

SYSTEM T S Theory-Diagrams

PREFACE

This manual contains theory information and diagrams for IBM System/32.

Other manuals to be used with this one are:

- IBM System/32 Operator's Guide, GC21-759
- IBM System/32 Functions Reference Manual GC21-9176

For maintenance information including checks, adjustments, removals, and replacements, see and Maintenance, SY31-0373.

In addition, refer to the IBM System/32 Diagnostic User's Guide for further information on system diagnostics.

Fifth Edition (May 1977)

This is a major revision of, and obsoletes, SY31-0346-3. This edition adds theory and diagrams for the 285 line-per-minute belt printer, and 120 cps serial printer, and the 120 cps compatible printer attachments. All other changes are indicated by a vertical
line at the left of the change. Changes are periodically made to the information herein line at the efft of the change. Changes are periodically made to the information
any such change will be reported in subsequent revisions or technical newsietters

A Reader's Comment Form is at the back of this publication. If the form is gone address your comments to IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.

[^0]
Contents

INTRODUCTION TO IBM SYSTEM/32	INTR-1
CPU Functional Units	INTR-3
Main Storage	INTR-3
Control Storage	NTR
Storage Address Register (SAR)	NTR
Micro Operation Register (MOR)	NTR
Process Condition Register (PCR)	NTR
Storage Data Register (SDR)	NTR
X and Y Registers	NTR
Arithmetic Logical Unit (ALU)	NTR
Local Storage Registers (LSRs)	INTR-4
Micro Interrupts	INTR-4
System Checking and Parity Generation	INTR-
Retry and Error Logging	INTR-6
Initial System Checkout	INTR-6
PROCESSING UNIT	PU
CPU Data Flow	CPU-2
Parity Checking	CPU-
CPU Default Conditions	CPU-
CPU Functional Units	CPU-
ALU (PK060, PK070)	CPU-4
ALU Gates	CPU-4
Local Storage Registers	CPU-5
Micro Operation Register (MOR)	CPU-
Storage Data Register (SDR)	CPU-5
X-Registers	PPU
Y-Registers	PU-
Storage Address Register (SAR)	CPU
Storage Gates	PU-
Processor Condition Register (PCR)	CPU-8
Main Storage	CPU-10
Control Storage	CPU-10
Direct Area of Control Storage	CPU
CPU Clocks	CPU-1
System Clocks	CPU-
1/O Clocks	CPU-12
Storage Clocks	U-
Service Request	CPU-1
System Reset .	CPU-1
CHANNEL	CHAN-
Channel Interfaces	CHA
Main/Control Storage through CPU Data	
Flow Interface	CHAN-
CPU Data Flow and LSRs Interface	CHAN-
Disk Storage Interface	CHAN-
Port Data Flow	CHAN-
Port Parity	CHAN-
Port Clocks	CHAN-
Blast Condition (PH090)	CHAN-
Controls	CHAN- 7
I/O Instructions	CHAN

DISK-24	Write Check
DISK-24	Channel Transfer Check
DISK-26	Sector Sync Check
DISK-26	Off Track Check
DISK-26	PLO Out of Sync
DISK-27	Interrupt Timeout Check
DISK-28	JUMP I/O CONDITIONS
DISK-28	INPUT/OUTPUT AND SENSE LINES
DISK-28	
DISK-28	33FD DISKETTE DRIVE AND
DISK-28	ATTACHMENT
DISK-28	Diskette Format
DISK-28	Read/Write Circuit Principles
DISK-29	Writing
DISK-30	Reading
DISK-31	Controls
DISK-31	Data Representation
DISK-33	33FD Data Flow
	Seek Operations
DISK-34	Seek Data Flow
DISK-34	Read Operation
	Read Data Flow
DISK-35	Write Operation
	Write Data Flow
DISK-36	Find ID Operation
DISK-36	Find ID Data Flow
DISK-36	Write ID Operation
DISK-37	Write ID Data Flow
DISK-38	Load Command
DISK-39	Sense Command
DISK-40	Control Load Command
DISK-40	Write Data Byte and Write AM Byte
DISK-41	Write CRC Byte
DISK-42	Seek One Track
DISK-43	Seek to Next Track
DISK-44	Search for AM Byte
DISK-45	Control Sense
DISK-46	Jump I/O
DISK-47	Error Conditions
DISK-48	33FD Running Fast
DISK-48	33FD Not Ready
DISK-49	Read Overrun
DISK-50	Write Overrun
DISK-51	Write Parity Check
DISK-52	Write or Erase Gate Unsafe and Missing
DISK-52	Erase Gate
DISK-53	Missing Record
DISK-54	Data Separator
DISK-54	Index Counter
DISK-55	Ready Counter
DISK-56	IMPL Counter
DISK-57	Write Clock and Write Bit Ring
DISK-58	Read Clock and Read Bit Ring

PRINTER	PTR-1
Circuitry Location	PTR-1
CPU/Attachment/Printer Operation	PTR-3
Data Area	PTR-3
Belt Image Area	PTR-3
Forms Control	PTR-3
End of Operation Interrupts	PTR-3
Attachment Operation	PTR-3
Theory of Printing (50, 100, and 155 lpm)	PTR-4
Attachment and Printer Dataflow (50, 100, and $155(\mathrm{pm})$	PTR-6
Print Operation (50, 100, and 155 lpm)	PTR-7
Load Command	PTR-8
Control Load Command	PTR-10
Sense Command-Control Sense Command (50, 100, and 155 lpm)	PTR-14
Sense Interrupt Level Status Command	PTR-18
Jump I/O Command	PTR-20
Paper Clamps DO240	PTR-23
Type Belt Start and Run (50, 100 and	
155 pm)	PTR-24
Type Belt Sync Timing	PTR-25
Ribbon Drive/Type Belt Transducer (50, 100,	
and 155 Ipm)	PTR-26
Ribbon Drive	PTR-26
Type Bett Transducer	PTR-26
Print Buffer Load DQ180 (50, 100, and 155 (pm)	
Print Buffer Read DO180 (50, 100, and	
155 (pm)	PTR-28
Hammer Selection and Firing (50,100 , and	
155 (pm)	PTR-29
Hammer Latch Select (50, 100, and 155 lpm)	PTR-30
Register Select (50,100 , and 155 lpm)	PTR-30
Hammer Select Strobe (50, 100, and	
155 (pm)	PTR-30
Hammer Settling and Type Belt	
Synchronization (50, 100, and 155 lpm)	PTR-31
Printer Speed Control	PTR-32
Carriage Operation (50, 100, and 155 lpm)	PTR-33
Carriage Detent	PTR-33
Half Line Space Operation (50, 100, and 155 (pm)	PTR-34
Input/Output Lines (50, 100, and	
155 (pm)	PTR-36
POR/Printer Reset (A)	PTR-36
Close (+24V) Contactor (A)	PTR-36
Belt Go (A)	PTR-36
Belt Motion (P)	PTR-36
PSS (Subscan) (P)	PTR-36
IMPSS (Impression Singleshot) (P)	PTR-36
Fire Hammer (A)	PTR-36
Activate Paper Clamps (A)	PTR-37

Home Pulse (A) P - PTR-37	
k 1-22 also 23-44 and	
45-66) (P)	PTR-37
Carriage Go (A)	PTR-37
Stop Ribbon (A)	PTR-37
Carriage Advance (P)	PTR-37
Printer Thermal Switch (P)	PTR-37
Cover Closed Switch (P)	TR-37
Forms Sensed Switch (P)	TR-37
Throat Closed Switch (P)	PTR-37
Switch Assemblies	PTR-37
Attachment Dataflow (50, 100, and	
155 (pm)	PTR-38
Attachment Functional Units (50, 100, and	
155 (pm)	TR-39
Printer Command Decode DO020,	
030, 040	TR-39
Space Counter DQ100	-39
Scan Counter DQ160	-39
Clocking Triggers DQ170	-39
Storage Buffer Address Register	
Belt Position Counter (BPC) DO200	PTR-39
Paper Clamp Timer DQ240	PTR-39
Hammer Select Control DQ290	PTR-39
Elapsed Time Counter DO300	PT
Hammer Fire Control (50, 100, and	
155 (pm)	TR-39
Printer Speed Control	PTR-39
Print Buffer DO180	PTR-40
Scan Register DQ200	PTR-40
Scan/Buffer Compare DO280	
Printer Functional Units and Dataflow	
(50, 100, and 155 pm)	-41
Type Belt Motor and Drive	TR-41
Home Pulse and Print-Subscan Pulse	
Generation	TR-41
Forms Thickness Control	TR-41
Ribbon Drive	R-41
Paper Clamps	PR-41
Firing the Hammers	PTR-41
Carriage Spacing	TR-41
Error Conditions (50, 100, and 155 lpm)	TR-43
Unprintable Character	TR-4
Forms Jam Check/Belt Speed Check	
(50, 100, and 155 lpm)	PTR-44
Forms Jam Check	PTR-44
Belt Speed Check	PTR-44
Carriage Sync Check	PTR-45
Coil Current Check (50, 100, and	
155 (pm)	R-46
Belt Sync Check	PTR-47
Emitter Check/Data Check	-48
Emitter Check	

Data Check	PTR-48	Carriage Advance (P)	PTR-87
Hammer Parity Check (50, 100, and		Printer Thermal Switch (P)	PTR-87
155 (pm)	PTR-49	Cover Closed Switch (P)	PTR-87
End of Forms/Cover Closed/Throat Closed		Forms Sensed Switch (P)	PTR-87
(50,100 , and 155 lpm)	PTR-50	Throat Closed Switch (P)	PTR-87
End of Forms (EOF)	PTR-50	Switch Assemblies	PTR-87
Cover Closed	PTR-50	Attachment Dataflow (285 Ipm)	PTR-88
Throat Closed	PTR-50	Attachment-Functional Units (285 Ipm)	PTR-89
CPU/Attachment/Printer Operation	PTR-53	Printer Command Decode DOO20,	
Data Area	PTR-53	030, 040	PTR-89
Belt Image Area	PTR-53	Space Counter DO100	PTR-89
Forms Control	PTR-53	Scan Counter DQ160	PTR-89
End of Operation Interrupts	PTR-53	Clocking Triggers DO170	PTR-89
Attachment Operation	PTR-53	Storage Buffer Address Register	
Theory of Printing (285 lpm)	PTR-54	(SBAR) DQ180	PTR-89
Attachment and Printer Dataflow		Belt Position Counter (BPC) DQ200	PTR-89
(285 fm)	PTR-56	Paper Clamp Timer DO240	PTR-89
Print Operation (285 lpm)	PTR-57	Hammer Select Control DO290	PTR-89
Load Command	PTR-58	Elapsed Time Counter DO300	PTR-89
Control Load Command	PTR-60	Hammer Fire Control (285 lpm)	PTR-89
Sense Command-Control Sense		Printer Speed Control	PTR-89
Command (285 lpm)	PTR-64	Printer Buffer DQ180	PTR-90
Sense Interrupt Level Status Command	PTR-68	Scan Register DQ200	PTR-90
Jump I/O Command	PTR-70	Scan/Buffer Compare DQ280	PTR-90
Paper Clamps DO240	PTR-73	Printer Functional Units and Dataflow	
Type Belt Start and Run (285 lpm)	PTR-74	(285 lpm)	PTR-91
Type Belt Sync Timing	PTR-75	Type Belt Motor and Drive	PTR-91
Ribbon Drive/Type Belt Transducer		Home Pulse and Print-Subscan Pulse	
(285 lpm)	PTR-76	Generation	PTR-91
Ribbon Drive	PTR-76	Forms Thickness Control	PTR-91
Type Belt Transducer	PTR-76	Ribbon Drive	PTR-91
Print Buffer Load DQ180 (285 lpm)	PTR-77	Paper Clamps	PTR-91
Print Buffer Read DQ180 (285 [pm)	PTR-78	Firing the Hammers	PTR-91
Hammer Selection and Firing (285 Ipm)	PTR-79	Carriage Spacing	PTR-91
Hammer Latch Select (285 lpm)	PTR-80	Error Conditions (285 lpm)	PTR-93
Register Select (285 lpm)	PTR-80	Unprintable Character	PTR-93
Hammer Select Strobe (285 lpm)	PTR-80	Forms Jam Check/Belt Speed Check	
Printer Speed Control	PTR-82	(285 lpm)	PTR-94
Carriage Operation (285 lpm)	PTR-83	Forms Jam Check	PTR-94
Carriage Detent	PTR-83	Belt Speed Check	PTR-94
Half Line Space Operation (285 lpm)	PTR-84	Carriage Sync Check	PTR-95
Input/Output Lines (285 Ipm)	PTR-86	Coil Current Check (285 Ipm)	PTR-96
POR/Printer Reset (A)	PTR-86	Belt Sync Check	PTR-97
Close (+24V) Contactor (A)	PTR-86	Emitter Check/Data Check	PTR-98
Belt Go (A)	PTR-86	Emitter Check	PTR-98
Belt Motion (P)	PTR-86	Data Check	PTR-98
PSS (Subscan) (P)	PTR-86	Hammer Parity Check (285 lpm)	PTR-99
IMPSS (Impression Singleshot) (P)	PTR-86	End of Forms/Cover Closed/Throat Closed	
Fire Hammer (A)	PTR-86	(285 lpm)	PTR-100
Activate Paper Clamps (A)	PTR-87	End of Forms (EOF)	PTR-100
Home Pulse (A)	PTR-87	Cover Closed	PTR-100
Hammer Check 1-44, 45-88,		Throat Closed	PTR-100
89-132 (P)	PTR-87		
Carriage Go (A)	PTR-87		
Stop Ribbon (A)	PTR-87		

display Screen	DISP-1	Print Motor Drive	S-PTR-6
Attachment Functions	DISP-1	Settling Intervals	S-PTR-6
Data Flow	DISP-3	Start Intervals	S-PTR-6
LSAR/DAR, RAM Buffer Character		Up-to-speed Intervals	S-PTR-6
Generator	DISP-4	Stop Intervals	S-PTR-6
Loading Address in Address Register and		Underscore	S-PTR-8
1 Byte of Data in RAM Buffer	DISP-5	Head Restore	S-PTR-8
Character Display	DISP-6	FORMS OPERATION FLOWCHART	S-PTR-9
Bit Ring, ROS Ring, Character Counter		Moving the Forms	S-PTR-9
and Line Counter Relationships	DISP-7	COMMANDS	S-PTR-10
Wiggle, Horizontal, Vertical Controls	DISP-8	Load Command	S-PTR-10
Sync, Video, Wiggle, Horizontal	DISP-9	I/O Load (IOL) (I/O Storage [WTM])	S-PTR-10
Display Buffer	DISP-10	Control Load Command	S-PTR-12
1/O Instruction Interface	DISP-11	I/O Control Load (IOCL)	S-PTR-12
Control Sense Command	DISP-12	Sense Command	S-PTR-14
Load, Control Load Timing	DISP-13	I/O Sense (IOS)	S-PTR-14
Load Command	DISP-14	Control Sense Command	S-PTR-16
Control Load Command	DISP-16	I/O Control Sense (IOCS)	S-PTR-16
Timing for Sense, Control Sense, and		Jump Command	S-PTR-18
Jump Commands	DISP-18	Jump I/O (JIO)	S-PTR-18
Sense Command	DISP-19	Sense Interrupt Level Status Byte (SILSB)	S-PTR-19
Control Sense Command	DISP-21	ATTACHMENT FUNCTIONAL UNITS	
Jump I/O Command	DISP-24	(40/80 cps only)	S-PTR-20
CBI 4 Function	DISP-26	Print Emitter	S-PTR-20
		Print Emitter Event Counter (FR114)	S-PTR-20
KEYBOARD ATTACHMENT	KBD-1	Emitter Column Counter [ECC] (FR112)	S-PTR-20
Attachment Functions	KBD-1	Printing Left to Right	SPTR-20
Keyboard Attachment Data Flow	KBD-2	Printing Right to Left	S-PTR-20
Keyboard to CPU Data Transfer and		Print Head Position Counter (FR112)	S-PTR-21
Indicators	KBD-4	Memory Address Register (FQ014)	-PTR-22
I/O Instructions	KBD-5	Settle/Interval Counter (FR145)	S-PTR-22
Load, Control Load Timing	KBD-5	Print Motor Event Counter (FR123)	S-PTR-22
Load Command	KBD-6	Print Motor Elapse Counter (FR127)	S-PTR-22
Control Load Command	KBD-8	Forms Emitter Counter (FR143).	S-PTR-22
Sense, Control Sense, Jump I/O and		Forms Line/Print Time Counter (FR130)	SPPTR-22
SILSB Timing	KBD-11	Forms Operation	S-PTR-22
Sense Command	KBD-12	Print Operation	S-PTR-23
Control Sense Command	KBD-14	ATTACHMENT FUNCTIONAL UNITS	Sptr23
Jump I/O Command	KBD-16	(40/80 cps-120 compatible only).	S-PTR-24
Sense Interrupt Level Status Byte		Print Emitter	S-PTR-24
Command	KBD-18	Print Emitter Event Counter (FR214)	S-PTR-24
SILSB Command and (not) Keyboard		Emitter Column Counter [ECC] (FR212)	S-PTR-24
Interrupt Level	KBD-20	Printing Left to Right	S-PTR-24
CBI 4 Function	KBD-21	Printing Right to Left	S.PTR-24
Error Conditions	KBD-22	Print Head Position Counter (FR212)	S-PTR-25
Keying Errors	KBD-22	Memory Address Register (FO014)	S-PTR-26
Error Recovery	KBD-22	Settle/Interval Counter (FR245)	S-PTR-26
		Print Motor Event Counter (FR223)	S-PTR-26
SERIAL PRINTER	S-PTR-1	Print Motor Elapse Counter (FR227)	S-PTR-26
INTRODUCTION	S-PTR-1	Forms Emitter Counter (FR243).	S-PTR-26
PRINT OPERATION FLOW CHART	S-PTR-3	Forms Line/Print Time Counter (FR230)	S.PTR-26
THEORY OF PRINTING	S-PTR-4	Forms Operation	S-PTR-26
Loading the Data Buffer	S-PTR-4	Print Operation	S-PTR-27
Positioning the Print Head	S-PTR-4	ATTACHMENT FUNCTIONAL UNITS	
Printing the Data from the Buffer	S-PTR-4	(120 cps only)	S-PTR-28

Print Emitter	S-PTR-28
Print Emitter Event Counter (FR214)	S-PTR-28
Emitter Column Counter [ECC] (FR212)	S-PTR-28
Printing Left to Right	S-PTR-28
Printing Right to Left	S-PTR-28
Print Head Position Counter (FR212)	S-PTR-29
Memory Address Register (FO014)	S-PTR-30
Settle/Interval Counter (FR245)	S-PTR-30
Print Motor Event Counter (FR223)	S-PTR-30
Print Motor Elapse Counter (FR227)	S-PTR-30
Forms Emitter Counter (FR243)	S-PTR-30
Forms Line/Print Time Counter (FR230)	S-PTR-30
Forms Operation	S-PTR-30
Print Operation	S-PTR-31
ROS ADDRESSING	S-PTR-32
WTC/ASCII/U.S. Special Character	
Addressing	S-PTR-33
INPUT/OUTPUT LINES	S-PTR-34
ERROR CONDITIONS	S-PTR-35
Byte 0, Bit 0-Forms Hung Check	S-PTR-35
Byte 0, Bit 1 - Horizontal Check	S-PTR-35
Emitters Out of Order	S-PTR-35
Print Head Hung	S-PTR-35
Emitters Too Fast	S-PTR-35
Memory Data Check	S-PTR-35
Unprintable Character Check	S-PTR-35
Printer Not Ready	S-PTR-35
Byte 0, Bit 2 - Forms Runaway Check	S-PTR-35
Byte 0, Bit 3 - End of Forms	S-PTR-35
Byte 1, Bit 0 - Printer Not Ready	S-PTR-35
Byte 1, Bit 1 - Wire Check	S-PTR-35
Byte 1, Bit 4 - Memory Data Check	S-PTR-35
Byte 1, Bit 6 - Unprintable Character	
Check	S-PTR-35
INDEX	x-1

μ INSTR	micro instruction	FD	disk drive	RAM	random access memory
$\mu \mathrm{IRPT}$	microinterrupt	FET	field effect transistor	rd	read
				reg	register
Adr	address	GB	guard band	RIB	request indicator byte
AGC	automatic gain control	gen	generate/generator	ROS	read only storage
ALU	arithmetic/logical unit				
AM	address mark	hmr	hammer	SAR	storage address register
ASCII	American National Standard Code for Information Interchange	Hz	Hertz	$\begin{aligned} & \text { SBAR } \\ & \text { SC } \end{aligned}$	storage buffer address register sequence counter
		I/O	input/output	SCP	system control program
BC	byte control	ID	identification	SDLC	system data link control
BFR	buffer	IMPL	initial microprogram load		select/selector
BH	behind home	IOB	input/output block	SERDES	serializer/deserializer
BI	bidirectional				sense
BP	belt position	KANA	Katakana	stg	storage
BPC	block processor clock	KYB	keyboard	svc	supervisor call
BPC	belt position counter	KYBD	keyboard	SWG	start write gap
BR	bit ring			sync	synchronize
BSCA	binary synchronous communications adapter	LM	left margin	S3ILSW	system interrupt level status word
		LSR	local storage register		
		Lth	latch	tr	trigger
C	clock pause	LZ	landing zone	tra	trigger A
CBI	command bus in			TRC	trigger C
CBO	command bus out	MAB	micro address backup register	TRD	trigger D
Chan	channel	MAR	memory address register	tre	trigger E
CPS	characters per second		microaddress register	TRF	trigger F
CPU	processing unit	MCI	machine check interrupt		
CRC	cyclic redundancy check	MCU	Mag Card Unit	UNI	unidirectional
CRT	cathode ray tube	mega	million		
CS	control storage	MFM	modified frequency modulation	vert	vertical
CS	cycle steal	MOD	modifier	VFL	velocity follow latch
CSILSW	control storage interrupt level status word	MOR mtr	micro operation register motor	VFO	variable frequency oscillator
cmd	command			WC	worst case
cnt	count	op	operation	WR	(N) H or $\mathrm{L}=$ work register (N) high
ctr	control counter	OSC	oscillator	WR	or low work register
		P	position pulse	WTC	World Trade Corp.
DAR	display address register	PC	parity check		
DBI	data bus in	PCR	processor condition register	Xfer	Transfer
DBO	data bus out	PFN	print fire number		
DCD	decode	PG	parity generate		
DCP	diagnostic control program	Ph	polarity hold		
DE	disk enclosure	PLO	phase lock oscillator		
demod	demodulator	POR	power on reset		
diag	diagram	PP	parity predict		
DLY	delay	PP	print position		
		prt	print		
ECC	emitter column counter	PSS	print sub scan		
EOF	end of forms	ptr	printer		

MICRO INSTRUCTION ABBREVIATIONS

ACYR	add registers with carry	MPL	microprocessor load
AI	add immediate	MPLF	microprocessor load for special functions
AR	add registers	MPS	microprocessor sense
		MVR	move LSR
B	branch	MZN	move zone to numeric
BAL	branch and link		move zone to zone

Legend

In this example three AND blocks feed an OR block. The three AND block functions are sep rated by asterisks.

The asterisk is a delimiter and separates groups of inputs

This is an example of three OR blocks feeding an AND block. The three OR block functions are separated by asterisks.

The selector block is a gating device. The upper section of the block contains the gates (G) and the lower section contains the gated data lines.

In this example gate 1 and gate 2 each control a set of input data lines.

Gate 3 controls both output lines.
Thus for data to pass through this block, it is necessary that one of the input gates (G1 or G2) be active, and the output gate (G3) must also be active.

This example of the selector also contains Z
inputs. A Z input is used when a line is
common to a number of functions. Thus if the input to Z is active and G 3 is active, both output lines will be active.

The output of the odd count block is active only when an odd number of inputs are active.

The output of the even count block is active when an even number of inputs are active.

The decode translates a group of related inputs into a specific output. The inputs are numbered in binary progression; $1,2,4,8$ and so on. The number on the output equals the sum of the active inputs. For example, when the inputs to 4 and 1 are active, the 5 output will be active.

The FF trigger can be set with the S input and reset with the R input. A T (toggle) input can also be used to complement the current status of the trigger

In this example there are 2 sets and 1 reset. The second set requires that gate 1 along with the input to 1 S be active to turn the trigger on. Also in this example, gate 2 must be active to get an active output.

In this example of a flip latch, G is a gate used to gate other signals. Gate 1 (G1) must be active along with the input to gate 2 (G2) for gate 2 to become active.

The latch will turn on if gate 2 is active and the input to $2 S$ becomes active.

When the R line is activated, the register will be reset.

Legend

This example of a register illustrates bundled lines on both the input and output. The input contains 2 lines, C 2 and C 3 , and an output that contains 8 lines, BO through B7.

The + symbol indicates the register will be incremented by 1 when the input line becomes active. A minus symbol would indicate decrementing. The number following the + or symbol indicates the amount of incrementing or decrementing.
When the R line is activated, the register will be reset.

This is an example of a shift register. The symbol $>$ indicates shift down while $<$ would indicate shift up. In order to shift down by 1 , the input to one of the > lines must be active and a shift must occur on the $\mathrm{P}>$ input.

The positions in the register are denoted by X1, $\mathrm{X} 2, \mathrm{X} 3$, and so on.

Introduction to IBM System/32

The IBM System $/ 32$ is a desk-sized business sys tem with the following features:

- Programs are written in system language and executed by a machine language microprogram.
- Large storage capacity is provided by disk drive.
- Operating instructions and prompting messages are displayed.
- I/O and CPU errors are recorded and can be retrieved.
- Diagnostic programs are automatically run after the initial microprogram load.
- Whenever possible, conditions that caused errors are automatically retried.

The CPU contains $16 \mathrm{~K}, 24 \mathrm{~K}$, or 32 K addressable positions of main storage and 4 K or 8 K addressable positions of control storage. Each position of main storage is one byte wide; each position of control storage is two bytes wide. FET technology is used for both main and control storage. The CPU also contains registers, gates, and ALUs that are controlled by the microprogram.
The disk drive is an integrated disk that provides 3.2, 5.0, 9.1, or 13.7 million bytes of accessible storage. In addition, various diagnostic programs reside on the disk.

The CE control panel contains lights and switches used in the maintenance of the system.

The display screen is used for operator prompting, job output, and other messages. Up to six lines of 40 characters-per-line can be displayed at one time

The keyboard is used to control various system functions and as a data input device.

The IBM System/32 can be ordered with either the serial printer or the belt printer.

The serial printer has 132 print positions and uses a 64 character set. It is a 7×7 wire matrix printer. The serial printer has 132 print positions and uses a 64 character set. It is a 7×7 wire matrix printer The serial printer is available in three models:

120 cps (characters per second) bidirectional 80 cps bidirectional
40 cps unidirectional
The two models of the 40 cps printer are identical. The attachment circuitry controls whether they print only left to right or in both directions.

The belt printer has 132 print positions and a 48,64 , or 96 character set. The printing speed is $50,100,155$, or 285 lines per minute with 48 character set.
The operator control panel has switches to turn power off and on, start the loading of the diagnostic programs and control program, and start and stop the execution of system leve instructions. Keyboard ready, processor check, thermal check, and power check lights are also included.

The 33FD diskette drive uses IBM diskettes as inpu and output to the system. Data can be entered on the diskettes by key entry devices such as the IBM 3740 Data Entry System. In addition, certain diagnostic programs reside on the diskettes.

All the functions performed by the system are controlled by a microprogram which must be loaded into control storage before any processing can begin. This loading (initial microprogram load) is done from either the disk drive or the 33FD (CE only).

The microprogram processes system instructions, data in storage, and channel operations. The microprogram is composed of microroutines of varying sizes, each having a specific task to perform. Each microroutine is composed of bitsignificant instructions that, in effect, are machine language instructions.

This page is intentionally left blank.

Main Storage

Main storage contains $16 \mathrm{~K}, \mathbf{2 4 K}$, or $\mathbf{3 2 K}$ ddressable positions; each position is 1 byt wide.

Control Storage

Control storage contains 4 K addressable positions 8 K positions on machines with the Contro Storage Increment Feature); each position is 2 bytes wide. Control storage is loaded from the disk drive in a normal operation, or from the 3FD when running diagnostic programs. The oading of control storage occurs during the IMPL nitial microprogram load) sequence. When oaded, control storage contains the microprogram sed to control the CPU and I/O devices.

Storage Address Register (SAR)

AR is a 16 -bit register used to address both main torage and control storage.

Micro Operation Register (MOR)

The MOR is a 16 -bit register that holds each micro instruction as it is fetched from control rage. From here, the micro instruction is alyzed to control the data flow such as gate selection, ALU operation, LSR selection, etc.

Process Condition Register (PCR)

PCR is an 8-bit register that contains infor mation to be tested by branch instructions. For example, from the PCR, the result of a previous athmetic instruction can be PCR aso帾

Storage Data Register (SDR)

he SDR is a 16 -bit register that serves as an intermediate buffer for all micro instruction and data bytes fetched from storage. Each micro struction, being 2 bytes wide, uses all 16 bit positions. Data from main storage, being only byte wide, uses bit positions 8 through 15 .

X and Y Registers

These four registers are 8 -bit registers that serve the buffer input for the two ALUs. The Xigh and Y -high registers serve as input to ALU high while the X -low and Y -low registers serve as input to ALU low. The data for these registers omes from the local storage registers or th mmediate data field of some micro instructions.

Arithmetic Logical Unit (ALU)

There are two ALUs in the system, ALU high and ow. ALU high processes bits $0-7$ when 2-byte data fields are involved. ALU low processes bit -15 when either 1 -byte or 2 -byte data fields are involved. The ALUs always present 2 bytes of data to the LSR input bus. When 2 bytes are involved in the ALU operation, both bytes (high and low) are placed on the LSR input bus and simultaneously written into bits $0-7$ and bits -15 of the LSR. When the ALU output is only byte, the byte is presented to both the high and low LSR input bus lines. In these cases, th micro instruction selects only 1 byte to be written into an LSR.

System Data Flow Through the Functional Units

Note: Channel, as used in this system, refers to
the internal interface between the processor and logic for control of $1 / \mathrm{O}$ function. The channel contains a port through which part of this control passes.

Local Storage Registers (LSRs)

The LSR stack contains 64 LSRs; the first 32 are used by the base system and the remaining 32 are reserved for optional features. Each LSR contains 16 bits: bits 0.7 are the high LSR and bits $8-15$ are the low LSR. The LSRs are called work reg isters (WR) and are used as data buffers and address registers for both main and control storage. In addition, the LSRs are used as operand registers for calculations and as $1 / O$ control data registers that can be loaded from or sent to the I/O attachments.

The first 32 LSRs are subdivided into four groups. The current micro interrupt level determines which group is used. The first group (hex address $00-07$) is used by micro interrupt level 0 (machine check interrupt) and also by the main program level. The interrupt) and also by the main program level. The
second group of LSRs (hex address $08-\mathrm{OF}$) contains the MAR/MAB (microprogram address register/ microprogram address backup) stack. MAR con tains the address of the next micro instruction to be executed. MAB contains the return address when a branch and link instruction is executed. The third group (hex address 10-17) is used by micro interrupt level 1 (disk drive), and the fourth group (hex address 18-1F) is used by micro interrupt level 2 (printer, BSCA, and keyboard).

Optional features use the remaining 32 LSRs. The first group (hex address $20-27$) is used by micro interrupt level 3 as work registers. The second group (hex address 28-2F) contains the MAR/M for micro interrupt level 3 (hex address 28-29).

Micro Interrupts

The CPU handles micro instructions one at a time; one micro instruction is followed by the next sequential micro instruction This sequence of execution of micro instructions can be changed by a branch instruction. This sequence can also be changed if the main level of processing or a micro interrupt level is interrupted by a higher micro interrupt level.

The system has six levels of micro interrupts, only level 0 , level 1 , level 2 , and level 3 are used (levels 4 and 5 are reserved). Level 0 has the highest oriority and level 3 the lowest micro interrupt priority. The display screen and 33FD cannot
cause micro interrupts. Interrupts having a highe cause micro interrupts. Interrupts having a h lower priority. For evel 0 will interrupt the processing a or 3 micro interrupt.

A machine check interrupt occurs whenever the system detects a CPU parity check, invalid address, or microprogram check. This micro interrupt can also be initiated by a port check. These checks are described on page CNSL-6. A level 1 interrupt occurs whenever the disk drive requires attention. The printer, BSCA, and keyboard operate on interrupt level 2. BSCA has highest priority, printer second, and the keyboard last.

Level 0, machine check interrupt, shares a set of work registers with the main level microroutines. Micro interrupt levels 1,2 , and 3 have a unique set of registers in the LSR stack. The set of LSR for each micro interrupt level consists of

8 16-bit work registers.
1 MAR (microprogram address register) used to store the address of the current micro instruction.
MAB (microprogram address backup) used to store the return address when branch and link instruction is executed.

LSR Subdivision and Micro Interrupt Levels
 corded in the CPU error byte and in the port check byte. These errors can be displayed on the CE panel and are described on CNSL-6.

Odd parity (by byte) is maintained in the CPU data fow. To ensure correct parity, parity
 are provided throughout the CPU.

Parity predict circuits are used as a check on the ALU portion of the CPU. By analyzing the oper ation being performed and the input data, parity predict circuits predict whether the output of P-bit if required. The parity of the output of the ALU is compared to the output of the parity predict circuits to determine whether the ALU is working correctly.

Parity errors may be detected between the port and the CPU, or the port and an I/O attachment Normally, the port operates in odd parity, however, some diagnostic programs use even parity.

Parity Checking and Generation in the CPU

	IOCL	IOCs	Interrupt Level Status	Steal In	Steal Out
Channel	PG	PC	No PC, PG in Channel	PC	PC from CPU PG to DBO
Display	PC	PG	-	N / A	N / A
Keyboard	PC	PG	-	N / A	N / A
Printer (Bett or Serial)	PC	1	-	N / A	N / A
33FD	PC	PG on Data Transfer Only	-	$\mathrm{PG}{ }^{2}$	$\mathrm{~N} / \mathrm{A}$
Disk	PC	PG on Data Transfa Only	-	PG	PC
BSCA	PC	PG	-	N / A	N / A

PC - Parity Checked
PG - Parity Generated
${ }^{1}$ Attachment activates CBI 4 line to CPU, which denotes that parity
is not generated on DBI for transfers to the channel.
${ }^{2} 33 \mathrm{FD}$ cycle steals on IMPL only.
Note: Attechments generate a parity bit on the DBI when ress
Wump I/O command whether or not the condition true response (CBI 4) is met

Retry and Error Logging

If errors occur during some operations, the operation is retried. Operations that cause errors while the emulator is analyzing system instructions and some operations that cause errors during the execution of the system instructions are retried the system level.

Irror logging is used by the system to assist the CE the analysis of intermittent errors. All error onditions that can be retried are logged in control orage and where possible, are recorded on the disk drive. Error conditions that are recorded may be trieved and printed using ERAP program (error recording and analysis procedure).
Essentially, two types of error information are ecorded for each device and the CPU, error of and error count. In addition, the aso

Each device except the display screen has an Each device except the display screen has an ber of entries. If the table becomes full, the most recent entries are retained.

Error count tables contain the number of times pecific error has occurred. When these tables each their maximum value, this value is retained until cleared by the CE.

Details of the error history and error count tables re in the Diagnostic Service Guide

Initial System Checkout

To ensure the system circuitry is functioning properly, a series of diagnostic tests are run each time LOAD is pressed. These tests fall into two groups. The first group checks out the CPU, main storage, and control storage. The second group, called I/O wrap tests, checks out the I/O attachments. However, the I/O wrap tests do not cause the I/O devices to operate (individual diagnostic programs may be run later to exercise the selected I/O device).

To assist in isolating a failing area, an event register is displayed in the leftmost display byte on the CE panel. When LOAD is pressed, all nine indicators turn on. As various portions of the system checkout are completed, the event indi cators are turned off in sequence. Thus, it is tailed description of the event indicators is found on IMPL-1.

After the tests are successfully completed, the mulator and SCP (system control program) ar loaded from the disk drive if the device select switch is in the IMPL DISK position. If the switch is in the IMPL DISKETTE position and the DIAG 01 diskette has been inserted in the 33FD, the DCP (diagnostic control program) is loaded from the 33FD following the successful completion of the system checkout. With the DCP loaded additional diagnostic programs can be run to exercise I/O devices.

Processing Unit

The CPU (processing unit) consists of five cards on gate 1A, board A1 and has the following functions:

- Emulates system instructions.
- Handles some of the SCP (system control
programming).
- Handles system I/O.

The five CPU cards and the hardware on each card are as follows:

System Control Card
ALU control lines
ALU carry in control lines
Storage gate high/low control lines
ALU gate high/low control lines
LSR addressing and control
MOR (micro operation register)
Control panel display
CPU clocks
Storage Control Card
SAR (storage address register) System reset logic
Storage clocks
Invalid address checking
Display bits 8-11
Display bits 8-11
IMPL sequence contro
Oscillator

Status 1 Card
PCR (processor condition register) CPU checks register
Address switches 1 and 2 Event indicators
Display bits $0-7, \mathrm{P}$ high Address compare high logic

Status 2 Card

Address compare low Display bits 12-15, P low Control panel functions Control panel sense byte I/O clocks

Data Flow Card

LSRs (local storage registers) ALUs (arithmetic and logical units) SDR (storage data register) Storage gates high and low ALU gates high and low X and Y registers Parity predict

The five CPU cards and the main and control storage cards are located as shown.

Card Side of Gate 1A, Board A1

CPU Data Flow

CPU data can be handled either 1 byte at ime or 2 bytes at a time. The quantity of data $(1$ byte or 2 bytes) and the exact path of that data depends on the micro instruction being executed.
System bus in from the channel is 1 byte but that byte can be handled as either a high or low byte once into the data flow.

Data can be cross gated from the high byte of the SRs to the low byte of the data path. Main torage data can be loaded to either the high or w side of the LSRs. ALU operations can be either 1 or $\mathbf{2}$ bytes, or combinations.

Parity Checking

Odd parity by byte is maintained in the data flow. To ensure correct parity, checking and generating tations are used throughout the system. Parity checking is done on SAR, SDR, storage gates high and low, ALU gates high and low, and MOR in addition, parity is checked on the channel data lines.

Parity generating stations are provided for status register, control panel, switch bytes, and other internally generated data pertinent to the CPU (storage gate high and ALU gates high and low)

CPU Default Conditions

If no hardware conditions are specified for the CPU by the micro instruction, the system has CPU by the micro instruction, the system has certain built-in selections and functions. The default conditions for the functional units in the CPU are as follows:

Unit

Default
torage gate high
torage gate low
ALU gate high
ALU gate low
ALU function LSR high LSR low ALU high ALU low X plus 1

cPU Functional Units

ALU (PL060, PLO70)

The ALU (arithmetic/logical unit) is divided into two parts. The ALU high unit operates on bits $0-7$ when 2 -byte data fields are involved; and $0-7$ when 2 -byte data fields are involved; and
the ALU low unit operates on bits $8-15$ when a 1-byte or 2-byte data field is involved.

The ALU can perform the following arithmetic and logical functions:

Function	F0	F1	F2	F3	Carry In
XXR Y	0	0	0	1	0
XORY	0	0	1	1	0
X AND (not) Y	0	1	0	1	0
X AND Y	0	1	1	0	0
X OR (not) Y	0	1	1	1	0
X minus one	1	0	0	0	0
X plus Y plus carry	1	0	0	1	C
$X \text { minus } Y$ (16/8)	1	0	1	0	1
X plus Y (16 or 8)	1	0	1	1	0
X minus Y (16 or 8)	1	1	0	0	1
X plus Y (16/8)	1	1	0		0
X minus Y minus one plus carry	1	1	1	0	C
X plus one (carry in)	1	1	1	1	1

$16 / 8$-One field 16 bits, second field 8 bits. 16 or 8 -Both fields 16 bits or both fields 8 bits.

Carry In
C = Carry used (carry trigger from previous operation)
$1=$ Force carry to 1 (by hardware, T-times, and instruction)
$0=$ Not used

The four function bits are generated in the system control card (PMO40) as determined from the instruction (MOR bits) and the T-times. The carry in line (PMO50) is brought up either by the 'carry trigger' which is on from a previous operation (force carry to one) or when the instruction MOR bits are decoded to show carry trigger needed (carry used).
Any data sent to the ALU is first loaded into the X -high and Y -high registers for the high bytes and the X-low and Y-low registers for the low bytes. The X-registers provide the data for one operand perand that is used in the current ALU opera tion. Depending on the micro instruction and its function, either 1 byte or 2 bytes are affected by the ALU.

The ALU can handle arithmetic operations involving two 16 -bit words, one 16 -bit word plus/ minus one 8 -bit byte, or one 8 -bit byte plus/ minus one 8 -bit byte, or one 8 -bit byte plus/
minus one 8 -bit byte. The instruction logical/ arithmetic 1 is used for 8 by 8 -bit arithmetic. Logical/arithmetic 2 is generally used for 16 by 16 -bit arithmetic and 16 by 8 -bit arithmetic. When doing 16 by 8 -bit arithmetic, the line 'reset Y high reg' (generated on the data flow card) is used to reset the unused 8 bits of the Y-register.

Instructions involving increment or decrement of the X -register are handled by activating the lines 'reset Y high reg' and' reset Y low reg and forcing 'carry in' (turn on 'carry trigger'), This causes only the X -register to be affected
by the instruction. by the instruction.

The output of the ALU always presents 2 bytes of data to the LSR stack input bus. If 2 bytes are required by the ALU operation, both bytes are directly placed on the input LSR bus and simultaneously written into the LSR stack. and simultaneously written into the LSR stack If only l byte was operated on by the ALU
the resultant byte is presented to both the high and low bus inputs. Only the byte selected by the micro instruction is written into the LSR stack.

ALU Gates

The ALU gates high and low control the fina destination of the ALU data. The decode o 'ALU gate high/low sel $0,1,2$ ' lines gate data through the ALU gates (selectors) and control the selection of the source data (PLO50). These select lines are generated (PMO45) by a decode of MOR bits and the T-times.

Example: LA1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |

ALU gate sel $=100$ (PMO45)
ALU gate low = Zone to zone (from ALU bits low or Y reg low)
ALU gate high $=$ Low to high (from ALU gate high)

Parity predict circuits (PKO6O) predict the parity
of the result of the ALU operation. This pre-
dicted parity is compared against the actual
parity of the result. If a discrepancy exists, a
parity check results.

Parity Predict Circuits

Local Storage Registers (LSR)

The LSRs (PLO40) are used by the microprocesso as:

Data buffers and address registers for main and control storage

- Operand registers for internal calculations. I/O control data registers that can be loaded from or stored in I/O attachments.

The first 32 LSRs are subdivided into four groups s shown. The micro instruction address register/ icro instruction address backup (MAR/MAB) ack is used by main level, machine check anterrupt level 1 , and interrupt level 2 Each o the other three groups can be used only by the named level. Work register (WR) 4 of interrupt evel 1 is also used as a work register (data address register) by burst mode (disk drive).

Optional features use 10 of the remaining 32 LSRs. The first group (hex address 20-27) is used by micro terrupt level 3 as work registers. The second group (hex address 28-2F) contains the MAR/MA for micro interrupt level 3 (hex address 28-29)

Each LSR is 16 bits wide (plus a parity bit for each byte).
LSR Addressing
LSR addressing is controlled by the system contro card (PM060, PM065). The appropriate addressgits are turned on by a decode of the MOR bits and T -times. Writing LSRs (PMO70) is conrolled by MOR bits, T-times, and (not) 'trigger A

Micro Operation Register (MOR)

he micro operation register (PMO10) holds the icro instruction as it is fetched from contro torage (storage bus bits). The micro instruction is used for gate selection, ALU functions, setting he microstatus register, and address selection for LSRs.

Micro Operation Register

Storage Address Register

Storage Gates

The storage gates (data flow card PLO30) mak
data coming from SDR, LSR, system bus in,
and X-register available to system bus out and
to the X-and Y registers.

The selection bits are developed in the system
control card (PMO30) by the MOR bits and
the T-times.

This page is intentionally left blank.

Processor Condition Register (PCR)

The PCR (PK005, PK007) contains the processor conditions that are tested by the branch on condition instruction. The PCR is changed by system reset, program loading, or instructions that modify register bits. These conditions are modified by the micro instructions that perform

CPU
the add, subtract, test mask, compare immediate, subtract immediate, and R1 linked with R2 functions.

The PCR clocks (PKOO3) gate the data into the PCR. These clocks are shown on the right.

Processor Condition Register

PCR		Flag Bit 0	Positive Bit 1	Negative Bit 2	Zero Bit 3	Cary Bit 4	High Bit 5	Low Bit 6	Equal Bit 7
LA1 or LA2 Logical	Set		Result of logical operation does not equal zero and (R1 or $\overline{\mathrm{R} 2}$ equals all ones).	Result of logical operation does not equal all zeros and (R1 or $\overline{\mathrm{R} 2}$ does not equal all ones).	Result equals all zeros.				
	Reset		Result of logical operation equals all zeros or (R1 or $\overline{\mathrm{R} 2}$ does not equal all ones).	Result of logical operation equals all zeros or (R1 or $\overline{\mathrm{R} 2}$ equals all ones).	Result does not equal all zeros.				
LA1 or LA2 Arithmetic	Set		Result has a carry and does not equal zero.	Result has no carry and does not equal zero.	Result equals zero.	Result had a carry (add), or no borrow (subtract).	Result has a carry and does not equal zero.	Result has no carry and does not equal zero.	
	Reset		Result has no carry or equals zero.	Result has a carry or equals zero.	Result does not equal zero.	Result has no carry (add) or a borrow (subtract).	Result has no carry or equals zero.	Result has a carry or equals zero.	Result does not equal zero.
Test Mask	Set		Tested bits equal all ones.	Tested bits do not equal all ones and do not equal all zeros.	All tested bits equal zero (or no bits tested).				
	Reset		Tested bits do not equal all ones.	Tested bits equal all ones or all zeros.	Tested bits do not equal zero.				
Compare or Subtract Immediate	Set		Register data is greater than immediate data.	Register data is less than immediate data.	Register data is equal to immediate data.				
	Reset		Register data is not greater than immediate data.	Register data is not less than immediate data.	Register data is not equal to immediate data.				
I/O Immediate Reset Carry - Set Equal	Set Reset								Equal set on.
						Carry set off.	Decoded from carry, equal, and set off.	Decoded from carry, equal, and set off.	
I/O Immediate Load PCR		Loaded bit 0 is on.	Loaded bit 1 is on.	Loaded bit 2 is on.	Loaded bit 3 is on.	Loaded bit 4 is on.	Loaded bit 4 on and bit 7 off. \qquad	Loaded bit 4 off and bit 7 off. \qquad	Loaded bit 7 is on.
	Reset	Loaded bit 0 is off.	Loaded bit 1 is off.	Loaded bit 2 is off.	Loaded bit 3 is off.	Loaded bit 4 is off.	Loaded bit 4 off or bit 7 on.	Loaded bit 4 on or bit 7 on.	Loaded bit 7 is off.
System Reset	Set Reset								Equal set on.
		Set off.	Set off.	Set off.	Set off.	Carry set off.	Decoded from 4 and 7 and set off.	Decoded from 4 and 7 and set off.	
I/O Immediate Flag Latch	Set	Set on.							
	Reset	Set off.							

Main Storage

Main storage consists of 16,384 bytes of FET Each byte is 8 bits plus one parity bit. One byte of information is available to the CPU for each storage access.

Control Storage

Control storage contains 4096 locations 8192 locations on machines with the Control Storage Increment Feature). Each location is 2 bytes wide. Micro instructions that control CPU and O operations are loaded at here

Control Storage

Direct Area
Fixed Communications Area
Keyboard Katakana Converter (if KANA is used) Keyboard Decode Table/CRT Buffer System Emulator Disk I/O Printer I/O Keyboard/Display Screen I/O Transient Area Microinterrupt Handler Nucleus Functions

Control Storage Increment Feature

The direct area and fixed communications area are common areas used by portions of the micro program. These areas contain machine check \log area, system registers, and interrupt branch tables.

Keyboard decode table contains a tabla to decode the data bits coming from the keyboard. This is necessary because the bits coming from the keyboard are not in a standard code.

The CRT buffer stores the message to be displayed on the CRT. This buffer is then trans ferred to the buffer in the CRT attachment. If the display is to be printed, the printer $1 / 0$ area prints from the CRT buffer

The system emulator classifies system instructions as CPU instructions or as I/O device instruction When the instruction is a CPU instruction, the emulator also executes the CPU instruction. If the instruction is an $1 / O$ device instruction, it is executed by the appropriate I/O area of control storage.

After the emulator has classified a system instruction as an I/O operation for one of these devices, control is passed to the appropriat area. For example, if the instruction is a printer instruction, control is passed to the printer I/O area of control storage.

The micro interrupt handler is used to process I/O interrupts.
The transient area is used for devices whose I/O microroutines are not resident in control storage: for example, the 33FD microroutine If the required microroutine is not in control storage when called, it will be loaded into the transient area

The area called nucleus functions contain pointers, routines and subroutines such as system reset/restart', save/restore registers', 'SVC processors', etc.

Direct Area of Control Storage			Hex	High	Low		High Low		High	Low Order Byte	Hex Address	High Order Byte	Low Order Byte
			Address	Order Byte	Order Byte	Address	Order Byte Order Byte	Address	Order Byte	Order Byte		Order Byte	Order Byte
The first 128 words of control storage function are directly accessible locations within the system. The contents of this direct area are shown in the fixed control storage map.													
			0028	Low byte disk address	N -byte (sector count -1)	0052	Address of control storage transient area	006B	Displacement of branch to transient in the I/O device		007F	System interrupt level status word (S3ILSW)	
			0029	Storage address of data		0053	Address of start of transient		branch table			Bit 0	
			002A	Sense word 1			status word table	006 C	Control storage interrupt			1 BSCA	
Hex	High	Low	002B	Sense word 2		0054	Address of I/O device branch		level status word			2 Keyboard	
Address	Order Byte	Order Byte	002 C	Error byte	Flag byte		table		(CSILSW) interrupt mask			3	
			002D	Priority byte		0055	Address of end of register	006D	System interrupt level			4	
0000	Address of reset routine		002E	N-byte	F-byte		stack		status word (S3ILSW)			5	
0001			002F	Cylinder adaress		0056	Address of system interrupt		interrupt mask			6	
			0030	Head	Sector		branch table	006E	Control storage interrupt			7	
000D			0031	Storage address control field		0057	Address of control storage		level status word backup			8 through 15 must be zero	
000E)	Not used		0032	Address of main storage IOB			interrupt branch table	006F	System interrupt level				
			0033	Read verify occurrences		0058	Address of control storage		status word backup				
0011			0034	Write data occurrences			interrupt level status word	0070	Nucleus job terminator				
0012	Temporary work space for		0035	Read data or scan			backup (CSILSWBK)		errors				
	microprogram interrupt			occurrences		0059	Address of control storage	0071	Disk address of transient				
	levels		0036	Seek occurrences (nonzero			interrupt level status word		currently in main storage				
0013	Interrupt level 0-PCR save	Machine		seeks only)			(CSILSW)	0072		Interrupt			
		check	0037	Disk current cylinder		005A	Address of $I O B$ save area in			level			
		counter	0038	Previous disk cylinder			direct area			indicator			
0014			0039	Save area for Q - and R -bytes		005B	Address of start of RIB	0073	Miscellaneous system				
0015	Address of machine check log area		003A	for issued op code N -byte	F-byte	$005 C$	status word table		indicator bits	system indicator bits			
0016	Interrupt level 1-PCR save		003в	Cylinder address		O05c	Address of program level communication area	0074	Not				
0017	Interrupt level 2-PCR save		003C	Head	Sector	5D	Address of disk error log	0075 \}	used				
0018	Register save for interrupt		003 D	MAB save			Address of dis	0076	Index register 1				
	level 2 interrupt handler		003 E	Print data address register		005E	Address of return from main	0077	Index register 2				
0019	Register save for interrupt level 2 interrupt handler		003F	Forms length	Current print line		storage transient area	0078	Main storage op code	Main storage			
001A)			0040	Work space	Character	005F	Address of loader parameter list in system communication						
	Reserved				set size			0079	Instruction address register				
001C)			0041	Status byte	Device	0060	Address of low order byte	007A	Program status register				
001D	Register save on main				address		of entry address in loader	007 B	Address recall register				
	Register save on main		0042	Interrupt condition			parameter list	007C	Address recall register for				
001E			0043	Save area for WR3 between interrupts		0061	Address of queue zero header	007D	decimal operations Address of system op code				
001F	Register save on main		0044	Console/display IOB address			Address of disk queue		being executed				
	program level		0045	Status information	Keyboard	63		007E	Control storage interrupt				
0020	Disk control flags	Disk device			device	63	Address of system transient		level status word (CSILSW)				
		address			address	0064			Bit 0				
0021	Current head \quad Not used		0046	Constant record start					1 Keyboard (I/O control)				
0022				address			Address of main storage disk		2 Printer (1/O control)				
	for physical retry		0047	Cursor location limit		0065	Address of main storage disk IOB for nucleus		3 Disk IOS				
0023	Save area of log control	Command	0048	Constant cursor position		0066	Address of next trace log entry		4				
		for alternate	0049	CRT buffer start address		0067	Disk address of next push save		5 Trace Instructions				
		sector	004A		Bit 6=1 for		area		6 Machine Check Logout				
0024	Save area for subroutine return		004B)		Katakana	0068	Disk address of end of push		7 Inquiry				
			to	Transient work space			save area		8 through 15 must be zero				
0025	Address of last disk		004F)			0069	Address of current stack						
	sector processed	Unused	0050	Status information (used									
0026	Completion code	Q-byte		as error count on IPL)		006 A	Address of next push stack						
0027	R-byte	High byte disk address	0051	Physical cylinder	Logical		entry						

I/O Clocks

The CPU supplies seven continuously running clocks which are used by the I/O attachments. These seven clocks can be stopped and started for diagnostic testing. One clock is the 100 ns free running internal oscillator and this oscillator generates 'phase A' which in turn, generates the other six clocks. The periods of these clocks are:

100 ns (generated by oscillator only)
$1 \mu \mathrm{~s}$
$4 \mu \mathrm{~s}$
$4 \mu \mathrm{~s}$
1 ms
$512 \mu \mathrm{~s}$
131 ms
1 s
These clocks are part of the timers sensed by the I/O immediate instruction.

Four system clock triggers are decoded to
determine the T -times. These triggers chang state with the output of the AND of (not) 'phase A' and the oscillator.

When the current instruction is decoded, th stem determines if some of the T-times are ot needed and controls the gating of the triggers to skip the unneeded T-times.

Storage Clocks

During micro instruction fetch time To through T2, TO time is used to establish the address in control storage for the next instruction and to place this address into the storage address register (SAR). During T1 and T2, the storage address is accessed for reading the data
The storage clocks are also used during burst mode operations. When an I/O device raises 'block processor clock' the CPU finishes raises ever micro instruction it is processing and the

Storage Access Sequence
50 ns 50 ns
Osc
(not) Osc
Storage Function
PM055
FL1
300 ns Trigger
Write Trigger
150 ns Trigger
Storage Clock
PNO3O

Service Request

Service request comes up whenever the operator or CE requests service through the operato control panel or the CE control panel.

System Reset

System reset (PNO60) occurs whenever the RESET is pressed or power on reset is generated System reset also occurs when LOAD is pressed initiating an IMPL sequence. Pressing LOAD sts 'IMPL pressed Ith' which brings up
ystem reset. Releasing the load key completes the set of the 'IMPL cycle lth' which resets IMPL pressed lth' and drops system reset.

Channel

The channel transfers data and commands between the CPU, main and control storage, and all I/O devices. It also provides data buses and synchron izing controls to complete transfers between I/O attachments, CPU, and storage.

The channel has some lines that go directly from the CPU to the I/O attachments and some lines that go to a port.

Channel, as used in this system, refers to the internal interface between the processor and logic for control of I/O functions. The channel contains a port through which part of this control passes.

Channel Interface

The channel has three unique interfaces as follows:

1. Main and control storage through CPU data flow.
2. CPU data flow and LSR
3. Disk storage.

These interfaces provide all necessary controls to support the following:

1. I / O instructions.
2. Micro interrupts (two levels).
3. Disk.
4. Error logging.
5. Timing and control lines.

The channel gates the data from the CPU to the port and subsequently to the I/O attachment.
Data to main/control storage from an I/O attach ment is latched in the port and transferred through the CPU to storage. All storage addressing, storage write control, and address updates are controlled by the CPU.

The data path of the port is 1 byte wide (8 data bits and 1 parity bit). The port provides all necessary controls to support I/O instructions, micro interrupts, and burst mode.

CPU Data Flow and LSRs Interface

The CPU interfaces with the channel directly when transferring data into or out of the CPU LSRs. The CPU handles all CPU LSR selecto write controls directly from the I/O instruction fields. The channel gates data from the CPU LSR to the port and subsequently to the attach ment.

Disk Storage Interfac

The CPU and the channel have the storage addressing, appropriate timings, and interlock controls to support the disk drive. This interface is internal to the CPU/channel/disk drive and is not available to any other devices in the system excep during IMPL. The fast data transfer rates of the disk make this restriction necessary.

CPU
Channel
I/O Devices
/ O Clocks \qquad
Power On Rest \qquad
MPL Latch
IMPL Switch
CSY Trigger
T7

$$
\longrightarrow \text { Command Bus In }
$$

System Bus Out

Port System Bus In
Phase A

CSY Trigger
I/O Instruction
Machine Check Interrupt
System Reset
Lamp Test
T4-T6
Interrupt Request to Run Lth
Advance Time
Storage Cycle Request
Interrupt/CS LSR Decode
Bits 0, 1, 2
Interrupt Indicator
Driver 0, 1, 2
Block Processor Clock
Port Check
I/O Service Request
Command Bus In Bit 4
Cort Data Bus In
\longrightarrow

PG = Parity Generat
PC = Parity Check

The port normally operates in odd parity mode For diagnostic purposes, the port (through an I/O control load) can be set to operate in even parity. In this case, data received from the CPU Becaue the CPU porates with odd pity, port create a CPU chack when sending data port creates a CPU check when sending data to reset sets the port to odd paritv (PH140).

Port Clock

The port clocks generate the interface timings between the CPU and the I/O attachments. The port clocks run only for I/O instructions, othe wise, they are all reset. When the CPU decodes an I/O instruction, it raises 'I/O instruction during T 3 ; this line stays active through the end of T6. ‘I/O instruction' causes the CPU clocks to extend T3 and simultaneously gates the port clock triggers, which are clocked by the shift of 'phase A'

Generation of Port Clocks

During the first three 200 ns increments of the extended T3 times, SDR low, SDR high, and the selected LSR low contents are gated to the port card A. During the succeeding T3 times, port 0 gates the device address out on the DBO lines
B , raises 'control out' C , and sends a strobe B , raises 'control out' C , and sends a strobe Wen 'cobe' Dout to the device attachment. endin our CO7 etc) while waiting for the I/O device to respond (or until a timeout occurs)

When the device responds, it places data on DBI \mathbf{E} (or indicates it is ready for data) and raises 'service in' \mathbf{F}; the rise of 'service in' (or timeout) advances the port clocks and the port raises 'advance time' to signal the CPU clocks to advance to T4. The system clock continues to advance normally to $T 6$.

Asimilar situation occurs during T6. The port sends service out G, which indicates either: dead to be sent, or data was received
'Strobe' \mathbf{H} is again sent for the I/O device to use. The port clocks loop with 'service out' active and strobe pulses continue to be generated while the port waits for the I/O device to respond (or a timeout to occur). The I/O line (or if data was sent to the CPU turning off DBI) and turning off 'service in' 1 . Th port responds to advancing the port clocks to turn off 'service out' \bar{J} and then raises 'advance time' \mathbf{K} causing the CPU clocks to run again to TO .

PHO1O

T3 Lth

Blast Condition (PH090)

last condition causes all I/O devices to reset and he CPU to branch to the machine check interrup outine. After dropping 'service out' the port信
 y raising 'service out' and 'control out' imulanteously
blast condition is also generated if the $1 / 0$ device addressed does not respond within 5.4μ fter 'control out' and 'service out'.

Blast Condition Due to Timeout Check

Blast Condition Due to DBI Not Zero

If DBI is not zero, the cPU Iopos in the machine check

Blast Condition Due to Invalid Device Assigned

T Times		T3E				--	--	---	T4	T5	T6	то		T3A	т3в	T3E	T4
C Times	cof	COE	co6	c07	COF	COE	06	C02	coo	coo	coo	coo	S ${ }^{\text {S }}$	C09	C03	007	COF
Port Instruction													,				
R $\times 1$																	
TGR X 1													-				
TGR X2													S				
TGR $\times 4$																	
)				
TGR X8													-				
C1X Latch																	
)				
Exit Loop 1 Lth													-				
Timeout Counter													f				
Control Out																	
Service Out																	
Strobe																	
Service In								-					(f)				
Reset Port Errors																	
Inv Dev Assign Lth																	
1/O Instruction													-t)				
Timeout Clock																	
Phase A													41				
Advance Time																	
Blast Condition																	
Machine Check Irpt																	

*If 'service in' becomes active in this area, the blast
condition will continue.

Controls

Control Out: rise indicates the data on 'port data out' and 'command bus out' is valid and can be sampled.
a blast condition.
Service Out
Data to Port: tells adapter that port is finished with data and transfer can be terminated; 'service in' and input data can be dropped.
Data from Port: tells adapter that 'port data out' contains valid data and can now be sampled. When the I/O device drops 'service in', 'port data out' should no longer be sampled

Strobe: comes up 200 ns after 'control out/ service out' and pulses with a period of 800 n with an on duration of 400 ns until the rise or fall of 'service in'. Stops with rise or fall of 'service in' guaranteeing a full pulse width upon completion. Use of the pulse is device dependent.

If the device uses the line to generate 'service in', system operates in a synchronous manner.

The I/O devices use 'strobe' to generate appropriate data strobes and timing for loading information from the port and providing equired timing to ' $\mathrm{CBI} /$ port data bus or fall of 'service in'.

Control Lines

Data on 'port data out' and CBO remains valid from the trailing edge of the last 'strobe' for 00 ns. This allows the last strobe to be used for clocking.

Command Bus Out: CBO is valid at the interfac rom the rise of 'control out' until the fall of service out at the port interface. CBO, together with 'control out, indicates what data is on 'port ata out'. The addressed attachment responds by raising 'service in' with the appropriate information gated on 'port data in' and 'command bus in'.

CBO bits are defined as follows:

012
000 Unused
0011 Sense interrupt status
0 10 Interrupt/burst mode response
011 Branch
100 Load
$\begin{array}{llll}1 & 0 & 1 & \text { Sense } \\ 1 & 1 & 0 & \text { Control load }\end{array}$
111 Control sens

I/O Instructions

The three micro instructions that communicate with the CPU, port, and the I/O attachments are:

- I/O Storage
- I/O Immediate
- I/O Branch

During execution of the I/O command, the CPU elects WRO(L) and sends its contents to the
channel and thus to the port. The format of

WRO(L) is:	0	3	
Device	Address		
Port	0		0
Keyboard	1		0
Display Screen	4		0
MCU/MCR/Data Recorder	5		0
BSCA/SDLC	8		0
Disk Drive	A		0
33FD	D		0
Printer	E		0

The port links the instruction modifier field (bits $4-7$ of the I/O instruction) onto the device address and transfers this information over the port interface to the appropriate attachment.

The port register stores the last CBO and devic ddress issued by the port. This information is not destroyed after an error is detected and therefore can be sampled by the machine check interrupt routine to determine what device caused the check.

The port register is also used to read data from the LSRs or write data into the LSRs. When used in this manner, previous information about the device address and CBO is destroyed.

The CPU operates with odd parity; the port, how ever, can be set to either even or odd parity.

The attachments use 'CBI bit 4 ' for the following

- Show that the condition tested by I/O branch on condition is met and that the CPU should take the branch.
- Indicate to the CPU when to address control storage during a storage operation.

Transfer error is brought up from the CPU t o show I/O branch echo met, that is, the CPU received CBI bit 4 correctly and the branch will be taken. This line is also used to indicate that invalid parity was detected during an $1 / 0$ operation.

The following I/O immediate micro instructions are directed at the channel.

B 64 Reg Sense port register
B 14 Reg Sense port check byt
B 08 X Disable 33FD timeout
B 188 Load port register
B $28 x$ Reset port errors
$\begin{array}{ll}\text { B } 388 & \text { Enable 33FD timeout } \\ \text { B } 58 & \text { S }\end{array}$
B 58 X Set port odd parity
B 68 X Set port even parity

Disk Drive Support

The system has a burst mode data transfer capability to support the high data rate of the disk drive.
disk attachment raises FD block processor lock' (BPC) which forces the CPU to TI. (if the CPU is executing an instruction, $\mathrm{T7}$ does not bebecome active until the instruction is completed.)

Command bus in' must be correctly set at $\mathrm{T7}$ time. CBI controls selection of the LSRs which contain the address of the storage location; CBI bit 1 also controls the direction of data transfer. CBI bits also identify whether the data is to go into main or control storage, and control trase lo 2 age adresses. Con
storage locations are 2 bytes wide and main
torage locations are 1 byte wide.

CBI Bit Description

12345
0 Burst mode sense-no increment
01
Burst mode load-increment
0 Burst mode LSR select 0
1 Burst mode LSR select 1
10 Burst mode LSR select 2
$\begin{array}{ll}11 & \text { Burst mode LSR select } 2 \\ & \text { Burst mode LSR select } 3\end{array}$ 0 Main storage Control storage Port data bus out parity check

When T7 and 'FD burst mode' come up, the disk tachment raises 'FD burst cycle request' and loads the first byte of data onto DBI. The burst ycle request is granted and the rise of "CSY trigger' gates the data into the data buffer. This data is gated onto 'system bus in' and from there into the storage address indicated by SAR. Each ime burst cycle request is raised, a byte of data , CPU Continues to take stest is kels the maximum data transfer rete.

During data transfers to disk, ' $F D$ strobe' clocks the data from the port data buffer into the data he data from the port data buffer into the dat ment then writes the data on the disk.

Disk Drive Support Timing
CPU Cycles
62GV BPC
62GV Burst Mode Request
62GV/RD BCR
CSY Trigger
CBI
Data In
Data Out Valid to 62GV

Disk Drive Support Lines

Port Checks

Port associated errors are logged in main storage by the machine check interrupt routine. Retry of the instruction that caused an error condition is executed whenever possible.

Intermittent device errors are cleared by the port blast command. The devices are informed when transfer error has occurred. This information is stored in the device sense byte. Error conditions detected by the device (for example, invalid command) are also included in sense byte information.

Transfer Error: Indicates to the adapter that invalid parity was detected in port or in the CPU.

Transfer error is also used to indicate I/O branch met echo that tells the adapter that the port received the I/O branch met (CBI bit 4) and the branch will be taken by the CPU. This enables testing of asynchronous $1 / O$ device conditions with the $1 / O$ branch instruction and does not equire the adapter latch this line prior to raising 'service in'

Timeout Conditions: If the device addressed is not on the system or port data out contain bad parity, none of the devices answer the control out sequence. Port times out under ese conditions. At the completion of the timeout sequence, the timeout condition posted in the port status registers. . A blast is sent from the port and clears all inbound ata and control lines from the I/O adapters and causes a machine check interrupt.

If the device addressed initially responds with service in' but fails to drop 'service in' within predetermined time after receiving 'service prt, the port times out. This condition is posted in the port status register and the port posted in the port status register and the port ound data and control lines and causes a machine check interrupt.

LSR Selection

Interrupt/CS LSR decodes 0,1,2 are used to con trol LSR selection bits $0,1,2$ during instruction and burst mode processing. These lines allow selection

The 'interrupt/CS indicator drivers' are used to display the active interrupt as the system is running
'Interrupt request to run latch' is used to take the CPU out of the 'wait' state (created by the processor wait instructions) whenever a micro interrupt request is detected by port.

Micro Interrupts

The channel has three levels of micro interrupts the priority is set by hardware. Interrupt level 0 has the highest priority. All I/O devices that require processing generate a micro interrupt to the system. The system receives the interrupt through the port. The interrupt levels and the devices on each are:
Interrupt Level Description
Machine check
Disk drive
Keyboard, BSCA, Printer reader or Data Recorder (optional features)

If none of the above interrupt levels are active, micro instructions are processed from the main level MAR

Each interrupt level has a unique set of register in their LSR stack; machine check interrupt and the main level microroutines use the same set of registers. Each set of LSRs consists of:

Eight 16 -bit work registers (WRs) One MAR

One MAB
Having a unique set of registers for each interrupt level means that no data loss occurs en a higher level interrupts a lower level. Atter the higher level is reset, the micropl data out of the registers.

The entire system uses the same processor condition register, therefore, the PCR must be saved when entering the interrupt routine, and then restored when leaving the interrupt routine. This save/restore process assures that the contents of PCR are correctly associated with the level of processing. (If the micro interrupt routine does not alter the PCR, then the save/restore is not necessary.)

When the port senses the micro interrupt, either
 may be posted until the system can conveniently handle the request without affecting system throughput. Therefore, microprocessing of interrupts can be grouped into two classes

1. Immediate Action: Any device or system condition that requires attention because of critical response times is handled immediately. The microroutine services point that the critical response is complete and service can be continued at a time when system facilities become available. Examples of this class of microprogram are machine check and disk interrupt routines.
2. Delayed Action: After servicing the interrupt, the microprogram determines that complete service can be temporarily postponed because of noncritical response time for the device that is, the device is probably unable to cause another request during the time that it takes to execute a system instruction Therefore, the interrupt request is posted and service is delayed until the completion f the current system instruction.

LSR Stack

Level 0-Machine Check Interrupt

Machine check interrupt occurs whenever one of the following is detected:

- A parity check (SDR, SAR, STG gate, MOR, or ALU gate),
- An invalid address (main or control storage), - A port check, or
- A micro instruction loop timeout.

MCI brings up 'machine check interrupt from the CPU to the port which stops all I/O functions.

A machine check interrupt has priority over all other interrupts. The work registers (WRs) used by the MCl are the same ones used by the main program level (LSRs 0-7).

The machine check interrupt routine places the following information in control storage and then logs this information on one sector of the disk.

WRO Main Level
Port Check Byte/Port Register
CPU Error Byte/Console Status Byte
CPU Error Byte/Conso
MAR Interrupt Level 1
MAR Interrupt Level 2
MAR Interrupt Level 3
MAB Main Program Leve MAR Main Progam Level Instruction located at MAR-1 Date

The four most current errors are stored on the four sectors reserved for this purpose.

This information is taken from control storag and logged on the disk at the time retry occurs. By having this information in control working

After the error information is logged on the disk, the machine check interrupt routine retries the urrent operation at the system level whenever possible.

The machine check interrupt causes a program check when the interrupt is caused by an invalid main storage address. The machine check interrupt routine provides this information to the sys ontrol pros handled

Levels 1, 2, and 3-Disk Drive, Printer Keyboard, BSCA/SDLC, and Mag Card Unit, Magnetic Character Reader, or Data Recorder

Level 1 is dedicated to the disk drive. The micro interrupt request is normally processed s an immediate interrupt. (See Disk Drive support for further description of burst mode.)

On level 2, the devices have noncritical response times compared to system instruction execution times. Thus, processing of the conditions which initiated the micro interrupt are delayed until the completion of the current system instruction.

When a micro interrupt occurs on level 2 , the micro interrupt routine first does a multidevice ense interrupt status command. Each device as a preassigned bit on the data bus in; this bit is activated by the interrupting device during the multidevice sense interrupt command. The microroutine branches to a posting routine because no level 2 device requires immediate attention.

On level 3, the devices have response times that require immediate processing. Thus, the conditions hat cause a level 3 interrupt must be serviced on that interrupt level.

Since the devices that are on level 3 (Mag Card Unit or Data Recorder) are mutually exclusive, a sense interrupt level status byte is not required to determine which device caused the interrupt.
The micro interrupt routine for levels 1 and 2 performs the following functions:

1. Stores PCR
2. Initializes PCR
3. Interrupts service routine
4. Restores PCR
5. Resets micro interrupt

The micro interrupt routine for level 3 performs the following functions:

1. Stores PCR [WR1 (H) is dedicated on level 3]
2. Tests for the proper code in the transient area
3. Branches to the transient area entry address
4. Restores the PCR
5. Resets micro interrupt

A device initiates an interrupt by raising micro iterrupt request through its adapter whenever that device requires program interaction.
he lines 'interrupt/burst mode LSR decode , $1,2^{\prime}$ control LSR selection bits 0,1 , and 2 during instruction processing. These lines select micro interrupts.

The 'interrupt indicator drivers' display the active interrupt level to the operator as the system is running.

The interrupt levels are sampled during T3 times. The interrupt request signal to the CPU is inhibited when the CE mode switch is not turned to PROCESS.

Posting Interrupt Request

In the fixed area of control storage, two reserved locations are used as posting words

Location 007E
Control storage interrupt level status word (CSILSW)
Bit 0 Transient I/O Features
1 Keyboard (I/O control)
2 Printer (1/O control)
3 Disk IOS (I/O control)
5 Trace instructions
6 Machine check logout
7 Inquiry
8 through 15-Must be zero
Location 007F
System interrupt level status word (S3ILSW)
Bit 0
Keyboar
BSCA/SDLC
3
4
4
5
6
6
7
8 through 15-Must be zero

A posting routine is executed as part of a micro interrupt routine, an SCP routine, or as part of system I/O instruction; the routine consists of setting the appropriate bit to a one in either of the above two words.

The posted requests in the I/O device post locations re serviced between system instructions, and the ystem interrupt level status words posted request re serviced after the I/O device post requests are omplete. That is, the I/O post requests have priority over the system status words.
f a system interrupt is already in process, it must be completed before another system interrupt can be started. The only exception is program check which can interrupt a system interrupt routine

Interrupt Interface

At the completion of a system instruction, the microroutine tests the service request flag. If is found on, the microprogram branches to the I / O post routine and any posted bits are serviced until the I/O post word becomes zero.

The microprogram then tests the console function (SYS INSN STEP, START, STOP) to determine any of these functions caused the service request lag to come on. If STOP has been pressed, the system branches to the microstop loop. This loop allows micro interrupts to occur and I/O post word routines to be operational.
none of the console functions was invoked, he microprogram continues and determines if he SCP is already servicing system interrupts. If they are being processed, INTBUSY bit at INTLVL (location 0072 of direct area of control storage) will be a one. If this bit is zero, the system interrupt level status word is tested for any bit on. If found, a branch and link SCP interrupt is executed and control is passed to the SCP interrupt handler.

The SCP interrupt handler examines the S3ILSW o determine priorities if more than one bit is n. It then sets INTBUSY at location \$INTLVL o a one to signal the system interrupt test outine to continue with main level processing When the SCP examines the S3ILSW for a bit, it includes the following instruction steps:

1. Mask micro interrupts.
2. Test for S3ILSW bit on.
3. Reset bit and restore S3ILSW to control storage.
4. Unmask micro interrupts.

The SCP also includes instructions to save the main level system registers (IAR, PSR, XR1, XR2, ARR) in the control storage and replace them with the contents of the interrupt level system registers that are to be used when pro cessing the detected interrupt.

When all system interrupts are processed, the main level system registers are restored, the flag bit at location \$INTLVL should be set to zero, and a return instruction executed. The return instruction causes the main level program to continue at the system instruction that was being executed before the system interrupt wa taken.

Micro Instructions

The System/32 microprogram has the following functions:

- Read, decode, and operate on system instructions and data located in main storage.
- Handle I/O operations for the system attachments.
- Handle console operations.
- Perform diagnostic operations.
- Perform some SCP functions.

The microprogram is composed of microroutines, each of which performs a specific function in the system operation. The execution of each function requires many steps in the microroutine. These steps are micro instructions that are read out and executed in a particular sequence. To change the execution sequence, a branch and link instruction stores a link address in a backup regis ter. This is the address of the next micro instruc tion that would have been executed had the branch and link function not occurred.

Each micro instruction is a bit-significant word 16 bits) that represent a machine instruction. This instruction has specific fields defined for controlling data flow of the system. A zone digit is the hex value represented in the high 4 bits of a byte (bits $0-3$). A numeric digit is the hex value represented in the low 4 bits of a byte (bits 4-7).

System/32 has 19 micro instructions. Bits 0 $1,2,3$, and sometimes bits 8 and 12) of the instruction identify the type of instruction. The significance of the remaining bits is unique to the instruction.

The 19 micro instructions are:

Branch

Branch and Link
Branch On Condition
I/O Branch On Condition
I/O Storage
Storage
Logical/Arithmetic 1
Logical/Arithmetic 2
Set Off
Set On
Immediate
I/O Immediate
Compare Immediate
Subtract Immediat
Storage Direct
Move Local Storage Register
Hex Branc
Hex Move

Micro Instruction Fetch

During micro instruction fetch, the storage gates are selected from the LSR MAR. This data is clocked into SAR and into the ALU. The carry in' line comes up which adds one to the data going through the ALU (address from MAR). Thus the data gated through the ALU and back into the LSR is the new address for the next fetch.
Micro instructions are executed in two phases, a fetch phase and an execution phase.

Imeans that check is done at that time.
\uparrow means line is up but not used.

Micro Instruction Mnemonics

Micro Instruction	Mnemonic	OpCode	Micro Instruction	Mnemonic	$\begin{aligned} & \text { Op } \\ & \text { Code } \end{aligned}$
Branch	B	0	Set Bits On	SBN	9
Branch and Link	BAL	1	Set Bits Off	SBF	8
Branch On Condition	JC	2	Load Immediate	LI	A
Branch On Carry	JCY		Compare Immediate	Cl	C
Branch On High	JH		Sense Interrupt Level Status		
Branch On Low	JL		Byte	SILSB	B
Branch On Equal	JE		I/O Load	10 L	
Branch On Positive	JP		I/O Sense	105	
Branch On Negative	JN		1/O Control Load	IOCL	
Branch On Mixed	JM		1/O Control Sense	IOCS	
Branch On Zero	JZ		Microprocessor Load	MPL	
Branch All Ones	JO		Microprocessor Sense	MPS	
Branch On Flag	JFLG		Microprocessor Load for		
Branch Service Request	JSR		Special Functions	MPLF	
Branch Not High	JNH		Move LSR	MVR	E (Bit 8)
Branch Now Low	JNL		Load Direct from Control		
Branch Now Equal	JNE		Storage	L	E (Bit 8)
Branch Now Positive	JNP		Store Direct to Control		
Branch Not Negative	JNN		Storage	ST	E (Bit 8)
Branch Not Zero	JNZ		Hex Branch Numeric	HBN	F (Bit 12)
Return	RETRN		Hex Branch Zone	HBZ	
Branch On I/O Condition	JIO	3	Shift Right Logical	SRL	F (Bit 12)
1/O Load From Control			Shift Right Logical Double	SRLD	
Storage High/Low	WTCH/L	4 (Bit 8)	Shift Left Logical	SLL	
1/O Store to Control			Shift Left Logical Double	SLLD	
Storage High/Low	RDCH/L		Move Zone to Numeric	MZN	
I/O Load from Main Storage	WTM		Move Zone to Zone	MZZ	
I/O Store to Main Storage	RDM		Transfer	XFER	
Load from Control Storage	LC	4 (Bit 8)			
Load from Main Storage	LM		Note: Notes in parentheses	for example	: Bit 8)
Store to Control Storage	STC		refer to bits that further diff	rentiate inst	ructions.
Store to Main Storage	STM				
Subtract Immediate	SI	D			
Add Immediate	AI	D			
Test Mask	TM	5			
Logical Arithmetic 1	LA1	6			
Logical Arithmetic 2	LA2	7			
Exclusive OR	XR				
OR	OR				
AND Register	NR				
AND Complement	NCR				
OR Complement	OCR				
Decrement Register by 1	DEC				
Add Registers with Carry	ACYR				
Subtract Register	SR				
Add Register	AR				
Subtract with Borrow	SCYR				
Increment Register by 1	INC				

Branch

Mnemonic: B

0	0	0	0	Branch Address	
0	3	4			

The branch instruction is used for an unconditional branch to one of 4096 addresses in control storage only. During the first cycle, the branch address is placed in X high, X low, and SAR. During the next cycle, TO is skipped so that no new LSR is selected, and X and SAR are not clocked again. The instruction is fetched from the address loaded into SAR during T3 of the first cycle. ALU gate high/low is gated during T2 time and the incremental address data is written into LSR high and low.

Branch Address: 12-bit branch address. These 12 bits and X high bits $0-3$ replace the corresponding 12 bits in the storage address register (SAR). Hence, the branch address becomes the next sequential instruction. The microprogram address register (MAR) is then updated during T2 of the next cycle.

Condition Code
No change.

Select LSR (MAR) PLO40

Select Storage Gate High (from X high (0-3)/SDR (4-7)) PLO30

Select Storage Gate Low (from SDR low 8-15)

Advance Clock PH010
Clock X Low, X High, SAR PLO10 PLO60

Storage Cycle PNO3O
Second
Micro
Instruc
tion Fetch

ALU Gate High/Low (from ALU high/low) PL050

Write LSR High/Low PM070
T - Times $=200 \mathrm{~ns}$

Cycle On
Cycle Two - -

Branch (Stop Condition)

Clocks $T 4, T 5$, and $T 6$ can be taken if the processor is executing a branch and the run latch is reset by:

- A control storage address compare stop,
- Micro instruction step mode, or
- Processor check stop condition.

This stop condition can be caused by any of the following:

- Mode switch not in PROCESS mode,
- CS address compare, or
- Processor check.

With the use of INSN STEP position of mode selector switch, this condition permits single stepping through the branch instruction An attempt to single step through a branch that is located in the last valid address of control storage will cause an invalid control address check

Timing of CPU Functions for Branch Stop

 ConditionSelect LSR MAR PLO30 Select Storage Gate High (from \times high (0-3) SDR high (4-7)) PLO30

Select Storage Gate Low (from SDR low) PLO30

Clock X High/Low SAR don't care PLO1O

Clock Storage Gate Check PLO30 Select Storage Gate Check PL030 Control Storage Access PM020 Storage Cycle PNO30

Clock SDR PLO2O
ALU Function (pass) PL060
ALU Gate High/Low (from ALU high/low) PLO50

Write LSR High/Low PM070
Clock ALU Gate Check PM070

Specific CPU Data Path of Branch Stop Condition

Mnemonic: BAL

0	0	0	1	Branch Address
0		3		

This instruction is used for an unconditional branch and link operation. It allows branching to any one of the 4096 addresses in control
storage. storage.

Branch Address: 12-bit branch address that replaces the corresponding 12 bits in MAR.

When this instruction is executed, the address in MAR (of the next sequential instruction) is in MAR (of the next sequential instruction) saved in the microprogram address backup
register (MAB). The address in MAB is the link register (MAB). The address in MAB is the
address. The 12 -bit branch address in address. The 12-bit branch address in
the branch and link instruction replace the address in MAR. The address placed MAR is now the next sequential instruction. A return instruction (RETRN) is used to return to the next sequential instruction following the branch and link instruction. The return instruc tion causes the address saved in MAB to be placed into MAR. Hence, MAR is now pointing to the instruction following the branch and link instruction.

Condition Code

No change.

Select Storage Gate High/Low from LSR high/low) PL030 Select LSR (MAR) PLO40 Clock X Low and X High (SAR don't care) PLO10

Clock Storage Gate Check PL030
ALU High/Low Pass PL060
Select LSR (MAB) PLO40
Select Storage Gate High (from Select Storage Gate High (from
X hi ($0-3$)/SDR (4-7)) PLO30

Select Storage Gate Low (from SDR low) PL030

Select ALU Gate High/Low (from ALU high/low) PL060

Select ALU Gate High/Low (from storage gate high/low) PLO5O

Write LSR High/Low PM070
Clock ALU Gate Check PM070

T - Times $=200 \mathrm{~ns}$

Mnemonic：JC

0	0	1	0	Condition	Page Address	
0		3	4	7	8	15

This instruction allows branching within 256 locations（defined by bits 8－15）if the conditon specified by bits $4-7$ is met．If the condition is met，the 8 －bit page address replaces the
corresponding bits in MAR and SAR to form
the address of the next sequential instruction．
During the first cycle，the page address is placed in X high．During the next cycle，TO is skipped so no new LSR is selected and X low，X
te high／low is geted durin．ALU
ate high／low is gated during T2 time of the next quentia in LSR high incremented data is written into LSR high and low．

Condition（Bits 4－7）：These 4 bits indicate the function to be tested as follows：

Bits	Mne－ 4n	
	Test Condition	
0000	JCY	Carry
0001	JH	High（condition
0010	JL	Low（condition
0011	JE	Equal（conditio
0100	JP	Positive（condi
0100	JO	All ones（condi
0101	JN	Negative（cond
0101	JM	Mixed（conditio
0110	JZ	Zero（condition
0111	JFLG	Flag
1000	JSR	Service request
1001	JNH	Not high
1010	JNL	Not low
1011	JNE	Not equal
1100	JNP	Not positive
1101	JNN	Not negative
1110	JNZ	Not zero
1111	RETRN	Return

Page Address（Bits 8－15）： 8 －bit field to allow branching to one of 256 locations in control storage only．The 8 －bit page address replaces the lower 8 bits in MAR when the tested condition is met．

Note：For the return condition（bits 4－7 equal 1011），the page address is not used．In instruction．

Condition Code
No Change

Timing of CPU Functions

T － Times $=200 \mathrm{~ns}$

Cycle One
Cycle Two ーーーーー

Branch On Condition (Stop Condition)

Clocks T4, T5, and T6 can be taken if the processor is executing a branch on condition and the run latch is reset by:

- A control storage address compare stop,
- Micro instruction steps mode, or
- Processor check stop condition.

This can be caused by any of the following

- Mode switch not turned to PROCESS mode,
- Control storage address compare, or
- Processor check.

With the use of INSN STEP position of mode selector switch, this condition permits single instruction stepping through the branch on condition instruction. An attempt to single step through a branch on condition which is ocated in the last valid address of control storage causes an invalid control address check.

Timing of CPU Functions

Specific CPU Data Path

Logical/Arithmetic

Mnemonic: LA1

0	1	1	0	H 1	Reg1	Function	H 2	Reg2	
0	3	4	5	7	8	11	12	13	15

This instruction allows arithmetic and logical typ functions to be processed through the ALU. The logical/arithmetic 1 instruction is for 1 -byte operations oniy

H1 (Bit 4): Indicates which byte of the selected LSR (Reg1) is to be used in the current function.
$H 1=0:$ Low byte of the register is to be used.
H1 = 1: \quad High byte of the register is to be used.

Reg1 (Bits 5-7): Selects one of eight registers in the LSR stack for the current operating level. The selected register is operand 1 of the function and is modified at the completion of the function.

Function (Bits 8-11): Determines the basic function to be performed. The logical/arithmetic unctions that can be performed are shown in a table on the following page.

H2 (Bit 12): Indicates which byte of the selected LSR register (Reg2) is to be used in the current function.

$$
\begin{array}{ll}
\mathrm{H} 2=0: & \text { Low byte of the register is to be } \\
\mathrm{H} 2=1: & \begin{array}{l}
\text { used. } \\
\text { High byte of the register is to be }
\end{array}
\end{array}
$$

Reg2 (Bits 13-15): Selects one of the eight registers of the LSR stack appropriate for the current operating level. The selected register is operand of the function. The selected register is not modified by the operation being performed

ondition Code

Set as follows for logical operations:
On logical operations, two things are done:

1. The logical operation (OR, AND EXCLUSIVE OR, etc) is performed.
2. R1 contents are ORed with the ones complement of R2 contents. This is expressed as (R1 or $\overline{\mathrm{R} 2}$).

The condition code is set to reflect the out come of both operations except when the result of the logical operation is zeros (bit 3 of the PCR).

Positive (Bit 1 of PCR)-Set if the result of the ogical operation was not equal to zero, and R1 or $\overline{\mathrm{R} 2}$ equals all ones). Reset if the result f the logical operation equals all zeros, or R1 or $\overline{\mathrm{R} 2}$ equals all ones).

Negative (Bit 2 of PCR)-Set if the result of he logical operation is not equal to all zero nd (R1 or $\overline{\mathrm{R}}$ not equal to all ons). Rese fthe result of the logical operation equals ll zeros, or (R1 or $\overline{\mathrm{R} 2}$ equals all ones).

Zero (Bit 3 of PCR)-Set if the result of the logical operation equals all zeros. Reset if the result of the logical operation is not equal to all zeros.

Set as follows for arithmetic operations:
Positive (Bit 1 of PCR)-Turns on if the result of the operation had a carry and was not equal to zero. Turns off if the result is zero or there was no carry.
Negative (Bit 2 of PCR)-Turns on if the result of the operation had no carry and was not equa to zero. Turns off if the result is zero or there is a carry.

Zero (Bit 3 of PCR)-Turns on if the result of the operation is zero. Turns off if the result does not equal zero.

Carry (Bit 4 of PCR)-Turns on if the arithmetic operation resulted in a carry. Turned off by the I/O immediate function reset carryset equal, by system reset, or if the arithmetic operation resulted in no carry.

High (Bit 5 of PCR)-Same as positive (bit 1)

Low (Bit 6 of PCR)-Same as negative (bit 2).
Equal (Bit 7 of PCR)-Turns off if the result of the operation does not equal zero. Turned on only by the I/O immediate function reset carry-set equal, or by system reset,

Bits					Description	Example		Bits				Function	Description	Example	
	9	101	Mnemonic	Function					9	101	Mnemonic				
0	0	00		Not used					0		ACYR	$\mathrm{R} 1+\mathrm{R} 2+\mathrm{C} \rightarrow \mathrm{R} 1$	The contents of register 1 is placed in the X	R1	10111100
	0	01	XR	R1 (XOR) R2 \rightarrow R1	The contents of register 1 is placed in the X		10111100						register; the contents of register 2 is placed	R2	00110101
					register; the contents of register 2 is placed		00110101						in the Y register. The contents of the two		$\overline{11110001}$
					in the Y register. The ALU performs an ex-		10001001						registers are added together and added to	+C	00000001
					clusive OR function and the result is placed								the result of the carry trigger from a previous	R1	11110010
					back in the register 1 location.								operation. The result is written back into		
0															
	0	10		Not used											
									0	10		Not used			
0		11	OR	R1 (OR) R2 \rightarrow R1	The contents of register 1 is placed in the X		10111100		0						
					register; the contents of register 2 is placed				0	11	AR	$\mathrm{R} 1+\mathrm{R} 2 \rightarrow \mathrm{R} 1$	The contents of register 1 is placed in the X	R1	10111100
					in the Y register. The ALU performs an OR		10111101						register; the contents of register 2 is placed	R2	00110101
					function and the result is placed back in the register 1 location.								in the Y register. The contents of the two		
													registers are added together in the ALU and the result is written back into the R1		
0	1	0		Not used									location.		
0	1	0	NCR	R1 (AND) $\overline{\mathrm{R} 2} \rightarrow \mathrm{R} 1$	The contents of register 1 is placed in the X	R1	10111100	1	1		SR	R 1 - R2 \rightarrow R1	The contents of register 1 is placed in the X	R1	10111100
					register; the contents of register 2 is placed	R2	00110101						register; the contents of register 2 is placed	R2	00110101
					in the Y register. The ALU complements the	R2	11001010						in the Y register. The Y register contents	R1	$\underline{10000111}$
					Y register contents (R2), performs an AND		10001000						is subtracted from the X register contents,		
					function on the registers, and the result is								the result is written back into the R1 location.		
					placed back in the register 1 location.										
									1	01		Not used			
0	1	10	NR	R1 (AND) R2 \rightarrow R1	The contents of register 1 is placed in the X	R1	10111100								
					register; the contents of register 2 is placed	R2	00110101	1	1	10	SCYR	R 1 - R2-C \rightarrow R1	The contents of register 1 is placed in the X	R1	10111100
					in the Y register. The ALU performs an AND		00110100						register; the contents of register 2 is placed in	R2	00110101
					function and the result is placed back in the								the Y register. The Y register contents is		10000111
					register 1 location.								subtracted from the X register contents; if	-C	00000001
													the carry trigger was on from a previous	R1	10000110
0	1	1	OCR	$\mathrm{R} 1(\mathrm{OR}) \stackrel{\mathrm{R} 2 \rightarrow \mathrm{R} 1}{ }$	The contents of register 1 is placed in the X	R1	10111100						operation, 1 is subtracted from the result.		
					register; the contents of register 2 is placed	R2	00110101						The final result is written back into the R1		
					in the Y register. The ALU complements		11001010						location.		
					the Y register contents (R2), performs an		11111110								
					OR function on the register contents, and			1	1		INC	$\mathrm{R} 1+1 \rightarrow \mathrm{R} 1$	The contents of register 1 is placed in the X	R1	10111100
					the result is placed back in the register 1								register. The carry in line is activated by the	+1	00000001
					location.								instruction, and 1 is added to the contents of	R1	10111101
													the X register by the ALU. The result is		
	10	0	DEC	$\mathrm{R} 1-1 \rightarrow \mathrm{R} 1$	The contents of register 1 is placed in the X	R1	10111100						written back into the R1 location.		
					register. This data is gated into the ALU,		00000001								
					and the ALU performs an X minus 1 function	R1	10111011					$(\mathrm{R} 1+\mathrm{R} 1 \rightarrow \mathrm{R} 1)$ the fun	ction shift left logical can be executed. This functio		8 bits
					and the result is written back into the register 1 location.						tion to the left	ft and the low order bit	(bit 7) to be replaced with a zero. Mnemonic = SLL.		

Timing of CPU Functions PL040

Select Storage Gate High (from LSR high) PLO30
elect Storage Gate Low (from LSR low: 12=0; storage gate high: 12=1) PO40

Clock Y Reg PLO10
Select ALU Function (bits 8, 9, 10, 11) PLO60

Select LSR (bits 5, 6, 7) PLO40
Select Storage Gate Low (from SR low: 4=0; storage gate high 4=1) PL030

Lo3
Clock X Reg PL010
elect ALU Gate Low (from ALU low) PL050

Select ALU Gate High (from ALU gate low) PL050

Clock ALU Gate Check PM070 Write LSR High (bit 4=1) PM070 Write LSR Low (bit 4=0) PM070 Clock PCR (1, 2, 3) PK003 Clock PCR 4, 7 (arithmetic) 5, 6, (decode) PK003

Specific CPU Data Path

Sequence of CPU Functions

Logical/Arithmetic 2

Mnemonic: LA2

0111 Reg1	Function	H2	Reg2

This instruction allows arithmetic and logical
type functions to be processed through the
ALU. The logical/arithmetic 2 instruction always involves both bytes of Reg1 (operand) and one or both bytes of Reg2 (operand 2) epending on the function involved

Reg1 (Bits 5-7): Selects one of the eigh registers in the LSR stack. Both bytes of the selected register represent operand 1 . The selected register is modified at the completion of the function being performed.

Function (Bits 8-11): Determines the basic logical or arithmetic function to be performed.

H2 (Bit 12): Indicates which byte of the selected LSR (Reg2) is to be used in the current unction

Reg2 (Bits 13-15): Selects one of the eight regis ers of the LSR stack appropriate for the current operating level. The selected register is operand or modified by the operation being performed.

Condition Code

Set as follows for logical operations:
On logical operations, two things are done:

1. The logical operation (OR, AND, EXCLUSIVE OR, etc) is performed.
2. R 1 contents are ORed with the ones complement of R2 contents. This is expressed as (R1 or R2).

The condition code is set to reflect the outcome of both operations except when the result of the logical operation is zeros (bit 3 of the PCR).

Positive (Bit 1 of PCR)-Set if the result of the logical operation was not equal to zero, and (R1 or $\overline{\mathrm{R} 2}$ equals all ones). Reset if the result of the logical operation equals all zeros, or (R1 or R2 equals all ones).

Negative (Bit 2 of PCR)-Set if the result of the logical operation is not equal to all zeros, nd (R1 or $\overline{\mathrm{R} 2}$ not equal to all ones). Rese if the result of the logical operation equals all zeros, or (R 1 or $\overline{\mathrm{R} 2}$ equals all ones).

Zero (Bit 3 of PCR)-Set if the result of the logical operation equals all zeros. Reset if eresult of the logical operation is not equal to all zeros.

Set as follows for arithmetic operations:
Positive (Bit 1 of PCR)-Turns on if the result of the operation has a carry and does not equal zero. Turns off if the result is zero or not carry.

Negative (Bit 2 of PCR)-Turns on if the result of the operation has no carry and does not equal zero. Turns off if the result is zero or has a carry.

Zero (Bit 3 of PCR)-Turns on if the arithmetic operation resulted in a carry. Turned off by the $1 / O$ immediate function reset carry-set equal, by system reset, or if the arithmetic operation resulted in no carry.
High (Bit 5 of PCR)-Same as positive (bit 1).

Low (Bit 6 of PCR)-Same as negative (bit 2).

Equal (Bit 7 of PCR)-Turns off if the result
of the operation does not equal zero. Turne
on only by I/O immediate function reset
carry-set equal, or by system reset.

Logical/Arithmetic Function

0	0	0	0		Not used		
0	0	0	1			$\quad X R \quad$	R1 (XR) R2 $\rightarrow R 1$
:---	:---						

Description

The contents of register 1 is placed in the X register; the contents of register 2 is placed in the Y register. The ALU perresult is placed in the register 1 location.

Not used

The contents of register 1 is placed in th X register; the contents of register 2 is laced in the Y register. The ALU per orms an 0 Y retior and he placed in the register 1 location.
0100

0101 NCR
R1 (AND) $\overline{\mathrm{R} 2} \rightarrow \mathrm{R} 1$
The contents of register 1 is placed in the X register; the contents of register 2 is placed in the Y register. The ALU com plements the Y register contents, performs an AND function on the register contents, and writes the results in the register 1 location.

The contents of register 1 is placed in the X register; the contents of register 2 is placed in the Y register. The ALU performs an AND function and the result is written in the register 1 location.
The contents of register 1 is placed in the X register; the contents of register 2 is placed in the Y register. The ALU com plerfors an OR function on the reista contents, and the result is written in the eviter 1 location register 1 location.

The contents of register 1 is placed in the

Example

$\begin{array}{ll}\text { R1 } \\ \text { R2 } & 10111110011001101 \\ \text { R1 } & 1\end{array}$ R1 $\begin{aligned} 1000100101100100\end{aligned}$

R1 01100100 .
R1
R2
R2 0011010011001101 R1 $\frac{011010110101001}{1011110111101101}$ X register. This data is gated into the ALU, and the ALU performs an X minus 1 function, and the result is written into the register 1 location.

${ }^{1}$ By adding a register to itself (R1 + R1 $1 \rightarrow$ R1), the function shift left double can be executed. This function causes the 16 bits to be shifted one
position to the left and the low order bit (15) to be replaced with a zero. Mnemonic $=$ SLLD

Select LSR (13, 14, 15) PL040
Select Storage Gate Low (from SR low: $12=0$; storage gate high 12=1) PL030

Select Storage Gate High (from LSR high) PL030

Clock Y Reg (high/low) (X low, X high, and SAR don't care) PL010

Reset Y High (16/8 arithmetic) Lolo
select ALU Function (8, 9, 10, 11) PL060

Clock Storage Gate Check PLO30 Select LSR $(5,6,7)$ PLO40

Clock X Low, and X High (SAR don't care) PLO10

Select ALU Gate High/Low (from ALU high/low) PL050

Write LSR High/Low PM070
Clock PCR PK003
T - Times $=200 \mathrm{~ns}$

Mnemonic: LI

1	0	1	0	H 1	Reg1	Immediate byte
0		3	4	5	7	7

This instruction takes the data in the immediate byte and loads it directly into a selected register of the appropriate LSR stack. Data can be placed into the high or low byte of the selected register.

H1 (Bit 4): Indicates which byte of the selected register in the LSR stack is to be used:
$H 1=0$: Low byte of the register is to be
used.
$\mathrm{H} 1=1$: High byte of the register is to be used.

Reg1 (Bits 5-7): Selects one of the eight registers the appropriate LSR stack. The immediate byte in the instruction replaces the byte in the selected LSR.

Immediate byte (Bits 8-15): The 1 byte data field is loaded into the selected LSR.

Condition Cod

No change.

T - Times $=200 \mathrm{n}$

$\boldsymbol{- エ}$ Options depending on the contents of bit 4

Mnemonic: Cl

1	1	0	0	H1	Reg1	Immediate byte
0		3	4	5	7	8

This instruction is used to compare the 8 bits of data in the selected LSR with the corresponding 8 bits of data in the immediate field. Th Sults of the compare are reflected in the ondition code setting. The selected LSR is not altered by the compare immediate instruction.
$H 1$ (Bit 4): Indicates which byte of the
selected register in the LSR stack is to be used in the compare:
$\mathrm{H} 1=0$: Low byte of the register is to be
used.
$\mathrm{H} 1=1$: High byte of the register is to b used.

Reg1 (Bits 5-7): Selects one of the eight registers in the appropriate LSR stack. The byte in the immediate field is compared to the data in the selected LSR.

Immediate byte (Bits 8-15): Contains the data to be compared to the data in the selected LSR

Condition Code

Set as follows

Positive (bit 1 of PCR)-Register data greate than data field.

Negative (bit 2 of PCR)-Register data les than the data field.

Zero (bit 3 of PCR)-Register data equals data field.

Timing of CPU Functions

Select Storage Gate Low (from LSR low: $4=0$; storage gate high: 4=1) PLO30
Select Storage Gate High (from LSR high) PL030

Select Y Data PL010
Clock Y Low, High PLO10
Clock X Low, High and SAR (don't care) PL010

Clock Storage Gate P Check PLO30
ALU Function (X plus \bar{Y}) PL060
Select ALU Gate Low (from ALU low) PLO50

Select ALU Gate High (from ALU gate low) PL050
Clock PCR (1, 2, 3) PK003
$T-$ Times $=200 \mathrm{~ns}$

Specific CPU Data Path

Sequence of CPU Functions

Condition Code

Set as follows:
Positive (bit 1 of PCR)-Register data is greater than data field.

Negative (bit 2 of PCR)-Register data is less than data field.
Zero (bit 3 of PCR)-Register data and data field are equal.

Timing of CPU Functions

Select LSR (5, 6, 7) PLO40 Select Storage Gate Low (from LSR low: $4=0$; storage gate high: $4=1$) PLO30

Select Storage Gate High (from LSR high) PL030

Select Y Data (from SDR) PLO10
Clock Y Reg PLO10
Clock X Low (X high and SAR don't care) PLO10
Clock Storage Gate P Check PL030 ALU Function (X plus. $\overline{\mathrm{Y}}$) PL060 Select ALU Gate Low (from ALU low) PL050

Select ALU Gate High (from ALU low) PL050

Write LSR: Low 4=0, High 4=1 PMO70

Clock PCR (1, 2, 3) PK003
Clock ALU Gate P Check PM070

T - Times $=200 \mathrm{~ns}$

Specific CPU Data Path

-ーー Options depending on the contents of bit 4.

Sequence of CPU Functions

ested bits are mixed
Zero

Set Bits On

Mnemonic: SBN

1	0	0	1	$H 1$	Reg1	Data		
0		3	4	5	7	8		15

This instruction is used to set bits on in the specified byte of the selected register in the LSR stack.

H1 (Bit 4): Indicates which byte of the selected register in the LSR stack is to be used
$\mathrm{H} 1=0$: Low byte of the register is to be
used. $H 1=1: \begin{aligned} & \text { used. } \\ & \text { High b }\end{aligned}$

High byte of the register is to be
used. used.

Reg1 (Bits 5-7): Selects one of eight registers in the appropriate LSR stack. The byte of the register is ORed with the data in the data field.

Data (Bits 8-15): The 8 bits of this field correspond to the eight bits in the selected egister. Any bit in the data field that is set to one causes its corresponding bit in the register o be set to one. Any bits in the data field hat are set to zero do not affect their corre onding bits in the selected registe

Condition Code

No change.

Timing of CPU Functions

Select LSR 5, 6, 7 PLO40
Select Storage Gate Low (from LSR low: $4=0$, storage gate high: 4=1) PLO30
Select Storage Gate High (from LSR high) PLO30
elect Y Data (from SDR low) PL010
clock Y High/Low
PLO10
lock X High/Low (SAR don't care) PLO10

PLO30
ALU Function (X OR Y) PLO60
Select ALU Gate Low (from ALU low) PL050
Select ALU Gate High (from ALU gate low) PLO50

Write LSR High (4=1) PM070 Write LSR Low (4=0) PM070 Clock ALU Gate Check PM070 $\mathrm{T}-$ Times $=200 \mathrm{~ns}$

Sequence of CPU Functions

END

Mnemonic：SBF

1	0	0	0	H1	Reg1	Data		
0		3	4	5	7	8	15	

Set off is used to set bits off in the specified byte of the selected register in the LSR stack．

H1（Bit 4）：Indicates which byte of the selected register in the LSR stack is to be used：

$$
\begin{aligned}
& \mathrm{H} 1=0 \quad \begin{array}{l}
\text { Low byte of the register is to be } \\
\text { used. }
\end{array} \\
& \mathrm{H} 1=1: \begin{array}{l}
\text { High byte of the register is to be } \\
\text { used. }
\end{array}
\end{aligned}
$$

Reg1（Bits 5－7）：Selects one of the eigh egisters in the appropriate LSR stack．The byte of the register is ANDed with the comple ment of the data in the data field．

Data（Bits 8－15）：The 8 bits in this field
correspond to the eight bits of the selected correspond to the eight bits of the selected register．Any bit in the data field that is se
on（equal to one）causes its corresponding bit in the register to be set to zero．Any bits in the data field that are off（equal to zero） do not affect any bits in the register．

Condition Code

No change．

Select LSR（5，6，7）PLO40
Select Storage Gate Low．（from LSR low：4＝0，storage gate high 4＝1）PLO3O

Select Storage Gate High（from LSR high）PL030

Select Y Data（from SDR low） PLO10

Clock Y High／Low PL010
Clock X High／Low（SAR don＇t care）PL010
Clock Storage Gate Check PL030 ALU Function（X AND \bar{Y} ）PLO60 Select ALU Gate Low（from ALU low）PL050

Select ALU Gate High（from ALU gate low）PLO50

Write LSR High（4＝1）PM070 Write LSR Low（4＝0）PM070 Clock ALU Gate Check PM070

T － Times $=200 \mathrm{~ns}$

Specific CPU Data Path

ーーー Options depending on the contents of bit 4

The storage instruction is used for accessing either control storage or main storage. Data can be trans ferred to or from the LSRs.

H1 (Bit 4):
H1 $=0$: Select low byte of LSR stack pecified by bits $5-7$ (Reg1). H1 = 1: Select high byte of LSR stack specified by bits 5-7 (Reg1).
Not used when bit 10 is on.

Reg1 (Bits 5-7): Selects one of the eight registers of the appropriate LSR stack. Data is transferred to or from this register.

Bit 8: Modifier to the op code (bits 0-3), If bits $8=0$, the instruction is $1 / O$ storage if bit $8=1$, the instruction is storage.

W (Bit 9): Identifies the direction of transfer:
$\mathrm{W}=0$: Read from storage and transfer to
$\mathrm{W}=1: \quad$ Transfer from the LSR stack and write to storage.
C (Bit 10): Selects main or control storage:
$\mathrm{C}=0$: \quad Selects main storage.
$C=1$: Selects control storage.

D (Bit 11): Indicates whether the address in the LSR (specified by bits 13-15) should be incremented ($D=0$) or decremented ($D=1$).
V (Bit 12): Indicates the amount the address in the LSR (specified by bits 13-15) should be incremented or decremented. If $\mathrm{V}=0$, th $V=1$ it $V=1$, the address in the selected LSR is increthe bit setting of the D fild the bit setting of the D field.

Reg2 (Bits 13-15): Selects one of the eight LSRs dedicated to the present operating level that contains the storage address needed for the data transfer. The address in the specified LSR may be updated depending on bits 11 (D field) and 12 (V field).

Storage Instruction List

$\begin{array}{ll}\mathrm{H}=1 \text { : } & \text { Not used byte } \\ H=0 \text { : } & \text { Ligh }\end{array}$
$\mathrm{H}=0$: Low byte

Condition Cod

No change.

Storase (Read)

Timing of CPU Functions

Select Storage Gate High/Low
(from LSR high/low) PLO30 Clock Storage Gate P Check

Select LSR (13, 14, 15) PLO40
Clock X Low, X High, SAR PL010

ALU $(\pm 1$ or pass; depends on bits 11, 12) PLo60
ALU Gate High/Low (from ALU high/low) PLO5O

Fetch (write trigger) PNO20 Write LSR High/Low PM070

Clock SDR (write trigger) PL02O SDR high) PLO30 High (from

Select ALU Gate Low (from
Select ALU Gate High (from ALU gate low: $10=0$; storage gate high:

Clock ALU Gate Check PMO7O
Select Storage Gate Low (from -

Write LSR High (4, 10=1) PM070 Write LSR Low 4=0, 10=1

Sequence of CPU Functions

- - - Second time activated
-............. Options depending on contents of bits 4 and 10

orage（Write）

Timing of CPU Function

 （from LSR high／low）PL030 Select LSR（13，14，15）PLO40Clock X Low，X High，SAR PLO10

Clock Storage Gate Check PLO30 Select LSR $(5,6,7)$ PLO40 Select Storage Gate High（from LSR high）PLO30

Select Storage Gate Low（from LSR Low： $4=0,10=1$ ；storage gate high： $4=1,10=0$ ）PL030

Storage Cycle PNO3O
Write Storage High（10＝1） PM035
Write Storage Low PM035
Clock SDR for Echo Check （write trigger）PLO20

ALU（ ± 1 or pass）PL060
ALU Gate High／Low（from ALU high／low）PL050

Select LSR（13，14，15）PLO40 Clock ALU Gate Check PM070

Write LSR High／Low PM070

Specific CPU Data Path

ーーー Options depending on contents of bits 4 and 10.

Sequence of CPU Functions

Storage Direct
Mnemonic: L (load reg)
ST (store reg)

1	1	1	0	W	Reg1	0	SAR	
0		3	4	5	7	8	9	15

This instruction directly accesses any of 128 addresses of control storage (the fixed storage rea; addresses 0000-007F) during read or writ perations. Main storage cannot be accessed with this instruction, Two bytes of data are transferred.

W (Bit 4): Indicates whether a read or write operation is to occur
$W=0$: Read from control storage to the selected register
$\mathrm{W}=1$: Write to control storage using the selected register for source.

Reg1 (Bits 5-7): Selects one of eight registers in the LSR stack. Two bytes of data are transferred between this register and contro storage.

Bit 8: Always 0 , a modifier bit to the op code (bits 0-3).

SAR (Bits 9-15): Specifies one of the first 128 locations in control storage. These 7 bits directly replace the corresponding 7 bits in the storage address register (SAR). Bits 0 through 8 of SA re set to zeros

Condition Code

No change.

Storage Direct (Read from Control Storage)
Timing of CPU Functions
Force SDR 0-7 $=0$ PLO2O
Select Storage Gate High/Low (from SDR high/low) PL030

Clock X Low, X High, SAR PL010 Clock Storage Gate Check PLO3O Fetch (write trigger) PNO2O

Clock SDR PLO2O
Select Storage Gate High/Low (from SDR high/low) PL030

Select ALU Gate High/Low (from storage gate high/low) PLO50

Select LSR (5, 6, 7) PLO40
Write LSR High/Low PM070 Clock ALU Gate Check PM070

T - Times $=200 \mathrm{~ns}$

Specific CPU Data Path

Sequence of CPU Functions

Storage Direct (Write to Control Storage)
Timing of CPU Functions

Force SDR 0-7 = 0 PLO20
Select Storage Gate High/Low (from SDR high/low) PL030

Clock X Low, X High, SAR L010

Clock Storage Gate Check L030

Storage Cycle PNO3O
Select LSR (5, 6, 7) PLO40
Select Storage Gate High/Low (from LSR high/low) PLO30

Write Storage High PNO3O
Write Storage Low PNO3O
Clock SDR (write trigger)
PLO2O

$\mathrm{T}-\mathrm{Times}=200 \mathrm{~ns}$

Sequence of CPU Functions

Specific CPU Data Path

Mnemonic: MVR

1	1	1	0	Reg1	1	S	Reg2	
0		3	4	7	8	9	10	15

This instruction moves the contents of one LSR to another LSR. Two bytes of data are always moved. Any of the 32 LSRs in the stack can be accessed. Data can be moved either from Reg 1 to Reg2 or from Reg2 to Reg1 depending on the setting of bit 0 .

Reg1 (Bits 4-7): Selects one of 16 LSRs. The group being selected depends on the program level currently being processed. Eight of these registers are always the MAR/MAB stack (specified by bit $4=1$). The other 8 of the 16 registers that can be specified in the Reg 1 field are the work registers (WRs) associated with the program level currently selected. These registers are selected by specifying $0-7$ in the Reg1 field.

Bit 8: Always a 1 , bit 8 is a modifier to the op code (bits 0-3).
S (Bit 9): Indicates the direction in which the data is to be transferred. S $=0$ means Reg1 is the source register and 2 bytes of data are transferred from Real 1 to Reg2. $S=1$ means Reg2 is the source register and 2 bytes of data are transferred from Reg2 to Reg1.

Reg2 (Bits 10-15): The low order 5 bits of this field select one of the 32 LSRs in the data flow (bit $10=0$). Two bytes of data are moved to or from this field depending on the bit setting of the S field.

Condition Code

No change.

Valid Reg1 Field Register Specification

Valid combinations that can be specified in the Reg 1 field of move LSR are:

1. If in mainline or machine check, the registers that can be specified are 0-7 and 8-15.
2. If in interrupt level 1 , the registers that can be specified are 16-23 and 8-15.
3. If in interrupt level 2 , the registers that can be specified are 24-31 and 8-15.

Timing of CPU Functions

Select LSR (4-7 if $9=0$ 10-15 if $9=1$) PLO40

Clock X Low and X High (SAR don't care) PLO10
Clock Storage Gate Check PL030

ALU (pass)

Select Storage Gate High/Low (from LSR high/low) PL060

Select LSR ($10-15$ if $9=0 ; 4-7$ if 9=1) PLO40

Select ALU Gate High/Low (from ALU high/low) PLO50

Write LSR High/Low PM070
Clock ALU Gate Check PM070

T - Times $=200 \mathrm{~ns}$

Specific CPU Data Path

Sequence of CPU Functions

Select ALU Gate

High/Low
Clock ALU
Gate Check

END

Hex Branch

Mnemonic: HBN (numeric)
HBZ (zone)

| 1 | 1 | 1 | 1 | H | Reg1 | MAR^{\prime} | 0 | \|l|l|l| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllll}1 & 3 & 4 & 5 & 78 & 11 & 12 & 13 & 14 & 15\end{array}$

This instruction operates as a 16 way unconditional branch. Either the zone or digit portion of either the high or low byte of the selected register is used to replace bits 12-15 of MAR. Bits 8-11 of MAR are replaced by the bit settings of MAR'.

H1 (Bit 4): Indicates which byte of the selected register in the LSR stack is to be used in the he branch

- H1 = 0 : Low byte of the register is to be used.
H1 = 1: High byte of the register is to be used.

Reg1 (Bits 5-7): Causes selection of one of eight registers in an LSR stack. The zone or digit portion of the selected register is used and replaces bits 12-15 of MAR.

MAR' (Bits 8-11): Replaces bits 8-11 of MAR. Bits 0.7 of MAR are not changed by this instruction.

Bit 12: Always 0 , a modifier to the op code (bits 0-3).

Bits 13 and 14: Not used in the next branch instruction.

Condition Code

No change.
Z (Bit 15): Causes either the zone or digit portion of the selected register to be used in the hex branch function:
$z=0$: Digit portion of data byte of selected register replaces bits 12-15 of MAR
$Z=1$: Zone portion of data byte of selected register replaces bits 12-15 of MAR.

Timing of CPU Functions

Select LSR (5, 6, 7) PLO40 Select Storage Gate High (from LSR high) PLO30
Select Storage Gate Low (from LSR low: $4=0$, storage gate high:
$4=1$) PLO30 4=1) PL030
Clock X High, X Low, SAR (don't care) PL010

Clock Storage Gate Check PLO30 Select Y Data (from SDR) PLO10 lock Y Reg, Block Reset Y PL010

ALU Function (pass) PL060
ALU Gate Low (from Y zone X numeric: 15=0; Y zone X zone: 15=1) PL050
Select LSR (MAR) PL040 Write LSR Low PM070 Clock ALU Gate Check PM070
$\mathrm{T}-\mathrm{T}$ imes $=200 \mathrm{~ns}$

- O- Options depending on contents of bit 4.

Specific CPU Data Path
 Sequence of CPU Functions

Function (Bits 9 and 10): Specifies one of the following functions:

Bits 9 and $10=00$: Reg1 shift right logical (SRL). The 8 bits of the selected byte are shifted one position to the right. The high orde (leftmost) bit is replaced with a zero. The Reg2 not used for the shift right logical function.

Bits 9 and $10=01$: Reg1 shift right logical double (SRLD). The 16 bits of the selected register are shifted one position to the right. The high order bit (bit 0) is replaced with a zero. The H1, H2, and Reg2 fields of the hex move instruction are not used for the shift right logical double.

Bits 9 and $10=10$: Link zone portion of Reg2 to the zone portion of Reg1 (MZN). The zone digit of the register specified in Reg2 is moved Reg1. The zone digit of the register specified by Reg1 is moved to the numeric portion of the register specified in Reg1. The results are put in the register specified by Reg1 and have the follow ing format:

\section*{	Reg2
Zone	\(\begin{aligned} \& Reg1

\& Zone\end{aligned}\)}

Example: Reg1 01101000 Reg2 11110010 Result 11110110

Bits 9 and $10=11$: Link the zone portion of Reg2 to the numeric portion of Reg1 (MZZ). The zone digit of the register specified in Reg2 is moved to the zone position of the register specified by Reg1 and the numeric digit of the register specified in Reg1 is unchanged. The results are put in the ecified by Reg1 and have the following format:

\section*{| Reg2 | $\begin{array}{l}\text { Reg1 } \\ \text { Zone }\end{array}$ |
| :--- | :--- |
| Nume | |}

Reg2	Reg
Zone	Numeric

Example: Reg1 01101001 Reg2 11110010 Reg2 11110010

H2 (Bit 11): Indicates which byte of the selected register (specified by Reg2) in the LSR stack is to be used:

$$
\begin{array}{ll}
\mathrm{H} 2=0: & \text { Low byte of the register is to be } \\
\mathrm{H} 2=1: & \begin{array}{l}
\text { used. } \\
\text { High byte of the register is to be }
\end{array}
\end{array}
$$

The H 2 field is not used in the shift right logical and shift right logical double functions.

Bit 12: Always 1, a modifier to the op code (bits 0-3).

Reg2 (Bits 13-15): Causes selection of one of eight registers in the LSR stack. The Reg2 field is not used in the shift right logical and shift right logical double functions.

Condition Code

No change
4. Link the zone portion of Reg2 to the numeric portion of Reg1 and put the results into Reg1 in the following format:

```
|R2,}\begin{array}{l}{\mathrm{ Reg2 }}\\{\mathrm{ Zone }}
```

H1 (Bit 4): Indicates which byte of the selected register in the LSR stack is to be used:
$H 1=0$: Low byte of the register is to be $H 1=1: \begin{gathered}\text { used. } \\ \text { High byte of the register is to be } \\ \text { used }\end{gathered}$ used.

The H 1 field is not used for the shift right logical double function.

Reg1 (Bits 5-7): Causes selection of one of eight registers in an LSR stack.

Timing of CPU Functions

Select LSR ($13,14,15$) (Reg2 PL040

Select Storage Gate High (from LSR high) PL030

Select Storage Gate Low (from LSR low: $11=0$, storage gate high 11=1) PLO30

Select Y Data (from storage gate) PLO10
Clock Y, X High, and SAR (block reset) PLO10

ALU Gate Low (Bits 9, 10
00 R1 SRL1 \rightarrow R1 01 R1 SRDL1 \rightarrow R1 $\begin{array}{lll}10 & R 2(Z) \quad R 1(Z) \rightarrow R 1\end{array}$ $\begin{array}{ll}11 & R 2(Z) \\ R 1 & (N) \rightarrow R 1\end{array}$ LO50

ALU Function (pass; block reset Y) PL060

Select LSR $(5,6,7)$ (Reg1) PLO4O

Select Storage Gate High (from LSR high) PL030

Select Storage Gate Low (from LSR low: $4=0$, or $9,10=01$ LSR low: 4=0, or $9,10=01$ torage gate high: $4=1$ and $0=0$ 01) PL030

Clock X Low, X High, SAR
PLO10
Clock Storage Gate Check PLO30
Select ALU Gate High (from ALU gate low: $4=1$ and $9,10=\overline{11}$ PL050

PM070

Write LSR Low ($4=0$ or $9,10=01$) PM070

Clock ALU Gate Check PM070
T - Times $=200 \mathrm{~ns}$

$T 0$	$T 1$	$T 2$	$T 3$	$T 4$	$T 5$	$T 6$

Specific CPU Data Path

－ーー一 Options depending on the contents of bits 4，9， 10 and 11.

Sequence of CPU Functions

1011	Modifier	Function	H 2	Reg
0	3			

The I/O immediate instruction has two main functions:

1. Transfer a single byte of data between the LSRs and I/O devices, and
2. Direct control of CPU, channel, and I/O functions that may or may not include data transfer.

Modifier (Bits 4-7): The modifier bits are device dependent and are sent to the attachment. Along with the CBO bits, these bits define what is to be done.

Specific CPU Data Path

Function (Bits 8-11): The function bits are sent to the port where they are decoded as one of the following commands:

Load
 Sense Control load

Control sense
This command is then sent to the attachment on the CBO

If bits 10 and $11=10$, the command does not go to the port but stays in the CPU. For further definition of the commands, see μ INSTR-30.

H2 (Bit 12): This bit is used to select the high or low byte of the selected LSR.

Reg (Bits 13-15): This field selects one of eight registers in an LSR stack. This register is used for the byte of data or control information that is to be sent or received.

Note: For CPU control instructions, bits 12-15 are used as a second set of modifier bits.

Select LSR (WRO) PL040
SDR High
SDR Low
LSR Low PL030
Select Storage Gate High (from SDR high) PLO30

Clock SAR, X High, X Low PL010
Advance Time PH010
Select LSR 13, 14, 15 PL040
Select Storage Gate High (from LSR high) PL030

Select Storage Gate Low (from channel bus:9=1; LSR:9=0) PL030

Select ALU Gate Low (from storage gate low) PL050

Select ALU Gate High (from ALU gate low) PLO50

Write LSR Low ($9=1,12=0$)
PM070
Write LSR High (9=1, 12=1) PM070

CPU/Port Communications

Address of LSR Containing Data sed by

$\begin{aligned} & \text { Op Code } \\ & 0 \\ & 0 \end{aligned} 12 \begin{aligned} & 1 \\ & \hline \end{aligned}$		Device Address WRO Low	Modifier 4567	Containing Data Used by Instruction $\begin{array}{llll} 12 & 13 & 14 & 15 \\ \hline \end{array}$			
1011							
	$0=1 / 0$ Load (See μ INSTR-31.)	$\chi_{10}^{10}=$ Keyboard, KBD-6.					
		$\left\{\begin{array}{l}40\end{array}{ }^{40}=\right.$ Display Screen, DISP-14					
		DO $=33 F D, 33 F D-16$					
		(00 = Channel, see A this page					
		$10=$ Keyboard, KBD-12					
	4 = I/O Sense	50 = MCU, Magnetic character reader, or Data Recorder (if installed)					
	(See μ INSTR-32.)						
	(See μ INSTR-32.)						
		EO = Printer, PRT-14; S-PTR-14					
		(00 = Channel, see \mathbf{B} this page					
		$10=$ Keyboard, KBD-8					
		$)^{40}=$ Display Screen, DISP-16					
	$8=1 / 0$ Control Load	A0 $=$ Disk, DISK-11					
	(See μ INSTR-31.)						
		(10 = Keyboard, KBD-14					
	C = I/O Control	l ${ }^{40}=$ Display Screen, DISP-2150					
	Sense						
	(See μ INSTR-32.)	AO $=$ Disk, DISK-13					
	(See μ NSSTR-32.)						
	(See μ INSTR-33.)	S-PTR-18 (30 = MCU, Magnetic character reader, or Data Recorder (if installed)					
	6 = Microprocessor	See \mathbf{C} this page.					
	Sense						
	A = Microprocessor	See D this page.					
	Load						
	1, 3, 7, B, D, E, F Invalid						

A. Channel I/O Sense

Channel I/O Control Load

Modifier

Bits 4-7 Function
0000 Disable 33FD Timeout
Bits 12-15
Not Used
\square Load Port Register $\begin{gathered}\mathrm{H} \text { R } \\ 2 \quad 2\end{gathered}$
$2 \quad 2$
Data to
Data to
be Loaded
0010
0011
0100
0101
0110
0111 Set Channel Even Parity Not Used

The contents of these bytes or switches are moved to an LSR. This data can then be used by the program.	4567	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
	$\left\lvert\, \begin{array}{llll} 0 & 1 & 0 & 0 \\ \text { Console } \\ \text { Stataus } \end{array}\right.$ Byte	$\begin{aligned} & \text { Stop } \\ & \text { Key } \end{aligned}$	Main Storage Address Compare	Overlap Off	IPL Device Select Switch	1/0 Request	Sys Step Mode	$\begin{array}{\|l\|l\|} \hline \text { Go } \\ \text { Flag } \end{array}$	Micro Interrupt Check
	0 1 0 1 Address Data Switches 3 3and	$\begin{gathered} \text { Switch } 3 \\ 8 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Switch } 3 \\ 4 \end{gathered}\right.$	$\text { Switch } 3$ 2	$\begin{gathered} \text { Switch } 3 \\ 1 \end{gathered}$	$\begin{array}{\|c} \text { Switch } 4 \\ 8 \end{array}$	$\text { Switch } 4$ 4	$\begin{gathered} \text { switch } 4 \\ 2 \end{gathered}$	$\begin{array}{\|c} \text { Switch } 4 \\ 1 \end{array}$
	0110 I/O Clocks Low Byte ${ }^{1}$	8.19 ms	16.38 ms	32.77 ms	65.54 ms	131.1 ms	262.1 ms	524.3 ms	1s
	$\begin{array}{llll}0 & 1 & 1\end{array}$ I/O Clocks High Byte ${ }^{1}$	$32 \mu \mathrm{~s}$	$64 \mu \mathrm{~s}$	$128 \mu \mathrm{~s}$	$256 \mu \mathrm{~s}$	$512 \mu \mathrm{~s}$	1.02 ms	2.05 ms	4.10 ms
	1 0 0 1 Address Data Switches 1 and 2	$\text { Switch } 1$ 8	$\text { Switch } 1$ 4	$\text { Switch } 1$ 2	$\text { Switch } 1$	$\begin{gathered} \text { Switch } 2 \\ 8 \end{gathered}$	$\text { Switch } 2$ 4	$\begin{gathered} \text { Switch 2 } \\ 2 \end{gathered}$	$\text { Switch } 2$
	1010 CPU Error Byte	SDR P Check	MOR P Check	Storage Gate P Check	ALU Gate P Check	Control Storage Invalid Addr/ SAR Check	Main Storage Invalid Addr/ SAR Check	Not Used	Microloop Check
	$\begin{array}{llll} 1 & 0 & 1 & 1 \\ P C R \end{array}$	Flag	Plus	Minus	Zero	$\begin{array}{\|l\|l} \text { Carry } \\ \text { Log } \end{array}$	Hi Log	Low Log	Equal Log

Modifier
Modifier
Bits 4-7
Load PCR, PK003 (Modifier 2 is high byte of WR7
0001 Reset Carry-Set Equal
0010 Reset Event Indicator 2, 111 PK001
011 Reset Event Indicator 3, PK001
0100 Reset E
PK001
0101 Reset Event Indicator 5, Reset Event Indicator 5, PK001 Reset Event Indicator 6, Reset Event Indicator 7, PK001 000 Set Fla
1001
1010 No Nop
1011 Reset Flag
1100 No-Op
1101 No-Op
1110 No-Op 1111
1110 Set I/O Service Request, 0000 1 PJO40 0001 10 Reset I/O Service Request, Process
1110 Processor Check Halt, PJ010
1110 Disable Checks, PJO10
1110 Disable Interrupts, PJO40
1110 Enale Checks, PJO10
1110 Enable Checks, PJO10
$\left.\begin{array}{l}1110 \\ 1110\end{array}\right\}$ No-Op
1111 Set CPU Working, PJO2O
1111 Reset Stop Latch, PJO60
1111 Reset MCI Latch, PJO10
1111 Reset Go Latch, PJO20
1111 Enable Microloop Timeout (not) Reset Timeout, PJO10, (PJ060)
1111 Set Stop Latch
1111 Reset Retry/Microloop 0101
out and Set Go Latch Set Retry, PJO2O
1111 Enable I/O Clocks, PJo80
1111 No-Op
1111 Reset I/O Clocks, PJ080
1111 Disable I/O Clocks, PJO8O
1111 No Op
1111 Reset CPU Working, PJO2O
1111 Processor Wait, PJO60

Modifier 2

Mnemonic: IOL, IOCL
1 1 10 1 Modifier Function H 2 Reg2 0 3 4 7 8 11 12 13

This function of the I / O immediate instruction used to transfer 1 byte of data or control information from an LSR to an I/O attachment.

Instruction Fields

Modifier: The modifier bits are device dependent and are sent to the attachment along with the command. They define what is to be done with the data byte that will be sent.
unction: The function bits are sent to the channel where they are decoded as one of the following commands:

oad

Control Load
This command is then sent to the attachment on the сво.

H2: This bit is used to select the high or low byte of the selected LSR:
$\mathrm{H} 2=0$: Select low byte.
H2 = 1: Select high byte.

Reg2: This field selects one of eight registers in LSR stack. This register will contain the byta of data or control information that is to be sent to the attachment.

| 1011 | Modifier | Function | $\begin{array}{l}\text { H } \\ 2\end{array}$ | Reg2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The first 'strobe' after the rise of 'control out signals the attachment that the address and data out is valid The ris 'service in' data out is valid. The rise of service in signals the port that the attachment has taken the information from the CBO and p
bus out and is ready to receive data.
bus out and is ready to receive data.
The first 'strobe' after the rise of 'service The first 'strobe' after the rise of 'service out'
signals the attachment that the data byte on the DBO is valid. The fall of 'service in' signals the port that the attachment has taken the data byte from the DBO.

I/O Sense
Mnemonic: IOS, IOCS

1011	Modifier	Function	$\begin{array}{l}\text { H } \\ 2\end{array}$	Reg2	
0	34	78	11	1213	15

This function of the I/O immediate instruction is used to transfer 1 byte of data or status type information from an I/O attachment to an LSR.

Instruction Fields
Modifier: The modifier bits are device dependent and are sent to the attachment along with the command. They define what data byte is to be sent.

Function: The function bits are sent to the port where they are decoded as one of the following commands:

Control Sense

I/O Storage

The function of I / O storage is to transfer 1 byte of data between main/control storage and the I/O attachment.

Modifier (Bits 4.7): Control fields for the 1/O attachment. The field is transferred to the attach ment through the port. Bit 4 of this field is used in the CPU to select the high or low byte of control storage. When main storage is being accessed, bit 4 is not used by the CPU.

Bit 8: Modifier to the op code (bits 0-3). Bit 8 is a zero for $1 / O$ storage.
W (Bit 9): Identifies the direction of the transfer. $W=0$ causes a read from storage and a transfer o the I/O attachment, $\mathrm{W}=1$ causes a write to storage.

C (Bit 10): Selects main storage or control storage $C=0$ selects main storage; $\mathrm{C}=1$ selects control storage
D (Bit 11): Indicates whether the address in the LSR (specified by bits 13-15) are to be incremented ($D=0$) or decremented ($D=1$)
V (Bit 12): Indicates the amount the address in the LSR (specified by bits $13-15$) should be in emen ed ocremented. If $\mathrm{V}=0$, the addre the address in the sela LSR is $V=1$, or incremented by one depending on the bit setting of the D field.

REG2 (Bits 13-15): Selects one of the eight LSRs dedicated to the present operating level that contains the storage address needed for the data transfer. The address in the specified LSR may be updated depending on bits 11 (D field) and 12 (V field).

Condition Cod

Not affected.
Bits 8-11 are sent to the port where they are decoded as one of the following commands

Load

This command is then sent to the attachment on the CBO.

Bits
489101112 Mnemonic Description

Timing of CPU Functions

Select LSR WRO PLO40

Select Storage Gate Low (from Storage gate high,
SDR low,
LSR low) PLO30
Select Storage Gate High (from SDR high) PL030

Clock SAR, X High, X Low PL010
Advance Time PH010
Select Storage Gate High/Low (from LSR high/low) PLO40
Select LSR 13, 14, 15 PL030
Clock X High, X Low, SAR PLO10 ALU (± 1 or Pass) PLO60

ALU Gate High/Low (from ALU high/low) PL050

Storage Cycle PNO3O
Clock SDR (write trigger) PLO2O
Select Storage Gate High (from SDR high: $9=0$; channel bus: $9=1$) PLO30

Select Storage Gate Low (from
channel bus: $9=1$; low: $4,9=0$
or $9,10=0$; storage gate high:
4,10=1; 9=0) PLO30
Write Storage High $4,9,10=1$
Write Storage Low (4=0,9=1 or $9=1$ 10=0) PM070

ALU Gate High/Low (from ALU high/low) PL050

Write LSR High/Low (write
trigger/phase B) PM070
Advance Time PHO10

0	0	1	1		Modifier	Page	Address
0			3	4	7	8	

Mnemonic: JIO
This instruction tests I/O conditions. If the condition tested is active, this instruction will cause a branch. If not, the next sequential instruction is executed.

This op code (bits $0-3$) is sent to the port where the bits are decoded as a jump I/O command. This command is then sent to the attachment on the CBO.

Modifier (Bits 4-7): 4-bit control field for I/O devices. This field's usage is device dependent. The modifier field is transferred to the attachment through the port.

Some of the modifier combinations are predefine o provide a common code for those conditions which are used by most I/O devices. The modifier usage (when applicable to a device) is defined as follows:

Modifier Field Description
 Setting

4567
000 Adapter check
$\begin{array}{llll}0 & 0 & 0 & 1\end{array} \quad$ Adapter not ready
$\begin{array}{lllll}0 & 0 & 1 & 0 & \text { Busy condition } 1 \\ 0 & 0 & 1 & 1 & \text { Busy condition } 2\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 0 & \text { Interrupt enabled }\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$ Diagnostic true
$\begin{array}{llll}0 & 1 & 1 & 0\end{array} \quad$ Diagnostic false
$\left.\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right\}$
through
1
1
Available for device
requirements
Note: For further descriptions, see sections DISK-15, PTR-20, see sections DISK-15, PTR-20, and 33FD-38.
age Address (Bits 8-15): 8-bit field to allow branching to one of 256 address only in control storage. The page address must be located on the same page boundaries as the I/O branch on condition. This field replaces the lower 8 bits of MAR the I / O device indicates that the branch co dition is met. Port line 'CBI bit 4 ' is used to determine if the I / O condition is met

Condition Code

Timing of CPU Functions

No change.

Select LSR WRO PLO4O
Select Storage Gate Low (from
storage gate high
SDR low,
LSR low) PL030
Select Storage Gate High (from SDR high) PL030

Clock SAR, X High, X Low PL010
Clock Storage Gate Check PL030
Advance Time PH010
Select Storage Gate Low (from SDR low-BOC met; LSR low-BOC not met) PLO30
Select LSR MAR PLO4O
Select ALU Gate Low (from storage gate low) PLO50

Write LSR Low (BOC met) PM070
Clock ALU Gate Check PM070

T0	T1	T2	T3	T3E	T4	T5	T6	T6E

Specific CPU Data Path

This page is intentionally left blank.

IMPL

IMPL (initial microprogram load) covers loads, displays, and testing that occur when the operator or CE presses LOAD. Loading is normally done or CE presses LOAD. Loading is normally done
from the disk; the 33FD CE diskette is available as a diagnostic device for the CE if the disk drive is not working.

The tests run during the IMPL sequence check that the circuitry of the system is functioning properly. These tests are automatically performed and, as long as no failures are detected, are unseen by the operator. If, however, the tests detect failures, then one or more of the following occurs:
_ The processor check lights come on, - One or more event indicators will be on, or - One or more event indicators will be on, or

No mechanical portions of the I/O devices are tested with the exception of the fixed disk and the printer. To completely check the I/O devices, run the system tests which test the mechanica poutines.

IMPL Sequence (PNO60)
Pressing and releasing the LOAD key starts the IMPL cycle and causes the LOAD indicator to come on. IMPL cycle along with 'ALU bit 4 ' and 'write trigger' causes 'transfer complete' to be activated.

IMPL Sequence

Load Key Pressed OP010

Phase A PM015

System Reset PN060
(special) System Reset PN060

IMPL Cycle to I/O PN060

MPL (AND) ALU 4 (AND) WT TRIG PN06 (4096 bytes transferred)

Transfer Complete Latch PNO60

Run Latch PJ050

BPC PH110

LOAD Light PN060

Data Transfer

CPU Clocks Run

If BPC is not deactivated or a processor check occurs; the LOAD
light stays on.

Event Indicator Sequence

The LOAD light and all 9 event indicator light (high byte display on CE panel) are turned on when LOAD is pressed. When LOAD is released the IMPL sequence starts and 2 K words are tran ferred into control storage (from either 33FD or disk drive). At the same time, the LOAD light and the event indicators turn off (these lights may flash intermittently). If IMPL is not completed
 Th MODE SEL ECTOR switch must be in th The MODE SELECTOR switch must be in the PROC RUN position for the event indicators to be displayed.

Each event indicator is turned off and stays of as follows:
${ }^{1} \mathrm{P} \quad$ Adapter received the load signal and initiated action in response (BPC).
${ }^{1} 0$ First cycle steal request received, data transfer has started (write trigger)
1 Transfer of 4096 bytes of data was completed (ALU bit 4 AND write trigger) Data transfer completed with no data check (ALU bit 4 AND write trigger AND (not) processor check).
2 Branching and conditional branching routines complete. LSRs are cleared of bad parity. Reset occurs during routine 2. Load 1 complete. The loader is invoked to load the second 2 K words of test. First micro instruction of load 2. This indicated that load 2 transferred cor-
rectly. Reset occurs during routine 36 F First instruction of the control storage test (routine 64). Indicates all previous
routines (36-63) ran correctly. (routine 64). Indicates storage test ran correctly
est low 3 (wrap test 2 ran correctly and thad 1 and and that the third load has started execution.

Reset by hardware controls. The other lights are reset by micro instructions.

Disk IMPL Operation

When LOAD is pressed, the IMPL sequence does three partial control store loads and then load he system emulator and SCP portion from eyliner 0 , track 1 , sectors $1-26$ which then take control at location OAOO of control storage.

The initial 2 K words are loaded by hardware into control store location 0000-07FF. These words contain the following:
$\begin{array}{ll}\text { Direct area (UDT data, addresses) } & 128 \text { words } \\ \text { CPU instruction test } & 1664 \text { word }\end{array}$ 33FD/62GV loader 256 word

The second 2 K words are loaded by the 62GV oader into locations 0800-0FFF. These words contain the following

Rest of CPU instruction test	1280 words
Main storage test	256 words
Control storage test	256 words
33FD/62GV loader	256 words

Control storage test
33FD/62GV loader 256 words 256 words

The third 3.5 K words are loaded by the 62GV loader into location 0080-0E7F. These words contain the following:

CRT wrap test
Keyboard wrap test
33FD wrap test
62 GV wrap test
Printer wrap test
Wrap test supervisor and CRT display routine
Four sectors of CPU and port error recording data
62GV loader (loads emulator and SCP into control storage

384 words
256 words
512 words
768 words
512 words
512 words
128 words

Disk IMPL Diagnostic Sequence

The 33FD CE diskette IMPL consists of three (or optionally up to seven) partial control storage loads before the diagnostic control program is loaded from 33FD tracks 8 and 9 into control storage and given control at control storage location 0000.

The initial 2 K words (track 0 , special sector o 4096 bytes) are loaded by hardware into control storage locations $0000-07 \mathrm{FF}$. These words contain the following:
CPU instruction test
33FD/62GV loader
128 words 256 word

The second 2 K words (track 1,8 sectors) are loaded by the 33FD loader. They are loaded into control storage locations 0800-0FFF. These words contain the following:

Rest of CPU instruction tests Main storage test 280 words Control storage tes 256 words 33FD/62GV loader 256 words

The third 3.75 K words (track 2 and seven sectors of track 3) are loaded by the 33FD loader. Thes words are loaded into control storage location 0080-0F7F. These words contain the following:

CRT wrap test	384 words
Keyboard wrap test	256 words
33FD wwap test	512 words
62GV wrap test	512 words
Prind	

62 GV wrap test
Wrap test supervisor and CRT
display routine and the 33FD
loader which loads either 3 K
words of diagnostic control
program or optional micro
code tests from track 4, 5, 6,
or 7 depending on the result
of the CE option select
routine. Rest of control storage

33FD IMPL Diagnostic Sequence

33FD IMPL Timing

The following charts show the sequence of events on a 33FD IMPL operation.

Ground A2, K2, S12 (DK510). Grounding this pin prevents the reset of 'seek counter' and can be used anytime to hold the head on one track.

Turn the MODE SELECTOR switch to INSN STEP.

Set STORE SEL to CTL and ADDR COMP to STOP.

Set ADDRESS/DATA switches to 0000 Sync scope (-) A2K2 P02 $20 \mathrm{~ms} / \mathrm{div}$. Continue to press LOAD.

_ NMMMMMMMMMMMWMMMMMMMMMMNMMMML_ML

 +2F osc data window djozo MMMMMMMMMMMMMMMMMMMMMMMMMMMM

Storage Cycle Function for 33FD IMPL

Jumper A1L2 S07 to ground (+ carry in) which causes all data to be loaded into control storage location 0000 .

Jumper A2K2 S12 to ground, DK510

Set IMPL switch to DISKETTE
Sync scope (+) A1N2 J05 + storage function $100 \mathrm{~ns} /$ div, $2 \mathrm{~V} / \mathrm{div}$.

IMPL Error Indication

If after pressing LOAD, the appropriate display does not appear within the designated time and the event indicators do not turn off, suspect a machine failure. First, check the setting of the CE panel switches and check that the

Machine errors are of two types:

1. Wrap test errors: The IMPL diagnostic wrap test detected an error in a device wrap test detected an error in a device used to display the error as shown:

If this display occurs or STOP comes on the same information is in the machine main level registers

Processor check: The IMPL diagnostic tests detected an error and forced a pro tests detected an error and forced a pro
cessor check (check halt instruction). WR3(L) contains the failing routine num ber when the failure occurs in routine 12 or above. Check the event indicators to or above. Check the event indicators to
determine when the failure occurred. Use the IMPL diagnostic listings and the error address to determine what specific function of the machine failed.
Summary of IMPL Diagnostic Options

Address	
Switch	
Setting	Function Invoked
F100	Run keyboard diagnostic tests.
F7XX	Same function as option FFXX but no CRT display occurs. The contents of WR1-WR6 indicate if any wrap test errors occurred.
F800	Load 33FD diagnostics when loading from the disk drive.
$\begin{aligned} & \text { F90X } \\ & X=4.5,6,7 \end{aligned}$	Load optional microcode test from track X of the IMPL basic diskette.
FA01	Stop after execution of 2 K words.
FA02	Stop after execution of 4K words.
FB01	Loop on first 2 K words.
FB02	Loop on first 4K words.
FC01	Loop on first 2 K words and bypass errors.
FC02	Loop on first 4 K words and bypass errors.
FDXX	Loop on routine XX .
FEXX	Loop on routine XX and bypass errors.
FFXX	Run only selected wrap tests indicated by bits on.

Hex
Value

33FD wrap test
33FD wrap
Not used
Not used
CRT wrap test
Keyboard wrap tes
Printer wrap tes
2 GV wrap tes
yypasses all wrap tests and skips config uration sensitive CPU tests. Use this setting if CE diskette from another system with a different storage configuration is used. Also use this if additional storage is being added to the system and the CE liskette has not yet been reconfigured

This page is intentionally left blank.

Error Handling

System error handling detects circuit malfunctions and stops the system when necessary. Machine check interrupt (micro interrupt level 0) logs error information in control storage and retries intermittent errors whenever possible.

For the machine check interrupt routine functions to be successful, at least one of the following must be true:

- Detected error is intermittent,
- Detected error has disappeared when MCI routine uses the affected checking circuitry or
Detected error is solid but the circuitry used during MCI routine does not require the bad circuitry.

Machine check interrupt request is generated when an error is detected by the port or CPU hardware.

The affect of these checks on the run latch is shown on CNSL-8.
SDR P Check (Light 0): The data read from storage contains even parity

MOR P Check (Light 1): The data contained in the micro operation register contains even parity.

CPU Checks

CPU checks are stored in the processor check byté (CPU error byte) register which can be sensed by I/O immediate. This instruction loads the contents of the processor check byte register into the specified work re interrogated. These check can also be displayed in the left byte of he indicator lights on the CE panel by setting the mode switch to DPLY CHKS

Port Checks

The following checks are detected by the port hardware. These checks are stored in the port check byte register and can be loaded into a work register. These checks can also be displayed by the rightmost byte of the indicator lights on the CE panel by setting the mode witch to DPLY CHKS.

Processor Check Byte							
$\left\|\begin{array}{c} \text { SDR } \\ \mathrm{P} \\ \mathrm{Chk} \end{array}\right\|$	$\left\|\begin{array}{c} \text { MOR } \\ \mathrm{P} \\ \mathrm{Chk} \end{array}\right\|$	Stg Gate P Chk	ALU Gate PChk		MS Invalid Addr/SAR Chk	Not Used	$\begin{array}{\|l\|l} \text { Micro } \\ \text { Code } \\ \text { Check } \end{array}$

Micro Code Check (Light 7): 6-second time is not reset by micro instruction 'turn on GO latch'. If this timer is not reset within 6 seconds, the system assumes that the microinto a microloo with no exit.
detected on data

- Read from SDRs.
- Read from LSRs.
- Coming from system bus in (port, status 1 , status 2).

ALU Gate P Check (Light 3)
\qquad

- Even parity was detected on data written into the LSRs, or
- Predicted parity of an ALU operation did not agree with the result.
Invalid Control Storage Address/SAR Check (Light 4): Address loaded in SAR exceeds the maximum available control storage (control storage is addressed).

Note: Lights 4 and 5 , if both on, indicate SAR P check.

The system executes the instruction 'turn on GO latch' when entering the I fetch phase of a system instruction or when in a micro stop loop (operator pressed STOP or SYS INSN STEP is active). This action prevents the check from coming on.
\rightarrow Invalid Main Storage Address/SAR Check (Light 5): Address loaded in SAR exceeds the maximum available main storage (main storage is addressed).
\qquad

Port Check Byte

DBO P Check (Light 0): An I/O attachment
detected a parity error on port data bus out during a transfer of commands or data. The attachment signals this error to the port and the port stores it.

Invalid Device Assignment (Light 1): Port rai 'control out' to address an I/O adapter and the attachment does not activate 'service in' within 5.4μ s. This check can also occur if DBO has bad parity during 'control out' or the addressed device is not installed.

DBI P Check (Light 2): Parity error detected by the port during the transfer of data from the /O attachment to the CPU (and CBI bit 4 is not on).
Timeout Check (Light 3): Attachment did not deactivate 'service in' within $5.4 \mu \mathrm{~s}$ after the rise of 'service out'.

CBI-DBI Not Zero (Light 4): DBI, CBI, 'se in', and 'multidevice response' are not all deactivated at the end of the port I/O interchange. These lines are not checked during 62GV burst
mode.
System Bus P Check (Light 5): Parity error detected on the data sent from the CPU to the port when 'service out is active, or when data is sent to the 62 GV during burst mode.

Burst Mode Operation Check (Light 6): An check was detected in the CPU or port while burst mode was in progress.

Invalid Port (Light 7): Bits 12-15 of WRO(L) were not 0000.
In addition to these checks, information about the last port operation is stored in the port register. This register contains the device ad-
dress of the I/O attachment and the command (CBO bits) last executed by the com if any checks are present in the port register alteration of the port register is inhibited unt the is rese SHAN section in menual for decode of device addrss and command bus out.

$\begin{gathered} \text { OBO } \\ \text { P } \\ \text { Chk } \end{gathered}$	Invalid Device Assgmt	$\begin{gathered} \text { DBI } \\ \text { P } \\ \text { Chk } \end{gathered}$	Time Out Check	$\left\lvert\, \begin{aligned} & \text { CBI-DBI } \\ & \text { Not } \\ & 70 \end{aligned}\right.$ Zero	$\left\lvert\, \begin{aligned} & \text { SYs } \\ & \text { Bus P } \\ & \text { Chk } \end{aligned}\right.$	Cycle Steal Op Chk	$\left.\right\|_{\mathrm{Por}} ^{\operatorname{lnv}}$

Check Generation

Check halt is a microprocessor load micro instruction (BEA3) that is used to fill unused areas of storage. If, because of an error, the yystem branches to one of these unused locations, the check halt will cause the system to stop and the processor check (PROC CHK) light to come on.

Machine Check Interrupt Routine

Machine check interrupt request is generated when an error is detected by the port or CPU hardware. Occurrence of MCI brings up 'machine check interrupt' from the CPU to the port which保 sues a check halt instruction which creates a processor check. A processor check (or a manual stop from the CE panel) stops the CPU clock and raises ' $T 7$ ' to the attachment wrich causes the attachment to deactivate the critical circuitry.

Error Logging

When a check is detected, MCI routine logs the following information in control storage:

WRO main level

Interface error byte/interface register
CPU error byte/console status byte
MAR interrupt level 1
MAR interrupt level 2
MAR interrupt le
MAB main level
Instruction located at MAR-1
Date
Once this information is saved in control storage MCI routine branches to SCP which takes this information and logs it on one sector of the disk. Sectors $55-58$ on cylinder 0 , track 0 are reserved for logging information. Each time error information is written on a sector, machine check coun ter in the direct area of control storage is incremented by 1 . This counter determines which is to be used. These four sectors contain information about the last four errors detected. If, however, an error occurs while MCl is running, a processo check occurs and error logging is not completed.

Error Retry

Errors that occur while the processor is executing any of the following are retried.

I fetch of all system instructions.
E phase of the following system instructions:
$Z^{2 A Z}{ }^{1}$
mvX^{1}
L^{1}
BC^{1}
JC^{1}
TBN
TBF
TBF

MVI
A^{1}

ITC^{1}
ED
LA
$\stackrel{\text { LA }}{\mathrm{CLI}^{1}}$
CLC
The GO flag is checked by MCI to determine if retry is possible.

Errors which are detected during the following are not retried:

Any micro interrupt is in progres
The SCP is running.
The system is in the E phase of the following instructions:

SBN
svc
LIO
TIO
sio
${ }^{1}$ Indicates that error retry will be attempted only if the instruction has not gone far enough to alter the data in an operand.

Console

Operator Control Panel

Load Switch/Light (LOAD)

loading; IMPL followed by IPL
The LOAD light turns on when the switch is pressed and remains on until the first 4096 bytes of the IMPL have been successfully loaded.

Start Switch/Light (START)

This micro instruction controlled switch is turned on at IPL time. It is turned off when one of the following occurs:

1. STOP is pressed

The mode selector switch is in the SYS INSN STEP position.
3. An address compare stop occurs.

When the STOP light is on, the microprogram is looping and interrogating the START switch. When START is pressed, the START light turns on and the STOP light turns off. Processing of the system instruction will then continue.

Keyboard Ready Light (KEYBD RDY)

This light is on whenever the keyboard is enabled and ready to operate.

Processor Check Light (PROC CHK)

This light is turned on whenever an unrecoverable error is detected by the CPU. Whenever this occurs the only way to restart is by initiating an IMPL via the LOAD switch.

Power On/Off Switch (POWER ON/OFF)
This switch initiates a power on or power off sequence. As part of the power on sequence, a system reset is performed to initalize the system. At the completion of the power on sequence (approximately 35 seconds), the STOP light turns on.

The contents of the registers and storage are destroyed during power off.

Stop Switch (STOP)

When this micro instruction controlled switch is pressed, the system is stopped at the end of the current system instruction and the STOP light is turned on. At the end of each system instruc tion, the stop switch is interrogated by the microprogram and if the switch is active, the microprogram loops in a stopped state.

On power-up, this light turns on when the power up sequence has been completed. It turns off when LOAD is pressed.

The STOP light is also turned on if the micro program is loaded and a main storage addres compare stop occurs or the mode selecto switch is placed in the SYS INSN STEP position.

Power Check Light (PWR CHK)

This light indicates that a check in the power ystem has occurred and that power has been moved However voltage necessary to dislay the check condition is still on.

Thermal Check Light (TH CHK)
This indicator is turned on whenever an over temperature condition is detected in the A gate, power supplies, or printer. Power is removed from the system when the thermal check occurs. After the thermal condition has gone away, system power may again be brought up.

MODE SELECTOR Switch

When this switch is moved from the PROC RUN position, the CPU clock stops after execution of the current micro instruction.
To restart the CPU, return the switch to PROC RUN and press CE START. The CPU starts at the micro instruction addressed by MAR.

PROC RUN
This is the normal position of the mode selector switch when the system is running.

INSN STEP/DPL Y LSR
With the mode selector switch in this position, each time the CE START switch is pressed, the next sequential micro instruction or branch is executed. In addition, the contents of a selected LSR are displayed. The LSR to be displayed is specified by the display switches 3 and 4 . The values hex ‘ 00^{\prime} through ' $1 \mathrm{~F}^{\prime}$ selects LSRs 0 through 31 respectively.

ALTER STOR (PMO25)
This position is used to alter the contents of main storage or control storage. It is used in conjunction with the STOR SEL switch, MAR, and the data switches.
The STOR SEL switch controls whether main storage or control storage will be accessed. MAR will contain the address of the location to be altered

If main storage is being addressed, the contents of data switches 3 and 4 are stored in the addressed location. If control storage is being addressed, the contents of switches $1,2,3$, and 4 are stored. Data switch settings are displayed in the display lights.

Pressing CE START initiates the alter storage operation and causes a CPU cycle to occur. Dur ing this cycle the address in MAR is incremented by one. Thus it is possible to alter several sequential positions of storage without entering a new address in MAR each time.

TO-T2

This position of the mode selector switch allows the MAR for the current interrupt level to be altered.

With the switch in this position, the 16 binary bits from the data switches $1,2,3$, and 4 are entered into the current MAR when CE START is pressed. Data switch settings are displayed in the display lights.

When altering this register for the display or alter function, note the initial contents of the egister by displaying the contents and then writing it down. This register must be reinitialzed to its original value before restarting in the microprogram.

Specific CPU Data Flow for ALTER MAR IRPT

his position is used to display the contents of SDR, or the contents of main storage or contro torage. When displaying main storage or conrol storage, the switch is used in conjunction with the STOR SEL switch and MAR.

Turning the mode selector switch to this position displays the current contents of SDR

To display the contents of a position of main torage or control storage

1. Set the data switches to the address to be displayed.
2. Press ALTER MAR.
3. Press CE START. This puts the address in WRO.
4. Select main storage or control storage with the STOR SEL switch.
5. Turn the mode selector switch to DPLY STOR, then press CE START to initiate the operation.

During the storage cycle, which is initiated by pressing CE START, the contents of storage are set into the SDR and displayed in the lights bytes can be displayed without setting a new address into MAR each time.

When control storage is displayed, all 18 bits appear in the lights. When main storage is displayed, the 9 bits are displayed in the rightmost byte of the display lights. The leftmost byte is not significant (contains all bits on).

See CNSL-4 for circuit details.

Specific CPU nata Flow for Display Storage

 displayed via the CE panel lights. These erros port check byte. Set the mode selector switch to the DPLY CHKS position to display these 2 bytes. Each time CE START is pressed, the next sequential micro instruction or branch is executed.

CPU ERROR BYTE (Left Byte)

Bit Error Cause
0 SDR parity Parity is incorrect in the check storage data register

1 MOR parity Parity is incorrect in the check micro operation register.

2 Storage gate Parity is incorrect at the out parity check put of the storage gate in the data flow.

ALU gate Parity predicted does not parity check agree with the generated
parity at the ALU gate. parity at the ALU gate.

4 Invalid con- Indicates that control storage trol storage was being addressed outside address/SAR its boundaries,

5 Invalid main Indicates that main storage $\begin{array}{ll}\text { storage add- } \\ \text { ress/SAR } & \text { was being addressed outside } \\ \text { its boundaries, }\end{array}$ ress/SAR its boundaries.

4 and SAR P check Parity is incorrect in the stor
5 age address register.

6 Not used
7 Microcode check

PORT CHECK BYTE (Right Byte)

Bit Error Cause
0 DBQ incorrect parity has been parity check detected by an I/O attachment on the 'data bus out'.

1 Invalid device Indicates that the port has put assignment an address on the DBO but no response has been received from an attachment within the equired time. (Port has aised 'control out' to address an attachment and the attachment has not responded by 4μ s. This check can also ccur if the DBO has inorrect parity during the ransmission of an address.

2 DBI parity ncorrect parity has been detected by the port during the transter of data from an /O attachment.

3 Timeout check

The port has detected an error in the normal port sequence. This check occurs if an attach ment does not deactivate service in' within $5.4 \mu \mathrm{~s}$ after the rise of 'service out'.)

4 CBI/DBI The $1 / O$ interface lines were not not zero cleared at the specified time CBI and DBI prior to deact vating 'service out' during T6 fter transferring a byte of data to or from an $1 / 0$ device. data to or from an I/O device.

5 System bus System bus
parity check ncorrect parity has been detec ted on the data sent from the CPU to the port. The check is made while 'service out' is active; or incorrect parity has been detected on data being during a burst mode operation

Bit Error
Cause
6 Cycle steal If any of the CPU or port or burst errors listed under DPLY CHKS mode oper- occurs during a cycle steal ation check operation, this bit will be turned on. In addition, if any CPU or channel parity error is detected during a burst mode operation, this bit will be turned on.

7 Invalid Bits 4-7 of WRO(L) were not port 0000

INSN STEP/DPL Y PCR

With the mode selector switch in this position, each time CE START is pressed, the next sequential instruction is executed. Also, the 8 bits of the processor condition register are displayed in the leftmost byte of the display lights. The rightmost byte is not significant.

SYS INSN STEP
When the mode selector switch is turned to this position, the STOP light comes on. Each time START is pressed and released, one system instruction is executed. One exception to this is the supervisor call instruction (SVC) which is not executed.

If the CPU was running when the mode selector switch was moved to the SYS INSN STEP position, CE START must be pressed and released to complete the system instruction that was in progress.

ress-Data-Display Switches
These switches are used in conjunction with several positions of the mode selector switch. They are used to enter addresses and data into main storage or control storage Ind data into they are used to address the LSRs. Their pecific use is covered under the various positions of the mode selector switch.

CE START Switch

Pressing this switch causes execution of instructions to begin at the address specified by the current micro address register.

LAMP TEST Switch

When this switch is pressed, all system lights are turned on unless they or their circuits are defective.

DISPLAY INTENSITY Control
This control adjusts the intensity of the CRT display.

STOR SEL Switch
This switch controls whether main storage or control storage is addressed on manual operations and address compare operations.

PROC INTERRUPT Ligh

These lights indicate which interrupt level is currently in progress. The interrupt is indicated in the lights as follows:

Lights		Interrupt Level	
4	2	1	
x	x	X	Zero (Machine Check)
		x	One X
x	Two Three Main Level		

Pressing this switch causes the following to occur:

1. The micro address register (MAR) is initialized to " 0000 '
2. Present power fault conditions are transferred to previous power fault conditions and th present power fault condition latches are
3. The
4. The CPU timing circuitry is set to an initialized state.
5. Error and status indicators are reset
6. The PCR is initialized to the equal condition.

The RESET switch is also used to check for system bus in and the PCR bits remaining at the wrong state. If a bit is on, the P bit high is displayed while RESET is pressed.
press LOAD.

When addressing main storage on a manual opera tion or address compare operation, the switch must be in the MAIN position. To address control storage on a manual operation or address compare operation, the switch must be in the CTL position.

CHECK RUN/STOP Switch

This switch controls whether the system runs or tops when a parity error occurs.
When the switch is in the STOP position, the system stops at the end of the current microinstruction when a parity error occurs. Whe the RUN position, the error is retained but the system continues to run.

Lock Ligh

This indicator is turned on by the run latch or the 'block processor clock' signal from an I/O device

PWR FAULT DPLY Switch and

When a system power failure occurs, the power supply at fault and the type of failure are stored in latches. These latches are on the power sequence card and retain the information as long as the main line switch is kept on. These latches are known as the 'present power fault' latches. When RESET is pressed and the console power brought up (or on a power off sequence), the information recorded in the 'present power fault' latches is transferred to another set of latches known as the 'previous power fault' latches. Thus the reason for a current power failure be told in the power faut latch may be dispoyt though console power is down.
display the 'present power fault' latches, the PWR FAULT DPLY switch must be in the PRE position when the DPLY PWR CHK switch is pressed. If the PWR FAULT DPLY switch is in the PREV position, the 'previous power fault latches are displayed.

2. A previous power fault indication of 1111 1111 may be indicated when the main line switch is switched from OFF to ON.
3. If power is up when a short occurs in the +24 Vdc distribution, the fault indications will be as shown in the chart. If the short exists when power is brought up, an under voltage indication will probably occur.

IMPL-IPL Switches

The IMPL and IPL switches select the IMPL (initial microprogram load) and IPL (initial program load) devices. The IMPL and IPL devices are the disk drive (disk) and the 33FD (diskette).

During normal operations, both IMPL (control storage load) and IPL (main storage load) are from the disk drive. When LOAD is pressed, contro torage is first loaded with system diagnostic tests from the IMPL device. After successful completion of these tests, the emulator and SCP (system control program) are loaded. The micro program then loads main storage from the selected IPL device.

IMPL Switch
This switch selects the IMPL device. In the DISK position (normal position), IMPL is done from the disk drive when LOAD is pressed. In the DISK ETTE position, IMPL is done from the 33FD.

IPL Switch
The DISK position (normal position) of this switch selects the disk drive as the IPL device. In the DISk ETTE position, IPL is from the 33FD.

FORCE CLOCK ON/OFF Switch

This switch initiates continuous CPU cycles. With the mode selector switch in the ALTER STOR position, the contents of the data switches are transferred to consecutive main or control storage location (depends on STOR SEL switch setting) when FORCE CLOCK is turned ON. The system also operates in the check run mode that is, a processor check will not stop the machine. The starting address is contained in MAR. Turning the switch to OFF terminates the operation.

ADD COMP STOP/RUN Switch

This switch is used in conjunction with the STOR SEL switch and the address switches. An addres compare sync signal (A-A1J2D12) is provided wer the address switches match an addres in SAR. The STOR SEL switch determines if the sync occurs on a main storage or control storage address.

If the switch is in the RUN position, the system will continue after a compare occurs.

If the switch is in the STOP position, the system will stop. The exact time the system will stop is determined by the following:

- If the address stop is on a main storage address, the emulator completes the system instruction being executed and then stops all system leve operations with STOP light on. The system may be restarted by pressing the operator panel start key.
- An address compare on a control storage address stops the CPU clock after executing the micro CESTART

If an address compare stop is made on a control storage address during the execution of a system I/O instruction, the results of the instruction are unpredictable.

Circuit detail is shown at the right.

Run Signal

set and reset the run latch are shown here. The switches that affect the run latch are described on the opposite page. Checks that reset the run latch (or inhibit the set) are described on ERR HDL-1.

Disk Drive

The IBM disk drive has one permanently mounted magnetic coated disk. Data is written and read from the disk by heads attached to the swinging actuator. The disk drive has $3.2,5.0,9.1$, or 13.7 megabytes of storage, depending on the system model number.

The disk circuitry is housed in two separate areas; on the disk enclosure and on the 01A2 board (I/O board). The servo head output preamplifier is mounted on the actuator arm. Part of the head selection circuitry is mounted on the disk enclosur thand of he fle eronic dircuits mounted on the 01A2 board (I/O board).

Data Track

Data heads record data on (and read data from) the data tracks. Each track is divided into 60 sectors. The data stored in one sector is called a record. Each record consists of 256 bytes; therefore, it possible to store 15,360 bytes per track. The tor are called a cylinder.

The capacities of the various models are shown in the following chart:

Disk Capacity in Megabytes	3.2	5.0	9.1	13.7
Number of Tracks	218	338	606	909
Number of Cylinders	109	169	303	303
Data Heads - Tracks per Cylinder	2			3
Bytes per Sector - (record)	256			
Sectors (records) per Track	60			

Because the disk is formatted into cylinders and sectors, each record on the disk has a definit numbers. This address (part, of the identification field) is rearded at the physical loction of the field) is recorded at the physical location of the

Some areas of the disk are reserved; these areas are shown in the IBM System/32 Diagnostic User's Guide (PN 2547690).

[^1]
Sector Format

Before writing in the data field, the ID field must read to verify that the data is being written in the correct sector. The recovery time from the write operation to the read operation is too lon allow writing of consecutive sectors because the microprogram requires time to set up the nex operation. For this reason, the sectors are numbered: $00,30,01,31 \ldots 06,36,07,37$, etc as shown in the illustration.

Sector 06	Sector 36		Sector 07		Sector 37	
ID ${ }^{\text {I }}$ Data	ID	Data	ID	Data	ID	Data
Recovery Time	Rd	Write	Recovery		Rd	Write
			Time			

VFO sync is 12 bytes of hex FF used to synchronize the read clock with data bits from the disk.

When the 12 VFO sync bytes are being written on he disk, the attachment forces 8 bytes of hex FF and then cycle steals the other 4 bytes from a 10 byte field of hex FFs in storage.

Note: If a sector defect occurs within the ID region (VFO sync through the ID field CRC), this VFO sync is extended 64 bytes (12 plus 64 equals 76 bytes), and then the address of an
Iternate sector is written
D field is 7 bytes as described below.

Flag Byte

Bits Meaning

0-4 Unassigned
5 Data in sector might not be good
6-7 $\quad 00$ Good primary sector
10 Defective primary sector
01 Good alternate sector
11 Defective alternate sector
The cylinder address is 2 bytes.

Capacity
3.2 Megabytes
5.0 Megabytes
9.1 Megabytes
13.7 Megabytes

Address
0 to 108
0 to 168
0 to 302
0 to 302

The head address is 1 byte, hex 000 for head 0 hex 01 for head 1, or hex 02 for head 2 .

The sector address is 1 byte, 0 to 59

CRC (cyclic redundancy check) is 2 bytes of heck characters to verify that the data was read correctly from the ID field.

Data is read and written by data heads when the disk is spinning at 2964 rpm . When the disk is stationary, the heads are in the landing zone, and are in contact with the disk. To minimize head wear, the start and stop times of the disk are con trolled (high torque start motor when starting, motor brake when stopping).
During a write operation, a 0 or 1 bit is recorded by reversing the direction of the current in the coil, which reverses the flux direction in the pole piece and reverses the flux in the gap. At the instant that the flux in the pole piece gap revers instant that the flux in the pole piece gap reve disk surface. Each reversal represents a recorded 0 or 1 bit.

During a read operation, with the recording surface magnetized in one horizontal direction, constant flux flows and the coil registers no out put voltage. However, when a recorded bit (180 degrees horizontal flux reversal) passes the gap, the flux flowing through the ring and coil reverses and produces a voltage output pulse.
Only data bits are written on the disk data tracks. For write operations the attachment uses clock pulses read from the servo tracks to tions the read clock is developed from the VFO sync fields and from the data being read

The period of time during which a data bit may be written is known as a bit cell. A bit cell is 140 ns long and is defined by the ' 1 F write clock' line:
1F Write Clock $\square \square \square \square \square$
Bit Cells $\quad \vdash^{140}-1|1|$

Writing 1-Bits
One bits are always written at the middle of a bit cell:
 Disk Rotation
 Flux Rever
(data bit)

With one exception, 0 bits are always written at the beginning of a bit cell:
Bit Cells
Write Data

The exception to writing 0 bits at the beginning of a bit cell is when the 0 bit immediately follows a 1 bit. In this case, no bit is actually written and the 0 bit is represented by the absence of change during its bit cell time:

Bit Cells
Write Data

By writing $X^{\prime} 88^{\prime}$ both methods of writing 0 bits
and the method of writing 1 bits can be illustrated:

The data to be written is transmitted to the write circuits mounted on the disk drive via the two 'data transmission lines' A. For each transition on the 'data transmission lines' a 0 or bit is written on disk. These transitions cause the current to be switched in the write head which results in a polarity change on the disk track.

Reading Data Bits

When data is read from the disk, the read clock is synchronized to the incoming data by the VFO sync field. This field consists of 12 bytes of 1 bits. The read clock output consists of two lines, ' 1 F read clock' and ' 2 F read clock'.
Because the read clock has been synchronized by the 1 bits of the VFO sync field, these lines may be used to define bit cell time:

The signals on the 'read data' lines B are signals shaped in the disk drive circuits mounted on the attachment gate.

The variable frequency oscillator (VFO) driving the read clock constantly monitors the bits being read and varies its frequency to keep the read clock and incoming data in sync.

Seek Operation

During a seek operation, the track followin signal to the actuator driving circuits is overridde by signals from the seek controls. A seek is exe cuted by activating the drivers to move the actuator at the correct velocity to the specified track At the end of a seek, the seek lines to the drivers deactivated; this allows the track following circuits to hold the actuator at the selected track.

Seek control causes the actuator to leave track following mode, and accelerates the actuator ver a specified number of tracks. Seek contro hen drives the actuator at a constant velocity until it is a specified number of tracks from th equired destination. Then the actuator is dece rated and stops at the required destination. At his point, track following signals take control.

ecalibrate Operation

The recalibrate operation moves the heads across the tracks into the guard band area, then out to data track 0 (home).
Recalibrate is initiated:

1. During a normal power on sequence
2. When an invalid sector identifier (ID) is read.

After data unsafe is reset

Behind Home

If the data heads attempt to seek a track that is farther in than track 0 , the seek in command is ropped. When the heads stop, the actuator seeks to track 0 and home is indicated.

Servo Head Correctly Aligne

The direction of rotation shown is as seen from the read/write heads. Format of C and P pulse are prewritten around the servo tracks. The this. track.

Servo Head Offse

The servo control ensures that the position pulses are received at equal amplitudes.
If the servo head moves off track, one position pulse is received at a reduced amplitude, and the other position pulse is received at an increased amplitude.

The servo control drives the head in the direction that increases the amplitude of the reduced position pulses (P1 or P2). The direction and degree of movement of the heads, to compensate for the error, is determined by the track being odd or even and and P2 pulses.

Servo Head Offset, Odd and Even Tracks

During a seek operation, seek $\mathbf{2}^{\prime}$ drops one track before the required track. The servo control the before the required track. The servo control
takes over and aligns the servo head onto the correct track.

The signal 'even track' + + for even, - for odd) determines whether P1 or P2 is selected to gate the in or out demodulator; the demodulators keep the servo head moving in the direction o the seek, until the position pulses are the sam amplitude.

Head Positioning and Disk Layout

One side of the disk is a data surface only. The other side is the servo surface and the additiona data surface for the 13.7 data head.

Missing Clock Pulse (and Position Pulses)

Patterns of missing clock pulses decode into index pulses, sector pulses, or sector midpoints (activates
the "data area" line). the "data area" line).

P - Position pulse
C - Clock pulse

Servo Surface and 13.7 Data Surface
This side of the disk has: Servo tracks, a guard band used as an aid for locating track 0 (home), a landing zone for the servo head, and data tracks and landing zone for data head 2 on 13.7 megabyte file.

Data Surface

 zones.

Servo Head
(on track)
$C \quad P \quad P \quad C \quad P \quad P \quad C \quad P \quad P \quad P \quad P C \quad P \quad P$ (on track)
\qquad

- $C P P C-P$ - Servo Track (data area)
- - Servo Track (data area)
- - Servo Track (data area)
-
-
-
- Servo Track (guard band)
Direction
- -

 $\Omega \Omega$ $\Omega \Omega$

Data Track 0

Data Track-Servo Track Relationship

Servo circuits determine data track positions by analyzing signals received from the odd and even servo tracks.

Positioning the servo head directly over the border between two adjacent servo tracks, positions the data heads (mounted on a common carriage) over the corresponding data tracks.

Guard Band

Guard band is a normal servo track area that has no index pulse, sector pulse, or sector midpoint. The guard band is detected at the servo track that no missing clock pulses, which in turn indicates uns 270 us in for 3.2 and megabytes, or a $135 \mu \mathrm{~s}$ for 9.1 and 13.7 megabyte $\mu \mathrm{s}$ for 9.1 and 13.7 megabytes to timeout, which indicates guard band.

The guard band indicates that the data heads are behind home (data track 0). When guard band detected, the attachment positions the data heads over track 0

Channel	\| Select Attachment			Send Data Byte to Attachment DBO 0-7							
	-	CCB	$\underset{\text { (Latched) }}{\text { C C B }}$	D $\mathbf{O}^{\text {O }}$							
		012	$\begin{array}{llll}3 & 4 & 5 & 6\end{array}$	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
		$\begin{aligned} & 100 \\ & \text { Load } \end{aligned}$	$\begin{array}{lccc} \hline 0 & 0 & 1 & 0 \\ \text { Set interrupt request } \\ \text { DISK-64 } \end{array}$								
			 0 0 1 1 Reset Interrupt Request DISK-64								
		0 1 1 0 Enable quest Control DISK-64					Data Op End DISK-64	Sector Pulse DISK-64	Index Pulse DISK-64	Seek Op End DISK-64	
		$\begin{aligned} & \hline 1000 \\ & \hline \text { Load Data Buffer } \\ & \text { Register DISK-8 } \end{aligned}$	Data Buffer Register (Load the data buffer register with a byte from an LSR located in the CPU.)								
		$\begin{aligned} & \hline 1^{*} \quad 0 \quad 1 \\ & \text { Enable Diagnostic } \\ & \text { Mode DISKK-12 } \end{aligned}$									
		Mode DISK-12									
			CSY Trigger DISK-12	Disk Cycle Strobe	Set Sector Pulse DISK-12	1 F Write Clock Toggle DISK-12	1F Read Clock Toggle DISK-12	Increment Seek Counters DISK-12	Index Pulse DISK-12	Set (1)/Reset (0) Read Data Bit Buffer DISK-12	

(reset seek busy, file busy, R6, R7, 06, 07 latches)

Diagnostic Load

Diagnostic Mode

Enable diagnostic mode degates the main control nes between the channel and the attachment nd between the attachment and the disk drive Then, diagnostic mode control can simulate these main control lines, which allows diagnostic pro
grams to simulate all attachment operations.

This is the diagnostic portion
of the load command shown
on DISK-11.

Sense Interrupt Level Status Command

This page is intentionally left blank.

Load Command-Control Load Command

The purpose of this command is:

1. Start a seek operation, write operation, or a read operation.
2. Transfer a data byte to the attachment.
3. Perform CE (diagnostic) functions.

This timing chart shows the sequence of events for the load command-control load command. See DISK-11.

Sense Command-Control Sense Command
The purpose of this command is to transfer a data byte, an error byte, a control byte, or a CE (diagnostic) byte from the attachment to the
channel. These bytes are called sense bytes and channel. These bytes are called sense byI.
are transferred to the channel on the DBI.

Sense Interrupt Level Status Command
This command tests for an interrupt request from the disk attachment. If the disk attachment is the disk attachment. If the disk attachment is
requesting an interrupt, DBI bit 7 is activated to the CPU.

The timing chart shows the sequence of events for the sense command-control sense commandsense interrupt level status command. See DISK-13
and DISK-14.

Jump I/O Command

The purpose of this command is to detect error conditions on main attachment and disk drive status conditions. If the condition tested for is present, CBI bit 4 is activated to the channel. If t present, CBI bit 4 is inactive. See DISK-15.

Write Identifier (ID)

Write ID
The primary use of write ID is to rewrite an ID field when a defective sector has been detected.
When a permanent error is encountered for a given sector, its ID field must be rewritten to indicate
where the data has been relocated and to flag that sector as being defective.

The primary use of read ID is to bring the ID field over to the CPU so it can be examined. Normally the ID field is compared in the attach ment so the CPU never really gets its contents. But if the ID search never results in a sector hit, he program may want to read the ID field to etermine why that particular sector cannot be found. Therefore, read ID transfers the contents of the ID field to the CPU.
A control load command issues read ID. of the ID field to the CPU.
A control load command issues set start which gates the sequence counter.
The next sector or index pulse starts the
sequence counter, and read ID is executed.
Attachment

Write data transfers 256 bytes of data from CPU storage and writes the 256 bytes into the data field of a sector on the disk.

A control load command issues write data.
A control load command issues set start which Aates the sequence counter. The next sector or index pulse starts the sequence counter, and write data is executed

[^2]cycle steals are not requested.

Scan Data

CPU issues I/O control load specifying a scan data operation.

CPU issues an I/O control load-set start which starts the sequence counter. Beginning at the
next sector pulse, the scan operation is executed

Scan Data, Hi or Low, or Equal

The contents of all or portions of the disk data field can be compared to a fixed data field in the CPU and the results indicated as being high or low or equal.

Write zeros (data bits) is gated, in the MFM encoder/shift register, by ' 1 F write clock' pulses to produce coded data. Both leading and trailing edges of the coded data pulses are defined in an dge clocking lach. Coded nd difind in an transmitted, via the line driver and receiver, to the write data trigger

Write gate sets the write data trigger and the data is transmitted to the write drivers.

Modified Frequency Modulation (MFM)

MFM is the form in which data is recorded on the data tracks.

Data is transmitted on the write zeros line; when the line is positive, a 1 is indicated and when the line is negative, a is indicated.
A two stage shift register and the MFM encoder shift the data bits by one 1 F clock cycle.

1 bit is transmitted during the second half of a 1 F clock cycle. A 0 bit is transmitted during he first half of a 1 F clock cycle, except when a 0 mmediately follows a 1 bit, in this case no bit is ransmitted during the 1 F clock cycle.

MFM Encoding

The diagram below shows the input, shifting, and encoding and writing of data (100100)

Write ID and Write Data Wave Forms

All wave forms use write gate-A2D2G05 as a sync point, with a times 10 grounded probe. The amplitude of signals may vary from one machine to
another. Two scope signals are shown on on
picture in order to:

- Show opposite polarities of signals.
- Save space on page.

Write ID
Pictures taken while running Friend test using the
following commands and options:

$$
\begin{aligned}
& \text { Write ID } \\
& \text { Sector 0 } \\
& \text { Select head 0 } \\
& \text { Restore original control field } \\
& \text { Loop on table }
\end{aligned}
$$

This wave form shows write gate. Write gate
active once during a write ID command.
Chan 1 Write Gate D2G05 Sync Internal - Write Gate D2G05

Voltage: $0.1 \mathrm{~V} / \mathrm{div}$
Time: $5.0 \mu \mathrm{~s} / \mathrm{div}$
DC Input

Dial the delay time multiplier to zero, then slowly
advance the multiplier to get this picture.
Chan 1 Write Zeros D2J12 Sync External - Write Gate D2G05

Voltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time: Main sweep $20 \mu \mathrm{~s} / \mathrm{div}$
Delayed sweep $1.0 \mu \mathrm{~s} / \mathrm{div}$
DC Input

or

Sync External - Write Gate G05 Voltage: $0.1 \mathrm{~V} /$ div Time: Main sweep $20 \mu \mathrm{~s} /$ div Delayed sweep $1.0 \mu \mathrm{~s} / \mathrm{div}$ DC Input

3.2 or 5.0 megabytes
or

Write Data

All of these wave forms of hex A were taken while
writing hex A 's while looping on the Friend test.
9.1 or 13.7 megabytes, track 302 (hex 012 E), sector 0 , head 0 .
5.0 megabytes, track 168 (hex 00A8), sector 0 ,
head 0 .
3.2 megabytes, track 108 (hex 006C), sector 0
head 0 .
Pictures taken while running Friend test using the
following commands and options:
Write data
Select head 0
M/S data field 1
Loop on table
Set/dump data fields
Preset M/S data field 1
Enter hex AAAAs
This wave form shows write gate. Write gate is -
active once during a write data command.

Chan 1 Write Gate D2GO Sync Internal - Write Gate D2G05

Voltage: $0.1 \mathrm{~V} /$ div
Time: $50 \mu \mathrm{~s} / \mathrm{div}$
DC Input

Dial the delay time multiplier to zero, the
slowly advance the multiplier to get this
picture.

Sync External - Write Gate D2G05
Voltage: $0.1 \mathrm{~V} /$ div
Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$
DC Input
Chan 1^{1} D2D05

Chan 1 D2G09

Sync External - Write Gate D2G05
Voltage: $0.1 \mathrm{~V} / \mathrm{div}$
Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$
DC Input

Sync External - Write Gate D2G05

Voltage: $0.1 \mathrm{~V} / \mathrm{div}$

Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$
DC Input
\qquad
Two wave forms shown on one pictura

Read Circuits

When 'read select' and 'head select' from the attachment are activated, raw data is read from the disk and preamplified.
The raw data is amplified by a variable gain mplifier and filtered. Raw data signals are clipped and detected before being differentiated ine receiver. The detected raw dat signal is integrated and fed back to control the variable integrated and fed back to control the variable

Read Clock and Divide-by-Two Counter
The data separator card receives the raw data and feeds it into a line driver/receiver. The read clock, which runs at 14.22 MHz , is synchronized to the incoming data (see Fast Sync on this page).
he basic clock runs at twice bit cell frequency (2F) and is locked to the average phase of all the incoming bits. The clock is halved to produce the 1 F clock (bit cell frequency) and from hen on, the 1 F clock is in phase with the bit cell.
Phase and frequency synchronization is main ained by a phase-locked loop to the read clock.

Read Clock Control

To lower the frequency of the clock (that is, delay the phase), the control voltage is reduced To raise the clock frequency, the control voltage is increased. Thus, to keep the clock locked to the data stream, the positive current source is turned on if the clock is behind phase with the data and the negative source is turned on if it runs in advance of the data.

ata/Read Clock Sync

Current control is obtained from the data early and data late pulses that are logically derived from the data. The data early and data late lock as follow: Each data bit sets the data S
and the phase latch whose output is compared (see Timings on the next page). This detects either early date, or late data (in respect to the read clock 2F). Therefore, if data is late, the frequency of the read clock is decreased; if data is early the frequency of the read clock is increased.

Data Latch and Standardized Data Latch
Input to the data latch comes from the $2 F$ clock, $1 F$ clock and the phase latch. The phase The stativates the standardized data latch. to the SERDized data (read data) is then gated to the SERDES.

Fast Sync
Fast sync is activated during the execution of all commands. For example, if a read ID command (62GV 19) is initiated, the VFO field of 1's (hex FF) is the first field read from disk. Fast sync is activated at the beginning of this field. After fast sync falls, the next VFO sync field bit
causes the read clock to sync to these 1 's. This must be done because the read clock cannot distinguish between 1's or 0's. Therefore, by synchronizing the read clock to known 1 's, the read clock detects 1 's and 0 's properly for the remainder of the record (read ID command).

Bit Cells

(Cik Early)

Read Data
All wave forms use the index pulse-A2E2D13 as sync point, with a times 10 grounded probe. A cope hood may be needed to see signals. The amplitude of signals may vary from one machine to another. Two scope signals are shown on one picture order to:

- Show opposite polarities of signals.
- Save space on this page.

Read ID
9.1 or 13.7 megabytes, track 302 (hex 012E), sector 0 , head 0
5.0 megabytes, track 168 (hex 00A8), sector 0 ,
head 0 .
2 megabytes, track 108 (hex 006C), sector 0
head 0 .
Wave forms shown while running Friend test, sector 0).

Sync + Internal Chan 1
Voltage: $0.2 \mathrm{~V} / \mathrm{div} \quad 10$
Time: Main Sweep $5.0 \mu \mathrm{~s} / \mathrm{div}$
Chan 2 Standardized Data D2B03

All of these wave forms of hex A were taken while looping on the Friend test and reading from the CE track (head 0 , hex sector 1E). Before these wave forms are scoped, all hex A's must be written (on the CE track) by using the Friend test. See
DISK-27.

> This wave form shows fast sync. Fast sync is active twice during a read data command (see DISK.? (see DISK-22).

DC Input Chan $1 \quad$ Fast Sync
Sync + Index Pulse Voltage: $0.2 \mathrm{~V} / \mathrm{div}$ Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$ Delayed Sweep $2 \mu s / d i v$ DC Input

Chan 1
Sync + Index Pulse E2D13
Voltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$ DC Input
\qquad
${ }^{1}$ May need card extender
\downarrow
 shown using second fast sync

Sync + Index Pulse E2D13

Voltage: $20 \mathrm{mv} / \mathrm{div}$
Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$ AC Input

Chan 1^{1} W1A4D13

Chan 1^{1} W1A4B10
Sync + Index Pulse E2D13

Voltage: $50 \mathrm{mv} / \mathrm{div}$
Time: Main Sweep $50 \mu \mathrm{~s} /$ div
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$
AC Input

Chan 1 Error Voltage D2J13

Fast
data.
10

Chan 1 Standardized Data Sync + Index Pulse E2D13
oltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time. Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$ Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$ DC Input

Chan $1^{1} \quad$ W1A4B12

Chan $1^{1} \quad$ W1A4D11
Sync + Index Pulse E2D13

Voltage: $5 \mathrm{mv} /$ div
Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$
AC Input

Chan $1^{1} \quad$ A2D2J09

Chan $1^{1} \quad$ A2D2J10
Sync + Index Pulse E2D13

Voltage. 0.1 Vc
Time: Main Sweep $50 \mu \mathrm{~s} /$ div
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$ DC Input

Chan 1 D2D13
Chan 1 D2J07
Sync + Index Pulse E2D13
Voltage: $0.1 \mathrm{~V} / \mathrm{div}$
Time: Main Sweep 50 , $/$ /d
Delayed Sweep 0.5 u/div
DC Input

Chan 1 D2B10
1 Chan 1 D2D10
Sync + Index Pulse E2D13

Voltage: $0.1 \mathrm{~V} /$ div
Time: Main Sweep $50 \mu \mathrm{~s} / \mathrm{div}$
Delayed Sweep $0.5 \mu \mathrm{~s} / \mathrm{div}$
DC Input
rack following aligns the access heads on the track the completion of each seek operation and main－ ains head／track alignment during read and write perations．

The servo head reads a prewritten pattern that is ligned with each data track．The prewritten pattern is made up of position pulses（P1 and P2） nd servo clock pulses（ C ）repeated around each servo track

Sequences of missing clock pulses identify the index point，the start of each sector，and the tracks in the data area of the disk（see DISK－34）．

The relationship between some of the pulses used in the servo control is shown conceptually below．

Phased Locked Oscillato
2F Write Clock
Divide by 2 Counter
1 F Write Clock

Position and Clock
Pulses

Servo Clock Pulses
Counter

Counter 2
Counter 3
phased locked（PLO），operates at a frequency of 14.2 MHz and the output of the
The phased locked oscillator（PLO），operates at a requency of 14.2 Mz and the ou P ＇divide by 2 counter＇has a frequency of 7.1 kHz ．The＇servo clocks＇pulse every 32 PL
is used as a reference to keep the 1 F write clock in synchronization with the C pulses．

Drive Coil Resistance Nominal 50Ω
Important－Coils within 5Ω of each other

 ロロロாロロロロロロロロロロロロロ
 \square ח ised arest

Track Following Operation

The servo track signal is amplified, filtered, and separated into two component signals (clock pulses and position pulses). These signals are then detected on the position detection and PLO analog card A2C2. If no servo clock pulses can be detected, see DISK-33.
n the control and safety card, (A2E2) each detected servo clock pulse fires a 600 ns ingleshot called the lookahead singleshot. This singleshot allows a phase comparison beween the servo clock and the frequency divided write clock to be performed.

The phase locked oscillator (PLO), the main omponent of the PLO loop, is controlled by the 'oscillate early' and 'oscillate late' signals. The PLO runs at 14.2 MHz . The output fre quency, the ' 2 F write clock' (A2C2J10), is divided by two to provide the '1F write clock . 1 MHz). The 1 F write clock is further divided by ' emodulator gates are synchronized with the ervo pattern and switched so that one position ulse is gated to the 'in demodulator' and the ther is gated to the 'out demodulator'. The polarity of even track (up for even and down for dd) is used to define which position pulse is gated to which demodulator ('select in' or 'select out').

When the polarity of the line is defined, it mainains this state until the next seek is initiated; this llows the error signal to be used to keep the head on the desired polarity and therefore the desired track. The position pulses, which produce the differential error signal, are peak detected on the osition detection card and their sum is returned the 'automatic gain control' (AGC) line to ontrol the variable gain amplifier.

The differential error signals are formed into a single signal in the compensator and combined with urrent sense signals from the drive transistors to power one or other of the coil drivers. The coil drivers move the actuator in the required direction to correct the position of the servo head over the selected track.

Track Following Waveforms
The following waveforms are obtainable if the servo operation is functioning correctly and he head is positioned on a track. All pictures were taken with a times 10 probe.

Chan 1

Voltage: $10 \mathrm{mV} / \mathrm{di}$
Time: $1 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11 - Sector Puls AC Input

Voltage: $10 \mathrm{mV} / \mathrm{di}$
Time: $1 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11, Chopped
AC Input

Voltage: $20 \mathrm{mV} / \mathrm{div}$
Time: $1 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11, Chopped
AC Input

Voltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time: $1.0 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11, Chopped
DC Input May be distorted at beginning because PLO is syncing in
Chan 1 D2G04 \square
 05

Voltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time: $0.1 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11, Chopped AC Input

Voltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time: $0.5 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11, Chopped
AC Input

Voltage: $0.2 \mathrm{~V} / \mathrm{div}$
Time: $0.5 \mu \mathrm{~s} / \mathrm{div}$
Trigger: Internal + Channel 1, Chopped AC Input

Voltage: $0.5 \mathrm{~V} / \mathrm{div}$
Time: $0.5 \mu \mathrm{~s} / \mathrm{div}$
Trigger. Internal + Channel 1, Chopped AC Input

Voltage: $5 \mathrm{mV} / \mathrm{div}$
Time: $2 \mathrm{~ms} /$ div
Trigger: Internal + Channel 1
Vertical Mode: Add, Invert chan 2
Signal is inverted and therefore differential.

Voltage: $10 \mathrm{mV} / \mathrm{div}$
Time: $0.2 \mathrm{~ms} / \mathrm{div}$
Trigger: Internal + chan 1
Vertical Mode: Add, Invert + chan 2
Signal is inverted and therefore differential.

Chan 1 C4B03 21

Voltage: $1 \mathrm{~V} /$ div
Time: $1 \mathrm{~ms} / \mathrm{div}$
Trigger: External + D4J13-Speed Transducer

This page is intentionally left blank.

Simulated Servo Test Procedure

The simulated servo generates an accurate on-track ignal for use in finding fault conditions when th ervo is not operating correctly
The simulated servo is operating correctly if the illustrated signals are obtained on the oscilloscope when probing the pins shown.

The simulated servo is installed by unplugging he paddle card at D W1B1 and installing seve jumpers on the 01A2 board. The jumpers are
(A2C2) B05 to (A2C2) B07
(A2E2) G02 to (A2C4) G12
(A2E2) G13 to (A2C4) J11
(A2D4) D09 to (A2D4) D08 (ground) (A2E2) S09 to (A2E2) D08 (ground) (A2E2) P09 to (A2E2) P08 (ground)

Use pin extender to probe jumpered lines.

Voltage: $0.5 \mathrm{~V} / \mathrm{div}$
Time: $0.1 \mu \mathrm{~s} / \mathrm{div}$
Trigger: Internal channel 1 AC +
DC input

9.1 or 13.7 megabytes
3.2 or 5.0 megabytes

Voltage: $0.5 \mathrm{~V} / \mathrm{di}$
Time: $0.5 \mu \mathrm{~s} / \mathrm{div}$
rigger: Internal channel 1 AC +
DC Input

Chan C2JO2

5

Voltage: $0.1 \mathrm{~V} / \mathrm{div}$
Time: $1 \mu \mathrm{\mu} /$ div
Trigger: Input

Servo, Index and Sector Pulse, Data Area and Guard Band Detection

\square Servo tracks on this side of the disk identify

All pictures taken with a times 10 probe

Chan 1

Voltage: $10 \mathrm{mV} / \mathrm{div}$
Trigger: External + E2P11 Sector Pulse DC Input

Voltage: $0.20 \mathrm{~V} /$ div
Time: $1.0 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11 Sector Pulse DC Input

Voltage: $0.2 \mathrm{OV} / \mathrm{div}$
Time: $50 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2D13
DC Input

Chan 1

Voltage: $0.20 \mathrm{~V} / \mathrm{di}$
Time: $50 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2D13
DC Input

Voltage: $0.2 \mathrm{oV} / \mathrm{div}$
Time: $50 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2P11
DC Input

Two additional midpoints on 9.1 and 13.7 megabyte files.

Voltage: $50 \mathrm{mV} /$ div
Time: $50 \mu \mathrm{~s} / \mathrm{div}$
Trigger: External + E2D13
DC Input

Phase Locked Oscillator (PLO) Synchronization

The PLO synchronizes when each 30 -second LO pulse is in phase with the servo clock puls Disk the trailing edge of the 00 is ind hot is in phase with the leading edge of 'counter hot is in phase with the leading edge of 'counter 3^{\prime}.

```
Look-ahead SS_]
```

Counter ${ }^{3}$ ' is directly related to the PLO and the 'look-ahead' singleshot is directly related to the 'servo clocks' pulse.

When the 'look-ahead singleshot' and 'counter 3' are out of time, the difference between them produces an 'oscillator early' or 'oscillator late' pulse. The width of this oscillator pulse is an indication of the difference between the 'look-ahead' singlehot and 'counter 3 ' pulses. The early and late So PLO to synchronize with the servo clock pulses.

Note: This is a simplified timing diagram. Oscilator late and early pulses do not occur on consecutive servo clock pulses.

Synchronization After Power O

When power is applied to the system, the 'power on delay' line blocks 'PLO gate' until all voltage are established. When the 'power on delay' line drops, recalibration operation starts (see DISK-47)

At the same time as the 4 ms kick singleshot operates, the 'PLO gate' is set and synchronization starts. As the access heads move out, the servo head is reading servo clock pulses and synchronization takes place.

Power On

PLO Out of Synchronization
Two conditions cause the PLO to be out of synchronization with the servo clocks pulses

1. Loss of four or more servo clock pulses.
2. A phase error of 90° or more, between the 'look-ahead' singleshot and 'counter 3'

If the PLO becomes unsychronized during normal operation, both demodulator gates are selected. This forces a zero position error signal to maintain the on track signal.

If the PLO becomes unsynchronized during a write operation, a data unsafe condition occurs.

Recalibrate

The recalibrate operation moves the heads across the tracks to the guard band area (approximately track -4), then out to settle on track zero (home).

Recalibrate is initiated

1. When an invalid sector identifier (ID) is read.
2. After 'data unsafe' is reset
3. During a normal power on sequence

During recalibration the heads move at low velocity as in a normal 1 or 2 track seek operation.

When the recalibrate line is set, it switches on the 'recalibrate in' latch; 'seek 1 and 2 ' is forced and 'drive in' is selected. The heads are driven out towards the guard band area. 'Guard band' is active when the heads are behind home 'guard band' sets the 'behind home' latch, which sets 'recalibrate out', which selects out drive When 'select out drive' is set, the heads are moved away from the spindle and out of the guard band area. (The two halves of the drive coil always operated in buck/boost.) As ${ }^{\prime}$ reset "behind home' latch is reset, 'select out drive' isset, 'hat is The herd are then positioned at track zero (home).

In a power on sequence the heads start from be hind home. Recalibrate is initiated by 'power on delay' and 'guard band'.

Data Unsafe

When the 'data unsafe' line is active, one or more of the following fault conditions exist:

Fault Condition Latch

Write selected and no write Write Error A transitions detected.

Write current source on but Write Error B not write selected.

Write selected and more than Head Select ne or no heads selected detected.
ynchronized.

Any data channel card in- No latch set,but correctly plugged or seated. data unsafe

CAUTION

Continuously pulsing of the 'DSF reset' line to attempt to clear an unsafe condition can cause data to be erased. During 'data unsafe' all read whe operations inhited. Ready is dropped and can only be reset by a recalibrate peration after data unsafe is cleared.

DSF (disk) ready is activated when the data heads are at the home (track zero) following a successful power up or recalibrate operation.
The disk may become not ready or fail to become ready after powering up for the following reasons:

1. A data unsafe condition exists, see DISK-38. 'Data unsafe' indicates that one or more the three data unsafe latches in the file attachment was set, or that a card is incorrect ly plugged or seated.
2. There is an electrical failure of the brake (see DISK-46). A brake failure is indicated (see DISK-46). A brake failure is indicated if the brake coil becomes open or short
circuited. The motor can override the brake circuited. The motor can override the brake,
so the attachment removes ac power when there is a brake failure.
3. The disk is not up to the correct speed (see DISK-46). If the disk does not reach the correct speed, the access arm is kept at the inner stop. If the disk loses speed after successfully powering up, the ready indica tion drops.

Note: The actuator is retracted during power on delay or if the disk speed is too slow.

Voltage: $0.5 \mathrm{~V} / \mathrm{div}$
Time: $5.0 \mathrm{~ms} / \mathrm{div}$
Trigger: Internal + Channel 1, Chopped
DC Input

The 3.2 and 5.0 megabytes seek operations are identical except that when a 3.2 seek operation goes beyond track 108, an invalid seek indication causes an adapter check.
Seek operations move the actuator heads (that is, servo head, data head 0 , and data head 1). Movement of the heads is controlied by the attachment specing the direcion of moveme, whe her herivaing seek 1 and seek 2 . activating seek 1 and seek 2 .

Seek 1 and 2 are out of phase by an amount depending on the number of tracks to be crossed Initially seek 1 and (not) seek 2 accelerates the Then seek 1 and seek 2 together gate acces velocity feedback to maintain the actuator at the desired velocity. (The desired velocity is derived, as a voltage level, from the digital output of the velocity store register.) Finally, (not) seek 1 and seek 2 decelerates the actuator to stop at the required track.

When seek 2 is made inactive, track following mode is allowed to align the actuator heads on the new track and maintain head track alignment until the next seek operation.

Control Load

17 Track Seek Example

Seek Operation

Position Err

3 and 4
As the actuator moves across the tracks, the position error signal from the servo heads changes from maximum (halfway between tracks) to minimum (on track) and back to maximum as eac rack is crossed. Signals derived from the erro signal ar

1. On Track $\boldsymbol{8}$ becomes active each time the head passes through a track alignment; the occurences of on track step the seek 2 resetting of seek 1 and seek 2.
2. Linear Region 7 becomes active when head/track alignment error is low enough o be corrected by track follow mode; at the end of a seek operation, the leading edg of the linear region pulse switches from seek mode to track following mode.
3. Hybrid Velocity 6 is proportional to the rate of change of the error signal and thus to the speed of the actuator. In other words, indicates the speed of the actuator.
4. Too Fast $\mathbf{1 0}$ active, during the velocity fedback controlled phase. If hybrid velocity is greater than desired velocity. Desired velocity is set during acceleration to a value depending on the number of tracks to be crossed, >3 tracks, [3 to 7 tracks to be crossed, >3 tracks, 3 to 7
tracks] or >7 tracks.) The velocity follow latch gates too fast to select either in or out (depending respectively on access out or access in) to decelerate the access arm. (Equally [not] too fast allows the acces arm to accelerate.)

Desired Velocity 9

Desired velocity is set during seek acceleration to value depending on the number of tracks to be crossed. The servo clock counter is allowed to tep up the value in the velocity store register as ong as acceleration continues. For example, b cause of longer acceleration, a >7 track seek allows a greater value in the velocity store regis居 than a 3 to 7 track seek. Therefore, during serk lowed vo hit allowed to go higher until it compares with the higher velocity store value. Then too fast and FL take control.

Velocity Follow Latch (VFL) 11

This latch is set at the end of the accelerate phase by the 'seek 2 ' line. During this time, the select in drive and select out drive is con tantly switched by the too fast line gated by tantly switched by the too fast line gated by control the speed of the actuator.

Recalibrate: A recalibrate positions the moving heads over track 0.

Seek: This example shows a 3.2 or 5.0 megabyte five track seek. The seek 1 track counter is loaded with a value of 4 that indicates how many tracks to seek minus 1. (In this example, seek 5 tracks.)
The seek 2 counter is loaded with a value that indicates how many tracks past the first track seeked that the seek 2 FL is set.

The seek 1 compare reg is loaded with a value that indicates how many tracks before the ast track seeked that the seek 1 FL is reset ndicates when the servo is over a data track on track).
he seek odd/even track FF is set on when a seek to an odd track is desired. It is set off when a seek to an even track is desired.
'seek out direction' $F F$ is set on when a seek toward the outer edge of the disk (higher track number) is desired. It is set off when a seek toward the inner edge of the disk (lower track number) is desired.
The seek 1 FL and the seek 2 FL control the servo arm velocity.

Control Load Command DISK-11

Recalibrate to File (timing chart on DISK-37)

Control Load Command DISK-11

Control Load Command DISK-11

The power on switch and K1 activate the dc power supplies
The brake coil circuit B allows K2 to pick, and the disk drive motor \mathbf{C} to start. If the brake coil circuit indicates a brake failure, which ind cates the brake is on, K2 cannot pick. This prevents ac to the drive motor
The ' 5 -second channel power on reset' line D holds the 32 second counter E reset. After 5 seconds, the 32 second counter starts to run. All during this time, 'power on delay' \bar{F} is active. At the end of the 32 second delay the
During power on delay, the retract \boldsymbol{H} line holds the actuator against the inner (spindle) stop.

At the end of the power on delay, the 4 ms kick
SS J starts the SS $]$ starts the actuator outward movement, then seek 1 and seek $2 \mathbb{K}$ continue the movement. Detecting data area deactivates guard band L. The outward seek is dropped and the actuator stops the data heads over track

The disk heads which are mounted on the
The disk heads which are mounted on the actuator, fly above the disk as the disk comes
up to speed. If the disk speed drops to approxup to speed. If the disk speed drops to approx-
imately 1800 rpm , the speed OK latch N is reset and the disk drive goes not ready. Then the actuator arm is retracted \boldsymbol{H} against the inner (spindle) stop. This ensures that the heads land over the landing zone.

During all power down conditions the actuator arm is retracted against the inner (spindle) stop by the +24 Vdc power supply O . A magnetic catch holds the actuator in the retracted position.

CYCLE STEAL

Cycle Steal-CSY Early from CPU Storage

During a disk read or write operation execution, data is transferred to or from CPU storage. This data is transferred in burst mode. That is, the block processor clock (BPC) line from the disk drive to the CPU has control of the CPU in such way that no instructions are started until th BPC signal goes inactive. When BPC is active,
cycle steals are not granted to any other device.

Cycle Steal-CSY Late from CPU Storage

During a disk read or write operation execution, data is transferred to or from the CPU storage. This data is transferred in burst mode. That is, disk block processor clock' line from the disk
drive to the CPU has control and no instructions are started until 'disk block processor clock' goes inactive. During this time, cycle steals are not granted to any other devices.

See data flow on
previous page.

Cycle Steal-CSY Early to CPU Storage

During execution of a disk read or write operation, data is transferred to or from CPU storage. This data is transferred in burst mode. That is, The 'G2GV disk block processor clock' line from
the disk drive to the CPU has control of the CPU and no instructions are started until '62GV disk block processor' goes inactive. When 62 GV is active, cycle steals are not granted to any other device.

A byte is completed in the SERDES A then transferred to the data buffer.
The byte is gated into CPU storage. B

During execution of a disk read or write operation, data is transferred to or from CPU storage. This data is transferred in burst mode. That is, the' "62GV disk block processor clock' line from the disk drive to the CPU has control of the CPU and no instructions are started until 62 GV disk block processor' goes inactive. When disk is act

See data flow on

IMPL

COMMAND BUS IN (CBI)

Before any read or write operations between the CPU and disk are executed, a control load command sets the desired DBI control information into the attachment. This control information selects and holds the desired CBI configuration needed and sends it back to the CPU, therefore controling CPU and attachment during subsequent read write operations write operations.

Command Bus In

Bits

$=$ Cycle steal data to CPU -
no increment to MAR.
= Cycle steal data from CPU no increment to MAR.
$=$ Cycle steal data to CPU increment MAR.
$=$ Cycle steal data from CPU increment MAR.
$=$ Cycle steal LSR 0 (WR 4 interrupt level-1) select - data field address.
$=$ Cycle steal LSR 1 (WR 5 interrupt level-1) select - ID field address.
$=$ Select control store during cycle steals/ Indicates to the CPU not to check parity of DBI during a sense command/jump I/O condition met.
= Data bus out parity check. See DISK-55.

ERROR CONDITIONS

Write Data Echo Check

A bit written to the line driver/receiver fails to appear as a bit read from the read circuits 2 bit times later.

A write data echo check error condition can be detected when one of the following read or write operations is executing.

As each ID or data byte is read from CPU storage, it goes to the DBO to data buffer register, to the SERDES A. The contents of the SERDES is shifted out of position 0 a bit at a time and sent to the data head B and written on the disk. Also, as the contents of the SERDES is shifted out of position 0 , it is shifted a bit at a time through th SERDES to position -2

By the time a bit written on the disk is shifted into position -2 , the bit should appear as a bit read from the line driver/receiver. The position -2 bit is compared to the read bit \bar{D}. If bits written do not compare with the bits read

Pick or drop bit(s) during transfer of data bytes or a micro instruction on the DBO.

A DBO parity error condition can be detected when the following micro instructions, read or write operations, ID or data bytes are being transferred from channel to the attachment.
Detect a DBO parity error if a bit is picked or dropped while a byte is being transferred over the DBO from the channel to the attachmen. The DBO should be odd parity.

Jump I/O Command DISK-15

CBI Bit 4

Data is being transferred from the channel to the data buffer at the same time the data buffer is being transferred to the SERDES; or data is bein transferred from the data buffer to the channel transferred from the data buffer the same time the SERDES is being transferred
at the to the data buffer.

A cycle steal overrun check error condition can be detected when any one of the following read or write operations is transferring ID or data $\frac{\text { from }}{1}$ or to the CPU storage.

$$
\text { See DISK-9 } \longrightarrow
$$

Example 1: During write ID, the head select Example 1: During write ID, the head select byte \mathbf{A} requested is strobed \mathbf{B} into the data
buffer register \mathbf{C}, then the data buffer register buffer register \mathbf{C}, then the data buffer register Now, if the head select byte is strobed into the data buffer register at the same time as the data buffer register is transferred to the SERDES, a cycle steal overrun is detected \mathbf{F}

Example 2: During read ID, the cylinder select byte is gated from the SERDES to the data buffer register \mathbf{G}. A cycle steal is requested \mathbf{H}. The cylinder select byte is strobed to the channel Now, if the cylinder select byte is being transferred from the SERDES to the data buffer register at th same time as the data buffer register is being trans

0 Write Data
01 Read Diagnostic
1 Read Verify
11 Scan Equal
11 Scan Low
11 Scan High-7

Control Load

Jump I/O Command DISK-15 mand DISK-15

SERDES Parity Check

Pick or drop bit(s) during ID or data transfer.
A SERDES parity check error condition can be detected when one of the four following read or write operations are executing.

\section*{Command DISK-1 | Command DISK-11 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | \ddots | | |
| | | | | | |
| | | | | | |}

\rightarrow During the transfer of each byte, detect a dropped or picked up bit between the data buffer register, and write data (to disk).

Load a byte from the DBO into the data buffer register A. Place the P bit B or C into the ERDES parity counter. Load the dat register into the SERDES D. As each bit shifted out of the SERDES position 0 to the disk, the SERDES parity counter is compledisk, the E. When the byte is completely
mented mented \mathbf{E}. When the byte is completely hould be off. If the SERDES parity counter is on when the byte is completely written, the SERDES parity check is turned on

Read cycle steal ID from CPU storage, test for a SERDES parity check, and write the parity check,
ID on disk.
$\begin{array}{llllllll} \\ \text { R Byte } & 6 & 7 & \mathrm{O} \\ \text { Byte } 6 & 7\end{array}$

\qquad
on disk.
$\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & \text { Read ID } \\ 0 & 0 & 1 & \text { Read Dat }\end{array}$ \qquad

Read ID from disk, test for a steal the ID to CPU storage.

Jump I/0 Command
DISK-15

Read data from disk, test for a parity check, and cycle steal the data to CPU storage.
storage, test for a SERDES

Cyclic Redundancy Check (CRC)
Pick or drop bit(s) during any data transfer between the attachment and the disk.
A cyclic redundancy check (CRC) error condition can be detected when one of the following read or write operations are executing.

							Control Load
:---:							

Current is supplied (write current on) to the data heads when it should not be.

A write check error condition can be detected when one of the following write operations are executing.

Control Load Command DISK-11

Detect a write check if write current is applied to the data heads other than the proper time during a write operation

Write current is checked in three ways

1. During a write data operation when the sync byte is being written, write current on should be active. If not, a write check is detected
2. During a write operation Q -byte, bit 6 must be active B and Q-byte, bit 7 must be in active \mathbf{C} indicating a write operation. If not, a write check is detected.
3. If 'write current on' is active, a write opera If write current on is active, a write oper and the correct Q -byte bit must be tion and the correct Q -byte bit must be
active D or a write check is detected. In other words, write current on becomes active other than the proper time during a write ID or write data command

Channel Transfer Check

Any CPU or channel check occurring during
ycle steal data transfer from or to the
attachment.
A channel transfer check error condition can
be detected when any one of the following
ead or write operations are transferring ID
or data from or to CPU storage.

Test that a CPU or channel check does not occur while the disk attachment is in cycle steal burst mode.

When a data operation is executing, disk burst mode A is active, and cycle steals B transfer data between CPU storage and the attachment. During this time, if a CPU or channel check occurs C , a channel transfer check is detected occurs

Sense Command DISK-13						

(to CPU)

Sector Sync Check

A false sync byte hex $O E$ is detected.
 A sector sync check error condition can be detected when one of the following read or

 write operations is executingControl Load

Detect a sector sync check if a bit is picked or dropped while searching for or reading the sync byte. A sync byte is detected by comparing the bit ring with sync byte.

VFO hex FFs A are read from the disk through
SERDES position 8 . The first zero bit B SERDES position 8. The first zero bit B , should indicate a hex $O E$ sync byte is being detected and starts the bit ring C . The bit ring is exclusive ORed with the hex OE sync byte D If they do not compare \mathbf{E} the sector sync check FF is turned on.
(to CPU)

Off Track Check

The disk drive servo arm moves off track during execution of a data operation.

An off track check error condition can be detected when any of the following read or write operations are executing.

Control Load Command DISK-11

R Byte 67 OByte 67
$\begin{array}{lllll}0 & 1 & 1 & 0 & \text { Write ID } \\ 0 & 1 & 0 & 1 & \text { Read ID }\end{array}$
$\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & \text { Read ID }\end{array}$
$\begin{array}{lllll}0 & 0 & 1 & 0 & \text { Write Data } \\ 0 & 0 & 0 & 1 & \text { Read Data }\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & \text { Read Data } \\ 1 & 0 & 0 & 1 & \text { Read Diagnostic }\end{array}$
$11 \quad 0 \quad 1$ Read Verify
$\begin{array}{lllll}0 & 0 & 1 & 1 & \text { Scan Equal }\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 1 & \text { Scan Low } \\ 1 & 0 & 1 & 1 & \text { Scan High }\end{array}$
10
T
Scan High

(not) On track
C

Sense Command DISK-13

(to CPU)

Interrupt Timeout Check

An expected interrupt request is not generated
An interrupt timeout check error condition is detected when an expected interrupt is not generated.

Dect that an interrupt request is not generated within 1.5 s after the interrupt is enabled

There are seven ways an interrupt request is gener ted, \mathbf{A} through \mathbf{G}. Using \mathbf{B} as an example, o and is enabled \boldsymbol{H} by the I/O load micro instruc ion. A read or write operation is issued to the ttachment. When the operation is completed, the op end latch is set \boldsymbol{J}, which causes an interrupt equest. If the interrupt request line becomes active within 1.5 seconds after interrupts are enabled, the interrupt timeout latch is not set K the interrupt request line becomes active more 2 FF I tum on K complete the read or write operation that was issued

(to CPU)

Five jump I/O conditions are shown on this diagram.
(File) Home

Index Pulse
File Ready
Data Unsafe

A Home: An active level on this line indicates that the moving heads are positioned over home (track zero). Home is only active at the end of a power-up cycle or after a recalibrate (not during normal seeks to track zero). An access error which forces the moveable heads into the guard band results in automatic recali bration to track zero and an active level on the 'home' line.

C Index Pulse: One pulse ($2.25 \mu \mathrm{~s}$ nominal) appears on this line for every revolution of the disk.

E Data Unsafe: The 62GV circuits monitor certain conditions during write operations. The ain conditions during write operations. The if an unsafe condition occurs. While the 'data unsafe' line is active, all write and seek operaunsafe line is active, all write and seek opera-
tions are inhibited, the heads are deselected, an the 'ready' line is deactivated. Recovery from data unsafe' is by 'file reset'. Recalibrate by activating recalibrate line; this makes the file ready.

CAUTION

Do not continually reset 'data unsafe'. Going unsafe can erase data, thus continual resetting may cause extensive data loss.

Jump I/O Conditions (Continued)

The sector hit jump I/O condition is tested on this diagram.

Sector hit A means the CPU ID field and the disk ID field compare equal. A sector hit is earched for during the following read or write data operations.

When a data operation is started, 'set start' \mathbf{B} turns on the 'sector hit' latch C. During sequence counter 5 , ID fields are compared D
for equal. If the ID fields compare equal, the sector hit latch stays on. If the ID fields do no compare equal, the sector hit latch is reset F.

Control Load
Command DISK-11
 $\begin{array}{cl}17 & 67\end{array}$

Jump I/O Conditions (Continued)

Scan hit K means, the equal condition, the low condition, or the high condition (CPU data field being compared to the disk data field) is met A scan hit is searched for during the following scan data operations.

During sequence counter 5 of a scan data operation the scan equal hit latch A is turned on. During sequence counter 11, read data from disk is compared B to read data from CPU storage. If reset C l If the data is equal the scan equal hit latch is not reset, and scan it D is deted

During a scan low data operation, if data from the disk compares low to the data from CPU storage scan hit is detected.

During a scan high data operation, if data from the disk compares high to the data from CPU storage, scan hit is detected \mathbf{F}
If a hex FF is detected from CPU storage, scan mask detect G latch prevents a compare for that byte time. Also, if the 'not mask' latch \mathbf{H} indicates that CPU storege cored data is hex FFs, therefore the scan equal hit latch is hexe th the ond da con

Jump I/O Conditions (Continued)

Three jump I/O conditions are shown below:

Output Bus Lines (see DISK-8)

Line	Indicates/Purpose	Cause/Conditions
Standardized Data	Carries data read from the disk and echoes data being written.	
Read Clock 17		Pulse is derived from the read oscillator.
Data Unsafe	Failure condition.	Brought up by: 'write error', 'head select error', 'servo error', or incorrectly plugged card.
Write Unsafe	Unsafe condition.	Caused by 'write selected' and no write current or by 'write not selected' and 'write current'.
Select Unsafe	Unsafe condition.	Caused by a write selection where more than one head or no head is selected.
Servo Unsafe	Unsafe condition.	Caused by 'write' being selected when the access heads are off track or the PLO is out of sync.
Write Clock $1 F$	Pulse is used as a reference during 'write'.	Derived from the phase locked oscillator (PLO).
DSF Ready	The DSF is ready to be used.	1. The disk is up to speed. 2. The access heads are at cylinder zero (PWR UP). 3. No 'data unsafe' condition 4. No electrical failure in the drive motor brake.
Index Pulse	Indicates track starting point.	Active once per revolution.
Home	Heads are at cylinder 0 .	Only active after: 1. Power up. 2. Recalibration. 3. An access that forces the heads into the guard band.
Behind Home	Heads are between track 0 and the landing zone.	
Guard Band	Access heads are in the guard band.	
Seek Complete	Access head is at the correct track after a 'seek'.	
On Track	The access heads are at a data track.	
Speed Pulses	Used to calculate disk speed.	Active once per revolution of the disk.
Brake Failure	Electrical failure of the drive motor brake.	

Input Bus Lines (see DISK-8)

Line	Indicates/Purpose	Cause/Conditions
Read/Write Operation	Always active.	
Fast Sync	Gates continuous ones to the read clock to achieve fast synchronization with read data.	
Write	Selects read (inactive) or write (active).	
Select Head	3.2, 5.0 and 9.1 megabyte files use two head select lines. An additional line is used for 13.7 megabyte files.	
Write Zeros	Carries the data to be written on the disk: up for 0 , down for 1 .	
DSF Reset	Resets latches in the DSF during power up or a reset after an unsafe condition.	
Power On Delay	A power up or down is in operation.	Permits disk to achieve speed before any actions can occur.
$\left.\begin{array}{c} \text { Seek } 1 \\ \text { Seek } 2 \end{array}\right\}$	Control the start and end of accessing.	
Out Direction	Controls the direction of seeks: active for out, inactive for in.	
Even Track	Directs the access heads to an evennumbered track when active, an oddnumbered track when inactive.	
Recalibrate	Moves the access heads to cylinder 0 .	After power on delay or access error.

Sense Lines Used with MAPs (see DISK-8)

Line	Indicates/Purpose	Cause/Conditions
PLO Out of Sync	PLO is not synchronized to the servo clock pulses.	
Select Out Drive	Actuator is driven away from the spindle.	
Select In Drive	Actuator is driven toward the spindle.	
VFL (velocity follow latch)	Actuator has reached its normal velocity.	Used after an initial acceleration period
Linear Region	Servo head is over a track.	Derived from the error signal which is generated when the access arm moves across a track.
Sector Pulse	Beginning of each sector.	Derived from the servo track. Sector 0 uses the index pulse.
Too Fast	Slows the arm during access.	A composite signal from desired and actual access arm velocity.

DISK-70

This page is intentionally left blank.

The IBM 33FD diskette drive and attachment are mounted in the system. The 33FD microprogram ocated in the CPU, and the 33FD attachment con rol the 33FD diskette drive. The 33FD diskette drive seeks, writes on, or reads from data tracks on a removable diskette.

In order to read or write on the data tracks, the diskette drive has a continuously turning spindle hat turns the diskette. A solenoid loaded read/ write head that is positioned by a stepper moto driven leadscrew reads or writes the data tracks.

Only one side of the diskette is used for recording here are 75 primary data tracks and two alter nate data tracks per diskette. Commands from he channel initiate the read, write, and seek perations in addition to performing various are referenced from an index hole in the diskette.

33FD Attachment

Diskette Format

There are 77 tracks on the diskette surface; a track being a circular path on the surface of the diskette. The tracks are numbered 00 through 76. Track 00 is the outside track and track 76 is the inside track. Of the 77 tracks, only 74 tracks are data tracks. Track 00 is a label track and tracks 75 and 76 are reserved as alternates to be used in place of tracks that become defective. Some diskettes that are interchanged with other systems may contain only 73 data tracks; track 74 not being used
Each track is divided into either 8 or 26 sectors. The content of each sector is described in the illustrations on this page.

The data stored in one sector is called a record. When the tracks are divided into 8 sectors, each record contains 512 bytes; when divided into 26 sectors, each record contains 128 bytes. Thus, diskettes that contain 74 data tracks and are divided into 8 sectors per track have a capacity of 303,104 bytes of data; those divided into 26 sectors have a capacity of 246,272 bytes of data.

In some diagnostic programs only one sector is written on a track. Each sector contains 4096 bytes of data.

The formula for record length is 128×2^{n} where can be $0,1,2,3,4$, or 5 . Thus record lengths can be $128,256,512,1024,2048$, or 4096 bytes long. The value of n is recorded in the record length byte.

Because the diskette is formatted into tracks Because the diskette is formatted into tracks
and sectors, each record on the diskette has a definite address consisting of a track and record address. The record address is recorded at the records physical location on the diskette.

26 Sector Diskette

Each sync field contains 6 bytes of zeros. This field is r quired to synchronize the
attachment circuitry to the
information being read from
the diskette.

Diskettes that contain prerecorded record addresses re known as initialized diskettes. Initialized disk ettes contain an ID field for each record. Each record consists of two parts; the first part con tins identification information and the second part contains data.

Gap 1 consists of a variable number of zeros or ones; the number being dependent on the diskette speed. The last gap before index consists of zeros; the rest of the gaps consist of ones.
\qquad

AM1 is always a hex FE and identifies the information that
follows as being the ID field.

Hex 00 through 4A
Always hex 00
Hex 01 through 1A

Writing

During a write operation, a clock or 1 bit is ecorded by reversing the direction of the curre in the coil, which reverses the flux direction in the pole piece and reverses the flux in the gap At the instant that the flux in the pole piece gap everses, the direction of magnetization changes on the diskette surface. Each reversal represents recorded clock or 1 bit

Controls
'Gated wt current gate' \boldsymbol{A} is active during a write peration. This line allows current to flow through the read/write head \mathbf{B} and also degates the read circuits. When write gate is inactive, the write circuits are deconditioned and the read circuits are conditioned to read. 'Gated tunnel erase \mathbf{C} is also active during a write
operation. This causes the edges of the data track operation. This causes the edges of the data track to be erased. The edges are erased to provide is completely erased.

'33FD low wt current' \mathbf{D} is under microprogram control and is active from logical track 42 on up to 76. When this line is active, the current through the write head is reduced.

Reading

During a read operation, with the recording surface magnetized in one horizontal direction, constant flux flows and the coil registers no output voltage. However, when a recorded bit (180 degrees horizontal flux reversal) passes the gap, the flux flowing through the ring and coil also reverses and produces a voltage output pulse.

(clock or 1 bit)

The above 10010011 represents a hex 93.

Data Representation

For each transition of the 33FD write data a clock bit or a 1 bit is written on the位kette. The absence of a change between clock te write dits a zero or a no-bit. Tra to be switched the read/write head which results in a polarity hange on the diskette track. Thus a polarity change on the diskette represents a clock bit or 1 bit. The period of time from one clock bit the next clock bit is known as a bit cell and is a nominal $4 \mu \mathrm{~s}$ in length. Data bits are written in the middle of the data cell.
By comparison, bits represented on the 'write data' line as transitions are represented on the

Seek Operations

The 33FD seek operations are

- Normal: Seek from present known track to a specified destination track.
- Recalibrate: Seek from the present location (might be unknown) to track zero.
- Overlap: This seek is used when dumping the 62 GV onto the 33FD diskettes.

In all three cases, the microprogram controls the operation. The microprogram must know th track location of the head before starting the operation (except for recalibration), and also know the destination track. Seek commands that move the head one track per command are issued the destination is reached or the operation is terminated

The recalibration operation is necessary when the track location of the head is unknown. The 33FD microprogram sets up a seek of 76 tracks. Because there are only 77 tracks on the diskette, this is just enough to drive the head to track zero from any location. After arriving at track zero, the access mechanism comes against a final stop issued, the head remains at track zero.

The overlap seek is one track seek and starts just after index time. The operation is terminated after one revolution of the diskette, at the next index time. During the time this seek is in progress, data can be gathered from the 62 GV and if available, is written during the next revolution of the diskette.

Read Operation

The accompanying flowchart describes the reading of one sector from the diskette. As each byte is read, one micro instruction is required to transfer each byte from the attachment to the channel. Th data flow for the read operation is shown on the next page.

After the reading of bytes has started, the micro program must take the bytes at a nominal rate of 1 byte every $32 \mu \mathrm{~s}$. A failure to take the bytes fast enough causes a read overrun

The major control in the attachment that defines the read operation is the 'read data command' latch This latch is on twice to read one sector (assuming a good ID field and data field); once to find and read the ID field, and once to find and read the data field. In both cases the 'read data command' latch remains on until the CRC bytes are read.

The read clock and read bit ring synchronize the attachment to the data being read. The read clock attachment to the data being read. The read clok The read bit ring however only runs from the time an AM byte is found until after the CRC bytes have been read.

The 'byte sync found latch turns on when the first data bit of the AM is read. This latch remains on until the 'read data command' latch is reset being read is not a valid AM.

Valid AMs are hex F8, FB, or FE without read clock pulses at bit ring 2, 3, and 4 time. The attachment considers an invalid AM as one that:

1. Is missing data bits $1,2,3$ or 4 .
2. Is missing a clock bit at bit ring $1,5,6$ or 7 time.
3. Has a clock pulse at bit ring 2,3 , or 4 time

The first data byte following a control AM can be either a D or a F :
$D=$ Deleted record
F = Defective recor

Write Operation

The accompanying flow chart describes the writing f one sector on the diskette. The structure of the fields written are controlled by the 33FD microprogram to the extent that one I / O micro instruc tion is required for each byte written. The micro program also controls the required delays. The data flow for the write operation is shown on the next page.

After the writing of bytes has started, the microrograms must supply bytes fast enough so they may be written every 32μ s. A failure to provide bytes fast enough results in a write overrun

The major control in the attachment that defines the write operation is 'write gate'. This remains active from the time the first sync byte is writte until a ater the last CRC byte is written. Th 'write gate' is active

Verification of the write operation is accomplished by reading the record that was written and comparing it to the original data.

Write Data Flow

Find ID Operation

Find ID operations:

- Synchronize the read clock and read bit ring with the bits being read from the diskette.
- Find an ID field.
- Comparison of ID field being searched for and the one found is made by the 33FD microprogram

The accompanying flowchart describes the find ID operation. This operation can be started with the heads at any position on the diskette. The operation continues reading from the diskette until a alid AM is found or until the microprogram ha etermined the ID being searched for is not on the cylinder being read.

The major controls in the attachment that define find ID operation are the 'read data command' (DK220) and the 'byte sync found' latch. latch (DK220) and the 'byte sync found latch. he last CRC byte of the ID field has been read. The 'byte sync found' latch turns on when the first data bit of the AM is read. This latch stays on until the 'read data command' latch is reset or until the attachment has determined the byte being read is not a valid AM.

Valid AMs are hex F8, FB, or FE without read lock pulses at bit ring 2, 3, and 4 times (Table 1). The attachment considers an invalid AM as one that:

- Is missing data bits $1,2,3$, or 4
- Is missing a clock bit at bit ring $1,5,6$, or 7 times.
- Has a clock pulse at bit ring 2, 3, or 4 times.

The controls for the find ID operation are on K220.

The 'search for AM byte' command (33FD-30) initiates the operation by turning on the 'read data command' latch.

Six bytes of zeros in the sync field allow for bit synchronization; bits read from the diskette can be identified as clock bits or data bits. After reading the 6 bytes of zeros, all positions of the CRC shift register will be off.

The first data bit of the AM byte turns on the 'byte sync found' latch and allows the bit ring to start. This gives byte synchronization; data bits read from the diskette can be identified as a particular data bit (0 through 7).
A check is made in the attachment to determine whether the AM byte read is any valid AM byte If not, the 'byte sync found' latch is reset and and the attachment looks for the next AM.

The AM byte is sent to the channel using the 'sense data byte' command (33FD-34).

The 33FD microprogram determines whether the AM is an ID AM.

The ID field and the CRC bytes are sent to the channel using the 'sense data byte' command (33FD-34). CRC data is accumulated.

The attachments portion of the find ID operation is terminated by issuing a 'reset sector op command (33FD-41). This resets the 'read data command' latch.

Write ID Operation

The accompanying flow chart describes the write D operation. This operation is used to initialize diskette. During this operation either 26 or 8 sectors may be set up. The data field is 128 or 512 bytes long respectively. During the initialization process each data field is written with the same data supplied by the user program. The data flow for the write ID operation is the same as for the write operation and is shown on the next paqe.
Write ID is controlled entirely by the microprogram After writing has started, the microprogram must supply bytes fast enough so they may be written every 32μ s. A failure to provide bytes fast enough results in a write overrun.

The major control in the attachment that defines the write ID operation is 'write gate'. This remains active from the time the first bytes are written until the last 2 bytes of zeros are written. The write clock and write bit ring will run as long as 'write gate' is active.

Table 1
AM (hex)
F8
FB
FE
:---:

Load Command

Modifier DBO 4,5,6,7 (Hex)	DBO Data Bits	Command	Action Taken	Feald Page	Timing
$0000(0)$		Disconnect	Reset the '33FD enable' latch.	DK040	(1)
0001 (1)	$0,1,3$	Connect	Sets the '33FD enable' latch. This latch must be on for the 33FD to perform any function.	DK040	1

See μ INSTR-30

Modifier DBO $\mathbf{4 , 5 , 6 , 7}$ (Hex)	DBI Data Bit	Command	Action Taken	ALD Page	Timing
0100 (4)	5	Sense device select.	Senses status of '33FD enable' latch. If latch is on, DBI 5 bit will be sent to the channel.	DK040	1

Control Load Command

Channel
DBO 0.7

See μ INSTR-29.

The main purposes of the IOCL command are to:

- Initiate a write operation, seek operation, or a read operation.
- Transfer a data byte to the attachment.
- Perform CE (diagnostic) functions.

All IOCL commands make a data byte available to the attachment. However, in some cases the data byte has no significance and is not used.

The timing chart on this page shows the sequence of events for the IOCL command. The details of the individual commands (specified by the modifier) are covered on the following pages. References will be made to this page for the interface sequences.

*See 33FD-22

Modifier DBO 4, 5, 6, 7 (Hex)	$\begin{aligned} & \text { DBO } \\ & \text { Data } \\ & \text { Bits } \end{aligned}$	Command	Action Taken	ALD	Timing ${ }^{1}$
0000 (0) 0001 (1) 0011 (3) 0100 (4) 0110 (6) 0111 (7)		Write data byte Write AM byte Write CRC byte Seek one track Seek to next track Search for AM byte	These control load commands are covered in detail on the following pages.		
0101 (5)	Not used	Set 33FD working	Sets the '33FD working' latch; the status of the latch can be checked by the IOCS command.	DK060	1
1000 (8)	Not used	CE start index pulse ${ }^{2}$	Turns on the 'CE mode index' latch. This latch is used to simulate an index pulse. The latch is reset by a 'reset sector op' command.	DK520	1
1010 (A)	Not used	CE index counter advance ${ }^{2}$	Generates an advance pulse to the index counter. This command will cause the index counter to advance one position.	$\begin{aligned} & \text { DK520 } \\ & \text { DK530 } \end{aligned}$	1
1011 (B)	Not used	CE ready counter advance ${ }^{2}$	Advances the ready counter by 1.	DK530	1
1100 (C)	Not used	CE set IMPL counter gate ${ }^{2}$	Turns on the 'CE IMPL' latch. This will allow the IMPL counter to step, the head to load, and the 'read data command' latch to turn on. Refer to IMPL Operation for the sequence of IMPL events.	DK510	1
1110 (E)	Not used	Enable CE step mode ${ }^{2}$	Turns on the 'step' latch. This latch degates 'write gate' and 'gated tunnel erase'. It also degates '33FD standard read data' (DK210), '33FD standard read clock' (DK230), '1 μ s chan osc' (DK310), '33FD index SS' (DK520), and 'chan S12 ns osc' (DK530).	DK060	1
1111 (F)	Not used	Enable CE wrap mode ${ }^{2}$	Turns on the 'wrap' latch. This latch degates 'write gate' and 'gated tunnel erase'. In addition, data instead of being written on diskette is gated into the data separator to be read (DJ020).	DK060	1

1 Refer to 33 FD- 10
${ }^{\text {For diagnostic use }}$

Write Data Byte and Write AM Byte

- Attachment receives 'write data byte' or 'write AM byte' command.
- Data byte or AM byte is received on the DBO and set in the DBO buffer
- The byte is transferred to the serializer and then written on the diskette along with the clock bits.
- The 'write AM byte' command drops three of the clock bits.

The control load command is received on the CBO and remains there until after the data byte to be written is received by the attachment. The device address and modifier are received on the DBO. The modifier is set in the modifier register and used later in conjunction with the IOCL command used later in conjunction with the IOCL command
to set the 'write gate'. Write gate remains on for to set the 'write gate'. Write gate remains on for by a 'reset sector op' instruction.

The data byte is received on the DBO and into he DBO buffer. At the same time 'write gate' is set and the write clock and bit ring are started. The write bit ring has been held reset to 6 by not write gate'. At bit ring 7 and clock 3 the data byte is transferred to the serializer.

Note: 'Write gate' is on if bytes have already been written.
Bits are gated sequentially from the serializer, ORed with clock bits and sent to the '33FD write data igger. Each shift on the input to the trigger causes it to flip which in turn causes the current through the write head to change direction.

The three clock bits that are missing when the AM byte is written are used later during a read operation for byte synchronization.

The data and AM bits are also sent to the CRC shift register (33FD-49).

Write Data Byte and Write AM Byte (Continued)

This chart illustrates the setting of the 'write data byte' and 'write AM byte' controls and the transfer of the byte to the DBO buffer
in the chart on the next page

Notes:

1. 'Command sample' and 'gated strobe' pulses are delayed if the DBO buffer has not transferred the preceding byte to the serializer.
2. 'Write gate' stays active until a 'reset sector op' command is received.
3. Data stays in the DBO register until the next byte is received.
his chart illustrates the serializing and writing
of the data byte and the AM byte that has
previosuly been transferred to the DBO buffer.
Write gate' is repeated from the preceding timing
chart as a point of reference.

Active to write data bits.
(2) 2-3 active to write clock bits and 0-1 active to write data bits.
3 Inactive during 'write data byte' command. Allows data bits and clock bits to be written.
(4) When active causes three clock bits to be dropped during the 'write AM byte' command.
(5)

Always active when writing.

1 Serial Write Bit
(2) Write Clock 2-3
(2) Write Clock 0-1
(6) $2 \mu \mathrm{~S}$ Osc
(7) 33FD Write Data Tgr

*Gate to trigger remains active long enough for clock bits to be written at these times.

Write CRC Byte

This command initiates the following sequence of events:

- Attachment receives two 'write CRC byte' commands.
- CRC shift register is advanced and each time position 16 is turned on, a CRC bit will be written on the diskette.
- A 'reset sector op' command follows the last 'write CRC byte' command if this is the last sector to be written.

The initiation of the 'write CRC byte' command is the same as for the 'write data byte' command. The data byte on the DBO (must be zero) is set into the DBO register. Just as in a 'write data byte' command, the contents of the DBO buffer is sent to the serializer. The output of the serialize is ORed with the CRC register position 16. herefore, the DBA by must be orrect CRC byte will be written.

Two 'write CRC byte' commands must be sent in order to write all 16 bits (2 bytes) of the CRC character.

A 2 byte delay to allow the CRC bytes to be written is accomplished by sending 2 bytes of zeros to the attachment using the 'write data byte' command. These two comamnds place a zero in the DBO buffer and in the serializer. A ${ }^{\text {reset sector op }}{ }^{\prime}$ command follows and resets 'write gate'. However, before resetting 'write gate' three extra clock bits are written. This ensures correct reading of the last CRC bit

Write CRC Byte (Continued)
See the 'write data byte' timing chart (33FD-24) for the initiation of this command. As a point of reference, the zero is set into the DBO buffer at this time as the last data byte is being written.

Write Gat
$2 \mu \mathrm{Sosc}$
Write Clock
Write Bit Ring

Clock Data to Write Serializer Write CRC Byte

Write CRC Gen Timing Latch Shift CRC Reg CRC (16) (example) 33FD Write Data Trg

Seek One Track

This command initiates the following sequence of events:

- Attachment receives a 'seek one track' command

Control information to move the head to the
next track is received on the DBO.

- The head is moved one track by rotating th stepper motor 90 degrees.
- The operation is completed by the time the next index pulse occurs.
This operation differs from the 'seek to next track' command in the following respects:
- The command is initiated by the 33FD microprogram just after index time.
The command causes the read/write head to load.
- The operation is reset by the next index pulse.

A single 'seek one track' command can only move the read/write head one track. The 33FD microprogram must know where the head is and send the correct data byte to move the head one track. However, only bits 6 and 7 on the DBO are used to control the access lines to the 33FD disk drive (see chart on this page).

The initiation of the operation is the standard sequence for the control load command. At command sample time the attachment sets the 'overlap 1 track seek' latch and data bits 6 and 7 are set in the track address register. As a result the head is loaded, the seek commarned on and the reister selects the proper 33FD access lines to move the head tre track. A 'disconnect' command activates the reset to the 'seek command' latch. However the set overrides the reset and the latch remains on until the 'overlap 1 track seek' latch is reset.

At the next 'index pulse A^{\prime} time, the operation is ended by resetting the 'overlap 1 track seek' latch. The minimum time between index pulses is slightly over the 150 ms required to do a seek of one track.

Refer to ALD DK510.
See the control load timing chart (33FD-21) for the initiation of this command. 'Command sample' is used as the point of reference.

Command Sample

Overlap 1 Track See
Set Head Load
Activate Head Load Mag

Seek Command Latc

Seek Track Reg
Activate 33FD Access Track Lines (See Chart)
Drive Stepper Motor Index Phase A

Seek to Next Track

his command initiates the following sequence of events

- Attachment receives a 'seek to next track command
- Control information to move the head to the next track is received on the DBO.
- The read/write head is moved one track by rotating the stepper motor 90 degrees.

A single 'seek to next track' command can onl move the read/write head one track in either direction. The 33FD microprogram must know Dhere head is and place 7 en proper data by e DBD. Only bit 6 a 7 os lines disk drive.

The initiation of the operation is the standard sequence for the IOCL command. At command sequence for the IOCL command. At command sample time, the attachment sets the seek com
mand' latch and data bits 6 and 7 are set in the track address register. The output of the track address register selects the proper 33FD access lines to move the head one track.

If the head is to be moved more than one track, he 33FD microprogram issues another 'seek to next track' command after 50 ms . After the last eek has been issued, the microprogram waits 50 ms and then resets the seek by issuing a disconnect' command.
The disconnect resets the '33FD enabled' latch which in turn resets the 'seek latch' and ends the seek operation.

Refer to ALD DK510.

The 'seek to next track' commands are initiated by the control load sequence (33FD-21). 'Dat sample' and 'command sample' may be used as a point of reference to continue on this chart.

${ }^{*} 50 \mathrm{~ms}$ to seek and 100 ms for
seek mechanism to stabilize.

Search for AM Byte

This command initiates the following sequence of events:

- Attachment receives 'search for AM byte' command.
- This command initiates a read operation by
turning on the 'read data command' latch.
- Attachment searches for a sync field and an AM byte.
The data separator, read clock, and read bit ing are synchronized.
AM byte is deserialized and placed in the 'read data buffer'

The 'search for AM byte' command is used to initiate the reading of the ID field or the data field of a record. It causes the bytes being read to move through the deserializer and into the 'read data buffer'. The 'sense data byte' command is then required to transfer each byte of data to the channel.

The initiation of this command is the standard sequence for the 'control load' command (33FD-21) At command sample time the 'read data command' latch is set and the search for a sync field is started. After 16 consecutive zeros are read, it is assumed to be a sync field. Sixteen zeros fed to the CRC ircuits turn all positions of the 'CRC shift register' ff (33FD-49)

The search then continues for the first data bit of the AM (address mark). This bit will turn on the byte sync found' latch and allow the read bit ring to start running. In addition, the 'CRC shift register is initialized for reading by turning all positions of the 'CRC shift register' on.
if valid AM is found, the 'byte sync found' latch is left on and reading of subsequent data continues. a val latch is turned off
another sync field

After the AM byte is read into the deserializer it is rransterred to the 'read data buffer'. A 'sense dat byte' command is then required to gate this by into the 'DBI' register' and on to the channel.

Normal synchronization between the diskette and the data separator is accomplished by synchronizing to the clock bits. However, during bit ring 2, 3 and 4 time when reading the AM, there are no clock bits and the data separator is synchronized to the data bits. This is accomplished by activating
the 'sync DS on data bits' line.

Search for AM Byte (Continued)

See the control load timing chart (33FD-21) for the initiation of this command. 'Command two charts.

Command Sample
Read Data Command
Find Bit Sync On 0
33FD Standard Read Data

33FD Standard Read Clock
Read Clock (0123) Buffered Read Clock
Read Bit Ring
Zeros Found (CRC gen all positions Off)
Byte Sync Found
Sync DS on Data Bits
Read Data Deserializer Reset Set Read Data Buffer Set CRC for Read Op

Notes:

1. AM byte example is $F B$.
2. Read operation is ended by a reset sector op command.

Control Sense

The control sense command transfers a data byte, an error byte, or a byte of attachment control information to the channel. However, some commands are sent to perform CE (diagnostic) unctions such as simulating a 'standard read data Alse or setting a specific value in the DBI register. All control sense commands return a sense byte o the channel. In some cases it is only a hex with no real significance other than indicating the DBI register is reset to 0 .

The timing chart on this page shows the sequenc of events for the control sense command. The of events for the control sense command. Th
chart is referenced from the following control sense pages.

Notes:

1. Parity is not generated unless a data byte is being sent to the channel (DBO modifier hex 0) and the 33FD is enabled. The CBI . 'Comerd active if parity is not generated, Core delayed if the read gated strobe' puls ain byte com (DBO modifier her
*See 33FD-34, 35, and 36

Modifier DBO 4, 5, 6, 7 (Hex)	DBI Data Bits	Command	Action Taken	ALD	Timing
0000 (0)	0-7, P	Sense Data Byte	Transfers contents of the read data buffer (DK210) to the DBI register and on to the DBI bit lines to the channel. Signals channel that data byte is available.	$\begin{aligned} & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$
0001 (1)	$\left.\begin{array}{l} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 7 \end{array}\right)$	Sense Error Byte 1	Transfers 1 byte of error information to the channel. Error bits are gated through selector blocks on DK130 and set in DBI register on DK120. From here the byte goes through a selector block and on to the DBI on DK110 (note): Signals that error byte is available.	$\begin{aligned} & \text { DK110 } \\ & \text { DK130 } \\ & \hline \text { DK520 } \\ & \text { DK520 } \\ & \text { DK610 } \end{aligned}$	1 2
0010 (2)	$\left.\begin{array}{l}0 \\ 1 \\ 6\end{array}\right\}$	Sense Error Byte 2	Same as for error byte 1 . Bit 6 is not an error condition but is an indication the head is loaded or the working is not on. \qquad	$\begin{aligned} & \text { DK110 } \\ & \text { DK130 } \\ & \hline \text { DK610 } \\ & \text { DK610 } \\ & \text { DK110 } \\ & \hline \end{aligned}$	\& 2
0011 (3)	$\left.\begin{array}{l} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}\right\}$	Sense 33FD Control ${ }^{1}$	Transfers 1 byte of control information to the channel. Each bit tells the status of a specific 33FD control line (note). Bits are gated through selector block (DK130), to DBI register (DK120), and to DBI (DK110). Signals channel byte is available.	$\begin{aligned} & \text { DK110 } \\ & \text { DK130 } \\ & \hline \text { DK060 } \\ & \text { DK510 } \end{aligned}$	

${ }^{1}$ For diagnostic use.
Note: Parity not generated.

$\begin{array}{\|l} \hline \text { Modifier } \\ \text { DBO } \\ 4,5,6,7 \\ \text { (Hex) } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \text { DBI } \\ \text { Data } \\ \text { Bits } \end{array}$	Command	Action Taken		ALD	Timing
0100 (4)	$\left.\begin{array}{l} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 7 \end{array}\right\}$	Sense Read Control ${ }^{1}$	Transfers 1 byte of control information to the channel. Each bit tells the status of a specific contro line (note). Bits are gated through selector (DK130), to DBI register (DK120), and to DBI (DK110).	(Write dataData wrap mode Find bit sync on zeros Sync on data bits AM byte good Read clock C1-C2 Read clock C2-C3	DK110 DK130 DK310 DK060 DK220 DK220 DK220 DK230 DK230	(1)
			Signals channel byte is available.			2
0101 (5)		Sense Write Control ${ }^{1}$	Same as read control (note).		DK110 DK130	\& 2
	1.			CE wrap data	DK310	
	4			Write AM command	DK060	
	5 6			Write CRC command Write clock C1-C2 W	DK060	
				Write clock C2-C3	DK320	
0110 (6)	$\left.\begin{array}{l} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7 \end{array}\right\}$	Sense Bit Rings ${ }^{1}$	Transfers 1 byte of read bit ring and write bit ring information to the channel. Each bit tells the status of a specific read or write bit ring line (note). Bits are gated through selector (DK130), to DBI register (DK120) and to DBI (DK110).		DK110 DK130	
				Read bit ring 1-4	DK230	
				Read bit ring 2-5	DK230	
				Read bit ring 3-6	DK230	
				Read bit ring 4-7	DK230	
				Write bit ring 1-4	DK320	
				Write bit ring 2-5	DK320	
			Signals channel byte is available.			

${ }^{1}$ For diagnostic use.
Note: Parity not generated.

Control Sense (Continued)

Modifier DBO 4, 5, 6, 7 (Hex)	$\begin{aligned} & \text { DBI } \\ & \text { Data } \\ & \text { Bits } \end{aligned}$	Command	Action Taken	ALD	Timing
0111 (7)	$\left.\begin{array}{l} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}\right\}$	Sense Counters and CRC ${ }^{1}$	Transfers one byte of counter and CRC information to the channel. Each bit tells the status of a specific counter line or CRC line (note). Bits are gated through selector (DK130), to DBI register (DK120) and to DBI (DK110) (note).	$\begin{aligned} & \text { DK110 } \\ & \text { DK130 } \\ & \hline \text { DK510 } \\ & \text { DK530 } \\ & \text { DK520 } \\ & \text { DK520 } \\ & \text { DK420 } \\ & \text { DK410 } \\ & \text { DK420 } \\ & \hline \end{aligned}$	1 2
1000 (8)	Hex 0	CE Write Clock Advance ${ }^{1}$	Advances the write clock two positions. Also resets DBI register to zero and sends hex 0 to the channel (note).	$\begin{aligned} & \text { DK320 } \\ & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	1
1001 (9)	Hex 0	CE Standard Read Data Pulse ${ }^{1}$	Generates a gated standard read data pulse. Also resets DBI register to zero and sends hex 0 to the channel (note).	$\begin{aligned} & \text { DK210 } \\ & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
1010 (A)	Hex 0	CE Standard Read Clock ${ }^{1}$	Generates a gated standard read clock pulse. Also resets the DBI register to zero and sends hex 0 to the channel (note).	$\begin{aligned} & \text { DK230 } \\ & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
1011 (B)	Hex 0	CE 8F Read Clock ${ }^{1}$	Advances the read clock one position. Also resets the DBI register to zero and sends hex 0 to the channel (note).	$\begin{aligned} & \text { DK230 } \\ & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	1
1100 (C)	Hex 0	Sense for Hex $00{ }^{1}$	Resets the DBI register to zero and sends hex 0 to the channel (note).	$\begin{aligned} & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	1
1101 (D)	Hex FF	Set DBI Register to Hex FF ${ }^{1}$	Sets the DBI register to hex FF. Then sends hex FF to the channel (note).	$\begin{aligned} & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	(1)
1110 (E)	Hex OF	Set DBI Register to Hex $0 \mathrm{~F}^{1}$	Sets the DBI register to hex OF, then sends hex OF to the channel (note).	$\begin{aligned} & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	(1)
1111 (F)	Hex FO	Set DBI Register to Hex FO ${ }^{1}$	Sets the DBI register to hex FO, then sends hex FO to the channel (note).	$\begin{aligned} & \text { DK120 } \\ & \text { DK110 } \end{aligned}$	1

${ }^{1}$ For diagnostic use.
Note: Parity not generated.

This page is intentionally left blank.

The jump I/O command is divided into two parts:

1. Part 1 commands have modifiers of hex 0 through hex 7
2. Part 2 commands have modifiers of hex 8 through hex F.
The commands that fall within the first part test the attachment for a specific condition. If the condition is true, a positive response is sent to hichert bit 4 lis ' 33 FD C Stg $/ \mathrm{W}-0 \mathrm{P} / \mathrm{Br}$ '. It is so named to indicate multiple usage.

Each command that falls within the second part performs a specific function such as setting or resetting a latch. No jump test is made for this group. An explanation of these commands is on the following page.
*33FD control storage (without parity/branch).

*See 33FD-40, and 41

Note: These lines can only be activated by the JIO commands that have a modifier of hex 0 through hex 7 .

Jump I/O (Continued)

Modifier DBO 4, 5, 6, 7 (Hex)	CBI Bit Note 1	Condition Tested	Action Taken	ALD	Timing
0000(0)	4	33FD not ready or 33FD error.	Tests for the following conditions and if any of the listed conditions are found, the CBI bit 4 will be sent to the CPU. Conditions tested: Not ready Running fast Read Overrun Serial write parity check Write overrun Missing erase gate Write or erase gate unsafe Missing record End of cylinder	DK120 DK520 DK520 DK610	2
0001(1)	4	AM not found	Tests the AM byte good latch. If the latch is off, CBI bit 4 is sent to the CPU.	DK120	2
0010(2)	4	CRC not zero	Tests the test CRC gen 0 latch. If the latch is off, CBI bit 4 is sent to the CPU.	DK.120	2
0011(3)	4	Index pulse off	Tests the 33FD index singleshot. If singleshot is off, CBI bit 4 is sent to the CPU.	DK120	2
0100(4)		No op	Will perform normal channel sequence for JIO. No test is made and CBI bit 4 is not sent to the CPU.	DK120	(2)
0101(5)	4	Jump I/O true test 1	This is a diagnostic test. It tests the ability at JIO true latch to be set by; read overrun, AM not found, or CRC not zero.	DK120	(2)
0110(6)	4	Jump I/O true test 2	This is a diagnostic test. It tests the ability of the JIO true latch to be set by; write overrun or serial write parity check.	DK120	(2)
0111(7)	4	Jump I/O true test 3	This is a diagnostic test. It tests the ability of the JIO true latch to be set; not ready, running fast, write or erase gate unsafe, missing erase gate, missing record, end of cylinder, or index off.	DK120	(2)
1000(8)		Set load head latch	Sets the head load latch and energizes the head load magnet.	$\begin{aligned} & \text { DK060 } \\ & \text { DK010 } \end{aligned}$	(2)
1001(9)		Set low write current	Sets the low current latch and decreases the current through the write head.	DK060 DK010	2
1010(A)		Set erase gate	Sets the erase latch and energizes the erase coil driver.	DK610	(2)

Jump I/O (Continued)

Modifier DBO 4 567 (Hex)	$\begin{aligned} & \text { CBI } \\ & \text { Data } \\ & \text { Bit } \end{aligned}$	Condition Tested	Action Taken	ALD	Timing
1011(B)		Set ID orientation	Sets ID orientation latch. This latch degates the set of missing record, and gates the sent of end of cylinder.	DK610	2
1100(C)		Reset error status	Resets the following conditions by activating error resets. Condition reset: Not ready-(turns on ready latch) Running fast-(resets latch) Read overrun-(resets latch) Serial write parity check (resets latch) Write overrun (resets latch) Missing erase gate (resets latch) Write or erase gate unsafe(resets latch) Missing record (resets latch) End of cylinder (resets latch)	DK610 DK520 DK520 DK610	2
1101(D)		No op	Performs the normal channel sequence for JIO but no tests are made and no latches are set or reset.		
1110(E)		Reset erase gate	Resets the erase latch and deenergizes the erase coil driver.	$\begin{aligned} & \text { DK060 } \\ & \text { DK010 } \end{aligned}$	(2)
1111(F)		Reset sector op	Ends a write operation by resetting the write gate latch and the write CRC latch. Ends a read operation by resetting the read data command latch. Resets the CE mode index latch.	DK060 DK220 DK520	2 1 1

Error Conditions

The jump $1 / O$ command with a modifier of hex 0 (33FD-38) is used to detect a 'not ready' condition or an 'error' condition. The control sense command (33FD-32).

Refer to ALD DK120

33FD Running Fast

A 33FD running fast error occurs when the diskette is turning so fast that index pulses occur more often then every $161,792 \mu$ s.

The 'before index time' latch is turned on by the 'index, phase \mathbf{B}^{\prime} line. If the index counter has not counted to $161,792 \mu$ s by the time the next 'index phase A ' pulse occurs, the ' 33 FD running fast' latch is turned on.

33FD Not Ready

A 33FD not ready condition occurs when the diskette is turning so slowly that index pulses occur farther apart than every $172,032 \mu$ s.

The ready counter is reset by the index, phase B line. It is then allowed to advance. If the counter has not been reset again before it reaches 172,032 , latch is turned off

Read Overrun

A read overrun occurs when another byte of data is ready to be set into the read data buffer and the channel has not taken the previous byte soon enough.

The contents of the read data deserializer is tran ferred to the read data buffer at B7-C3 time. If the contents of the read data buffer has not 'read overrựn' latch is set.

Write Overrun
A write overrun occurs when the attachment is ready to write another byte on diskette and the channel has not sent another byte soon enough.
The contents of the DBO buffer register is trans ferred to the write serializer register at B7-C3 time. If the channel has not responded in time with . tch is set.

Write Parity Check

A write parity check occurs when an even number of bits is detected while writing a byte on diskette.

The data bits being written and the P-bit positio of the DBO buffer are sent to the 'serial write parity trigger. If the total number of bits are even the trigger will be off, and at B7-C2 tim the 'write parity chk' latch will be set.

Transfers contents of read
data buffer to DBI register.

Write or Erase Gate Unsafe and Missing Erase Gate

These checks occur if write or erase current is not active when it should be. They also detect if write current is active when it should not be.

These checks occur if write or erase current is no ctive during a write operation. The circuits also detect if write current is active when a write opera tion is not in progress.

Due to the erase head being ofset from the write head, 'erase gate' and 'write gate' are not turned on at the same time. The relative times are shown in the accompanying timing chart.
'Write gate' causes the write clocks and bit ring to run and will activate 'gated write current gate'.

Erase gate' activates 'tunnel erase gate' and gated tunnel erase'. As pointed out in the error xplanations, it is significant that due to circuit days, 'gated wt current gt' becomes active
slightly after 'tunnel erase gate',

Error Condition Explanation

'Gated wt current 'Write time' latch does not turn on at end of B4-B7 gt^{\prime} missing at \mathbf{A}. time, 'WT/ERS gate delayed' turns on causing the 'WT/ERS gate unsafe' latch to turn on. In additio because 'gated tunnel erase' comes up slightly afte tunnel erase gate' the 'WT/ERS gate delayed' held reset for this slight period of time and 'missing erase gate' latch is also turned on.
‘Gated tunnel
erase' is missing
from \mathbf{B} to \mathbf{C}
'Gated wt current
grt is active at C
‘Gated tunnel
erase' stays active
after C.
'WT/ERS gate delayed' latch is reset and the 'missing erase gate latch is turned on.
'WT/ERS gate delayed' is not reset. At \mathbf{D} when the 33FD is disabled, the 'write time' latch is forced of and the 'WT/ERS gate unsafe' latch is turned on
'WT/ERS gate delayed' is not reset. At D when the 33FD is disabled, the 'write time' latch is forced of and the 'WT/ERS gate unsafe' latch is turned on.

A find ID operation is initiated by the 'search for AM byte command. At the start of the search Tind bit sync on 0 ' is activated and the 'search for record latch turns on removing the set to the 'inhibit missing record' latch. The next 'index phase B^{\prime} turns the 'inhibit missing record' latch of providing a set gate for the 'missing record' latch.
After an ID field has been found, the 33FD is disabled resetting the 'search for record' latch and turning on the 'inhibit missing record' lat ing the 'missing record' latch

If the search for an ID field has not been success ful, the next 'index, phase A ' sets the missing record' latch.

Data Separator

Separate data pulses from clock pulses.
The data separator oscillators have been synchronized with '33FD raw read data' from disk. As a result, data pulses occur when the data window line is
active and clock pulses occur when 'data window' is inactive.
Refer to ALD DJO10 and DJO20.

8F Oscillator
4F Phase 1
4F Phase 2
Data Window
33FD Raw Read Data
Sel Raw Read Data Separated Data Latch

Latched Data
33FD Stand Read Data
Separated Clock Latch
Latched Clock
33FD Standard Read Clock

The index counter provides timing pulses that ar used during the time the index singleshot is active. The counter is reset to index singleshot is accilo index S S is activated. Advance pulses then advance the counter until the count reaches eight. At this point the advance pulses are stopped and the counter point the advance pulses are stopped and the coun
remains at eight until the index SS turns off. The counter is then reset to zero.

If the index pulse does not last until the counter reaches four, the pulse is not considered a valid index pulse and the counter is reset.

The ready counter is a binary counter used to check the rotational speed of the 33 FD . It is reset every time an index pulse is sensed. Between index pulses it is allowed to advance with each 'chan 512 ns osc' pulse.

The output of the counter is sent to the speed check control circuits where it can be determine if the diskette is running too fast or too slow (33FD-42).

Refer to ALD DK530.

IMPL Counter

Used to control recalibrate operation during IMPL.
The 'IMPL counter' serves two functions during IMPL. It counts the number of one track seeks (80) and controls the bits being set in the 'seek track register'. The counter is reset to 1 and during the IMPL operation advances at each 'index, phase B^{\prime} time.

Refer to ALD DK530.

Gated $2 \mu \mathrm{~s}$ Osc
Advance Index Counter Reset Index Counte 33FD Index SS Index Counter Index Phase Counter, Pos Index Phase Counter. Pos 2 Index Phase Counter, Pos 4 Index Phase Counter, Pos 8 Index Phase A Index Phase B

Write Clock and Write Bit Ring

Provides clock timings for write operations.
The advance of the write clock and write bit ring
is controlled by 'write gate'. The write clock
steps with both the rise and fall of the 'gated 2μ s
osc' line any time 'write gate' is active. The write bit ring is reset to 6 when 'write gate' is inactive.

$2 \mu \mathrm{sisc}$
Write Gate
L0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|

| Write Bit Ring | 6 | 7 | 0 | 1 | 1 | 2 | 3 | 1 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Clock Data to Write Serializer \qquad

Read Clock and Read Bit Ring

Provides clock timings for read operations.
The read clock runs continuously except when in
diagnostic step mode. However, the read bit rin diagnostic step mode. However, the read bit ring only runs after the AM byte has been found when
reading. After the first data bit of the AM byte is found, the 'byte sync found' latch is turned on allowing the read bit ring to step. Byte synchroniza tion is obtained becuase the first data bit of an AM byte is always a 0 bit.

Refer to ALD DK220.
33FD Standard Rd Clk \qquad

Read Clock
(3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|3|0|1|2|

Byte Sync Found \qquad
Read Bit Ring

| 0 | 1 | 1 | 1 | 2 | 3 | 4 | 4 | 1 | 5 | 1 | 6 | 1 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Used to check the reading of dat
- Used to generate two CRC bytes when writin. - Used to identify sync fields.

When reading or writing, the CRC shift register functions as three separate shift registers connected by exclusive OR circuits. When the CRC shift register is used to identify sync fields, the bottom legs of the connecting exclusive ORs are never active and funcitonally the three registers now become a single 16 position shift register.

A sync field consists of 6 bytes of clock bits (no data bits). Consequently AND block 1 is neve made when reading a sync field. After reading 16 clock bits of a sync field all positions of the shif register will be off regardless of their status at the start. The first data bit in the AM following he sync field will turn on the 'byte sync found' latch.

When reading or writing, the shift register must be considered as consisting of the three previously mentioned parts. The shifting of bits from one part to the next, or from the last back to the first position $\times 6$ by tur position $X 5$ is
 position X 6 will no
inputs to the exclu

Read Data Command

Printer

This belt printer is permanently mounted in the ystem. Data is sent to the print hammers. Th system. Data is sent to the print hammers.
print hammers push the paper to be printed against a continuously turning type belt and printing takes place.

Circuitry Location
The printer circuitry is housed in two separate areas: in and on the printer, and on the 01-A2 board (1/O board).

The 50, 100, and 155 line-per-minute printers share common theory information. However, due extensive electrical and mechanical differences in the 28 he pen writen for its a thery. This subsection has been wTHE 51 subsection begins on PTR-51.

This page is intentionally left blank.

Printer operation is controlled by the microprogram commands in the CPU. The commands

LOAD
CONTROL LOAD
SENSE
CONTROL SENSE
JUMP I/O
Interrupts if enabled occur at the completion of a printed line, a carriage function, or when the elapsed time counter reaches zero. The next command is then initiated.

Data Area

Output data flow to the printer is from a 132 byte I / O area in main storage, called the line printer data area. Beginning at the leftmost byte, this data area in main storage corresponds character for character to the print line beginning at print position one.

Belt Image Area

A character set image is defined as the sequence of print characters as they appear on the type belt. Before printer operations begin, a given character set size must be provided and the image must be loaded into the belt image area of con trol store. For reference by the printer micro code, the belt image is then transferred to main storage location.

Three character sets are available: 48,64, and 96 . The 48-character set is:

$$
\text { A-Z } 0-9 \quad \$, .++^{*} / \% @ \# \&
$$

The 64-character set consists of the above 48 characters plus the special characters:

$$
\left.(1)=_: ; " \phi\right\rangle<1!7 \backslash
$$

The 96-character set includes all characters in the 48 -character set, the lowercase alphabetic characters, plus the following special characters:

$$
[]!1 / 4 _: "+{ }^{2} q \cdot \pm \phi() ; 1 / 2 ?=\text { © }{ }^{1} \S^{3} £^{\prime}
$$

Forms Control

Forms movement is also controlled by the printer microprogram. Forms length must first be defined by the program located in control storage. The printer must also be initialized to a line within hat forms length. The maximum length of forms is 84 lines.

The forms length and current print tine values (destination print line when the carriage is moving) are maintained by the printer microprogram

End of Operation Interrupts

Any operation initiated by the printer microprogram results in an interrupt at and operation. These interrupts are processed by the microprogram. Any checks that occurred during the execution of the completed operation are handled immediately to prevent loss of the check status.

Attachment Operation

A print buffer is located in the attachment. It permits overlap of line printing and carriage spacing

The data in the print buffer is compared to the value of the scan register. If they are equal, the corresponding hammer is selected and fired.

The data area, located in main storage, containing the print line is not changed by printing. This leaves the complete print line available for error recovery procedures (ERP).
The following keyboard functions are provided for operator control of the printer:

Carriage restore
New line (space one line)
Reset line counter to 1 (tells the system the
form is on line 1).

When the printer function keys are used, all pendin check conditions are reset prior to executing the function. Also an interrupt occurs at completio of the function, thus initiating any pending oper ations (commands).

Display of check or not ready conditions, and recovery procedures are provided by the display screen. Operator response is always through the keyboard.

Theory of Printing

(50, 100, and 155 lpm

The belt printer has 66 hammers, one hammer for each two print positions. Therefore, to print one line of 132 positions, each hammer is fired wice. The print operation is separated into these functions:

- Subscans. A subscan is the time required to option every tenth print position to every fourth belt position. Five subscans make one print scan.
Print scan: A print scan is the time required to option one character to all odd print positions or all even print positions.
Print line: A print line is 48 odd print scans and 48 even print scans for a 48 -character sel (se is optioned to is ery prist

Each print position can print only one character per print line (when the print position is optioned and the character specified for that position is equal to the character aligned at that position).

During a subscan, the hammers selected for firing are buffered in the attachment, and they are gang-fired at the start of the next subscan. Odd or even print scans are stopped early if all optioned hammers are fired

To synchronize the type belt to the attachment, two types of pulses are required-a home pulse and the subscan pulses.

The home pulse is generated from the type belt by the transducer \boldsymbol{A} sensing the missing timing mark B that identifies the home position. The hopulse occurs one subscan before he frit in position 1 Sensing the first hed itites a senting heck fome pulse f the home pulse with the belt position counter.

The subscan pulses are generated by the trans ducer. Detecting the 64 -character set takes 6 odd print scans and 64 even print scans. Two subscan pulses are developed from each timing mark.

Theory of Printing
50, 100, and 155 Ipm)-Continued

When synchronism is verified (sensing a second home pulse) printing can start.

Because the printer has a continuously moving type belt, the attachment must determine when to fire a hammer to print the specified character. Using the illustration \mathbf{C} as a reference, observe the relationship between the moving type belt and the hammer positions. This shows the character A aligned with hammer 1 in print position 1
Print optioning can start when a character is aligned with print position 1 . The belt position counter keeps track of what character is set into or wister at the beginning of each print scan. During the first hammer option cycle, the character specified for position 1 is compared to the character aligned at position 1. During this first subscan, every tenth position (1, 11, 21, 31 41 , etc) is compared with its respectively aligned character (every fourth belt character). If the character specified and the character aligned compare equal, the hammer is fired at the begin ning of the next subscan \mathbf{D}. This sequence, starting at print position 1 , is called subscan 1 .

At the end of subscan 1, the type belt movement aligns the character B with print position 3 and hammer 2, as shown in the illustration D. Print optioning now continues with prith print position and proceeds 123 is ationed This sequence, starting with print position 3 , is called subscan 2.

Belt movement has now aligned the character C with print position 5 , as shown in the illustration E . Print optioning continues for every tenth position until the character aligned with print position 125 is optioned. This sequence, starting with print position 5 , is called subscan 3 .

Subscans 4 and 5 follow the same pattern (illustration \mathbf{F} and \mathbf{G}). Subscan 4 starts optioning with print position 7 and every tenth position through print position 127 . Subscan 5 starts optioning with print position 9 and every tenth position through print position 129. The five subscans make the first odd print scan.
During this first odd print scan, each of the odd print positions was optioned to print one character but only those hammers are fired that had the aligned character compare equally with the aligned character co
specified character.

The first print scan started with character A aligned at print position 1. Now, the character print scan is started

After the second five subscans, all odd positions are now optioned to print a second character. To option the 46 remaining characters to each odd print position, 46 more odd print scans are taken.

Hammers are fired for the optioned print positions that compare equal on each succeeding subscan. To reduce the hammer power requirements, only. five hammers are allowed to fire on one subscan. If more than five optioned print positions compare equal, optioning starts again win 48 new 1 scans. Scanning starts again at print position 1 and positions not printed are optioned again.

After the 48 odd print scans, there is a delay (18 dummy subscans) to allow the hammers to fire and settle. Then the even positions are scanned start ing with print position 2 and every tenth position through print position 132 on subscan 1. Subsca 2 starts with print position 4 and every tenth position through print position 124. Subscan 3 starts with print position 6 and every tenth position hrough print position 126; subscan 4 starts with print position 8 and every tenth position throu print position 128 , subscan 5 starts wh prough orint position 130. This sequence continues through 48 even pint scans to option every character on he type belt to every even print position. An additional print scan (49) is taken to fire hammers selected during subscan 5 of print scan 48.

53541535615758159606162631646566

© or O Hammer optioned (every 10th print position)
Hammer optioned and compare equal
Hammer fired (fired on subscan after compare equal)

oad Command

*Diagnostic usage only.
**Not permitted when busy.

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
0010(2)		Set Interrupt Request	Sets the micro interrupt request latch which initiates an interrupt.	D0270	1
0011(3)		Reset Interrupt Request	Resets the micro interrupt request latch.	D0270	1
0110(6)	3 4 7	Interrupt Request Control	Turns on the interrupt print op end latch which allows the micro interrupt request latch to be turned on when print busy latch turns off. Turns on the interrupt carriage op end latch which allows the micro interrupt request latch to be turned on when the carriage busy latch turns off. Turns on the interrupt elapsed 0 latch which allows the micro interrupt request latch to be turned on when the elapsed time counter reaches 0 .	$\begin{aligned} & \text { DQ270 } \\ & \text { DQ270 } \\ & \text { DQ270 } \end{aligned}$	(2)
1001(9)	0-7	Print Buffer	Used to load the print buffer with the data on port DBO.	DO180	(2)
1011(B)		Enable Diagnostic Mode	Turns on the diagnostic mode latch which is used to substitute test signals for actual signals (such as type belt emitter pulses).	D2200	1
1100(C)		Disable Diagnostic Mode	Resets the diagnostic mode latch (see above).	DO200	1
1101 (D)	$\begin{array}{\|l} \hline 0 \\ 1 \\ 2 \\ 4 \\ 5 \\ \hline 6 \\ 7 \end{array}$	Diagnostic Mode Control Byte	Allows port DBO 0 bit to step the clocking triggers instead of the $1 \mu \mathrm{~s}$ osc. Allows port DBO 1 pulse to be used to generate the subscan pulses instead of the raw PSS pulses. Uses port DBO 2 to represent home pulse rather than the actual home pulse. Substitutes the port DBO 4 bit for the motor up to speed line. Uses port DBO 5 in place of the coil 1 current line. Uses port DBO 6 in place of the coil 2 current line. Uses port DBO 7 in place of the coil 3 current line.	$\begin{aligned} & \text { DQ170 } \\ & \text { DQ200 } \\ & \text { D0210 } \\ & \text { DO260 } \\ & \text { DO090 } \\ & \text { DO900 } \end{aligned}$	(2)
1111(F)		Check Reset	Resets all pending checks and brings up printer reset.	D0090	1

*Diagnostic usage only.
**Not permitted when busy.

Bit 1	Bit 2	
0	0	48 -Character Set
0	1	64 -Character Set
1	0	96 -Character Set
1	1	128-Character Set (Katakana)

50, 100, and $155 \mathrm{lpm} \quad$ PTR-12

This page is intentionally left blank.

Control Load Command (Continued)

Modifier 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
1011(B)	0-7	Carriage Space Counter	Used to load the space counter with the data on port DBO.	DQ100	2
1100(C)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Diagnostic Carriage Control	Turns on the carriage go latch and the carriage busy latch (starting carriage motion). Turns off the carriage go latch. Turns on the activate clamp latch. Turns on the reset clamp active latch. Turns off the space time latch which ends a carriage operation.	$\begin{aligned} & \text { DQ80 } \\ & \text { DO80 } \\ & \text { DQ230 } \\ & \text { DQ230 } \\ & \text { D080 } \end{aligned}$	(2)
1101(D)	0.7	Elapsed Time Counter	Used to load the elapsed time counter with the data port DBO.	D0300	2

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
0000(0)	$\begin{array}{\|l} 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	System Sense Byte 0 (senses the condition of checks and interlocks).	Forms jam check. Belt speed check. Carriage sync check. End of forms (EOF). Throat closed. Coil (current) check. Belt sync check. Cover closed	DQ210 DQ220 D0080 DO210 ZZ320 DO090 DQ190 DO220	(1)
0001(1)	$\begin{array}{\|l} 0 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \end{array}$	System Sense Byte 1	Senses the condition of the coil 1 line. Senses the condition of the coil 2 line. Senses the condition of the coil 3 line. Senses the condition of the emitter check latch. Senses the condition of the buffer data check latch. Senses the condition of the hammer parity check latch.	DO090 DQ090 DQ090 DO260 D0170 DQ100	1
0110(6)	$\begin{array}{\|l\|} \hline 3 \\ 4 \\ 5 \end{array}$	Interrupt Condition	Sets port DBI bit 3 when the print busy latch is off. Sets port DBI bit 4 when the carriage busy latch is off. Sets port DBI bit 5 when the 'elapsed time counter is zero' line is active.	DQ110 D0080 DO300	1
1001(9)	0-7	Print Buffer	Gates the output of the print buffer to the channel on port DBI.	DQ180	1
1011(B)	0-7	Diagnostic Sense hex 00	Gates hex 00 to the channel on port DBI to check for no bits on.	$\begin{aligned} & \text { DO050, } \\ & \text { DQ0060 } \end{aligned}$	1
1100(C)	0-7	Diagnostic Sense hex 55	Gates hex 55 to the channel on port DBI to check for alternate bits on.	$\begin{aligned} & \text { DO050, } \\ & \text { DOO60 } \end{aligned}$	(1)
1101(D)	0-7	Diagnostic Sense hex AA	Gates hex AA to the channel on port DBI to check opposite bits from 55.	$\begin{aligned} & \text { DOO50, } \\ & \text { DOO60 } \end{aligned}$	(1)
1110(E)	0-7	Diagnostic Sense hex FE	Gates hex FE to the channel on port DBI to check for parity bit on.	$\begin{aligned} & \text { DOO50, } \\ & \text { DQ060 } \end{aligned}$	1

This page is intentionally left blank.

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
0001(1)	$\begin{array}{\|l\|} \hline 3 \\ 4 \end{array}$	Diagnostic Clamp Status	Turns on port DBI bit 3 if the clamp on latch is on. Turns on port DBI bit 4 if the clamp off latch is on.	$\begin{aligned} & \text { DQ240 } \\ & \text { DQ240 } \end{aligned}$	1
0010(2)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \end{aligned}$	Diagnostic Inputs	Turns on port DBI bit 1 when the carriage advance line is active. Turns on port DBI bit 2 if the CE latch is on. Turns on port DBI bit 3 when the home line is active. Turns on port DBI bit 4 when the belt motion line is active. Turns on port DBI bit 6 when the print subscan line is active.	$\begin{aligned} & \text { ZZ580 } \\ & \text { DQ250 } \\ & \text { DQ210 } \\ & \text { ZZ580 } \\ & \text { DQ20 } \end{aligned}$	1
0011(3)	0-7	Belt Position	Sends value of the belt position counter through the scan key to the channel on port DBI.	DO200	1
0100(4)	$\begin{array}{\|l} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4.7 \end{array}$	Diagnostic Wrap	Turns on port DBI bit 0 when the belt go latch is on. Turns on port DBI bit 1 when the carriage go latch is on. Turns on port DBI bit 2 if the printer reset latch is on. Turns on port DBI bit 3 when the hammer fault line is active. Sends the Y hammer select line values to the channel on port data in.	$\begin{aligned} & \text { DQ220 } \\ & \text { DQ080 } \\ & \text { DQ090 } \\ & \text { DQ090 } \\ & \text { DQ290 } \end{aligned}$	1
0101 (5)	$\begin{array}{\|l} 0 \\ 1 \\ 2 \\ 3-7 \end{array}$	Diagnostic Wrap	Turns on port DBI bit 0 when the clamp latch is on. Turns on port DBI bit 1 when the hammer select strobe line is active. Turns on port DBI bit 2 when the hammer matrix reset line is active. Turns on corresponding port DBI bits when the subscan lines 5-1 are active.	$\begin{aligned} & \text { DQ240 } \\ & \text { DQ140 } \\ & \text { DQ210 } \\ & \text { DQ200 } \end{aligned}$	1
0110(6)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 5 \end{aligned}$	Diagnostic Wrap	Turns on port DBI bit 0 when the stop ribbon line is active. Turns on port DBI bit 1 if the prepare print control latch is on. Turns on port DBI bit 2 if the adapter reset latch is on. Turns on port DBI bit 5 if the coil (current) check counter output is active.	$\begin{aligned} & \text { DQ220 } \\ & \text { DQ110 } \\ & \text { DO090 } \\ & \text { DQ009 } \end{aligned}$	1
0111(7)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Diagnostic Sense Byte	Turns on port DBI bit 0 when the 1 ms oscillator output is active. Turns on port DBI bit 1 when the 131 ms oscillator output is active. Turns on port DBI bit 2 when the system reset line is active. Turns on port DBI bit 3 when the power fault line is active. Turns on port DBI bit 4 when the hammer duty cycle limit line is active. Turns on port DBI bit 5 when the impression singleshot is active.	PJ070 PJ070 PN060 DO050 DT010 ZZ580	1

Modifier Port DBO	Port DBI Inter- rupt Bit	Command	Action Taken	FEALD	(iming
Page					

Jump I/O Command (Continued)

Modifier Port DBO 4, 5, 6, 7 (Hex)	Command	Action Taken	FEALD Page	Timing
0000(0)	Adapter Check	Turns on CBI bit 4 if any of the indicated check conditions are active.	D0070	1
0001(1)	Not Ready	Turns on CBI bit 4 if any of the indicated interlock conditions are active.	D0070	(1)
0010(2)	Carriage Busy	Allows a branch (CBI bit 4 on) if the carriage busy latch is on.	D0080	1
0011(3)	Print Busy	Allows a branch (CBI bit 4 on) if the print busy line is active.	DQ110	1
0100(4)	Interrupt Enabled	Branches if one or more of the following latches are on: - Interrupt print op end. - Interrupt carriage op end. - Interrupt elapsed 0.	D0270	1
0101(5)	Diagnostic True	Turns on CBI bit 4 to check that the bit actually turns on when expected.	DQ070	1
0110(6)	Diagnostic False	Turns on no latches to be sure that the CBI bit 4 does not turn on except when tested conditions are met.	D0070	1
1000(8)	Elapsed Time Counter Busy	Turns on CBI bit 4 when the elapsed time counter 0 line is inactive.	DO300	1
1001(9)	Motor Not Up To Speed	Branches when the motor up-to-speed line is inactive.	DO260	1
1010(A)	Even Scans Selected	Branches when the odd latch (odd scans) is on.	D0110	1
1011(B)	Subscan Reset On	Branches if the subscan reset latch is on.	DO200	1

50, 100, and $155 \mathrm{lpm} \quad$ PTR-21

This page is intentionally left blank.

Paper Clamps DO240

There are two clamps in the printer. The upper paper clamp, although it clamps the paper, is used for noise suppression only. When the clamp olenoid is energized, it closes the air gap the aper passes though. This reduces the noise level at the back of the printer by dampening

The second paper clamp (lower) is just below the . print line. The purpose of this clamp is to prevent horizontal skewing of the paper. The type
belt is continuously turning and has a tendency belt is continuously turning and has a tendency
to pull the paper along with it. Since there are no feed rolls in the lower portion of the printer, the paper clamp is necessary to hold the paper in position.
(1) For diagnostic purposes, the activate clamp command \boldsymbol{A} is issued to turn on the paper clamps. This command sets the 'activate clamp' latch (DO240) which turns on the paper clamp solenoids. The 'activate clamp' latch also resets the 'clamp off latch and gates the 'clamp on' latch to be set by the paper clamp timer. The 'clamp on' latch is set after the paper clamp timer has counted $15 \mu \mathrm{~s}$.
A similar operation is used to turn the clamps off. A deactivate clamp command B resets the 'activate clamp' latch. This in turn resets the clamp on latch ha is set after the paper clamp timer has counted $11 \mu \mathrm{~s}$.

The 'clamp on' and 'clamp off' latches signal that enough time has elapsed to complete their respective operations. There is no check to see if the clamp solenoids are actually energized or not.

The 'clamp on' and 'clamp off' latches can be sensed C
(2) During a normal print operation, IOCL print coming active \mathbf{D} activates the paper clamps and 'print busy' going inactive E turns off the paper clamp.

The above timing chart applies to both diagnostic and normal clamp control.

1 Diagnostics

Type Belt Start and Run $(50,100$ and 155 lpm$)$

The type belt is directly driven by a stepper motor mounted under the left pulley. The right pulley has a release lever mounted on it to remove tension from the type belt. When the release lever is operated, the type belt can be removed.
After POR, the count to 90 (ramp counter) runs continuously. When belt go is activated, there is a delay of 533 ms . Then belt drive A and belt drive B are turned on 382 ms motor locks, the firt 1 of 1 unn on the ram latch which allows the belt advance pulse to shift the shift register. The output of the shift register causes the type belt stepper motor to start accelerating

The first three drive pulses are 135 Hz , the next four at 270 Hz , five at 405 Hz , etc. This ramping sequence continues until a count of 90 is reached. At the fall of count 90 , the run latch is set. The run latch blocks the ramp drive pulses Hz alows the shift register to be driven by 1080 Hz (run frequency). The type belt stepper motor is now up to full operating speed and remain at this speed until belt go is deactivated.

Note: Dual ramping card values are 70 percent of the values shown, until '-Belt Motion’ is active.

Control Load Command PTR-10

Control Sense Command PTR-14

> After the rise of belt go, there is a delay of 533 drive A and belt drive B are turned on for 382 ms and lock the motor. The advance pulses then star and the motor starts to

After the type belt has reached an up-to-speed Andition, the sensing of the timing marks on he type belt is started. The first home pulse fter up-to-speed turns off subscan reset and allows the BPC (belt position counter) and the subscan counter to start stepping. This synchronizes the stepping of the BPC and the subcan counter. When subscan 1 comes up, the It sync er. PSS pulse after subscan 1 increments the BPC

The BPC and the subscan counter are synchronized with each other by the home pulse. Once the hom , BPC and the subscan ounter are allowed to continue stepping. Syn If continues to be verified by the home ulse. If a home pulse occurs when not expected is set.

The print buffer contains PFN (print fire numbers) hat indicate the print scan on which a position is printed. The BPC contains the number of the current print scan and the subscan counter selects the hammers to be optioned within each print scan. In this manner, the characters to be printed are synchronized with the characters on the type belt.

Initiating the Belt Sync Timing Sequence
DQ260 Motor Up to Speed D0210 Home DO200 Subscan Reset DO200 Subscan 1 (belt sync enabled) (incr BPC ${ }^{1}$) (sample BPC)
PSS

Load Command PTR-8

Control Load Command PTR-10

Control Sense Command PTR-14

Ribbon Drive/Type Belt Transducer (50, 100, and 155 lpm)

Ribbon Drive

The ribbon is driven by a belt mounted on the type belt drive pulley. The drive mechanism also includes a solenoid-driven clutch to disengage the drive from the ribbon when no printing is taking place. The disengaging of the clutch prevents smudging of the paper while the printer is idle. This is under control of the printer control card, and happens five seconds after the last print command.

The ribbon is a continuous $1 / 2$ inch wide fabric ribbon contained in a cartridge mounted on the front of the printer. The ribbon is fed into the left side of this cartridge and pulled out the right side (as viewed from the front of the machine).

Type Belt Transducer

The type belt transducer detects the raised timing marks on the type belt. These marks are converted to emitter pulses in the transducer and sent to the control card. The control card uses these pulses to generate the home pulse, subscan pulses, and the belt up-to-speed signal. The home pulse and subscan pulses are used to synof the print operation. The belt up-to-speed ol is 16 he the type belt is up to operating speed

rint Buffer Load DQ180
50, 100, and 155 lpm)
print buffer is loaded by a print buffer load command, 1 byte per command. The data is in the form of PFN (print fire numbers) rather than actual print image data. The flowchart at the right shows how the value of the PFN is determined.
Prior to loading the buffer the SBAR is reset to ero by a reset scan buffer address control load command. Issuing of the print buffer load command gates the DBO data to the print buffer. It also bring up the 'incr bfr adr' lines; which steps the SBAR and 'write select' line which gates data into the print buffer when it is active. The print buffer load command ANDed with 'data samplé brings up 'ram clock strobe' which sets the data into the print buffer.

The SBAR is then incremented to the next print buffer position (as shown below). If that position is to be written, another print buffer load command must be issued to load it.

CPU, Microprogram, Channel and Attachment

2 The sequence of print characters as they appear on the print belt.

BP Belt Position
PP Print Position
PFN Print Fire Number

Print Buffer Timing for Load Command

Channel Timing

The print buffer contains the sorted print fire numbers (PFN). They are sorted into the sequence in which they are addressed.

Print Buffer PP
$\begin{array}{ll}0 & 1 \\ 1 & 11\end{array}$
1
2
.
etc.

3 The translation table converts the character to be printed to its corresponding belt position number. The belt position number is the physical location of the character on number, counting is started with the firs character after home and then counted right to left.

4 The print fire number is equal to the calculated belt position minus the subscan (on which the character is printed) minus 1 . The - BP number used here is either the actual BP
from the translation table (if PP is 10 less) from the translation table (if PP is 10 or less)
or the BP derived from the no loop (if PP is 11 or greater).

If the last digit of $\mathrm{PP}=1$ or 2 subscan $=$

o or 2	subscan $=1$
3 or 6	2
7 or 8	3
9 or 0	4

Print Buffer Read DQ180 50, 100, and 155 lpm)

To start reading from the print buffer, a start printing command must be issued and write select must be inactive (indicating read select active). The 'ram clock strobe' line is used to read out the data.

The data is then compared with the value of the scan register and checked for equal or not equal. If not equal, SBAR is incremented to the next buffer position and the above sequence is repeated. buffer position and the above sequence is repeated.
If equal, 'hammer select strobe' and 'write select' are activated. 'Hammer select strobe' fires the hammer being addressed and 'write select' allows hex FF to be written, blanking the buffer position being addressed. SBAR is then incremented to the next buffer position.
When the end of odd scans (hex 41) is reached, the output of the nonblank found latch is checked. If it was set by a valid buffer character, SBAR is reset to the starting address (hex 00) of the odd position of the buffer. If the nonblank found buffer) SBAR is set to hex 42 to start addresin even scans. The even portion is addressed in the same manner as the odd (shown at the right) When the end of the buffer is reached and the nonblank found latch is off, the end of superscan nonblank found latch is off, the end of superscan is set.

ypical Cycles During Hammer Optionin

he active line used.)

Hammer Selection and Firing (50, 100, and 155 lpm)

During subscan 1, the Y lines are stepped from 1 to 14 to address all the hammer latches in reg1. During subscan 2, the Y lines are stepped from 1 to 13 to address all the hammer latches in reg2. This sequence continues through sub scan 5. If any optioned hammers are to be fired (scan/buffer equal) they are set into the hammer latches by the 'hammer select strobe' line.

Once a hammer has been set to fire, it is actually fired by the fire pulses. These pulses occur one subscan after the hammer latch registers have been set, that is, a hammer set on subscan 1 is fired on subscan 2. The fire pulses are set by the subscan pulse and reset after two impression singleshot pulses. If the impression singlesho doetil the cil etting of the impression singleshot determin setting of the impression singleshot determines the duration of the fire pulse.

50, 100, and 155 Ipm

Hammer Latch Select (50, 100, and 155 Ipm)
The individual hammer latch within each register is selected by decoding the value of Y lines (value to 14 for register 1 and 1 to 13 for registers 2 to 5).

Register Select (50, 100, and $\mathbf{1 5 5} \mathrm{Ipm}$)

Each register is selected by its corresponding ubscan line (subscan 1 to 5).

Hammer Select Strobe (50, 100, and 155 Ipm$)$

If the scan/buffer compare results is in equal ondition, 'hammer select strobe' is activated and sets the particular hammer latch being selected.

Sense -

Control Sense Command PTR-14 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

The four main objectives of this diagram are to show what takes place between the odd and even print scans (48-character set shown).

1. \boldsymbol{A} and show the relationship between the first character alignment for the last the first character alignment for the last
odd print scan, and the first character odd print scan, and the first character
B and \mathbf{C} show that hammers optioned in the last two subscans of print scan 48, are actually firing (if selected) during the first two subscans of the next print scan (beginning at hammer settling time).
2. Dhows the changing of the subscan counter selected output (5 time decoded to 2 time, 1 selected output (5 time decoded to
to 3,2 to 4 , etc). Therefore when the subscan counter selected output is 1 , the character F is aligned to print.
3. E Hammer settling time is the time which allows the hammers fired during the odd print scans to settle down (quit bouncing) in preparation for firing during the even print scans.
DQ1 10 Prepare Print Control Print Scans
D0200 Subscan Counter DO200 Selected Subscans

D0160 Print Scan Counter D0150 Incr Scan Counter

DO130 Incr Spare Scans D0110 Odd Latch (odd scans)

DO130 Initiate Scanning

Hammers L| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A $\begin{aligned} & \text { The character A is optioned to print during this first } \\ & \text { subscan of the last odd print scan (any character could } \\ & \text { be aligned at this time). }\end{aligned} \quad \begin{aligned} & \text { Hamm } \\ & \text { Print }\end{aligned}$
Print
Positions

Positions | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Printer Speed Control

The speed of printing is controlled by the value
f a 12 position binary counter (ent to 4096). The value decoded from the counter determines how long 'hammer duty cycle limit' is active.
The 'hammer duty cycle limit' line holds up 'print busy' to the channel thus limiting the printing
speed.

Sense -
Sense -
Control Sense Command PTR-14

Carriage restore
New line (space one line)
Reset line counter to 1 (tells the system the form
is on line 1)

Carriage Detent

When the carriage is not spacing the 1080 Hz line (approximately 1 ms) gates the $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ and $\overline{\mathrm{B}}$ drive lines to the print carriage motor. Because the 1080 Hz line is oscillating, it gates the A, \bar{A}, B, and \bar{B} drive lines half the time, which allows half current through the stepper motor. This provides the carriage electrical detent.
Note: Dual ramping card values are 70 percent of the values shown until ‘-Belt Motion' is active.

Loss of 24 Vdc or power on reset removes the detent.

Control Load Command PTR-10

Sense -
Control Sense Command PTR-14

These two lines used
for diagnostic testing.

e pulse (carriage feedback pulse) brings up the line 'steps 0 ' which resets the 'space time' latch, ending the carriage operation.

Jump I/O Command PTR-20
ar her to bpaced must be loaded a carriage space counter control load command and to initiate a carriage operation. The number f tepper motor steps is equal to $8 \mathrm{~N}-2$ where is the number of lines to be spaced. The space line is activaned decremented until the 'steps 2 line is activated (meaning two more stepper motor advances left). 'Steps 2 ' resets 'carriage go' which turns off the run latch and sets the stop latch. The stop latch gates two more the last carriage advance

Inh Detent
Run Latch
TKun La
Run Pulse
Stop Latch
Gate FF
(approx. 1.7 ms$) 606 \mathrm{~Hz} \longrightarrow \mid$
Negative $606 \mathrm{~Hz}|\quad| \quad|\quad| \quad|\quad| \quad|\quad| \quad|\quad| \quad \mid$ - Carriage Go
(Start FF
Start Pulse
m
號

The half line space print feature permits indexin of the printer one half space above or below the normal print line. This spacing is used for super a character on the print belt.

The half line space print feature supplies the printer attachment with eight carriage advance pulses when only four carriage advance pulses are sent by the printer to the carriage advance shift register. During the half line space operation, when the first carriage advance pulse is received by the half index card, five fast ($64 \mu \mathrm{~s}$) carriage advance pulses are generated from the 4μ clock and sent riage advance pulse is received from the printer. When the second pulse is received from the printer, it is passed unaltered to the printer attachment. This pulse becomes the sixth carriage advance pulse to the printer attachment and carriage go is dropped. The deceleration function begins and the third and fourth carriage advance pulses from the printer are received by the printer attachment These are the seventh and eighth pulses in the Because the printer ctachmer (courd). pulses in the carriage line position counter, the acceleration and deceration timing of full in is retained and forms iam and carriage sync checking nd forms jam and carriage sync checkin are performed.

A half index is initiated by setting the carriag reverse bit (bit 4) in a control load command (IOCL) with a modifier of A. Half index mode is reset by bit 5 of the command and the half index feature card is reset by bit 5 of the command, attachmen

Half index complete (for diagnostics only not shown) indicates that the five fast pulses to the printe attachment have been generated and the completion of the index operation is under control of the carriage advance digital control in the printer

 - Carriage Go

Start FF
Start Pulse
Inh Detent
Run Latch
Carriage Rev
Carriage Adv Out

Stop Pulse

$P=$ from printer

POR/Printer Reset (A)
POR/printer reset line is initiated during the power up sequence to reset the printer circuits to their starting condition. It is also activated if a carriage sync check is detected.

Close (+24V) Contactor (A)

Close contactor must be activated to switch the +24 V into the printer. This line is deactivated whe a hammer parity check is sensed to protect the hammer coils.

Belt Go (A)

Belt go is activated to start the belt oscillator The belt oscillator furnishes pulses to run the type belt drive circuits.

Belt Motion (P)
The belt motion signal is active when the type belt reaches operating speed. It becomes inactive when the belt speed decreases to approximately 10 per cent below the operating speed. The home pulse and the subscan pulses become active when the belt is up to speed.

PSS (Subscan) (P)

The PSS pulses are generated from the raised timing marks on the type belt. The subscan pulses synchronize the print controls between the attachment and the printer. When the home pulse is detected, a dummy pulse is generated because of the missing timing mark.

IMPSS (Impression Singleshot) (P)

MPSS is added to the hammer fire pulse to contro the time the hammers are fired for different forms hickness. This signal is activated when the subsca pulse goes inactive (halfway into a subscan) and remains active $235 \mu \mathrm{~s}$ to $435 \mu \mathrm{~s}$ depending on the setting of the forms thickness control.

Fire Hammer (A)

Fire hammer lines are activated to fire the corresponding print hammers (fire hammer $1=$ print hammer 1 , etc).

ZZ570 POR/Printer Reset
ZZ582 Close (24V) Contactor
ZZ570 Belt Go
ZZ58 Belt Motion
ZZ580 PSS (subscan
DO200 Subscan 1
DO200 Subscan 2
ZZ580 IMP SS (impression singleshot) \qquad

Activate Paper Clamps (A)

This signal energizes the upper and lower pape lamps. It is deactivated during a spacing oper tion and when the printer is idle.

Home Pulse (P)

On the type belt there is a double space between wo of the timing marks. This space (missing iming mark) generates the home pulse that
signals the start of the type set on the type belt. The home pulse is used to synchronize the type belt and the belt position counter

Hammer Check 1-22 (also 23-44 and 45-66) (P)

The hammer check lines determine that in each group an odd number of hammers is on (when active). They are used as input for the hammer parity check and the coil current check.

Carriage Go (A)

his line activates the carriage advance digital control circuits. These circuits furnish pulses to run the carriage drive circuits.

Stop Ribbon (A)

he stop ribbon line is activated if the printer is dile for five seconds. When the signal is activated the ribbon stops moving to prevent smudging the paper.

Carriage Advance (P)

The carriage go line activates the carriage advance digital control circuits. These circuits generate the carriage advance pulses. Each carriage advance pulse advances a shift register which advances the print carriage motor by one increment (eight incre ments per line). Therefore, eight carriage advance pulses decrement the space count once per line. When the space count goes to zero the carriag operation is complete, which resets carriage go The carriage advance pulse is also used for carriag sync check detection.

Printer Thermal Switch (P)

This line signals that the temperature in the printer circuitry is too high. It indicates a thermal check case of overheating. The switch opens at $145^{\circ} \mathrm{F}$, $+5^{\circ} \mathrm{F}\left(63^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$.

Cover Closed Switch (P)

he cover must be closed to make the printer ready.

orms Sensed Switch (P)

This line indicates to the attachment whether or not there are forms in the printer.

Throat Closed Switch (P)

This line sends the condition of the casting throat interlock switch to the attachment. It must show throat closed condition to make the printer ready.

Switch Assemblies

CAUTION

These are electronic switches and do not hav onventional switch contacts. A high current source (test light or ohm meter) will permanently damage the switch

There are two types of switches:

1. Normally $O N$, red plunger. The south pole of a permanent magnet is positioned over an integrated circuit thus holding the output stage on. Pressing the switch plunger moves
the permanent magnet, placing the north pole the permanent magnet, placing the north pole off. The plunger is returned to the norma state by a return spring.
2. Normally OFF, black plunger. The north pole of a permanent magnet is positioned over an integrated circuit thus holding the output stage off. Pressing the switch plunger moves the permanent magnet, placing the south pole over the integrated circuit and the output turns on. The plunger is returned to the normal state by a return spring.

The printer command decode selects the various O device operations by decoding the values of DBO and CBO sent to the attachment. The values and their meanings are:

I/O load
I/O control load
/O sense
I/O control sense
/O jump

pace Counter DO100 B

The space counter is a 7 position binary counter. The number of lines to be spaced or skipped is se into the space counter by the micrprogram. The counter is then decremented by one for each line line which resets the space tim latch and stops 0 ' line which resets the space time latch and stop he carriage operation.

Scan Counter DO160 C

he scan counter is a 8 position binary counter used o count the number of print scans taken to deterine when to end the print scans. The output is seoded into 49 or 65 depending on the character set size being used.

Clocking Triggers DQ170

The clocking trigger pulses are generated by a position binary counter. These pulses provide the basic timing used during a print operation.

There are four basic timing pulses generated (trigger A, B, C, and D). The clock pulses 5, 6 and 7 are generated by ANDing certain condition f the clocking triggers.
clock Time
$2 \mu \mathrm{~s}$ Osc
Trigger A
Trigger B
Trigger C
rigger D

torage Buffer Address Register (SBAR) DO180 E

The SBAR is an 8 position binary counter used to equentially address the print buffer. See PTR-28 for the addressing sequence.

Belt Position Counter (BPC) DO200 F

The BPC is an 8 position binary counter which maintains a count of the character position currently aligned with print position one

The output of the counter is used as an input to the scan register and the home detection circuits.

Paper Clamp Timer Do240 G

he paper clamp timer is a 4 position binary counter used to signal the condition of the aper clamps to the attachment.

The paper clamp should be on 15 ms after it is told to turn on by the microprogram. There is no feedback to insure that the clamp is actually n. The clamp is considered to be on when th imer has timed 15 ms . When it reaches 15 ms the timer turns on the clamp on latch.
imilarly, when the clamp is told to turn off, it should be off after 11 ms . When the time reaches 11 ms it turns on the clamp off latch.

Hammer Select Control DO290 H

The hammer select control is a 4 position binary counter used to generate the hammer select lines (Y8, Y4, Y2, and Y1). These hammer select lines, in conjunction with the subscan lines (SS1, 2,3,4, and 5) determine which hammer will be optioned to fire at any given time. The hammer elect lines provide an input to the hammer fir ontrol, where hammer optioning takes place.

Elapsed Time Counter DO300 J

The elapsed time counter is a 10 position binary counter used to generate an interrupt after a selected time delay. The selected delay is loaded by an I/O control load micro instruction. The counter is then decremented by one until it reaches 0 . This brings up the 'elapsed time counter is 0^{\prime} line which sets the interrupt.

Tammer Fire Control (50, 100, and 155 Ipm$)$ K

The combination of hammer select lines (Y8,4,2 1) and the subscan lines (SS1, 2, 3, 4,5) selects which hammers are optioned:

Hammer Select Lines + Subscan $=$ Hammer

1	1	1
2	1	11
3	1	21
1	2	2
2	2	12
3	2	22

The hammer select strobe line becomes active when the optioned hammer is to be fired. On the following subscan, the hammer that was set to fire is fired by the fire $1,2,3,4$, or 5 pulse.

Printer Speed Control [

The speed of printing is controlled by the value of a 12 position binary counter. The value decoded from the counter determines how long 'hammer duty cycle limit' is active:

1164 ms for 50 lpm

564 ms for 100 lpm
364 ms for 155 lpm
The 'hammer duty cycle limit' line holds up 'print busy' to the channel thus limiting the printing speed.

Load Command PTR-8

Sense -
Jump I/O Command PTR-20

Attachment Functional Units

 (50, 100, and 155 lpm) - Continued
Print Buffer DO180 M

The print buffer consists of a 128×9 bit RAM random access module) and an auxillary 4×9 bit RAM. The two combine to make up the 132 positions for the entire print line. The print buffer contains PFN (print fire numbers) arranged in the sequence in which they are optioned:

Print Buffer	Print Position
00	01
01	11
02	21
03	31

See PTR-28 for buffer arrangement and PTR-27 to determine the value of the PFN.

The PFN is compared to the contents of the scan register. When a match occurs, the print positio being addressed is fired. This buffer position is then blanked by writing a hex FF into it.

Scan Register DO200 N

The scan register is used as a holding register for the value of the BPC. It is set on subscan one held through subscan five of each print scan.
The output of the scan register is used in the scan/ buffer compare to determine when to print a given print position.

Scan/Buffer Compare DO280 P

This circuit is used to compare the contents of the scan register with the contents of the print buffer. The data is checked for an equal compar and also for a blank (all positions printed) condition. The nonblank found latch is reset at the beginning of each print scan. It is set when any PFN is found in the print buffer. If no PFN is found by the end of the print scan, the non blank found latch remains reset and this sets the early end of superscan latch.

ense -

[^3]
A Type Belt Motor and Drive

The 'belt go' signal from the attachment starts the type belt motor. The motor accelerates in increments up to running speed and maintains this speed as long as 'belt go' is active. 'Belt up to speed' becomes active a maximum of one second after 'belt go' is activated.

B Home Pulse and Print-Subscan Pulse Generation

These pulses, generated as the timing marks on the type belt pass a transducer tip, are valid only when the type belt is up to speed. Home pulses (one between each complete character mark on the belt. When the belt is up to speed, the continuing home pulses verify that the attachment is in sync with the printer. If the printer is not in sync with the attachment, a belt sync check is indicated.

Print subscan pulses are produced by the timing marks on the belt and by an electronically inserted pulse between each mark.

Cforms Thickness Control

The forms thickness control mechanically adjusts the print unit forward or back for different form thicknesses. The control also adjusts a potentiometer for varying the duration of the singleshot hammer-fire pulse. As the print unit is adjusted for thicker forms, the pulse duration is increased

D Ribbon Drive

When the ribbon solenoid is deenergized, clutch engages to drive the ribbon. The ribbon begins to move when printing starts (or during the completion of the first line printed) and continues to move only during printing. Afte printing stops, the ribbon continues to move until the solenoid is energized to disengage the clutch.

E Paper Clamps

The upper paper clamp consists of one magnet and a clamp bar. The lower paper clamp consists of two solenoids and a clamp bar. Both clamps are activated by the attachment clamp holding the paper during printing.

F Firing the Hammers

Each hammer spans two print positions. For each print line, a hammer is addressed to print twice: first for printing the odd print position, then for the even print position. Hammer firing is controlled by the attachment with the timing provided by the printer.

G Carriage Spacing

When a print line is complete, the attachment releases the paper clamps. The forms can now be advanced. To advance the forms, the attachment activates 'carriage go'. The printer electronics then generates 'carriage advance pulses which control the carriage motor. The attachment counts the advance pulses and de activates 'carriage go' on the sixth step. Deactivating 'carriage go' initiates two stop pulses. This moves the paper 1/6 inch $(4.22 \mathrm{~mm})$.

The printer is ready for the next print line cycle If printing is continuous, steps D are repeated.

Error Conditions (50, 100, and 155 Ipm)

The jump I/O command (see PTR-20) detects ther the adapter check or not ready condition, A sense command is then required to determin the specific error. See Sense Command on
PTR-14.

Jump I/O Command PTR-20

Unprintable Character

One or more of the characters requested to be printed were not in the print image. Unprintble character is checked entirely by the microrogram. There is not hardware checking invo Setting of this check is a programmer option.

Forms Jam Check/Belt

 Speed Check (50, 100, and 155 lpm)
Forms Jam Check

The forms jam check indicates that the carriage tractor was told to move, but no paper motion occurred. A light emitting diode detects the time between holes in the paper. If no hole is detected in eight lines, the forms jam is set.

Note: The light emitting diode is infrared so you cannot see the light.

Belt Speed Check
This check indicates that either the belt has failed to get into motion within two seconds after the or into motion within two seconds after the having reached an up-to-speed condition. Motion is considered lost if there is a 25 per cent loss in operating velocity. The speed is determined by measuring the time between timing marks on the print belt.

Carriage Sync Check
Two conditions may set this check:
1 If a carriage feedback pulse (carriage advance pulse) occurs when no carriage motion has been initiated.
(2) If

If a carriage feedback pulse fails to occur within 8 ms , during carriage space time

Coil Current Check (50, 100, and 155 Ipm)

An 8 ms timer (cnt to 8) is started when hammer select strobe sets a hammer latch. Coil parity odd, coil 2 parity odd, and coil 3 parity odd lines are montored for the possibility of a hammer being on longer than 8 ms . If this condition is detected, power is dropped to the printer and coil, current check is set. The status of the coil 1 parity odd, coil 2 parity and coil 3 parity odd lines is saved in their respective latches. This is because the coil check line being active degates the reset of the latches.
Note: If an even number of hammers, on one hammer driver card, are on (longer than 8 ms), the coil current check is not set. This is because the hammer and odd lines are only active for an odd condition within any one of the three card positions.

This check can be set by three possible conditions:
1 If a home pulse occurs when not expected.
(2) If a home pulse fails to occur when expected.

3 The bit ring generating the five subscan pulse The bit ring generating the five subscan pulse is continuously monitored for an abnormal
condition. Normal is one, and only one pulse on at any time.

The timing for the home pulse is determined by counting the number of print scans. This count is compared with the character set size (only one home pulse per character set)

Emitter Check/Data Check

Emitter Check

Once the print belt motor has reached an up-toOnce the print belt motor has reached an up-to-
speed condition, the print subscan line is monitored to verify that it is oscillating. If no change occur duing ank 2 moriod, the belt sync check which annot detect a broken or stopped belt.

Data Check

Parity is maintained on the data in the print buffer. If invalid parity is detected during a print cycle,

Hammer Parity Check

(50, 100, and 155 lpm)
An odd/even count of the hammer select strobe pulses is kept track of by the two position odd/ even count register. The output of this registe indicates whether an odd or even number of hammers have been selected to fire (one hammer select strobe pulse for each hammer selected). The hammer odd line is active for each hammer odd card that indicates an odd number ount mers are being fired. The odd/even coun register is compared to the status of the thra pulse. If a mismatch occurs the hammer parity check latch is set.

End of Forms/Cover Closed/Throat Closed (50, 100, and 155 Ipm)

End of Forms (EOF)
End of forms is checked on the first line printed of each new form. If no forms is indicated by the no forms switch, the printer will go not ready.

Sense Command PTR-14

Cover Closed

The printer is not ready if the cover is open

Throat Closed

The printer is not ready if the throat is not closed on the paper path.

CPU/Attachment/Printer Operatio

Printer operation is controlled by the micro program commands in the CPU. The commands are:

LOAD

CONTROL LOAD
SENSE
CONTROL SENSE
interrupts if enabled occur at the completion of a printed line, a carriage function, or when the lapsed time counter reaches zero. The next command is then initiated.

Data Area

Output data flow to the printer is from a 132 byte $1 / O$ area in main storage, called the line printer data area. Beginning at the leftmost byte, this data area in main storage corresponds charac ter for character to the print line beginning a print position one.

A character set image is defined as the sequence of print characters as they appear on the type belt. Before printer operations begin, a given character set size must be provided and the image must be loaded nto the belt mage area solt in is storage location.

Three character sets are available: 48,64 , and 96 . The 48-character set is:
A-Z 0-9 \$..+.*/\%@\#\&

The 64 -character set consists of the above 48 characters plus the special characters:

$$
(1)=\ldots: ; " ? \phi><1!7 \backslash
$$

The 96-character set includes all characters in the 48 -character set, the lowercase alphabetic characters, plus the following special characters:

orms Contro

Forms movement is also controlled by the printer microprogram. Forms length must first be defined by the program located in control storage. The printer must also be initialized to a line within that forms length. The maximum length of form

is 84 lines.

The forms length and current print line values (destination print line when the carriage is moving) are maintained by the printer microprogram

End of Operation Interrupts
Any operation initiated by the printer microprogram results in an interrupt at the end of the operation. These interrupts are processed by the microprogram. Any checks that occurred during the execution of the completed operation are handled immediately to prevent loss of the check status.

Attachment Operation

A print buffer is located in the attachment. permits overlap of line printing and carriage spacing with other I/O device operations and CPU execution
The data in the print buffer is compared to the value of the scan register. If they are equal, the corresponding hammer is selected and fired

The data area, located in main storage, containing the print line is not changed by printing. This eaves the complete print line available for error recovery procedures (ERP).

The following keyboard functions are provided for operator control of the printer:

Carriage restore
New line (space one line)
Reset line counter to 1 (tells the system the form is on line 1.)

When the printer function keys are used, all pendin check conditions are reset prior to executing the unction. Also an interrupt occurs at completion of the function, thus initiating any pending oper ations (commands)

Display of check or not ready conditions and recovery procedures are provided by the display screen. Operator response is always through the keyboard

Theory of Printing (285 lpm)

The belt printer has 132 hammers, one hamme for each print position. The print operation is separated into these functions:

- Subscans: A subscan is the time required to option every fifth print position to every other belt position. Five subscans make on print scan
Print scan: A print scan is the time required to option one character to all print positions. - Print line: A print line is 48 print scans for a 48-character set ${ }^{1}$ (standard). That is, ever character on the set is optioned to every print position.

Each print position can print only one character per print line (when the print position is optioned and the character specified for that position is equal to the character aligned at that position)

During a subscan, the hammers selected for ring are buffered in the attachment, and hey are gang-fired at the start of the next subscan. Print scans are stopped early if all optioned hammers are fired.

To synchronize the type belt to the attachment, two types of pulses are required-a home pulse and the subscan pulses.

The home pulse is generated from the type belt by the transducer \triangle sensing the missing timing mark B that identifies the home position. Th home pulse occurs one subscan before the first character of each character set is aligned to print in position 1 . Sensing the first home pulse initiates a continuing check of the synchronism of the home pulse with the belt position counter.

The subscan pulses are generated by the transducer. Detecting the 64 -character set takes 64 print cans; detecting the 96 -character set takes 96 print scans. Two subscan pulses are developed from each timing mark.
 home pulse) printing can start.

Because the printer has a continuously moving type belt, the attachment must determine when to fire a hammer to prini the specified characte Using the illustration \mathbf{C} as a referece, and the hammer positions. This shows the char acter A aligned with hammer 1 in print position 1.

Print optioning can start when a character is aligned with print position 1 . The belt position counter keeps track of what character is aligned to print in print position 1 . This value is set int the scan register at the beginning of each print scan. During tif firt hammer optioncher 1 the character aligned at position 1 During this firt sta 21 etc) is compared with its respectively aligne ,heracter (every other belt character), If the character specified and the character aligned compare equal, the hammer is fired at the begin ning of the next subscan \mathbf{D}. This sequence, starting at print position 1 , is called subscan 1.

At the end of subscan 1 , the type belt movemen aligns the character B with print position 3 as shown in the illustration D. Print optioning now continues with print position 3 and proceeds through every fifth print position until the character aligned with print position 128 is ptioned. This sequence, starting with print position 3 , is called subscan 2.

Belt movement has now aligned the character C with print position 5 , as shown in the illustration . Print optioning continues for every fifth position until the character aligned with print position 130 is optioned. This sequence, starting with print position 5 , is called subscan 3 .

Subscans 4 and 5 follow the same pattern (illustration \mathbf{F} and \mathbf{G}). Subscan 4 starts optioning with print position 2 and every fifth position through print position 132 . Subscan fift position through print position 129. The five subscans make the first print scan.

During this first print scan, each of the print positions was optioned to print one character but only those hammers are fired that had the aligned character compare equally with the specified character.
he first print scan started with character \mathbf{A} aligned at print position 1. Now, the character B is aligned with print position 1 and the second print scan is started.

After the second five subscans, all positions are ow optioned to print a second character. To option the 46 remaining characters to each print position, 46 more print scans are taken.

Hammers are fired for the optioned print positions hat compare equal on each succeeding subscan. To reduce the hammer power requirements, only five hammers are allowed to fire on one subscan. I more than five optioned print positions compare qual, optioning starts again with 48 new print cans. Scanning starts again at print position 1 and positions not printed are optioned again

After the 48 print scans, an additional print scan (49) is taken to fire hammers selected during ubscan 5 of print scan 48.

Print (Hammer)
Position

SS1
SS1
SS2
SS3 SS2
SS3
SS4 SS5

Q or O Hammer optioned (every 5th position)
Q Hammer optioned and compare equal
F. Hammer fired (fired on subscan after compare equal)

PTR

*Diagnostic usage only.
Not permitted when busy

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
0010(2)		Set Interrupt Request	Sets the micro interrupt request latch which initiates an interrupt.	DQ270	1
0011(3)		Reset Interrupt Request	Resets the micro interrupt request latch.	D0270	1
0110(6)	3 4 7	Interrupt Request Control	Turns on the interrupt print op end latch which allows the micro interrupt request latch to be turned on when print busy latch turns off. Turns on the interrupt carriage op end latch which allows the micro interrupt request latch to be turned on when the carriage busy latch turns off. Turns on the interrupt elapsed 0 latch which allows the micro interrupt request latch to be turned on when the elapsed time counter reaches 0 .	$\begin{aligned} & \text { DO270 } \\ & \text { DO270 } \\ & \text { DQ270 } \end{aligned}$	(2)
1001(9)	0.7	Print Buffer	Used to load the print buffer with the data on port DBO.	D0180	(2)
1011 (B)		Enable Diagnostic Mode	Turns on the diagnostic mode latch which is used to substitute test signals for actual signals (such as type belt emitter pulses).	DO200	(1)
1100(C)		Disable Diagnostic Mode	Resets the diagnostic mode latch (see above).	DO200	1
1101 (D)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Diagnostic Mode Control Byte	Allows port DBO 0 bit to step the clocking triggers instead of the $1 \mu \mathrm{~s}$ osc. Allows port DBO 1 pulse to be used to generate the subscan pulses instead of the raw PSS pulses. Uses port DBO 2 to represent home pulse rather than the actual home pulse. Substitutes the port DBO 4 bit for the motor up to speed line. Uses port DBO 5 in place of the coil 1 current line. Uses port DBO 6 in place of the coil 2 current line. Uses port DBO 7 in place of the coil 3 current line.	$\begin{aligned} & \text { DQ170 } \\ & \text { DO200 } \\ & \text { DO210 } \\ & \text { DQ260 } \\ & \text { DOQ000 } \\ & \text { DOO90 } \end{aligned}$	(2)
1111(F)		Check Reset	Resets all pending checks and brings up printer reset.	D0090	1

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	$\begin{aligned} & \text { FEALD } \\ & \text { Page } \end{aligned}$	Timing
0000(0)	$\begin{array}{\|l} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \end{array}$	Diagnostic Adapter Control	Turns on the odd scans latch. Sets the odd scans latch off. Turns on the hammer matrix reset latch which resets the hammer fire circuitry. Turns on the belt start complete latch which brings up motor up-to-speed. Turns on the belt go latch which allows the print belt motor to start up. Sets the coil check counter to 8 , setting coil check on. Turns on the printer reset latch. Turns off the CE latch. The latch is turned on by attaching the input (set) to a desired test point.	DO110 DO110 DO210 DO220 DO220 DO090 DO090 DO250	(2)
0001(1)	0-1	Character Set Size	Depending on the condition of these 2 bits (on or off) the character set size is set in latches 0 and $1(00=48,01=64,10=96,11=128)$.	DO190	(2)
0010(2)	4.7	Diagnostic Hammer Control	Allows the hammer select control value to be set to fire a certain hammer.	DO290	2
0100(4)		Enable Adapter	Turns off the adapter reset latch.	D0090	1
0101(5)		Disable Adapter	Turns on the adapter reset latch.	D0090	1
1000(8)		Reset Scan Buffer Address	Resets the SBAR to 0.	DQ110	1
1001(9)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 6 \\ & 7 \end{aligned}$	Print and Space Cycle Control	Turns on the start printing latch which initiates the printing sequence. Turns on the EOF enabled latch. Resets the EOF enabled latch. Set odd(scan) latch, paper clamp, print belt go and ribbon go. Holds system sense byte $\mathbf{0}$, bit 0 off to prevent forms jam from being detected. Allows forms jam to be detected.	$\begin{aligned} & \text { DQ110 } \\ & \text { DQ210 } \\ & \text { DQ210 } \\ & \text { DO220 } \\ & \text { DQ210 } \\ & \text { DO220 } \end{aligned}$	(2)
1010(A)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Special Functions	Turns on the diagnostic print busy latch. Turns off the diagnostic print busy latch. Enables the elapsed time counter to be stepped by the 1 ms oscillator. Initiates a half line space operation. Résets a half line space operation.	$\begin{aligned} & \text { DO310 } \\ & \text { DO310 } \\ & \text { DO300 } \\ & \text { FJ101 } \\ & \text { FJ101 } \end{aligned}$	(2)

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
1011(B)	0-7	Carriage Space Counter	Used to load the space counter with the data on port DBO.	D0100	2
1100(C)	$\begin{array}{\|l} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ \hline \end{array}$	Diagnostic Carriage Control	Turns on the carriage go latch and the carriage busy latch (starting carriage motion). Turns off the carriage go latch. Turns on the activate clamp latch. Turns on the reset clamp active latch. Turns off the space time latch which ends a carriage operation.	D080 D080 DO230 DO230 D080	(2)
1101(D)	0-7	Elapsed Time Counter	Used to load the elapsed time counter with the data port DBO.	D0300	2

Modifier Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action Taken	FEALD Page	Timing
0001(1)	$\begin{array}{\|l\|} \hline 3 \\ 4 \end{array}$	Diagnostic Clamp Status	Turns on port DBI bit 3 if the clamp on latch is on. Turns on port DBI bit 4 if the clamp off latch is on.	$\begin{aligned} & \text { DQ240 } \\ & \text { DQ240 } \end{aligned}$	1
0010(2)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \end{aligned}$	Diagnostic Inputs	Turns on port DBI bit 1 when the carriage advance line is active. Turns on port DBI bit 2 if the CE latch is on. Turns on port DBI bit 3 when the home line is active. Turns on port DBI bit 4 when the belt motion line is active. Turns on port DBI bit 6 when the print subscan line is active.	$\begin{aligned} & \text { ZZ581 } \\ & \text { DQ250 } \\ & \text { DQ210 } \\ & \text { ZZ581 } \\ & \text { DO200 } \end{aligned}$	1
0011(3)	0-7	Belt Position	Sends value of the belt position counter through the scan key to the channel on port DBI.	D0200	1
0100(4)	$\begin{array}{\|l} 0 \\ 1 \\ 2 \\ 3 \\ 4-7 \end{array}$	Diagnostic Wrap	Turns on port DBI bit 0 when the belt go latch is on. Turns on port DBI bit 1 when the carriage go latch is on. Turins on port DBI bit 2 if the printer reset latch is on. Turns on port DBI bit 3 when the hammer fault line is active. Sends the Y hammer select line values to the channel on port data in.	$\begin{aligned} & \text { DQ220 } \\ & \text { DO080 } \\ & \text { DQ090 } \\ & \text { DQ0090 } \\ & \text { DQ290 } \end{aligned}$	1
0101 (5)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3-7 \end{aligned}$	Diagnostic Wrap	Turns on port DBI bit 0 when the clamp latch is on. Turns on port DBI bit 1 when the hammer select strobe line is active. Turns on port DBI bit 2 when the hammer matrix reset line is active. Turns on corresponding port DBI bits when the subscan lines 5-1 are active.	$\begin{aligned} & \text { DQ240 } \\ & \text { DQ140 } \\ & \text { DQ210 } \\ & \text { DQ200 } \end{aligned}$	1
0110(6)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 5 \end{aligned}$	Diagnostic Wrap	Turns on port DBI bit 0 when the stop ribbon line is active. Turns on port DBI bit 1 if the prepare print control latch is on. Turns on port DBI bit 2 if the adapter reset latch is on. Turns on port DBI bit 5 if the coil (current) check counter output is active.	$\begin{aligned} & \text { DQ220 } \\ & \text { DQ110 } \\ & \text { DQ090 } \\ & \text { DQ009 } \end{aligned}$	1
0111(7)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Diagnostic Sense Byte	Turns on port DBI bit 0 when the 1 ms oscillator output is active. Turns on port DBI bit 1 when the 131 ms oscillator output is active. Turns on port DBI bit 2 when the system reset line is active. Turns on port DBI bit 3 when the power fault line is active. Turns on port DBI bit 4 when the hammer duty cycle limit line is active. Turns on port DBI bit 5 when the impression singleshot is active.	PJ070 PJ070 PN060 DQ050 DT010 ZZ581	1

The keyboard and BSCA/SDLC are also shown on this page because the keyboard, BSCA/SDLC, and the printer are on the same interrupt level.

Modifier Port DBO	Port DBI Inter- rupt Bit	Command	Action Taken	FEALD Page	Timing
$0010(2)$	3	Sense Interrupt Level	If an interrupt request is pending. port data in bit 3 (interrupt request) is sent to CPU	DOO50	1

Modifier Port DBO 4, 5, 6, 7 (Hex)	Command	Action Taken	FEALD Page	Timing
0000(0)	Adapter Check	Turns on CBI bit 4 if any of the indicated check conditions are active.	D0070	1
0001(1)	Not Ready	Turns on CBI bit 4 if any of the indicated interlock conditions are active.	D0070	1
0010(2)	Carriage Busy	Allows a branch (CBI bit 4 on) if the carriage busy latch is on.	D0080	1
0011(3)	Print Busy	Allows a branch (CBI bit 4 on) if the print busy line is active.	D0110	1
0100(4)	Interrupt Enabled	Branches if one or more of the following latches are on: - Interrupt print op end. - Interrupt carriage op end. - Interrupt elapsed 0.	D0270	1
0101(5)	Diagnostic True	Turns on CBI bit 4 to check that the bit actually turns on when expected.	D0070	1
0110(6)	Diagnostic False	Turns on no latches to be sure that the CBI bit 4 does not turn on except when tested conditions are met.	D0070	(1)
1000(8)	Elapsed Time Counter Busy	Turns on CBI bit 4 when the elapsed time counter 0 line is inactive.	D0300	(1)
1001(9)	Motor Not Up To Speed	Branches when the motor up-to-speed line is inactive.	D0260	1
1010(A)	Even Scans Selected	Branches when the odd latch (odd scans) is on.	D0110	1
1011(B)	Subscan Reset On	Branches if the subscan reset latch is on.	D0200	1

Paper Clamps DO240

There are two clamps in the printer. The upper paper clamp, although it clamps the paper, is used for noise suppression only. When the clamp solenoid is energized, it closes the air gap the paper passes through. This reduces the noise level at the back of the printer by dampening the paper noise.

The second paper clamp (lower) is just below the print line. The purpose of this clamp is to preprint line. The purpose of this clamp is to pre-
vent horizontal skewing of the paper. The type vent horizontal skewing of the paper. The type
belt is continuously turning and has a tendency to pull the paper along with it. Since there are no feed rolls in the lower portion of the printer, the paper clamp is necessary to hold the paper in position.
(1) For diagnostic purposes, the activate clamp command \boldsymbol{A} is issued to turn on the paper clamps. This command sets the 'activate clamp' latch (DO240) which turns on the paper clamp solenoids. The 'activate clamp' latch also resets the 'clamp off' latch and gates the 'clamp on' latch to be set by the paper clamp timer. The 'clamp on' latch is set after the paper clamp timer has counted $15 \mu \mathrm{~s}$.
A similar operation is used to turn the clamps off. A deactivate clamp command B resets the 'clamp on' latch and gates the 'clamp off' latch be set by the paper clamp timer. The 'clamp off' latch is set after the paper clamp timer has counted $11 \mu \mathrm{~s}$.

The 'clamp on' and 'clamp off' latches signal tha enough time has elapsed to complete their respective operations. There is no check to see the tamp solenoids actually energized or not.

The 'clamp on' and 'clamp off' latches can be sensed C
(2) During a normal print operation, IOCL prin coming active D activates the paper clamps and 'print busy' going inactive \mathbf{E} turns off the paper clamp.

The above timing chart applies to both diagnostic and normal clamp control.
(1) Diagnostics

Diagnostics
Control Load Command PTR-60

Control Load Command PTR

Load Command PTR-58

ype Belt Start and Run (285 Ipm)

The type belt is directly driven by a stepper motor mounted under the left pulley. The right pulley a release lever mounted on it to remove ten sion from the type belt. When the release lever is operated, the type belt can be removed.

After POR, the count to 90 (ramp counter) runs Antinuously. When belt go is activated, there a delay of 533 ms . Then belt drive A and belt rive B are turned on for 382 ms which locks he motor. After the 382 ms motor locks, the fist count of 1 turns on the ramp latch which lows the belt advance pulse to shift the shift egister. The output of the shift register causes the type belt stepper motor to start accelerating.
he first three drive pulses are 135 Hz , the nex our at 270 Hz , five at 405 Hz , etc. This ramp ing sequence continues until a count of 90 is reached. At he fal of count 90 , the $u n$ lach is set. The run lath blocks the ramp drive pulses Hz (run frequency). The type belt stepper motor is ow up to full operating speed and remains this speed until bett go is deactivated.

Note: Dual ramping card values are 70 percent of the values shown, until '-Belt Motion' is active.

Control Load Command PTR-60

Control Sense Command PTR-64 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

After the type belt has reached an up-to-speed Aditan, the sensing of the timing marks on he type belt is started. The first home pulse fter up-to-speed turns off subscan reset and allows the BPC (belt position counter) and the subscan counter to start stepping. This synchronizes the stepping of the BPC and the subcan counter. When subscan 1 comes up, the elt sync enabled latch is turned on. The next PSS pulse after subscan 1 increments the BPC.

The BPC and the subscan counter are synchronized with each other by the home pulse. Once the hom㩆 unter are allowed to contified by pulse, If a home pulse occurs when not expected or fails to occur when expected, the belt sync check is set.

The print buffer contains PFN (print fire numbers) hat indicate the print scan on which a position is printed. The BPC contains the number of the current print scan and the subscan counter selects the hammers to be optioned within each print scan. In this manner, the characters to be printed are synchronized with the characters on the type belt.

Initiating the Belt Sync Timing Sequence
D0260 Motor Up to Speed
D0210 Home
D0200 Subscan Reset
DO200 Subscan 1 (belt sync enabled) (incr BPC ${ }^{1}$)
(sample BPC)
PSS

Control Load Command PTR-60

Jump I/O Command PTR-70

ibbon Drive/Type Bel ransducer ($\mathbf{2 8 5}$ Ipm)

Ribbon Driv

The ribbon is driven by a belt mounted on the type belt drive pulley. The drive mechanism also cludes a solenoid-driven clutch to disengage the rive The mudging of the paper while the printer is idle. This is under control of the printer control card nd hapens five seconds after the last print and happens

The ribbon is a continuous $1 / 2$ inch wide fabric ribbon contained in a cartridge mounted on the front of the printer. The ribbon is fed into the left side of this cartridge and pulled out the right side (as viewed from the front of the machine).

Type Belt Transducer
The type belt transducer detects the raised timin marks on the type belt. These ma-ks are converted to emitter pulses in the trar sducer and
sent to the control card. The sent to the control card. The control card uses pulses, and the belt up to speed sinal The phese, pulse and subscan pulses are used to chronize the mechanical and electrical portions of the print operation. The belt up-to-speed signal is sent to the attachment to indicate that the type belt is up to operating speed.

Print Buffer Load DQ180 (285 lpm)

The print buffer is loaded by a print buffer load command, 1 byte per command. The data is in the form of PFN (print fire numbers) rather than actual print image data. The flowchart at the right shows how the value of the PFN is determined
Prior to loading the buffer the SBAR is reset to zero by a reset scan buffer address control load command. Issuing of the print buffer load command gates the DBO data to the print buffer. It also brings up the 'incr bfr adr' lines; which steps the SBAR and 'write select' line which gates data into the print buffer when it is active. The print buffer load command ANDed with 'data sample' brings up 'ram clock strobe' which sets the data into the print buffer.

The SBAR is then incremented to the next print buffer position (as shown below). If that position is to be written, another print buffer load command must be issued to load it.

DQ180

Print Buffer Timing for Load Command Channel Timing

1 Print data area located in n ain store. This area beginning at the leftmost byte corresponds character for character to the
line beginning at print position one.

CPU, Microprogram, Channel and Attachment

3 The translation table converts the character to be printed to its corresponding belt posi tion number. The belt position number the type belt. To determine the position number, counting is started with the first character after h right to left.

(4) (3) (2) (48)(47)(46)(45)(44) $\frac{\text { (4) (3) (2) (1) }(48)(47)(46)(45)(44)}{\text { Home }}$

2 The sequence of print characters as they appear on the print belt.

BP Belt Position
PP Print Position
PFN Print Fire Number

4 The print fire number is equal to the calculated belt position minus the subscan (on which the character is printed) minus 1 . The , BP number used here is either the actual BP from the translation table (if PP is 5 or less) or the BP derived from the no loop (if PP is 6 or greater).

If the last digit of $\mathrm{PP}=1$ or 6 subscan $=1$

The print buffer contains the sorted print the sequence in which they a

Print Buffer PP
$\begin{array}{ll}0 & 1 \\ 1 & 6\end{array}$
$\begin{array}{lr}1 & 6 \\ 2 & 11\end{array}$
etc.

Print Buffer Read DQ180 (285 Ipm)

To start reading from the print buffer, a start printing command must be issued and write select must be inactive (indicating read select active). The 'ram clock strobe' line is used to read out the data.

The data is then compared with the value of the scan register and checked for equal or not equal. If not equal, SBAR is incremented to the next buffer position and the above sequence is repeated If equal, 'hammer select strobe' and ‘write select' are activated. 'Hammer select strobe' fires the hammer being addressed and 'write select' allows hex FF to be written, blanking the buffer position being addressed. SBAR is then
incremented to the next buffer position.
When the end of the scan is reached (hex 83), the nonblank found latch is checked. If it was set by a valid buffer character, SBAR is reset to the starting address (hex OO lid h l in superscan is set.

\qquad

Sense Control Sense Command PTR-64

Typical Cycles During Hammer Optioning

(Incr buffer address is
the active line used.)

Hammer Selection and Firing (285 Ipm)

During subscans 1 and 4 , the Y lines are stepped from 1 to 27 to address all the hammer latches in regs 1 and 4 respectively. During subscans 2,3 , and 5, the Y lines are stepped from 1 to 26 to address all the hammer lattches in regs 2,3 , and 5 respes Ively. If any optioned hammers are to be ired tehes by 'har her set

Once a hammer has been set to fire, it is actually fired by the fire pulses. These pulses occur one subscan after the hammer latch registers have subscan after the hammer latch registers have
been set, that is, a hammer set on subscan 1 is fired on subscan 2. The fire pulses are set by the subscan pulse and reset after two impression singleshot pulses. If the impression singleshot does not become active, the fire pulse stays on until the coil current check is activated. The setting of the impression singleshot determines the duration of the fire pulse.

Hammer Latch Select ($\mathbf{2 8 5} \mathrm{Ipm}$)
The individual hammer latch within each register is selected by decoding the value of Y lines (valu 1 to 27 for registers 1 and 4 , and 1 to 26 for registers 2,3 , and 5).

Register Select (285 lpm)

Each register is selected by its corresponding subscan line (subscan 1 to 5).

If the scan/buffer compare results is in equal sets the particular hammer latch being selected.

Printer Speed Control
The speed of printing is controlled by the value Th of a 12 position binary counter (ent to 4096). The value decoded from the counter determines how long 'hammer duty cycle limit' is active.
The 'hammer duty cycle limit' line holds up 'print busy' to the channel thus limiting the printing
speed.

Sense
Control Sense Command PTR-64

The value decoded from the counter determines the speed of printing. The values used are
1164 ms for 50 lpm
560 ms for 100 lpm
560 ms for 100 lpm
344 ms for 155 lpm
344 ms for 155 lpm
168 ms for 285 lpm carriage. The carriage uses a vertical spacing of 6 lines per inch.

The carriage advance pulses, generated from the 606 Hz oscillator drive the carriage shift register. The shift register provides the A and B drive lines for the carriage stepper motor. The start pulse brings up 'inhibit detent' which gates the carriage drive lines to the stepper motor.

The number of lines to be spaced must be loaded by a carriage space counter control load command and to initiate a carriage operation. The number of stepper motor steps is equal to $8 \mathrm{~N}-2$ where N is the number of lines to be spaced. The space counter is then decrening two more stepper 2 dvances left) 'Steps 2' resets 'carriage go' which advas off the run latch and sets the stop latch. The top latch gates two more carriage advance pulses to the stepper motor. The last carriage advance pulse (carriage feedback pulse) brings up the line 'steps 0 ' which resets the 'space time' latch, ending the carriage operation.

Carriage restore
New line (space one line)
Reset line counter to 1 (tells the system the form is on line 1)

Carriage Detent

When the carriage is not spacing the 1080 Hz line (approximately 1 ms) gates the $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ and $\overline{\mathrm{B}}$ drive lines to the print carriage motor. Because the 1080 Hz line is oscillating, it gates the A, \bar{A}, B, and \bar{B} drive lines half the time, which allows half current through the stepper motor. This provides the carriage electrical detent.

Note: Dual ramping card values are 70 percent of the values shown until '-Belt Motion' is active.

Loss of 24 Vdc or power on reset removes the detent

Jump I/O Command PTR-70

m

\square

$$
\int \begin{array}{|l}
\left(\begin{array}{l}
\text { Carriage } 1 \\
\text { Start FF } \\
\text { Start Puls } \\
\text { Inh Deter } \\
\text { Run Latc } \\
\text { Run Pulse } \\
\text { Stop Latc } \\
\text { Gate FF } \\
\text { Stop Puls }
\end{array}\right. \\
\text { C }
\end{array}
$$

- Carriage Go

Start Pulse
Inh Detent
Run Latch
Run Pulse
Stop Latch

Stop Pulse

Negative 606 Hz

 1, nse -
Senstrol Sense Command PTR-64

Control Load Command PTR-60
Attachment

The half line space print feature permits indexing of the printer one half space above or below the normal print line. This spacing is used for superscripting or subscripting a character on the print belt.

The half line space print feature supplies the printer attachment with eight carriage advance pulses when only four carriage advance pulses are sent by the printer to the carriage advance shift register. During the half line space operation, when he first carriage advance pulse is received by the half index card, five fast $(64 \mu \mathrm{~s}$) carriage advance pulses are generated from the 4μ clock and sent the prive pulse is received from the printr When the second pulse is received from the printer, is passed unaltered to the printer attachment This pulse becomes the sixth carriage advance pulse to the printer attachment and carriage go pulse to the printer attachment and carriage go
is dropped. The deceleration function begins and the third and fourth carriage advance pulses from he printer are received by the printer attachment. These are the seventh and eighth pulses in the carriage line position counter (count to eight). Because the printer attachment has received eight pulses in the carriage line position counter, the acceleration and deceleration timing of a full index is retained and forms jam and carriage sync checking are performed.
half index is initiated by setting the carriage everse bit (bit 4) in a control load command IOCL) with a modifier of A. Half index mode is reset by bit 5 of the command and the half index fature card is reset by bit 5 of he command dropping carriage go, or resetting the printer attachment.

Half index complete (for diagnostics only not shown) indicates that the five fast pulses to the printer attachment have been generated and the completion attachment have been generated and the comp
of the index operation is under control of the carriage advance digital control in the printer.
(approx. 1.7 mms 606 Hz

$P=$ from printer

OR/Printer Reset (A)

POR/printer reset line is initiated during the powe p sequence to reset the printer circuits to their starting condition. It is also activated if a carriage ync check is detected.

Close (+24 V) Contactor (A)

Cose contactor must be activated to switch the 24 V into the printer. This line is deactivated when hammer parity check is sensed to protect the hammer coils.

Belt Go (A)

go is activated to start the belt oscillator. The belt oscillator furnishes pulses to run the ype belt drive circuits.

Belt Motion (P)

The belt motion signal is active when the type belt reaches operating speed. It becomes inactive when the belt speed decreases to approximately per chi below opes pulse and the subscan pulses become active when he belt is up to speed

PSS (Subscan) (P)

The PSS pulses are generated from the raised iming marks on the type belt. The subscan pulses ynchronize the print controls between the attach ment and the printer. When the home pulse is detected, a dummy pulse is generated because of he missing timing mark.

MPSS (Impression Singleshot) (P)

IMPSS is added to the hammer fire pulse to contro the time the hammers are fired for different forms thickness. This signal is activated when the subscan pulse goes inactive (halfway into a subscan) and pulse goes inactive (halfway into a subscan) and setting of the forms thickness control

Fire Hammer (A)
Fire hammer lines are activated to fire the orresponding print hammers (fire hammer $1=$ print hammer 1, etc).

ZZ571 POR/Printer Reset ZZ583 Close (24V) Contacto ZZ571 Belt Go ZZ581 Belt Motion ZZ581 PSS (subscan)

DQ200 Subscan
DO200 Subscan 2
ZZ581 IMPSS (impression singleshot) \qquad

Activate Paper Clamps (A)

mis in lower paper ps. It is deactivated during a spacing opera tion and when the printer is idle.

Home Pulse (P)

On the type belt there is a double space betwee two of the timing marks. This space (missing timing mark) generates the home pulse that signals the start of the type set on the type belt. The home pulse is used to synchronize the type belt and the belt position counter.

Hammer Check 1-44, 45-88, 89-132 (P)

The hammer check lines determine that in each group an odd number of hammers is on (when active). They are used as input for the hammer parity check and the coil current check.

Carriage Go (A)
This line activates the carriage advance digital control circuits. These circuits furnish pulses to run the carriage drive circuits.

Stop Ribbon (A)

The stop ribbon line is activated if the printer is idle for five seconds. When the signal is activated, the ribbon stops moving to prevent smudging the paper.

Carriage Advance (P)

The carriage go line activates the carriage advance digital control circuits. These circuits generate the carriage advance pulses. Each carriage advance pulse advances a shift register which advances the print carriage motor by one increment (eight incre ments per line). Therefore, eight carriage advance pulses decrement the space count once per line. When the space count goes to zero the carriage operation is complete, which resets carriage go. The carriage advance pulse is also used for carriage sync check detection.

Printer Thermal Switch (P)

This line signals that the temperature in the printer incuitry is too high. It indicates a thermal check $\pm 5^{\circ} \mathrm{F}\left(63^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$.

Cover Closed Switch (P)
The cover must be closed to make the printer ready.

Forms Sensed Switch (P)

This line indicates to the attachment whether or not there are forms in the printer

Throat Closed Switch (P)
This line sends the condition of the casting throat interlock switch to the attachment. It must show a throat closed condition to make the printer ready.

Switch Assemblies

caution

These are electronic switches and do not have conventional switch contacts. A high current source (test light or ohm meter) will permanently damage the switch.

There are two types of switches:

1. Normally ON , red plunger. The south pole of a permanent magnet is positioned over an integrated circuit thus holding the output stage on. Pressing the switch plunger moves the permanent magnet, placing the north pole over the integrated circuit and the output tu off. The plunger is returned to the normal state by a return spring.
2. Normally OFF, black plunger. The north pole of a permanent magnet is positioned over an integrated circuit thus holding the output stage off. Pressing the switch plunger moves the permanent magnet, placing the south pole over the integrated circuit and the output turns on. The plunger is returned to the normal state by a return spring.

Printer Command Decode DO020, 030, 040 A

The printer command decode selects the various device operations by decoding the values of DBO and CBO sent to the attachment. The values and their meanings are:
/O load
1/O control load
I/O sense
I/O control sense
I/O jump

Space Counter DO100 B

The space counter is a 7 position binary counter. The number of lines to be spaced or skipped is set into the space counter by the microprogram. The counter is then decremented by one for each line paced until it reaches 0 . This brings up the 'steps line whatch and stops carriage

Scan Counter DO160 C

The scan counter is a 8 position binary counter used to count the number of print scans taken to deterine when to end the print scans. The output is coded into 49 or 65 depending on the character set size being used.

Clocking Triggers DO170 D

clocking trigger pulses are generated by a 4 position binary counter. These pulses provide he basic timing used during a print operation.
There are four basic timing pulses generated Itrigger A, B, C, and D). The clock pulses 5, 6 nd 7 are generated by ANDing certain conditions of the clocking triggers.

Storage Buffer Address Register (SBAR) DO180 E

The SBAR is an 8 position binary counter used to sequentially address the print buffer. See PTR-28 for the addressing sequence.

Belt Position Counter (BPC) DO200 F

The BPC is an 8 position binary counter which maintains a count of the character position currently aligned with print position one.

The output of the counter is used as an inpu to the scan register and the home detection circuits.

Paper Clamp Timer DO240 G

The paper clamp timer is a 4 position binary counter used to signal the condition of the paper clamps to the attachment.
The paper clamp should be on 15 ms after it is told to turn on by the microprogram. There is no feedback to insure that the clamp is actually timer has timed 15 ms When it 15 ms the timer turns on the clamp on latch.

Similarly, when the clamp is told to turn off, it should be off after 11 ms . When the timer reaches 11 ms it turns on the clamp off latch.

Hammer Select Control DO290 H

The hammer select control is a 4 position binary counter used to generate the hammer select lines (Y8, Y4, Y2, and Y1). These hammer select lines, in conjunction with the subscan lines (SS1, 2,3,4, and 5) determine which hammer will be optioned to fire at any given time. The hammer select lines provide an input to the hammer fire control, where hammer optioning takes place.

Elapsed Time Counter DO300 [J

The elapsed time counter is a 10 position binary counter used to generate an interrupt after a selected time delay. The selected delay is loaded by an I/O control load micro instruction. The counter is then decremented by one until it reaches 0 . This brings up the 'elapsed time counter is 0^{\prime} line which sets the interrupt.

Hammer Fire Control ($\mathbf{2 8 5} \mathrm{Ipm}$) K

The combination of hammer select lines ($\mathrm{Y} 16,8,4$ 2,1) and the subscan lines (SS1, 2, 3, 4,5) selects which hammers are optioned:

Hammer Select Lines + Subscan $=$ Hammer

Y1	1	1
Y2	1	6
Y1, Y2	1	11
Y1	2	3
Y2	2	8
Y1, Y2	2	13

The hammer select strobe line becomes active when the optioned hammer is to be fired. On the follow ing subscan, the hammer that was set to fire is fired by the fire $1,2,3,4$, or 5 pulse.

Printer Speed Control [
The speed of printing is controlled by the value of a 12 position binary counter. The value decoded from the counter determines how long 'hammer duty cycle limit is active:

Sense -
Control Sense Command PTR-64
Jump I/O Command PTR-70

1164 ms for 50 lpm

564 ms for 100 lpm
364 ms for 155 lpm
168 ms for 285 lpm
The 'hammer duty cycle limit' line holds up 'print busy' to the channel thus limiting the printing speed.

Print Buffer DO180 M

The print buffer consists of a 128×9 bit RAM (random access module) and an auxillary 4×9 bit RAM. The two combine to make up the 132 positions for the entire print line. The print buffer contains PFN (print fire numbers) arranged in the sequence in which they are optioned:

Print Buffer	Print Position
00	01
01	6
02	11
03	16

See PTR-28 for buffer arrangement and PTR-27 to determine the value of the PFN.

The PFN is compared to the contents of the scan register. When a match occurs, the print position being addressed is fired. This buffer position is then blanked by writing a hex FF into it.

Scan Register DO200 \mathbf{N}

The scan register is used as a holding register for the value of the BPC. It is set on subscan one held through subscan five of each print scan.
the output of the scan register is used in the scan buffer compare to determine when to print a given print position.

Scan/Buffer Compare DQ280

This circuit is used to compare the contents of the scan register with the contents of the print buffer. The data is checked for an equal compare and also for a blank (all positions printed) condition. The nonblank found latch is reset at the PFN is found in the print buffer If no PFN is found latch remains reset and this sets the early end of superscan latch.

Sense

Printer Functional Units and Dataflow (285 lpm)

A Type Belt Motor and Drive

The 'belt go' signal from the attachment starts the type belt motor. The motor accelerates in this speed as long as 'belt go' is active, 'Belt up to spedd' boco um of one econd after 'belt go' is activated.

B Home Pulse and Print-Subscan Pulse

 GenerationThese pulses, generated as the timing marks on the type belt pass a transducer tip, are valid only when the type belt is up to speed. Home pulses (one between each complete character set) are generated by sensing a missing timing mark on the belt. When the belt is up to speed, the continuing home pulses verify that the attachment is in sync with the printer. If the printer is not in sync with the attachment, a belt sync check is indicated.

Print subscan pulses are produced by the timing marks on the belt and by an electronically inserted pulse between each mark.

C Forms Thickness Control

The forms thickness control mechanically adjusts the print unit forward or back for different form thicknesses. The control also adjusts a potentiometer for varying the duration of the singleshot hammer-fire pulse. As the print unit is adjusted for thicker forms, the pulse duration is increased.

DRibbon Drive

When the ribbon solenoid is deenergized, a clutch engages to drive the ribbon. The ribbon the completion of the first line printed) and continues to move only during printing Af printing stops, the ribbon continues to move until the solenoid is energized to disengage the until the solenoid is energized to disengage the

E Paper Clamp

The upper paper clamp consists of a magnet and a clamp bar. The lower paper clamp con sists of a solenoid and a clamp bar. Both lamps are activated by the attachment clamp olding the paper during printing.

F Firing the Hammers

There is one hammer for each print position. Hammer firing is controlled by the attachment with the timing provided by the printer.

G Carriage Spacing

When a print line is complete, the attachment releases the paper clamps. The forms can now be advanced. To advance the forms, the attachment activates 'carriage go'. The printer electronics then generates 'carriage advance' pulses which control the carriage motor. The attachment counts the advance pulses and deactivates 'carriage go' on the sixth step. Deactivating 'carriage go' initiates two stop pulses for a total of eight stepper moto pulses. Tmis
$(4.22 \mathrm{~mm})$.

The printer is ready for the next print line cycle If printing is continuous, steps D through E are repeated.

This page is intentionally left blank.

Error Conditions (285 lpm)

The jump I/O command (see PTR-70) detects
either the adapter check or not ready condition
A sense command is then required to determine
the specific row. See Sense Command on
PTR-64.

Jump I/O Command PTR-70

Forms Jam

 Forms Jam Belt Speed Check Carriage Sync Check Coil Current Chec Belt Sync Check Emitter Check Data Check (print buffHammer Parity Check

Cover Closed Switch
Throat Closed Switch
No Forms Switch (EOF)

Unprintable Character

One or more of the characters requested to
printed were not in the print image. Unprintable character is checked entirely by the microprogram. There is not hardware checking invo Setting of this check is a programmer option.

Belt Speed Check

This check indicates that either the belt has failed to get into motion within two seconds after the start time or the printer belt motion is lost after having reached an up-to-speed condition. Motion is considered lost if there is a $\mathbf{2 5}$ per cent loss in operating velocity. The speed is determined by measuring the time between timing marks on the print belt.

Forms Jam Check

The forms jam check indicates that the carriage ractor was told to move, but no paper motion ccurred. A light emitting diode detects the time between holes in the paper. If no hole is detected in eight lines, the forms jam is set.

Note. The light emitting diode is infrared so you cannot see the light.

Diag Mode

Carriage Sync Check

Two conditions may set this check:
1 If a carriage feedback pulse (carriage advance pulse) occurs when no carriage motion has been initiated.
(2) If a carriage feedback pulse fails to occur within 8 ms , during carriage space time.

Coil Current Check (285 lpm)

An 8 ms timer (cnt to 8) is started when hammer select strobe sets a hammer latch. Coil parity odd, coil 2 parity odd, and coil 3 parity odd lines are monitored for the possibility of a hammer being on longer than 8 ms. Whis condition is detected, power is dropped to the printer and coil, current check is set. The status of the coil 1 parity odd, coil 2 parity and coil 3 parity odd lines is saved in their respective latches. This is because the coil check line being active degates the reset of the latches.

Note: If an even number of hammers, on one hammer driver card, are on (longer than 8 ms), the coil current check is not set. This is because the hammer and odd lines are only active for an odd condition within any one of the three card positions.

Sense Command PTR-64

This check can be set by three possible conditions
(1) If a home pulse occurs when not expected.
(2) If a home pulse fails to occur when expected.
(3) The bit ring generating the five subscan pulse is continuously monitored for an abnormal condition. Normal is one, and only one pulse on at any time.
The timing for the home pulse is determined by counting the number of print scans. This count is compared with the character set size (only one home pulse per character set).

Emitter Check/Data Check

Emitter Check
Once the print belt motor has reached an up-tospeed condition, the print subscan line is monitored to verify that it is oscillating. If no change occurs during any 2 ms period, the emitter check is set. This check supplements the belt sync check which cannot detect a broken or stopped belt.

Data Check

Parity is maintained on the data in the print buffer.
If invalid parity is detected during a print cycle,
this data check is set.

An odd/even count of the hammer select strobe pulses is kept track of by the two position odd/ even count register. The output of this register indicates whether an odd or even number of hammers have been selected to fire (one hammer select strobe pulse for each hammer selected). The hammer odd line is active for each hammer mers are being fired The odd/even count reister is compared to the status of the three hammer odd lines during each print subscan pulse. If a mismatch occurs the hammer parity pulse. If a mismatch occurs the hammer parity check latch is set.

End of forms is checked on the first line printed of each new form, If no forms is indicated by of forms switch, the printer will go not ready.

Sense Command PTR-64

Cover Closed

The printer is not ready if the cover is open.

Throat Closed

The printer is not ready if the throat is not closed on the paper path

Display Screen

The display screen attaciment occupies the sam card as the keyboard attachment. Both attach ments use the same:

- CBO (command bus out)
- DBO (port data bus out)
- CBI (command bus in)

Only one of these attachments uses the lines at any time. Which attachment uses the lines is determined by the device address in WRO(L) which is subsequently placed on the DBO lines 0-3.

The display screen attachment has five main functions:

1. Interface with the channel to execute the micro instructions.
2. Accept 240 bytes of data from the channel DBO and store it in the RAM (random access memory) buffer.
3. Increment the display address register to sequentially display the 240 characters on the display screen.
4. Control display of the $\mathbf{2 4 0}$ characters by controlling the video, wiggle, horizontal, and vertical interface lines to the CRT. U to forty characters per line are displayed on six lines.
5. Load and sense the RAM buffer, the LSAR (load/sense address register), and the DAR (display address register) and send the data to the channel

The channel:

1. Places decoded micro instruction data on CBO 0-2, device address on DBO 0-3, and micro instruction modifier data on DBO 4-7.
2. Activates 'control out' to indicate that a command is on the channel.

Each attachment checks the address; if it is the display screen address, the attachment activates CRT command select' so that the display screen can accept the command.

If the command is sense, control sense, or jum data from the LSAR, data from the DAR, dat from the RAM buffer, or the status of various ment brings up 'service in' to indicte to the chel that the data is DBI. The ccepts the data and responds with'service out o indicate that the data was received The tachment then drops 'CRT conmand sele and completes communication with the channel

If the command is sense interrupt level status byte, the attachment does not accept the command but brings up 'service in' and 'multidevice response' to indicate to the channel that the command was detected and not accepted.

If the command is load or control load, the attachment again checks the device address and aises 'CRT command select'. The attachment sets or resets latches per the command and responds with 'service in' to indicate that the command was accepted. The channel responds ith service out to indicate that the data on the 's sata vale' which gaces date on the loadsense address register, the display address register, or to additional latches. The ttachment drops 'CRT command select' to erminate communications with the channel.

Whenever data is on DBO, the attachment hecks for odd parity. If the parity is not odd he attachment activates CBI 5 to indicate tha the data is bad.

Attachment Functions

1. The attachment interfaces with the channel to execute the micro instructions as follows:

- Accepts 'control out' to establish communication.
- Recognizes and accepts the address of 100. Decodes CBO to determine what micro instruction is being sent and accepts only valid micro instructions.
Decodes DBO 4-7 (modifier bits) to dirss 'serve conditions to be established. 'service in' to indicate that the command has been accepted

2. The attachment accepts 240 bytes of data (one byte at a time) from DBO and stores ach byte in the RAM buffer as determined by the LSAR:

- An I/O load of the LSAR gates the address data from DBO to the LSAR This address is used to control the des tination of the 240 bytes of character data being loaded into the RAM buffer.
- An I/O load of 'load buffer' gates the 'bfr data set' and presents a character of data from DBO to the RAM buffer. This command conditions 'bfr read/write' to write condition so that the buffer will store the character at clock buffer time (DISP-5). The RAM buffer cannot be loaded when a character to be displayed is being read from the RAM buffer. Therefore, 'bfr read/write' is switched to write only during IOL 'load bfr' and not during RR9 time CC3-42
- An I/O sense of sense buffer senses a RAM buffer cannot be Led ding RR9 of the CC3-42 since DAR is fetching the character to be displayed.

3. After the RAM buffer has been loaded with the $\mathbf{2 4 0}$ characters to be displayed:

- 'Bfr read/write' is placed in read mode. fa load buffer command is in operation he line will switch to write mode durime of CC3-42.
- Clock brr is active at BRO-10 time during RR9 time of CC3-42. 'Clock bfr', long with 'bfr read/write' conditions the RAM buffer to read out the character at the address designated by the display address register and decode circuitry.
The character from the RAM buffer is oaded into the character register
During PR7 time of PR9 and CC3
During BR7 time of RR9 and CC3-42, fetched from RAM through DAR and ared in the character reister. The first character is displayed during RRO-6 of CC3-41 time and the las character is displayed during RRO-6 time of CC2.
- At BRO-10 time of RR8 time of CC3-42 the DAR is incremented by one to locate the next character.

- The character is presented to the character generator and decoded for each at a time of the character. is presented at a time of the character is presented bler serializes the 9 bits of data so bler serializes the 9 bits of data so that video is gated to the display screen
at BR2-10 time along with a correspondat BR2-10 time along with a correspond-
ing character generator output bit. BRO is gated to the display screen if the cursor bit is active.
- Characters are displayed during CC2-41 and RRO through 6. At RR8 during CC3-42 time, after a character has been displayed, the DAR is incremented by one so that the RAM buffer is addressed to read out the next character at RR9 during CC3-42. At RR9 and BR7 during CC3-42 time the character is set into the character register. This character is then available to the character generator to control 'video' to display the next character.
This operation continues for 40 chara ters; then vertical control shifts the characters are displayed. After all six lines are displayed, the counters are reset and the display starts over. new characters loaded into the buffer are displayed.

4. The attachment controls the video, wiggle, horizontal, and vertical interface lines to the display screen to control displaying of the 240 characters (DISP-6).

- Video Line: 'Video CRT' is sent to the display screen to control an amplifier which increases or decreases the intensity of the beam and creates spots or blanks on the display screen. The 2.25 MHz clock increments 'bit ring count to 16 to produce bit ring pulses that are on frit 444 ns . Each on increments 15. (The counter resets to 15 during a reset condition.) BRO ates the curso bit, BR1 time is blank, and BR2-10 bit, BR1 time is blank, and BR2-10 gates character generator lines 1 through
9 to the video line to brighten the 11 9 to the video line to brighten the 11 possible spots on the vertical sweep of the wiggle. BR11-15 are used for retrace time to return the spot to the base line.
- Wiggle Sweep: The wiggle sweep signal is sent to a coil in the CRT to move the eam up and down the height of a charand sweeps up during BRO-10 and is inctive and sweeps down during BR11-15. Each character has 10 wiggles which are ounted by the ROS ring register (RRO RR9). The first seven wiggles display the haracters; the last three wiggles are used characters; the last three wiggles are used
for spacing between characters. The ROS ring register is incremented by the bit ring register at BR11 time. At RR7 time, the ROS ring increments the character. The wiggle line is active from CO through CC42 and inactive from CC42 through CC53.
- Horizontal Line: The horizontal line when active, conditions a coil in the CRT to move the beam to the right at a constant speed for a 42 character line. The first two character postions 40 characters are displayed, When the horiztontal line is inactive, the beam oriz to the left at a constant speed for 12 character times (CC42-53) for or 12 character times (CC42-53) for retrace. The character count register
(CCO-53) conditions the horizontal line.
- Vertical Line: The 'vert 1', 'vert 2' and 'vert 4' lines increment the beam to the six possible display lines. The line counter (LCO-LC5) is incremented at CC42 time so that the beam goes to the next line during retrace. The vert 1', 'vert 2', and 'vert 4' lines are decoded to determine which of the six ines is required. When all three lines are inactive, display line 1 is selected
The line counter increments from 0 through 5 and then back to 0 to start over and refresh the display.

5. The attachment senses the status of the LSAR, DAR, and the control latches.

- At sense the LSAR command causes the address in the LSAR to be placed on DBI. (This cannot be done during
display time, BRO-10 of RR9 during CC3-42.)
- At BRO-10 time of RR9 during CC3-42 the address is read from DAR and placed on DBI.
- The control latches are sensed by appropriate sense commands and the data placed on DBI. (See the appropriate sense command charts, DISP-30, -32

Display Line	Vertical DMO90		
	Vert 1	Vert 2	Vert 4
1	0	0	0
2	1	0	0
3	0	1	0
4	1	1	0
5	0	0	1
6	1	0	1

$1=$ Line Active

DISP-11

Modifier DBO 4, 5, 6, 7 (Hex)	DBI Data Bit	Command	Action Taken	$\begin{aligned} & \text { FSL } \\ & \text { Page } \end{aligned}$	Timing
0		Adapter Status 0	Conditions DBI selector to put status data on the DBI lines.	DM110	
	0	Vert 1	Turns on DBI bit 0 if 'vert 1 ' line is active.	DM090	1
	1	Vert 2	Turns on DBI bit 1 if 'vert 2 ' line is active.	DM090	1
1		Adapter Status 1	Conditions DBI selector to put status data on the DBI lines.	DM090	1
	0	Vert 4	Turns on DBI bit 0 if 'vert 4 ' line is active.	DM090	
	1	Video	Turns on DBI bit 1 if 'video sense' line is active.	DM090	
2		Adapter Status 2	Conditions the DBI selector to put status data on the DBI lines.	DM110	
	0	Diagnostic Mode	Turns on DBI bit 0 if 'diagnostic mode' latch is set.	DM090	
	1	Odd/Even Video	Turns on DBI bit 1 if 'odd/even' latch is on which indicates odd count.	DM090	
3		Adapter Status 3	Conditions DBI selector to put status data on the DBI lines.	DM090	
	0	Horizontal	Turns on DBI bit 0 if 'horizontal sense' is active.	DM090	
	1	Wiggle	Turns on DBI bit 1 if 'wiggle sense' is active.	DM090	1

Load, Control Load Timing

Modifier DBO 4, 5, 6, 7 (Hex)	DBO Data Bit	Command	Action Taken	FSL Location	Timing
9	0.7	Data Out Buffer	1. Activates 'clock bfr', which increments the buffer. 2. Sets 'DAR invalid' latch at RRO or RR9 time when 'sync AND CC3-42' is active. 3. Activates 'bfr read/write', which causes the buffer to store the data supplied on the DBO lines. 4. Causes data from the DBO lines to be put in the buffer.	DM070	
A	0.7	Buffer Address Out	1. Causes data from the DBO to be put in the load/sense address register. 2. Conditions the load/sense address register to accept data.	DM070	
B		Set Diagnostic Mode ${ }^{1}$	Sets diagnostic mode latch.	DM090	1
C		Reset Diagnostic Mode ${ }^{1}$	Resets diagnostic mode latch.	DM090	1
D		Diagnostic Clock ${ }^{1}$	Increments count to 16 register to provide controlled stepping of the 'video', 'horizontal', 'vertical', and 'wiggle' lines so they can be sensed.	DM090	1
		${ }^{1}$ Use only when in diagnostic mode.			

Modifier DBO 4,5,6,7 (Hex)	DBI Data Bit	Command			
9	$0-7$	Sense Buffer	Action Taken	Conditions 'clock bfr' which allows data to be read out of the 240×9 RAM buffer at data sample time and loaded into the DBI assembler. Data is put on the DBI lines, 'clock bfr' will not come up if the command is given while data is changing in the buffer at (RRO OR RR9) and (CCC3-42 AND sync) time. If buffer data is changing while sense buffer command is being executed, the 'invalid load/sense' latch is set. A sense buffer command must be followed with a jump on invalid load/sense command to determine if the sense buffer com- mand was executed.	Timing

Modifier DBO 4567 Hex	DBI Data Bit	Command	Action Taken	$\begin{aligned} & \text { FSL } \\ & \text { Page } \end{aligned}$	Timing
0		Adapter Status 0	Conditions DBI selector to put status data on the DBI lines.	DM110	
	0	Vert 1	Turns on DBI bit 0 if 'vert 1 ' line is active.	DM090	
	1	Vert 2	Turns on DBI bit 1 if 'vert 2 ' line is active.	DM090	1
1		Adapter Status 1	Conditions DBI selector to put status data on the DBI lines.	DM090	
	0	Vert 4	Turns on DBI bit 0 if 'vert 4' line is active.	DM090	
	1	Video	Turns on DBI bit 1 if 'video sense' line is active.	DM090	1
2		Adapter Status 2	Conditions the DBI selector to put status data on the DBI lines.	DM110	
	0	Diagnostic Mode	Turns on DBI bit 0 if 'diagnostic mode' latch is set.	DM090	
	1	Odd/Even Video	Turns on DBO bit 1 if 'odd/even' latch is on which indicates odd count.	DM090	
3		Adapter Status 3	Conditions DBI selector to put status data on the DBI lines.	DM090	
	0	Horizontal	Turns on DBI bit 0 if 'horizontal sense' is active.	DM090	
	1	Wiggle	Turns on DBI bit 1 if 'wiggle sense' is active.	DM090	

Modifier DBO $4,5,6,7$ Hex	DBI Data Bit	Command	Action Taken	$\begin{aligned} & \text { FSL } \\ & \text { Page } \end{aligned}$	Timing
4	0-7	Sense Load/Sense Address Register	1. Conditions the DBI selector to put address stored in the load/sense address register on DBI. 2. Conditions the load/sense address register select to provide data (the address stored in the load/sense address register) to the DBI selector.	DM100 DM070	1 1
5	0-7	Sense Display Address Register*	Conditions the DBI selector to put the address stored in the display address register on DBI. The address is moved from the display address register to the DBI selector by the display address register selector.	DM100	1
		*Issue only when 'sync' latch is not set.			

Channel

Modifier DBO $4,5,6,7$ Hex	DBI Data Bit	Command	Action Taken	$\begin{aligned} & \text { FSL } \\ & \text { Page } \end{aligned}$	Timing
5		Diagnostic Jump False	Diagnostic command that does not activate CBI bit 4.	DM070	
6		Diagnostic Jump True	Diagnostic command to activate DBI bit 4 to test the ability of CBI bit 4 to switch.	DM070	(1)
8		Jump Invalid Buffer	Used with 'invalid load/sense' latch (and if 'load/sense' latch is set) to activate CBI bit 4. 'Invalid load/sense' latch is set with (RRO or RR9) AND CC3-42 AND a load buffer or sense buffer command.	DM070	1

CBI 4 Function

During a jump invalid buffer load/sense command, CBI 4 is active whe 'inuld' latch ha been 'Invalid' latch is set when an attempt has been made to load or sense the buffer during the time the buffer is in a read mode to read a new charac ter to the character register to satisfy the display. This tells the CPU that the data was not loaded properly.

During a diagnostic jump true command, CBI 4 goes active and during a diagnostic jump far command, CBI 4 stays inactive. This is for diagnostic purposes to guarantee that the line will switch from active to inactive.

Keyboard Attachment

The keyboard attachment occupies the same card as the display screen attachment. Both attachments use the same:

- CBO (command bus out)
- DBO (port data bus out)
- DBI (port data bus in)

Only one of these attachments uses the lines at any time. Which attachment uses the lines is determined by the address in WRO(L) which is subsequently placed on the DBO lines $0-3$.

The keyboard attachment has four main operations:

1. Interface with the channel to execute the micro instructions.
2. Store data from the keyboard unit in the keyboard register.
3. Send data to the channel.
4. Control the keyboard unit.

The channel:

1. Places decoded micro instruction data on CBO $0-2$, device address on DBO $0-3$, and micro instruction modifier data on DBO 4-7
2. Activates 'control out' to indicate that a command is on the channel.

Each attachment checks the address; if it is the keyboard attachment address, the attachment activates ' kbd command select' so that the key board attachment can accept the command.

If the command is sense, control sense, or sense interrupt level status byte, data from the keyboard register or the status of the latches is placed on the DBI lines. The jump command places data on CBI 4. The attachment brings up 'service in' to indicate to the channel that the data is on DBI (CBI for jump command). The channel accepts the data and responds with 'service out' to indicate that the data was received. The attachment then drops "kbd command select' and completes communication with the channel.

If the command is a load or control load, the attachment again checks the device address and raises 'kbd command select'. The attachment sets or resets latches per the command and responds with 'service in' to indicate that the with 'service out' to indicate that the data on DBO is now valid. The attachment then activates 'data sample' which gates data on DBO to additional latches or to the keyboard data register. Upon the fall of 'service out' the attachment deactivates 'kbd command select' to terminate communication with the channel.
Whenever data is on DBO, the attachment checks for odd parity. If parity is not odd, the attachment activates CBI 5 to indicate that the dat is bad.

Attachment Functions

1. The attachment interfaces with the channel to execute the proper micro instructions as follows:

- Accepts the channel out lines to establish communication with the channel.
- Recognizes and accepts the keyboard attachment address of 0001.
- Decodes the CBO lines to determine what micro instructions are being sent to the channel.
- Accepts only valid micro instructions. - Decodes DBO 4-7 micro instruction modifier bits to determine conditions to be established.
- Indicates to the channel by raising 'service in' that the command has been
accepted.

2. The attachment stores data from the keyboard as follows:

- Pressing a key on the keyboard unit activates 'keyboard gate' and sets the mode latch is not set).
- 'Kybd gate not diag' gates the data from the keystroke into the keyboard data register so that the data can be sensed later.

Kybd gate not diag' sets the micro interrupt request latch if the keyboard micro interrupt enable latch is set.

- The micro interrupt request latch is sensed with a sense interrupt level status byte command to determine that data is ready to be transferred to the channel.

3. The attachment sends data to the channel as follows:

- Data is supplied to the channel through the data buffer to the channel DBI.
- The data is gated through DBI select by one of the nine gates created by decoding the modifier of an IOS, IOCS, or SILSB command.
- The data comes from one of the following sources.
. Keyboard data register: this data is collected from the keyboard unit. keyboard data register the mer data register and the data gate latch are reset. Also, the overrun latch is tested. If overrun is set, data is discarded and an error condition is indicated.
b. Sensing the latches: these latches are set or reset by previous commands or by conditions detected in the attachment.
c. Diagnostic sense micro instructions gating certain established configur tions to DBI. This data is for diagnostics.

4. The attachment controls the keyboard unit to:

- Allow the clicker to fire when the keyboard is disabled. (The 'error' line to the keyboard degates the clicker.) An IOCL command sets the fire clicker latch. This latch, along with the 16.384 ms oscillator line from the CPU, provides a pulse on the 'clicker' line to the keyboard unit so that it can emit a click.
- Resets the keyboard. An IOCL command sets or resets the keyboard reset latch. A system reset' also resets the keyboard.) A keyboard reset latch being set or 'system reset' sets 'kybd device rst' to the key-
board unit.
- Enable the keyboard clicker and degate the error' line to the keyboard.

Modifier DBO 4, 5, 6, 7 Hex	DBO Data Bit	Command	Action Taken	FSL Location	Timing
2		Set Micro Interrupt Request	Sets micro interrupt request latch.	DM050	1
3		Reset Micro Interrupt Request	Resets micro interrupt request latch.	DM050	1
6	0	Enable Interrupt Request Disable Interrupt Request	Sets enable interrupt request latch. Resets enable interrupt request latch.	DM050 DM050	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
9	0-7	Load Keyboard Data Register	Conditions DBO select to enter data from DBO to the keyboard select.	DM020	(3)
B		Set Diagnostic Mode	Sets 'diagnostic mode' latch.	DM030	1
c		Reset Diagnostic Mode	Resets 'diagnostic mode' latch.	DM030	1
D		Diagnostic Mode Control	Controls diagnostic mode.	DM030	
	3	Set Overrun	Sets 'overrun' latch.	DM050	2
	4	Reset Overrun	Resets 'overrun' latch.	DM050	2
	5	Set Data Gate Latch	Sets 'data gate' latch.	DM050	2
	6	Resets Data Gate Latch	Resets 'data gate' latch.	DM050	(2)

Modifier DBO 4, 5, 6, 7 Hex	$\begin{aligned} & \text { DBO } \\ & \text { Data } \\ & \text { Bit } \end{aligned}$	Command	Action Taken	FSL Location	Timing
0		Adapter Control			
	0	Enable Keyboard	Sets 'enable keyboard' latch.	DM050	(2)
	1	Disable Keyboard	Resets 'enable keyboard' latch.	DM050	(2)
	2	Reset Data Register	Resets keyboard data register.	DM030	(2)
	3	Reset Overrun Latch	Resets 'overrun' latch.	DM050	2
	4	Reset Data Gate Latch	Resets 'data gate' latch.	DM050	2
	6	Set Reset Latch	Sets 'keyboard reset' latch.	DM050	2
	7	Reset Reset Latch	Resets 'keyboard reset' latch.	DM050	(2)
1		Fire Clicker	Sets 'fire clicker'' latch (fires clicker once each time issued).	DM050	1

Sense Command

Modifier DBO 4, 5, 6, 7 Hex	DBI Data Bit	Command	Action Taken	$\begin{aligned} & \text { FSL } \\ & \text { Page } \end{aligned}$	Timing
0	2	Adapter Status 2	Provides a 2 bit on DBI lines if 'keyboard enable' latch is set.	DM050	(1)

Modifier DBO $4,5,6,7$ Hex	DBI Data Bit	Command	Action Taken	$\begin{aligned} & \text { FSL } \\ & \text { Page } \end{aligned}$	Timing
0		Jump Overrun	Activates CBI bit 4 if 'overrun' latch has been set.	DM050	1
4		Jump Micro Interrupt	Activates CBI 4 if the 'micro interrupt' latch has been set.	DM050	1
5		Diagnostic Jump True	Activates CBI 4. This is used in diagnostics to guarantee the line will go active.	DM050	1
6		Diagnostic Jump False	Does not activate CBI 4. This is used in diagnostics to guarantee the line will go inactive.	DM050	

Modifier DBO $\mathbf{4 , 5 , 6 , 7}$ Hex	DBI Data Bit	Command	Action Taken	FSL	
2	1	Sense Interrupt Level Status Byte	Conditions DBI selector to put the status of the micro interrupt request latch on the DBI lines.	DM040	1

SILSB Command and (not) Keyboard Interrupt Level

A sense interrupt level status byte command and not keyboard interrupt level occurs when the microprogram issues the sense interrupt level atus byte command with other than 0010 DBO 0-3. At 'strobe' time after 'control out', the keyboard and display screen attachments will analyze CBO $0-2$ and if this is 001 (SILSB
ommand), the attachment will respond by
ommand), the attachment will respond by
activating 'service in' and 'multi device response
lines immediately. These lines stay active until ines immediately. These lines stay active until ut'. Because 'multi device response' is plus when active it can be ORed with other attachments in the channel such that the channel knows that all attachments have responded.

CBI 4 Function

Kybd gaté is active when a key is pressed on
the keyboard. The first key pressed sets the 'data gate' latch. If the data is not accepted data gate' latch. If the data is not accepted
by the CPU and the 'data gate' latch is not reset prior to a second key being pressed,
the 'overrun' latch sets. When a jump overrun
command is issued, CBI 4 goes active indicating
to the channel that there is an overrun condition
The other three conditions which affect CBI diagnostic checking condition

- A jump diagnostic true command activates CBI 4
- A jump diagnostic false command does no activate CBI 4.
interrupt enable activates CBI 4 if ' μ interrupt enable' latch has been set with an enable/disable micro interrupt enable IOL command.

Error Conditions

Keying Errors

Keying errors occur when a second key has been ressed and the data from the first key has not been accepted by the CPU. 'Kybd gate' is pulsed when a key is pressed on the keyboard. The
first key pressed sets the 'data gate' latch. If the data was not accepted by the CPU, and the 'data gate' latch has not been reset prior to a second key being pressed, the 'overrun' latch sets. The 'overrun atch also resets the 'KYBD ready' latch which turns ff the keyboard ready indicator light on the opertor console and deactivates the clicker in the keyboard for all keys except PAGE/LINE, PRINT/ RESET, ERROR RESET, and INQUIRY. Every time data is sensed from the keyboard register, the 'overrun' latch is tested with either a sense or jump overrun command. Ater testing her un latch (regrale loth, keybord register, lat ' lath a le 'overun' lath was set, the data was ignored and an error condiion exists.

Error Recovery

The keyboard operator must press the reset key on the keyboard. The microprogram checks to if RESET has been pressed, and if it has been, then the microprogram issues an I/O control load command set enable keyboard which causes the keyboard ready light to turn on and the clicker keyboard ready light to turn on and the clicker
to be ready. The microprogram then issues an to be ready. The microprogram then issues an an audible click in the keyboard. The operator must then reenter the bad data.

Serial Printer

NTRODUCTION

The IBM System/32 can be ordered with either a serial printer or a belt printer.

The serial printer is available in four models:
120 cps (characters per second) bidirectional 80 cps bidirectional
40 cps bidirectional
40 cps unidirectional
The two models of the 40 cps printer are identical The attachment circuitry controls whether the print only left to right, or in both directions.

Serial printer theory of operation is model and EC level dependent. In this section, theory differences will be listed under the following headings:

- $40 / 80 \mathrm{cps}$
- $40 / 80 \mathrm{cps}$ - 120 compatible
- 120 cps

To determine whether your 40 or 80 cps printer is 120 compatible, see plug chart page AYO39, in the field service logics.

Characters are printed by selectively energizing any of seven print wire magnets as the print head is moved along the print line by a stepper motor. eighth print wire magnet is used for underscore.

The attachment for the serial printer is contained on two cards located at A2R2 and A2O2. The two cards located at A2R2 and A2Q2. The memory) and a 1 K by 18 ROS (read only storage).

RAM is reloaded each IMPL with variable data such as print head home position, print emitter timings, print head motor timings, and eight characters that change for the different character sets (U.S./WTC/ASCII). The eight changeable characters are stored in a wire image.

ROS stores information that does not change. The 56 characters that are common to all U.S., WTC, and ASCII character sets and the Katakana character set are stored in ROS.

Before printing, the microprogram loads the image of each line (132 positions in EBCDIC) into the data buffer. The data buffer is the first 132 positions of RAM. The tabs, which represent the location of the first and last significant characters of each line, are also loaded into RAM before printing.
Forms movement is also controlled by the micro program. Forms are moved by the forms stepper 'Hotor, which is geared to the platen. When the forms are moved, the forms emiter sends pulses to the ataurer, which is used to counter, which is used to advance the stepper motor.

Attachment and Serial Printer Data Flow

THEORY OF PRINTING

To print a line, four things are done:

1. Load the data buffer (microprogram operation).
2. Position the print head (attachment operation)
3. Print the data from the buffer (attachment operation).
4. Move the forms to a new line (both microprogram and attachment). Forms movement not a part of the printing operation, but is scribed because the system programmer SiO instructions to print and then space.

Loading The Data Buffe

Two IOL commands are needed to transfer one character from the CPU to the data buffer in RAM The first IOL command sets a buffer address into the attachment MAR (memory address register). The second command loads the addressed buffer be printed.

Microprogramming loads the data buffer by using 264 IOL commands (132×2). It is necessary to load all 132 positions, regardless of the length of the line to be printed to clear any residual data from the previous line. If no character is to be rinted from the addressed RA.M location, a blank (hex 40) is loaded.

Positioning The Print Head

In preparation for printing a line, the system programmer sets up an area of main storage in the CPU that is referred to as the data buffer. This is not he same data buffer that is part of RAM, but it is the area from which the RAM buffer is loaded. Once the RAM data buffer is loaded, the two area contain identical data

When control is passed to the printer microprogram, it scans the main storage data buffer to locate the is subtracted from that position, which bemes the left tab. The left tab is then loaded into RAM location 255 (hex FF).

Then the main storage data buffer is scanned in the opposite direction to locate the position of the last significant character of the line to be printed. med that position. That value be location 254 (hex FE).

The microprogram now senses the attachment to determine the position of the print head. If the head position counter contains a value less than the value of the left tab, the microprogram send an IOCL command to the attachment to start print and print right (left to right).

If the value of the right tab is less than the value in the head position counter, the attachment is mmanded to start print and print left (right to left).

Note: The unidirectional printer always prints from left-to-right beginning at the left tab. If it is commanded to print right-to-left (print left), the mind is ignored by the attachment and no printer action occurs.

If the head is in the area to be printed, the value in the head position counter is equal to or greater than the value of the left tab and less than or equa to the value of the right tab. The microprogram computes which tab is nearer to the present head position. Based upon that computation, the attach ment is told to start print and either print right or print left.
Note: From here on, the attachment is independent of the microprogram until the 'print op end' latch causes the attachment to request an interrupt

Assuming the print head is in the area to be printed and the attachment is told to print right, the head must be moved left past the left tab, stopped, allowed to settle, started in a left to right direction, and be at printing speed by the time the first character is read out of the RAM data buffer. The acter is read out of the RAM data buffer. The the first significant character in a line less than 132 print positions is to allow the print head to come up to speed after turning around and before printing the first character of the line.

Positioning of the print head is controlled by the value in the head position counter and the value of the 1 byte buffer. The head is moved left until the byte buffer. The head is moved left until the of the left tab. At that time, the head is stopped and allowed to settle for 50 ms . After the settle time, the print head stepper motor is started going right, and continues to move until the head position value equals the right tab value. The head is stopped, and another 50 ms settle time occurs before the end of the print operation.

When the print head is at the right edge of the left margin (LM), the head position counter contains a value of hex 00 . When the head moves into the left margin, the value goes from hex 00 to $F F$, FE, FD, or $F C$ depending upon how far into the left margin the head moves. The counter value is increased as the head moves to the right.

Printing The Data From The Buffer

The data buffer is the first 132 positions of RAM. ROS contains the wire image of the U.S., WTC/ASCII, and Katakana character sets. RAM contains the wire image of the eight changeable U.S., ASCII and World Trade special characters.

Eight bytes \mathbf{B} are needed to store the wire image o Eight bytes \mathbf{B} are needed to store the wire imater
each character \mathbf{C}. The first byte of the eight each character C. The first byte of the eight
is the control byte. The two high order bits of the is the control inte. The two high order bits of the
control byte indicate whether the character is a changeable U.S., ASCII, World Trade special character, or invalid E

Data to be printed is loaded into the RAM data buffer (in EBCDIC) by the microprogram before the printing operation. During printing, RAM is accessed to determine which character to print. Assume the character from RAM is an A, which is hex C1 A. ROS is then accessed eight times as the print head moves through the first print position of the line. As the head moves through that print position, the print wire magnets are fired as deter-

bytes D

RAM is accessed again for the second character For example, assume the letter D, which is hex $C 4$ ROS is then accessed eight more times (as the head moves through the second print position) to determine which print wire magnets to fire.

If the character is a changeable U.S. ASCII, or World Trade special character, RAM must be ocessed eight times to print the wire imase (See ROS Addressing in this section.)

Control information for the attachment is loaded into RAM beginning at the following fixed locations:

Location
208

249
254

Description

Print head motor timing
Print emitter timings Right and left tabs

The attachment can access RAM for control information during printing except when it is accessing the EBCDIC character from RAM or the wire image from either RAM or ROS. Control information fo print head home position is used only during a Restore in this section.

Print Motor Drive

The print head stepper motor is driven by four line em the attachment: 'prt drv A^{\prime}, 'prt drv not A ' 'prt drv B ', and 'prt drv not B '.

When the head is starting, printing/spacing, stopping, rettling. only two of the four drive lines are active at any one time. When the head is stopped for a length of time that is greater than the settling time, none of the four drive lines is active.
ach time the phase (status) of the four lines is changed, two degrees of motor rotation results. The ngth of time that the lines stay in each phase is controlled by the IMPL motor timings that are tored in RAM locations 208-221.
he contents of these 14 RAM locations are divided into three groups of intervals

Settling Intervals

The settling intervals are not stored in RAM. They are created by using a 1.02 ms oscill ator to increment the 'settle/interval' counter. When the counter reaches 49 (50 ms), the settling interval is over.

If characters are to be printed after the settle interval, the interval is called a start settle interval. Start settle intervals activate two of the drive lines lin the same configuration as the preceding stop settle interval) for 50 ms . This ensures that the two activated drive lines are holding the stepper motor and drive belt steady when the next start interval is initiated.

If no characters are to be printed after the settle interval, the interval is called a stop settle interval. Only after a stop settle interval are the four drive lines deactivated.

Start Intervals

After a 50 ms start settle interval, the motor event counter is used to access RAM for an IMPL motor time. The motor time is set into the motor elapse counter, and the motor event counter is incremented by one. A $64 \mu \mathrm{~s}$ oscillator is used to decrement the motor elapse counter. When this counter gets down to one, the stepper motor drive line phase is changed the next sequential position of RAM is read out into the motor elapse counter,

Ip-to-speed Intervals

This sequence repeats until the event counter reaches hex B or the print head reaches the second tab. If the print head has not reached the tab by the time the counter reaches hex B, advance pulses to the event counter are blocked and the same position of RAM accessed repeatedly and read out into the motor elapse counter until the head position counter the tab. A stop sequence is initiated when the head reaches the tab.

Stop Intervals

When the tab and the head position counter compare equal, the motor event counter is forced to hex C and the first of two stop settle times is accessed from RAM and loaded into the motor elapse counter.

The motor elapse counter is again decremented by the 64μ s oscillator, and when the counter gets to one, the second stop time is accessed from RAM and loade into the motor elapse counter.

The motor event counter is incremented to hex \mathbf{E} and when the motor elapse counter reaches one, the settle/interval counter begins to time the 50 ms stop settle time.

Note: Compare equal forces the first stop interval to be read out of RAM.

This page is intentionally left blank.

Underscore

The EBCDIC code for an underscore is hex 6D. ROS ontains a wire image of the underscore at location 360-367.

If the system programmer wants to underscore some haracters of a print line, he must issue an SIO instruc on to print the line, then issue another SIO instruction o underscore the characters that are to be emphasized.

Head Restore

head restore operation causes the head to move into the left margin and stop where the head tract ramp moves the head away from the paper. Restoring the head prevents ribbon ink from bleeding on the paper and makes paper insertion easier.

When the head is restored, it is said to be unloaded at print head home, retracted, or in the forms loading/unloading position.

As the head moves left through the right edge of the eft margin, the head position counter is forced to ex 00 for recalibration. As the head moves farth left into the left margin, every tenth emitter pulse crements the position counter to hex FF, FE, FD, etc.

If the head is not in the left margin when the restore peration is begun, it is started going left. The print head home position value is read out of RAM and compared to the head position counter during each mitter time. When they compare equal, the head is stopped and allowed to settle for 50 ms .

If the head is in the left margin when the restore peration is begun, it is started going right until he 'left margin' line is no longer active. It is then topped, allowed to settle for 50 ms , and started going left. The operation from this point on is xplained in the previous paragraph.

destore operations can be started in three way

1. The print motor elapse counter is used to tim a two minute interval after each $1 / O$ micro instruction is executed If no micro instru tions are received by the attachment within two minutes, the attachment restores the print head.
2. If the microprogram issues a check reset command to the serial printer, the prin head is restored by the attachment.
3. If the microprogram issues a restore head command to the serial printer, the print head is restored by the attachment.

FORMS OPERATION FLOWCHART

Moving The Forms

After the line is printed, the attachment requests an interrupt and the microprogram branches to an terrupt handling routine to evaluate the print peration. If there were no errors, the micropro gram issues an IOCL command with a modifier for forms control.
The system programmer must tell the attachmen how many lines to space or which line to skip to before telling it to go. This is done with a system IS instruction that causes the microprogram to iocL has a modifier of hex C that tells the the ment to set the line count plus one that is on the DBO o the lint time count The micro rogram then issues another IOCL command to bring up the 'forms go' line in the attachment to attachment to

As the forms emitter disk rotates, forms emitter pulses are sent to the forms emitter counter in the attachment. The forms emitter counter is a binary counter that counts from 0 to 15 . Its output is decoded so that at each emitter count of 15 (16 emitter pulses), the forms line/print time counter is decreased by one.

When the forms line/print time counter reaches zero, a 1 ms stop interval and 50 ms settle interval occur, the 'forms busy' latch is reset, the 'carriage op end' latch is set, and the attachment raises th interrupt request' line to the port (channel).

COMMANDS

Seven microprogram commands control all serial printer operations and communicate the status of the printer to the microprogram.

Load Command
I/O Load (IOL)

(I/O Storage [WTM])

*Not used in 120 cps attachment.

I/O storage IOL and IOCL commands contro printing and forms movement; the other com mands evaluate previous operations.

O Load I/O Control Load I/O Control Load
I/O Sense 1/O Sense I/O Control Sense Jump I/O Sense Interrupt
Level Status /O Storage

1OL (Continued)

Modifier: Port DBO 4, 5, 6, 7 (Hex)	Port DBO Bit	Command	Action	FEALD Page
0010 (2)	-	Set Interrupt Request	Sets the 'micro interrupt request' latch on, which initiates an interrupt	FR141, 241
0011 (3)	-	Reset Interrupt Request	Resets the 'micro interrupt request' latch.	FR141, 241
0101 (5)	-	Special Diagnostic Control	Prevents a set to motor elapse counter so that the head doesn't restore at 2 minutes.	FR127, 227
0110 (6)		Interrupt Request Control	Turns on the 'print op end' latch when print busy falls which allows the 'micro interrupt request' latch to turn on. Turns on the 'carriage op end' latch when forms busy falls which allows the 'micro interrupt latch' to turn on.	FR141, 241 FR141, 241
1001 (9)	0-7	Memory Load	Loads the DBO byte to the RAM position as determined by MAR.	F0070
1010 (A)	0-7	Load MAR	Loads the Memory Address Register (-DBO bits 0-7)	F0014
1011 (B)	-	Enable Diagnostic Mode	Sets the diagnostic latches to simulate actual signal lines and invoke 'disable motors'.)	$\left\{\begin{array}{c}\text { FR120, } 220\end{array}\right.$
1100 (C)	-	Disable Diagnostic Mode	Resets the diagnostic latches.	$\left\{\begin{array}{l} \text { FR131, } 231 \\ \text { FR145, } 245 \end{array}\right.$
$110 \underset{1}{1}(\mathrm{D})$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Diagnostic Mode Control Byte	Allows DBO bit 0 to set/reset diagnostic control mode. Allows DBO bit 1 to set/reset the diagnostic print emitter 1 latch. Allows DBO bit 2 to set/reset the diagnostic print emitter 2 latch. Allows DBO bit 3 to set/reset allow diagnostic control.* Allows DBO bit 4 (multiplex-4) to flip-flop the base oscillator. Allows DBO bit 5 (multiplex-5) to set the diagnostic print emitter 3 latch. Allows DBO bit 6 to pulse the 64μ s clock. Allows DBO bit 7 (multiplex-7) to set the left margin latch.	FR156, 256 FR156, 256 FR156, 256 FR156, 256 FR131, 230 FR156, 256 FR145, 245 FR120, 220
$1110 \text { (E) }$	$\begin{aligned} & 1 \\ & 2 \\ & 4 \end{aligned}$	Diagnostic Mode Control Byte (2)	Allows DBO 1 bit to bring up forms emitter B. Allows DBO 2 bit to bring up forms emitter A. Allows DBO 4 bit to set wire check.	FR145, 245 FR145, 245 FR141, 241
1111 (F)	-	Check Reset	Resets all pending checks, restores the head, and brings up 'printer reset'.	FR150, 250

[^4]
I/O Control Load (IOCL)

[^5]| Modifier: CCB 3, 4, 5, 6 (Hex) | Port
 DBO
 Bit | Command | Action | FEALD Page |
| :---: | :---: | :---: | :---: | :---: |
| 0000 (0) | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Diagnostic Adapter Control (+IOCL Byte 0) | Allows DBO bit 1 to set Kana mode latch. Allows DBO bit 2 to reset Kana mode latch. Allows DBO bit 3 to set the disable motors la ch. Allows DBO bit 4 to set the memory data check latch. | FR131, 231
 FR131, 231
 FR145, 245
 FR131, 231 |
| 0001 (1) | 0.7 | Diagnostic Wire Control | Allows DBO bits $0-7$ to pass through the JK selector and become direct data input from the microprogram to the wire latches. | F0060 |
| 0100 (4) | - | IOCL Enable Adapter | Resets the system/adapter reset latch. | FR143, 243 |
| 0101 (5) | - | IOCL Disable Adapter | Sets the system/adapter reset latch. | FR143, 243 |
| 1000 (8) | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | Buffer Page/Byte Selection | Allows DBO bit 0 to select high page.
 Allows DBO bit 1 to select low page.
 DBO bit 2 off selects RAM. DBO bit 2 on selects ROS.
 DBO bit 3 off selects low ROS byte. DBO bit 3 on selects high ROS byte. | $\begin{aligned} & \text { FQO10 } \\ & \text { FQ010 } \\ & \text { FQ010 } \\ & \text { FQ010 } \end{aligned}$ |
| 1001 (9) | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 6 \\ & 7 \end{aligned}$ | Print Cycle Control (+IOCL Byte 9) | Allows DBO bit 0 to enable start print.
 Allows DBO bit 1 to disable unprintable character detection.
 Allows DBO bit 2 to enable unprintable character detection.
 Allows DBO bit 3 to restore the print head when then carriage is not busy.
 Allows DBO bit 6 to set print direction to the right and allow print (FR114).
 Allows DBO bit 7 to set print direction to the left (reset print direction right) and allow print (FR114).* | FR123, 223
 FR131, 231
 FR131, 231
 FR123, 223
 FR123, 223
 FR123, 223 |
| 1010 (A) | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | | Sets 120 cps mode.
 Resets 120 cps mode. | $\begin{aligned} & \text { FR260 } \\ & \text { FR260 } \end{aligned}$ |
| 1011 (B) | 0-7 | Load Forms Line Counter (+IOCL Line Count) | Loads the forms line/print time counter with the number of lines plus 1. | FR130, 230 |
| 1100 (C) | $\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 6 \\ & 7 \end{aligned}$ | Diagnostic Forms Control (+IOCL Byte C) | Allows DBO bit 1 to set forms go and reset Kana mode. Allows DBO bit 3 to set the end of forms enable latch. Allows DBO bit 4 to reset the end of forms enable latch. Reserved.
 Reserved. | FR143, 243
 FR143, 243
 FR143, 243 |
| 1101 (D) | $\begin{aligned} & 0 \\ & 1 \\ & 7 \end{aligned}$ | Head Position Counter (+Diagnostic Test Mode) | Allows DBO bit 0 to set the test mode latch and the diagnostic decrement counter. Allows DBO bit 1 to set the test mode latch and the diagnostic increment counter. Allows DBO bit 7 to reset the test mode latch. | FR110, 210
 FR110, 210
 FR110, 210 |

[^6]
Sense Command

Modifier: Port DBO 4, 5, 6, 7 (Hex)	Port DBI Bit	Command Bit	Action	FEALD Page
0000 (0)		Sense Byte 0	The forms motor hung latch is set on if forms emitter pulses aren't received for 125 ms when 'forms go' is active. Sets any check dot to DBI 1. Any check refers to the last print operation and sets the horizontal check latch. Any of the following conditions may set this bit: - Emitters out of order (sampled from the head direction latch). - Emitters too fast (set by the emitters too fast check latch). - Print head hung (set by the print head hung latch). - Unprintable character (set by the invalid character latch because of an undefined character). - Printer not ready (developed by sampling the +10.8 and +24 voltages. It is also forced by wire check). - Memory data check (developed from memory data check latch). Sets forms runaway latch if the time needed to move 127 lines is exceeded. Sets end of forms latch if the end of forms switch senses the absence of forms.	FR149, 249 FR143, 243 FR110, 210 FR132, 232 FR110, 210 FR131, 231 FR131, 231 FR149, 249 FR143, 243
0001 (1)	$\begin{array}{\|l} \hline 0 \\ 1 \\ 4 \\ 5 \\ 6 \\ \hline \end{array}$	Sense Byte 1 Note: These 5 bits also set bit 1 of byte 0 on.	Serial printer not ready is a result of testing the printer ready line. A wire check indicates that a print wire magnet was energized too long. It also forces byte 1 bit 0 . A memory data check indicates that an out of parity byte was read out of ROS or RAM. Print emitter too fast indicates that the print head is moving too fast for proper synchronization. An unprintable character check indicates a character was requested but not defined (invalid character).	WK 120 FR141, 241 FR131, 231 FR131, 231 FR131, 231
0110 (6)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Interrupt Condition (+1OS Byte 6)	Reflects the status of the forms busy go latch. Reflects the status of the print busy latch.	FR147 FR176, 226
1001 (9)	-	Memory Sense (+IOS Byte 9)	Gates data from RAM or ROS to the DBI.	FR131, 231
1010 (A)	-	Sense MAR	Gates the value in MAR to the DBI.	F0012
1011 (B)		Diagnostic Sense (+IOS Byte B)	Gates a hex 00 onto the DBI for diagnostic purposes.	FR151, 251 FR152, 252 FR153, 253 FR154, 254 FR155, 255
1100 (C)		Diagnostic Sense (+IOS Force 55)	Gates a hex 55 onto the DBI for diagnostic purposes.	
1101 (D)		Diagnostic Sense (+IOS Force AA)	Gates a hex AA onto the DBI for diagnostic purposes.	
1110 (E)		Diagnostic Sense (+ IOS Force FE)	Gates a hex FE onto the DBI for diagnostic purposes.	

IOCS (Continued)

Modifier: Port DBO 4, 5, 6, 7 (Hex)	Port DBI Bit	Command	Action	$\begin{aligned} & \text { FEALD } \\ & \text { Page } \end{aligned}$
0000 (0)	$\begin{aligned} & 4 \\ & 6 \\ & 7 \end{aligned}$	Diagnostic Sense Bits (+ Control Sense Byte 0)	$\begin{aligned} & \text { Print right selected } \\ & \text { Emiter interval Latch A } \\ & \text { Emitter interval Latch B } \end{aligned} \quad\{\text { These signals are gated to the DBI for diagnostic purposes. }$	FR154, 254 FR155, 255 FR155, 255
0001 (1)	0.7	IOCS Head Position Counter	This command gates the value of the head position counter onto the DBI.	FR 112, 212
0010 (2)	$\begin{aligned} & 0 \\ & 1 \\ & 7 \end{aligned}$	Diagnostic Inputs (+ IOCS Byte 2)	$\begin{aligned} & \text { Forms emitter A } \\ & \text { Forms emitter B } \\ & \text { Left margin switch } \end{aligned} \text { These signals are gated to the DBI for diagnostic purposes. }$	FR145, 245 FR145, 245 WK 120
0100 (4)	0-7	Diagnostic Wrap	Wire wrap data (1-8) used to test the print latches without actually printing.	FR143, 243
0101 (5)	$\begin{aligned} & 0,2 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Diagnostic Sense	Forms drive A, Forms drive B Serial printer reset Print drive A Base oscillator Print drive B These signals are gated to the DBI for diagnostic purposes.	FR145, 245 FR112, 212 FR157, 257 FR156, 256 FR157, 257
0111 (7)	$\begin{aligned} & 0-3 \\ & 4 \end{aligned}$	Diagnostic Sense Mod 1	Sense emitter event counter (bit $0=8$, bit $1=4$, bit $2=2$, bit $1=1=8 \mu \mathrm{~s}$ clock). Sense start trigger set.	FR114, 214 FR114, 214
1001 (9)	$\begin{array}{\|l} 0-3 \\ 4-7 \end{array}$	Diagnostic Sense Mod 1 (+ SNS Emitter Column Counter)	Gate multiplex JK bits $4-7$ onto DBI bits $0-3$ Gate the emitter column counter onto DBI 4-7.	$\begin{array}{\|l\|} \hline \text { FQ060 } \\ \text { FR112, } 212 \end{array}$
1010 (A)	4-7	Diagnostic Sense Mod 2 (+ Control Sense Byte A)	Gates the results of the motor elapse counter (8,4,2,1) onto the DBI.	FR127, 227
1011 (B)	$\begin{array}{\|l} 1-3 \\ 4-7 \end{array}$	Diagnostic Sense (+ IOCS Sense Byte B/ Settle/Interval Low)	Gates the settle/interval counter onto the DBI (low) Gates the results of the motor elapse counter $(128,64,32,16)$ onto the DBI.	$\begin{aligned} & \text { FR145, } 245 \\ & \text { FR127, } 227 \end{aligned}$
1100 (C)	$\begin{array}{\|l\|} \hline 1-3 \\ 4-7 \end{array}$	Diagnostic Sense (+ IOCS Sense Byte C/ Settle/Interval High)	Gates the settle/interval counter onto the DBI (high). Gates the results of the motor event counter onto the DBI.	FR145, 245 FR123, 223
1101 (D)	$\begin{array}{\|l\|} \hline 0-3 \\ 5-7 \end{array}$	Diagnostic Sense (+ IOCS Sense Byte D)	Gates the results of the forms emitter counter onto the DBI Gates head compare low (bit 5), equal (bit 6) and high (bit 7) onto the DBI	$\begin{aligned} & \text { FR143, } 243 \\ & \text { FR112, } 212 \end{aligned}$
1110 (E)	4.7	Diagnostic Sense Mod 3	Gates forms line/print time counter (low) onto the DBI	FR130, 230
1111 (F)	4-7	Diagnostic Sense Mod 3	Gates forms line/print time counter (high) onto the DBI.	FR130, 230

ATTACHMENT FUNCTIONAL UNITS

(40/80 cps only)

Print Emitter

The print emitter \mathbf{A} sends a pulse to the attachment
for each $1 / 10$ inch (0.254 mm) of print head move-
ment. Print head direction determines the sequence
of emitter pulses. 1, 2, 3, 1 equals left to right and
, 2, 1, 3 equals right to left. The sequence is
monitored by the 'emitter history' latch (FR110).
Emitter pulses are used by the attachment to deter
mine head position, head direction, and when to
fire the print wire magnets.

The number of print emitter 1, 2 , and 3
pulses depends on how far the print head
pulses depends on how far the print head
is into the left margin.

Print Head Moving Left to Right

Print Emitter Event Counter (FR114

Each print emitter pulse starts the emitter event counter B. It counts from hex 0 to F each time it is started and then stops at F. The following function are performed at the indicated decodes of the event counter

Emitter Pulse \qquad

A - Event counter starts with the rise of any print emitter pulse.

B - If emitter is not still active, resets the event counter and waits for a longer emitter pulse.

C - Samples previous head direction and starts printing sequence.
D - Compares previous and present head directions.
(E) - Increases or decreases the emitter column counter
F - Sets latches with present head direction and samples if emitter pulse is still active.

G - Resets event counter and waits for next emitter to start the event counter again

Emitter Column Counter [ECC] (FR112)

The ECC (emitter column counter) \mathbf{C} counts print emitter pulses from the serial printer, divides eat print position into 10 equal parts; and sets MAR bits 5, 6 , and 7 for RAM or ROS addressing. It also updates the print head position counter when the head is in the space between print positions.

Three models of the serial printer are bidirectional, consequently, the operation of the ECC is not the same for printing left to right as for printing right to left.

Printing Left to Right

The ECC counts up from 0 to 9 and then starts over again at zero. An emitter pulse occurs for each $1 / 100$ inch (0.254 mm) of head movement. Each mite 0.254 mit 0 for $1 / 10$ inh (2.54 m) of print ind 10 mint position on the is $1 / 10$ inch and the ECC print position on the line is $1 / 10$ inch and the ECC divides each position into 10 increments of time and distance.

As the head moves to the right through a print position, print wire magnets may be fired on ECC counts 2 through 8 . ECC counts 9,0 and 1 become the column space (space between cha acters). When the count steps from 9 to 0 , the print head position counter is increased by one.

Printing Right to Left (Bidirectional Only)
The ECC counts down from 9 to 0 and then starts over at nine. Print wire magnets can be fired o ECC counts 6 through 0 . ECC counts of 9,8 , and 7 become the column space. When the coun steps from 0 to 9 , the value in the head positio counter is decreased by one.

ECC 0123456789012345
$\rightarrow \quad \mathrm{xxxxxxx}$
4 xxXxXx

As shown in the preceding diagram, there is a three ECC count difference in the positioning of a character that is printed right and then printed left. This difference is compensated for in the turnaround sequence. Assume that the head printed the first character going right and then stopped moving with a count of 4 in the emitter column counter.

If the next character is to be printed going left, a value of 3 is subtracted from the ECC when the head changes direction.

ECC 789012345678901
If the first character had been printed going left and he second was to be printed going right, a value of 3 would have been added to the ECC when the head changed direction.

Print Head Position Counter (FR112)
The position of the print head on the print line is indicated by an eight position binary counter called the print head position counter \mathbf{D}. The microprogram can sense the contents of the counter by using an IOCS command with a modifier of hex 01

When print head motion is left to right, the contents of the head position counter is increased by one for every tenth emitter column counter pulse. The head position counter value is decreased in a similar When the head is at the right edge of the left margin, the value in the counter is hex 00 .

As the head moves left into the left margin, the counter goes from 00 to FF, FE, FD, to FC. Because these values are much larger than decimal 131, the attachment can determine if the head is in the left margin or to the right of print position 131.

When the Fx value in the counter turns on the two high order bits, the 'buffer $6 / 7$ ' latch is set to indicate that the head is in the left margin. When the two high order bits are on, that value is at least 192. Because it is impossible to move the head to the right as far as print position 192, it is assumed that the head is left of (or inside) the left margin.

Counter Relationships

1. Each print emitter pulse starts the print emitter event counter.
2. Print emitter event counter counts $0-F$ and advances the emitter column counter at hex B time.
3. Emitter column counter supplies MAR bits 5, 6, and 7 for ROS accessing of the wire image of the character
4. Head position counter is stepped when the emitter column counter goes from 9 to 0 . mitter column counter goes from 9 to lddress for the EBCDIC character to be printed.

Emitters

 Head Position Counter

■ \qquad

$40 / 80 \mathrm{cps} \quad$ S-PTR-21

Memory Address Register (FQ014)

MAR is an eight bit register that is used to address ither RAM or ROS. An eight bit register can only address 256 positions ($0-255$) or one page of storage. set of latches (controlled by the attachment or A set of latches (controlled by the attachment or or ROS and the correct RAM/ROS page.

RAM has 512 positions and is divided into two pages of 256 bytes each. ROS has 1024 positions and is divided into four pages of 256 bytes each.

When loading the data buffer in RAM, the correct RAM/ROS page is selected by the microprogram nd then MAR is set to each buffer address by the microprogram before transferring each EBCDIC character to the buffer. During printing, the head osition counter sets an address into MAR FOI RAM the EBCDIC code of the character to be printed.

Settle/Interval Counter (FR145)

six position binary counter times the following unctions:

The $\mathbf{5 0} \mathbf{~ m s ~ s t a r t ~ a n d ~ s t o p ~ s e t t l i n g ~ t i m e s ~ f o r ~}$ he print head stepper motor, and the 50 ms
top settling time for the forms stepper motor.
2. The $\mathbf{1} \mathbf{~ m s ~ s t o p ~ i n t e r v a l ~ f o r ~ t h e ~ f o r m s ~ s t e p p e r ~}$ motor.
3. The 125 ms timeout for the print head hung check.
The $\mathbf{1 2 5} \mathrm{ms}$ timeout for the forms hung check.
5. The 6 to 7 second timeout for the forms runaway check.

The rate of advancing the settle/interval counter is determined by the operation that is being performed.

Print Motor Event Counter (FR123)

This counter is a four position binary counter. It is used to access RAM for IMPL motor times while the print head stepper motor is in start, up-to-speed, and stop intervals.

The motor event counter starts with a value of zero. When the stepper motor is using start or up-to-speed intervals, advance pulses are allowed to increment the counter until it reaches a count of hex B. As long as the head is moving, the event counter is held at a count of hex B . When a stop sequence is initiated the event counter is forced to hex C and then advanced to hex \mathbf{E}. In other words, the counter is advanced by one up to hex B as long as RAM is being accessed for motor times, the print head stepper motor drive line phases are being switched, and a stop interval is not being initiated.
The motor event counter is reset to zero when the stop settle interval is ended. See Print Motor Drive in this section for information about motor intervals.

Print Motor Elapse Counter (FR127)

This is an eight position binary counter. It controls the length of time that the four stepper motor drive lines (A, not A, B, not B) are held in any given phase.

When the print head is moving, the 14 IMPL motor times are read out of RAM one at a time and set into the print motor elapse counter. The value in the counter is decremented by a 64μ s oscillator. When the counter reaches a value of one, two functions are performed:

1. The phase of the four stepper motor drive lines is changed to cause motor rotation. (The length of time that the drive lines are held in a given phase is the function of the value of the motor timings that are set int RAM at IMPL time.)
2. The print motor event counter is advanced. (See Print Motor Drive in this section for print operations.)

The print motor elapse counter is also used to time the two minute interval for head restoring.

After the execution of each I/O micro instruction, the counter is set with a value of 121 . An oscillato begins to decrement that value. If the counter valu reaches one before another $1 / 0$ micro instruction is received by the attachment, the attachment restore the head to print head home position. (See Head Restore in this section.)

Forms Emitter Counter (FR143)

The forms emitter counter \boldsymbol{A} is a four position binary counter. It is advanced by each forms emitter pulse. Each time the 8 latch of the counter is turned off (counter goes from F to 0), a value of one is subtracted from the forms line/print time counter.

Forms Line/Print Time Counter (FR130)
The forms line/print time counter B is an eight position binary counter. It is a multipurpose counter that is shared by forms and printing operations. In either case, a value is set into the counter and then reduced to provide a specific sequence of events or amount of time.

Forms Operation

When the forms line/print time counter is used for a forms operation, the number of line plus on to be spaced is set into the counter before the be spaced is set into the counter before the
'forms go' line is activated. 'Forms go' starts the 'orms go line is activated. Forms go starts the
stepper motor and decreases the counter by one Stepper motor rotation causes forms emitter pulses to advance the forms emitter counter. The sixteeth emitter pulse (one line was spaced) turns off the 8 latch in the forms emitter counter. Each time the 8 latch goes off, the forms line/print time counter is decremented by one. When the counter value gets to zero, forms go is deactivated and stops the stepper motor and emitter pulses. After a 50 ms settle time, none of the stepper motor drive lines is active.

Print Operation

The forms line/print time counter is used during a rint operation to perform the following function see Storage Accessing-Print Timing Chart):

1. Delay the firing of print wire magnets until the latest print emitter pulse is checked for proper sequence and duration.
2. Control the length of time (one vertical row dots) that print wire magnets are energized.
3. Monitor the frequency of print emitter pulses (emitters too fast check).
4. Time the readout of RAM and ROS for the configuration of print wire magnets to be fired during the next wire fire time (after the next emitter pulse is received from the printer).

During printing operations, this counter is used as timer. It is set with some value and decremented one. The time that elapses is determined by the value set into the counter. A $16 \mu \mathrm{~s}$ clock
ecrements the counter for the three IMPL emitter times.

The values of the IMPL emitter times are not the same for the 40 and 80 cps bidirectional printers ecause of speed differences. However, the IMPL mitter times are the same for both 40 cps printer models.

Storage Accessing-Print Timing Chart

 special character) RAM/ROS accesses to determine which print wire magnets are to be fired during the next wire fire time.

ATTACHMENT FUNCTIONAL UNITS

(40/80 cps - 120 compatible only)

Print Emitter

The print emitter \boldsymbol{A} sends a pulse to the attachment
for each $1 / 10$ inch (0.254 mm) of print head move
ment. Print head direction determines the sequence
of emitter pulses. 1, , , 3, 1 equals left to right and
$3,2,1,3$ equals right to left. The sequence is
monitored by the 'emitter history' latch (FR210).
mitter pulses are used by the attachment to deter
ine head position; head direction, and when to
fire the print wire magnets.
The number of print emitter 1,2 , and 3
pulses depends on how far the print head
is into the left margin.

Print Head Moving Left to Right

Print Emitter Event Counter (FR214

Each print emitter pulse starts the emitter event
counter B. It counts from hex 0 to F each time it
is started and then stops at F. The following functions
are performed at the indicated decodes of the event
counter:

Emitter Pulse

A - Event counter starts with the rise of any print emitter pulse.

B - If emitter is not still active, resets the event counter and waits for a longer emitter pulse.

C - Samples previous head direction and starts printing sequence.
D - Compares previous and present head directions.
E - Increases or decreases the emitter column counter.

F - Sets latches with present head direction and samples if emitter pulse is still active.

G - Resets event counter and waits for next emitter to start the event counter again.

Emitter Column Counter [ECC] (FR212)

The ECC (emitter column counter) C counts print mitter pulses from the serial printer, divides each print position into 10 equal parts, and sets MAR bits 5,6 , and 7 for RAM or ROS add sessing. I und in

Three models of the serial printer are bidirectional equy the operation of the ECC is not the mor printing left to right as for printing right same left.

Printing Left to Right

The ECC counts up from 0 to 9 and then start over again at zero. An emitter pulse occurs for each $1 / 100$ inch (0.254 mm) of head move ment. Each emitter pulse advances the ECC so hat it counts from 0 to 9 for each $1 / 10$ nch $(2.54 \mathrm{~mm})$ of print head movement. Each print position on the line is $1 / 10$ inch and the ECC divides each position into 10 increments of time and distance.

As the head moves to the right through a print position, print wire magnets may be fired on ECC ounts 1 through 7, ECC counts 8,9 and 0
become the column space (space between cha ters). When the count steps from 9 to 0 , the rint head position counter is increased by one.

Printing Right to Left (Bidirectional Only
The ECC counts down from 9 to 0 and then start over at nine. Print wire magnets can be fired on ECC counts 7 through 1. ECC counts of 0,9 and 8 become the column space. When the count steps from 0 to 9 , the value in the head position counter is decreased by one.
ECC 012345678901234
$\rightarrow \quad \mathrm{xXXXXXX}$
$4 \mathrm{xx} \times \mathrm{x} \times \mathrm{x}$

As shown in the preceding diagram, there is a one ECC count difference in the positioning of a cha acter that is printed right and then printed left. This difference is compensated for in the turnaround sequence. Assume that the head printed the first character going right and then stopped moving with a count of 4 in the emitter column counter.

If the next character is to be printed going left, a value of 1 is subtracted from the ECC when the head changes direction

If the first character was to be printed going left and the second was to be printed going right, a value of 1 would be added to the ECC when the head changed direction.

Print Head Position Counter (FR212)

The position of the print head on the print line is indicated by an eight position binary counter called the print head position counter D. The microthe print head position counter D. The microusing an IOCS command with a modifier of hex 01 .

When print head motion is left to right, the contents of the head position counter is increased by one for very tenth emitter column counter pulse. The for every tenth emitter column counter pulse. The manner when head motion is from right to left. When the head is at the right edge of the left margin, he value in the counter is hex 00 .

As the head moves left into the left margin, the counter goes from 00 to FF, FE, FD, to FC. Because hese values are much larger than decimal 131, the ttachment can determine if the head is in the left margin or to the right of print position 131.

When the F_{X} value in the counter turns on the two high order bits, the 'buffer $6 / 7$ ' latch is set to indicate that the head is in the left margin. When the two high order bits are on, that value is at least 192. jint f is posible 192 it is to he head is left of (or inside) the left marg.

Counter Relationships

1. Each print emitter pulse starts the print emitter event counter.
2. Print emitter event counter counts $0-F$ and advances the emitter column counter at hex B time.
3. Emitter column counter supplies MAR bits 5,6 , and 7 for ROS accessing of the wire image of the character.
4. Head position counter is stepped when the emitter column counter goes from 9 to 0 . Head position counter supplies the RAM address for the EBCDIC character to be printed.

Emiters \quad ת
Emitter Event Counter

Emitter Column Counte

Head Position Counter

Memory Address Register (FQ014

MAR is an eight bit register that is used to address either RAM or ROS. An eight bit register can only address 256 positions ($0-255$) or one page of storage A set of latches (controlled by the attachment or an IOCL command) is used to select either RAM or ROS and the correct RAM/ROS page
RAM has 512 positions and is divided into two page of 256 bytes each. ROS has 1024 positions and is of 256 bytes each. ROS has 1024 positions

When loading the data buffer in RAM, the correct RAM/ROS page is selected by the microprog and then MAR is set to each buffer address by the microprogram before transferring each EBCDIC character to the buffer. During printing, the head position counter sets an address into MAR for RAM of the character to be printed.

Settle/Interval Counter (FR245)

A six position binary counter times the following functions:

1. The 50 ms start and stop settling times for the print head stepper motor, and the 50 ms stop settling time for the forms stepper motor
2. The $\mathbf{1} \mathbf{~ m s ~ s t o p ~ i n t e r v a l ~ f o r ~ t h e ~ f o r m s ~ s t e p p e r ~}$ motor.
3. The $\mathbf{1 2 5} \mathbf{~ m s ~ t i m e o u t ~ f o r ~ t h e ~ p r i n t ~ h e a d ~ h u n g ~}$ check
4. The $\mathbf{1 2 5} \mathbf{~ m s}$ timeout for the forms hung check.
5. The 6 to 7 second timeout for the forms runaway check.

The rate of advancing the settle/interval counter is determined by the operation that is being performed.

Print Motor Event Counter (FR223)

his counter is a four position binary counter. is used to access RAM for IMPL motor times while the print head stepper motor is in start, up-to-speed, and stop intervals.

The motor event counter starts with a value of zero. When the stepper motor is using start or up-to-speed intervals, advance pulses are allowed to increment he coun 1 reaches a coun of hex B. As a a coun dvanced to hex E . In other words, the counter is dvanced by one up to hex B as long as RAM is being accessed for motor times, the print head tepper motor drive line phases are being switched and a stop interval is not being initiated.

The motor event counter is reset to zero when the stop settle interval is ended. See Print Motor Drive in this section for information about motor intervals.

Print Motor Elapse Counter (FR227)

This is an eight position binary counter. It controls he length of time that the four stepper motor drive lines (A, not A, B, not B) are held in any given phase.

When the print head is moving, the 14 IMPL moto times are read out of RAM one at a time and set into the print motor elapse counter. The value in ecounter is decremented by a 4 ss osilwo hen the counter reaches

1. The phase of the four stepper motor driv lines is changed to cause motor rotation The length of time that the drive lines are held in a given phase is the function of the value of the motor timings that are set into RAM at IMPL time.)
2. The print motor event counter is advanced. (See Print Motor Drive in this section for print operations.)

The print motor elapse counter is also used to time the two minute interval for head restoring.

After the execution of each I/O micro instruction, he counter is set with a value of 121. An oscillator begins to decrement that value. If the counter value eaches one before another I/O micro instruction is received by the attachment, the attachment restores the head to print head home position. (See Head Restore in this section.)

Forms Emitter Counter (FR243)

The forms emitter counter \boldsymbol{A} is a four position binary counter. It is advanced by each forms emitter pulse. Each time the 8 latch of the counter is turned off (counter goes from F to 0), a value o one is subtracted from the forms line/print time counter

Forms Line/Print Time Counter (FR230)
The forms line/print time counter B is an eight position binary counter. It is a multipurpose counter that is shared by forms and printing Operations. In either case, a value is set into the counter and then reduced to provide a specific sequence of events or amount of time.

Forms Operation

When the forms line/print time counter is used for a forms operation, the number of lines plus one to be spaced is set into the counter before the 'forms go' line is activated. 'Forms go' starts the stepper motor and decreases the counter by one. Stepper motor rotation causes forms emitter pulses to advance the forms emitter counter. The sixteeth emitter pulse (one line was spaced) turns off the 8 latch in the forms emitter counter. Each time th is decremented by one When the counter value gets to zero, forms go is deactivated and stops the stepper motor and emitter pulses. After a 50 ms settle time, none of the stepper motor drive lines is active.

The forms line/print time counter is used during print operation to perform the following functions (see Storage Accessing-Print Timing Chart):

1. Delay the firing of print wire magnets until the latest print emitter pulse is checked fo proper sequence and duration
2. Control the length of time (one vertical row of dots) that print wire magnets are energized.
3. Monitor the frequency of print emitter pulses (emitters too fast check).
4. Time the readout of RAM and ROS for the configuration of print wire magnets to be fired during the next wire fire time (after the next emitter pulse is received from the printer).

During printing operations, this counter is used as a timer. It is set with some value and decremented to one. The time that elapses is determined by the value set into the counter. A $16 \mu \mathrm{~s}$ clock decrements the counter for the three IMPL emitter times.

Storage Accessing-Print Timing Chart

ATTACHMENT FUNCTIONAL UNITS
 120 cps printer only

Print Emitter

The print emitter \boldsymbol{A} sends a pulse to the attachment The print emitter \boldsymbol{A} sends a pulse to the attachment
for each $1 / 10$ inch (0.254 mm) of print head movement. Print head direction determines the sequence of emitter pulses. 1, 2, 3, 1 equals left to right and
2,1,3 equals right to left. The sequence is , $, 1,3$ equal 'emitter history' latch (FR210)
Emitter pulses are used by the attachment to deter mine head position, head direction, and when to
fire the print wire magnets.

Print Head Moving Left to Righ

Print Emitter Event Counter (FR214)

Each print emitter pulse starts the emitter event
counter B. It counts from hex 0 to F each time it
is started and then stops at F. The following functions is stared and the the F . The follow fonction counter:

Emitter Pulse

A - Event counter starts with the rise of any print emitter pulse.

B - If emitter is not still active, resets the event counter and waits for a longer emitter pulse.
C - Samples previous head direction and starts printing sequence
D - Compares previous and present head directions.
E - Increases or decreases the emitter column counter.

F - Sets latches with present head direction and samples if emitter pulse is still active.
(G) Resets event counter and waits for nex emitter to start the event counter again.

Emitter Column Counter [ECC] (FR212)

The ECC (emitter column counter) C counts print emitter pulses from the serial printer, divides each print position into 10 equal parts, and sets MAR bits 5,6 , and 7 for RAM or ROS addressing. It also updates the print head position counter when the head is in the space between print positions.

Printing Left to Right

The ECC counts up from 0 to 9 and then starts over again at zero. An emitter pulse occurs for each $1 / 100$ inch (0.254 mm) of head move ment. Each emitter pulse advances the ECC so that it counts from 0 to 9 for each $1 / 10$ inch $(2.54 \mathrm{~mm})$ of print head movement. Each print position on the line is $1 / 10$ inch and the EGC divides each position into 10 increments of time and distance.

As the head moves to the right through a print position, print wire magnets may be fired on ECC counts 1 through 7. ECC counts 8,9, and 0 become the column space (space between cha acters). When the count steps from 9 to 0 , the print head position counter is increased by one.

Printing Right to Left (Bidirectional Only)
The ECC counts down from 9 to 0 and then starts over at nine. Print wire magnets can be fired on over at nine. Print wire magnets can be fired and 8 become the column space. When the coun and 8 become the colum space. Whe 0 eosition counter is decreased by one

ECC 0123456789012345
$\rightarrow \mathrm{xXXXXXX}$
4 xxxxxxx

As shown in the preceding diagram, there is a two ECC count difference in the positioning of a char This difference is compensated for in the turnaround sequence. Assume that the head printed the first character going right and then stopped moving with a count of 4 in the emitter column counter.

x x x x x x x
f the next character is to be printed going left, a value of 2 is subtracted from the ECC when the head changes direction.
ECC 0123456789012345

ECC 890123456789012
the first character was printed going left and he second was to be printed going right, a value of would be addled to the ECC when the head changed direction.

Print Head Position Counter (FR212)

The position of the print head on the print line is indicated by an eight position binary counter called the print head position counter D. The microprogram can sense the contents of the counter by using an IOCS command with a modifier of hex 01 .

When print head motion is left to right, the contents of the head position counter is increased by one for every tenth emitter column counter pulse. The head position counter value is decreased in a similar manner when head motion is from right to left. the value in the counter is hex 00 .

As the head moves left into the left margin, the counter goes from 00 to FF, FE, FD, to FC. Because these values are much larger than decimal 131, the attachment can determine if the head is in the left margin or to the right of print position 131.

When the F_{x} value in the counter turns on the two high order bits, the 'buffer $6 / 7$ ' latch is set to indicate the head is in the left margin. When the tw high order bits are on, that value is at least 192 Because it is impossible to move the head to the the head is left of (or inside) the left margin.

Counter Relationships

Each print emitter pulse starts the print emitter event counter.
2. Print emitter event counter counts 0-F and advances the emitter column counter at hex B time.
3. Emitter column counter supplies MAR bits 5,6 , and 7 for ROS accessing of the wire image of the character.
4. Head position counter is stepped when the mitter column counter goes from 9 to 0 . Head position counter supplies the RAM ddress for the EBCDIC character to be printed.

Emitters

Emitter Event Counter

Emitter Column Counter

Head Position Counter

Memory Address Register (FQ014

MAR is an eight bit register that is used to addres either RAM or ROS. An eight bit register can only address 256 positions $(0-255)$ or one page of storage. A set of latches (controlled by the attachment or an lOCL command) is used to select either RAM or ROS and the correct RAM/ROS page.
RAM has 512 positions and is divided into two page of 256 bytes each. ROS has 1024 positions and is of 256 bytes each. ROS has 1024 positions

When loading the data buffer in RAM, the correct RAM/ROS page is selected by the microprogram and then MAR is set to each buffer address by th microprogram before transferring each EBCDIC character to the buffer. During printing, the head accessing of the data buffer to get the EBCDIC code of the character to be printed.

Settle/Interval Counter (FR245)

A six position binary counter times the following functions:

1. The 50 ms start and stop settling times for the print head stepper motor, and the 50 ms stop settling time for the forms stepper motor.
The 1 ms stop interval for the forms steppe motor.
2. The $\mathbf{1 2 5} \mathrm{ms}$ timeout for the print head hung check.
3. The $\mathbf{1 2 5} \mathbf{~ m s ~ t i m e o u t ~ f o r ~ t h e ~ f o r m s ~ h u n g ~ c h e c k ~}$
4. The 6 to 7 second timeout for the forms runaway check.

The rate of advancing the settle/interval counter is determined by the operation that is being performed

Print Motor Event Counter (FR223

This counter is a four position binary counter. It is used to access RAM for IMPL motor times while the print head stepper motor is in start, up-to-speed and stop intervals.

The motor event counter starts with a value of zero. When the stepper motor is using start or up-to-speed intervals, advance pulses are allowed to increment the counter until it reaches a count of hex B. As long as the head is moving, the event counter is held at a count of hex B . When a stop sequence is initiate deand to hox E. In other words, the counter advanced by one up to hex B as long as RAM is being accessed for motor times, the print head stepper motor drive line phases are being switched and a stop interval is not being initiated

The motor event counter is reset to zero when the stop settle interval is ended. See Print Motor Drive in this section for information about motor intervals.

Print Motor Elapse Counter (FR227)

This is an eight position binary counter. It controls the length of time that the four stepper motor driv lines $(A, \operatorname{not} A, B, \operatorname{not} B)$ are held in any given phase.
When the print head is moving, the 14 IMPL motor times are read out of RAM one at a time and set into the print motor elapse counter. The value in the counter is decremented by a $64 \mu \mathrm{~s}$ oscillato When the counter reache

1. The phase of the four stepper motor drive lines is changed to cause motor rotation. (The length of time that the drive lines are held in a given phase is the function of the value of the motor timings that are set into RAM at IMPL time.)
2. The print motor event counter is advanced (See Print Motor Drive in this section for print operations.)

The print motor elapse counter is also used to time the two minute interval for head restoring.

After the execution of each I/O micro instruction, the counter is set with a value of 121. An oscillato begins to decrement that value. If the counter valu reaches one before another I/O micro instruction is received by the attachment, the attachment restores the head to print head home position. (See Head Restore in this section.)

Forms Emitter Counter (FR243)

The forms emitter counter \boldsymbol{A} is a four position binary counter. It is advanced by each forms emitter pulse. Each time the 8 latch of the counter is turned off (counter goes from F to 0), a value of one is subtracted from the forms line/print time counter.

Forms Line/Print Time Counter (FR230)
The forms line/print time counter B is an eight position binary counter. It is a multipurpose counter that is shared by forms and printing perations. In either case, a value is set into the counter and then reduced to provide a specific sequence of events or amount of time.

Forms Operation

When the forms line/print time counter is used for a forms operation, the number of lines plus one to be spaced is set into the counter before the forms go' line is activated. 'Forms go' starts the stepper motor and decreases the counter by one. Stepper motor rotation causes forms emitter pulses to advance the forms emitter counter. The sixteeth emitter pulse (one line was spaced) turns off the 8 latch in the forms emitter counter. Each time the Blatch goes off, the forms line/print time counter is decremented by one. When the cound value stepoer motor and emitter pulses. After a 50 ms sette time, non of the steppr moter settle time, none of the stepper motor drive lines is active.

The forms line/print time counter is used during a print operation to perform the following function (see Storage Accessing-Print Timing Chart)

1. Delay the firing of print wire magnets until the latest print emitter pulse is checked for proper sequence and duration.
2. Control the length of time (one vertical row of dots) that print wire magnets are energized.

Monitor the frequency of print emitter pulses (emitters too fast check).
4. Time the readout of RAM and ROS for the configuration of print wire magnets to be fired during the next wire fire time (after printer)

During printing operations, this counter is used as a timer. It is set with some value and decremented to one. The time that elapses is determined by the value set into the counter. A $16 \mu \mathrm{~s}$ clock decrements the counter for the three IMPL emitter
times. times.

The values of the IMPL emitter times are not the same for the three models of bidrectional printers, because of speed differences. However, the IMPL emiterts. models.

Storage Accessing-Print Timing Chart

The 56 characters that are the same for U.S., WTC and ASCII character sets are stored in ROS. Th other eight characters are stored in RAM. For these eight characters, ROS contains addresses for RAM accesses to get the wire image of the eight changeable special characters.

Each wire image in ROS uses 8 bytes. The first byte of each image is the control byte that denotes whether the character is valid, invalid, or one of the eight changeable special characters. The next seven consecutive bytes store the wire image of the character (or the RAM address of the wire image of the special characters).

As shown in the illustration, ROS is divided into four parts called pages. Each page contains 256 addresses. Paging is controlled by bits 0,1 , and 20 the EBCDIC byte that is read out of RAM data buffer A.

Bit 0	Bit 1	Bit 2	Addresses
0			0
0	1	0	$0-255$
1	1	0	$256-511$
1	1	1	$768-767$

To print a character in print position 1, RAM is accessed at the first position of the data buffer, and an EBCDIC character is set into the RAM dat register. Bits 0,1 , and 2 of the character are decoded to determine which page of ROS contains the wire image of the EBCDIC character.

On the same access, MAR is forced to the ROS address of the control byte of the wire image of the character to be printed. Bits $3-7$ of the RAM data register are set into positions $0-4$ of MAR B. Positions $5-7$ of MAR are set to the value of 000 bits $0-4$ of MAR determine the amount of displacement into the ROS peat and bits 5 -7 determine hich of the 8 bytes of the wire imge out.

For example, to print the letter D in print position 1 hex C 4 was loaded into the first position of the data buffer in RAM. When this byte is read out of the buffer while printing, bits 0,1 , and 5 (hex C4) are set on in the RAM data register. Because bits 0 and are on and bit 2 is off, the wire image for the etter D is stored somewhere in the $512-767$ address range of ROS D. Bits $0-4$ of MAR are set to 00100 from positions $3-7$ of the RAM data register because bit 5 was on in the data register.

On this first of eight ROS accesses, the emitter column counter value is 000 . This counter value is set into positions 5-7 of MAR. In binary, the MAR contents (00100000) add up to 32. When 32 is added to the paging value of 512 , the addres the control byte of the letter D becomes ROS location 544.

The emitter column counter value is stepped up by 1 each time a print head emitter pulse is received. The value 001 is forced into positions $5-7$ of MAR on the next emitter pulse and the MAR address is now at 545 . This second ROS access is the first that could contain wire image data because the first byte is the control byte. As subsequent emitter pulses advance the emitter column counter is value is forced into positions 5-7 of MAR, and consecutive ROS positions are accessed until the entire wire image of the letter D is printed.

Each position of ROS is 2 bytes wide ($1 \mathrm{~K} \times 18$ module). When a position of ROS is accessed, 16 ignificant bits can be read out into the ROS 16 egister. Either the high or low byte can be gated out of the data register E. Bit 1 of the EBCDIC character that is read out of RAM determines character that is read out of RAM determines If bit 1 is on, the low byte (U.S.) is used; if the bi is off, the high byte (Katakana) is used.
 bow byte (U.S.).
lot

ROS contains the wire images of the U.S., WTC, and ASCII characters that do not change. There are eight EBCDIC codes that can represent various graphic symbols depending which language being used.

At IMPL time, the wire images of the eight symbols
that are unique to the language specified by the user are loaded into RAM. When one of the eight
EBCDIC codes is loaded into the data buffer to be printed, RAM is accessed for the EBCDIC code and ROS is accessed for the control character that ROS is accessed for the control character that
denotes WTC/ASCII/U.S. changeable special character. This sets a latch called WTC/ASCII' that stays on for the entire character.

When the 'WTC/ASCII' latch is on, ROS data is used with the value in the emitter column counter to develop the RAM address of the wire image of
the special character.

Port (Channel)	Service Out	Attachment	Forms Drive A, \bar{A}, B, \bar{B}	Serial Printer
	Control Out			
	Strobe		Print Head Drive A, \bar{A}, B, \bar{B}	
	Command Out			
	System Reset		Print Wire Data 1-8	
	Clocks (4)		Serial Printer Reset	
	Port DBO 0-7 and P		Left Margin	
	Command Bus Out 0.1 and		Wire Check	
	Port DBI 0-7		Serial Printer Ready	
	CBI 4 (Condition True)		End of Forms Switch	
	CBI 5 (DBO Parity Check)		Single forms/ledger card mode switch	
	Service In			
	I/O Working		Forms Emitter A and B	
	Micro Interrupt Request		Print Emitter 1, 2 and 3	
	Multidevice Response			

ERROR CONDITIONS

Microprogramming checks a print or forms operation by issuing IOS commands to the attachment after the print or forms operation is complete. If any of the eight check conditions occurred during the print o forms operation, the attachment sets bits on in sense bytes $0 / 1$ to communicate which checks occurred (see IOS command under Commands in this section).

The following is a list of the meanings of the bits in sense bytes 0 and 1 :

Byte 0, Bit $\mathbf{0}$ - Forms Hung Check

This check monitors the forms emitter lines any time the 'forms go' line is active. If the emitte pulses do not occur within 125 ms of each other, forms hung check is set on.

Byte 0, Bit 1 - Horizontal Check

This check indicates that an error occurred in the last print operation (as opposed to a forms operation). It can be set on by the following error conditions:

Emitters Out Of Order

When the head is going to the right, the sequence of mitters should be $1,2,3,1$. When the head is going to the left, the sequence should be $3,2,1,3$. I he emitter sequence is not valid for the defined ead direction, this error condition turns on the orizontal check

Print Head Hung

If the print head stepper motor is being told to go ad there are no print head emitter pulses for 125 ms from the printer, print head hung is set on.

mitters Too Fast

his error condition indicates that the print head is位g moved across the line too fast for proper synchronization for print alignment.

Memory Data Check

This condition indicates that an even parity byte was read out of ROS or RAM.

Unprintable Character Check

This condition indicates that a character was requested for printing that was not in the defined character set. The condition occurs when the position of ROS th is addressed is coded as an invalid character by its control byte. A check will occur only if unprintab character check has been enabled by bit 0 of the flag byte in the IOB. If the check has not been enabled, a blank (space) will be printed

Printer Not Ready
The printer is not ready any time the +10.8 volt supply is undervoltage, +24 volt supply is undervoltege or overvotage, or when a wire check occurs. (Wire check is described later in this topic.)

Byte 0, Bit 2 - Forms Runaway Check
This check monitors the time from when the 'forms go' line becomes active until the forms line/print time counter gets to zero. If this time exceeds the time needed to move 127 lines, the forms runaway check is set on.

Byte 0, Bit 3 - End of Forms

End of forms is set when the end-of-forms switc senses the absence of forms if the platen pressur rolls are not engaged.

Byte 1, Bit 0 - Printer Not Ready
See horizontal check

Byte 1, Bit 1 - Wire Check

A wire check indicates that a print wire magnet was energized too long (more than 1.6 ms). This the syster has BSC or SDLC If the condition ausing the wire check gos aw, 'wir latch stays on until a check reset command is sent to the attachment. The ready comes on as soon as the condition that caused the wire check goes away.

Byte 1, Bit 4 - Memory Data Check

See horizontal check

Byte 1, Bit 5 - Emitter Too Fast Check

See horizontal check

Byte 1, Bit 6 - Unprintable Character Check See horizontal check.

Any bit that is turned on in byte 1 forces a horizontal check (byte 0 , bit 1). The microprogram can issue an IOS command with a modifier of hex 0 and deter mine that a horizontal check has occurred; then an IOS command with a hex 1 modifier can further define the cause of the horizontal check.
actuator feed back DISK-42
ADDR COMP STOP/RUN switch CNSL-9
ADDRESS/DATA/DISPLAY switches CNSL-7
address register DISP-5
address register, memory (MAR)
40/80 cps S-PTR-22
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-26
120 cps S-PTR 30
addressing, ROS S-PRT-32
ALTER MAR IRPT CNSL-3
ALTER STOR CNSL-2
ALU CPU-4, NTR-3
atheric 10
ath
attachmend printer data flow S-PTR-1
$40 / 80 \mathrm{cps}$ S-PTR-20
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-24
120 cps S-PTR-28
attachment functions KBD-1
display screen DISP-1

-

belt
position counter
50, 100, and 155 lpm printer PTR-4,-39
285 lpm printer PTR-54, - 89
speed check
50, 100, and 155 lpm printer PTR-44 285 lpm printer PTR-94
sync check
50,100 , and 155 lpm printer PTR-47 285 lpm printer PTR-97

sync timing

50, 100, and 155 lpm printer PTR-25,-31 285 lpm printer PTR-75, -81
bit ring DISP-7, DISK-8
read 33FD-48, DISK-19, -22,-23
write 33 FD-48, DISK-20,-21
blast condition CHAN-6
branch μ INSTR-4
branch (stop condition) μ INSTR-5
branch and link μ INSTR-6
branch on condition μ INSTR-7
branch on condition (stop condition) $\quad \mu$ INSTR-8 bus lines DISK-69

cards, C

anag
50,100 , and 155 lpm printer PTR-33 285 lpm printer PTR-83
spacing
50, 100, and 155 lpm printer PTR-33 285 lpm printer PTR-83
sync check
50, 100, and 155 lpm printer PTR-45 285 Ipm printer PTR-95
carry in CPU-4
CBI bit descriptions CHAN-9 CBI 4 functions DISP-26, KBD-21
CE
control panel CNSL-1
IMPL counter 33FD-20,-22
index counter advance 33FD-20, -22
ready counter advance $33 \mathrm{FD}-20,-22$
standard read clock 33FD-32,-36 standard read data pulse 33FD-32,-36 start index pulse 33FD-20,-22
START switch CNSL-7
write clock advance 33 FD-32, -36
8F read clock 33FD-32,-36
character check, unprintable S-PTR-35
character counter DISP-7
character display DISP-6
character generator DISP-4
channel CHAN-1
definition INTR-2
interfaces CHAN-1
heck byte, processor ERR HDL-
check bytes, port ERR HDL-1
CHECK RUN/STOP switch CNSL-9
CPU ERR HDL-1
port ERR HDL-1, CHAN-10
circuit location DISK-1 clock
read 33FD-48, DISK-4
write 33FD-48, DISK-4
CLOCK light CNSL-9
clock pulses DISK-4,-7
clock triggers
50,100 , and 155 lpm printer PTR-39 285 Ipm printer PTR-89

I/O CPU-12
PCR CPU-8
port CHAN-4
storage CPU-12
system CPU-12
coil current check
50, 100, and 155 Ipm printer PTR-46 285 lpm printer PTR-96
command
control load DISP-16, KBD-8, PTR-10,-60, 33FD-20
DISK-11, S-PTR-12
control sense DISP-21, KBD-15, PTR-14, -64
33FD-32, DISK-13, S-PTR-16
ump 10 DISP-24, KBD-16, PTR-20, -70
33FD-38, DISK-15, S-PTR-18
load DISP-14, KBD-6, PTR-8, -58,
33FD-14, DISK-11, S-PTR-10
33FD-14, DISK-11, S-PTR-10
sense DISP-12, KBD-12, PTR-14, -64,
33FD-18, DISK-13, S-PTR-14
sense interrupt level status byte
sense interrupt level status byte
PTR-18, -68, DISK-14, S-PTR-19
command bus in (CBI) CHAN-9, DISK-53
command bus out CHAN-7
command decode
50, 100, and 155 lpm printer PTR-39
285 lpm printer PTR-89
command timing charts DISK-17
compare immediate μ INSTR-16
connect 33FD-16,-17
console CNSL-1
control byte, ROS S-PTR-5
control load command DISP-16, KBD-8,
33FD-20, DISK-11, PTR-10, -13, -60, S-PTR-12
control load timing DISP-13, KBD-5, PTR-11, -61
ontrol
CE CNSL-
operator CNSL-
operator CNSL-1
control sense command DISP-21, KBD-14,
33FD-32, DISK-13, 33FD-32, DISK-13, PTR-14, -17, $-64,-67$, S-PTR-16
control sense timing DISP-18, PTR-16, 66, DISK-17 control storage CPU-10, INTR-3
direct area CPU- 11
control, horizontal DISP-8
controls
port CHAN-7
vertical DISP-8
wiggle DISP-8

IMPL 33FD-47
index 33FD-47
relationships
40/80 cps S-PTR-21
$40 / 80$ cps - 120 compatible S-PTR-2

$$
120 \mathrm{cps} \text { S-PTR-29 }
$$

over closed
50, 100, and 155 lpm printer PTR-50
285 lpm printer PTR-100
CPU
cards CPU-1
checks ERR HDL-
data flow CPU-2
default conditions CPU-
functional units CPU-1 INTR-3
CRC check DISK-58
CRC check DISK-58
CRC not zero, JIO
CRC shift register
33FD-39 cycle steal
from CPU DISK-48,-49
overrun check DISK-56
to CPU DISK-50, 51
cyclic redundancy check (CRC) DISK-58
$\begin{array}{ll}\text { data area waveforms DISK-35 } \\ \text { data } \\ \text { data } & \text { S.PTR-4 }\end{array}$
data buffer S-PTR-4
data check
50, 100, and 155 lpm printer PTR-48
285 lpm printer PTR-98
data check, memory S-PT

attachment

50,100 and 155 lom printer PTR- 38 285 lpm printer PTR-88
card CPU-1
disk DISK-8
diskette 33FD-5
display screen attachment DISP-3 find ID 33FD-13 keyboard attachment KBD-22 port CHAN-2
data flow (continued)
printer
50, 100, and 155 lpm printer PTR-41 285 lpm printer PTR-91
printer and attachment
50,100 , and 155 Ipm printer PTR-6 285 lpm printer PTR-56
$\begin{array}{ll}\text { read } & \text { 33FD-9 } \\ \text { seek } & 33 F D-7\end{array}$
seek 33FD-7
serial printer S-PTR-1
system INTR-5
write 33FD-11
write ID 33FD-15
data head DISK-4
data representation 33FD-3
da eprearator 33FD-46
data surface DISK-7
data unsafe DISK-36, 65
data unsafe DISK-36, -65
default conditions CPU-2
description, general INTR-1
description, general INTR-1
diagnostic mode DISK-12
direct area, control storage CPU-11
disconnect 33FD-16,-17
disk drive
capacity DISK-1,-3
format DISK-2,-3,-9
ready DISK-39
support CHAN-9
disk IMPL diagnostic sequence IMPL-2
disk IMPL operation IMPL-2
diskette format 33FD-2
display CNSL-4
display buffer DISP-10
ISPLAY INTENSITY control CNSL-7
disply PWR CHK switch
CNSL-9
DPLY STOR CNSL-3
cho check DISK-5
elapse counter, print motor $40 / 80 \mathrm{cps}$ S-PTR-22 $40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-26 120 cps S-PTR-30
elapsed time counter
50, 100, and 155 lpm printer PRT-39 285 lpm printer PTR-89

mitter

50,100 , and 155 lpm printer PTR-48 285 lpm printer PTR-98
olumn counter (ECC)
$40 / 80 \mathrm{cps}$ S-PTR-20
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-24 counter, forms
$40 / 80 \mathrm{cps}$ S-PTR-22
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-26 120 cps S-PTR-30
event counter, print
$40 / 80 \mathrm{cps}$ S-PTR-20
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-24 120 cps S-PTR-28
print
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-24 120 cps S-PTR-28
mitters out of order S-PTR-35
mitters too fast check S-PTR-35
enable CE step mode 33FD-20, - 22
enable CE wrap mode 33FD-20, -22 end of forms
serial printer S-PTR-35
50, 100, and 155 Ipm printer PTR- 50
285 lpm printer PTR-100
rase gate
missing 33 FD-44
reset 33 FD- 38 - 41
reset 33 FD-38, -40
unsafe 33FD-44
ror conditions KBD-22, PTR-43, -49, -93, -99
33FD-42, DISK-54, -64, S-PTR-35
rror handling ERR HDL-1
arror history table INTR-6
error JIO PTR-43, -93, 33FD-38, -40, DISK-15
error logging ERR HDL-4, INTR-6
error retry ERR HDL-4, INTR-6
rror status, reset 33FD-38, - 41
event counter, print motor
40/80 cps S-PTR-22
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-26
120 cps S-PTR-30
vent indicator sequence IMPL-1
fast sync DISK-28
file busy DISK-68
file ready DISK-65
find ID data flow 33FD-13
find ID operation 33FD-12
fixed disk support, channel CHAN-9
flowchart
forms operation S-PTR-9
print operation
serial printer S-PTR-3
50, 100, and 155 lpm printer PTR-7
285 lpm printer PTR-57
CNSL-9
format, 33FD diskette 33FD-2
format, disk DISK-3,-9
forms emitter counter
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-26
120 cps S-PTR-30
forms hung check S-PTR-35
forms jam check
50, 100, and 155 lpm printer PTR-44
285 lpm printer PTR-94
forms line/print time counter
$40 / 80 \mathrm{cps}$ S-PTR-22
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-26
120 cps S-PTR-30
forms loading/unloading position (of the
print head) S-PTR-8
forms moving S-PTR-9
forms operation flowchart S-PTR-9
forms operation lowchart S-PTR
forms runaway check
50, 100, and 155 lpm printer PTR-41 285 lom printer PTR-91
functional units
$40 / 80 \mathrm{cps}$ S-PTR-20
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-24
120 cps S-PTR-28
functional units, CPU CPU-4, INTR-3
general description INTR-1
guard band DISK-2, 7
half index (half line space)
50, 100, and 155 lpm printer PTR-34 285 lpm printer PTR-84
half line space operation
50, 100, and 155 Ipm printer PTR-34 285 lpm printer PTR-84
hammer fire control
50, 100, and 155 lpm printer PTR-39
285 lpm printer PTR-89
hammer firing
50, 100, and 155 lpm printer PTR-4, -29, -30, -41
285 lpm printer PTR-54, $79,-80, .91$
mmer parity check
50,100 , and 155
50,100 , and 155 lpm printer PTR-49
285 lpm printer PTR
50,100 , and 155 lpm printer PTR-39 285 lpm printer PTR-89
hammer selection
50, 100, and 155 lpm printer PTR-29, 30 285 lpm printer PTR-79, 80
hammer settling PTR-31
head hung check, print S-PTR-35
head position counter, prin
$40 / 80 \mathrm{cps}$ S-PTR-21
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-2
120 cps S-PTR-29
head restore S-PTR-8
head retract, print (head restore) S-PTR-8 head select DISK-3, 68
hex branch μ INSTR-2
hex move μ INST
home DISK-65
home DIS
50, 100, and 155 lpm printer
285 lpm printer PTR-54,91
horizontal DISP-9
horizontal check S-PTR-35
horizontal controls DISP-8
horizontal line DISP-2
\square
I/O
branch on condition μ INSTR-38,-39 clocks CPU-12
immediate μ INSTR-29,-30
instruction interface DISP-1
instructions CHAN-8

1/O (continued)
serial printer S-PTR-3
50, 100, and 155 lpm printer PTR-37
285 Ipm printer PTR-87
load μ INSTR- 31
sense μ INSTR-32
storage μ INSTR-35
D orientation, set 33FD-38,-41
dentification field (ID) DISK-3
MPL IMPL-1 DISK 5
counter 33FD-47
error indications
sequence IMPL-1
MPL-IPL switches CNSL-9
index counter 33FD-47
index detection DISK-34
index pulse DISK-65
index pulse off, JIO 33FD-38, 40
index pulse waveforms DISK-35
index half (half line space)
50,100 , and 155 lpm printer PTR-34
285 lpm printer PTR-84
indicators, keyboard KBD-4
initial system checkout INTR-6 NSN STEP/DPLY CHKS CNSL-6 INSN STEP/DPLY LSR CNSL-2 INS STEP/DPLY PCR CNSL-6
interrupt
interface μ IRPT-2
evels description μ IRPT
timeout check DISK-
intervals
settling S-PTR-6
start S-PTR-6
stop S-PTR-6
up-to-speed S-PTR-6
introduction
disk drive DISK-1
printer PTR-1
serial printer S-PTR-1
33FD 33FD-1
jump I/O
command DISP-24, KBD-16, PTR-20, -21, -70, -71, 33FD-38, DISK-15, S-PTR-18
conditions DISK-65, -66, -67,-68
error 33FD-38,-40
error conditions PTR-43, - 93
not ready $33 \mathrm{FD}-38,-40$
timing DISP-18, KBD-11
rue test 1 33FD-38, -40
true test 2 33FD-38, 40
true test 3 33FD-38,-40

K
keyboard attachment KBD-
keyboard indicators KBD-4
keyboard ready light CNSL-1
keyboard to CPU data transfer KBD-4
$[$
LAMP TEST switch CNSL-7
landing zone DISK-2
level $0 \quad \mu$ IRPT-2
levels 1,2 , and $3 \quad \mu$ IRPT-2
light
CLOCK CNSL-9
KBD RDY CNSL- 1
PROC CHK CNSL-
START CNSL-1
TH CHK CNSL-1
lights, PROC INTERRUP
line counter DISP-7
load command DISP-14, KBD
33FD-14, DISK-11, S-PTR-10
load head latch, set 33FD-38, - 40
LOAD switch CNSL-1
load timing DISP-13, KBD-5
loading the data buffer S-PTR-4 local storage registers CPU-5, INTR-3 locations DISK-70
logical/arithmetic $1 \quad \mu$ INSTR-9
ogical/arithmetic 2μ INSTR-12
low write current, set 33FD-38,-40
LSAR/DAR DISP-4
LSR
addressing CPU-5
selection CHAN-1
SRs CPU-5, INTR-3

MAB INTR-3, -4, CPU-5
machine check interrupt μ IRPT-2
machine check interrupt routine ERR HDL-4
main storage CPU-10, INTR-3
MAR INTR-3,-4, CPU-5, S-PTR-22, -26, -30
MCI routine ERR HDL-4
memory data check S-PTR-35
micro address backup INTR-3,-4
micro address register INTR-3, -4, CPU-5
micro instruction fetch μ INSTR-3
micro instructions μ INSTR-1
micro interrupts μ IRPT-1, INTR-4
micro operation register CPU-5, INTR-3
microlisting μ INSTR-2
microroutines INTR-2, μ INSTR-2
issing clock pulses DISK-7
missing crack pulses DISK-7
missing record 33FD-45
nnemonics μ INSTR-3
mode selector switch CNSL-2
MOR CPU-5, INTR-3
otor drive, print S-PTR-6
$40 / 80 \mathrm{cps}$ S-PTR-2
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-26
120 cps S-PTR-30
motor event counter
$40 / 80 \mathrm{cps}$ S-PTR-22
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-26
120 cps S-PTR-30
move LSR μ INSTR-25
moving the forms S-PTR-9

not ready 33FD-42

ot ready check, printer S-PTR-35
not ready, JIO PTR-20, -70, 33FD-38,-40, DISK-15
ff track check DISK-62
operator control panel CNSL-
overlap 1 track seek 33FD-6
overrun
check DISK-56
read 33FD-43
write 33FD-4
paper clamp timer 285 Ipm and 155 Ipm printer PTR-89
paper clamps
50, 100, and 155 lpm printer PTR-23,-4 285 lpm printer PTR-73,-9
parity check DISK-55,-57 write 33FD-43
parity checking
CPU CPU-2, INTR-5
I/O INTR-5
parity generation
CPU NTR-5
parity predict, CPU CPU-4
parity, port CHAN-3
PCR CPU-8, INTR-3
PCR clocks CPU-8
phase locked oscillator (PLO) DISK-36
PLO out of sync DISK-63
port CHAN-1
check byte CNSL-6
checks CHAN-10, ERR HDL-1
clocks CHAN-4
controls CHAN-7
data flow CHAN-2 parity CHAN-3
position counter, print head
$40 / 80 \mathrm{cps}$ S-PTR-21
$40 / 80 \mathrm{cps}-120$ compatible S-PTR- 25 120 cps S-PTR-29
positioning the print head S-PTR-4
posting interrupt requests μ IRPT-2
power check light CNSL-1
power on/off DISK
print
buffer
50,100 , and 155 lpm printer PTR-40
285 lpm printer PTR-90
emitter
$40 / 80 \mathrm{cps}$ S-PTR-20 120 cps S-PTR-28
emitter event counter
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-24 120 cps S-PTR-28
line
50, 100, and 155 lpm printer PTR-4
285 lpm printer PTR-54
load
50,100 , and 155 Ipm printer PTR-27 285 lpm printer PTR-77
print (continued)
operation
$40 / 80$ cps - 120 compatible S-PTR-27 120 cps S-PTR-31
operation flowchart
serial printer S-PTR-3
50, 100, and 155 Ipm printer PTR- 7
285 lpm printer PTR- 57
read
50, 100, and 155 lpm printer PTR-28 285, Ipm printer PTR-78
scan
50,100 , and 155 lom printer PTR-4 285 lpm printer PTR-54
time/forms line counter
$40 / 80 \mathrm{cps}-120$ compatible S-PTR- 26
120 cps SPTR- 30
timing
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-27 120 cps S-PTR-30
print head
home S-PTR-8
hung check S-PTR-35
position counter
40/80 cps S-PTR-21
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-25 120 cps S-PTR-29 positioning S-PTR-4
retract (head restore) S-PTR-8
print motor
elapse counter
$40 / 80 \mathrm{cps}$
$40 / 80 \mathrm{cps}$ S-PTR-22
120 cas SPTR compatible S-PTR-26
120 cps S-PTR-30
event counter
$40 / 80 \mathrm{cps}$
$40 / 80$ cps - 120 compatible S-PTR- 26 120 cps S-PTR-30
printer
print
data flow, serial S-PTR-1
error conditions S-PTR-35
forms hung check S-PTR-35
horizontal check S-PTR-
not ready check S-PTR-3
operation
50, 100, and 155 lpm printer PTR-28 285 lpm printer PTR-78
printer (continued)
timing relationships
$40 / 80 \mathrm{cps}-120$ compatible S-PTR-25 120 cps S-PTR-29
printing the data from the buffer S-PTR-4
printing theory
50, 100, and 155 lpm printer PTR-4, 5
285 lpm printer PTR-54, 55
PROC INTERRUPT lights CNSL-7
PROC RUN CNSL-2
process condition register INTR-3, CPU-8,-11 processing unit CPU-1
processor
check byte ERR HDL-1
check light CNSL-1
PWR FAULT DPLY switch CNSL-9

RAM and ROS layouts S-PTR-5
RAM buffer DISP-4
read DISK-28
bit ring 33FD-48
clock DISK-28, 33FD-48
data DISK-4, -9, -22, -23
data flow 33FD-9
diagnostic DISK-9, -23,-24
identifier (ID) DISK-9,-19
operation 33FD-8
overrun 33FD-43
verify DISK-9, -22,-23
waveforms DISK-29
$\mathrm{read} / \mathrm{write}$ circuit principles 33FD-3
read, write scan data DISK-9
reading 33FD-3
ecalibrate 33FD-6, DISK-5,-37
recalibrate and seek (example) DISK-45
egister
CRC shift 33FD-49
micro address CPU-5, INTR-3
micro address backup CPU-5, INTR-3
micro operation CPU-5, INTR-3
process condition CPU-8, INTR-3
storage address CPU-5, INTR-3
storage data CPU-5
CPU-5, INTR-3
x CPU-5, INTR-3
Y CPU-5, INTR-3
reset erase gate 33FD-38,41
reset error status 33FD-38, -41
reset sector op 33FD-38,-4
RESET switch CNSL-7
50, 100, and 155 lpm printer PTR-26, -4
285 lpm printer PTR-76, 9
ROS addressing S-PTR-32
ROS and RAM layouts S-PTR-5
ROS ring DISP-7
run latch CNSL-8
runaway check, forms S-PTR-35
running fast 33FD-42

SAR CPU-5, INTR-3
SAR decoding CPU-5

scan counter

50,100 and 155 lpm printer PTR-39
285 lpm printer PTR-89
scan data DISK-9,-24,-25
scan hit latch DISK-67
scan register
50, 100, and 155 lpm printer PTR-40
285 lpm printer PTR-90
scan/buffer compare
50,100 , and 155 lpm printer PTR-40
285 lpm printer PTR-90
SDR CPU-5, INTR-3 search for AM byte 33FD-20, 30 sector
detection DISK-34
format DISK- $3,-9$
format DISK-3, -9
hit latch DISK-66
op, reset 33FD-38, -41
pulse waveforms DISK-35
pulse waveforms DISK-3
seak 33FD-6, DISK-5
busy DISK-68
complete DISK-6
data flow 33FD-7
$\begin{array}{ll}\text { data flow } & \text { 33FD-7 } \\ \text { example } \\ \text { DISK-44 }\end{array}$
$\begin{array}{ll}\text { example } & \text { DISK-44 } \\ \text { one track } & 33 F D-20,-28\end{array}$
operation DISK-5
operations 33FD-6
to next track 33FD-20, -29
waveforms DISK-43
5.0 megabyte DISK-4
9.1 megabyte DISK-4

mmand KBD-12, DISP-19, PTR-14, -15, -64, -65,
ata byte 33FD-32,-34 evice select 33FD-18,-19 error byte 1 33FD-32,-34 rorter 33FD-32,-34 lines DISK-69
ense interrupt status byte KBD-19
staus command μ NST-32 timing DISP-18, KBD-1 ense 33FD control 33FD-32,-34 equence counter DISK-9,-18,-25 serdes parity check DISK-57 serial printer data flow S-PTR-1 service out CHAN-7 servo head DISK-6,-7 ervo test procedure DISK-3 set
(3FD-32,-36
Direq to hex 'FO' 33FD-32,-36
rase gate $33 \mathrm{FD}-38,-40$
ID orientation 33FD-41,-48
low write current 33FD-38,-40
f
33FD working 33FD-20,-22
ttle intervals S-PTR-
$40 / 80 \mathrm{cps}$ S-PTR-22
180 cps - 120 compatible S-PTR-26

ILSB timing KBD-11
simulated servo test DISK-33
50, 100, and 155 lpm printer PTR-39
50 operation, halfline
285 lpm printer PTR-84
special character addressing WTC/ASCII S-PTR-33 speed control
50, 100, and 155 lpm printer PTR-32, -39
285 lpm printer PTR-82, 89
start intervals S-PTR-6
START switch/light CNSL-
start write gap DISK-3
status 1 card CPU-1
status 2 card CPU-1
stop intervals S-PTR-6
STOP switch CNSL-1
STOR SEL switch CNSL-7
storage
address register CPU-5, INTR-4
buffer address register
50,100 , and 155 lpm printer PTR-39
clocks CPU-12
control card CPU-10, INTR-3
data register CPU-5, INTR-3
data register CPU-5, INTR
direct read μ INSTR-23
direct write μ INSTR-24
${ }^{\text {direct }}$ grites CPU-6
main CPU-10, INTR-3
read μ INSTR-21
write μ INSTR-22
storage accessing-print timing char
40/80 cps S-PTR-23
$40 / 80$ cps - 120 compatible S-PTR-27
120 cps S-PTR-31
strobe CHAN-7
subscan pulse
50, 100, and 155 lpm printer PTR-4, 41
285 lpm printer PTR-54, 9
subtract immediate μ INSTR-17
switch
ADDR COMP STOP/RUN CNSL-9 CESTART CNSL-7
CHECK RUN/STOP CNSL-9
DPLY PWR CHK CNSL-9
LAMP TEST CNSL-7
LOAD CNSL-1
MODE SELECTOR CNSL-2
POWER ON/OFF CNSL-1
PWR FAULT DPLY CNSL-9
RESET CNSL-7
START CNSL
STOP CNSL-1
STOR SEL CNSL-7
switch assemblies
50, 100, and 155 lpm printer PTR-39 285 lpm printer PTR-89
switches, IMPL-IPL CNSL-9
sync DISP-9, DISK-3
sync check

carriage

50, 100, and 155 lpm printer PTR-45 285 lpm printer PTR-95
belt
50, 100, and 155 lpm printer PTR-47
285 lpm printer PTR-97
SYS INSN STEP CNSL-6
system
checking INTR-5
checkout, initial INTR-6
clocks CPU-12
control card CPU-
data flow INTR-5
description $\operatorname{\text {INTR}}$
test mask μ INSTR-
theory of printing
serial printer S-PTR-4
50,100 , and 155 lpm printer PTR-4,- 5 285 lpm printer PTR-54,-55
throat closed
50, 100, and 155 Ipm printer PTR-50 285 lpm printer PTR-100 timeout
check DISK-64
conditions CHAN-11
timing
control sense KBD-11
jump KBD-11
print
$40 / 80 \mathrm{cps}$ S-PTR-23
120 cps S-PTR-31
relationships, printer (counter relationships) sense KBD-11
SILSB KBD-11
40/80 cps S-PTR-21
$40 / 80 \mathrm{cps}$ - 120 compatible S-PTR-25 120 cps S-PTR-29

track following	DISK-30	
waveforms	DISK-31	
transfer error	CHAN-10	
type belt		
motor and drive		
50,100 , and 155 Ipm printer	PTR-41	
285 lpm printer	PTR-91	
start and run		
50,100 and 155 Ipm printer	PTR-24	
285 lpm printer	PTR-74	
transducer		
50,100 , and 155 Ipm printer	PTR-26	
285 lpm printer	PTR-76	

writing 33FD-3
WTC/ASCII/U.S. special character addressing S-PTR-33
waveforms DISK-31
transfer error CHAN-10
tor and drive
285 lpm printer PTR-91

285 lpm printer PTR-74
50,100 , and 155 lpm printer PTR-26 285 lpm printer PTR-76
underscore S-PTR-
up-to-speed intervals S-PTR-6

character

50, 100, and 155 lpm printer PTR-43
285 lpm printer PTR-93
unprintable character check S-PTR-35

```
wiggle DISP-9
controls DISP-
sweep DISP-2
world trade special character accessing S-PTR-33
write DISK-26
AM byte 33FD-20,-23
bit ring 33FD-48
check DISK-59
clock
CRC byte 33 D-20,-26
byte 33FD-20, 23
acho DISK-54
data flow 33FD-11
gate unsafe 33FD-4
ID
data flow 33FD-15
operation 33FD-14
identifier (ID) DISK-9,-18
operation 33FD-10
or erase gate unsafe 33FD-44
overrun 33FD-43
parity check 33FD-43
waveforms DISK-27
```


International Business Machines Corporation
General Systems Division
5775D Glenridge Drive N. E.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

Please use this form only to identify publication errors or request changes to publications．Technical questions about IBM systems，changes in IBM programming support，requests for additional publications，etc，should be directed to your IBM representative or to the IBM branch office nearest your location．

Error in publication（typographical，illustration，and so on）．No reply．
－Page Number Érror

Inaccurate or misleading information in this publication．Please tell us about it by using this postage－paid form．We will correct or clarify the publication，or tell you why a change is not being made，provided you include your name and address．

Page Number Comment

READER＇S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications．Technical questions about IBM systems，changes in IBM programming support，requests for additional publications，etc，should be directed to your IBM representative or to the IBM branch office nearest your location．

Error in publication（typographical，illustration，and so on）．No reply．
Page Number Error

Inaccurate or misleading information in this publication．Please tell us about it by using this postage－paid form．We will correct or clarify the publication，or tell you why a change is not being made，provided you include your name and address．

Page Number Comment

[^0]: © Copyright International Business Machines Corporation 1975, 1976, 197

[^1]: *13.7 megabytes only

[^2]: ${ }^{1}$ During read verify at sequence counter time,

[^3]: These keys also refer to PTR-38.

[^4]: $\mid{ }^{*}$ Not used in 120 cps attachmen

[^5]: *The unidirectional printer attachment ignores this bit on an IOCL command with a modifier of 9 (FQ020).

[^6]: *The unidirectional printer attachment ignores this bit on an ICOL command with a modifier of 9 (FQO20).

