
IBM System/32
System Control Programming
Reference Manual

IBM System/32
System Control Programming
Reference Manual

Page of GC21-7593-3
Issued 22 November 1978

. By TNL: GN21-7993

Fourth Edition (May 1977)

This is a major revision of, and obsoletes, GC21-7593-2 and Technical Newsletter
, GN21-7879. Changes or additions to the text and illustrations are indicated by a vertical

line to the left of the change or addition. Significant additions are in Part 5, System
Configurations, Modification, and Installation; these additions include system control
programming support for three program products: FORTRAN IV, Basic Assembler, and
the File Conversion Utility. In addition, system control programming now supports the
1255 Magnetic Character Reader attachment, Word Processing Communications utility,
overlay linkage editor, and queued job stream. Enhancements tb system control pro
gramming include the compress function of $MAINT utility program (CONDENSE
procedure), the Queued Job Stream Card-to-Library utility program ($QJOB), and the
JOBSTR and APCHANGE procedures. A new appendix, Appendix H, System Sharing,
has been added showing examples of sharing a System/32 and the procedures
r~commended for each method. Miscellaneous changes and additions are not extensive.

This edition applies to version 6, modification 0 of IBM System/32 (Program 5725-SCH,
IBM System/32 Ut'ilities Program (Program Products 5725-UT1 and 5725-UT2), IBM
System/32 RPG II (Program Product 5725-RG1), IBM System/32 FORTRAN IV
(Program Product 5725-F01), IBM System/32 Basic Assembler (Program Pr~duct
5725-AS1); and to all subsequent versions and modifications unless otherwise indicated
in new editions or technical newsletters. Changes are periodically made to the infor
mation herein; before using this publication in connection with the operation of IBM
systems, refer to the latest IBM System132 Bibliography, GC20-0032, for the editions that
are applicable and current.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of indi
viduals, companies, brands, and products. All of these names are fictitious and any.
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental. Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to your
IBM representative or the branch office serving your IO,cality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader's Comment Form at the back of this publication to make comments about
this publication. If the form has been removed, address your comments to IBM
Corporation, Publications, Department 245, Rochester, Minnesota 55901. IBM may
use and distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1975,1976,1977

This reference manual provides system programmers with
information needed to establish administrative and operat
ing procedures for an IBM Syst~m/32. Information is pro
vided for programmers to run application programs on IBM
System/32 and use the system procedures and utility pro
grams provided with IBM System/32.

This manual contains: •

• A summary of IBM System/32 operation c.ontrQIJru19.1,I"~ge

Preface

Appendixes describe:

• The relationship of disk records, blocks and sectors

• Decimal and hexadecimal conversion

• Diskette data formats for IBM System/32

• The I BM service procedures

(DCl) statements and a detailed description of each DCL • The eCl and utility control statements contained in the
statement system procedures

• A general description of IBM System/32 system procedures • Standard characters for IBM System/32 printers
and a detailed description of each procedure. A detailed

description of the command statements that evoke the • Polling and address characters for IBM System/32
procedures and a summary of command statement tributary stations
formats

• A description of how to use DCl statements to create
data files and run application programs. ~nexalTlpl~.of
how J;QJ!~~ QGJ"J}!Cl~~.rTlel1ts and pro~edures to run
appH~CJtions

• A description of each system utility program provided
with IBM System/32 and a description of associated
utility control statements

• Ac::f~s<:rJQ!i9n .. 9t~oW. to create, .. instal.l,and modify IBM
System/;32 systelTl cQntrol programming and how to
installJ]M Systerll/32 program products

• System sharing examples

A glossary at the back of the manual defines data processing
terms used in the manual. New terms in the manual are
italicized the first time they are used.

Note: This manual follows the convention that he means
he or she.

Prerequisite Publication

IBM $y~tef!J!J.gllJ~r.P.ct4qJ{ql1,qC21-7J5~~t provides ,mover
~i~.~_~!.the system and i~s characteristics

Related Publications

IBM System/32 Operator's Guide, GC21-7591, provides
detailed instructions for operating IBM System/32

IBM Diskette General Information Manual, GA21-9182 ,
describes the diskette data format for basic data exchange

iii

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

IBM System/32 SCP Command Statement Reference
Summary, GX21-7687, provides a brief description and
the format of command statements used for system
functions.

Word Processor /32 Installation and Procedures Manual,
SH30-0114, provides instructions for installing the Word
Processing/32 Program Product and shows basic typing and
work flow procedures for various applications of the
program product.

Titles and abstracts of related publications are listed in the
IBM Srstem/32 Bibliography, GC20-0032.

iv

LIST OF ABBREVIATIONS AND ACRONYMS xi

HOW TO USE THIS MANUAL xiii

PART 1. OCl STATEMENTS 1

INTRODUCTION TO OCl STATEMENTS. 3
What is OCl . 3
OCl Statements and the Job 4
System Configuration 4

CODING OCl STATEMENTS 5
Types of Information Conveyed in OCl Statements 5

Identifiers 5
Parameters 6

General OCl Coding Rules 6
Continuation 7
Comments 8

OCl STATEMENT TABLES • 9

OCl STATEMENT DESCRIPTIONS 15
COMPilE Statement 15
DATE Statement 16
FI lE Statement. 17
FORMS Statement 23
IMAGE Statement 24
I NCLUDE Statement 26
lOAD Statement 27
lOG Statement . 28
MEMBER Statement 29
PAUSE Statement 30
RUN Statement. 30
SWITCH Statement . 31
SYSLIST Statement 32
COMMENT Statement 32
/* (End of Data) Statement 33
// * Message Statement 33

PART 2. PROCEDURES . 35

INTRODUCTION TO PROCEDURES 37
IBM SCP PrOcedures 38
Creating a Procedure 38
Evoking a Procedure 39

Keyboard Entry of the INCLUDE Statement 39
Using a Command Key . 40
Evoking a Procedure from Another Procedure 42
Procedure Execution 43

Procedure Parameters 43
Modifying a Procedure Job Stream 44
Substitution,.Expressions 44
Conditional Expresions: IF and ELSE 47

Example of Procedure Coding 52
FILEBKUP Procedure 52
FllEBKUP Parameters 53

Page of GC21·7593·3
Issued 22 November 1978
By TNl: GN21·7993

Contents

IBM SCP COMMAND STATEMENTS 55

IBM SCP PROCEDURE DESCRIPTIONS 61
Al TERBSC Procedure . 62

ALTERBSC Command Statement Format 62
ALTERBSC Parameters 62

AL TERSDl Procedure . 63
AlTERSDl Command-Statement Format 64
Al TERSDl Parameters 64

APCHANGE Procedure 65
APCHANGE Command Statement Format 65
APCHANGE Parameters 65
APCHANGE Examples 66

BACKUP Procedure 67
BACKUP Command Statement Format 67
BACKUP Parameters 67

CATALOG Procedure 68
CATALOG Command Statement Format 68
CATALOG Parameters. 68

COMPR ESS Procedure 68
COMPRESS Command Statement Format 69
COMPRESS Parameters 69

CONDENSE Procedure. ~" 6"9'
CONDENSE Command Statement Format 69
CONDENSE Parameters 69

CONVERT Procedure 69
CONVERT Command Statement Format 70
CONVERT Parameters . 70

COPYI1 Procedure . 70
COPYI1 Command Statement Format 71
COPYI1 Parameters 71
COPYI1 Example 71

CREATE Procedure 72
CREATE Command Statement Format 72
CREATE Parameters 72
CREATE Example 73

DATE Procedure 73
DATE Command Statement Format 73
DATE Parameters 74

DELETE Procedure 74
DELETE Command S.tatement Format 74
DELETE Parameters 74
DELETE Example 75

DISPLA Y Procedure 75
DISPLA Y Command Statement Format 75
DISPlA Y Parameters 76
DISPlA Y Example . 76

FROM LI BR Procedure . 76
FROMLlBR Command Statement Format 77
FROMLlBR Parameters 78
FROMLlBR Examples . 79

HISTORY Procedure 79
HISTORY Command Statement Format 79
HISTORY Parameters 80

INIT Procedure . 80
INIT Command Statement Format 80
INIT Parameters 80
INIT Examples 81

v

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

JOBSTR Procedure 82 PART 3. USING OCl STATEMENTS AND
JOBSTR Command Statement Format 82 PROCEDURES. 109
JOBSTR Parameters . 82

JOBSTR Example 84 CREATING DISK AND DISKETTE FilES 1U
LINES Procedure 85 Disk File. 111

LINES Command Statement Format 85 Obtaining Space for a File 111
LI N ES Parameters 85 Describing a File 111

LlSTLI BR Procedure 85 Diskette File. 112
LlSTLI BR Command Statement Format 86 Offline Multivolume File 113
LlSTLI BR Parameters 86 Purpose of Offline Multivolume Files 113
LlSTLI BR Examples 87 Creating an Offline Multivolume File 114

LOG Procedure . 87 Readng an Offline Multivolume File 115
LOG Command·Statement Format 87 Offline Multivolume File Restrictions and
LOG Parameters 87 Considerations . 115

ORGANIZE Procedure 88
ORGANIZE Command Statement Format 88 CREATING AND USING MESSAGES 119
ORGANIZE Parameters 88 Messages . 119
ORGANIZE Examples 89 Creating a Message Source Member 119

OVERRIDE Procedure. 90 Creating a Message load Member 120
OVERRIDE Command Statement Format 90 Specifying the Message load Member 121
OVERRIDE Parameters 90 Retrieving the Messages 121

REBUILD Procedure 91 Retrieving Messages by Using the Message OCl
REBUILD Command Statement Format 91 Statement 121
REBUILD Parameters 91 Retrieving Messages by Using Your Program. 122

RELOAD Procedure 92 Restrictions on Retrieving Messages 122
RELOAD Command Statement Format 92
RELOAD Parameters 92 lOADING AND RUNNING PROGRAMS 123

REMOVE Procedure 93 IBM Programs 123
REMOVE Command Statement Format 93 Object Programs Using One Disk File 123

{j~

REMOVE Parameters 93 Object Programs Using More Than One Disk File 123
REMOVE Examples 94 Object Programs Using One Disk File and External

RENAME Procedure 94 Indicators 124
RENAME Command Statement Format. 94
RENAME Parameters 94 OClANDPROCEDUREEXAMPlE 125
RENAME Example. 94.1

RESTORE Procedure 94 PART 4. SYSTEM UTI LlTY PROGRAMS 129
RESTORE Command Statement Format 95
RESTORE Parameters 95 INTRODUCTION TO THE SYSTEM UTiliTY
RESTORE Examples 95 PROGRAMS 131

SA VE Procedure 96 Writing Utility Control Statements 131
SAVE Command Statement Format 96 Rules for Coding Utility Control Statements 131
SAVE Parameters 96 Conventions for Describing Utility Control Statement
SA VE Examples 97 Formats 134

SET Procedure 97
SET Command Statement Format 97 UTI LlTY PROGRAM DESCRIPTIONS 135
SET Parameters . 98 $BACK-Backup Library Utility Program 136

SPECI FY Procedure 99 $BACK Utility Control Statement Format 136
SPECI FY Command Statement Format 99 $BACK OCt. Sequence . 136
SPECI FY Parameters 100 $BICR-Basic Data Exchange Utility Program 137

STATUS Procedure. 101 $BICR Utility Control Statement Formats 137
STATUS Command Statement Format 102 $BICR Parameters 138
STATUS Parameters 102 $BICR OCl and Utilitv Control Statement Sequence 138

SYSLIST Procedure 102 $BICR Example. 139
SYSLIST Command Statement Format 103 $BUI LD-Alternate Sector Rebuild Utility Program 139
SYSLIST Parameters 103 Bypass Unreadable Data 141

TOLlBR Procedure. 103 Correct Unreadable Data 141
TOLlBR Com rnC3_nd Statement Format 104 $BUILD Utility Control Statement Format 141
TOLlBR Parameters 104 $BUI LD OCL Sequence 141

TRANSFER Procedure 105 $CNVRT -Convert Diskette Header label Utility 142
TRANSFER Command Statement Format 105 $CNVRT Utility Control Statement Format 142
TRANSFER Parameters 106 $CNVRT OCl Sequence 142
TRANSFER Examples 107

vi

$COPY-Disk Copy/Display Utility Program
$COPY Utility Control Statement Formats
$COPY Parameters .
$COPY Parameter Summary .
$COPY Oel and Utilitv Contrnl Statement Sequence.
$COPY Examples

$DElET -File Delete Utility Program
$DElET Utility Control Statement Formats
$DElET Parameters
$DElET Parameter Summary
$DElET OCI ann Utility Control Statement Sequence
$DEI;-ET Examples' .

$DUPRD-Diskette Copy Utility Program
$DUPRD Utility Control Statement Formats
$DUPRD Parameters
$DUPRD Parameter Summary

$DUPRD OCl and Utility Control Statement
Sequence

$DUPRD Examples.
$FREE-Disk Reorganization Utility Program

$FREE Utility Control Statement Format
$FREE Parameters •
$FREE OCl and Utility Control Statement

Sequence.
$FREE Examples

$HIST -History File Display Utility Program
$HIST Utility Control Statement Formats
$H 1ST Parameters .
$HIST OCl and Utility Control Statement Sequence
$H 1ST Examples

$INIT -Diskette labeling and Initialization Utility
Program.

Initialize (FORMAT and FORMAT2)
Delete (DELETE)
Rename (RENAME)
Diskette Defects Encountered During Processing
$INIT Utility Control Statement Formats
$INIT Parameters '
$INIT Parameter S,ummary
$INIT OCl and Utility Control Statement Sequence
$INIT Examples

'$lABEl-VTOC Display Utility Program
Sample VTOC Displays.
$lABEl Utility Control Statement Formats
$ lAB E l Paral1leters
$lABEl OCl and Utility Control Statement

Sequence ,
$lOAD-Reload Library Utility Program

Inquiry Option .
Offline Option .
$lOAD Utility Control Statement Format
$lOAD OCl Sequence.

$MAI NT-Library Maintenance Utility Program
System Library File (#lIBRARY)
Alloca'te Function
Copy Function .
Delete Function .
Compress Function

$MGBlD-Create Message Member Utility Program
$MGB lD Utility Control Statement Format
$MGBlD Parameters
$MGBlD OCl and Utility Control Statement

Sequence
Message Source Member

142
143
145
148
151
155
156
156
157
158
159
159
159
160
1E~0
160

161
r61
161
162
162

162
l62.1
162.2
162.2

163
163
163

16~
164
165
165
165
166
166
167
168
168
169
169
172
172

173
173
174
176
176
1,76
176
177
179
180
199
202
203
203
203

204
204

Page of GC21-7593-3
Issued 22 November 1978
By TNl: GN21-7993

An Example of Creating a Message Source and load
Member

An Example of Assigning a Command Key to a,
Procedure .

$PACK-Disk Reorganization Utility Program
SPACK Utility Control Statement Format
SPACK OCl Sequence.

$QJOB-Queued Job Stream Card-to-Library Utility
Program.

$QJOB Utility Control Statement Format
$QJOB Oc'l Sequence .

$REBlD-Rebuild Data File Utility Program
$REBlD Utility Control Statement Format.
$REBlD OCl Sequence

$RENAME-RENAME Data File Utility Program
$R ENAM Utility Control Statement Format
$RENAM Parameters .
$RENAM OCl and Utility Control Statement

Sequence.
$R ENAM Examples.

$SETCF-Set Utility Program .
Set the System Environment
Set the BSC Environment .
Override BSC Specifications
Set the SO lC Environment

Specify SDlC Specifications
Set Functions to be Traced.

$STATS-Status Display Utility Program.
$STATS Utility Control Statement Format
$STATS OCl Sequence

PART 5. SYSTEM CONFIGURATION, INSTAllATION,
AND MODIFICATION

INTRODUCTION TO SYSTEM CONFIGURATION,
INSTAllATION, AND MODIFICATION.

SYSTEM CONFIGURATION
Diskettes Required .
Information Required .
System Configuration Steps

Backup of Configured SCP .
Backup of Program Products
System Configuration Error Messages.

System Configuration Summary

SYSTEM' INSTAllATION
Diskettes Required .
Information Required .
System I nstallation Steps
Calculating the Number of Backup Diskettes Required

for the System .
System Insta.llation Summary.

PROCEDURES USED FOR SYSTEM CONFIGURATION
AND INSTAllATION

APPl YPTF Procedure .
APPlYPTF Command Statement Format
APPl YPTF Parameters.

CNFIGSCP Procedure .
CNFIGSCP Command Statement Format
Prompted Parameters for CN F I GSCP .

INSTAll Procedure
INSTAll Command Statement Format.
INSTAll Parameters that are Not Prompted
Prompted Parameters for INSTAll .

"

206

207
208
208
208

209
209
209,
210
210
211

211
211
211

211
211

212
212.1

213
215
?16
218
220
222
222
222

223

225

227
227
228
230
231
232
232
233

235
235
235
236

238
239

241
211
241
242
242
242
243
246
246
246
247

vii

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

PROGRAM PRODUCT INSTALLATION AND
VERIFICATION •

Program Product Installation .
To I nstall a Program Product
To Create a Backup Copy of a Program Product.

Program Product Installation Verification
SEU Installation Verification .
RPG " Installation Verification
FORTRAN IV Installation Verification
Basic Assembler Installation Verification
FCU Installation Verificatio~

SYSTEM MODIFICATION
Library Requirements .
Deleting From the Library.

Determining Space Available in the Library
Determining Space Available on the Disk.
Selecting Members to Delete
Deleting Members .

RELOAD Display .
If Values in the RELOAD Display are Correct
If Values in the RELOAD Display are to be Changed

VERSION UPDATE INSTRUCTION
SUMMARY.

APPENDIX A. RECORDS, BLOCKS, AND SECTOR
CONVERSION.

Records to Blocks Conversion for Disk .
Determining the Number of Sequential or Direct File
Determining tne Number of Blocks -in a Sequential

249
249
249
250
251
251
253

256
261

.,264.1

265
265

266.1
267
267
268

268.1
268.1

269
270

.272.1

273
273

or Direct File . 273
Determining the Number of Blocks in an Indexed File. 273

Disk Sector Number to Block Number Conversion. 274
Disk Block Number to First Sector in Block Conversion 274

APPENDIX B. HEX AND DECIMAL CONVERSION. 275
Hexadecimal to Decimal Example. 276
Decimal to Hexadecimal Example. 276

APPENDIX C. DISKETTE FORMATS AND DISKETTE
DATA FILES • 277

Diskette Formats 277
Diskette Data Files 277

Basic Data Exchange Files 277
System Files. 278

APPENDIX D. IBM SCP SERVICE PROCEDURES
APAR Procedure

APAR Command Statement Format
APAR Parameters .

BUI LD Procedure .
BUI LD Command Statement Format
BUI LD Parameters .

DUMP Procedure
DUMP Command Statement Format .
DUMP Parameters .

PATCH Procedure .
PATCH Command Statement Format
PATCH Parameters.

TRACE Procedure .

viii

TRACE Command Statement Format
TRACE Parameters .

279
280
280
281
281
281
281
281
282
282
283
283
283
284
285
285

APPENDIX E. IBM SCP PROCEDURE CONTENTS •
ALTERBSC
ALTERSDL .
APAR
APCHANGE.
APPLYPTF
BACKUP.
BUILD
BWSUD .
BWSUR .
CATALOG
CONFIGSCP.
COMPRESS.
CONDENSE.
CONVERT
COPYI1 .
CREATE.
DATE.
Dct~RINT

DELE:TE .
DISPLAY
DUMP
FROMLIBR
HISTORY
INIT
INSTALL
JOBSTR .
LINES
LlSTLlBR
LOG
MRJE
ORGANIZE
OVERRIDE
PATCH
REBUILD
RELOAD
REMOVE
RENAME.
RESTORE
SAVE
SET

SETMICR
SPECIFY
STATUS.
SYSLIST.
TOLlBR .
TRACE
TRANSFER

APPENDIX F. IBM SYSTEM/32 CHARACTERS

APPENDIX G. POLLING AND ADDRESSING
CHARACTERS FOR SYSTEM/32 TRIBUTARY
STATIONS.

EBCDIC
ASCII .

287
287
287
287
287
288
289
289
289
289
289
290
29,5
295
295
295
295
295
295
296
296
296
297
297
297
298
298
299
299
299
299
300
300
300
300
300
301
301
301
301
301

302
302
302
302
302

302.1
303

305

311
311
312

APPENDIX H. SYSTEM SHARING • 313
An Approach to System Sharing • 313
Considerations for System Sharing 313

Disk Space 314
Interaction Among Users • 314
Naming Conventions 314
Time Requirements. 315
Individual Responsibilities • 315

Suggested System Sharing Methods 315
Procedures for Getting On and Off the System • 315
Examples of System Sharing • 319
Installation Considerations. 320

GLOSSARY • 325

INDEX 331

Page of GC21-1593-3
Issued 22 November 1978
By TNL: GN21-79Q3

Ix

This page intentionally left blank

x

The following abbreviations and acronyms are used in the
text of this manual.

BSC
BSCA

CE

DTF
EBCDIC

I/O

lOB
lOS
IPL

K
MIC
MICR
MRJE
MRJEIWS

OCL

PID
PLCA

PTAM
PTF

RIB

SCA
SCP
SDLC
SIS
SNA
SVC
SWA

VTOC

Binary synchronous communication
Binary synchronous communications

adapter
Customer engineer

Define the file
Extended binary coded decimal inter
change code
Input/output

I nput/output block
Input/output supervisor
Initial program load

1024 bytes
Message identification code
Magnetic ink character reader
MULTI-LEAVING remote job entry
MULTI-LEAVING remote job entry
work station

Operation control language

Program information department
Program level communication area

Pseudo tape access method
Program temporary fix

Request indicator byte

System communication area
System control programming
Synchronous data link control
Scientific instruction set
Systems network architecture
Supervisor call
Scheduler work area

Vol ume tabl e of contents

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21·7993

List of Abbreviations and Acronyms

x.i

xii

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

How to Use This Manual

This manual has five parts. Part 1 describes operation control language (Oel) state
ments. Part 2 describes system procedures and command statements. Part 3
describe~ the Oel and procedures to use applications. Part 4 describes system
utility programs. Part 5 describes system configuration, ins!allation, modification,
and program product installation.

Part 1

Refer to part 1 if you want to know:

• What an Oel statement is

• What each Oel statement is used for and when it is needed

• Where each Oel statement is placed in relation to others

• How each statement must be coded

• What each statement must contain

Part 2

Refer to part 2 if you want to know:

• What a procedure is

• What a command statement is and how it is used

• How to create, evoke, or modify a procedure

• What procedures are supplied with IBM System/32 and the function of each

• The format and contents of the command statements that evoke the procedures
supplied with IBM System/32

Part 3

Refer to part 3 if you want to know:

• How to use Oel to build disk files and to load and run programs

• How to use Oel and procedures to perform applications

xiii
\

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

xiv

Part 4

Refer to part 4 if you want to know:

• What system utility programs are supplied with IBM System/32 system control programming

• What the function of each utility program is

• What OCl statements and utility control statements are necessary to load and
run each utility program

Part 5

Refer to part 5 if you want to know about:

• Configuration and installation of IBM System/32 system control programming at
initial system installation or subsequent system update

• Installing IBM System/32 program products (and verifying that they are installed
correctly)

• Modifying an installed system by del~ting certciin system control programming
components or program product functions from the library

Reader's Comments

If you find an error, please tell us about it by using the Reader's Comment Form at
the back of this publication.

Part 1

Oel Statements

oel Statements

2

I ntroduction To OC L Statements

WHAT IS Oel?

The IBM System/32 system control programming (SCP) controls program execution.
The SCP must be in main storage before your programs can be run. It is located on
the disk and is brought into main storage by a process called initial program load (JPL),
which is performed by the operator after the system power is turned on.

C!peratigp cQQtrglljnqlJaq~ (DeL) is your means of communicating with the SCPo
Every job requires DCl statements identifying a job and describing that job's require
mehts to the SCPo DCl statements for a job can be stored together as a set, called a
procedure, and can be stored in and evoked from the system library.

The system library is contained in a disk file named #LlBRARY. Besides areas
required by the SCP, the system library contains:

• Load members: A load member is a collection of instructions that can be loaded
directly into main storage for execution .

• Procedure members: A procedure member is a collection of related DCl state
ments. Procedures'can also contain utility control statements, statements required
by the system util ities (~ee index' entry: writing utility control statements for more
information. on utility control statements).

• Source members: A source member is a collection of records used as input to a
Qrogram. For example, RPG II specifications and sort sequence specifications can
be stored in source members. Source members cannot« hoyveve.L....£.Qrtain data to
be processed.

• Subroutine members: Subroutine members contain subroutines that can be com
bined with user and system control programs for execution.

You can enter DCl statements in two ways: UL key D=Cl statements to create a
procedure stored in the library, then evoke. the entire procedure when those DCl
~tatement~ a~~ r~guired; (2}-k~~ -ih~ 6CL"'staieme~ts'at-tj:;;<ti';; the sxst~m requires

them.

I ntroduction to oel Statements 3

OCl STATEMENTS AND THE JOB

To run a job, the necessary OCl statements must be supplied from the keyboard or
called from the system library . To call OCl statements (procedures) from the system
library, enter an INCLUDE OCl statement. A simplified form of the INCLUDE
statement is called a command statement. Command statements make it easier to
call procedures (see index entry: command statements).

When system utility programs (programs that perforrJ:l a variety of routine tasks to
keep the system and files in order) are to be run, utility control statements may be
needed in addition to OCl statements. Utility control statements pass information,
such as filenames, to utility programs. Utility control statements can be included
with OCl statements in procedures.

OCl statements, utility control statements (when required), and data, form the
job stream.

SYSTEM CONFIGURATION

IBM System/32 system control programming runs on all models of System/32
and is compatible ~with all available System/32'features.

Coding OCl Statements

TYPES OF INFORMATION CONVEYED IN OCl STATEMENTS

OCl statements contain two types of information, an identifier and parameters.
An identifier distinguishes one OCL~tatement from another; aparameter supplies
information to a program. Figure 1 shows the general form of OCl statements.

II I DENTI FIE R Parameter-1,Parameter-2, ... ,Parameter-n

Figure 1. General Form of Oel Statements

Identifiers

Every OCl statement except a command statement requires a statement identifier.
A command statement uses a procedure name. Command state";ents are discussed
in Part 2 of this manual.

Most OCl statements begin with II~ OCl statement identifiers that require II are:

COMPilE FORMS lOAD PAUSE SYSLIST

DATE IMAGE lOG RUN * (message)

FILE INCLUDE MEMBER SWITCH,

For example, in the statement

I I lOAD $COPY

the statement identifier is lOAD.

Identifiers that do not require I I are:

* (comment)

/* (end of data)

For example, in the statement

* END OF JOB

the statement identifier is *. Because I I does not precede the *, the * indicates the
statement is a comment. (/1 iI- at the beginning of a statement indicates the state
ment· is ~. message.)

Also, II is not required with a command statement (a simplified form of the INCLUDE
OCl statement).

Coding OCl Statements 5

6

Parameters

Parameters are either symbolic or keyword parameters. In the following statement,
$COPY is a symbolic parameter-the name of a system utility program:

1/ lOAD $COPY

NAME-COPYIN, UNIT-Fl, and lABEL-filename are keyword parameters in the
following statement:

II FilE NAME-COPYIN,UNIT-Fl,LABEL-filename

A keyword parameter contains a keyword (NAME, UNIT, and lABEL are the key
words in the preceding OCl statement) that distinguishes the parameter from other
parameters, just as statement identifiers distinguish one OCl statement from
another. In addition to a keyword, a keyword parameter usually contains a value
(COPYIN and Fl, are values in the preceding sample OCl statement).

GENERAL OCl CODING RULES

OCl statement formats described in this manual can include special characters,
such as II, and words written in capital letters, such as the FI lE statement param
eter, lABEL. These special characters an~L,!,,!~rd~_!!!.~st be entered exactly as shown
in the statement descriptions given in this manual. Words written i.!!l~e~cas~_
letters, such as filename, represent information that you must supply_ OCl state
ments cannot exceed 120 characters, except the FI lE statement. (See Continua
tion description on the following page.)

Additional coding rules are:

• The first character (* or I) of an OCl statement must be keyed in position 1.
For example, II must be entered in positions 1 and 2.

• One or more positions must be blank between the I I and the statement identifier.
For example:

II lOAD
II *

• One or more positions must be blank between the statement identifier and the
first parameter. For example:

II lOAD $COPY
II * 6666

• If you need to include more than one parameter, use a comma to separate them.
No blanks are allowed within or between pararo...~te.rs. Anything following the
first blank after a parameter is considered a comment (see index-entry: comments).

• If you are writing keyword paramaters, place the keyword first and use a hyphen
(-) to separate the keyword from the val ue.

Continuation

Expressing a single statement in two or more records is called continuation. The
only PCl statement that can use continuation is the FilE statement. (See index
entry: II FILE statement for a description of FilE statements.)

A record can consist of a maximum of 120 characters, including blanks and commas,
when expressing an OCl statement. Because of the many parameters possible in
FilE statements, FilE statements can be composed of more than one record to
express a single FilE statement. All other OCl statements must not exceed one
record.

Rules for using continuation are:

• Place a comma after the l~stP.ar,~.m~!~! i-'·L~Y.~Y rec:,QLdexcegt the last. The
comma, followed by a blank, tells the system that the statement is continued
in the next record.

• Begin each new record with II in positions 1 and 2.

• leave one or more blanks between the II and the first parameter in the record.

~n the first of the following two examples of continued FilE statements, five
records are used to express a single FilE statement. I n the second example, two
records express one FilE statement.

Example 1:

II FilE NAME-TRANS,
II UNIT-Fl,
II lABEL-TRANS,l"
II RECORDS-225,
II RETAIN-T

Example 2:

II FI LE NAME-TRANS,UNIT-Fl,LABEL-TRANS1,
II RECORDS-225,RETAIN-T

Coding OCl Statements 7

8

Comments

Comments can contain any character but should not contain a question mark (?).

The question mark has a special meaning in procedures and certain control state
ments. Any combination of valid characters can be included in the following
places:

• Following the * on the OCl comment statement.

*THIS IS AN EXAMPLE OF A COMMENT STATEMENT

In the example above the comment is THIS IS AN EXAMPLE OF A COMMENT
STATEMENT.

• After the last parameter in a statement or in an OCl record that is continued
(continuation is described in the preceding paragraph). leave one or more blanks
between the last parameter and your comment~

I I lOAD $COPY lOAD TH E DISK COpy UTI LlTY

In this example the comment is after the last parameter. The comment is
lOAD THE DISK COpy UTI LlTY.

In the following example, the comments are in an OCl record that is continued:

II FI lE NAME-TRANS,UNIT-Fl ,lABEl-TRANS1,
II RECORDS-225,RETAIN-T

COMMENT A
COMMENT B

• After the identifier on statements without parameters. leave one or more blanks
between the identifier and your comments.

II RUN RUN THE DISK COpy UTI LlTY

The comment here is RUN THE DISK COPY UTILITY.

• After an identifier where parameters are optional, such as on a command state
ment (see index entry: command statement), leave a blank after the identifier,
code a comma, leave a blank after the comma, and enter the comment.

II INCLUDE PROC ,MAIN PROCEDURE

The comment here is MAIN PROCEDURE.

oel Statement Tables

The following two tables are intended for quick referencing. The tables are: table
of Oel statements (Figure 2) and table of parameters (Figure 3).

The table of Oel statements (Figure 2) gives the identifier, function, placement, and
restrictions for each Oel statement.

The table of parameters (Figure 3) describes the contents (identifier and related par
ameters) of the Oel statements.

When using Figure 3, remember that words written in lowercase letters, such as file
narne or value, require information you must supply, depending on the functions
you want the statement to perform. Refer to Figure 3 to determine which param
eters are valid. Keyword parameters that are capitalized must be coded along with
the appropriate keyword value.

If you are not familiar with an entry, or you do not know when to use or omit it,
refer to the proper statement in the next section, DeL Statement Descriptions.

oel Statement Tables 9

Statement Function Placement in Job Stream Restrictions on Use

II COMPilE Tells the system the Must follow lOAD state-
source program to ment and precede the
be compiled RUN statement

II DATE Supplies the system Must follow lOAD state- Only one DATE state-
with a date, which ment and precede RUN ment is allowed between
is given to disk files statement except for per- a lOAD and a RUN
being created and formi ng an I Pl, when it statement
printed on printed must precede the first
output lOAD statement

II FilE Supplies file informa- Must follow lOAD state-
tion to the system ment and precede the RUN

statement

II FORMS Instructs the system Can be placed anywhere
to change the number among the OCl statements
of I ines printed per
page

II IMAGE Tells the system to re- Can be placed anywhere Mandatory if the print
place the print belt among the OCl statements belt was changed
image area with char-
acters keyed in or read
from a member in the
source library

II INCLUDE Identifies the proce- Can be placed anywhere Can include sixteen
dure member to be among the OC l statements levels of nested
merged into job stream procedures

II lOAD Identifies the program Must precede the RUN Required in the job
to be run statement stream for the program

to be run. Only one
lOAD per RUN

II lOG Instructs system to Can be placed anywhere
start or stop printing among the OCl statements
OCl statements and
messages on the printer,
and whether to skip to
line 1 of the next page
at end of job

II MEMBER Identifies the message Can be placed anywhere
load member from among the OCl statements
which messages come

Figure 2 (Part 1 of 2). Table of Oel Statements

10

Statement Function Placement in Job Stream Restrictions on Use

II PAUSE Tells the system to Can be placed anywhere
stop so that the among the OCl statements
operator can perform
a function. Operator
must indicate when
program is to continue.

II RUN Indicates the end of Must be the last OCl Required in the job
the OCl statements statement within the stream for the program
for a program and set of OCl statements to be run
tells system to run for each job
the program

II SWITCH Sets one or more Can be placed anywhere Only one SWITCH
external indicators among the OCl statements statement is allowed
on or off or to leave between a lOAD and
the indicator as it is a RUN statement

II SYSLIST Changes the output Can be placed anywhere
medium (printed copy among the DCl statements
or display on the dis-
play screen) or speci-
fies that output be
neither printed nor
displayed

* Comment Explains the job; Can be placed anywhere The * must be in
does not affect the among the OCl statements position 1
program in operation

/* Indicates the end of a last record of an input Not recognized in a
data file read from the data file procedure
keyboard

II * Message id Indicates a message Can be placed anywhere
or to be displayed to among the DCl statements
'message' the operator

Figure 2 (Part 2 of 2). Table of Oel Statements

oel Statement Tables 11

12

Statement

/I COMPILE

/I DATE

II FI LE (Disk)

/I FILE (Diskette)

Parameter

SOURCE-name

mmddyyor
yymmdd or
ddmmyy

NAME-filename or

NAME-COPYIN

or

NAME-COPYO

UNIT-F1

LABEL-filename

RECORDS-number or
BLOCKS-number

LOCATION-blocknumber

RETAIN-S
or
RETAIN-T
or
RETAIN-P

DATE-mmddyy or
DATE-ddmmyy or
DATE-yymmdd

NAME-filename

UNIT-11

LABE L-filename

Figure 3 (Part 1 of 3). Table of Parameters

Meaning of Parameter

Name of source program

System date or date for a particular job within
a set of statements (job date)

mm = month dd = day yy = year

Note: Use yymmdd format if you are creating
basic data exchange format diskettes to use
with other systems.

Name the program uses to refer to the file

For certain utility program, names the input
file when used with the LABEL parameter

For certain utility programs, names the output
file when used with the LABEL parameter

Location of the file is, or will be, the disk. If
the parameter is not specified, default is F 1

Name you specify to identify the file on the
disk

Amount of space needed on the disk for a file

Number of the block where the file begins or
will begin

Scratch file

Temporary file

Permanent fi Ie

Date the file was created

~ame the program uses to refer to the file

Location of the file is, or will be, a diskette

Name you specify to identify the file on the
diskette

Statement

II FILE (Diskette)
(continued)

II FORMS

II IMAGE

II INCLUDE

II LOAD

II LOG

II MEMBER

Parameter

RETAIN-retention-days

DATE-mmddyy or
DATE-ddmmyy or
DATE-yymmdd

PACK-vol-id

LI N ES-value

HEX
or
CHAR
or
MEM or MEMBER

number

name

procedure-name

procedure parameters

program-name

CRT or .
PRINTER

EJECT or
NOEJECT

PROGRAM1-name

PROG RAM2-name

Figure 3 (Part 2 of 3). Table of Parameters

Meaning of Parameter

The number of days a file is retained before it
expires. Maximum is 998. If 999 is specified
the expiration date is set to a value that cannot
be met and the file is considered permanent

Date the file was created

Volume identification of the diskette

Number of lines to be printed per page

Characters that follow are in hexadecimal form

Characters that follow are in EBCDIC form

Characters that are identified as H EX or CHA R
and located in a source member in the library

Number of characters

Name of the I ibrary source member that con
tains the print belt image characters

Name that identifies the procedure member in
the library

Parameters· (as many as 10) to be used by the
procedure

Name of program to be loaded from the library

Use only the display screen for logging. Use the
printer and the display screen for logging

Skip to line 1 of the next page at end of job.
Do not skip to line 1 of the next page at end of
job

Name of load member used for program product
level 1 messages. If 0 is specified, the member
name is cleared

Name of load member used for program product
level 2 messages. If 0 is specified, the member
name is cleared

oel Statement Tables 13

14

Statement

II MEMBER
(continued)

II PAUSE

II RUN

II SWITCH

II SYSLIST

* Comment

/*

II * message id
or
'message'

Parameter

USER1-name

USER2-name

none

none

nnnnnnnn where n
can be 0, 1, or X

CRT

PRINTER

OFF

none

none

msg-id

'message'

Figure 3 (Part 3 of 3). Table of Parameters

Meaning of Parameter

Name of load member used for user program's
levelland OCl message statements. If 0 (zero)
is specified, the member name is cleared

Name of load member used for user program's
level 2 messages. If 0 (zero) is specified, the
member name is cleared

See index entry: II SWITCH statement

Use the display screen for SYSLIST output

Use the printer for SYSLIST output. (The
printer is assigned during IPL.)

Ignore request for SYSLIST output

The identification of a message in the assigned
USE R 1 message member

A character string that is the actual message
(The character string must be enclosed in
single quotes.)

COMPI LE Statement

Function

Placement

Format

Contents

Example

Page of GC21-7593-3
Issued 25 November 1977
By TNl: GN21-7939

OC L Statement Descriptions

In this section, each OCL statement is described separately. The following informa
tion is given for each statement:

• Its function

• Its placement in relation to other statements and the circumstances under which
it is needed

• Its format

• Its contents (the parameters that can be used with it)

The COMPILE statement identifies the library member that contains the source program to be
compiled. A source program is a collection of statements, such as RPG II specifications, that can
be translated into an object program. An object program is a program that can be loaded into
main storage and run. Object programs are stored in the library as load members. Source programs
are stored in the library as source members.

The COMPI LE statement must be within the set of OCL statements that apply to the compila
tion. The COMPI LE statement must follow the LOAD statement and precede the RUN state
ment. If the source program to be compiled 'follows the RUN statement in the'jobstream, the
COMPI LE statement must not be used.

II COMPILE SOURCE-name

SOURCE: This parameter specifies the name of the source member that contains the source pro
gram to be compiled.

The following sample COMPI LE statement tells the system that the source member with the
name PROG3 is the name of the program to be compiled. (LOAD loads the RPG II compiler
program and RUN executes the RPG II compiler program.) For additional information about
how to compile an RPG II program, see index entry: OCL (operational control language) in the
IBM System/3 RPG /I Reference Manual, SC21-7595.

II LOAD #RPG

II COMPILE SOURCE-PROG3
II RUN

OCl Statement Descriptions 15

DATE Statement

Function

Placement

Format

Contents

Example

16

A DATE statement establishes the system date if it is given after IPL and before the first LOAD
statement. If a DATE statement is not given during IPL, the system date remains unchanged from
what it was set to by a previous DATE statement, DATE procedure, or SET procedure (see index
entries: DATE procedure and SET procedure).

A DATE statement between the lOAD and RUN statements (see index entries: II LOAD state
ment and II RUN statement) changes the job (program) date, but only for the program being run.
When the program ends, the program date is reset to the system date. If a DATE statement is not
given between lOAD and RUN, the system date is used as the program date.

The date established for the program is used to determine file retention periods for diskette
files (see the RETAI N parameter for diskette files under index entry: II FI LE statement) and
is printed on printed output. The data is also used for the creation date of the disk or diskette
files created by the program.

A DATE statement can be given after I Pl and before a lOAD statement. It can also be included
anywhere within the OCl statements for a given program, provided it follows the LOAD statement
and precedes the RUN statement. Only one DATE statement can be given between a lOAD and a
RUN statement.

II DATE mmddyy or yymmdd or ddmmyy

The system date can be in either of three formats: month-day-year (mmddyy), year-month-day
(yymmdd) or day-month-year (ddmmyy). However, you must use the current system date format.
The STATUS procedure (see index entry: STATUS procedure) can be used to determine the
current format.

Note: Use yymmdd format if you are creating basic data exchange format diskettes to use with
other systems. The SEl procedure can be used to change the system date and the system date
format.

Month, day, and year must each be 2-digit numbers, but leading zeros in month and day can be
omitted when punctuation is used. The date can be entered with or without punctuation. For
example, July 24, 1975 could be specified in anyone of the following ways:

7-24-75 mm-dd-yy
75-7-24 yy-mm-dd
24-7-75 dd-mm-yy

072475 mmddyy
750724 yymmdd
240775 ddmmyy

In the punctuated form, any characters except commas, quotes, numbers, and blanks can be used as
punctuation.

The DATE statement for the day of July 1,1975 could be : II DATE 07-01-75 or II DATE 7~1-75.

FI LE Statement

Function

Placement

Format

Contents

Page of GC21-7693-3
Issued 22 November 1978
By TNl: GN21-7993

The FI LE statement supplies the system with information about disk and diskette files. The system
uses this information to read records from and write records on the disk and diskettes.

A FILE statement is used for each new disk or diskette file that a program creates, and for each
of the existing disk or diskette files that aprogram uses. ThI;LEll .. i;.sta:tement must foll:owthe
~OAq~tatement a~~..-e.r_e_~ed~~.~.!LR ur~t.!1!tem~Lrn.

CAUTION
Be careful when using.file.s during inquiry. (See index entry: inquiry interrupt.)

II FILE parameters

. The contents section of the FILE statement description is divided into two sections, one section
for files on the disk and one section for files on diskettes.

Contents of FILE Statement for Disk Files

All of the parameters are keyword parameters (keywords are in capitalletters)f as follows:

• NAME-filename (in program)

• UNIT-Fl

• LABE L-filename (on the disk)

• RECORDS-number or BLOCKS-number

• LOCATION-block number

• RETAIN-T or RETAIN-S or RETAIN-P

• DA TE-mmddyy or DATE-ddmmyy or DATE-yymmdd

The NAME parameter is always required. The others are required only under certain conditions.

NAME: The NAME parameter is always required. It tells the system the name that the program
uses tQ refer to the file. The filename can be any combination of characters (numeric, alphabetic,
and special) ex~ept commas, single quotes ('), and blanks. The question mark (1), slash (I), and

hyphen (-) should not be used in filenames because they "ave special meanings in procedures
(see index entry: procedure parameters). The first character of a filename must be alphabetic,
#t $!_~r .. ~· The number .Qt.~I!~!~~~f:l_~~irl af1.~!~~I'!1.~~~~!t· rl~t exceed eight.

UNIT: The U~JIJ?~rct~E!!E!rJ~I~~_~hfi!.~y~te~ ~he!"~rJheJiI~is.Qn~"e(jisk or on ctdisi<ette. The
code for the unit parameter on a fl LE statement for thecji~.ki~ E1. This keyword and value need
not be specified for a disk file because Fl is the default value for UNIT parameter.

OCl Statement Descriptions 17

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

18

LABEL: The LABEL parameter tells the system the name by which a file is identified on the
disk. If the file is being created, the filename supplied in the LABEL parameter is used to identify
the file on the disk. If the LABEL parameter is omitted from a disk FILE statement, the fil~name
from the NAM E parameter is used. If a program refers to an existing file by a filename that differs
from the filename by which the file is identified on the ciisk, a LABEL parameter must be
supplied. The filename can be any combination of characters (numeric, alphabetic, and spetia!),
except commas, single quotes (') and blanks. The question mark (?), slash (/), and hyphen (-)
should not be used in filenames because they have special meanings in procedures (see'index entry:
procedure parameters). The first character must be alphabetic, #, $, or @. The number of
characters must not exceeci eight.

RECORDS or BLOCKS: The RECORDS or BLOCKS parameter tells the system the amount Of
space needed on the disk for a file being created. (See Appendix A for determining the number of
records or blocks.)

When using the BLOCKS keyword, the number of disk blocks needed for the file is specified.
There are 2560 bytes in 1 disk block-1 block = ten 256-byte sectors. A sector is the smallest
quantity of information that can be read from or written to the disk in one read/write operation.
Disk blocks available to the user vary with disk size (one megabyte = one million bytes):

3.2 Megabyte Disk 5.0 Megabyte Disk 9.1 Megabyte Disk 13.7 Megabyte Disk

1248 blocks 1968 blocks 3576 blocks 5376 blocks

#LlBRARY, the name of the file containing the system library, must be included in the user
blocks available. You can use the CATALOG command statement (see index entry: CATALOG
command statement) to determine the number of disk blocks actually available for other files.

When using the RECORDS keyword, the approximate number of records for the file must be
specified. The total space allocated is rounded up to the next block, allowing space to accom
modate at least the number of records indicated. The smallest allocatable unit is one block. For
example, if you specify ten 50-byte records,2560 bytes (one block) are allocated.

If the RECORDS parameter is used, the number can be up to six digits long. If the BLOCKS
parameter is used,the number can be up to four digits long.

Either of these two keywords, RECORDS or BLOCKS, can appear in the FI LE statement, but
not both. The keyword must be followed by a number indicating the amount of space needed.

LOCA TlON: This parameter tells the system the number of the block where a file begins.
LOCATION can be used for allocating new output files and identifying existing input files. The
keyword for the parameter is LOCATION. A valid entry for LOCATION must meet two require
ments. It must be:

• Greater than the sum of 17 plus the number of blocks used by #LlBRARY, and

• Less than or equal to the following values as determined by the disk size:

3.2 Megabyte Disk 5.0 Megabyte Disk 9.1 Megabyte Disk 13.7 Megabyte Disk

1265 1985 3593 5393

LOCATION is required in only two cases:

• You are creating another version of an existing file. To create such a file, a file that has the same
name and size (RECORDS or BLOCKS) as an existing file, you must specify a location that is
different from the location of the existing file(s) of the same name and size. The creation date of
the new file must also be different from the creation date of any existing file of the same name

and size.

• You are writing over an existing file. To write over, or overlay, an existing file you must specify
the name of the existing file, its size (RECORDS or BLOCKS) when it was created, and its loca
tion. (The LOCATION number can be up to four digits long.) A different creation date, taken
from the current job date, will exist for the new file.

Note: Use LOCATION with caution. Three procedures-the COMPRESS, RESTORE, and
APCHANGE-change file locations. Both the COMPRESS procedure and the RESTORE procedure
move files from previous locations on the disk to new locations, thereby invalidating LOCATION
parameters specified before the COMPRESS or RESTORE procedure was run. These three
procedures do not display a message to notify the operator of the new locations. (For more
information on the COMPRESS, RESTORE, and APCHANGE procedures, see index entries:
COMPRESS procedure, RESTORE procedure, and APCHANGE procedure.) To determine the
current location of a file, use the CATALOG procedure (see index entry: CATALOG procedure).

The APCHANGE procedure contains an option that changes file locations, also invalidating
LOCATION parameters.

RETAIN: The RETAIN parameter classifies files as scratch, temporary, or permanent.

The keyword for the parameter is RETAIN. It must be followed by a code that indicates the
classification of the file. The codes are:

Code Meaning

S Scrat(~h file
T Temporary file
P Permanent file

A scratch file can be used only by the program creating it, and does not exist after the
program that created it has ended.

A temporary file is usu~lIy us~d more than o,:!ce. The area containing a temporary file can be
given to another file only under one of the following conditions:

• A FILE statement containing the RETAIN~S parameter is supplied for the temporary file to
identify the file as a scratch file, which will not exist after the program has ended.

• Another file with the same LABEL name is loaded into the area occupied by the temporary
file, changing only the data. The RECORDS or BLOCKS and LOCATION parameters must
be provided and must be the same as the original file.

• The DELETE procedure is used to delete the file.

The area containing a permanent file cannot be used for any other file until the DELETE proce
dure is used to delete the permanent file (see index entry: DELETE procedure).

oel Statement Descriptions 19

The system supports up to 200 permanent or temporary files at anyone time on the disk
(199 user files plus the system file #LlBRARY).

A disk file is classified as scratch, temporary, or permanent when it is created. If the R ETAI N
Parameter is omitted from the FI LE statement when the file is created, the file is assumed to be a
temporary file.

The RETAIN parameter can be omitted when accessing an existing file. If an existing permanent
file is referenced by a FILE statement with RETAIN-T, it will remain a permanent file. If an
existing temporary file is referenced by a FILE statement with a RETAIN-P, it will remain a
temporary file. No message is issued by the system to reflect the above situations. However, a
message is issued if an existing permanent file is referenced by a FILE statement with RETAIN-S.
If processing is continued, the file remains permanent.

DA TE: The DATE parameter identifies the creation date of the file. Though the date is not used
when creating a file, it is used to ensure that the proper version of a file is referred to. When a file
is created on disk, its LABEL name and creation date are written on the disk as identification. The
job (program) date is the date used. More than one file can be given the same name. However, the
creation dates of these files must be different. To refer to such a file, you can use its name and
date, its name and location on disk, or its name and size if the size is unique. If neither the date
nor the location is given, the file having the latest date is the one automatically referred to.

The date can be entered in one of three forms: month-day-year (mmddyy), day-month-year
(ddmmyy) or year-month-day (yymmdd). However, the form chosen must conform to that of
the current system date format.

Sample FILE Statement for a Disk File

A program is creating a disk file; therefore, it must have a FI LE statement. Assume the following
facts about the file:

• The name the program uses to refer to the file is TRANS

.• The name of the file on the disk is TRANS1

• The file is to be saved for use at the end of the month but it can be deleted at the first of the
next month

• The file contains 225 records

• The system is to choose the disk area to contain the file

A FI LE statement that could be entered to define the file is:

II FILE NAME-TRANS,UNIT-Fl,LABEL-TRANS1,
II RETAIN-T,RECORDS-225

Contents of FILE Statement for Diskette Files

Page of GC21-7593-3
Issued 22 November 1978
By TNl: GN21-7993

All of the parameters are keyword parameters, which follow (keywords are in capital letters):

• NAME-filename (in program)

• UNIT-11

• LABEL-filename (on diskette)

• RETAIN-retention-days

• DATE-mmddyy or DATE-ddmmyy or DATE-yymmdd

• PACK-vol-id

The NAME and UNIT parameters are always required. The others are required only under cer
tain conditions.

NAME: The~AM_~~_~aITI~~~~J!.,~JwC!v~_ne~~d. 1!_!~!~Jhe systE~!~Jb!Jl~f'].EL!t!!-!L~h"e,
Qro~m uses to ref~I..!Q.~.b.~JjJe~,.,

The keyword for the parameter is NAME. It must be followed by the filename used by the pro
gram. The filename can be any combina~ion of characters (numeric, alphabetic, and special)
except commas, single quotes ('), and blanks. The question mark (7), slash (I), and hypen (-)
should not be used in filenames because they have special meanings in procedures (see index
entry: procedure parameters). The first character of a filename must be alphabetic, #, $, or @.

The number of characters in a filename must not exceed eight.

UNIT: The UNIT parameter tells the system whether the file is on the disk 9r on a diskette.

The code for the UN IT parameter on a FILE statement for the diskette is 11. This keyword and
code must be specified on a diskette FILE statement. If omitted, the UNIT parameter will de
fault to disk.

LASE L: The keyword for the parameter is LABE L. It must be followed by the name of the file
on the diskette. The filename can be any combination of characters (numeric, alphabetic, and
special) except commas, single quotes ('), and blanks. The comma, single quote ('), question
mark ('1), slash'(I}, and hyphen (-) should not be used!n filenames because they have special
meanings in· procedures (see index entry: procedure parameters). The first character must be
alphabetic, #, $, or @. The number of characters must not exceed eight.

The LABEL parameter tells the system the name by which the file is identified on a diskette. If
the file is being created, the name supplied in the'LABEL parameter is used to identify the file
on a diskette. If the LABEL parameter is omitted from a diskette FI LE statement, the name
from the NAME parameter is used. If the file is an existing file, a LABEL parameter is required
whEm the name the program uses to refer to the file differs from the name with which the file is
identified on a diskette.

If multi~le files are to be created on a single diskette, each file LABEL must be
unique. Duplicate file labels on the same diskette are not permitted.

OCl Statement Descriptions 21

22

RETAIN: The RETAIN parameter specifies duration-the number of days a file is to be retained.
It is used to compute an expiration date. Whenever RETAIN is given for a file, the system deter
mines the expiration date of the file by adding to the job (program) date the number of days spe
cified by the RETAIN parameter. The RETAIN parameter can be from 0 to 999. When creating a
new file, if RETAIN is omitted, 1 is assumed. If up to 998 is specified, the file is retained for this
number of days, if 999 is specified, the file is considered permanent but can be deleted by the
DELETE procedure (see index entry: DELETE procedure).

When creating a diskette file, the system writes the expiration date of the file in the same format
as that of the current system date. If an existing nonpermanent diskette file is referenced by a
FILE statement with a RETAIN parameter, the expiration date of the file is changed to the date
determined by the RETAIN parameter. The new expiration date is written in the format of the
current system date' regardless of the format of the file creation date ..

If an existing permanent diskette file is referenced by a FILE statement with a nonpermanent
RETAIN parameter, an error message is issued. If you decide to continue processing after the
message is displayed, the file remains as a permanent file.

Whenever the system is creating a file on a diskette or adding to an existing file on a diskette, all
files on the diskette whose expiration dates were met and all files with blank (hex 40s)
expiration dates are deleted automatically. When the expiration dates are checked for having
been met, each expiration date is checked for the international format (yymmdd). If an expira
tion date is not in the international format, it is assumed to be in the same format of the system
date. If the expiration date for a diskette file is not in the international format and is not in the
format of the system date, the expiration date may be misinterpreted by the system and the file
might be deleted before the expiration date is actually met.

When a new file is created on a diskette, the new file starts at the first available sector beyond
the last unexpired existing file.

DATE: The DATE parameter is the creation date of an existing file. It is used to ensure that
the proper version of a file is referred to. The,format specified must be the same as the format
,of the creation date of the diskette file referred to.

Note: When a file is created on diskette, its label, filename, expiration date, and creation date
(job date) are written on the diskette as identification. The job (program) date is the date
described under DATE statement (see index entry: II DA TE statement). This date can be in
one of three formats: month-day-year (mmddyy), day-month-year (ddmmyy), or year-month
day (yymmdd). However, the creation date of each file on a diskette must be in the same for
mat as every other creation date on the diskette,or the file might be deleted before the intended
expiration date.

PACK: A PACK parameter is required when creating a file or adding to a file pn a diskette.
I

The PACK para_l'!'Ieter· provides the system the volume identification (vol-id) of the diskette
associated with this FI LE statement. The vol-id is put on t~~diskette (pack) by the IN IT
procedure (see index entry: INITprocedure). PACK must be followed by the vol-id of the
diskette associated with this file. The vol-id can be any combination of six or less alphameric
characters.

The PACK parameter vol-id will be compared with the vol-id of the inserted diskette. If they
areunequai, a message'is dfsplayed to the operator who then -has the option to continue pro
cessing (ignore vol-id), to. insert the correct diskette, or to cancel the job.

FORMS Statement

Function

Placement

Format

Contents

Example

If the PACK parameter is not supplied on the diskette FILE statement for an output file or when
adding to a file, an error message is displayed to the operator with a cancel option only.

The PACK parameter is not required for a diskette input file; however, it is recommended that
you ensure that the proper diskette is inserted.

Sample FILE Statement for a Diskette File

Assume the following facts about a file to be created on a diskette.

• The program that creates the file refers to the file as TRANS

• The name of the file once it is on a diskette will be TRANS1

• The file is to be saved for use at the end of the month but can be deleted the first of the next
month. There are seven days left in the month

• The file contains 225 records

• The file will be on the diskette identified by 666666

The FI lE statement for the file could be:

II FilE NAME-TRANS,UNIT-11,lABEl-TRANS1,
II RETAIN-8,PACK-666666

The FORMS statement changes the number of lines that the printer will print per page. This
number of lines is effective until another FORMS statement or LINES procedure or SET proce-
dure is. used (see index entries: LINES procedure and SET procedure) or an RPG II program spe
cifies some other number. During IPl the number of lines per page is set to the value existing in
the system configuration record.

The FORMS statement can be placed anywhere among the OCl statements.

II FORMS LINES-value

LINES: Value is used to indicate the number of lines per page. The maximum number of lines
that can be specified per page is 84. The value specified must not exceed two digits. The
LINES parameter remains in effect until a SET procedure (see index entry: SET procedure) is
used to change the variable, another FORMS statement is received, an IPl is performed, or a 3
option (immediate cancel) is taken in response to a message. If a line counter specification is
used in an RPG II program, it remains in effect only for the duration of that program.

The printer will skip (overflow) to a new page when six less than the number of lines specified
are printed. For example, if LlNES-84 is specified, the printer skips to a new page after printing
line 78. If L1NES-6 is specified, there would be one line printed per page. When five or less
lines are specified, there is printing on every line (no overflow).

Note: RPG II programs can specify their own overflow rules to override the values specified in a
II FORMS statement.

The following statement tells the system that the forms length is 50 lines per page:

II FORMS LINES-50
oel Statement Descriptions 23

IMAGE Statement

Function

Placement

Format

Contents

24

To operate correctly, the printer requires that the characters matching those on the print belt be
in a special area of main storage called the print belt image area. When one print belt is replaced
for another with different characters, the contents of the print belt image area must also be
changed.

The IMAGE statement instructs the system to replace the contents of the print belt image area
with the characters indicated by the statement.

The characters can be entered from the keyboard or read from a source member in the library on
disk. The effect of the IMAGE statement is temporary and the system print belt image is returned
to the print belt image area during IPl. The SET procedure can also change the print belt image
(see index entry: SET procedure).

The IMAGE statement can appear anywhere among the DCl statements.

II IMAGE parameters

The I MAG E statement tells the system either:

• The new print belt characters are to be read from the keyboard, or

• The new print belt characters are to be read from a source member in the library.

Characters from the Keyboard

To indicate that the new print belt characters are to be entered from the keyboard, use the follow
ing parameters:

CHAR or HEX: Use the word CHAR to indicate that the characters are in alphameric form. Use
the word HEX to indicate that the characters are in hexadecimal form. (See Appendix F for the
hexadecimal form of standard characters.)

Note: Two characters, the reverse slash (\) and the grave accent (') are not on the keyboard but
are on the print belt. If these characters are to be entered from the keyboard, all characters must
be entered in hexadecimal form.

Number: The number parameter must be used with HEX and CHAR. This parameter is the
number of characters following the IMAGE statement (after the IMAGE statement is enterec::f,
the entry of the characters is prompted for). This number must not exceed 384 when the char~
acters are hexadecimal, 192 and characters are alphameric.

Following are the rules for entering the new characters from the keyboard:

• The characters must begin in position 1

• Consecutive positions must be used and characters must be entered in the sequence in which
they appear on the new print belt

The sequence for entering characters on the 48-character print belt is:

1234567890#@/STUVWXYZ&,%JKLMNOPOR-$*ABCDEFGHI+.'

The sequence for entering characters on the 48-character FORTRAN (48HN) print belt is:

1234567890=)/STUVWXYZ&,(JKLMNOPQR-$* ABCDEFGH 1+.'

The sequence for entering characters on the 64-character print belt is:

1234567890#@/STUVWXYZ&,%JKLMNOPOR-$* ABCDEFGH I+:¢«I!);I '_>1:""'"

The sequence for entering characters on the 96-character print belt is:

1234567890#@/STUVWXYZ&,%JKLMNOPOR-$*ABCDEFGHI+:
¢[(] !)%%; __ o?:=,,± §abcdefghi2 3~jklmnopqr®£stuvwxyz

Note: The question mark (?) has a special meaning in procedures, therefore if you use a
procedure to enter the II IMAGE statement you must use the HEX form for all charact~rs .

• A line must be filled before characters can be continued on the succeeding line (beginning in
position 1 of the new line)

Characters from Source Member in the Library

MEM,name or MEMBER,name may be entered to indicate that new print belt characters ~re to
be read from a source library member. Name identifies the source member containing the
characters.

In the following example, the name parameter indicates that the characters are to be found in a
source member named BEL T48:

II IMAGE MEM,BEL T48

A II IMAGE statement specifying the format as either hexadecimal (HEX) or alphameric (CHAR)
and specifying the number of characters in the source member is required as the first recQrd
within the source member. Because BEL T48 is the source member that contains the image of
the standard 48-character print belt, BEL T48 contains the following:

II IMAGE CHAR,48

1234567890#@/STUVWXYZ&,%JKlMNOPOR-$* ABCDEFGH 1+.'

oel S~atement Descriptic)ns 2S

EX(.Imples

INCLUDE Statement

Function

Placement

Format

Contents

26

The IMAGE statements in Examples A and B tells the system that the new characters are to be
entered from the keyboard. The HEX parameter in example A indicates that the new characters
are in hexadecimal form; the number parameter indicates that there are 128 positions containing
the new characters.

Example A

II IMAGE HEX,128

In example B, the new characters entered from the keyboard are alphameric. The number param
eter indicates that there are 48 positions containing the new characters.

Example 8

II IMAGE CHAR,48

The INCLUDE statement identifies the procedure member containing the OCl to be merged into
the job stream, and any utility control statements (see index entry: writing utility control state
ments) to be merged into the job stream. The INCLUDE statement also enables you to pass par
ameters to the identified procedure member. In effect, the INCLUDE statement causes system
input to come from a procedure. See index entry: procedures for more information on procedures.

The INCLUDE statement can be placed anywhere within a set of OCl statements.

II INCLUDE procedure-name parameters

The II and the INCLUDE can be omitted. Procedures are usually evoked by command statements.
Command statements Consist only of the procedure name followed by the parameter va1ues to be
passed to the procedure.

The /1 with only the procedure name (no INCLUDE statement identifier) is also allowed. How
ever, if-the procedure name is the same as an OCl statement identifier or is IF or ELSE, then
II INCLUDE must be present. For example, if the procedure name is LOAD, then the following
format is correct:

II INCLUDE LOAD parameter(s)

Procedure-name: The procedure name is the name of the procedure member to be merged into
the job stream.

Example

An INCLUDE statement

Parameters: Parameters mayor may not be required, depending on the particular included pro
cedure they are passed to. Parameters are separated by commas. A parameter can be omitted.
See the example that follows. The parameters required for I BM-supplied procedures are found in
Part 2 of this manual.

The parameters can be any combination of characters except question marks, commas, quotation
marks (single and double), slash (/), hyphen (-), or blanks. The number of characters per param
eter must not exceed eight. The number of parameters must not exceed ten per INCLUDE
statement.

Parameters passed in an I NCLU DE statement must be interpreted by the procedure (see index
entry: modifying a procedure job stream).

In the following example, parameter number 2 was omitted. JOE and SAM are two parameters
that will be interpreted by the PAYROLL procedure:

II INCLUDE PAYROLL JOE"SAM

In the following example, procedure FILE1 is included between the LOAD and RUN statements
and the name of the file (WEEKLY) is being passed to the procedure. Procedure FILE1 contains
only the FI LE statements necessary to execute the program PAYROLL.

II LOAD PAYROLL
FIlE1 WEEKLY
II RUN

Assuming that PAYROLL requires only two FilE statements and the procedure FILE1 contains
these two FilE statements, the effect of the preceding three DCl statements would be the fol
lowing sequence of OCL statements entered into the system:

II LOAD PAYROLL
Merged into the job stream j II FilE LABEL-WEEKLY, ...
in place of the INCLUDE t II FILE ...
statement II RUN

LOAD Statement

Function

Placement

Format

Contents

Example

The LOAD statem~nt identifies the program to be executed.

The LOAD statement must be the first statement in a set of statements for a program.

II LOAD program-name

Program-name: The program-name parameter is the name of the program to be loaded.

In the following sample LOAD statement, $COPY is the symbolic parameter that identifies the
Disk CopylDisplay Utility Program:

I I LOAD $COPY

Gel Statement Descriptions 27

LOG Statement

Function

Placement

Format

Gont~nts

Example

28

the LOG statement tells the system where to display messages and OCL statements and whether
to skip to line 1 of the next page at end of job.

Note: The LOG statement can be used to tell the system to display OCl statements and messages
on the printer as well as on the display screen. IPL assigns only the display screen for displaying
message$ and OCL statements.

The LOG statement can be used anywhere within the set of OCl statements for a program.

II LOG CRT ,EJECT
or or
PR INTER ,NOEJECT

Parameter

CRT

PRINTER

EJECT

NOEJECT

Meaning

Use only the display screen.

Usethe printer and the display screen.

Skip to line 1 of the next page at end of job. EJECT is assumed if neither EJECT
nor NOEJECT is specified.

Do not skip to line 1 of the next page at end of job.

The following example specifies that messages and OeL statements afe to be displayed on both
the display screen and the printer, and that EJECT is assumed:

II LOG PRINTER

MEMBER Statement

Function

Placement

Format

Contents

The MEMBER statement allows the user to identify the message load member from which messages
are to come.

There are four types of message load members: PROGRAM1, PROGRAM2, USER1, and USER2.

PROGRAM is used by IBM program products to assign names to associated message load members.

USER means that the messages are for user-generated programs and OCl statements.

level 1 messages are 40 characters in length and do not give the detail found in level 2 messages
which can be 200 characters in length. A level 2 message can be displayed only after the level 1
message of the same MIC (message identification code) is issued. (See index entry: $MGBLD
utility program for a description of creating a message load member.)

The MEMBER statement can be placed anywhere among OCl statements.

II MEMBER parameters

All the parameters are keyword parameters (keywords are in capital letters) as follows:

PROGRAM1-name

PROG RAM2-name

USER1-name

USER2-name

The name of the load member used for I BM program product level 1
messages. Each IBM program product has its own set of names for related
message load members.

If 0 (zero) is specified for name, the system will not look for requested
PROGRAMl messages but will display a message indicating that the
requested message was not found.

The name of the load member used for I BM program product level 2
messages. Each I BM program product has its own set of names for related
message load members.

If 0 (zero) is specified for name, the system will not look for requested
PROGRAM2 messages but will display a message indicating that the
requested message was not found.

The name of the load member used for levelland Del statement messages
for a program supplied by the user.

If 0 (zero) is specified for name, the system will not look for requested
USER 1 messages but will display a message indicating that the requested
message was not found.

The name of the load member used for level 2 messages for a program
suppl ied by the user.

If 0 (zero) is specified for name, the system will not look for requested

USER2 messages but will display a message .indicating that the requested
message was not found.

oel Statement Descriptions 29

Examples

PAUSE Statement

Function

Placement

Format

Contents

RUN Statement

Function

Placement

Format

Contents

30

The MEMBER statement is in effect until the user enters another MEMBER statement or an IPL
is performed. At IPl, the member names are cleared.

After an included procedure is executed, the load member names a~e reset to the names used when
the INCLUDE statement was read. The following is an example of a MEMBER statement used With
an included procedure.

Procedure A

II MEMBER USER1-JOE
II INCLUDE B
II * 6666

ProcedureS

II MEMBER USER1-SAM
II * 7777
II lOAD PAYROll
II RUN

When the MEMBER statement is executed in procedure A, the message associated with MIC 6666
comes from the message load member named JOE. The message associated with MIC 7777 in

. procedure B comes from the message load member named SAM.

The PAUSE statement causeS the SCP to suspend processing. It usually is used to give the opera
tor time to insert a diskette. A message telling the operator which diskette to insert usually
precedes a PAUSE statement.

When ready, the operator can restart the SCP by taking the 0 (zero) option to continue. The
SCP then continues reading the OCl statements that follow the PAUSE statement.

The PAUSE statement can be placed anywhere among the OCl statements.

II PAUSE

None

The RUN statement indicates the end of the OCl statements for a program. After the system
reads the RUN statement, it executes the program named in the lOAD statement.

A RUN statement is needed for each of the programs the system will run. Inthe job stream, it
must be the last statement within the set of OCl statements for each job.

II RUN

None

SWITCH Statement

Function

Placement

Format

Contents

Example

The SWITCH statement sets one or more external indicators on or off. If a switch statement is
used to set an indicator on, the indicator remains on until:

• Another SWITCH statement sets it off,

• A system IPl is performed (turnsall indicators off), or

• A user program sets the indicator off.

Note: If an IBM SCP procedure sets a switch, at the end of the procedure the switch is restored
to its original setting.

The SWITCH statement can be placed anywhere among the OCl statements for a job. However,
only one SWITCH statement is allowed between a lOAD and a RUN statement.

II SWITCH indicator settings

Indicator settings: The indicator settings parameter consists of eight characters, one for each of
the eight external indicators (Ul-U8). The first, or leftmost, character gives the setting of indicator
Ul; the second character gives the setting of U2; and so on.

The parameter must always contain eight characters. For each indicator, one of the following
characters must be used:

Character Meaning

o Set the indicator off

Setthe indicator on

x leave the indicator as it is

II SWITCH lX0110XX

The example shown causes the following results:

Indicator Result

Ul Set on

U2 Unaffected

U3 Set off

U4 Set on

U5 Set on

U6 Set off

U7 Unaffected

U8 Unaffected

oel Statement Descriptions 31

SVSLIST Statement

Function

Placement

Format

Contents

Example

Comment Statement

Function

Placement

Format

Contents

32

The SVSLlST (system list) statement changes the method for listing output. Output can be listed
on the printer or on the display screen, or specified not to be listed at all.

The SVSLlST statement can be placed anywhere among DCl statements.

II SVSLlST parameter

The parameter can be:

Parameter

CRT

PRINTER

DFF

Meaning

Display output on the display screen.

Note: If CRT is specified on a SYSLIST statement, the ROllt without the
SHIFT key (roll up) must be pressed after each system list output record is
displaY'ed to advance to the next record.

Print output on the printer. (The printer is assigned during IPL.)

Do not list output.

The following is an example of assigning the printer for listing output:

II SYSLIST PRINTER

Comment statements are usually used to explain the purpose of the DCl statements and utility
control statements stored in a procedure. (See index entries: writing utility control statements
and procedures for a description of utility control statements and procedures.) Comments in a
procedure are displayed when the proc~dure is displayed. Comments are not displayed when the·
procedure is being executed.

Comment statements can be placed anywhere among the DCl statements, except between I F and
ELSE expressions. (See index entry: parameters, statement for statement parameter rules of
the I F and ELSE expressions.)

* comment

Comment statements must contain an asterisk (*) in position 1. The text of the comment itself
can be any combination of words and characters except the question mark. Because the question
mark (7) has a special meaning in procedures (see index entry: procedure parameters) and certain
control statements, comments should not contain a question mark.

1* End of Data Statement

Function

Placement

Format

II * Message Statement

Function

Placement

Format

Contents

Example

/* statements indicate the end of data files entered from the keyboard.

A /* statement must be the last record of an input data file.

/*

Note: An end of data statement is not recognized in a procedure.

The message statement provides a means of displaying messages to the operator froM a procedurE!.

The message statement can be placed anywhere among OCl statements.

1/ * msg-id or 'message'

The parameter can be in either of two forms:

msg-id

'message'

This is the identification of a message in the USER1 message member specified "r1
the II MEMBER OCl statement (one to four numerics). (See index fmtry:
II MEMBER statement for a description of the USER1 message member.)

A character string enclosed by single quotation marks is the actual message. Arty
character can be used in the charaCter string except a single quote or a single
question mark (?). (See index entry: substitution in procedures for the use of the
question mark in an Oel message statement.) The maximum number of charaCters
in the character string is 120 characters minus the Oel statement charactets (II~ * t
',and blanks) not included in the actual message. However, when the rnessagt! is
displayed on the display screen, only the first 40 characters of the chatacter strina
are displayed. When the message is printed, all characters in the charatter strih9
are pri nted.

The message is always displayed to the operator when the statement is processed in the job slrefih'h.

In the following example, the message statement would very likely be followed by a PAUSS
statement to allow the operator to change the diskettes:

1/ * 'INSERT THE PAYROll MASTER DISKETTE'

oeL StateMent Descriptions. aa

34

Part 2

Procedures

Procedures 35

36

Introduction to Procedures

A procedure is a set of related OCl statements and, possibly, utility control state
ments (see index entry: writing utility control statements for a description of utility
control statements). A procedure is stored in the system library as a procedure mem
ber. Each procedure, and thereby each procedure member, must have a unique name.
This name is the name by which a procedure is evoked.

One procedure can cause more than one job to be run. That is, a single procedure
may contain more than one lOAD statement and RUN statement (see index
entries: II LOAD statement and II RUN statement).

The ability to store sets of frequently used OCl statements and utility control state
ments makes it possible to avoid recoding and rekeying the statements each time they
are requ ired.

I ntroduction to Procedures 37

-'~.,

Page of GC21-7593-3
Issued 22 Nowmber 1978

By TNL: GN21-7993

IBM SCP PROCEDURES

38

The following list of names identifies the procedures supplied with IBM System/32
system control programming to provide you with an easy method of using system
functions.

ALTERBSC CREATE LINES RESTORE
ALTERSDL DATE LlSTLlBR SAVE
APCHANGE DELETE LOG SET
BACKUP DISPLAY ORGANIZE SETMICR
CATALOG FROMLlBR OVERRIDE SPECIFY
COMPRESS HISTORY REBUILD STATUS
CONDENSE INIT RELOAD SYSLIST
CONVEFCT JOBSTR REMOVE TOLlBR
COPYI1 RENAME TRANSFER

Notes:
1. The ALTER-SOL and SPECIFY procedures are intended for data communi·

cation programming that uses SDLC (synchronous data link control). The
ALTERBSCand OVERRIDE procedures are intended for data communication'
programming that uses BSC (binary synchronous communications). Data
communication programming using SOLe and BSC is described in the IBM
System132 Data Communications Reference Manual, GC21-7691.

2. The SETMICR procedure is used with the 1255 Magnetic Character Reader
attachment and isdescribed in IBM System/32 1255 Magnetic Character
ReaderReference and Logic Manual, GC21-7692.

I BM also provides SCP service procedures to help you and I BM service personnel
solve system problems that may arise. The service procedures provided are:

APAR
BUILD

DUMP
PATCH

TRACE

The service procedures are described in Appendix D. Three other procedures,
APPLYPTF, CNFIGSCP, and INSTALL, are part of the installation steps des
cri bed in Part 5.

Some of the IBM SCP procedures call and use other IBM SCP procedures that you
cannot evoke dfrectly. Though you ca'nnot evoke these procedures directly, their
names may appear on listings you request.

You can create your own procedures to use in addition to those provided by IBM.
The information contained in this part of the manual, Part 2, will help you create,
and evoke your own unique procedures as well as use those provided by IBM.

CREATING A PROCEDURE

A procedure can be created and stored in the library by keying statements from the
keyboard and using the $MAINT utility program (see index entry: $MAINT utility
program) or another program such as the Source Entry Utility (described in IBM
System/32 Utilities Program Product Reference Manual-Source Entry Utility,
SC21-7605).An existing set of OCL statements and utility control statements can
be read from a diskette to the disk by using one of the procedures or utilities
described in this manual.

EVOKING A PROCEDURE

Procedures can be evoked in three ways:

• By keying an INCLUDE OCL statement (command statement)

• By using a command key

• By calling a procedure from another procedure

Keyboard Entry of the INCLUDE Statement

A procedure usually is called by a simplified form of the INCLUDE DCL statement
known as a command statement. Command statements are formed by deleting the
II and INCLUDE from the format of INCLUDE statements. That is, the general for
mat of a command statement is:

Procedure name Parameter-1 ,Parameter-2, ... Parameter-n

A command statement can begin in any position-a command statement does not
have to begin in position 1.

For example, keying

PAYROLL

and pressing the ENTER key is sufficient to call a procedure named PAYROLL, pro
vided no parameters need to be passed to the procedure.

For a description of the other two formats permitted for an INCLUDE OCL state
ment, see index entry: /1 INCLUDE statement.

Note: The /1 and INCLUDE cannot be omitted from the INCLUDE statement if you
want to evoke a procedure whose name is IF, 1FT, IFF, ELSE, RETURN, or CANCEL,
or if the procedure name is the same as an OCl statement identifier.

Introduction to Procedures 39

40

Using a Command Key

The command key is another way of evoking a procedure. By pressing the CMD
key in response to READY and then an upper or lowercase assigned command key
(the command keys are the 12 keys in the top row of the typewriter keyboard).
You can request one procedure for each uppercase key and one procedure for each
lowercase key. Therefore, you can request 24 procedures using command keys,
(see Assigning Command Keys following). The procedure can then be evoked by
pressing the ENTER key.

Note: Command keys can be used to evoke OCL statements in the same way they
can be used to evoke procedures.

When you request a procedure by pressing a command key, the procedure name
(and any parameters previously specified for that procedure) is displayed on the
display screen. For example, if you are requesting a previously created PAYROLL
procedure and PAYROLL has no parameters specified for it, the procedure name
appears on the display screen as:

PAYROLL

The display screen cursor would be positioned at the second position after PAY
ROLL. If no parameters are required, pressing the ENTE R key evokes the PA Y
ROLL procedure. If parameters are to be entered, you must key them before
pressing ENTER.

Assigning Command Keys

If you wish to request a procedure by pressing a command key rather than keying
in the command statement each time for commonly used procedures, you must
create a message source member, a level 2 message load member named ##MSG3;
use the CREATE procedure or the $MGBLD utility program to put the load
member into the library; and then perform an initial program load (IPL).

The message source member contains a message control statement and a message
text statement for the message load member ##MSG3. (See index entry: message
source member for a description of message control statements and message text
statements for assigning a command key to a procedure.)

Command Key Message Identification Codes

The message load member (##MSG3) must contain one or more of the following
twenty-four message identification codes (MICs). The MICs are shown with the data
characters on the corresponding command keys.

MIC Command Key MIC Command Key
(Lowercase) (Uppercase)

0001 0013

0002 2 0014 @

0003 3 0015 #

0004 4 0016 $

0005 5 0017 %

0006 6 0018 --,

0007 7 0019 &

0008 8 0020 *

0009 9 0021

0010 0 0022

0011 - (minus) 0023 (underscore)

0012 0024 +

For example, if the command key message load member contains a MIC of 0010
and the COPYI1 command statement as text, COPYI1 is executed after the CMD key
and the 0 data key are pressed.

I ntroduction to Procedures 41

42

Evoking a Procedure from Another Procedure

A procedure requested by a command statement (INCLUDE OCl statement) or a
command key can also request another procedure. For example, suppose a procedur~
named PAYROLL contains, besides other OCl statements, a TAXES command stat~~
ment, and the procedure named TAXES contains a DEDUCT command statement.
Both the TAXES procedure and the DEDUCT procedl!re are called and executed
when the operator enters the PAYROLL command statement.

PAYROLL TAXES
Procedure Procedure

PAYROLL calls 1/".
II '"
TAXES callsll .. .

II .. .
II .. .

DEDUCT
Procedure

DEDUCT calls II .. .
II .. .

A procedure evoked by another procedure is called anested procedure. In the pre~
ceding example TAXES and DEDUCT are nested procedures.

A nested procedure normally returns to the procedure that called it. That is:

PAYROll
Procedure

PAYROLL calls II .. .
1/ .. .

TAXES
Procedure

TAXES calls II .. .
II .. .
II .. .

DEDUCT
Procedure

DEDUCT calls II .. .
II .. .

II 4-----
II .. .

II ----
II .. .

The preceding example contains three levels of procedures: the first level contains
PAYROLL, the second contains TAXES, and the third contains DEDUCT. One
level can contain more than one command statement, but a maximum of 16 levels of
procedures is allowed in one job stream.

Procedure Execution

When a procedure name is recognized by the SCP the following action occurs:

1. The procedure member corresponding to the procedure name is found in the
library.

2. The OCl statements, utility control statements, andlor nested procedures are
read, one statement at a time, by the SCPo Parameters ate substituted for sub
stitution variables (see index entry: modifying a procedure job stream), I F and
ELSE expressions are processed (see index entry: modifying a procedure job
stream), and the resultant DCl and utility control statements from the original
procedure and any nested procedures are executed as a normal job stream.

PROCEDURE PARAMETERS

Some procedures require parameters when .the procedures are requested, other pro
cedures do not. A maximum of 10 parameters can be passed when evoking a pro
cedure. Most parameters passed to procedures are positional parameters. A posi
tional parameter is a parameter that, whenever it appears in a statement, must appear
in the same position in relation to other parameters in the statement. If a valid
positional parameter is omitted from a statement requesting a procedure but a
following parameter is used, a comma must indicate the position reserved for the
omitted parameter.

For example:

II INCLUDE PRDCEDUR FILEA"ND

FI lEA is the first parameter, the second parameter is omitted, and NO is the third
parameter. A fourth parameter, XYZ, is omitted, but is not indicated by a comma
because it was the last parameter.

Some parameters have defaults. A default is a parameter that is substituted for an
omitted parameter. You can write defaults in your procedures (see index entry:
modifying a procedure job stream). Defaults are underlined when shown in com
mand statement formats in this manual.

The comma, single quote ('), question mark (?), slash (I)' and hyphen (-) have
special meanings in procedures and in DCl and utility control statements (see index
entry: writing utility control statements for information on utility control state
ments) and should not be used in parameters for a procedure. The?, I, and - should
not be used in any control statement unless the format of the statement given in
this manual indicates that one or more of the symbols is required. (For example,
Del and utility control statements begin with II; a hyphen is required to separate
keywords and values in keyword parameters.)

Note: If sequence numbers are used on procedure statements, the sequence numbers
are considered comments and the rules for coding comments apply. (See index entry:
comments, rules for using.)

I ntroduction to Procedures 43

44

Modifying a Procedure Job Stream

Within a procedure member, special kinds of expressions can modify the job stream
generated when the procedure is invoked. The two types, called substitution
expressions and conditional expressions, can be used to substitute values in the
generated job stream and to conditionally generate Oel and utility control
statements. Following are detailed descriptions of substitution and conditional
expressions and examples of howthey are used.

Substitution Expressions

Substitution expressions within a procedure allow the programmer to substitute
information in the statements generated when the procedure is run. Substituted
values can be:

• Passed to the procedure as positional parameters on the command statement
that invoked the procedure

• Supplied by the operator in response to prompts issued from within the
procedure

Following are descriptions of each of the substitution expression formats that can
be used in a procedure member.

Note: In the following forms of substitution, the n can be any number between
01 and 11 (the leading zeros can be dropped). The first 10 parameters on the
statement that evokes the procedure are positional. Only 10 parameters can be
passed; the eleventh must be suppHedby default (for example, ?11,'FllEIN'?) or
prompting (for example, ?11 R?).

Substitution
Format Meaning

?n? Substitutes the value of the nth positional parameter. If the nth
parameter is not defined, no value is substituted. For example, a
procedure member contains the following statement:

II * '?3? WAS DELETED'

If the third parameter is not defined (that is, it was not specified on
the command statement and was not assigned a value by a previous
statement within this procedure), the following statement is
generated:

II *, WAS DELETED'

If the value of the third parameter is F I lEX, the following statement
is generated:

II * 'FILEX WAS DELETED'

Substitution
Format

?n'default'?

1n T'default'?

Meaning

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Substitues the value of the nth positional parameter; or, if the nth

parameter is not defined, permanently assigns a default value to the

parameter, and then substitues the value. 'default' specifies the

permanent default value. If the default value is assigned, subsequent

references to the nth parameter within the procedure member use

that same default value. For example, a procedure member contains

the following statement:

II FILE NAME-?2'FILEIN,?

If the second parameter was not defined, the following statement is
generated:

II FILE NAME-FILEIN

Subsequent references to the second parameter use FILE IN. For
example, if the next~()r succeeding statement is:

II FILE NAME-X,LABEL-?2?

the following statement is generated:

II- FILE NAME-X,LABEL-FILEIN

Substitutes the value of the nth positional parameter; or, if the nth

parameter is not defined, temporarily assigns a default value to the

parameter, and then substitues that value. This expressio.n format

is the same as ?n'default'? except T means temporary and 'default'

specifies the temporary default value. A temporary default value is

used only for the current substitution expression. For subsequent

references to the nth parameter within the procedure, the parameter

is undefined. For example, a procedure member contains the

following statement:

II FILE NAME-?2TWEEKLY,?

If the second parameter was not defined, the following statement is
penerated:

II FILE NAME-WEEKLY

Introduction to Procedures 45

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

46

. Substitution
Format

?nR'msg-id'?

?nR?

Meaning

Substitutes the value of the nth positional parameter; or, if the nth

parameter is not defined, displayes a message from the USERl
message member and waits for the operator to enter from the key
!board the value to be substituted. Subsequent references to the. nth

parameter within the procedure member use the value entered by the

operator. R indicates that an operator's reply is required if the
parameter is not defined. Msg-id identifies the MID of the message to
be displayed if the nth parameter is not defined. For example, a

procedure member contains the following statement:

II FILE NAME-?2R'6666'?

If the second parameter is not defined, the following message
(message 6666 from the USERl message member) is displayed:

ENTER NAME OF THE REQUIRED INPUT FILE

The operator then enters the word PAYROLL from the keyboard,
and the following statement is generated:

II FILE NAME-PAYROLL

Subsequent references to the second parameter use PAYROLL.

Substitues the value of the nth positional parameter; or, if the nth

parameter is not defined, displayes a system message (ENTER

MISSING PARAMETER) and waits for the operator to enter the

value to be substituted. Subsequent references to the nth parameter

within the procedure member use the value entered by the operator.

R indicates that an operator's reply is required if the parameter is

not defined. For example, a procedure member contains the

following statement:

PAYROLL WEEKLY,?1R?

If the first parameter is not defined, ENTER MISSING PARAMETER
is displayed. The operator then enters the word SALARY from the
keyboard, and the following statement is generated:

PAYROLLWEEKLY~ALARY

Note: Within the procedure member namedPAYROLL, references
to the second positional parameter use the word SALARY.

Substitution
Format

?R?

Meaning

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993 "

Displays a system message (ENTER REQUIRED PARAMETER),"
and waits for the operator to enter the value to be substituted from
the keyboard. R indicates that an operator reply is required. For
example, a procedure member contains the following statement:

II FILE NAME-?R?

When the statement is being generated, ENTER REQUIRED
PARAMETER is displayed. The operator then enters the word
INFILE, and the following statement is generated:

II F1LE NAME-INFILE

Introduction to Procedures 48.1

This page intentionally left blank

46.2

Substitution
Format Meaning

?R? Displays a system message (ENTER REQUIRED PARAMETER),
and waits for the operator to enter the value to be substituted from
the keyboard. R indicates that an operator reply is required. For
example, a procedure member contains the following statement:

II FILE NAME-?R?

When the statement is being generated, ENTER REQUI RED
PARAMETER is displayed. The operator then enters the word
INFILE, and the following statement is generated:

II FILE NAME-INFILE

Conditional Expressions: I F and ELSE

Conditional expressions are used among DCl statements to modify procedures. There
are two types of conditional expressions: I F expressions and ELSE expressions.

IF Expression

The I F expression can only be used in a procedure (can be anywhere in the procedure).

The I F expression tests to find out whether a condition is as specified (true or false);
if it is as specified, the statement parameter is executed; if not, the SCP goes to the
next statement in the procedure.

There are three formats of the I F expression:

I I I F Condition-parameter Statement-parameter
II I FT Condition-parameter Statement-parameter
II IFF Condition-parameter Statement-parameter

I F or I FT means that if the condition is true, the statement is to be executed. IFF
means that if the condition is false, the statement is to be executed.

Introduction to Procedures 47

48

Condition Parameter: There are two types of condition parameters: existence testing and
comparison.

The existence testing parameter is a keyword parameter. The keywords and mean
ings are:

Keyword

BLOCKS-value

Meaning

Is the available disk file space equal to or greater
than the value specified?

DATAll-'name,date' Is there a file on the diskette with the name and creation
or DATA11-name date (optional) as specified?

DATAF l-'name,date' Is there a file on the disk with the name and creation date
or DATAF1-name (optional) as specified?

SOU RCE-name

lOAD-name

PROC-name

SUBR-name

SWITCH1-0

SWITCH1-l

•
•
•

Is there a source member of the specified name in the
library?

Is there a load member of the specified name in the
library?

Is there a procedure member of the specified name in the
library?

Is there a subroutine member of the specified name in the
library?

Is SWITCH1 a 0 (off)?

Is SWITCHl a 1 (on)?

(SWITCH2 through SWITCH8 can also be tested)

The comparison parameter format and meaning is:

Format Meaning

parameter 1!parameter2 Is parameterl equal to parameter2? (Each param
eter has a maximum length of eight characters.)

Statement Parameter: The statement parameter of the I F expression can be an OCl state
ment, (except the comment statement or end-of-data statement) a utility control
statement, another IF statement, or a part of an OCl or utility control statement
(continuation). Drop the initial!! of OCl and utility control statements used as
statement parameters.

Also allowed in the statement parameter of the I F expression are the keywords
CANCEL and RETURN. The meaning of these two keywords are:

CANCEL Cancel the job and return to the keyboard for the next OCl
statement.

RETURN Encountered in a first level procedure causes an immediate return
to the keyboard for the next Oel statement. Encountered in a
nested procedure causes an immediate return to the calling
procedure for the next Oel statement.

The following example shows two levels of procedures, PAYROll (first level) and
TAXES (second level). The TAXES procedure represents a nested procedure that
contains the keyword RETURN in a conditional expression.

In this example, the keyboard entry is PAYROLL. PAYROll contains an optional
parameter All TAX which is not specified so that the conditional expression is
executed and the keyword RETURN is encountered. RETURN encountered in a
nested procedure causes a return to the calling procedure (PAYROll). The remain
ing Oel statements in the TAXES procedure are not executed. The example:

Keyboard
Entry

PAYROll
(first level)

TAXES
(second level)

PAYROll---' II .. .
II .. .
TAXES ?1?'---1 II

II

r---------- II IFF ?1?/ALlTAX RETURN
II

"---- II II

---II

Introduction to Procedures 49

50

If the ALL TAX parameter was specified in the keyboard entry, the RETURN key
word in the conditional expression would not be encountered, all OCL statements
in the TAXES procedure would be executed, Clnd then processing returns to the
PAYROLL procedure. For example:

Keyboard
Entry

PAYROLL
(first level)

TAXES
(second level)

PAYROLL [ALLTAX]-II .. .
II .. .
TAXES --· II .. .

II .. .

II IFF ?1?/ALLTAX RETURN
II ...

II ·--.... 11 .. ,

-""',.,........-11 ...

Examples of the IF Expression: Following are some examples of the I F expression.

• Existence testing

II IFF DATAF1-?1? CREATEF1

This expression checks to see if the file label substituted for parameter 1 is on the
disk. If it is n6t, the· condition is satisfied and the CREATEF1 procedure is evoked.
If the file is on the disk, the condition is,'not satis{ied and the next statement or
expression in the procedure is read; CREATEF1 is not executed.

• Comparison

1/ IF ?1?/PAYROLl PAYROLL

This expr~ssion says that if the first parameteron the statement that evokes the
procedure is PAYROLL, then evoke the procedure named PAYROLL; otherwise,
go to the next statement or expression in the procedure. An expression equiva
lent to the preceding comparison example is:

II IF PAYROLL/?1? PAYROLL

• There can be more than one IF expression on a line. Aline is a maximum of 120
characters.

II IF PROC-PAYROlL1 IF SWrTCH3-1 PAYROLL

This expression says that if the procedure member PAYROLL 1 is in the pro
cedure library, and if UPSI (user program status indicator) switch 3 is on (1),
then the procedure PAYROLL is evoked. If the procedure PAYROLl1 is not
in the procedure library, or if the UPSI. switch is not on, the expression is
ignored and the procedure PAYROLL is not evoked.

ELSE Expression

The ELSE expression requires the IF expression and the following restrictions
apply:

• The ELSE expression must immediately follow the I F expression. The ELSE
expression is ignored if it does not immediately follow an I F expression.

• Comments cannot be entered between the IF expression and the ELSE expres
sion. The ELSE expression is ignored if comments are entered between the IF
expression and the ELSE expression.

For example:

The example tests whether the first parameter in the statement that evoked the pro
cedure is a null entry. A null entry is an entry that contains no value. In the statement

NAME PARMl "PARM3

the second parameter is a null entry.

Introduction to Procedures 51

52

The I F and ELSE statements in the preceding sample say: if the first parameter
in the statement that evoked the procedure is a null entry, RETURN to the previous
procedure if this is a nested procedure or to the keyboard if this procedure is not
nested; if the first parameter in the statement is not a null entry, evoke the DELETE
procedure to delete the file specified by the first parameter.

The ELSE expression can be used with all forms of the I F expression (I F, I FT, and
IFF).

There can be only one ELSE expression per line and it must be the first expression
in that line. An I F expression can follow an ELSE expression in a conditional
statement. For example:

II iIF ?1 71 PA YR OL",
1/ El SE DE .LE rrE ?11
/1 IF ?2. 1/ RE rru RN
II ElL SE IF 112 11 y AR EN D PA 'fR tel L YlE AR END
1/ EL SE PA YI~ OIL L ~,E IE l(L~

In this example, if parameter 1 was passed by the statement that evoked the pro
cedure, the file specified by the parameter would be deleted by the DELETE
procedure. If the second parameter is a blank, the PAYROLL procedure is not
evoked. If the second parameter is YEAREND, YEAREND is passed to PAY
ROLL and the PAYROLL procedure is run. If the second parameter is neither
a blank nor YEAREND, the parClmeter WEEKLY is passed to PAYROLL and
PAYROLL is run. .

EXAMPLE OF PROCEDURE CODING

FI LEBKUP Procedure

Note: This is an example of a user coded procedure not provided with the SCPo

The FILEBKUP procedure copies a file from the disk onto a diskette. The following
is the command statement format:

F I LEB KUP filename-l ,vol-id I-ff~llename-21J II ename-

This procedure demonstrates conditional operator prompting for required parameters,
and conditional building of a file statement LABEL parameter.

The prompting text is stored in the procedure rather than in a user library member.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

II I
ill
Ii
II
~I
II
Ii
II
II
II
VI
III
1/
II/
III
1/
II
1/
1/11
1/1

F
F
F
F
F

IF
F
F

IF
F
F

LlO
...1
~1I
F

IF

FILEBKUP Parameters

Filename-1 This is a required parameter. It is the name of the disk file to be
copied.

Vol-id This is a required parameter. It is the volume identification of the
diskette.

Filename-2 This is an optional parameter. If entered, it becomes the name of
the file on the diskette. If omitted, the disk and diskette file names
are the same.

If either or both of the required parameters (filename-1 and vol-id)
were entered with the command, the procedure assumes that
filename-2 was intentionally omitted; the procedure defaults to
filename-1.

If no parameters were entered with the command, the procedure
assumes that the optional filename-2 parameter may be desired; the
procedure prompts for filename-2.

The statements for the FI LEBKUP procedure example are shown here with each
statement numbered for reference to the corresponding explanation:

IF IL EB K UP 5 IEIX E~ lurf lIN IG'
?1 ?I I F ?2. 11 IF ?3 1/ ~ , E NT Ei~ YES 0 'AL tE R ~I SK IEIT !fIE FI LE
?1 ?J I F 12. ?I I~ ?3 1/ ~ Ip RE SIc EN rTE FO R SA M~ AS DI SK ET TE
?1 ?I i F ?2 11 [F ?3 ?/ I f 11 lR 71 YE s liE NT ER Dl ~IK E1 TIE FI LE
?1 1? IY ES I F 13 R? I , Ip lAIR AM El ER 3 ,., MI TT rEO -P IROC CIA NC IEL EO' v
?1 1? IY £5 ~F 13 ?I CA NC EL
?1 ?V • IE NT E~ ifR E DI SK IF IL E LA BE L'
?1 R?/ Ip AIR lAM IEIT EiR 1 Ill" III III: 0- PR OC CA w: IEL ED'
?1 11 C NC lEt
?'l ?I ~ IE IN IT IER TH IE D1 SK ET irE vO LU HIE 10'
?2 ~?I 'P AR lAM Ell !ER 2. OM IT TE D- PR DC CA Nt EL ED'
?2 ?I C Nr I~L I

~~ I$C OP -f-r--I-

liE ~IA HIE ·c OP NlI N1• LlA !BE t- ?11 ?
LE NIA MIE -c O~ '(0 I .. U Nil T- Il PA CK .. 1 2.? .R £T A N- g9 g"

?13 ?II ~
IAIQ IE -? Ii? I

F ?3 1/ LA Sf- L- 13? I

UN
CKl Dr-/ FlI LE

IN ~
lOU ITP Ul1 -0 II~I~

r--f- I-f-

L

The following procedural comment informs the operator of the system activity:

1 . 171/1 MEl I' IFtIIUEJ~~Ulpi ttlsl· IEJ'1JEJCIUmflR1Gr]

The statements 2 through 6 prompt the operator for filename-2 if all three parameters
were omitted. Statements 2 and 3 display the prompting text. Statement 4 halts
t~e machine after issuing the system message ENTER MISSING PARAMETER.
When parameter number 11 is coded as required, the machine stops for key entry.

LA RE f

LA ~E I
LA BIE I

Introduction to Procedures 53

2.
3.
4.
5.
6.

54

II
VI
II
II
1/

IF
IIF
IF
[F
rIF

?1 ?/
?1 11
11 ?I
?1 1?
1,1 Ii?

IF ?2 ?/ IF 73 ?/ I 'E NT ER 'lIES 0 AL if R D1 SK Eli E FI LE LA BIE L'
IF ?2 ?I IF ?3 ?I ~ Ip RI- 55 EN rTE FO R SA ME AS 0 51)(FI LE lA BE L'
IF ?2. 111 IF ?3 ?[I IF ?1 lR ?II YES 'E Na ER DI 51< ET E F1 LE

IY ES IF 13 R? I ~ 'P ~R AM ET ER 3 0 Mil ITT EID -p RC C CA NC EL ED'
11'1 ES [IF ?~ ?I C~ NC EL

Parameter 11 cannot be passed in a command statement: lOis the maximum
number of parameters allowed in a command statement. However, a procedure
can supply an eleventh parameter by default, or prompt the operator for the
eleventh parameter. The I F expression in statement 4 is equated to YES so that
prompting for filename-2 will occur if.the operator enters YES. If the operator
responds to statement 4 with YES, then statement 5 must have a name entered.
If statement 5 receives a null response from the operator, who presses only the
ENTER key, the message PARAMETER 3 OMITTED-PROCEDURE CANCELED
is displayed and statement 6 cancels the procedure.

The statements, 7 through 12, prompt the operator for filename-l and vol-id if they
were omitted when the command was entered. Statement 7 displays the prompt
ENTE R THE DISK FilE NAME. Statement 8 or 11 issues the system message
ENTER MISSING PARAMETER below the prompt coded in statement 7 or 10,
respectively, and then halts the machine for operator key entry. Statement 9 or 12
executes the CANCEL function, similar to statement 6.

VI F ?1 ?I * IE I"TIE R ifH E 01 SK F'l LE L.A Bit ill

L~

7.
8.
9.
10.
11.
12.

/11 F 11 R? I * 'iP AIR AM £T ER 1 OM lIT TIE D- PIR OC C~ He EL ED'
1/1 F ?1 11L CA NC ~Lt
1/ IF ?12 11 ~ , E NT ER liH E DI SK Err TE vo LU ~E ID'
VII F 12 IR? I ~ 'P ~R AIM IEIT ER 2 OM IT TE D- PR OC CA Nt EL ED'
II F ?2 11 CA NC IEL

The next statements, 13 through 20, build the OCl for execution:

If the operator omits filename-2, the disk file name is also used for the diskette file
name:

If the operator enters filename-2, it becomes the diskette file name:

17.
18.
19.
20.

VV
II I
II
II

IF F ?3
RUN
CO py FI
END

?I LA BE L- ?31

lE OU lP ~IT -0 ~SK

The COPYO file statement, statement 15, is incomplete; continuation is shown by
the comma following the RETAIN-999 parameter. Depending on the absence or
presence of filename-2, either parameter statement 16 or 17 selects the lAB E l
parameter.

BE L'
I

IBM SCP Command Statements

Each IBM SCP procedure can be evoked by a command statement. Figure 4, is a
table showing the formats of the command statements that evoke the IBM SCP
procedures. (See Appendix 0 for the format of the command statements that
evoke the IBM service procedures.)

s
Figure 4 is meant for quick reference. It shows the procedure name and parameters
(if any) in each command statement. For more information about each of the com
mand statements shown and for a description of the procedures they evoke, see
IBM SCP Procedure Descriptions, following Figure 4.

Note: The following command statements are intended for data communications
programming using either BSC (binary synchronous communications) or SDLC
(synchronous data link control):

• ALTERBSC and OVERRIDE using BSC

• ALTERSDL and SPECIFY using SDLC

• M RJE using BSC

• BWSUR and BWSUO using SOLC

• DCPRINT using either BSC or SDLC output

Data communication programming that uses BSC or SOLC is described in IBM
System/J2 Data Communications Reference Manual, GC21-7691.

AL TERBSC [BRATE- {~}] [.CLOCK- { ~ }] [OEBUG- { ~}] [.ERC- { iumber
}]

[.SLlNE- {~}] [TEST- {~} 1 [TONE- {~}]

AL TE RSOL [BRATE- {~}] [.CLOCK - {~}] [.OEBUG- {~}]

[.SLlNE- {~}] [.TEST- {~}] [.TONE- {~}]

APCHANGE [blOCkS] [.fil ename [CLEAR]]

Note: At least one parameter must be given in each AL TERBSC, ALTERSDL, and
APCHANG E command statement.

BACKUP vol-id, [_r
1
etention-dayS] [,filename]

,#LlBRARY

BWSUD sluname,host

BWSUR sluname
Figure 4 (Part 1 of 5). IBM SCPCommand Statement Formats

IBM SCP Command Statements 55

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

CATALOG [~LL]
filename

COMPRESS

CONDENSE

CONVERT

[
,11]
,F1

t [,n1umber of COPieS] . COPYI1 fALL] "vol-id,[DELETE] ,[PRESERVE]
or ,-

56

I [mmddYY] [',nlUmber of COPies] COPYI1 filename, ddmmyy ,vol-id,,[PRESERVE]
yymmdd

CREATE sourcename [,REPLACE]

DATE {;d:d~~~ }
yymmdd

DCPRINT [filename]

[
F111] [SCRATCH] [,mmddYY] DELETE filename, REMOVE ,ddmmyy

ERASE,yymmdd

DISPLAY filename ,ddmmyy
[

,mmddYY]

,yymmdd
or

DISPLAY filename, [;d:d~~~] ,RECORD,value-1 [,value-2]
yymmdd

[

SOURCE] PROC
FROMLIBR library-name,. LO. AD ,

SUBR
LIBRARY

filename-1
library-name

[

ADD] t ltention-daVSJ

l[~IJ
\ \ '~PJ' [,blOCkS] \ " T ,8

\ - -
\ S
\
\
[,ADD]

or

~
SOURCEJ PROC .

FROMLlBR {. name,ALL}, LOAD i fllename-2J,
,ALL SUBR, name j

LIBRARY

Figure 4, (Part 2 of 5). IBM SCP Command Statement Formats

,vol-id

,vol-id

[
ALL] [RESET J HISTORY .VIEWED :NORESET
NO LIST

INIT
[

VOI-id]'
system-date [

owner-id]
, OWNERID [

RENAME]
,DELETE
,FORMAT
FORMAT2

JOBSTR ~ file:ame} , [prOCedurename, [~~~! VE]]

[
number of records]

, 500

LINES [~~mbeJ

,PROC

[

SOURCE]

LlSTLlBR DIR "LOAD .
,SUBR
,LIBRARY

or

lJSTLlBR DIR,SYSTEM

or

{

library-name} [,~~~~CE]
LlSTLlBR name,ALL ,LOAD

ALL ,SUBR
LIBRARY

LOG [CRT J [,EJECT 1
LPRINTER. . ,NOEJECTJ

MRJE [filename]. [number of blOCkS] [number of blOCkS] [number of blOCkS]
, for TDISKPR1 ' for TDISKPR1 ' for PDISKPR1 ' for PDISKPU1

ORGANIZE filename-1, [;:~~~J ,F1,filename-2, [~p] [,position,characterl
yymmdd

or

[

mmddYY]
ORGANIZE filename-1, ddmrnyy.

yymmd~

. [retentiOn-daysJ .. . ; , l!.!] ,vol-Id, ~ [,posltlon,character]

Figure 4 (~art 3 of 5). IBM SCP Command Statement Formats

IBM SCP Command Statements 57

58

OVERRIOE [ADDR~n] [LINE. H~] [~P. {~~}]
Page of GC~1-7593 .. 3
Issued 22 November 1978
By TNL: GN21-7993

Note: At least one parameter must be given in each OVERRIDE command statement.

REBUILD

RELOAD [vol-id] [;d:d~~~l
yymmd~J [

, file.name 1
,#LlBRAR~J

[

SOURCE] library-name ,PROC

REMOVE {name,ALL} ,LO. AD
ALL ,SUBR

LIBRARY

[

,mmddYY]
RENAME filename-',filename-2 ,ddmmyy

,yymmdd

or

RESTORE filename-2, [;d:~~~]
yymmdd

f,RECORDS,value-,l
~BLOCKS,value-2 J

SAVE [ALL], rr. eetention-days 1 rfi.lename-,] . l..l J L;#SAVE. . ,VOI-ld

[

retentiOn-dayS] [mmddyy]
SA VE filename-2, .1. ddmmy.y . ,vol-id

ADD yymmdd

[
M DY] [,mmddYY]

SET [value], [source-name], . DMY ,ddmm~y
YMD ,yymmdd

Note: At least one parameter must be given in each SET command statement.

SETMICR CYCLE· {~J
Note: The SETM ICR command statement is used with the '255 Magnetic Character
Reader attachment and is described in (8M System/32 1 ~55 Ma!JJ1e.tic Cha~ter
Reader Referen~e and Logic Manual, GC21-7692.

Figure 4 'Part 4 of 5). IBM SCP Command Statement Formats

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

SPECIFY [AODR-nn] [UNE-l ~ lJ [SWTYP- {~~}J I,ID-nnnnnl

Note: At least one parameter must be given in each SPECI FY command statement.

STATUS

[

PRINTER]
SYSLIST CRT

OFF

[
F] [mmdd

YY
] TOLlBR filename, ~ , ddmmyy [,REPLACE]

yymmdd

[

mmddYY]
TRANSFER filename-1, [11], ddmmyy ,ADD,

yymmdd

or

fllename-2]
filename-1

[,date]

[

mmddYY] [value-1,value-2] lRECORDStValue-3]
TRANSFER filename-1, [11] t ddmmyy , [NOADD] , ,BLOCKS,value-4

yymmdd

or

[

mmddYY] . [,retention-days]
TRANSFER filename-1,F1, ddmmyy ,vol-Id ,~

yymmdd

Figure 4 (Part 5 of 5). IBM SCP Command Statement Formats

IBM SCP Command Statements 59

This page intentionally left blank.

60

IBM SCP Procedure Descriptions

This section describes all IBM SCP procedures supplied with IBM System/32 SCP to
provide you with an easy method of using system functions. This section does not
include the service procedures. The service procedures are described in Part 5 and in
Appendix D.

The following information is given for each IBM SCP procedure:

• The function of the procedure

• The format of the command statement that evokes the procedure

• A description of the parameters of the command statement used to evoke the
procedure

Examples are given for many of the command statements.

In the descriptions of command statement formats and parameters, capitalized words
and letters, numbers, special characters, brackets, and braces have special meanings.
Capitalized expressions must be entered as they appear in the descriptions. Some
times numbers or nonalphabetic characters may appear in a capitalized expression
such numbers and characters must also be entered as they are shown. Words and
expressions that are not capitalized must be replaced with a value that is appropriate
to your job. The values you can use are listed in the parameter descriptions.

Brackets ([]) shown in command statement formats and parameters are not part of
the parameters. Brackets can have two meanings: they can indicate that you can
omit the parameter enclosed in brackets, and they can mean that if you use an expres
sion enclosed in brackets, you must choose one of the values shown. For example,

[;:~~~] yymmdd
means that you need not give a date (the date parameter is optional), but if you
choose to give a date, it must be in one of the three formats shown: mmddyy,
ddmmyy, or yymmdd.

Underlining identifies default values. A default value is a value that is automatically
substituted for an optional parameter that is omitted. For example, "1l means that
if neither 11 nor F 1 is specified, F 1 is used. L ~
Braces ({ }) indicate that you must choose one of the values enclosed by the braces.

For example, in the expression [PAR M-{ ~} J' the braces indicate that if you choose

to enter the parameter, you must specify either A or B.

Note: In the preceding table (Figure 4) and in the descriptions that follow, the
command statement formats often indicate that commas are required to separate
parameters that are optional, whether the optional parameters are entered or not.
Commas outside the brackets indicate positional parameters. The commas are
shown in this manner to remind you that if a positional parameter is omitted, a
comma must be entered in its place when another parameter is entered in a posi
tion that follows the position reserved for the omitted parameter.

IBMSCP Procedure DescriPtions 61

62

ALTERBSCPROCEDURE

The AL TERBSC procedure alters the following BSC (binary synchronous communi
cations) items:

Item Parameter

Bits per second (bps) rate BRATE

Modem clocking CLOCK
Debug facility DEBUG

Error retry count ERC

Standby line SLiNE
Modem test TEST

Non-USA TONE

Additional BSC items that can be altered are included in the OVER R I DE procedure.
(See index entry: OVERRIDE procedure.) To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STA TUS procedure.)

The AL TERBSC procedure evokes the $SETCF utility (see index entry: $SETCF

utility program).

Note: The AL TERBSC procedure is intended only for data communications pro
gramming that uses BSC. For background information on binary synchronous
communications, see General Information-Binary Synchronous Communications,
GA27-3004. For information on data communications programming, see IBM
System/32 Data Communications Programming Reference Manual, GC21-7691.

AL TERBSC Command Statement Format

AL TERBSC [BRATE- {:}] [CLOCK- { ~ }] [DEBUG- { ~}] [.ERC- {~umber}]

[.SLlNE- {~}] [TEST- {~ }] [. TONE- { ~}]

Note: Though each individual parameter is optional, at least one parameter must be
specified. If a parameter is omitted and there is no default, the previous value is re
tained. If DEBUG-Y is specified, the system TRACE procedure (see index entry:
TRACE procedure) is replaced by the BSC trace function. These options will remain
in effect until changed by another AL TE R BSC command statement, except the pa
rameter DEBUG-Y, which is reset by IPL or by the TRACE procedure.

AL TERBSC Parameters

Parameter

BRATE-F
H

CLOCK-Y
N

Meaning

Use the full rated speed of the modem.
Use only half the rated speed of the modem.

The System/32 must provide the programmed clocking facility.
Modem has the clocking facility.

AL TERBSC Parameters (continued)

Parameter

DEBUG-Y
N

ERC-number

1.

SLlNE-Y
N

TEST-Y

N

TONE-Y

N

Notes:

Meaning

Built-in debug facility is required, BSC~trace requested.
Built-in debug facility is not required, BSC trace not requested.

Error retry count. The standard number of retries provided is
seven (the default number); if more than seven are desired, enter
a number up to 255. Valid numbers are 7 through 255.

Switched standby line is used for a point-to-point line.
The nonswitched line is used.

IBM modem is being used. Automatic wrap test includes modem
testing when a permanent error occurs unless the user program

specified a permanent error indicator for the BSC file.

Non-IBM modem is being used. Automatic wrap test does not
include modem testing.

Non-USA special tone is required for manual answering and auto
matic answering.
Non-USA special tone is not required for manual answering and
automatic answering.

1. If the SLlNE-Y parameter is specified, then the line type (LINE) in the OVER
RIDE procedure automatically defaults to a point-to-point switched line
(L1 NE-S).

2. If the SLI NE-N parameter is specified, then the line type (LINE) in the OVER-

R I DE procedure automatically defaults to the line type specified in the user program

source statements (LiNE-R).

ALTERSDLPROCEDURE

The AL TERSDL procedure alters the following SDLC (synchronous data link con
trol) items in the system configuration record.

Item Parameter

Bits per second (bps) rate BRATE
Modem clocking CLOCK
Debug facility DEBUG

Standby line SLiNE
Modem test TEST

Non-USA TONE

Additional SDLC items that can be altered are included in the SPECI FY procedure.
(See index entry: SPECIFY procedure). To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STATUS procedure).

IBM SCP Procedure Descriptions-AL TERSDL 63

64

The ALTERSDL procedure evokes the $SETCF utility (see index entry: $SETCF

utility program).

Note: The AL TERSDL procedure is intended only for data communications pro
gramming that uses the SDLC. For background information on synchronous data
link control, see IBM Synchronous Data Link Control General Information,
GA27-3093. For information on data communication programming, see IBM
System/32 Data Communication Reference Manual, GC21-7691.

ALTERSDL Command Statement Format

ALTERSDL [BRATE- {~}] [CLOCK- {~}J[DEBUG- {~}]

[.SLlNE- {~}] [.TEST- {~}] [TONE- {~}]
Note: Though each individual parameter is optional, at least one parameter must be
specified. If a parameter is omitted, the previous value is retained. If DEBUG-Y is
specified, the system TRACE procedure (see index entry: TRACE procedure) is
replaced by the SDLC trace function. These options will remain in effect until
changed by another AL TERSDL command statement, except the parameter
DEBUG-Y, which is reset by IPL or by the TRACE procedure.

AL TERSDL Parameters

Parameter

BRATE-F

H

CLOCK-Y
N

DEBUG-Y
N

SLlNE-Y
N

TEST-Y

N

TONE-Y

N

Notes:

Meaning

Use the full rated speed of the modem.
Use only half the rated speed of the modem.

The System/32 must provide the programmed clocking facility.
Modem has the clocking facility.

Built-in debug facility is required, SDLC trace requested.
Built-in debug facility is not required, SDLC trace not requested.

Switched standby line is used for a point-to-point line.
The nonswitched line is used.

IBM modem is being used. Automatic wrap test includes modem
testing when a permanent error occurs.
Non-I BM modem is being used. Automatic wrap test does not
include modem testing.

Non-USA special tone is required for manual answering and auto
matic answering.
Non-USA special tone is not required for manual answering and
automatic answering.

1. If the SLlNE-Y parameter is specified, then the line type (LINE) in the SPECIFY
procedure automatically defaults to a point-to-point switched line (LiNE-S).

2. If the SLiNE-N parameter is specified, then the line type (LINE) in the SPECIFY
procedure automatically defaults to a point-to-point nonswitched line (LiNE-PL

APCHANGEPROCEDURE

The APCHANGE procedure reorganizes th'e library and data file area on disk in
order to create usable space for adding library members from a diskette file. It also
determines whether or not adequate data file space is available for use by the
application program.

The functions of the APCHANG E procedure are:

• Reorganize the disk data file area by collecting unused space on the disk and
making this space available at the end of the disk data file area.

• Determine whether the disk data file space is adequate for use by the application
program.

• Delete non-SCP members and reorganize the library by collecting unused space
between library members and making this space available at the end of the last
active library member sector.

• Copy library members from a diskette file into the library.

The APCHANGE procedure evokes the $PACK utility to reorganize the disk and
the $MAINT utility to delete library members, reorganize the library, and copy the
library members from a diskette file into the library. (See index entries: SPACK
utility program and $MAINT utility program.)

The APCHANGE procedure is especially useful when a System/32 is in a system
sharing environment. See Appendix H, System Sharing, for a description of system
sharing.

APCHANGE Command Statement Format

APCHANGE [blOCkS] [filename[.CLEAR J]
Note: At least one parameter must be specified on the APCHANGE command.

APCHANG E Parameters

blocks Number of blocks of disk data file space that must be available for
use by an application's data files .. Data file space is reorganized
first and then tested for availability.

Note: When this parameter is specified, files are moved from
current locations to new locations. If the LOCATION parameter
on a FILE statement is specified for a file that has been moved
by the APCHANG E procedure, that location is no longer valid
because the file location has changed. To determine the new
location of the file, use the CATALOG procedure; this shows the
file location in the VTOC entry. For information on the
LOCATION parameter and the CATALOG procedure, see index
entries: FILE statement and CATALOG procedure.

IBM SCP Procedure Descriptions-APCHANGE 65

66

filename

CLEAR

APCHANG E Examples

Name of the diskette file that contains the library members to be
copied into the reorganized library.

Specifies that all non-SCP library members are to be deleted from
the library and the library is to be reorganized. When the CLEAR
parameter is specified, the filename parameter must also be
specified.

The following example reorganizes the disk, determines whether 200 disk blocks of
data file space are available, reorganizes the library, and copies the library members
that are contained in the diskette file, APPF I LE, into the library:

APCHANGE 200,APPFILE

The following example reorganizes the disk, determines whether 125 disk blocks of
data file space are available, deletes all non-SCP library members, reorganizes the
library, and copies the library members that are contained in the diskette file,
FORTAPP, into the library:

APCHANGE 125,FORTAPP,CLEAR

BACkUP PROCEDURE

BACKUP creates a diskette file that contains:

1. A stand-alone program that can change the directory and library size (for more
information about changing directory and library size, see index entry:
RELOAD procedure).

2. ihe reorganized library contents-unused space between members is collected
at the end of the library.

To return the reorganized library to the disk, an IPl must be performed from the
diskette(s) containing the backed up library, or the RELOAD procedure must be
used (see index entry: RELOAD procedure). The vol-id of the first diskette con
taining the library becomes the vol-id of the disk file during the RELOAD operation.

The BACKUP procedure evokes the $BACK utility (see index entry: $BACK utility
program).

Note: To determine the number of diskettes required to contain the library, see
index entry: calculating the number of backup diskettes required for the system.

BACKUP Command Statement Format

[
retention-days] [,filename]

BACKUP vol-id, 1 #LlBRARY ---- ,~-------

BACKUP Parameters

vol·id

retention-days
1

filename

#LlBRARY

Volume identification of the diskette(s). One to six alphameric
(alphabetic or numeric) characters.

Note: When several diskettes are required for the BACKUP
procedure and each diskette has a unique volume identification,
the volume identification of the first diskette is the vol-id param
eter you must specify for the BACKUP procedure. The vol-id
parameter from the BACKUP procedure is used as the PACK
parameter in the II FilE OCl statement for the backup library
utility program ($BACK). When this program compares the
PACK parameter with the volume identification of the second
and succeeding diskettes, there is an error message (1493) if they
are not equal. However, the system ignores the error and con
tinues processing if you select option O.

Length of the retention period (0 to 999 days) for the diskette
file. The default is one day .

Note: A retention value of 999 makes a diskette file a perman
ent file.

Specifies the name of the single file th'at is created on the
diskette(s) .

#LI BRARY is the name assigned to the created diskette file.

IBM SCP Procedure DascriptiOns SACKUP 67

68

CATALOG PROCEDURE

The CATALOG procedure I ists the disk or a diskette VTOC (volume table of contents)
or a VTOC entry on the display screen or printer if either is assigned for listing from
the system (see index entry: SYSLIST procedure). The disk VTOC contains an entry
for each file on the disk, and a diskette VTOC contains an entry for each file on the
diskette. Each VTOC entry identifies the related file by name, creation date, and
location.

The CATALOG procedure evokes the $LABEL utility. A description of the VTOC
display is provided in the description of $LABEL (see index entry: $LABEL utility
program).

CATALOG Command Statement Format

CATALOG [~LL] ['1]
filename ,f.!

CATALOG Parameters

ALL

filename

11

F1

Display all labels in the VTOC on the specified unit.

Specifies the particular file whose VTOC information is to be displayed.
If more than one file exists with the specified filename, the VTOC in
formation for all those files will be displayed.

Display the diskette VTOC.

Display the disk VTOC.

COMPRESS PROCEDURE

The COMPRESS procedure causes all free space on the disk, except free space within
the library file, to be put into a single area by copying each file as close to the library
as possible. If the COMPRESS procedure does not go to normal end of job, it must
be reissued immediately and go to normal end of job before any other jobs are run.

This procedure evokes the $PACK utility (see index entry: SPACK utility program).

Note: If LOCATION was specified in the FILE statement (see index entry: FILE
statement) for a file moved by the COMPRESS procedure, the LOCATION specified
is not valid after the COMPRESS procedure moves the file. Use the CATALOG
procedure (see index entry: CATALOG procedure) to display the VTOC entries
for files moved by COMPR ESS to determine the new locations of the files.

COMPRESS Command Statement Format

COMPRESS

CQMPR ESS Parameters

None

CONDENSE PROCEDURE

Page of GC21-7593-3,
Issued 22 November 1978
By TNl: GN21-7~93

The CONDENSE procedure collects all unused space between library members anq
makes thi~ SPace available at the end of the last active library member (the library
member area cannot be greater than 2867 blocks). To do this, the proced,",re moves
all library members as close as possible to the beginning of the library member area.

When new library members are placed in the library, they are placed after the last
active library member sector. Therefore, gaps or unused space are left in the library
whenever either a library member is deleted or a library member is replaced by a
member that requires a greater number of sectors. The CONDENSE procedure
makes all unused space available for additional library members.

The CONDENSE procedure evokes the $MAINT utility program (see index entry:
$MAINT utility program).

Note: If a permanent disk error occurs while the CONDENSE procedure is
exel:uting, there is no error recovery. The library must be reloaded from diskette
(see index entry: RELOAD procedure).

CONDENSE Command Statement For~at

CONDENSE

CONDENSE Parameters

None

CONVERT PROCEDURE

The CONVE RT procedure converts the diskette header labels that were created
prior to version 5 to a version 5 format.

Note: Unpredictable results may occur if diskette files with version 5 format header
labels are processed by a preversion 5 SCPo A diskette file created by the $MAINT
utility program (FROMLlBR procedure) in version 5 of the SCP, for example, cannot
be used as input to the $MAINT utility program (TOLlBR procedure) in version 4
of t!1e SCP.

The CONVERT procedure evokes the $CNVRT utility (see index entry: $CNVRT
utility program.).

IBM SCP Procedure Descriptions-CONVERT 69

r
(

)

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

CONVERT Command Statement Format

70

CONVERT

CONVERT Parameters

None

COPYI1 PROCEDURE

The COPYI1 procedure causes all ;files on a single diskette or an individual file on a
single diskette to be copied to one or more output diskettes. A work space large
enough to contain the file(s) to ,->e copied must be available on the disk. File,s from· the
copied diskette are placed contiguously on the receiving diskette(s). The receiving
diskette(s) must be in the same format (512-bytes per sector extended format or
128-bytes per sector basic data exchange format) as the diskette being copied.

COPYI1 can be used to create a backup diskette file or to gather all unused space on
an input diskette into a single free-space on the output diskette(s).

Important diskettes with permanent files are the diskettes normally copied. Because
diskettes can develop surface irregularities as they undergo the wear of continued
use, it is a good idea to copy your important files soon after they are created.

COPYI1 evokes the $DUPRD utility (see index entry: $DUPRD utility program).

I

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

COPY.1 Command Statement Format

Use Format

Copy all diskette COPYl1 [ALL] "vol-id, [DELETE], [PRESERVE]

[:iumber of COPies]
fi les to one or more
output diskettes

Copy specific diskette
file to one. or more
output diskettes

COPYI1 filename. r::,:::~ 1 .vol-id .. [PRESERVE]
Gymmd~

COPYI1 Parameters

filename

mmddyy
or
ddmmyy
or
yymmdd

vol-id

DELETE

I ndicates that all files on the diskette are to be copied to one or more output
diskettes.

Name of the single file to be copied to one or more output diskettes.

Creation date of the input file. This date must be in the same format as
that of the input file. This date is used to verify that the correct file
is on the input diskette. (The creation date of the output file will be
the same as that of the input file.)

Volume label of output diskette(s) ; one to six alphameric characters.

Any expired file will not be copied. (DELETE can be specified only when
ALL is specified.)

Note: If a multivolume·file exists on the diskette, the DELETE parameter
is ignored.

PRESERVE Indicates that for each file copied, the end of extent is preserved.at the
same relative displacement pastthe end of data on the output diskette(s)
as it was on the input diskette.

number of
copies
1

COPY.1 Example

Specifies the number of output diskettes to be copied from one input
diskette. The value specified can be 1 through 99. 1 is the default.

In order to copy the file entitled PAYROLL (dated October 14, 1974) onto a diskette
with a volume identifier of VOL001, you could enter:

COPYl1 PA YROLL,·l 01474, VOLOOl

Note: In the preceding example, PAYROLL is not a multivolume file. If PAYROLL
were a multivolume file, a separate COPYl1 command statement would be required
for each diskette of the file.

IBM SCP Procedure Descriptions.;....COPVl1 71

72

CREATE PROCEDURE

The CREATE procedure creates a message load member from a message source
member. A message load member contains messages that can be retrieved by user or
IBM programs. (For information on how to create a message source member, see
Message Source Member and An Example of Creating a Message Source and Load
Member under index entry: $MGBLD utility program.) The CREATE procedure
evokes the $MGBLD utility (see index entry: $MGBLD utility program).

CR EATE Command Statement ~ormat

CREATE sourcename [,REPLACE]

CR EA TE Parameters

sourcename

REPLACE

Name of the existing source member that contains a control state
ment and message text statement(s)

Message load member to be created to replace an existing message
load member that has the same name

DATE PROCEDURE

The DATE procedure sets either the system date or the job (program) date. If the
DATE command statement is given after an I PL and before a LOAD statement, the
system date is set to the date specified. If the DATE command statement is given
between the LOAD and RUN OeL statements in a job stream, the program date is
set to the date specified and reset to the system date after the program ends.

The date established for the system or a program is printed on printed output and
is used to determine file retention periods for diskette files (see the RET AI N param
eter for diskette files under index entry: II FILE statement).

The function of the DATE procedure is identical to that of the II DATE statement
(see index entry: II DATE statement).

DATE Command Statement· Format

DATE fmmddYY l
) ddm.mYY

f ~ yymmdd

DA TE Parameters

mmddyy
ddmmyy
yymmdd

Month-day-year
Day-month-year
Year-month-day

Note: You must use the current system date format. Use yymmdd format if you
are creating basic data exchange format diskettes to use with other systems. The
SET procedure can be used to change the system date format (see index entry:
SET procedure). The STAtUS procedure can be used to determine the current
date format (see index entry: STATUS procedure).

IBM SCP Procedure Descriptions-DATE 73

74

DELETE PROCEDURE

The DELETE pro(fedure causes the space occupied by the named diskette or disk
file(s) to be made. available. It also provides the option of erasing the contents of a
data file. The system file #LI BRARY cannot be deleted with this procedure. This
procedure evokes the $DELET utility (see index entry: $DELET utility prograrr).

DELETE Command Sta~ement Format

DELETE filename, [F1] '[~~~~~EHl [:;d:d~~~J
U ERASE J ,yymmdd

DELETE Parameters

filename

F1
11

SCRATCH

REMOVE

Name of the file to be deleted from the disk or diskette(s). ALL
cannot be used asa filename.

The file to be deleted is on the disk.

The file to be deleted is on one or more diskettes. If the file is a
multivolume file, you are prompted to insert the required diskettes.

If the file is on a diskette, the expiration date is ~hanged to the (fur~ .
rent job date. If the file is on the disk, the VTOC entry for the file
is removed.

The VTOC entry for the file is removed.

ERASE

mmddyy
ddmmyy
yymmdd

DE LETE Example

Requests elimination of all data in the deleted file by replacing all
bytes within the physical extents of the file with binary zeros. Also
removes the VTOC entry for the file.

Creation date of the file to be deleted. This date must be in the same
format as the system date if the file is on the disk; it must be in the
same format as the creation date of the diskette file if a diskette file
is being deleted. You can use the STATUS command statement to
display the system date and the CATALOG command statement to
display creation dates of disk and diskette files (see index entries:
CATALOG procedure and STATUS procedure).

Note: If no date is specified and more than one file with the given
filename exists on the disk, the operator will have the option to
either delete all of the files named by filename or to cancel the job.

To delete the diskette file JOE (dated September 13, 1974) you could enter the
following:

DELETE JOE"REMOVE,091374

DISPLAY PROCEDURE

The DISPLAY procedure causes all or part of a disk file to be listed on the display
screen or on the printer, depending on which is being used to display output (see
index entry: SYSLIST procedure).

This procedure evokes the $COPY utility (see index entry: $CQPY utility program).

Note: If you use DISPLAY to list a disk segment of an offline multivolume file (sE!e
index entry: offline multivolume file), the list will include variable system data.

DISPLAY Command Statement Format

Use

Display a file

Display records
by relative
record number

Format

[

,mmddYY]
DI SPLAY filename ,ddmmyy

,yymmdd

DISPLAY filename, [;d:d~~~J ,RECORD,value-1 [,value-2]
yymmdd

IBM SCP Procedure Oescriptions-DISPl,.AY 75

76

DISPLAY Parameters

filename

mmddyy
ddmmyy
yymmdd

RECORD

value-1

value-2

DISPLAY Example

Name of the file to be displayed or printed.

Creation date of file to be displayed or printed. If date is not
specified, then the filename with the most recent date is displayed
or printed.

The records from the file are to be displayed or printed based on
their relative record number.

Number of the first record to be displayed or printed. Valid for
sequential, indexed, and direct files.

Number of the last record to be displayed or printed. Valid for
sequential, indexed, and direct files. If value-2 is omitted, the listing
continues until end of fi Ie is reached.

To display or print the first one hundred records of the most recent file created
with the name JOE, you would enter:

DISPLAY JOE"RECORD,1,100

FROMLlBR PROCEDURE

The FROMLlBR procedure creates a file from members contained in the library, or
adds library members to a file created from library members. Files created by the
FROMLlBR procedure can be processed by the TOLlBR procedure (see index entry:
TOLIBR procedure) to place members back in the library.

The FROMLlBR procedure evokes the $MAINT utility (see index entry: $MAINT
utility program).

Note: If you use the FROMLlBR procedure to copy library members from the
library to a file, you can copy the members from the file back to the library only by
using the TOLlBR procedure or $MAINT.

FROMLI BR Command Statement Format

Use Format

Copies a non-SCP

library mem- FROMLlBR library-name,
ber or adds a
non-SCP library
member to a
sequential fi Ie.

Use Format

SOURCE
PROC

LOAD ,[filename-1] ,
SUBR library-name
LIBRARY

Page of GC21-7593-3
Issued 25 November 1977
By'TNL: GN21-7939

Copies or adds
all non-SCP
members, or
copies or adds
all non-SCP
members hav
ing names
beginning

FROMLlBR {name,ALL} ,
ALL

SOURCE
PROC
LOAD
SUBR
LIBRARY

, rfilename-2] ,

L~

with name.

~DD]
/.~tention-daYJ

[~1J
'~'[~J ~~OCk~

\ S
\
\

GADD]

,vol-id

IBM SCP Procedure Descriptions-FROMLlBR 77

78

FROMLlBR Parameters

library-name

name,ALL

ALL

SOURCE

PROC

LOAD

SUBR

LIBRARY

Name of the non-SCP library member being copied from the library.

All non-SCP members with names beginning with the indicated char
acters are to be copied. Up to seven characters can be used. Example:
PAYR,ALL refers to non-SCP members having names that begin with
PAYR.

All non-SCP members are copied from the library.

Note: All non-SCP members include IBM-supplied non-SCP members
(such as program product members) as well as members you have
created.

Source members are copied.

Procedure members are copied.

Load members are copied.

Subroutine members are copied.

All types of members (SOURCE,PROC,LOAD and SUBR) are
copied.

filename-1 Name of the file being created. If the filename is not specified, the
name specified for library-name is assumed.

filename-2 Name of the file being created. If not specified, name is assumed.
If ALL is specified (all non-SCP members are copied from the library)
and filename-2 is not specified, you are prompted for filename-2.

11 Output file to be created on the diskette.

F1 Output file to be created on the disk.

retention-days Length of the retention period (0 to 999 days) for the diskette
file. If 11 is specified or assumed and retain is not given, default
is one day.

P

S

Note: A retention value of 999 makes a diskette file a permanent
file. Retention cannot be specified if ADD if specified. ADD can
not be specified if retention is specified.

Permanent retention on disk.

Temporary retention on disk.

Scratch retention on disk.

ADD

vol-id

blocks
8

FROMLlBR Examples

Page of GC21-7593-3
Issued 25 November .1977
By TNL: GN:l1-7939

Add library member(s) to an existing file that contains library
. members.

Note: When adding a member to a disk file, the file must contain
enough unused space to hold the membeL When adding a member
to a diskette file, the file must be the last active file on the diskette.
Retention cannot be specified if ADD is specified. ADD cannot be
specified if retention is specified.

Diskette volume label. One to six alphameric characters.

Number of blocks to allocate for the output file. Ignored if ADD is
specified (see preceding description of ADD). Default is eight blocks.

To copy the payroll application source programs to diskette, all beginning with the
characters PAY, you would specify:

FROMLlBR PAY,All",,,VOl001

A sequential system file on diskette named PAY containing the payroll application
programs and procedures would be created.

To add all library members whose names begin with the characters PA to a diskette
file named PAYSAVE you would specify:

FROM LI BR PA,All,LI BRARY,PAYSAVE"ADD,PACKID

HISTORY PROCEDURE

The HISTORY procedure lists the contents of the history file on the display screen
or on the printer, depending on which is listing output (see index entry: SYSLIST
procedure). Recorded in the history file are the OCl statements, utility control
statements, and proceaures executed by the SCP; all messages issued; and all user
responses to messages and prompts. The entire history file (All parameter) can be
displayed, just the entries previously displayed to the operator (VIEWED parameter),
or none of the entries (NOLIST parameter). Items previously displayed to the
operator consist of items such as OCl statements and messages that were logged
(displayed) as they were entered or issued (see index entry: LOG procedure). The
file may be cleared after listing (RESET parameter).

Any messages issued when BSC is active will not be recorded in the history file.

This procedure evokes the $HIST utility (see index entry: $HIST utility program).

HISTORY Command Statement Format

HISTORY [~~ElWEDJ ['~~~~~ETl
NOLIST '~--J

IBM SCP Procedure Descriptions-HISTORY 79

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

HISTORY Parameters

8Q.

All The entire contents of the history file will be listed including Oel state
ments in procedures. If All is not specified, only items previously
displayed to the operator are displayed.

VIEWED Only the items previously displayed to the operator are listed.

,NOLIST The history file is not displayed. This parameter may be used with the
RESET parameter to clear the history file.

RESET The history file will be cleared after it is displayed.

NORESET The history file will not be cleared.

INIT PROCEDURE

'The INIT procedure prepares (initializes) a diskette for use. It does this by perform
ing some or all of the following functions:

• Writing sector addresses on the diskette

• Checking for defective tracks

• Assigning new track numbers when a track has a defective sector

• Writing a name on each diskette to identify the diskette

• Formatting track 0

This procedure evokes the $INIT utility (see index entry: $INIT utility program).

INIT Command Statement Format

INIT [VOI-id J'
system-date

fowner-id l ,DELETE

[

RENAME J
LOWNERID J ,FORMAT

,FORMAT2

INIT Parameters

vol-id
system-date

owner-id

OV\l.N EJ3J P

RENAME

DELETE

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

If specified, it consists of one to six alphameric characters. The
vol-id is left-adjusted arid padded with blanks when placed in the
volume label. When DELETE is specified, vol-id is checked for a
match. If no value is specified, the system date is used as a default
value.

Up to eight alphameric characters can be specified~ These are
left-jiJstified and padded with blanks in the owner identification
field of the volume label of the diskette. If owner-id is omitted
and RENAME, FORMAT, or FORMAT2 is specified, owner-id is
written as OWNERID.

Allows the diskette to be renamed (vol-id and owner-id). Files
and their labels are not affected.

Deletes active files, thereby freeing up space on the diskette (initial
izes track 0 on the diskette).

IBM SCP Procedure Descriptions-HISTORY 80.1

This page intentionally left blank

80~2

INIT Parameters

vol-id
system-date

owner-id
OWNERID

RENAME

DELETE

If specified, it consists of one to six alphameric characters. The
vol-id is left-adjusted and padded with blanks when placed in the
volume label. When DELETE is specified, vol-id is checked for a
match. If no value is specified, the system date is used as a default
value.

Up to eight alphameric characters can be specified. These are
left-justified and padded with blanks in the owner identification
field of the volume label of the diskette. If owner-id is omitted

and RENAME, FORMAT, or FORMAT2 is specified, owner-id is
written as OWNERID.

Allows the diskette to be renamed (vol-id and owner-id). Files
and their labels are not affected.

Deletes active files, thereby freeing up space on the diskette (initial
i zes track 0 on the diskette),

IBM SCP Procedure Descriptions-IN IT 81

82

FORMAT

FORMAT2

INIT Examples

Formats the entire surface of the diskette in the 128-bytes per
sector basic data exchange format (see Appendix C). Tracks are
renumbered for each track with a surface defect. If track 0 (index
track) or more than 2 tra~ks have defects, the diskette is not
initialized and no label of any kind is written (the diskette is not
usable).

Note: If FORMAT is specified for one diskette in a multivolume
file, it must be specified for all diskettes in the file.

Formats the surface of the diskette in the extended format.
Extended fqrmat diskettes have eight 512-byte sectors per data
track. The index track is formatted into twenty-six 128-byte
sectors; the data tracks are 1 through 74. Position 76 of the_
volume label (VOL 1) contains a 2 if a diskette is formatted in
512-byte data sectors. The physical record length field (position
34) of the data set labels also contains a 2 if the diskette is for
matted in 512-byte data sectors. (The formats of the diskette
volume labels and data set labels are given in the IBM Diskette
General Information Manual, GA21-9182-also see Appendix C
of this manual.) However; diskettes formatted in 512-byte data
sectors cannot be used for basic data exchange files.

Tracks are renumbered for each track with a surface defect. If
track 0 (index track) or more than 2 tracks have defects, the
diskette is not initialized, and no label of any kind is written
(the diskette is not usable).

Notes:
1. If FORMAT2 is specified for one diskette in a multivolume

file, it must be specified for all diskettes in the file.
2. If a diskette read error occurs on a FORMAT2 diskette, you

cannot correct the bad sector. You can either rerun the job
using a different diskette or retry the same diskette.

To place a volume identification of 934613 and an owner identification of
JOESDISK on a diskette you would enter:

INIT 934613,JOESDISK

RENAME is the default and the diskette would be labeled (volume label) but not
initialized. An example of initializing follows:

IN IT 843163"FORMAT

JOBSTR PROCEDURE·

The JOBSTR procedure transfers, to the System/32 library, a job stream that
contains procedure and source members created either on a diskette or on cards.
Included in the JOBSTR procedure is an option you can specify to execute a
procedure and then save or delete that procedure from the library.

JOBSTR Command Statement Format

1
filename l [

JOBSTR * ~' procedurename, [
?AVE JI1[,number of records]
NOSAVE ~ §.QQ

JOBSTR Parameters

filename

*

procedu rename

NOSAVE

number of records
500

Name of the basic data exchange diskette file that contains.
the job stream.

Indicates that the job stream is on cards.

Note: If neither the filename parameter nor the * parameter
is specified, you are prompted for the parameter.

Name of the procedure to execute.

Saves the procedure named on the procedurename
parameter in the library.

Deletes the procedure named on the procedurename
parameter from the library.

Specifies the number of records that the disk file is to
contain when the job stream is transferred from diskette.
The system uses a temporary disk file to transfer the job
stream from diskette to the library. The number of records
must be specified if the input file has more than the 500
record default.

The JOBSTR procedure evokes the queued job stream card-to-library utility program
($OJOB) for job stream input on cards. For job stream input on diskette, the
JOBSTR procedure evokes the $BICR, $MAINT, and $DELET utility programs
(see index entries: $8ICR, $MAINT, $DELET utility program).

The job stream you create can consist of multiple procedure or source members.
Each procedure or source member must begin with a COpy statement and end with
a CEN 0 statement. The format of the COpy statement is:

/I COpy NAME-name,LlBRARY- ~ ~ (

where name is the member name and P or S indicates procedure member or source
member.

IBM SCP Procedure Desc::riptions JOaSTR 83

84

The format of the CEND statement is:

II CEND

The CEND statement is valid only as the last statement for a procedure or source
member. It is not valid within a procedure or source member.

The 1* statement must be the last statement in a job stream created on cards. This
statement must immediately follow the last CEND statement.

A job stream created on diskette must be in 128-bytes-per-sector basic data exchange
format and the record length must be between 40 and 120.

A diskette file could contain the following job stream:

II COpy NAME-P1 ,LlBRARY-P

II CEND
II COpy NAME-P2,LlBRARY-P

II CEND
II COpy NAME-S1 ,LlBRARY-S

II CEND

The job stream is transferred to the System/32 library when the JOBSTR command
statement is entered. For a diskette file, JBS, that contains the previous job stream
you could enter:

JOBSTR JBS

and the procedure members (P1 and P2) and the source member (S1) would be
placed in the system library.

Enter JOBSTR JBS,P2 and the procedure members (Pl and P2) and the source
member (Sl) are placed in the system library; procedure P2 is executed and then
saved (SAVE is the default when omitted).

Enter JOBSTR JBS,P2,NOSAVE and the procedure members (P1 and P2) and the
source member (Sl) are placed in the system library; procedure P2 is executed and
then deleted from the library.

JOBSTR Example

The following example shows a job stream created on either diskette or cards. The
statements are numbered to correspond to the explanations following:

CD
CD
CD
CD
CD
CD
0)

CD
CD

@

II COPY NAME-JOBSTRM,LlBRARY-P

FORTC PROG1

FORTG PROG1

data

/*

FORTC

5 -+ source statements
~/*

5 REMOVE PROG1 ,LOAD
~ RPG PROG

II CEND

1
1/

I I

COPY NAME-PROG1 ,LlBRARY-S

CEND

1. COpy statement indicating a procedure member named JOBSTRM.

Steps 2 through 8 - Contents of procedure member JOBSTRM.

2. Command statement to compile a FORTRAN program from a source member.

3. Command statement to load and run the compiled FORTRAN program.

4. Data used as input to the program.

5. Indicates the end of data for the program.

6. Command statement to load and run the FORTRAN compiler with source
statements in the job stream.

7. Indicates the end of the source statements.

8. Command statements in the job stream.

9: Indicates the end of the procedure member.

10. Source member to be moved to the source library.

Note: A job stream on cards must contain a /* statement after the CEND
statement.

IBM SCP Procedure Descriptions-JOBSTR 85

86

LINES PROCEDURE

The LINES procedure provides a means of modifying the printer lines per page.
This procedure contains a FORMS Oel statement (see index entry: II FORMS
statement) .

LINES Command Statement Format

[
nUmber]

LINES 66

LINES Parameters

number Specifies the number of lines to be printed per page. The value specified
can be 1 through 84.

Note: See index entry: II FORMS statement for the way the value
specified determines the actual number of lines printed per page.

66 The default value for number is 66.

LlSTLlBR PROCEDURE

The LlSTLI BR procedure allows you to list the contents of the system library.
Either directory entries or contents of individual members can be listed.

This procedure evokes the $MAINT utility (see index entry: $MA/NT utility
program).

Note: If the display screen is used for listing the library, only the first 40 bytes
of each LlSTLlBR output line are displayed. To ensure that all the information in
a library member or directory entry is listed, use the printer to list the output. You
can use the STATUS procedure (see index entry: STATUS procedure) to determine
where system output is currently listed (that is, what the current SYSLIST assign
ment is); and the SYSLIST procedure (see index entry: SYSLIST procedure) to
change the current SYSLIST assignment.

LI STLI BR Command Statement Format

Use Format

Directory entries are to
be listed.

,SOURCE
,PROC

LlSTLlBR DIR ,LOAD
,SUBR
,LIBRARY

System information is to be
listed from the directory.

LlSTLlBR DIR,SYSTEM

Library members and their
directory entries are to be
listed.

,SOURCE
,PROC
,LOAD
,SUBR
,LIBRARY

LISTLlBR Parameters

DIR

library-name

name,ALL

ALL

SYSTEM

SOURCE

PROC

LOAD

SUBR

LIBRARY

Directory entry is to be listed.

Name of library member to be listed.

Specifies the characters that the library member names to be listed
begin with. Up to seven characters can be used.

Specifies that all members of the specified type(s) be listed.

System information in the library directory. Valid with DIR only.

Source directory entries, if D 1 R is specified; otherwise, indicates contents of
source member(s).

Procedure directory entries, if DI R is specified; otherwise, indicates
contents of procedure member(s).

Load directory entries, if DI R is specified; otherwise, indicates con
tents of load member(s).

Subroutine directory entries, if DI R is specified; otherwise, indicates
contents of subroutine member(s).

All types of directory entries (SYSTEM, SOU RCE, PROC, LOAD,
and SUBR), if DIR is specified; otherwise, indicates contents of all
member types (SOURCE, PROC, LOAD, and SUBR).

IBM SCP Procedure Descriptions-LlSTLlBR 87

88

LlSTLlBR Examples

To list the procedure member JOE, you would enter:

LlSTLlBR JOE,PROC

To list all procedure members which have names beginning with PA, you would
enter:

L1STLI BR PA,All,PROC

To list the source, procedure, load, subroutine, and system directories, you would
enter:

L1STLlBR DIR,L1BRARY

LOG PROCEDURE

The lOG procedure specifies where messages and OCl statements are to be displayed
(on the display screen only or on the display screen and the printer), and specifies
whether to skip to line 1 of the next page at end of job. The lOG procedure per
forms the same function as the lOG OCl statement (see index entry: II LOG
statement) .

LOG Command Statement Format

lOG [CRT J ~EJECT J
L:RINTER lNOEJECT

LOG Parameters

Display messages and statements on the display screen.

PRINTER Print messages and statements and display them on the display screen.

Note: When the BSCA is active, the messages are not printed.

EJECT Skip to line 1 of next page at end of job.

NOEJECT Do not skip to line 1 of next page at end of job.

ORGANIZE PROCEDURE

The ORGANIZE procedure performs one of the following functions:

• Copies a disk file to another area on the disk

• Copies a disk file to another area on the disk and deletes specified records

• Copies a disk file to a diskette

• Copies a disk file to a diskette and deletes specified records

If the input file is sequential, the output file is sequential. However, if reorganizing
a sequential input file, records must be specified for deletion. If the input file is
indexed, the output file is indexed, and the data records in the output file are in the
same sequence as the keys in the index. A direct input file cannot be reorganized.

The ORGANIZE procedure evokes the $COPY utility (see index entry: $COPY
utility program).

ORGANIZE Command Statement Format

Use Format

Reorganize
a disk file
as another
disk file.

ORGANIZE tilename-l, r;dr;:,d~~~l ,F 1,filename-2: rfp],[IPOSition,CharacterJ

~ymmd~ ~

Reorganize
a disk file ORGANIZE fHename-1, . retention-da s .. ~mmddY~ [J ddmmyy I [ll] ,VOI-ld, 1 Y [,posltlon,character]
as a diskette
file.

ORGANIZE Parameters

filename-1

mmddyy
ddmmyy
yymmdd

F1

1.1

filename~2

vol-id

yymmdd -

Name of the disk file to be reorganized (and name of-the diskette
file created if reorganizing as a file on diskette).

The creation date of the input file~ If this parameter is omitted.
the most recently created file with the name specified in filename-1

is the one that is reorganized.

The disk will contain the reorganized copy.

The diskette will contain the reorganized copy. Default is 11.

Name of the disk file to contain the reorganized copy.

Identifies the diskette by volume label. One to six alphameric
characters. Valid only if 11 is specified.

IBM SCP Procedure Descriptions-ORGANIZE 89

90

~

S

P

retention-days

.L

position

character

ORGANIZE Examples

Temporary retention on the disk.

Scratch retention on the disk.

Permanent retention on the disk.

Number of days (0 to 999) in the retention period for the diskette
file. Default is 1 .

Note: A retention value of 999 makes a diskette file a permanent
file.

Note: If the input file is sequential, then record deletion must be
specified.

Requests deletion of records having. a specified character (character)
in the position specified. Position can be any position in the record
(first position is 1, second 2, and so on) to a maximum of 999. These
records will not be copied to the reorganized file.

Character can be anyone of the standard characters, or the three
characters Xdd, where X is constant and dd is the hexadecimal
equivalent olthe character. Records containing the specified
character in the position specified by. the position parameter are
not copied to the reorganized file. See the note in the position
parameter.

To reorganize the indexed file, PAYROLL, into a permanent disk file called PA YR,
. you could enter:

ORGANIZE PAYROLL"Fl ,PAYR,P

To reorganize the file called JOE and place the organized copy (except records con
taining a 0 inrecord position 13) on diskette volume 123456, you could enter:

ORGANIZE JOE,,, 123456,999, 13,0

tn the preceding example neither Fl norll·isspecified in the third parameter, so
the default is 11. Also, the.file is to be r~tained permanently; so retention-days 999
is specified.

Note: A date is not specified in either of the two preceding examples. Consequently,
if more than one file named JOE or PAYROLL exists on the disk, the most recently
created of the files named JOE or PAYROLL will be reorganized.

OVERRIDE PROCEDURE

The OVERRIDE procedure is used to override sse parameters.

Item Parameter

Tributary station address
Line type

ADDR
LINE
SWTYP Switch type

Additional SSC items that can be altered are included in the AL TERSSC procedure
(see index entry: AL TERBSC procedure). To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STATUS procedure.)

The OVERRIDE procedure evokes the $SETCF utility (see index entry: $SErCF
utility program).

Note: The OVERRIDE procedure is intended only for data communications pro
gramming that uses SSC. For background i~formation on binary synchronous
communications, see General Information-Binary Synchronous Communications,
GA27-3004. For information on data communications programming, see IBM
System /32 Data Communications Reference Manual, GC21-7691.

OVERRIDE Command Statement Format

OVERRIDE [ADDR~n] [LlNE-H ! J [swm- {~~} J
Notes:
1. Though each individual parameter is optional, at least one parameter must be

specified.
2_ To reset the ADDR parameter to the addressing characters specified by the user

program specifications, reenter a valid OVERRIDE command omitting the
ADDR parameter. The addressing characters then default to the user program
specifications.

OVERRIDE Parameters

ADDR-nn

LlNE-C
P
R
S
T

Hexadecimal equivalent of one of the pair of tributary station
addressing characters. See Appendix G for the System/32
tributary station polling and addressing characters. Defaults to
the user program specifications.

CDSTL (connect data set to line) switched line (World Trade only)
Point-to-point nonswitched line.
Line type specified in the user program source statements.
Point-to-point switched line.
Tributary station on multipoint line.

IBM SCP Procedure Descriptions~OVI=RRIDE 91

92

SWTYP-AA

MA

MC

If switched line (LiNE-C or LlNE-S) is specified and the modem is
in auto-answer mode, then the System/32 automatically answers
the call.
If switched line (LiNE-C or LlNE-S) is specified, then the System/32
operator manually answers the call.
If switched line (LiNE-C or LlNE-S) is specified, then.the System/32
operator manually initiates the call.

Notes:
1. If LlNE-C or LlNE-S is specified, the SWTYP parameter must

be specified.
2. If the SWTYP parameter is specified, then LlNE-C, or LlNE-S

must be specified. However, if the line type was set previously
to a switched line (LINE-C or LlNE-S), then the line type does
not have to be respecified.

3. If the line type is LlNE-R, then both the line type and switch
type are determined from the user program source statements
and neither line type nor switch type is required.

4. If LlNE-P or LlNE-T is specified, then the switch type (SWTYP)
automatically defaults to 0 (zero).

5. The line type defaults to the line type specified in the user
program source statements (LINE-R) if the standby line (SLlNE)
is specified in the AL TERBSC procedure as SLINE-N.

6. The line type defaults to a point-to-point switched line (LINE-S)
if the standby line (SLlNE) is specified in the AL TERBSC
procedure as SLlNE-Y.

REBUI LD PROCEDURE

The REBUI LD procedure allows you to restore system information related to output
files being processed at the time of a system failure, such as one caused by a power
failure or inadvertent IPL. The REBUILD procedure must be the first procedure
run after a system failure, otherwise the information will not be restored. The
information restored by R EBU I LD is essential if you want to obtain data contained
in output files being processed at the time of the system failure.

The REBUILD procedure evokes the $REBLD utility program. Fora more complete
description of the function of REBUILD, see index entry: $REBLDutility program.

REBUILD Command Statement Format

REBUILD

REBUI LD Parameters

None

REMOVE PROCEDURE

The REMOVE procedure deletes the specified library member(s), unless they are
SCP members. The space that was occupied by the deleted members can be used
for new members, provided there are not active members physically located after
the deleted ones in the library. If active members are located after deletedmem
bers you can use the CONDENSE procedure to relocate these active members and
combine all unused space at the end of the library (see index entry: 'tONDENSE
procedure) .

This procedure evokes the $MAI NT utility (see index entry: $MAINT utility
program).

REMOVE Command Statement Format

{

library-name}
REMOVE name,ALL

ALL

,SOURCE
,PROC
,LOAD
,SUBR
,LIBRARY

REMOVE Parameters'

library-name Name of the non-SCP library member to be deleted.

n~me,ALL

ALL

SOURCE

PROC

LOAD

SUBR

LIBRARY

e~9inning characters of names of non-SCP members to be deleted.
Up to seven characters-can be used.

Remove all non-SCP members of the specified type or all types.

Remove non-SCP source member(s).

Remove non-SCP procedure member(s).

Remove non-SCP load member(s).

Remove non-SCP subroutine member(s).

Remove non-SCP members of all member types (SOURCE, PROC,
LOAD, and SUBR).

IBM SCP Procedure Descriptions-REMOVE 93

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

94

~EMOVE Examples

To delete the non-SCP procedure member named JOE from the library, you would
enter:

REMOVE JOE,PROC

To delete the non-SCP members in the library that are named SAM, you would
enter:

REMOVE SAM,UBRARY

To delete all non-SCP members in the library beginning with characters PAY, you
would enter:

REMOVE PAY,ALL,UBRARY

RENAME PROCEDURE

The RENAME procedure changes ttfe name of an existing data file on disk. AU of the
other file attributes such as file location, creation date, file type, file length, and file
retention remain unchanged.

This procedure evokes the $RENAM utility (see index entry: $RENAM utility
program).

RENAME Command Statement Format

R ENAM E filename-1, filename-2 ,ddmmyy
[

mmddYY]

,yymmdd

RENAME Parameters

filename-1

filename-2

mmddyy
ddmmyy
yymmdd

RENAME Examples

Current name of the file.

New name of the file.

Creation date of the disk file. If not specified, the last file created with the
name given in filename-1 will be renamed.

To rename a data file from JOE to JOHN, enter:

RENAME JOE,JOHN

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

To rename a data file from JOE which was created on 2/10/78 to JOHN and there exists
on the disk more than one file by the name of JOE, enter:

RENAME JOE,JOHN,021 078

Note: The filename-2 parameter must not be the name of an existing file on disk at the time
$R ENAM is evoked.

RESTORE PROCEDURE

The RESTORE procedure restores on the disk a diskette file that was copied from
the disk by one of the following:

• the ORGANIZE procedure (see index entry: ORGANIZE procedure)

• the SAVE procedure (see index entry: SA VE procedure)

• the $COPY utility (see index entry: $COPY utility program)

The RESTORE procedure can also be used to restore to the disk one or all of the
entire group of files previously saved by a SAVE ALL request.

When only one file is to be restored, you can change the space allocation of the disk
file by specifying the RECORDS or BLOCKS parameter in the RESTORE command
statement. If the diskette file size was increased, beyond the original file capacity,
the RECORDS or BLOCKS parameter must be used.

A RESTORE request reconstructs a file on the disk with the same attributes, except
location (see index entry: FILE statement for a description of the LOCATION
parameter), that the file had before it was copied to the diskette.

Messages to insert a tfiskette for multivolume files are automatically displaye_d as
required, with appropriate label and volume-sequence-number checking.

This procedure evokes the $COPY utility (see index entry: $COPY utility program).

IBM SCP Procedure Descriptions-RENAME 94~1

This page intentionally left blank

94.2

Page of GC21-7593~3
Issued 22 Novemberr 1978
By TNL: GN21-7993

RESTORE Command Statement Format

Use

Restore all
previously
saved files.

Restore a
previously
saved single
file.

RESTORE Parameters

ALL

filename-1
#SAVE

fHename-2

mmddyy
ddmmyy
yymmdd

RECORDS

value-1

BLOCKS

value-2

Format

RESTORE [filename~~ [mmddYYu
[ALLJ, #SAVE,ddmmyy ..

,yymmdd

[::d~~y~- [RECORDS, value-l~
dd

,BLOCKS, value-2
yymm

RESTOR E filename-2,

All data files previously saved are to be restored to the disk.

Name associated with the entire set of files previously saved on
the diskette by the SAVE (SAVE ALL) procedure. #SAVE is the
default.

Name of the single diskette file that is to be restored to the disk.

Creation date of the diskette file.

Requests that the disk file be made large enough to contain the
number of records indicated by value-l.

Specifies the number of records that the disk file is to accommodate.

Requests that the disk file be made large enough to contain the
number of blocks indicated by value-2.

Specifies the number of blocks that the disk file is to accommodate.

Note: When restoring a file-and there alrea~y exists a file on the fixed disk with the same
name- but with a different creation date and different number of blocks or records allocated,
then the B LOCKS or RECORDS parameter should be used in the RESTORE procedure.

RESTORE Examples

To restore all files previously saved by a SAVE procedure, you would enter:

RESTORE

. ~

To restore a file named JOE that was saved or organized on a diskette, you would
enter:

RESTORE JOE,;RECORDS,300

In the preceding example, RECORDS requests that the restored file be large enough
to contain 300 records.

IBM SCP Procedure Descriptions-RESTORE 95,

96

SAVE PROCEDURE

The SAVE procedure causes (1) a single disk file or all disk files to be copied to
disk~tte(s) or (2) a single disk file to be added to a file saved previously on diskette(s).
Sequential, indexed, and direct disk files can be copied to diskette(s) by SAVE, and
can reside on disk~tte(s) as single volume ormultivQlume files. Sequenti~l, indexed,
and direct disk files can also be added to files saved previously and can reside as
single volume or multivolume files. Messages to insert a diskette are given to the
operator whenever a SAVE request causes a multivolume diskette file to be created
or extended (added toh

This procedure evokes the $COPY utility (see index entry: $COPY utility program).

Note: If, after saving a file by copying it to diskette(s), you delete the original file
from the disk, the file on the diskette(s) becomes the master copy C?f the file.

SAVE Command Statement Format

Use

Save all disk files on
diskette

Save one disk file on
diskette, or add a
disk file to a file
saved previously

SAVE Parameters

ALL

filename-2

retention-days
_1

ADD

filename-1
tlSAVE

mmddyy
ddmmyy
yymmdd

vol-id

Format

SAVE [ALL], [retention-day~ , [filename-11 vol-id

~ J #SAVE J'

[

retention-daY

J
' [mmddYY]

1.. ddmmyy
ADD yymmdd

SAVE,.filename-2,

Requests that all data files on the disk be copied to diskette.
The diskette should not contain any active files.

Name of one file on the disk to be saved. The diskette file will
have the same name.

Number of days (0 to 999) the diskette file is to be retained.
Default is 1.

,vol-id

Note: A retention value of 999 makes a diskette file a perman
ent file.

Single disk file is to be added to a file previously saved on
diskette.

Name associated with the entire set of saved files. #SAVE is the
default value.

Creation date of the disk file. If not specified, the last file
created with the name given in filename-2 is saved.

Volume label of diskette~ One to six alphameric character~

RESTOR E Command Statement Format

Use

Restore all
previously
saved files.

Restore a
previously
saved single
file.

RESTORE Parameters

filename-1
#SAVE

filename-2

mmddyy
ddmmyy
yymmdd

RECORDS

value-1

BLOCKS

value-2

Format

RESTORE [f
'l ~ [mmddyyJ I ename-

[ALL], #SAVE ,ddmmyy
,yymmdd

RESTORE filename-2, [mmddY~ [~ ddmmyy ,RECORDS, value-1

dd
,BLOCKS, value-2

yymm

All data files previously saved are to be restored to the disk.

Name associated with the entire set of files previously saved on
the diskette by the SAVE (SAVE ALL) procedure. #SAVE is the
default.

Name of the single diskette file that is to be restored to the disk.

Creation date of the diskette file.

Requests that the disk file be made large enough to contain the
number of records indicated by value-1.

Specifies the number of records that the disk file is to accommodate.

Requests that the disk file be made large enough to contain the
number of blocks indicated by value-2.

Specifies the number of blocks that the disk file is to accommodate.

Note: When restoring a file and there already exists a file on the fixed disk with the same
name but with a different creation date and different number of blocks or records allocated,
then the BLOCKS or RECORDS parameter should be used in the RESTORE procedure.

RESTORE Examples

To restore all files previously saved by a SAVE procedure, you would enter:

RESTORE

To restore a file named JOE that was saved or organized on a diskette, you would
enter:

RESTO~E JOE"RECORDS,300

In the preceding example, RECORDS requests that the restored file be large enough
to contain 300 records.

IBM SCP Procedure Descriptions-RESTORE 97

98

SAVE PROCEDURE

The SAVE procedure causes (1) a single disk file or all disk files to be copied to
d;sk~tte(s) or (2) a single disk file to be added to a file saved previously on diskette(s).
Sequential, indexed, and direct disk files can be copied to diskette(s) by SAVE, and
can reside on diskette(s) as single volume or multivolume files. Sequential, indexed,
and direct disk files can also be added to files saved previously and can reside as
single volume or multivolume files. Messages to insert a diskette are given to the
operator whenever a SAVE request causes a multivolume diskette file to be created
or extended (added to).

This procedure evokes the $COPY utility (see index entry: $COPY utility program).

Note: If, after saving a file by copying it to diskette(s), you delete the original file
from the disk, the file on the diskette(s) becomes the master copy of the file.

SAVE Command Statement Format

Use

Save all disk files on
diskette

Save one disk file on
diskette, or add a
disk file to a file
saved previously

SAVE Parameters

filename-2

retention-days
_.1

ADD

filename-1
#SAVE

mmddyy
ddmmyy
yymmdd

vol-id

Format

SAVE [ALL], [retention-day~ , [filename-1l vol-id

..!.. J #SAVE J'

[

retention-daY

J
,[mmddYY]

..!.. ddmmyy
ADD yymmdd

SAVE filename-2,

Requests that all data files on the disk be copied to diskette.
The diskette should not contain any active files.

Name of one file on the disk to be saved. The diskette file will
have the same name.

Number of days (0 to 999) the diskette file is to be retained.
Default is 1.

,vol-id

Note: A retention value of 999 makes a diskette file a perman
ent file.

Single disk file is to be added to a file previously saved on
diskette.

Name associated with the entire set of saved files. #SAVE is the
default value.

Creation date of the disk file. If not specified, the last file
created with the name given in filename-2 is saved.

Volume label of diskette. One to six alphameric characters.

SAVE Examples

To save all files for a period of seven days on a diskette labeled 345678, you could
enter:

SAVE ALL,7,#SAVE,345678
or

SAVE ,7,,345678

To save a file named JOE (created on November 12, 1914) and to add this file to
an existing diskette file named JOE (with a volume identification of 654321), you
could enter:

SAVE JOE,ADD,741112,654321

SET PROCEDURE

The SET procedure establishes the following system environment items:

• Number of lines printed per page

• Print belt image

• System date format

• System date

The item(s) specified is placed in the library in the system configuration record,
which defines system characteristics, and remains unchanged until a subsequent
SET procequre js executed.

This procedure evokes the $SETCF utility (see index entry: $SETCF utility
program).

SET Command Statement Format

, [MDY] [mmdd
YY

] SET [value] , [source-name], DMY ,ddmmyy
YMD ,yymmdd

Note: Though each individual parameter is optional, at least one parameter must
be specified.

IBM SCP Procedure Descriptions-SET 99

SET Parameters

value

source-name

MDY

DMY

YMD

mmddyy

ddmmyy

yymmdd

100

The number of lines that are to be printed per page. The maxi
mum number of lines that can be specified is 84, minimum value
is 1.

Note: See index entry: II FORMS statement for the way the
value specified determines the actual number of lines printed per
page.

Name of the library source member containing the print belt
image to be used by the system. The contents of the source
member is described in the IMAGE statement (see index entry:
IMAGE statement).

Note: BEL T48, BEL T48HN (FORTRAN), BEL T64, and BEL T96
are library source members. The source-name/parameter is either
BEL T48, BELT64, BELT96, or BEL T48HN when specifying the
print belt image to be used by the system.

Specifies system date format to be month-day-year.

Specifies system date format to be day-month-year.

Specifies system date format to be year-month-day.

Specifies the system date in month-day-year format.

Specifies the system date in day-month-year format.

Specifies the system date in year-month-day format.

Note: Use yymmdd format if you are creating basic data exchange
format diskettes to use with other systems.

SPECIFY PROCEDURE

The SPECIFY procedure alters the following SOLC (synchronous data link control)
items in the system configuration record.

Item

SO LC station address
Line type
Switch type
Identification data

Parameter

AOOR
LINE
SWTYP
10

Additional SOLC items that can be altered are included in the AL TERSOL procedure.
(See index entry: AL TERSDL procedure.) To identify the current values in these
parameters, use the STATUS procedure. (See index entry: STATUS procedure.)

The SPECIFY procedure evokes the $SETCF utility (see index entry: $SETCF
utility program).

Note: The SPECI FY procedure is intended only for data communications program
ming that use SOLC. For background information on synchronous data link con
trol, see IBM Synchronous Data Link Control General Information, GA27-3093.
For information on data communications programming, see IBM System/32 Data
Communications Reference Manual, GC21-7691.

SPECI FY Command Statement Format

SPECIFY [ADDRonnJ [LiNEol~IJ [SWTYPO {~~~ [lDonnnnnJ

Note: Though each individual parameter is optional, at least one must be specified.

IBM SCP Procedure Descriptions-SPECIFY 101

102

SPECI FY Parameters

ADDR-nn

L1NE-C
P
S
T

SWTYP-AA

MA

MC

ID-nnnnn

Notes:

A two-character hexadecimal SDLC address.

CDSTL (connect data set to line) switched line (World Trade only)
Point-to-point nonswitched line.
Point-to-point switched line.
Tributary station on multipoint line.

If switched line (L1NE-C or L1NE-S) is specified and the modem
is in autoanswer mode, then the System/32 automatically answers
the call.
If switched line (LiNE-C or LlNE-S) is specified, then the
System/32 operator manually answers the call.
If switched line (LiNE-C or LlNE-S) is specified, then the
System/32 operator manually initiates the call.

A five-character hexadecimal number used as an exchange of
identification between the host system and the System/32 SDLC
station. Valid characters for this parameter must be from 0-9 and
A-F. The characters specified are converted to hexadecimal charac
ters by the system. If the I D parameter is not specified the default
is 00000.

1. If LI N E-C or LI N E-S is specified, the SWTYP parameter must be specified.
2. If the SWTYP parameter is specified, then LI N E-C or LI N E-S must be specified.

However, if the line type was set previously to a switched line (LiNE-C or
LlNE-S), then the line type does not have to be respecified.

3. If the SWTYP parameter (MA or MC) is specified on a switched line, a message
is displayed that indicates a manual answer ora manual call is required. If the
SWTYP parameter (AA) is specified on a switched line, no message is displayed.

4. If LlNE-P or LlNE-T is specified, then the switch type (SWTYP) automatically
defaults to 0 (zero).

5. The line type defaults to a point-to-point nonswitched line (LiNE-P) if the
standby line (SLlNE) is specified in the AL TERSDL procedure as SLiNE-N.

6. The line type defaults to a poi nt-to-poi nt switched line (LiNE-S) if the standby
line (SLlNE) is specified in the AL TERSDL procedure as SLlNE-Y.

SYSLIST Command Statement Format

[

PRINTER

J SYSLIST CRT
OFF

SYSLIST Parameters

PRINTER Selects the printer for system list output

CRT Selects the display screen for system list output

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Note: If CRT is specified, the RO LL t without the SH I FT key
(roll up) must be pressed after each system list output record
is displayed to advance to the next record.

OFF Suppresses system list output

TOLlBR PROCEDURE

The TOLlBR procedure copies into the library either a disk or diskette file contain
ing one or more library members. Any number of library members can be contained
in a data file to be copied into the library by TOU BR.

All sector mode files to be copied by TOLlBR must have been created either by the
$MAINT utility or by the FROMLlBR procedure (see index entries: $MA/NT
utility program and FROML/BR procedure).

Each library member in a record mode file that is to be copied by TOLlBR must
begin with a COpy statement and end with a CEND statement. The format of
the COpy statement, where name is the member and P or S indicates procedure
member or source member, is:

II COpy NAME-name,LlBRARY- {SP}

The format of the CEND record is: II CEND. COPY and CEND statements are
automatically inserted in members created by $MAINT. You must insert them
in members that were not created by $MAINT.

If a file to be copied by TOLlBR is a record mode diskette file in 128-bytes per
sector basic data exchange format (see Appendix C), the TRANSFER procedure
(see index entry: TRANSFER procedure) must be used to copy the file to disk
before TOLlBR can copy the file to the library.

Note: In record mode TOLlBR can copy only records from 40 through 120 bytes
in length.

The TOLlBR procedure evokes the $MAINT utility.

IBM SCP Procedure Descriptions-TOll BR 103

104

TOLlBR Command Statement Format

r -, rmmddvvl

TOll BR filename, l ~/J ' I ddmm~~ I GREPLACE]
Lvymmddj

TOLlBR Parameters

filename

F1

11

mmddyy
ddmmyy
yymmdd

REPLACE

Name of the file containing the member(s) to be copied in the library.

The file is on the disk.

The file is on a diskette.

Specifies the creation date of the file containing the member(s) to be
copied. If date is not specified, the filename with the most recent
date is copied to the library.

Replace the library member specified, if one exists.

If REPLACE is not specified, members are placed in the library
until a duplicate is found, at which time the system displays a
message telling the operator that a duplicate exists. In response to
the message, the operator can either cancel the job or continue
processing. If the job is continued, the new member replaces the
existing member in the library. If other duplicates are found dur
ing the job, then existing members are automatically replaced and
no messages are displayed regarding the duplicate members.

If REPLACE is specified, new members replace existing duplicate
members in the library, and no messages regarding them are displayed.

TRANSFER PROCEDURE

The TRANSFER procedure moves files between the disk and diskettes that have
data in the 128-bytes per sector basic data exchange format. (See Appendix C for
information on the 128-bytes per sector basic data exchange format.) TRANSFER
can:

• Add a diskette file that is in the 128-bytes per sector basic data exchange format
to an existing sequential disk file

• Convert a basic data exchange diskette file to a disk sequential or indexed file

• Convert a disk file to a basic data exchange diskette file (Basic data exchange
files are sequential files.)

Note: Because TRANSFER only moves files between the disk and basic data
exchange formatted diskettes, TRANSFER cannot be used to move files between
the disk and diskettes that have data recorded in 512-byte sectors (extended format).
If the diskette format is not known, you can use the CATALOG procedure to list
the diskette VTOC. This listing shows whether the format is 12~- or 512-byte
sectors.

When a basic data exchange diskette file is added to an existing disk sequential
file, the record length of the disk file is used for all records added to the file. When
a basic data exchange diskette file is converted to a disk sequential or indexed file,
records are placed in the disk file sequentially, using the record length of the disk
ette file.

A disk file to be converted by TRANSFER to a basic data exchange diskette-always
sequential-can be a sequential, indexed, or direct file. If the record length of the
disk file is greater than 128 bytes all records are truncated to 128.

For an example of converting a source member or a procedure member to a diskette
file in 128-bytes per sector basic data exchange format, see index entry: source
member to basic data exchange diskette file and procedure member to basic data
exchange diskette file.

The TRANSFER procedure evokes the $BICR utility (see index entry: $BleR
utility program).

TRANSFER Command Statement Format

Use

Transfer file from
diskette to an exist
h1g disk file

Transfer a file
from diskette to
a new disk file

rransfer a file
from disk to
diskette

Format

-- ~ mmddyy , filename-2
TRANSFER filename-I, [!!] .r~mm~ l ',ADD, filename-I] Gdate]

~ymmd~

~
mmddY~ _ .[value-l,value-2] .f,RECORDS,value-31

TRANSFER filenarTle-l, [11], ddmmyy ,[NOADD]' ~BLOCKS,value-4 J
yymmdd

~mmddV~ TRANSFER filename-l,Fl,. ddmmyy.
yymmdd lretention-daYJ

,vol-id
,.1

IBM SCP Procedure Descriptions-TRANSFER 106

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

TRANSFER Parameters

filename-1

!1

F1

mmddyy
ddmmyy
yymmdd

ADD

filename-2

date

NOADD

value-1

value-2

RECORDS,
value-3

Name of the file being transferred. If a new file is being created,

A basic data exchange diskette file is being transferred to a disk
sequential or indexed file.

A disk file is being transferred to basic data exchange diskette file.

Creation date of the file being transferred. If the file being trans
ferred resides on disk and no date is specified, then the filename
with the most recent date is transferred to diskette.

Note: Use yymmdd format if you are creating basic data exchange
format diskettes to use with other systems.

Records in a diskette file are added to. the records in an existing
disk sequential file. The first record from the diskette file is placed
after the last record existing in the disk file.

Nameof the existing disk file to which a basic data exchange disk
ette file is to be added. Filename-2 is valid only if ADD is speci
fied. If filename-2 is omitted, defaults to filename-1.

Creation date of an existing disk file. Date is valid only if ADD is
specified. The date must be given in one of the following formats:
mmddyy, ddmmyy, or yymmdd.

The basic data exchange diskette file being transferred will become
a new disk file with filename-1 as the filename. NOADD is assumed
whenever a file is transferred from diskette to disk.

Key length for a disk indexed file that is being created. Value-1
can be 1 through 29. It must be specified with .value-2, and the
sum of vaiue-1 and value-2 must not exceed the record length + 1.

The start position of the record keys for an indexed disk file that
is being created. Value-2 can be 1 through 128. It must be specified
with value-1, and the sum of value-2 and value-1 must not exceed the
record leng~h + 1.

Specifies that the disk file being created be large enough to contain
the number of records specified by value-3.

Note: Either RECORDS, value-3 or BLOCKS,value-4 (see follow
ing) is required if (1) a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

TRANSFER PROCEDURE

The TRANSFER procedure moves files between the disk and diskettes that have
data in the 128-bytes per sector basic data exchange format. (See Appendix C for
information on the 128-bytes per sector basic data exchange format.) TRANSFER
can:

• Add a diskette file that is in the 128-bytes per sector basic data exchange format
to an existing sequential disk file

• Convert a basic data exchange diskette file to a disk sequential or indexed file

• Convert a disk file to a basic data exchange diskette file (Basic data exchange
files are sequential files.)

Note: Because TRANSFER only moves files between the disk and basic data
exchange formatted diskettes, TRANSFER cannot be used to move files between
the disk and diskettes that have data recorded in 512-byte sectors (extended format).
If the diskette format is not known, you can use the CATALOG procedure to list
the diskette VTOC. This listing shows whether the format is 128- or 512-byte
sectors.

When a basic data exchange diskette file is added to an existing disk sequential
file, the record length of the disk file is used for all records added to the file. When
a basic data exchange diskette file is converted to a disk sequential or indexed file,
records are placed in the disk file sequentially, using the record length of the disk
ette file.

A disk file to be converted by TRANSFER to a basic data exchange diskette-always
sequential-can be a sequential, indexed, or direct file. If the record length of the
disk file is greater than 128 bytes all records are truncated to 128.

For an example of converting a source member or a procedure member to a diskette
file in 128-bytes per sector basic data exchange format, see index entry: source
member to basic data exchange diskette file and procedure member to basic data
exchange diskette file.

The TRANSFER procedure evokes the $BICR utility (see index entry: $8ICR
utility program).

T~ANSFER Command Statement Format

Use

Transfer file from
diskette to an exist
ing disk file

Transfer a file
from diskette to
a new disk file

Transfer a file
from disk to
diskette

Format

TRANSFER filename-1. [.!!] .r~~~~~l.ADD. ~:::~:::~J [date]

~ymmd~

~
mmddYu [value-1,value-2] f,RECOR DS,value-3l

TRANSFER filename-1, [n], ddmmyy , [NOADDJ. ' ~BLOCKS,value-4 J
yymmdd

ITmddY~ TRANSFER filename-1,F1, ddmmyy
yymmdd [

retention-days

J ,vol-id
,l

IBM SCP Procedure Descriptions-TRANSFER 107

108

TRANSFER Parameters

filename-1

!.1

F1

mmddyy
ddmmyy
yymmdd

ADD

filename-2

date

NOADD

value-1

value-2

RECORDS,
value-3

Name of the file being transferred. If a new file is being created,
it assumes the name specified by filename-1.

A basic data exchange diskette file is being transferred to a disk
sequential or indexed file.

A disk file is being transferred to basic data exchange diskette file.

Creation date of the file being transferred. If the file being trans
ferred resides on disk and no date is specified, then the filename
with the most recent date is transferred to diskette.

Note: Use yymmdd format if you are creating basic data exchange
format diskettes to use with other systems.

Records in a diskette file are added to, the records in an existing
disk sequential file. The first record from the diskette file is placed
after the last record existing in the disk file.

Name of the existing disk file to which a basic data exchange diSk
ette file is to be added. Filename-2 is valid only if ADD is speci
fied. If filename-2 is omitted, defaults to filename-1.

Creation date of an existing disk file. Date is valid only if ADD is
specified. The date must be given in one of the following formats:
mmddyy, ddmmyy, or yymmdd.

The basic data exchange diskette file being transferred will become
a new disk file with filename-1 as the filename. NOADD is assumed
whenever a file is transferred from diskette to disk.

Key length for a disk indexed file that is being created. Value-1
can be 1 through 29. It must be specified with ,value-2, and the
sum of value-1 and value-2 must not exceed the record length + 1.

The start position of the record keys for an indexed disk file that
is being created. Value-2 can be 1 through 128. It must be specified
with value-1, and the sum of value-2 and value-1 must not exceed the
record length + 1 .

Specifies that the disk file being created be large enough to contain
the number of records specified by value-3.

Note: Either RECORDS, value-3 or BLOCKS,value-4 (see follow
ing) is required if (1) a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

BLOCKS,
value-4

vol-id

retention-days
1

TRANSFER Examples

Specifies that the disk file being created be large enough to contain
the number of blocks specified by value-4.·

Note: Either BLOCKS,value-4 or RECORDS,value-3 (see preced
ing) is required if (1)a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

Volume identification for the created basic data exchange diskette
file. One to six alphameric characters.

Number of days (0 to 999) the created basic data exchange diskette
file is to be retained. Default is 1.

Note: A retention value of 999 makes a diskette file a permanent
file.

In order to add a diskette basic data exchange file named JOE to an existing disk file
named JOE, you could enter:

TRANSFER JOE",ADD

In order to create a disk sequential file named JIM from diskette basic data exchange
file named JIM, you could enter:

TRANSFER JIM

In order to create a diskette basic data exchange file named JON on a diskette with
vol-id of 888777 from a disk file named JON, you could enter:

TRANSFER JON,F1 ,,888777,30

IBM SCP Procedure Descriptions-TRANSFER 109

110

Part 3

Using OCL Statements and Procedures

Using OeL Statements and Procedures 111

DISK FILE

Creating a disk file requires that:

• Disk space be available to hold the file

• The file be described to the SCP

Obtaining Space for a File

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Creating Disk and Diskette Files

The CATALOG procedure (see index entry: CATALOG procedure) can be used
to determine how much space is available on the disk and where available space is.
Space to be allocated to a file must be contained in a single continuous area on the
disk. If enough space is available for a file but is not contained in a single; contin~ous
area (for example, part of the available spaCe is at one location on the disk and the
rest ot'the space is at another location), you can use the COMPRESS procedure
(see index entry: COMPRESS procedure) to collect all available space into one area
at the high end of the disk. The $FREE (disk reorganization utility) program can also be
used to move all data files to the high end of the disk, thus, collecting aU available space
into one area at the low end of the disk (between the library and the data files).

If the space required by a file is not available on the disk, you can do one of the
following:

• Use the CATALOG procedure to see which files are currently on the disk and
use the DE~ETE prqcedure (~~e in<:te,!JUl~ry.; DELEIEprocedllre) to delete any
unneeded files, thereby making disk space available for new files.

• Use the SAvE procedure (see index entry: SAVE procedure) to copy from the
disk to diskette(s) one or more files that are not needed for the next job. Then,
to make space available for new files, use the DELETE procedure to delete the
original files. When they are needed, you can return the copied files from disk
ette(s) to the disk by using the RESTORE procedure (see index entry: RESTORE
procedure) .

Note: After you delete the original files from the disk, the diskette(s) contain the
master copies. You can use the COPYI1 procedure (see index entry: COPYI1 pro
cedure) to create a backup copy of the files you moved to diskette(s).

Describing a File

Use a FILE statement to describe a file to the SCP (see index entry: II FILE state
ment). The NAME parameter of the FILE statement must identify the file to the
program creating the file. The LABEL parameter assigns a name for user identifica
tion of the file on the disk, regardless of the name a pro.gram uses to refer to the
file. If the LABEL parameter is omitted from a FILE statement, the name specified
by the NAM E parameter identifies the file on the disk. Assign names that are re
lated to file contents or to application programs using the files, to make the files
easy to identify by programmers and operators.

Creating Disk and Diskette Files 111

112

Either the RECORDS or BLOCKS parameter must be used 'to define the size of a
file, put both parameters cannot be specified for one file. If R ECOR DS is specif.ied
the system calculates the number of blocks required to contain the file (see Appendix
A). !f BLOCKS is used, the system reserves the number of blocks SPecified. FOi ~n
indexed file the number of blocks specified is apportioned between index areas and
data areas.

Note: If RECORDS is specified, the number of records actually allocated may be
larger than the number requested. The system allocates disk space in blocks and
always rounds up to the next whole block if part of a block is required.

The LOCATION parameter specifies the block location where the file will begin. If
LOCATION is not used, the system places the file as close to the library as possible.

The R ETAI N parameter classifies a file according to its retention status. Permanent
files (RETAIN-P) remain on the disk until you delete them by using the DELETE
procedure (or $DELET utility pr~g~am-see index entry: $DELET utility program).
A classification of RETAIN-P protects a file from being deleted accidentally.
Temporary files (RETAIN~T) are usually used more than once. You can free the
space used by a temporary file at any time by changing its classification to
RETAIN-S, which identifies the file as a scratch file. Scratch files do not exist after
the job in which they are created ends.

Three disk work files called $WORK, $WORK2, and $SOURCE are created auto
matically by the System/32 SCP for programs that require this work space. These
files ar,e scratch files (with a file size of 24 blocks each), used by source programs to
generate an object program. If you need to change the tHe size, or if you want to
create the files yourself, you can enter three FI LE statements, one for $WORK, one
for $WORK2, and one for $SOURCE, with the RECORDS or BLOCKS parameter
to define the file size. You can determine if your program needs space allocated for
the disk work files by looking at the library directory entry. A field (ATTR IBUTES)
contains two bytes of attributes; the first byte has bit 4 on (set to 1) if a program
requires that $WORK and $SOURCE be allocated; the second byte has bit 3 on (set
to 1) if a program requires that $WORK2 be allocated. (See index entry: library
directory entry for a description of the information contained in library directory
entries.)

The disk VTOC can contain up to 200 permanent or temporary files at anyone time
(199 user files plus ,the system file #LlBRARY). You can use the CATALOG procedure
to determine the number of permanent and temporary files currently on the disk. (For
more information, see index entry: CA TALOG procedure.)

DISKETTE FI LE

You must use a FI LE statement to describe each diskette file you want created. The
FILE statement for diskette files is described in detail under index entry: II FILE
statement. Diskette files are created by IBM system utility programs, described in
Part 4, or by offline multivolume file processing. Diskette files created by system
utility programs cannot be processed as offline multivolume files, and offline multi
volume files cannot be processed by the system utility programs except by $DUPRD.
The following paragraphs concern using the utility prograrns to create and_proce~s..
diskette files. For a discussion of offline multivolume file processing, see Offline
Multivolume File which follows.

112

Creating Disk and Diskette Files

DISK FilE

Creating a disk file requires that:

• Disk space be available to hold the file

• The file be described to the SCP

Obtaining Space for a File

The CATALOG procedure (see index entry: CATALOG procedure) can be used
todetermine how much space is available on the disk and where available space is.
Space to be allocated to a file must be contained in a single continuous area on the
disk. If enough space is available for a file but is not contained in a single' continuous
area (for example, part of the available space is at one location on the disk and the
rest of the space is at another location), you can use the COMPR ESS procedure
(see index entry: COMPRESS procedure) to collect all available space into one area
at the high end of the disk. The $F REE (disk reorganization utility) program can also be
used to move all data files to the high end of the disk, thus, collecting all available space
into one area at the low end of the disk (between the library and the data files).

If the space required by a file is not available On the disk, you can do one of the
following:

• Use the CATALOG procedure to see which files are currently on the disk and
use the DELETE procedure (see index entry: DELETE procedure) to delete any
unneeded files, thereby making disk space available for new files.

• Use the SAVE procedure (see index entry: SAVE procedure) to copy from the
disk to diskette(s) one or more files that are not needed for the next job. Then,
to make space available for new files, use the DE tETE procedure to delete the
original files. When they are needed, you Can return the copied files from disk
ette(s) to the disk by using the RESTORE procedure (see index entry: RESTORE
procedure) .

Note: After you delete the original files from the disk, the diskette(s) contain the
master copies. You can use the COPYI1 procedure (see index entry: COPYI1 pro
cedure) to create a backup COpy of the files you moved to diskette(s).

Describing a File

Use a FILE statement to describe a fiJetothe SCP (see index entry: II FILE state
ment). The NAME parameter of the FILE statement must identify the file to the
program creating the file. The LABEL parameter assigns a name for user identifica
tion of the file on the disk, regardless of the name a program uses to refer to the
file. If the LABEL parameter is omitted from a FILE statement, the name specified
by the NAME parameter identifies the file on the disk. Assign names that are re
lated to file contents or to application programs t,Jsingthe files, to make the files
easy to identify by programmers and operators.

Creating Disk and Diskette Files 113

114

Either the RECORDS or BLOCKS parameter must be used to define the size of a
file, but both parameters cannot be specified for one file. If RECORDS is specified
the system calculates the number of blocks required to contain the file (see Appendix
A). If BLOCKS is used, the system reserves the number of blocks specified. For an
indexed file the number of blocks specified is apportioned between index areas and
data areas.

Note: If RECORDS is specified, the number of records actually allocated may be
larger than the number requested. The system allocates disk space in blocks and
always rounds up to the next whole block if part of a block is required.

The LOCATION parameter specifies the block location where the file will begin. If
LOCATION is not used, the system places the file as close to the library as possible.

The R ETAI N parameter classifies a file according to its retention status. Permanent
files (RETAIN-P) remain on the disk until you delete them by using the DELETE
procedure (or $DELET utility program-see index entry: $DELET utility program).
A classification of RETAIN-P protects a file from being deleted accidentally.
Temporary files (RETAIN-T) are. usually used more than once. You can free the
space used by a temporary file at any time by changing its classification to
RETAIN-S, which identifies the file as a scratch file. Scratch files do not exist after
the job in which they are created ends.

Three disk work files called $WORK, $WORK2, and $SOURCE are created auto
matically by the System/32 SCP for programs that require this work space. These
files are scratch files (with a file size of 24 blocks each), used by source programs to
generate an object program. If you need to change the file size, or if you want to
create the files yourself, you can enter three FI LE statements, one for $WORK, one
for $WORK2, and one for $SOURCE, with the RECORDS or BLOCKS parameter
to define the file size. You can determine if your program needs space allocated for
the disk work files by looking at the library directory entry. A field (ATTR IBUTES)
contains two bytes of attributes; the first byte has bit 4 on (set to 1) if a program
requires that $WORK and $SOURCE be allocated; the second byte has bit 3 on (set
to 1) if a program requires that $WORK2 be allocated. (See index entry: library
directory entry for a description of the information contained in library directory
entries.)

The disk VTOC can contain up to 200 permanent or temporary files at anyone time
(199 user files plus the system file #LlB RARY). You can use the CATALOG procedure
to determine the number of permanent and temporary files currently on the disk. (For
more information, see index entry: CATALOG procedure.)

DISKETTE FILE

You must use a FI LE statement to describe each diskette file you want created. The
FILE statement for diskette files is described in detail under index entry: II FILE
statement. Diskette files are created by IBM system utiiity programs, described in
Part 4, or by offline multivolume file processing. Diskette files created by system
utility programs cannot be processed as offline multivolume files, and offline multi
volume files cannot be processed by the system utility programs except by $DUPRD.
The fo_lIo~ing paragraphs concern using the utility programs to create and process
diskette files. For a discussion of offline multivolume file processing, see Offline
Multivolume File which follows.

Before a diskette can contain any files, it must be initialized. That is, it must be
examined for bad tracks, and formatted control information required by the system
must be recorded on the diskette. You can use the I N IT procedure (see index entry:
INIT procedure) to initialize diskettes.

Note: If a job will require a number of diskettes, initialize all required diskettes that
have not been initialized before you begin the job. If all diskettes are initialized in
advance, you will not have to interrupt or cancel the job in order to initialize a disk
ette when another diskette is required.

If the file you want to create is to be placed on a diskette that already contains files
(but does not contain part of an offline multivolume file), use the CATALOG proce
dure (see index entry: CATALOG procedure) to determine how much space is avail
able on the diskette. The available space is unused space following the last active file
currently on the diskette. (Files added to a diskette always follow active files already
on the diskette.)

If a diskette lacks space for a new file, you can do either of the following:

1. Allow the file to become a multivolume file; use the diskette to start the file.
When diskette space expires, the system requests another diskette to continue
the file. A description of multivolume files follows.

2. Use the COPYI1 procedure to rearrange the active files and to delete the
expired files, leaving space for a new file at the end of the diskette. (For
more information, see index entry: COPYI1 procedure.)

If multiple files are to be created on a single diskette, each file LABEL must be
unique. Duplicate file labels on the same diskette are not permitted.

For the operator's convenience, write in the space provided on the diskette envelope
the name of each file contained on the diskette. You may also want to store with
the diskettes the listings created by the CATALOG procedure to help identify which
files are on which diskettes. The diskette VTOC can contain up to 19 active files.

OFFLINE MULTIVOLUME FI LE

Each diskette is a volume of storage. A multivolume file is a diskette file residing on
more than one diskette, or expanded from one diskette to more than one diskette.
Multivolume files can be created by the system utility programs or by the offline
multivolume function of the SCPo These two kinds of files cannot be processed
interchangeably. Files created and processed by the offline multivolume function
are called offline multivolume files.

Purpose of Offline Multivolume Files

Many jobs process files that exist entirely on the disk. However, you may have a
job requiring more file space than the disk currently has available. The last file to
be allocated, for example, may need 200 blocks of disk space when only 95 are
available. If you reduced the B LOCKS parameter specification on the FILE state
ment to 95, problems would occur in the job after the 95 blocks were filled. A
solution would be to use the DELETE and COMPRESS procedures to free up disk
space. (See index entries: COMPRESS procedure and DELETE procedure.)

Creating Disk and Diskette Files 115

116

Using an offline multivolume file would be another solution. It allows you to
allocate the last file, even though the disk.does not have enough space for the
entire file.

Offline multivolume file processing uses all available disk space (up to the max
imum allowed-see Offline Multivolume Restrictions and Considerations) as an
intermediate work area for processing a file a portion at a time. Offline multi
volume processing moves a file, a portion at a time, from the allocated disk extent
to an output diskette, or from diskettes to the allocated disk extent, for processing.

The portion of an offline multivolume file, moving in this manner from and to the
disk, is called a file segment. File segments are stored on diskettes, one segment
per diskette.

Creating an Offline Multivolume File

You can evoke offline multivolume file processing by entering a FI LE statement
specifying the same NAME given in a FILE statement for a disk file, and 11 for
UNIT. Suppose, for example, you want to allocate the file described by the fol
lowing FI LE statement, but 200 blocks of available space do not exist on the disk:

1/ FILE NAME-PAYMSTR,UNIT-Fl,BLOCKS-200,RETAIN-T

If 95 blocks of disk space are available, enter the following two FILE statements
to allocate and process PAYMSTR as an offline multivolume file:

II FILE NAME-PAYMSTR,UNIT-Fl,BLOCKS-95,RETAIN-S
II FILE NAME-PAYMSTR,UNIT-11,RETAIN-20,PACK·666666

As PAYMSTR is processed, records are placed in the 95-block extent on the disk.
When all 95 blocks are full, the system issues a message requesting the operator to
insert a diskette for output. After the diskette is inserted, the system copies the
records from the disk extent to the diskette. The disk extent is then reused, with
the next record being written at the beginning of the extent. When the extent is
again full, the system requests another diskette. This process, writing PA YMSTR
in file segments of 95 blocks, continues until the job ends. The system writes the
remaining records (whether or not it fills the 95-block extent) on a diskette at the
end of the job.

Note: The offline multivolume function saves the file during job processing. This
is different from the SAVE procedure which, being issued after job processing,
copies the file from the disk onto a diskette, thus creating a backup file.

After the job ends, PAYMSTR resides only on diskettes. The 95-block disk extent
contains a copy only of those records in the last file segment. If you want a backup
copy of an offline multivolume file, you can use the COPYI1 procedure (see index
entry: COPYI1 procedure) to copy, one at a time, each of the diskettes composing
the file.

Reading an Offline Multivolume File

In the example below, the offline multivolume file PAYMSTR will be read, a segment
at a time, from diskettes into a disk extent named PAYMSTR:

II FILE NAME-PAYMSTR,UNIT-F1,BLOCKS-95,RETAIN-S
II FILE NAME-PAYMSTR,UNIT-11,PACK-666666

PAYMSTR file segments were defined previously as being 95 blocks long because
PAYMSTR was created with 95-block segments (see the FILE statement example
under Creating an Offline Multivolume File).

Offline Multivolume File Restrictions and Considerations

Restrictions

• Use the same NAME on both the disk and the diskette FILE statement when
you are creating an offline multivolume file. The LAB EL parameters can be
different. For example:

/I FILE NAME-PAYMSTR,UNIT-F1,LABEL-TEMP,BLOCKS-95
II FILE NAME-PAYMSTR,UNIT-11 ,LABEL-PAY01 ,PACK-666666

The resulting offline multivolume file will be named PAY01.

• Use BLOCKS, not RECORDS, to specify segment size on the disk FILE state
ment for an offline multivolume file. Any block size, from one block to the
maximum 95 blocks or 118 blocks allowed, can be used if space is available.

• BLOCKS - 95 blocks (basic data exchange format diskette) or ·118 blocks (extend
ed format diskette) are the maximum allocations for offline multivolume disk file
segments. For offline processing, the block value for a given format equals the
data area of one diskette. To use diskettes efficiently, the number of blocks allo
cated should be as close to 95 or 118 as possible, but can never exceed the format
maximum.

Note: Though diskettes can be initialized in either of the basic data exchange for
mat or the extended formats, you cannot create an offline multivolume file using
these formats interchangeably. Either format can be used to create an offline
multivolume file, but all diskettes for a file must have the same format.

• To process an offline multivolume file after it is created, you must allocate a disk
extent at least equal in size to the extent defined when the file was created. The
disk extent size however, must not exceed the size of the maximum allocations
for offline multivolume disk file segments (95 or 118 blocks). If you do not
remember or do not have a record of the number of blocks allocated originally,
you can run the CATALOG ALL, 11 procedure (see index entry: CATALOG
procedure) using the offline multivolume diskette. The disk extent is indicated
in the column titled NUMBER OF BLOCKS IN OFFLINE MV FILE found on
the CATALOG procedure printout.

• A multivolume file created by a system utility cannot be processed as an offline
multivolume file. Utilities that create diskette files cannot process offline multi
volume files.

Creating Disk and Diskette Files 117

118

Restrictions (conti n ued)

• To maintain offline multivolume file support, the I NQU I RY /OFFLIN E option
must be selected whenever using the RELOAD procedure (see index entry:
RELOAD procedure).

• Offline multivolume files cannot be used in the same program with the
following:

- Shared I/O data management
BSC (binary synchronous communications support)

- SDLC (synchronous data link control) support
- Data recorder attachment support
- Word processing support
- 1255 Magnetic Character Reader attachment support

• The same file cannot be processed twice during one job as an offline multivolume
file, but more than one file can be processed as an offline multivolume file during
one job.

• Offline multivolume files cannot be processed while running an inquiry program.
(For more information on inquiry programs see index entry: $LOAD utility
program).

• Offline multivolume files must be sequential files. They can be processed by con
secutive output, input, update, and add access methods. They cannot be processed
by indexed or direct access methods.

• Offline multivolume files must be written to diskettes containing no active files.
Therefore, be sure the diskettes you use (for output or add offline mutlivolume
files) have been initialized before you begin the job. You can use the IN IT pro
cedure (see index entry: INIT procedure) to initialize the diskettes.

• Active files cannot be written to a diskette containing part of an offline multi
volume file.

• When adding file records to an offline multivolume file, you must add the new file
records to the end of the file. Suppose, for example, you have an offline multivolume
file: diskettes A, B, and C. Diskette C is the end of the file.

For an add operation, the system displays the message: CONTINUE WHEN PROPER
DISKETTE INSERTED. After diskette C is inserted, the system transfers the
records to the disk extent; processes the file records, and adds new file
records to the file extent until it is full. The system displays the same message again:
CONTINUE WHEN PROPER DISKETTE INSERTED for the output operation.
After you insert the diskette, the system writes the disk file extent back onto a
diskette.

Creating and Using Messages

MESSAGES

Message text can be retrieved from a message load member in the library and dis
played on the display screen or printed. There are two levels of messages: level 1
and level 2. Level 1 messages are a maximum of 40 characters long and level 2
messages are a maximum of 200 characters long. A level 2 message is an extension
of a level 1 message that further describes the error. A level 2 message can be
displayed only after the level 1 message of the same MIC (message identification
code) is issued.

User messages are created and used by doing the following:

1. Creating a message source member.

2. Creating a message load member.

3. Specifying the messa~e load member.

4. Retrieving the messages.

Creating a Message Source Member

The first entry in the source member must be the message control statement, which
specifies the name of the message load member to be created and whether it is a first
or second level message load member. The message text statement consists of the
MIC and the text (actual message). For a detailed description ol the message control
statement and the message text statement, see index entry: message source member.
Once the message source member statements have been defined, the message source
member is put into the library by either using the $MAINT utility program or the
Source Entry Utility Program Product.

The following is an example of a message source member called USERM1:

USERMSG,1

12. 34 THIS PROCED. URE RUNS THE PAYROLL PROGRAM.}
1235 THE INPUT IS IN A DISKETTE FILE. .

- - -

1236 INSERT DISKETTE NUMBER 123456.

Message Control Statement

MIC and Message
Text Statements

Creating and Using Messages 119

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

UsingSEU

120

To put a message source member called USERM1 into the library using SEU, key
SEU USERM1,S and the message source member statements you have defined. The
entries for the message source member USERM1 would be:

SEU USER.M 1,S Source Member Name

USERMSG,l I
1234 THIS PROt.EDURE RUNS THE PAYROll PROGRAM.
1235 THE INPUT IS IN A DISKETTE FI LEo Message Source Member

1236 INSERT DISKETTE NUMBER 123456.

For further information on using SEU, see IBM System/32 Utilities Program Product
Reference Manual Source Entry Utility, SC21-7605.

Using the $MAINT Utility

The following OCl is needed to put the message source member, USERM1, into
the library using $MAI NT:

II lOAD$MAINT Source Member Name
II RUN J
II COpy FROM-READER,LlBRARY-S,NAME-USERM1 ,TO-F1,RETAIN-P,RECl-45

USERMSG,l I
1234 THIS PROCEDURE RU. NS THE PAYROll PROGRAM. . Message Source Member
1235 THE INPUT IS IN A DISKETTE FilE.
1236 INSERT DISKETTE NUMBER 123456.
II CEND
II END

CREATING A MESSAGE LOAD MEMBER

To create a message load member named USERMSG from the above source
member (USERM1), use the CREATE procedure by entering:

CREATE USERM1

Once this is done, your messages 1234, 1235, and 1236 are ready to be used by the
message OCl statement or your program. For more information on the CREATE
procedure, see index entry: CREA TE procedure.

Creating and Using Messages

MESSAGES

Message text can be retrieved from a message load member in the library and dis
played on the display screen or printed. There are two levels of messages: level 1
and level 2. Levell messages are a maximum of 40 characters long and level 2
messages are a maximum of 200 characters long. A level 2 message is an extension
of a level 1 message that further describes the error. A level 2 message can be
displayed only after the level 1 message of the same MIC (message identification
code) is issued.

User messages are created and used by doing the following:

1. Creating a message source member.

2. Creating a message load member.

3. Specifying the message load member.

4. Retrieving the messages.

Creating a Message Source Member

The first entry in the source member must be the message control statement, which
specifies the name of the message load member to be created and whether it is a first
or second level message load member. The message text statement consists of the

MIC and the text (actual message). For a detailed description of the message control
statement and the message text statement, see index entry: message source member.
Once the message source member statements have been defined, the message source
member is put into the library by either using the $MAINT utility program or the
Source Entry Utility Program Product.

The following is an example of a message source member called USERM1:

USERMSG,l

1234 THIS p. ROCEDURE RUNS THE PAYROLL PROGRAM.}
1235 THE INPUT IS IN A DISKETTE FILE.
1236 INSERT DISKETTE NUMBER 123456.

Message Control Statement

MIC and Message
Text Statements

Creating and Using Messages 121

122

UsingSEU

To put a message source member called USERM1 into the library using SEU, key
SEU USERM1,S and the message source member statements you have defined. The
entries for the message source member USERM1 would be:

SEU USER.M1,S Source Member Name

1234 THIS'PROCEDURE RUNS THE PA. YROLL PROGRAM.
USERMSG 1 I r,"

1235 THE INPUT IS IN A DISKETTE FILE. Message Source Member

1236 INSERT DISKETTE NUMBER 123456.

For further information on using SEU, see IBM System/32 Utilities Program Product
Reference Manual Source Entry Utility, SC21-7605.

Using the $MAINT Utility

The following DCL is needed to put the message source member, USERM1, into
the library using $MAI NT:

II LOAD $MAI NT Source Member Name
II RUN l
II COpy FROM-READER,LlBRARY-S,NAME-USERM1 ,TO-F1 ,RETAIN-P,RECL-45

USERMSG,1 I
1234 THIS PROCEDURE RUNS THE PAYROLL PROGRAM.
1235 THE INPUT IS IN A DISKETTE FILE. Message Source Member

1236 INSERT DISKETTE NUMBER 123456.
II CEND
II END

CREATING A MESSAGE LOAD MEMBER

To create a message load member named USERMSG from the above source
member (USERM1), use the CREATE procedure by entering:

CREATE USERM1

Once this is done, your messages 1234, 1235, and 1236 are ready to be used by the
message OCl statement or your program. For more information on the CREATE
procedure, see index entry: CREATE procedure.

SPECIFYING THE MESSAGE LOAD MEMBER

Message load members PROGRAM1 and PROGRAM2 are used by IBM program
products to assign names to associated message load members. In order to retrieve
the messages you have created, you must specify which message load member they
are in with the MEMBER OCL statement. In our example, the message load
member was a first level message load member named USERMSG. To specify this
message load member, the MEMBER statement would be:

II MEMBER USER1-USERMSG

For more information on the MEMBER statement, see index entry: II MEMBER
statement.

RETRIEVING THE MESSAGES

After the messages are placed in a message load member and the load member is
specified by the MEMBER OCl statement, messages can be retrieved by using
either the message OCl statement (f /*) or your program.

Retrieving Messages by Using the Message OCL Statement

To retrieve the first message from the message load member USERMSG as shown
in the previous example, the following message OCl statement would be used:

II * 1234

This would cause the first message (THIS PROCEDURE RUNS THE PAYROll
PROGRAM.) to appear on the display screen.

The following is an example of a procedure (named PAYROll) that would use the
messages in the previous message source member example (USERMSG):

II MEMBER USER1-USERMSG
II * 1234
II * 1235
II * 1236
II PAUSE
II lOAD PAYROll1
II RUN

When this procedure is run, the following messages would appear on the display
screen:

THIS PROCEDURE RUNS THE PAYROll PROGRAM.
THE INPUT IS IN A DISKETTE FI LEo
INSERT DISKETTE NUMBER 123456.
ACTION SCP 1162 CRPS OPTIONS (0)?

PAUSE-WHEN READY, ENTER 0 TO CONTINUE

Creating and Using Messages 123

124

A PAUSE statement normally follows the message statement if an operator
response is required. The PAUSE statement causes the SCP to suspend processing,
allowing the operator time to perform the action required in the message. For more
information on the PAUSE statement, see the index entry: II PAUSE statement.

Retrieving Messages by Using VourProgram

You can retrieve some messages through your program. For information on how to
do this and what messages cannot be retri.eved, see the IBM Systeml32 RPG /I
Reference Manual, SC21· 7595.

RESTRICTIONS ON RETRIEVIN·GMESSACU:S

A level 2 message can only be displayed immediately after the level 1 message if
the same MIC has been issued. Since processing is not stopped when you retrieve
a message using OCL,level 2 messages cannot be used. This is true even when a
PAUSI: statement is used. This restriction is not always true when messages are
retrieved by your program. For more information, see the IBM Systeml32 RPG /I

Reference Manual; SC21-7695.

Loading and Running Programs

IBM PROGRAMS

Many IBM programs require only one command statement or two OCl statements
(lOAD and RUN OCl statements).

The following two examples show the statements needed to load and run two IBM
programs, one requiring a command statement and the other requiring two OCl

statements .

• The CREATE command statement (see index entry: CREA TE procedure) evokes
the $MGBlD utility program:

CREATE MSG1234

• The following two DCl statements load and run the $STATS utility program
(see index entry: $STA TS utility program):

II lOAD $STATS
II RUN

OBJECT PROGRAMS USING ONE DISK FilE

To load and run an object program that uses one disk file, a FilE OCl statement is
required in addition to the lOAD and RUN statements. The NAME parameter is
always required in the FilE statement, and the RECORDS or BLOCKS parameter
is required for a disk output file. (See index entry: II FILE statement for a com
plete description of FilE statements.)

For example, to load and run the object program PROG1, which uses the disk file
NAMEADD, the following OCl statements are required:

I I lOAD PROG 1
II FilE NAME-NAMEADD
II RUN

OBJECT PROGRAMS USING MORE THAN ONE DISK FILE

One FilE statement is required for each file used by a program (see index entry:
II FILE statement for a complete description of FilE statements).

Two disk files are named in the following sequence of OCl statements, an input file
(lNPUTF) and an output file (OUTPUTF):

II lOAD PROG1
II Fi lE NAME-INPUTF
II FilE NAME-OUTPUTF,BlOCKS-10,RETAIN-P

II RUN

Loading and Running Programs 125

126

The first FilE statement contains information needed to refer to the data in the disk
file INPUTF. The second FilE statement contains information needed to create the
disk output file OUTPUTF.

OBJECT PROGRAMS USING ONE DISK FILE AND EXTERNAL INDICATORS

The SWITCH OCl statement (see index entry: II SWITCH statement) is used to set
external indicators (Ul-U8 on RPG 1\ specification sheets) on or off. External indi
cators are used to regulate processing.

In the following example, a program (PROG2) is being run using one existing disk
file (lNVMSTR), an inventory master file.

I I lOAD PROG2
II FilE NAME-INVMSTR
II FilE NAME-NEWMSTR,BlOCKS-50
II SWITCH 1XXXXXXX
II RUN

In the example, the SWITCH statement specifies that the first external indicator (U 1)
must be turned on before the program (PROG2) creates the file (NEWMSTR). Only
one external indicator is used: U 1.

oel and Procedure Example

This section illustrates some of the uses of OCl and command statements through
an example of a series of jobs.

The main program is INVUPD (inventory update). INVUPD reads the file named
INVTRANS (inventory transactions), updates the file named INVMSTR (inventory
master), and prints a report. If INVTRANS is not on the disk, the COPYTRAN
procedure is evoked to copy the transactions from a diskette to the disk. After the
I NVUPD program is run, SWITCH 1 is checked by an I F expression to determine
whether or not the user wants the COPYINV procedure run. The COPYINV
procedure copies the updated I NVMSTR to diskette.

The OCl and commCind statements for these jobs are shown in Figure 5. The sets
of statements are numbered to correspond to the explanations fol!owing.

oeL and Procedure Example 127

128

(

I I LOAD $MAI NT
II RUN

r ~~ ~~~~ ~ .. ~~~~~NVUPD,LlBRARY-P,FROM-READER,TO-F1

!
II LUAU II" V ut'u CD ® II FILE NAME-INVTRANS,UNIT-F1
II FILE NAME-INVMSTR,UNIT-F1
II RUN

II CEND
II END

I I LOAD $MAI NT
II RUN
II COpy NAME-COPYTRAN,LlBRARY-P,FROM-READER,TO-F1

I I LOAD $COPY
II * 'INSERT DISKETTE 888888 *INVTRANS*'
II PAUSE
II FILE NAME-COPYIN,UNIT-11,LABEL-INVTRANS,PACK-888888
II FI LE NAME-COPYO,UNIT-F1 ,LABEL-INVTRANS
II RUN
II COPYFI LE OUTPUT-DISK
II END

II CEND
II END

II LOAD $MAINT
II RUN
II COpy NAME-COPYINV,LlBRARY-P,FROM-READER,TO-F1

II LOAD $COPY
II * 'INSERT DISKETTE 666666 *INVMSTR*'
II PAUSE
II FILE NAME-COPYIN,UNIT-F1,LABEL-INVMSTR
II FILE NAME-COPYO,UNIT-11,LABEL-INVMSTR,RETAIN-45,PACK-666666
II RUN
II COPYFILE OUTPUT-DISK
II END

II CEND
II END

I I LOAD $MAI NT
II RUN

r::i'\ II COpy NAME-INVUPDAT,LlBRARY-P,FROM-READER,TO-F1

f4' 0(;;-/1 IFF DATAF1-?1? COPYTRAN
\:V ~/I INVUPD @ II IF SWITCH1-1 COPYINV

II CEND
II END o II SWITCH 1XXXXXXX

(!)INVUPDATINVTRANS

Figure 5. Oel and Command Statement Example

1. The procedure INVUPD (10) is cataloged in the library as a procedure member.

Note: The sets of statements, 1-4, show II CEND and II END utility control
statements. The II CEND utility control statement identifies the end of a
source or a procedure member being put into the library. A source or a
procedure member statement is preceded by a II COPY utility control state
ment and followed by a II CEND utility control statement. The II END
utility control statement indicates the end of utility control statements for a
utility program. The II END statement must be the last utility control state
ment entered for that utility program.

2. The procedure COPYTRAN (8) is cataloged in the library as a procedure
member.

3. The procedure COPYINV (12) is cataloged in the library as a procedure
member.

4. The procedure INVUPDAT (7, 9, 11) is cataloged in the library as a procedure
member.

5. II SWITCH 1XXXXXXX is entered on the keyboard. This sets U1 of SWITCH
to a 1 (refer to explanation 11 following) without changing any of the other 7
switches.

6. INVUPDAT INVT~ANS is entered on the keyboard. The procedure INVUPDAT
is evoked.

7. The first statement of the INVUPDAT procedure is the IFF (if false) statement.
This statement checks to see if the file identified by the first parameter
(I NVTRAN§) in the cOl11mand statement entered on the keyboard exists on
the disk. In this example, assume that there is no existing INVTRANS disk file.
Therefore, the' COPYTRAN procedure is evoked in order to copy the INVTRANS
diskette file to disk. (If INVTRANS was already on the disk, the statement
would not have been false and COPYTRAN would not have been evoked.)

8. The COPYTRAN procedure evokes the $COPY utility program. It also tells the
operator to insert the diskette: 'INSERT DISKETTE 888888 *INVTRANS*'.
After the operator has inserted diskette 888888 and replied to the PAUSE, the
$COPY utility copies the INVTRANS file to the disk.

9. The I NVUPD procedure is evoked.

10. The I NVUPD procedure loads and runs the inventory update program (I NVUPD).

11. After the I NVUPD program has been run, SWITCH1 is checked by an I F state
ment in order to determine if the procedure COPYINV should be evoked. In
this example, SWITCH 1 was set to 1. Therefore, the I F statement is satisfied
and the COPYINV procedure is evoked. (If SWITCH1 had not been 1,
COPYI NV would not have been evoked.)

12. The COPYINV procedure evokes the $COPY utility program. It also tells the
operator to insert the diskette: 'INSERT DISKETTE 666666 *INVMSTR*'.
After the operator has inserted diskette 666666 and replied to the PAUSE, the
$COPY utility copies the INVMSTR to diskette.

oel and Procedure Example 129

130

After the last procedure (COPYINV) is run, the system returns to a ready status
(awaits keyboard entry).

Once the procedures are cataloged (steps 1 through 4 in the example), the entire job
can be evoked anytime by two statements (steps 5 and 6).

Part 4

System Utility Programs

System Util ity Programs 131

132

Introduction to the System Utility Programs

IBM System/32 system control programming includes a group of utility programs
that reside on the disk. These programs do a variety of jobs, from preparing the
disk and diskettes for use to maintaining the system library.

WRITING UTILITY CONTROL STATEMENTS

Most of the utility programs require utility control statements. You must provide
them. Utility control statements give the utilities information about the output you
want and the way in which you want a utility to perform its function. The utilities
read these statements from procedures and from the keyboard. Utility control
statements must be the first input read by a utility if the utility requires control

statements. A II END utility control statement must be the last control statement
entered for a utility if control statements are used.

Every control statement is made up of an identifier and parameters. The identifier
is a word that identifies the control statement. It is always the first word of the state
ment. Parameters are information you are supplying to the utility. Parameters are
either positional or keyword.

A positional parameter, whenever it appears in a statement, must appear in the same
position in relation to other parameters. For example:

II INCLUDE PROCEDUR FILEA,YES,NO

FILEA is the first parameter, YES is the second parameter, and NO is the third para
meter. If you omit the second parameter (a valid positional parameter), a comma
must indicate the position reserved for the omitted parameter. For example:

II INCLUDE PROCEDUR FILEA"NO

A keyword parameter contains a keyword that distinguishes the parameter from
other parameters. For example:

II FILE NAME-COPYIN,UNIT-F1,LABEL-PAYROLL

NAM E-COPYIN, UNIT-F1, and LABEL-PAYROLL are keyword parameters in the
preceding statement. COPYIN, F1, and PAYROLL are the values supplied by the
parameters to the uti lity.

RULES FOR CODING UTILITY CONTROL STATEMENTS

The rules for coding utility control statements are:

1. Statement identifier. II in positions 1 and 2, followed by a blank, must precede
the statement identifier. Do not use blanks within the identifier.

2. Blanks. Use one or more blanks between the identifier and the first parameter.

I ntroduction to the System Util ity Programs 133

134

3. Statement parameters. Keyword parameters can be in any order; but positional
parameters muSt be in the same order. Use a comma to separate one parameter
from another. Use a hyphen (-) within each keyword parameter to separate the
keyword from the inforrnation you supply. Do not use blanks betvveen paiam
eters; do not use blanks within a parameter unless the parameter contains a
value enclosed by single quotation marks (for example, 'CONSTANT VALUE').

The following is an example of a utility control statement:

II COPYI1 NAME-JOE,PACK-123456

The statement identifier is COPYI1. The parameter keywords are NAME and PACK.
The information supplied by the parameters is JOE and 123456.

4. II END control statement. This utility control statement indicates the end
of utility control statements for a utility. An end control statement must be
the last control statement entered for a utility if utility control statements

are used. A II END control statement cannot contain other statement in
formation such as a comment or a sequence number. Only II END is valid.

5. Continuation. Some utility control statements can be expressed in two or
more records. A record can consist of a maximum of 120 characters, includ
ing blanks and commas, when expressing a utility control statement. A
utility control statement can be continued if statement parameters are
entered.

Rules for using continuation are:

• Place a comma after the last parameter in every record except the last. The
comma, followed by a blank, tells the system that the statement is contin
ued in the next record.

• Begin each new record with I I in positions 1 and 2.

• Leave one or more blanks between the II and the first parameter in the
record.

The following is an example of a continued utility control statement:

II TRANSFER ADD-NO,
I I KEYLEN-5,
II KEYLOC-3

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Utility Program Descriptions

This section describes each utility program provided with IBM System/32. The
following information is given for each utility:

• The function of the utility

• The format of the related utility control statement(s)

• A description of the parameters in the related utility control statement(s)

• The sequence of the OCL and utility control statements required to evoke the
utility

Examples are given for many of the utilities.

CAUTION
When a program that allows an inquiry request is interrupted, the execution of that
program is suspended, permitting the execution of other programs. However, if
these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the interrupted program or erroneous results when
the interrupted program regains control. If you are using inquiry, do not change
any files that were being used by t,he interrupted (rol,led-out) program. System/32
system control programming does not always check for duplicate file labels in the
inquiry and interrupted programs. For example, program X is interrupted while it
is processing file A. Records in file A are then deleted using inquiry. A return to
program X will cause unpredictable results.

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

• An inquiry request cannot be used to execute the following utilities:

Utility

$BACK
$LOAD
SPACK
$REBLD
$SETCF
$BUILD
$FREE

Function(s)

Back up library
Reload library
Compress file space
Rebuild VTOC
Reconfigure system
~Rebuild alternate se_c!or
Compress file space

• An inquiry request cannot be used to run the following utilities to perform the
listed functions:

Utility

$COPY
$DELET

Function(s)

Restore all/save all files
Delete all files

Utility Program Descriptions 135

,Page of GC21-7693-3
Issued 22 Nowmber 1978
By TNL: GN21-7993

• An inquiry request cannot be used to run the following utilities to process active
files:

Utliity

$BICR
$COPY
$DELET
$RENAM

f unction (s)

Transfer active file
Save/organize active file
Delete active file
Rename data files

• An inquiry request can be used to run the following utilities to perform the
following functions, but a warning message will be issued when the function is
requested:

Utility

$COPY
$LABEL

Function(s)

Display active file
Catalog all/active file

'BACK-BACKUP LIBRARY UTILITY PROGRAM

136

The $BACK utility allows the user to copy and reorganize the entire system library
to a diskette file.

When the library is copied to the diskette(s), library members are shifted to remove
gaps between them-unused space between members is collected at the end of the
library. The output diskette(s) must not contain active files.

More than one diskette may be required to_contain the system library. When this
situation arises, the operator is automatically instructed to Jnsert another diskette
if it is required, after which proceSSing resumes.

To determine the number of backup diskettes required to contain the library, see
index entry: calculating the number of backup diskettes required for the system.
To reconstruct a library on the disk that was backed up on (copied to) diskettes,
you can use the RELOAD procedure (see index entry: RELOAD procedure) or
perform an IPL from the diskette(s) containing the copy of the library. (See IBM
System/32 Operator's Guide, GC21-7591, for a step-by-step description of how to
reload the library.) The vol-id of the first (or only) diskette containing the library
becomes the vol-id of the disk file during the reload operation.

$BACK is evoked by the BACKUP procedure (see index entry: BACKUP procedure).

'BACK Utility.Controi Statement Format

Utility control statements are not used.

'BACK OCL Sequence

/I LOAD $BACK
1/ FILE NAME-#LIBRARY,UNIT-11, ...
/I RUN

$BleR-BASIC DATA EXCHANGE UTILITY PROGRAM

This utility provides a means of converting a disk file to a basic data exchange file
on a diskette, of converting a diskette basic data exchange file to a sequential or
indexed disk file, and of adding a basic data exchange file to a sequential disk file.
Ali diskette files that are input for SBleR must be in the 128-bytes-per-sector basic
data exchange format (see Appendix e); all diskette files created by SBleR are in
the basic data exchange format.

In adding a basic data exchange diskette file to an existing disk file, the records in
the diskette file are truncated or padded with hex zeros (hex 00) to conform to
the record length of the disk file.· In creating a new disk file from a basic data
exchange diskette file, the record length of the disk file is set to that of the diskette
file. In creating a new basic data exchange diskette file from a disk file, the record
length of the diskette file is set to that of the disk file or to 128, whichever is
smaller.

SBleR processes records sequentially during file conversion. If input for SBICR is
an indexed disk file, records are read sequentially by key.SBleR is evoked by the
TRANSFER procedure and JOBSTR procedure (see index entries: TRANSFER
procedure and JOBSTR procedure).

$BICR Utility Control Statement Formats

Use

To create a diskette
basic data exchange
file from a disk file or
convert a diskette
basic data exchange
file to a disk sequen
tial file

To add the data in a
basic data exchange
diskette file to a disk
sequential file

To create an indexed
file on the disk from
a diskette basic data
exchange file

Control Statements

[II TRANSFER]
1/ END

1/ TRANSFER ADD-YES
1/ END

1/ TRANSFER ADD-NO,KEYLEN-value,KEYLOC-value
1/ END

Utility Program Descriptlons-$BICR 137

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

138

$BICR Parameters

ADD-YES

ADD-NO

KEYLEN-value

KEYLOC-value

Specifies that when converting a basic data exchange diskette
file to a disk file, the records in the diskette file are to be added
to an existing sequential disk file.

The first record in the diskette file will be placed after the last
record in the disk file. If a multivolume file is being converted,
records will be added to the disk file until the end of either the
diskette file or the disk file is reached. However, for both multi
volume diskette files and single volume diskette files, th~ add
operation is not started unless the diskette file or file segment
on the diskette currently in the diskette drive will fit into the
space is available in the disk file.

If ADD-YES is not specified, ADD-NO is assumed.

Indicates that when copying a diskette basic data exchange
file to the disk, a new disk file is to be created.

Defines the length of the record keys when an indexed file is to
be created on the disk. Value can be .from 1 through 29.

Note: KEYLEN must be specified with KEYLOC, and the sum
of their values must not exceed record length plus 1.

Specifies the start position of the record key in the records.
Value can be from 1 through 128.

Note: KEYLOC must be specified with KEY LEN, and the sum
of their values must not exceed record length plus 1.

$BICR OCl and Utility Control Statement Sequence

II LOAD $BICR
/1 FILE NAME-COPYIN,UNIT-

[II FILE NAME-COPYO,UNIT

II RUN
[II TRANSFER ...]
1/ END

Notes:

{~11} ,LABEL-fram-filename, ...

{~11} ,LABEL-ta-filename, ...]

1. If a new disk file is to be created from a multivolume diskette file, then the COPYO
FILE statement must be given, and the required RECORDS or BLOCKS parameter
must be large enough to contain the entire diskette file.

2. If. a new disk file (with space. requirements of a nonmultivolume diskette file)
is to be created, do not speCify the COPYO FI LE statement.

3. If a new disk file larger than the diskette file is to be created, then the COPYO
FI LE statement must be specified with the required RECORDS or BLOCKS
parameter.

4. If a file is being created on diskett~, the COPYO FI LE statement with a PACK
parameter is required.

$BICR Example

In order to create a basic data exchange diskette file (JOEB1) from a disk file (JOE),
you could enter:

II LOAD $BICR
II FILE NAME-COPYIN,UNIT-F1,LABEL-JOE
II FILE NAME-COPYO,UNIT-11,LABEL-JOEB1,PACK-9
II RUN
II TRANSFER
II END

$BUILD-ALTERNATE SECTOR REBUILD UTILITY PROGRAM

This utility program allows you to display and correct data on the disk after a disk
error occurs.

When a disk read or write error occurs, the data is written to an alternate sector.
Disk alternate sectors are sectors reserved for use in place of defective disk sectors.
The $BU I LD utility program searches the alternate sectors of the disk for data that
was unreadable because of a readlwrite error. Each sector containing unreadable
data is printed, along with the sector logically preceding and the sector logically
following it in the file.

The data is displayed on the display screen and by the printer in both character and
hexadecimal format, as shown in Figure 6. The data is displayed in character format
on the first line. If the character cannot be displayed, it is replaced by a blank. The
data is also displayed in hexadecimal form on the second and third lines. The left
hex digit of each byte is on the second line and the right digit is below it on the
third line.

Utility Program Descriptions-$BUILD 139

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

PRINTER OUTPUT:

5S-00656 FILENAME-#LIB~ARY

~ECTuk bEFORE DAO JATA

ALTERNATE S~CTOR REBUILD UTILITY DATE xx/xx/xx

1 ••••••• 10.~ •••••• 2U •••••••• 30 •••••••• 4U •••••••• 50 •••••••• 60 •••••••• 70 •••••••• 80 •••••••• ~0 ••••••• 100 ••••••• 110 ••••••• 120 ••••• 128
• l 2 L E 2 2 2 2 2 II *2 .2 J 2

tlU3U3B7EOF000U3~3CJOjb3DC800Cb31J03b00393CJ03731F81003732F8000393DF8d003732F8B003732F8A003735F8A3034F89003d3B003ti30303320350F863

lA515UO~4216F15U3uE15~33070Uu7284b37C15935014F4E222u14F44249C1593F27DD14F4A224D14F4C213D14F4C212006B215C15155E151315251C067027A5

t31 •••••• 140 ••••••• 150 ••••••• 160 ••••••• 170 ••••••• 1dO ••••••• 190 ••••••• 200 ••••••• 210 ••••••• 220 ••••••• 230 ••••••• 230 ••••••• 250 ••• 256
2 ! P 2 Tile 0 2 > 2 V IZ E 2 + K " P "2

Q3u2u3~OF053J35FU3J0j~3E3036203503~34C034343F340034343035Fd1023436003537C03dF8000393E303d203403C35F80C~343D35Cd373035Cd37F800039

2510Jb~121AU767210C159335251C068LC06ACj696ACJb5C16465D068210b0657EF06870012C27FC159355251C76A9C567274070ED267012FD761012F276C159

5~-OJ657 FILE~AM~-~LloRAkY

)lCTJR wITrl JAG JATA
i ••••••• 10 •••••••• 2G •••••••• 3u •••••••• ~O •••••••• 50 •••••••• 60 •••••••• 70 •••••••• 80 •••••••• ~O ••••••• lOO ••••••• 110 ••••••• 1£0 ••••• 128
l. SYLC o il

F8UEtUCOU300A300il30CdCBOOOd02CdOA300130U300010b3.0FOCOFOF300dbCOF15200003FOOCOOF300030039000300B9000800BOOdOOOd8000BC800JbOUFOOB

2762d33b5412E42224d~o07040UOdOi2d5101413ut13d2dC04FC64E4F5222900205C0340e03421236134523bC0005122C123C16C05C142AC182607J44D0521DC

131 •••••• 140 ••••••• 1S0 ••••••• 1bO ••••••• 170 •• · ••••• 1dO ••••••• 190 ••••••• 200 ••••••• 210 ••••••• 220 ••••••• 230 ••••••• 230 ••••••• 250 ••• 256
It, 2S '22'2 B '2 3

JUOBd80C&OOUJ003200bOF84tU030039Q00900J80008720F90bGOF80B00700F81100UOOOODOBOOOD00700CJ03900031013001742F9174231JOFI03000C800300

12l.CC1JU7044.2JBC126J2752105230CJ52C061C142A900206A86273d86D0221CC01C2FOIC2DC11B1C514224tiC0001307510190F202AOF10363605155070C510

SS-00658 ~llENAME-~LlbRAMY

~ECTJR AFTER ~AD DATA
1 ••••••• 10 •••••••• 20 •••••••• 30 •••••••• 40 •••••••• 50 •••••••• 60 •••••••• 70 •••••••• 80 •••••••• 90 ••••••• 100 ••••••• 110 ••••••• 120 ••••• 128
122lC1J07044423aC126d275210523BC052C061C142A900206A86273886D0221CC01C2F01C20C11B1C514224BC0001307510190F202AOF10363605155070C510

FFFClFFFFFFFFFFCCFFFFFFFFFFFFFCCFFFCFFFCFFFCFFFFFFCFFFFFCFFCFFFFCCFFCFCFFCFCCFFCFCFFFFFFFCFFFFFFFFFFFFFCFFFCFCFFFFFFFFFFFFFFCFFF

6663Jb6666666663366666666666b63366636b6366b3666666366666366366663366363663633663636666666366666666666663666363666666666666663666

131 •••••• 140 ••••••• 150 ••••••• 160 ••••••• 170 ••••••• 180 ••••••• 190 ••••••• 200 ••••••• 210 ••••••• 220 ••••••• 230 ••••••• 230 ••••••• 250 ••• 256
SYM SSSSS5SSS55SS5S5SS

EED440QOOOOOOOOOEEElEEEEEEcEEE

284000000000731122

DISPLAY SCR EEN OUTPUT:

ABCDEFGHI JKLMNOPQR STUVWXY
CCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEE
123456789ABCDEF0123456789ABCDEF012345678
COL=00001 - SS-03741 FILENAME-HEXFILE

Figure 6. Example Output of a Disk Sector with Character and Hexadecimal Printout

After the unreadable data is displayed, you have two options:

• Bypass the data

• Correct the data

$BUILD is evoked by the BUILD procedure (see index entry: BUILD procedure).

140

Bypass Unreadable Data

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

If you wish to bypass the data, press the ENTER key on the keyboard. The $BUILD
utility then searches for the next alternate sector with unreadable data. The next
time $BUI LD is evoked, the bypassed sector is displayed again.

Correct Unreadable Data

In order to correct the data, use the keyboard function keys to display the portion
of the bad sector that you wish to correct. After the display is shifted to the desired
position, pJace the cur'5or on either the character data line or the hexadecimal data
line. Type the desired data over the unreadable data. The display screen provides
the following information to help you correct the data:

• The displacement into the re~ord (in decimal) of the character pointed to by the
cursor: COL=OOO01 on the display screen in Figure 6

• The sector number: SS-03741 on the display screen in Figure 6

• The filename: FILENAME-HEXFILE on the display screen in Figure 6

After you have keyed all your corrections, if any, for a bad sector, press the REC ADV
(record advance) key. The corrected sector will be rewritten to the disk, and $BUILD
will search for other bad sectors. The next time $BUILD is evoked, the corrected
sector will not be displayed.

Note: If you press the ENTER key after keying corrections, the corrected sector
is not rewritten to the disk. If you cannot correct the data and wish to copy the
data from a backup copy, advance the cursor in any position in the bad sector and
press REC ADV, which removes the indication of bad data and permits you to copy
the file from the diskette.

$BUILD Utility Control Statement Format

Utility control statements are not used.

$BUILD OCL Sequence

The following entries are needed to load and run the program:

II LOAD $BUILD
II RUN

Utility Program Descriptions-$BUILD 141

142

$CNVRT -CONVERT DISKETTE HEADER LABEL UTILITY

The $CNVRT utility program converts the diskette header labels that were created
prior to version 5 to a version 5 format.

Note: Unpredictable results may occur if diskette files with version 5 format header
labels are processed by a preversion 5 SCPo A diskette file created by the $MAINT
utility program (FROMLlBR procedure) in version 5 of the SCP, for example, can
not be used as input to the $MAINT utility program (TOLlBR procedure) in version
4 of the SCPo

$CNVRT is evoked by the CONVERT procedure (see index entry: CONVERT
procedure) .

$CNVRT Utility Control Statement Format

Utility control statements are not used.

$CNVRT OCL Sequence

II LOAD $CNVRT
II RUN

$COPY-DISK COPY/DISPLAY UTILITY PROGRAM

The disk copyldisplay utility has several uses:

• Copy an entire file from the disk to diskette(s), from diskette(s) to the disk, or
from the disk to another location on the disk to:

1. Provide a duplicate of a file

Note: If, after copying a file to a diskette you delete the original file from
the disk, the file on the diskette becomes the master copy of the file.

2. Move a file to a larger disk area

• Delete records from a file (selected records are omitted from the copy; the ori
ginal remains unchanged).

• Copy a portion of a file; you have the option of deleting selected records from
the copy.

• Copy all data files (except #LlBRARY) on the disk to diskette(s) to create a
backup copy of the files or to obtain more space on the disk; or, restore pre
viously copied files from diskette(s) to the disk.

• Copy an indexed file putting the records in key order (reorganize the file) to
improve the performance, in some cases, of programs that use the file. Selected
records can be deleted from the copy.

Bypass Unreadable Data

If you wish to bypass the data, press the ENTER key on the keyboard. The $BUILD
utility then searches for the next alternate sector with unreadable data. The next
time $BUI LD is evoked, the bypassed sector is displayed again.

Correct Unreadable Data

In order to correct the data, use the keyboard function keys to display the portion
of the bad sector that you wish to correct. After the display is shifted to the desired

position, place the cursor on either the character data line or the hexadecimal data
line. Type the desired data over the unreadable data. The display screen provides
the following information to help you correct the data:

• The displacement into the record (in decimal) of the character pointed to by the
cursor: COL=00001 on the display screen in Figure 6

• The sector number: 88-03741 on the display screen in Figure 6

• The filename: FILENAME-HEXFI LE on the display screen in Figure 6

After you have keyed all your corrections, if any, for a bad sector, press the REC ADV
(record advance) key. The corrected sector will be rewritten to the disk, and $BUILD
will search for other bad sectors. The next time $BUI LD is evoked, the corrected
sector will not be displayed.

Note: If you press the ENTER key after keying corrections, the corrected sector

is not rewritten to the disk. If you cannot correct the data and wish to copy the

data from a backup copy, advance the cursor in any position in the bad sector and

press REC ADV, which removes the indication of bad data and permits you to copy

the file from the diskette.

$BUllD Utility Control Statement Format

Utility control statements are not used.

$BUI lD OCl Sequence

The following entries are needed to load and run the program:

II LOAD $BUILD
II RUN

Utility Program Descriptions-$BUILD 143

144

$CNVRT -CONVERT DISKETTE HEADER lABEL UTILITY

The $CNVRT utility program converts the diskette header labels that were created
prior to version 5 to a version 5 forrnat.

Note: Unpredictable results may occur if diskette files with version 5 format header
labels are processed by a pre version 5 SCPo A diskette file created by the $MAINT
utility program (FROMLlBR procedure) in version 5 of the SCP, for example, can
not be used as input to the $MAINT utility program (TOLlBR procedure) in version
4 of the SCPo

$CNVRT is evoked by the CONVERT procedure (see index entry: CONVERT
procedure).

$CNVRT Utility Control Statement Format

Utility control statements are not used.

$CNVRT OCl Sequence

II lOAD $CNVRT
II RUN

$COPY -DISK COPY IDISPlA Y UTI LlTY PROGRAM

The disk copyldisplay utility has several uses:

• Copy an entire file from the disk to diskette(s), from diskette(s) to the disk, or
from the disk to another location on the disk to:

1. Provide a duplicate of a file

Note: If, after copying a file to a diskette you delete the original file from
the disk, the file on the diskette becomes the master copy of the file.

2. Move a file to a larger disk area

• Delete records from a file (selected records are omitted from the copy; the ori
ginal remains unchanged).

• Copy a portion of a file; you have the option of deleting selected records from
the copy.

• Copy all data files (except #L1BRARY) on the disk to diskette(s) to create a
backup copy of the files or to obtain more space on the disk; or, restore pre
viously copied files from diskette(s) to the disk.

• Copy an indexed file putting the records in key order (reorganize the file) to .
improve the performance, in some cases, of programs that use the file. Selected
records can be deleted from the copy.

• Add a disk file to an existing diskette file.

• Display all or part of a file (either on the display screen or printer, depending on
the current SYSLIST assignment-see index entries: STA TUS procedure and
SYSLIST procedure) to check records for errors.

$COPY is evoked by the DISPLAY, ORGANIZE, RESTORE, and SAVE procedures
(see index entries: DISPLA Y procedure, ORGANIZE procedure, RESTORE proce
dure, and SA VE procedure).

Notes:
1. If you use $COPY to list a disk segment of an offline multivolume file (see index

entry: offline multivolume file), the listing will include variable system data.
2. $COPY can copy a diskette file only if the file was copied to the diskette(s) by

$CQPY.

$COPY Utility Control Statemfimt Formats

The different uses of $CQPY require different utility control statements.

Utility Program Descriptions-$COPY 145

146

Use Control Statements

Copy an
entire
file

Copy a
portion
of a file

Copy all
data files on
the disk to
diskette, or
restore pre
viously copied
files from
diskette to
the disk

Copy a
sequential
or direct
file to an
indexed file

Add a
disk file to
an existing
diskette file

Display an
entire file

Display
part of
a file

.. --------------.. __ ._.Ir __ . ____ ... I .. ,l
/I COPYt-1 LI:: UU I ~U I-UI~I\. L,Ut:Lt: I t:-posltlon,cnaracter J

II END

r nr-nnr' J1ill.ll
ln~vnu-l YESJ J

1/ COPYF I LE OUTPUT -DISK [,DE LETE-'position,character'] [R EO RG- {~~S}]
// SELECT KEY,FROM-'key'
// SELECT KEY,FROM-'key',TO-'key'
// SELECT RECORD,FROM-number
// SELECT RECORD,FROM-number,TO-number
// SELECT PKY,FROM-'key'
// SELECT PKY,FROM-'key'
// SELECT PKY,FROM-'key',TO-'key'
// END

1/ COPYALL TO- {~n
// END

// COPYFILE OUTPUT-DISK [,DELETE-'position,character~
// KEY LENGTH-value-1,POSITION-value-2
II END

// COPYADD
// END

/1 COPYFILE [OUTPUT-PRINT]
OUTPTX-PRINT

1/ END

// COPYFILE [
OUTPUT-PRINT] [E E ' " ,1
OUTPTX-PRINT ,0 L TE- posltlon,character J

// SELECT KEY,FROM-'key'
/1 SELECT KEY,FROM-'key',TO-'key'
// SELECT RECORD,FROM-number
II SELECT RECORD,FROM-number,TO-number
1/ SELECT PKY,FROM-'key'
1/ SELECT PKY,FROM-'key',TO-'key'
// END

$COPY Parameters

COPYFILE Statement

The COPYFILE statement specifies copy, display, and reorganize.

OUTPUT-DISK

OUTPUT-PR INT

OUTPTX-PRINT

The file or a portion of the file is copied from disk
to diskette, from diskette to disk, or from one area
to another on the disk.

The entire file or only part of the file is displayed
in EBCDIC character format.

Note: If the display is on the display screen, all
lines are truncated to forty (40) characters.

The entire file or only part of the file is displayed
in EBCDIC character format and in hexadecimal
format.

Note: If the display is on the display screen, all
lines are truncated to forty (40) characters.

DELETE-'position, character' This parameter is optional except when REORG
YES is specified for a sequential file. It means
delete all records with the specified character in
the specified record position. Character can either
be one of the standard characters (see Appendix F.
IBM Systeml32 Characters for the standard charac
ter and its hexadecimal equivalent) or the three
characters Xdd, where X is constant and dd is the
hexadecimal equivalent of any character. Position
can be any position in the record (the first position
is 1, second is 2, and so on) to a maximum of 999.

REORG-NO

REORG-YES

Records are copied the way they are organized in
the original file. REORG-NO is assumed if the
REORG parameter is not specified.

REORG-YES can be specified:

• When copying an indexed file from the disk, in
which case the records are to be copied in the
same order as their keys appear in the index.

• When copying a sequential file to a sequential
file. The DELETE parameter-see the descrip
tion preceding-is required when REORG-YES
is specified for a sequential file.

Utility Program Descriptions-$COPY 147

148

SELECT Statement

The SELECT statement specifies which part of a file is to be copied or displayed.
The SELECT statement is not valid for a COPYALL request.

KEY
or,FROM-'key'

PKY

KEY
or,FROM-'key',TO-'key'

PKY

For indexed files only. Copy or display
only part of a file-from the record iden
tified by the specified key to the end of
the file (including the record with the
specified key).

Note: You can specify the SELECT KEY
or SELECT PKY parameters to select
records from a diskette file only if the
records in the diskette file are in ascend
ing key order. An organized diskette file
consists of records in ascending key order
and is created in either of the following
ways:

• Specify the REORG parameter on the
COPYFILE statement as REORG-YES.
The file copied to diskette is then an
organized diskette file .

• Use the ORGANIZE procedure to
create an organized diskette file.

In addition, the organized diskette file
must not have records added to it.

If you select records from an indexed
file to copy or display, and those
records are not in ascending key order,
the results are unpredictable.

This note also applies to the following
description of the KEY or PKY (FROM
and TO keys) para meters.

For indexed files only. Copy or display
only part of a file-from the record iden
tified by the specified· F ROM key to the

. record identified by the specified TO key
(including the two records with the speci
fied keys).

Note: To copy or display only one record,
make the FROM and TO keys the same. If
the specified record key does not exist, no
records are copied or displayed.

RECORD,F ROM-number Copy or display only part of a file-from
the record identified by the specified record
number to the end of the file (including the
record identified by the specified number).

RECORD,FROM-number,TO-number Copy or display only part of a file-from
the record identified by the F ROM record
number to the record identified by the
TO record number (including the two rec
ords identified by the F ROM and TO
record numbers).

KEY Statement

Note: To copy or display only one record,
make the FROM and TO numbers the same.
If the specified record number does not
exist, no records are copied or displayed.

The KEY statement specifies the length and position of record keys for a file. The
statement is used to create an indexed file from a sequential or direct file. When the
KEY statement is used, both the LENGTH and POSITION parameter must be speci
fied and the sum of their values must not exceed record length plus 1.

LENGTH-value-1

POSITION-value-2

COPYALL Statement

The LENGTH parameter specifies the length of the key in
bytes. Value-1 can be any number from 1 through 29.

The position specifies the position of the key
in the records. This position is the leftmost byte
of the key. Value-2 can be any number from 1
through 999.

The COPYALL statement specifies that all data files on the disk (but not
#LI BRARY) be copied to diskette(s), or specifies that files previously copied
be restored from diskette{s) to the disk.

COpy ADD Statement

Specifies that the disk (F 1) or a set of diskettes (11) is to con
tain the copy.

The COPYADD statement requests addition of a disk file to an existing diskette file.
The disk file is added to the diskette file so that restoring the extended file creates a
single disk file. The user must specify on the COPYIN file statement the name of
the file to be added and on the COPYO file statement the name of the file to be
extended.

Utility Program Descriptions-$COPV 149

150

$COPY Parameter Summary

OUTPUT and OUTPTX Parameters (COPYFILE)

These parameters specify whether you want to copy or display data files.

Copying a File: The parameter OUTPUT-D IS K means the file is to be copied. $COPY
can copy a file from the disk to diskette(s), from diskette(s) to the disk, or from
one area on the disk to another area on the disk. Data files copied to and from
diskette(s) are system files (see Appendix C).

In copying a disk file to diskette(s), the disk file is, in effect, dumped onto disk
ette(s), so that when it is copied back to the disk, its original format (filename, file
size, retention) is retained, unless the original format is overridden by the appropri
ate parameter(s) (LABEL, BLOCKS or RECORDS, RETAIN) on the COPYO
file statement. For example, the RECORDS or BLOCKS parameter might have to
be specified for the disk file if records have been added to the diskette file.

The OCL load sequence for the $COPY program indicates (1) the name and unit of
the file being copied, and (2) the name and unit of the copy being created. If the
file is to be created on the disk, then the size of the file can be specified.

Displaying Files: OUTPUT-PRINT means the file is displayed in EBCDIC character
format, and OUTPTX-PRINT means the file is displayed in hexadecimal format.

The $COPY program uses as many lines as it needs to display the contents of a
record (100 characters per line are printed; if the display screen is used, only the
first 24 characters of each record are displayed). After displaying the last record,
the program prints a message stating the number of records displayed. Characters
that have no graphic display symbol (unprintable characters) are displayed as two
digit hexadecimal numbers in over-and-under format.

The following examples show the hexadecimal numbers in over-and-under format
of an unprintable character (B6) for both parameters:

ABCDEF J12345 } B OUTPUT-PR I NT
6

A B C D E F J 2 3 4 5 } C C C C C C B D F F F F F OUTPTX-PR I NT
1 2 345 6 6 1 2 3 4 5

Records from indexed files are displayed in the order of the records, unless you
specify SELECT KEY and/or SELECT PKY and/or REORG-YES. For each
record, the program displays the record key followed by the contents of the record.

Records from sequential, indexed, and direct files on diskette are displayed in the order
they appear in the file. For each record, the program displays the relative record num
ber for sequential and direct files, or the record key for indexed files followed by the
contents of the record.

DELETE Parameter (COPYFILE)

The $COPY program can omit records of one type while copying or displaying a single
file.

The form of the parameter for omitting records is DELETE-'position,character'. Char
acter is the character or hexadecimal equivalent (Xdd) that identifies the records.
Position is the position of the character in the records. For example, the parameters
DELETE-'100,XE2' and DELETE-'100,S' would yield the same results. (See
Appendix F, IBM System/32 Characters, for the character and its hexadecimal
equivalent.)

REORG Parameter (COPYFILE)

In copying or displaying an indexed file, the program can reorganize the file so that
the records in the data portion are in the same order as their keys in the file index.
The R EORG parameter tells the program whether or not to reorganize the file. The
file can be reorganized while it is being copied from F 1 to either 11 or F 1.

SELECT KEY and SELECT PKY Parameters

The SELECT KEY and SELECT PKY parameters are used to select records from
an indexed file to copy or display part of that indexed file. The SELECT PKY
parameter applies to an indexed file that contains packed keys.

When you specify either of these parameters to select records from a diskette file,
the records in the diskette file must be in ascending key order. To put the records
in ascending key order, you can either specify the REORG parameter on the
COPYFILE statement of $COPY as REORG-YES (to organize the diskette file
while it is being copied from disk), or you can create an organized diskette file using
the ORGANIZE procedure. Either way, the organized diskette file should not have
records added to it.

If you select records from an indexed file to copy or display, and those records are
not in ascending key order, the results are unpredictable.

Related parameters of SELECT KEY and SELECT PKY are the FROM and TO
param~ters. If none of the keys in the file index begin with the characters indicated
in the FROM or TO parameters, the program uses the key beginning with the next
higher characters than in the FROM parameter and the key beginning with the next
lower characters than in the TO parameter.

The TO parameter can be omitted. When this is done, the program uses the last key
in the index as the TO key.

There may be fewer characters in the F ROM or TO parameter than are contained in
the actual keys.

For example, assume that the following are consecutive record keys in an index:
A0999, A 1000, A 1010, A 1040, A 1500, A 151 0, A 1690, and A 1955. The parameters
FROM-'A10' and TO-'A15' refer to record keys A1000, A1010, A1040, A1500, and
A1510.

If you want to copy or display only one record, make the F ROM and TO keys the
same.

Utility Program Descriptions-$COPY 151

152

SELECT RECORD Parameter

This parameter is used to copy or display a portion of a file. This parameter uses rela
tive record numbers to identify the records to be copied or displayed.

Relative record numbers identify a record's location with respect to other records in
the file. The relative record number of the first record is 1, the number of the second
record is 2, and so on.

The related parameters are FROM and TO. The FROM parameter (FROM-number)
gives the relative record number of the first record to be copied or displayed. The
TO parameter (TO-number) gives the number of the last record to be copied or dis
played. Records between those two records in the file are also copied or displayed.

For example, the parameters FROM-1 and TO-30 mean that the first thirty records
(1-30) in the file will be copied or displayed.

You can omit the TO parameter. If you do, the program uses the number of the last
record in the file as the TO number. If you want to copy or display only one record,
use the same number in the F ROM and TO parameters.

TO Parameter (COPYALL)

This parameter specifies whether diskette or disk will contain the copy. 11 and
F1 are the only values allowed. When 11 is specified, all data files on the disk are
copied to the same number of files on one or more diskettes. When F1 is specified,
all files previously copied to diskette(s) are restored to the disk from the diskette(s).

Copying All Disk Files: The output of $COPY when copying all disk data files to diskette
is: Files on one or more diskettes which had no active files on them. Each diskette
file contains information about the file as it appeared on the disk. The set of files is
associated with a name of #SAVE unless a different name was specified via the
lABEL parameter in the COPYO file statement.

Restoring Disk Files: When restoring all previously saved files to the disk, you can specify
the name associated with the diskette files (if the name #SAVE was not used) via
the lABEL parameter on the COPYINfile statement.

To restore only one file from diskette(s) containing all files previously copied from
the disk, you must specify the name of the file to be restored on the COPYIN file
statement, and you can specify a name for the new disk file on the COPYO file
statement.

$COPY OCl and Utility Control Statement Sequence

When copying, reorganizing, or displaying files, the user must (1) describe the disk
files being copied or displayed and (2) describe the file being created. To do this,
the following OCl statements are needed:

II lOAD $COPY [{F1}]
II FilE NAME-COPYIN ,UNIT- 11 ,LABEL-filename

[{_
r1etention-dayS}] II FILE NAME-COPYO,UNIT-11,LABEL-filename ,RETAIN-

,PACK-vol-id

II FI~~ NAME-COPYO [UNIT-£!] .LABEL-filename [. {:~g~~~~~n~:~er}]

[.RETAIN- {!}]
II RUN
II COPYALL. ..

or
II COPYADD

or
II COPYFILE ...

[
II SELECT ...]
II KEY ...
II END

Util ity Program Descriptions-$COPY 153

154

Statement Entry

II LOAD

$COPY

II FILE

NAME-COPYIN

UNIT- {~11}

LABE L-filename

II FILE

NAME-COPYO

UNIT- {~11}

LABE L-filename

[{
RECORDs-number}]
BLOC KS-nu mber

[RETA'N-H}]

PACK-vol-id

Meaning

Name of disk copyldisplay program.

Name $COPY uses to refer to the file to be copied,
reorganized, or displayed.

Identifies either the disk (F 1) or a diskette (11) as con
taining the file to be copied.

Name by which the file to be copied is identified. This
parameter must be used to specify the name associated
with the entire set of files copied when the COPYALL
statement is used to copy from diskette.

Name $COPY uses to refer to output file being created.
(This OCL statement is not needed for displaying a file.)

Specifies location of output file: disk (F1) or diskette
(11).

Name by which output file is to be identified. This param
eter must be used to specify the name associated with the
entire set of files being copied when the COpy ALL state
ment is used to copy to diskette.

Size of output file expressed either as number of records
(RECORDS) or number of disk blocks'(BLOCKS). Used
only when copying individual files to the disk.

Retention designation of the disk output file: T is tem
porary, P is permanent, S is scratch.

Retentioh designation of diskette output file expressed in
number of days. Default is one day.

The diskette volume label. Meaningful only if the unit
designation is 11.

$COPY File Retention Summary

The effect that the RETAIN parameter retention code (P, T, or S) has on the
retention of a disk file for the $COPY program depends on whether:

• The file is an input file or an output file

• The file is on disk or diskette

Each file that exists on disk has a record in the VTOC of system information
describing the file, such as filename, file date, file organization, and retention

code. This record is called a VTOC format 1. A disk VTOC format 1 has a
retention code of either P (permanent) or T (temporary).

A file being processed by a program must also have a format 1 in the SWA
(scheduler work area). The SWA format 1 is created by the FI LE statement. A
SWA format 1 has a retention code of P, T, or S.

For a file existing on disk (input file), the SWA format 1 is the same as the existing
VTOC format 1; therefore, the retention code is the same unless it is modified by
the RETAIN parameter in the FILE statement for the input file (COPYIN). For
a file being created on disk (output file), the retention code is specified in the
RETAIN parameter (or defaults to T if that parameter is not used) for the output
file (COPYO).

The SWA format 1, with a retention code of P or T, becomes the VTOC format 1
at the end of the job. The SWA format 1, with a retention code of S, is deleted at
the end of the job. Therefore, a file with an SWA format 1, with a retention code of
S, exists only during job execution. If an SWA format 1, with a retention code of
S, identifies a file in the VTOC with a retention code of T, the VTOC format 1 is
also deleted.

Note: If both the SWA format 1 retention code for the disk input file and the SWA
format 1 retention code for the disk output file have a retention code of S, neither
file will exist at the end of the job.

In the following examples, which summarize the results of the RETAIN parameter
on the VTOC format 1 retention code, the II FI LE statement named COPYIN
identifies the input file (file being copied) and COPYO identifies the output file
(file being created).

Utility Program Descriptions-$COPY 155

156

Example 1: Existing Disk File

The RETAIN parameter is optional in the FILE statement that describes the input
fi"le, COPYIN. HOWeVei, if you aie accessing a tempoiaiY file and vvant to delete
that file at the end of the job, include the RETAIN parameter with a retention code
of S. The SWA format 1 modifies the VTOC format 1 for that file and the VTOC
format 1 is deleted at the end of the job. Otherwise, the input file retention code is

not altered in the VTOC format 1. The following summary shows the effect of the
R ETAI N parameter retention code on the SWA format 1 for a disk input file:

VTOC Format 1 RETAIN Parameter SWA Format 1
Retention Code for on COPYIN FILE Retention Code for
Disk Input File Statement Disk Input File

p p p

P T P
P S P
T P T
T r r
T S S

Example 2: Disk to Disk

If the input file, identified by the FI LE statement named COPY IN, resides on disk,
and the output file, identified by the FILE statement named COPYO, will reside on
disk, the SWA format 1 for the output file becomes whatever is specified in the
RETAIN parameter as shown in the following summary:

SWA Format 1 RETAIN Parameter SWA Format 1
Retention Code for on COPYO FILE Retention Code for
Disk Input File Statement Disk Output File

p p p

P T T
P S S
T P P
T T T
T S S
S P P
S T T
S S S

Note: The retention code of the input file does not change unless you also code
the RETAIN parameter forCOPYIN as shownin example 1.

Example 3: Diskette to Disk

If the input file, identified by the FI LE statement named COPYIN, resides on disk
ette, the SWA format 1 retention code for this file is the SWA format 1 retention
code of the disk file from which it was created. The output file, identified by the
FILE statement named COPYO, will be recreated on disk. The following summary
shows the effect of the RETAIN parameter on the SWA format 1 retention code
for the output file:

SWA Format 1 RETAIN Parameter SWA Format 1
Retention Code for on COPYO FILE Retention Code for
Diskette File Statement Disk Output File

P P P
P T P
P S P
T P P
T T T
T S T
S P P
S T T
S S T

$COPY Examples

Copy all disk files to diskette(s):

I I LOAD $COPY
II FILE NAME-COPYIN,UNIT-Fl
II FI LE NAME-COPYO,UN IT-Il ,LABEL-#SAVE,PACK-vol-id
II RUN
II COPYALL TO-11
II END

Copy a diskette file (JOE) to a disk file (JOEF):

II LOAD $COPY
II FILE NAME-COPYIN,UNIT-ll,LABEL-JOE
II FI LE NAME-COPYO,UN IT-Fl ,LABEL-JOEF ,BLOCKS-l OO,RETAIN-P
II RUN
II COPYFI LE OUTPUT-DISK
II END

Print from the diskette file JON all records with keys from ADAMS to BAKE R:

I I LOAD $COPY
II FILE NAME-COPYIN,UNIT-ll,LABEL-JON
II RUN
II COPYFILE OUTPUT-PRINT
II SELECT KEY,F ROM-'ADAMS',TO-'BAKER'
II END

Utility Program Descriptions-$COPY 157

158

Copy back to the disk the entire set of files previously copied from the disk to
diskette(s) :

II • "A r"'III. .+.""~" II LUf\U '!>l.,Ut" y

II FILE NAME-COPYIN,UNIT-11,LABEL-#SAVE
II FILE NAME-COPYO
II RUN
II COPYALL TO-F1
II END

$DELET -FILE DELETE UTILITY PROGRAM

The $DELET program frees the space occupied by existing files for use by new files.

The space is freed in the following ways:

SCRATCH Changes the diskette file(s) expiration date to the current job date.
For disk file(s), SCRATCH removes the VTOC entry.

REMOVE Removes the VTOC entry with the option of erasing the contents of
the named file(s) on the disk or diskette by overwriting with binary
zeros.

If you want to delete more than one file, additional control statements must be used.
The end statement (II END) must follow the last SCRATCH or REMOVE statement.

You can delete permanent disk data files only by using the $DELET program. The
system file #LI BRARY cannot be deleted.

$DELET is evoked by the DELETE procedure and JOBSTR procedure (see index
entries: DELETE procedure and JOBSTR procedure).

$DELET Utility Control Statement Formats

Use Control Statements

Scratch the VTOC II SCRATCH UNIT-{~11}'LABEL-filename [PACK-vol-id]
entry for the
named file

Scratch the VTOC
entry for the
named file iden
tified by the spe
cified creation
date

II END

II SCRATCH UNIT- 111 ,LABEL-filename,DATE- ddmmyy GPACK-vol-id] {
F } {mmdd

YY
}

yymmdd

II END

$DELET OCL and Utility Control Statement Sequence

To initiate the $DELET program through OCL, the following is required:

1/ LOAD $D E LET

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

II SCRATCH UNIT- { 11} ,LABEL- {~~~ame ddmmyy GPACK-vOI-id]
II RUN . F1 fI} [DATE- {mmddYY]

, yymmdd

andlor {} { . } [DATE- {mmddYY]
1/ REMOVE UNIT- ~11 ,LABEL- ~l~~ame ddmmyy

yymmdd

II END

$DELET Examples

In order to remove the VTOC entry JOE·(created October 14, 1974) on the disk, you
could enter:

II LOAD $DELET
II RUN
II SCRATCH UNIT"F1,LABEL-JOE,DATE-101474
1/ END

In order to remove and erase all files named JON on the disk, you would enter the
following:

II LOAD $OELET
II RUN
II REMOVE UNIT-F1~LABEL-JON,DATA-YES
II END

$DUPRD-DISKETTE COpy UTILITY PROGRAM

The diskette copy program copies a single file on a diskette or all files on a diskette
to one or more output diskettes to provide a duplicate of the file(s). When an entire
diskette is copied, unused space on the input diskette can be gathered together into a
single free space on the output diskette(s). The output'diskette(s) must be in the same
format (512-bytes per sector extended format or 128-bytes per sector basic data exchange
format) as the diskette being copied.

Diskettes with permanent files are the diskettes normally copied. Because diskettes
can develop surface irregularities as they undergo the wear of continued use, it is a
good idea to copy your importan~ files .soon after they are created.

$DUPRD is evoked by the COPYI1 procedure (see index entry: COPYI1 procedure).

Utility Program Descriptions-$DUPRD 159

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$DUPRD Utility Control Statement Formats

160

Use

Copy all files on a
diskette to one or
more output diskettes

Copy one file on a
diskette to one or
more output diskettes

$DUPR D Parameters

NAME-ALL

NAME-filename

PACK-vol-id

DELETE-YES

DELETE-NO

PRESERVE-YES

PRESERVE-NO

Control Statement

1/ COPYI1 NAME-ALL,PACK-vol-id [DELETE- {~~S}]

[PRESERVE- {;}] [COPIES- {l'mber of COPies}]

II END

1/ COPYll NAME-filename,PACK-vol-id [PRESERVE- {~~}]

[cop I ES- timber of coPies}]

II END

Requests that all files on a diskette be copied to one or more
output diskettes.

Specifies the name of the single file on a diskette that is to
be copied to one or more output diskettes.

Identifies the output diskette(s).

Indicates that no expired files on the input diskette are to
be copied. The bE LETE parameter is valid only with
NAME-ALL.

Note: If a multivolume file exists on the input diskette, the
DELETE-YES para~eter is igt:lored.

Indicates that expired files on the in~t diskette are to be copied
to the new diskette(s). The DELETE parameter is valid only
with NAME-ALL. If the DELETE parameter is not specified,
DELETE-NO is the default.

Indicates that the end of extent for each file copied is to be
preserved at the same relative displacement past the end of
data on the output diskette(s) as it was on the input diskette.

Indicates that the end of extent for each file is not to be
preserVed. If the PRESERVE parameter is not specified,
PRESERVE-NO is the default.

COPIES fnumber of cOPies} S· 'f' h : b f d' "k b'ed -l.1 peci les t e num er 0 output IS, ettes to e COpt .
- from one input diskette. If the COPIES parameter is not

specified, 1 is the default. The maximum number of
copies allowed is 99.

$DUPRD Parameter Summary

NAME Parameter

There are two types of NAME parameters:

NAME-ALL and NAME-filename.

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

The NAME-ALL parameter indicates that all files on the inserted diskette are to be
copied to one or more output diskettes. The NAME-filename parameter specifies the name
of the single file that is to be copied from one input diskette to one or more output
diskettes.

When all files or a single file on a diskette are copied, the input and output diskettes
may differ in the volume identification and alternate track information. If NAME
ALL is specified, the DELETE parameter can be used.

The diskettes that are being copied can contain basic data exchange files or system
files (see Appendix C). The diskette(s) to contain the copy must not contain active
files if all files on a diskette are being copied, or if the file to be copied is part of
a multivolume file. For either NAME-ALL or NAME-filename, if a diskette to be

- copied is a portion of a multivolume file, only that one portion of the multivolume
file will be copied.

To perform the copy, $DUPRD requires enough space on the disk to contain the
data being copied. $DUPRD copies the file or diskette to the disk, then displays
a message telling the operator to insert the diskette that is to contain the copy.
For each copy that is specified in the COPIES parameter, a message tells the operator
to insert another diskette. After transferring the copy from the disk to each output
diskette that is inserted, $DUPRD execution is complete. .

PACK Parameter

The PACK parameter supplies the volume identification (vol-id) of the output disk
ette. The PACK parameter is always required.

DELETE Parameter

The DELETE parameter can be used if NAME-ALL is specified. DELETE-YFS
specifies that expired files on the input diskette are to be deleted. (Space between
files is eliminated; the files are physically contiguous on the new diskette.) How
ever, if a multivolume file exists on the input diskette, the DELETE-Y~S parameier
is ignored. DELETE-NO specifies that expired files on the input diskette are to be
copied. DELETE-NO is t~e default.

Utility Program Descriptions-$DUPRD 160.1

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

PR ESE RVE Parameter

160.2

PRESERVE-YES indicates that for each file copied, the end of extent is preserved
at the same relative displacement past the end of data on the output diskette(s) as
it was on the input diskette. PR ESERVE-NO indicates that the end of extent for each file
is not to be preserved. PRESERVE-NO is the default.

COPIES Parameter

The COPIES parameter specifies the number of output diskettes to be copied
from one input diskette. The maximum number of copies is 99. COPIES-1 is the
default.

$DUPRD OCl and Utility Control Statement Sequence

To initiate the diskette copy program, the following OCL is required:

II LOAD $DUPRD
II FILE NAME-COPYI1,UNIT-11, ...
II RUN
II COPYI1 ...
II END

$DUPRD Examples

Copy all files on a diskette to the diskette with a vol-id of 123456.

II LOAD $DUPRD
II FILE NAME-COPYI1,UNIT-11
II RUN
II COPYI1 NAME-ALL,PACK-123456
II END

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Copy a file on a diskette (with filename of JIM a~d creation date of 01-02-75) to
another diskette (with vol-id of 345678).

II LOAD $DUPRD
II FILE NAME-COPYI1,UNIT-11,DATE-010275
II RUN
II COPYI1 NAME-JIM,PACK-345678
II END

$fREE-DISK REORGANIZATION UTILITY PROGRAM

The $FREE utility program causes all free space on the disk, except free space within
files and the system library, to be accumula~ed into a single area. The location of the
area of free space depends upon the parameters specified in the $FREE utility control
statement.

$FREE cannot be run while in inquiry mode.

If a system failure occurs during the running of $FREE, $fREE must be run again to ensure
the integrity of data on the disk. If the disk VTOC is to be displayed, run the $LABEL
utility program. If $FREE must be run, the following message appears as part of the
information displayed by $LABEL:

$FREE MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM
THIS FILE.

$FREE must then be the next program run. No other program except $LABEL should be
run until $FREE completes.

Note: Because files are physically moved by$FREE, the locations specified by LOCATION
parameters in FILE statements for the moved files (see index entry: II FILE statement)
will not be valid. To deter'1lin~ new file locations after using $FREE, use the $LABEL
utility or CATALOG procedure to display the disk VTOC.

Utility Program Descriptions-$DUPRD 161

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$FREE Utility Control Statement Format

162 .

r- £ I "'lA. '\,

1/ COMPRESS lFREE- t ~~~vH f J
$FREE Parameters

FREE- {~~:H} The FREE paramet~r specifies the direction inwhich the free space
- is to be accumulated .

• FREE-lOW specifies that free space is accumulated at the lowest
available block numbers on the disk; that is, the free space imme-·
diately following the system library.

• FREE-HIGH specifies that free space is accumulated at the highest
available block numbers on the disk. FREE-HIGH is the default.

$FREE Oel and Utility Control Statement Sequence

To initiate the $FREE program through OCl, the following is required:

II lOAD $FREE
II RUN

[I COMPRESS ~REE- {~~~H}]]

II END

'$FREE Examples

Page ofGC21·7593·3
Issued 22 November 1978
By TNL: GN21·7993

To accumulate the free space on disk at the high block location addresses, use any of l:At:
following examples. They all accomplish the same logical results.

II LOAD $F'REE

II RUN
II END

or

/l LOAD $FREE
II RUN
II (one of the following:)

COMPRESS
COMPRESS FREE·HIGH

II END

Note: The same results can also be obtained with the following ,example:

II LOAD SPACK
II RUN

or
II COMPR ESS command statement

To accumulate the free space on disk at the low block location addresses (between
#LlBRARY and data files), use the following example:

II LOAD $FREE
II RUN
II COMPRESS FREE·LOW
II END

Utility Program-$F R E E 162.1

Page of GC21-7593-3
Issued 22 November 1978
Bv TNL: GN21-7993

$HIST -HISTORY FILE DISPLAY UTILITY PROGRAM

162.2

The $HIST utility program lists, according to the current SYSL!ST assignment (see
index entry: SYSLIST procedure), the contents of the HISTORY file. The HISTORY
file is an area on the disk reserved for collecting information such as Oel statements
entered, utility control statements entered, error messages displayed, and the opera
tor's response to each error message. Thus, the contents of the HISTORY file allows
you to trace the sequence of events leading to current system status.

Because the HISTORY file is limited in size to thirty-nine 256-byte sectors, the num
ber of events reflected in the HISTORY file at a particular time varies with the length
of entries in the file. Once the file is filled, each new entry causes the oldest entry to
be dropped from the file. When the file is listed, the oldest entry is displayed or printed
first, and the most recent entry is displayed or printed last.

$HIST is evoked by the HISTORY procedure (see index entry: HISTORY procedure).

$HIST Utility Control Statement Formats

Use

Display only previously
displayed HISTORY
file data

List complete contents
of HISTORY file (includ
ing items not previously
displayed)

Control Statement

[II DISPLAY]
II END

/1 DISPLAY ALL
II END

$DUPRD Parameter Summary

NAME Parameter

There are two types of NAM E parameters:

NAME-ALL and NAME-filename.

The NAME-ALL parameter indicates that all files on the inserted diskette are to be
copied to one or more output diskettes. The NAME-filename parameter specifies the name
of the single file that is to be copied from one input diskette to one or more output
diskettes.

When all files or a single file on a diskette are copied, the input and output diskettes
may differ in the volume identification and alternate track information. If NAME
ALL is specified, the DELETE parameter can be used.

The diskettes that are being copied can contain basic data exchange files or system
files (see Appendix C). The diskette(s) to contain the copy must not contain active
files if all files on a diskette are being copied, or if the file to be copied is part of
,a multivolume file. For either NAME-ALL or NAME-filename, if a diskette to be
copied is a portion of a multivolume file, only that one portion of the multivolume
file will be copied.

To perform the copy, $DUPRD requires enough space on the disk to contain the
data being copied. $DUPRD copies the file or diskette to the disk, then displays
a message telling the operator to insert the diskette that is to contain the copy.
For each copy that is specified in the COPI ES parameter, a message tells the operator
to insert another diskette. After transferring the copy from the disk to each output
diskette that is inserted, $DUPRD execution is complete.

PACK Parameter

The PACK parameter supplies the volume identification (vol-id) of the output disk
ette. The PACK parameter is always required.

DELETE Parameter

The DELETE parameter can be used if NAME-ALL is specified. DELETE-YES
specifies that expired files on the input diskette are to be deleted. (Space between
files is eliminated; the files are physically contiguous on the new diskette.) How
ever, if a multivolume file exists on the input diskette, the DELETE-YES parameter
is ignored. DELETE-NO specifies that expired files on the input diskette are to be
copied. DELETE-NO is the default.

Utility Program Descriptions-$DUPRD 163

164

PRESERVE Parameter

PRESERVE-YES indicates that for each file copied, the end of extent is preserved
at the same relative displacement past the end of data on the output diskette(s) as
it was on the input diskette. PR ESERVE-NO indicates that the end of extent for each file
is not to be preserved. PRESERVE-NO is the default.

COPIES Parameter

The COPI ES parameter specifies the number of output diskettes to be copied
from one input diskette. The maximum number of copies is 99. COPIES-1 is the
default.

$DUPRD OCl and Utility Control Statement Sequence

To initiate the diskette copy program, the following OCl is required:

II lOAD $DUPRD
II FilE NAME-COPYI1,UNIT-11, ...
II RUN
II COPYI1...
II END

$DUPRD Examples

Copy all files on a diskette to the diskette with a vol-id of 123456.

II lOAD $DUPRD
II FilE NAME-COPYI1,UNIT-11
II RUN
II COPYI1 NAME-All,PACK-123456
II END

Copy a file on a diskette (with filename of JIM and creation date of 01-02-75) to
another diskette (with vol-id of 345678).

II lOAD $DUPRD
II FilE NAME-COPYI1,UNIT-11,DATE-010275
II RUN
II COPYI1 NAME~JIM,PACK-345678
II END

Delete (DELETE)

If the DELETE option of $INIT is requested, the operator is notified via the display
screen when any active files exist on the inserted diskette. If active files do exist,
the job can be canceled or the files can be deleted. If the DELETE option is taken,
the VTOC for the diskette is set to indicate that one fi Ie, DATA, occupies tracks
1-73, and DATA is empty. The vol-id specified with the DELETE option is com
pared with the vol-id in the diskette volume label on track O. They must be identi
cal for d~letion to occur. The owner-id information specified with the DELETE
option is not compared to information in the volume label.

Rename (RENAME)

If the RENAME option is chosen instead of FORMAT, FORMAT2, or DELETE,
only the volume label (track 0) is changed. The vol-id and owner-idfields are replaced
by the contents of the PACK and 10 parameters, respectively. These parameters are
specified with the RENAME option. If a new vol-id is not specified, the system date
is used. If owner-id is not specified, OWNERID is used.

Diskette Defects Encountered During Processing

If the system encounters diskettes with physical defects during output operation,
the following information will apply.

If a defect is discovered while a job is being processed, the system will make one or
more attempts (called retries) to read or write the bad sector. If the retries are not
successful and the program is creating output to diskette, the file is closed at the
beginning of the operation during which the error occurred, and normally at the
start of a track. The operator is notified that the diskette contains a defect and is
given the option of inserting another diskette and continuing the operation (which
will result in a multivolume file) or terminating the job and restarting with an error-
free diskette. .. .

To restore to full use, the diskette should be initialized; however, if the initialization
process results in discovery of more than two defective tracks, the diskette is unusable.

Utility Program Descriptions-$INIT 165

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

166

$INIT Utility Control Statement Formats

The utility control statement for $INIT functions must appear in the order shown:

Use

Initialize a
diskette

Delete files
on a diskette

Rename a
diskette

$INIT Parameters

UI N Statement

Control Statement

II UIN OPTION- {FORMAT} [RECl- {n .. umber}·
FORMAT2 ' .Q§q

[
" VOL rPACK-vol-idl ["D-owner-id1. 11

Lsystem date J ,OWNERID J J
/I END .

/I UIN OPTION-DELETE [RECl- {;ber }]
rll Val [PACK:OVOHdl. f,ID-owner-id·n
L system datl!.J ~OWNERID U
/I END .

~I UIN OPTION-RENAME [,RECl- { ;ber} J]
rll Val PACK-voHd1 [.. ID-owner-icfJ 1
L s stem date J,OWN E R I D.J J
II END

The UIN statement specifies which $INIT oPtion is selected and the record length
the header labels contain.

OPTION- {FORMAT}
FORMAT2

OPTION-DE lETE

OPTION-RENAME

RECl- {~~~ber }

VOL Statement

Initializes a diskette as a basic data exchange format
diskette (FORMAT) with 128-byte data sectors or as
an extended format diskette with 512-byte data sectors
(FORMAT2). For more details on FORMAT and FOR
MAT2, see index entry: INIT command statement.

Deletes files on a diskette.

Renames a diskette. RENAME is the option selected
if no option is specified.

Specifies the record length to be inserted into the header
labels (HDR1 and DDRl). 080 is the default.

The Val statement provides information to be written in the volume label.

PACK-vol-id
system date

I D-owner-id
OWNERID

The PACK parameter specifies the vol-id. If the PACK
parameter is not used, the system date is the default.

The I D parameter specifies information for the
owner-id field of the volume label. If the I D param
eter is not used, ·OWNERID is the default.

[

$INIT Parameter 'Summary

{
FORMAT}

OPTION- FORMAT2

OPTION-DE lETE

OPTION-RENAME

RECl- {number} ' .. ' 080

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-79~3

If FORMAT or FORMAT2 is specified, the initializa
tion function of $INIT is selected. The initialization
function of $INIT formats and tests a diskette. Track
o is built or rebuilt and tested for defects. If any
defects are found on track 0, the diskette is unusable.

Tracks are tested through attempts to write IDs and
records consisting of 128 bytes (FORMAT) or 512
bytes (FORMAT2) of hex E5 on the tracks. If a qe
fect is found within a track, the entire track is marked
defective (track I Ds all hex F F) and an alternate is
assigned., If more than two bad tracks are found, the
job is terminated and the diskette is not usable.

Tracks ar.e initial.ized by writing ~ectors of blanks on
all data tracks (1-74). During initialization the VTOC
is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id and owner-id
fields of the volume label (track 0) are replaced by the
vol-id and owner-id given in the PACK and ID param
eters, respectively (see following). If neither param
eter is used, the system date and OWNERID are written
in the vol-id and owner-id fields, respectively.

For more details on FORMAT and FORMAT2, see
index entry: INIT command statement. A descrip
tion of diskette formats is in Appendix C.

The DELETE function deletes files from a diskette by
setting the VTOC to indicate that one file, DATA,
occupies the entire diskette, and DATA is empty.

The RENAME function places the vol-id specified in
the PACK parameter (see following), or the system
date, if PACK is not used, in the vol-id field of the
volume label (track 0).' The vol-id is left-adjusted
and padded with blanks: If the I D parameter is used
(see following), as many as 14 characters of owner
identification information, left-adjusted and padded
with blanks, are placed in the owner-id field of the
volulTle label. If the I D parameter is not LJsed,
OWNERID is placed in the owner identification field.

Specifies the record length contained in the HDR1and DDR1
header labels. 080 is the default. The maximum number of
128-byte sectors (FORMAT). is 128. The maximum number
for 512-byte sectors (FORMAT2) is 512. This is also true
when using OPTION-DELETE. When using OPTION
RENAME, RECl is ignored. If RECl-080 is entered or
R ECl is allowed to default, the record length is inserted into
the heade-r labels as .~ 080. Otherwise the. record length. is
inserted as OOnnn, where nnn is the number entered.

Utility Program Descriptions-$INIT 167

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

168

PACK-vol-id
system date

I D-owner-id
OWNERID

During initialization {FORMAT or FORMAT2)$INIT
writes the vol-id specified by the PACK parameter in"
the volume label of the diskette being initialized. The
vol-id can be as many as six alphameric characters.
The system date is written if the PACK parameter is
not specified.

In the DELETE function, the vol-id specified or system
date must be equal to the vol-id existing on the inserted

"diskette, or the DELETE function is not performed.

In the RENAME function, the vol-id specified or the
system date is written in the volume label of the
inserted diskette.

The I D parameter specifies owner information to be
written rn the volume label to further identify a disk
ette. As many as 14 characters can be specified. Any
combination of ~haracters except single quotation marks
('), commas, and leading or embedded blanks can be
specified. If the ID parameter is not used, OWNERID
is written in the owner-id field of the volume label.

Owner identification information is strictly for the
user. It is not used by the system to verify that the
appropriate diskette is being used for a job.

$INIT OCl and Utility Control Statement Sequence

To initiate the $INIT program through OCl, the following is required:

II lOAD $INIT
II RUN

[1 ~~~~~~21 [,R. ECl- {number}.]]. II UIN OPTION- DELETE 080

RENAME

[II VOL [PACK-VOI-id][",IO-owner-td]]
s~stem date ,OWN E RID

II END

$INIT Examples

In order to name a diskette JIM, you could enter:

II LOAD $INIT
II RUN
II VOL PACK-JIM
II END

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

To initialize to 128-byte data sectors, test for bad tracks, name the diskette APRO,
and insert an owner identification of FRANT, you would enter:

1/ LOAD $INIT
II RUN
II UIN OPTION-FORMAT
/I VOL PACK-APRO,ID-FRANT
/I END

Utility Program-$I N IT 168.1

This page intentionally left blank

168.2

$H 1ST OCL and Utility Control Statement Sequence

To initiate the $H 1ST utility program through OeL, the following is required:

II LOAD $HIST
II RUN
[/1 DISPLAY ...]
II END

$HIST Examples

Display only previously displayed HISTORY file data:

II LOAD $HIST
II RUN
II END

Display the entire HISTORY file:

II LOAD $HIST
II RUN
II DISPLAY ALL
II END

Display the entire HISTORY file and remove all entries after the file is shown:

II LOAD $HIST
II RUN
II DISPLAY ALL,RESET

II END

Uti I ity Program Descriptions-$H 1ST 169

170

\

$INIT -DISKETTE LABELING AND INITIALIZATION UTILITY PROGRAM

$INIT, which is evoked by thelNIT procedure (see index entry: INIT procedure),
performs three functions:

• Initializes (formats) diskettes

• Deletes files from diskettes

• Renames diskettes by changing volume label information

Initialize (FORMAT and FORMAT2)

To initialize a diskette, $INIT formats the diskette as a basic data exchange diskette
with twenty-six 128-byte sectors per data track or as an extended format diskette
with eight 512-byte sectors per data track (see the description of FORMAT2 under
index entry: INITcommand statement).

During the initialization process, the diskette is checked for active files. If one or
more active !iles exist on the diskette, the operator is notified via the display screen
to cancel the job or continue. If the operator continues the job, active files are
delete~ and the remainder of the diskette is checked for defective tracks. If no
active files are found on the diskette, $INIT checks for defective tracks, marking
(flagging) any defective tracks found.

If track 0 or more than two other tracks are found to be defective, the operator is
notified via the display screen and initialization is terminated by $INIT. Otherwise,
if one or two bad tracks are found, their addresses are preserved in the ERMAP field
on track 0 (see The IBM Diskette General Information Manual, GA21-9182).

To complete initialization, all data sectors (tracks 1-74) on the diskette are written
with 128-byte or 512-byte sectors consisting of blanks. The vol-id and owner-id
fields in the volume label on track 0 are replaced by the PACK and I D parameter
values, respectively (the parameters are described with the other $INIT parameters).
If the PACK parameter is not specified, the system date is used. If the I D parameter
is not specified, OWNERID is used.

The VTOC is initialized to indicate that one file, DATA, occupies tracks 1-73, and
DATA is empty.

Notes:
1. All diskettes for a multivolume file must be initialized in the same format; all

diskettes in the file must be in the 128-bytes-per-sector basic data exchange
format or the 512-bytes per sector extended format.

2. If a diskette read error occurs on a 512-bytes-per-sector diskette, you cannot
correct the bad sector. You can either rerun the job using a different diskette
or retry the same diskette.

Delete (DELETE)

If the DELETE oPtion of $INIT is requested, the operator is notified via the display
screen when any active files exist on the inserted diskette. If active files do exist,
the job can be canceled or the files can be deleted. If the DELETE option is taken,
the VTOC for the diskette is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id specified with the DELETE option is com
pared with the vol-id in the diskette volume label on track O. They must be identi
cal for deletion to occur. The owner-id information specified with the DELETE
option is not compared to information in the volume label.

Rename (RENAME)

If the RENAME option is chosen instead of FORMAT, FORMAT2, or DELETE,
only the volume label (track 0) is changed. The vol-id and owner-id fields are replaced
by the contents of the PACK and 10 parameters, respectively. These parameters are
specified with the RENAME option. If a new vol-id is not specified, the system date
is used. If owner-id is not specified, OWNERID is used.

Diskette Defects Encountered During Processing

If the system encounters diskettes with physical defects during output operation,
the following information will apply.

If a defect is discovered while a job is being processed, the system will make one or
more attempts (called retries) to read or write the bad sector. If the retries are not
successful and the program is creating output to diskette, the file is closed at the
beginning of the operation during which the error occurred, and normally at the
start of a track. The operator is notified that the diskette contains a defect and is
given the option of inserting another diskette and continuing the operation (which
will result in a multivolume file) or terminating the job and restarting with an error
free diskette.

To restore to full use, the diskette should be initialized; however, if the initialization
process results in discovery of more than two defective tracks, the diskette is unusable.

Utility Program Descriptions-$INIT 171

172

$1 NI T Utility Control Statement Formats

The utility control statement for $INIT functions must appear in the order shown:

Use

Initialize a
diskette

Delete files
on a diskette

Rename a
diskette

$INIT Parameters

VI N Statement

Control Statement

II UIN OPTION- {FORMAT} ['RECl- {number} J
FORMAT2' 080

[
II VOL rPACK-vol-idl [ID-OWner-idlJ

Lsystem date J ,OWNERID J
II END

1/ UIN OPTION-DELETE [,RECL- {~:ber}]

[
II VOL [PACK-VOHdl pD-owner-idJn

system date J ~OWNERID U
II END

[II UIN OPTION-RENAME [,RECL- { ~:ber}]]

[
II VOL rPACK-voHdl f,ID-owner-icfll

Lsystem dateJ lOWNERID-JJ
II END

The UIN statement specifies which $IN IT option is selected and the record length

the header labels contain.

OPTION- {FORMAT}
FORMAT2

OPTION-DELETE

OPTION-RENAM E

R ECl- {nUmber}
080

VOL Statement

Initializes a diskette as a basic data exchange format
diskette (FORMAT) with 128-byte data sectors or as
an extended format diskette with 512-byte data sectors
(FORMAT2). For more details on FORMAT and FOR
MAT2, see index entry: INIT command statement.

Deletes files on a diskette.

Renames a diskette. RENAME is the option selected
if no option is specified.

Specifies the record length to be inserted into the header
labels (HDR1 and DDR1). 080 is the default.

The VOL statement provides information to be written in the volume label.

PACK-vol-jd
system date

, D-owner-id
OWNERID

The PAC K parameter specifies the vol-id. If the PACK
parameter is not used, the system date is the default.

The I D parameter specifies information for the
owner-id field of the volume label. If the I D param
eter is not used, OWNERID is the default.

$INIT Parameter Summary

{
FORMAT}

OPTION- FORMAT2

OPTION-DELETE

OPTION-RENAME

R ECl- {number}
080

If FORMAT or FORMAT2 is specified, the initializa
tion function of $INIT is selected. The initialization
function of $1 N IT formats and tests a diskette. Track
o is built or rebuilt and tested for defects. If any
defects are found on track 0, the diskette is unusable.

Tracks are tested through attempts to write IDs and
records consisting of 128 bytes (FORMAT) or 512
bytes (FORMAT2) of hex E5 on the tracks. If a de
fect is found within a track, the entire track is marked
defective (track IDs all hex F F) and an alternate is
assigned. If more than two bad tracks are found, the
job is terminated and the diskette is not usable.

Tracks are initialized by writing sectors of blanks on
all data tracks (1-74). During initialization the VTOC
is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id and owner-id
fields of the volume label (track 0) are replaced by the
vol-id and owner-id given in the PACK and 10 param
eters, respectively (see following). If neither param
eter is used, the system date and OWN E RID are written
in the vol-id and owner-id fields, respectively.

For more details on FORMAT and FORMAT2, see
index entry: INIT command statement. A descrip
tion of diskette formats is in Appendix C.

The DELETE function deletes files from a diskette by
setting the VTOC to indicate that one file, DATA,
occupies the entire diskette, and DATA is empty.

The RENAME function places the vol-id specified in
the PACK parameter (see following), or the system
date, if PACK is not used, in the vol-id field of the
volume label (track 0). The vol-id is left-adjusted
and padded with blanks. If the 10 parameter is used
(see following), as many as 14 characters of owner
identification information, left-adjusted and padded
with blanks, are placed in the owner-id field of the
volume label. If the 10 parameter is not used,
OWN E RID is placed in the owner identification field.

Specifies the record length contained in the HDR1 and DDR1
header labels. 080 is the default. The maximum number of
128-byte sectors (FORMAT) is 128. The maximum number
for 512-byte sectors (FORMAT2) is 512. This is also true
when using OPTION-DELETE. When using OPTION
RENAME, RECl is ignored. If RECl-080 is entered or
R ECl is allowed to default, the record length is inserted into
the header labels as l6t6 080. Otherwise the record length is
inserted as OOnnn, where nnn is the number entered.

Utility Program Descriptions-$INIT 173

174

PACK-vol-id
system date

I D-owner-id
OWNERID

During initialization (FORMAT or FORMAT2) $INIT
writes the vol-id specified by the PACK parameter in
the volume label of the diskette being initialized. The
vol-id can be as many as six alphameric characters.
The system date is written if the PACK parameter is
not specified.

In the DELETE function, the vol-id specified or system
date must be equal to the vol-id existing on the inserted
diskette, or the DELETE function is not performed.

In the RENAME function, the voFid specified or the
system date is written in the volume label of the
inserted diskette.

The I D parameter specifies owner information to be
written in the volume label to further identify a disk
ette. As many as 14 characters can be specified. Any
combination of characters except single quotation marks
('), commas, and leading or embedded blanks can be
specified. If the ID parameter is not used, OWNERID
is written in the owner-id field of the volume label.

Owner identification information is strictly for the
user. It is not used by the system to verify that the
appropriate diskette is being used for a job.

CAUTION

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

When a program that allows an inquiry request is interrupted, the execution of that
program is suspended, permitting the execution of other programs. However, if

these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the interrupted program or erroneous results when
the interrupted program regains control. If you are using inquiry, do not change
any files that were being used by the interrupted (rolled-out) program. System/32
system control programming does not always check for duplicate file labels in the
inquiry and interrupted programs. For example, program X is interrupted while it
is processing file A. Records in file A are then deleted using inquiry. A return to
program X will cause unpredictable results.

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

• An inquiry request cannot be used to execute the following utilities:

Utility

$BACK
$LOAD
$MAINT

$PACK
$REBLD
$SETCF
$BUILD

Function(s)

Back up library
Reload library
All except LlSTLlBR and FROMLlBR

Com press fi I e space
Rebuild VTOC
Reconfigure system
Rebuild alternate sector

• An inquiry request cannot be used to run the following utilities to perform the
listed functions:

Utility

$COPY
$DELET

Function(s)

Restore all/save all files
Delete all files

• An inquiry request cannot be used to run the following utilities to process active
files:

~tility

$BICR

~COPY
$DELET

, ,

Function(s)

Transfer active file
Save/organize active file
Delete active file

• An inquiry request can be used to run the following utilities to perform the
following functions, but a warning message will be issued when the function is
requested:

Utility

$COpy

$LAI3EL

Function(s)

Display active file
Catalog all/active file

Utility Program Descriptions-$LOAD 175

176

Offline Option

For a description of how offline multivolume files are processed, see index entry:
offline multivolume file.

$lOAD Utility Control Statement Format

Contrpl statements are not used.

$lOAP oel Sequence

II LOAD $LOAD
II FILE NAME-#LlBRARY,UNIT-11
II RUN

$MAINT -LIBRARY MAINTENANCE UTI LITY PROGRAM

$MAINT is evoked by the APCHANGE, CONDENSE, FROMLlBR, JOBSTR,
LlSTLlBR, REMOVE, and TOLlBR procedures (see index entries: APCHANGE
procedure, CONDENSE procedure, FROMLIBR procedure, JOBSTR procedure,
LISTLIBR procedure, REMOVE procedure, and TOL/BR procedure). $MAINT
has four major functions:

• Allocate. Specifies or changes the size of the library file (#LlBRARY).

• Copy. Copy

1. Places library members in the library

2. Duplicates library members within the library

3. Copies library members to a file on the disk or on a diskette

4. Displays or prints the contents of the library or directory

• pelete. Removes library members by deleting them.

• Cpmpress. Removes unusable space within the library.

All functions of $MAINT and the related utility control statements are described in
deta!1 after the following general description of the library.

UNIT

DATE

FILE NAME

FILE DATE

RECORD COUNT

RECORDS AVAILABLE

RETAIN TYPE

FILE ORG

RECORD LENGTH

FILE LOCATION

KEY LENGTH

KEY LOCATION

CREATION FORMAT

UN ITS ALLOCATED

F1 for disk VTOC displays.

The current system date in the current format.

The name of the file described by the VTOC entry.

The creation date of the file described.

The number, in decimal, of records currently contain~c;t
by a file. A VTOC entry for the library file, #lIBRARY,

is shown in the preceding sample display. Because
#lIBRARY is not a data file, no record count is
given.

The number, in decimal, of records for which there is
still room in a file. A VTOC entry for the library file,
#lIBRARY, is shown in the preceding sample disp.lay.
Because #lI BRARY is not a data file, no record count
is given.

The retention classification of a file: P for permanent,
T for temporary.

File organization: S for sequential, I for indexed
sequential, D for direct, P for pseudo tape.

The length, in decimal number of bytes, of the records
in a file. A VTOC entry for the library file, #lI BRA~Y,
is shown in the preceding sample display. Because
#lIBRARY is not a data file, the record length
given in the sample display is 00.

The decimal block number of the beginning of data in
a file.

Decimal length of the keys in an indexed file.

The position, in decimal, of the rightmost byte of the
key in the records in an indexed file.

The format in which a file was created, either BLOCKS
or RECORDS.

The number, in decimal, of blocks or records alloca~ed
.for a file.

Note: If the RECORDS parameter was used to allo
cate space, the number shown might be greater than the
number requested, because the system allocates space
in blocks and rounds up to the next higher block whef'l~
ever part of a block is required.

Utility Program Descriptions-$LABEI,.. 177

178

Diskette VTOC

DISKETTE DISPLAY DATE - (DATE)
PACK - INVTRY ID - JONES

SPACE AVAILABLE ON THIS PACK IS 1861 BLOCKS - EACH 128 BYTES

FI LE
NAME

FII-E
DATE

FILE FILE
LENGTH TYPE

KRCINV 01/~7/75 30 SYSTEM
TEMPRM 01/24/75 33 SYSTEM
*****END OF VTOC DISPLAY*****

PATE

PACK

ID

SP~CE AVAILABLE

FILE NAME

FILE DATE

FI~E LENGTH

RECORD
LENGTH

37
20

FILE EXPIRATION
LOCATION DATE

27
57

PROTECT
PROTECT

MVF
FILE

SEQUENCE NUMBER OF BLOCKS
NUMBER IN OFFLINE MV FILE

The current system date in the current format.

The volume identification given in the diskette volume
label. The volume label for 128-bytes per sector basic
data exchange format diskettes is described in the IBM
Diskette General Information Manual, GA21-9182. See
also Appendix C of this manual.

The owner identification given in the diskette volume
label. The volume label for 128-bytes per sector basic
data exchange format diskettes is described in the IBM
Diskette General Information Manual, GA21-9182. See
also Appendix C.

The number, in decimal, of 128-byte or 512-byte
sectors available on the diskette. The number
represents space following the last active file on the
diskette. If all files were removed, using the DELETE
procedure or the $DELET utility program, the head
ing THERE ARE NO FILES PRESENT ON THIS
PACK appears and the VTOC display ends.

The name specified when the file described was created.

The creation date of the file described.

The number, in decimal, of 128-byte or 512-byte
sectors contained in a file.

Note: If the file was created by the $COPY utility
(see index entry: $COPY utility program) and the
record length of the file is 128 bytes or less, a sector
of control information is inserted at the beginning
of the file. This sector of control information
increases the FILE LENGTH by one. When the file
is returned to the disk, the control information is
dropped and record count returns to the original
number.

Allocate Function

Allocate Uses

• Specify library size

• Increase library size.

• Decrease library size

Allocate Control Statement Formats .

Use

Specify library
size

Increase library
size

Decrease library
size

Allocate Parameters

Control Statement

II ALLOCATE LI BRSIZE-number

II ALLOCATE INCREASE-number

II ALLOCATE DECR EASE-number

LlBRSIZE-number Specifies the size of the library in number of blocks (1 block:;:
ten 256-byte sectors)

INCREASE-number Increases the library size by the number of blocks indicated

DECREASE-number Decreases the library size by the number of blocks indicated

Allocate OCL and Utility Control Statement Sequence

II LOAD $MAINT
II RUN
II ALLOCATE ...
II END

Note: Within anyone run of the $MAINT utility program (that is, for anyone
II LOAD $MAINT and 1/ RUN sequence), you cannot increase, then decrease, then
increase the library size, whether you use the INCREASE and DECREASE key
words or the LlBRSIZE keyword to change the library size.

Utility Program Descriptions-$MAINT 179

Page of GC21-7593-3
Issued 22 Novembef~78
BYfflL:GN2i:7993 .

Allocate Examples

180

In order to set the library size at 1000 blocks you would enter:

II LOAD $MAINT
II RUN
II ALLOCATE LlBRSIZE-1000
II END

In order to increase the library size by 10 blocks you would enter:

I I LOAD $MAI NT
II RUN
II ALLOCATE INCREASE-10
II END

In order to decrease the library size by 3 blocks you would enter:

II LOAD $MAINT
II RUN
II ALLOCATEDECREASE~
II END

Copy Function

Copy Uses

Reader-to~ Li brary

Library-to-Library

Library-to-File
(record mode or
sector mode)

• Add a procedure or source member to the library, or
replace a procedure or source member in the library.
When $MAINT OCL statements are entered into the system
from the keyboard, reader refers to the keyboard. If a pro
cedure calls $MAINT copy function, reader refers to the
procedure itself. The member to be copied to the library
is then all statements following the COPY statement until
a CEND statement is encountered.

• Copy a member from the library to the library, chang
ing the name of the member.

• Copy a member having a certain name or all members
having the name.

• Copy members, either of a specified type or of all types,
that have names beginning with certain characters.

• Copy members, either of a specified type or of all types,
omitting members that have a certain name or have
names beginning with certain characters, or omitting
all SCP members (SCP members are library members
of any type, provided with and used by the SCP).

• Copy a member from the library to a file~

• Copy a member having a certain name or all members
having the name.

Note: The $LOAD utility provides the only method whereby you can change the
size of the library directory (alter the space allocated to it) and the size of the HISTORY

file. When using the $LOAD utility program (or the RELOAD procedure) however, be aware
that library members that exist on the disk but do not exist in the backed up library will be
lost when the backed up library is returned to the disk. If you have added library members
to the disk since the library was backed up and you want to save those members, use the
FROMLlBR procedure to copy them before executing RELOAD or $LOAD, then
use TOLlBR to place them in the backed up library after it is reloaded. (You might
have to increase the size of the backed up library in order to have room for the
additional members.) For information on FROMLlBR and TOLlBR, see index
entries: FROMLIBR procedure and TOLIBR procedure.

Inquiry Option

Certain programs can be interrupted while they are being processed. A request for
interruption is called an inquiry request (made by pressing the INO key on the key
board and choosing the 1 option). Programs are usually interrupted to permit another
program to run. Control is then returned to the first program.

The inquiry interrupt involves three steps:

1. When a program that can be interrupted recognizes an jnquiry request (the
INO key was pressed and the 1 option chosen), a rollout routine moves
the interrupted program from main storage to the disk.

Note: If an inquiry request is made during execution of certain system pro
grams, the inquiry display is delayed until the system programs are completed.
When the system programs are completed, the inquiry display appears.

2. The program for which the interrupt was requested must be loaded normally
using the keyboard. The interrupting program can be any type. This interrupt
ing program cannot be interrupted, but can be canceled'.

Note: The printer does not skip to line 1 of the next page at the end of an
interrupting program.

3. After the interrupting program is executed, a roll in routine moves the inter
rupted program back into main storage. The interrupted program begins
execution at the point of interruption and terminates in a normal manner.

If the inquiry option is selected, the SCP allocates a rollout area on the disk to con
tain programs that can be rolled out from main storage. If the inquiry option is not
selected, the inquiry interrupt itself is allowed, but attempts to perform the rollout
routine are bypassed.

Notes:
1. If the operator presses the INO key after pressing the STOP key, and the IPL

diskette switch is on, the system displays the contents of main storage on the
display screen, beginning with the main storage address specified by the data
switches on the CE control panel. To terminate the display and continue
processing, the operator can press the START key.

2. The inquiry option is inactive if data communications or the data recorder is
being used.

Utility Program Descriptions-$LOAD 181

182

CAUTION
When a program that allows an inquiry request is interrupted, the execution of that
program is suspended, permitting the execution of other programs. However, if

these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the interrupted program or erroneous results when
the interrupted program regains control. If you are using inquiry, do not change
any files that were being used by the interrupted (rolled-out) program. System/32
system control programming does not always check for duplicate file labels in the
inquiry and interrupted programs. For example, program X is interrupted while it
is processing file A. Records in file A are then deleted using inquiry. A return to
program X will cause unpredictable results.

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

• An inquiry request cannot be used to execute the following utilities:

Utility

$BACK
$LOAD
$MAINT

SPACK
$REBLD
$SETCF
$BUILD

Function(s)

Back up library
Reload library
All except LlSTLlBH and FROMLlBR

Compress file space
Rebuild VTOC
Reconfigure system
Rebuild alternate sector

• An inquiry request cannot be used to run the following utilities to perform the
listed functions:

Utility

$COPY
$DELET

Function(s)

Restore all/save all files
Delete all files

• An inquiry request cannot be used to run the following utilities to process active
files:

Utility

$BICR
$COPY
$DELET

Function(s)

Transfer active file
Save/organize active file
Delete active file

• An inquiry request can be used to run the following utilities to perform the
following functions, but a warning message will be issued when the function is
requested:

Utility

$COPY
$LABEL

Function(s)

Display active file
Catalog all/active file

Off1ine Option

For a description of how offline multivolume files are processed, see index entry:
offline multivolume file.

$lOAD Utility Control Statement Format

Controt statements are not used.

$LOAD OCl Sequence

II LOAD $LOAD
II FILE NAME-#LlBRARY,UNIT-ll
II RUN

$MAINT -LIBRARY MAINTENANCE UTILITY PROGRAM

$MAINT is evoked by the APCHANGE, CONDENSE, FROMLlBR, JOBSTR,
LlSTLlBR, REMOVE, and TOLlBR procedures (see index entries: APCHANGE
procedure, CONDENSE procedure, FROMLIBR procedure, JOBSTR procedure,
LISTLIBR procedure, REMOVE procedure, and TOLIBR procedure). $MAINT
has four major functions:

• Allocate. Specifies or changes the size of the library file (#LlBRARY).

• Copy. Copy

1. Places library members in the library

2. Duplicates library members within the library

3. Copies library members to a file on the disk or on a diskette

4. Displays or prints the contents of the library or directory

• Delete. Removes library members by deleting them.

• Compress. Removes unusable space within the library.

All functions of $MAINT and the related utility control statements are described in
detail after the following general description of the library.

Util ity Program Descriptions-$MA I NT 183

184

System Library File (#lIBRARY)

Location

The library is the first file on the disk immediately following the reserved fixed area

of the disk.

Fixed
Area FILE \

AREA

#LlBRARY DATA (QI

'--------'--------1-_

The boundaries of the library at anyone time are fixed, though they can be changed
by a BACKUP and RELOAD sequence (see index entries: BACKUP procedure and
RELOAD procedure), and by ALLOCATE, a function of $MAINT (see index entry:
ALLOCATE).

Contents

Reserved Disk Error Directory Rollout I Scheduler Additional Library (
Area Volume Logging Area Area I Work Main Stor- Members

Label Area (OPtional), Area age Dump
(VOL1) I (SWA) Area

Disk volume label (VOL 1 j: The volume label is 256 bytes long and contains owner
identification information and system control programming information regarding
the disk.

Error Logging Area: The error logging area is a variable number of sectors used for
recording hardware and hardware-related system errors. The error logging area is
assigned by the $LOAD utility.

Directory area: The directory area contains system information, recorded and maintained
by $MAINT, and the library directory. The library directory contains an entry for
each member in the library. Each entry describes the corresponding library member
and identifies its location. $MAINT places an entry in the directory each time it
places a member in the library, and deletes an entry each time it deletes a member.
The size of the library directory can be changed by the $LOAD utility (see index
entry: $LOAD utility program). However, the size of the directory is restricted to
a maximum of 256 sectors.

Rollout area: A rollout area is allocated only if inquiry support and offline multivolume
file support is selected (INCLUDE INQUIRY/OFFLINE? = YES onthe RELOAD
display-see index entry: RELOAD display). For a description of the inquiry
option and offline multivolume files, see index entries: inquiry option and offline
multivolume file.

J

Scheduler work area (SWA): The SWA is a 170-sector area reserved for use by
components of the system control program.

Additional main storage dump area: This area is set aside for the 24K and 32K (K = 1024
bytes) main storage systems.

Library members: The library can contain load members, procedure members, source
members, and subroutine members. Member names can be any combination of
characters (numeric, alphabetic, and special) except commas, periods, single quotes
('), blanks, question marks (?), slash (/), and hyphen (-). The question mark (?),
slash (/), and hyphen (-) have special meanings in procedures (see index entry:
procedure parameters) and in certain control statements and should not be used in
member names. The first character of a member name must be alphabetic (includes
#, $, and @)' and the number of characters in a member name must not exceed eight.

Organization of Library Members within the Library

Members are stored in the library serially; that is, a 20-sector member occupies 20
consecutive sectors.

New library members are placed in the library just as records are placed in an indexed
file; that is, they are placed after the last active member, and their physical order in
the library reflects the sequence in which they were entered.

When members are deleted from the library, only the space after the last active
member is made available for new members. This means that if you copy a group
of new members into the library, then later delete these same members before
adding more, the space they occupied in the library is unavailable for adding other
new members.

Gaps can occur in the library either when a member is deleted or when a member is
replaced by a member that requires a different number of sectors, because sectors
between members are unusable. If the number of unusable sectors becomes high,
the library member area can be compressed by either the CONDENSE procedure, a
BACKUP and a RELOAD sequence, or the APCHANGE procedure.

When a library is compressed, members are moved as close as possible to the
beginning of the library member area so that no gaps are between the members.
All unused space is collected into one free area at the en'd of the library.

To provide as much space as possible within the prescribed limits of the library, the
system compresses procedure and source members by removing all duplicate blanks.
When the members are retrieved, the blanks are reinserted.

Utility Program Descriptions-$MAINT 185

186

Allocate Function

Allocate Uses

• Specify library size

• Increase library size

• Decrease library size

Allocate Control Statement Formats

Use

Specify library
size

I ncrease library
size

Decrease library
size

Allocate Parameters

Control Statement

II ALLOCATE LlBRSIZE-number

II ALLOCATE INCREASE-number

II ALLOCATE DECREASE-number

LlBRSIZE-number Specifies the size of the library in number of blocks (1 block =
ten 256·byte sectors)

INCREASE-number Increases the library size by the number of blocks indicated

DECREASE-number Decreases the library size by the number of blocks indicated

Allocate DCL and Utility Control Statement Sequence

I I LOAD $MAI NT
II RUN
II ALLOCATE ...
II END

Note: Within anyone run of the $MAINT utility program (that is, for anyone
II LOAD $MAINT and II RUN sequence), you cannot increase, then decrease, then
increase the library size, whether you use the INCREASE and DECREASE key
words or the LlBRSIZE keyword to change the library size.

Procedure Restrictions

If nested procedures are used, information contained in the scheduler work area can
become invalid when a source library is reorganized or changed in size. Therefore, if a
procedure is used to reallocate or reorganize libraries, any further procedures contained
within that nested procedure should not be called from the source library that is being
reallocated or reorganized.

• Print members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

/I COpy FROM-Fl,LlBRARY-) ~(
?ALj

NAM E- {name }
, characters.ALL

{

name }
TO-PRINT,OMIT- characters.ALL

SYSTEM

• Print the directory entries for members of a certain type:

/I COpy FROM-Fl,LlBRARY- ! ~ l ,NAME-DIR,TO-PRINT

• Print all directory entries and system information from the directory area:

II COpy FROM-F1,UBRARY-ALL,NAME-DI~,TO-PRINT

• Print the system information in the directory area:

1/ COpy FROM-F1,LlBRARY-SYSTEM,NAME-DI R,TO-PRINT

• Print directory entries, either for members of a specified type or for all members,
omitting entries for members that have a certain name or names beginning with
certain characters, or omitting all entries for SCP members:

If COpy FROM-Fl,LlBRARY-) ~ (,NAME-DIR,TO-PRINT,

?ALJ

{

name }
OMIT- characters.ALL

SYSTEM

Note: If the display screen and not the printer is used to list library members or
directory entries, only the first 40 bytes of each output line are displayed. To en
sure that all the information in a library member or directory entry is listed, assign
the printer to list the output. You can use the STATUS procedure (see index entry:
STATUS procedure) to determine where system output is currently listed (that is,
what the current SYSLIST assignment is); you can use the SYSLIST procedure
,(see index entry: SYSLIST procedure) to change the current SYSLIST assignment.

Utility Program Descriptions-$MAINT 187

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Copy Parameters

FROM-READER

FROM-F1

FROM-DISK

LlBRARY-S

LlBRARY-P

LlBRARY-O

LlBRARY-R

LIBRARY-ALL

188

The member to be placed in the library is to be read
(entered) from the keyboard or from a procedure that
invokes the $MAINT copy function.

Library members are located in the library.

Input is from a file on either the disk or a diskette. A
FILE statement is required to identify the file.

The specified member(s) is a source member.

The specified member(s) is a procedure member.

The specified member(s) is a load member.

The specified member(s) is a subroutine member.

• For cgpying library-to-file in record mode., specifies
source (5) an,d procedure (P) members.

• For printing from the directory area, specifies that
system information as well as directory entries are to
be printed.

Note: For all uses of copy except the two just listed,
specifies that all member types (5, P, 0, and R) are
involved.

• Print directory entries, either for members of a speci
fied type or for all members, omitting entries for mem
bers that have a certain name or have names beginning
with certain characters, or omitting all entries for SCP
members.

Note: If the display screen and not the printer is used to
list library members or directory entries, only the first 40
bytes of each output line are di'splayed. To ensure that
all the information in a library member or directory entry
is listed, assign the printer to list the output. You can use
the STATUS procedure (see index entry: STATUS procedure)
to determine where system output is currently listed (that is,
what the current SYSLIST assignment is); and the SYSLIST
procedure (see index entry: SYSLIST procedure) to change
'the current SYSLIST assignment.

Copy Control Statement Formats

Reader-to-Library: Control statements required for adding or replacing a procedure or
sou rce mem ber are:

/I COpy FROM.READER.LlBRARy.j ~\ .NAME·name.TO·Fl [:~~~:~:~J

Library member (blanks are removed from statements before the statements are
put in the library, and reinserted for printing)

II CEND Must always follow the procedure or source statements being placed
in the library.

Library-to-Library: Control statements depend on the function required.

• Copy a member from the library to the library, changing the name of the member:

,RECl-number

II COpy FROM-F1'LlBRARY-l~I'NAME-name'TO-F1'NEWNAME-name r,RETAIN-pl
o ~RETAIN-RJ
R

• Copy a member having a certain name or all members having the name:

II COpy FROM-F1,LlBRARY- ~~~ ~··'NAME.name'TO'Fl I.RETAIN·pl .NEWNAME.name
R lRETAIN-RJ

All

Utility Program Descriptions-$MAINT 189

190

• Copy members, either of a specified type or of all types, that have names begin
ning with certain characters:

1/ COpy FROM-Fl,LlBRARY-) ~ (,NAME-Characters_ALL,

?ALL~
I.RETAIN-P]

TO-Fl ~RETAIN-R ,NEWNAME-characters

• Copy members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

1/ COpy FROM-Fl,LlBRARY- ~ ~ (,NAME-

~AJ
{

name }
characters.All '

[
RETAIN-pJ {name} TO-Fl ' RETAIN-R ,NEWNAME-characters,OM IT- characters.All

, SYSTEM

Library-to-File, Record Mode: Control statements depend on the function required.

Note: Source or procedure members (record mode) copied from the library to a
file must be converted to a basic data exchange diskette file by the TRANSFE R
procedure if the diskette file is to be used as input to other systems.

• Copy or add a library member to a file:

. {,RECl-number} II COpy FROM-Fl,TO-DISK,FllE-fllename ,ADD-YES ,NAME-name,

LlBRARY- {~}

• Copy or add a member having a certain name or both members-two permitted
types-having the name:

. {,RECl-nUmber} /I COpy FROM-Fl ,TO-DISK,FI LE-fllename ,ADD-YES

LlBRARY- j ~ l .
{All)

,NAM E-name,

• Copy or add members, either of a specified type or of all (two) permitted types,
that have names beginning with certain characters:

. {,RECl-nUmber} II COpy FROM·F 1 ,TO-DISK,FI lE-fllename ,ADD-YES ,NAM E-characters.All,

L1BRARY- { ~ }
ALL

• Copy or add all members of the two permitted types except SCP members:

. {,RECl-nUmber} II COpy FROM-Fl,TO-DISK,FllE-fllename ,ADD-YES ,NAME-All,

LIBRARY-ALL

• Copy or add members, either of a specified type or of all (two) permitted types,
omitting members that have a certain name or have names beginning with certain
characters, or omitting all SCP members:

{
,RECl-nUmber} NAME- {name } II COpy FROM-Fl,TO-DISK,FllE-filename ,ADD-YES ' characters.All

{
S } {name } L1BRARY-, P ,OMIT- characters.ALl

ALL SYSTEM

Library-to-File, Sector Mode: Cqntrol statements depend on the function required.

• Copy or add a library member to a file:

II COpy FROM-Fl ,TO-DISK,FI lE-filename,NAME-name,

LlBRARY- gl CADD-YES]

• Copy or add a member having a certain name or all members having the name:

II COpy FROM-Fl,TO-DISK,FllE-filename,NAME-name,

L1BRARY- .. ~ .. ~ ~ GADD-YES]

?ALL~

Utility Program Descriptions-$MAINT 191

192

• Copy or add members, either of a specified type or of all types, that have names
beginning with certain characters:

II COPY FROM-Fl ,TO-DISK,FI LE-filename,NAME-characters.ALL,

LlBRARY- ~ ~ (GADD-YES]

?ALL~
• Copy or add all members except SCP members:

II COPY FROM-Fl ,TO-DISK,FI LE-filename,NAME-ALL,

LIBRARY-ALL [ADD-YES]

• Copy or add members, either of a specified type or of all types, omitting mem
bers that have a certain name or have names beginning with certain characters,
or omitting all SCP members:

II COpy FROM-Fl ,TO-DISK,FI LE-filename,

ALL P name lSI NAME- {name } ,LlBRARY-, 0 ,OMIT- {characters.ALL} GADD-YES]
characters.ALL R SYSTEM

ALL

• Copy or add all members (SCP and non-SCP) that have had a PTF applied to them,
with the option to omit specified members or all SCP members:

{
ALL '} II COPY FROM-Fl ,TO-DISK,FI LE-filename,NAME- name ,

characters.ALL

LlBRARy-i ~ ! ,PTF-YES [OMIT- {:~::cters.ALL}~ [ADD-YES]
R SYSTEM U

ALL

File-to-Library: Control statements depend on the function required.

• Copy a member or members from a file to the library:

II [
,RETAIN-pl ' .

COPY FROM-DISK,TO-Fl ,RETAIN-RJ ,FI LE-fllename

• Copy a member that has had a particular PTF applied to it, from a file to the
library:

/I COpy F ROM-O ISK.TO-F 1 [:~~~: ~::] .F I LE-filename.PTF-number

• Copy a member or members from a file to the library, omitting members that do
not presently exist in the library.

II COpy F 0 0 SK TO F
[

,RETAIN-pJ FILE' R M- I , - 1 ,RETAIN-R' -fliename,OMIT-NEW

Note: $MAINT can copy a sector mode file to the library only if the file was copied
from the library by $MAINT. See the preceding description, Library-to-file, Sector
Mode and index entry: TOLIBR procedure.

Library-to-Printer: Control statements depend on the function required.

• Print a member having a certain name or all members having the name:

/I COpy FROM-Fl.LlBRARY- ~ ~ ~ .NAME-name.TO-PRINT

?ALL~
• Print all members of a certain type:

1/ COpy FROM-Fl.LlBRARY-! ~ l.NAME-ALL.TO-PRINT

• Print members, either of a specified type or of all types, that have names begin
ning with certain characters:

II COpy FROM-Fl.LlBRARyj ~ ~ .NAME-characters_ALL.TO-PRINT

(ALj

Utility Program Descriptions-$MAINT 193

194

• Print members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

II COpy FROM-F1,LlBRARy-j ~ (,NAME-

ALJ
{

name }
characters.ALL '

{

name }
TO-PRINT,OMIT- characters.ALL

SYSTEM

• Print the directory entries for members of a cert~intype:

/I COpy FROM-Fl,LlBRARY- ! ~l ,NAME-OIR,TO-PRINT

• Print all directory entries and system information from the directory area:

II COpy FROM-F1,LlBRARY-ALL,NAME-DI~,TO-PRINT

• Print the system information in the directory area:

II COpy FROM-F1,LlBRARY-SYSTEM,NAME-DIR,TO-PRINT

• Print directory entries, either for members of a specified type or for all members,
omitting entries for members that have a certain name or names beginning with
certain characters, or omitting all entries for SCP members:

/I COpy FROM-Fl,LlBRARY- ~ ~ (,NAME-OI R,TO-PRI NT,

?ALL~
{

name }
OMIT- characters.ALL.

SYSTEM

Note: If the display screen and not the printer is used to list library members or
directory entries, only the first 40 bytes of each output line are displayed. To en
sure that all the information in a library member or directory entry is listed, assign
the printer to list the output. You can use the STATUS procedure (see index entry:
STATUS procedure) to determine where system output is currently listed (that is,
what the current SYSLIST assignment is); you can use the SYSLIST procedure
(see indexentry:SYSLIST procedure) to change the current SYSLIST assignment.

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

6 A program temporary fix (PTF) has been applied to this program.

7 This is a load member containingoverlays.

Byte 1:

o Reserved.

1 Reserved.

2 This program reads source itself. The member can contain a COMPI LE
statement (see index entry: //COMPILE statement) and a no-source
required attribute (bit 4 of byte Ooff-O).

3 This program requires that $WORK2 be allocated.

4 This SCP member has been translated from English into another
language.

5 This program requires that a new load address be calculated at load time to
ensure that it is placed in main storage at a point beyond its own common
region.

6

7

This program reads utility control statements.

This program contains a where-to-go table. It is used by the
transient cross reference resolver program (#0 X R F).

LINK ADDR For load members only. The main storage address, in
decimal and hexadecimal, assigned to the member when
it is linked in main storage with other load members.

RLD DISP

ENTRY ADDR

PROG SIZE

LEVEL

For load members only. Displacement, in decimal and
hexadecimal, of first RLD (relocation dictionary) in
member in first sector containing R LOs.

For load members only. Main storage address, of entry
point of member in decimal and hexadecimal.

For load members only. Decimal and hexadecimal num
ber of sectors required to run the program contained in
the member.

• Release level of the system programs.

• For user's programs, this can be assigned by the overlay linkage
editor.

• For source and procedure members, the release level when the
members were created.

• RPG load members have a level number or zero.

Utility Program Descriptions-$MAINT 195

196

Copy Examples

Library-to-Library: The following is an example of a library-to-library copy.

Copy a load member presently named ACCT in order to give it a new name, ACCT1 :

II LOAD $MAINT
II RUN
II COpy FROM-F1,UBRARY-0,NAME-ACCT,TO-F1,NEWNAME-ACCT1
II END

Library-to-File: The following examples demonstrate copying from the library to a file.

Copy a procedure member named PAYROLL in sector mode (hexadecimal format,
compressed data) to a disk file named PAY that is 30 sectors long and is to be re
tained permanently:

I I LOAD $MAI NT
II FILE NAME-PAY,UNIT-F1,BLOCKS-3,RETAIN-P
II RUN
II COpy FROM-F1,TO-DISK,FILE-PAY,NAME-PAYROLL,UBRARY-P
II END

Copy a source member named SAM in record mode (expanded format, includes
blanks) with a record length of 80 to a disk file named BOB that is 20 sectors long
and is to be retained only temporarily:

II LOAD $MAINT
II FILE NAME-BOB,UNIT-F1 ,BLOCKS-2,RETAIN-T
II RUN
II COpy FROM-F1 ,TO-DISK,FILE-BOB,RECL-80,NAME-SAM,L1BR.ARY-S
II END

Copy a source member or procedure member named SAM in record mode (expand
ed format, includes blanks) with a record length of 80 to a disk file named BOB
that is 20 sectors long and is to be retained only temporarily. Then using the
TRANSFER procedure, convert the disk file named BOB to a basic data exchange
diskette file named BOB, on a diskette with a vol-id of 111222 and a retention
period of 30 days:

I I LOAD $MAI NT
II FILE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T
II RUN
II COpy FROM-F 1 ,TO-DISK,FI LE-BOB,RECL-80,NAME-SAM,U BRARY-S
II END
TRANSFER BOB,F1 ,751215,111222,30

Notes:
1. The date format on the TRANSFER procedure must be in yymmdd format if

you are creating basic data exchange diskette files to use with other systems_
2. Source or procedure members (record mode) copied from the library to a file

must be converted to a basic data exchange diskette file by the TRANSFER
procedure if the diskette file is to be used as input to other systems.

ADD-YES

NEWNAME-name

N EWN AM E -ch aracte rs

OMIT-name

OM IT-characters.All

Record Mode: Record mode is specified by the RECl
parameter used with the TO-DISK parameter (each is
described i~ a preceding paragraph). Record mode can
be specified only for source and procedure members.
Source and procedure member copies made in record
mode are preceded by a II COpy utility control state
ment and followed by a II CEND utility control state
ment. (The format of the I I COpy uti I ity control state
ment is:

II COpy NAME-name,LlBRARY- {~} where name is

the member name and P or S indicates procedure or source
member. The format of the II CEND utility control state
ment is II CEND.) The member itself is in expanded for
mat; that is, the data is not compressed-all blanks are
included.

Sector Mode: The TO-D ISK parameter without the
RECl-number parameter specifies sector mode. A sector
mode copy can be specified for any type (load, procedure,
source, or subroutine) of library member. In sector mode,
copies are in hex format and consist of control informa
tion and PTF (program temporary fix) numbers for any
PTFs that have been applied to a member, followed by
the member as it exists in the library.

Add library member(s) to an existing file that contains
library members. If ADD-YES is not specified,
ADD-NO is assumed.

Notes:
1. When adding a member to a disk file, the file must con

tain enough unused space to hold the member. When
adding a member to a diskette file, the file must be the
last active (unexpired) file on the diskette.

2. The RECl parameter (described in preceding paragraph)
is not allowed if ADD-YES is specified. The record
length is determined by the record length of the exist
ing file. The record length of the existing file also de
termines whether a member is added in record or sec
tor mode. If the record length of the existing file is
40 to 120, the source or procedure member is added
in record mode. If the record length of the existing
file is 32, the member is added in sector mode.

Name desired for a new member(s). Valid only for a
library-to-library copy.

Beginning characters (maximum of seven) of the name
desired for a new library member(s). Must be the same
number of characters as specified in the NAM E-charac
ters.All parameter described in a preceding paragraph.

Omit the entry specified by name.

Omit all entries whose names begin with the specified
characters (maximum of seven characters).

Utility Program Descriptions-$MAINT 197

198

OM IT-SYSTEM

OMIT-NEW

FI lE-filename

PTF-YES

PTF-NO

PTF-number

Omit all SCP members.

Omit copying all members that do not presently exist in
the library.

Thename of the file given on the OCl FI lE statement
referring to the input or output file.

Specifies that only members that have had a PTF applied
to them are to be copied to the file. Valid only when
copying in sector mode from the library to a file:
FROM-F 1,TO-DISK.

The members that have had a PTF applied to them have
no particular significance. They are copied if the name
is the same as the specified name. If the PTF parameter
is not specified, the default value is PTF-NO.

Only the member(s) with the specified PTF log number
(00001 through 65535) are selected from the file and
copied to the library. The PTF keyword having a numeric
value is only valid when copying in sector mode from file
to library: FROM-DISK,TO-F1.

Copy OCL and Utility Control Statement Sequence

II lOAD $MAINT

[II FI lE ...] A FI lE statement is required only if copying TO-DISK or
FROM-DISK; that is, from the library to a file, or from a file
to the library.

II RUN
II COPY ...
II END

Using the Copy Function

Naming Library Members: Considerations that apply to naming library members are:

• The first character of each member name must be alphabetic, #, $, or @. Member
names can be any combination of characters (numeric, alphabetic, and special)
except commas, periods, single quotes ('), blanks, question marks (?), slash (/), and
hyphen (-). The question mark (?), slash (/), and hyphen (-) have special meanings
in procedures (see index entry: procedure parameters) and in certain control
statements and should not be used in member names. The names of all IBM-sup

plied SCP load and subroutine members begin with a pound or dollar sign (# or $).
Therefore, to avoid possible duplication, do not use a pound or dollar sign as the
first character in names you assign.

• A name can be from one to eight characters long.

• ALL, 01 R, and SYSTEM must not be used as member names. They have special
meanings in the LIBRARY, NAME, and OMIT parameters.

• Members of the same type cannot have the same name, but members of different
types can. For example, two procedure members cannot have the same name,
but a procedure member and a source member can have the same name.

Utility Program Descriptions-$MAINT 199

200

Printing from the Library: Library members can be printed by using a library-to-printer

request. When the statements are printed, blanks are reinserted into statements
contained in source and procedure members. Load and subroutine members are
printed in hex format.

Library-to-printer requests can also be used to print system information contained
in the library directory area and to print directory entries. Figure 7 shows a sample
printout of system information contained in the library directory area. Figure 8
shows the information given in a printout of a directory entry. The figure is followed
by an explanation of the fields shown.

SYSTEM INFORMATION 01-01-75

START SECTOR OF LIBRARY

END SECTOR OF LIBRARY

TOTAL NUMBER OF LIBRARY BLOCKS

START SECTOR OF DIRECTORY

END SECTOR OF DIRECTORY

DIRECTORY SECTORS

ACTIVE DIRECTORY ENTRIES

AVA I LABLE D I RECTORY, ENTR I ES

START SECTOR, INQUIRY/OFFLINE AREA

END SECTOR OF INQUIRY/OFFLINE AREA

START SECTOR OF SCHEDULER AREA

END SECTOR OF SCHEDULER AREA

START SECTOR OF LIBRARY MEMBERS

END SECTOR OF LIBRARY MEMBERS

ACTIVE LIBRARY MEMBER SECTORS

AVAILABLE MEMBER SECTORS

NEXT AVAILABLE MEMBER SECTOR

184/00B8

5600/15EO

542/021E

184/00B8

243/00F3

60/003C

345/0159

292/0124

244/00F4

363/016B

364/016C

533/0215

534/0216

5600/15EO

1943/0797

2549/09F5

3052/0BEC

Note: The first of the two numbers given in the column at the right is a decimal
number, the second is hexadecimal. (In the example 184/00B8, 184 is the decimal
value of hexadecimal 00B8.)

Figure 7. Sample Printout of System Information

LIBRARY DIRECTORY MM DD YY

TYPE NAME START ADDR TOTAL NUM TEXT/RECORD ATTRIBUTES LINK ADDR RLD DISP ENTRY ADDR PROG SIZE LEVEL

X member dec/hex dec/hex dec/hex 2 bytes dec/hex dec/hex dec/hex dec/hex n

Figure 8. Information in Printout of Library Directory Entry

Following is an explanation of the fields shown in Figure 8.

TYPE Type of library member described by the entry:
S source member
P procedure member
o load member
R subroutine member

NAME Name of the library member.

START ADDR Sector number of the first sector of the member in both
decimal and hexadecimal.

TOTAL Total number of sectors in the member, in decimal and
hexadecimal.

NUM TEXT/RECORD For source and procedure members, record length of the
member, given in decimal and hexadecimal. For load
members, the number of text sectors contained in the
member, excluding R lDs-relocation dictionaries-which
are the part of a load member used for adjusting main
storage addresses when the member is moved to main
storage. (For subroutine members, blank.)

ATTRIBUTES Two bytes, 16 bits, of attributes giving detailed charac
teristics of the member,

Bit Meaning When On (1)

Byte 0:

o This member is an SCP member. This bit is used to prevent SCP members
from being deleted or removed,

1 Reserved.

2 Reserved.

3 Reserved.

4 This program requires that $WORK and $SOURCE be allocated. $SOURCE
must be filled from the keyboard, a source member, or an inline source from
a procedure (queued job stream).

5 This SCP module is not part of the basic SCP system,

Utility Program Descriptions-$MAINT 201

202

6 A program temporary fix· (PTF) has been applied to this program.

7 This is a load member containing ov~rlays.

Byte 1:

o Reserved.

Reserved.

2 This program reads source itself. The member can contain a COMPI LE
statement (see index entry: II COMPILE statement) and a no-source
required attribute (bit 4 of byte 0 off-O).

3 This program requires that $WORK2 be allocated.

4 This SCP member has been translated from English into another
language.

5 This program requires that a new load address be calculated at load time to
ensure that it is placed in main storage at a point beyond its own common
region.

6

7

This program reads utility control statements.

This program contains a where-to-go table. It is used by the
transient cross reference resolver program (#OXRF).

LINK ADDR For load members only. The main storage address, in
decimal and hexadecimal, assigned to the member when
it is linked in main storage with other load members.

RLD DISP

ENTRY ADDR

PROG SIZE

LEVEL

For load members only. Displacement, in decimal and
hexadecimal, of first R LD(relocation dictionary) in
member in first sector containing R LDs.

For load members only. Main storage address, of entry
point of member in decimal and hexadecimal.

For load members only. Decimal and hexadecimal num
ber of sectors required to run the program contained in
the member.

• Release level of the system programs.

• For user's programs, this can be assigned by the overlay linkage
editor.

• For source and procedure members, the release level when the
members were created.

• RPG load members have a level number or zero.

Copy Examples

Library-to-Library: The following is an example of a library-to-library copy.

Copy a load member presently named ACCT in order to give it a new name, ACCT1 :

I I LOAD $MAI NT
II RUN
II COpy FROM-F1 ,LlBRARY·0,NAME-ACCT,TO-F1 ,NEWNAME-ACCT1
II END

Library-to-File: The following examples demonstrate copying from the library to a file.

Copy a procedure member named PAYROLL in sector mode (hexadecimal format,
compressed data) to a disk file named PAY that is 30 sectors long and is to be re
tained permanently:

I I LOAD $MAI NT
II FILE NAME-PAY,UNIT-F1,BLOCKS-3,RETAIN-P
II RUN
II COpy FROM-F1 ,TO-DISK,FI LE-PAY,NAME-PAYROLL,LlBRARY-P
II END

Copy a source member named SAM in record mode (expanded format, includes
blanks) with a record length of 80 to a disk file named BOB that is 20 sectors long
and is to be retained only temporarily:

II LOAD $MAINT
II FI LE NAME-BOB,UNIT-F1 ,BLOCKS-2,RETAIN-T
/I RUN
/I COpy FROM-F1 ,TO-DISK,FI LE-BOB,RECL-80,NAME-SAM,LlBRARY-S
/I END

Copy a source member or procedure member named SAM in record mode (expand
ed format, includes blanks) with a record length of 80 to a disk file named BOB
that is 20 sectors long and is to be retained only temporarily. Then using the
TRANSFER procedure, convert the disk file named BOB to a basic data exchange
diskette file named BOB, on a diskette with a vol-id of 111222 and a retention
period of 30 days:

I I LOAD $MAI NT
/I FI LE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T
// RUN
1/ COPY FROM-F1 ,TO-DISK,FI LE-BOB,RECL-80,NAME-SAM,LI BRARY-S
// END
TRANSFER BOB,F1,751215,111222,30

Notes:
1. The date format on the TRANSFER procedure must be in yymmdd format if

you are creating basic data exchange diskette files to use with other systems.
2. Source or procedure members (record mode) copied from the library to a file

must be converted to a basic data exchange diskette file by the TRANSFER
procedure if the diskette file is to be used as input to other systems.

Utility Program Descriptions-$MAINT 203

204

Copy all members named PAYDAY in sector mode to a disk file named PAYROLL
that is 60 sectors long, starts at location 1500, and is a temporary file:

II LOAD $MAINT
/1 FILE NAME-PAYROLL,UNIT-F1,BLOCKS-6,LOCATION-1500,RETAIN-T
II RUN
II COpy FROM-F 1 ,TO-DISK,FI LE-PAYROLL,NAME-PAYDAY,L1BRARY-ALL
II END

Copy source and procedure members named PAYDAY in record mode with a record
length of 120 to a disk file named PAY that is 80 sectors long and is to be retained
permanently:

II LOAD $MAINT
II FILE NAME-PAY,UNIT-F1,BLOCKS-8,RETAIN-P
II RUN
II COPY FROM-F1,TO-DISK,FILE-PAY,RECL-120,NAME-PAYDAY,

LIBRARY-ALL
II END

Copy in sector mode all members whose names begin with a dollar sign ($). Copy
the members to a file named UTI L that has a retention period of 90 days and is on
a diskette whose vol-id is UTI LlTY:

II LOAD $MAINT
II FILE NAME-UTIL,UNIT-11,RETAIN-90,PACK-UTILITY
II RUN
II COpy FROM-F1 ,TO-DISK,FI LE-UTI L,NAME-$.ALL,LlBRARY-ALL
II END

Copy all source and procedure members whose names begin with the characters RPU,
in record mode, with an 80-byte record length. Copy the members to a disk file
named RPSD that is 50 sectors long and is classified as a permanent file:

II LOAD $MAINT
II FILE NAME-RPSD,UNIT-F1,BLOCKS-5,RETAIN-P
II RUN
II COpy FROM-F1 ,TO-DISK,FI LE-RPSD,RECL-80,NAME-RPU.ALL,

LIBRARY-ALL
II END

Copy in sector mode all members whose names begin with the characters PA, omit
ting members whose names start with PAY. Copy the members to a disk file named
PAYR that is 60 sectors long and is classified as a temporary file:

II LOAD $MAINT
II FILE NAME-PAYR,UNIT-F1,BLOCKS-6,RETAIN-T
II RUN
II COPY FROM-F1 ,TO-DISK,FI LE-PAYR,NAME-PA.ALL,LlBRARY-ALL,

OMIT-PAY.ALL
II END

Message Text Statement

The format of the message text statement is:
MIC Text

• MIC (message identification code). The MIC must be specified as a 1 to 4 charac
ter decimal number from 0 to 9999 and must be left-justified within the first
four positions of the message text statement. The MIC must be in ascending
order, relative to the MIC for the preceding message text statement, or the same
MIC specified on consecutive message text statements to concatenate the text
area. The number of statements that can be concatenated is restricted to the
minimum number required to specify up to 200 characters of message text area.

The MICs for the command keys are listed with the corresponding data
characters:

MIC

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

Command Key
(lowercase)

2

3

4

5

6

7

8

9

o

- (minus)

MIC

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

Command Key
(uppercase)

@

$

%

&

*

(underscore)

+

• Text (text area of the message text statement). The text area of each message
text statement starts at position six and extends to the end of the message text
statement (length of statement depends on record length of message source
member). The text for a message is the series of characters from the start of the
text area to the last nonblank character of the text area for the MIC. If text can
not be contained on one message text statement, it can be continued on following
message text statement(s) specifying the same MIC. The text area on foilowing
statement(s) is appended to the text area of the preceding statement before trail
ing blanks for the total text specified are dropped. A message text of one blank
will be generated for a message text statement containing a blank text area.

Utility Program Descriptions-$MGBLD 205

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Comment Statement (Optional)

206

The format of the comment statement is:

* ... comment ...

Comment statements must have an * as the first character. Comment statements
can be interspersed with the message text statements. These statements, intended to
provide additional information about the message, do not become part of the mes
sage load member.

An Example of Creating a Message Source Member and Load Member

Assume that you want to enter from the keyboard into the library a message source
member named USERMI. See the reader-to-library copy function of $MAINT (see

index entry: $MAINT utility program). For more examples see index entry:
creating and using messages.

USERMSG,1
{

A message control statement, USERMSG is the load-name and
1 is the message level.

1234 ENTER YESTERDAY'S DATE. {MeSSage text statements; 1234, 1235,
1235 ENTER TODAY'S DATE. and 1236 are MICs. The message text
1236 ENTER TOMORROW'S DATE. follows the MICs.

* THE ABOVE MESSAGES ARE FOR PROGX. ~ A comment statement.

To create a message source member named USERMI from the above statements, you
would enter on the keyboard:

I I LOAD $MAI NT
II RUN
II COpy FROM-READER,UBRARY-S,NAME-USERMI,TO-F1,RETAIN-P,RECL-45
USERMSG,1
1234 ENTER YESTERDAY'S DATE.
1235 ENTER TODAY'S DATE.
1236 ENTER TOMORROW'S DATE.
* THE ABOVE MESSAGES ARE FOR PROGX.
II CEND
II END

To create a message load member named USERMSG from the above source member
(USERMI), you could use the CREATE procedure (see index entry: CREATE pro
cedure), entering:

CREATE USERMI

An Example of Assigning a Command Key to a Procedure

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21"7993

Assume that you want to enter from the keyboard into the library a message source
member named JOE with the fo"owingstatements. See the reader-to-library func
tion of $MAINt. (See index entry: $MA/NT utility program.) Assume also that
you want command key 1 to represent the CATALOG command statement and
command key 2 to represent the DATE command statement. Then when you need
to execute one of these two procedures you can press the CM D key, the upper or
lower case assigned key, and the ENTER key, instead of entering the command state
ment for commonly used procedures.

##MSG3,2

{

A message control statement; ##MSG3 is the load-name and 2
is the level of load member being created (see index entry:
command keys, assigning).

0001 CATALOG ALL,Fl
0002 DATE 12/19/75

{

Message text statements. ; 0001 and 0002 are the
command key MICs. The message text follows
the MICs and represent procedures.

To create a message source member named JOE from the above statements, you
enter on the keyboard:

/ / LOAD $MAI NT
II RUN
Il COpy FROM-READER,LlBRARY-S,NAME-JOE,TO-F1,RECL-120
##MSG3,2
0001 CATALOG ALL,F1
0002 DATE 12/19/75
II CEND
II END

To create a message load member named ##MSG3,2 from the source member (JOE),
you can use the CREATE procedure. (See index entry: CREATE procedure.) The
CREATE procedure entry from the keyboard is:

CREATE JOE

Now you must perform an IPL (initial program load).

Utility Program Descriptions-$MGBLD 207

Page of GC21-7593-3
Issued 22 November 1978
BV TNl; GN21-7993

$PACK-DISK REORGANIZATION UTILITY PROGRAM

208

$PACK reorganizes the disk so that all free space on the disk is collected in one area at the
high end of the disk. The reorganization is accomplished by successively moving each
data file as closely as possible to the library.

If a file is being moved to a space that is smaller than the file, $PACK must over-
lay portions of the file in the process of moving it. Consequently, $PACK takes spe
cial precautions to ensure that data is not lost if a system failure occurs while $PACK
is being used. If it is possible that data may be lost after such a failure, $PACK must
be the first program run, except for $LABEL (see index entry: $LABEL utility pro
gram), after successful restart of the system.

To determine if $PACK must be rerun after a system failure occurred while $PACK
was being used, evoke the $LABEL uti'lity to display the disk Vl'OC. If data integ
rity on the disk w~s unaffected b'/ the system failure, each VTOC entry is displayed.
If there is a chance that data may be lost from a file, instead of that file's label being
displayed, the following message is displayed on the display screen:

$PACK MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM THIS FILE.

$PACK is evoked by the COMPRESS procedure and APCHANGE procedure (see
index entries: COMPRESS procedure and APCHANGE procedure).

Note: Because files are physically moved by $PACK, the locations specified by
LOCATION parameters in FILE statements fo'r the moved files (see index entry:
II FILE statement) will not be valid. To determine new file locations after using
$PACK, use the $LABEL utility or CATALOG procedure to display the diskVTOC.

To accumulate the free space at the low end of the disk, see $FREE-DISK Reorganization
Utility Program. ' ,

$PACK Utility Control Statement Format

Because $PACK always reorganizes the disk in the same manner, utility control state-
ments are not used. .

$PACK OCl Sequence

II LOAD $PACK
II RUN

Delete Examples

Delete a non-SCP source member named PAYROLL:

I I LOAD $MAI NT
II RUN
II DELETE LlBRARY-S,NAME-PAYROLL
II END

Delete all non-SCP members whose names begin with the characters INV:

I I LOAD $MAI NT
II RUN
II DELETE lIBRARY-ALL,NAME-INV.ALL
II END

Delete all non-SCP procedures:

I I LOAD $MAI NT
II RUN
II DELET~ LlBRARY-P,NAME-ALL
II END

Compress Function

Compress Use

Compress the library member area by collecting all unusable space into one area at
the end of the last active library member sector.

Compress Restrictions

The following restrictions apply to using the compress function:

• The library member area cannot be greater than 2867 blocks.

• If a permanent disk error occurs while the compress function is executing, there
is no error recovery. The library must be reloaded from diskette (see index
entry: RELOAD procedure).

Compress Control Statement Format

II COMPRESS

Compress Parameters

None

Utility Program Descriptions-$MAINT 209

210

Compress OCL and Utility Control Statement Sequence

II LOAD $MAINT
II RUN
II COMPRESS
II END

$MGBlD-CREATE MESSAGE MEMBER UTILITY PROGRAM

The $MGBlD utility program creates a message load member in the library. A mes
sage load member is the special type of library load member from which the SCP
retrieves the text associated with the message identification code (M IC) specified by
a calling program.

$MGBLD is evoked by the CREATE procedure (see index entry: CREATE
procedure) .

$MGBlD Utility Control Statement Format

1/ MGBLD SOURCE-soureename [scp- {~~S}J [REPLACE- {~~S}]

$MGBlD Parameters

SOU RCE-sourcename

SCP-
YES
NO

REPLACE-
YES
NO

Specifies the name of the library message source member
that contains the message control statement and message
text statements (MIC and text) required to create a mes
sage load member. See Message Source Member following
for information about message control statements and
message text statements.

If YES is specified, the message ,load member created is
ide'ntified as an SCP member and cannot be deleted by
the REMOVE procedure (see index entry: REMOVE
procedure).

If NO is specified, the message load member is not identi
fied as an SCP member. NO is the default.

If YES is specified, the message load member replaces an
existing member with the same name.

If NO is specified, an existing member with the same
name is not replaced. An error message is displayed if
an attempt is made to replace a member. NO is the
default.

$REBLD OCL Sequence

/I LOAD $REBLD
II RUN

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$RENAM-RENAME DATA FILE UTILITY PROGRAM

The $R ENAM utility program changes the name of a specified data file from its created
name to the name supplied by the utility control statement or by the RENAME command
statement. No other attribute of the selected file can be changed.

$RENAM Utility Control Statement Format

II RENAME LABEL-filename-1,NEWLABEL-filename-2 ,DATE-· ddmmyy .
[{

mmddYY}]

$R ENAM Parameters

LAB E L-filename-1

NEWLABEL-filename-2

{

mmddYY 1
DATE- ddmmyy

vymmdd

yymmdd

Specifies the file name to be changed. A file by this name must exist
on disk prior to evoking $RENAM.

Specifies the name of the file after being renamed.

Creation date of the disk file. When the file specified by
the LABEL parameter is part of a group of files with like
names but different creation dates, the DATE parameter
permits selection of a specific file. If the DATE parameter
is· omitted, the file with the most recent date is rEmamec[-

$RENAME OCL and Utility Control Statement Sequence

I I LOAD $R ENAM

~~ :~~AME LABEL-filename-l,NEWLABEL-filename-2 [DATE- { ::::; }]
[yymmdd

II END

Note: Multiple RENAME statements may be entered before the END statement.

$RENAM Examples

Change the name of a disk file named OLD to NEW.

II LOAD $RENAM
/1 RUN
/I RENAME LABEL-OLD,NEWLABEL-NEW
1/ END

Uti I ity· Program Descriptions-$S ETC F 211

Page of,GC21-7593-3
, Issued ,22 November 1978

By TNL: GN21-7993

Change the name of a disk file named A created on 10/17/78 to 8 when more than one file
exists with the name A.

II LOAD $RENAM
II RUN
II RENAME LABEL-A,NEWLABEL-8,DATE-101778
II END

$SETCF-SET UTI LlTY PROGRAM

212

$SETCF is used to change the following items:

• System environment

• BSC environment

• SDLC environment

• Override BSC specifications

• Specify SD LC specifications

• Trace functions

• MICR document movement

When the system is created for the first time (the initial IPL), values for these items
are recorded in the system .. These values can be changed by $SEtCF. If a value is
never changed, it retains its original status. If an item is changed, the new value is
reflected in subsequent IPls until the item is changed again (except fot the DEBUG-Y
parameter which is reset by each IPL or by the TRACE procedure).

$SETCF is evoked by the SET, ALTERBSC, ALTERSDL, OVERRIDE, SPECIFY,
TRACE, and SETMICR procedures (see index entries: SET procedure, AL TERBSC
procedure, AL TERSDL procedure, OVERRIDE procedure, SPECIFY procedure,
and TRACE procedure).

Note: The SETM ICR procedure is used to modify the method of moving MICR
documents through the 1255 Magnetic Character Reader attachment for diagnostic
purposes. For further information on the SETM ICR procedure and the 1255
Magnetic Character Reader, see IBM System/32 1255 Magnetic Character Reader
Reference and Logic Manual, GC21-7692.

Set the System Environment

Page of GC21-7693·3
ISlued 22 November 1178
By TNL: GN21-7193

The following system environment items can be defined by $SETCF:

• .BSC

• SOLC

• Number of lines printed per page

• Print belt image

• System date format

• System date

Utility Program Desci1Ption $S!'l"CF 212.1

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Utility Control Statement Format for Setting the System Environment

212.2

/I SETCF [LiNES-numberl [,IMAGE- {~~S}] [FORMAT- {~~n]
Note: Though each individual parameter is optional, at least one parameter must
be entered.

Parameters for Setting the System Environment

LINES-number

IMAGE-YES

IMAGE-NO

FORMAT-MDY

FORMAT-DMY

FORMAT-YMD

Specifies the number of lines to be printed per page. The value
specified can be 1 through 84.

Note: See index entry: II FORMS statement for the way the
value specified is used to determine the actual number of lines
printed per page.

The print belt image is to be modified to reflect a changed print
belt. An IMAGE OCl statement (see index entry: II IMAGE
statement) identifying the new image must precede the accom
panying II RUN statement if IMAGE-YES is specified in a
II SETCF statement.

The print belt image is not to be modified. IMAGE-NO is the
default value if IMAGE-YES is not specified.

System date format is to be month-day-year.

System date format is to be day-month-year.

System date format is to be year-month-day.

Note: Use yymmdd format if you are creating basic data ex
change format diskettes to use with other systems.

OCL and Utili~y Control Statement Sequence for Setting the System Environment

II lOAD $SETCF
[/1 DATE ...]

Note: If a date is given, it becomes the system date.

[/1 IMAGE ...]

Note: If a print belt image is specified by $SETCF, it becomes the image set by
IPL. If an image is specified by the II IMAGE OCl statement and not by $SETCF,
the image is established only until the next IPl is performed, at which time a differ
ent image may be specified for the system.

II RUN
II SETCF ...
II END

Comment Statement (Optional)

The format of the comment statement is:

* ... comment ...

Comment statements must have an * as the first character. Comment statements
can be interspersed with the message text statements. These statements, intended to
provide additional information about the message, do not become part of the mes
sage load member.

An Example of Creating a Message Source Member and Load Member

Assume that you want to enter from the keyboard into the library a message source
member named USERMI. See the reader-to-library copy function of $MAINT (see

index entry: $MA/NT utility program). For more examples see index entry:
creating and using messages.

USERMSG,1
{

A message control statement, USERMSG is the load-name and

1 is the message level.

1234 ENTER YESTERDAY'S DATE. {MeSSage text statements; 1234, 1235,
1235 ENTER TODAY'S DATE. and 1236 are MICs. The message text
1236 ENTER TOMORROW'S DATE. follows the MICs.

* THE ABOVE MESSAGES ARE FOR PROGX. ~ A comment statement.

To create a message source member named USERMI from the above statements, you
would enter on the keyboard:

II LOAD $MAINT
II RUN
II COPY FROM-READER,UBRARY-S,NAME-USERMI,TO-F1,RETAIN-P,RECL-45
USERMSG,1
1234 ENTER YESTERDAY'S DATE.
1235 ENTER TODAY'S DATE.
1236 ENTER TOMORROW'S DATE.
* THE ABOVE MESSAGES ARE FOR PROGX.
II CEND
II END

To create a message load member named USERMSG from the above source member
(USERMI), you could use the CREATE procedure (see index entry: CREATE pro
cedure), entering:

CREATE USERMI

Utility Program Descriptions-$MGBLD 213

214

An Example of Assigning a Command Key to a Procedure

Assume that you want to enter from the keyboard into the library a message source
member named JOE with the following statements. See the reader-to-library func
tion of $MAINT. (See index entry: $MA/NT utility program.) Assume also that
you want command key 1 to represent the CATALOG command statement and
command key 2 to represent the DATE command statement. Then when you need
to execute one of these two procedures you can press the CM D key, the upper or
lower case assigned key, and the ENTER key, instead of entering the command state
ment for commonly used procedures.

##MSG3,2

{

A message control statement; ##MSG3 is the load-name and 2
is the level of load member being created (see index entry:
command keys, assigning).

0001 CATALOG ALL,Fl
0002 DATE 12/19/75

{

Message text statements; 0001 and 0002 are the
command key MICs. The message text follows
the M I Cs and represent procedures.

To create a message source member named JOE from the above statements, you
enter on the keyboard:

II LOAD $MAINT
II RUN
II COPY FROM-READER,LlBRARY-S,NAME-JOE,TO-Fl,RECL-120
##MSG3,2
0001 CATALOG ALL,Fl
0002 DATE 12/19/75
II CEND
II END

To create a message load member named ##MSG3,2 from the source member (JOE),
you can use the CREATE procedure. (See index entry: CREATE procedure.) The
CREATE procedure entry from the keyboard is:

CREATE JOE

Now you must perform an IPL (initial program load).

$PACK-DISK REORGANIZATION UTILITY PROGRAM

$PACK reorganizes the disk so that all free space on the disk is collected in one area at the
high end of the disk. The reorganization is accomplished by successively moving each
data file as closely as possible to the library.

If a file is being moved to a space that is smaller than the file, $PACK must over-
lay portions of the file in the process of moving it. Consequently, $PACK takes spe
cial precautions to ensure that data is not lost if a system failure occurs while $PACK
is being used. If it is possible that data may be lost after such a failure, $PACK must
be the first program run, except for $LABEL (see index entry: $LABEL utility pro
gram), after successful restart of the system.

To determine if $PACK must be rerun after a system failure occurred while $PACK
was being used, evoke the $LABEL utility to display the disk VTOC. If data integ
rity on the disk was unaffected by the system failure, each VTOC entry is displayed.

If there is a chance that data may be lost from a file, instead of that file's label being
displayed, the following message is displayed on the display screen:

$PACK MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM THIS FILE.

$PACK is evoked by the COMPRESS procedure and APCHANGE procedure (see
index entries: COMPRESS procedure and APCHANGEprocedure).

Note: Because files are physically moved by $PACK, the locations specified by
LOCATION parameters in FILE statements for the moved files (see index entry:
II FILE statement) will not be valid. To determine new file locations after using
$PACK, use the $LABEL utility or CATALOG procedure to display the disk VTOC.

To accumulate the free space at the low end of the disk, see $FREE-DISK Reorganization
Utility Program.

$PACK Utility Control Statement Format

Because $PACK always reorganizes the disk in the same manner, utility control state
ments are not used.

$PAC K OCL Sequence

II LOAD $PACK
II RUN

Utility Program Descriptions-$PACK 215

216

$QJOB-QUEUEDJOB STREAM CARD-TO-LiBRARY UTILITY PROGRAM

The $OJOB utility program transfers a job stream containing procedure and source
members created on cards to the System/32 library. $OJOB may be evoked by the
JOBSTR procedure (see index entry: JOBSTR procedure).

The job stream you create on cards can consist of multiple procedure and source
members. Each procedure and source member must begin with a COpy statement
and end with a CEND statement. The last record in your card deck must be a /*
statement and must immediately follow the last CEND statement.

The format of the COpy statement is:

II COpy NAME-name,LlBRARY- {~}

The name is the member name, and P or S indicates a procedure member or a
source member.

The format of the CEND statement is:

II CEND

The CENO statement is not valid within a source or procedure member. It is valid
only as the last statement for the source or procedure member.

A job stream created on cards could contain the following statements:

II COpy NAME-P1,LlBRARY-P

II CEND
II COpy NAME-P2,LlBRARY-P

II CEND
II COpy NAME-Sl,LlBRARY-S

II CEND

/*

$QJOB Utility Control Statement Format

Utility control statements are not used.

$QJOB OCL Sequence

The following entries are required to load and run the program:

I I LOAD $OJOB
II RUN

$REBLD-REBUILD DATA FILE UTILITY PROGRAM

For each file on the disk, a corresponding format 1 record exists. A format 1 record
contains system information that describes a file. $REBLD is used to restore, in the
disk VTOC, format 1 records for disk output files that were being processed when a
system failure occurred-a failure caused, for example, by a power failure or inadver
tent IPl. When $REBLD is used after a system failure, the output files are closed
and the format 1 records are written to the disk VTOC, allowing the data that was
written to the files prior to the system failure to be accessible to the user. In effect,
by restoring format 1 records to the VTOC, $REBLD restores data files that
might otherwise be lost. If $REBLD is not used after a system failure, certain out
put files may not be accessible to the user.

Note: $REBLD must be the first program run after a system failure unless the
system failed while the SPACK utility was being used (see index entry: SPACK
utility).

$REBLD searches the scheduler work area in the library for format 1 records that
are opened or opened and closed but not written to the disk VTOC. When such a
format 1 is found, a check is made to determine if the format 1 is for an input file
or for an output file. If the format 1 is for an input file, it is updated to a completed
status and written to the disk VTOC as in normal end-of-job processing. If the for
mat 1 is for an output file, another check is made to determine the file organization.

Sequential file
and
Pseudo tape file

Indexed file

Direct file

The logical end of file is made equal to the physical end of file.
The format 1 is updated to a completed status and written to
the disk VTOC via normal end-of-job processing.

The last indexed entry is checked for a valid data record. If
not valid, the previous indexed entry is checked, and so on,
until an indexed entry with a valid data record is found. The
format 1 is updated to a closed status. The keys are sorted
and the format 1 is written to the disk VTOC via normal
end-of-job processing.

The format 1 is updated to a completed status and written to
the disk VTOC via normal end-of-job processing.

Add and update files are treated as output files. $REBLD restores only temporary
(RETAIN-T) and permanent (RETAIN-P) files. Scratch files (RETAIN-S) are not
restored.

As $R EB LD runs, messages are issued giving the labels, filenames (from / / FILE
statements), creation dates, organization (sequential, indexed, direct, or pseudo
tape) of files restored, and the key of the last valid record for indexed files. If no
files required restoring, a message to that effect is issued. $REBLD is evoked by
the R EBU I LD procedure (see index entry : REBUILD procedure).

$REBLD Utility Control Statement Format

Utility control statements are not used.

Utility Program Descriptions-$REBLD 217

218

$REBLD OCL Sequence

II LOAD $REBLD
II RUN

$RENAM-RENAME DATA FILE UTILITY PROGRAM

The $RENAM utility program changes the name of a specified data file from its created
name to the name supplied by the utility control statement or by the RENAME command
statement. No other attribute of the selected file can be changed.

$RENAM Utility Control Statement Format

~ {
mmddYY}] II RENAME LABEL-filename-1,NEWLABEL-filename-2 ,DATE-· ddmmyy

$R ENAM Parameters

LABEL-filename-1

NEWLABEL-filename-2

{

mmddYY }
DATE- ddmmyy

yymmdd

yymmdd

Specifies the file name to be changed. A file by this name must exist
on disk prior to evoking $RENAM.

Specifies the name of the file after being renamed.

Creation date of the disk file. When the file specified by
the LABEL parameter is part of a group of files with like
names but different creation dates, the DATE parameter
permits selection of a specific file. If the DATE parameter
is omitted, the file with the most recent date is renamed.

$RENAM OCL and Utility Control Statement Sequence

II LOAD $RENAM

~~ :~~AME LABEL-filename-l.NEWLABEL-filename-2 ~DATE-{:::;; }]
[yymmdd

II END

Note: Multiple RENAME statements may be entered before the END statement.

$RENAM Examples

Change the name of a disk file named OLD to NEW.

II LOAD $RENAM
II RUN
II RENAME LABEL-OLD,NEWLABEL-NEW
II END

Change the name of a disk file named A created on 10/17/78 to B when more than one file
exists with the name A,

II LOAD $R ENAM
II RUN
II RENAME LABEL-A,NEWLABEL-B,DATE-101778
II END

$SETCF-SETUTI LlTY PROGRAM

$SETCF is used to change the following items:

• System environment

• BSC environment

• SD LC envi ronment

• Override BSC specifications

• Specify SDLC specifications

• Trace functions

• MICR document movement

When the system is created for the first time (the initial IPL), values for these items
are recorded in the system. These values can be changed by $SETCF. If a value is
never changed, it retains its original status. If an item is changed, the new value is
reflected in subsequent IPLs until the item is changed again (except for the DEBUG-Y
parameter which is reset by each IPL or by the TRACE procedure).

$SETCF is evoked by the SET, ALTERBSC, AL TERSDL, OVERRIDE, SPECIFY,
TRACE, and SETMICR procedures (see index entries: SET procedure, AL TERBSC
procedure, AL TERSDL procedure, OVERRIDE procedure, SPECIFY procedure,
and TRACE procedure).

Note: The SETMICR procedure is used to modify the method of moving MICR
documents through the 1255 Magnetic Character Readerattachment for diagnostic
purposes. For further information on the SETM ICR procedure and the 1255
Magnetic Character Reader, see IBM Systeml32 1255 Magnetic Character Reader
Reference and Logic Manual, GC21-7692.

Utility Program Descriptions-$SETCF 219

220

Set the System Environment

The following system environment items can be defined by $SETCF:

• Bse

• SOLC

• Number of lines printed per page

• Print belt image

• System date format

• System date

Utility Control Statement Format for Setting the System Environment

II SETCF rUNES-number] [,IMAGE- {~~S}] [,FORMAT- {e~~}]
Note: Though each individual parameter is optional, at least one parameter must
be entered.

Parameters for Setting the System Environment

LI N ES-num ber

IMAGE-YES

IMAGE-NO

FORMAT-MDY

FORMAT-DMY

FORMAT-YMD

Specifies the number of lines to be printed per page. The value
specified can be 1 through 84.

Note: See index entry: II FORMS statement for the way the
value specified is used to determine the actual number of lines
printed per page.

The print belt image is to be modified to reflect a changed print
belt. An IMAGE DCl statement (see index entry: II IMAGE
statement) identifying the new image must precede the accom
panying II RUN statement if IMAGE-YES is specified in a
II SETCF statement.

The print belt image is not to be modified. IMAGE-NO is the
default value if IMAGE-YES is not specified.

System date format is to be month-day-year.

System date format is to be day-month-year.

System date format is to be year-month-day.

Note: Use yymmdd format if you are creating basic data ex
change format diskettes to use with other systems.

DCL and Utility Control Statement Sequence for Setting the System Environment

I I lOAD $SETCF

[/1 DATE ...]

Note: If a date is given, it becomes the system date.

[II IMAGE .. .]

Note: If a print belt image is specified by $SETCF, it becomes the image set by
IPL. If an image is specified by the II IMAGE OCl statement and not by $SETCF,
the image is established only until the next IPl is performed, at which time a differ
ent image may be specified for the system.

II RUN
II SETCF ...
II END

Utility Program Descriptions-$SETCF 221

222

Example of Setting the System Environment

Replace the current print belt image with the image contained in the source mem
ber named BELT:

II LOAD $SETCF
II IMAGE MEM,BEL T
II RUN
II SETCF IMAGE-YES
II END

Set the BSC Environment

The following BSC (binary synchronous communications) items can be set by
$SETCF:

• Bits per seconds rate (bps)

• Modem clocking

• Debug facility

• Error r'etry count

• Standby line

• Modem test

• Non-USA tone

Note: The items listed are all related to data communications programming that
uses BSC. For background information on binary synchronous communications,
see General Information-Binary Synchronous Communications, GA27-3004.

For information on data communications programming, see IBM System/32
Data Communications Reference Manual, GC21-7691.

SETB Utility Control Statement Format for Setting the BSC Environment

Use the SETB utility control statement to set the BSC environment:

II SETB [BRATE- {~}] [,CLOCK- {~}] [,DEBUG- {~}] [ERC- {~umber}]

[,SLlNE. { ~ }] [,TEST- { ~ }] [,TONE- { ~ }]

For an explanation of the SETS parameters, see AL TERBSC Command Statement
Format.

Note: Though each individual parameter is optional, at least one parameter must
be specified.

If a parameter is omitted, the previous value is retained until a default value is given
(except for the DEBUG-Y parameter which is reset to DEBUG-N by each IPL or by
the TRACE procedure). If DEBUG-Y is specified, the system TRACE procedure
(see index entry: TRACE procedure) is replaced by the BSC trace function.

Parameters for Setting the BSC Environment

Parameter

BRATE-F
H

CLOCK-Y
N

DEBUG-Y
N

ERC-number

7

SLlNE-Y
N

TEST-Y

N

TONE-Y

N

Notes:

Meaning

Use the full rated speed of the modem.
Use only half the rated speed of the modem.

The System/32 must provide the programmed clocking facility.
Modem has the clocking facility.

Built-in debug facility is required, BSC trace is requested.
Built-in debug facility is not required, BSC trace is not requested.

Error retry count. The standard number of retries provided is
seven (the default numbed; if more than seven are desired, enter
a number up to 255. Valid numbers are 7 through 255.

Switched standby line is used for a point-to-point line.
The nonswitched line is used.

IBM modem is being used. Automatic wrap test includes modem
testing when a permanent error occurs, unless the user program
specified a permanent error indicator for the BSC file.
Non-I BM modem is being used. Automatic wrap test does not
include modem testing.

Non-USA special tone is required for manual answering and auto
matic answering.
Non-USA special tone is not required for manual answering and
automatic answering.

1. If the SLlNE-Y parameter is specified, then the line type (LI NE) in the I I SETR
utility control statement automatically defaults to a point-to-poim switched line
(LiNE-S).

2. If the SLiNE-N parameter is specified, then the line type (LINE) in the II SETR

utility control statement automatically defaults to the line type specified in the
user program sou rce statements (LI N E -R).

Example of Setting the BSC Environment

Change the current Bse error retry count to 10:

I I LOAD $SETCF
II RUN
II SETB ERC-10
II END

Utility Program Descriptions-$SETCF 223

224

Override BSe Specifications

The following BSC (binary synchronous communications) specifications can be

overridden by $SETCF:

• Tributary station address

• Line type

• Switch type

Note: The items listed are all related to data communications programming that
uses BSC. For background information on binary synchronous communications,

see General Information-Binary Synchronous Communications, GA27-3004. For
information on data communications programming, see IBM System/32 Data
Communications Reference Manual, GC21-7691.

Utility Control Statement Format for Overriding BSC Specifications

II SETR [ADDR-nnl [UNE-l ~ lJ [SWTYP- {~~} J
Notes:
1. Though each parameter is optional, at least one parameter must be specified.

2. To reset the ADDR parameter to the addressing characters specified by the user
program specifications, reenter a valid II SETR control statement omitting the
ADD R parameter. The addressing characters will default to the user program
specifications.

Parameters for overriding BSC specifications:

ADDR-nn Hexadecimal equivalent of one of the pair of tributary station
addressing characters. See Appendix G for the System/32
tributary station polling and addressing characters.

LlNE-C
P
R
S
T

Defaults to the user program specifications.

CDSTL (connect data set to line) switched line (World Trade only)
Point-to-point nonswitched line.
Line type specified in the user program source statements.

Point-to-point switched line.
Tributary station on multipoint line.

SWTYP-AA If switched line (LiNE-C or LlNE-S) is specified and the modem is
in auto-answer mode, then the System/32 automatically answers
the call.

MA If switched line (LiNE-C or LlNE-S) is specified, then the System/32
operator manually answers the call.

MC If switched line (LlNE·e or LlNE-S) is specified, then the System/32
operator manually initiates the call.

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Introduction To System Configuration, Installation, and Modification

System/32 programs are supported through the distribution of sequentially
numbered versions or modifications. A version replaces an entire program; a
modification generally replaces only the changed portions of a program. Each pro
gram has a version number and a modification level associated with it.

A release is a group of programs made available at the same time. Release generally
refers to the period of time for which it is supported; however, a release may consist
of programs with a different version/modification level identification. For example,
release 2 of SCP and program products may include three programs designated
version 02 modification 00, and one program designated version 01, modification 00.

The initial availability of a program is usually called version 01, modification 00.
Each subsequent modification raises the modification level by one. Each version
raises the version number by one and resets the modification level to zero.

Versions and modifications are made available in one of two ways. Some are sent
automatically by the program library to all users, and a" others are sent when
ordered by the user. In the latter case, ordering instructions are sent to users by
the program library.

The version number and modification level of each program is indicated on the
machine readable material and in the documentation sent with the program from
the program library. In cases where a version number or modification level is
skipped, the documentation from the program library notes such action.

This part includes:

• How to configure and load System/32 system control programming and related
PTFs (program temporary fixes), whether you are loading your initial version of
the system control programming or a subsequent version

• How to install a system containing System/32 system control programming and
selected System/32 program produCts and applications, together with related
PTFs

• How to install individual System/32 program products and related PTFs and
verify the correct installation of System/32 program products

• How to modify your system by deleting system control programming compon
ents and/or program products from the library so that you have more disk space
available for other library members or for data files

• fl.. ,version update instruction summary

Note: Insta"ing the word processing program product is described in the WordProcessor/32
Installation and Procedures Manual, SH30-0114.

Introduction to System Configuration, Installation, and Modification 225

Three SCP procedures are described in this part: CNFIGSCP, INSTALL, and
APPLYPTF. The formats of the command statements that evoke these procedures
are:

APPLYPTF

CNFIGSCP

SC1nn
RG1nn
UT1nn
UT2nn
F01nn
AS1nn

[

,ALL J
,ptf lognumber
,OLD

INSTALL [DFU] [,SEU] [,SORT] [,RPG]
[,FORT] [,FCU] [,ASM]

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

System Configuration

This section describes how to configure and load both your initial version and
subsequent versions of System/.32 ~ystem control programming. This section also
describes how to apply any required PTFs to the System/32 SCP and to the program
products you intend to install with the SCPo (Installation of program products with
the SCP is described in the next section, System Installation.)

DISKETTES REQUIRED

The diskettes required to perform system configuration are:

• PID (program information department) distribution diskettes, called SCP disk
ettes. These diskettes contain the following:

1-2 System control programming.
3 Optional SCP support for data communications, RPG, and data

recorder attachment! .
4 Optional SCP support for 1255 Magnetic Character Reader attachment! ,

FORTRAN IV, basic assembler! , overlay linkage editor! , and queued job
stream! .

[5] Optional SCP support for word processing communications utility
and word processing, which includes the mag card attachment, dual
case keyboard and display, and half line space printing.

• PI D distribution diskettes containing any program products ordered.

• Diskettes on which a backup of the system control program can be made. They
are called backup diskettes. The number of backup diskettes depends on the
optional SCP support you require.

• Backup diskettes for each program product ordered.

To determine the number of diskettes required by a program product, see index entry:
backup copy of a program product.

Note: Your I BM service representative can tell you if there are any PTFs appl icable
to your version of the SCP, or to your version o! any program products. If there are
PTFs, make arrangements with IBM to have the PTF diskette available when you con
figure and load your SCPo The PTF diskette contains all applicable PTFs.

!If you install the optional SCP support for this function without reconfiguring your system, you
must also install message member MSGMBR, which is on the fourth PI D diskette, and then do
another IPL for the system.

System Configuration 227

228

INFORMATION REQUIRED

During the configuration of the SCP, you will be prompted for the following
information:

• Print belt image for your system.

• Number of printed lines per page.

• The date format you will be using.

• Is SCP support for data communications desired?

If your response is YES you are prompted for the following:
Is BSC support desired?

- Is MRJE support desired?

If your response is NO to both the BSC support and the MRJE support you are
prompted for:
-- Is batch work station support desired?

By specifying BSC support, M RJE support, or batch work station support (SDLC)
the following initial configuration options are set for you:

Line rate will be full.
Standby line option is NO.
Error retry count is 7. (Set only for BSC and MRJE support.)
Debug option is NO.

After initial configuration options are set, you are prompted for World Trade answer
tone.
- Is World Trade answer tone required?

The line type option for BSC, MRJE and batch work station support (SDLC)
follows. You respond with a character C, P, R, S, or T to indicate the following:

C CDSTL (connect data set to line) switched line (World Trade only).
P Point-to-point nonswitched line.
R The line type specified in the user program source statements. (Line

type R does not appear for SD LC-batch work station support.)
S Point-to-point switched line.
T Tributary station line on multipoint.

If your response for the preceding line type option is either a C or an S (switched
line), the prompt for the switched line type option appears. You respond with one
of the following sets of characters:

AA The System/32 automatically answers the call. The modem must also
be in autoanswer mode.

MA The System/32 operator manually answers the call.
MC The System/32 operator manually initiates the call.

The final two prompts for BSC, MRJE, and batch work station support (SDLC)
are:

Does the modem perform clocking?
- Is an IBM modem installed?

• Is SCP support for RPG desired?

If your response is YES, you are prompted for the following:
- Is data communications support for RPG desired?

• Is SCP support for the data recorder attachment desired?

• Is SCP support for word processing desired?

If your response is YES, you are prompted for the following:
- Is SCP support for word processing communications utility desired?

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

If your response for word processing support is YES, you are prompted for the
following:

Select country code
Options are:

01 = USA
02 = United Kingdom
03 = Germany & Austria
04 = France (AZERTY)
05 = Italy
06 = Denmark
17 = France (QWERTY)

Enter a two-character country code
Options: (01,02,03,04,05,06,17)

• Is SCP support for 1255 Magnetic Character Reader attachment desired?

• Is SCP support for FORTRAN IV desired?!

• Is SCP support for basic assembler desired?!

If your response is YES, you are prompted for the following:
Are SCP base assembler macros desired?
Are SCP SSC assembler macros desired?
Are SCP scientific macros desired?

• Is SCP support for overlay linkage editor desired?1

• Is SCP support for queued job stream desired?

• Is there a PTF master diskette?

See index entry: CNFIGSCP procedure for the prompted parameter information
you supply in step 10 of the System Configuration Steps.

Using the information supplied to the prompts, an SCP is built that contains the
support that you request. If a PTF diskette is available, the PTFs are applied to
the SCP on the disk.

!When you specify SCP support for either basic assembler~or FORTRAN IV, SCP support for the
overlay linkage editor is also provided. The prompt for SCP support for the overlay linkage
editor does not appear.

System Configuration 229

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

SYSTEM CONFIGURATION STEPS

230

CAUTION
The syste'm configuration steps remove the current library (if any) from the
disk. Save all library members you want to retain (see index entry: FROMLIBR
procedure) before executing the system configuration steps. When installing
version updates, if I BM program products are installed on the system, remove
the I BM program products.

The program products can be removed by entering the following appropriate com
mands for the program product you have installed:

SEUDROP (if SEU is installed)

DFUDROP (if DFU is installed)

SORTDROP (if SORT is installed)

RPGDROP (if RPG is installed)

FCUDROP (if FCU is installed)

FORTDROP (if FORTRAN IV is installed)

ASMDROP (if basic assembler is installed)

The system configuration steps are:

1. Set the IPL switch (on the CE control panel) to DISKETTE and set the IMPL
switch (on the CE control panel) to DISK.

2. Insert the first PID SCP di~kette.

3. Press the LOAD key on the operator panel. The following example display
appears:

---) LIBRARY DIRECTORY SECTORS 0037

INCLUDE INQUIRE/OFFLINE NO

TOTAL LIBRARY BLOCKS 0281

4. The preceding values displayed are those of a sample PIO diskette. If an error
message is displayed, see index entry: system configuration error messages.

5. If you want a smaller library, you must decrease the number of directory
sectors and library blocks allocated. If you want a larger library, you should
now allocate enough directory sectors and library blocks to contain the pro
gram products, the SCP, and any other programs. See index entry: RELOAD
display, for a description of how to change the number of allocated directory
sectors and library blocks. See index entry: library requirements, to deter
mine the number of directory sectors and library blocks required by the SCP
and the program products.

6. If any error messages are displayed, see index entry: system configuration error
messages.

7. If no error messages are displayed, press the ENTER key to copy the SCP to

the disk.

8. When the following display appears, remove the first PIO SCP diskette and

insert the second PIO SCP diskette.

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE-XX/XX/XX, SEQUENCE NUMBER-02

-----> PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE

IF CORRECT VOLUME NOT INSERTED

To copy the second PIO SCP diskette to the disk, press the ENTER key.

System Configuration 230.1

This page intentionally left blank

230.2

XFER-Y Each execution of the XFER instruction is to be traced.

N Executions of the XFER instruction are not to be traced.

OCL and Utility Control Statement Sequence for Setting Functions to be Traced

I I LOAD $SETCF
II RUN
II TRACE ...
II END

Example of Setting the Functions to be Traced

Trace evocations of the wait function:

I I LOAD $SETCF
II RUN
II TRACE WAIT-Y
II END

OCL and Utility Control Statement Sequence for Modifying MICR Document Movement

I I LOAD $SETCF
II RUN

II SETR CYCLE-{ ~}
II END

$STATS-STATUS DISPLAY UTiliTY PROGRAM

$STATS displays current system information on the display screen, and prints it, if
the printer is assigned for logging (see index entry: LOG procedure), so that you
can determine whether or not certain items need to be changed for a job. A detailed
description of the information displayed by SST ATS is given with the description of
the STATUS procedure, which evokes $STATS. (See index entry: STATUS
procedure.)

$STATS Utility Control Statement Format

Utility control statements are not used.

$STATS OCl Sequence

II LOAD $STATS
II RUN

Utility Program Descriptions-$SETCF 231

This page intentionally left blank.

232

Part 5

System Configuration, Installation, and Modification

System Configuration, Installation, and Modification 233

234

Introduction To System Configuration, Installation, and Modification

System/32 programs are supported through the distribution of sequentially
numbered versions or modifications. A version replaces an entire program; a
modification generally replaces only the changed portions of a program. Each pro
gram has a version number and a modification level associated with it.

A release is a group of programs made available at the same time. Release generally
refers to the period of time for which it is supported; however, a release may consist
of programs with a different version/modification level identification. For example,
release 2 of SCP and program products may include three programs designated
version 02 modification 00, and one program designated version 01, modification 00.

The initial availability of a program is usually called version 01, modification 00.
Each subsequent modification raises the modification level by one. Each version
raises the version number by one and resets the modification level to zero.

Versions and modifications are made available in one of two ways. Some are sent
automatically by the program library to all users, and all others are sent when
ordered by the user. In the latter case, ordering instructions are sent to users by
the program library.

The version number and modification level of each program is indicated on the
machine readable material and in the documentation sent with the program from
the program library. In cases where a version number or modification level is
skipped, the documentation from the program library notes such action.

This part includes:

• How to configure and load System/32 system control programming and related
PTFs (program temporary fixes), whether you are loading your initial version of
the system control programming or a subsequent version

• How to install a system containing System/32 system control programming and
selected System/32 program products and applications, together with related
PTFs

• How to install individual System/32 program products and related PTFs and
verify the correct installation of System/32 program products

• How to modify your system by deleting system control programming compon
ents and/or program products from the library so that you have more disk space
available for other library members or for data files

• A version update instruction summary

Note: Installing the word processing program product is described in the Word Processor/32
Installation and Procedures Manual, SH30-0114.

Introduction to System Configuration, Installation, and Modification 235

236

Three SCP procedures are described in this part: CNFIGSCP, INSTALL, and
APPL YPTF. The formats of the command statements that evoke these procedures
are:

APPLYPTF

CNFIGSCP

SC1nn
RG1nn
UT1nn
UT2nn
F01nn
AS1nn

[

,ALL J
,ptf lognumber
,OLD

INSTALL [DFU] [,SEU] [,SORT] [,RPG]
[,FORT] [,FCU] [,ASM]

System Configuration

This section describes how to configure and load both your initial version and
subsequent versions of System/32 system control programming. This section also
describes how to apply any required PTFs to the System/32 SCP and to the program
products you intend to install with the SCPo (Installation of program products with
the SCP is described in the next section, System Installation.)

DISKETTES REQUIRED

The diskettes required to perform system configuration are:

• PID (program information department) distribution diskettes, called SCP disk
ettes. These diskettes contain the following:

1-2 System control programming.
3 Optional SCP support for data communications, RPG, and data

recorder attachment l
.

4 Optional SCP support for 1255 Magnetic Character Reader attachment l
,

FORTRAN IV, basic assembler l
, overlay linkage editor l

, and queued job
stream l

.

[5] Optional SCP support for word processing communications utility
and word processing, which includes the mag card attachment, dual
case keyboard and display, and half line space printing.

• PID distribution diskettes containing any program products ordered.

• Diskettes on which a backup of the system control program can be made. They
are called backup diskettes. The number of backup diskettes depends on the
optional SCP support you require.

• Backup diskettes for each program product ordered.

To determine the number of diskettes required by a program product, see index entry:
backup copy of a program product.

Note: Your I BM service representative can tell you if there are any PTFs appl icable
to your version of the sep, or to your version o! any program products. If there are
PTFs, make arrangements with IBM to have the PTF diskette available when you con
figure and load your SCPo The PTF diskette contains all applicable PTFs.

llf you install the optional SCP support for this function without reconfiguring your system, you
must also install message member MSGMBR, which is on the fourth PID diskette, and then do
another IPL for the system.

System Configuration 237

238

INFORMATION REQUIRED

During the configuration of the SCP, you will be prompted for the following
information:

• Print belt image for your system.

• Number of printed lines per page.

• The date format you will be using.

• Is SCP support for data communications desired?!

If your response is YES you are prompted for the following:
Is BSC support desired?

- Is MRJE support desired?

If your response is NO to both the BSC support and the M RJE support you are
prompted for:
-- Is batch work station support desired?

By specifying BSC support, MRJE support, or batch work station support (SDLC)
the following initial configuration options are set for you:

Line rate will be full.
Standby line option is NO.
Error retry count is 7. (Set only for BSC and MRJE support.)
Debug option is NO.

After initial configuration options are set, you are prompted for World Trade answer
tone.
- Is World Trade answer tone required?

The line type option for BSC, MRJE and batch work station support (SDLC)
follows. You respond with a character C, P, R, S, or T to indicate the following:

C CDSTL (connect data set to line) switched line (World Trade only).
P Point-to-point nonswitched line.
R The line type specified in the user program source statements. (Line

type R does not appear for SDLC-batch work station support.)
S Point-to-point switched line.
T Tributary station line on multipoint.

If your response for the preceding line type option is either a C or an S (switched
line), the prompt for the switched line type option appears. You respond with one
of the following sets of characters:

AA The System/32 automatically answers the call. The modem must also
be in autoanswer mode.

MA The System/32 operator manually answers the call.
MC The System/32 operator manually initiates the call.

The final two prompts for BSC, M RJE, and batch work station support (SDLC)
are:

Does the modem perform clocking?
- Is an IBM modem installed?

If SCP support for word processing communications utility is required, you must also specify SCP
support for data communications.

• Is SCP support for RPG desired?

If your response is YES, you are prompted for the following:
- Is data communications support for RPG desired?

• Is SCP support for the data recorder attachment desired?

• Is SCP support for word processing desired?

If your response is YES, you are prompted for the following:
- Is SCP support for word processing communications utility desired?2

If your response for word processing support is YES, you are prompted for the
following:

Select country code
Options are:

01 = USA
02 = United Kingdom
03 = Germany & Austria
04 = France (AZERTY)
05 = Italy
06 = Denmark
17 = France (QWERTY)

Enter a two-character country code
Options: (01,02, 03,04, 05, 06, 17)

• Is SCP support for 1255 Magnetic Character Reader attachment desired?

• Is SCP support for FORTRAN IV desired?1

• Is SCP support for basic assembler desired?1

If your response is YES, you are prompted for the following:
Are SCP base assembler macros desired?
Are SCP SSC assembler macros desired?
Are SCP scientific macros desired?

• Is SCP support for overlay linkage editor desired?1

• Is SCP support for queued job stream desired?

• Is there a PTF master diskette?

See index entry: CNFIGSCP procedure for the prompted parameter information
you supply in step 10 of the System Configuration Steps.

Using the information supplied to the prompts, an SCP is built that contains the
support that you request. If a PTF diskette is available, the PTFs are applied to
the SCP on the disk.

lWhen you specify SCP support for either basic assembler or FORTRAN IV, SCP support for the
overlay linkage editor is also provided. The prompt for SCP support for the overlay linkage
editor does not appear.

2 When you specify SCP support for word processing communications utility, you must also specify SCP
support for data communications.

System Configuration 239

240

SYSTEM CONFIGURATION STEPS

CAUTION
The system configuration steps remove the current library (if any) from the
disk. Save all library members you want to retain (see index entry: FROMLIBR
procedure) before executing the system configuration steps. When installing
version updates, if IBM program products are installed on the system, remove
the IBM program products.

The program products can be removed by entering the following appropriate com
mands for the program product you have installed:

SEUDROP (if SEU is installed)

DFUDROP (if DFU is installed)

SORTDROP (if SORT is installed)

RPGDROP (if RPG is installed)

FCUDROP (if FCU is installed)

FORTDROP (if FORTRAN IV is installed)

ASMDROP (if basic assembler is installed)

The system configuration steps are:

1. Set the IPL switch (on the CE control panel) to DISKETTE and set the IMPL
switch (on the CE control panel) to DISK.

2. Insert the first PID SCP diskette.

3. Press the LOAD key on the operator panel. The following example display
appears:

---) LIBRA~Y DI~ECTO~Y SECTORS
HISTO~Y FILE SIZE DESI~ED
INCLUDE INQUIRY/OFFLINE?

TOTAL LIB~ARY BL8CKS 0239

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Procedures Used For System Configuration and Installation

APPL YPTF PROCEDURE

The APPL YPTF procedure applies PTFs to the SCP and program products in the
library. It is called by the CNFIGSCP procedure during system configuration, or
directly, by the APPL YPTF command.

PTFs applied by the APPL YPTF procedure are read from the PTF diskette. If you
apply S~P PTFs and you are not installing a new version of System/32, then you
must make sure that your PTFs are placed on your tailored system SCP diskettes.
This is done by the following:

1. Apply the PTFs

2. Use the BACKUP procedure

3. Use the RELOAD procedure

The BACKUP procedure is used to obtain system diskettes that include the applied
. PTFs. The RELOAD procedure is used to maintain the correct library size. (See

index entries: RELOAD procedure and BACKUP procedure.)

Note: Your PID SCP diskettes do not contain the applied PTFs.

The APPL YPTF procedure evokes the $MAINT utility (see index entry: $MA/NT
utility program).

APPL YPTF Command Statement Format

SC1nn
RG1nn

[ALL J UT1nn ,ptf lognumber APPLYPTF UT2nn
F01nn

,OLD

AS1nn

Procedures Used for System Configuration and Installation 241

242

APPL YPTF Parameters

SC1nn

RG1nn

UT1nn

UT2nn

F01nn

AS1nn

PTFs to change the SCP and SCP support for word processing are
appl ied; nn is the version number of the system.

PTFs to change the RPG II program product are applied; nn is the
version number of the program product.

PTFs that change the IBM System/32 utilities program product
(DFU/SEU/Sort) are applied; nn is the version number of the
utilities program product.

PTFs to change the IBM System/32 File Conversion Utility (FCU)
program product are applied; nn is the version number of the
program product.

PTFs to change the FORTRAN IV program product are applied;
nn is the version number of the program product.

PTFs to change the basic assembler program product are applied;
nn is the version number of the program product.

OLD Apply only those PTFs from the PTF file that match the PTF
members currently in the library. Any PTF members that do not
currently exist in the library are not applied from the PTF file.

ALL

ptf
log

number

Apply all PTFs from the selected PTF file.

Apply only the PTF corresponding to this number. This number
is the PTF log number and is indicated on the cover letter for each
PTF. It is also indicated in the PTFXREF source member on each
PTF diskette. To list the contents of this source member, enter
the TOLlBR procedure (TOLlBR PTFXREF) and the LlSTLlBR
procedure (LlSTLlBR PTFXREF). The ptf log number must be
five digits (leading zeros are required).

CNFIGSCP PROCEDURE

The CNFIGSCP procedure is used for system configuration. It is distributed with
each version of the system on an SCP diskette and is removed from the library after
system configuration is complete. The CNFIGSCP procedure prompts you for the
information it requires to build an SCP that contains the support you request. The

information you supply to the prompts is recorded in the system. The system that
you create, using the CNFIGSCP procedure, can be modified by using the $SETCF
utility program as your requirements change.

The CNFIGSCP procedure evokes the $MAINT and $SETCF utilities (see index
entries: $MAINT utility program and $SETCF utility program).

CNFIGSCP Command Statemel1t Format

CNFIGSCP

To make your backup copy pf the SCP, you must initialize two to five diskettes
{number used depends on th~ OPtional SCP support you require). Use the INIT
procedure (see index entry: INIT procedure) to do this. The diskettes can be
initialized with the same volume identification, or each diskette can have a unique
volume identification. Th~ volume identification of the first diskette is the volume
identification you must spe·cify for the BACKUP procedure or error message 1493
appears when the second diskette is inserted. Take option 0 to continue processing.

After the diskettes are initialized, copy the SCP onto the diskettes. Use the BACK
UP procedure (see index entry! BACKUP procedure) to make the backup copy.

Backup of Program Products

Before you install the selecled program products and application programs with your
configured sep, apply any necessary PTFs to the program products you intend to
install, and create a backup copy of each program product that you use.

Before a PTF can be appli(i}q to a program product, the program product must be
in the library on the disk 1 $~e index entry: program product installation for a
description of how to copy a program product to the library. After a program
product is in the library, us~ the APPL YPTF procedure (see index entry: APPL Y
PTF procedure) to apply ~ny necessary PTFs to the program product.

Create a backup copy of each prrogram product after all PTFs, if any, are applied.
See index entry: backup copy of a program product for a description of how to
create a backup copy of a program product. The backup copies of the program
products are then used c;iuring system installation to create the unique system you
want to use.

Note: Even if no PTFs are applied, it is recommended that you make a backup
copy of the program product PI D distribution diskettes and use that copy when
installing the program products with the SCP. The PID diskettes should be safely
stored until the next version from PID is distributed.

System Configuration Error Messages

Severa! error messages are possible during system configuration.

INVALID VTOCILIBRARY FOUND

Save all of the disk data files if you have not already done so (for information on
how to save the disk data files, see index entry: SA VE procedure). After the files
are saved, go back to system configuration Step 1.

If you have already saved, or if you do not want to save your data files, the follow
ing action deletes them and ~orrects the INVALID VTOC!LlBRARY error:

CAUTION
The following action delet~s all data files from the disk.
• Hold down the SH I FT key and press the DUP key.

• Key a hyphen (-), then a plus (+); press the REC ADV key and check the display
for any other error messages. If there are none, go to system configuration Step 5.

System Configuration 243

TOO MANY BLOCKS REQUESTED or INSUFFICIENT AVAILABLE SPACE

Perform the action for the INVALID VTOC/LiBRARY FOUND message, described
in the preceding paragraphs, or go to system configuration Step 5 and decrease the
library size.

Other Error Messages

Other system configuration error messages probably are the result of a mistake made
in system configuration Step 5. Return to Step 5 and adjust the directory sector
and library block allocations. Press the ENTER+ key after each entry for Step 5.
Continue making entries for Step 5 until the error messages no longer appear. Then
go to System Configuration Step 7.

SYSTEM CONFIGURATION SUMMARY

-INPUT ,...--- PROCESS ,...--- OUTPUT

• PID SCP diskettes

~ •
System configuration steps ..lo.. • Configured SCP on disk with

) PTFs applied.Of necessary)

• PI D program product diskettes
,...

• SCP backup
,..

• Configured SCP backup copy

• PTF diskette (if necessary) • Program product backup diskettes

• Initialized diskettes for backup • PID SCP diskettes
copy

• Program products on disk with
PTFs applied (if necessary)

• Program product backup copies
with PTFs applied (if necessary)

• PI D program product diskettes

• PTF diskette (if used)

244

System Installation

This section describes how to install program products and application programs
with your configured SCP to create the unique system you want.

DISKETTES REQUIRED

The diskettes required for system installation are:

• Diskettes containing the SCP backup copy created by system configuration, as
described in the preceding section.

• Diskettes containing backup copies of the program products you want to install
with necessary PTFs included, or PI D program product diskettes if backup
copies are not available. Creation of program product backup copies should
always be performed as part of system configuration, as described in the preced
ing section.

• Diskettes containing application programs you want to install.

• Backup diskettes onto which you can copy your entire system after it is
installed.

INFORMATION REQUIRED

If you intend to change the size of your current library during step 1 of System
Installation, decide now exactly how many directory sectors and library blocks you
want. See index entry: system modification for a description of library require
ments in directory sectors and library blocks. You should also be familiar with the
RELOAD display and how to change it. See index entry: RELOAD display.

To complete system installation you must use the information printed from the
system directory during System Installation Step 6. See index entry: printing from
the library for a description of the system directory information that is printed.

System Installation 245

246

SYSTEM INSTALLATION STEPS

1. Insert the first SCP backup diskette created during the system configuration

steps described in the preceding section. Enter the RELOAD command state
ment (see index entry: RELOAD procedure). When the following display
appears, check the values displayed and change them, if necessary. See the
preceding description of Information Required for index entries to determine
and change the values displayed.

---) LIBRARY DIRECTO~Y SECTORS
HISTORY FILE SIZE DESIRED
INCLUDE INQUIRY/OFFLIrJE?

TOTAL LIB~ARY BLOCKS

0033
0255
YES

0239

Decimal

Note: The values shown in the preceding display are sample values only.

2. When the following display appears, insert the second SCP backup diskette.

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE-XX/XX/XX, SEQUENCE NUMBER-02

-----> PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE

IF CORRECT VOLUME NOT INSERTED

3. When the following display appears, press the LOAD key.

RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK

When the LOAD key is pressed, the following display appears:

**** INITIAL PROGRAM LOAD COMPLETE ****
DA TE XXX XXX
LINES 33

ENTER COMMAND

<.-READY

4. When the ENTER COMMAND message appears, enter the DATE command
statement (see index entry: DATE procedure) to set the system date to the
current date.

5. If you want to have any application programs on the backup copy of this
system, they should be installed at this time. Library members of your
application programs can be copied into the library using the TOll BR pro
cedure (see index entry: TOLIBR procedure). The letter accompanying
each IBM Industry Application Program describes how to put these programs
onto the system. Refer to that letter for installation instructions for an IBM
Industry Application Program.

6. Enter the I NSTALL command statement. The parameters you enter depend
on the program products you want to install. See index entry: INSTALL
procedure for a description of the command statement parameters.

After the INSTALL command statement is entered, you are prompted for the
diskettes that contain the program products to be installed. The diskettes you
insert must be either the program product backup diskettes or, if backup copies
are not available, the PI D program product diskettes.

After the I NST ALL procedure is completed, the system prints system directory
information. You will need this information for step 7. If you are not familiar
with the kind of information in the system directory, see index entry: printing
from the library.

Note: After the INSTALL procedure is completed, it is deleted from the
library. It remains on the PID SCP diskettes and the SCP backup copy created
in system configuration.

7. You are prompted to initialize the number of diskettes needed to back up
the system. See Calculating the Number of Backup Diskettes Required for
the System, which follows, for a description of how to determine the number
of diskettes you must initialize. If they are already initialized, you do not
have to initialize them again. Otherwise, initialize them now.

Note: The diskettes initialized in this step are only renamed, they are not
formatted. That is, the effect is that of the INIT procedure with the RENAME,
not the FORMAT or FORMAT2, parameter specified. If active files are on
the diskettes to be initialized, they will be deleted (lNIT procedure with
DELETE parameter specified). For a description of the INIT procedure, see
index entry: INIT procedure.

As initialized diskettes are inserted, the system, composed of SCP, program
products, and application programs, is copied on them. The final message will
be SYSTEM INSTALLATION COMPLETE. If you want additional unique
systems, repeat the system installation steps 1 through 7 as often as necessary.

System Installation 247

248

CALCULATING THE NUMBER OF BACKUP DISKETTES REQUIRED FOR THE SYSTEM

To determine the number of diskettes required to make a backup copy of a system,
you need system directory information. If you are installing a system, this informa
tion is printed at system installation, step 6. If you are modifying the system, you
can have the system directory information printed by using the LlSTLlBR procedure
or the $MAINT utility program (see index entries: LISTLIBR procedure and $MAINT
utility program-a sample of the information printed is given under index entry: print
ing from the library).

After printing the system directory information, determine the number of backup
diskettes you need by following these steps:

1. Add decimal 23 to the decimal number of active directory entries.

2. Divide the result of step 1 by 11, rounding to the next highest number if you
have a remainder, to determine the number of active directory sectors.

3. Add the result of step 2 to the decimal number of active library member sec
tors to determine the total library sectors referred to in the chart following
step 4.

4. Use the result of step 3 and either table 1 or table 2 to determine the number
of diskettes needed to contain your system. Use Table 1 for basic data ex
change diskettes (128 bytes per sector). Use Table 2 for extended format
diskettes (512 bytes per sector).

Table 1. Basic Data Exchange Diskettes Table 2. Extended Format Diskettes
(128 bytes per sector) (512 bytes per sector)

Total Total
Library Diskettes Library Diskettes
Sectors Required Sectors Required

906 1 1128 1
1868 2 2312 2
2830 3 3496 3
3792 4 4680 4
4754 5 5864 5
5716 6 7048 6
6678 7 8232 7
7640 8 9416 8
8602 9 10600 9
9564 10 11784 10
10526 11 12968 11
11488 12 14152 12
12450 13 15336 13
13412 14 16520 14
14372 15 17704 15

PROGRAM PRODUCT INSTALLATION

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Program Product Installation and Verification

The following list of IBM System/32 program products shows the diskette volume
identification for each program product:

IBM System/32
Program Product

Data File Utility (DFU)
Source Entry Utility (SEU)
Sort
File Conversion Utility (FCU)
RPG II

Basic Assembler
FORTRAN IV

Diskette
Volume Identification

PPUTIL
PPUTIL
PPUTIL
FCUFCU
RPGRPG (distributed on two diskettes,
each with the same vol-id)
PPASM
PPFORT

The method for installing these program products individually and creating a backup
copy of each is described here.

To Install a Program Product

1. If RPG II, basic assembler, or FORTRAN IV is to be installed, the SCP support
for these program products must also be installed. First, insert the SCP diskette
that contains the SCP support for the program product you are installing, and then
enter the CNFIGSCP command statement. Answer the prompts according to the
SCP support you need for the program product you will install in step 3.

2. Insert the appropriate PI D program product diskette for the command to be
entered in the following step (some program products may require more than
one diskette).

3. Enter the TOLlBR command statement where the filename parameter is the
identifier of the function being installed:

DFU Data File Utility

SEU Source Entry Util ity

SORT Sort
RPG RPG II
FCU File Conversion Utility

ASMCOMP Basic Assembler

FORTRAN FORTRAN IV

Note: For a description of the TOLlBR procedure, see index entry: TOL/BR
procedure.

Program Product Installation and Verification 249

250

4. Enter nameLOAD (DFULOAD, SEULOAD, SORTLOAD, and RPGLOAD) for
each function{s) being installed. This step does not apply to the FCU, ASM,
and FORT functions. These three functions are completely installed in step 3.

5. If RPG II is being installed, message 1485 (END OF RD VOLUME-INSERT NEXT
DISKETTE) appears after the first diskette is read. When the message appears,
remove the first diskette, insert the second, and select option 0 to continue.

6. Apply any required PTFs to the program products you install. See index entry:
APPL YPTF procedure.

To Create a Backup Copy of a Program Product

After a program product is installed, create a backup copy by following these two steps:

1. Initialize a diskette(s) with the appropriate volume identification to contain the
copy.

Function to be Copied

DFU/SEU/Sort
RPG II
FCU
Basic Assembler
FORTRAN IV

Volume Identification

PPUTIL (one diskette)
RPGRPG (two diskettes)
FCUFCU (one diskette)
PPASM (one diskette)
PPFORT (one diskette)

Note: Use the INIT procedure to initialize diskettes-see index entry: INIT
procedure.

2. Enter nameSAVE for each installed function to be saved, such as:

DFUSAVE
SEUSAVE
SO RTSAV E
RPGSAVE
FCUSAVE
ASMSAVE
FORTSAVE

PROGRAM PRODUCT INSTALLATION VERIFICATION

Page of GC21-7593-3
Issued 22 Novembe'r 1978
By TNL: GN21-7993

You can verify the installation of SEU, RPG II, basic assembler, FORTRAN IV, and
FeU.

SEU Installation Verification

1. Starting in column 1, key: SEU SEUTEST, R. Press the ENTER key. The
display screen will appear as follows.

001 a A096 0001.00 s

ENTER/UPDATE STATEMENT NUMBER: 0001. 00

2. Starting in column 1, key: THIS WILL VERIFY THAT SEU IS INSTALLED.
The display screen will appear as follows.

039 0 A096 0001.00 S
THIS WILL VERIFY THAT SEU IS INSTALLED_

ENTER/UPDATE STATEMENT NUMBER 0001.00

3. Pre~s the ENTER key. The display screen will appear as follows.

001 o A096 0002.00 S

ENTER/UPDATE STAT~MENT NUMBER: 0002.00

Program Product Installation and Verification 261

262

4. Press the SELECT FORMAT command key. Key an F, then press the ENTER
key. The display screen will appear as follows.

00], F K005 0002.00 S
F

ENTER/UPDATE STATEMENT NUMBER: 0002.00

5. Press the REC ADV key. The display will flash and appear as follows.

PRESS_ERROR RESET KEY TO CONTINUE
SEU],002
FILENAME (POS 7-],4) IS INVALID OR
SPECIFIED IMPROPERLY.

6. Press the ERROR RESET key and then the EOJ command key. The end of
job options are displayed and the screen will appear as follows.

o RETURN TO PROCESSING--NO EOJ
], END OF JOB--NO ADDITIONAL OPTIONS
2 END OF JOB WITH LISTING
3 END OF JOB WITH SERIALIZATION
4 END OF JOB WITH LIST AND SERIALIZATION
END OF JOB OPTION:

7. Key a 2 and press the ENTER key. The statement you entered in step 3
(THIS WILL VERIFY THAT SEU IS INSTALLED) is printed if SEU is
properly installed.

8. Enter the REMOVE command statement to remove from the library the
member created to verify the SEU installation:

REMovE SEUTEST,SOURCE

Prompted Parameters for CNFIGSCP

Belt Image Option

48 Sets the print belt image and its number of characters in the system config-
48HN uration record, a record in the library directory that defines the system in
64 terms of its components. A length of 48, 48HN, 64, or 96 can be entered.
96

Note: The serial printer requires a response of 64, the dual case keyboard
requires a response of 96, and the special 48-character print belt requires
a response of 48H N.

All remaining prompts and responses will be logged to the system printer.

Number of Lines Per Page Option

1 to 84 Sets the number of printed lines per page.

Note: The value commonly used is 66.

Date Format Option

YM D Sets the system date format in the system configuration record: enter
MDY year-month-day (YMD), month-day-year (MDY), or day-month-year (DMY).
DMY

Notes:
1. Use yymmdd format if you are creating basic data exchange format disk

ettes to use with other systems.
2. Select the date format option to coincide with the format selected for the

preceding version. Otherwise, there is a possibility that the date depend
ent output from an RPG II object program, using the UDA Y, UMONTH,
and UYEAR reserved fields, will be in error.

SCP Support For Data Communications

YES Data communication SCP support is copied.

NO Data communication SCP support is not copied.

BSC Support Option

YES Copies the optional BSC support.

NO BSC support is not copied.

MRJE Support Option

YES Copies the optional M RJE work station support.

NO MRJE work station support is not copied.

Procedures Used for System Configuration and Installation 253

254

Batch Work Station Support Option

YES Copies the optional Batch Work Station support

NO Batch Work Station support is not copied

SCP Support For RPG

YES Copies the optional SCP support for RPG.

NO RPG SCP support is not copied.

Data Communication Support for RPG

YES Copies the data communication RPG support.

NO Data communication support for RPG is not copied.

SCP Support For Data Recorder Attachment

YES Copies the optional SCP support for the data recorder attachment.

NO Data recorder attachment SCP support is not copied.

SCP Support For Word Processing

YES Copies the optional SCP support for word processing.

NO Word processing SCP support is not copied.

Word Processing Communications Utility Option

YES Copies the optional word processing communications utility support.

NO Word processing communications utility support is not copied.

SCP Support For 1255 Magnetic Character Reader Attachment

YES Copies the optional SCP support for the 1255 Magnetic Character Reader
attach ment.

NO The 1255 Magnetic Character Reader attachment SCP support is not
copied.

6.

SYSTEM DATE

REGION ACCOUNT ACCOUNT NAME
NU"1SE:R

2
2
2
2
2

.3
3
3
3

4

11243
11352
118d6
12874
18274

23347
25521
26723
28622
29871

30755
31275
32457
37945

42622

JJNES HARDWARE
NU-STYLE CLOTHIERS
MIDI FASHIONS INC
ULOOK INTEKIORS
STReAMLINE PAPER INC

RITE-BEST PENS CO
IMPORTS OF NM
ALRIGHT CLtANERS
NORTH CENTRAL SUPPLY
FERGUSON DEALERS

FASTwAY AIRLINES
ENvIRONMENT CONCE~NS

8 SOLE SILOS
HOFFTA BREAKS INC

EASTLAKE ~RAVEL CO

INVOICE
NUMBER

1.754I
l79l:H
15771
25622
29703

20842
29273
19473
17816
27229

26150
20451
27425
18276

16429

CASH RECEIPTS RE~ISTER

INVOICE DATt PAlO
DATE

2/11/75
2/1 4 / 7 5
2/04/75
2/09/75
2/21/75

2/21/75
2/20/75
2/14/75
2/23/75
2/ 3J/7 5

REGION TOTALS

2/18/75
2/20/75
Z/07/75
2/05/75
2ilG/75

2/20/75
2/27/75
2/23/75
2/22/75
2/22./15

REGION TOTAL:;

2/00/75
2/06/75
2/10/75
2/06/75

2/19/75
2/30/75
2/2U/75
2/23/15

RE<"ION TOTALS

2/05/75 2/23/75

REGION TOTALS

COMPANY TOTALS

AMOUNT
OwED

23.75
iH .07

107.22
67.95

274.03

560.02

15.8u
797.40
4b2.0J

75.97
bl.91

1,413.08

742.72
29.43

110.G5
47.23

929.43

29.37

29.37

2,931.90

DISCOUNT AMOUNT
TAKEN PAID

.47 23.28
40.00

2.14 105.08
67.95

2.3d 170.55

4.99 406.86

10.UO
11.93 585.47

462.00
75.97
61.91

11.93 1,195.35

16.85 725.87
15.UO

110.J5
47.23

I6.tl5 898.15

29.37

29.37

33.71 2,529.73

BALANCE
DUE

47.U7

101.10

148.17

5.8u
200.00

14.43

14.43

308.40

PAGE

EXCESS
DISCOUNT

1.90

1.9G

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

FORTRAN IV Installation Verification

256

'Sample prog(am modules are provided with the IBM System/32 FORTRAN IV program
"product. When FORTRAN IV was installed, these modules were loaded from the PID
program product distribution diskette (PPFORT) and are executed by entering the
command statement FORTSMPl. This command statement causes two FORTRAN IV
programs (KBINCO and SAMPLE) to be compiled, executed, and then deleted from
disk.~ A program listing, compiler storage map, informational messages, overlay
linkage editor map, and the output of the sample program are printed on the printer.

Figure 9 shows an example of the printed output from the FORTSMPL procedure
using a 48-character FORTRAN print belt. Each compiler printed page heading
shows the current version number, modification number, date, and page number.
The sample includes:

II The source module listing

iii The compiler storage map

II The informational messages

m The overlay linkage editor map

.. The sample program output

Prompted Parameters for INSTALL

Diskette Volume 10

Enter a name with a maximum of six characters. This name is placed
in the vol-id field on the diskettes if diskettes are initialized. It is also
used as the vol-id parameter when the system is copied to the backup
diskettes.

Diskettes to be Initialized

YES

NO

The diskette inserted is initialized using the vol-id specified. (After
each diskette is initialized, you are prompted to insert the next disk
ette.

No diskettes need to be initialized. The INSTAll procedure copies
the system onto diskettes that are already initialized. You are
prompted for these diskettes.

Procedures Used for System Configuration and Installation 257

This page intentionally left blank.

258

Program Product Installation and Verification

PROGRAM PRODUCT INSTALLATION

The following list of IBM System/32 program products shows the diskette volume
identification for each program product:

IBM System/32
Program Product

Data File Utility (DFU)
Source Entry Utility (SEU)
Sort
File Conversion Utility (FCU)
RPG II

Basic Assembler
FORTRAN IV

Diskette
Volume Identification

PPUTIL
PPUTIL
PPUTIL
FCUFCU
RPGRPG (distributed on two diskettes,
each with the same vol-id)
PPASM
PPFORT

The method for installing these program products individually and creating a backup
copy of each is described here.

To Install a Program Product

1. If RPG I I, basic assembler, or FORTRAN IV is to be installed, the SCP support
for these program products must also be installed. See index entry: system
installation.

2. Insert the appropriate PID program product diskette for the command to be
entered in the following step (some program products may require more than
one diskette).

3. Enter the TOLlBR command statement where the filename parameter is the
identifier of the function being installed:

DFU
SEU
SORT
RPG
FCU
ASMCOMP
FORTRAN

Data File Utility
Source Entry Utility
Sort
RPG II
File Conversion Utility
Basic Assembler
FORTRAN IV

Note: For a description of the TOLlBR procedure, see index entry: TOLIBR
procedure.

Program Product Installation and Verification 259

260

4. Enter nameLOAD (DFULOAD, SEULOAD, SORTLOAD, and RPGLOAD) for
each function(s) being installed. This step does not apply to the FCU, ASM,
and FORT functions. These three functions are completely installed in step 3.

5. If RPG II is being installed, message 1485 (END OF RD VOLUME-INSERT NEXT
DISKETTE) appears after the first diskette is read. When the message appears,
remove the first diskette, insert the second, and select option 0 to continue.

6. Apply any required PTFs to the program products you install. See index entry:
APPL YPTF procedure.

To Create a Backup Copy of a Program Product

After a program product is installed, create a backup copy by following these two steps:

1. Initialize a diskette(s) with the appropriate volume identification to contain the
copy.

Function to be Copied

DFU/SEU/Sort
RPG II
FCU
Basic Assembler
FORTRAN IV

Volume Identification

PPUTI L (one diskette)
RPGRPG (two diskettes)
FCUFCU (one diskette)
PPASM (one diskette)
PPFORT (one diskette)

Note: Use the INIT procedure to initialize diskettes-see index entry: INIT
procedure.

2. Enter nameSAVE for each installed function to be saved, such as:

DFUSAVE
SEUSAVE
SORTSAVE
RPGSAVE
FCUSAVE
ASMSAVE
FORTSAVE

01

Basic Assembler Installation Verification

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

A sample program (ASSMPL), input data file (INPUT), and procedure (ASMSAMPL)
are provided with the IBM System/32 basic assembler program product. After basic
assembler is installed, by entering the command statement ASMSAMPL, y,?u will be
prompted to insert the assembler program product diskette (PPASM).

ASMSAMPL
INSERT ASSEMBLER PROGRAM PRODUCT
DISKETTE.

ACTION SCP 1162 CRPS OPTIONS 0
PAUSE -- WHEN READY, ENTER 0 TO CONTINUE

The ASMSAMPL procedure will then copy to disk from diskette the ASSMPL source
program and the input data file. The ASSMPL program will then be assembled, link
edited, and executed.

ASSMPL WILL BE ASSEMBLED~ LINKED,
AND EXECUTED. AT EXECUTION TIME A
FILE WILL BE READ AND PUT TO THE
PRINTER.
ASM PROCEDURE EXECUTING
MACRO PROCESSOR EXECUTING

After execution, the ASSMPL source, object, and load modules, the input data file,
and the ASMSAMPL procedure will be deleted from the disk.

The printed output from this verification sample is; a list of options, an external symbol
list, source statement list, cross reference list, overlay linkage editor map, and the
message THE ASSEMBLER SAMPLE PROGRAM IS EXECUTING PROPERLY. After
this message is printed, the display screen will display EOF ON SYSIN and will then
appear as below.

VERIFICATION IS COMPLETE. THE
FOLLOWING WILL NOW BE DELETED
ASSMPL SOURCE, OBJECT, AND LOAD
MODULE - THE INPUT FILE .-"AND
THE ASMSAMPL PROCEDURE.
REMOVE PROCEDURE EXECUTING

The following is an example of the source statement listing and the final printed
message of properly installed basic assembler program product.

Program Product Installation and Verification 261

~ ASSMPL DISK FILE TO PRINTER (80/80 LIST PROGRAM)
"->

ERR LOC OBJFCT CUDE

Od00

')340 CO 87 0812

ADDR

0001
0002

OB12

STMT

1
2
3
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

SOURCE STATEMENT

lCTl 1,71
ISEQ 73,80
PRINT NOGEN,NODATA

VER XX MOD XX XX-XX-XX PAGE 3

**
- THIS PROGRAM READS A FILE FROM THE DISK AND LISTS IT
¥ ON THE PRINTER.

THERE ARE THREE POSSIBLE MESSAGES ISSUED BY THIS PROGRAM:
.'1E S SAGE MEAN I NG

'EOF ON·SYSIN' END OF ~IlE ENCOUNTEREI.) FROM DISt<. READ.

'PRINTER ERROR'

'SYSIN ERROR'

THE PROGRA~ ISSUES THE ~ESSAGE

AND GOES TO EJJ.
THERE rlAS BEEN A PERMANENT PRINTER

ERROR. THE PROGRAM ISSUES THE
~ESSAGE AND GOES TO END OF JOe.

THERE rlAS BEEN A PERMANENT REAO
ERROR. THE PKOGRA~ ISSUES THE
MESSAGE AND GOE) TO END OF JOB.

**

22 ASSMPL START X'uBOO'

24
25

eXT R 'J ;: $ C SIP
EXT R N :: $ aD M C

27 - PREPARE THE FILES FOR USE (DTFS ARE CrlAI~ED)

29 '.' l>AlOC DTF-OSKDTF ALLOCATE ALL FILES

3'> '.' $OPEN DTF-DSKDTF OPEN ALL FILES

40 ,', READ FROM SYSTEM SOURCE LIBRARY AND PRI~T RECORDS UNTIL END OF FILE
41 REOAGN EQU ','
42 '.' $GETD ACCESS-CG,DTF-CSKOTF,ERR-SYStR,EOF-EOF

51 '.' $PUTP DTF-PRTOTF,ERR-PRNERR,SPACEA-1,PRINT-Y

61 8 REDAGN BRANCH BACK AND READ AGAIN

00020000
00030000
00040000
00060000
00070000
00060000
00090000
00100oJOO
0011000Q
00120J00
OJIJOJOO
OU140000
Ou150000
00160000
OJ 170 ·j00
0'J1 dOOOO
OC19000J
00200000
OJ2l0000

00230000

00250000
002bC::JOO

002dOJOO

o tJ 3 Olh:l 0,)

003iOJOO

003-=tOJOU
00350000
0030000J

OJ3bCuOG

004·00000

RPG II Installation Verification

Sample programs are provided with the ISM System/32 RPG II program product.

After RPG II is installed, these programs can be loaded from the PID program
product distribution diskette (RPGRPG) and executed by entering the command
statement RPGSAMPL. This command statement causes three RPG II and two

auto report programs to be compiled, executed, and then deleted from the disk.
The first RPG II program prompts the operator as follows:

Operator
Prompt Response

KEY 123
DESC DRESS
VALUEA 10
VALUES 30
VALUEC 20
KEY 124
DESC COAT
VALUEA 40

VALUES 50
VALUEC 30

After the 10 fields are entered, the operator must press the CMD key and then the
/ key to indicate the end of input.

If RPG II is properly installed, printed output from the five sample programs is:

1. NO TRANSACTIONS LOADED

2.

3.

2 MASTERS LOADED

SYSTEM DATE
IBM SYSTEM/32

SAMPLE UPDATE PROGRAM

NEW NEW NEW
KEY DESCRIPTION VALUE A VALUE B VALUE C

NO TRANSACTION RECORDS ENTERED

IBM SYSTEM/32
SYSTEM DATE SAMPLE INDEXED FILE LISTING

KEY DESCRIPTION VALUE A

123 DRESS 10
124 COAT 40

FINAL TOTAL 50

VALUE B

30
50

80

VALUE C

20
30

50

TOTAL
A+B-C

20
60

80

PAGE 0001

PAGE 0001

Program Product Installation and Verification 263

4.

264

DATA FOR SAMPLE PROGRAM

11243JONES HAROWARE 27541021175 2315(A$H 47 47 2328022175

11352NU-STYL~ CLOTHIERS 27987021475 3701CASH 114 4000022675

11886MIDI FASHIONS INC 15771020415 10722CASH 214 214 10508021475

Ll874UlOOK INTERIO~S 25622020975 6195CA$H 136 0795022375

L8274STREAMlINE PAPER IN(2970)022175 27403

23347RITE-8E5T PENS CO 20842021815 1580

25521IMPORTS OF ~M 29273022015 79740

548 238 17055023075

31 1000022075

1593 1193 58547022775

26723AlRIGHT CLEANERS 19473020775 46200CASH 924

28622NORTh CENTRAL SUPPlY11816020575 7597CASH 152

29871FERGUSO~ DEALERS 27229021015 b191CASH 124

46200022375

7597022275

0191022275

30755FASTWAY AIRLINES 26158020675 74212CASH 1495 1685 72587021975

31275ENVIRONMENT CONCERNS20451J20675 2943 59 1500023075

324578 SOle SILOS 21425021075 11005CASH 220 11005022075

37945HOFFTA BREAKS INC 18276020675 4723CASH

42622EASTlAKE GRAVEL CO 16429020575 2937CASH

94

58

4723U22375

2937022375

Feu Installation Verification

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939 .

Two sets of sample data files and conversion specifications are provided with the
IBM System/32 FCU program product. After the FeU is installed, either set of
data files and conversion specifications can be loaded from the PI D program
product distribution diskette (FCUFCU) and executed by entering either of the

following command statements:

FCUSAMPL DP
FCUSAMPL WP

Entering FCUSAMPL DP does the following operations:

• Loads a sample sequential file and specification source member from the diskette
to disk.

• Executes the FCU specification phase to create a specification load member.

• Executes the FCU conversion phase to create an indexed sequential output file.

• Automatically deletes the FCUSAMPL DP procedure, the sample data files,the
specification statements, and the load module.

The following is an example of the printed output of a properly installed FCU

sample program.

FCU SPECIFICATION LISTING FOR MEMBER #FCUDP DATE XX/XX/XX

0001 FIS
0002 FOI 40 6 1
0003 CP 1 1 6UO 1 1 6UO
0004 CP 2 7 10P2 6 33 39U2
0005 CP 3 11 14P2 5 26 32U2
0006 CP 4 15 18P2 3 12 laU2
0007 CP 5 19 22P2 4 19 25U2
0008 CP 6 23 25PO 2 7 11 UO
0009 CC 7 40 40A

0305 SPECIFICATION LOAD MODULE CREATED

ACCOUNT NUMBER
CURRENT BALANCE
NEW CHARGES
PAST DUE AMOUNT
P.\YMENTS
CREDIT LIMIT

1 'DELETE FIELD'

00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000

Procedures Used for System Configuration and Installation 264.1

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

264.2

Feu eO~VERSION PHAj~ PROCESSING ME~9ER ~fCUDP

RECORD KEY 113520
113520009000012176000000000126140024790

RECORD KEY 118860
118860008000061735000020000417210083456

RECORD KEY 953210
953210005000011740001174000021500002150

RECORD KEY 233470
233470009000063785000040000175300041315

RECORD KEY 286220
286220005000067141006714100519400051940

RECORD KEY 825130
825130030000319667015795003117930473510

RECORD KEY 312750
312750009000077760005000000539970081757

RECORD KEY 324570
324570004000053200003261000291400049730

RECORD KEY 298710
298710009000042136004213600374910037491

RECORD KEY 437150
437150008000073191000040000000000033191

RECORD KEY 439370
439370008000009310000562000041300007820

RECORD KEY 451370
451370005000019717001971700223370022337

RECORD KEY 469180
469180010000068235000030000631940101429

RECORD KEY 583130
583130100000337415031147100573910083335

RECORD KEY 791190
791190008000021719002171900117450011745

RECORD KEY 913700
913700008000054973000040000741700089143

RECORD KEY 987160
9871600080000015420001542008~5850088585

RECORD KEY 307550
307550006000007816000781600635000063500

DATE xx/xx/xx

Entering FCUSAMPL WP does the following operations:

• Loads sample sequential and indexed data files and a specification source
member from the diskette to the disk.

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

• Executes the FCU specification phase to create a specification load module.

• Executes the FCU conversion phase to create a tabular document in a document
library.

• Automatically deletes the FCUSAMPL WP procedure, the sample data files, the
specification statements, and the load module.

Note: This sample requires that System/32 SCP Feature Number 6002 (word
processing support) and a 96-character print belt be installed.

The following is an example of the printed output of a properly installed FCU
sam pie program.

Procedures Used for System Configuration and Installation 264.3

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

FCU SPECIFICATIO~ LISTING FOR ~EMBER #FCUWP

0001
0002
0003
0004
0005
0006
oon7
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0071
0022
0023
0024
0075
0026
0027
002!:!
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

FIS
FSI
FOL
Q 100GTF110
CK 1 1 6UO
CS 10 1 61\
CS 20 33 33A
CS 30 22 31A
CS 40 1.L 32A
CS 50 7 2111.
CS 60 3 .. 531\
CS 70 54 73A
CS 80 74 75A.
CS 90 76 AOA.
CC
CP100 7 10P~S
CC
CP110 23 2SPO
ATIT1F'S 7 71013
.1 ~r.

.2 Ms.

.3 Mrs.

.4 Miss

.5 Dr.
ANA~ES 7101517:::
.!'!C::: Me:::
.0'::: 0':::
ANSEW 7101316'::
.NE -.- Nt: -.-
.NW:;' NW -.-
.SE t,: SE:;'
.S'../ ::: S."J t,=

ASTAT';;S 7 81335
.OH Ohio
.FL Florida
.AL Alabama
.GA Georgia
.LA Louisiana

FCU

TITLES

NAMES
NSEW

STATES

.SC South Carolina

.MS ~ississippi

.wv West Virginia

.MD Maryland

.IL Illinois
• DC D. C •
.KY Kentucky

WPSAMPLE

1
2
3
4
5
6
7
8
9

10
11
12
13

A
A
A
A
A
A
A
A
A
A
D2
A
DO

0305 SPECIFICATION LOAD MODULE CREATED

264.4

P
U
P
P
P

1$

1$

KEY FIELD
CHARGE #
TITLE
FIRS'f NAME
~IDDLE INITIAL
LAST NAME
STi:1EET
CITY
STATi: NAMF
ZIP CODE
DOLLAR SIGN
CURRENT BALANCE
DOLLAR SIGN
CREDIT LIMIT

DATE XX/XX/XX

00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000
00110000
00120000
00130000
Q0140000
00150000
00160000
00170000
00180000
00190000
00200000
00210000
00220000
00230000
00240000
00250000
00260000
00270000
002~0000
00290000
00300000
00310000
00320000
00330000
00340000
00350000
00360000
00370000
00380000
00390000
00400000
00410000
00420000
00430000
00440000
00450000
00460000

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Feu CO~VERSION PHASE PROC~SSING ~EMBER #FCUWP DATE XX/XX/XX

aECO RD NO 000001
118860 Barbara McGuire 470 Live oak Place Albany Georgia

:t 800.

~F.CORD NO 000002
2a6220 [1r. Joseph A Abruzzo 3500 Gault Ocean Dr New Orleans Louisiana

Jj 500.

a::co RD ~o 000003
f32S110 A-l UseJ Cars 200 SE 124 st. Maywood Illinois

~~ 3,000.

a£cn RD ~.:o 000004
32457 a f1r. Robert '..l Dobbs Buttonwood Drive Rome Georgia

$ 400.

H?C0RD rIO 000005
46Q180 ,1iss ~argan,t E Monroe 9 Pine Tree Lane Sunny South Alabdma

.5 1,000 •

H~CaRD NO 000006
913700 Ms. Janice i.. Comstock 2637 Marion Dr Ellensbur~ D. C.

:j; 800.

RECOHD NO 000007
9871£0 '1r. Charles ;~ i'1cCall 669 W campus Circle Williston South Carolina

$ dOO.

iECORD NO 000008
307550 Rorace 8150 Cypress aoad Everglades Florida

$ 600.

FIELD 100 SUM 10012.93 ;'lAX 4735.10 MIN

Procedures Used for System Configuration and Installation 264.5

This page intentionally left blank

264.6

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

System Modification

Some members can be deleted from the system library to release library space for
other members or to make disk space available for data files by reducing the size
of the library. You can also delete program products from the library.

LIBRARY REQUIREMENTS

The library requirements of the minimum IBM System/32 system control program
ming are fixed at 33 directory sectors and 239 total library blocks. Control storage
increment feature support adds four library blocks. Inquiry/offline support adds 11
library blocks to a 16K system (K = 1024 bytes), 14 library blocks to a 24K system,
and 17 blocks to a 32K system.

In addition to the preceding minimum SCP library requirements, the requirements for
DFU, SEU, SORT, FCU, RPG, FORTRAN IV, and basic assembler program products
are shown in the following chart. The version 6 and version 7 columns show the
change (if any) in the requirements from the previous version.

Library Function Directory Sectors Library Blocks

Version 7 Version 8 Version 7 Version 8

DFU 4 4 36 36

SEU 4 4 38 38

SORT 5 5 34 34

FCU 4 4 42 42

RPG II '16 16 147 147

FORTRAN IV 19 19 96 96

Basic Assembler 4 4 27 27

Use the following chart to determine how many directory sectors and library blocks
must be added for the program products and SCP support needed for your system.
If more than one type of support (program product and SCP) requires the same
module, you only need to add that module once.

System Modification 266

Example:

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

A user required the SEU program product, data recorder support, word processing
support, and inquiry/offline support on a 16K system.

Directory
Sectors

33

4

6

Library
Blocks

239

38

11

16

60

20

Library Function

Minimum System/32 SCP

SEU

Inquiry/offline support on 16K

CARDIO (data recorder)

WPFI LE (word processing)

MSGMBR (required by both word processing and
data recorder but needs to be added only once)

The total number of directory sectors is 44; the total number of library blocks is 384.
These totals are the minimum numbers of directory sectors and library blocks for
the requested system.

DELETING FROM THE LIBRARY

Before deleting members from the library, determine how much space is presently
available for new members, or how much disk space is.available for additional data
files.

System Modification 266.1

This page intentionally left blank

266.2

Determining Space Available in the Library

Page of GC21-'I683-3
ISlued 22 November 181.
By TNL: GN21-1983

To determine how much space is available in the library, use the LlSTLlBR proce
dure or the copy function of the $MAI NT utility to print the system information
from the directory area (see index entries: $MAINT utility program and LISTLI8R
procedure). The system information listed will specify the number of additional
entries the directory can contain (AVAILABLE DIRECTORY ENTRIES) and how
many sectors are available in the I ibrary for additional members (AV AI LABLE'
MEMBER SECTORS).

Determining Space Available on the Disk

To determine how much space exists on the disk for additional data files, use the
CATALOG procedure or the $LABEL utility (see index entries: $LABEL utility
program and CATALOG procedure) to display the disk VTOC. Available disk space
is specified in every disk VTOC display.

Note: You can also use'CATALOG or $LABEL to display all disk VTOC entries to
determine which files can be deleted (see index entries: $DELET utility progl'llllTl
and DELETE procedure). Use the COMPRESS procedure or $FREE utility (see in
dex entries: $FREE utility program and COMPRESS procedure) to collect unused
disk space in one area.

To determine how much space will be available for user 'programs and data files, take
the total library requirements of your planned system and subtract this number from
the number of disk blocks on your system. (see index entry: library requirements)

Note: Convert the sectors to blocks (1 block equals 10 sectors). If there is a
remainder, round off that remainder to the next whole number.

Disk blocks available on the IBM System/32 are:

1248 blocks on a 3.2 megabyte disk

1968 blocks on a 5.0 megabyte disk

3576 blocks on a 9.1 megabyte disk

5376 blocks on a 13.7 megabyte disk

Example: The library requirements of the minimum IBM System/32 system control
programming are 33 directory sectors and 239 library blocks. This totals 243 blocks
(33 sectors converted to blocks rounds to 4 blocks). A 3.2 megabyte disk system
leaves 1005 blocks available for user programs and data files.

1248 (blocks on a 3.2 megabyte disk)
-243 (total blocks library requirements)
1005 (total blocks available to the user)

System Modification 281

268

Selecting Members to Delete

The following members can be. deleted from the library without affecttng other mem
bers or SCP functions:

Name

##MSG1
##MSG4

Member Type

o (load)
o (load)

Selected procedure P (procedure)
(see note)

Descri ption

Level 1 error messages
Level 2 error messages
Procedures

Note: When you delete a library member, be sure not to delete a procedure within
a nested procedure(s) or a procedure called by all procedures. For example, #ER R
is a nested procedure available to all procedures for error detection. If ##MSG 1
and/or ##MSG4 are deleted, there will be no message text when an error occurs.

In addition to deleting the preceding members you can delete inquiry/offline multi
volume support and any program product installed on the system without affecting
. other system functions.

Deleting (or not including) inquiry/offline support (INCLUDE INQUIRY/OFFLINE?
= NO on the RELOAD display-see index entry: RELOAD display) saves 11 blocks
of library space on a 16K system, 14 blocks on a 24K system, and 17 blocks on a
32K system. Use the L1STLlBR procedure or the copy function of $MAINT to list
library directory entries to determine space gained by deleting procedure members,
##MSG1, and ##MSG4. See index entry: library requirements to see how much
space is ga'ined by deleting a program product.

Note: After deleting members, use the CONDENSE procedure to collect all available
space into one area at the end of the library.

Deleting Members

• ##MSG1, ##MSG4, and procedure members are deleted by using the delete func
tion of $MAINT. See index entry: $MA/NT utility program.

• Inquiry/offline support is deleted by specifying NO to the INQUIRY/OFFLINE
option of the RELOAD display. The RELOAD display is described in following
paragraphs.

• Program products are deleted by entering a nameD ROP command statement for
each function to be deleted (DFUDROP, SEUDROP, SORTDROP, RPGDROP,
ASMDROP, FORTDROP, and/or FCUDROP). The procedures evoked by these
command statements are deleted from the system when the related program
product functions are deleted.

After you have deleted members, you can change space allocated to the library by
using the RELOAD display, described in the following paragraphs.

Notes:
1. Do not delete any procedure that is used by a procedure that you are not

deleting.

2. To gather the disk space created by deleting members from the library into one
usable area, you can use the CONDENSE procedure. See index entry: CONDENSE
procedure.

RELOAD DISPLAY

The RELOAD procedure (described under index entry: RELOAD procedure) is
used to perform an IPL from diskettes onto which the library was copied by the
BACKUP procedure (described under index entry: BACKUP procedure).
RELOAD creates a new library on the disk, but does not disturb data files on the
disk.

The RELOAD display appears when you insert the first backup diskette (for a
particular copy of the library) and enter the RELOAD command statement
(described under index entry: RELOAD command statement) or when you press
the LOAD key with the IPL switch on the CE control panel set to DISKETTE.

The RELOAD display shows the number of sectors allocated for the library
directory, indicates whether or not inquiry or offline multivolume files are
supported, and shows the total number of blocks allocated for the library (system
file #LlBRARY). A sample display follows:

----) LIBRARY DIRECTORY SECTORS 0033

INCLUDE INQUIRY/OFFLINE? ~O

TOTAL LIBRARY BLOCKS 0239

System Modification 268.1

This page intentionally left blank

268.2

000 TOTAL ERRORS FOR THIS COMPILATION

STATEMENT ALLOCATIONS
'.5 =056A 4 =0583 3 =05C4 2 =0654 10 =0693 20 =010F 30 =0141

OVERLAY LINKAGE EDITOR STORAGE USAGE MAP XX/XX/XX

STA~T OVERLAY CATEGORY NAME AND CODE LENGTH
ADDRESS NUMBER AREA ENTRY HEXADECIMAL DECIMAL

0800 0 SAMPLE 0164 1892
OF5C ::UNITB
0906 ::ERBUF
0884 ;:IOBUF
OF64 0 GlFOEO 0130 317
104'5 #MNTRY
10113 ;:SNTRY
101E ::RNTRY
OF64 #0
1081 ::RETRN
1084 OLOIRG
1084 RESUME
10Al 0 iilF091 0066 102
1005 ::OEiJ4
10F7 #OEDIO
U07 0 iilFOIO 010F 271
11Al #ElST
l1~D ::El S T2
li8F ::OERR
111:) ::JOINT
1169 :HOCOM

m 11BA ::ENOEQ
11C5 ::ERREQ
110E ::OUT!3L
1100 #INTBL
11EC #IO@iil@
11ED ::FLRP2
1216 4 @FOVC ODIC 28
1222 ::FlDAT
1232 4 @FOVA 0001 1
1239 5 iilFOB2 013A 314
1340 ::FRET
1348 @FDB2A
12CO OlFOS2B
1352 @FOB2C
1313 5 @FOC3 OOAO 113
1420 5 @FOB8 004E 18
146E 5 GlF089 0018 24
1486 5 iilFOBA 0010 29
14A3 5 iilFOCA 0028 43
14CE 6 iilFOI C 0003 211
1513 #ERTST
15Al 6 @FOIB 0008 216
1619 6 @FOI3 00C8 203
161F CFOI3A
1114 ::FOI3
1144 6 iilFOVP 0019 25
1150 6 iilFOBfI 0038 56
1195 6 iilFOD1 012C 300
18Cl 20 KBINCQ 0103 461

Figure 9 (Part 3 of 4). FORTRAN IV Verification Sample Program Output

Program Product Installation and Verification 269

II

{

3130

3131 I
3134 I

SAMPLE MODULE'S TOTAL MAIN STORAGE SIZE IS
4756 DECIMAL

0800 IS THE START CONTROL ADDRESS OF THIS MODULE
SAMPLE MODULE IS CATALOGED INTO THE LIBRARY WITH THE FOLLOWING INFORMATION

19 TOTAL NUMBER OF LIBRARY SECTORS

SYSTEM/32 FORTRAN IV SAMPLE TEST CASE

1---I
I K 1

1----1---1
I N I 1 2 3 4 5 6 1 8 9 10 I
1----1---1
1 1 I 1 0 0 0 0 0 0 0 0 0 1
I 2 1 2 1 0 a a 0 0 0 0 0 1
1 3 1 3 3 1 0 0 0 0 0 0 0 1
1 4 I 4 6 4 1 0 0 0 0 0 0 1
1 5 I 5 10 10 5 1 0 0 0 0 0 I
I 6 1 6 15 20 15 6 1 0 0 0 0 1
1 1 I 1 21 35 35 21 1 1 0 a 0 1
1 8 1 8 28 56 70 56 28 8 1 0 0 1
I 9 I 9 36 84 126 126 84 36 9 1 0 1
I 10 I 10 4~ 120 210 252 210 120 45 10 1 I
I 11 I 11 55 165 330 462 462 330 165 55 11 1
I 12 I 12 66 220 495 792 924 192 495 220 66 1
I 13 1 13 1d 296 115 1287 1116 1716 1287 715 286 1
I 14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 I
I 15 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1
I 16 1 16 120 560 1820 4368 8008 11440 12810 11440 8008 1
I 17 1 11 136 680 2380 6188 12376 19448 24310 24310 19448 I
I 18 1 18 153 816 3060 8568 18564 31824 43758 48620 43158 1
1 19 I 19 171 969 3816 11623 27132 50388 15582 92318 92378 I
I 20 1 20 190 1140 4845 15504 38160 71520 125910 161960 184756 1
1----1---1

Figure 9 (Part 4 of 4). FORTRAN IV Verification Sample Program Output

270

Basic Assembler I nstallation Verification

A sample program (ASSMPL), input data file (INPUT), and procedure (ASMSAMPL)

are provided with the IBM System/32 basic assembler program product. After basic
assembler is installed, by entering the command statement ASMSAMPL, you will be
prompted to insert the assembler program product diskette (PPASM).

ASMSAMPL
INSERT ASSEMBLER PROGRAM PRODUCT
DISKETTE.

ACTION SCP 1162 CRPS OPTIONS 0
PAUSE -- WHEN READY, ENTER 0 TO CONTINUE

The ASMSAMPL procedure will then copy to disk from diskette the ASSMPL source
program and the input data file. The ASSMPL program will then be assembled, link
edited, and executed.

ASSMPL WILL BE ASSEMBLED, LINKED,
AND EXECUTED. AT EXECUTION TIME A
FILE WILL BE READ AND PUT TO THE
PRINTER.
ASM PROCEDURE EXECUTING
MACRO PROCESSOR EXECUTING

After execution, the ASSMPL source, object, and load modules, the input data file,
and the ASMSAMPL procedure will be deleted from the disk.

The printed output from this verification sample is; a list of options, an external symbol

list, source statement list, cross reference list, overlay linkage editor map, and the
message THE ASSEMBLER SAMPLE PROGRAM IS EXECUTING PROPERLY. After
this message is printed, the display screen will display EOF ON SYSIN and will then

appear as below.

VERIFICATION IS COMPLETE. THE
FOLLOWING WILL NOW BE DELETED
ASSMPL SOURCE, OBJECT, AND LOAD
MODULE - THE INPUT FILE - AND
THE ASMSAMPL PROCEDURE.
REMOVE PROCEDURE EXECUTING

The following is an example of the source statement listing and the final printed

message of properly installed basic assembler program product.

Program Product Installation and Verification 271

ASS~PL JISK FILE TO PRINTER (80/80 LIST PROGRA~)

ERR LaC OBJFCT CUO~

OdOd

Cl340 CO 87 0812

AODR

0001
00(12

Od12

STMT

1
2
3

SOURCE STATEMENT

lCTl 1,71
ISEQ 73,80
PRINT NOGEN,~OOATA

VER XX MOD XX XX-XX-XX PAGt:: 3

00020-]0;]
OOOJOuOO
00040000

5 ** OOOoOJOJ
00G70,JOO
OrJ060JOO

6
7
B
9

10
11
12
13
14
15
16
17
18
19

- THIS PROGRAM READS A FILE FROM THE DISK A~D LISTS IT
~ ON THE PRI~TER.

THERE A~E THREE POSSI~LE MESSAGES ISSUED ~Y THIS PRJGRAM:
MESSAGE MEANING

'EUF ON SYSUJ'

'SYSIN [RR0~'

eND G~ ~IL~ ENlCJNTEREU F~J~ DISK REA).
THF PRJJiJRAM ISSUES THe ~ESSAGt:

AND GOE::> TO EuJ.
THtPE rlAS BEEN A PERMANENT PRINT~R

E~ROQ. THE PROGRAM rssurs T~E

~ESSAGE A~D GUES TO END OF J02.
THERE rlAS dEEN A PiR~ANE~T REAJ

ERROR. THE P~OGRA~ ISSuE~ THE
MESSA~E AND GJE~ TO END JF J06.

-," OU09000J
DC 1 C:j'JCJ
r)u11J-JOJ
OJ12CJO:J
CJljJJOJ
OoJ1'iOJOv
Ovl SC)0CL)

OCllb'JUOJ
OJ1/0.)00
OJIJ(J!.j'JJ
OCl '-1000J
002 J'JUOJ

20 ** OJ2iOJ00

22 ASSMPL START X'u800'

24
25

eXT q \J ,: $ C SIP
EXT R .'J :: $ a 0 ~/, C

27 - PREPARE THE FILES FOR USE (JTFS AKE CrlAI~~D)

29 '," $ALllC DTF-DSKDTF ALLOCATE ALL FILL~

j!) '," 1>OPEi'i [)TF-DSKDTF OPEN ALL FILES

40 '," READ FRJM SYSTEM SOURCE LIBRARY AND PKI~T R~CJRDS UNTIL END OF FILE
41 RE:OAG\I EQU -,"
42 -," IGETO ACCESS-CG,DTF-CSKDT~,ERR-SYSERtEUF-EOF

51 -," SPUTP DTF-PRTDTF,EKR-PR~ERRtSPACEA-l,PRINT-Y

61 8 REOAGN BRANCH BACK AND READ AGAIN

002 jOJO\.)

O\)3 ~'JvO')
OJ35:JJOC
OO:)'.);],jOO

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

Version Update Instruction Summary

The following instructions are intended to be used as a guide for installing a version
updatepn an IBM System/32. These instructions are a summary of the detailed
instructions that are presented in Part 5, System Configuration, Installation, and
Modification. Index entries follow each step for the detailed description.

Note: Your IBM service representative can tell you if there are any PTFs applicable
to your version of the SCP, or to your version of any program product. If there
are PTFs, make arrangements with your IBM representative to have the PTF
diskette available whtm you do your version update. The PTF diskette contains
all applicable PTFs.

To install a version update on the IBM System/32 execute the following steps:

1. Print the system information from the system library to determine the total
number of library blocks, the directory size, and if you are using inquiry/
offline. Save the printed listing for step 6.

Enter: LlSTLI BR DI R,SYSTEM

(See index entries: printing from the library and LISTLIBR procedure.)

2. Delete I BM program products that are installed on the system so that the
system contains only user programs. User programs are saved in step 3.

Enter the following appropriate command for the program product you
have installed:

SEUDROP (if SEU is installed)
DFUDROP (if DFU is installed)
SORTDROP (if SORT is installed)
RPGDROP (if RPG is installed)
FCUDROP (if 'FCU is installed)
FORTDROP (if FORTRAN IV is installed)
ASMDROP (if basic assembler is installed)

(See index entry: deleting members.)

Version Update Instruction Summary 272.1

212.2

3. Save your user programs on a diskette file (filename used here is USERLlBR).
The USERLlBR file is restored to disk in step 9.

a. Initialize enough diskettes to contain your user programs (vol-id used here
is USER).

Note: FORMAT2 may require fewer diskettes.

Enter: INIT USER"FORMAT2

Note: Files that are on the diskettes being initialized in this step are deleted,
so make sure these files are not needed. (See index entry: INIT procedure.)

b. Use the diskettes initialized in part a of this step to save your user programs.

Enter: FROMLlBR ALL,LlBRARY,USERLlBR,,999,USER

(See index entry: FROMLIBR procedure.)

Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of this
step must be deleted.) (See index entry: INIT procedure.)

4. List the disk VTOC and save this list to compare with the list that will be
printed in step 10 to verify that no data files were lost.

Enter: CATALOG

(See index entry: CA TALOG procedure.)

5. Save your data files on a diskette file.

a. Initialize enough diskettes to contain your data files (vol-id used here is
OFSAVE).

Note: FORMAT2 may require fewer diskettes.

Enter: INIT OFSAVE"FORMAT2

Note: Files that are on the diskettes being initialized in this step are
deleted, so make sure that these files are not needed.

(See index entry: INIT procedure.)

b. Use the diskettes initialized in part a of this step to save your data files~

Enter: SAVE ALL",OFSAVE

(See index entry: SA VE procedure.)

Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of this
step must be deleted.) See index entry: INIT procedure.

6. Install the version update of system control programming.

Enter: RELOAD

(See index entry: RELOAD procedure.)

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Note: The values used on your last version for the RELOAD display are in

the list printed in step 1. These values may have to be increased if additional

optional functions or program products are being added on this version or if
the library requirements have increased from the last version (see index entry:

library requirements).

If inquiry/offline support was included on your last version, the list printed
in step 1 will include an inquiry/offline area.

7. When the message ENTE R COMMAND appears, start the system

configuration.

a. Enter: CN F I GSCP

(See index entry: CNFIGSCP procedure.)

b. Follow the instructions on the display screen and respond to the prompts.

Note: If you have a PTF diskette, add the PTFs when prompted.

(See index entry: APPL YPTF procedure.)

c. When the message SYSTEM CONFIGURATION COMPLETE REMOVE
DISKETTE AND IPL FROM DISK appears, ensure that both the IPL and
IMPL switches are set to DISK and press the LOAD key. The version up
date is now loaded and the configuration is complete.

8. Install the program products that you wish to have on your system.

a. Enter: INSTALL [DFU] [,SEU] [,SORT] [,RPG] [,FCU] [,FORT]
[,ASM]

(See index entry: INSTALL procedure.)

b. Insert the PI D program product diskette prompted for and follow the
instructional messages that are displayed.

c. When the prompt for the volume-id of the backup diskettes is displayed,
press the INO key and select option 2. This terminates the INSTALL
procedure.

Note: If you have a PTF diskette, add the program product PTFs at this

time.

(See index entry: APPL YPTF procedure.)

Version Update Instruction Summary 272.3

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

272.4

9. Insert the USER diskettes that were used in step 3 to restore user programs.

Enter: TOLlBR USERLlBR

(See index entry: TOLIBR procedure.)

10. List the disk VTOC and compare this list to the list printed in step 4.

Enter: CATALOG

(See index entry: CA TALOG procedure.)

Note: If the lists are the same (your data files were not affected by the ver
sion update) go to step 12. If the lists are not the same go to step 11 to
restore your data files.

11. Restore all data files saved in step 5.

Enter: RESTORE

(See index entry: RESTORE procedure.)

12. Backup your complete system. The diskettes used in steps 3 and 5 are no
longer needed and may be used here (delete and rename them). (See index
entry: INIT procedure.)

a. Initialize enough diskettes to contain your complete system (vol-id used
here is SYSTEM).

Note: FORMAT2 may require fewer diskettes.

Enter: INIT SYSTEM"FORMAT2

Note: Files that are on the diskettes being initialized in this step will be
. deleted, so make sure that these files are not needed.

(See index entry: INIT procedure.)

b. Use the diskettes initialized in part a of this step to back up your system.

Enter: BACKUP SYSTEM,999

(See index entries: Backup configured SCP and BACKUP procedure.)

Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of
this step must be deleted). (See index entry: INIT procedure.)

13. An individual backup copy of each program product may be made.

(See index entry: backup copy of a program product.)

"tI
(3
~
Ql

3
"tI o
a.
c:
!l

ASSMPL DISK FILE TO PRI~TER (80/80 LIST PROGRAM)

ERR LOC OBJECT CODE

0844 C2 02 0l:C4

0840 CO 81 0866

0851 C2 02 OEC9

OBSA F2 87 09

Cd')J (2 02 OPCE

()8A5

C83d

OA58

0(';32

ADDR STMT SOURCE STATEMENT VER XX MOD XX XX-XX-XX PAGE: 4

0866

08A5
OBPA
OARA
OAPS
030A

63 ¥ END OF FILE ON SYSIN
64 EOF
65 ",'
68

LA EOF~SG,LOG

$lJG
8 EOJ

10 * ERROR ON DISK R~AO
71 SYSER lA SER~SG,lUG

12 ",' $lOG
75 J EOJ

17 * ERROR ON PRINTEk
18 ?kNERR LA PEK~SG,lOG

19 ',' 1ltJG

83 ",' f I\JD OF JOb ROUTINE
84 EOJ 1:0U ",'

85 ",' $CLOS DTF-JS"OTF
89 ",' '1>EOJ

::;4 ",' CJNSTANTS A;\jD DATA ARt::AS

96 ¥ DISK FILE TABLES ETC.

EOF MESSAGE
INVALID REPLY, TRY AGAIN

DISK READ ERROR MESSAGE
GO TLl EOJ

PRINTER ERROR MESSAGE

ClJ5E ALL FILES
END JOd

97 ;:=SKDTF 1DTFD ACCESS-CG,RECL-80,!""AME-I'~PUT,BLKL-512,IOARtA.-H .. !:?UF,
98 ¥ CHAIN-PRTOTF,RCAO-INRCRO

122 ',' PUFFER ANJ ..wORK AREAS FOR OISK INPUT INTERFACE
123 INP,UF EQU ",'

124 lOB OS Cl22
125 Ii~AREA OS 2CL256
126 INRCRD EOU ",'

127 OSKREC OS CleW

129 * PRINT FILE TABLES ETC.
130 *~TDTF ,OTFP ~CAO-I~RCR09IOAREA-OUTPUT,RECL-80

148 * RUFFER AN0 ~ORK AREAS FOR PkINTER INTERFACE
OB32 149 OUTPUT E00 ¥

OBC3 150 IOAREA OS CL146

152 ¥ SYSTE~ LOG TABLES

154 ;;'OFMSG LLMSG TYPE-2,SPACE-2,~SGL~-15,~SGAO-EOFMGC

00420000
00430000
0044000J
00450000

00470000
004dOOOO
00490000
00500,)00

00510JOO
00520000
OJ530'JOO

OJ5,000'J
00560000
0057000G
00580000

OJ60000iJ

00620000
;:'00630000

00640000

00660000
00670000
00680000
00690000
00100000
0011.0000

00730000
00140000

00160000
00110000
00180000

00800000

X00820000

ASSMPl DISK FILE TO PRINTER (80/80 LIST PROGRA~)

ERR LOC OBJECT CODE AODR snn SOURCE STATEMENT VER XX MOD XX XX-XX-XX PAGE 5

161 ';'ER MSG £lMSG TYPE-2,SPA(E-2,MSGlN-15,~SGAO-SFRMGC

$LMSG TYPE-2,SPACE-2,MSGLN-15,MSGAD-PER~GC

0803 175 EOFMGC EQU
OB03 C506C640D60540E2 aBEL 176 DC CLIS'EOF ON SYSIN

08f2 178 SE~MG(EQU
oaE2 E2E8£2(90540(5J9 O~FO 179 DC CL1S'SVSIN ERROR

OBFl lal PERMGC EQU
86F1 0709(905E3C50940 oa~F 152 DC CLl5'PRINTcR ERRUR

184 ~ OFFSETS FOR ALL OTFS 0EFINEO IN THIS PROGRAM

1:36 -,' £OTFO OISK-Y,PRT-Y,FIELD-Y

492 -,' Ri:GISTER LABELS
OOt12 493 $DTF EQu 2
0002 494 SVS EQU 2 $YS I '\j PAKAMFTER LIST
0002 4<i 5 LOG EQU 2 SYSlOG PARAr-'ETER LIST

0800 491 ENO ASSMPl

TOTAL STATEMENTS I~ ERROR IN THIS ASSfMBLY-- 0

TOTAL S~QUE~CE ERRORS I~ THIS ASSfMBlV-- 0

**
THE ASSEMBlE~ SAMPLE PROGRA~ IS EXECUTING PROPERLY.

TH IS I S THE PR IN TED OUTPuT FROr-1 THE LOAD M:]OULf OF ASS i-1P l

POHHER
POINTER

)(00840000

)(.00860000

00880000
00890000

00910000
00920000

00940000
00950000

00970000

00990000

01010000
01020000
01030000
01040000

OlOtlOOOO

FCU

0001
0002
0003
0004
0005
0006
0007
0008
0009

Feu Installation Verification

Two sets of sample data files and conversion specifications are provided with the
IBM System/32 FCU program product. After the FCU is installed, either set of
data files and conversion specifications can be loaded from the PI D program
product distribution diskette (FCUFCU) and executed by entering either of the
following command statements:

FCUSAMPL DP
FCUSAMPL WP

Entering FCUSAMPL DP does the following operations:

• Loads a sample sequential file and specification source member from the diskette
to disk.

• Executes the FCU specification phase to create a specification load member.

• Executes the FCU conversion phase to create an indexed sequential output file.

• Automatically deletes the FCUSAMPL DP procedure, the sample data files,the
specification statements, and the load module.

The following is an example of the printed output of a properly installed FCU
sample program.

SPECIFICATION LISTING FOR MEMBER #FCUDP DATE XX/XX/XX

FIS 00020000
FOI 40 6 1 00030000
CP 1 1 6UO 1 1 6UO ACCOUNT NUMBER 00040000
CP 2 7 10P2 6 33 39U2 CURRENT BALANCE 00050000
CP 3 11 14P2 5 26 32U2 NEW CHARGES 00060000
CP 4 15 18P2 3 12 18U2 PAST DUE AMOUNT 00070000
CP 5 19 22P2 4 19 25U2 PAYMENTS 00080000
CP 6 23 25PO 2 7 11 UO CREDIT LIMIT 00090000
CC 7 40 40A 1 'DELETE FIELD' 00100000

0305 SPECIFICATION LOAD MODULE CREATED

Program Product Installation and Verification 275

276

FCU CO~VERSION PHA3~ PROCESSING ME~9EP ~FCUDP

RECORD KEY 113520
113520009000012176000000000126140024790

RECORD KEY 118860
118860008000061735000020000417210083456

RECORD KEY 953210
953210005000011740001174000021500002150

RECORD KEY 233470
233470009000063785000040000175300041315

RECORD KEY 286220
286220005000067141006714100519400051940

RECORD KEY 825130
825110030000319667015795003117930473510

RECORD KEY 312750
312750009000077760005000000539970081757

RECORD KEY 324570
324570004000053200003261000291400049730

RECORD KEY 298710
298710009000042136004213600374910037491

RECORD KEY 437150
437150008000073191000040000000000033191

RECORD KEY 439370
439370008000009310000562000041300007820

RECORD KEY 451370
451370005000019717001971700223370022337

RECORD KEY 469180
469180010000068235000030000631940101429

RECORD KEY 583130
583130100000337415031147100573910083335

RECORD KEY 791190
791190008000021719002171900117450011745

RECORD KEY 913700
913700008000054973000040000741700089143

RECORD KEY 987160
987160008000001542000154200885850088585

RECORD KEY 307550
307550006000007816000781600635000063500

DATE XX/XX/XX

Entering FCUSAMPL WP does the following operations:

• Loads sample sequential and indexed data files and a specification source
member from the diskette to the disk.

• Executes the FCU specification phase to create a specification load module.

• Executes the FCU conversion phase to create a tabular document in a document
library.

• Automatically deletes the FCUSAMPL WP procedure, the sample data files, the
specification statements, and the load module.

Note: This sample requires that System/32 SCP Feature Number 6002 (word
processing support) and a 96-character print belt be installed.

The following is an example of the printed output of a properly installed FCU
sample program.

Program Product Installation and Verification 277

278

FCU SPECIFICATIO~ LISTING FOR MEMBER 'PCUW?

0001
0002
0003
0004
0005
0006
0007
OOn8
0009
0010
00 11
0012
0013
0014
0015
0016
0017
0018
0019
0020
nO?1
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
00.36
0037
0038
0039
0040
0041
0042
0043
0044
0045

FTS
FSI
FOL FCU
Q 100GTF110
CK 1 1 6UO
CS 10 1 6A-
CS 20 33 33A TITLES
CS 30 22 31A
CS 40 32 32A
CS 50 7 21A NAMES
CS 60 34 53A NSEW
CS 70 54 73A
CS 80 74 75~ STATES
CS 90 76 ROA
CC
CP100
CC

7 10P2S

CP110 23 25PO
ATIT1FS 7 71013
.1 Hr.
.2 Ms.
.3 Mrs.
.4 Miss
.5 Dr.
ANAr"ES 7101517'::
.!"!C':: Me'::
.0":: 0·'::
ANSEW 7101316::'
• NE ',' NE ','
.NW:;' NW ','
.SE ':' SE '::
• sw ':: Sw '::
ASTAT-';;S 7 81335
.OH Ohio
.FL Florida
.AL Alabama
.I.A Georgia
.LA Louisiana
.SC South Carolina
.MS Mississippi
.WV West Virginia
.MD Maryland
.IL Illinois
.DC D. C.
.KY Kentucky

WPSAMPLE

1
2
3
4
5
6
7
8
9

10
11
12
13

A
A
A
A
A
A
A
A
A

D~

A
DO

0305 SPECIFICATION LOAD MODULE CREATED

P
U
P
P
P

1$

1$

KEY FIELD
CHARGE #
TITLE
FIRS'r NAME
:lIDDLE INITIAL
LAST NAME
STtiEET
CITY
STATt; NAME
lIP CODE
DOLLAR SIGN
CURRENT BALANCE
DOLLAR SIGN
CREDIT LIMIT

DATE XX/XX/XX

00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
00100000
00110000
00120000
00130000
Q0140000
00150000
00160000
00170000
001HOOOO
00190000
00200000
00210000
00220000
00230000
00240000
00250000
00260000
00270000
00280000
00290000
00300000
00310000
00320000
00330000
00340000
00350000
00360000
00370000
00360000
00390000
00400000
00410000
00420000
00430000
00440000
00450000
00460000

Feu CO~VERSION PHASE PROCESSING ~EMBER #FCUWP DATE XX/XX/XX

dECO RD NO 000001
118860 Barbara McGuire 470 Live Oak Place Albany Georgia

$ 800.

RECO RD NO 000002
2H6220 f1r. Joseph A Abruzzo 3500 Gault Ocean Dr New Orleans Louisiana

$ 500.

H~CORD ~O 000003
f)2S130 A-1 UseJ Cars 200 SE 124 St. Maywood Illinois

:5 3,000.

RE::::O RD NO 000004
324570 t1r. Robert Q Dobbs Buttonwood Drive Rome Georgia

$ 400.

RECORD NO 000005
46g180 '1iss Mar9aret E Monroe 9 Pine Tree Lane sunny South Alabama

.5 1,000 •

R"P.CC RI' NO 000006
Q13700 Ms. Janice i.. Comstock 2637 Marion Dr Ellensburg jj. C.

:E 800.

HECOHD NO 000007
987160 :1r. Charles N i1cCall 669 w Campus Circle Williston south Carolina

$ dOO.

(~2CO RD NO 000008
307550 Horace M De Anqelo 8150 Cypress ~oad ~verglades Florida

T 600.

fIELD 100 SUM 10012.93 i'lAX 4735.10 MIN

Program Product Installation and Verification 279

This page intentionally left blank

280

APAR Parameters

vol-id

object program name

source program name

BUILD PROCEDURE

Volume identification of the diskette to contain the two
files APARFILE and FIXDFILE.

The name of the object program causing the program

check interrupt.

The name of the source program from which the object
program causing the program check interrupt was
created.

The BU I LD procedure helps you correct data on the disk if an error occurs during

a disk read or write operation. The BUILD procedure evokes the $BUILD utility
program to display and print unreadable data so you can find and correct it. See
index entry: $BUILD utility program, for a description of how to display and

correct data after a disk read or write error occurs.

BUILD Command Statement Format

BUILD

BUILD Parameters

None

DUMP PROCEDURE

The DUMP procedure prints or displays information saved on the CE cylinder and
other protected sectors on the disk. This information, consisting of the contents
of main and control storage and the last 20 sectors recorded in the history file,
may have been saved because of a program check interrupt or may have been
saved because the RESET and then the CE START keys on the CE console were
pressed.

DUMP also prints or displays the PTF (program temporary fix) log module and
system configuration record. If DISK is specified, selected sectors from the disk
(if Fl) or a diskette (if 11) are displayed or printed. If MAIN; CONTROL,
HISTORY, PTF, CONFIG, or MICR are specified with 11, the specified items are
printed or displayed from a diskette file created by the APAR command. (See

index entry: APAR procedure.) The sectors you select to print or display must be

entered as hexadecimal numbers.

The DUMP procedure evokes the $FEDMP utility program.

IBM SCP Service Procedures 281

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

DUMP Command Statement Format

282

DUMP

MAIN
CONTROL
HISTORY
PTF
CONFIG
DISK
MICR

[
PRINTER] '[,F1]

, CRT ,11

DUMP Parameters

MAIN The system status, system communication area (SCA), program level
communication area (PLCA), DTFs (define the files) and lOBs
(input/output blocks) are dumped; a prompt for main storage address
limits (a starting storage address and an ending storage address)
follows. After the selected area of storage is dumped, a new limits
prompt is issued. You have the END option (terminate the DUMP)
after each prompt for main storage limits. MAIN is the default.

CONTROL The control storage direct area is dumped; a prompt for the control
store address limits follows. You can respond with the limits or END.

HISTORY Dump the saved HISTORY file.

PTF Dump the PTF log module.

CONFIG Dump the system configuration record.

DISK Selected sectors of Fl or 11 can be dumped. Prompts are issued for the
starting sector number and number of sectors to be dumped (must be
entered in hexadecimal). -At the completion of that dump, prompts are
issued for the next group of sectors. You can respond with the limits or
END.

MICR

PRINTER

CRT

£!

11

Dump the magnetic character reader controller storage area.

Output is on the printer. PRINTER is the default.

Output is on the display screen, 240 characters at a time. The key
board function keys can be used to display different portions of the
dump.

The disk contains the information requested by the MAIN, CONTROL,
HISTORY, PTF, CONFIG, or DISK parameter. F1 is the default value.

The diskette contains the information requested by the MAIN,
CONTROL, HISTORY, PTF, CONFIG, or DISK parameter.

Example:

A user required the SEU program product, data recorder support, word processing
support, and inquiry/offline support on a 16K system.

Directory
Sectors

33

4

6

Library
Blocks

239

38

11

16

60

Library Function

Minimum System/32 SCP

SEU

Inquiry/offline support on 16K

CARDIO (data recorder)

WPFI LE (word processing)

20 MSGMBR (required by both word processing and
data recorder but needs to be added only once)

The total number of directory sectors is 44; the total number of library blocks is 384.
These totals are the minimum numbers of directory sectors and library blocks for
the requested system.

DELETING FROM THE LIBRARY

Before deleting members from the library, determine how much space is presently
available for new members, or how much disk space is available for additional data
files.

System Modification 283

284

Determining Space Available in the Library

To determine how much space is available in the library, use the L1STLlBR proce
dure or the copy function of the $MAI NT utility to print the system information
from the directory area (see index entries: $MAINT utility program and LISTLIBR
procedure). The system ihformation listed will specify the number of additional
entries the directory can contain (AVAILABLE DIRECTORY ENTRIES) and how·
many sectors are available in the library for additional members (AVAI lABlE'
MEMBER SECTORS).

Determining Space Available on the Disk

To determine how much space exists on the disk for additional data files, use the
CATALOG procedure or the $lABEl utility (see index entries: $LABEL utility
program and CATALOG procedure) to display the disk VTOC. Available disk space
is specified in every disk VTOC display.

Note: You can also use CATALOG or $lABEl to display all disk VTOC entries to
determine which files can be deleted (see index entries: $DELET utility program
and DELETE procedure). Use the COMPRESS procedure or $FREE utility (see in
dex entries: $FREE utility program and COMPRESS procedure) to collect unused
disk space in one area.

To determine how much space will be available for user programs and data files, take
the total library requirements of your planned system and subtract this number from
the number of disk blocks on your system. (see index entry: library requirements)

Note: Convert the sectors to blocks (1 block equals 10 sectors). I f there is a
remainder, round off that remainder to the next whole number.

Disk blocks available on the IBM System/32 are:

1248 blocks on a 3.2 megabyte disk

1968 blocks on a 5.0 megabyte disk

3576 blocks on a 9.1 megabyte disk

5376 blocks on a 13.7 megabyte disk

Example: The library requirements of the minimum IBM System/32 system control
programming are 33 directory sectors and 239 library blocks. This totals 243 blocks
(33 sectors converted to blocks rounds to 4 blocks). A 3.2 megabyte disk system
leaves 1005 blocks available for user programs and data files.

1248 (blocks on a 3.2 megabyte disk)
-243 (total blocks library requirements)
1005 (total blocks available to the user)

Selecting Members to Delete

The following members can be deleted from the library without affecting other mem
bers or SCP functions:

Name

##MSG1
##MSG4

Member Type

o (load)
o (load)

Selected procedure P (procedure)
(see note)

Descri ption

Level 1 error messages
Level 2 error messages
Procedures

Note: When you delete a library member, be sure not to delete a procedure within
a nested procedure(s) or a procedure called by all procedures. For example, #ER R
is a nested procedure available to all procedures for error detection. If ##MSG 1
and/or ##MSG4 are deleted, there will be no message text when an error occurs.

In addition to deleting the preceding members you can delete inquiry/offline multi
volume support and any program product installed on the system without affecting
other system functions.

Deleting (or not including) inquiry/offline support {INCLUDE INQUIRY/OFFLINE?
= NO on the RELOAD display-see index entry: RELOAD display) saves 1_1 blocks
of library space on a 16K system, 14 blocks on a 24K system, and 17 blocks on a
32K system. Use the LlSTLlBR procedure or the copy function of $MAINT to list
library directory entries to determine space gained by deleting procedure members,
##MSG1, and ##MSG4. See index entry: library requirements to see how much
space is ga'ined by deleti ng a program product.

Note: After deleting members, use the CONDENSE procedure to collect all available
space into one area at the end of the library.

System Modification 285

286

Deleting Members

• ##MSG1, ##MSG4, and procedure members are deleted by using the delete func
tion of $MAINT. See index entry: $MA/NT utility program.

• Inquiry/offline support is deleted by specifying NO to the INQUIRY/OFFLINE
option of the RELOAD display. The RELOAD display is described in following
paragraphs.

• Program products are deleted by entering a nameD ROP command statement for
each function to be deleted (DFUDROP, SEUDROP, SORTDROP, RPGDROP,
ASMDROP, FORTDROP, and/or FCUDROP). The procedures evoked by these
command statements are deleted from the system when the related program
product functions are deleted.

After you have deleted members, you can change space allocated to the library by
using the RELOAD display, described in the following paragraphs.

Notes:
1. Do not delete any procedure that is used by a procedure that you are not

deleting.

2. To gather the disk space created by deleting members from the library into one
usable area, you can use the CONDENSE procedure. See index entry: CONDENSE
procedure.

RELOAD DISPLAY

The RELOAD procedure (described under index entry: RELOAD procedure) is
used to perform an IPL from diskettes onto which the library was copied by the
BACKUP procedure (described under index entry: BACKUP procedure).
RELOAD creates a new library on the disk, but does not disturb data files on the
disk.

The RELOAD display appears when you insert the first backup diskette (for a
particular copy of the library) and enter the RELOAD command statement
(described under index entry: RELOAD command statement) or when you press
the LOAD key with the IPL switch on the CE control panel set to DISKETTE.

The RELOAD display shows the number of sectors allocated for the library
directory, indicates whether or not inquiry or offline multivolume files are
supported, and shows the total number of blocks allocated for the library (system
file #lIBRARY). A sample display follows:

---~) LIBRA~Y DIRECT1QY SECTOQS
HISTORY FILE SIZE DESIRED
INCLUDE INQUIRY/OFFLINE?

TOTAL LIB~ARY BLOCKS

0033 ~ .
Q255~
YES ~Decimal
0239

If Values in the RELOAD Display are Correct

If the values shown in the RELOAD display are not correct, see the following page
to change the values; otherwise, press the ENTER key (not the ENTER+ or ENTER-
key). The library is read from the diskette to the disk and the following display appears:

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE-XX/XX/XX, SEQUENCE NUMBER-02

-----> PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE

IF CORRECT VOLUME NOT'INSERTED

The INSERT DISKETTE display always appears after a diskette is read to the
disk. When the display appears, remove the diskette and insert the next diskette
as indicated. When all the diskettes are read, the following display appears:

RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK

Remove the diskette, set the IPL and IMPL switches on the CE control panel to
DISK, and press the LOAD key. The following display appears:

**** INITIAL PROGRAM LOAD COMPLETE ****
DA TE XXX XXX
LINES 33

ENTER COMMAND

<-READY

Enter a DATE command statement (see index entry: DATE procedure) or a SET
command statement (see index entry: SET procedure) if the date or number of
lines printed per page is to be changed.

System Modification 287

288

If Values in the RELOAD DisplaY'are to be Changed

To change the values displayed, do the following:

• When the arrow is pointing to the first line (LIBRARY DIRECTORY
SECTORS):

1. If this line is correct, press the R EC ADV key. The arrow and cursor
move to the second line.

2. If you want to change the first line, enter the change over the existing
data (you may omit leading zeros) and then press the ENTER+ key. The
arrow and cursor move to the second line.

Note: The formula for computing the number of entries the directory
can hold is number of directory sectors times 11 minus 23. A directory
entry is required for each member in the library.

3. If all lines of the display are now correct, press the ENTER key (not the ENTER+
or ENTER- key). Data is read from the diskette onto the disk, and the INSERT
DISKETTE display appears .

• When the arrow is pointing to the second line (HISTORY FILE SIZE DESIRED):

1. If this line is correct, press the R EC ADV key. The arrow and cursor move
to the third line.

2. If you want to change the second line, enter the change over the existing
data (you may omit leading zeros) and then press the ENTER+ key. The
arrow and cursor move to the third line.

3. If all lines of the display are now correct, press the ENTER key (not the
ENTER+ or ENTER- key). Data is read from the diskette onto the disk,
and the INSERT DISKETTE display appears.

Note: HISTORY file size must be set within the range of 39-255 sectors.

• When the arrow is pointing to the third line (INCLUDE INQUIRY/OFFLINE?):

1. If this line is correct, press the R EC ADV key. The arrow and cursor
move to the fourth line.

2. If you want to change the third line, enter the change (YES or NO)
over the existing data and then press the ENTER+ key. The arrow and
cursor move to the fourth line.

Note: The inquiry/offline option requires a disk area in which to roll out
an interrupted program or to process an offline multivolume file segment.
The size of this area is 11 blocks on a 16K system, 14 blocks on a 24K
system, and 17 blocks on a 32K system. This area must be represented
in the total number of library blocks if inquiry/offline support is included.

3. If all lines of the display are now correct, press the ENTER key (not the ENTER+
or ENTER- key). Data is read from the diskette onto the disk, and the INSERT
DISKETTE display appears .

• If the arrow is pointing to the fourth line (TOTAL LIBRARY BLOCKS):

1. If this line is correct, press the R EC ADV key. The arrow and cursor
move to the first line.

2. If you want to change the fourth line, enter the change over the existing
data (you may omit any leading zeros) and then press the ENTER+ key.

Note: The number of blocks assigned to the library must be sufficient to
contain the library directory and the disk area (rollout area) required by
inquiry/offline support, if it is included, as well as all library members.
You should also allow some space in the library for new members
because of the inconvenience of expanding the library once the remaining
disk space is allocated to data files.

3. If all lines of the display are now correct, press the ENTER key (not the ENTER+
or ENTER- key). Data is read from the diskette onto the disk, and the INSERT
DISKETTE display appears.

System Modification 289

290

Version Update Instruction Summary

The following instructions are intended to be used as a guide for installing a version
update on an IBM System/32. These instructions are a summary of the detailed
instructions that are presented in Part 5, System Configuration, Installation, and
Modification. Index entries follow each step for the detailed description.

Note: Your IBM service representative can tell you if there are any PTFs applicable
to your version of the SCP, or to your version of any program product. If there
are PTFs, make arrangements with your IBM representative to have the PTF
diskette available when you do your version update. The PTF diskette contains
all applicable PTFs.

To install a version update on the IBM System/32 execute the following steps:

'1. Print the system information from the system library to determine the total
number of library blocks, the directory size, and if you are using inquiry /
offline. Save the printed listing for step 6.

Enter: LlSTLlBR OIR,SYSTEM

(See index entries: printing from the library and LISTLIBR procedure.)

2. Delete I BM program products that are installed on the system so that the
system contains only user programs. User programs are saved in step 3.

Enter the following appropriate command for the program product you
have installed:

VSEUDROP (if SEU is installed)
vi OFUDROP (if DFU is installed)
,../SORTDROP (if SORT is installed)
/ RPGDROP (if RPG is installed)

FCUOROP (if FCU is installed)
FORTOROP (if FORTRAN IV is installed)
ASMOROP (if basic assembler is installed)

(See index entry: deleting members.)

Version Update Instruction Summary 291

292

3. Save your user programs on a diskette file (filename used here is USERLlBR).
The USERLlBR file is restored to disk in step 9.

a. Initialize enough diskettes to contain your user programs (vol-id used here
is USER).

Note: FORMAT2 may require fewer diskettes.

Enter: INIT USER"FORMAT2

Note: Files that are on the diskettes being initialized in this step are deleted,
so make sure these files are not needed. (See index entry: INIT procedure.)

b. Use the diskettes initialized in part a of this step to save your user programs.

Enter: FROMLlBR ALL,L1BRARY,USER L1BR,,999,USER

(See index entry: FROMLIBR procedure.)

Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of this
step must be deleted.) (See index entry: INIT procedure.)

4. List the disk VTOC and save this list to compare with the list that will be
printed in step 10 to verify that no data files. were lost.

Enter: CATALOG

(See index entry: CA TA LOG. procedure.)

5. Save your data files on a diskette file.

a. Initialize enough diskettes to contain your data files (vol"id used here is
DFSAVE).

Note: FORMAT2 may require fewer diskettes.

Enter: INIT DFSAVE"FORMAT2

Note: Files that are on the diskettes being initialized in this step are
deleted, so make sure that these files are not needed.

(See index entry: INIT procedure.)

b. Use the diskettes initialized in part a of this step to save 'lour data files.

Enter: SAVE ALL",DFSAVE

(See index entry: SA VE procedure.)

Note: If you have not initialized enough diskettes, return to part a of this
step and initialize more diskettes (the diskettes already used in part b of this
step must be deleted.) See index entry: INIT procedU:ff1,

Load SCP support for data recorder attachment (the nested procedure name is
CNFICDIO):

II LOAD $MAINT
II FILENAME-CARDIO,UNIT-Il
II RUN
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-CARDIO
II END

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

Load SCP support for word processing (the nested procedure name is CNF IGU LF):

II LOAD $MAINT
II FILE NAME-WPFILE,UNIT-Il
II FILE NAME-WCFILE,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-WPFILE
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-WCFILE
II END

Set country code options for word processing (the nested procedure name is
CNFIGULF):

II LOAD $WPSET
II RUN
II CC nn
II END

Load OCL support for the 1255 Magnetic Character Reader attachment (the nested
procedure name is CNFIMICR):

II LOAD$MAINT
II FILE NAME-MICR,UNIT-Il
II RUN
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-MICR
II END

Load SCP support for FORTRAN IV (the nested procedure name is CNFIFORT):

II LOAD $MAI NT
II FILE NAME-FORTRAN,UNIT-11
II FILE NAME-OLE,UNIT-11
II FILE NAME-COMNSUBR,UNIT-Il
II RUN
II COpy FROM-DISK,TO-Fl ,RETAIN-R,FILE-FORTRAN
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-OLE
II COpy FROM-DISK,TO-Fl ,RETAIN-R,FILE-COMNSUBR
II END

IBM SCP Procedure Contents 293

294

Load SCP support for basic assembler (the nested procedure name is CNFIAMPR):

II LOAD $MAINT
II FILE NAME-OLE,UNIT-11
II FILE NAME-AMMACO,UNIT-I1
II FILE NAME-RPGSUBR,UNIT-11
II FILE NAME-COMNSUBR,UNIT-11
II FILE NAME-AMBSCA,UNIT-11
II FILE NAME-BSCALOAD,UNIT-11
II FILE NAME-BSCASUBR,UNIT-11
II FILE NAME-AMSCNT,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-OLE
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-AMMACO
II COPY FROM-DISK,TO-F1,RETAIN-R,FILE-RPGSUBR
II COPY FROM-DISK,TO-F1 ,RETAIN-R,FILE-COMNSUBR
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-AMBSCA
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-BSCALOAD
II COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCASUBR
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-AMSCNT
II END

Load SCP support for the overlay linkage editor (the nested procedure name is
CNFIOLED):

II LOAD $MAINT
II FILE NAME-OLE,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-OLE
II END

Load SCP support for queued job stream (the nested procedure name is CNF IQJOB):

II LOAD $MAINT
II FILE NAME-QJOB,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-QJOB
II END

Load SCP support for optional messages (the nested procedure name is CN F I MSGS):

II LOAD $MAINT
II FILE NAME-MSGMBR,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-MSGMBR
II END

Apply PTFs to SCP and optional programs (the nested procedure name is
CNFIPTFS), see index entry: APPL YPTF procedure.

Remove the CNFIGSCP procedures from the library:

II LOAD $MAINT
II RUN
II DELETE LlBRARY-P,NAME-CNFI.ALL,RETAIN-S
II END

COMPRESS

II LOAD $PACK
II RUN

CONDENSE

II LOAD $MAINT
II RUN
II COMPRESS
II END

CONVERT

II LOAD $CNV RT
II RUN

COPYI1

I I LOAD $DUPR D
II FILE NAME·COPYI1 [,DATE-date] ,UNIT-11
II RUN

1/ COPYI1 NAME- {~~~ame} ,PACK-vol-id [,DELETE- {~~S}]

[PRESERVE- {~~}] [COPIES- {Lumber of cOPies}]

II END

CREATE

I I LOAD $MGB LD
II RUN

{ YNOES} II MGBLD SOURCE-sourcename,REPLACE-

II END

DATE

II DATE-date

DCPRINT

II LOAD $DCSUP
II RUN

[II COPYFILE NAME-filename,OUTPUT-PRINT]
[II GO]
[II ENQ]

Page of GC21-7593-3
Issued 22 November 1978
8y TNL: GN21-7993

IBM SCP Procedure Contents 296

296

DELETE

II LOAD $DELET
II RUN

II SCRATCH LABEL-filename ['DATE-datel ,UNIT- {~11}
and/or

II REMOVE LABEL-filename,DATA- {~~S}[,DATE.date] ,UNIT- ~}
II END

DISPLAY

II LOAD $COPY
II FILE NAME-COPYIN,LABEL-filename [,DATE-date] ,UNIT-F1
II RUN
II COPYFILE OUTPTX-PRINT
[II SELECT RECORD,FROM-number-1 [,TO-number-21]
II END

DUMP

II LOAD $FEDMP
II RUN

MAIN
CONTROL
HISTORY

II DUMP LIST- PTF

II END

CONFIG
DISK
MICR

[.OUTPUT- {~:~TER }][.INPUT-{~ll}]

FROMLlBR

II LOAD $MAINT

II FILE NAME-

rfilename-l]
l!ibrary-name-l .

[
filename-2]
name-l

or, if ADD is specified,

[
fi lename-l]

II FILE NAM E- library-name-l

[
filename-2
name-1

II RUN

[~} IfFlis J
' R ETA I N- I ~peci fied.

retention-days 1

[,~] ,UNIT- {~11}
If UNIT-11

II COpy FROM-Fl,LlBRAR, V-l ~R \.. ,NAME- {librar
y
-name-1}

name-l.ALL

ALL

[
filename-l]

FILE- library-name-l TO DIS 0 ISS [] , - K, M T- V TEM ,ADD-VES
filename-2]

~
II END

HISTORY

INIT

II LOAD $HIST 1
II RUN

UI DISPLAV [ALL]] If NOLIST is not specified

II END

II LOAD $HINT
/l END

II LOAD $INIT
II RUN

II UIN OPTION-

[/I VOL PACK

II END

} If RESET is specified

1 ~~~~~~2l DELETE
RENAME

{ :;~"m date} ,ID- {~;~~~I 0 }]

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

or
,PACK-vol-id

IBM SCP Procedure Contents 297

INSTAll

(The following are some of the OCl statements for INSTAll.)

Print System Directory:

/I lOAD $MAINT
II RUN
II COpy FROM-F1,TO-PRINT,lIBRARY-SYSTEM,NAME-DIR
II END

Delete INSTALL procedures from tailored system:

JOBSTR

II LOAD $MAINT
II RUN
II DE~ETE LlBRARY-P,NAME-INST.AlL,RETAIN-S
II END

For card input

I I LOAD $OJOB
II RUN

For diskette input:

II LOAD $BICR
II FILE NAME-COPYIN,LABEL-filename,UNIT-11
II FI LE NAME-COPYO,LAB EL-filename,UNIT-F 1 ,RECORDS-numbln
II RUN
II TRANSFER
II END

II LOAD $MAINT
II FILE NAMi;:-filename,UNIT-F1
II RUN
II COpy "FROM-DISK,FILE-filename,TO~F1
II END

II LOAD $DELET
II RUN
II REMOVE LABEL-filename,UNIT-F1
1/ END

For executing a procedure if the procedure name is specified:

II INCLUDE procedurename

For deleting the procedurename if the NOSAVE parameter is specified:

II LOAD $MAINT
II RUN
II DELETE"NAME-procedurename,I..IBRARY·P
/I END "

Appendix C. Diskette Formats and Diskette Data Files

Diskette data files for IBM System/32 reside on diskettes that are initialized in one
of two physical formats.

DISKETTE FORMATS

IBMSystem/32 processes diskettes that are initialized in either the 128-bytes per
sector basic data exchange format or the 512-bytes per sector extended format.
The !NIT procedure and $INIT system utility can initialize diskettes in either
format. (See index entries: INIT procedure and $INIT utility program.)

The sectors in track 0 (index track) of both formats are 128-bytes. Data sectors
on the 128-bytes per sector format diskette are also 128-bytes. Data sectors on
the 512-bytes per sector format diskette are 512-bytes.

DISKETTE DATA FILES

IBM System/32 creates and processes two kinds of diskette data files: basic data
exchange files and IBM System/32 system files.

Basic Data Exchange Files

Basic data exchange files can reside only on diskettes initialized in the 128-bytes
per sector format on tracks 1-73. These files can be used for exchanging diskettes
between systems or devices. See The IBM Diskette General I nformation Manual,
GA21-9182 for a description of the data set label fields.

Basic data exchange files are created by the TRANSFER procedure and $BICR
system utility. The copy of a diskette file created by the COPYll procedure or
$DUPRD utility is a basic data exchange file if the original diskette file is a
basic data exchange file. (For a description of the procedures and utilities just
mentioned, see index entries: COPYI1 procedure, TRANSFER procedure,
$BICR utility program, and $DUPRD utility program.)

Diskette Formats and Diskette Data Files 299

300

System Files

System files can reside on diskettes initialized in either the 128-bytes per sector
format or the 512-bytes per sector format on tracks 1-74. These files can be used
on the IBM System/32 only. See The IBM Diskette General Information Manual,
GA21-9182 for a description of data set label fields.

System files are created by the BACKUP, FROMLlBR, ORGANIZE, and SAVE pro
cedures, and by the $BACK, $COPY, and $MAINT utilities. The copy of a diskette
file created by the COPYI1 procedure or $DUPRD utility is a system file if the ori
ginal diskette file is a system file. (For a description of the procedures and utilities
just mentioned, see index entries: BACKUP procedure, COPYI1 procedure,
FROMLIBR procedure, ORGANIZE procedure, SA VE procedure, $BACK utility
program, $COPY utility program, $DUPRD utility program, and $MAINT utility
program.)

REMOVE

II LOAD $MAINT
II RUN

library-name . P

/I DELETE NAME- {;a~e.ALL } ,LIBRARY· ~ I §. ~
ALL

II END

RENAME

1/ LOAD $R ENAM

Page of GC21-7593-3
Issued 22 November 1978 .
By TNL: GN21-7993

1/ RUN t {mmddYY lJ 1/ RENAME LABEL-filename-1,NEWLABEL-filename-2 ,DATE- ddmmyy
yymmdd

1/ END

RESTORE

1/ LOAD $COPY

1/ FILE NAME-COPYIN,LABEL- {:~~~e-1} [,DATE-datel,UNIT-11
filename-2

/I FILE NAME·COPYO [, LABE L·fjlename-2) R: ~~~~:;!";" 1
}] [,UNIT-F 1)

1/ RUN.
1/ COPYALL TO-F1

or
1/ COPYFILE OUTPUT-DISK,REORG-NO
1/ END

SAVE

1/ LOAD $COPY
1/ FILE NAME-COPYIN[,LABEL-filename-2] [,DATE-dat~] [,UNIT-F1]

/I FILE NAME·COPYO [,RETAIN. getention-davs}J[LABEL. {E:~~}]'
PACK-vol-id,UNIT-11

1/ RUN
1/ COpy ALL TO-I 1

or
1/ COPYFILE OUTPUT-DISK,REORG-NO

or
1/ COPYADD
1/ END

IBM SCP Procedure Contents 301

302

SET

I I LOAD $SETCF
[II IMAGE MEM,source-name]
[II DATE date]
II RUN

/I SETCF [LlNE&nu~berl [FORMAT- {~;nJ [IMAGE- {~~S}]
II END

SETMICR

I I LOAD $SETCF
II RUN

II SETR CYCLE- {~ }
II END

SPECIFY

I I LOAD $SETCF
. II RUN

. /I SETS [ADD R-nn{ LI N E- g lJ [SWTYP- {~~}] [,I D-nnnnn 1

II END

STATUS

II LOAD $STATS
II RUN

SYSLIST

II SYSLIST . CRT
[

PRINTER]

OFF

TOLlBR

II LOAD $MAINT

/I FILE NAME-filename[,DATE-dateLUNIT- {~11}
II RUN

/I COPY FROM-DISK,FILE-filename,RETAIN- { ~} ,TO-Fl

II END

TRACE

I I LOAD $SETCF

II RUN [ALL-V]

II TRACE {WAIT-N} [FDIOS-V]
WAIT-V ,FDIOS-N

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

[
,CSFDIOS-V] [,PUSH-V] [,PULL-V]
,CSFDIOS-N ,PUSH-N ,PULL-N

[
,DISABLE-V] [,ENABLE-V] ["QUEUE-V] [,LDCS-V] [,LOADER-V]
,DISABLE-N ,ENABLE~N ,QUEUE-N ,LDCS-N ,LOADER-N

[
,XIENT-V] [,XFER-V]
,XIENT-N ,XFER-N

I(END

IBM SCP Procedure Contents 302.1

This page intentionally left blank

302.2

APAR Parameters

vol-id

object program name

source program name

BUILD PROCEDURE

Volume identification of the diskette to contain the two
files APARFILE and FIXDFILE.

The name of the object program causing the program
check interrupt.

The name of the source program from which the object
program causing the program check interrupt was
created.

The BU I LD procedure helps you correct data on the disk if an error occurs during
a disk read or write operation. The BUILD procedure evokes the $BUILD utility
program to display and print unreadable data so you can find and correct it. See
index entry: $BUILD utility program, for a description of how to display and
correct data after a disk read or write error occurs.

BUILD Command Statement Format

BUILD

BUILD Parameters

None

DUMP PROCEDURE

The DUMP procedure prints or displays information saved on the CE cylinder and
other protected sectors on the disk. This information, consisting of the contents
of main and control storage and the last 20 sectors recorded in the history file,
may have been saved because of a program check interrupt or may have been
saved because the RESET and then the CE START keys on the CE console were
pressed.

DUMP also prints or displays the PTF (program temporary fix) log module and
system configuration record. If DISK is specified, selected sectors from the disk
(if Fl) or a diskette (if 11) are displayed or printed. If MAIN, CONTROL,
HISTORY, PTF, CONFIG, or MICR are specified with 11, the specified items are
printed or displayed from a diskette file created by the APAR command. (See

index entry: APAR procedure.) The sectors you select to print or display must be
entered as hexadecimal numbers.

The DUMP procedure evokes the $FEDMP utility program.

IBM SCP Service Procedures 303

304

DUMP Command Statement Format

DUMP

MAIN
CONTROL
HISTORY
PTF
CONFIG
DISK
MICR

[
PRINTER] [~]

'CRT ,11

DUMP Parameters

MAIN The system status, system communication area (SCA), program level
communication area (PLCA), DTFs (define the files) and lOBs
(input/output blocks) are dumped; a prompt for main storage address
limits (a starting storage address and an ending storage address)
follows. After the selected area of storage is dumped, a new limits
prompt is issued. You have the END option (terminate the DUMP)
after each prompt for main storage limits. MAIN is the default.

CONTROL The control storage direct area is dumped; a prompt for the control
store address limits follows. You can respond with the limits or END.

HISTORY Dump the saved HISTORY file.

PTF Dump the PTF log module.

CONFIG Dump the system configuration record.

DISK Selected sectors of F1 or 11 can be dumped. Prompts are issued for the
starting sector number and number of sectors to be dumped (must be
entered in hexadecimal). At the completion of that dump, prompts are
issued for the next group of sectors. You can respond with the limits or

END.

MICR

PRINTER

CRT

£1

11

Dump the magnetic character reader controller storage area.

Output is on the printer. PR INTER is the default.

Output is on the display screen, 240 characters at a time. The key
board function keys can be used to display different portions of the
dump.

The disk contains the information requested by the MAIN, CONTROL,
HISTORY, PTF, CONFIG, or DISK parameter. F1 is the default value.

The diskette contains the information requested by the MAIN,
CONTROL, HISTORY, PTF, CONFIG, or DISK parameter.

PATCH PROCEDU.RE

The PATCH procedure enables IBM service personnel to modify (patch) a disk
or diskette sector. The sector to be modified is displayed, 40 characters at a
time, on the display screen. Then, the keyboard is used to enter patch data.

CAUTION
PATCH can alter any sector of disk storage with the exception of tracks 0, 1, 2,4,
and 5, but it does not test whether the disk area is the library area, user area, or
fixed area. Therefore, an error during this procedure could cause unpredictable
results.

When the PATCH command statement is entered, a prompt for the sector number
is displayed. The sector number must be entered as a hexadecimal number. This
sector is then displayed and patch data is entered from the keyboard as the affected
portion of the sector is displayed. After all changes are made to a sector, the sector
is written back to the disk by pressing the REC ADV key. The next sequential
sector is then displayed. Other sectors are displayed by pressing the ENTER key
and responding to the prompt. To end the job, enter END in response to the
prompt.

Each line of the display screen is as follows:

Line 1 Printable EBCDIC characters

Line 2tH d' I . f h h .." 1 and 3' exa eClma representation 0 t e c aracters In line

Line 4 The cursor position and the current sector format and address
Line 6 A warning message to the user

The PATCH procedure evokes the $FEPCH utility program.

PATCH Command Statement Format

PATCH [~11] [,NOH EX]

PA TC H Parameters

£1

11

NOHEX

A disk sector is to be patched. (Fl is the default.)

A diskette sector is to be patched.

The hexadecimal representations of only unprintable characters are
to be displayed. If this parameter is not specified the hexadecimal
representations of all characters are displayed.

IBM SCP Service Procedures 305

306

TRACE PROCEDUR E

The TRACE proc~dure provides the ability to compile a history of, or trace, impQr
tant SCP events occurring in the system. Whenever a request indicator byte (RIB)
or other branch to the supervisor is issued, its value, or function, is checked. If the
function is one for which a trace was requested, a 12-byte entry describing the
function is placed in a trace table in main storage. The table can contain 21 entr;f;ls.
If the table is filled, new entries replace those recorded first in the table; that is,
the table is a wraparound table.

If the contents of main storage are saved on the CE cylinder because a processor
check interrupt occurred or because the RESET and then the CE START keys
were pressed on the CE control panel, the trace table, being contained in main
storage, is available on the disk. It is printed or displayed by the DUMP proced~re
(see index entry: DUMP procedure) if DUMP is used to print or display the sav~q
contents of main storage. If the contents of main storage are printed, the trace
table is formatted to clearly identify the table and the kinds of information
contained in the entries.

The following system functions can be traced:

• Wait

• Disk lOS

• Control storage disk lOS

• Push

• Pull

• Disable

• Enable

• Queue

• Control storage load

• Main storage load

• Transient load

• XFER instruction

Information provided by the trace includes RIB values or supervisor call (SVC)
codes, register contents, and selected disk lOB (input/output block) information.

TRACE evokes the $SETCF utility (see index en~ry: $SETCF utility program).

TRACE Command Statement Format

TRACE [~~~] [,WAIT] [,FDIOS] [,CSFDIOS] [,PUSH] [,PULL] [,DISABLE]

[,ENABLE] [,QUEUE] [,LDCS] [,LOADER] [,XIENT] [,XFER]

Note: If either ALL or OFF is specified, ALL or OFF must be the first parameter.
All other parameters specified are ignored. The remaining parameters can be
specified in any order. A maximum of 10 parameters can be specified. The entire
SCP trace function is disabled if DEBUG-Y is specified in the ALTERBSC
command statement, the ALTERSDL command statement, $SETCF SETB and
SETP utility control statement (see index entries: AL TERBSC procedure and
BSCA environment AL TERSDL procedure and SDLC environment).

TRACE Parameters

All traceable system functions are to be traced. ALL is a default value.

OFF None of the system functions are to be traced.

WAIT Each evocation of the wait function is to be traced.

FDIOS Each evocation of disk lOS (input/output supervisor) is to be traced.

CSFDIOS Each evocation of control storage disk lOS is to be traced.

PUSH Each evocation of the push function is to be traced.

PULL Each evocation of the pull function is to be traced.

DISABLE Each evocation of the disable interrupt function is to be traced.

ENABLE Each evocation of the enable interrupt function is to be traced.

QUEUE Each evocation of the queue function is to be traced.

LDCS Each evocation of the control storage transient loader is to be traced.

LOADER Each evocation of the main storage relocating loader is to be traced.

XIENT Each evocation of the main storage transient loader is to be tracec!.

XFER Each execution of the XFER instruction is to be traced.

IBM SCP Service Procedures 307

308

Appendix E. IBM SCP Procedure Contents

This appendix shows the OCl and utility control statements contained in each
IBM procedure. The substitution expressions that determine which statements are
generated for a particular procedure are not shown. This appendix is intended as a
reference for programmers who want to know what is executed when a procedure
is evoked.

ALTERBSC

I I lOAD $SETCF
II RUN

II SETB [BRATE-{~}] [.CLOCK-{~}] [.OEBUG- {~}] [.ER(>{~umber}]

[.SlINE- {~}] [.TEST-{~}] [.TONE- {~}]
II END

AlTERSDL

II lOAD $SETCF
II RUN

II SETB [BRATE-{~}] [.CLOCK-{~}] [.OEBUG- {~}]

[.SlINE- {~}] [.TEST-{~}] [.TONE- {~}]
II END

APAR

II lOAD $FEAPR
II FilE NAME-APARFllE,RETAIN-999,PACK-vol-id,UNIT-11
II FilE NAME-FIXDFllE,RETAIN-999,PACK-vol-id,UNIT-11
II RUN
[II FROMLlBR object program name,LOAD,APARLOAD,,999,vol-id]
[II FROMLlBR source program name,APARSRCE,,999,vol-id]

APCHANGE

If the first parameter, blocks, in the command statement is specified:

II lOAD SPACK
II RUN

IBM SCP Procedure Contents 309

310

If the second parameter, filename, in the command statement is specified:

II LOAD $MAINT
II FILE NAME-filename,UNIT-11
II RUN

[II DELETE NAME-ALL,LlBRARY-ALLl
II COMPRESS
II COPY FROM-DISK,FILE-filename,TO-F1
II END

APPLYPTF

II LOAD $MAINT

II FILE NAME-

II RUN

SC1nn
RG1nn
UT1nn
UT2nn
F01nn
AS1nn

,UNIT-11

If the second parameter in the command statement is OLD:

II COpy FROM-DISK,TO-F1,FILE-

If the second parameter is ALL:

II COpy FROM-DISK,TO-F1,FILE-

If the second parameter is PTF log number:

II COpy FROM-DISK,TO-F1,FILE-

II END

SC1nn
RG1nn
UT1nn
UT2nn
F01nn
AS1nn

SC1nn
RG1nn
UT1nn
UT2nn
F01nn
ASlnn

SC1nn
RG1nn
UT1nn
UT2nn
F01nn
AS1nn

,R ETAIN-R,OM IT-NEW

,RETAIN-R

,PTF-ptfid,RETAIN-R

BACKUP

I I LOAD $BACK

II FILE NAME-#l,.IBRARY,LABEL- {f#ilename } RETAIN- {_r
1
etention-daVS}

LIBRARY ,

PACK-vol-id,UN IT-Il
II RUN

BUILD

II LOAD $BUILD
II RUN

BWSUD

II LOAD $BWSUD
II RUN
.. CONFIG SLUNAME-name,HOST-name
.. GO
II END

BWSUR

II LOAD $BWSUR
II RUN
.. CONFIG SLUNAME-name
.. GO
II END

CATALOG

II LOAD $LABEL
II RUN
II DISPLAY UNIT- {11} LABEL- {filename}

.El' .8.k.b.
II END

IBM SCP Procedure Contents 311

312

CNFIGSCP

Set belt image option:

II LOAD $SETCF

1
BEL T48 I
BELT64

II IMAGE MEM, BELT96

BELT48HN
II RUN
II SETCF IMAGE-YES
II END

Set number of lines per page option:

I I LOAD $SETCF
II RUN
II SETCF LlNES- ~ 1 to 84f
II END

Set date format option:

I I LOAD $SETCF
II RUN

II SETCF FORMAT- {~~~}
DMY

II END

Load SCP support for BSC data communications (the nested procedure name is
CNFIBSCA):

II LOAD $MAINT
II FILE NAME-BSCALOAD,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FI LE-BSCALOAD
II END

Load SCP support for MRJE data communications (the nested procedure name is
CNFIMRJE):

II LOAD $MAINT
II FILE NAME-MRJELOAD,UNIT-11
II FI LE NAME-BSCALOAD,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FI LE-MRJELOAD
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FI LE-BSCALOAD
II END

Load SCP support for batch work station data communications (the nested

procedure name is CNF ITPSD):

I I LOAD $MAI NT
II FILE NAME-BWSLOAD,UNIT-11
II RUN
II COpy FROM-DISK,TO-F1 ,RETAIN-R,FI LE-BWSLOAD
II END

Set line type option for SSC-switched (the nested procedure name is CNFIOVRD):

I I LOAD $SETCF
II RUN

II SETR LINE· {~} ,SWTVp· { ~~}
II END

Set line type option for BSC-nonswitched (the nested procedure name is CNFILlNE):

I I LOAD $SETCF
II RUN

II SETR LlNE-
{T

PR

}

II END

Set line type option for SDLC-switched (the nested procedure name is CNFIOVSD):

I I LOAD $SETCF
II RUN

II SETS LINE· {~} ,SWTVP· {~~}
II END

Set line type option for SO LC-nonswitched (the nested procedure name is
CNFILlSD):

I I LOAD $SETCF
II RUN

II SETS LlNE- {~}
II END

World Trade answer tone option for SSC (the nested procedure name is
CNFITPBS):

I I LOAD $SETCF
II RUN

II SETS ERC-7,SLlNE-N,BRATE-F,DEBUG·N,TONE- {~}
II END

Modem clocking option for BSe (the nested procedure name is CNFITPBS):

II LOAD $SETCF
II RUN

II SETB CLOCK· {~}
II END

IBM SCP Procedure Contents 313

314

IBM modem option for BSC (the nested procedure name is CNFITPBS):

I I LOAD $SETCF
II RUN

II SETBTEST- {~}
II END

World Trade answer tone option for SDLC (the nested procedure name is
CNFITPSD):

II LOAD $SETCF
II RUN

II SETP SliNE-N,BRATE-F,DEBUG-N,TONE- {~}
II END

Modem clocking option for SDLC (the nested procedure name is CNFITPSD):

I I LOAD $SETCF
II RUN

II SETP CLOCK- {~}
II END

IBM modem option for SDLC (the nested procedure name is CNFITPSD):

I I LOAD $SETCF
II RUN

II SETP TEST- {~}
II END

Load SCP support for RPG (the nested procedure name is CNFIRG1):

II LOAD $MAINT
II FILE NAME-RPGSUBR,UNIT-11
II FILE NAME-COMNSUBR,UNIT-Il
II FILE NAME-RPGLlNK,UNIT-11
II FI LE NAME-BSCASUBR,UNIT-11
II RUN
II COPY FROM-DISK,TO-F1,RETAIN-R,FILE-BSCASUBR
II COPY FROM-DISK,TO-F1 ,RETAIN-R,FILE-RPGSUBR
II COpy FROM-DISK,TO-F1 ,RETAIN-R,F I LE-COMNSUBR
II COpy FROM-DISK,TO-F1,RETAIN-R,FILE-RPGLlNK
II END

Load SCP support for data recorder attachment (the nested procedure name is
CNFICDIO):

II LOAD $MAINT
II FILE NAME-CARDIO,UNIT-Il
II RUN
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-CARDIO
II END

Load SCP support for word processing (the nested procedure name is CNFIGULF):

I I LOAD $MAI NT
II FILE NAME-WPFILE,UNIT-Il
II FILE NAME-WCFILE,UNIT-Il
II RUN
II COPY FROM-DISK,TO-Fl,RETAIN-R,FILE-WPFILE
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-WCFILE
II END

Set country code options for word processing (the nested procedure name is
CNFIGULF):

I I LOAD $WPSET
II RUN
II CC nn
II END

Load OCL support for the 1255 Magnetic Character Reader attachment (the nested
procedure name is CNFIMICR):

II LOAD $MAINT
II FILE NAME-MICR,UNIT-Il
II RUN
II COpy F ROM-DISK,TO-Fl ,RETAIN-R,F ILE-M ICR
II END

Load SCP support for FORTRAN IV (the nested procedure name is CNFIFORT):

II LOAD $MAINT
II FILE NAME-FORTRAN,UNIT-Il
II FILE NAME-OLE,UNIT-Il
II FILE NAME-COMNSUBR,UNIT-Il
II RUN
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-FORTRAN
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-OLE
II COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-COMNSUBR
II END

IBM SCP Procedure Contents 315

316

load SCP support for basic assembler (the nested procedure name is CNFIAMPR):

// LOAD $MAINT
// FILE NAME-OLE,UNIT-11
// FILE NAME-AMMACO,UNIT-11
/1 FILE NAME-RPGSUBR,UNIT-11
II FILE NAME-COMNSUBR,UNIT-11
// FILE NAME-AMBSCA,UNIT-11
// FilE NAME-BSCAlOAD,UNIT-11
// FILE NAME-BSCASUBR,UNIT·11
1/ FILE NAME-AMSCNT,UNIT-11
II RUN
// COpy FROM-DISK/TO-F1 ,RETAIN-R,FILE-OLE
// COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-AMMACO
I I COpy F ROM-DISK,TO-F1 ,RETAIN-R,F I LE-RPGSUBR
/1 COpy F ROM-DISK,TO-F1,R ETAIN-R,F I LE-COMNSUBR
/1 COpy FROM-DISK,TO-Fl,RETAIN-R,FILE-AMBSCA
/1 COpy FROM-DISK,TO-F1 ,RETAIN-R,FILE-BSCALOAD
1/ COpy FROM-DISK,TO-F1,RETAIN-R,FILE-BSCASUBR
// COpy FROM-DISK,TO-F1,RETAIN-R,FILE-AMSCNT
II t::ND

Load SCP support for the overlay linkage editor (the nested procedure name is
CNFIOlED):

II LOAD $MAINT
/1 FILE NAME-OLE,UNIT-11
// RUN
// COpy FROM-DISK,TO-F1 ,RETAIN-R,FflE-OLE
1/ END

Load SCPsupport forqueued job stream (the nested procedure name is CNFIQJOB):

II LOAD $MAINT
/1 FILE NAME-QJ08,UNIT-11
II RUN
// COpy FROM-DiSK,TO-F1 ,RETAIN-R,FllE-QJOB
1/ END

Load SCP support for optional messages (the nested procedure name is CN F I MSGS):

/1 LOAD $MAINT
// FILE NAME-MSGMBR,UNIT-11
/1 RUN
1/ COpy FROM-DISK,TO-F1,RETAIN-R,FILE-MSGMBR
// END

Apply PTFs to SCP and optional programs (the nested procedure name is
CNFIPTFS), see index entry: APPL YPTF procedure.

Remove the CNFIGSCP procedures from the library:

II LOAD $MAINT
/1 RUN
II DELETE LlBRARY-P,NAME-CNFI.ALl,RETAIN-S
1/ END

COMPRESS

II LOAD $PACK
II RUN

CONDENSE

II LOAD $MAINT
II RUN
II COMPRESS
II END

CONVERT

II LOAD $CNVRT
II RUN

COPYI1

II LOAD $DUPRD
II FILE NAME-COPYI1 ['DATE-date] ,UNIT-11
II RUN

1/ COPYI1 NAME- {~I~~ame} ,PACK-vol-id [,DELETE- {~~S}]

[PRESERVE- {~~}] [COPIES- {lumber of COPies}]

II END

CREATE

II LOAD $MGBLD
II RUN

{ YNOES} II MGBLD SOURCE-sourcename,REPLACE-

II END

DATE

liD ATE-date

'DCPRINT

II LOAD $DCSUP
II RUN

[II COPYFILE NAME-filename,OUTPUT-PRINT]
[/1 GO]
[/1 END]

IBM SCP Procedure Contents 317

318

DELETE

II LOAD $DELET
II RUN

II SCRATCH LABEL-filename [,DATE-datel ,UNIT- {~11}
and/or

II REMOVE LABEL-filename,DATA- {~~S} ['DATE-datel ,UNIT- {~11}
/1 END

DISPLAY

I I LOAD $COPY
II FI LE NAME-COPYIN,LABEL-filename [,DATE-datel ,UN IT-F1
II RUN
II COPYFILE OUTPTX-PRINT
[II SELECT RECORD,FROM-number-1 [,TO-number-2J]
II END

DUMP

II LOAD $FEDMP
II RUN

II DUMP LIST-

II END

MAIN
CONTROL
HISTORY
PTF
CONFIG
DISK
MICR

[OUTPUT- {PRINTER }][INPUT_{F1l]
, CRT ' 11 J

FROMLlBR

II LOAD $MAINT

II FI LE NAME-
[
filename-1]
Iibrary-name-1

[
filename-2]
name-1

or, if ADD is specified,

[
filename-1]

II FILE NAME- library-name-1

[
filename-2]

~
II RUN

[~} If F1 is J
,RETAIN- I ~pecified.

retention-days
1

[,~] ,UNIT- {~11}
If UNIT .. 11

II COpy FROM-F1'LlBRARy-l!R ! ,NAME- {librar
y
-name-1}

name-1.ALL '

ALL

[
filename-1]

FILE- Iibrary-name-1 ,TO-DISK,OMIT-SYSTEM [,ADD-YES]

[
filename-2]

~
II END

HISTORY

INIT

II LOAD $HIST
II RUN

~I DISPLAY

II END

II LOAD $INIT
II RUN

II UIN OPTION-

[II VOL PACK·

II END

[

ALL
NOLIST
VIEWED

l
FORMAT 1
FORMAT2
DELETE
RENAME

{
vol-id }
system date

I D- {OWner-id }]
, OWNERID

or
,PACK-vol-id

IBM SCP Procedure Contents 319

320

INSTALL

(The following are some of the OCL statements for INSTALL.)

Print System Directory:

II LOAD $MAINT
II RUN
II COpy FROM-Fl,TO-PRINT,LlBRARY·SYSTEM,NAME·DIR
II END

Delete INSTALL procedures from tailored system:

JOBSTR

II LOAD $MAINT
II RUN
II DELETE LlBRARY-P,NAME·INSr.ALL,AETAIN-S
II END

For card input

I I LOAD $QJOB
II RUN

For diskette input:

II LOAD $BleR
II FILE NAME-COPYIN,LABEL-filename,UNIT-ll
II FILE NAME-COPYO,LABEL-filenarne,UNIT-Fl ,RECORDS-number
II RUN
II TRANSFER
II END

I I LOAD $MAI NT
II FILE NAME-filename,UNIT-Fl
II RUN
II COpy FROM-DISK,FILE·filename,TO·F1
II END

II LOAD $DELET
II RUN
II REMOVE LABEL-filename,UNIT-F1
II END

For executing a procedure if the procedure name is specified:

II INCLUDE procedurename

For deleting the procedure name if the NOSAVE parameter is specified:

II LOAD $MAINT
II RUN
II DELETE NAME·procedurename,LlBRARY·P
II END

LINES

II FORMS LlNES- {~~mber}

lISTLlBR

II LOAD $MAINT
II RUN

.§.

II COpy FROM-F1,NAME-! ~~~ry-name l.lIBRARY. ~
name.ALL ~

ALL ALL

itO-PRINt

SYSTEM
II END

LOG

II LOG {PRINtER} {,EJECT }
CRT ,NOEJECT

MRJE

II LOAD $MRJE
[II FI LE NAME-TDISKPR1 ,BLOCKS-number of blocks[,LABEL-filename]]
[II FILE NAME-PDISKPR1,BLOCKS-number of blocks]
[II FI LE NAME-PDISKPU1 ,BLOCKS-number of blocks]
II RUN
II END

113M SCP j)rocadure Contents 321

ORGANIZE

I I LOAD $COPY
II FILE NAME-COPYIN,LABEL-filename-1 ['DATE-datel ,UNIT-F1

/I FILE NAME-COPYO,LABEL-filename-2,RETAIN- {~l :UNIT-F1

or

II FILE NAME-COPYO,LABEL-filename-1,RETAIN- {~tention-days},
PACK-vol-id,UN IT-11

/1 RUN
1/ COPYFILE OUTPUT-DISK [,DELETE-'position,character'] ,REORG-YES
II END

OVERRIDE

1/ LOAD $SETCF
// RUN

II SETR [ADDR-nnl [LiNE-l ~ !JrWTYP
- {S} J

1/ END

PATCH

/1 LOAD $F EPCH
II RUN

II PATCH INPUT- { ~11 } ,HEX- {~~S}
II END

REBUILD

1/ LOAD $REBLD
II RUN

RELOAD

II LOAD $LOAD

{
filename } . 1/ FI LE NAME-#LlBRARY,LABEL- #UBRARY ['DATE-datel [,PACK-vol-Id]

,UNIT-11
/1 RUN

REMOVE

II LOAD $MAINT
II RUN

library-name P

1/ DELETE NAME- {~a~e.ALL } ,LlBRARY- ~ I§. !
ALL

II END

RENAME

II LOAD $RENAM

II RUN t mmddyy

II RENAME LABEL-filename-1,NEWLABEL-filename-2 ,DATE- {ddmmyy }]
yymmdd

II END

RESTORE

II LOAD $COPY

{

filename-1}
II FILE NAME-COPYIN,LABEL- #SAVE [,DATE-date] ,UNIT. -11

filename-2

. fJ{,RECORDs-value-1}] II FI LE NAME-COPYO ['LABEL-fllename-21 ~ ,BLOCKS-value-2 [,UNIT·F1]

II RUN
II COPYALL TO-F1

or
II COPYFILE OUTPUT-DISK,REORG-NO
II END

SAVE

I I LOAD $COPY
II FILE NAME-COPYIN[,LABEL-filename-2] ['DATE-date] [,UNIT-F1]

1/ FILE NAME-COPYO [,RETAIN- Getention-davs}J[LABEL_ {E~~~~~} 1
PACK-vol-id,UN IT-Il

II RUN
II COPYALL TO·11

or
II COPYFILE OUTPUT-DISK,REORG·NO

or
II COPYADD
II END

IBM SCP Procedure C6nter'lts a~3

324

SET

I I LOAD $SETCF
[II IMAGE MEM,source-name]
[II DATE date]
II RUN

/I SETCF [UNES-number] [FORMAT- {~~~}] [IMAGE- {~~S}]
II END

SETMICR

I I LOAD $SETCF
II RUN

II SETR CYCLE- {~ }
II END

SPECIFY

I I LOAD $SETCF
II RUN

/I SETS [ADD R-nn{u NE- g I] [SWTYP- {2}] [,I D-nnnnn 1

II END

STATUS

II LOAD $STATS
II RUN

SYSLIST

[

PRINTER]
II SYSLIST CRT

OFF

TOLlBR

II LOAD $MAINT

/I FILE NAME-filenameLDATE-datel,UNIT- {~1}
II RUN

/I COpy FROM-DISK,FILE-filename,RETAIN- { ~ } ,TO-Fl

II END

TRACE

I I LOAD $SETCF

II RUN [ALL-V]

II TRACE {WAIT-N} [,FDIOS-V] [,CSFDIOS-V] [,PUSH-V]' [,PULL-V]
WAIT-V ,FDIOS-N ,CSFDIOS-N ,PUSH-N ,PULL-N

[
,DISABLE-V] [,ENABLE-V] [,QUEUE-V] [,LDCS-V] [,LOADER-V]
,DISABLE-N ,ENABLE-N ,QUEUE-N ,LDCS-N ,LOADER-N

[
,XIENT-V] [,XFER-V]
,XIENT-N ' ,XFER-N

II END

IBM SCP Procedure Contents 325

326

TRANSFER

II LOAD $BICR

II FILE NAME-COPYIN,LABEL-filename-1 ['DATE-date] ,UNIT- { F111}

Transfer disk to diskette:

[
',_r1etention-days] II FILE NAME-COPYO,LABEL-filename-1,PACK-vol-id

UNIT-11or

Transfer diskette to disk, with ADD:

II FILE NAME-COPYO,LABEL- f filename-2} ['DATE-date] [,UNIT-F1] or l filename-1

Transfer diskette to disk, without ADD, size specified:

II FILE NAME-COPYO,LABEL-filename-l {:=~~~~~~~~~~:-3} [.UNIT-Fl]

Transfer diskette to disk, without ADD, using size of input file:

No COPYO FILE statement is generated.

II RUN

Diskette basic data exchange file to disk sequential file, or disk sequential, indexed,
or direct file to diskette basic data exchange file:

[II TRANSFER]

Diskette basic data exchange file to disk sequential file with ADD:

II TRANSFER ADD-YES

Diskette basic data exchange file to disk indexed file, without ADD:

II TRANSFER ADD-NO,KEYLEN-value-1,KEYLOC-value-2

II END

IPl: See initial program load.

job stream: The input to the system. The job stream can
contain OCl statements, utility control statements, and
input data.

keyword: A group of characters, usually a word, that
identifies a parameter in a control statement.

keyword parameter: A parameter that contains a keyword.

level: See procedure level.

library: An area on the disk that contains procedure
members, source members, load members, and subroutine
members, as well as areas required by the system control
program.

library directory: The library component that contains
information about each member in the library (for
example, name and location).

library member: A named collection of records or state
ments in the library that can contain source statements,
format descriptions, OCl statements, or executable
instructions.

load member: A collection of instructions, stored in the
library, that the system can execute to perform a particular
function, whether the function is requested by the
operator or specified in an OCl statement.

megabyte: One million bytes.

member: See library member.

message control statement: A statement that specifies the
name and level of the message load member to be created.

message identification code (MIC): A 4-digit number
associated with a specific error or informational message.
The MIC is printed following the program identifier to allow
the message to be reviewed after the program is signed off.

message load member: A special type of library member
from which the SCP retrieves the text associated with a
specific message identification code (MIC).

message source member: A special type of library source
member containing control and message text statements.

message text statement: Statement in a message source
member that specifies the message identification code
(M Ie) and text associated with that code.

MIC: See message identification code.

modem: A device that modulates and demodulates signals
transmitted over communication facilities.

MULTI-lEAVING: The fully synchronized, two-directional
transmission of a variable number of data streams between
two computers using BSC facilities.

multipoint data link: One or more secondary stations on a
common transmission line or communications facility
where the primary station has controlling responsibilities
for maintaining communications integrity and data link
control.

multivolume file: A diskette file that resides on more than
one diskette, or that can be expanded from one diskette
to more than one diskette. See also offline multivolume
file.

nested procedure: A procedure that is evoked by another
procedure. A nested procedure is a procedure within a
procedure.

network: A number of communication lines connecting
a computer with remote terminals.

nonswitched line: A communi.cation link between a remote
station and computer that does not have to be established
by dialing.

null entry: An entry that contains no value. For example,
if CATALOG, 11 is entered, the first parameter position
contains a null entry.

object program: A set of instructions in machine language.
The object program is produced by the compiler from the
source program.

OCl: See operation control language.

offline multivolume file: A multivolume file that is
processed in segments by the system. Each segment is
processed before the next segment is copied to or from
the disk.

Glossary 327

Page of GC21-7593-3
Issued 25 November 1977
By TNL: GN21-7939

operation control language (OCL): The control language
used to communicate with the system control program.
OCl is composed of statements with which specific system
functions are requested.

parameter: A variable that is given a constant value for
a specific purpose or process.

point-to-point line: A communications facility connecting
a single remote station to the computer.

positional parameters: Parameters in a statement that must
appear in a designated sequence.

procedure: A named collection of related OCl statements,
and possibly, utility control statements, that describe a
specific function or set of functions. A procedure is
evoked by a command statement or included OCl
statements.

procedure level: Identifies the precedence of a particular
procedure in a progression of nested procedures. For
example, if procedure A evokes procedure B, which in turn
evokes procedure C, procedure C is a third level procedure.

•

procedure member: A named collection of related OCl
statements, and possible, utility control statements stored
in the library.

PT AM: Pseudo tape access method.

pseudo tape access method (PTAM): An access method for
processing simulated tape files on disk.

record mode: The mode of system operation in which data
is transferred by the system one record at a time. The
record mode of operation is used by the library maintenance
utility ($MAINT) when placing user-generated source or
procedure members into the library or a file.

relocation dictionary (RLO): The part of a load member
used for adjusting main storage addresses when the member
is moved to main storage.

rollout area: An area on disk that is allocated if inquiry
support or offline multivolume support is selected.
Programs interrupted by an inquiry request (INa key
pressed and the 1 option selected) are stored in the rollout
area while the interrupting program is processed.

328

scheduler work area (SWA): An area on disk reserved for
use by the scheduler program. The scheduler is part of the
SCPo

scientific instruction set (SIS): The object program
language, processed by the interpreter resident in the
control storage increment, used to execute System/32
scientific programs.

SOLC: See synchronous data link control.

sector: A unit of data recorded on disk. A sector of data
is the smallest amount of data that can be read from disk
or the smallest amount of data that can be transferred by
a single data transfer operation.

sector mode: The mode of system operation in which
data is transferred by the system either one sector at a
time or several sectors at a time. (Only whole sectors are
transferred.) The sector mode of operation is used by the
library maintenance utility ($MAINT) when placing user
generated members into the library or a file.

segment: See file segment.

sequential file: A file in which the order of records is
determined by the order that they are put in the file. For
example, the tenth record entered occupies the tenth record
position. Sequential files can be processed using the
consecutive, random by relative record number, and ADD
ROUT file processing methods.

SNA: See systems network architecture.

source member: A collection of records (such as RPG II
specifications or sort sequence specifications) that are used
as input for a program. Source members are stored in the
library.

source program: A set of instructions that represents a
particular job as defined by the programmer. These
instructions are written in a programming language such as
RPG II, and are translated by a compiler into an object
program.

statement parameter: The portion of an I F expression that
defines the action to be taken if the condition exists as
specified. The statement parameter can be an OCL state
ment (except comment or end of data) or a utility control
statement. The initial / / of the statement is not entered as
part of the expression. CANCEL and RETURN are also
valid entries in the statement parameter.

$BACK utility program (backup library) 136
$BICR utility program (basic data exchange)

control statements 137
description 137
example 139

$BUILD utility program (alternate sector rebuild)
control statements 141
description 139
example 140

$BWSUD (see IBM System132 Data Communications Reference
Manual, GC21-7691)

$BWSU R (see IBM System132 Data Communications Reference
Manual, GC21-7691)

$CNVRT utility program
control statement 142
description 142

$COPY utility program (disk copy/display)
control statements 144
description 142
examples 154
file retention summary 153

$DCSUP (see IBM System132 Data Communications Reference
Manual, GC21-7691)

$DELET utility program (file delete)
control statements 157
description 156
examples 159

$DUPRD utility program (diskette copy)
control statements 160
description 159
examples 162

$FREE utility program 162
control statements 162
description 162
examples 162.1

$HINT utility program 163
$HIST utility program (HISTORY file display)

control statements 162.2
description 1'62.2
examples 163

$INIT utility program (diskette labeling and initialization)
controfstatementS 166
description 164
~xamples 16a~

$LABELl:Jtfiity program (VTOC display)
control statements 172
<;fescription 169
examples 169

$LOAD utility program (reload library)
control statements 176
description 173
example 176

$LOADI program 173

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

$MAINT utility program (library maintenance)
allocate function

control statements ~179

description 179
examples 180

compress function
control statements 202
descriptions 202
example 203

copy function
control statements 182
description 180
examples 196

delete function
control statements 200
descri ption 199
examples 202

general description 176
$MGBLO utility program (create message member)

control statements 203
description 203
example 206

Index

$MRJE (see IBM System132 Data Communications Reference
Manual, GC21-7691)

$PACK utility program (disk reorganization) 208
$QJOB utility program (queued job stream card-to-library)

control statements 209
description 209

$REB LO utility program (rebuild data file)
control statements 210
description 210

$RENAM utility program 211
control statements 211
description 211
examples 211

$SETCF utility program (set)
override BSC specifications

control statements 215
description 215
example 216

set BSC environment
control statements 213
description 213
example 214

set functions to be "traced
control statements 220
description -220
example 222

set SOLC environment
control statements 217
description 216
example 218

Index 331

$SETCF utility program (set) (continued)
set system environment

control statements 212
description 211
example 213

specify SOLe specific.;8tions
control statements 218
description 218
example 219

$SOU RCE file 112
$STATS utility program (status display) 222
$WORK file 112
$WORK2 file 112
*comment statement

(see also comments)
description 32
statement summary 11

*end of data statement
description 33
statement summary

/I *message statement
description 33·
example 33

11

parameter summary 14
statement summary 11

/I CENO statement
description 103,182,190
example 126

/I COMPI LE statement
description 15
example 15
parameter summary 12
statement summary 10

/I DATE statement
description 16
example 16
parameter summary 12
statement summary 10

II EN 0 statement
description 132
example 126

/I FILE statement
description

disk 17
diskette 1 7, 21

example
disk 20
diskette 23

parameter summary
disk 12
diskette 12

statement summary 10
/I FORMS statement

description 23
example 23
parameter summary 13
statement summary 10

/I IMAGE statement
description 24
examples 26
parameter summary 13
statement summary 10

332

/I INCLUDE statement
as 8 command statement 39
description 26
example 27
parameter summary 13
statement summary 10

/I LOAD statement
description 27
example 27
parameter summary 13
statement summary 10

/I LOG statement
description 28
example 28
parameter summary 13
statement summary 10

/I MEMBER statement
description 29
examples 30
parameter summary
statement summary

13,14
10

/I PAUSE statement
description 30
statement summary 11

/I RUN statement
description 30
statement summary 11

/I SWITCH statement
description 31
example 31
parameter summary 14
statement summary 11

/I SYSLIST statement
description 32
example 32
parameter summary 14
statement summary 11

1restrictions
in /I *message statement 33
in comment statements 32
in filenames and labels 17,21
in INCLUDE statement 27
in library member names 178,192
in procedure parameter 27, 43

1n1 44
1n'default'1 45
1nR1 46
1nR'msg-id'1 45
?nT'default'1 45
?R1 46
##MSG1 267
:f#/MSG3 40,41
:f#/MSG4 267
#LIBRARY (see system library)

abbreviations and acronyms ix
add

a disk file to a diskette 96, 143
a disk file to the library 103

(see also $MAINT utility program copy function)
basic data exchange to a disk file 105, 137
library members to a file 76

(see also $MAINT utility program copy function)
library members to the library 103

(see also $MAINT utility program copy function)
allocate function (see $MAINT utility program allocate function)
A L TE RBSC command statement

description 62
format summary 55

ALTERBSC procedure
contents 287
description 62

alternate sector 139,325
alternate sector rebuild utility program (see $BUI LD

utility program)
ALTERSDL command statement

description 63
format summary 55

ALTERSDL procedure
contents 287
description 63

APAR command statement
description 280
format summary 279

APAR procedure
contents 287
description 280

APARFILE 280
application programs 237
APCHANGE command statement

description 65
format summary 55

APCHANGE procedure
contents 287
description 65

APPLYPTF command statement
description 241
format summary 225

APPLYPTF procedure
contents 288
description 241

attribute bytes 194,325

backup
configured SCP 231
copy of a program product 250
system library 67

BACKUP command statement
description 67
format summary 55

backup diskettes
creating 70, 159
program products 232
system 227

Page of GC21· 7593·3
Issued 22 November 1978
By TNL: GN21·7993

backup library utility program (see $BACK utility program)
BACKUP procedure

contents 289
description 67

basic assembler
applying PTFs to 241
installation 249
installation verification 261

basic data exchange
. definition 325
diskette 277

(see also INIT procedure; TRANSFER procedure)
file 277

(see also TRANSFER procedure)
utility program (see $BICR utility program)

batch work station support option 244
belt image option 243

(see also print belt)
block 325
block number to first sector in block conversion 274
BSC

definition 325
environment 213
status information 102
supPO" option 243

BUILD command statement
description 281
format summary 279

BUILD procedure
contents 289
description 281

BWSUD
command statement 55
contents 289

BWSUR
command slatement 55
contents 289

bypass unreadable data 141

calculating the number of backup diskettes required for
the system 238

CAT A LOG command statement
description 68
format summary 56

CATALOG procedure
contents 289
description 68

CE cylinder 280,325
changing

directory and library size
using $MAINT allocate function 179
using RELOAD display 268
using RELOAD procedure 92

disk space allocation 94
characters, list of 305
CMD key 40
CNFIGSCP command statement

description 242
format summary 225

Index 333

CNFIGSCP procedure
contents 289
description 242

coding rules
Oel statements 5
utility control statements 131

command keys
assigning 40
message .identification code (MIC) 40,205
using 40

command st~tements
(see also AL TERBSC,AL TERSDL, APAR, APPL YPTF,
BACKUP, BUILD, BWSUD, BWSUR, CATALOG, CNFIGSCP,
COMPRESS, CONVERT, COPYI1, CREATE, DATE,
DCPRINT, DELETE, DISPLAY, DUMP, FROMLlBR,
HISTORY, INIT, INSTALL, LINES, L1STLlBR, lOG, MRJE,
ORGANIZE, OVERRIDE, PATCH, REBUILD, RELOAD,
REMOVE, RESTORE, SAVE, SET, SPECIFY, STATUS
SYSLIST, TOLIBR, TRACE, TRANSFER)

as INCLUDE statements 26,39
definition 325
in sample jobs 126
tables of

SCP 55
service 279
system configuration, installation and modification· 225

comments
(see also *comment statement)
definition 8
examples 8
for messages 206
OCL·· 8
utility control statements 133

comparison parameter 48, 325
COMPI LE OCL statement (see /I COMPI LE statement)
COMPRESS command statement

description 68
format summary 56

COMPRESS procedure
contents 295
description 68

CONDENSE command statement
description 69
format summary 56

CONDENSE procedure
contents 295
description 69

condition parameter 48,325
conditional expressions: IF and ELSE 47,325
configuration record, system 97,325
configuration, system 4,225
continuation

definition 325
OCL 7
utility control statements 132

continued FILE statements 7
control statement for message source member 203
control storage dump 282
conversions

block number to first sector in block 274
hex and deci mal 275
records to blocks 273
sector number to block number 274

;.334

convert a
basic data exchange diskette file to disk file 105, 137
disk file to basic data exchange file 105, 137

CONVE RT command statement
description 69
forma,t summary 56

CONVERT procedure
contents 295
description 69

copy function (see $BACK utility program; $COPY utility
program; $DUPRD utility program; $MAINT Litility
program copy function)

COPYI1 command statement
description 70
example 71
format summary 56

COPYI1 procedure
contents 295
description 70

correct unreadable data 141
CREATE command statement

description 72
example 73
format summary 56

create message member utility program (see $MGBLD
utility program)

CREATE procedure
contents 295
description 72

creating and using messages 119
creating another version of an existing output file 19
creation date

disk 20
diskette 22

data communications
definition 325
SCP support for 243
support for RPG 244

data file' 325
data file utility (see DFU)
data recorder attachment support option 244
DATE command statement

description 73
format summary 56

date format
(see also II DATE statement DATE command statement,
SET command statement)

display 101
in /I FILE statement 16,20,22
option 243

DATE OCL statement (See 1/ DATE statement)
DATE procedure

contents 295
description 73

date, setting
(see also II DATE statement, DATE ~ommandstatement,
SET command statement)

job 16
system 16

DCPRINT
contents 295
format summary 56

decimal and hex conversions 275
decreasing the library size 179
default value

definition 326
showing in formats 61, 134

DE lETE command statement
description 74
example 75
format summarY 56

delete function of $MAINT utility program 199
DE lETE procedure

contents 296
description 74

deleting a file
at diskette initialization 80,165
caution 229
using DELETE 74

deleting from the library 93,266
(see also $MAI NT utility program delete function)

deleting members. 268.1
deleting records from a file 88,142
describing a disk file 111

(see also // FilE statement)
determining space available in the library 267
determining space available on the disk 267
DFU (data file utility)

applying PTFs to 241
installing 249

diagnostic information 280
direct file 326
directory (see library directory)
disk block 326
disk capacity display 101
disk copy/display utility program (see $COPY utility program)
disk files

adding to diskette 96, 142
adding to library 103

(see also $MAINT utility program copy function)
converting to basic data exchange diskette 106, 137
copying 88,96
creating 111
definition 326
deleting (see deleting a file)
deleting records from 88, 142
describing 111 .

(see also /1 FilE statement)
displaying 75,142
number of 112
obtaining space for 111
retention summary 153
space allocation 94

disk free space, compressing 68,202
disk read/write error 139,281
disk record to block conversion 273
disk reorganization utility program (see $PACK utility program)
disk volume label (VOl1) 177
diskette copy utility program (see $DUPRD utility program)
diske~e data set label 277
diskette defects 165
diskette files

adding to disk 105, 137
basic data exchange 277
converting to disk 105, 137
creating 111
expiration date for 22
number of 113
system 278

Page of GC21-7593-3
Issued 22 November 1978
By TNl: GN21-7993

diskette formats 277
(see also $INIT utility program; INIT procedure)

diskette formats and diskette data files 277
diskette free space, compressing 70,159
diskette labeling and initialization utility program (see $INIT

utility program)
diskettes

backup
creating 70,159
program products 232

PIO 227
PTF 227
SCP 227

DISPLAY cOmmand statement
description 75
example 76
format summary 56

DISPLAY procedure
contents 296
description 75

displaying a file 76, 142
displaying messages and OCl statements 28,87
displaying system information 101,222
displaying VTOC 68, 169
DUMP command statement

description 281
format summary 279

DUMP procedure
contents 296
description 281

ELSE expression 51
end of data 33

(see also / *end of data statement)
end of extent 326
end of OCl statements 30
entering OCl statements 3
erasing a file 74, 165
error logging area 177, 326
evoking a procedure 39
examples

$BICR utility program 139
$BUllD utility program 140
$COPY utility program 154
$DE lET utility program 159
$DUPRD utility program 162
$H 1ST utility program 163
$INIT utility program 168
$lABEl utility program 169
$lOAD utility program 176
$MAINT utility program

allocate function 180
copy function 196
delete function 202

$MGBlD utility program 206
$SETCF utility program

8SC environment 214
override 8SC specifications 216
system environment 213
trace functions 222

/I * message statement 33
/I CEND statement 126
// COMP I lE statement 15

Index 336

examples (continued)
/I DATE statement 16
/I END statement 126
II FILE statement

disk 20
diskette 23

/I FORMS statement 23
/I IMAGE statement 26

,II INCLUDE statement 27
\11 LOAD statement 27
1/ LOG statement 28
It MEMBER statement 30
U SWITCH statement 31

~ it SYSLIST statement 32
;;."", ~command key to procedure, assignment 207

comments 8, 133
continuation 7,132
COPYI1 command statement 71
CREATE command statement 73
creating a message source and load member 206
creating an offline multivolume file 114
DE LETE command statement 75
disk VTOC display 169
diskette VTOC display 171
DISPLAY command statement 76
ELSE expression 52
FROMLlBR command statement 79
I F expression 52
INIT command statement 81
LlSTLlBR command statement 87
OC L and procedure jobs 126
ORGANIZE command statement 89
printing of library directory entry 199
printing of system information 199
procedure coding 52
procedure member to basic data exchange diskette file 196
reading an offline multivolume file 115
REMOVE command statement 94
RESTORE command statement 95
SAVE command statement 97
source member to basic data exchange diskette file 196
system sharing 319
TRANSFER command statement 107

existence testing parameter 48,326
expiration date 22
extended format, diskette 277, 326

(see also $INIT utility program; INIT procedure)
extent 326
external indicators 31, 101

FCU (file conversion utility)
applying PTFs to 244
installation 249

file
installation verification 251

disk (see disk files)
diskette (see diskette files)
permanent 19
retention summary 1 53
scratch 19
temporary 19

file delete utility program (see $DELET utility program)
file names for I BM procedures 287
FILE OC L statement (see II FILE statement)
file segment 114, 326

336

FI LEBKUP procedure, example of procedure coding 52
FIXDFILE 280
format diskette 80,164
format 1 record 210, 326
format 5 177
FORMS OCL statement (see /I FORMS statement>
FORTRAN IV

applying PTFsto 241
installation 249
installation verifiCation 256

free space, disk 68,208
FROMLlBR command statement

description 76
examples 79
format summary 56

FROMLlBR procedure
contents 297
description 76

general form of OC L statements 5
glossary 325

hex and decimal conversions 275
hex form of standard characters 305
HISTORY command statement

description 79
format summary 57

history file 79,326
history file display utility program (see $HIST utility program)
HISTORY procedure

contents 297
description 79

how to use this manual xi

identifier
definition 326
OC L statement 5
utility control statement 131

I F expression 47
IMAGE OC!;; statement (see I/IMAGE statement)
INCLUDE OCL statement (see I/INCLUDE statement)
increasing the library size 179
indexed file 326
indicator settings parameter 326
indicators, external 31, 101
INITcommand statement

description 80
examples 81
format summary 57

INIT procedure
contents 297
description 80

initial program load (lpL)
definition 3, 326
from diskette 92

initial ization
(see also $INIT utility program; INIT procedure)
definition 326

INQ key 174
inquiry

interrupt 135, 174
option 174, 326
request 174, 326
support 92

INQUIRY/OFFLINE option
(see also RELOAD display)
availability on system 101
changing 92
deleting 267
display setting 174
requesting 92

INSTALL command statement
description 246
format summary 225

INSTALL procedure
contents 298
description 246

installation
application program 225,235
program product 249
system 235

introduction
to OC L statements 3
to procedures 37
to system configuration, installation, and modification 225
to system utility programs 131

IPL (initial program load)
definition 3, 326
from diskette 92

job date 16, 73
job stream

and I/INCLUDE 26
definition 4, 327
modifying procedure 44

JOBSTR command statement
description 82
example 84
format summary 57

JOBSTR procedure
contents 298
description 82

keyword parameter
definition 327
OC L statement 6
utility control statement 131

label
data set 277
disk file 18
diskette file 21

level, procedure 42,328
librarian (see $MAI NT utility procedure)
library (see system library)
library directory

area 177
changing the size of 92, 174

(see also RELOAD display)
definition 327
entry 177
formula for number of entries 174
information in entries 194

library maintenance utility program (see $MAINT utility program)
library members

creating a file form '76
definition 3,327

,. deleting 93, 266
naming 178, 192
organization of 179

library requirements 265
LI N ES command statement

description 85
format summary 57

lines printed per page
displaying number of 101
setting number of

during system configuration 243
using $SETCF utility program 211
using //FORMS statement 23
using LINES procedure 85
using SET procedure 97

LINES procedure
contents 299
description 85

list of abbreviations and acyonyms ix
listing the

files 75,142
history file 79
system library 85
VTOCs 68

LlSTLlBR command statement
description 85
examples 87
format summary 57

LlSTLlBR procedure
contents 299
description 85

load member 3, 327
LOAD OCL statement (see /I LOAD statement)
loa~ program 27
loading and running programs 123
LOG command statement

description 87
format summary 57

LOG OC L statement (see // LOG statement)
LOG procedure

contents 299
description 87

Index 337

Page of GC21-7593-3
Issued 22 November 1978
By TNl: GN21-7993

main storage
display 281
dump 281
print 281

megabyte 327
member (see library members)
MEMBER OCl statement (see /I MEM8ER statement)
message control statement 204, 327
message display 28, 85
message identification code (see MIC)
message levels 29, 119
message, load mefTIber

assigning command keys 40
creating 72, 119, 203
definition 327
example of creating 206

message member 29, 33
(see also message load member; message source member)

message OC l statement (see II * message statement)
message retrieving 121
message source member 204,119,327
message text statement 205,327
messages to operator 33
MIC (message identification code)

definition 327
for assigning command keys 40,205
for creating message load members 205

modem 327
modifying a procedure job stream 44
MRJE command statement

contents· 299
foro1at summary 57

MRJE support option 243
MULTI-lEAVING 327
multipoint data link 327
multivolume file 113, 327

(see also.offline multivolume file)

naming library members 176
nested procedure 42, 327
network 327
nonswitched line 327
null entry 51,327
number of lines per page option. 243

object program
definition 327
error in 280
running 15, 123, 126

obtainin space for a disk file 111
Oel (operation control language) statements

(see also * comment I * end of data, 11* message,
/I COMPILE, /I DATE, /I FilE, /I FORMS, I/IMAGE,
I/INClUDE, /I lOAD, /I lOG, /I MEMBER, I/PAUSE,
/I RUN, /I SWITCH, /I SYSlIST)

and job stream 4,126

338

OCl (operation control language) statements (continued)
coding rules for 5
definition of 3,328
description of 15
displaying 28, 85
entering 3
general form of 5
identifiers for 5
information in 5
introduction to 3,4
tables of 10, 11

OCl and procedure example 126
offline multivolume file 113, 327
operation control language (OCl) statements (see OCl statements)
ORGANIZE command statement

description 88
examples 89
format summary 57

ORGANIZE procedure
contents 300
description 88

overflow, printer 23
overlay linkage editor option 245
OVERRIDE command statement

description 90
format summary 57

OVERRIDE procedure
contents 300
description 90

override BSC specifications
control statements 215
description 215
example 216

parameters
condition 48
definition 328
existence testing 48
keyword 327
OCl 6
positional

defined 43,328
showing in formats 61

procedure 27, 43
statement

IF expression 47
symbolic 6
table of OCl 12
utility control statement 15

PATCH command statement
description 283
format summary 279

PATCH procedure
contents 300
description 283

pause message 30
PAUSE OCl statement (see /I PAUSE statement)
permanent file 19, 22

PI D distribution diskette 227
point-to..point line 328
polling and addressing characters 311
positional parameter

defined 43,328 .,
showing in formats 61

print belt
characters

entering from keyboard 24,25
entering from source member 25
list of 305

displaying image of 101
setting image for

$SETCF utility program 211
II IMAGE statement 24

. SET procedure 97
printing from the library .181
printing system information 187
procedure and OCL example 126
procedure coding, example 52
procedure member .3, 328 .

to basic data exChange diskette file 183
procedure name . 26
procedure parameters 26, 43
procedures

(see also AL TERBSC, AL TERSDL, APAR, A.,CHANGE,
APPLYPTR, BACKUP, BWSUD, BWSUR, CATALOG,
ONFIGSCP, COMPRESS, CONVERT, COPYI1, CREATE,
DATE, DCPRINT, DELETE, DISPLAY, DUMP, FROMLIBR,
HISTORY, INIT, INSTALL, LINES, .LlSTLIBR, lOG, MRJE,
ORGANIZE, OVERRIDE, PATCH, REBUILD, RELOAD,
REMOVE, RESTORE, SAVE, SET, SPECIFY, STATUS,
SYSLlST, TOLlBR, TRACE, TRANSFER)

creation of 38
definition 37, 328
evoking 26, 39,42
execution of 43
introduction to 37
levels of 42, 328
nested 42
Parameters 27, 43
SCP 38,55
service 38, 279
system configuration. installation, and modification 225

procedures lJsed for system configuration and installation
APPL YPTF procedure 241
CNFIGSCP prOCedure 242
INSTALL proCedure 246

program check 280
program date (see job date)
program product installation 249
program product PTFs 235,241
programs, loading and running 123
PT AM (pseudo tape access method) 328
PTF diskette 227, 246

queued job stread card:'to.;.library
control statements 209
desCription 209

Page of GC21-7593-3
Issued 22 November 1978
By TNL: GN21-7993

read/write error, disk 139,281
reading an offline multivolume file 113
REBUILD command statement

description 91
format summary 58

rebuild data file utility program (see $REBLD utility program)
REBUI LD procedure

contents 300
description 91

record mode
copying files in 103
definition 328
specifying 180

record, block, and sector conversions 273
RELOAD command statement

description 92
format summary 58

RELOAD display 268
reload library utility program (see $LOAD utility program)
RELOAD procedure

contents 300
description 92

relocation dictionary fR LD) 328
REMOVE command statement

description 93
examples 94
format summary 58

REMOVE procedure
contents 301
description 93

rename diskette 165
reorganize disk 68, 208
reorganize library 69, 136
RENAME command statement

description 94
format summary 58

RENAME procedure
contents 301
descriPtion 94

RESTORE command statement
description 94
examples 95
format summary 58

restore disk files (see RESTORE command statement;
RESTORE procedure)

RESTORE procedure
contents 301
description 94

restore system information 91
retention period 19, 22
retention summary, file 153
RLD (relocation dictionary) 328
rollout area

definition 328
use of 174,177

RPG II
applying PTFs to 241
compiler 15 .
installation 249
insia'lIati~n verification 253

RUN OCL statement (see /I RUN statement)

Index 339

SAVE command statement
description 96
examples 97
format summary 58

SAVE procedure
contents 301
description 96

scheduler work area (SWA) 177,328
SCP

diskette 227
procedure 38, 55

(see also procedures)
support for

basic assembler 245
data communications 243
data recorder attachment 244
FORTRAN IV 245
overlay linkage editor 245
queued job stream 245
RPG II 244
word processing 244
1255 Magnetic Character Reader attachment 244

scratch file 19
SDlC

definition 328
environment 216
status information 101

sector 328
sector mode

copying files in 103
definition 328
specifying 180

sector number to block number conversion 273
segment, file 114, 326
selecting library members to delete 267
sequence numbers 43
sequential file 328
service procedures 38, 279

(see also procedures)
SET command statement

description 97
format summary 58

SET procedure
contents 301
description 97

set utility program (see $SETCF utility program)
SETICR command statement.

description (see IBM System/32 1255 Magnetic Character
Reader Reference and Logic Manual, GC21·7692)

format summary 58
procedure contents 302

setting
. job date 16, 73

number of lines printed per page 97,211,243
print belt image 97,211
system date/date format

$SETCF utilitY program 211
// DATE statement 16
DATE procedure 73
SET procedure 97

system environment 97,211
trace functions 211,220

340

SEU (source entry utility)
applying PTFs to 241
installation of 249
installation verification 251

• skip to next page, printer 28
SNA (system network architecture) 328
sort

applying PTFs to 241
installation of 249

source entry utility (see SEU)
source member 3, 328

to basic data exchange diskette file, example 196
source program

causing error 280
definition 328
specified in /I COMPilE statement 15

space allocation, changing
disk 94
library 92, 178
library director 92, 174

SPECI FY command statement
description 99
format summary 58

SPECI FY procedure
contents 302
description 99

specifying library size 178
statement identifiers

OCl 5
utility control statements 131

statement parameter
definition 328
I F expression 47
OCl 5
utility control statement 132

statement tables
command

SCP 55
service 279
system configuration, installation, and modification 225

OCl 10
statements

command (see command statements)
OCl (see OCL statements)
utility control (see utility control statements)

ST AT US command statement
description 101
format summary 59 .

status display utility program (see $ST A TS utility program)
ST ATUS procedure

contents 302
description 101

subroutine member 3,329.
substitution in procedures 44
SWA (scheduler work area) 178,328
switch indicators 31, 101
SWITCH OCl statement (see // SWITCH statement)
switched line 329
symbolic parameter 6, 329
SYS LIST command statement

description . t02
format summary 59

--- ------ ----- ---- - ---- - - ----------_.- Technical Newsletter

IBM System/32
System Control Programming
Reference Manual

© IBM Corp. 1975, 1976, 1977

Th is Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

GN21-7993

22 November 1978

GC21-7593-3

S32-36

GN21-7939

This technical newsletter, a part of version 8, modification 0 of IBM System/32 (Program Product
5725-SC1), provides replacement pages for the subject publication. These replacement pages remain
in effect for subsequent versions unless specifically altered. Pages to be inserted and/or removed are:

Title Page, Edition Notice
iii through xii
xiii, xiv (added)
17, 18
21,22
37,38
45,46
46.1, 46.2 (added)
55 th rough 58
69 through 72
93,94
94.1,94.2 (added)
95,96

105, 106
111,112
119, 120
135 through 138
141, 142
159, 160
160.1,160.2 (added)
161,162
162.1, 162.2 (added)
1 65 th rough 168
168.1, 168.2
179, 180

187,188
207,208
211,212
212.1, 212.2 (added)
225,226
251,252
265,266
267,268
272.1, 272.2
295 th rough 298
301,302
302.1, 302.2 (added)
331 th rough 340

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

• Miscellaneous editorial and technical changes

• $FREE and $RENAM utility programs

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© IBM Corp. 1978 Printed in U.S.A.

Technical Newsletter This Newsletter No. GN21-7939

Date 25 November 1977

Base Publication No. GC21-7593-3

File No. S32-36

IBM System/32
System Control Programming
Reference Manual

©IBM Corp. 1976, 1977

Previous Newsletters

This technical newsletter, a part of version 7, modification 00 of the IBM System/32 (Program Product
5725-SC1), provides replacement pages for the subject publication. These replacement pages remain in
effect for subsequent versions unless specifically altered. Pages to be inserted and/or removed are:

ix, x
15, 16
55 through 60
69, 70
77 through 80
80.1, 80.2 (added)
93,94
103 through 106
139, 140
175, 176
195, 196
205,206
225 through 230
230.1, 230.2 (added)
241,242

249 through 252
255,256
261,262
264.1 through 264.6 (added)
265,266
266.1, 266.2 (added)
267,268
268.1, 268.2 (added)
272.1 through 272.4 (added)
281,282
293,294
297,298
301,302
327,328

Changes to text and illustrations are indicated by a vertical line at the left of the change; new or extensively
revised illustrations are denoted by the symbol. at the left of the caption.

Summary of Amendments

• Add a version update instruction summary.

• Miscellaneous changes.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© I BM Corp. 1977 Printed in U.S.A.

International Business Machines Corporation

~al Systems Division
41111 Northside Parkway N. W.
P.O. ~x ,2150.
Atla~~, Georgia 30301
~(lJ~S.A. only)

Gene~~1 Business Group/International
44S4uth Broad~ay
Whit.,·Plains, New York 1Q601
u.s.A.
(I nternati onal)"

GC21-7593-4
/

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046.0
	046.1
	046.2
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080.0
	080.1
	080.2
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094.0
	094.1
	094.2
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111a
	111b
	112a
	112b
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160.0
	160.1
	160.2
	161
	162.0
	162.1
	162.2
	163
	164
	165
	166
	167
	168.0
	168.1
	168.2
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212.0
	212.1
	212.2
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230.0
	230.1
	230.2
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264.0
	264.1
	264.2
	264.3
	264.4
	264.5
	264.6
	265
	266.0
	266.1
	266.2
	267
	268.0
	268.1
	268.2
	269
	270
	271
	272.0
	272.1
	272.2
	272.3
	272.4
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302.0
	302.1
	302.2
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	upd-1
	upd-2
	xBack

