalid.

Note: When an immediate cancel (option 3) is selected,
control is passed directly to the end-of-job (EOJ)
routine by system log.

Two types of output are available through system log;
formatted and unformatted messages. Both are
displayed on the system log device.

• 	 A formatted message consists of two lines. The first
line, the format line, contains the message ID and
available options. The second line contains the actual
message text.

• 	 An unformatted message consists of one line. This
statement indicates errors or issues instructions to
the operator; for example, requesting that a disk file
be loaded.

Messages can be issued with or without accompanying
halts and can be routed to either the system console or
the work station.

To use system log, you must do the following:

1. 	 Build the log parameter list using the $LMSG
macroinstruction.

2. 	 Use the $LOGD macroinstruction if you want to
establish labels for the log parameter list. You can
then use the labels to modify the parameter list
during program execution.

3. 	 Issue the $LOG macroinstruction.

4. 	 Process in your program any replies returned by
the operator.

6-4

Generate a Parameter List for a Message Displayed
by System Log ($LMSG)

This macroinstruction generates a system log parameter
list for a message to the operator. This parameter list is
referenced by a $LOG macroinstruction when $LOG is
used to issue a message. See the chart following the
parameter descriptions for a summary of which
parameters to use with each message type.

The format of the $LMSG macroinstruction is:

[name] $LMSG 	[TYPE-code] [,COMID-code]
[,SUBID-code] [,FORMAT-Y/~]
[,HALT-Y IN] [,MIC-number]
[,OPTNO-Y IN] [,OPTN1-Y IN]
[,OPTN2-Y /.N] [.OPTN3-YIN]
[,SKIP-YI~] [,SPACE-!/2/3]
[,MSGLN-number]
[,MSGAD-address] [,WRSTE-X/N]
[,DRLEN-number]
[,DRADD-address] [,HIST-r/N]
[,CRT-r/N] [,VARIN-Y/~]

TYPE-code specifies the type of system log parameter
list. If this operand is omitted, TYPE-l is assumed. The
valid codes and their meanings follow:

Code 	 Meaning

Output from a message member,
without data response

lR 	 Output from a message member,
with data response

2 	 Output from a user program,
without data response

2R 	 Output from a user program,
with data response •

3 	 Output from a user program,
with a format line. The format line •
contains the program I D, the M Ie
number, options if options are
available, and the program name.

4 Type 1 with 8 bytes of user-supplied
information added to the front of
the message

COMID-code specifies a 2-byte field used to identify the
module issuing the message. If this operand is omitted,
blank is assumed. This field is not displayed, but is
logged in the history file if HIST-Y is specified.

SUBID-code specifies a 2-byte field used to further
identify the module issuing the message. If this operand
is omitted, blank is assumed. This field is not displayed,
but is logged in the history file if HIST - Y is specified.

FORMAT-YIN specifies whether or not to include the
format line if the output is from a message member. If
this operand is omitted and TYPE-3 is not specified, N
(no) is assumed. If TYPE-3 is specified, do not specify
FORMAT: FORMAT-Y (yes) is always assumed if
TYPE-3 is specified.

HALT-YIN specifies whether or not response is required
(that is, whether the operator is supposed to enter an
option number). If this operand is omitted, N (no) is
assumed.

MIC-number is a decimal number, within 0001-9999,
used to identify a speci'fic message within the message
member. If this operand is omitted, 0001 is assumed.

OPTNO-YIN specifies whether option a is allowed. If Y
(yes) is entered, option a is allowed; if N (no) is entered
or if the operand is omitted, option a is not allowed.

OPTNI-YIN specifies whether option 1 is allowed. If Y
(yes) is entered, option 1 is allowed; if N (no) is entered
or if this operand is omitted, option 1 is not allowed.

OPTN2-YIN specifies whether option 2 is allowed. If Y
(yes) is entered, option 2 is allowed; if N (no) is entered
or if this operand is omitted, option 2 is not allowed.

OPTN3-YIN specifies whether option 3 is allowed. If Y
(yes) is specified, option 3 is allowed; if N (no) is
specified or if this operand is omitted, option 3 is not
allowed. If option 3 is allowed and selected by the user,
control will not be returned to your program.

SKIP-YIN specifies whether or not to skip to line six of
the next page before printing. This operand is valid for
printed messages only. If this operand is omitted, N
(no) is assumed.

Macroinstruction Statements 6·5

SPACE-11213 specifies the number of lines to space
after printing a message. This operand is valid for
printed messages only. If this operand is omitted, 1 is
assumed.

MSGLN-number specifies the text length. The number
must be a decimal entry from 1 to 132. Anything over
75 bytes is truncated if the message is routed to a
display station or the system console. This parameter
specifies the insert data length if VARIN-Y is specified.

MSGAD-address specifies the leftmost byte of the
message buffer. This parameter specifies the insert data
address if VARIN-Y is specified.

Note: The message buffer should contain only printable
characters. For example, the buffer should not contain
8SC or SNA control characters.

WRSTE-YIN specifies whether the message is routed to
the work station or the system console. If this operand
is omitted, Y (yes) is assumed and the message is
routed to the work station. If WRSTE- N is specified,
messages are routed to the system console. If the
system console is being used as a work station and the
job is an SRT, messages are routed to that work station.

Note: The message is displayed only if CRT - Y is
specified, regardless of routing.

DRLEN-number is the length of the reply area in
decimal. This area must be either 1, 8, 60, or 120 bytes
long.

DRADD-address specifies the address of the leftmost
byte of the reply area.

HIST-YIN specifies whether or not the message is to be
recorded on the history file. If this operand is omitted,
Y (yes) is assumed.

CRT-YIN specifies whether or not the message is to be
displayed on the display screen. If this operand is
omitted, Y (yes) is assumed.

VARIN-YIN specifies a variable length data insert for
type 1 messages. The systemJog function aUows_you to
insert variable length data anywhere into the text of a
message that is retrieved from a message member.
Substitution occurs wherever the symbol # appears in
the message text. If this operand is omitted, N (no) is
assumed.

Note: The inserted data should contain only printable
characters. For example, the data string should not
contain 8SC or SNA control characters.

J

•

6-6

$LMSG Parameter Use Chart

Msg Type

Param 1 1R 2 2R 3 4 Default Values

COMID 	 R if S S R if blanks
FORMAT-Y FORMAT-Y

• 	 SUBID R if S S R if blanks
FORMAT-Y FORMAT-Y

FORMAT R 2673 E 2646 E 2646 E 2646 E 2646 R 2673 No

HALT R 2674 E 2647 E 2647 E 2647 R 2674 R 2674 No

MIC R 2657 R 2657 R 2657 R 2657 0001

OPTNO R if HALT-Y R if HALT-Y R if HALT-Y No
2650 2650 2650

OPTN1 R if HALT-Y R if HALT-Y R if HALT-Y No
If HALT - Y is specified, Y must be
2650 2650 2650specified for at least one OPTN

OPTN2 R if HALT-Y parameter. R if HALT-Y R if HALT-Y No
2650 2650 2650

OPTN3 R if HALT-Y R if HALT-Y R if HALT-Y No
2650 2650 2650

SKIP S S No

SPACE R 2675 R 2675 1

MSGLN R if R 2654 R 2654 R 2654 TYPE-1 and
VARIN-Y VARIN-Y,8;

else, 75

MSGAD R if R 2649 R 2649 R 2649 FFFF
VARIN-Y

WRSTE R 2672 R 2672 R 2672 R 2672 R 2672 R 2672 Yes

DRLEN R 2653 R 2653 8

DRADD R 2648 R 2648 FFFF

HIST S S S S S S Yes

CRT S S S S S S Yes

VARIN S No

Key to chart:

1. 	 No entry = parameter not used with corresponding message type.

2. 	 R = parameter is used with corresponding message type under noted circumstance or diagnostic MIC number
issued if not entered.

3. 	 E = parameter invalid with corresponding message type and diagnostic MIC number issued if entered.

4. 	 S = parameter used with corresponding message type and default assumed if not entered.

Macroinstruction Statements 6·7

Generate Displacements for System Log ($LOGD)

This macroinstruction generates the field labels and
offsets for the system log parameter lists. To avoid
duplicate labels, you should use this macroinstruction
only once in a program.

The format of the $LOGD macroinstruction is:

[name] $LOGD no operands

Generate the Linkage to the System Log ($LOG)

This macroinstruction generates the linkage required to
use the system log function, and checks the response
returned.

If you will need the data in register 2 later, you should
save the contents of that register before issuing $LOG.

The format of the $LOG macroinstruction is:

[name] $LOG [LIST-address] [,OPTNO-address]

[,OPTN1-address]

[,OPTN2-address]

LIST-address specifies the address of the leftmost byte
of the system log parameter list generated by the
$LMSG macroinstruction. If this operand is not
specified, the address of the parameter list is assumed
to be in register 2.

OPTNO-address specifies the address of the routine that
should receive control if option 0 is taken. If this
operand is not specified, no check is made for a
response of O. You would use this operand only if
OPTNO-Y was specified for the associated system log
parameter list.

OPTN1-address specifies the address of the routine that
should receive control if option 1 is taken. If this
operand is not specified, no check is made for a
response of 1. You would use this operand only if
OPTN1-Y was specified for the associated system log
parameter list.

OPTN2-address specifies the address of the routine that
should receive control if option 2 is taken. If this
operand is not specified, no check is made for a
response of 2. You would use this operand only if
OPTN2-Y was specified for the associated system log
parameter list.

GENERAL SSP SUPPORT

The general SSP macroinstructions provide linkage to
system functions.

Generate Parameter List and Displacements for
$FIND ($FNDP)

The $FNDP macroinstruction generates a loader
parameter list and generates the labels for the
displacements into the parameter list. This parameter
list is used as input to the supervisor by $FIND.

The format of the $FNDP macroinstruction is:

[name] $FNDP 	 [NAME-module]
[,V-DC/EQU/ALL]
[,TYPE-Q/P/R/S] [,SKIP-code]
[,LOADER-Y/N] [,LOAD-address]

NAME-module is the name of the module to be found by
$FIND macroinstruction. If this operand is omitted,
blanks are assumed.

V-DC/EQU/ALL specifies whether the parameter list,
labels, or both are to be generated. If this operand is
omitted, EQU is assumed.

DC generates a 12- or 18-byte pararl1eter list used
by the $FIND macroinstruction.

EQU generates the displacement labels for the $FIND
parameter list. If V-EQU is specified or defaulted, all
other operands are ignored.

ALL generates both the parameter list and the
corresponding displacement labels.

TYPE-O/P/R/S specifies the library member type. If
this parameter is omitted, 0 is the default.

Code Meaning

o Load member
P Procedure member
R Subroutine member
S Source member

6-8

SKIP-code specifies the type of library search to
perform.

Code Description

NO Search the designated user library,
then the system library

USER Skip the user library and search only the
system library

SYSTEM Skip the system library and search only
.. the designated user library

If this operand is omitted, NO is assumed.

LOADER-YIN specifies whether the parameter list is
used by $LOAD. If Y (yes) is specified, a 12-byte
parameter list is generated for use by $LOAD. If N (no)
is specified, an 18-byte parameter list is generated that
cannot be used by $LOAD. If this operand is omitted, N
(no) is assumed. LOADER-Y can only be specified with
TYPE-O.

Note: When the module is not found: If LOADER-Y is
specified in the $FNDP macroinstruction, a cancel-only
halt is issued and control is not returned to your
program. If LOADER-N is specified in the $FNDP
macroinstruction, control is returned to your program for
determination of appropriate action.

LOAD-address specifies the address where the module is
to be loaded in main storage. This address must be on
an 8-byte boundary, due to the I/O buffer boundary
restrictions. This operand is processed only if
LOADER-Y is specified.

Find a Directory Entry ($FIND)

You can use the $FIND macroinstruction to locate library
members that you want to load for use by your
program.

The $FIND macroinstruction searches the library
directory for the requested module name; if it locates
the module name it returns the directory entry data in
the parameter list.

$FIND requires the parameter list generated by the
$FNDP macroinstruction. $FNDP is described in a
preceding paragraph.

You can include more than one $FIND macroinstruction
in a program. However, after you issue the first $FIND,
you must continue to restore relevant fields in the
parameter list generated by $FNDP before you issue
successive $FINDs. You can restore fields in the
parameter list by moving new values to the fields.

Note: When a module is not found by $FIND: If
LOADER-Y is specified in the $FNDP macroinstruction,
a cancel-only halt is issued and control is not returned
to your program. If LOADER-N is specified in the
$FNDP macroinstruction, control is returned to your
program for determination of appropriate action.

If you will need the data in register 2 later, you should
save the contents of that register before issuing $FIND.

The format of the $FIND macroinstruction is:

[name] $FIND [PLIST-address]

PLIST-address specifies the address of the leftmost byte
of the 12- or 18-byte parameter list built by $FN DP.
After execution, the parameter list contains the directory
entry of the module. If this operand is not specified, the
address of the parameter list is assumed to be in index
register 2.

Macroinstruction Stataments 6-9

Load or Fetch a Module ($LOAD)

The $LOAD macroinstruction generates the linkage to
load a module into main storage at the address you
specify. The address is specified in thp. $FNDP or
$LOAD macroinstruction using the LOAD keyword.
LOADER-Y should be specified in the $FNDP
macroinstruction so that the parameter list output from
$FNDP will be a $LOAD parameter list. You may have
control returned after the module is loaded, or you may
pass control to the module. If you will need the data in
register 2 later, you should save the contents of register
2 before issuing $LOAD.

The format of the $LOAD macroinstruction is:

[name] $LOAD 	[PLIST-address] [,TYPE-code]
[, LOAD-address]

PLiST -address specifies the address of the leftmost byte
of the parameter list built by $FNDP, which identifies
the directory entry of the module in main storage. If
this operand is omitted, the address is assumed to be in
register 2.

TYPE-code specifies the type of load to perform. If this
operand is omitted, LOAD is assumed.

LOAD loads the module at the specified LOAD
address and returns control.

FETCH loads the module at the specified LOAD
address and passes control to the module.

LOAD-address specifies the address where the module is
to be loaded in main storage. The address must be on
an 8-byte boundary. Use this parameter only if the load
address is to be filled in or changed. If the PLIST
parameter in this macroinstruction uses index register 2,
then the LOAD parameter must also use index register
2.

Snap Dump of Main Storage ($SNAP)

This macroinstruction provides an interface with the
nonterminating system storage dump routine. You must
specify the regioR-or the limits ot the area to be
dumped. The contents of the specified main storage
area are printed on the SYSLIST device. Output from
the dump routine consists of:

• 	 The specified dump identifier

• 	 The contents of register 1 (XR1), register 2 (XR2), the
instruction address register (lAR), and the address
recall register (ARR)

• 	 The contents of the specified main storage area

Control is returned to the next sequential instruction in
your program.

The format of the $SNAP macroinstruction is:

[name] $SNAP 	[REGION-Y/Ii] CLOW-address]
[,HIGH-address] [,ID-char]
[,PLIST-2/address/ I N LI NE]
[,V-DC/EQU/ALL]

REG/ON-YIN specifies whether the entire region should
be dumped and whether the HIGH and LOW parameters
should be ignored. If Y (yes) is specified, the entire
region is dumped. If N (no) is specified, the area
specified by the HIGH and LOW parameters is dumped.
If this operand is omitted, N is assumed'.

LOW-address specifies the address of the low limit of
the storage area to be dumped. The low limit must be
lower than the high limit and within the allocated
storage area. If this operand is omitted, address X'FFFF'
is assumed'.

HIGH-address specifies the address of the high limit of
the storage area to be dumped. If the high limit is not
within the allocated storage area, only that storage that
is within allocated storage is dumped, and an error
message is displayed. If this operand is omitted,
address X'OOOO' is assumed'.

ID-char specifies any 4 characters, which are used as a
dump identifier. If this operand is omitted, blanks are
assumed.

'If you allow REGION, LOW, and HIGH to default, you will
not get a dump (the low address is higher than the high
address).

6-10

PLiST-2/address/INLINE specifies the address of the
$SNAP parameter list. If this operand is omitted, 2 is
assumed.

Parameter Meaning

2 The address is in register 2.

address Specifies the address of th~
leftmost byte of the parameter list.

INLINE The parameter list is generated
inline.

Note: The PLiST and V keywords are mutually exclusive.
Normally, unless PLiST-INLlNE is specified, you use
one $SNAP macroinstruction to generate a parameter
list (V-DC)' and one Or more additional $SNAP
macroinstructions to dump portions of your program
(PLlST-2 or PLIST address).

V-DC/EQU/ALL specifies whether the parameter list
labels, DCs, or both, are generated. If this operand is
omitted, neither is generated. Do not specify V if you
specified PLIST.

Parameter 	 Meaning

DC 	 $SNAP initializes the storage
area for the parameter list.

EQU 	 $SNAP generates labels; all other
$SNAP operands are ignored.

ALL 	 $SNAP initializes the storage
area for the parameter list
and generates labels.

Information Retrieval (,INFO)

$INFO allows access to system information contained in
the system communications area or work station local
data area which cannot be accessed directly. The
macroinstruction performs three separate and distinct
functions:

• 	 Generates labels and displacement values for the
SVC and the parameter list

• 	 Generates an SVC to retrieve or change specific
system information based on the values supplied for
$INFO parameters

• 	 Generates a parameter list for the function based on
the parameter values supplied for $INFO parameters.

The $INFO macroinstruction must be expanded at least
three times to retrieve system information. The first
expansion generates the labels supplied in the
macroinstruction. This expansion should be placed in
the area of your code where you are defining other
labels.

To generate the labels, the format is:

no label $INFO no operands

The second expansion of the macroinstruction generates
the SVC to retrieve or change specific system
information. This expansion is placed within your
executable code where you want to perform the request.

To generate the SVC, the format is:

[name] $INFO PLiST-2/address

PLiST-2/address specifies the address of the leftmost
byte of the parameter list. 2 indicates the address is in
XR2. The PLIST parameter must be given. If this
parameter is omitted, labels are generated again instead
of the SVC.

Macroinstruction Statements 6·11

The third expansion of the macroinstruction generates
the parameter list, which defines the function desired.

To generate the parameter list, the format is:

[name] $INFO 	 [GET-code] [,PUT-code]
[, BUFFER-address] [, 10-name]
[,LEN-number] [,OFFSET-number]

GET-code specifies the value to be retrieved from the
system and placed in the buffer supplied by the user. If
this operand is omitted, UPSI is assumed. A description
of each GET function-the number of bytes returned in
the buffer and the contents of those bytes-follows:

DATEFRMT returns 1 byte containing the program
date format. The character 0 indicates
day-month-year format; M indicates month-day-year
format; Y indicates year-month-day format.

PROGDATE returns 3 bytes containing the program
date field. This is a six-digit date in year-month-day
format.

SDATE returns 3 bytes containing the session date
field. This is a six-digit date in year-month-day
format.

UPSI returns 1 byte containing the UPSI switch value.

INQUIRY returns 1 byte containing the inquiry switch
value. The character Y indicates an inquiry request is
pending; N indicates an inquiry request is not
pending.

LOCAL returns 1 to 256 bytes of the work station
local aaIa area as specified by the LEN and OFFSET
operands.

NEP returns 1 byte containing the program attribute
byte. The character Y indicates the program is a
never-ending program; N indicates the program is
not a never-ending program.

MRTMAX returns 1 byte containing the hexadecimal
value for the maximum number of requesters allowed.

LINES returns 1 byte containing the hexadecimal
value for the number of lines per page.

DATEUNPK returns 6 bytes containing the unpacked
program date field in the format defined in the date
format field.

PUT-code specifies that the value in the user's buffer is
used to update the system communications area or the
work station local data area. A description of each PUT
function-the number of bytes updated and the contents
of those bytes-follows:

UPSI updates the 1-byte UPSI switch with the value
in the user's buffer.

PROGI updates the a-byte program 1 message
member disk address with the value in the ,user's
buffer. The first 3 bytes contain the sector address
of the message member; the next 3 bytes are
unused; the remaining 2 bytes contain the main
storage address of the format 1 for the library in
which the message member is located.

PROG2 updates the a-byte program 2 message
member disk address with the value in the user's
buffer. The first 3 bytes contain the sector address
of the message member; the next 3 bytes are
unused; the remaining 2 bytes contain the main
storage address of the format 1 for the library in
which the message member is located.

USERI updates the a-byte user 1 message member
disk address with the value in the user's buffer. The
first 3 bytes contain the sector address of the
message member; the next 3 bytes are unused; the
remaining 2 bytes contain the main storage address
of the format 1 for the library in which the message
member is located.

LOCAL updates 1 to 256 bytes of the work station
local data area as specified by the LEN and OFFSET
parameters.

BUFFER-address specifies the address of the leftmost
byte of the user's buffer where the data is placed for a
GET operation or acquired for a PUT operation. If this
operand is omitted, address X'FFFF is assumed.

ID-name specifies the 2-byte logical 10 of the terminal
used in selecting the job control block. If this operand is
omitted, the job control block for the active task is used.

LEN-number specifies a decimal value from 1 to 256,
which is used as the length of this local request. Data is
counted starting from the offset value specified. If this
operand is omitted, 1 is assumed.

OFFSET-number specifies a value from 1 to 256 which
is used as the offset for this local request. If this
operand is omitted, 1 is assumed.

J

6-12

Generate a Checkpoint Parameter List ($CKEQ)

This macroinstruction generates a parameter list to be
used by the $CKPT macroinstruction. $CKPT, which is
described in a following paragraph, requests the SSP
checkpoint facility to establish a checkpoint in a
program. The SSP checkpoint facility records system
status and job information at each established
checkpoint so that, in the event of a system
malfunction, you can restart your program at a
checkpoint rather than having to run the entire program
again from the beginning.

For a description of considerations and restrictions
regarding the SSP checkpoint facility, and for a
description of the associated restart facility, see the
Concepts and Design Guide.

Only one $CKEQ macroinstruction is required in each
program that contains one or more $CKPT
macroinstructions. The format of the $CKEQ
macroinstruction is:

[name] $CKEQ 	 [V-DC/EQU/ALL]
[,LABEL-filelabel]
[,IMSG-FIRST / ALL]

V-DCjEQUjALL specifies whether the parameter list,
labels, or both are to be generated for the checkpoint
facility. If this operand is omitted, EQU is assumed.

Parameter Meaning

DC Generates the checkpoint
parameter list used by the
$CKPT macroinstruction.

EQU Generates the displacement labels
for the checkpoint parameter list.
If V-EQU is specified or assumed,
all other operands for $CKEQ
are ignored.

ALL Generates both the checkpoint
parameter list and the
corresponding displacement labels.

LABEL-file/abel specifies the label of the file that is to
contain the checkpoint records. Checkpoint records
contain the information recorded at a checkpoint. Do
not use a / / FILE statement to define a file for
checkpoint records: the file is created dynamically by
the checkpoint facility. This operand is required if V-DC
or V-ALL is specified.

IMSG-FIRSTj ALL specifies whether the checkpoint
informational message is to be displayed on the work
station display screen only after the first checkpoint is
recorded (lMSG-FIRST) or is to be displayed after each
checkpoint is recorded (lMSG-ALL). If this operand is
omitted, ALL is assumed.

Establish a Checkpoint ($CKPT)

The $CKPT macroinstruction establishes a program
checkpoint. Before you issue a $CKPT macroinstruction,
you must generate a checkpoint parameter list by
issuing the $CKEQ macroinstruction. $CKEQ is
described in preceding paragraphs. The $CKPT
macroinstruction can be used more than once in a
program. However, because only one checkpoint record
file is created for a program, the $CKEQ
macroinstruction need be issued only once regardless of
the number of $CKPTs issued in a program.

For a description of considerations and restrictions
regarding the SSP checkpoint facility, see the Concepts
and Design Guide.

If you will need the data in register 2 later, you should
save the contents of register 2 before you issue $CKPT.

The format of the $CKPT macroinstruction is:

[name] $CKPT 	 [PLIST -address]

PLiST-address specifies the address of the leftmost byte
of the checkpoint parameter list that is generated by the
$CKEQ macroinstruction. If this operand is omitted, the
address is assumed to be in register 2.

Macroinstruction Statements 6·13

Note: Each time you issue $CKPT to establish a Value Meaning
checkpoint, you should check the return code provided

$CKCCNOP 	 No checkpoint record was saved. in the checkpoint parameter list. Check the return code
This return code can be set only to determine whether or not the system and job
when the first checkpoint is information was recorded successfully or the program
requested. If this code is set, one orwas restarted successfully. The return code is at
more of the following may have displacement $CKCCODE in the checkpoint parameter
occurred:list. Possible values and their meanings ~

Value Meaning • 	 The checkpoint facility detected a

condition in which checkpoints

$CKCCPNT 	 Normal checkpoint completion cannot be saved (for example,
DISP·SHR specified on a /I FILE

$CKCCERR 	 Disk I/O error. If a disk I/O error statement).

occurs, retry the checkpoint request,

bypass the request. or issue an error
 • An explanatory system log device
message. If a disk I/O error occurs message was displayed.
while a checkpoint record is being

written to the checkpoint file,

• The operator responded with thealternate requests may be successful
ooption, indicating that the job because two checkpoint records are
should be run without savingmaintained in the checkpoint file.
checkpoints.

$CKCCIOP 	 Invalid request. An invalid parameter

exists in the parameter list generated

by $CKEQ.

J$CKCCRES 	 Normal restart completion. For a
description of the restart facility, see

the Concepts and Design Guide.

Note: After successful completion of

a program restart, the restart facility

returns control to the first instruction

that follows the last $CKPT executed

in the program. Any recovery

operations required after a restart,

such as restoration of work station

displays, should be included in your

program so that they are performed

upon return from a restart.

6·14

Inverse Data Move ($INV)

This macroinstruction generates the code that allows
you to do an inverse move on desired data. That is, the
bytes of data at the TO address are in the opposite
order they were in when at the FROM address.

The format of the $INV macroinstruction is:

[name] $INV FROM-address,TO-address

LEN-number

FROM-address specifies the rightmost byte of the field
where the data is located. This operand can be either a
symbolic address or a register displacement address.

TO-address specifies the leftmost byte of the field
where the data is to be moved. This operand can be
either a symbolic address or a register displacement
address.

LEN-number specifies the decimal length (in bytes) of
the field to be moved.

Note: If the FROM and TO fields overlap, data will be
lost.

End of Job ($EOJ)

The $EOJ macroinstruction generates the linkage
required to execute the end-of-job routine.

The format of the $EOJ macroinstruction is:

[name] $EOJ no operands

Macroinstructure Statements 6-15

Input/Output Macroinstructions

The input/output support macroinstructions provide
access to devices without requiring that you write
extensive routines to perform each function. The
input/output support macroinstructions are divided into
seven groups:

1. 	 General I/O macroinstructions, which are used
with all device types:

$ALOC

$OPEN

$CLOS

$DTFO

2. 	 Printer macroinstructions, which support printer
devices:

$DTFP

$PUTP

3. 	 Disk macroinstructions, which provide support for
and linkage to disk data management:

$DTFD

$GETD

$PUTD

4. 	 Disk sort macroinstructions, which provide an
interface to the sort utility (part of the Utilities
Program Product, number 5726-UT1) or to the
ideographic sort utility (part of the Ideographic
Generator/Sort Utilities Program Product. number
5726-IG1):

$SRT

$SORT

5. 	 Timer macroinstructions, which provide support for
and linkage to the interval timer function:

$TRB

$SIT

$RIT

$TOD

6. 	 Display station macroinstructions, which support
work station devices:

$DTFW

$WSIO

$WIND

$WSEQ

7. 	 Data communications macroinstructions that
support BSC programs. For information about the
data communications macroinstructions, see the
Data Communications Reference Manual.

8. 	 Communications macroinstruction support for the
interactive communications feature. For
information about the support, see the Interactive
Communications Feature Reference Manual.

9. 	 Scientific macroinstructions, which provide access
to the scientific instruction set. For information
about the scientific macroinstructions, see the
Scientific Macroinstructions Reference Manual.

J

6-16

GENERAL I/O SUPPORT

The general I/O support macroinstructions are used
with all devices. $DTFO is used to generate DTF labels,
offsets, and fields for each device. The normal
execution sequence for the other general I/O support
macroinstructions is:

1. 	 $AlOC to allocate the file or device to your
program

2. 	 $OPEN to prepare the file or device for use

3. 	 I/O operations and any processing required

4. 	 $ClOS to prepare the file or device for job
termination

Allocate Space or Device ($ALOC)

The routines called by the $AlOC macroinstruction
allocate all input/output devices and files. These
routines check to ensure that:

• 	 The DTF is not open

• 	 The system supports the requested devic",

• 	 The device requested is either not being used or
capable of multiple allocation

• 	 Space is available for a new file

• 	 A FilE statement is given for each disk file

These routines also:

• 	 Match the DTF with the COMM or PRINTER
statements given.

• 	 load the data management task for data

communications DTFs.

• 	 Format files allocated with an output access method.
Delete-capable direct files are filled with X' FF'; other
direct files are filled with blanks; index areas are filled
with X' FF'; and data areas of nondirect P or T files
are filled with X'OO'.

• 	 Sort indexed files requiring keysort unless they are
shared or allocated with an access method other than
an indexed sequential method.

An allocate request requires that preopen UTFs be
supplied as input to the routine. When the allocate
request is for a disk, an OCl FilE statement is also
required. More than one DTF can be allocated at one
time by chaining the DTFs. To chain DTFs, you must
enter the address of the next DTF in the DTF you are
building. The last DTF in a chain must have X'FFFF'
entered in place of the chain address. For a description
of the disk, printer, and display station DTFs, see
$DTFD, $DTFP, and $DTFW, respectively.

Note that if you will need the data in register 2 later,
you should save the contents of that register before
issuing $AlOC.

The following output is returned to your program:

• 	 The DTF is prepared as required by $OPEN.

• 	 The contents of register 1 are restored.

• 	 Bit 5 (the sixth bit) of the third attribute byte of the
DTF is set on to indicate device allocation.

• 	 The address of the first DTF allocated is returned in
register 2.

The format of the $AlOC macroinstruction is:

[name] $AlOC [DTF-address]

DTF-address specifies the address of the leftmost byte
of the first DTF being allocated. If this operand is not
entered, the address is assumed to be in register 2.

Macroinstructure Statements 6-17

Prepare a Device or File for Access ($OPEN)

This macroinstruction prepares a file for data transfer.
Use the allocate macroinstruction before preparing
(opening) the file. Depending on the device, one or
more of the following functions are performed for each
file opened:

• 	 The DTF is formatted.

• 	 Input/output buffers, index buffers, and lOBs are
formatted.

• 	 Buffers are initialized as required.

• 	 Diagnostic tests are performed to ensure that the
access method and the file organization are
compatible.

Note: A DTF must be closed before it is moved or
overlaid; otherwise, unpredictable results via $CLOS will
occur. More than one DTF can be opened at one time
by chaining the DTFs. To chain DTFs, you must enter
the address of the next DTF in the DTF you are building.
The last DTF in a chain must have X' FFFF entered in
place of the chain address. See $DTFD, $DTFP, and
$DTFW.

Input: The preopen DTF and format-1 label are input to
the open routine. Before issuing $OPEN, you must be
sure to allocate the device by issuing the $ALOC
macroinstruction. Also, if you will need the data in
register 2 later, you should save the contents of that
register before issuing $OPEN. You must also consider
the following when opening a file:

• 	 The record length, key length, and key displacement
must be specified correctly.

• 	 For a disk file, the disk access method must be
compatible with the organization of the file being
opened.

• 	 For a disk file that is also opened by another program
level or by an inquiry program, the access methods
must be compatible with each other.

Output: The open routine returns control to your
program after the requested file is opened. The output

consists of:

• 	 The restored contents of register 1

• 	 The updated format-1 labels

I . Bit 7 (X '01') in the second attribute byte in the DTF
(set on to indicate the file is open)

• 	 The initialized buffers

• The address of the first DTF opened (in register 2)

The format of the $OPEN macroinstruction is:

[name] $OPEN [DTF-address]

DTF-address specifies the address of the leftmost byte

of the first DTF to be opened. If this operand is not

entered, the address is assumed to be in register 2.

J

6-18

..

Prepare a Device or File for Termination ($CLOS)

The $CLOS macroinstruction prepares a device for job
termination. $CLOS updates file labels to reflect the
current file status. For devices other than disk, only the
entries related to the requested functions are restored.
If you will need the data in register 2 later, you should
save the contents of that register before issuing $CLOS.

Input to $CLOS consists of the opened DTF.and the
format-1 labels created by the allocate function.

Output from $CLOS is returned to your program when
control is returned. The output consists of:

• 	 The restored contents of register 1

• 	 The format-1 label for the disk file (updated to
indicate current file status)

• 	 The buffer contents scheduled for disk output and
disk update operations (written to disk)

• 	 The data and index (written to disk), and an indicator
showing whether key sorting is required at
end-of-job for output files and file additions

Notes:
1. 	 If a device or file is to be reused after it is closed,

both allocate and open must be issued before I 10
operations can be processed.

2. 	 More than one DTF can be closed at one time by
chaining the DTFs. To chain DTFs, each DTF to be
closed must contain the address of the next DTF in
the chain. The last DTF in a chain has X'FFFF
entered in place of the address. See $DTFD, $DTFP,
and $DTFW.

The format of the $CLOS macroinstruction is:

[name] $CLOS 	 [DTF-address]

DTF-address specifies the address of the leftmost byte
of the first DTF to be closed. If this operand is not
entered, the address is assumed to be in register 2.

Generate DTF Offsets ($DTFO)

This macroinstruction defines the DTF labels, offsets,
field contents, and field lengths for all devices and
access methods supported by System/34. To avoid
duplicate labels, this macroinstruction should be used
only once in each program. For a list of the fields that
$DTFO defines, see the DTFs in the System Data Areas
and Diagnostic Aids Handbook .

The format of the $DTFO macroinstruction is:

[name] $DTFO 	 [DISK-Y/~] [,PRT-Y/N]

[,SSC-Y/N] [,WS-Y/N]

[,SNA-Y/!:!] [,ICRTC-Y/N]

[,ALL-Y IN] [,FIELD-Y IN]

DISK-YIN specifies whether labels are to be generated
for the disk devices. If this operand is omitted, N (no) is
assumed.

PRT-YIN specifies whether labels are to be generated
for the printer. If this operand is omitted, N (no) is
assumed.

BSC-YIN specifies whether labels are to be generated
for SSC. If this operand is omitted, N (no) is assumed.

WS-YIN specifies whether labels are to be generated
for work station devices. If this operand is omitted, N
(no) is assumed.

SNA-YIN specifies whether labels are to be generated
for SNA. If this operand is omitted, N (no) is assumed.

ICRTC-YIN specifies whether labels are to be generated
for SSP-ICF (interactive communications feature) return
codes. If this operand is omitted, N (no) is assumed.

ALL-YIN specifies whether labels are to be generated
for all devices supported. If this operand is omitted, N
(no) is assumed.

FIELD-YIN specifies whether to generate the labels
which define the contents of the DTF fields. If this
operand is omitted, N (no) is assumed.

Macroinstructure Statements 6-19

PRINTER SUPPORT

This section describes the macroinstructions that
support the printers. The following functions are
provided:

• 	 $DTFP builds a preopen DTF for a printer and
assigns its offsets. The DTF provides information to
printer data management routines that perform output
operations.

• 	 $PUTP builds the interface needed to print data.

Define the File for a Printer ($DTFP)

The DTF provides information needed to allocate, open,
and access a printer. This macroinstruction generates
the code that builds the printer DTF.

The format of the $DTFP macroinstruction is:

[name] $DTFP 	 RCAD-address,IOAREA-address,
NAM E-filename [,OVFL -number]
[,PAGE-number] [,UPSI-mask]
[,HUC-Y lli] [,CHAIN-address]
[,PRINT-Y IN] [,SKIPS-number]
[,SPACES-0/1/2/3]
[,SKIPA-number]
[,SPACEA-,Q/1 /2/3]
[,RECl-number] [.AlIGN-Y/~]

[,ERROR-,Y/N] [,RETURN-YIN]

RCAD-address is a required operand that specifies the
address of the leftmost byte of the logical record. The
area must be on an a-byte boundary.

IOAREA-address is a required operand that specifies the
address of the leftmost byte of an area in main storage
allocated to contain the buffers. The length of this area
must be equal to record length (RECl) plus 19.

NAME-filename specifies the name of the print file. This
name must be the same as the name specified on the
PRINTER OCl statement. This operand is required.

OVFL-number specifies the line on the printer after
which the overflow completion code will be returned. If
this operand is omitted, it defaults to six lines less than
the number specified for the PAGE operand.

PAGE-number specifies the number of lines to print per
page. If this operand is omitted, it defaults to the
system value for the number of lines per page.

UPS/-mask specifies the settings of the external (/ /
SWITCH statement) indicators used for conditionally
opening files. The code must be specified as a bits. For
example, to set on bits 0, 3, 5, and 7, you would enter
U PSI-1 001 01 01. When the mask bits that are set to
one are also set in the switch, the file is opened. If the
DTF is not opened and operations are issued for this
DTF, the operations are not performed and you receive
a return code of hex'99'.

If this operand is omitted, zeros are assumed.

HUC-Y/N specifies whether to halt if an unprintable
character is detected. If N (no) is specified or if this
operand is omitted, no halt occurs.

CHAIN-address indicates the address of the next DTF in
the chain of DTFs. If there is no DTF chain or if this is
the last DTF in a chain, this operand should be omitted
(X'FFFF is then assumed).

PRINT-YIN specifies whether to perform both a print
and a skip or space, or only a skip or space. The
default is Y (yes), meaning that a print is performed.

SKIPB-number specifies the line to skip to before the
print operation. If this operand is omitted, it defaults to
zero, and no skip is performed. J
SPACEB-O/l/2/3 specifies the number of lines to
space before the print operation. If this operand is not
entered or exceeds 3, the default value is zero.

SKIPA-number specifies the line to be skipped to after
the print operation. The maximum allowed is 255. If
this operand is omitted, it defaults to zero, and no skip
is performed.

SPACEA-O/112/3 specifies the number of lines to
space after the print operation. If this operand is
omitted or exceeds 3, it defaults to zero.

Note: If the SKIP or SPACE values exceed the value
specified for PAGE, no operation is performed.

RECL-number specifies the length of the line to be
printed. If this operand is omitted, the default is 132
positions.

6-20

ALIGN-YIN specifies whether alignment is requested on
the first page. If Y (yes) is specified, a halt is issued to
the operator after the first data line is printed, allowing
the operator to check alignment. If this operand is
omitted, N is assumed.

Note: This parameter may be overridden by the ALIGN
parameter on the PRINTER OCl statement.

ERROR-YIN specifies whether an error message should
be issued for a permanent error. If N (no) is specified,
control is returned to the user program with the
completion code set. If this operand is omitted, Y is
assumed.

Note: NOT READY conditions on the printer (that is,
forms jam, out of forms) are not considered permanent
errors.

RETURN-YIN specifies the options available to the
operator after a permanent I/O error message is issued.
If Y (yes) is specified, the operator is allowed to take
either a 2 option or a 3 option. If the 2 option is taken,
control is returned to the user program with the
completion code set. If Y (yes) is specified,
permanent-error console messages are printed on the
system printer. If N (no) is specified, the user is allowed
a 3 option only. If this operand is omitted, N is
assumed.

Construct a Printer Put Interface ($PUTP)

This macroinstruction generates the interface needed to
communicate with printer data management. Before
using $PUTP you must provide a DTF for the file (see
$DTFP).

If you will need the data in register 2 later, you should
save the contents of that register before issuing $PUTP.

The code generated by this macroinstruction gives
control to the data management routine. The routine
completes execution and returns control to the
generated code. If the ERR operand is specified, the
generated code checks the completion code for errors
and branches to your error routine if errors occurred.

If the OVFl operand is specified, the generated code
checks for page overflow and branches to your overflow
routine if overflow occurred.

The format of the $PUTP macroinstruction is:

[name] $PUTP 	 [DTF-address] [,PRINT-Y/N]
[.SKIPB-number]
[.SPACEB-O/1/2/3]
[,SKIPA-number]
[,SPACEA-O/1/2/3]
[,ERR-address] [.OVFl-address]

OTF-address specifies the address of the leftmost byte
of the DTF for this file. If this operand is omitted, the
address is assumed to be in register 2.

PRINT-YIN specifies whether to perform both a print
and a skip or space, or only a skip or space. If this
operand is omitted, the DTF remains unchanged.

SKIPS-number specifies the line to skip to before the
print operation. The maximum is 255. If this operand is
omitted, the DTF remains unchanged.

SPACES-OI11213 specifies the number of lines to
space before the print operation. If this operand is
omitted, the DTF remains unchanged.

SKIPA-number specifies the line to be skipped to after
the print operation. The maximum is 255. If this
operand is omitted, the DTF remains unchanged.

SPACEA-OI11213 specifies the number of lines to
space after the print operation. If this operand is
omitted, the DTF remains unchanged.

Note: If the SKIP or SPACE values exceed the value
specified for PAGE, no operation is performed.

ERR-address supplies the address in your program that
receives control if the controlled cancel option is taken
in response to a permanent I/O error. If this operand is
omitted, no code is generated to check for the
controlled-cancel completion code, and you should
check the return code in your program to determine the
outcome of the operation.

OVFL-address specifies the address in your program that
should receive control if page overflow occurs.

Note: If a PRINT, SKIPB, SPACEB, SKIPA, or SPACEA,
operand is specified, the DTF is changed. The DTF is
not reset after the operation is complete; the user must
reset the DTF if this is required.

Macroinstructure Statements 6-21

L

DISK DEVICE SUPPORT

This section describes the macroinstructions that
support disk devices. The following functions are
provided:

• 	 $DTFD builds a preopen DTF for disk GET IPUT
operations.

• 	 $GETD builds the interfaces required to get input
records from a disk device via a GET or a read.

• 	 $PUTD builds the interfaces required to put output
records to a disk device via a PUT or a write.

Define the File for Disk ($DTFD)

This macroinstruction generates the code that builds the
disk DTF. The disk DTF provides information needed to
allocate, open, and access a file on the disk.

The format of the $DTFD macroinstruction is:

[name] $C-Tf-D 	 ACCfSS-"Code,RECL-number
,NAME-filename,BLKL-number,
IOAREA-address [,UPSI-mask]
[,BUFNO-112] [,LIMIT-YIN]
[,ORDLD-Y l!i] [,CHAIN-address]
[,RCAD-address] [,KEYL-number]
[,KDISP-number]
[, KEYADD-address]
[,MSTNDX-address]
[,MSTBYT-number]
[,CURENT-address]
[,HIGH-address]
[,DMADDR-address]
[,SIAM-Y IN] [,IOBUF-address]
[,ERROR-Y IN] [,RETURN-Y IN]

J

..

6-22

ACCESS-code specifies the access method used for the
file. This operand is required. The codes and their
meanings are as follows:

Code Access Method

CA Consecutive add
CG Consecutive input
CO Consecutive output
CU Consecutive update
DG Direct input (decimal RRN)
DO Direct output (decimal RRN)
DU Direct update (decimal RRN)
DGA Direct input addrout (binary RRN)
DOA Direct output addrout (binary RRN)
DUA Direct update addrout (binary RRN)
IA Indexed random add
10 Indexed output
IS Indexed sequential input
ISA Indexed sequential add with

input capable

Code

ISU
ISUA
IR
IRA

IRU
IRUA
ISRI
DUMMY

ZPAMA
ZPAMI
ZPAMO

Access Method

Indexed sequential update
Indexed sequential update and add
Indexed random input
Indexed random add with input
capable
Indexed random update
Indexed random update and add
Indexed sequential random input1

Dummy open to obtain information
about a file
Sector mode data management add
Sector mode data management input
Sector mode data management output

IThe ISRI (indexed sequential/random input) access method is similar to random-by·key aceels into an indexed file. A key, which you
specify, is retrieved along with the corresponding data record. At this point, you can choose to do one of the following:
a. 	 Request that the next key be read (OP·FGETI.
b. Request that the previous key be read (OP·BGETl.
c. Provide a new key and request another random read (OP·NGETl.
d. 	Provide a new key and specify reading of the equal key, the next higher key, or the last key, whichever is encountered first

(OP·AGETI. ISRI then looks for a key (and its corresponding record) that equals the key you provide. If an'equal key Is not
found, ISRI returns the next higher key (and recordl. If neither an equal nor a higher key is found end you are not accessing
a delete-capable file, ISRI returns the last record in the primary portion of the file. The primary portion is the part of the file
that reflects the ordered keys in the index. If you ere accessing a delete-capable file, the last record In the primary portion may
be a deleted record. In this case, ISRI returns the frlCord not found completion code. You can specify OP·BGET in response to the
record not found completion code. OP·BGET causes ISRI to read backward through the file, skipping deleted records until a valid
key is found.

Only index entries in the primary index area can be accessed through ISRI, and only input operations are supported by ISRI. Master
track index is not supported by ISRI.

The ZPAM access methods (ZPAMA. ZPAMI. ZPAMO)
are used to process disk sectors of data rather than
records. ZPAM provides an easy way of moving large
amounts of data rapidly.

When you use ZPAM, the following operands are
required on $DTFD: ACCESS, RECl, NAME, BlKl,
10AREA. DMADDR, and 10BUF.

If you cannot process all of your data with one call to
data management ($PUTD), you must use multiple calls.
Each $PUTD requires an associated, unique $DTFD.
Data management writes one or more disk sectors to
main storage depending on the block length (BlKL) you
specify. BlKl can vary for each call; however, on all
calls except the last one, BlKl must be a multiple of
256 bytes. On the last call, if the number of bytes of
data to be passed is less than a multiple of 256 bytes,
you must place the exact number of bytes of data to be
passed in BlKL. After the last $PUTD, you must issue
$ClOS because the last $PUTD does not close the file.

Remember the following when using ZPAM:

• 	 The disk sectors are processed consecutively.

• 	 Input, output, and add functions are supported.

• 	 Only sequential files can be processed.

• 	 The amount of main storage required for 10AREA in
$DTFD is 32 bytes.

Macroinstructure Statements 6-23

RECL-number specifies the decimal length of the logical
record. The maximum length is 4096. This operand
must be specified.

NAME-fflenarne specifies the name of the file. The name
must be no more than a characters in length, and must
be the same as that specified on the FilE OCl
statement. This operand must be specified.

BLKL-number specifies the decimal length, in bytes, of
the I/O buffer. This operand must be specified.

In general, the length specified must be a multiple of
256 bytes. In particular, for input operations (which are
always in locate mode) and the DO and DOA access
methods (which involve internal input operations), the
following rules apply:

• 	 If the record length is a power of 2, then BlKl must
be at least (RECl + 255) rounded down to the next
multiple of 256.

• 	 If the record length is not a power of 2, then BlKl
must be at least (RECl + 255) rounded up to the
next multiple of 256.

IOAREA-address specifies the address of the leftmost
byte of an area in main storage allocated to contain all
buffers and lOBs for the access method. The area must
be on an a-byte boundary. This operand must be
specified.

Disk open divides the I/O area Into the required disk
input/output blocks (lOBs) and physical buffer areas. If
the access to the file is indexed, two lOBs are built;
otherwise, one is built. If SIAM - Y is specified, or if a
ZPAM access method is used, the address of the
physical buffers is provided by the 10BUF parameter.

In the event of very limited user main storage in relation
to the size requirements of the physical buffers for disk,
it may be advantageous to use the SIAM method to
allocate buffers. Through SIAM, the same storage area
may be used for a physical buffer for any or all disk files
accessed by a program. Data management will then use
this area as a physical buffer for every file specified as
SIAM. Care should be taken, however, in the use of
SIAM since many more I/O operations are likely to
occur when SIAM is specified for access to a file. This
may hinder the performance of the job.

The amount of main storage required for 10AREA is
shown in the following chart:

Sequential and Direct Files

(BlKl * BUFNO) + 39

Indexed Files

BlKl + 335

Sequential and Direct Files (SIAM)

32

Indexed Files (SIAM)

64

Sequential Files (ZPAM)

32

UPSI-mask specifies the settings of the external (/ /
SWITCH statement) indicators used for conditionally
opening files. The code must be specified as a bits. For
example, to test bits 0, 3, 5, and 7, you would enter
UPSI-l00l0l01. When the corresponding bits are on in
the switch, the file is opened. If the file is not opened
and operations are issued for this DTF, the operations
are not performed and you receive a return code of hex
99. If this operand is omitted, zeros are assumed.

BUFNO-112 allows you to specify either a single or
double buffer for the file. You can use a double buffer
only with the consecutive access methods. If this
operand is omitted, a single buffer is assumed.

LlMIT-YIN is used only for indexed sequential get and
indexed sequential update. It specifies whether the
sequential access is within limits. If this operand is
omitted, N (no) is assumed.

ORDLD-YIN specifies whether an ordered load is to be
used with the indexed output access method. Use this
operand only with the indexed output access method. If
this operand is omitted, N (no) is assumed.

CHAIN-address specifies the address of the next DTF in
the chain of DTFs. If there is no DTF chain or if this is
the last DTF in the chain, this operand should be
omitted (X' FFFF is then assumed).

6-24

L

.

ReAD-address specifies the address of the leftmost byte
of the logical record. When a record is to be written to
disk (through output, add, or update), you must provide
a logical buffer that contains that record. This allows
data management to move the data from the logical
buffer to the physical buffer. This type of processing is
known as move mode. All put operations are move
mode. Note that you must make the DTF field
associated with ReAD ($F1WKB field) point to the
leftmost byte of the logical record.

After get operations (always locate mode), you must
move the obtained record from the physical buffer to a
logical buffer if you intend to update the record or if you
intend to place the record in another file via another
DTF. Note that data management changes the $F1WKB
field after a get operation to point to the retrieved
record in the physical buffer.

If this operand is omitted, zeros are assumed. You must
provide the logical record address before you can
request an output operation. This operand is not
required for input-only files.

KEYL-number specifies the length of the key field and
must be used for all indexed access methods, but no
others .. If this operand is omitted, a length of 1 is
assumed.

KDISP-number is entered for indexed access methods
only. It indicates the displacement into the record of the
rightmost byte of the key field. The displacement of the
first byte in the record is zero, the second byte is one.
and so on.

KEYADD-address specifies the following:

• 	 For indexed random access methods, the main
storage address of the leftmost byte of the key area.
This area must be one key length and cannot contain
any X'FF' characters. If the key area is a binary field
or generated by a user program, you must ensure
that no X'FF' characters appear in the key area.

• 	 For direct access methods, the main storage address
of the leftmost byte of the relative record number
area. This area must be 10 bytes when using a
decimal relative record number, with the relative
record number right-adjusted in the rightmost 7 bytes
of the area. The leftmost 3 bytes are changed by
data management. This area must be 3 bytes when
using binary relative record number, with the relative
record number right-adjusted in the rightmost 3
bytes of the field. If this operand is omitted, address
X'FFFF' is assumed.

MSTNDX-address specifies the address of the leftmost
byte of the master track index in main storage. Use this
operand for indexed random access and indexed
sequential within limits access methods only. If this
operand is omitted, address X'FFFF' is assumed. Master
track index is not supported when you use the ISRI
access method.

To aid the performance of the indexed random and
indexed sequential within limits access methods for
large files, you may supply data management with space
for a master track index. This area will be formatted by
open so that the requested key within the primary index
area of the indexed file may be located more easily. It is
in effect an index into the index area or a second-level
index.

Macroinstructure Statements 6-25

MSTBYT-number specifies the number of bytes to be
reserved for the master track index. If this operand is
omitted, zero is assumed. Use this operand in
conjunction with the MSTNDX operand.

There is a minimum and maximum number of bytes that
can be reserved To deteunine the number of bytes to
be reserved, use the following:

Minimum Maximum

MSTBYT .. EL·2 MSTBYT • EL·(N+1)

where:

EL" 	entry length (KEYL (key length) + 3)

N .. 	Number of tracks containing index
entries (1 track - 60 sectors)

To determine N, do the following:

1. 	 Use the CATALOG procedure to find the total
number of records that the file can contain.

2. 	 Determine the number of keys in each sector by
dividing 256 by the entry length. Drop the
remainder.

3. 	 Determine the number of sectors in the index by
dividing the number of records in the file by the
number of keys in each sector (the result of step
2). Round up the result.

4. 	 Determine the number of tracks by dividing the
number of sectors (the result of step 3) by 60; if
the quotient is not a whole number, round it up to
the next whole number.

CURENT-address specifies, for the indexed sequential
access method, the address of the leftmost byte of the
user's save area for current and last keys. If this
operand is omitted, address X'FFFF' is assumed.

HIGH-address specifies the address of the leftmost byte
of the user's save area. This save area is two key
lengths long, with the low key in the left half and the
high key in the right half. Use this in conjunction with
indexed sequential processing within limits. If this
operand is omitted, address X'FFFF' is assumed.

DMADDR-address specifies where, in the user area of
main storage, $OPEN should load data management.
The area must be aligned on an 8-byte boundary. This
field is used only with the ISRI, ZPAMA, ZPAMI, and
ZPAMO access methods.

Whilemuch of--dat&-managementmay-be used withotlt
reserving space for data management programs, you
must reserve space if you are accessing disk through
ISRI or ZPAM. This area will be initialized at open time.
If you are using two DTFs with the same access method
(lSRI or ZPAM), you need reserve only one area.

The area reserved for ZPAM data management must be
512 bytes. The area reserved for ISRI data management
must be 2048 bytes.

SIAM-yiN specifies whether SIAM support is used for
this DTF. If this operand is omitted, N (no) is assumed.

IOBUF-address specifies the address of the leftmost
byte of the user-provided I/O buffer. Use this operand
only with SIAM-Y (yes) and ZPAM access methods.

The area required for the buffer is:

ZPAM access methods

Area" BLKL (block length) + 7

SIAM sequential or direct access

Area • BLKL (block length) + 7

SIAMJndexed access

Area'" BLKL (block length) + 7 or

271, whichever is greater

ERROR-YIN specifies whether an error message should
be issued by lOS for a permanent disk error. If N (no) is
specified, control is returned to the user program with
the completion code set. If this operand is omitted, N is
assumed.

RETURN-YIN specifies the options allowed to the
operator after a permanent disk error message is issued.
If Y (yes) is specified, control is returned to the user
program with the completion code set and the operator
is allowed to take either a 2 option or a 3 option. If N
(no) is specified, the operator is allowed a 3 option only.
If this operand is omitted, N is assumed.

-.

6-26

Construct a Disk Get Interface ($GETD)

The $GETD macroinstruction generates the interface
needed to communicate with disk data management
when a record is being read from a disk file. Before
using $GETD you must provide a DTF for the file (see
$DTFD). If you will need the data in register 2 later, you
should save the contents of that register before issuing
$GETD.

Note: Disk data management operates in locate mode
for input operations. In locate mode, disk data
management locates a record by placing the address of
the record in the disk DTF. The address points to the
record's location in a physical buffer.

The code generated by this macroinstruction gives
control to the data management routine; the routine
completes execution and returns control to the
generated code. The generated code performs any
requested tests on the completion codes returned by·
data management.

The format of the $GETD macroinstruction is:

[name] $GETD 	 [DTF-address] [,INVKEY-address]
[,OP-code] [,ERR-address]
[,EOF-address] [,NRF-address]
[, DIRDRF-address]

DTF-address specifies the address of the leftmost byte
of the DTF for this file. If this operand is omitted, the
address is assumed to be in register 2.

INVKEY-address specifies the address in your program
that receives control if an invalid key value is detected.
This condition can occur only with indexed random
accesses. If the key field is a binary field or generated
by a user program, you must ensure that no X'FF
characters appear in the key field.

OP-code may be specified when the access method is
ISRI (indexed sequential/random input). The codes are:

NGET Random get by equal key
AGET Random get by high/equal/last key
BGET Get backward (previous) by key
FGET Get forward (next) by key

ERR-address supplies the address in your program that
receives control if the controlled cancel option is taken
in response to a permanent I/O error. If this operand is
omitted, no code is generated to check for the
controlled cancel completion code.

EOF -address specifies the address in your program that
receives control when the end of file is detected. If this
operand is not supplied, no code is generated to check
for the end-of-file condition. You must not use this
operand with random or direct access methods.

NRF-address must be used only for random and direct
access methods. It specifies the address in your
program that receives control if a no-record-found
condition occurs.

DIRDRF-address must be used only for the direct access
method. It specifies the address in your program that
receives control if a deleted record is encountered.

Note: If INVKEY, ERR, EOF, NRF, or DIRDRF is
applicable but not specified, you should check the return
code in your program to determine the outcome of the
operation.

Macroinstructure Statements 6-27

Construct a Disk Put Interface ($PUTD)

The $PUTD macroinstruction generates the interface
needed to communicate with disk data management
when putting a record to disk or updating or deleting a
previously retrieved record. Before using $PUTD you
must provide a DTF for the file (see $DTFD). If you
need the data in register 2 later. you should save the
contents of that register before issuing $PUTD.

Note: Disk data management operates in move mode
for output operations. In move mode. disk data
management moves a record from the logical buffer
identified in the disk DTF to a physical buffer.

The code generated by this macroinstruction gives
control to the data management routine; the routine
completes execution and returns control to the
generated code. Completion codes are tested if
requested and control is returned to your program.

The format of the $PUTD macroinstruction is:

[name] $PUTD 	 [DTF-address] [.INVKEY-address]
[. ERR-address] [. EOX-address]
[.DUPREC-address]
[,SEQERR-address]
[,KEYERR-address]
[,INVDRP-address]
[.DIRNDR-address]
[.UPDATE-YI~] [.DELETE-YI!!]

DTF-address specifies the address of the leftmost byte
of the DTF associated with this file. If this operand is
omitted, the address is assumed to be in register 2.

INVKEY -address specifies the address in your program
that receives control if an invalid key value is detected.
This condition can occur only with indexed random
accesses. This field must be one key length and cannot
contain any X'FF characters. If the key field is a binary
field or generated by a user program. you must ensure
that no X' FF characters appear in the key field.

ERR-address supplies the address in your program that
receives control if the controlled cancel option is taken
in response to a permanent 1/0 error. If this operand is
omitted, no code is generated to check for the
controlled cancel completion code.

EOX-address supplies the address in your program that
receives control when an end of extent is reached during
the operation.

DUPREC-address provides the address in your program
that receives control when a duplicate record is
encountered. Use this operand only with the indexed
add access method.

SEQERR-address is the address in your program that
receives control in the event of a sequence error during
an ordered load of an indexed sequential file.

KEYERR-address specifies the address of your program
that receives control when an attempt is made to update
a record in an indexed file and the attempt would
destroy the record key.

INVDRP-address specifies the address in your program
that receives control if an invalid put to a delete-capable
file is detected. This condition can occur with all access
methods except ZPAM and ISRI. An invalid put is
signaled if the record to be added to or updated in the
file contains X' FF in the first byte.

DIRNDR-address must be used only for the direct access
method. It specifies the address in your program that
receives control if you are doing direct output to a
delete-capable file and the current record in the file is
not a deleted record (it does not contain X'FF in the
first byte).

UPDATE-YIN indicates whether an update is to be
performed. If this operand is omitted. N is assumed.

DELETE-YIN indicates whether a delete. is to be
performed. If this operand is omitted. N (no) is
assumed.

Note: If ERR. EOX. DUPREC. SEQERR. INVKEY, or
KEYERR is applicable but not specified. you should
check the return code in your program to determine the
outcome of the requested operation. For a complete list
of currently defined return conditions. see Return
Conditions under Accessing Records in the File in Chapter
7.

6-28

DISK SORT SUPPORT

Generate a Loadable Sort Parameter List ($SRT)

The $SRT macroinstruction generates the load able sort
parameter list used by the $SORT macroinstruction,
which is described in following paragraphs. $SORT
requires a parameter list in order to load the sort utility
or the ideographic sort utility. The sort utility is part of
the Utilities Program Product, number 5726-UT1. The
sort utility and the loadable sort parameter list are
described in the Sort Reference Manual. The ideographic
sort utility is part of the Ideographic Generator/Sort
Utilities Program Product, number 5726-IG 1. The
ideographic sort utility and the loadable sort parameter
list are described in the Ideographic Sort Reference
Manual. The maximum size of the parameter list is 2048
bytes, including 125 bytes reserved as a work area for
the sort utility or for the ideographic sort utility.

The format of the $SRT macroinstruction is:

[name] $SRT 	 [V-DC/EQU/ALL]
[,OUTPUT-filename]
[,SOURCE-source member name]
[,USERLB-library name]
[,INPUT1-filename]
[,INPUT2-filename]
[, I N PUT3-filename]
[,INPUT4-filename]
[, I N PUT5-filename]
[,INPUT6-filename]
[,INPUT7-filename]
[,INPUT8-filename]

[,ALTSEQ-Y /Ii]
[,KASRT-Y /N]

V-DC/EQU/ALL specifies whether the parameter list,
labels, or both are to be generated. If this operand is
omitted, EQU is assumed.

Parameter 	 Meaning

DC 	 Generates the loadable sort parameter
list used by the $SORT
macroinstruction.

EQU 	 Generates the displacement labels for
the loadable sort parameter list. If
V-EQU is specified or assumed, all
other operands for $SRT are ignored.

ALL 	 Generates both the load able sort
parameter list and the corresponding
displacement labels.

OUTPUT- filename specifies the name of the file that is
to contain the sorted data. If this operand is omitted,
blanks are assumed.', 2

SOURCE-source member name specifies the name of the
source member that contains the sort sequence
specifications. If this operand is omitted, no entry is
created for it in the generated parameter list, and the
34-byte sequence specifications must be placed
immediately after the generated portion of the loadable
sort parameter list. Omit this operand if you want to
supply the sequence specifications in the loadable sort
parameter list.'

USERLB-Iibrary name specifies the name of the user
library that contains the source member specified in the
SOURCE parameter, if any. If this operand is omitted,
no entry is created for it in the generated parameter list.
Omit this operand if you want to supply the sequence
specifications in the loadable sort parameter list.'

INPUTl-fiIename specifies the name of the first, or only,
input file to sort. If this operand is omitted, blanks are
assumed.', 2

INPUT2-fiIename specifies the name of the second input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. 2

INPUT3-fiIename specifies the name of the third input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT3 can be specified, INPUT2 must be specified. 2

INPUT4-fiIename specifies the name of the fourth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT4 can be specified, INPUT2 and INPUT3 must be
specified. 2

INPUTS-filename specifies the name of the fifth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT5 can be specified, INPUT2 through INPUT4 must
be specified. 2

Macroinstructure Statements 6-29

INPUT6-fi/ename specifies the name of ' the sixth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPUT6 can be specified, INPUT2 through INPUT5 must
be specified. 2

INPUTl-filename speeifies the name of the seventh
input file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
INPun can be specified, INPUT2 through INPUT6 must
be specified. 2

INPUT8-filename specifies the name of the eighth input
file to sort. If this operand is omitted, no entry is
created for it in the generated parameter list. Before
I N PUTS can be specified, IN PUT2 through I N pun must
be specified. 2

ALTSEQ-YIN specifies whether an alternate collating
sequence table is contained in bytes 1793 through 2048
(the last 256 bytes) of the loadable sort parameter list:
Y if yes, N if no. If this operand is omitted, N is
assumed. If Y is specified, you must place the alternate
collating sequence table in bytes 1793 through 2048 of
the loadable sort parameter list.

1 Space is always reserved in the generated parameter list for an
OUTPUT filename and an INPUT1 filename. If you want to
reserve space in the parameter list for other operands, specify
names in $SRT for the operands (actual names can then be
inserted in the parameter list by your program).

2 All files named in $SRT must be defined by FILE statements
before the $SORT macroinstruction is used. The files must also
be closed before $SORT is used. If one or more of the input files
named in $SRT are offline multivolume files, a sort work file
must be supplied before $SORT is used. The name of the file
must be WORK. (For a description of how to code FI LE
statements, see the System Support Reference Manual.)

KASRT-YIN specifies whether the ideographic sort utility
(#KASRT) should be loaded: Y if yes, N if no. If this
operand is omitted, N is assumed. If N is specified or
assumed, the sort utility (#GSORT) is loaded. The sort
utility and the ideographic sort utility each require 14
K-bytes. However, the ideographic sort utility requires
1-6-K-bytes-whenever:

• 	 Ideographic control fields are specified and

• 	 Either SOURCE- is not specified or ALTSEQ-Y is
specified in $SRT.

It is your responsibility to ensure that this space is
available. For information on how to increase this space,
see the System Support Reference Manual.

6-30

The following example shows how to build a parameter
list to be passed to the loadable sort transient. In this
example:

• 	 The input file is named IN and has 100-byte records.

• 	 The output file is named OUT and contains input file
records sorted on columns 1 through 10.

• 	 The sort sequence specifications are itlcluded in the
parameter list, not stored in a source member.

• 	 The alternate collating sequence specified sorts all
characters except blanks, uppercase alphabetic
characters, and numeric characters to the end of the
file.

...... C)penItion ."...... 	

1234567. 9 	 011 12 13 1. 151811 1819 ZO 2122232" 25 26 27 28 29 30 31323334 3& 36 37 38 39 40 414243 44 4& 4e 47 48 49 150 51525354 &5 56 57 58 59 eo 61626364.66 6188 69 7071 12 13 14

S In PiA IRM 	 I$S RT v- IAL L. lIN UT l- IN n uh" PU T- oUT .ALT SE Q-Y

DC. Cl ~If ' HSO lA Gl_ l~A ~IQ 11.1(lI' SO RT Df R SP Et
"EDC C 314 ' Ft.lC 0~ llQ1 QJ1 fj' 5'" In co lS· 1 T~ RU 11"
DC CL 3'1 ' F DC 0~ lie l'" riA T.6 IS I¥lH OLE RE C.01\ 0
OC CL 314- ' / / H

, EMD 50 I\T 5P EC
ORG S Ril PiA RM +)(\ ,- l'll 8 ' L CIA TIE LT SEI" ~R EIA
\) 6q.)(L l' F F ' CH IAR s· SE FO I\E 8L ANK
DC. CL l' I IBL lAM \(

12 ex Ll \ F F I"t C.M lAIR AtT ERS TH IR u A
1\ C.L<t' AlB 0 f~HI' IA TI~1\ 1

C. 1X Ll ' FF ' eHIAR ACT RS TH RU l
0 Lq , l II< L1M OP IR ' J TH RU
bc ax Ll ' FF ' Ie ~RAt T E.R S TH11\ U 5
011' CL8' TU V~x YI • 5 HI Ru Z
DC 6~ Ll ' F F • eM AR IA T R TM RU ~
011' CL lill ' til 123~ 67ISct ' QJ 1M RU
DC 6~ Lll ' F f ' R ~" 1M 1NG eH "IRA rt'EI" !;

The following operation calls the loadable sort:

_on
No... 	 Oper_",

1 2 	 3 .. 5 6 , .. 011 121314 15 '6 17 18 19 ZO 21 22232. 2f5 26 21 28 29 30 31 323334 31 36 31 3839

SiS I\'T Pl Ifl T-~ ~T PAR~

Macroinstructure Statements 6-31

http:61626364.66

Construct a Loadable Sort Interface ($SORT)

The $SORT macroinstruction generates an interface to
the sort utility or to the ideographic sort utility. The sort
utility is part of the Utilities Program Product, number
5726-UT1. The sort utility is described in the Sort
Reference Manual. The ideographic sort utility is part of
the Ideographic Generator/Sort Utilities Program
Product, number 5726-IG1. The ideographic sort utility
is described in the Ideographic Sort Reference Manual.
The interface generated by $SORT permits you to load
the sort utility or the ideographic sort utility as though it
were part of your program. Before you issue $SORT,
you must generate a loadable sort parameter list by
issuing the $SRT macroinstruction. $SRT is described in
preceding paragraphs.

If you will need the data in register 2 later, you should
save the contents of register 2 before you issue $SORT.

The code generated by $SORT gives control to the sort
utility or to the ideographic sort utility. After completing
the sort, the utility returns control to the instruction that
follows the code generated by $SORT. You should
chFck the sort completion indicator to determine
\';!Ie,her the sort was successful. The indicator
<,SBTCOMP) is at displacement $SRTINDB in the
;;)"'lhbic3 sort parameter list: if $SRTCOMP is off, the
:;':'.-: was successful; if $SRTCOMP is on, the sort was
Liri~iJccessful.

$SORT can be issued more than once to perform
multiple sorts in a single program. Before you issue
$SORT, all files named in $SRT must be defined by
FILE statements and the files must be closed. If one or
more of the input files named in $SRT are offline
multivolume files, a sort work file must be supplied
before $SORT is used. The name of the work file must
be WORK. (For a description of how to code FILE
statements, see the System Support Reference Manual.)

The sort utility (#GSORT) and the ideographic sort utility
(#KASRT) each require 14 K-bytes. However, the •
ideographic sort utility requires 16 K-bytes whenever:

• 	 Ideographic control fields are specified and

• 	 Either SOURCE- is not specified or ALTSEQ-Y is
specified in SRT.

It is your responsibility to ensure that this space is
available. For information on how to increase this space,
see the System Support Reference Manual.

The format of. the $SORT macroinstruction is:

[name] $SORT [PLIST -address]

PLiST -address specifies the address of the leftmost byte
of the loadable sort parameter list that is generated by
the $SRT macroinstruction. If this operand is omitted,
the address of the loadable sort parameter list is
assumed to be in register 2.

TIMER SUPPORT

Generate Timer Request Block ($TRB)

This macroinstruction generates a timer request block
(TRB). You must use $TRB if you use $SIT, $RIT, or
$TOD in your program.

The format of the $TRB macroinstruction is:

[name] $TRB [V-DC/EOU/ALL]

V-DC/EQU/ALL 'lpecifies whether the parameter list,
labels, or both are generated. If this operand is omitted,
DC is assumed.

Parameter 	 Meaning

DC 	 Generates the timer request
block parameter list used by
$RIT, $SIT, and $TOD

EOU 	 Generates the displacement
labels for the timer request block

ALL 	 Generates the timer request
block and the corresponding
displacement labels

Set Interval Timer ($SIT)

This macroinstruction sets the interval timer, which
causes an interrupt after the specified amount of time.
Before issuing $SIT you must place the desired interval
in the time field of the timer request block.

The format of the $SIT macroinstruction is:

..
[name] $SIT 	 [TRB-address]

[,TYPE-lli/ BIN /TU /TOD]
[,ITYPE-REAL/WAIT]

•
TRB-address specifies the address of the leftmost byte
of the timer request block. If this operand is omitted,
the address of the timer request block is assumed to be
in register 2.

TYPE-DEC/BIN/TU/TOD specifies the format of the
time interval in the timer request block. (You must place
the time interval in the time field of the timer request
block before issuing $SIT. The time field is at
displacement $TRBTIME in the timer request block
generated by $TRB.) If this operand is omitted, DEC is
assumed. The valid time interval formats are:

DEC: A 6-byte decimal number specifying the hours,
minutes, and seconds (HHMMSS) that are to elapse
before the timer interrupt.

BIN: A 32-bit binary number specifying the number
of seconds that are to elapse before the timer
interrupt. The binary value must be right-adjusted in
bytes 4-7 of the timer request block time field.

TU: A 32-bit binary number specifying the number of
timer units that are to elapse before the timer
interrupt. One timer unit is 8.192 milliseconds. The
binary value must be right-adjusted in bytes 4-7 of
the timer request block time field.

TOD: The actual time of day when the timer interrupt
is to occur. The time is a 6-byte decimal number
specifying the hour, minute, and second (HHMMSS).

ITYPE-REAL/WAIT specifies the type of interval to be
timed. If this operand is omitted, REAL is assumed.
The types of time intervals are:

REAL: The timer decreases the time interval

continuously for all types of processing.

WAIT: The program issuing the $SIT macroinstruction
is placed in a wait state for the specified time
interval. When the time expires, control returns to
the instruction following the $SIT macroinstruction.

Macroinstructure Statements 6-33

Return Interval Time ($RIT)

This macroinstruction returns the remaining amount of a
time interval or cancels an unexpired time interval. The
remaining time is returned in the time field,
displacement $TRBTIME, of the fRB eSfablished by the
$TRB macroinstruction. The time interval is set by $SIT
and is returned in the format specified in that
macroinstruction.

The format of the $RIT macroinstruction is:

[name] $RIT 	 [TRB-address] [,CANCEL-Y /~]
[,WAIT-Y/~]

TRB-address specifies the address of the leftmost byte
of the timer request block. If this operand is omitted,
the address of the timer request block is assumed to be
in register 2.

CANCEL-YIN specifies whether the remaining time in
the interval is to be canceled. If this operand is omitted,
N is assumed.

WAIT-YIN specifies whether the task issuing the $RIT
macroinstruction is in a wait state until the time interval
expires. If this operand is omitted, N is assumed. This
operand is ignored if CANCEL-Y is specified.

Return Time and Date ($TOD)

This macroinstruction returns the time of day and the
system dat~ to the program. The time of day is
returned in the time field of the timer request block, the
system date in the date field. The time and date fields
are at displacements $TRBTIME and $TRBDATE,
respectively, in the timer request block generated by
$TRB. Time and date are returned in the format
specified during system configuration.

The format of the $TOD macroinstruction is:

[name] $TOD 	 [TRB-address]

[,TYPE-Q,§f/BIN/TU]

TRB-address specifies the address of the leftmost byte
of the timer request block. If this operand is omitted,
the address of the timer request block is assumed to be
in register 2.

TYPE-DECIBINITU specifies how the time is to be
returned in the timer request block. The valid formats
are:

DEC: A 6-byte decimal number indicating the time in

flours, minutes and seconds (HHMMSS).

BIN: A 32-bit binary number indicating the time in
seconds. The number is right-adjusted in bytes 4-7
of the time field of the timer request block.

TU: A 32-bit binary number indicating the time in

timer units. One timer unit is 8.192 milliseconds. The

number is right-adjusted in bytes 4-7 of the time

field of the timer request block.

If this operand is omitted, DEC is assumed.

DISPLAY STATION SUPPORT

All communication with the display stations or system
console is done via work station management (WSM).
Work station management consists of two parts: a
generator routine and a data management routine. The
screen format generator routine (SFGR) builds the library
load member that is required when a display station is
used as a formatted input/output device. For further
information about the screen format generator routine
(SFGR), see the System Support Reference Manual.

Work station data management (WSDM) provides the
interface between the system and the display stations.
This section describes tlie macroinstructions that
support display station devices. You build your DTF
using the $DTFW macroinstruction. You then use the
$WSIO macroinstruction to modify the DTF fields for
each operation.

Note: A guide to the concepts of work station data
management is provided in the Concepts and Design
Guide.

•

6-34

Define the File for Display Station ($DTFW)

This macroinstruction generates the code that builds the
display station DTF. The display station DTF provides
information needed to allocate, open, and access a
display station file.

Note: For a description of how to code $DTFW for the
interactive communications feature, see the Interactive
Communications Feature Reference Manual.

The format of the $DTFW macroinstruction is:

[name] $DTFW 	[DEV-code]
[,UPSI-mask] [,CHAIN-address]
[,OUTLEN-number]
[,INDEXA-address] [,RESET-Y/~]
[,NUMFMT-number]
[,ROLINE-number]
[,STRTLN-number]
[,ENDLN-number]
[,VARLIN-number]
[,INDA-address]
[,MEMBER-name]
[,INLEN-number]
[,TERMID-name] [,PRNT-Y/~]
[,ROLL-YI.~] [,CLEAR-Y/~]
[,RECBKS-YI~] [,HELP-Y IN]
[,FKDATA-YI~]
[,TIDTAB-address]
[,ENTLEN-number]
[,TNUM-number]
[, F1 ADDR-address]
[,RPGEXT -address]
[,HALTS-Y l!:i]

DEV-code specifies the file type for which this DTF is to
be used. If this operand is omitted, display station
(WSTN) is assumed. The codes and their meanings are
as follows:

Code File Type

CONS RPG console

KBD RPG keyboard

CRT RPG display screen

WSTN Display station

UPSI-mask specifies the setting of the external (/ I
SWITCH. statement) indicators· used for conditionally
opening files. The code must be specified as 8 bits. For
example, to test bits 0, 3, 5, and 7, you would enter
UPSI-10010101. When the corresponding bits are on in
the switch, the file is opened. If the file is not opened
and operations are issued for this DTF, the operations
are not performed and you receive a return code of hex
99. If this operand is omitted, zeros are assumed, and
the file will be unconditionally opened.

CHAIN-address specifies the address of the next DTF in
the chain of DTFs. If there is no DTF chain or if this is
the last DTF in the chain, this operand should be
omitted (X'FFFF' is then assumed).

OUTLEN-number is only required for OPMODs of
ERROR and UNF, or OPCs of PUT, PTG, PNW, and PTI.
If the operation is ERROR, the OUTLEN value must be
between 1 and 78, and it represents the amount of data
written from the logical record area to the error line at
the display station. If the operation is UNF, the
OUTLEN value must be between 2 and 4096, and it
represents the amount of data sent from the user's
logical record to the display station. If the operation is a
PUT, PTG, PNW, or PTI, then OUTLEN represents the
maximum amount of data that can be written from the
logical record area to the output fields in the display
screen format. The OUTLEN value must be at least as
large as the sum of the lengths of all program output
fields. A program output field is as field where either
constant data was not supplied in locations 57 through
79 of the $SFGR field definition specification, or where
an indicator was specified in locations 23 and 24 of the
$SFGR field definition specification. If this operand is
omitted, an OUTLEN value of X'OOOO' is assumed. After
a successful input operation, the actual length of data
returned is in this field; therefore, OUTLEN should be
respecified after every input operation.

Note: If the operation is an unformatted PUT to a
display station that has ideographic support and if
GAIJI-ON is specified on the WORKSTN OCL
statement, OUTLEN should not be greater than the
display station buffer size (the minimum display station
buffer size is 2048 bytes). If the execution time output
data from the user's logical record area also contains
MIC data, the user must reserve 6 bytes to contain the
4-character digit and the 2-character message member
identifier. This 6-byte length must be included in the
total OUTLEN value.

Macroinstructure Statements 6-35

INDEXA-address specifies the symbolic address of the
leftmost byte of the area in which display station OPEN
will build the display screen format index. This area
must be 16 bytes for each format in the load member to
be opened. All open display station DTFs must use the
same display screen format index area. If this operand
is omitted, address X'OOOO' is assumed.

Note: To open more than one format load member for a
display station at the same time, you can chain multiple
DTFs for the display station.

RESET- Y / N specifies whether to reset the active format
index address. If Y is specified, a new format index is
built at the address specified by INDEXA. If N is
specified and there is an active format index, INDEXA
must equal the address of the active format
index-formats can be added to the index during open
and duplicate entries result in a halt. If N is specified
and there is no active format index, a format index is
built at the address specified by INDEXA. If this
parameter is omitted, N is assumed.

NUMFMT -number specifies in decimal the maximum
number of display screen formats for which an index is
to be built. The maximum allowed is 255. If this
operand is omitted, up to 32 new format index entries
can be built.

ROLINE-number specifies in decimal the number of lines
to roll the displayed data on a roll operation. The
maximum number is equal to the display screen size.
For example: If the display screen size is 24 lines, the
maximum number that can be entered here is 24. If this
operand is omitted, 01 is assumed.

STRTLN-number specifies in decimal the first line of the
roll area on a roll operation. The maximum number is
equal to the display screen size minus 1. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 23. If this operand
is omitted, 01 is assumed.

ENDLN-number specifies in decimal the last line of the
roll area on a roll operation. The minimum number is
02. The maximum number is equal to the display screen
size. For example: If the display screen size is 24 lines,
the maximum number that can be entered here is 24. If
this operand is omitted, 24 is assumed.

VARLIN-number specifies in decimal the actual start line
number if a variable start line number was specified to
SFGR for the format for this request. The maximum
number is equal to the display screen size. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 24. If this operand
is omitted, 01 is assumed.

INDA-address specifies the symbolic address of the
leftmost byte of the override indicator area, if override
indicators were specified at SFGR time for this format.
The indicator area must not start at location X'OOOO'
because WSDM ignores all indicators at address X'OOOO'
and they are assumed off. If this operand is omitted,
address X'OOOO' is assumed, and work station data
management ignores all indicators.

MEMBER-name specifies the name of the SFGR load
member containing all the formats to be opened. If this
operand is omitted, blanks are assumed, and no formats
are opened.

INLEN-number specifies in decimal the size of the user's
input buffer; that is, the maximum amount of input data
that the application program is prepared to receive. This
number must not be greater than 65535. If this operand
is omitted, zero is assumed, and no data is transferred.

Note: If the operation being performed is an
unformatted PUT, this value must equal the total length
of all input fields defined on the screen.

TERMID-name specifies the symbolic name of the
display station. This is the two-character ID, which the
user assigned via system configuration or the SYM I D
parameter on the / / WORKSTN statement, that
represents the display station to which the request is
directed. If this operand is omitted, blanks are assumed,
and for an SRT program the requesting display station is
assumed; for MRT programs a halt is issued unless the
operation is an ACI (accept), INQ (status inquiry) or GTA
(get attributes) operation.

..

6-36

The parameters PRNT, ROLL, CLEAR, RECBKS, and
HELP are the function-control-key mask specifications.
The function-control-key mask supplied to WSDM via
the DTF is used in conjunction with the
function-control-key mask specified in the SFGR source
specifications. If a specific function control key is
disabled in either the work station DTF or the SFGR
specifications, the key becomes disabled on the
keyboard. A function control key must be enabled in
both cases to be enabled to the application program.

PRNT-YIN specifies whether your program will process
the Print key. If Y (yes) is specified, the print key
indicator is placed in the AID byte field of your program
DTF when the operator presses the Print key. If N (no)
is specified, the system attempts to print the work
station ID, the user sign-on ID, the system date, the
time, and the current display on the display station's
associated printer. If this operand is omitted, N (no) is
assumed.

ROLL-YIN specifies whether your program will process
the Roll t (Roll Up) and Roll'" (Roll Down) keys. If Y
(yes) is specified, the roll key indicator is placed in the
AID byte of your program DTF when the operator
presses a Roll key, and data is returned as if the
Enter/Rec Adv key was pressed. If N (no) is specified,
an error rnessage is displayed to the operator when the
operator presses the Roll key. If this operand is omitted,
N (no) is assumed.

CLEAR-YIN specifies whether your program is able to
process the Clear key. If Y (yes) is specified, the clear
key indicator is placed in the AID byte field of your
program DTF when the operator presses the Clear key.
If N (no) is specified, an error message is displayed to
the operator when the operator presses the Clear key. If
this operand is omitted, N (no) is assumed.

RECBKS-YIN specifies whether your program is able to
process record backspace (that is, the Home key when
the cursor is in the home position). If Y (yes) is
specified, the record backspace key indicator is placed
in the AID byte field of your program DTF when the
operator presses the Home key. If N (no) is specified,
an error message is displayed to the operator when the
operator presses the Home key. If this operand is
omitted, N (no) is assumed.

HELP-YIN specifies whether your program is able to
process the Help key. If Y (yes) is specified, the help
indicator is placed in the AID byte field of your program
DTF when the operator presses the Help key. If N (no)
is specified, the command is not issued and an error
message is displayed to the operator when the operator
presses the Help key. If this operand is omitted, N (no)
is assumed.

FKDATA-YIN specifies whether input data is to be
returned along with a function control key indicator for
all enabled function control keys. If Y (yes) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, and
input data is returned regardless of whether the operator
has modified any of the fields. This does not apply to
remote work stations; see Note 2. If N (no) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, but no
input data is returned. If this operand is omitted, N (no)
is assumed.

Notes:
1. 	The FKDATA parameter has no effect on the

operation of the Rollt (Roll Up) and Roll'" (Roll
Down) function control keys. These keys always
operate as specified by the ROLL parameter.

2. 	You must use the FKDATA parameter with caution
when you are programming for a remote work
station. Your job could permanently halt if there are
no modified input fields on the screen of the remote
work station when a function key is pressed while the
FKDATA parameter is active.

TlDT AB-address specifies the address of a work station
ID table. Programs that support multiple display stations
typically maintain a table of display station IDs and
associated status indicators. By specifying the TIDTAB,
ENTLEN, and TNUM parameters, you reserve an area
for the ID table. Open places the ID of the display
station that requests the program in the first 2 bytes of
the first entry of the table, and sets the first bit in the
third byte on. Open also places the SYMID value from
each / / WORKSTN statement into other entries in the
table. The IDs are placed in the first 2 bytes of the
entries. If REOD-YES is specified in a WORKSTN
statement, open sets on the first bit of the third byte in
the corresponding table entry. The ID table must be
large enough to contain an ID for each display station
supported by the program plus additional entries up to
the program's MRTMAX value (MRTMAX is specified in
a / / COMPILE statement and can be overriden by a / /
ATTR statement). The entire table must be initialized to
ODs before open is called. After open is complete, the
user program must maintain the table. If this operand is
omitted, address X'OOOO' is assumed, and no table is
built. (For a description of ATTR, COMPILE, and
WORKSTN statements, see the System Support

Reference Manual.)

Macroinstructure Statements 6-37

ENTLEN-number specifies in decimal the length of each
entry in the display station ID table TIDTAB. The
maximum allowed is 255. If TIDTAB was specified, the
minimum ENTLEN is 3: two bytes for an ID and a third
byte for status indicators.

TNUM-number specifies in decimal the total number of
TIDTAB table entries. The total space allocated for the
table is assumed to be the product of ENTLEN and
TNUM. The maximum TNUM allowed is 255. If this
operand is omitted, 01 is assumed.

F lADDR-address specifies the address of the leftmost
byte of the library format 1 used to find the load
member. If this operand is omitted, work station data
management scans the user library (first requester's
library if an MRT program). then the system library for
the load member.

RPGEXT-address specifies the address of an RPG
extension to the work station DTF. If this parameter is
omitted, address X'OOOO' is assumed. This parameter is
not used by work station data management.

HALTS-YIN is valid only if this DTF is to be used to
communicate with the interactive communications
feature, which is described in the Interactive
Communications Feature Reference Manual. The
parameter specifies whether interactive communications
data management should halt for permanent
communications errors: Y if yes, N if no. If this
operand is omitted, N (no) is assumed.

Construct a Display Station Input/Output Interface
($WSIO)

This macroinstructibn builds the executable code to
modify a display station DTF according to the
parameters specifiad, then issues a call to work station
data management to execute the specified operation.
Before using $WSIO you must provide a DTF for the file
(see $DTFW) and establish the offsets for the DTF (see
$DTFO). If you will need the data in registers 1 and 2
later, you should save the contents of those registers
before issuing $WSIO.

After each $WSIO macroinstruction, you should check
the return code. The return codes are defined in the
$DTFO macroinstruction with WS-Y and FIELD-Y.
Return codes from $WSIO are described under Display
Station Data Management Considerations in Chapter 7.

Note: For a description of how to code $WSIO for the
interactive communications feature, see the Interactive
Communications Feature Reference Manual.

[name] $WSIO 	[DTF-address] [,OPMOD-code]
[,OPC-code] [,OUTLEN-number]
[,INLEN-number]
[,RCAD-addressJ [,ROLDIR-U/D]
[,RLCLER-Y/N]
[,ROLINE-number]
[,STRTLN- number]
[,ENDLN-number]
[,VARLIN-number]
[,INDA-address 1
[,FORMAT-name]
[,TERMID-name] [,PRNT-Y/N]
[,ROLL-YIN] [,CLEAR-YIN]
[,RECBKS-YIN] [,HELP-YIN]
[,FKDATA-Y/N] [,PID-id]

[,PL@-address]

DTF -address specifies the address of the leftmost byte
of the display station DTF to be modified. If this
operand is omitted, the address is assumed to be in
register 2.

6-38

L
OPMOD-code specifies the operation code modifier to
be generated if desired. The codes and their meanings
are as follows:

Code Meaning

ERROR PUT for displaying information on
the error line.

OVR PUT for displaying only override
fields and attributes. (If an over~ide
indicator was specified on the SFGR S
specification, this value is not required.)

ROLL Roll the display with the specified
operation.

UNF The data does not need formatting
by WSDM.

PRINT Print the displayed data on the
printer specified in the PID parameter.

PRUF PUT for read under format.
FMH This code is for use with the

interactive communications
feature, which is described in
the Interactive Communications
Feature Reference Manual. The
code indicates that a function
management header precedes the
data associated with an evoke
operation. The code is valid only
for evoke operations for the SNUF
(SNA upline facility) subsystem.

ZERO Clear any previous OPMOD specification.

Notes:
1. 	An OPC of PUT, PTG, PNW, or PTI must also be

specified for OPMOD values of OVA, UNF, or PRUF.
2. 	The OPMOD keyword can be coded as OPM.

OPC-code specifies the operation requested of WSDM.
The codes and their meanings are as follows (codes
unique to the interactive communications feature are
described in the Interactive Communications Feature
Reference Manual):

ZERO: Sets the operation code field to X'OO'. This
code is used with operation code modifiers for which
you do not want a WSDM operation code. For
example, if you wanted to roll or print displayed data
without requesting any other work station operation
in the call to WSDM, you could use the ZERO
operation code with the modifier ROLL or PRINT.

GET: Receive data from the display station specified
by the TERMID parameter. Control is returned to
your program when the data is available in the user
record area. This operation ignores the OPMOD
value.

PUT: Send data to the display station specified by
the TERMID parameter. Control is returned to your
program when data transfer is complete.

PTG: A combination of a put-no-wait (PNW)
operation to the display station specified by the
TERMID parameter, followed by a GET request to the
same display station. Control is returned to your
program when the data resulting from the GET
operation is available in the user record area.

INV: Enable the display station, specified by the
TERMID parameter, to send data to the system. The
data entered by the display station operator is
presented to your program in response to a
subsequent accept input (ACI) operation. Control
returns as soon as the invite input (lNV) is scheduled.

PNW: Send data to the display station specified by
the TERMID parameter. Control is returned to your
program when the operation is scheduled, and the
program's DTF, record area, and indicators are
available for reuse. If a second put-no-wait (PNW)
is issued to the same display station, the first PUT
must be complete before the second operation is
queued. The main difference between a PUT and
PNW is the return code. On a PUT, the return code
reflects the status of the entire PUT operation, while
on a PNW, the return code reflects only the
scheduling of the operation.

MacroinstructlJre Statements 6-39

PTI: A combination of a put-no-wait (PNW) and an Following a get attribute operation, the program's
invite input (lNV) to the same display station. Control record area appears as follows:
is returned to your program when the invite input
request is scheduled.

AC/: This operation is not to a specific display
station. It requests data from any display station that
responded to a previous invite input operation. For
example, suppose your program issues three invite
input operations to display stations A. B, and C. The
program could now issue an accept input request,
and be presented with data from any display station
(A. B, or C) that responds with a data transmission.
The ID of the display station that sent the data is
returned at displacement $WSNAME in the DTF. The
accept input operation is also used as the first
request from a program to receive program data
passed from the invoking procedure. This operation
ignores the OPMOD value.

ACQ: Allocate the display station specified by the
TERMID parameter to this program. This operation
ignores the OPMOD value.

REL: Release the display station specified by the
TERMID parameter from this program. This operation
ignores the OPMOD value.

GTA: Get the attributes of the display station
specified by the TERMID parameter, and place them
in the program's record area. This operation ignores
the OPMOD value.

Byte 0 Device type.
C'D' Display type.
C'N' Non-display type.

All remaining letters
are reserved.

Byte 1 Display size.
C'1' 1920-character display.
C'2' 960-character display.

Byte 2 Type of attachment.
C'L' Local attachment.
C'R' Remote attachment.

Byte 3 Online/offline status.
C'O' Device is online.
C'F' Device is offline.

Byte 4 Allocation status of device.
C'A' Device allocated to requester.
C'E' Device allocated to other user.
C'V' Not allocated but available.
C'N' Not allocated, not available.
C'U' Device unknown to system.

Byte 5 Invite status of device.
C'Y' Device is invited.
C'N' Device not invited.

Byte 6 If invited, completion status.
C'Y' Invite completed.
C'N' Invite not completed.

Byte 7 Inquiry status.
C'Y' Device in inquiry.
C'N' Device not in inquiry.

EGTA: Get the attributes of the ideographic display
station specified by the TERMID parameter, and
place them in the program's record area. This
operation ignores the OPMOD value. Following an
extended get attribute operation, the program's
record area appears as follows:

Bytes 0-7 Same as for GTA operation.

Byte 8 Display type.

C'A' Alphanumeric/Katakana type.

C'I' Ideographic type.

Byte 9 Keyboard type.

C'A' Alphanumeric/Katakana type.

CT Ideographic type.

Byte 10 Sign-on type.

C'A' Alphanumeric / Katakana type.

C'I' Ideographic type.

Bytes 11-15 Reserved. X'QQ' will be returned.

..

J

6-40

ST/: Cancel a previously issued invite input request to
the display station specified by the TERMID
parameter. If the stop invite fails (operator already
pressed the Enter fRec Adv key), your program will
be informed via a return code, and the data will
remain at the display station, available for a
subsequent request. However, if an output request is
issued to the display station, the input data is
destroyed.

Note: A stop invite is not required to override an
existing invite input. However, if input is already
available, the input data is lost.

RES: Resets the keyboard of the display station
specified by the TERMID parameter without
requesting a format. This allows an application to
ignore keys that are not supported.

RTG: Performs a keyboard reset (RES) followed by a
GET.

RT/: Performs a keyboard reset (RES) followed by an
invite input (lNV).

ERS: Erases all modified input capable fields that are
currently defined on the display of the display station
specified by the TERMID parameter. This operation
locks the keyboard and repositions the cursor to the
first input field. For a detailed explanation of how
erase input fields works, see the erase input fields
entry (columns 31 and 32) under the $SFGR-Screen
Format Generator Utility Program in the System
Support Reference Manual.

ETG: Performs an erase input fields (ERS) followed
by a GET.

£II: Performs an erase input fields (ERS) followed by
an invite input (INV).

CLR: Clears the entire display screen of the display
station specified by the TERMID parameter, including
attribute bytes. This operation also destroys any
existing field definitions pertaining to that specific
display station.

INQ: Determines the invite status of the display
stations associated with this program. This operation
returns a 2-byte return code in index register 2. In
the high-order byte, X'OO' means no invites
outstanding; X' 1 0' means at least one invite
outstanding; X'30' means at least one outstanding
invite, at least one of which is completed. In the low
order byte, X'OO' means stop system is not in effect;
X'02' means stop system is in effect. This operation
has no associated DTF. Register 2 need not contain
a DTF address. Register 1 contents are preserved. If
this operation code is specified, all other specified
parameters are ignored.

SIQ: Determines the invite status of the display
stations associated with this program. This operation
performs a function similar to INO, except SIO
utilizes the DTF to issue the operation and return the
data. Two 1-byte return codes are returned in the
DTF as a result of this operation. In the DTF at
displacement $WSRSIQ, hex 00 means no invites
outstanding; hex 30 means at least one outstanding
invite, at least one of which is completed. In the DTF
at displacement $WSRTC, hex 00 means stop system
is not in effect; hex 02 means stop system is in
effect. If this operation code is specified, any
specified operation code modifier is ignored, and the
operation code modifier field in the DTF is cleared to
hex 00.

Macroinstructure Statements 6-41

OUTLEN-number is only required for OPMODs of
ERROR and UNF, or OPCs of PUT, PTG, PNW, and PTI.
If the operation is ERROR, the OUTlEN value must be
between 1 and 79 and it represents the amount of data
written from the logical record area to the error line at
the display station. If the operation is UNF, the
OUTlEN value must- be between 2 and 4096 ttml1t
represents the amount of data sent from the user's
logical record to the display station. If the operation is a
PUT, PTG, PNW, or PTI, then OUTlEN represents the
maximum amount of data that can be written from the
logical record area to the output fields in the display
screen format. The OUTlEN value must be at least as
large as the sum of the lengths of all program output
fields. A program output field is a field where constant
data was not supplied in locations 57 through 79 of the
$SFGR field definition specification, or where an
indicator was specified in locations 23 or 24 of the
$SFGR field definition specification. If this operand is
omitted, the DTF value remains unchanged. After a
successful input operation, the actual length of data
returned is in this field; therefore, OUTlEN should be
respecified after every input operation.

Note: If the operation is an unformatted PUT to a
display station that has ideographic support and if
GAIJI-ON is specified on the WORKSTN OCl
statement, OUTlEN should not be greater than the
display station buffer size (the minimum display station
buffer size is 2048 bytes). If the execution time output
data from the user's logical record area also contains
MIC data, the user must reserve 6 bytes to contain the
4-character digit and the 2-character message member
identifier. This 6-byte length must be included in the
total OUTlEN value.

INLEN-number specifies in decimal the size of the user's
input buffer, that is, the maximum amount of input data
that your program is prepared to receive. This number
must not be greater than 65535. If this operand is
omitted, the DTF remains unchanged. The INlEN and
PID parameters use the same field in the DTF;
therefore, INlEN must be specified after each operation
that specified a PID.

Note: If the operation being performed is an
unformatted PUT, this value must equal the total length
of all input fields defined on the screen.

RCAD-address specifies the symbolic address of the
leftmost byte of the logical record area. This operand
must be specified in the first $WSIO you issue in your
program to establish the record address. Then, if this
operand is subsequently omitted, the DTF remains
unchanged.

Note: If the operation being performed involves GET or
ACI or UNF, the record area must be on an 8-byte
boundary.

ROLDIR-U/D specifies the direction to roll the display
when requested. This operand must be specified in the
first $WSIO you issue with a roll operation. Then, if this
operand is subsequently omitted, the DTF remains
unchanged.

RtCtER-Y/N sl'ecifies whether the lines·v8cated by a
roll operation should be cleared. This operation must be
specified in the first $WSIO you issue with a roll
operation. Then, if this operand is subsequently omitted,
the DTF remains unchanged.

ROLINE-number specifies in decimal the number of lines
to roll the data being displayed on a roll operation. The
maximum number is equal to the display screen size.
For example: If the display screen size is 24 lines, the
maximum number that can be entered here is 24. If this
operand is omitted, the DTF remains unchanged.

STRTLN-number specifies in decimal the first line of the
roll area on a roll operation. The maximum number is
equal to the display screen size minus 1. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 23. If this operand
is omitted, the DTF remains unchanged.

ENDLN-number specifies in decimal the last line of the
roll area on a roll operation. The minimum number is
02. The maximum number is equal to the display screen
size. For example: If the display screen size is 24 lines,
the maximum number that can be entered here is 24. If
this operand is omitted, the DTF remains unchanged.

VARLIN-number specifies in decimal the actual start line
number if a variable startJine oomber was specified to
SFGR for the format for this request. The maximum
number is equal to the display screen size. For example:
If the display screen size is 24 lines, the maximum
number that can be entered here is 24. If this operand
is omitted, the DTF remains unchanged.

INDA-address specifies the symbolic address of the
leftmost byte of the override indicator area, if override
indicators were specified at SFGR time for this format.
The indicator area must not start at location X'OOOO'
because WSDM ignores all indicators at address
X'OOOO', and they are assumed off. If this operand is
omitted, the DTF remains unchanged.

FORMAT -name specifies the name of the display screen
format to be used for this operation. This operand is
required only for formatted PUT operations. If this
operand is omitted, the DTF remains unchanged.

6-42

11

TERMID-name specifies tl:le symbolic name of the
display station. This is the 2-character ID, which the
user assigned via system configuration or the SYMID
parameter on the / / WORKSTN statement, that
represents the display station to which the request is
directed. If this operand is omitted, the DTF remains
unchanged.

PRNT-YIN specifies whether your program is able to
process the Print key. If Y (yes) is specified, the print
key indicator is placed in the AID byte field of your
program DTF when the operator presses' the Print key.
If N (no) is specified, the system attempts to print the
following on the display station's associated printer':
the work station ID, the user sign-on ID, the system
date, and the time (all on one line, enclosed within a
box of asterisks)' followed by four blank lines, followed
by the current display.

ROLL-YIN specifies whether your program is able to
process the Rollt (Roll Up) and RolI+ (Roll Down) keys.
If Y (yes) is specified, the roll key indicator is placed in
the AI D byte field of your program DTF when the
operator presses a roll key and data is returned as if the
Enter / Rec Adv key was pressed. If N (no) is specified,
an error message is displayed to the operator when the
operator presses the roll key.'

CLEAR-YIN specifies whether your program is able to
process the Clear key. If Y (yes) is specified, the clear
key indicator is placed in the AID byte field of your
program DTF when the operator presses the Clear key.
If N (no) is specified, an error message is displayed to
the operator when the operator presses the Clear key.'

RECBKS-YIN specifies whether your program is able to
process the record backspace (that is, the Home key
when the cursor is in the home position). If Y (yes) is
specified, the record backspace indicator is placed in the
AID byte field of your program DTF when the operator
presses the Home key. If N (no) is specified, an error
message is displayed to the operator when the operator
presses the Home key.'

• 	 HELP-Y IN specifies whether your program is able to
process the Help key. If Y (yes) is specified, the help
key indicator is placed in the AID byte of your program
DTF when the operator presses the Help key. If N (no)
is specified, an error message is displayed to the
operator when the operator presses the Help key.'

FKDATA-Y IN specifies whether input data is to be
returned along with a function control key indicator for
all enabled function control keys. If Y (yes) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, and
input data is returned regardless of whether the operator
has modified any of the fields. This does not apply to
remote work stations; see Note 2. If N (no) is specified,
the appropriate function control key indicator is placed
in the AID byte field of your program DTF when the
operator presses an enabled function control key, but no
input data is returned.'

Notes:
1. 	The FKDATA parameter has no effect on the

operation of the Rollt (Roll Up) and Roll"" (Roll
Down) function control keys. These keys always
operate as specified by the ROLL parameter.

2. 	You must use the FKDATA parameter with caution
when you are programming for a remote work
station. Your job could permanently halt if there are
no modified input fields on the screen of the remote
work station when a function key is pressed while the
FKDATA parameter is active.

PID specifies the ID of the desired printer on a print
request. Allowable values are:

SYSTEM-the system printer
WSTN-the ID of the printer· associated within the
display station specified by the TERMID parameter
XX-the 2-character ID of the desired printer

If this operand is omitted, the DTF remains unchanged.
The INLEN and PID parameters use the same field in
the DTF; therefore, PID must be specified after each
input operation.

'Use of PRNT, ROLL, CLEAR, RECBKS, HELP, and FKDATA is
discussed here. The parameters PRNT, ROLL, CLEAR,
RECBKS, and HELP are the function-control-key mask
specifications. The function-control-key mask supplied to
WSDM via the DTF is used in conjunction with the
function-control-key mask specified in the SFGR source
specifications. If a specific function control key is disabled in
either the work station DTF or the SFGR specifications, the
key becomes disabled on the keyboard. A function control key
must be enabled in both cases to be enabled to the
application program. If any of these parameters or the
FKDATA parameter is specified, N is assumed for the
unspecified parameters. If none are specified, the DTF
remains unchanged.

Macroinstructure Statements 6-43

PL@-address is for use with the interactive
communications feature. The 'parameter specifies the
address of an associated evoke parameter list, which is
generated by the $EVOK macroinstruction. $EVOK is
described in the Interactive Communications Feature
Reference Manual. This operand must be specified for
the first evoke operation and remains unchanged if not

specified thereafter.

Generate Override Indicators for Display Station
($WIND)

This macroinstruction generates a table of override
indicators and offsets for PUT and PUT overrides used
by work station data management.

The format of the $WI N D macroinstruction is:

[name] $WIND [MAXIND-number]

MAXIND-number specifies in decimal the highest number
used by SFGR as an override indicator for your program.
If this operand is omitted, 99 is assumed.

Generate labels for Display Station ($WSEQ)

This macroinstruction generates labels and offsets to
reference certain work station device dependent values,
such as attention identification (AID) bytes, and bit
representations for the display screen attribute bytes
and write control characters.

The format of the $WSEO macroinstruction is:

[name] $WSEO no operands.

..

•

6-44

Chapter 7. Programming Considerations

ASSEMBLER CONTROL STATEMENTS

Two control statements are used: the HEADERS
statement and the OPTIONS statement. A total of 45
of these control statements may be used, in any order.
Each statement is limited to six operands. All control
statements must appear before any assembler source
statements.

HEADERS Statement

The HEADERS control statement specifies control
information other than output control information to the
assembler. The programmer may specify a category
level for the object module through the CATG operand,
or the length of the control section for any subtype 4 or
5 EXTRNs in the assembler through the COML4 and
COML5 operands. For an explanation of category levels
and subtype 4 and 5 EXTRNs, see the System/34
Overlay Linkage Editor Reference Manual.

The format of the HEADERS statement with the CATG
operand is:

12 16 20 24 2S 32

19_R~ A"

1

nnnnn is a 1- to 5-character decimal string whose value
must be less than 256. If more than one CATG operand
appears in the assembler control statements, the value
of the last valid operand is used for the module category
level. The module category level is placed in the module
ESL record. The HEADERS keyword must start in
column 2 or greater; the preceding column must be
blank; and there must be one or more blanks between
keywords. Blanks are not allowed between selected
options.

The format of the HEADERS statement with the COML4
and COML5 operands is:

1 4 8 12 16 20 24 28 32

IIIItJ I,1jIl k,j. 111;1 iA.11 iJI_.. ttl.. III It!

-.- - ... - - .. - .. -- - -

nnnnn is a 1- to 5-character decimal string whose value
must be less than 65536. If more than one COML4 or
COML5 operand is present in the assembler control
statements, the length in the last valid operand is used
for the appropriate subtype control section length. The
lengths specified are placed in the ESL records for the
subtype 4 or 5 EXTRNs. The HEADERS keyword must
start in column 2 or greater; the preceding column must
be blank; and there must be one or more blanks
between keywords. Blanks are not allowed between
selected options.

OPTIONS Statement

An OPTIONS statement is for assembler control options.
All OPTIONS statements must precede the source file.
The user may specify the following assembler options
on OPTIONS statements: LIST, NOLlST, XREF,
NOXREF, OBJ, NOOBJ. Several options may appear on
one statement in any order, but must be separated by
commas. If the programmer prefers, separate
statements may be used for each option. The OPTIONS
keyword must start in column 2 or greater; the
preceding column must be blank; and there must be one
or more blanks between the keyword and the selected
options. Blanks are not allowed between the selected
options.

Programming Considerations 7·1

The following example shows options appearing on one

statement:

1 4 	 8 12 16 20 24 28 32

/PIT /111 /~I~ 	 II I lStrr) I&l It ill Ii: f,Ill~lT

The following list provides a brief description of all the

options available:

Option 	 Explanation

LIST 	 The following sections of the

assembler listing are printed:

• 	 Options information

• 	 External symbol list

• 	 Source and object program listing

• 	 Diagnostic listing

• Error summary statements

NOLIST Only the following listings are printed:

• 	 Options information

• 	 Any statements in error and
the associated diagnostics

• 	 Error summary statements

The NOLIST option overrides all

assembler PRINT statements.

XREF A cross-reference listing is generated.

NOXREF A cross-reference listing is not generated.

OOJ "Fha object program is 1)Iac-ed in tfle
library as a subroutine member.

NOOBJ The object program is not placed in
the fibrary.

If OBJ is entered on the OPTIONS statement and there
are errors in the assembly, a halt is issued giving the

choice to terminate or place the object program in the

library as a subroutine member.

If no OPTIONS statement is used, the assembfy is

processed as though LIST, XREF, and OBJ had been

specified.

..

7·2

EXECUTION INFORMATION

Procedures for Assembler

The loading and running of the assembler and macro
processor can be done through the use of System/34
procedures. These procedures, and the procedure
commands that request them, are described here. (For a
complete description of System/34 procedures and
procedure commands, see the System Support Reference
Manual.)

ASM Procedure

The ASM procedure invokes the assembler and can
invoke the macro processor. The ASM procedure is
requested by way of the ASM procedure command.

ASM Procedure Command

The ASM procedure command requests execution of the
ASM procedure, which invokes the assembler and,
optionally, the macro processor. If you just enter ASM,
a display appears prompting you for command
parameters.

ASM source name , [#LlBR~RY] ,
source library

[parameter 2]
[MAC]

. object module library • NOMAC

, [;blkSZJ

source name Required source program name
parameter.

#LlBRARY
source library

Specifies the name of the library
in which the source, named in the
first parameter, is located. If
omitted, the system library
(#LlBRARY) is assumed.

parameter 2
object module
library

MAC
NOMAC

srcblksz
30

asmblksz
45

wrkblksz
10

wrk2blksz
36

yes
no

Specifies the name of the library

in which the object module will be

placed. If omitted, the library

specified in the second parameter is

assumed. If the second parameter is

omitted, the system library (#LlBRARY)

is assumed.

Macro processor parameter.

NOMAC bypasses the macro processor;

MAC invokes the macro processor.

MAC is the default if the

parameter is omitted.

$SOURCE file size parameter.

$SOURCE provides source input to

the macro processor.

If the macro processor is not invoked,

$SOURCE provides source input

to the assembler.

srcblksz: three-digit decimal number

indicating blocks required by $SOURCE.

30 is the default.

$ASMINPT file size parameter.

$ASMINPT provides source input

to the assembler if the macro processor

is invoked. $ASMINPT contains the

source program and macro processor

generated code. If the macro processor

is not invoked, this file is not used.

However, the parameter is still used.

asmblksz: three-digit decimal number

indicating blocks required by

$ASMINPT. 45 is the default.

$WORK file size parameter.

$WORK contains the object code

produced by the assembler.

wrkblksz: three-digit decimal number

indicating blocks required by $WORK.

10 is the default.

$WORK2 file size parameter.

$WORK2 is used as a work file

by the assembler.

wrk2blksz: three-digit decimal

number indicating blocks required by

$WORK2. 36 is the default.

Place job on the input queue.

Do not place job on the input job

queue. No is the default.

Programming Considerations 7-3

OLiNK Procedure $WORK2 requires approximately 40 sectors per 100

This procedure invokes the overlay linkage editor to
create a load module. The OLiNK procedure is
described in the Overlay Linkage Editor Reference
Manual.

Data Files Used by the Assembler

Disk files are used for the following:

• 	 Intermediate text ($WORK2 file)

• 	 Cross-reference file ($WORK2 file)

• 	 Overflow symbol table(s) ($WORK2 file)

• 	 Object program records ($WORK file)

• 	 Source program records ($SOURCE file and
$ASMINPT). $SOURCE provides source program
records for the macro processor. If the macro
processor isn't called, $SOURCE also provides source
program records for the assembler. If the macro
processor is called, $ASMINPT provides source
program records to the assembler.

If the source records are 80 (rather than 96) columns in
length, they are padded on the right with 16 blanks
before being placed in the input file. In this case, the
user should provide an ICTL statement to prevent the
assembler from processing the sequence field of the
80-column record.

$WORK2, $ASMINPT, $SOURCE, and $WORK are
automatically allocated but their default sizes may be
overridden by specifying the respective parameters on
the ASM procedure.

source statements:

Source Program Size
(number of
statements'

100

200

300

400

500

600

700

800

900

1000

Number of Required Blocks
(One block equals 10
sectors.'

4

8

12 .,
16

20

24

28

32

36

40

The $WORK file contains the object records. One sector
contains four 64-byte object records. The default is 10
blocks.

$SOURCE size requirements are as follows:

Source Program Size
(number of
statements'

100

200

300

400

500

600

700

800

900

1000

Number of Required Blocks

4

8

12

15

19

23 ..
27

30

34

38

$ASMINPT uses the same chart as $SOURCE. Note.
however. that the number of generated statements
should be counted in the program size.

74

ASSEMBLER LISTING

The printed output of the assembler includes the control
statements, external symbol list, object code and source
program listing, the cross-reference listing, and the error
message listing. These listings are described in detail in
this section.

Control Statements

Any OPTIONS or HEADERS statements specified by the
user are printed and any specification errors are noted.
A list of OPTIONS in effect during the assembly is then
printed.

External Symbol List (ESL)

The object program name, EXTRNs.and ENTRYs are
printed in the following format:

Symbol Type

Object program name MODULE

ENTRY symbol ENTRY

EXTRN symbol EXTRN

Object Code and Source Program Listing

The following items are printed for each entry in the
source program. See Appendix A for examples of an
object code and source program listing.

(ERR) Error Field: This field contains an E, I, W, or M
for those statements in error.

E 	 For assembler and
macro processor errors

W 	 MNOTE warnings with
a severity of 8

Information or image messages
from the macro processor

M 	 MNOTE errors with
severity greater than 8

(LOC) Location Counter: A four-digit hexadecimal
number that is left-padded with zeros. This number
represents the leftmost byte of any object code printed
on this line.

Object Code: Translated code. All code in this field is
left-justified.

• 	 Instructions: Maximum of 6 bytes (12 hexadecimal
characters). The operation, 0 code, operand 1, and
operand 2 fields are separated by one blank.

• 	 Data Constants: Maximum of 8 bytes (16
hexadecimal characters) per line. No blanks are
inserted among the data.

• 	 (ADDR) Address Field: Blank except for the
following:

For the DC and DS instructions, it contains the
address of the reference byte, that is, the
rightmost byte of the field.
For the END instruction, it contains the address to
which control will be passed to start execution of
the program.
For the USING instruction, it contains the address
referenced in the first operand field.
For the EOU instruction, it contains the value of
the operand field.
For the ENTRY instruction, it contains the address
of the entry point.

(STMT) Statement Number Field: This field contains the
number of the source statement starting from one. All
source statements, including comments, are numbered.
Valid SPACE, EJECT, and TiTlE statements are always
assigned statement numbers but are never printed. The
statement number field is 4 characters long and
therefore the program listing is accurate for only 9,999
statements.

Source Statement: A reproduction of the entire source
record. All source records are printed except for the
listing control statements: SPACE, EJECT, and TITLE.

Items printed include:

Column 	 Item

1 	 Error "flag

5-8 	 Location

9 	 Blank

10-25 	 Object code

27-30 	 Address

32-35 	 Statement number

37-132 	 Source statement

Statements generated by the macro processor are
preceded by plus (+) signs.

Programming Considerations 7-6

Page Headings

The following information is printed for each page in the
listing:

• 	 A header stating that the object code listing was
produced by the IBM System/34 Basic Assembler
and Macro Processor Program Product and
identifying the release level.

• 	 The content of the user's current TITLE card.

• 	 A descriptive header, which gives a short description
of the contents of the various fields of the
source-object listing, the current date and time, and
the page number.

Diagnostics

The source and object program listing includes error
codes for improperly coded statements. These codes
are documented at the end of the source and object
program listing under the heading Diagnostics. The
diagnostics list provides the following information:

• 	 Statement: The statement number in decimal, as
assigned by the assembler, of the statement in error.

• 	 Error code: A four-digit code. See Chapter 8 for a
complete list of these codes and the corresponding
messages.

• 	 Message: A translation of the error code, indicating
the type of error made.

Also included under the heading Diagnostics are these
error summary statements:

• 	 A count of the total statements in error in the
assembly. Total does not include missing module
name and missing end statement errors.

• 	 A count of total sequence errors in the assembly, if a
sequence check is requested.

Cross-Reference List

If XREF is specified on the OPTIONS statement, this list
includes all symbol names referred to in the source
program. This list includes the following columns:

• 	 SYM BOL: The symbol name.

• 	 LEN: The length attribute of the symbol, in decimal.

• 	 VALUE: The hexadecimal value of the symbol.

• 	 DEFN: The statement number, in decimal, where the
symbol is defined.

• 	 REFERENCES: The statement numbers, in decimal,
where the symbol is referenced. Each symbolic
reference to a data area or machine register whose
contents may be altered by the execution of a
machine instructio~ is flagged with an asterisk.

At the end of the cross-reference list, the error
summary statements are printed again.

7-6

OBJECT PROGRAM

The assembler program converts the source program
into control information, machine language instructions,
and data, all of which collectively are called an object
program. There is one object program produced per
assembly. Each object record is produced as a 64-byte
field.

Each object program generated by the assembler
contains three types of records.

• 	 ESl (external symbol list) record

• 	 TEXT - RlD (text- relocation directory) records

• 	 END record

Record Formats

The following describes the format of each record type.

ESL Record; The object program name, module name,
and all EXTRN and ENTRY symbols are placed in the
ESl record. The ESl record format is:

• 	 Byte': Record type identifier S.

• 	 Byte 2: length-' of the ESl record.

• 	 Bytes 3-62: ESl record.

• 	 Bytes 63-64: Filled with zeros.

.

TEXT-RLD Records; Text records and RlD pointers are
combined in this type of input record. The text portion
of each record contains the object code for the program,
while the RlD pointers indicate where the address
constants and relocatable operands of the text are
located. The format for the TEXT-RlD record is:

• 	 Byte': Record type identifier T.

• 	 Byte 2: length-' (of text only).

• 	 Bytes 3-4: Assembled address of the low-order
(rightmost) text byte in the record.

• 	 Bytes 5-64: Text starts at byte 5 and goes right.
RlD starts at byte 64 and goes left. The leftmost
end of the RlD section is marked by the hexadecimal
zeros that fill the space between the text and RlD
sections. The end of text is always followed by at
least one byte of X'QQ'.

END Record: The last record in each object program is
an END record. The END record contains the entry
address of the object program. If the user did not
include an operand in his source program END
statement, the object program END record generated by
the assembler contains the address X' FFFF. The format
for the END record is:

• 	 Byte': Record type identifier E.

• 	 Bytes 2-3: Entry address of the object program.

• 	 Bytes 4-64: Unused

Programming Considerations 7·7

MACROINSTRUCTION CODING RESTRICTIONS

The generated code for some macroinstructions uses
register 1 and/or register 2. The contents of the
register used by the generated code must be saved
before issuing the macroinstruction; otherwise, the
contents are destroyed. The $WSIO macroinstruction
uses registers 1 and 2. These macroinstructions use
register 2:

$ALOC $OPEN
$CKPT $PUTD
$CLOS $PUTP
$FIND $RIT
$GETD $SIT
$INFO $SNAP
$LOAD $SORT
$LOG $TOD

The code generated by the macroinstructions is
assigned labels; these labels begin with the dollar sign
($). To avoid duplicate-label errors, do not use the
dollar sign as the first character of a label.

MACROINSTRUCTION DEFINITION RESTRICTIONS

The macro processor assumes that any ampersand
starts a variable symbol. An ampersand used elsewhere,
including within a comment, results in error ASM-5402.

DISK DATA MANAGEMENT CONSIDERATIONS

Access Methods

Figure 7-1 indicates which access methods may be
used with which file types. Note that four different
situations are covered on the chart.

• 	 The combination of the file type and the access
method is not allowed by allocate or open. For these
situations, the number of the corresponding message
is given.

• 	 The combination of the file type and the access
method is allowed. These situations are indicated by
a blank entry.

• 	 In several situations, the actual file type of the file
will change to that of the access method. These
situations are indicated by File Change.

• 	 The combination of the file type and the access
method cannot occur. These situations are indicated
by X.

•

7-8

File Type

Consecutive Direct 	 Indexed

DISP· DISP· 	 DISP· DISP· DISP· DISP·
NULL NULL NULL NULL NULL NULL

DISP· DISP· DISP· Existing New DISP· DISP· DISP· Existing New DISP· DISP· DISP· Existing New
OLD NEW SHR File File OLD NEW SHR File File OLD NEW SHR File File

•
eG 	 ALOe

1356 x X x X

eu ALoe OPEN OPEN OPEN

1356 2204 2201 2204

X X X 2204 X

eA OPEN OPEN OPEN OPEN OPEN OPEN

2202 2201 2202 2204 2201 2204

X 2202 X X 2204 X

CO ALoe ALoe File ALOe ALoe File ALOe ALoe

1360 1359 Chang 1360 1359 Chang 1360 1359

1360 1360 1360

"0 1361 X 1361 X X 1361 X

0

i
~

DG 	 ALOe
...... DGA X X 	 1356 X X

§
c(DU 	 ALoe

DUA X 	 X 1356 X X

DO File ALOe ALoe ALoe ALoe File ALOe ALoe

DOA Change 1360 1359 1360 1359 Chang 1360 1359

1360 1360 1360

X 1361 X 1361 X 1361 X

IR 	 OPEN OPEN OPEN OPEN OPEN OPEN ALOe

2203 X 2203 2203 X 2203 X 2203 2203 X 1356

IAU 	 OPEN OPEN OPEN OPEN OPEN OPEN ALoe

2203 X 2203 2203 X 2203 X 2203 2203 X 1356

IA
OPEN OPEN OPEN 	 OPEN OPEN OPEN ALOCIRA
2203 X 2203 2203 X 	 2203 X 2203 2203 X 1356
IRUA

10 File 	 ALOe ALoe File ALOC ALOe ALoe ALoe

1360 1359 1360 1359 1360 1359
Ch.nj X 	 ChanjX
1360 1360 1360

1361 X 1361 X 1361

l" Figure 7·' (Pert' of 2). Acces Methods

Programming Considerations 7·9

File Type

DISP
OLD

DISP
NEW

Consecutive

blsP-
NULL

DISP- Existing
SHR File

DISP
NULL
New

File

DISP
OLD

Direct

DISP DISP
NEW SHR

DISP
NULL
Existing
File

DISP
NULL

New
File

DISP
OLD

DISP
NEW

Indexed

DISP
NULL

DISP- Existing
SHR File

DISP
NULL

New
File

•

IS OPEN
2203 x

OPEN bPEN

2203 2203 X

OPEN

2203 X

OPEN

2203
OPEN

2203 X

ALOe

1356

ISU OPEN
2203 x

OPEN bPEN
2203 2203 X

OPEN
2203 X

OPEN
2203

OPEN
2203 X

ALoe
1356

ISA

ISUA

OPEN
2203

X

OPEN
2201
2203

OPEN
2203

X

OPEN
2203

X

OPEN
2201
2203

OPEN

2203
X

OPEN
2201

ALoe
1356

'8.s:...
CD

:IE
'"...
§
c(

ISRI

ZPAMI

OPEN
2203 x

OPEN
2203

OPEN

2203 X

ALoe
1356

OPEN

2203 X

x

OPEN

2203
OPEN

2203 X

X x

ALoe
1356

X

ZPAMA OPEN

2201
OPEN

2202 X

OPEN

2201
OPEN

2202 X

OPEN

2204 X

OPEN

2201
OPEN

2204 X

ZPAMO ALoe ALoe
1360 1359

1360
1361

File
Chang

X

ALOe ALoe
1360 1359

1360
1361 X

File
Change

X

ALOe ALoe
1360 1359

1360
1361 X

Figure 7-1 (Part 2 of 21. Access Methods

7-10

•

•

Of the access methods listed in Figure 7-1, the ISRI
and ZPAM (ZPAMI, ZPAMA, ZPAMO) methods require
the user program to provide space for the access
method code.

The ISRI (indexed sequential/random input) access
method is similar to random-by-key access into an
indexed file. A key, which you specify, is retrieved along
with the corresponding data record. At this point, you
can choose to do one of the following:

• 	 Request that the next key be read (OP-FGET).

• 	 Request that the previous key be read (OP-BGET).

• 	 Provide a new key and request another random read
(OP-NGET).

• 	 Provide a new key and specify reading of the equal
key, the next higher key, or the last key, whichever is
encountered first (OP-AGET). ISRI then looks for a
key (and its corresponding record) that equals the key
you provide. If an equal key is not found, ISRI
returns the next higher key (and record). If neither an
equal nor a higher key is found and you are not
accessing a delete-capable file, ISRI returns the last
record in the primary portion of the file. The primary
portion is the part of the file that reflects the ordered
keys in the index. If you are accessing a
delete-capable file, the last record in the primary
portion may be a deleted record. In this case, ISRI
returns the record not found completion code. You
can specify OP-BGET in response to the record not
found completion code. OP-BGET causes ISRI to
read backward through the file, skipping deleted
records until a valid key is found.

Only index entries in the primary index area can be
accessed through ISRI, and only input operations are
supported by ISRI. Master track index is not supported
when you use the ISRI access method .

The ZPAM access methods are used to process disk
sectors of data rather than records. The amount of data
transferred must be a multiple of 256 bytes. This
provides an easy way of moving large amounts of data
rapidly. During processing, the record length of the file
is not used by data management; rather, data
management processes a number of disk sectors of data
based upon the block length you specify. Processing of
the disk sectors through ZPAM is consecutive. Input,
output, and add functions are supported through ZPAM.

Data Management Control Blocks and Buffers

To interface with disk data management. you are
required to provide storage space for interface
information. These areas must be available to the
system from the time the file is allocated until it is
closed.

DTF

The DTF is the major control block for communication
between data management and you. It provides the
information needed to allocate, open, access a file on
the disk device, and close the file. It also contains
pointers to the other control blocks and the buffer areas.
The DTF can vary in length from 72 bytes for a
consecutive access to 138 bytes for an indexed
sequential access. For information on generating a disk
DTF, see Define the File for Disk ($DTFD) in Chapter 6.

I/O Buffer Area

This area is divided into the required disk input/output
blocks (lOBs) and physical buffer areas by disk open. If
the access to the file is indexed, two lOBs are built;
otherwise, one is built.

In the event of very limited user' main storage in relation
to the size requirements of the physical buffers for disk,
it may be advantageous to use the SIAM method to
allocate buffers. Through SIAM, the same storage area
may be used for a physical buffer for any or all disk
files. Data management will then use this area as a
physical buffer for every file specified as SIAM. Care
should be taken, however, in the use of SIAM since
many more I/O operations are required when SIAM is
specified for a file. This may hinder the performance of
the job.

Logical Buffer Area

Whenever data is being written to disk (through output.
add, or the output portion of an update), you must
provide a logical buffer. This allows data management
to move the data from the logical buffer to the physical
buffer. This type of processing is known as move
mode.

Programming Considerations 7·11

Master Track Index Area

To aid the performance of the indexed random and
indexed sequential within limits access methods for
large files, you may supply data management with main
storage space for a master track index. This area will be
formatted by open so that the requested key within the
index area of the indexed file may be located more
easily. It is in effect an index into the index area or a
second-level index. Master track index is not supported
when you use the ISRI access method.

Address of Data Management Routines

While much of data management may be used without
reserving space, you must reserve space if you are
accessing disk through ISRI or ZPAM. This area will be
initialized at open time.

If you are using two DTFs with the same access method
(lSRI or ZPAM), you need reserve only one area.

Requested Record Number or Key Area

While processing under a direct access method, the user
must specify a relative record number of the requested
record. While processing under an indexed random
access method, the user must specify the key of the
relative record number. This area correlates to the
KEYADD parameter of the $DTFD macroinstruction.

Key Hold Areas

While processing under index sequential access method,
the user must provide a space two key lengths long for
the use of data management. This area correlates to the
CURENT parameter of the $DTFD macroinstructions.

Key Limits Area

When the use of key limits is requested, the user must
provide an area for containing the low and high limits.
This area correlates to the HIGH parameter of the
$DTFD macroinstruction.

Allocating and Opening the File

Before processing data from any disk file, the file must
be allocated ($ALOC) and opened ($OPEN). $ALOC and
$OPEN perform the following operations:

• 	 If the file is new, space on the disk is reserved for
the data and the space is initialized.

• 	 Diagnostics are performed to ensure that the access
method and file organization are compatible and that
all necessary information about the file was provided.

• 	 The input/output blocks (lOBs) and buffer areas are
formatted.

• 	 The DTF is formatted to a post-open state.

For more information on the $ALOC and $OPEN
macros, see Allocate Space or Device ($ALOC) and
Prepare a Device or File for Access ($OP£N) in Chapter
6.

Accessing Records in the File

After the file has been allocated and opened, you may
begin accessing records of that file. The
communications vehicle between your calling program
and the disk data management program is the same
DTF that was used for allocating and opening the file.
Certain fields in the DTF are for communication from the
calling program to data management, some are for
communication from data management to the calling
program, some are bidirectional communication fields,
and still other DTf fields are foF intemaldata
management use only.

Several DTF communication fields are pointers to main
storage areas. (These main storage areas will be
referred to as DTF areas in order to differentiate them
from the DTF fields.) Each fiel.d in the DTF has a name
as defined in the $DTFO macro expansion. Those field
names (excluding the prefix, $F1) will be used to identify
specific fields and areas.

Figure 7 - 2 describes the DTF fields that comprise the
external interface. All DTF fields not described on this
chart are reserved for internal data management use and
may not be altered or otherwise depended upon by any
calling program.

•

J

..

..

J

7-12

L
Direction of Access

DTF How Specified Communication Methods Can Be Altered
Field Macro/Keyword C/P (Vector) DIM Applicable Reqd Set By After Open Notes

-DEV $DTFD/* -+ All Ves C/P No *No keyword applies to
this field.

.. -AT1* $DTF0/ACCESS -+ All Ves C/P No * Also certain bits in other
ATTR bytes may be set
by $DTFD.

-NAM 	 $DTFD/NAME -+ All Ves C/P No

-OPC 	 $GETD & $PUTD/ -+ All Ves C/P Ves For ISRI, BGET and FGET
UPDATE or may be specified.
DELETE

-WKB $DTFD/RCAD +-+ All Ves* C/P Ves * Required of C/P for
D/M update and delete

add/output.

..._............_--_.._-.
-CMP All D/M Ves *See section on completion
code.

-RCL 	 $DTFD/RECL -+ All Ves C/P No

~ -BKL $DTFD/BLKL -+ All Ves C/P No* *Can be altered after open
for ZPAM or direct access
methods.

-lOB $DTFD/IOAREA -+ All Ves C/P No
OPEN

-KAD $DTFD/KEVADD -+ I/R Ves* C/P Ves*** *Not required for I/R
0 OPEN** output.

**Alter by open for I/R
accesses.

***User beware basis-
alterable.

-KL $DTFD/KEVL 	 I/R Ves C/P No

I/S

-KD 	 $DTFD/KDISP -+ 11R Ves C/P No
lIS

-AT2* $DTFD/ORDLD -+ 	 I/R No* C/P No *If indexed access part of
lIS A T2 affected.

Fillure 7-2 (Part 1 of 21. DTF Field,

Programming Considerations 7-13

Direction of Access
DTF How Specified Communication Methods Can Be Altered
Field Macro/Keyword C/P (Vector) D/M Applicable Reqd Set By After Open Notes

-CHN $DTFD/CHAIN ~* All No No *Communication to
ALLOC and OPEN.

-CUR $DTFD/CURENT ~ lIS Yes C7P No

-LST $DTFD/CURENT -+ I/S Yes OPEN* No *Set by OPEN based on
CURENT.

-HI $DTFD/HIGH* ~ I/S No C/P No *Used when limit specified.

-LO $DTFD/HIGH* ~ I/S No OPEN* No *Set by OPEN based on
HIGH.

-AT* $DTFD/SIAM ~ ALL No C/P *Part of field.

-PBF $DTFD/IOBUF ~ ALL* No* OPEN No *Need only be specified
C/P with SIAM or ZPAM.

-AT* $DTFD/ERROR ~ ALL No C/P No *Part of field.

-AT* $DTFD/RETURN ~ ALL No C/P No *Part of field.

-AT* $DTFD/BUFNO ~ CONS No C/P No *Part of field.

-AT* $DTFD/LiMIT ~ I/S No C/P No *Part of field.

~-NDX $DTFD/MSTNDX 	 I/R No C/P No * I ndexed sequential
I/SLL* within limits.

~-BYT $DTF D/MSTBYT 	 I/R No C/P No *Indexed sequential
I/SLL* within limits.

-DMA $DTFD/DMADDR ~ 	 ISRI Yes* *For the special access

ZPAM methods specified.

C/P =calling program

D/M =data management

Figure 7-2 (Pert 2 of 2). DTF Fields

7-14

DTF Fields 	Common To All Access Methods • 	 BKL Field Contains block length set by user.
In general, this length must be a

As noted in the previous chart, several DTF fields are multiple of 256 bytes. In particular,
used for communication between the calling program for input operations (which are
and data management. The following are used for all always in locate mode) and the DO
access methods: and DOA access methods (which

involve internal input operations), the
• DEV Field 	 Is initialized by the $DTFD macro to following rules apply:

specify a disk DTF. If the record length is a power
of 2, then BKL must be at

• ATI Field 	 Reflects the general type of access least (RCL + 255) rounded
method specified. Other attribute down to the next multiple of
bytes further qualify the access 256.
method. - If the record length is not a

power of 2, then BKL must be
• NAM Field Specifies the file name. The NAM at least (RCL + 255) rounded

field must correspond to the name up to the next multiple of 256.
specified in the FILE statement.

• lOB Field 	 At DTF creation, contains a
• 	 OPC Field Specifies either input, output, and Area pointer to the left byte of the I/O

update, or delete. If output is area provided by the calling
specified here, the attributes are program. This area must be large
checked to distinguish add from enough to hold all necessary lOBs
normal output. and physical I/O buffers.

Furthermore, the area must be large
• 	 WKB Field Contains a logical record pointer. enough or aligned such that OPEN

This is a bidirectional field. For can begin each buffer on an a-byte
output type operations (output, boundary. Unle~s you are using
update, or add), the calling program SIAM, the following formulas can be
must point to the beginning of the used:
logical record for output. For
successful input operations, data Consecutive or Direct Accesses:
management points to the beginning 32 + 7 + (BKL * BUFNO)
of the logical record retrieved Indexed Accesses:
(always within the physical buffer). 2(32) + 7 + 264 + BKL

• WKB Area Contains a logical record with the 	 32 is the lOB length.
length specified in 	RCL field.

OPEN, in addition to dividing this
• 	 CMP Field Contains completion code upon area as indicated, fills the DTF field

return from data management. This PBF with the beginning address of
field tells whether the operation was the physical I/O buffer (unless
successful; and if not, why not. See SIAM or ZPAM is specified).
Return Conditions later in this •
chapter. • CHN Field Contains pOinter to next DTF on

chain if calling program chooses to
• RCL Field 	 Contains logical record length set by allocate and / or open several DTFs

calling program. 	 with one call. The last DTF on a
chain should not specify the CHAI N
parameter.

• AT2-3-4 	 Contain information which qualifies
Fields 	 the access method, tells whether

SIAM was specified, and tells what to
do in case of I/O error.

Programming Considerations 7-15

Consecutive Processing Fields

Consecutive processing is used when you want to
process each record in order of physical location within

the file.

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, there is one
other field you can specify for consecutive processing:

• 	 BUFNO Attribute Field Specifies whether or not
you want a double size buffer.

Direct Processing Fields

Direct processing is used when you want to process a
file randomly by relative physical location of the data
record.

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, you must
specify one other field and one other area for direct
processing:

• 	 KAD Field Contains a pointer to left byte of the
area that contains the relative record
number of the record to be
processed.

• 	 KAD Area For direct processing, this is either a
3-byte or a 10-byte area depending
on whether the relative record
number is binary (3 bytes) or
decimal (10 bytes). In either case,
the number is right justified.

If binary relative record numbers are
used, the first record position in the
file is 0 and the binary number of
the highest possible position is
equivalent to decimal 16711407 and
hexadecimal FEFEEF. If decimal
relative record numbers are used,
the first record position in the file is
1 and the number of the highest
possible position is 9999999. The
number specified is used as an
absolute value.

Indexed Random Processing Fields

Indexed random processing is used when you want to
process an indexed file and want the capability to
process randomly by key value.

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, the following
are used for indexed random processing:

• 	 KAD Field For indexed random processing at
DTF creation, this field must point to
the left byte of an area the length of
one key. Open adjusts this pointer
to make it a right-byte pointer to
the area. When interspersing input
operations with update, delete, or
add operations, this field must be
reinitialized as a right-byte pointer
before each input operation. Note
that this field is also used in direct
processing.

• 	 KAD Area Contains the key value of the record
to be processed at each entry to
data management. The calling
program should ensure that no byte
contains a value of X'FF.

For update-, delete-, or
add-capable processing (accesses
IRU or IRUA), this area must not be
within the logical record area.

• 	 KL Field Contains the key length (a binary
number).

• 	 KD Field Contains the key displacement (a
binary origin 0 number) to the
rightmost byte of the key in the
record. For example, if the
rightmost byte of the key is in the
eighth byte position of the record,
then KD must contain the value 7.

..

J

.

7-16

..

• 	 MIX Field Optional master index pointer field,
which points to the leftmost byte of
an area where the master index is
built by open.

• 	 BYT Field Used in conjunction with the MIX
field, specifies length of field. Must
be a multiple of (KL + 3).

• 	 MIX Area Must not be altered by the calling
program after open .

Indexed Sequential Processing Fields

Indexed sequential processing is used when you want to
process an indexed file in ascending order by key. With
this access method, you have access only to the primary
portion of the file, which is the part reflected by the
ordered keys in the index. With the IFILE characteristic,
you have access to both the primary portion of the file
and the overflow portion of the file. (For information
about ISRI, see Access Methods in this chapter.)

In addition to those fields and areas described under
DTF Fields Common to All Access Methods, the following
are used for indexed sequential processing:

• 	 KL Field Key length (see Indexed Random
Processing Fields).

• 	 KD Field Key displacement (see Indexed
Random Processing Fields).

• 	 CUR Field Contains pointer to a 2-key-length
area. Prior to open, it is a left-byte
pointer. After open, the CUR area is
divided into two subareas, current
and last.

• 	 CUR Area This 2-key-length area is reserved by
data management after open.

• 	 HI Field When using limits processing, this is
a required field that, before open,
points to the leftmost byte of a
2-key-length area. After open, the
HI area is divided into two subareas,
high and low.

• 	 HI Area The above 2-key-length area is
reserved by data management after
open.

• 	 AT2 Field Part of this field tells whether
LI M ITS is specified.

The following fields can also be used if you specified
limits processing (LIMIT -Y):

• 	 MIX Field Optional master index pointer field,
which points to the leftmost byte of
an area where the master index is
built by open.

• 	 BYT Field Used in conjunction with the MIX
field, specifies length of field. Must
be a multiple of (KL + 3).

• 	 MIX Area Must not be altered by the calling
program after open.

Updating Records

Update is used when one or more fields of an existing
record are' to be changed. In general. prior to issuing an
update operation to data management, you must have
just issued an input operation for that record. If you
issue an add operation between an input operation and
an update operation, the update will not be successful.

Although you may succeed at times in the practice of
doing an input followed by several updates to that
record, that practice is discouraged for two reasons.
One is performance; the other is that the sequence will
not be successful when either SIAM or file sharing is
designated.

You must generally avoid updating records within the
physical buffer. In the event of SIAM or file sharing,
data management primes the I/O buffers as part of the
update process. Hence, updates would be lost. After
receiving the input, move the record to the logical record
area (specified by the RCAD parameter in $DTFD)
outside the I/O buffer, make any desired field updates,
then issue an update operation.

Finally, you cannot change the KAD area value between
an input, update sequence.

Programming Considerations 7-17

Deleting Records

Delete is used when you want to delete a record from a
file. After a record is deleted, it is no longer accessible.
The record is not physically removed from the file, but
the data is erased.

The rules for deleting records are the same as those for
updating records. Updating records is described in
preceding paragraphs.

Adding Records

Add is used when more records are to be included in an
existing file.

Direct access method add is not a supported function.

Index sequential add requires that you first issue get
operations (beginning with the lowest key in the file)
until you encounter the first key higher than the key you
want to add or until end of file is reached. At that point
you can issue an add operation.

"

Return Conditions

The following list describes all currently defined return
conditions. These are conveyed in the completion code
field in the DTF. For the actual labels and hex values of
the return- eodes, see the vatues generated by the
$DTFO macroinstruction.

• Normal return

• Permanent disk error

• End of file

• Invalid operation code

• Record not found-indexed random

• Out of extent-direct

• Update-previous operation not input

• Invalid key-indexed random

• Invalid block length

• Direct-record not found

• Invalid update, add, or output

• Update key error

• Override-deleted record not found

• Direct-put to nondeleted record

• Duplicate key add attempted

• Out of sequence

• End of extent

• Undefined access type

• DTF not opened

Terminating The File

When all desired records have been processed, you
should close ($CLOS) the file. Once the DTF has been
through close, no additional record processing is allowed
via that DTF unless and until the process of allocate and
open is repeated. For more information on the $CLOS
macroinstruction, see Prepare a Device or File for
Termination ($CLOS) in Chapter 6.

J

J

7-18

DISPLAY STATION DATA MANAGEMENT ACQ Return Codes
CONSIDERATIONS

After an ACa operation. the following return codes are
Following each DTF operation issued via $WSIO, a
2-byte return code is passed back in the DTF at
displacements $WSRTC-1 and $WSRTC. The return
codes possible after the various $WSIO operations are
described here, except for operations issued to the
interactive communications feature. Return codes from
the interactive communications feature are described in
the Interactive Communications Feature Reference
Manual. All the return codes listed for .an operation are
mutually exclusive.

Note: For a guide to work station data management
concepts and considerations, see the Concepts and
Design Guide.

GET and ACI Return Codes

After a GET or ACI operation, the following return codes
are possible at $WSRTC:

Label Value Explanation

$WSROK X'OO' Operation successful

$WSRACC X'01' New requester

$WSRSTP X'02' Stop system requested
by system operator (see
the System Data Areas
and Diagnostic Aids
Handbook for the
contents of $WSRTC-1)

$WSRACR X'11' ACI rejected. No invites
outstanding.

$WSRKBD X'14' Input rejected, keyboard
disabled.

$WSRNAV X'24' Display station released
by display station
operator

$WSRREL X'28' GET rejected. Display
station previously
released by program.

$WSRIRJ X'34' Input rejected. Input
buffer (INLEN parameter)
too small

$WSRPE X'80' Permanent I/O error
occurred at the display
station. In response to
the error, the system
operator selected a 2
option.

possible at $WSRTC:

Label Value 	 Explanation

$WSROK X'QQ' 	 ACQ successful

$WSRAQO X'OS' 	 ACQ successful. Display
station already allocated
to the task.

$WSRAFW X'1S' 	 ACQ failed, Display

station allocated to a

non-NEP.

$WSRAFS X'32' ACQ failed. Unauthorized
user.

$WSRAFN X'3S' ACQ failed:
- Display station is not

in standby mode.
- Display station is in

command reject mode.
- A permanent I/O error

occurred at the display
station,

- The display station is
allocated to an NEP.

STI Return Codes

After an STI operation, the fol/owing return codes are
possible at $WSRTC:

Label Value 	 Explanation

$WSROK X'QQ' 	 STI successful

$WSRNAV X'24' 	 Display station released
by display station
operator

$WSRREL X'2S' 	 STI ignored. Display
station previously
released by program,

$WSRSPF X'44' 	 STI failed. Display
station operator entered
data, which should be
read by a GET or ACI
operation.

$WSRPE X'SO' 	 Permanent I/O error
occurred at the display
station, In response to
the error, the system
operator selected a 2
option.

Programming Considerations 7-19

Return Cod •• for All Operation. Except GET, ACI, Label Value Explanation
ACe. and STI

SWSRGI X'51' On an output operation, .~
After any operation except GET, ACI, ACQ, and STI. the an invalid ideographic
following return codes are possible at SWSRTC: character was found. The

user selected a 2 option.

Label Value Explanation

$WSRGU X'52' 	 On an output operation,
one of the following

$WSROK X'OO' 	 Operation successful
errors was detected:

$WSRNAV X'24' Display station released

• An undefined

by display station
ideographic character

operator
was found.

$WSRREL X'28' Operation ignored.

• The extended file of

Display station previously
ideographic characters

released by program.
has not been

$WSRIRJ X'34' Input rejected. Input allocated.

buffer (INLEN parameter)

The extended file of
too small. 	 · ideographic characters

$WSRDFL X'40' Printer specified by print has not been restored.

operation is offline.

The user selected a 2

$WSPOGE X'45' Invalid ideographic option.

character during print

SWSRPE X'SO' 	 Permanent I/O erroroperation.

occurred at the display
$WSRGRF X'50' 	 On an output operation. a station. In response to

display station the error. the system
ideographiC). character operator selected a 2
table full of ideographic option.
characters was detected.

The user selected a 2

option.

J

7-20

Chapter 8. Printed Messages

MACROINSTRUCTION STATEMENT ERRORS

Any errors made in coding macroinstructions are flagged
in the $ASMINPT file by placing an error code and an
error message immediately after the macroinstruction.
The error code and message are then printed on the
assembly listing when the source program is assembled.

The following listing shows the error codes that may be
caused by errors in macroinstructions. Other error
codes may be generated by the macro processor and
are caused by errors in the macroinstruction definitions.

ASM-2600 	INVALID V PARAM GIVEN. NO
MACRO CODE GENERATED.

Explanation: Something other than DC, EQU or ALL
was coded for V parameter.

ASM-2601 	 INVALID TYPE PARAM SPECIFIED.
TYPE-DEC ASSUMED.

ASM-2602 	 INVALID ITYPE PARAM
SPECIFIED. ITYPE-REAL
ASSUMED.

ASM-2603 	INVALID CANCEL PARAM
SPECIFIED. CANCEL-N ASSUMED.

ASM-2604 	INVALID WAIT PARAMETER
SPECIFIED. WAIT-N ASSUMED.

ASM-2605 	UPDATE-Y AND DELETE-Y BOTH
SPECIFIED. DELETE-Y ASSUMED.

ASM-2606 	INVALID NREF PARAMETER
SPECIFIED. NREF-N ASSUMED.

ASM-2607 	INVALID XLOFF PARAM
SPECIFIED. XLOFF-N ASSUMED.

ASM-2609 	RCAD PARAMETER NOT
SPECIFIED. ZEROS ASSUMED.

ASM-2610 	NAME PARAM NOT SPECIFIED.
NAME-FILENAME ASSUMED.

ASM-2611 	 IOAREA PARAMETER NOT
SPECIFIED. ZEROS ASSUMED.

ASM-2612 	 ACCESS PARAMETER NOT
SPECIFIED. ACCESS-CG
ASSUMED.

ASM-2614 	 DMADDR PARAM GIVEN BUT
NOT NEEDED. PARAM IGNORED.

ASM-2615 	 DM.ADDR PARAMETER NOT
SPECIFIED. ZEROS ASSUMED.

ASM-2617 	 RECL PARAMETER NOT
SPECIFIED. RECL-32 ASSUMED.

ASM-2618 	 RECL PARAMETER GREATER
THAN 4096. RECL-32 ASSUMED.

ASM-2619 	 BLKL PARAMETER NOT
SPECIFIEO. BLKL-256 ASSUMED.

ASM-2620 	IOBUF PARAMETER USED
INVALIDLY. PARAMETER
IGNORED.

Explanation: This parameter is valid only with

SIAM-Y and ZPAM access methods.

ASM-2621 	 KEYADD PARAMETER NOT
SPECIFIED. HEX FFFF ASSUMED.

ASM-2622 	 KEYL PARAM NOT SPECIFIED,
INDEXED FILE. 1 ASSUMED.

ASM - 2623 	 KDISP PARAM NOT GIVEN,
INDEXED FILE. 0 ASSUMED.

Pri nted Messages 8-1

ASM-2624 	 CURENT PARAMETER NOT ASM-2637 LENGTH OR OFFSET INVALID. NO
SPECIFIED. HEX FFFF ASSUMED. MACRO CODE GENERATED.

Explanation: Something other than a decimal value J
ASM-2625 	 HIGH PARAMETER NOT from 1 to 256 was coded.

SPECIFIED. HEX FFFF ASSUMED.

ASM-2626 	 KEYADD INVALID FOR
CONSECUTIVE ACCESS.
IGNORED.

ASM-2627 	 KEYL INVALID FOR NON-INDEXED
ACCESS. IGNORED.

ASM-2628 	 KDISP INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

ASM-2629 	 MSTNDX INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

ASM-2630 	CURENT INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

ASM-2631 	 HIGH INVALID FOR NON-INDEXED
ACCESS. IGNORED.

ASM-2632 	 ORDLD-Y INVALID FOR
NON-INDEXED OUTPUT.
IGNORED.

ASM-2633 	 LlMIT-Y INVALID FOR
NON-INDEXED ACCESS.
IGNORED.

ASM-2634 	 BUFNO-2 INVALID,
NON-CONSECUTIVE ACCESS.
IGNORED.

ASM-2635 	 SIAM-Y REQUIRES IOBUF PARAM.
HEX FFFF ASSUMED.

ASM-2636 	 GET AND PUT BOTH GIVEN. NO
MACRO CODE GENERATED.

ASM-2638

ASM-2639

ASM-2640

ASM-2641

ASM-2642

ASM-2643

ASM-2644

ASM-2645

ASM-2646

ASM-2647

ASM-2648

ASM-2649

ASM-2650

FROM MISSING LEFT PABEN.. NO
MACRO CODE GENERATED.

FROM PARAM MISSING REG. NO
MACRO CODE GENERATED.

FROM PARAM MISSING DISP. NO
MACRO CODE GENERATED.

TO MISSING LEFT PAREN.
MACRO GENERATION STOPPED.

TO PARAM MISSING REG.
MACRO GENERATION STOPPED.

TO PARAM MISSING DISP.
MACRO GENERATION STOPPED.

PLiST -2 WITH LOAD PARAM.
MACRO GENERATION STOPPED. J
INVALID TYPE PARAMETER.
MACRO GENERATION STOPPED.

FORMAT INVALID WITH TYPE
GIVEN. FORMAT IGNORED.

HALT INVALID WITH TYPE GIVEN.
HALT IGNORED.

TYPE GIVEN REQUIRES DRADD
PARAM. HEX FFFF ASSUMED.

TYPE GIVEN REQUIRES MSGAD
PARAM. HEX FFFF ASSUMED.

HALT-Y REQUIRES OPTNO,
OPTN1, OPTN2, OR OPTN3.

J

8-2

II

ASM-2651 INVALID DRLEN PARAMETER. NO ASM-2662 INVALID CRT PARAMETER. NO
MACRO CODE GENERATED. MACRO CODE GENERATED.

Explanation: Something other than 8 or 60 was Explanation: Something other than Y or N was
coded.

ASM-2652

ASM-2653

ASM-2654

ASM-2655

ASM-2656

HIST-N, CRT-N BOTH GIVEN. NO
MACRO CODE GENERATED.

TYPE GIVEN REQUIRES DRLEN
PARAM. DRLEN-8 ASSUMED.

TYPE GIVEN REQUIRES MSGLN
PARAM. MSGLN-75 ASSUMED.

TYPE PARAMETER NOT
SPECIFIED. TYPE-1 ASSUMED.

INVALID TYPE PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than 1, 1R, 2, 2R 3 or
4 was coded.

ASM-2657 	TYPE GIVEN REQUIRES MIC
PARAM. HEX 0001 ASSUMED.

ASM-2658 	 INVALID WRSTE PARAMETER.
NO MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2659 	 INVALID HALT PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2660 	 INVALID FORMAT PARAMETER.
NO MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2661 	 INVALID HIST PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

coded.

ASM-2663 	 INVALID OPTNO PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2664 	 INVALID OPTN1 PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2665 	 INVALID OPTN2 PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2666 	 INVALID OPTN3 PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2667 	 INVALID SPACE PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than 1, 2, or 3 was
coded.

ASM-2668 	 INVALID SKIP PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2669 	 INVALID VARIN PARAMETER. NO
MACRO CODE GENERATED.

Explanation: Something other than Y or N was

coded.

ASM-2671 	 FORMAT-N, HALT-Y GIVEN. NO
MACRO CODE GENERATED.

Printed Messages 8·3

ASM-2672 	 WRSTE PARAMETER NOT
SPECIFIED. WRSTE-Y ASSUMED.

ASM-2673 	 FORMAT PARAMETER NOT
SPECIFIED. FORMAT-N
ASSUMED.

ASM-2674 	 HALT PARAMETER NOT
SPECIFIED. HAlT-N ASSUMED.

ASM-2675 	 SPACE PARAMETER NOT
SPECIFIED. SPACE-1 ASSUMED.

ASM-2678 	 lOADER-Y INVALID WITH TYPE
GIVEN. PARAM IGNORED.

ASM-2679 	 INVALID CODE PARAMETER.
MACRO GENERATION STOPPED.

ASM-2680 	BlKl PARAMETER AND RECl
PARAMETER CONFLICT.

Explanation: BLKL must be equal to or greater than
RECL.

ASM-2681 	 STATION IDS RECOMMENDED ON
SWITCHED LINES.

ASM-2682 	 INVALID TRANSP PARAMETER.

Explanation: Something other than Y or N was

coded.

ASM-2683 	 INVALID ITB PARAMETER.

Explanation: Something other than Y or N was

coded.

ASM-2684 	 INVALID UPSI PARAMETER.

ASM-2685 	 INVALID CODE PARAMETER.

Explanation: Something other than E or A was coded.

ASM-2686 	 RCAD PARAMETER REQUIRED.

ASM-2687 	 ITB PARAM, TRANSP PARAM
AND FTYP PARAM CONFLICT.

ASM-2688 	TRANSP PARAMETER AND CODE
PARAMETER CONFLICT.

Explanation: TRANSP is valid only with CODE-E.

ASM - 2689 FTYP PARAMETER REQUIRED.

ASM-2690 INVALID TYPE PARAMETER.

ASM-2691 INVALID BUFNO PARAMETER.

ASM-2692 RECl PARAMETER REQUIRED.

ASM - 2693 TERMAD PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: TERMAD is valid only with TYPE-MP.

ASM-2694 INVALID TERMAD PARAMETER.

ASM-2695 TERMAD PARAMETER REQUIRED.

ASM-2696 INVALID DlYCT PARAMETER.

JASM - 2697 	 BlKl PARAMETER REQUIRED.

ASM - 2698 	 RVIMSK PARAMETER AND
RVIADR PARAMETER CONFLICT.

ASM-2699 	 INVALID ERRCT PARAMETER.

ASM-2700 RCVID PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2701 RCVCT PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2702 	RCVCT PARAMETER REQUIRED.

ASM-2703 	RCVID PARAMETER REQUIRED.

8-4

ASM-2704 INVALID RCVCT PARAMETER.

~ ASM-2705 SNDID PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with

switched lines.

ASM-2706 SNDCT PARAMETER AND TYPE
PARAMETER CONFLICT.

Explanation: This parameter is valid only with
switched lines.

ASM-2707 	SNDCT PARAMETER REQUIRED.

ASM-2708 	SNDID PARAMETER REQUIRED.

ASM-2709 	INVALID SNDCT PARAMETER.

ASM-2710 	RECSEP PARAMETER AND ITB
PARAMETER CONFLICT.

ASM-2711 	 RECSEP PARAMETER AND
TRANSP PARAMETER CONFLICT.

ASM-2712 	 INVALID RECSEP PARAMETER.
RECSEP PARAM IGNORED.

ASM-2713 	 INVALID SKIP PARAMETER.
SKIP-N ASSUMED.

ASM-2714 	 INVALID LOADER PARAMETER.
LOADER-N ASSUMED.

ASM-2715 	 LOADER-N GIVEN OR ASSUMED.
LOAD PARAMETER IGNORED.

ASM-2716 	 INVALID TYPE PARAMETER.
TYPE-O ASSUMED.

ASM-2717 	 INVALID OPC PARAMETER
SPECIFIED. OPC-N ASSUMED.

ASM-2718 	 NAME PARAMETER REQUIRED.
BLANKS ASSUMED.

ASM-2768 	 V PARAM NOT ALLOWED WHEN
PLiST-INLINE SPECIFIED.

ASM-2769 	 LABEL PARAMETER MISSING. NO
MACRO CODE GENERATED.

ASM-2770 	 INVALID IMSG PARAMETER.
IMSG-ALL ASSUMED.

ASM-2771 	 TYPE PARAMETER REQUIRED.

ASM-2772 	 SYMID PARAMETER LENGTH
INVALID.

Explanation: The SYMID parameter must be 2

characters long.

ASM-2773 	 CTYPE PARAMETER REQUIRED.

ASM-2774 	 INVALID CTYPE PARAMETER.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
CTYPE parameter.

ASM-2775 	 LUNUM PARAMETER LENGTH
INVALID.

Explanation: The LUNUM parameter must be 3

characters long.

ASM-2776 	 RECL PARAM INVALID WITH
RECLAD PARAM.

ASM-2777 	 SSENSE PARAMETER LENGTH
INVALID.

Explanation: The SSENSE parameter must be 4

characters long.

ASM-2778 	 USENSE PARAMETER LENGTH
INVALID.

Explanation: The USENSE parameter must be 4

characters long.

ASM-2779 	 INVALID DR1 PARAMETER. DR1-Y
ASSUMED.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
DR1 parameter.

Printed Messages 8-5

ASM-2780 	INVALID DR2 PARAMETER.

DR2-N ASSUMED.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
DR2 parameter.

ASM-2781 	 INVALID ERI PARAMETER. ERI-Y
ASSUMED.

Explanation: See the Interactive Communications
Feature Reference Manual for a description of the
ERI parameter.

ASM-2782 	USERLB IGNORED WHEN

SOURCE NOT SPECIFIED.

ASM - 2783 	 INPUT2 THROUGH INPUT8 MUST
BE GIVEN SUCCESSIVELY.

ASM-2784 	INVALID ALTSEQ PARAM

SPECIFIED. ALTSEQ-N

ASSUMED.

ASM-2785 	INVALID KASRT PARAMETER
GIVEN. KASRT-N ASSUMED.

I ASM-2786 	INVALID USE OF RECFMT
PARAMETER.

ASM-3500 	REQUIRED STATEMENT LABEL
MISSING.'

ASM-3501 	PARAMETER 1 MISSING OR

INVALID.'

ASM-3502 	PARAMETER 2 MISSING OR

INVALID.'

1For a description of the required value, see the 1255
Magnetic Character Reader Reference Manual.

ASM-3503 	PARAMETER 3 MISSING OR
INVALID.'

-A~35O-4- PARAMETER4IV'-iSSiN-G OR
INVALID.'

ASM-3505 	NO CASE KEYWORDS
SPECIFIED.'

ASM-3506 	EDIT PARAMETER INVALID.'.

ASM - 3507 	DELIMS PARAMETER MISSING
OR INVALID.'

ASM-3508 	INCLDL PARAMETER INVALID.'.

ASM-3509 	$DE STATEMENT ALREADY
ISSUED.

Explanation: Only one $DE macroinstruction is

allowed in a single program. For a description of

$DE. see the 1255 Magnetic Character Reader

Reference Manual.

ASM-3510 	EXCLUD PARAMETER INVALID.' J
ASM-3511 	DLSEQ PARAMETER MISSING OR

INVALID.'

ASM-3512 	ALTCLS PARAMETER INVALID.'

ASM-3513 	NUM PARAMETER MISSING OR
INVALID OR DUPLICATE.

Explanation: The NUM parameter is missing, is

invalid, or duplicates the NUM parameter on a

previous $DF macroinstruction. The $DF

macroinstruction is described in the 1255 Magnetic

Character Reader Reference Manual.

8-6

ASM-3514 	MAXL PARAMETER MISSING OR
INVALlD.1

ASM-3515 	MINL PARAMETER INVALlD1.

ASM-3516 	$DF STATEMENT MISPLACED.

Explanation: All $DF macroinstructions mu.st precede
the $DE macroinstruction. $DE and $DF are
described in the 1255 Magnetic Character Reader
Reference Manual.

ASM-3517 	MOD PARAMETER MISSING OR
INVALlD.1

ASM-3518 	REM PARAMETER MISSING OR
INVALlD.1

ASM - 3519 	WF PARAMETER MISSING OR
INVALlD.1

ASM-3520 	SUM PARAMETER MISSING OR
INVALlD.1

ASM-3521 	TABLE PARAMETER INVALlD.1

ASM-3522 	LEN PARAMETER MISSING OR
INVALlD.1

ASM-3523 	NUM PARAMETER MISSING OR
INVALlD.1

ASM-3524. PAD PARAMETER INVALlD.1

ASM-3525 	PREVIOUS TABLE NOT CLOSED.

Explanation: A previous table which was opened by
way of a $DT macroinstruction was not closed by
way of a $DTD LAST macroinstruction. $DT and
$DTD are described in the 1255 Magnetic
Character Reader Reference Manual.

ASM-3526 	NO TABLE DEFINITION OPEN.

Explanation: A $DTD macroinstruction was issued to
define table data, but no $DT macroinstruction
was issued to define the table. $DT and $DTD are
described in the 1255 Magnetic Character Reader
Reference Manual.

ASM - 3527 	HEX STRING IS NOT EVEN
LENGTH.

Explanation: Excluding the first X, a string of hex
characters specified in a $DTD macroinstruction
must contain an even-not odd-number of
characters. $DTD is described in the 1255
Magnetic Character Reader Reference Manual.

ASM-3528 	DATA PARAMETER TOO SHORT
OR TOO LONG.

Explanation: Excluding the first C or X, a string of
data characters specified in a $DTD
macroinstruction must contain 1 through 32
characters. For a description of $DTD, see the
1255 Magnetic. Character Reader Reference Manual.

ASM-3529 	PARAMETER 9 INCORRECTLY
SPECIFIED.

Explanation: If it is specified, the ninth (positional)
parameter in a $DTD macroinstruction must be
LAST. $DTD is described in the 1255 Magnetic
Character Reader Reference Manual.

ASM-3530 	ACTUAL TABLE LENGTH
GREATER THAN SPECIFIED.

Explanation: The actual length of data entered in a
table by way of $DTD macroinstructions is greater
than the length specified for the table in the LEN
and NUM parameters of the $DT macroinstruction.
$DT and $DTD are described in the 1255
Magnetic Character Reader Reference Manual.

ASM-3531 	FIRST CHARACTER OF DATA
PARAMETER IS NOT C OR X. 1

1For a description of the required value, see the 1255
Magnetic Character Reader Reference Manual.

Printed Messages 8·7

ASM-3532 	TABLE PARAMETER MISSING OR
INVALID.'

ASM-3533 	TYPE PARAMETER MISSING OR
INVALID.'

ASM-3534 	AlEN PARAMETER MISSING OR
INVALID.'

ASM-3535 	COMP PARAMETER MISSING OR
INVALID.'

ASM - 3536 	ElEN PARAMETER MISSING OR
INVALID.'

ASM-3537 	NUM PARAMETER MISSING OR
INVALID.'

ASM-3538 	POS PARAMETER INVALID.'

ASM-3539 	WORKAREA lENGTH EXCEEDED.

Explanation: The total length of the work area(s)
defined by the $DW macroinstruction(s) exceeds
256 bytes. $DW is described in the 1255
Magnetic Character Reader Reference Manual.

ASM-3540 	NO $STRT STATEMENT ISSUED.

Explanation: The program must begin with a $STRT
macroinstruction. For a description of $STRT, see
the 1255 Magnetic Character Reader Reference
Manual.

ASM-3541 	NO $DE STATEMENT ISSUED IN
A MAIN PROGRAM.

Explanation: One $DE macroinstruction is required in
each main program (TYPE-MAIN on $STRT). $DE
(and $STRT) is described in the 1255 Magnetic
Character Reader Reference Manual.

ASM-3542 	NO $DF STATEMENT ISSUED IN
A MAIN PROGRAM.

Explanation: At least one $DF macroinstruction is
required in each main program (TYPE-MAIN on
$SRTR). $DF (and $STRT) is described in the
1255 Magnetic Character Reader Reference Manual.

ASM-3543 	PARAMETERS 2 AND 3 MISSING
OR THE SAME.'

ASM-3544 	TYPE PARAMETER INVALID.'

ASM-3545 	lRSIZE PARAMETER MISSING OR
INVALID.'

ASM-3546 	TTSIZE PARAMETER INVALID, 16
ASSUMED.'

ASM-3547 	$STRT STATEMENT ALREADY
ISSUED.

Explanation: Only one $STRT macroinstruction is
allowed in a single program. $STRT is described
in the 1255 Magnetic Character Reader Reference
Manual.

ASM-3548 	HOZCF AND/OR HOZCl
PARAMETER INVALID.'

ASM-3549 	RESBUF PARAMETER INVALID.'

ASM-3550 	BUFNUM PARAMETER INVALID.

1For a description of the required value, see the 1255
Magnetic Character Reader Reference Manual.

8-8

MACRO PROCESSOR

Any errors made in coding macroinstructions are flagged
in the $ASMINPT file by placing an error code and an
error message immediately after the macroinstruction.
The error code and message are then printed on the
assembly listing when the source program is assembled.
An error condition diagnosed by the macro processor is
reported on the source listing in the following format:

* Macroinstruction
E MIC# Diagnostic Error Message
I Image of last macro definition record read in

Example:

* $GETD
E 5428 Invalid AIF Record

AIF (&AB EQ '1' .A)

However, there are some cases when the last macro
definition record read in is of no value for debugging.
Under these conditions the image of the last macro
definition record read in will not be displayed.

ASM-5400 	INVALID CONTINUATION ON
MACRO CALL

Explanation: Positions 1 -15 of a macro call statement
contain a nonblank entry.

ASM-5401 	INVALID OPERATION CODE

Explanation: The mnemonic operation code of the
record being processed is not a valid System/34
assembler operation code.

ASM-5402 	INVALID VARIABLE SYMBOL

Explanation: An invalid variable symbol was found.
This error could be caused by an ampersand (&) in
a comment.

ASM-5403 	VARIABLE SYMBOL TABLE IS
FULL

Explanation: The variable symbol table is full. (The
user should split the job into smaller requests.)

ASM-5404 	VARIABLE SYMBOL NAME NOT
FOUND

Explanation: A reference has been made to an

undefined variable symbol.

ASM-5405 	GLOBAL VARIABLE REFERENCE
INVALID

Explanation: A set symbol identified on a global or
local record is also identified on a prototype or
TABLE record within the same macro definition.

ASM-5406 	INVALID CHARACTER STRING

Explanation: An invalid value exists on the record
being processed:

- Null value when not permitted
- Value exceeds 50 bytes when decoded
- Value exceeds the limits of the record on which

it appears

ASM - 5407 	SEQUENCE SYMBOL NOT FOUND

Explanation: A sequence symbol is missing or

misspelled.

ASM - 5408 	MACRO DEFINITION NOT FOUND

Explanation: The macro definition was not found in
the source library.

ASM-5409 	INCOMPATIBLE ATTRIBUTES
ENCOUNTERED

Explanation: A set symbol identified on a global
record has been identified as another type of set
symbol within a previous macro definition
statement.

The attribute of a set symbol referenced in the
name field of an SETA, SETB, or SETC record
does not match its assigned attribute.

ASM-5410 	INVALID GLOBAL OR LOCAL
RECORD

Explanation: A format error occurred in an operand of
a GBLA, GBlB, GBlC, lCLA, lClB, or lClC
record.

Printed Messages 8·9

ASM-5411 	HEADER STATEMENT IS INVALID
(MACRO)

Explanation: Misplaced control records following the
text record within a macro definition.

ASM-5412 	PROTOTYPE STATEMENT IS
INVALID

Explanation: A prototype record has one of the

following:

Format error in an operand field
- Invalid entry in a name field
- Operation field name incorrect
- More than five prototype continuations

ASM-5413 	INVALID KEYWORD ON MACRO
CALL

Explanation: An invalid keyword was found on a
macroinstruction.

ASM-5414 	INVALID INPUT DATA ON
MACRO CALL

Explanation: An invalid response to a keyword

parameter was found on a macroinstruction.

ASM-5415 	INVALID DELIMITER ON
PROTOTYPE

Explanation: No dash follows the keyword in a
keyword parameter on a prototype statement.

ASM-5416 	INVALID CONTINUATION ON
MACRO CALL

Explanation: The format of a macroinstruction is for a
continuation record to follow but continuation is
not indicated.

ASM-5417 	TABLE RECORD WITHOUT TABDF
RECORD

Explanation: A TABDF record does not follow a

TABLE record.

ASM-5418 	MEND STATEMENT OUT OF
SEQUENCE

Explanation: A MEND record was found immediately
following a TABLE record.

ASM-5419 INVALID RECORD BEFORE TEXT
RECORD

Explanation: An error has been encountered in the
placement of control records prior to the TEXT
record within a macro definition. Invalid table
record encountered.

ASM-5420 	INVALID TABLE DEFINITION
RECORD

Explanation: A table-definition record is invalid:

- The value does not start in position 16
- The argument is not left-justified starting in

position 1
- The argument exceeds the limits defined for the

record
- The mnemonic operation code (TABDF) is

missing

ASM-5421 	INVALID AGO RECORD

Explanation: An AGO record has an invalid sequence
symbol.

ASM-5422 	DEFINITION STATEMENTS·OUT
OF ORDER

Explanation: The macro definition records are not in
the expected sequence.

ASM-5423 	INVALID SEQ SYMBOL ON AGO
STATEMENT

Explanation: The length of the sequence symbol is
invalid.

ASM - 5424 	INVALID SETB RECORD

Explanation: An error exists in the format of a
variable symbol required in the name field of an
SETB record, or the operand is not 0 or 1.

ASM-5425 	INVALID FORMAT ONMNOTE
STATEMENT

Explanation: Invalid format on an MNOTE record.

..

8-10

ASM-5426 	MODEL RECORD IS IN ERROR

Explanation: One of the fixed format fields of a
model record has exceeded its defined limits. An
entry in field 1 must begin in position 1.

ASM-5427 	MODEL RECORD FIELD BUFFER
EXCEEDED

Explanation: A value compared in the operand of an
AIF record is more than 50 bytes long or has an
invalid format. (Only symbolic parameters, set
symbols, character strings, count functions, and
type attributes are valid for comparison.)

A model record is more than 71 bytes long.

ASM-5428 	INVALID AIF RECORD

Explanation: An error has been detected in the format
of an AIF record.

ASM-5429 	INVALID USE OF COUNT
FUNCTION

Explanation: The count function is being used with
other than symbolic parameters.

ASM-5430 	ERROR IN SETA STATEMENT
SYNTAX

Explanation: An error exists in the format of a
variable symbol required in the name field of an
SETA record, or the operand is blank.

ASM-5431 	ERROR IN SETC STATEMENT
SYNTAX

Explanation: An error exists in the format of a
variable symbol required in the name field of an
SETC record, or the operand is not enclosed with
quotes and delimited by a blank.

ASM-5432 	DECIMAL NUMBER IS INVALID

Explanation: Arithmetic term exceeds bounds of
-8,388,608 to +8,388,607.

The value of a symbolic parameter or a decimal
self-defining term exceeds maximum value of
65,535.

ASM-5433 	BINARY TERM INVALID

Explanation: A position in a binary self-defining term
is other than 0 or 1.

ASM - 5434 	EXPRESSION TERM INVALID

Explanation: An invalid operand or operator is used in
an arithmetic expression. Valid operands are
binary, character decimal, and hexadecimal
self-defining terms; variable symbols; and count
functions. Valid operators are addition (+1.
subtraction H, multiplication (*), and division (f).

ASM-5435 	CONSECUTIVE OPERATORS
ENCOUNTERED

Explanation: Consecutive operators have been

detected within an arithmetic expression.

ASM-5436 	EXPRESSION ENDS WITH AN
OPERATOR

Explanation: An arithmetic expression has been ended
with an operator.

ASM-5437 	INVALID HEX TERM

Explanation: A hexadecimal self-defining term

contains an invalid hexadecimal digit.

ASM-5438 	INVALID USE OF LEFT
PARENTH ESIS

Explanation: Improper placement of left parenthesis
or more than 3 levels of nested parentheses within
an arithmetic expression.

ASM-5439 	NO OPERATOR FOR OPERAND

ASM - 5440 	CONSECUTIVE OPERANDS
ENCOUNTERED

Explanation: Consecutive operands have been

detected within an arithmetic expression.

ASM-5441 	INVALID COMBINATION OF
OPERATORS

ASM-5442 	INVALID RIGHT PARENTHESIS

Explanation: A parenthesis is not paired properly.

Printed Messages 8-11

ASM-5443 	NULL VALUE IN ARITHMETIC
EXPRESSION

Explanation: Arithmetic expressions cannot contain
null values.

ASM - 5444 	CHARACTER EXPRESSION IS TOO
LARGE

Explanation: There are more than the maximum

number of bytes for a character expression.

ASM-5445 	INVALID SUBSTRING TERM

Explanation: When evaluating a character expression,
the value of either a term of a substring is
negative or the substring term is O.

ASM-5446 	SUBSTRING SYNTAX ERROR

Explanation: Syntax error in use of substring
character expression exceeds the limits of the
input record.

ASM-5447 	INVALID LABEL ON MACRO
INSTRUCTION

Explanation: A macroinstruction label contains an
invalid character.

ASM-5448 	MNOTE MESSAGE NOT FOUND

ASM-5449 	MACRO IS A BAD'MEMBER

Explanation: The definition for a macroinstruction
cannot be found.

ASM-5450 	MISPLACED POSITIONAL
PARAMETER

Explanation: All positional parameters must precede
any keyword parameters.

ASSEMBLER

A flag of E precedes each error code in the error field
on the assembly listing. After the assembly is complete,
a table of statement numbers, MIC codes, and error
messages is listed.

ASM-5500 	INVALID NAME LENGTH

Explanation: The name field entry is greater than the
maximum length allowed,

ASM-5501 	INVALID CHARACTER IN NAME

Explanation: The first position of a name field entry
starts with a nonalphabetic character or contains
an invalid character.

ASM - 5502 	NAME NOT ALLOWED IN
INSTRUCTION

Explanation: A name field entry was found on an
instruction where one is not allowed.

ASM-5503 	REFERENCE TO UNDEFINED
SYMBOL

Explanation: The referenced symbol is not defined in
this program.

ASM-5504 	NAME REQUIRED ON THIS
INSTRUCTION

Explanation: An EQU instruction does not have the
required name field entry,

ASM-5505 	PREVIOUSLY DEFINED SYMBOL

Explanation: This symbol has been previously defined
in this program.

ASM-5506 	MODULE NAME MISSING

Explanation: Either the START instruction is missing,
or the START instruction is present but the name
field entry (module name) is missing. The
assembler program assigns the default module
name ASMOBJ.

J

8·12

ASM-5508 INVALID OPERATION CODE

Explanation: Undefined operation field entry.

ASM-5509 	INVALID ORIGIN

Explanation: There has been an attempt to change
the value of the location counter to a value less
than the initial value of the location counter using
the ORG instruction.

ASM-5510 	INVALID OR ILLEGAL ICTL

Explanation: There is an operand error on an ICTL
instruction, or the ICTL instruction is not the first
statement in the program. (The ICTL is treated as
the last source statement in the program.)

ASM-5511 	 INVALID START INSTRUCTION

Explanation: The START instruction was encountered
after the location counter was initialized.

ASM-5512 	LOCATION COUNTER ERROR

Explanation: There is a location counter overflow
(greater than 65535) or there has been an attempt
to reference the location counter at 65536.

ASM-5513 	MISSING END STATEMENT

Explanation: The END statement is missing from the
program.

ASM-5516 	INVALID OPERAND DELIMITER

Explanation: An operand field syntactical delimiter is
either misplaced or missing.

ASM-5517 	INVALID OPERAND FORMAT

Explanation: The operand field format is not correct
for this instruction.

ASM-5518 	MISSING OPERAND

Explanation: An operand field entry is missing from
an instruction requiring one.

ASM-5519 	INVALID SYNTAX IN
EXPRESSION

Explanation: There has been a violation of one or
more of the expression syntax rules.

ASM-5520 	EXPRESSION VALUE TOO LARGE

Explanation: The final expression value is not in the
range _216 to 2 16 _1.

ASM-5521 	 INVALID OPERAND

Explanation: One or more operand entries do not
meet the specifications for this instruction.

ASM-5522 	ARITHMETIC OVERFLOW

Explanation: An intermediate expression value is not
in the range - 224 to 224_1.

ASM-5523 	ADDRESSABILITY ERROR

Explanation: A relocatable displacement is outside the
range of the USING instruction.

ASM - 5524 	REGISTER SPECfFICATION ERROR

Explanation: The index register specification is not 1
or 2.

ASM-5525 	INVALID CONSTANT

Explanation: There is an error in a constant

specification on a DC instruction.

Printed Messages 8·13

ASM-5526 	INVALID CONSTANT TYPE

Explanation: The data type specified in a DC or OS is
not valid.

ASM - 5527 	TNVALID DUPLICATION FACTOR

Explanation: There is an error in the duplication factor
specification on a DC or DS.

ASM-5528 	INVALID LENGTH SPECIFICATION

Explanation: There is an error in the length

specification.

ASM-5529 	INVALID STATEMENT DELIMITER

Explanation: The column following the statement field
is not blank.

ASM-5530 	RELOCATABLE MULTIPLICATION

Explanation: A relocatable term was used in a

multiply operation.

ASM-5531 	RELOCATABILITY ERROR

Explanation: A relocatable expression is used where
an absolute expression is required; or an absolute
expression is used where a relocatable expression
is required.

ASM-5532 	INVALID SYMBOL

Explanation: There is an invalid character in or invalid
length of a symbol in the operand field.

ASM-5533 	INVALID SELF-DEFINING TERM

Explanation: There is an error in the format of a

self-defining term.

ASM-5534 	SELF-DEFINING VALUE TOO
LARGE

Explanation: The value of self-defining term is

outside of the range of _2 16 to 216 _1.

ASM-5535 	INVALID IMMEDIATE FIELD

Explanation: The value of the immediate field is not in
the range of X'OO' to X'FF'.

ASM-5536 	INVALID DISPLACEMENT

Explanation: The value of the absolute displacement
is not in the range of 0 to 255.

ASM-5537 	INVALID EXTRN

Explanation: The symbol is invalid, already defined in
the program, or the subfield is invalid.

ASM - 5538 	TOO MANY ESL RECORDS·

Explanation: More EXTRN and ENTRY statements
were found in the program than are permitted.
This count includes multiple EXTRNs and ENTRYs,
ENTRYs with valid symbols which are not defined,
and EXTRNs with valid symbols which are defined
in the program.

The region size determines the number of
permissible ESL records as given in the following
table:

Region Size Maximum Statements
14 - 18 85

20 125
22 - 26 170
28 - 34 210
36 and up 255

J

8·14

Appendix A. Samples

This appendix contains:

A sample assembler program

Sample macroinstruction definitions and related

macroinstruction expansions

.. SAMPLE ASSEMBLER PROGRAM

LlST.XREF.OBJTHE LIST OF OPTIONS USED DURING THIS ASSEMBLY IS-

REL~ ASE 04IS~ SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR

ASSMPL
 EXTERNAL SYMBOL LIST
05-09-79 TIME 09.'0<; PAGE

SYMBOL TYPE

ASSMPL MODULE

B" SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 0"
ASSMPL

ERR LOC OBJECT COOE AOoR STMT SOURCE STATEME"'T 05-09-79 TI ME 09.45 PAGE 2
1 ICTL 1.71 0;):>2000J2 ISEQ 73,80 000300003 PRI"'T NOGEN,NOoATA 000"0000

IB~ SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSOR RELEASE 0'0
ASSMPL DISK FILE TO PRINTER (80/80 LIST PROGRAM I
ERR LOC OBJECT CODE AODR STMT SOURCE STATEMENT 05-09-79 TIME 09.'05 PAGE 3

5 **************•••*••***••*•••••••••••••••••*•••••••••••*••••*••*•••*•• 00060000
6 • THIS PROGRAM REAOS A FILE FROM THE OISK ANO LISTS IT • 00070000
7 * ON THE PRINTER. • 00080000
8 • • 00090000
9. THERE ARE THREE POSSIBLE MESSAGES ISSUED BY THIS PROGRAM: • OIHOOOOO

10 • MESSAGE MEANING * OOllOOOJ
11. 'EOF ON SYSIN' END OF FILE E~COUNTEREO FROM DISK READ. • 00120000
12 • THE PROGRAM ISSUES THE MESSAGE • 00130000
13 • AND GOES TO EOJ. • 00140000
14 • 'PRINTER ERROR' THERE HAS BEEN A PERMANENT PRINTER • 00150000
15 • ERROR. THE PROGRAM ISSUES THE • 00160000
16 • MESSAGE AND GOES TO END OF JOB. • OJ170000
17. 'SYSIN ERROR' THERE HAS BEEN A PERMANENT READ • 00180000
18 • ERROR. THE PROGRAM ISSUES THE • 00190000
19 • MESSAGE AND GOES TO END OF J08. • 00200000
20 ••••••••••••••••••••••••*•••••••••••••••••••••••••••••••••••••••**•••• 00210000

OBOO 22 ASSMPL START X'0800' 0023000D

24 • PREPARE THE FILES FOR USE COTFS ARE CHAINEDI 00250000

26 • SALOC oTF-oSKoTF ALLOCATE ALL FILES 00210000

33 • 50PEN oTF-oSKoTF OPEN ALL FILES 00290000

40 • READ FROM SYSTEM SOURCE LIBRARY AND PRINT RECORDS UNTIL END JF FILE 00310000
0810 41 REDAGN EQU * 0)320000

42 • SGETD oTF-DSKoTF.ERR-SYSER,EOF-EOF,OP-NGET 00330000

0829 B5 02 09 54 L 5FIWKBC,XR21,XR2 POINT TO RETRIEVED RECJRD 00350000
OB2C 2C 'oF OB47 'oF 55 MVC DSKRECIBOI.79C.XR21 MOVE DATA TO PRINT BUFFER 00360000

56 • SPUTP OTF-PRTOTF.ERR-PRNERR,SPACEA-l.PRINT-Y 0:1370000

0846 CO 87 0810 67 B REOAGN ~RANCH BACK AND READ AGAIN 00390000

Samples A·1

I B~ SYSTEM134 BASIC ASSEMBLER-MAC~O PROCESSOR RELEASE 04

ASSMPL DISK FILE T3 PRII>iTE~ I tlO/80 LI ST PROGRAMI

ERR LDC OBJECT CODe "JDR STMT SDURCE STATEME ... T 05-09-19 TIME 09.45 PAGE 4 J
69 '" E... D OF FILE ON SYSIN Ol41000;)

084A C2 02 OBD4 70 EOF LA EOFMSG.LUG 00"20000

71 SLOG EOF MESSAGE OJ430000

0852 co 87 0869 76 ° B EOJ INVALID REPLY. TRY AGAI'" O:l44000J

78 ° ERROR ON DISK READ 0:J460000

0856 C2 02 OBDC 	 79 SYScR LA SERMSG.LOG O:lftTOOOO

80 SLOG 	 DISK READ ERROR MESSAGE 00480000
085E FZ 81 08 	 85 ° J EOJ GO TO EOJ 00490000

87 '" ERROR ON PRINTER 0;)5HlOOO

08bl CZ 02 OBE4 	 88 PRNERR LA PERMSG.LOG 00520000

89 '" SLOG 	 PRI ... TER ERROR MESSAGE 00530000

95 ° END OF JOB ROUTINE 0:l550000 ...
~8!>9 9b EOJ ECU ° 0:1560800

91 SCLOS DTF-DSKOTF CLOSE ALL FILES 	 0;)570 00
103 ° SEOJ 	 END JOB 00580000°
109 '" CONSTANTS AND DATA AREAS 	 OJbOOOOO

111 * DISK FILE TABLES ETC. OJ~2000:l
112 *SKDTF SDTFD ACCESS-CG.RECL-8D AME-I ... PUT.8LKL-512.IOAREA-I~3UF. ~OOb30000
113 • CHAI~-PRTOTF.RCAD-I ... RCRO 00b40000

158 '" BUFFER AND WORK AREAS FOR DISK I ...PUT I"'TERFACE OJbbOOOO

;)8Dl 159 I ... BUF ECU 0) 001>70000

0801 DBF1 16D lOB OS CL39 OJI>80000

OElF8 :J4F1 Ibl INAREA OS 2CL256 00b90000

JAF8 Ib2 INRCRD ECU 	 0:>700000
OAF8 0641 	 163 OSKREC OS ° CL80 Ol710000

165 ° PRINT FILE TABLES ETC. 00730000
Ib6 0RTOTF SDTFP RCAD-INRCRD.IOAREA-OUTPUT.~ECL-80."'AME-FILENAME 00740000

196 .. BUFFER AND WORK ARE~S 	FOR PRINTER INTERFACE 00760000
;)611 191 OUTPUT ECU ° 	 00170000

OBH OBD3 	 198 IOAREA OS CL99 O:J7BOOOO

200 ° SYSTEM LOG TABLES Ol800000

ZOZ "OFMSG SLMSG TYPE-Z.SPACE-2.MSGLN-15,MSGAO-EOFMGC.WRSTE-N XOl82'00J

J
la~ SYSTEM/34 BASIC ASSEMBLER-MACRO PROCESSO~ i\ELEASE 04

ASSMPL DISK FILE TJ PRI"'TE~ 	 180/80 LIST PROGRAMI

ERR LOC OBJECT CODE AODR STMT SOURCE STATEMENT 05-09-79 TIME 09.45 PAGE 5

219 oERMSG SLHSG TYPE-2.SPACE-2.MSGLN-15.MSGAO-SERMGC,WRSTE-N X00940000

23b oERMSG SLMSG TYPE-Z.SPACE-2.MSGL"'-lS.HSGAD-PERMGC.WRSTE-'" XO~8bOOOO

;)8EC 253 EOFMGC tCU 	 OJ88~000
OBEC C5DbC640DbDS40E2 	 OSFA 254 DC CL15'EOF ON SYSI ... Ol99000l

·:ldFB 25b SERMGC ECU 00910000

'"

OBFB E2E8E2C9D540C5D9 	 OC09 257 DC °CLl5'SYSIN ERROR OJ92000;)

OCOA 259 PERMGC ECU Ol940000

OLOA D7D9C9D5E3C5D940 :le18 	 260 DC °CLl5' PR INTER ERROR 0:l950000

262 .. OFFSETS FOR ALL DTFS DEFINED IN THIS PROGRAM OJ91000)

264 ° SDTFU DISK-Y.PRT-Y.FIELD-Y OJ99000~

b11 .. REGISTER LABELS 0101000)
0002 b12 SOTF fCU 2 	 01020000
0002 b13 SYS fCU 2 	 SYSIN PARAMETER LIST paI~TER 01030000
0002 614 LOG EOU 2 SYSLOG PARAMETER LIST P3INTER 01040000 "
~002 b15 XR2 EQU 2 INDEX RfGISTE~ 2 REFfRE~CE 01050000

0800 b17 END ASSMPL 0107000J

TOTAL STATEMENTS I~ ERRO~ I~ THIS ASSEMBLY- o
TOTAL SECUENCE ERRDRS IN T~IS ASSEMBLY-- o

A·2

SAMPLE MACROINSTRUCTIONS

The definitions of the IBM-supplied $PUTP (Construct a
Printer Put Interface) and $LOG (Generate the Linkage to
the System Log) macroinstructions are given here. The
definitions are followed by a partial assembler program
in which $PUTP and $LOG are issued. The
macroinstruction expansions listed in the program show
how the expansion generated for a macroinstruction is
related to the definition of the macroinstruction.

Definition of $PUTP

tLABEL

Y
N
YES
NO

o
1
2
3

o
1
2
3

*

*
~

.ARCR

MACRO
SPUTP &OTF-.tPRINT-.tSKIPB-.&SPACEB-.tSKIPA-. x

&SPACEA-.&E~R-.tOVFL-
TABLE &PRIIIIT

TABOF X'40'

TABOF x'OO'

TABDF X'4~'

TABDF X'OO'

TABLE &SPACEB

TABDF O~

TABDF 01

TABOF 02

TABOF 03

TABLE &SPACEA

TABOF 00

TABOF Jl

TABOF 02

TABDF 0]

TEXT

AGO .ARCR

COPYRIGHT=5726-SSi CJPY~IGHT IBM :ORP 1977 LICENSED ~ATeRIAL - *

* LINKAGE TO PRI~TER DATA ~ANAGEMENT

PROGRAM PROPERTY ~F IB~. REFER
FORM NUM8ER G-1Z0-2083.

ANOP

AIF
&LABEL 	 EOU
.Z ANOP

AIF
LA

.A ANOP
AIF
MVI

• B 	 ANOP
AIF
~VI

.C 	 ANOP
AIF
~VI

.0 	 ANOP
AIF
MVI

.E 	 ANOP
AIF
MVI

.F 	 ANOP
SVC
DC
AIF
CLI
BE

.H 	 ANOP
AIF
CLI
BE

.ENDP 	 A~JP

* END OF EXPANSION

(tLABEL EQ "I.Z
*
(&OTF E~ "I.A
&DTF.2

"PRINT EO ",.B
il(.2I,&P~I~T

"SKIPB EO ",.C
26(.ZI,tSKIPB

(&SPACES EO "1.0
Z71,21,tSPA:EB

(&SKIPA EO "I.E
28(,ZI,tSKIPA

(tSPACEA EQ "I.F
29(.2),tSPA:EA

04.01
XLl'l]'
(tERR E~ "I.H
10(.21,X'41'
&ERR

(tOVFL EJ ",.ENOP
IJ(.21,K'48'
tOVFL

TO COPYRIGHT I~ST~UCTIJ~S *
*

XRZ ----) ~TF

SET OP CODE IN OTF

SET SKIP SEFORE

SET SPACE SEFORE

SET SKIP 	 AFTER

SET SPACE AFTER

TRANSFER CONTROL TO

DATA MANA~EMENT

PERMANENT ERROR?

YES. GO T~ ERROR ROUTI~E

PAGE OVE~FLJW ?

YES, GO TO OVERFLOW ROJTINE

MEND

Samples A-3

L

Definition of $LOG

MACRO
&LABEL SLOG tLIST-,&JPT~0-,&OPTN1-,&OPTN2-

TEXT
AGO .LOGOO SKIP COPYRIGHT GE'IIERATION

to COPYRIGHT-S7lb-ASl COPYRIGHT IBM :ORP 1977 LI~ENSEO ~ATERIAL
to - PROGRA~ PROPERTY OF IB~. REFER TO COPYRIGHT I'IIST~UCrIo'llS
to FORM NUMBER G-120-2083 •
• LOG:):) A'\IOP
to LI'IIj(A6~ T-o s~sun; ~OJT lI'.jES

&LABF.L
AIF
EQJ

IT'&LABEL
to

E) 'O'I.LOGOI LABEL NOT SPECIFIED?

.LoGOl AIF IT'tLIST EO 'O'I.LOG02 wAS LIST SPECIFIEO
LA tLlST,l REGISTER Z --> PARA~ETER LIST

• LOG:J2 SVC X'04',X'Ol' CALL SYSLJG WITH ~EF~ESH

OC XL1'OS' SYSLOG RIB
AIF
TBN

IT'tJPT'IIO E)
101,21,X'80'

'O'I.LOGO]
wAS OPTIJ'II ZE~J TAKE'll

BT toPTNO YES,GO TJ JPTNO ADDRESS
.LOG03 A'>IOP

AIF IT'tOPT'IIl E~ 'O'I.LOG04
TBN 101,21,X'40' WAS OPTION ONE TAKE'll
BT OPT'll I YES, GO TO OPT'IIl ADDRESS

.LOGO" A'>IOP
AIF IT'tOPTN~ EO 'o'I.LOGOS
TBN l()I,21,X'20' WAS OPTIJ'II TwJ TAKEN
BT tDPTN2 YES,GO TO OPT'II2 ADDRESS

.LOG05 A'IIJP
'-, END !IF EXPA'IISION

MEND

Expansions of $PUTP and $LOG

IB~ SYST~M/34 BASIC ASSE~BLER-MACRD PROCESSOR RELEASE 04

ERR LOC OBJECT CODE AODR STMT SOURCE STATE~ENr 04-10-79 TIME Ib.13 PA~E N

2 to

3 to

4 '.' T~IS IS AN EXAMPLE OF A PARTIAL ASSEMBLER PROGRAM
5 '.' SrlJwt'llG EXPANSIONS OF T~E MACROS $PUTP AND SLOG
~ * TO DEMONST~ATE HO~ MACRO EXPANSIJ'>IS WOR<
7 to

B to

9 (: SPJTP DTF-~RTDTF,ER~-PR~E~R'SPACEA-l,PRI'IIT-Y
l:l- ~, LINKAGE. TO PRINT~R DATA MANAGE~ENT

JO:lO 00 00 0000 11 LA P~T!HF,2 XR2 ----> DTF
000" Be "0 OB 12 MVI 111,ZI,X'40' SET JP eJDE I~ DTF
0007 Be 01 ID 13+ MVI 191 ,2 1 ,01 SET SPACE AFTER
:JO:JA F4 01 0" 14+ SVC 04,01 TRA~SFER CJ'IIT~JL TJ
0000 13 0000 15+ DC XII ' 1 3' DATA MANAGE~ENT
:lO:JE
0011

BD
00

41
OJ

OA
0000

Ib
17

CLl
BE

101,21,X'41'
pql'llnq

PER~4NENT ERKOR ?
YES, GO TJ ER~JR ~JUTI'IIE

18 -~,
19 *
ZJ to

ENO OF EXPANSION

21 to

22 *
23+*

SlJG
LINKAGE TJ SYSLOG RoUTI'IIES

0015
0018

F4
05

01 04
0018

24+
2S+

SVC
DC

x'D4' ,X'Ol'
XLl'OS'

CALL SYSLOG
SYSLOG RIB

wITH qEFRESH

2~-* END DF EXPANSION
27 ':'

A-4

Appendix B. EBCDIC

The coded character set for EBCDIC (extended binary
coded decimal interchange code) is shown in the
following table.

') EBCDIC

Main Storage Bit Positions 0, 1,2,3

Main Storage
Bit Positions
4,5,6,7

0000

He.

0

0000

0

NUL

0001

1

DLE

0010

2

DS

0011

3

0100

4

1'1

0101

5

&

0110

6

-

0111

7

1000

8

1001

9

1010

A

1011

B

1100

C

,
\

1101

D

I,

1110

E

\

1111

F

0

0001 1 SOH DCl SOS I a J
~ A J 1

0010

0011

0100

2

3

4

STX

ETX

PF

DC2

DC3

RES

FS

%C3

BYP

SYN

PN

b

c

d

k

J

rn

5

!

u

B

C

D

K

L

M

S

T

U

2

3

4

0101 5 HT NL LF RS e n v E N V 5

0110

0111

1000

6

7

8

LC

DEL

BS

IL

CAN

~TB

%SC

UC

EOT

I

y

h

0

p

'I

w

x

Y

F

G

H

0

P

0

W

X

Y

6

7

8

1001

1010

9

A

RLF

SMM

EM

CC SM ri I
I

I

I I 1 . I R Z 9

LVM

1011

1100

B

C

VT

FF

CUl

IFS

CU2 CU3

DC4 <

$

. %

:=

tv J' rl
1101

1110

1111

D

E

F

CR

SO

SI

IGS

IRS

IUS

ENO

ACK

BEL

NAK

SUB

(

+

I

)

I

-

>

7
,.

y
EO

Duplicate Ass,ynmenl

EBCDIC B-1

J

B-2

Glossary

•

arithmetic expression: A conditional assembler
expression that is a combination of arithmetic terms.
arithmetic operators. and paired parentheses.

assembler: A computer program that prepares an
object program from a source program written in a
symbolic source language in which there is a
one-to-one correspondence between the instruction
formats and data formats coded and those used by the
computer.

assembler instruction statement: A statement that
controls the functions of the assembler.

base displacement addressing: An addressing method
that involves setting up a base address from which
other addresses can be calculated.

character string: A string consisting solely of
characters.

checkpoint: A reference point in a program at which
system and job status is recorded so that. if necessary.
the program can be restarted at that point.

delete-capable file: A file that can contain records that
are logically deleted. though no physical compression
occurred when the records were deleted.

direct addressing: An addressing method that allows
the programmer to represent a 16-bit instruction
address by using an expression as an operand entry.

expression: An arithmetic combination of terms.

global: Available to all macroinstructions in an
assembler source program.

keyword parameter: A parameter that consists of a
keyword, followed by one or more values.

literal: See self-defining term.

locate mode: A way of providing data to the user by
pointing to its location rather than by moving it.

location counter: A counter used to assign storage
addresses.

machine instruction statement: A statement that
represents a machine language instruction on a
one-for-one basis.

macroinstruction statement: A statement that
represents a sequence of machine and/or assembler
instruction statements.

MIC: Message identification code.

move mode: A way of transferring data by identifying
its location to data management.

operand: An entry that follows an operation code and
further defines the operation to be performed.

positional parameter: A parameter that must appear in
a specified location. relative to other positional
parameters.

processor: A computer program that includes the
compiling. assembling. translating. and related functions
for a specific programming language.

relative addressing: A means of addressing
instructions and data areas by d.esignating their location
in relation to the location counter or to some symbolic
symbol.

self-defining term: A term whose value is inherent in
the term.

sequence symbols: Labels used in coding
macroinstructions that determine the sequence of
macroinstruction definition statement processing .

set symbols: In assembler programming. a variable
symbol used to communicate values during conditional
assembly processing.

term: A single symbol. self-defining value. or location
counter reference used only in the operand field of an
assembler language statement.

Glossary C·,

.'

C-2

Index

&SYSNDX 5-3

$ALOC 6-16,7-12

$ASMINPT 7-3, 7-4

$CKEO 6-13

$CKPT 6-13

• 	 $CLOS 6-19,7-18

$DTFD 6-22

$DTFO 6-19

$DTFP 6-20

$DTFW 6-35

$EOJ 6-15

$FIND 6-9

$FNDP 6-8

$GETD 6-27

$INFO 6-11

$INV 6-15

$LMSG 6-5

$LOAD 6-10

$LOG 6-8

$LOGD 6-8

$OPEN 6-18,7-12

$PUTD 6-28

$PUTP 6-21

$RIT 6-34

$SIT 6-33

$SNAP 6-10

$SORT 6-32

$SOURCE 7-3,7-4

$SRT 6-29

$TOD 6-34

$TRB 6-33

$WIND 6-44

$WORK 7-3, 7-4

$WORK2 7-3, 7-4

$WSEQ 6-44

$WSIO 6-38

absolute expressions 2-4

access methods 6-23, 7-8

access system communication area 6-11

access work station local data area 6-11

accessing records in a file 7-12

address data constant 3-4

address of data management routines 7-12

addressing

base displacement 2-8

data 2-9

direct 2-8

instruction 2-9

addressing (continued)
relative addressing 2-9

AGO, unconditional branch 5-14

AIF, conditional branch 5-12

allocate space or device

($ALOC) 6-17,7-12

alphameric value in macroinstructions 5-2

ANOP, assembly no operation 5-15

arithmetic expression 5-4

arithmetic global (GBLA) 5-9

arithmetic local (LCLA) 5-10

ASM command statement 7-3

ASM procedure 7-3

assembler control statements

HEADERS 7-1

OPTIONS 7-1

assembler instruction statements

assembler processor control 3-8

data definition 3-2

listing control 3-6

operations 3-1

program control 3-8

symbol definition 3-2

assembler language source program

records 2-1

assembler language statement format entries

comments 2-2

identification sequence 2-2

name 2-2

operand 2-2

operation 2-2

remarks 2-2

assembler language statements

definition 1-1

example 1-2

types 1-2

assembler language, basic 1 -1

assembler listing 7-5

assembler printed messages 8-12

assembler program conventions

addressing 2-8

expressions 2-4

term 2-5

assembler sample program A-1

assembly no operation (ANOP) 5-15

attribute 5- 3

Index X-1

L

base displacement addressing 2-8

basic assembler language 1-1

binary data constant 3-4

binary global (GBLB) 5-9

binary local (LCLB) 5-10

binary self-defining term 2-7. 5-1

buffer size determination

(see also I/O buffer area)

disk 6-24

printer 6-20

change system communication area 6-11

change work station local data area 6-11

character data constant 3-4

character expression 5-1

character global (GBLC) 5-9

character local (LCLC) 5-10

character self-defining term 2-7. 5-1

character set 2-1

character string 5-1

checkpoint 6-13

close a file ($CLOS) 6-19. 7-18

coding conventions

coding form 2-1

entries 2-2

macroinstructions 5-1

coding macroinstructions 6-1. 7-8

coding sheet 2-1

comment entry. assembler language

statement 2-2

comment. macroinstruction 5-12. 6-2

communications 6-16

concatenation 5-4

conditional branch (AI F) 5-12

consecutive processing fields 7-16

constant types 3-4

construct an interface

disk Aet ($GETD) 6-27

diSk put ($PUTD) 6-28

display station input/output

($WSIO) 6-38

loadable sort ($SORT) 6-30

printer put ($PUTP) 6-21

continuation 5-4

continuation coding 6-1

control program listing. PRINT 3-7

count function 5-4

cross-reference list 7-6

data addressing 2-11
data definition

DC 3-3

DS 3-6

data files 7-4

data management considerations

disk 7-8

display station 7-19

data management control blocks and buffers.
disk

address of data management
routines 7-12

DTF 7-11

I/O buffer area 7-11

key hold areas 7-12

key limits area 7-12

logical buffer area 7-11

master track index area 7-12

requested record number or key

area 7-12

DC. define constant 3-3

decimal data constant 3-4

decimal point 3-4

decimal self-defining terms 2-6. 5-1

define constant. DC 3-3

define storage. DS 3-6

define the file

disk ($DTFD) 6-22

display station ($DTFW) 6-35

printer ($DTFP) 6-20

defining macroinstructions

description 5-5

restrictions 7-8

sample A-3. 5-18

definition control statement format 5-6

deleting records 7-18

determining buffer size

(see also I/O buffer area)

disk 6-24

printer 6-20

device allocation 6-16

diagnostics. general 7-6

direct addressing 2-8

direct processing fields 7-16

directory entry find 6-9

disk

buffer size 6-24

DTF

fields 7-12

generation 6-22. 7 -11

get interface 6-27

put interface 6-28

disk data management considerations 7-8

disk device support 6-22

disk sort support 6-29

displacement generation

checkpoint ($CKEQ) 6-13

display station ($WSEQ) 6-44

DTF ($DTFO) 6-19

find ($FNDP) 6-8

..

X-2

displacement generation (continued)

information retrieval($INFO) 6-11

snap dump ($SNAP) 6-10

sort ($SRT) 6-29

system log ($lOGD) 6-8

timer ($TRB) 6-33

display station data management

considerations 1-19

display station support
•
DTF 6-35

get interlace 6-38

I/O interlace 6-38
.. 	 label generation 6-44

override indicators 6-44

put interlace 6-38

DROP, program control statement 3-10

DS, define storage 3-6

DTF

disk 6-22,1-11

displacement generation ($DTFO) 6-19

display station 6-35

fields 7-12

printer 6-20

dump, main storage 6-10

duplication factor 3-3

EBCDIC B-1

EJ ECT, listing control instruction 3-1

end assembly, END 3-13

end of job ($EOJ) 6-15

END, program control statement 3-13

entries, assembler language statement 2-2

ENTRY program control statement 3-11

EQU 3-2

error field 1-5

ESl 1-5

establish a checkpoint ($CKPT) 6-13

execution 1-3

expressions

absolute 2-4

coding rules 2-4

relocatable 2-5

extended mnemonic operation codes 4-3

external symbol list, ESl 1-5

EXTRN, program control statement 2-4, 3-11

•

fetch a module ($lOAD) 6-10

file preparation 6-11, 1-1 2

file termination 6·18,7·18

find

directory entry ($FIND) 6-9

displacement generation ($FN D P) 6-8

find (continued)
parameter list generation ($FNDP) 6-8

find a directory entry ($FIND) 6-9

floating point data constant 3-4

format, assembler language statements 2-2

formatted messages 6-5

GBLA, arithmetic global 5-9

GBlB, binary global 5-9

GBlC, character global 5-9

general I/O support 6-17

general SSP support 6-8

generate an interlace

disk get ($GETD) 6-27

disk put ($PUTD) 6-28

display station input/output

($WSIO) 6-38

load able sort ($SORT) 6-32

printer put ($PUTP) 6-21

generate displacements

checkpoint ($CKEQ) 6-13

display station ($WSEQ) 6-44

DTF ($DTFO) 6-19

find ($FNDP) 6-8

information retrieval ($INFO) 6-11

snap dump ($SNAP) 6-10

sort ($SRT) 6-29

system log ($lOGD) 6-8

timer ($TRB) 6-33

generate labels

checkpoint ($CKEQ) 6-13

display station ($WSEQ) 6-44

DTF ($DTFO) 6-19

find ($FNDP) 6-8

information retrieval ($INFO) 6-11

snap dump ($SNAP) 6-10

sort ($SRT) 6-29

system log ($lOGD) 6-8

timer ($TRB) 6-33

generate linkage to

disk get ($GETD) 6-27

disk put ($PUTD) 6-28

display station input/output

($WSIO) 6-38

printer put ($PUTP) 6-21

system log ($lOG) 6-8

generate offsets

checkpoint ($CKEQ) 6-13

display station ($WSEQ) 6-44

DTF ($DTFO) 6-19

find ($FNDP) 6-8

information retrieval ($1 NFO) 6-11

snap dump ($SNAP) 6-10

sort ($SRT) 6-29

system log ($lOGD) 6-8

timer ($TRB) 6-33

Index X-3

L

generate override indicators for display

station ($WIND) 6-44

generate parameter list

checkpoint ($CKEQ) 6-13

find ($FNDP) 6-8

information retrieval ~$INfOt 6-11

loadable sort ($SRT) 6-29

snap dump ($SNAP) 6-10

system log ($LMSG) 6-5

timer ($TRB) 6-3

generate timer request block ($TRB) 6-33

get interface

disk 6-27

display station 6-38

global set symbol 5-3

global statements

arithmetic (GBLA) 5-9

binary (GBLB) 5-9

character (GBLC) 5-9

glossary C-1

halts 6-5

header (MACRO) 5-7

HEADERS, control statement 7-1

hexadecimal data constant 3-4

I/O buffer area 7-11

(see also buffer size determination)

ICTL, program control statement 3-13

identification seqUeJ:1C6 entry 2-2

identify assembly output, TITLE 3-6

identify entry-point symbol. ENTRY 3-11

identify external symbols, EXTRN 3-11

index register addressing 3-10

indexed random processing fields 7-16

indexed sequential processing fields 7-17

information retrieval ($INFO) 6-11

input format control, ICTL 3-13

input/output macroinstructions 6-16

input sequence checking, ISEQ 3-8

instruction addressing 2-9

integer data constant 3-4

interface generation

disk get ($GETD) 6-27

disk put ($PUTD) 6-28

display station input/output

($WSIO) 6-38

printer put ($PUTP) 6-21

interval timer

displacement generation ($TRB) 6-33

parameter list generation ($TRB) 6-33

return 6-34

interval timer (continued)

set ($SIT) 6-33

inverse data move ($INV) 6-15

ISEQ, program control statement 3-8

job termination 6-15

key hold areas 7-12

key limit areas 7-12

keyword parameters 5-2

label generation

checkpoint ($CKEQ) 6-13

display station ($WSEQ) 6-44

DTF ($DTFO) 6-19

find ($FNDP) 6-8

information retrieval ($IN FO) 6-11

snap dump ($SNAP) 6-10

sort ($SRT) 6-29

system log ($LOGD) 6-8

timer ($TRB) 6-33

LCLA, arithmetic local 5-10

LCLB, binary local 5-10

LCLC, character local 5-10

linkage generation

disk get ($GETD) 6-27

disk put ($PUTD) 6-28

display station input/output

($WSIO) 6-38

printer put ($PUTP) 6-21

system log ($LOG) 6-8

LIST 7-2

listing control

EJECT 3-7

PRINT 3-7

SPACE 3-7

TITLE 3-6

load or fetch a module ($LOAD) 6-10

local set symbol 5-3

local statements

arithmetic (LCLA) 5-10

binary (LCLB) 5-10

character (LCLC) 5-10

locate mode 6-27, C-1

location counter reference 2-8

logical buffer area 7 -11

logical end (MEXIT) 5-17

J

X-4

•

•

..

machine instruction statement entries

mnemonic operation 4-1

name 4-1

operand 4-6

macro processor printed messages 8-8

MACRO, header 5-7

macroinstruction

coding convention 5-1, 6-1

coding restrictions 7-8

comments 5-12, 6-2

defined 6-1

definition restrictions 7-8

disk 6-22, 6-29

display station 6-34

general I/O 6-17

general SSP 6-8

I/O 6-16

printer 6-20

statements 6-1

supplied by IBM 6-2

system log 6-4

system services 6-4

timer 6-33

writing 6-1

macroinstruction coding restrictions 7-8

macroinstruction definition 5-5

macroinstruction definition control

mnemonics 5-5

macroinstruction definition control

statements 5-7

macroinstruction format 5-6

macroinstruction statement errors 8-1

macroinstruction statements 6-1

macroinstructions supplied by IBM 6-2

main storage dump 6-10

master track index area 7-12

MEND, physical end 5-17

message (MNOTE) 5-16

messages

formatted 6- 5

printed 8-1

unformatted 6-5

M EXIT, logical end 5-17

mnemonic operation codes 4-2

MNOTE, message 5-16

move mode 6-28, C-1

move, inverse data ($INV) 6-15

name entry 2-2, 4-1

negative numbers 3-4

NOLIST 7-2

NOOBJ 7-2

NOXREF 7-2

OBJ 7-2

object code listing 7-5

object program 7-7

object program relocation 2-3

offset generation

checkpoint ($CKEQ) 6-13

display station ($WSEQ) 6-44

DTF ($DTFO) 6-19

find ($FNDP) 6-8

information retrieval ($INFO) 6-11

snap dump ($SNAP) 6-10

sort ($SRT) 6-29

system log ($LOGD) 6-8

timer ($TRB) 6-33

OLiNK procedure 7-4

open a file ($OPEN) 6-18,7-12

operand entry 2-2, 4-6

operand formats, machine

instructions 4-4, 4-5, 4-6

operation entry 2-2, 4-1

options

LIST 7-2

NOLIST 7-2

NOOBJ 7-2

NOXREF 7-2

OBJ 7-2

XREF 7-2

ORG, program control statement 3-8

page headings 7-6

parameter list generation

checkpoint ($CKEQ) 6-13

find ($FNDP) 6-8

information retrieval ($INFO) 6-11

loadable sort ($SRT) 6-29

snap dump ($SNAP) 6-10

system log ($LMSG) 6-5

timer ($TRB) 6-33

parameters

keyword 5-2

positional 5-2

pass control 6-10

physical end (MEND) 5-17

positional parameters 5-2

prepare a device or file for access

($OPEN) 6-18,7-12

prepare a device or file for termination
($CLOS) 6-19,7-18

PRINT, listing control instruction 3-7

printed messages

assembler 8-12

macro processor 8-8

macroinstruction statement 8-1

printer support

buffer size 6-20

define the file ($DTFP) 6-20

Index X-5

printer support (continued) SETB, set binary 5-15

put interface ($PUTP) 6-21 SHC, set character 5-15

procedures 7-3 snap dump ($SNAP) 6-10
 J
program control statements

DROP 3-10

END 3-13

ENTRY 3-11

EXTRN 3-11

ICTL 3-13

ISEQ 3-8

ORG 3-8

START 3-9

USING 3-10

program conventions, assembler 2-3

program linking references 2-11

program relocation 2-3

prototype 5-7

put interface

disk 6-28

display station 6-38

printer 6-21

read a record from disk 6-27, 7 -12

record formats 7 - 7
relative addressing 2-9

relocatable expressions 2-4

relocation, program 2-3

remarks entry 2-2

requested record number or key area 7-12

restart 6-13

retrieve information 6-11

return conditions 7-18, 7-19
return interval time ($RIT) 6-34

return time and date ($TOD) 6-34

sample assembler program A-1

sample coding sheet 2-1

sample macroinstructions A-3, 5-18

self-defining terms

binary 2-7,5-1

character 2-7,5-1

decimal 2-6, 5-1

definition 2-6, 5-1

hexadecimal 2-6, 5-1

sequence symbol 5-1

set arithmetic (SETA) 5-14

set binary (SHB) 5-15

set character (SETC) 5-15

set interval timer ($SIT) 6-33

set location counter, ORG 3-8

set symbol 5-3

SETA, set arithmetic 5-14

sort, disk 6-29

source program listing 7-5

source program records, assembler 2-1

source program size 7-4

space allocation 6-17, 7-12

SPACE, listing control instruction 3-7

start assembly, START 3-9

start new page, EJ ECT 3-7

START, program control statement 3-9

statements, macroinstruction 6-1

substring 5-2

support

disk 6-22, 6-29

display station 6-34

general I/O 6-17

general SSP 6-8

I/O 6-16,6-17

printer 6-17

system log 6-4

system services 6-4

timer 6-33

symbol definition, EQU 3-2

symbolic parameters 5-2

symbolic terms 2-5

system communication area

access 6-11

change 6-11

system date, return 6-34

system log support

description 6-4
 Jdisplacement generation ($LOGD) 6-8

linkage generation ($LOG) 6-8

parameter list generation ($LMSG) 6-5

system services macroinstructions 6-4

T checking 5-13

TABDF, table..,defillition 5-11

table (TABLE) 5-10

table-definition (TABDF) 5-11

terminating a file 6-19, 7-18

terms

definition 2-5

expressions 2-4, 2-8

location counter reference 2-8

self-defining 2-6

symbolic 2-5

text (TEXT) 5-11

time of day, return 6-34

timer interrupt 6-33

timer request block 6-33

timer support 6-33

TITLE, listing control instruction 3-6

type attribute (T) checking 5-13

X-6

•

unconditional branch record (AGO) 5-14

unformatted messages 6-5

use index register for base displacement

addressing, USING 3-1

USING, program control statement 3-10

value checking 5-14

variable symbol 5-2

work station local data area
access 6-11

change 6-11

write a record to disk 6-28, 7 -12

writing macroinstructions 6-1

XREF 7-2

Index X-7

X-8

(" • (" 	
• r

READER'S COMMENT FORM

Ple_ use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming 	 ~3:~iD
.... !'l !!. 3:support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location. 	 CD .., n en
til o »..:
~".cnn .., en

Error in publication (typographical, illustration, and so onl. No reply. Inaccurate or misleading information in this publication. Please tell us 	 <II 0 <II <II

3:163~about it by using this postage-paid form. We will correct or clarify the ~ ~ ~ ~ PsgeNumber Error 	 publication, or tell you why a change is not being made, provided you <:
G> G>
- :::Jinclude your name and address. 	

Q.

PsgeNumber Comment

en
(')
"-l
~

~
'-I
o
(11

WIBM may use and distribute any of the information you supply in any way
Name ____________________it believes appropriate without incurring any obligation whatever. You may,

of course, continue to use the information you supply.
Address

• No postage necessary if mailed in the U.S.A.

SC21· 7705·3

iii
3:

I~.....
I 3

CD

......

I '" ""Cl
Fold and tape Please do not staple Fold and tape I ~ ir

titI >
CD

crNO POSTAGE I
NECESSARY IF I

!f ..
:>

MAILED IN THE 0

UNITED STATES I 3:
I " III

tit

3

~

I
...
0
"C a
CDBUSINESS REPLY MAIL
n

I:
0

fiRST CLASS PERMIT NO. 40 ARMONK, N. Y. ...

POSTAGE WILL BE PAID BY ADDRESSEE: fJ
n
CD

3:..
:>

IBM CORPORATION c:
!!.

General Systems Division "T1

Development Laboratory co
Publications, Dept. 532 ?

z

Rochester, Minnesota 55901 CII

'" "" ~
"C...
5°...
l!.

Fold and tape Please do not staple Fold and tape 5°
c ..
en
l>
CII
(") ..I\.l
..:...International Busine .. Machines Corpotltion 0
U1
W

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30055
(U.S.A. only)

General Busine. Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

•

•

--------- ----- - ---- - - ---
-~- --
===-=~= (!)

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.

(I nternational)

SC21-7705-3

s:.,
::l
C
!!!.

z
o
en
w
t:J
~

.
f,

S
I

