SYSTEM 37

IBM System/32
System Control Programming
Reference Manual

I3
S
S
S B3
S
S
Q™
AL

N S
SR
]
>

Oy [an

IBM System/32

GC21-7593-1
File No. S32-36

Program Number
5725-SC1

Second Edition (May 1975)

This is a major revision of GC21-7593-0 and obsoletes GC21-7593-0 and Technical
Newsletters GN21-5314 and GN21-7808.

This edition applies to version 02, modification 00 of 1BM System/32 {Program Number
§725-SC1): to version 01, modification 00 of the IBM System/32 Utilities Program
(Program Number 5725-UT1); to version 01, modification 00 of IBM System/32 RPG 1l
(Program Number 5725-RG1); and to all subsequent versions and modifications unless
otherwise indicated in new editions or technical newsletters.

Requests for copies of 1BM publications should be made to your {BM representative or
to the branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. |f the form is gone, address
your comments to Publications, Department 245, Rochester, Minnesota 55901.

©Copyright International Business Machines Corporation 1975

This manual provides system programmers the information
needed to run application programs on IBM System/32
and use the system procedures and utility programs pro-
vided with IBM System/32.

This manual provides:

® A summary of IBM System/32 operation control lan-
guage (OCL) statements and a detailed description of
each OCL statement

® A general description of IBM System/32 system proce-
dures and a detailed description of each procedure, as
well as adetailed description of the command state-
ments that evoke the procedures and a summary of
command statement formats

® A description of how to use OCL statements to create
data files and run application programs, and an example
of using OCL statements and procedures to perform
applications

® A description of each system utility program provided
with IBM System/32, including a description of asso-
ciated utility control statements

® A description of how to configure, install, and modify
IBM System/32 system control programming and how
to install IBM System/32 program products

Appendixes describe:

® The relationship of disk records, blocks, and sectors

® Decimal and hexadecimal conversion

® Diskette data formats for IBM System/32

The I1BM service procedures

The system procedure contents

Standard characters for IBM System/32 printers

Preface

A glossary at the back of the manual defines data process-
ing terms introduced in the manual. New terms are italicized
the first time they are used.

Prerequisite Publication

I1BM System/32 Introduction, GC21-7582, provides an
overview of the system and its characteristics.

Related Publications

IBM System/32 Operator’s Guide, GC21-75691, provides
detailed instructions for operating |BM System/32.

-—% The IBM Diskette for Standard Data Interchange,

GA21-9182, describes the diskette data format for stand-
ard data interchange.

Titles and abstracts of related publications are listed in
the /BM System/32 Bibliography, GC20-0032.

Preface iii

Contents

LIST OF ABBREVIATIONS
HOW TO USE THIS MANUAL
PART 1. OCL STATEMENTS

INTRODUCTION TO OCL STATEMENTS .
WhatisOCL -

OCL. Statements and the Job

System Configuration

CODING OCL STATEMENTS
Types of Information Conveyed in OCL Statements
ldentifiers
Parameters
General OCL Coding Rules
Comments
Continuation

OCL STATEMENT TABLES .

OCL STATEMENT DESCRIPTIONS .
COMPILE Statement
DATE Statement
FILE Statement .

FORMS Statement ,
IMAGE Statement .

INCLUDE Statement . . . « « . .«

LOAD Statement . . .+ .« « « o
LOG Statement .

MEMBER Statement

PAUSE Statement

RUN Statement .

SWITCH Statement , P
SYSLIST Statement

* (Comment) Statement

/* (End of Data) Statement

//* {(Message) Statement

PART 2. PROCEDURES

INTRODUCTION TO PROCEDURES
IBM SCP Procedures
Creating a Procedure
Evoking a Procedure .
Keyboard Entry of the INCLUDE Statement
Command Key Request .
Evoking a Procedure from Another Procedure
Procedure Execution
Procedure Parameters P
Modifying a Procedure Job Stream P
Substitution . .
Conditional Expressmns IF and ELSE
Example of Procedure Coding . .
FILEBKUP Procedure .
FILEBKUP Parameters .

1BM SCP COMMAND STATEMENTS

viii

-

PWLWW

NN o g

15
15
16
17
23
24
26
27
28
29
30
31
32
33
33
34
34

35

37
38
38
39

39

39
41
a1
42
42
42
a4
a7
47
a7

51

1BM SCP PROCEDURE DESCRIPTIONS

ALTERBSC Procedure
ALTERBSC Command Statement Format
ALTERBSC Parameters .

BACKUP Procedure . . P
BACKUP Command Statement Format .
BACKUP Parameters

CATALOG Procedure . . .

CATALOG Command Statement Format
CATALOG Parameters

COMPRESS Procedure , .

COMPRESS Command Statement Format
COMPRESS Parameters . .

COPYI!1 Procedure
COPYI11 Command Statement Format
COPY|11 Parameters
COPYI1 Example

CREATE Procedure .
CREATE Command Statement Forrnat .
CREATE Parameters
CREATE Example .

DATE Procedure
DATE Command Statement Format .
DATE Parameters

DELETE Procedure . .
DELETE Command Statement Format .
DELETE Parameters
DELETE Example

DISPLAY Procedure .
DISPLAY Command Statement Format .
DISPLAY Parameters
DISPLAY Example . .

FROMLIBR Procedure .,

FROMLIBR Command Statement Format

FROMLIBR Parameters
FROMLIBR Examples . .
HISTORY Procedure . . . e

HISTORY Command Statement Format
HISTORY Parameters

INIT Procedure . .
INIT Command Statement Format .

INIT Parameters e e e s
INIT Examples
LINES Procedure . . -

LINES Command Statement Format .
LINES Parameters

LISTLIBR Procedure
LISTLIBR Command Statement Format
LISTLIBR Parameters
LISTLIBR Examples .o

LOG Procedure e s

LOG Command Statement Format
LOG Parameters .

ORGANIZE Procedure
ORGANIZE Command Statement Format
ORGANIZE Parameters . e
ORGANIZE Examples

OVERRIDE Procedure« « .

55
56
56
56
57
57
58
58
58
58
59
59
59
59
59
60
60
61
61
61
61
62
62
62
63
63
63
63
64
64
64
64
65
65

67
68
68

69
69
69
70
7M1
Al
M
72
72
72
73
74
74
74
75
75
75
76
77

OVERRIDE Command Statement Format .
OVERRIDE Parameters

REBUILD Procedure
REBUILD Command Statement Format
REBUILD Parameters . .

RELOAD Procedure .
RELOAD Command Statement Format .
RELOAD Parameters

REMOVE Procedure P
REMOVE Command Statement Format .

REMOVE Parameters
REMOVE Examples ..
RESTORE Procedure« .

RESTORE Command Statement Format
RESTORE Parameters . . .
RESTORE Examples . o .«

SAVE Procedure . . e e e e e
SAVE Command Statement Format .
SAVE Parameters . . « « « o s«
SAVE Examples e e s e e e

SET Procedure o -« . e e
SET Command Statement Format
SET Parameters « . +« + o « s+ »

STATUS Procedure .
STATUS Command Statement Format
STATUS Parameters . .

SYSLIST Procedure .
SYSLIST Command Statement Format .

SYSLIST Parameters . . .+ + « .«
TOLIBR Procedure [

TOLIBR Command Statement Format

TOLIBR Parameters« « =
TRANSFER Procedure e e e .

TRANSFER Command Statement Format .
TRANSFER Parameters ..
TRANSFER Examples

PART 3. USING OCL STATEMENT AND
PROCEDURES

CREATING DISK AND DISKETTE FILES .
Disk File e e

Obtaining Space for a F|Ie e s e s e e

Describing a File s e e e e e s
Diskette File . . . e e e e e
Offline Multivolume Fnle e e e s

Purpose of Offline Multivolume Files -

Creating an Offline Multivolume File . .

Reading an Offline Multivolume File .

Offline Multivolume File Restrictions and
Considerations .

LOADING AND RUNNING PROGRAMS

IBM Programs

Object Programs Using One Dlsk Flle .

Object Programs Using More Than One Disk Flle

Object Programs Using One Disk File and Externa|
Indicators . . « .+ « + e« & o« s

OCL AND PROCEDURE EXAMPLE

77
77
78
78
78
79

79 -

79
80
80
80
80
81
81
81
82
83
83
83
84
85
85
85
86
87
87
88
88
88
89
89
89
91
91
92
93

95

97
97
97
97
98
929
99
100
101

101
105
105
105
105
106

107

PART 4. SYSTEM UTILITY PROGRAMS

INTRODUCTION TO THE SYSTEM UTILITY
PROGRAMS . .

WRITING UTILITY CONTROL STATEMENTS

Rules for Coding Utility Control Statements

Conventions for Describing Utility Control Statement

Formats . . .« o+ .

UTILITY PROGRAM DESCRIPTIONS .

$BACK—Backup Library Utility Program
$BACK Utility Control Statement Format
$BACK OCL Sequence . . .

$BICR—Standard Interchange Utility Program .
$BICR Utility Control Statement Formats
$BICR Parameters

$BICR OCL and Utility Contro| Statement Sequence .

$BICR Example .

$BUILD—Alternate Sector Reburld Utlllty Program

Bypass Unreadable Data
Correct Unreadable Data . .
$BUILD Utility Control Statement Format .
$BUILD OCL Sequence . .

$COPY —Disk Copy/Display Utility Program
$COPY Utility Controf Statement Formats .
$COPY Parameters
$COPY Parameter Summary .

$COPY OCL and Utility Control Statement Sequence .

$COPY Examples
$DELET—File Delete Utility Program
$DELET Utility Control Statement Formats
$DELET Parameters
$DELET Parameter Summary B
$DELET OCL and Utility Control Statement
Sequence v e e e e
$DELET Examples
$DUPRD—Diskette Copy Utility Program
$DUPRD Utility Control Statement Formats
$DUPRD Parameters
$DUPRD Parameter Summary

$DUPRD OCL And Utility Control Statement

Sequence . .
$DUPRD Examples

$HIST —History File Display Utrllty Program

$HIST Utility Contro! Statement Formats

$HIST Parameters
$HIST OCL and Utility Control Statement Sequence .
$HIST Examples
$INIT—Diskette Labeling and Inltlallzatron Utlllty
Program . .

Initialize (FORMAT and FOHMAT2)
Delete (DELETE)
Rename (RENAME) .

Diskette Defects Encountered Durmg Processmg

SINIT Utility Control Statement Formats
$INIT Parameters . .« « « « »
$INIT Parameter Summary . . .

$INIT OCL and Utility Control Statement Sequence

$INIT Examples e e e e e e e

111

113
113
113

114

115
116
116
116
117
117
117
118
118
119
121
121
121
121
122
122
124
126
129
131
132
132
133
133

134
134
136
136
136
136

137
138
139
139
139
139
140

1M
141
14
142
142
142
143
143
145
145

$LABEL--VTOC Display Utility Program
Sample VTOC Displays
$LABEL Utility Control Statement Formats

$LABEL Parameters . . .
SLABEL OCL and Utility Control Statement
Sequence . . -
$LOAD—Reload lerary Utrllty Program . .
InquiryOption+ .« .« . .
Offline Option ., . PP

$LOAD Utility Control Statement Format
$LOAD OCL Sequence . . C e
$MAINT—-Library Maintenance Utlllty Program

System Library File (#LIBRARY)
Allocate Function« .
Copy Function

Delete Function .

$MGBLD—Create Message Member Utnlrty Program
$MGBLD Utility Control Statement Format
$MGBLD Parameters
$MGBLD OCL and Utility Control Statement

Sequence PR

Message Source Member e ..

An Example of Creating a Message Source and Load
Member .

$PACK—Disk Reorganlzatlon Ut|I|ty Program

$PACK Utility Control Statement Format

$PACK OCL Sequence ., . . P
$REBLD--Rebuild Data File Utility Program

$REBLD Utility Control Statement Format

$REBLD OCL Sequence
$SETCF—Set Utility Program
Set the System Environment . .
Set the BSCA Environment

Override RPG BSCA Specifications

Set Functions to be Traced .
$STATS—Status Display Utility Program

$STATS Utility Control Statement Format .

$STATS OCL Sequence .

PART 5. SYSTEM CONFIGURATION, INSTALLATION,

AND MODIFICATION

INTRODUCTION TO SYSTEM CONFIGURATION,
INSTALLATION, AND MODIFICATION .

SYSTEM CONFIGURATION AND INSTALLATION .

Diskettes Required

System Configuration Steps .

System Installation Steps

Calculating the Number of Backup Drskettes Requwed

forthe System

APPLYPTF Procedure . . . e e
APPLYPTF Command Statement Format .
APPLYPTF Parameters That are Not Prompted .
Prompted Parameters for APPLYPTF I

CNFIGSCP Procedure . .
CNFIGSCP Command Statement Format .
Prompted Parameters for CNFIGSCP .

INSTALL Procedure . . P e e e e e
INSTALL Command Statement Format .

INSTALL Parameters that are Not Prompted
Prompted Parameters for INSTALL

Vi

146
146
149
149

149
150
151
162
162
152
163
153
165
156
172
176
176
176

176
177

178
179
179
179
180
181
181
181
181
183
184
185
187
188
188

189

191

193
193
194
196

198
199
199
199
200
200
201
201
202
202
202
202

PROGRAM PRODUCT INSTALLATION AND
VERIFICATION
Program Product Installation
To Install a Program Product .
To Create a Backup Copy of a Program Product
Program Product Installation Verification
SEU Installation Verification P
RPG Il Installation Verification

SYSTEM MODIFICATION

Library Requirements

Deleting From the Library . . . P
Determining Space Available in the Library .
Determining Space Available on the Disk
Selecting Members to Delete
Deleting Members e e e e e e e

RELOAD Display . . .
If Values in the RELOAD Dlsplay are Correct .

If Values in the RELOAD Display are to be Changed

APPENDIX A. RECORDS, BLOCKS, AND SECTOR
CONVERSION . . -
Records to Blocks Conversion for Dlsk .

Determining the Number of Sequential or Drrect Fule

Blocks f
Determining the Number of lndexed Flle Blocks
Disk Sector Number to Block Number Conversion ,

Disk Block Number to First Sector in Block Conversion

APPENDIX B. HEX AND DECIMAL CONVERSION .
Hex and Decimal Chart
Hex to Decimal Example
Decimal to Hex Example

APPENDIX C. DISKETTE FORMATS AND DISKETTE
DATA FILES
Diskette Formats , ., .
Diskette Data Files
Standard Interchange Files e e e e e s
System Files

APPENDIX D. IBM SCP SERVICE PROCEDURES
APAR Procedure .
APAR Command Statement Format . .
APAR Parameters

BUILD Procedure
BUILD Command Statement Format .o
BUILD Parameters« « .« .+
DUMP Procedure . . PR
DUMP Command Statement Format e e e
DUMP Parameters . . . « « « « « o« =

PATCH Procedure e e e s
PATCH Command Statement Format PP
PATCH Parameters . . .

TRACE Procedure . B
TRACE Command Statement Format

TRACE Parameters . . « « « « « «
APPENDIX E. IBM SCP PROCEDURE CONTENTS .
ALTERBSC . . . + + « + « « « + &
APAR e 4 e e e e e e w

APPLYPTF

203
203
203
203
204
204
206

209
209
209
209
210
210
211
21
212
213

215
215

215
215
216
216

217
217
218
218

219
219
219
219
220

223
224
224
224
225
225
225
225
225
226
226
226
227
227
228
229

231
231
231
231

BACKUP.,
BUILD .,
CATALOG A

CNFiGscp ., . ., , .,

COMPRESS
COPYIl,
CREATE . Ce e e e e e e e e
DATE
DELETE . e e e e e

DISPLAY
Duwmp,
FROMLIBR . L
HISTORY

INIT . o o o s s,
INSTALL
LINES,
LISTLIBR,

LG
ORGANIZE
OVERRIDE . ,
PATCH e e e e e e e
REBUILD .,,
RELOAD .,
REMOVE, PR
RESTORE
SAVE L0 0.,
SETo,
STATUS
SYSLIST.
TOLIBR
TRACE
TRANSFER

APPENDIX F. IBM SYSTEM/32 CHARACTERS

APPENDIX G. POLLING AND ADDRESSING
CHARACTERS FOR SYSTEM/32 TRIBUTARY
STATIONS. s e e e e e

EBCDIC

ASCIE . L o L L s s,

APPENDIX H. ASCIlI AND EBCDIC CODES

EBCDICCodes
ASCIICodes............

APPENDIX I. DATA LINK CONTROL CHARACTERS .

GLOSSARY

INDEX

232
232
232
232
234
234
234
234
234
235
235
235
236
236
236
236
236
237
237
237
237
237
237
238
238
238
238
239
239
239
239
239

21

245
245
246
247
248
249
251
253

257

vii

List of Abbreviations

The following abbreviations are used in the text of this

manual.

CE {BM customer engineer

DTF define the file

10B input/output block

10S input/output supervisor

IPL initial program load

K 1024 bytes

MIC message identification code

ocL operation control language

PID program information department
PLCA program level communication area
PTF program temporary fix

RIB request indicator byte

SCA system communication area

SCP system control programming
SvC supervisor call

SWA scheduler work area

VTOC volume table of contents

viii

How to Use This Manual

This manual has five parts. Part 1 describes operation control language (OCL) state-
ments. Part 2 describes system procedures and command statements. Part 3 describes
the use of OCL and procedures to perform applications. Part 4 describes system
utility programs. Part 5 describes system configuration, installation, and modifica-
tion. Part 5 also describes program product installation.

Part 1.
Refer to Part 1 if you want to know:

® What an OCL statement is

® What each OCL statement is used for

® Where each OCL statement is placed in relation to others and when it is needed
® How each statement must be coded

® What each statement must contain

Part 2,
Refer to Part 2 if you want to know:

® What a procedure is

® What a command statement is

® How to create, evoke, or modify a procedure

® What procedures are supplied with |BM System/32 and the function of each

® The format and contents of the command statements that evoke the procedures
supplied with IBM System/32

Part 3.
Refer to Part 3 if you want to know:

® How to use OCL to build disk files and load and run programs

® How OCL and procedures are used to perform applications

How to Use This Manual

Part 4.
Refer to Part 4 if you want to know:

® What system utility programs are supplied with I1BM System/32
® What the function of each utility program is

® What OCL statements and utility control statements are necesszry to request each
utility program

Part 5.
Refer to Part 5 if you want to know about:

® Configuration and installation of IBM System/32 system control programming at
initial system installation or subsequent system update

® |Installing IBM System/32 program products {and if you want verification that
they are installed correctly)

® Modifying an installed system by deleting certain system control programming
components or program product functions from the library

Part 1.

OCL Statements

OCL Statements 1

Introduction To OCL Statements

WHAT IS OCL?

The 1BM System/32 system control programming (SCP) controls program execution.
The SCP must be in main storage before your programs can be run, It is located on
the disk and is brought into main storage by a process called initial program load (IPL),
which is performed by the operator after the system is turned on.

Operation control language (OCL) is your means of communicating with the SCP.
Every job requires OCL statements identifying a job and describing that job’s require-
ments to the SCP. OCL statements for a job can be stored together as a set, called a
procedure, and can be stored in and evoked from the system library.

The system library is contained in a disk file named #LIBRARY. Besides areas
required by the SCP, the system library contains:

® Load members. A load member is a collection of instructions that can be loaded
directly into main storage for execution.

® Procedure members. A procedure member is a collection of related OCL state-
ments. Procedures can also contain utility control statements, statements required
by the system utilities (see index entry: writing utility control statements for more
information on utility control statements).

® Source members. A source member is a collection of records used as input to a
program. For example, RPG |1 specifications and sort sequence specifications can ‘
be stored in source members. Source members do not, however, contain data to oo he o
be processed. A

® Subroutine members. Subroutine members contain subroutines that can be com-
bined with other programs for execution.

You can enter OCL statements in two ways: (1) key OCL statements to create a
procedure stored in the library, then evoke the entire procedure when those OCL
statements are required; (2) key the OCL statements directly to the system as the
system requires them,

OCL STATEMENTS AND THE JOB

To run a job, the necessary OCL statements must be supplied from the keyboard or
called from the system library. To call OCL statements (procedures) from the system
library, enter an INCLUDE OCL statement. A simplified form of the INCLUDE
statement is called a command statement. Command statements make it easier to
call procedures (see index entry: command statements).

Introduction To OCL Statements 3

When system utility programs—programs that perform a variety of routine tasks to
keep the system and files in order—are to be run, utility control statements may be
needed in addition to OCL statements. Utility control statements pass information
(filename, etc) to utility programs. Utility control statements can be included with
OCL statements in procedures.

OCL statements, utility control statements (when required), and input data form the
job stream.

SYSTEM CONFIGURATION

IBM System/32 System Control Programming runs on all models of System/32
and supports all available System/32 features.

Coding OCL Statements

TYPES OF INFORMATION CONVEYED IN OCL STATEMENTS

OCL statements contain, at the most, two types of information: an identifier and
parameters. An identifier is information that distinguishes one OCL statement from
another. A parameter is information supplied to a program. Figure 1 shows the gen-
eral form of OCL statements.

// IDENTIFIER Parameter-1,Parameter-2,...,Parameter-n

Figure 1. General Form of OCL Statements

Note: Most OCL statements begin with //. However, // is not used if the identifier
is * or /*. Also, // is not required with a command statement (a simplified form of
the INCLUDE OCL statement).

Identifiers
Every OCL statement except a command statement requires a statement identifier.
A command statement uses a procedure name. Command statements are discussed

in Part 2 of this manual.

OCL statement identifiers that follow // are:

COMPILE FORMS LOAD PAUSE SYSLIST
DATE IMAGE LOG RUN * (message)
FILE INCLUDE MEMBER SWITCH

For example, in the statement
// LOAD $COPY
the statement identifier is LOAD.

Identifiers that do not follow // are:
* (comment)
/* {end of data)
For example, in the statement
* END OF JOB
the statement identifier is *. Because slashes (//) do not precede the *, the * indi-
cates the statement is a comment. (// * at the beginning of a statement indicates the

statement is a message.)

Coding OCL Statements 5

Parameters

Some statements need parameters, others do not. Parameters are either symbolic or
keyword parameters. In the following statement, $COPY is a symbolic parameter—
the symbolic name of a system utility program:

// LOAD $COPY

NAME-COPYIN, UNIT-F1, and LABEL-PAYROLL are keywords parameters in the
following statement:

// FILE NAME-COPYIN,UNIT-F1,LABEL-PAYROLL

A keyword parameter contains a keyword (NAME, UNIT, and LABEL are keywords
in the preceding OCL statement) that distinguishes the parameter from other para-
meters, just as statement identifiers distinguish one OCL statement from another. In
addition to a keyword, a keyword parameter usually contains a value (COPYIN, F1,
and PAYROLL are values in the preceding sample OCL statement). If a value does
follow a keyword, it must be separated from the keyword by a hyphen.

GENERAL OCL CODING RULES

OCL statement formats described in this manual can include special characters, such
as //, and words written in capital letters, such as LABEL. These special characters
and words must be entered exactly as shown in the statement descriptions given in
this manual. Words written in lowercase letters, such as filename and number, repre-
sent information that you must supply.

Additional coding rules are:

@ The first character (* or /) of an OCL statement must be keyed in position 1. For
example, // must be entered in positions 1 and 2.

® One or more blanks must be left between the // and the statement identifier (LOAD,
RUN, etc).

® One or more blanks must be left between the end of the statement identifier and
the first parameter.

® |f you need to include more than one parameter, use a comma to separate them.
No blanks are allowed within or between parameters. Anything following the first
blank after a parameter is considered a comment (see index entry: comments),

® |f you are writing keyword parameters, place the keyword first and use a hyphen
(-) to separate the keyword (parameter name) from a value.

Comments

Comments can contain any character except the question mark (?). Any combination
of valid characters can be included in the following places:

® Following the * on the OCL comment statement.

® After the last parameter. Leave one or more blanks between the last parameter
and your comment.

® After the identifier on statements without parameters. Leave one or more blanks
between the identifier and your comments.

Note: If you want a comment but no parameters after an identifier where param-
eters are optional, such as on a command statement (see index entry: command
statement), leave a blank after the identifier, code a comma, leave a blank after
the comma, and enter the comment.

Examples of the preceding three ways to include comments in OCL statements are:

1. *THIS IS AN EXAMPLE OF A COMMENT STATEMENT
In the example above the comment is THIS IS AN EXAMPLE OF A COMMENT
STATEMENT.

2. // LOAD $COPY LOAD THE DISK COPY UTILITY
In this example the comment is LOAD THE DISK COPY UTILITY.

3. // RUN RUN THE DISK COPY UTILITY
The comment here is RUN THE DISK COPY UTILITY.

4. // INCLUDE PROC, MAIN PROCEDURE
The comment here is MAIN PROCEDURE.

Continuation

No OCL statement except a FILE statement (see index entry: // FILE statement for
a description of FILE statements) can exceed 120 characters, including blanks and
commas. Because of the large number of parameters possible in FILE statements,
FILE statements can exceed 120 characters if composed of two or more OCL records
to express a single FILE statement. However, no individual OCL record, including
those used to express FILE statements, can exceed 120 characters.

Expressing a single statement in two or more records is called continuation. Only
FILE statements can use continuation. Rules for using continuation are:

® Place a comma after the last parameter in every record except the last. The comma,
followed by a blank, tells the system that the statement is continued in the next
record.

® Begin each new record with // in positions 1 and 2.

@ Leave one or more blanks between the // and the first parameter in the record.

Coding OCL Statements 7

In the first of the following two examples of continued FILE statements, five OCL
records are used to express a single FILE statement. In the second example, two OCL
records express one FILE statement.

// FILE NAME-TRANS,
/" UNIT-F1,

1/ LABEL-TRANS1,
/ RECORDS-225,
/! RETAIN-T

// FILE NAME-TRANS,UNIT-F1,LABEL-TRANS1,
// RECORDS-225,RETAIN-T

OCL Statement Tables

The following two tables are intended for quick referencing. The tables are: table of
OCL statements (Figure 2) and table of parameters (Figure 3).

The table of OCL statements (Figure 2) gives the identifier, function, placement, and
restrictions on use of each OCL statement.

The table of parameters (Figure 3) describes the contents (identifier and related par-
ameters) of the OCL statements.)

When using Figure 3, remember that words written in lowercase letters, such as file-
name or value, require a choice on your part, depending on the functions you want
the statement to perform. Refer to Figure 3 to see which parameters are available.
Those parameters that are capitalized must be coded along with the keyword
parameter.

If you are not familiar with an entry, or you do not know when to use or omit it,
refer to the proper statement in the next section, OCL Statement Descriptions.

OCL Statement Tables 9

10

Statement

Function

Placement in Job Stream

Restrictions on Use

// COMPILE

// DATE

// FILE

// FORMS

// IMAGE

// INCLUDE

// LOAD

// LOG

// MEMBER

Figure 2 (Part 1 of 2). Table of OCL Statements

Tells the system the
source program to
be compiled

Supplies the system
with a date, which
is given to disk files
being created and
printed on printed
output

Supplies file informa-
tion to the system

Instructs the system
to change the number
of lines printed per
page

Tells the system to re-
place the print belt
image area with char-
acters keyed in or read
from a member in the
source library

ldentifies the proce-
dure member to be
merged into job stream

ldentifies the program
to be run

Instructs system to
start or stop printing
OCL statements and
messages on the printer,
and whether to skip to
line 1 of the next page
at end of job

Changes the message
member from which
messages are to come

Must follow LOAD state-
ment and precede the
RUN statement

Must follow LOAD state-
ment and precede RUN
statement except for per-
forming an IPL, when it
must precede the first
LOAD statement

Must follow LOAD state-

ment and precede the RUN

statement

Can be placed anywhere

among the OCL statements

Can be placed anywhere

among the OCL. statements

Can be placed anywhere

among the OCL statements

Must precede the RUN
statement

Can be placed anywhere

among the OCL statements

Can be placed anywhere

among the OCL statements

Only one DATE state-
ment is allowed between
a LOAD and a RUN
statement.

Mandatory if the print
belt has been changed

Can be no more than
sixteen levels of nested
procedures

Required in the job
stream for the program
to be run. Only one
LOAD per RUN

Statement

Function

Placement in Job Stream

Restrictions on Use

// PAUSE

// RUN

// SWITCH

// SYSLIST

* Comment

/* (End of
Data)

/1 * (Message)

Figure 2 (Part 2 of 2). Table of OCL Statements

Tells the system to
stop so that the
operator can perform

a function. Operator
must indicate when
program is to continue.

Indicates the end of
the OCL statements
for a program and
tells system to run
the program

Used to set one or
more external indi-
cators on or off or
to leave the indicator
asitis

Changes the output
medium (printed copy
or display on the dis-
play screen) or speci-
fies that output be
neither printed nor
displayed

Used to explain the
job; does not affect
the program in
operation

Indicates the end of a
data file read from the
keyboard

Displays message to
operator

Can be placed anywhere
among the OCL statements

Must be the last OCL
statement

Can be placed anywhere
among the OCL statements

Can be placed anywhere
among the OCL statements

Can be placed anywhere
among the OCL statements

Last record of an input
data file

Can be placed anywhere
among the OCL statements

Required in the job
stream for the program
to be run

Only one SWITCH
statement is allowed
between a LOAD and
a RUN statement.

The * must be in the
first position.

Not recognized in a
procedure

OCL Statement Tables

1

12

Statement Parameter Meaning of Parameter

// COMPILE SOURCE-name Name of source program

// DATE n}mddyya'or‘f, System date or date for a particular job
yymmdd or within a set of statements (job date)
ddmmyy mm=month dd=day yy=year

// FILE (Disk)

// FILE (Diskette)

NAME-filename or:
< .
NAME-COPYIN

or

NAME-COPYO

UNIT-F1

LABEL-filename
IK:,ECORDS-number.,Qr;
BLOCKS-number
LOCATION-blocknumber
RETAIN-S

or

RETAIN-T

or

RETAIN-P
QATE-mmddyy or;
DATE-ddmmyy ‘or.
DATE-yymmdd
NAME-filename
UNIT-I1

LABEL-filename

RETAIN-retention-days

Figure 3 (Part 1 of 3). Table of Parameters

Name the program uses to refer to the file.
For certain utility program, names the
input file when used in conjunction with
the LABEL parameter.

For certain utility programs, names the
output file when used in conjunction with
the LABEL parameter.

Location of the file is or will be the disk.
If the parameter is not specified, default

is F1.

Name by which your file is identified on
disk

Amount of space needed on the disk for
a file

Number of block on which file begins or
will begin

Scratch file
Temporary file
Permanent file

Date the file was created

Name the program uses to refer to the file
Location of the file is, or will be, a diskette.

Name by which your file is identified on
the diskette

The number of days a file will be retained
before it expires. Maximum is 998. |f 999,
the expiration date is set to a value that
cannot be met.

Statement

Parameter

Meaning of Parameter

// FILE (Diskette)
(continued)

"// FORMS

// IMAGE

// INCLUDE

// LOAD

// LOG

// MEMBER

DATE-mmddyy:or:

DATE-ddmmyy.or
DATE-yymmdd

PACK-vol-id
LINES-value

HEX
or

CHAR or

MEM or MEMBER

number

name

procedure-name

procedure parameters

program-name

CRTor
PRINTER

EJECT or

NOEJECT

PROGRAM1-name

PROGRAM2-name

USER 1-name

Figure 3 (Part 2 of 3). Table of Parameters

Date the file was created

Volume identification of the diskette
Number of lines to be printed per page

Characters which follow are in hexa-
decimal form.

Characters which follow are in EBCDIC form.

Characters are identified as to HEX or CHAR
and located in a source member in the library.

Number of characters

Name of‘the library source member that
contains the print belt image data.

Name that identifies the procedure member
in the library.

Parameters (as many as ten) to be used by
the procedure.

Name of program to be loaded from the
library.

Use only the display screen for logging.
Use the printer and the display screen for
logging.

Skip to line 1 of the next page at end of job.
Do not skip to line 1 of the next page at end
of job.

Name of member used for program product
level 1 messages. If name is 0, the member
name is cleared.

Name of member used for program product
level 2 messages. If name is 0, the member
name is cleared.

Name of member used for user program‘s

level 1 and OCL message statements. |f name
is 0, the member name is cleared,

OCL Statement Tables

13

14

Statement Parameter Meaning of Parameter
// MEMBER USER2-name Name of member used for user program'’s
(continued) level 2 messages. |f name is 0, the member
name is cleared.
// PAUSE none
// RUN none
// SWITCH nnnnnnnn where n See index entry: // SWITCH statement.
canbe 0, 1, or X.
// SYSLIST CRT Use the display screen for SYSLIST output.
PRINTER Use the printer for SYSLIST output. (During
IPL the printer is assigned.)
OFF Ignore request for SYSLIST output.
* (Comment) none
/* (End of data) none
// * (Message) msg-id The identification of a message in the assigned
USER1 message member.
‘message’ A character’string which is the actual message.

Figure 3 (Part 3 of 3). Table of Parameters

(The character string must be enclosed in
single guotes.)

OCL Statement Descriptions

In this section, each OCL. statement is described separately. The following informa-
tion is given for each statement:

® |ts function

® Its placement in relation to other statements and the circumstances under which

it is needed

® |ts format

® Its contents (the parameters that can be used with it)

COMPILE Statement

Function The COMPILE statement identifies the library member that contains the source program to be
compiled. A source program is a collection of statements, such as RPG Il specifications, that can
be translated into an object program. An object program is a program that can be loaded into
main storage and run. Source programs are stored in library source members.

Placement The COMPILE statement must be within the set of OCL statements that apply to the compila-
tion. The COMPILE statement must follow the LOAD statement and precede the RUN state-
ment. If the source program to be compiled follows the RUN statement in the jobstream, the
COMPILE statement must not be used.

Format // COMPILE SOURCE-name

Contents SOURCE: This parameter specifies the name of the source member to be compiled as a source
program.

Example The following sample COMPILE statement tells the system that the source member with the name

PROGS3 is the name of the program to be compiled. (LOAD loads the RPG Il compiler program
and RUN executes the RPG |l compiler program.)

// LOAD #RPG

// COMPILE SOURCE-PROG3
// RUN

OCL Statement Descriptions 15

DATE Statement

Function

Placement

Format

Contents

Example

16

A DATE statement establishes the system date if it is given after IPL and before the first LOAD
statement. If a DATE statement is not given during IPL, the system date remains unchanged from
what it was set to by a previous DATE statement, DATE procedure, or SET procedure (see index
entries: DATE procedure and SET procedure).

A DATE statement between the LOAD and RUN statements (see index entries: //LOAD state-
ment and // RUN statement) changes the job (program) date, but only for the program being run.
When the program ends, the program date is reset to the system date. |f a DATE statement is not
given between LOAD and RUN, the system date is used as the program date.

The date established for the program is used to determine file retention periods for diskette
files (see the RETAIN parameter for diskette files under index entry: // FILE statement) and
is printed on printed output. The date is also used for the creation date of the disk or diskette.

A DATE statement can be given during IPL. It can also be included anywhere within the OCL
statements for a given program, provided it follows the LOAD statement and precedes the RUN
statement. Only one DATE statement can be given between a LOAD and a RUN statement.

// DATE mmddyy or yymmdd or ddmmyy

The system date can be in either of three formats: month-day-year (mmddyy), year-month-day
(yymmdd) or day-month-year (ddmmyy). However, you must use the current system date format.
You can use the STATUS procedure (see index entry: STATUS procedure) to see what the cur-
rent format is.

Month, day, and year must each be 2-digit numbers, but leading zeros in month and day can be
omitted when punctuation is used. The date can be entered with or without punctuation. For
example, July 24, 1975 could be specified in any one of the following ways:

7-24-75 mm-dd-yy
75-7-24 yy-mm-dd
24-7-75 dd-mm-yy
072475 mmddyy
750724 yymmdd
240775 ddmmyy

In the punctuated form, any characters except commas, quotes, numbers, and blanks can be used as
punctuation.

The DATE statement for the day of July 1, 1975 could be: // DATE 07-01-75

FILE Statement

Function The FILE statement supplies the system with information about disk files. The system uses this
information to read records from and write records on the disk and diskettes.

Placement A FILE statement is required for each new disk or diskette file that a program creates, and for
each of the existing disk or diskette files that a program uses. The FILE statement must follow
the LOAD statement and precede the RUN statement.

Format // FILE parameters

Contents The contents section of the FILE statement description is divided into two sections, one section
for files on the disk and one section for files on diskettes.

Contents of FILE Statement for Disk Files

All of the parameters are keyword parameters, which are as follows:

® NAME-filename (in program)

® UNIT-F1

® LABEL-filename (on the disk)

® RECORDS-number or BLOCKS-number

® LOCATION-block number

® RETAIN-T or RETAIN-S or RETAIN-P

e DATE-mmddyy or DATE-ddmmyy or DATE-yymmdd

The NAME parameter is always required. The others are required only under certain conditions.
NAME: The NAME parameter is always required. It tells the system the name that the program
uses to refer to the file. The filename can be any combination of characters (numeric, alphabetic,

and special) except commas, periods, single quotes ('), and blanks. Because the question mark
(?) has a special meaning in procedures {see index entry: procedure parameters) and certain con-

~ trol statements, the question mark should not be used in filenames. The first character of a file-
name must be alphabetic, #, $, or @. The number of characters in a filename must not exceed
eight. :

UNIT: The UNIT parameter tells the system whether the file will be on the disk or on a diskette.
The code for the unit parameter on a FILE statement for the disk is F1. This keyword and value
need not be specified for a disk file because F1 is the default value for UNIT parameter.

LABEL: The LABEL parameter tells the system the name by which a file is identified on the
disk. If the file is being created, the name supplied in the LABEL parameter is used to identify
the file on the disk. If the LABEL parameter is omitted from a disk FILE statement, the name
from the NAME parameter is used. If the file is an existing file, a LABEL parameter is required
when the name a program uses to refer to the file differs from the name by which the file is iden-
tified on the disk. The name can be any combination of characters (numeric, alphabetic, #, %, or
@). The first character must be alphabetic, #, $, or @. The number of characters must not
exceed eight.

OCL Statement Descriptions 17

18

RECORDS or BLOCKS: The RECORDS or BLOCKS parameter is needed for files that are
being created. The parameter tells the system the amount of space needed on the disk for the
file.

When using the BLOCKS keyword, the number of disk blocks needed for the file is specified.

There are 2560 bytes in 1 disk block—1 block = ten 256-byte sectors. A sector is the smallest
quantity of information that can be read from or written to the disk or a diskette in one read/
write operation. Disk blocks available to the user vary with disk size

(K = 1024 bytes, one megabyte = one million bytes):

5.0 Megabytes Disk 9.1 Megabytes Disk

1968 blocks 3576 blocks

#LIBRARY, the name of the file containing the system library, must be included in the user
blocks available. You can use the CATALOG command statement (see index entry: CATALOG
command statement) to determine the number of disk blocks actually available for other files.

When using the RECORDS keyword, the approximate number of records for the file must be
specified. The total space allocated is rounded up to the next block, allowing space to accom-
modate at least the number of records indicated. The smallest allocatable unit is one block. For
example, if you specify ten 50-byte records, 2660 bytes (one block) is allocated.

If RECORDS is used, the number can be up to six digits long.

Either of these two keywords, RECORDS or BLOCKS, can appear in the FILE statement, but
not both. The keyword must be followed by a number indicating the amount of space needed.

LOCATION: This parameter tells the system the number of the block where a file begins.
LOCATION can be used for allocating new output files and identifying existing input files. The
keyword for the parameter is LOCATION. A valid entry for LOCATION must meet two require-
ments. |t must be:

® Greater than the sum of 17 plus the number of blocks used by #LIBRARY, and

® Less than or equal to the foliowing values as determined by disk size:

5.0 Megabyte Disk 9.1 Megabyte Disk

1985 3593

LOCATION is required in only two cases:

® You are creating another version of an existing output file. To create such a file, a file that
has the same name and size (RECORDS or BLOCKS) as an existing file, you must specify a
location that is different from the existing file(s) of the same name and size. The creation
date of the new file must also be different from the creation date of any existing file of the
same name and size.

® You are writing over an existing file. To write over, or overlay, an existing file you must spe-
cify the name of the existing file, its size (RECORDS or BLOCKS) when it was created, and
its location. A different creation date, taken from the current job date, will exist for the new
file.

Note: Use LOCATION with caution. Both the COMPRESS procedure and the RESTORE
procedure move files from previous locations on the disk to new locations, thereby invalidat-
ing LOCATION parameters specified before the COMPRESS or RESTORE procedure was run.
These two procedures do not display a message to notify the operator of the new locations.
(For more information on the COMPRESS and RESTORE procedures, see index entries:
COMPRESS procedure and RESTORE procedure.) To determine the current location of a
file, use the CATALOG procedure (see index entry: CATALOG procedure).

RETAIN: The RETAIN parameter is used to classify files according to their use: scratch, tem-
porary, or permanent,

The keyword for the parameter is RETAIN. It must be followed by a code that indicates the
classification of the file. The codes are:

Code Meaning

S scratch file

T temporary file
P permanent file

A scratch file can be used only by the program creating it, and does not exist after the
program that created it has ended.

A temporary file is usually used more than once. The area containing a temporary file can be
given to another file only under one of the following conditions:

® A FILE statement containing the RETAIN-S parameter is supplied for the temporary file to
delete it. ‘

® Another file with the same LABEL name is loaded into the area occupied by the temporary
file, changing only the data; that is, space (RECORDS or BLOCKS) and LOCATION param-
eters must be provided and must be the same as the original file.

® The DELETE procedure is used to delete the file.

The area containing a permanent file cannot be used for any other file until the DELETE proce-
dure has deleted the permanent file (see index entry: DELETE procedure).

OCL Statement Descriptions

19

A disk file is classified as scratch, temporary, or permanent when it is created. |f the RETAIN
parameter is omitted from the FILE statement when the file is created, the file is assumed to be a
temporary file. The RETAIN parameter can be omitted when accessing an existing file.

"If an existing permanent file is referenced by a FILE statement with RETAIN-T, it will remain a
permanent file. If an existing temporary file is referenced by a FILE statement with a RETAIN-P,
it will remain a temporary file. No message is issued by the system to reflect the above situations.
A message is issued if an existing permanent file is referenced by a FILE statement with
RETAIN-S. If processing is continued, the file remains permanent.

The system supports up to 200 permanent or temporary files at any one time on the disk
(199 user files plus the system file #LIBRARY).

DATE: The DATE parameter identifies the creation date of the file, though it is not used when
creating a file. It is used to ensure that the proper version of a file is referred to. When a file is
created on disk, its LABEL name and creation date are written on the disk as identification. The
job (program) date is the date used. More than one file can be given the same name. However,

the creation dates of these files must be different. To refer to such a file, you can use its name

and date, its name and location on disk, or its name and size if the size is unique. If neither the
date nor the location is given, the file having the latest date is the one automatically referred to.

The date can be entered in one of three forms: month-day-year (mmddyy), day-month-year
(ddmmyy) or year-month-day (yymmdd). However, the form chosen must conform to that of
the previous date statement.

Sample FILE Statement for a Disk File

A program is creating a disk file; therefore, it must have a FILE statement. Assume the following
facts about the file:

® The name the program uses to refer to the file is TRANS.
® The name of the file on the disk is TRANST.

® The file is to be saved for use at the end of the month but it can be deleted at the first of the
next month.

® The file contains 225 records.
® The system is to choose the disk area that will contain the file.
A FILE statement that could be entered to define the file is:

// FILE NAME-TRANS,UNIT-F1,LABEL-TRANS1,
// RETAIN-T,RECORDS-225

Contents of FILE Statement for Diskette Files
All of the parameters are keyword parameters and are as follows (keywords are in capital letters):

NAME-filename (in program)

UNIT-I1

LABEL-filename (on diskette)

RETAIN-retention-days

DATE-mmddyy or DATE-ddmmyy or DATE-yymmdd
PACK-vol-id

The NAME and UNIT parameters are always required. The others are required only under cer-
tain conditions.

NAME: The NAME parameter is always needed. 1t tells the system the name that the associated
program uses to refer to the file.

The keyword for the parameter is NAME. It must be followed by the filename used by the pro-
gram. The filename can be any combination of characters (numeric, alphabetic, and special)
except commas, periods, single quotes (‘), and blanks. Because the question mark (?) has a spe-
cial meaning in procedures (see index entry: procedure parameters) and certain control state-
ments, the question mark should not be used in filenames. The first character of a filename must
be alphabetic, #, $, or @. The number of characters in a filename must not exceed eight.

UNIT: The UNIT parameter tells the system whether the file will be on the disk or on a diskette.

The code for the UNIT parameter on a FILE statement for the diskette is 1. This keyword and
code must be specified on a diskette FILE statement.

LABEL: The keyword for the parameter is LABEL. It must be followed by the name of the file
on the diskette. The name can be any combination of characters (numeric, alphabetic, #, $, or @).
The number of characters must not exceed eight.

The LABEL parameter tells the system the name by which the file is identified on a diskette. If
the file is being created, the name supplied in the LABEL parameter is used to identify the file
on adiskette. If the LABEL parameter is omitted from a diskette FILE statement, the name
from the NAME parameter is used. If the file is an existing file, a LABEL parameter is required
when the name the program uses to refer to the file differs from the name with which the file is
identified on a diskette.

Only one version of a file can be created under a given name on any one diskette.

RETAIN: The RETAIN parameter specifies duration—the number of days a file is to be retained.
It is used to compute an expiration date. Whenever RETAIN is given for a file, the system deter-
mines the expiration date of the file by adding to the job (program) date the number of days spe-
cified by the RETAIN parameter. The RETAIN parameter can be from 0 to 999. If RETAIN is

omitted, 1 is assumed. If 999 is specified, the file is considered permanent but can be deleted by

the DELETE procedure (see index entry: DELETE procedure).

When creating a diskette file, the system writes the expiration date of the file in the same format
as that of the current system date. If an existing nonpermanent diskette file is referenced by a
FILE statement with a RETAIN parameter, the expiration date of the file is changed to the date
determined by the RETAIN parameter. The new expiration date is written in the format of the
current system date regardless of the format of the file’s creation date.

If an existing permanent diskette file is referenced by a FILE statement with a nonpermanent
RETAIN parameter, an error message is issued. If you decide to continue processing after the
message is displayed, the file remains as a permanent file.

Whenever the system is creating a file on a diskette or adding to an existing file on a diskette, all
files on the diskette whose expiration dates have been met and all files with blank (hex 40s)
expiration dates are deleted automatically. When the expiration dates are checked for having
been met, each expiration date is checked for the international format {yymmdd). If an expira-
tion date is not in the international format, it is assumed to be in the same format of the system
date. If the expiration date for a diskette file is not in the international format and is not in the
format of the system date, the expiration date may be misinterpreted by the system and the file
might be deleted before its expiration date is actually met.

OCL Statement Descriptions 21

When a new file is created on a diskette, the new file starts at the first available sector beyond
the last existing unexpired file.

DATE: The DATE parameter is the creation date of an existing file. It is used to ensure that
the proper version of a file is referred to. The format specified must be the same as the format
of the creation date of the diskette file referred to.

Note: When a file is created on diskette, its LABEL, name, expiration date, and creation date
(job date) are written on the disk as identification. The job (program) date is the date described
under DATE statement (see index entry: // DATE statement). This date can be in one of three
formats: month-day-year (mmddyy), day-month-year (ddmmyy), or year-month-day (yymmdd).
However, the creation date of each file on a diskette must be in the same format as every other
creation date on the diskette, or the file might be deleted before the intended expiration date.

PACK: A PACK parameter is required when creating a file or adding to a file on a diskette.

The PACK parameter provides the system the volume identification (vol-id) of the diskette
associated with this FILE statement. The vol-id is put on the diskette (pack) by the INIT
procedure (see index entry: /NIT procedure). PACK must be followed by the vol-id of the
diskette associated with this file. The vol-id can be any combination of alphameric characters.
The number of characters must not exceed six.

The PACK parameter vol-id will be compared to the vol-id of the inserted diskette. If they are
unequal, a message will be displayed to the operator and he will have the option to continue pro-
cessing (ignore vol-id), to insert the correct diskette, or to cancel the job.

If the PACK parameter is not supplied on the diskette FILE statement for an output file or when
adding to a file, an error message is displayed to the operator with a cancel option only.

The PACK parameter is not required for an input diskette file; however, it is recommended that
you ensure the proper diskette is inserted.

Sample FILE Statement for a Diskette File

Assume the following facts about a file to be created on a diskette.
® The program that creates the file refers to the file as TRANS.

® The name of the file once it is on a diskette will be TRANS1.

® The file is to be saved for use at the end of the month but can be deleted the first of the next
month. There are seven days left in the month.

® The file contains 225 records.

® The file will be on the diskette named 666666.

® The system will choose the file’s location on the diskette.
The FILE statement for the file could be:

// FILE NAME-TRANS,UNIT-11,LABEL-TRANS1,
// RETAIN-8,PACK-666666

FORMS Statement

Function

Placement
Format

Contents

Example

The FORMS statement changes the number of lines that the printer will print per page. This
number of lines is effective until another FORMS statement or LINES procedure or SET proce-

dure is used (see index entries: L/NES procedure and SET procedure) or an RPG || program spe-
cifies some other number. During IPL the number of lines per page is set to the value existing in
the system configuration record.

The FORMS statement can be placed anywhere among the OCL statements.
// FORMS LINES-value

LINES: Value is used to indicate the number of lines per page. The maximum number of lines

that can be specified per page is 84. The LINES parameter remains in effect until a SET proce-

dure (see index entry: SET procedure) is used to change the variable, another FORMS statement

is received, an IPL is performed, or a 3 option is taken in response to a message. If a line counter
specification is used in an RPG |1 program, it remains in effect only for the duration of the program.

The printer will skip (overflow) to a new page when there are six lines remaining on the page.

For example, if LINES-84 is specified, the printer skips to a new page after printing line 78. If
LINES-7 is specified, there would be one printed line per page. When six or less lines are specified
there is printing on every line (no overflow).

Note: RPG Il programs can specify their own overflow rules to override the values specified in a
// FORMS statement. However\, if an RPG |1 program does not specify overflow rules, those spe-
cified in a // FORMS statement are used for the program.

The following statement tells the system that the forms length is 50 lines per page.

// FORMS LINES-60

OCL Statement Descriptions 23

IMAGE Statement

Function

Placement
Format

Contents

24

To operate correctly, the printer requires that the characters matching those on the print belt be
in a special area of main storage called the print belt image area. When the print belt is replaced
with one having different characters, the contents of the print belt image area must also be changed.

The IMAGE statement instructs the system to replace the contents of the print belt image area
with the characters indicated by the statement.

The characters can be entered from the keyboard or read from a source member in the library on
disk. The effect of the IMAGE statement is temporary and the system print belt image is returned
to the print belt image area when IPL occurs. The SET procedure can also change the print belt
image (see index entry: SET procedure).

The IMAGE statement can appear anywhere among the OCL statements.

// IMAGE parameters

The IMAGE statement tells the system either of two things:

® The new print belt characters are to be read from the keyboard (HEX or CHAR and number
parameters); or

® The new print belt characters are to be read from a source member in the library (MEM,name
or MEMBER ,name parameters).

Characters from the Keyboard

To indicate that the new print belt characters are to be entered from the keyboard, use the follow-
ing parameters:

CHAR or HEX: Use the word CHAR to indicate that the characters are in alphameric form. Use
the word HEX to indicate that the characters are in hex form. (See Appendix F for the hex form
of standard characters.)

Number: The number parameter must be used with HEX and CHAR. This parameter is the num-
ber of characters following the IMAGE statement (after the IMAGE statement is entered, the
entry of the characters will be prompted for). This number must not exceed 384 when the char-
acters are hex, 192 when characters are alphameric.

Following are the rules for entering the new characters from the keyboard:

@ The characters must begin in position 1.

® Consecutive positions must be used.

® The characters must begin in position 1 to continue on another line.

Examples

The IMAGE statements in Examples A and B following tell the system that the new characters
are to be entered from the keyboard. The format parameter in example A indicates that the new
characters are in hex form; the number parameter indicates that there are 128 positions contain-
ing the new characters.

Example A
// IMAGE HEX,128

In example B, the new characters entered from the keyboard are alphameric. The number para-
meter indicates that there are 48 positions containing the new characters.

Exampie B
// IMAGE CHAR,48

Characters from Source Member in the Library

MEM,name or MEMBER,name may be entered to indicate that new print belt characters are to be
read from a source member. Name identifies the library source member containing the characters.

In the following example, the name parameter indicates that the characters are to be found in a
library source member named BELT: // IMAGE MEM,BELT

A // IMAGE statement specifying the format as either hex (HEX) or alphameric (CHAR) and
specifying the number of characters in the source member is required as the first record within
the source member. Assume that the source member BELT was to contain 13 characters (0, 1,
2,3,4,5,6,7,8,9, % -, and +) to be read. The member BELT would contain the following
two statements:

// IMAGE CHAR,13
0123456789* -+

OCL Statement Descriptions 25

INCLUDE Statement

Function

Placement
Format

Contents

Example

An INCLUDE statement

The INCLUDE statement identifies the procedure member containing the OCL to be merged into
the job'stream, and any utility control statements (see index entry: writing utility control state-
ments) to be merged into the job stream. The INCLUDE statement also enables you to pass par-
ameters to the identified procedure member. In effect, the INCLUDE statement causes system
input to come from a procedure. See index entry: procedures for more information on procedures.

The INCLUDE statement can be placed anywhere within a set of OCL statements.
// INCLUDE procedure-name parameters

The // and the INCLUDE can be omitted. Procedures are usually evoked by command statements.
Command statements consist only of the procedure name followed by the parameter values to be
passed to the procedure.

The // with only the procedure name (no INCLUDE identifier) is also allowed. However, if the
procedure name is the same as an OCL statement identifier or is IF or ELSE, then // INCLUDE
must be present. For example, if the procedure name is LOAD, then the following format is
correct:

// INCLUDE LOAD parameter(s)

Procedure-name: The procedure name is the name of the procedure member to be merged into
the job stream.

Parameters: Parameters may or may not be required, depending on the particular included pro-
cedure they are passed to. Parameters are separated by commas. A parameter can be omitted.
See the example that follows. The parameters required for IBM-supplied procedures are found in
Part 2 of this manual.

The parameters may be any combination of characters except question marks, commas, quotes,
or blanks. The number of characters per parameter must not exceed eight. The number of param-
eters must not exceed ten per INCLUDE statement.

Parameters passed in an INCLUDE statement must be interpreted by the procedure (see index
entry: Modifying a Procedure Job Stream).

In the following example, parameter number 2 has been omitted. JOE and SAM are two param-
eters which will be interpreted by the PAYROLL procedure.
// INCLUDE PAYROLL JOE,, SAM

In the following example, procedure FILE1 is included between the LOAD and RUN statements
and the name of the file (WEEKLY) is being passed to the procedure. Procedure FILE1 contains
only the FILE statements necessary to execute the program PAYROLL.

// LOAD PAYROLL
FILE1 WEEKLY
// RUN

Assuming that PAYROLL requires only two FILE statements and the procedure FILE1 contains
these two FILE statements, the effect of the preceding three OCL statements would be the fol-
lowing sequence of OCL statements entered into the system:

// LOAD PAYROLL
Merged into the job stream { // FILE LABEL-WEEKLY,...
in place of the INCLUDE // FILE...

statement // RUN

LOAD Statement

Function The LOAD statement identifies the load program to be executed.

Placement The LOAD statement must be the first statement in a set of statements for a LOAD program.
Format // LOAD program-name

Contents Program-name: The program-name parameter is the name of the program to be loaded.
Example In the following sample LOAD statement, $COPY is the symbolic parameter that identifies the

Disk Copy/Display Utility Program.
// LOAD $COPY

OCL Statement Descriptions 27

LOG Statement

Function

Placement

Format

Contents

Example

28

The LOG statement tells the system where to display messages and OCL. statements and whether
to skip to line 1 of the next page at end of job.

Note: The LOG statement can be used to tell the system to display OCL statements and messages
on the printer as well as on the display screen. During IPL, only the display screen is assigned for
displaying messages and OCL statements.
The LOG statement can be used anywhere within the set of OCL statements for a program.
// LOG CRT LEJECT
or or
PRINTER NOEJECT
Parameter Meaning
CRT Use only the display screen.

PRINTER Use the printer and the display screen.

EJECT Skip tolline 1 of the next page at end of job. EJECT is assumed if only CRT or
PRINTER is specified.

NOEJECT Do not skip to line 1 of the next page at end of job.
The following example specifies that messages and OCL statements are to be displayed on both

the display screen and the printer.
// LOG PRINTER

MEMBER Statement

Function

Placement
Format

- Contents

The MEMBER statement allows the user to change the message member from which messages are

to come.

There are four types of message members: PROGRAM1, PROGRAM?2, USER1, and USER2.

PROGRAM is used by IBM program products to assign names to associated message members.

USER means that the messages are for user-generated programs and OCL statements.

Each message member has a level 1 and a level 2. Level 1 messages are 40 characters in length and
do not give the detail found in level 2 messages, which can be 200 characters in length.

The MEMBER statement can be placed anywhere among OCL statements.

// MEMBER parameters

All the parameters are keyword parameters and are as follows (keywords are in capital letters):

PROGRAM1-name

PROGRAM2-name

USER1-name

USER2-name

The name of the member used for IBM program product level 1 messages.

Each 1BM program product has its own set of names for related message
members.

1 0 is specified for name, the system will not look for requested
PROGRAM1 messages but will display a message indicating that the
requested message was not found.

The name of the member used for IBM program product level 2 messages.

Each IBM program product has its own set of names for related méssage
members.

If O is specified for name, the system will not look for requested
PROGRAM2 messages but will display a message indicating that the
requested message was not found.

The name of the member used for level 1 and OCL statement messages
for a program supplied by the user.

If 0 is specified for name, the system will not look for requested USER1
messages but will display a message indicating that the requested message
was not found.

The name of the member used for level 2 messages for a program sup-
plied by the user.

If 0 is specified for name, the system will not look for requested USER2
messages but will display a message indicating that the requested mes-

sage was not found.

Note: A level 2 message can be displayed only after the level 1 message
of the same MIC (message identification code) has been issued.

OCL Statement Descriptions

29

The MEMBER statement is in effect until the user enters another MEMBER statement or an {PL
is performed. At IPL, the member names are cleared.

After an included procedure is executed, the member names are reset to the names used when the
INCLUDE statement was read. The following is an example of a MEMBER statement used with
an included procedure.

Examples Procedure A

// MEMBER USER1-JOE
// INCLUDE B
// * 6666

Procedure B

// MEMBER USER1-SAM
/I * 7777

// LOAD PAYROLL

// RUN

When the MEMBER statement is executed in procedure A, message 6666 comes from the mes-
sage member named JOE. Message 7777 in procedure B comes from the message member named
SAM.

PAUSE Statement

Function The PAUSE statement causes the SCP to suspend processing. |t usually is used to give the opera-
tor time to prepare for inserting a diskette. A message telling the operator which diskette to in-
sert usually precedes a PAUSE statement.

When the operator is ready, he can restart the SCP by taking the continue response to the pause
message. The SCP then continues reading the OCL statements that follow the PAUSE statement.

Placement The PAUSE statement can be placed anywhere among the OCL statements.
Format // PAUSE
Contents None

30

RUN Statement

Function

Placement

Format

Contents

The RUN statement indicates the end of the OCL statements for a program. After the system

reads the RUN statement, it executes the program named in the LOAD statement.

A RUN statement is needed for each of the programs the system will run. In the job stream, it

must be the last statement within the set of OCL statements for each job.

// RUN

None

OCL Statement Descriptions

31

SWITCH Statement

Function

Placement

Format

Contents

Example

32

The SWITCH statement sets one or more external indicators on or off. If a switch statement is
used to set an indicator on, the indicator remains on until:

® Another SWITCH statement sets it off,
® A system IPL is performed (turns all indicators off), or
® A user program sets the indicator off.

Note: If an IBM SCP procedure sets a switch, at the end of the procedure the switch is restored
to its original setting.

The SWITCH statement can be placed anywhere among the OCL statements for a job. However,
only one SWITCH statement is allowed between a LOAD and a RUN statement.

// SWITCH indicator settings

Indicator settings: The indicator settings parameter is a code that consists of eight characters,
one for each of the eight external indicators (U1-U8). The first, or leftmost, character gives the
setting of indicator U1; the second character gives the setting of U2; and so on.

The code must always contain eight characters. For each indicator, one of the following charac-
ters must be used:

Character Meaning

0 Set the indicator off

1 Set the indicator on

X Leave the indicator as it is

// SWITCH 1X0110XX

The example shown causes the following results:

Indicator Result
U1 Set on
U2 Unaffected
u3 Set off
(V) Set on
us Set on
U6 Set off
u7 Unaffected
us Unaffected

SYSLIST Statement

Function

Placement
Format

Contents

Example

* (Comment) Statement

Function

Placement
Format

Contents

The SYSLIST (system list) statement changes the method of listing output, which can be listed on
the printer or on the display screen, or specifies that output is not to be listed at all.

The SYSLIST statement can be placed anywhere among OCL statements.
// SYSLIST parameter
The parameter can be:

Parameter Meaning

CRT Display output on the display screen.

Note: If CRT is specified on a SYSLIST statement, only the first 40 char-
acters of each SYSLIST output line are displayed.

PRINTER Print output on the printer.
OFF Do not list output.

The following is an example of assigning the printer as the SYSLIST device:
// SYSLIST PRINTER

Comment statements are usually used to explain the purpose of the OCL statements and utility
control statements stored in a procedure. (See index entries: writing utility control statements
and procedures for a description of utility control statements and procedures.) Comments in a
procedure are displayed when the procedure is displayed. Comments are not displayed when the
procedure is being executed.

Comment statements can be placed anywhere among the OCL statements.

* comment

Comment statements must contain an asterisk (*) in position 1. The text of the comment itself
can be any combination of words and characters. However, because the question mark (?) has a

special meaning in procedures (see index entry: procedure parameters) and certain control state-
ments, comments should not contain a question mark.

OCL Statement Descriptions 33

/* (End of Data) Statement

Function /* statements indicate the end of a data file entered from the keyboard.
Placement A /* statement must be the last record of an input data file.
Format /*

Note: An end of data statement will not be recognized in a procedure.

// * (Message) Statement

Function The message statement provides a means of displaying messages to the operator from a procedure.
Placement The message statement can be placed anywhere among OCL statements.
Format /] * msg-id or message
Contents The parameter can be in either of two forms:
msg-id This is the identification of a message in the USER 1 message member specified on

the member OCL statement {one to four numerics).

‘message’ A character string enclosed by single quotes is the actual message. Any character
can be used in the character string except a single quote.

The message is always displayed to the operator when the statement is processed in the job stream.
Example In the following example, the message statement would very likely be followed by a PAUSE

statement to allow the operator to change the diskettes.
// * 'INSERT THE PAYROLL MASTER DISKETTE*

34

Part 2.

Procedures

Procedures 35

36

Introduction to Procedures

A procedure is a set of related OCL statements and, possibly, utility control state-
ments (see index entry: writing utility control statements for a description of utility
control statements). A procedure is stored in the system library as a procedure mem-
ber. Each procedure, and thereby each procedure member, must have a unique name.
This name is the name by which a procedure is evoked.

Any combination of OCL statements and utility control statements can be contained
in a procedure. One procedure may cause more than one job to be run. Thatis, a
single procedure may contain more than one LOAD statement (see index entry:

// LOAD statement).

The ability to store sets of frequently used OCL statements and utility control state-

ments makes it possible to avoid recoding and rekeying the statements each time they
are required.

Introduction To Procedures 37

38

1BM SCP PROCEDURES

The following list of names identifies the procedures supplied with 1BM System/32
system control programming to provide you with an easy interface to often-used
system functions.

ALTERBSC DELETE LOG SAVE
BACKUP DISPLAY ORGANIZE SET
CATALOG FROMLIBR OVERRIDE STATUS
COMPRESS HISTORY REBUILD SYSLIST
COPYIN INIT RELOAD TOLIBR
CREATE LINES REMOVE TRANSFER
DATE LISTLIBR RESTORE

IBM also provides SCP service procedures to help you and IBM service personnel
solve system problems that may arise. The service procedures provided are:

APAR DUMP TRACE
BUILD PATCH

The service procedures are described in Appendix D. Three other procedures,
APPLYPTF, CNFIGSCP, and INSTALL, are part of the installation steps des-
cribed in Part 5.

Some of the |BM SCP procedures call and use other IBM SCP procedures that you
cannot evoke directly. Though you cannot evoke these procedures, their names may
appear on listings you request.

You can create your own procedures to use in addition to those provided by 1BM.
The information contained in this part of the manual, Part 2, will help you create
and evoke your own unique procedures as well as use those provided by IBM.

CREATING A PROCEDURE

A set of related OCL statements and utility control statements can be created and
stored in the library by keying statements from the keyboard and using the SMAINT
utility program (see index entry: SMAINT utility program) or another program such
as the Source Entry Utility (described in /BM System/32 Utilities Program Product
Reference Manual—Source Entry Utility, §C21-7605). An existing set of OCL state-
ments and utility control statements can be read from a diskette to the disk by using
one of the procedures or utilities described in this manual. To store a set of related
OCL statements and utility control statements in the library as a procedure member
you must use SMAINT.

EVOKING A PROCEDURE
Procedures can be evoked in three ways:
® By keying an INCLUDE OCL statement (command statement)
® By issuing a command key request

® By calling a procedure from another procedure

Keyboard Entry of the INCLUDE Statement

A procedure usually is called by a simplified form of the INCLUDE OCL statement
known as a command statement. Command statements are formed by deleting the
// and INCLUDE from the format of INCLUDE statements. That is, the general for-
mat of a command statement is:

Procedure name Parameter-1,Parameter-2,...Parameter-n
A command statement can begin in any position—a command statement does not
have to begin in position 1.

For example, keying

PAYROLL
and pressing the ENTER key is sufficient to call a procedure named PAYROLL, pro-
vided no parameters need to be passed to the procedure.

For a description of the other two formats permitted for an INCLUDE OCL state-
ment, see index entry: //INCLUDE statement.

Note: The // and INCLUDE cannot be omitted from the INCLUDE statement if you
want to evoke a procedure whose name is IF, IFT, IFF, ELSE, RETURN, or CANCEL,
or if the procedure name is the same as an OCL statement identifier.

Command Key Request

The command key request is another way of evoking a procedure. By pressing the
CMD key in response to READY and then an upper or lower case command key (the
first command key is to the right of the CMD key, the second command key is to the
right of the first, etc) you can request one of a possible twenty-four procedures (see
Creating Command Key Messages following). The procedure can then be evoked by
pressing the ENTER key.

Note: Command keys can be used to evoke OCL statements in the same way they
can be used to evoke procedures.

When you request a procedure by issuing a command key request, the procedure
name (and any parameters previously specified for that procedure) is displayed on
the display screen. For example, if you are requesting a previously created PAYROLL
procedure, the procedure name appears on the display screen as:
PAYROLL

Introduction To Procedures

39

The display screen cursor would be positioned at the second position after PAYROLL.
If no parameters are required, pressing the ENTER key would evoke the PAYROLL
procedure. |f parameters are to be entered, they are keyed before ENTER is pressed.

Creating Command Key Messages

If you wish to request a command statement not currently accessible via a command
key, you must create a level 2 message load member named ##MSG3 using the
CREATE command statement (see index entry: CREATE procedure) or the $SMGBLD
utility (see index entry: $MGBLD utility program), and then perform an initial pro-
gram load (IPL).

Command Key Message Identification Codes
The message load member (##MSG3) must contain one or more of the following

twenty-four message identification codes (MICs). The MICs are shown with the data
characters on the corresponding command keys.

Mic Command Key Mic Command Key
(Lower Case) (Upper Case)

0001 1 0013 |

0002 2 0014 @

0003 3 0015 #

0004 4 0016 $

0005 5 0017 %

0006 6 0018 -

0007 7 0019 &

0008 8 0020 *

0009 9 0021 (

0010 0 0022)

0011 - (minus) 0023 — (underscore)
0012 = 0024 +

For example, if the command key message load member contains a MIC of 0010
and the COPY11 command statement as text, COPY!1 is executed after the CMD key
and the 0 data key are pressed.

Evoking a Procedure from Another Procedure

A procedure requested by an INCLUDE OCL statement (command statement) or a
command key can also request another procedure. For example, suppose a procedure
named PAYROLL contains, besides other OCL statements, a TAXES command state-
ment, and the procedure named TAXES contains a DEDUCT command statement.
Both the TAXES procedure and the DE DUCT procedure are called and executed
when the operator enters the PAYROLL command statement.

PAYROLL TAXES DEDUCT
Procedure Procedure Procedure

PAYROLL calls /...

/...
TAXES calls//...
/...
/...
DEDUCT calls //...

/...

A procedure evoked by another procedure is called a nested procedure. In the pre-
ceding example TAXES and DEDUCT are nested procedures. Also, the preceding
example contains three levels of procedures: the first level contains PAYROLL, the
second contains TAXES, and the third contains DEDUCT. One level can contain
more than one command statement; but a maximum of 16 levels of procedures is
allowed in one job stream.

Procedure Execution
When a procedure name is recognized by the SCP the following action occurs:

1. The procedure member corresponding to the procedure name s found in the
library.

2. The OCL statements, utility control statements, and/or nested procedures are
read, one statement at a time, by the SCP. Parameters are substituted for sub-
stitution variables (see index entry: modifying a procedure job stream), IF and
ELSE expressions are processed (see index entry: modifying a procedure Jjob
stream), and the resultant OCL and utility control statements from the original
procedure and any nested procedures are executed as a normal job stream.

Introduction To Procedures 41

PROCEDURE PARAMETERS

Some procedures require parameters when the procedures are requested, other pro-
cedures do not. Most parameters passed to procedures are positional parameters. A
positional parameter is a parameter that, whenever it appears in a statement, must
appear in the same position in relation to other parameters in the statement. Ifa
valid positional parameter is omitted from a statement requesting a procedure but a
following parameter is used, a comma must indicate the position reserved for the
omitted parameter.

For example:

// INCLUDE PROCEDUR FILEA, ,NO
FILEA is the first parameter, the second parameter is omitted, and NO is the third
parameter. A fourth parameter, XYZ, is omitted, but is not indicated by a comma
since it was the last parameter.

Some parameters have defaults. A default is a parameter which is substituted for an
omitted parameter. You can write defaults in your procedures (see index entry:
modifying a procedure job stream). Defaults are underlined when shown in command
statement formats.

A maximum of 10 parameters can be passed when evoking a procedure. The cues-
tion mark (?), slash (/}, and hyphen (-) have special meanings in procedures and in
OCL and utility control statements (see index entry: writing utility control state-
ments for information on utility control statements) and should not be used in param-
eters for a procedure. The ?, /, and - should not be used in any control statement un-
less the format of the statement given in this manual indicates that one or more of

the symbols is required. (For example, OCL and utility control statements begin

with //; a hyphen is required to separate keywords and values in keyword parameters.)

Note: You should not put sequence numbers on procedure statements.
Modifying a Procedure Job Stream

Parameters, substitution, and conditional expressions allow you to modify a proce-
dure job stream without changing OCL statements in the library.

Substitution

Substitution allows you to omit certain information in OCL statements within pro-
cedures and allows this information to be passed by parameters when evoking the
procedure. Information can also be passed in responses to prompts from OCL state-
ments within the procedure. Defaults may be used when you do not supply the
parameter.

There are six substitution formats that can be used within a statement contained in
a procedure.

1. 2n?—where n is the number of the positional parameter on the statement that
evokes the procedure. If no parameter is passed, the ?n? is removed. For
example, suppose this OCL message statement were in a procedure:

// * “23? HAS BEEN DELETED’

If no third parameter is passed, the statement would be:
// ¥ '"HAS BEEN DELETED' (the ?3? has been removed)
If the third parameter is FILEX, the statement would be:
/! * ‘FILEX HAS BEEN DELETED*

?n‘default’?—where n is the number of the positional parameter on the state-
ment which evokes the procedure. If no parameter is passed, the ‘default’ value
is substituted and treated as a positional parameter for all OCL statements in the
procedure that require that parameter. For example:

// FILE NAME-?2"FILEIN?
If no parameter is passed, the statement would be executed as

// FILE NAME-FILEIN
FILEIN would then be treated as the second positional parameter for the rest
of the procedure.

If FILEOUT were passed as the second positional parameter, the statement
would be executed as

// FILE NAME-FILEOQUT
and FILEOUT would become the second positional parameter for the rest of
the procedure.

?nT'default’?—same as ?n‘default’? except T means temporary. That is, the
default is substituted only for a particular statement. It is not treated as a posi-
tional parameter for any other statement in the procedure.

?nR’msg-id‘?—where n is the number of the positional parameter on the state-
ment that evokes the procedure. R indicates that the parameter is required,
and msg-id is a 4-digit decimal. number identifying a message in the USER1
message member in the library. If no positional parameter is passed, the mes-
sage corresponding to the number (msg-id) is displayed on the display screen
for the operator. A reply must be entered and is substituted in the procedure
statement for the substitution variable. For example:

// FILE NAME-?2R‘6666'?
would cause the message corresponding to number 6666 in the USER1 message
member to be displayed if the second positional parameter was not passed.
Some value would then have to be entered from the keyboard in order for exe-
cution of the job stream to continue.

?nR?—where n is the number of the positional parameter on the statement that
evoked the procedure and R indicates that the parameter is required. |f no par-
ameter is passed, a reply must be entered on the keyboard. The reply is then
substituted for the substitution variable. For example:

// FILE NAME-?2R?
with no second parameter entered would cause a message (ENTER MISSING
PARAMETER) to be displayed to the operator. The SCP would then wait for
a reply to be entered on the keyboard.

?R?—no positional parameter is given on the statement that evokes the proce-

dure. R indicates that a parameter is required. A reply must be entered on the

keyboard. The reply is substituted for the substitution variable. For example:
// FILE NAME-?R?

would always require the operator to reply.

Introduction To Procedures 43

Note: In the preceding forms of substitution, the ‘'n’ can be any number between 01
and 11 (the leading O can be dropped). The first ten parameters on the statement
that evokes the procedure are positional. Only ten parameters can be passed; the ele-
venth must be supplied by default (for example, ?11’FILEIN?) or prompting (for
example, ?11R?).

Conditional Expressions: IF and ELSE

Conditional expressions are used among OCL statements to modify procedures. There
are two types of conditional expressions: |F expressions and ELSE expressions.

IF Expression
The {F expression can only be used in a procedure (can be anywhere in the procedure).
The IF expression tests to find out whether a condition is as specified (true or false);
if it is as specified, the OCL statement is executed; if not, the SCP goes to the next
statement in the procedure.
There are three formats of the IF expression:
// IF condition-parameter statement-parameter
// IFT condition-parameter statement-parameter
// IFF condition-parameter statement-parameter
IF or IFT means that if the condition is true, the statement is to be executed. |FF
means that if the condition is false, the statement is to be executed.
Condition Parameter: There are two types of condition parameters: existence testing and

comparison.

The existence testing parameter is a keyword parameter. The keywords and mean-
ings are:

Keyword Meaning

DATAI1-‘name,date’ s there a file on the diskette with the name and creation
or DATAI1-name date (optional) as specified?

DATAF1-'name,date’ s there a file on the disk with the name and creation date
or DATAF 1-name (optional) as specified?

SOURCE-name Is there a source member of the specified name in the
library?

LOAD-name Is there a load member of the specified name in the
library?

PROC-name Is there a procedure member of the specified name in the
library?

SUBR-name Is there a subroutine member of the specified name in the
library?

SWITCH1-0 Is SWITCH1 a 0 (off)?

SWITCH1-1 Is SWITCH1 a 1 (on)?

°

® (SWITCH2 through SWITCHS can also be tested)

°

The comparison parameter format and meaning is:
Format Meaning
parameter1/parameter2 Is parameter1 equal to parameter2? (Each param-

eter has a maximum length of eight characters.)

Statement Parameter: The statement parameter of the IF expression can be an OCL state-
ment (except the comment statement or end-of-data statement)-or a utility control
statement. Drop the initial // of OCL and utility control statements used as statement
parameters.

Also allowed in the statement parameter of the IF expression are the keywords
CANCEL and RETURN. The meaning of these two keywords are:

CANCEL Cancel the job and return to the keyboard for the next OCL
statement.

RETURN Return to the previous procedure. If in the first level, then return
to the keyboard for the next OCL statement.

Introduction To Procedures 45

46

Examples of the |F Expression: Following are some examples of the IF expression.

® Existence testing
// \FF DATAF1-?1? CREATEF1
This expression checks to see if the file label substituted for parameter 1 is on the
disk. If it is not, the condition is satisfied and the CREATEF1 procedure is evoked.
If the file is on the disk, the condition is not satisfied and the next statement or
expression in the procedure is read; CREATEF1 is not executed.

® Comparison
// |F 21?/PAYROLL PAYROLL
This expression says that if the first parameter on the statement that evokes the
procedure is PAYROLL, then evoke the procedure named PAYROLL,; otherwise,
go to the next statement or expression in the procedure. An expression equiva-
lent to the preceding comparison example is:
// IF PAYROLL/?1? PAYROLL

® There can be more than one IF expression on a line. A line is a maximum of 120

characters.
// IF 21?/REPORT IF ?2?/EOM MONTHLY

This expression says that if the first parameter on the statement that evokes the
procedure is REPORT and the second parameter on that statement is EOM, then
evoke the MONTHLY procedure. [f the first parameter was not REPORT or the
second was not EOM, the next statement or expression is read and MONTHLY is
not executed.

ELSE Expression
The ELSE expression is used in conjunction with the IF expression. For example:

// \F 21?2/ RETURN
// ELSE DELETE ?1?

The example tests whether the first parameter in the statement that evoked the pro-

cedure is a null entry. A null entry is an entry that contains no value. In the statement
NAME PARM1, PARM3

the second parameter is a null entry.

The IE and ELSE statements in the preceding sample say: if the first parameter

in the statement that evoked the procedure is a null entry, RETURN to the previous
procedure if this is a nested procedure or to the keyboard if this procedure is not
nested: if the first parameter in the statement is not a null entry, evoke the DELETE
procedure to delete the file specified by the first parameter.

The ELSE expression can be used with all forms of the IF expression (IF, IFT, and
IFF).

There can be only one ELSE expression per line and it must be the first expression
in that line. For example:

//IF 212/ PAYROLL
// ELSE DELETE ?1?
/1 \F 222/ PAYROLL
// ELSE DELETE ?22?

In this example, if both parameters 1 and 2 were passed by the statement that evoked
the procedure, the files specified by these parameters would be deleted by the DELETE
procedure.

An IF expression can follow an ELSE expression in a conditional statement. For
example:

// \F 23?2/ RETURN
// ELSE IF ?3?/YEAREND PAYROLL YEAREND
// ELSE PAYROLL WEEKLY

In the preceding example, if the third parameter is a blank, the PAYROLL procedure

is not evoked. If the third parameter is YEAREND, YEAREND is passed to PAYROLL
and the PAYROLL procedure is run. If the third parameter is neither a blank nor
YEAREND, the parameter WEEKLY is passed to PAYROLL and PAYROLL is run.

EXAMPLE OF PROCEDURE CODING
FILEBKUP Procedure
Note: This is an example of a user coded procedure not provided with the SCP.

The FILEBKUP procedure copies a file from the disk onto a diskette. The following
is the command statement format:

FILEBKUP filename-1,vol-id ,ﬁlename-2:|
filename-1

This procedure demonstrates conditional operator prompting for required parameters,
and conditional building of a file statement LABEL parameter,

The prompting text is stored in the procedure rather than in a user library.

FILEBKUP Parameters

Filename-1 This is a required parameter. |t is the name of the disk file to be
backed up.

Vol-id This is a required parameter. It is the volume identification of the
diskette.

Filename-2 This is an optional parameter. If entered, it becomes the name of

Filename-1 the file on the diskette. If omitted, the disk and diskette file names
are the same.

Introduction To Procedures

47

If either or both of the required parameters (filename-1 and vol-id)
were entered with the command, the procedure assumes that file-
name-2 was intentionally omitted; the procedure defaults to file-
name-1.

If no parameters were entered with the command, the procedure
assumes that the optional filename-2 parameter may be desired; the
procedure prompts for filename-2.

The following procedural comment informs the operator of the system activity:
1. //* * FILEBKUP IS EXECUTING’

The following procedural statements, (2) through (6), will prompt the operator for
filename-2 if all three parameters were omitted. Statements (2) and (3) display the
prompting text. Statement (4) halts the machine after issuing the system message
ENTER MISSING PARAMETER. When parameter number 11 is coded as required,
the machine will stop for key entry.

//\F 212/ IF 227/ 1F 23?/ * ‘ENTER YES TO ALTER FILE NAME ON DISKETTE’
//\F 212/ |F 222/ IF 232/ * ‘PRESS ENTER FOR SAME AS DISK FILE NAME’

/I \F 212/ \F 222/ IF 23?2/ IF ?11R?/YES * ‘ENTER DISKETTE FILE NAME’

// \F 2112/YES IF ?3R?/ * “++ PARAMETER OMITTED-PROCEDURE CANCELED’
// \F ?2112/YES IF 23?2/ CANCEL

corLN

Parameter number 11 cannot be passed with a command statement; 10 is the maximum
number of parameters, but parameter number 11 is available for this type of internal
communication. The IF statement is equated to YES so that prompting for filename-2
will occur if the operator enters YES. If the operator responds to statement (4) with
YES, then statement (5) must have a name entered. H statement (5) receives a null
response from the operator, who presses only the entry key, the message ++ PARA-
METER OMITTED-PROCEDURE CANCELED is displayed and statement (6) cancels
the procedure.

The next procedural statements, (7) through (12), prompt the operator for filename-1
and vol-id if they were omitted when the command was entered. Statement (7) dis-
plays the prompt ENTER THE DISK FILE NAME. Statement (8) or (11) issues the
system message ENTER MISSING PARAMETER below the coded prompt, and then
halts the machine for operator key entry. Statement (9) or (12) executes the CANCEL
function, similar to statement (6).

7. //1F?1?/ * 'ENTER THE DISK FILE NAME’

8. //IF MR/ *"++ PARAMETER OMITTED-PROCEDURE CANCELED’
9, //IF?1?/ CANCEL

10. //1F?2?/* "ENTER THE DISKETTE VOLUME-ID’

11. //IF ?22R?/ * ‘++ PARAMETER OMITTED-PROCEDURE CANCELED’
12. //IF 22?2/ CANCEL

The next steps, (13) through (20}, build the OCL for execution:

13. // LOAD $COPY
14. // FILE NAME-COPYIN,LABEL-?1?

If the operator omits filename-2, the disk file name is also used for the diskette file
name: '

15.
16.

// FILE NAME-COPYO,UNIT-I1,PACK-?2?, RETAIN-999,
// tF 232/ LABEL-?1?

If the operator enters filename-2, it becomes the diskette file name:

17.
18.
19.
20.

// \FF 232/ LABEL-?3?

// RUN

// COPYFILE OUTPUT-DISK
// END

The COPYO file statement, statement (15), is incomplete; continuation is shown by
the comma following the RETAIN-999 parameter. Depending on the absence or
presence of filename-2, either parameter statement (16) or (17) selects the LABEL
parameter.

Introduction To Procedures

49

IBM SCP Command Statements

Each IBM SCP procedure can be evoked by a command statement. Figure 4, which
follows, is a table showing the formats of the command statements that evoke the
IBM SCP procedures. (See Appendix D for the format of the command statements
that evoke the IBM service procedures.)

Figure 4 is meant for quick reference. It shows the procedure name and parameters
(if any) in each command statement. For more information about each of the com-
mand statements shown and for a description of the procedures they evoke, see
IBM SCP Procedure Descriptions, which follows Figure 4.

s [sre {5} [{7} e (1}] e {37}
e (1] e 1] o {3

Note: At least one parameter must be given in each ALTERBSC command statement.

retention-days Jilename
1 HLIBRARY

ALL A
CATALOG [filename] [,_EJ]

COMPRESS

BACKUP vol-id, [

COPYI1 [ALL] ,vol-id [,DELETE]

or
mmddyy

COPY 1 filename, | ddmmyy | ,vol-id
yymmdd

CREATE sourcename [,REPLACE]

mmddyy
DATE { ddmmyy
yymmdd

DELETE filename, [

F1 SC RATCH ;,mmddyy
" :l ,| REMOVE ,ddmmyy
ERASE ,yymmdd

[,mmddyy

DISPLAY filename ,ddmmyy
,yymmdd

or -

[mmddyy

DISPLAY filename, | ddmmyy | ,RECORD,value-1 [,value-2]

| yymmdd

Figure 4 (Part 1 of 4). 1BM SCP Command Statement Formats

IBM SCP Command Statements 51

52

SOURCE
PROC
FROMLIBR library-name-1, | LOAD

LIBRARY
or
SOURCE J
PROC .
FROMLIBR {Z“T'LA""}, LOAD I :;‘:"“:“1“’2:’ [lF‘-
SUBR 1
LIBRARY \

HISTORY [ALL] [,RESET]

,RENAME
,DELETE
,FORMAT
,FORMAT?2

INIT vol-id owner-id
system-date | ' | OWNER-ID

number
LINES [_6_@]

SOURCE
,PROC
,LOAD
SUBR
,LIBRARY

LISTLIBR DIR

or
LISTLIBR DIR,SYSTEM

or

SOURCE

library-name ,PROC
LISTLIBR name,ALL ,LOAD
ALL ,SUBR

,LIBRARY

CRT | .EJECT
LOG [PRINTER] l:,NOEJECT]

Figure 4 (Part 2 of 4). IBM SCP Command Statement Formats

!
/
/
/

| filename-1] I:_I_1_

‘| library-name-1 | ‘| F1

SUBR N\ P ,blocks
Il L8

.| ADD vol-id
retention-days
1

S
or
[ADD]

—

ADD ,vol-id

! retention-days

1

—
L

[P7] [".blocks
I [&. J
5
or

[ADD]

mmddyy T
ORGANIZE filename-1, { ddmmyy | ,F1,filename-2, | S | [,positionchar-literal]
yymmdd P
or
mmddyy retention-days
ORGANIZE filename-1, | ddmmyy | ,[11] ,vol-id, [1 y] [.position,char-literal]
yymmdd —

OVERRIDE [ADDR-n] | LINE-

-~ W xxdOVO

Note: At least one parameter must be given in each OVERRIDE command statement.

REBUILD

) mmddyy /filename
RELOAD [vol-id], | ddmmyy Y

yymmdd #LIBRAR §
'SOURCE
library-name ,PROC
REMOVE < name,ALL ,LOAD
ALL ,SUBR
LIBRARY
. ;/mmddyy
RESTORE [ALL], [f"ezf/"ée 1] ,ddmmyy
#SAVE .yymmdd

or

mmddyy
RESTORE filename-2, [ddmmyv [’EESSESD ;‘,’32‘; 1]

yymmdd

SAVE [ALL], l;:iatentlon-days] ' [ﬂle:\a\x/née-il vol-id

SAVE filename-2, | 1 , | ddmmyy

retention-days | mmddyy
vol-id
ADD yymmdd

MDY ,mmddyy
SET [value], [source-name], | DMY Addmmyy
YMD ,yymmdd

Note: At least one parameter must be given in each SET command statement.

Figure 4 (Part 3 of 4). 1BM SCP Command Statement Formats

IBM SCP Command Statements 53

54

STATUS

PRINTER
SYSLIST | CRT
OFF
[mmddyy
TOLIBR filename, [U.] , | ddmmyy [[, REPLACE]
| yymmdd
mmddyy .
TRANSFER filename-1, [11], | ddmmyy ,ADD,Iff'e"ame'z] [,date]
) filename-1
yymmdd

or

mmddyy

lue-1value-2] |,
TRANSFER filename-1, [11], | ddmmyy |, [NOADD], 3"”8 value { [BLOCKSvalue_4

yymmdd

or

mmddyy retention-days
TRANSFER fielname-1,F1, | ddmmyy | ,vol-id [’1 y]

yymmdd =

Figure 4 (Part 4 of 4). 1BM SCP Command Statement Formats

RECORDS,value-

!

IBM SCP Procedure Descriptions

This section describes all the IBM SCP procedures except the service procedures,
which are described in Appendix D and three procedures in Part 5. The following
information is given for each procedure:

® The function of the procedure
® The format of the command statement that evokes the procedure

® A description of the parameters of the command statement used to evoke the
procedure

Examples are given for many of the command statements.

In the descriptions of command statement formats and parameters, capitalized words
and letters, numbers, special characters, brackets, and braces have special meanings.
Capitalized expressions must be entered as they appear in the descriptions. Some-
times numbers or nonalphabetic characters may appear in a capitalized expression—
such numbers and characters must also be entered as they are shown. Words and
expressions that are not capitalized must be replaced with a value that is appropriate
to your job. The values you can use ‘are listed in the parameter descriptions.

Brackets ([]) shown in command statement formats and parameters are not part of
the parameters. Brackets can have two meanings: they can indicate that you can
omit the parameter enclosed in brackets, and they can mean that if you use an expres-
sion enclosed in brackets, you must choose one of the values shown. For example,

l—mmddyy

ddmmyy

Lyymmdd
means that you need not give a date (the date parameter is optional), but if you
choose to give a date, it must be.in one of the three formats shown: mmddyy,
ddmmyy, or yymmdd.

Underlining identifies default values. A default value is a value that is automatically
substituted for an optional parameter that is omitted. For example, | 11 | means that
if neither 11 nor F1 is specified, F1 is used. F1

Braces ({ }) indicate that you must choose one of the values enclosed by the braces.
For example, in the expression [PARM- {A}:l , the braces indicate that if you choose
B

to enter the parameter, you must specify either A or B.

Note: In the preceding table (Figure 4) and in the descriptions that follow, the com-
mand statement formats often indicate that commas are required to separate param-
eters that are optional, whether the optional parameters are entered or not. The
commas are shown in this manner to remind you that if a positional parameter is
omitted, a comma must be entered in its place when another parameter is entered in
a position that follows the position reserved for the omitted parameter.

IBM SCP Procedure Descriptions

55

56

ALTERBSC PROCEDURE

The ALTERBSC procedure is used to alter the following BSCA (binary synchronous
communications adapter) environment items:

Item Parameter
BPS (bits per second) rate BRATE
Modem clocking CLOCK
Debug facility DEBUG
Error retry count ERC
Standby line SLINE
Modem test TEST
Non-U.S.A. ® TONE

The ALTERBSC procedure evokes the $SETCF utility (see index entry: 8SETCF
utility program).

Note: The ALTERBSC procedure is intended for use only with telecommunications
programming that uses the BSCA. For background information on binary synchronous
communications, see General Information — Binary Synchronous Communications,
GA27-3004.

ALTERBSC Command Statement Format

e s (] oo {1 e 1] o (5]
e {11 o {2] o 1]

Note: Though each particular parameter is optional, at least one parameter must be
specified. If a parameter is omitted and there is no default, the previous value is re-
tained. If DEBUG-Y is specified, the system TRACE procedure (see index entry:
TRACE procedure) is replaced by the BSCA trace function. These options will remain
in effect until changed by another ALTERBSC command statement, except the pa-
rameter DEBUG-Y, which is reset by IPL or by the TRACE procedure.

ALTERBSC Parameters

Parameter Meaning

BRATE-F Use the full rated speed of the modem.
H Use only half the rated speed of the modem.

CLOCK-Y The System/32 must provide the programmed clocking facility.
N Modem has the clocking facility.

ALTERBSC Parameters {continued)

Parameter Meaning
DEBUG-Y Built-in debug facility is required, BSCA trace requested.
N Built-in debug facility is not required, BSCA trace not requested.

ERC-number Error retry count. The standard number of retries provided is

seven (the default number); if more than seven are desired, enter
A a number up to 265, Valid numbers are 7 through 255.

SLINE-Y Switched line will be used as backup (standby) line for a point-to-

point line.
N The normal line is to be used.
TEST-Y IBM data modem is being used. Automatic wrap test includes

testing when a permanent error occurs unless the RPG Il program
specified a permanent error indicator for the BSCA file.

N Non-IBM data modem is being used. Automatic wrap test does
not include modem testing.

TONE-Y Non-U:S.A. special TONE is required.
N Non-U.S.A. special TONE is not required.

BACKUP PROCEDURE
BACKUP creates a diskette file that contains:
1. A stand-alone program that can change the directory and library size (for more
information about changing directory and library size, see index entry:

RELOAD procedure).

2. The reorganized library contents—unused space between members is collected
at the end of the library.

To return the library to the disk, an IPL must be performed from the diskette(s) con-
taining the backed up library, or the RELOAD procedure must be used (see index
entry: RELOAD procedure). The vol-id of the first diskette containing the library
becomes the vol-id of the disk file during the RELOAD operation.

The BACKUP procedure evokes the $BACK utility (see index entry: $BACK utility
program).

Note: To determine the number of diskettes required to contain the library, see
index entry: calculating the number of backup diskettes required for the system.

BACKUP Command Statement Format

H#LIBRARY

BACKUP vol-id, [:e"e“‘bn-davs :| [filename]

1BM SCP Procedure Descriptions

57

58

BACKUP Parameters

vol-id

retention-days
1

—

filename

#LIBRARY

Volume identification of the diskette(s). One to six alphameric
(alphabetic or numeric) characters.

Length of the retention period (0 to 999 days) for the diskette
file. The default is one day.

Note: A retention value of 999 makes a diskette file a perman-
ent file.

Specifies the name of the single file that is created on the
diskette(s).

#LIBRARY is the name assigned to the created diskette file.

CATALOG PROCEDURE

A CATALOG request causes the disk or a diskette VTOC (volume table of contents)
or a VTOC entry to be listed on the display screen or printer if either is assigned for
listing from the system (see index entry: SYSL/ST procedure). The disk VTOC con-

tains an entry f

or each file on the disk, and a diskette VTOC contains an entry for

each file on the diskette. Each VTOC entry identifies the related file by name,

creation date, and location.
The CATALOG procedure evokes the $LABEL utility. A description of the VTOC

display is provi
program).

ded in the description of SLABEL (see index entry: $LABEL utility

CATALOG Command Statement Format

ALL L1
CATALOG ':filename:l [ﬂ:l

CATALOG Parameters

ALL

filename

Display all labels in the VTOC on the specified uniiq

Specifies the particular file whose VTOC information is to be displayed.
If more than one file exists with the specified filename, the VTOGC in-
formation for all those files will be displayed.

Display the diskette VTOC.

Display the disk VTOC.

COMPRESS PROCEDURE

The COMPRESS procedure causes all free space on the disk, except free space within
the library file, to be put into a single area by copying each file as close to the library
as possible. If the COMPRESS procedure does not go to normal end of job, it must
be reissued immediately and go to normal end of job before any other jobs are run.

This procedure evokes the $PACK utility (see index entry: $PACK utility program).
Note: 1f LOCATION was specified in the FILE statement (see index entry: FILE
statement) for a file moved by the COMPRESS procedure, the LOCATION specified
will not be valid after the COMPRESS procedure moves the file. Use the CATALOG
procedure {see index entry: CATALOG procedure) to display the VTOC entries for
files moved by compress if you want to determine the new locations of the files.

COMPRESS Command Statement Format

COMPRESS

COMPRESS Parameters

none

COPY11 PROCEDURE

The COPYI11 procedure causes all files on a single diskette or an individual file on a
single diskette to be logically copied to another diskette. A work space large enough
to contain the file(s) to be copied must be available on the disk. Files from the
copied diskette are placed contiguously on the receiving diskette.

COPY11 can be used to create a backup diskette file or to gather all unused space on
an input diskette into a single free space on the output diskette.

Important diskettes with permanent files are the diskettes normally copied. Because
diskettes can develop surface irregularities as they undergo the wear of continued

use, it is a good idea to copy your important files soon after they are created.

COPY 11 evokes the $SDUPRD utility (see index entry: $DUPRD utility program).

COPY11 Command Statement Format

Use Format

Copy all diskette COPYI1 I:ALL] ,vol-id [,DELETE]
files to another

diskette

Copy specific disk- mmddyy | ,vol-id
ette file to another COPYI1 filename, | ddmmyy

diskette yymmdd

IBM SCP Procedure Descriptions

COPY|1 Parameters

ALL Indicates that all files on the diskette are to be copied to another
diskette.

filename Name of the single file to be copied to another diskette.

mmddyy Creation date of the input file. This date must be in the same format

or as that of the input file. This date is used to verify that the correct

ddmmyy file is on the input diskette. (The creation date of the output file

or will be the same as that of the input file.)

yymmdd

vol-id Volume label of output diskette; one to six alphameric characters.

DELETE Any expired file will not be copied. (DELETE can be specified only
when ALL is specified.)

COPY11 Example

In order to copy the file entitied PAYROLL (dated October 14, 1974) onto a diskette
with a volume identifier of VOL0O01, you could enter:
COPYI1 PAYROLL,101474,VvOL001

Note: In the preceding example, PAYROLL is not a multivolume file. 1f PAYROLL
were a multivolume file, a separate COPY 11 command statement would be required
for each diskette of the file.

CREATE PROCEDURE
The CREATE procedure creates a message load member from a message source
member. A message load member contains messages that can be retrieved by user or
IBM programs. (For information on how to create a message source member, see
Message Source Member and An Example of Creating a Message Source and Load

Member under index entry: $MGBLD utility program.) The CREATE procedure
evokes the $MGBLD utility (see index entry: $MGBLD utility program).

CREATE Command Statement Format

CREATE sourcename [,REPLACE]

CREATE Parameters

sourcename Name of the existing source member that contains a control state-
ment and message text statement(s)

REPLACE Message load member to be created to replace an existing message
load member with the same name

CREATE Example

Assume a message source member contains the following statements:

USERMSG,1 {This is a control statement; USERMSG is to be the message
load member name, and 1 is the message level.)

1234 ENTER YESTERDAY'S DATE. (These are message text statements.
1235 ENTER TODAY'S DATE. 1234, 1235, and 1236 are MICs.
1236 ENTER TOMORROW'S DATE. The message text follows the MICs.)

* THE ABOVE MESSAGES ARE FOR PROGX. (This is a comment statement.)

If the above source member was named USERMI, the CREATE command statement
would appear as follows:

CREATE USERMI
This would cause the MICs and their associated text to be formatted into a message
load member named USERMSG. The comment statement (* THE ABOVE
MESSAGES ARE FOR PROGX) does not become part of USERMSG (message
load member).

IBM SCP Procedure Descriptions 61

62

DATE PROCEDURE

The DATE procedure sets either the system date or the job (program) date. f the
DATE command statement is given after an IPL and before a LOAD statement, the
system date is set to the date specified. If the DATE command statement is given
between the LOAD and RUN OCL statements in a job stream, the program date is
set to the date specified and reset to the system date after the program ends.

The date established for the system or a program is used to determine file retention
periods for diskette files (see the RETAIN parameter for diskette files under index
entry: // FILE statement) and is printed on printed output.

The function of the DATE procedure is identical to that of the // DATE statement
(see index entry: // DATE statement).

DATE Command Statement Format

ddmmyy

DATE mmddyy
yymmdd

DATE Parameters

mmddyy Month-day-year
ddmmyy Day-month-year
yymmdd Year-month-day

Note: You must use the current system date format. You can use the STATUS pro-
cedure (see index entry: STATUS procedure) to see what the current format is.

DELETE PROCEDURE

The DELETE procedure causes the space occupied by the named diskette or disk

file(s) to be made available. It also provides the option of erasing the contents of a
data file. The system file #LIBRARY cannot be deleted with this procedure. This
procedure evokes the $DELET utility (see index entry: $DELET utility program).

DELETE Command Statement Format

SCRATCH ,mmddyy
DELETE filename, [F‘] . | REMOVE | | .ddmmyy

ERASE yYymmdd

DELETE Parameters

filename Name of the file to be deleted from the disk or a diskette. ALL
.cannot be used as a filename.

F1 The file to be deleted is on the disk.

11 The file to be deleted is on one or more diskettes. If the fileisa
multivolume file, you are prompted to insert the required diskettes.

SCRATCH If the file is on a diskette, the expiration date is changed to the cur-
rent job date. If the file is on the disk, the VTOC entry for the file
is removed.

REMOVE The VTOC entry for the file is removed.
ERASE Requests elimination of all data in the deleted file by replacing all

bytes within the physical extents of the file with binary zeros. Also
removes the VTOC entry for the file.

mmddyy - Creation date of the file to be deleted. This date must be in the same
ddmmyy format as the system date if the file is on the disk; it must be in the
yymmdd same format as the creation date of the diskette file if a diskette file

is being deleted. You can use the STATUS command statement to
display the system date and the CATALOG command statement to
display creation dates of disk and diskette files (see index entries:
CATALOG procedure and STATUS procedure).

Note: If no date is specified and more than one file with the given filename exists
on the disk, the operator will have the option to either delete all of the files named
by filename or to cancel the job. '

DELETE Example
In order to delete the diskette file JOE (dated September 13, 1974) you could enter

the following:
DELETE JOE, . REMOVE,0921374

IBM SCP Procedure Descriptions

63

64

DISPLAY PROCEDURE
The DISPLAY procedure causes all or part of a disk file to be listed on the display
screen or on the printer, depending on which is being used to display output (see
index entry: SYSL/ST procedure).
This procedure evokes the $COPY utility (see index entry: $COPY utility program).
Note: If you use DISPLAY to list a disk segment of an offline multivolume file (see

index entry: offline multivolume file), the list will include variable system data.

DISPLAY Command Statement Format

Use Format
[,mmddyy
Display a file DISPLAY filename ddmmyy
_,yymmdd
Display records [mmddyy
by relative DISPLAY filename, | ddmmyy | ,RECORD,value-1 [,value-2]
record number | yymmdd
DISPLAY Parameters
filename Name of the file to be displayed or printed.
mmddyy Creation date of file to be displayed or printed.
ddmmyy
yymmdd

RECORD The records from the file are to be displayed or printed based on
their relative record number.

value-1 Starting record number to be displayed or printed. Valid for
sequential, indexed, and direct files.

value-2 Last record number to be displayed or printed. Valid for sequential,
indexed, and direct files. If value-2 is omitted, the display continues
until end of file is reached.

DISPLAY Example
In order to display or print the first one hundred records of the last file created with

the name JOE, you would enter:
DISPLAY JOE, RECORD,1,100

FROMLIBR PROCEDURE

The FROMLIBR procedure creates a file from members contained in the library, or
adds library members to a file created from library members. Files created by the
FROMLIBR procedure can be processed by the TOLIBR procedure (see index entry:
TOLIBR procedure) to place members back in the library.

The FROMLIBR procedure evokes the SMAINT utility (see index entry: SMAINT
utility program).

Note: If you use the FROMLIBR procedure to copy library members from the

library to a file, you can copy the members from the file back to the library only by
using the TOLIBR procedure or SMAINT.

FROMLIBR Command Statement Format

Use Format
SOURCE
Copies a non-SCP Pﬁa-(-f—
't;:rafy ';‘Zm' FROMLIBR library-name-1, | LOAD |, [filename-1 ,
rora .sa SUBR library-name-1
non-SCP library LIBRARY| -—
member to a
sequential file.
[ApD vol-id
/ retention-days
/11
] =
F1il —
NP ,blocks
I8
_S

[:[; D]

IBM SCP Procedure Descriptions 65

Use

Copies or
adds all
non-SCP
members
having
names
beginning
with name-1.

Format
SOURCE
PROC)
FROMLIBR name-1,ALL}, LOAD filename-2
ALL SUBR name-1
LIBRARY i
| ADD vol-id

/ retention-days

,blocks
8

FROMLIBR Parameters

library-name-1

name-1,ALL

ALL
SOURCE
PROC
LOAD
SUBR

LIBRARY

filename-1

filename-2

Name of the non-SCP library member that is being copied from
the library.

All non-SCP members with names beginning with the indicated
characters are to be copied. Up to seven characters may be used.
Example: PAYR,ALL refers to non-SCP members having names
that begin with PAYR.

All designated non-SCP members are copied from the library,
Source members are to be copied.

Procedure members are to be copied.

Load members are to be copied.

Subroutine members are to be copied.

All types of members (SOURCE,PROC,LOAD and SUBR}) are to
be copied.

Name of the file that is created. If the filename is not specified,
library-name-1 is assumed.

Name of the file that is created. If not specified, name-1 is
assumed.

1 Output file to be created on the diskette.
F1 Output file to be created on the disk.

retention-days Length of the retention period (0 to 999 days) for the diskette
1 file. If 11 is specified or assumed and retain is not given, default
—_— is one day.

Note: A retention value of 999 makes a diskette file a permanent
file. Retention cannot be specified if ADD if specified. ADD can-
not be specified if retention is specified.

P Permanent retention on disk.

T Temporary retention on disk.

S Scratch retention on disk.

ADD Add library member(s) to an existing file that contains library
members.

Note: When adding a member to a disk file, the file must contain
enough unused space to hold the member. When adding a member
to a diskette file, the file must be the last active (unexpired) file on
the diskette. Retention cannot be specified if ADD is specified.
ADD cannot be specified if retention is specified.

vol-id Diskette volume label. One to six alphameric characters.
blocks Number of blocks to allocate for the output file. Ignored if ADD
8 specified (see preceding description of ADD).

FROMLIBR Examples

| To copy the payroll application source programs to diskette, all beginning with the
characters PAY, you would specify:

| FROMLIBR PAY,ALL,,,,VOLO0O1
A sequential, noninterchange data file on diskette named PAY containing the payroll
application programs and procedures would be created.

To add all library members whose names begin with the characters PA to a diskette

file named PAYSAVE you would specify:
FROMLIBR PA,ALL,LIBRARY,PAYSAVE, ADD,PACKID

IBM SCP Procedure Descriptions

67

HISTORY PROCEDURE

The HISTORY procedure lists the contents of the HISTORY file on the display
screen or on the printer, depending on which is displaying output (see index entry:
SYSLIST procedure). Recorded in the HISTORY file are the OCL statements,
utility control statements, and procedures executed by the SCP; all messages issued;
and all user’s responses to messages and prompts. The entire file can be displayed
(ALL parameter) or just the items previously displayed to the operator. Items pre-
viously displayed to the operator consist of items such as OCL statements and
messages which were displayed—logged—as they were entered or issued (see index
entry: LOG procedure).

Any message issued when BSCA is active will not be recorded in the HISTORY file.

This procedure evokes the $HIST utility (see index entry: $HIST program).

HISTORY Command Statement Format

HISTORY [ALL] [,RESET]

HISTORY Parameters
ALL The entire contents of the HISTORY file will be displayed. This includes
OCL statements in procedures. If ALL is not specified, only items pre-

viously displayed to the operator are displayed.

RESET The HISTORY file will be cleared after it is displayed.

INIT PROCEDURE

The INIT procedure prepares (initializes) a diskette for use. It does this by perform-
ing some or all of the following functions:

® Writing sector addresses on the diskette

Checking for defective tracks

® Assigning new track numbers when a track has a defective sector

® Writing a name on each diskette to identify the diskette

® Formatting track O

This procedure evokes the SINIT utility (see index entry: $INIT utility program).

INIT Command Statement Format

vol-id
INIT I:

INIT Parameters

vol-id

system-date

owner-id
OWNER-ID
RENAME
DELETE

FORMAT

owner-id
system-date QWNER-ID

'\ ,RENAME
,DELETE

,FORMAT

,FORMAT2

If specified, it consists of one to six alphameric characters. The
vol-id will be left-adjusted and padded with blanks when placed
in the volume label. When DELETE is specified, vol-id is checked
for a match. If no value is specified, the system date is used as a
default value.

Up to eight alphameric characters may be specified. These are
placed (left-justified and padded with blanks) in the owner identi-
fication field of the volume label of the diskette. If owner-id is
omitted and RENAME or FORMAT is specified, owner-id is
written as OWNER-ID.

Allows the diskette to be renamed (vol-id and owner-id). Files
and their labels are not affected.

Deletes active files, thereby freeing up all space on the diskette
(initializes track O on the diskette).

Formats the entire surface of the diskette in the stondard inter-
change format (see Appendix C). Tracks are renumbered for each
track with a surface defect. If track O or more than 2 tracks have
defects, the diskette is not initialized and no label of any kind is
written.

Note: I1f FORMAT is specified for one diskette in a multivolume
file, it must be specified for all diskettes in the file.

IBM SCP Procedure Descriptions

69

70

FORMAT2

INIT Examples

Formats the surface of the diskette in the extended format.
Extended format diskettes have eight 512-byte sectors per data
track. The index track is formatted in twenty-six 128-byte
sectors; the data tracks are 1 through 74. Position 76 of the
volume label (VOL1) contains a 2 if a diskette is formatted

in 512-byte data sectors. The physical record length field
{position 34) of the data set labels for a diskette also con-

tains a 2 if the diskette is formatted in 51 2-byte data sectors.
(The formats of the diskette volume labels and data set labels are
given in The IBM Diskette for Standard Data Interchange,
GA21-9182—see also Appendix C. However, diskettes formatted
in 512-byte data sectors cannot be used for standard data
interchange.)

Tracks are renumbered for each track with a surface defect. If
track 0 or more than 2 tracks have defects, the diskette is not
initialized, and no label of any kind is written.

Note: |f FORMATZ2 is specified for one diskette in a multivolume
file, it must be specified for all diskettes in the file.

In order to place a volume identification of 934613 and an owner identification of
JOESDISK on a diskette you would enter:

INIT 934613,JOESDISK
RENAME is the default and the diskette would be.labeled (volume label) but not
initialized. An example of initializing follows:

INIT 843163,,FORMAT

LINES PROCEDURE

The LINES procedure provides a means of modifying the printer lines per page vari-
able. This procedure contains a FORMS OCL statement (see index entry: //FORMS

statement).

LINES Command Statement Format
number
LINES 66

LINES Parameters

number Specifies the number of lines to be printed per page. The value specified
can be 1 through 84.

Note: See index entry: // FORMS statement for the way the value spe-
cified is used to determine the actual number of lines printed per page.

66 The default value for number is 66.

IBM SCP Procedure Descriptions 71

72

LISTLIBR PROCEDURE

The LISTLIBR procedure allows you to list the contents of your library. Either
directory entries or contents of individual members can be listed.

This procedure evokes the SMAINT utility (see index entry: SMAINT utility

program).

Note: If the display screen is used for listing the library, only the first 40 bytes

of each LISTLIBR output line are displayed. To ensure that all the information in
a library member or directory entry is listed, use the printer to list the output. You
can use the STATUS procedure (see index entry: STATUS procedure) to determine
where system output is currently listed (that is, what the current SYSLIST assign-
ment is); and the SYSLIST procedure (see index entry: SYSL/ST procedure) to
change the current SYSLIST assignment.

LISTLIBR Command Statement Format

Use

Directory entries are to
be listed.

System information is to be
listed from the directory.

Format
SOURCE
,PROC
LISTLIBR DIR {,LOAD

,SUBR
,LIBRARY

LISTLIBR DIR,SYSTEM

SQURCE

. . library-name ,PRCC
L‘_'b'ary members and "h:" LISTLIBR < name,ALL .LOAD
rlre::jtory entries are to be ALL SUBR

Isted. ,LIBRARY

LISTLIBR Parameters

DIR Directory entry is to be listed.
library-name Name of library member to be listed.
name,ALL Specifies the characters that the library member names to be listed

begin with. Up to seven characters can be used.

ALL Specifies that all members of the specified type(s) be listed.
SYSTEM Library system directory. Valid with DIR only.
SOURCE Source directory entries, if DIR is specified; otherwise, indicates

source member(s).

PROC Procedure directory entries, if DIR is specified; otherwise, indicates
procedure member(s).

LOAD Load directory entries, if DIR is specified; otherwise, indicates load
member(s).
SUBR Subroutine directory entries, if DIR is specified; otherwise, indi-

cates subroutine member(s).

LIBRARY All directory entry types (SYSTEM, SOURCE, PROC, LOAD, and
SUBR), if DIR is specified; otherwise, indicates all member types
(SOURCE, PROC, LOAD, and SUBR).

LISTLIBR Examples

In order to list the procedure member JOE, you would enter:
LISTLIBR JOE,PROC
To list all procedure members which have names beginning with PA, you would enter:
LISTLIBR PA,ALL,PROC
To list the source, procedure, load, subroutine, and system directories, you would
enter:
LISTLIBR DIR,LIBRARY

IBM SCP Procedure Descriptions 73

74

LOG PROCEDURE
The LOG procedure specifies where messages and OCL statements are to be displayed
(on the display screen only or on the display screen and the printer), and specifies
whether to skip to line 1 of the next page at end of job. The LOG procedure per-

forms the same function as the LOG OCL statement (see index entry: //LOG
statement).

LOG Command Statement Format
CRT LEJECT
LOG [PRINTER] [NOEJECT:I
LOG Parameters
CRT Display messages and statements on the display screen.
PRINTER Print messages and statements and display them on the display screen.
Note: When the BSCA is active, the messages are not printed.

EJECT Skip to line 1 of next page at end of job.

NOEJECT Do not skip to line 1 of next page at end of job.

ORGANIZE PROCEDURE
The ORGANIZE procedure performs one of the following functions:
® Copies a disk file to another area on the disk
® Copies a disk file to another area on the disk, deleting specified record types
® Copies a disk file to a diskette
® Copies a disk file to a diskette, deleting specified record types
If the input file is sequential, the output file is sequential. If the input file is indexed,
the output file is indexed, and the data records in the output file are in the same
sequence as the keys in the index.
The ORGANIZE procedure evokes the $COPY utility (see index entry: $COPY

utility program).

ORGANIZE Command Statement Format

Use Format
— -
Reorganize mmddyy I
a disk file ORGANIZE filename-1, | ddmmyy | ,F1, filename-2, | S Eposition,char-literal]
as another yymmdd P
disk file. - -
Reorganize —r-nmddy\;— ion-d
adisk file ~ ORGANIZE filename-1, |ddmmyy | , [11] vol-id, 'fte"m"' 88| [position,char-literal]
as a diskette yymmdcﬂ —_
file. —
ORGANIZE Parameters
filename-1 Name of the file to be reorganized (and name of the diskette file
created if reorganizing as a file on diskette).
mmddyy The creation date of the input file. If this parameter is omitted,
ddmmyy the most recently created file of the name specified in filename-1 is
yymmdd the one that is reorganized.
F1 The disk will contain the organized copy.
(N] The diskette will contain the organized copy. Defaultis 11.
filename-2 Name of the disk file to contain the organized copy.
vol-id Identifies the diskette by volume label. One to six alphameric

characters. Valid only if |1 is specified.

IBM SCP Procedure Descriptions 75

76

T Temporary retention on the disk.
S Scratch retention on the disk.
P Permanent retention on the disk,

retention-days Number of days (0 to 999) in the retention period for the diskette
a1 file. Defaultis 1.
Note: A retention value of 999 makes a diskette file a permanent
file.

position Requests deletion of records having a certain character (char-literal)
in the position specified. These records will not be copied to the
reorganized file.

char-literal Char (character) can be any one of the standard characters, or the
three characters Xdd, where X is constant and dd is the hexadecimal
equivalent of the character. Records containing this character in the
position specified by the position parameter are not copied to the
reorganized file.

ORGANIZE Examples

In order to reorganize PAYROLL file into a permanent disk file called PAYR, you
could enter:

ORGANIZE PAYROLL,,F1,PAYR,P
In order to reorganize the file called JOE and place the organized copy (except
records containing a D in record position 13) on diskette volume 123456, you could
enter:

ORGANIZE JOE,,,123456,999,13,D
(n the above example neither F1 nor |1 is specified in the third parameter, so the
default 11 is used. Also, the file is to be retained permanently, so retention-days 999
is specified.

Note: A date is not specified in either of the preceding two examples. Consequently,
if more than one file named JOE or PAYROLL exist on the disk, the most recently
created of the files named JOE or PAYROLL will be reorganized.

OVERRIDE PROCEDURE

The OVERRIDE procedure is used to override the BSCA parameters specified in
RPG source statements without recompiling the program:

Function Parameter
Tributary Station Address ADDR
Line Type LINE

The OVERRIDE procedure evokes the $SETCF utility (see index entry: $SETCF
utility program).

Note: The OVERRIDE procedure is intended for use only with telecommunications
programming that uses the BSCA. For background information on binary synchronous

communications, see General Information — Binary Synchronous Communications,
GA27-3004.

OVERRIDE Command Statement Format

OVERRIDE [ADDR-n] | ,LINE-

2 BN e

Notes:

1. Though each parameter is optional, at least one parameter must be specified.

2. To reset the ADDR parameter to the addressing characters specified by the RPG
specifications, reenter a valid OVERRIDE command omitting the ADDR param-
eter. The addressing characters will default to the RPG specifications.

OVERRIDE Parameters

ADDR-nn Hex equivalent of one of the pair of tributary station addressing
characters. See Appendix G, for the System/32 tributary station
polling and addressing characters. Defaults to RPG specifications.

LINE-C CDSTL (connect data set to line) switched line (World Trade only)
P Point-to-point leased line.
R Line type specified in RPG source statements.
) Point-to-point switched line.
T Tributary station line on multipoint.

IBM SCP Procedure Descriptions

77

78

REBUILD PROCEDURE
The REBUILD procedure allows you to restore certain system information related
to output files being processed at the time of a system failure, such as one caused by
a power failure or inadvertent IPL. The information restored by REBUILD is essen-
tial if you want to obtain data contained in output files being processed at the time
of the system failure.
The REBUILD procedure evokes the SREBLD utility program. For a more com-

plete description of the function of REBUILD, see index entry: $REBLD utility
program.

REBUILD Command Statement Format

REBUILD

REBUILD Parameters

None

RELOAD PROCEDURE

The RELOAD procedure initiates an IPL from a diskette file containing the system
library. That is, RELOAD initiates an IPL from a diskette file produced as output
from the BACKUP procedure (see index entry: BACKUP procedure).

Space allocations for the library file (#LIBRARY) and the library directory within
the library file are displayed on the display screen during execution of RELOAD.
The library directory contains an entry for each member in the library. Each entry
describes and identifies the location of the corresponding library member.

The allocations can be altered at the time they are displayed. Unaltered allocations
remain what they were when the diskette file was created by the BACKUP procedure.

At the time that space allocations are displayed you can also change thé inquiry pro-
gram support and offline multivolume file support option. Inquiry programs are
described with the $LOAD utility program—see index entry: $LOAD utility program.
See index entry: offline multivolume file for a description of how offline multivolume
files are processed. |f the INQUIRY/OFFLINE option is not changed at the time it

is displayed, it remains at the value in effect when the diskette file was created by
BACKUP.

The RELOAD procedure evokes the $SLOAD utility.

Note: The $LOAD utility provides the only method whereby you can change the
size of the library directory (alter the space allocated to it). When using $LOAD
{RELOAD), however, be aware that library members that exist on the disk but do
not exist in the backed-up library will be lost when the backed-up library is returned
to the disk. If you have library members on the disk that you want to save, use the
FROMLIBR procedure to copy them before executing RELOAD or $LOAD; then
use TOLIBR to place them in the backed-up library after it is reloaded. (You may
have to increase the size of the backed-up library in order to have room for the addi-
tional members.) For information on FROMLIBR and TOLIBR, see index entry:
FROMLIBR procedure and TOLIBR procedure.

RELOAD Command Statement Format

] mmddyy i
RELOAD [vol-id ddmmyy | |filename
yymmdd JHLIBRARY
RELOAD Parameters
vol-id Volume identification of the first (or only) diskette. One to six alpha-

meric characters. Vol-id becomes the disk volume identification.

mmddyy Creation date of the diskette file.

ddmmyy

yymmdd

filename Name of the diskette file containing the system library. Default

#LIBRARY is #LIBRARY.

IBM SCP Prodecure Descriptions

80

REMOVE PROCEDURE

The REMOVE procedure causes the named library member(s), unless they are SCP
members, to be deleted. The space that was occupied by members deleted by the
REMOVE procedure can be used for new members, provided there are no active
members physically located after the deleted ones in the library.

This procedure evokes the SMAINT utility (see index entry: SMAINT utility
program).

REMOVE Command Statement Format

SOURCE

library-name 'PROC
REMOVE name, ALL ,LOAD
ALL ,SUBR

,LIBRARY

REMOVE Parameters
library-name Full name of the non-SCP library member to be deleted.

name,ALL Beginning characters of names of non-SCP members to be deleted.
Up to seven characters can be used.

ALL Remove all non-SCP members of the specified type or all types.
SOURCE Remove non-SCP source statement member(s).

PROC Remove non-SCP procedure member(s).

LOAD Remove non-SCP load member(s).

SUBR Remove non-SCP subroutine member(s).

LIBRARY Remove non-SCP members of all member types (SOURCE, PROC,

LOAD, and SUBR).

REMOVE Examples

An example of a library REMOVE is:
REMOVE JOE,PROC
This deletes the procedure non-SCP library member named JOE from the library.

REMOVE SAM,LIBRARY
deletes the non-SCP members in the library that are named SAM.

REMOVE PAY,ALL,LIBRARY
deletes all non-SCP members in the library beginning with the letters PAY.

RESTORE PROCEDURE

The RESTORE procedure restores on the disk a diskette file that was copied from
the disk by:

® the ORGANIZE procedure (see index entry: ORGANIZE procedure),
® the SAVE procedure (see index entry: SAVE procedure), or
® the $COPY utility (see index entry: $COPY utility program).

The RESTORE procedure can also be used to restore to the disk one or all of the
entire group of files previously saved by a SAVE ALL request.

When only one file is to be restored, you can change the space allocation of the disk
file by specifying the RECORDS or BLOCKS parameter in the RESTORE command
statement.

A RESTORE request causes a file to be reconstructed on the disk with the same
attributes, except LOCATION.(see index entry: // F/LE statement for a descrip-
tion of the LOCATION parameter), that the file had before it was copied to the
diskette.

Insert diskette messages for multivolume files are automatically displayed as required,
with appropriate label and volume-sequence-number checking.

This procedure evokes the $COPY utility (see index entry: $COPY utility program).

RESTORE Command Statement Format

Use Format
Restore all filename-1 ;/mmddyy
previously RESTORE [ALL] , ,ddmmyy
. — #SAVE
saved files. L — ,yymmdd
Restore a mmddyy | |
. . RECORDS, value-1
R - r ’
prevnotfsly ESTORE filename-2, ddmmyy ,:,BLOCKS, value-2]
saved single yymmdd
file.
RESTORE Parameters
ALL All data files previously saved are to be restored to the disk.
filename-1 Name associated with the entire set of files previously saved on
#SAVE the diskette by the SAVE (SAVE ALL) procedure. #SAVE is the

default value.

IBM SCP Procedure Descriptions

82

filename-2
mmddyy
ddmmyy
yymmdd

RECORDS

value-1

BLOCKS

value-2

RESTORE Examples

Name of the single diskette file that is to be restored to the disk.

Creation date of the diskette file.

Requests that the disk file be made large enough to contain the
number of records indicated by value-1.

Specifies the number of records that the disk file is to accommodate.

Requests that the disk file be made large enough to contain the
number of blocks indicated by value-2.

Specifies the number of blocks that the disk file is to accommodate.

In order to restore all files previously saved by a SAVE procedure, you would enter:

RESTORE

In order to restore a file named JOE that was saved or organized on a diskette, you

would enter:

RESTORE JOE, RECORDS,300
In the above example, RECORDS requests that the restored file be large enough to
contain 300 records.

SAVE PROCEDURE

The SAVE procedure causes (1) a single disk file or all disk files to be copied to
diskette(s) or (2) a single disk file to be added to a file saved previously on diskette(s).
Sequential, indexed, and direct disk files can be copied to diskette(s) by SAVE, and
can reside on diskette(s) as single volume or multivolume file. Sequential, indexed,
and direct disk files can also be added to files saved previously and can reside as

single volume or multivolume files. Appropriate insert diskette messages are given

to the operator whenever a SAVE request causes a multivolume diskette file to be
created or extended (added to).

This procedure evokes the $COPY utility (see index entry: $COPY utility program).
Note: If, after saving a file by copying it to diskette(s), you delete the original file

from the disk, the file on the diskette(s) becomes the master copy of the file.

SAVE Command Statement Format

Use Format

Save all disk files on retention-days filename-1 .
SAVE | ALL], ’ ,vol-id

diskette [_] [:L :| ,:ﬁAVE]

Save one disk file on ' retention-days | , | mmddyy

diskette, or add a SAVE filename-2, 1 ddmmyy | ,vol-id

disk file to a file ADD yymmdd

saved previously

SAVE Parameters
ALL Requests that all data files on the disk be copied to diskette.
filename-2 Name of one file on the disk to be saved. The diskette file will
have the same name.
retention-days Number of days (0 to 999) the diskette file is to be retained.

A Default is 1.

—

Note: A retention value of 999 makes a diskette file a perman-

ent file.
ADD Single disk file is to be added to a file previously saved on
diskette.
filename-1 Name associated with the entire set of saved files. #SAVE is the
#SAVE default value.
mmddyy Creation date of the disk file. |f not specified, the last file
ddmmyy created with the name given in filename-2 is saved.
yymmdd
vol-id ‘Volume label of diskette. One to six alphameric characters.

IBM SCP Procedure Descriptions 83

84

SAVE Examples

In order to save all files for a period of seven days on a diskette labeled 345678, you
could enter:

SAVE ALL,7 #SAVE, 345678

or

SAVE ,7,,345678
In order to save a file named JOE (created on November 12, 1974) and to add this
file to an existing diskette file named JOE (with a volume identification of 654321),
you could enter:

SAVE JOE,ADD,741112,654321

SET PROCEDURE

The SET procedure is used to specify the following system environment items:

® Number of lines printed per page

® Print belt image

® System date format

® System date

The item(s) specified is placed in the library in the system configuration record,
which defines system characteristics, and will remain unchanged until a subsequent
SET procedure is executed.

This procedure evokes the $SETCF utility (see index entry: $SETCF utility program).

SET Command Statement Format

MDY| | ,mmddyy

SET [value] , [source-name] DMY| | ,ddmmyy

YMD]| | ,yymmdd

Note: Though each particular parameter is optional, at least one parameter must be

specified.

SET Parameters

value

source-name

MDY
DMY
YMD
mmddyy
ddmmyy

yymmdd

The number of lines that are to be printed per page. The maxi-
mum number of lines that can be specified is 84, minimum
value is 1.

Name of the library source member containing the print belt
image to be used by the system. The contents of the source
member is described in the IMAGE statement (see index entry:
IMAGE statement).

Note: Belt 48 and belt 64 are the two IBM-supplied procedures
if you are using standard characters.

Specifies system date format to be month-day-year.
Specifies system date format to be day-month-year.
Specifies system date format to be year-month-day.
Specifies the system date, MDY format.
Specifies the system date, DMY format.

Specifies the system date, YMD format.

IBM SCP Procedure Descriptions 85

86

STATUS PROCEDURE

The STATUS procedure causes the system status information to be displayed on the
display screen (and printed on the printer if the printer is assigned for logging—see
index entry: LOG procedure). The first six lines displayed (four lines of status infor-
mation and two lines of messages) include:

® System date—see index entry: DATE procedure for information about setting
the date.

® Date format—see index entry: SET procedure for information about setting the
date format.

® SYSLIST assignment—see index entry: SYSL/ST procedure for information about
changing the assignment.

® Number of lines printed per page—see index entries: L/NE procedure and SET
procedure for information about specifying the number of lines to be printed per
page.

® SWITCH indicators—see index entry: //SWITCH statement for information about
setting and changing the indicators.

® Print belt image format, permanent or temporary. The permanent image is set at
IPL. A temporary image is any image that has replaced the image established at
IPL—see index entry: //IMAGE statement for information about changing the
print belt image.

® Print belt length in number of characters—see index entry: SET procedure for
information about the print belt.

After the first six lines of status information are displayed, you have four options:
® 0 option—next page (display more status information)

® 1 option—display the print belt image

® 2 option—end STATUS

® 3 option—cancel the job

After the initial six lines of information are displayed, the 0 option causes the release
level of the system, inquiry/offline multivolume availability, and disk capacity to be
displayed. If the O option is chosen after this information is displayed, the initial six
lines are displayed again. This cycle is continued each time the 0 option is chosen. If
your system has BSC (binary synchronous communications) support, BSC status infor-
mation is displayed if you continue to choose the 0 option. The first display of BSC
information shows transmission ra‘te, clocking, modem, line, answer tone, terminal
number, debug, and error retry count. The second BSC display shows line type, line
code, and tributary address. (For more information on changing variables on BSC,
see index entries: ALTERBSC procedure and OVERRIDE procedure.) After infor-
mation is displayed by the 0 option, STATUS again gives you the four options listed.

The 1 option displays the print belt image (see index entry: SET procedure for in-
formation about changing the image). After the print belt image is displayed,
STATUS again gives you the four options listed.

If you choose the 2 option, the STATUS procedure is terminated and the job stream
continues. If STATUS was not part of a job stream, the keyboard is put in the ready

status.

If you choose the 3 option, the job stream is terminated and the keyboard is put in
the ready status.

The STATUS procedure evokes the $STATS utility (see index entry: $STATS
utility program).

STATUS Command Statement Format

STATUS

STATUS Parameters

None

IBM SCP Procedure Descriptions 87

SYSLIST PROCEDURE

The SYSLIST procedure can be used to change the method of listing output. The
possible changes allowed are:

® Subsequent SYSLIST output going to the printer
® Subsequent SYSLIST output going to the display screen

® Subsequent SYSLIST output requests being ignored

SYSLIST Command Statement Format
PRINTER

SYSLIST | CRT
OFF

SYSLIST Parameters
PRINTER Selects the printer for SYSLIST output

CRT Selects the display screen for SYSLIST output

OFF Suppresses SYSLIST output

TOLIBR PROCEDURE

The TOLIBR procedure copies into the library a disk or diskette file containing one
or more library members. Any number of library members can be contained in a
data file to be copied into the library by TOLIBR.

All sector mode files to be copied by TOLIBR must have been created either by the
SMAINT utility or by the FROMLIBR procedure (see index entries: SMAINT
utility program and FROMLIBR procedure).

Each library member in a record mode file that is to be copied by TOLIBR must
begin with a COPY record and end with a CEND record. The format of the COPY
record, where name is the member and P or S indicates procedure member or source
member, is:
// COPY NAME-name,LIBRARY- { P}
S

The format of the CEND record is: // CEND. COPY and CEND records are auto-
matically inserted in members created by $SMAINT. You must insert them in
members that were not created by SMAINT.

If a file to be copied by TOLIBR is a record mode diskette file in the standard inter-
change format (see Appendix C), the TRANSFER procedure (see index entry:
TRANSFER procedure) must be used to copy the file to disk before TOLIBR can
copy the file to the library.

The TOLIBR procedure evokes the SMAINT utility.

TOLIBR Command Statement Format

F1 mmddyy
TOLIBR filename, [:” :I | ddmmyy [,R EPLACE]
—_ yymmdd
TOLIBR Parameters
filename Name of the file containing the member(s) to be placed in the library.
F1 The file is on the disk.
1 The file is on a diskette.
mmddyy Specifies the creation date of the file containing the member(s) to be
ddmmyy copied. If date is not specified, the filename with the most recent
yymmdd date is copied to the library.

IBM SCP Procedure Descriptions

89

90

REPLACE

Replace the library member specified, if it exists.

If REPLACE is not specified, members are placed in the library until
a duplicate is found, at which time the system displays a message
telling the operator that a duplicate exists. In response to the mes-
sage, the operator can either cancel the job or continue processing.
If the job is continued, the duplicate member replaces the existing
member in the library. If more duplicates are found during the job,
they automatically replace existing members, and no messages are
displayed regarding the duplicates.

If REPLACE is specified, all duplicates are placed in the library, and
no messages regarding them are displayed.

TRANSFER PROCEDURE

The TRANSFER procedure moves files between the disk and diskettes on which data
is recorded in the standard interchange format. (See Appendix C for information on
the standard interchange format.) TRANSFER can:

® Add a diskette file that is in the standard interchange format to an existing sequen-
tial disk file.

® Convert a standard interchange diskette file to a disk sequential or indexed file.

® Convert a disk file to a standard interchange diskette file. (Standard interchange
files are sequential files.)

Note: Because TRANSFER only moves files between the disk and standard inter-
change diskettes, TRANSFER cannot be used to move files between the disk and
diskettes on which data is recorded in 512-byte sectors. Data is recorded in 512-
byte sectors on a diskette if, when the diskette was initialized, FORMAT2 was spe-
cified in the INIT command statement—or—OPTION-FORMAT?2 was specified in
the UIN utility control statement. See index entries: S$INIT utility program and
INIT procedure.

When a standard interchange diskette file is added to an existing sequential disk file,
the record length of the disk file is used for all records added to the file. When a
standard interchange diskette file is converted to a sequential or indexed disk file,
records are placed in the disk file sequentially, using the record length of the diskette
file.

A disk file to be converted by TRANSFER to a standard interchange diskette—
always sequential —can be a sequential, indexed, or direct file. If the record length
of the disk file is greater than 128, all records are truncated to 128.

The TRANSFER procedure evokes the $BICR utility (see index entry: $B/CR

utility program).

TRANSFER Command Statement Format

Use Format
Transfer file from ‘ rmmddyy— filename-2
11 to an existing TRANSFER filename-1, [ﬂ] .| ddmmyy | ,ADD, |filename-1 [,date]
F1 file yymmdc”
Transfer a file —mmddyy— i .RECORDS,value-3
from 11 toa TRANSFER filename-1, [11],|ddmmyy | ,[NOADD], [value-1,value-2] |,BLOCKS value-4
new F1 file yymmdoﬂ v
Transfer a file mmddyy ,fretention-days
from F1 to 11 TRANSFER filename-1,F1, | ddmmyy ,vol-id
yymmdd A

IBM SCP Procedure Descriptions 91

92

TRANSFER Parameters

filename-1

F1

mmddyy
ddmmyy
yymmdd

ADD

filename-2

date

NOADD

value-1

value-2

RECORDS
and
value-3

Name of the file being transferred. |f a new file is being created,
it assumes the name specified for filename-1.

A standard interchange diskette file is being transferred to a sequen-
tial or indexed disk file.

A fixed disk file is being transferred to a standard interchange
diskette file.

Creation date of the file being transferred.

Records in a standard interchange diskette file are to be added to

the records in an existing disk sequential file; the first record from
the diskette file is to be placed after the last record existing in the
disk file.

Identifies the existing disk file to which a standard interchange
diskette file is to be added. Filename-2 is valid only if ADD is
specified. |f omitted, defaults to filename-1.

Creation date of an existing disk file. Date is valid only if ADD
is specified. The date must be given in one of the following for-
mats: mmddyy, ddmmyy, or yymmdd.

The standard interchange diskette file being transferred will not
be added to an existing disk file, but will become a new file with
filename-1 as the filename. NOADD is assumed whenever a file is
transferred from |1 to F1.

Key length for an indexed disk file that is being created. Value-1
can be 1 through 29. It must be specified with value-2, and the
sum of value-1 and value-2 must not exceed the record length + 1.

The relative displacement of the start position of the record keys
for an indexed disk file that is being created. Value-2 can be 1
through 128. It must be specified with value-1, and the sum of
value-2 and value-1 must not exceed the record length + 1.

Specifies that the disk file being created be large enough to con-
tain the number of records specified by value-3.

Note: Either RECORDS,value-3 or BLOCKS,value-4 (see follow-
ing) is required if (1) a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

BLOCKS Specifies that the disk file being created be large enough to contain
and the number of blocks specified by value-4.
value-4
Note: Either BLOCKS, value-4 or RECORDS,value-3 (see preced-
ing) is required if (1) a multivolume file is being transferred, or
(2) the created disk file is to be larger than the file being transferred.

vol-id Volume identification for the created standard interchange diskette
file. One to six alphameric characters.

retention-days Number of days (0 to 999) the created standard interchange disk-
1 ette file is to be retained. Default is 1.
Note: A retention value of 999 makes a diskette file a permanent
file.

TRANSFER Examples

In order to add a diskette standard interchange file named JOE to an existing disk
file named JOE, you could enter:

TRANSFER JOE,, ADD _
In order to create a sequential disk file named JIM from diskette standard interchange
file named JIM, you could enter:

TRANSFER JIM
In order to create a diskette standard interchange file named JON on a diskette with
vol-id of 888777 from a disk file named JON,‘you could enter:

TRANSFER JON,F1,,888777,30

1BM SCP Procedure Descriptions 93

94

Part 3.

Using OCL Statements and Procedures

Using OCL Statements and Procedures 95

Creating Disk and Diskette Files

DISK FILE
Creating a disk file requires that:
® Disk space be available to hold the file

® The file be described to the SCP

Obtaining Space for a File

You can use the CATALOG procedure (see index entry: CATALOG procedure) to
determine how much space is available on the disk and where available space is.
Space to be allocated to a file must be contained in a single continuous area on the
disk. If enough space is available for a file but is not contained in a single continu-
ous area (for example, part of the available space is at one location on the disk and
the rest of the space is at another lacation), you can use the COMPRESS procedure
(see index entry: COMPRESS Pprocedure) to collect all available space in one area.

If the space required by a file is not available on the disk, you can do one of the
following:

® Use the CATALOG procedure to see which files are currently on the disk and
use the DELETE procedure (see index entry: DELETE procedure) to delete any
unneeded files, thereby freeing up disk space for new files.

® Use the SAVE procedure (see index entry: SAVE procedure) to copy from the
disk to diskette(s) one or more files that will not be needed in the next job.
Then, to free up space for new files, use the DELETE procedure to delete the
original versions of the copied files. When they are needed, you can return the
copied files from diskette(s) to the disk by using the RESTORE procedure (see
index entry: RESTORE procedure).

Note: After you delete the original files from the disk, the diskette(s) contain the
master copies. You can use the COPY!1 procedure (see index entry: COPY/1 pro-
cedure) to create a backup copy of the files you moved to diskette(s).

Describing a File

Use a FILE statement to describe a file to the SCP (see index entry: // FILE state-
ment). The NAME parameter of the FILE statement must be used to identify the
file to the program creating the file. The LABEL parameter can be used to assign a
name for identification of the file on the disk, regardless of the name a program uses
to refer to the file. If the LABEL parameter is omitted from a FILE statement, the
name specified by the NAME parameter is used to identify the file on the disk.
Names that are related to file contents and to applications using the files should be
assigned so that files can easily be identified by programmers and operators.

Creating Disk and Diskette Files 97

98

Either the RECORDS or BLOCKS parameter must be used to define the size of a

file, but both parameters cannot be specified for one file. |f RECORDS is specified

the system calculates the number of blocks required to contain the file (see Appendix
A). 1f BLOCKS is used, the system reserves for the file the number of blocks specified.
For an indexed file the number of blocks specified is apportioned between index areas
and data areas.

Note: If RECORDS is specified, the number of records actually allocated may be
larger than the number requested: the system allocates disk space in blocks and al-
ways rounds up to the next whole block if part of a block is required.

The LOCATION parameter specifies the block location where the file will begin. If
LOCATION is not used, the system places the file as close to the library as possible.

The RETAIN parameter classifies a file according to its retention status. Permanent
files (RETAIN-P) remain on the disk until you delete them by using the DELETE
procedure (or $DELET utility program—see index entry: $DELET utility program).
A classification of RETAIN-P helps protect a file from being deleted accidentally.
Temporary files (RETAIN-T) are usually used more than once, but you can delete a
temporary file at any time by changing its classification to RETAIN-S, which identifies
the file as a scratch file. Scratch files are delted when the job in which they are
created ends.

Note: Two disk work files, $SSOURCE and $WORK, are needed to load and run a
program that requires souf{:e input (bit 4 of the first attribute byte in the load mem-
ber’s library directory entry is on—see index entry: library directory entry for a
description of the information contained in library directory entries). You can create
the two files by entering two FILE OCL statements in the program’s job stream. |f
you do not enter FIL.E statements to create $SOURCE and $WORK for a program
that requires the two work files, the IBM System/32 SCP will create the files automa-
tically as scratch files (RETAIN-S) with a file size of 24 blocks. (The space must be
available.)

The disk VTOC can contain up to 200 permanent or temporary files at any one time
(199 user files plus the system file #LIBRARY). You can use the CATALOG procedure
to determine the number of permanent and temporary files currently on the disk. (For
more information, see index entry: CATALOG procedure.)

DISKETTE FILE

You must use a FILE statement to describe each diskette file you want created. The
FILE statement for diskette files is described in detail under index entry: //FILE
staternent. Diskette files are created by IBM system utility programs, described in
Part 4, or by offline multivolume file processing. Diskette files created by system
utility programs cannot be processed as offline multivolume files, and offline multi-
volume files cannot be processed by the system utility programs except by $DUPRD.
The following paragraphs concern using the utility programs to create and process
diskette files. For a discussion of offline multivolume file processing, see index
entry: offline multivolume file.

Before a diskette can contain any files, it must be initialized. That is, it must be
examined for bad tracks, and formatted control information required by the system
must be recorded on the diskette. You can use the INIT procedure (see index entry:
INIT procedure) to initialize diskettes.

Note: If a job will require a number of diskettes, initialize all required diskettes that
have not been initialized before you begin the job. 1f all diskettes are initialized in
advance, you will not have to interrupt or cancel the job in order to initialize a disk-
ette when the diskette is required.

If the file you want to create is to be placed on a diskette that already contains files
(but does not contain part of an offline multivolume file), use the CATALOG proce-
dure (see index entry: CATALOG procedure) to determine how much space is avail-
able on the diskette. The available space is unused space following the {ast active file
currently on the diskette. (Files added to a diskette always follow active files already
on the diskette.)

If a diskette lacks space for a new file, you can do either of the following:

1. Allow the file to become a multivolume file; use the diskette to start the file.
When diskette space expires, the system will request another diskette to con-
tinue the file. (For more information, see index entry: mu/tivolume file).

2, Use the COPY11 procedure to rearrange the active files and to delete the
expired files, leaving space for a new file at the end of the diskette. (For
more information, see index entry: COPY1 procedure.)

For the operator’s convenience, write in the space provided on the diskette envelope
the name of each file contained on the diskette. You may also want to store with
the diskettes listings created by the CATALOG procedure, to help identify which
files are on which diskettes.

OFFLINE MULTIVOLUME FILE

Each diskette is a volume of storage. A multivolume file is a diskette file residing on
more than one diskette, or expanded from one diskette to more than one diskette.
Multivolume files can be created by the system utility programs or by the offline
multivolume function of the SCP. These two kinds of files cannot be processed
interchangeably. Files created and processed by the offline multivolume function
are called offline multivolume files.

Purpose of Offline Multivolume Files

Many jobs process files that exist entirely on the disk. However, you may have a
job requiring more file space than the disk currently has room for. The last file to
be allocated, for example, may need 200 blocks of disk space when only 95 are
available. If you reduced the BLOCKS parameter specification on the FILE state-
ment to 95, problems would occur in the job after the 95 blocks had been filled.
A solution would be to use the DELETE and COMPRESS procedures. (See index
entries: COMPRESS procedure and DELETE procedure to free up disk space.)

Using an offline multivolume file would be another solution. It allows you to

allocate the last file, even though the disk does not have enough space for the
entire file,

Creating Disk and Diskette Files

29

100

Offline multivolume file processing uses all available disk space (up to the max-
imum allowed — see Offline Multivolume Restrictions and Considerations) as an
intermediate work area for processing a file a portion at a time. Offline multi-
volume processing moves a file, a portion at a time, from the allocated disk extent
to an output diskette, or from diskettes to the allocated disk extent, for processing.

The portion of an offline multivolume file, moving in this manner from and to the
disk, is called a file segment. File segments are stored on diskettes, one segment
per diskette.

Creating an Offline Multivolume File

You can evoke offline multivolume file processing by entering a FILE statement
specifying the same NAME given in a FILE statement for a disk file, and 11 for
UNIT. Suppose, for example, you want to allocate the file described by the fol-
lowing FILE statement, but 200 blocks of available space do not exist on the disk:

/l FILE NAME-PAYMSTR,UNIT-F1,BLOCKS-200,RETAIN-T

If 95 blocks of disk space are available, enter the following two FILE statements
to allocate and process PAYMSTR as an offline multivolume file:

// FILE NAME-PAYMSTR,UNIT-F1, BLOCKS-95,RETAIN-S
// FILE NAME-PAYMSTR,UNIT-I11,RETAIN-20,PACK-666666

As PAYMSTR is processed, records are placed in the 95-block extent on the disk.
When all 95 blocks are full, the system issues a message requesting the operator to
insert a diskette for output. After the diskette has been inserted, the system copies
the records from the disk extent to the diskette. The disk extent will then be reused,
with the next record being written at the beginning of the extent. When the extent
is again full, the system requests another diskette. This process, writing PAYMSTR
in file segments of 95 blocks, continues until the job ends. The system writes the
remaining dates (whether or not it fills the 95-block extent) on a diskette at the

end of the job.

Note: The offline multivolume function saves the file during job processing. This
is different from the SAVE command which, being issued after job processing, copies
the file from the disk onto a diskette, thus creating a backup file.

After the job ends, PAYMSTR resides only on diskettes. The 95-block disk extent
contains a copy only of those records in the last file segment. If you want a backup
copy of an offline multivolume file, you can use the COPYI1 procedure (see index
entry: COPY/1 procedure) to copy, one at a time, each of the diskettes composing
the file.

Note: To process an offline multivolume file (for input, update, or add), you must
allocate a disk space equal to the segment size defined (by the BLOCKS parameter)
when the offline multivolume file was created. You may find it helpful, therefore,
to keep a record of the segment size of each offline multivolume file you create to
remind you of the segment sizes. The CATALOG ALL, 11 procedure will display
the number of blocks (OLMYV block size) if you do not know it.

Reading an Offline Multivolume File

In the example below, the offline multivolume file PAYMSTR will be read, a segment
at a time, from diskettes into a disk extent named PAYMSTR:

// FILE NAME-PAYMSTR,UNIT-F1,BLOCKS-95,RETAIN-S
/l FILE NAME-PAYMSTR,UNIT-11,PACK 666666

PAYMSTR file segments were defined previously as being 95 blocks long because
PAYMSTR was created with 95-block segments (see the FILE statement example
under Creating an Offline Multivolume File).

Offline Multivolume File Restrictions and Considerations
Restrictions

® Use the same NAME on both the disk and the diskette FILE statement when
you are creating an offline multivolume file. The LABEL parameters can be
different. For example:

// FILE NAME-PAYMSTR,UNIT-F1,LABEL-TEMP,BLOCKS-95
// FILE NAME-PAYMSTR,UNIT-11,LABEL-PAY01,PACK-666666

The resulting offline multivolume file will be named PAYO01.

® Use BLOCKS, not RECORDS, to specify segment size on the disk FILE state-
ment for an offline multivolume file. Any block size, from one block to the
maximum 95 blocks or 118 blocks allowed, can be used if space is available.

® BLOCKS — 95 blocks (standard format diskette) or 118 blocks (extended for-
mat diskette) are the maximum allocations for offline multivolume disk file seg-
ments. For offline processing, the block value for a given format equals the data
area of one diskette. To use diskettes efficiently, the number of blocks allocated
should be as close to 95 or 118 as possible, but can never exceed the format
maximum.

Note: Though diskettes can be initialized in either the standard or extended for-
mats, you cannot create an offline multivolume file using these formats interchange-
ably. Either format can be used to create an offline MVF, but all diskettes for a

file must have the same format.

® To process an offline multivolume file after it is created, you must allocate a disk
extent at least equal in size to the extent defined when the file was created. If
you do not remember or do not have a record of the number of blocks allocated
originally, you can run the CATALOG ALL, |1 procedure (see index entry:
CATALOG procedure) using the offline multivolume diskette. The disk extent
is indicated in the column titled OLMV BLOCK SiZE found on the CATALOG
procedure printout,

® A multivolume file created by a system utility cannot be processed as an offline

multivolume file, Utilities that create diskette files cannot process offline multi-
volume files.

Creating Disk and Diskette Files

101

102

Restrictions (continued)

® To maintain offline multivolume file support, the INQUIRY/OFFLINE option

must be selected whenever using the RELOAD procedure (see index entry:
RELOAD procedure).

® Offline multivolume file support cannot be used on a system having BSC (binary

synchronous communications) support.

® The same file cannot be processed twice during one job as an offline multivolume

file, but more than one file can be processed as an offline multivolume file during
one job.

® Offline multivolume files cannot be processed while running an inquiry program.

{For more information on inquiry programs see index entry: $LOAD utility
program).

® Offline multivolume files must be sequential files. They can be processed by con-

secutive output, input, update, and add access methods. They cannot be processed
by indexed or direct access methods.

® Offline multivolume files must be written to diskettes containing no active files.

Therefore, be sure the diskettes you use’ (for output or add offline nriutlivolume
files) have been initialized before you begin the job. You can use the INIT pro-
cedure (see index entry: /NIT procedure) to initialize the diskettes.

When adding file records to an offline multivolume file, you must add the new file
records to the end of the file. Suppose, for example, you have an offline multivolume
file: diskettes A, B, and C. Diskette C is the end of the file.

For an add operation, the system displays the message: CONTINUE WHEN PROPER
DISKETTE INSERTED. After diskette C has been inserted, the system transfers the
records to the disk extent; the system processes the file records and adds new file
records to the file extent until it is full. The system displays the same message again:
CONTINUE WHEN PROPER DISKETTE INSERTED for the output operation.
After you insert the diskette, the system writes the disk file extent back onto a
diskette.

You can write the file records back onto diskette C, or you can scratch diskette C
and write the file records on diskette D. Diskette D now contains the records from
diskette C plus the records just added:

oLmMV
P
A B C D
ol o] [9 O
or — 1
Extent Processing
Disk

® Except for adding records to an offline multivolume file (which involves only the

last segment of the file), the segments of an offline multivolume file must be pro-
cessed sequentially beginning with the first segment,.

Considerations

When an offline multivolume file is created, each segment, except possibly the
last, contains the maximum number of complete records that can fit into the
disk extent allocated for a file segment.

When updating the contents of an offline multivolume file, only one diskette can
be updated at a time. Suppose, for example, you have two diskettes to be updated:
diskettes A and B.

To update diskette A, the system displays the message: CONTINUE WHEN PROPER
DISKETTE INSERTED for the input operation. The same message is displayed again
for the output operation, after the diskette has been updated.

You can then write the update back onto diskette A, or you can write the update onto
diskette C. You will now have two copies, one of the old version and one of the up-
dated version:

OLMV
,—/‘\
A B C D
ol |6 ol |d
or]
N Processi
Exom rocessing

Repeat the same procedure for updating diskette B, using diskette D if you want to
retain the previous version of diskette B.

When additions are made to an offline multivolume file, the current job date be-
comes the creation date of all new file segments plus the last one of the old file
segments.

For the operator’s convenience, indicate on the envelope of each diskette in an
offline multivolume file the volume number sequence of the diskette. For ex-
ample, the first diskette in a file would be volume #1, the second would be
volume #2, and so on.

Whenever an offline multivolume file is updated, the current job date becomes
the creation date of the file segments that are updated,

When writing file statements, be sure to write the file name in the 11 file state-

ment correctly. If you do not, and still have the old extent on the disk, you will
process erroneous data.

Creating Disk and Diskette Files

103

104

Loading and Running Programs

IBM PROGRAMS

Many IBM programs require only one command statement or two OCL statements
(LOAD and RUN OCL statements).

The following two examples show the statements needed to load and run two 1BM
programs, one requiring a command statement and the other requiring two OCL
statements.

® The CREATE command statement (see index entry: CREATE procedure) evokes
the SMGBLD utility program:
CREATE MSG1234

® The following two OCL statements load and run the $STATS utility program
(see index entry: $STATS utility program):
// LOAD $STATS
// RUN

OBJECT PROGRAMS USING ONE DISK FILE

To load and run an object program that uses one disk file, a FILE OCL statement is
required in addition to the LOAD and RUN statements. The NAME parameter is
always required in the FILE statement, and the RECORDS or BLOCKS parameter
is required for a disk output file. (See index entry: // FILE statement for a com-
plete description of FILE statements.)

For example, to load and run the object program PROG1, which uses the disk file
NAMEADD, the following OCL. statements are required:

// LOAD PROG1
// FILE NAME-NAMEADD
// RUN

OBJECT PROGRAMS USING MORE THAN ONE DISK FILE

One FILE statement is required for each file used by a program (see index entry:
// FILE statement for a complete description of FILE statements).

Two disk files are named in the following sequence of OCL statements, an input file
(INPUTF) and an output file (QUTPUTF):

// LOAD PROGH1

// FILE NAME-INPUTF

// FILE NAME-OUTPUTF,BLOCKS-10,RETAIN-P
// RUN

Loading and Running Programs 105

The first FILE statement contains information needed to refer to the data in the disk
file INPUTF. The second FILE statement contains information needed to create the
fixed disk output file QUTPUTF.

OBJECT PROGRAMS USING ONE DISK FILE AND EXTERNAL INDICATORS

The SWITCH OCL statement (see index entry: // SWITCH statement) is used to set
external indicators (U1-U8 on RPG Il specification sheets) on or off. External indi-
cators are used to regulate processing.

In the following example, a program (PROG2) is being run using one existing disk
file (INVMSTR), an inventory master file.

// LOAD PROG2

// FILE NAME-INVMSTR

// FILE NAME-NEWMSTR,BLOCKS-50
/1 SWITCH 1XXXXXXX

// RUN

In the example, the SWITCH statement specifies that the first external indicator (U1)

must be turned on before the program (PROG2) creates the file (NEWMSTR). Only
one external indicator is used: U1,

106

OCL and Procedure Example

This section illustrates some of the uses of OCL and command statements through
an example of a series of jobs.

The main program is INVUPD (Inventory Update). INVUPD reads the file named

INVTRANS (Inventory Transactions), updates the INVMSTR (Inventory Master),

and prints a report. If INVTRANS is not on the disk, the COPYTRAN procedure

is evoked to copy the transactions from a diskette to the disk. After the INVUPD

program is run, SWITCH1 is checked by an IF expression to determine whether or
not the user wants the COPYINV procedure run. The COPYINV procedure copies
the updated INVMSTR to diskette.

The OCL and command statements for these jobs are shown in Figure 5. The sets
of statements are numbered to correspond to the explanations following.

OCL and Procedure Example 107

108

// LOAD $MAINT
// RUN
// COPY NAME-INVUPD,LIBRARY-P,FROM-READER, TO-F1

// LOAD INVUPD

® m // FILE NAME-INVTRANS,UNIT-F1
// FILE NAME-INVMSTR,UNIT-F1
// RUN

// CEND
// END

// LOAD $MAINT
// RUN
// COPY NAME-COPYTRAN,LIBRARY-P,FROM-READER, TO-F1

// LOAD $COPY
/1 * ‘INSERT DISKETTE 888888 *INVTRANS*'

// PAUSE
@ // FILE NAME-COPYIN,UNIT-11,LABEL-INVTRANS,PACK-888888
// FILE NAME-COPYO,UNIT-F1,LABEL-INVTRANS
// RUN
// COPYFILE OUTPUT-DISK
// END

// CEND
/{ END

// LOAD $MAINT
// RUN
// COPY NAME-COPYINV,LIBRARY-P,FROM-READER, TO-F1

// LOAD $COPY
// * "INSERT DISKETTE 666666 *INVMSTR**

// PAUSE
@ @ // FILE NAME-COPYIN,UNIT-F1,LABEL-INVMSTR
/[FILE NAME-COPYO,UNIT-11,LABEL-INVMSTR,RETAIN-45,PACK-666666
// RUN
// COPYFILE OUTPUT-DISK
// END

// CEND
// END

// LOAD $MAINT

// RUN

// COPY NAME-INVUPDAT,LIBRARY-P,FROM-READER, TO-F1
@ o // \FF DATAF1-21? COPYTRAN

(9)//1nvupD

// \F SWITCH1-1 COPYINV

// CEND

// END

o // SWITCH 1XXXXXXX
o INVUPDAT INVTRANS

Figure 5. OCL and Command Statement Example

10.

1.

12.

The procedure INVUPD (10) is cataloged in the library as a procedure member.

The procedure COPYTRAN (8) is cataloged in the library as a procedure
member.

The procedure COPYINV (12) is cataloged in the library as a procedure
member.

The procedure INVUPDAT (7, 9, 11) is cataloged in the library as a procedure
member.

// SWITCH 1XXXXXXX is entered on the keyboard. This sets U1 of SWITCH
to a 1 (refer to explanation 11 below) without changing any of the other 7
switches.

INVUPDAT INVTRANS is entered on the keyboard. The procedure INVUPDAT

is evoked.

The first statement of the INVUPDAT procedure is the IFF (if false) statement.
This statement checks to see if the file identified by the first parameter
(INVTRANS) in the command statement entered on the keyboard exists on
the disk. In this example, assume that there is no existing INVTRANS disk file.

Therefore, the COPYTRAN procedure is evoked in order to copy the INVTRANS

diskette file to disk. (If INVTRANS was already on the disk, the statement
would not have been false and COPYTRAN would not have been evoked.)

The COPYTRAN procedure evokes the SCOPY utility program. It also tells the
operator to insert the diskette: ‘INSERT DISKETTE 888888 *INVTRANS™,
After the operator has inserted diskette 888888 and replied to the PAUSE, the
$COPY utility copies the INVTRANS file to the disk.

The INVUPD procedure is evoked.

The INVUPD procedure loads and runs the inventory update program (INVUPD).

After the INVUPD program has been run, SWITCH1 is checked by an |F state-
ment in order to determine if the procedure COPYINYV should be evoked. In
this example, SWITCH1 was set to 1. Therefore, the IF statement is satisfied
and the COPYINV procedure is evoked. (If SWITCH1 had not been 1,
COPYINV would not have been evoked.)

The COPYINV procedure evokes the SCOPY utility program. It also tells the
operator to insert the diskette: ‘INSERT DISKETTE 666666 *INVMSTR*",
After the operator has inserted diskette 666666 and replied to the PAUSE, the
$COPY utility copies the INVMSTR to diskette.

After the last procedure (COPYINV) is run, the system returns to a ready status
(awaits keyboard entry).

Once the procedures are cataloged {steps 1 through 4 in the example), the entire job
can be evoked anytime by two statements (steps 5 and 6).

OCL and Procedure Example

109

110

Underlining identifies default values. A default value is a value that is automatically
substituted for an optional parameter that is omitted. For example, [YES]
NO

means that if neither YES or NO is specified, YES is used.

Braces ({ }) indicate that you must choose one of the values enclosed by the braces.
For example, in the expression [PARM- { A}] the braces indicate that if you

B
choose to enter the parameter, you must specify either A or B.

Part 4.

System Utility Programs

System Utility Programs 111

112

Introduction to the System Utility Programs

IBM System/32 system control programming includes a group of utility programs
that reside on the disk. These programs do a variety of jobs, from preparing the
disk and diskettes for use to maintaining the system library.

Writing Utility Control Statements

Most of the utility programs require utility control statements. You must provide
them. Utility control statements give the utilities information about the output you
want and the way in which you want a utility to perform its function. The utilities
read these statements from procedures and from the keyboard. Utility control
statements must be the first input read by a utility if the utility requires control
statements,

Every control statement is made up of an identifier and parameters. The identifier

is a word that identifies the control statement. It is always the first word of the state-
ment. Parameters are information you are supplying to the utility. Parameters are
either positional or keyword.

A positional parameter, whenever it appears in a statement, must appear in the same
position in relation to other parameters. For example:

// INCLUDE PROCEDURE FILEA,YES,NO
FILEA is the first parameter, YES is the second parameter, and NO is the third para-
meter. If you omit the second parameter (a valid positional parameter), a comma
must indicate the position reserved for the omitted parameter. For example:

// INCLUDE PROCEDURE FILEA, NO

A keyword parameter contains a keyword that distinguishes the parameter from
other parameters. For example:

// FILE NAME-COPYIN,UNIT-F1,LABEL-PAYROLL
NAME-COPYIN, UNIT-F1, and LABEL-PAYROLL are keyword parameters in the
preceding statement. COPYIN, F1, and PAYROLL are the values supplied by the
parameters to the utility.
RULES FOR CODING UTILITY CONTROL STATEMENTS

The rules for coding utility control statements are:

1. Statement identifier. // in positions 1 and 2, followed by a blank, must precede
the statement identifier. Do not use blanks within the identifier.

2. Blanks. Use one or more blanks between the identifier and the first parameter.

Introduction To The System Utility Programs 113

114

3. Statement parameters. Keyword parameters can be in any order; but positional
parameters must be in the same order. Use a comma to separate one parameter
from another. Use a hyphen (-} within each keyword parameter to separate the
keyword from the information you supply. Do not use blanks between param-
eters; do not use blanks within a parameter unless the parameter contains a
value enclosed by single quotation marks (for example, ‘CONSTANT VALUE’).

The following is an example of a utility control statement:

// COPY11 NAME-JOE,PACK-123456
The statement identifier is COPY11. The parameter keywords are NAME and PACK.
The information supplied by the parameters is JOE and 123456.

Notes:

1. An end control statement (// END) must be the last control statement entered for
a utility if control statements are used. The end control statement indicates the end
of the control statements for a utility.

2. Do not put sequence numbers on utility control statements.

CONVENTIONS FOR DESCRIBING UTILITY CONTROL STATEMENT FORMATS

In the descriptions of utility control statement formats given in this part of the man-
ual, capitalized words and letters, numbers, special characters, brackets, and braces
have special meanings. Capitalized expressions must be entered as they appear in the
formats. When numbers or nonalphabetic characters appear in a capitalized expres-
sion, they must also be entered as they are shown. Words and expressions that are
not capitalized must be replaced with a value that is appropriate to your job. How-
ever, if the noncapitalized expression is shown enclosed in single quotes ('}, the quotes
must be entered if a value is entered.

Brackets {[]) shown in utility control statement formats are not part of the state-
ments. Brackets can have two meanings: they can indicate that you can omit the
expression they enclose, and they can mean that if you use an expression enclosed
in brackets, you must choose one of the values shown. For example,

[OUTPUT-PRlNT]

OUTPTX-PRINT

means that neither expression has to be entered (they are optional), and that only
one of them can be entered for one utility control statement.

Underlining identifies default values. A default value is a value that is auto-
matically substituted for an optional parameter that is omitted. For example,
[YES] means that if neither YES nor NO is specified, YES is used.

NO

Braces ({ }) indicate that you must chogse one of the values enclosed by the
braces. For example, in the expression |PARM- {A} , the braces indicate

B
that if you choose to enter the parametér, you must specify either A or B.

Utility Program Descriptions

This section describes each utility program provided with IBM System/32, The
following information is given for each utility:

® The function of the utility
® The format of the related utility control statement(s)
® A description of the parameters in the related utility control statement(s)

® The sequence of the OCL and utility control statements required to evoke
the utility

Examples are given for many of the utilities.

CAUTION

When a program that allows inquiry mode is interrupted by inquiry, the execution
of that program is suspended, permitting the execution of other programs. However,
if these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the program or erroneous results when the inter-
rupted program regains control,

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

Utilities — all functions of which are always prohibited:

Utility Function(s)

$BACK (Back up library}
$LOAD (Reload library)
$PACK (Compress file space)
$REBLD (Rebuild VTOC)
$SETCF {Reconfigure system)
$BUILD (Alternate sector)

Utilities — some functions of which are prohibited:

Utility Function(s)
$corPy (Restore all/save all)
$DELET (Delete all)

Utilities — processing of active files prohibited:

Utility Function(s)

$BICR (TRANSFER active file)
$CcoPY (SAVE/ORGANIZE active file)
$DELET (DELETE active file)

Utility Program Descriptions 1156

Utilities — processing permitted with warning message:

Utility Function(s)
$COPY (DISPLAY active file)
$LABEL (CATALOG ALL/active file)

$BACK—BACKUP LIBRARY UTILITY PROGRAM

The $BACK utility allows the user to copy and reorganize the entire system library
to a diskette file.

When the library is copied to the diskette(s), library members are shifted to remove
gaps between them—unused space between members is collected at the end of the
library. The output diskette(s) must not contain active files.

More than one diskette may be required to contain the system library. When this
situation arises, the operator is automatically instructed to insert another diskette
if it is required, after which processing resumes.

To reconstruct on the disk a library that has been backed up on—copied to—diskettes,
you can use the RELOAD procedure (see index entry: RELOAD procedure) or per-
form an IPL from the diskettes containing the copy of the library. (See /BM System/32
Operator’s Guide, GC21-75691, for a step-by-step description of how to reload the
library.) The vol-id of the first (or only) diskette containing the library becomes the
vol-id of the disk file during the RELOAD operation.

$BACK is evoked by the BACKUP procedure (see index entry: BACKUP procedure).

Note: To determine the number of backup diskettes required to contain the library,

see index entry: calculating the number of backup diskettes required for the system.
$BACK Utility Control Statement Format

Utility control statements are not used.

$BACK OCL Sequence

// LOAD $BACK
// FILE NAME-#LIBRARY,UNIT-11,...
// RUN

$BICR—STANDARD INTERCHANGE UTILITY PROGRAM

This utility provides a means of converting a disk file to a standard interchange file
on diskette, of converting a diskette standard interchange file to a sequential or in-
dexed disk file, and of adding a standard interchange file to a sequential disk file.

All diskette files that are input for $BICR must be in the standard interchange format
(see Appendix C); all diskette files created by $BICR are in the standard interchange
format.

In adding a.standard interchange diskette file to an existing disk file, the records in
the diskette file are truncated or padded with hex zeros (hex 00} to conform to the
record length of the disk file. In creating a new disk file from a standard interchange -
diskette file, the record length of the disk file is set to that of the diskette file. In
creating a new standard interchange diskette file from a disk file, the record length

of the diskette file is set to that of the disk file or to 128, whichever is smaller.

$BICR processes records sequentially during file conversion. 1f input for $BICR is
an indexed disk file, records are read sequentially by key. $BICR is evoked by the
TRANSFER procedure {see index entry: TRANSFER procedure).

$BICR Utility Control Statement Formats
Use Control Statements

To create a diskette [// TRANSFER]
standard interchange // END

file from a disk file or

convert a diskette

standard interchange

file to a disk sequen-

tial file

To add the datain a // TRANSFER ADD-YES
standard interchange // END

diskette file to a disk

sequential file

To create an indexed // TRANSFER ADD-NO,KEY LEN-value, KEYLOC-value
file on the disk from // END

a diskette standard

interchange file

$BICR Parameters

ADD-YES Specifies that when converting a standard interchange diskette
file to a disk file, the records in the diskette file are to be added
to an existing disk sequential file.

The first record in the diskette file will be placed after the last
record in the disk file. If a multivolume file is being converted,
records will be added to the disk file until the end of either the
diskette file or the disk file is reached. However, for both multi-
volume diskette files and single volume diskette files, the add
operation is not started unless the diskette file or file segment

Utility Program Descriptions

118

on the diskette currently in the diskette drive will fit into the
space avaliable in the disk file.

If ADD-YES is not specified, ADD-NO is assumed.

ADD-NO Indicates that when copying a diskette standard interchange
file to the disk, a new disk file is to be created.

KEYLEN-value Defines the length of the record keys when an indexed file is to
be created on the disk. Value can be from 1 through 29,

Note: KEYLEN must be specified with KEYLOC, and the sum
of their values must not exceed record length plus 1.

KEYLOC-value Specifies the relative displacement of the start position of the
record key in the records. Value can be from 1 through 128.

Note: KEYLOC must be specified with KEYLEN, and the sum
of their values must not exceed record length plus 1.

$BICR OCL and Utility Control Statement Sequence

// LOAD $BICR :
// FILE NAME-COPYlN,UNIT-.{::11},LABEL-from-filename,...

[// FILE NAME-COPYO,UNIT-I{::11},LABEL-to-fiIename,...]

// RUN
[/ TRANSFER ...]
// END

Notes:

1. If a new disk file is to be created from a multivolume diskette file, then the COPYO
FILE statement must be given, and the required RECORDS or BLOCKS parameter
must be large enough to contain the entire diskette file.

2. If a new disk file (with space requirements of a nonmultivolume diskette file)
is to be created, do not specify the COPYO FILE statement.

3. If a new disk file larger than the diskette file is to be created, then the COPYO
FILE statement must be specified with the required RECORDS or BLOCKS
parameter.

4. If a file is being created on diskette, the COPYO FILE statement with a PACK
parameter is required.

$BICR Example

In order to create a standard interchange diskette file (JOEB1) from a disk file (JOE),
you could enter:

// LOAD $BICR
~// FILE NAME-COPYIN,UNIT-F1,LABEL-JOE
// FILE NAME-COPYO,UNIT-I1,LABEL-JOEB1,PACK-9
// RUN
// TRANSFER
// END

$BUILD-ALTERNATE SECTOR REBUILD UTILITY PROGRAM

This utility program allows you to display and correct data on the disk after a disk
error has occurred.

When a disk read or write error occurs, the data is written to an alternate sector,
Disk alternate sectors are sectors reserved for use in place of defective or unusable
disk sectors. The $BUILD utility program searches the alternate sectors of the
disk for data that is unreadable because of a read/write error. Each sector contain-
ing unreadable data is printed, along with the sector logically preceding and the
sector logically following it in the file.

The data is displayed on the display screen and by the printer in character and hex
format, as shown in Figure 6. The data is displayed in character format on the first
line. If the character cannot be displayed, it is replaced by a blank. The data is also
displayed in hex form on the second and third lines. The left hex digit of each byte
is on the second line and the right digit is below it on the third line.

Utility Program Descriptions 119

PRINTER OUTPUT:

ALTERNATE SFCYNR REBUTLD UTILITY

$S-03740 FILFNAMF—HFXFILF
SFCTNR BEFNRE RAD DATA
laveeeoolNeneeesee?0eecccveodDecencoenbOocsncsse50ecanereebOuaaccssne?OcnccncceBlecesceasIVennceeelB0ocecasellOccassesl?20ueaeal?8
ABCDEFGHT JKLMNNPQR STUVHXYZ 0123456789
CCLCCCCCCeeececennDDDNNNNDDNDNNNEFEFEFEEEFEEEEEEFFFFFEFFFFFFFFFFO0000000000000001111111111111111222222222222222233333333333333334
123456T780ARCNEFN123456789ABCNEFNL23456T89ARCNEFOL23456T89ABCNEFO123456789ABCDEF0123456789ARCDEF0123456789ARCNEF 0123456T89ABCDEFN
121cacecelé4Niveceaal50eacceesl60eecocselTO0icenceelBOienceselI0eccceve200uceasve2l0cevecse2200ceneee2300nconee28400ccnnee250044256
4 [Y "% LE]
444445466486464455555555555555556666666666666666TTTTTTTTTTTT77T7AB8RARBERE58688889999999999999999AAAAAAAAAAAAAAAARRRARRARARARRARAL
123456789ABCDEFN123456T89ABCDEFN123456789ARCOEFO123456TB9ABCOEF0123456TA9ABCDEFO123456T89ARCNEF 0123456 TB9ABCNEF0123456T89ABCNEFD
$S~03741 FILENAME-HEXFILE
SECTOR WITH RAD DATA
leeeceselDescecaca2DecvencoedNevecceaactO0scccceee5NeccccnseblascacnceDcnvocsseoBlocvecnceI00ecaceolDOooncceellNuccecesl?2000esal?8
ABCDEFGHI JKLMNOPQR STUVHXYZ 0123456789
CCECCRCCCCCCaECnDNDONDNDNNNNNNNEEEFEFEEFEFEFEEEFFFFFFFFFFFFFFFFO00000000000000011111111111111112227222222222722333333333332333%4
123456 TR9ARCNEF0123456T89ABCNEFO123456789ARCDEF 0123456789 ARCNDEFOL23456789 ABCDEFO123456T89ARCDEFOL23456789ARCNEFN123456T89ABCDEFO
131cacecel40enccccelfNecccenslb0eoccneelT0cscccelBNececaealPVeceeene200ccocoee2lDencvrcee?20ucscrse?230cncecee2é40uceccee?5044,256
4 $* -/ ' X wa
46444646464564655555555555555556666666666666666TTTTTTTTTTTTT7T7838RRBAKBBARREBE9999999999999990AAAAAAAAAAAAAAAARRRBRRRARRARRAARAC
123456789ARCNEFO123456TRGARCNEFN123456789ARCNEF0123456T89ARCDEFDL23456TB9ARCOEFO123456T789ABCDEFNL23456T89ARCNEF0123456T89ARCDEFD
§§-03742 FILENAME-HEXFILF
SECTOR AFTER RAD DATA
lecoeswelOecesceea20ceccccesdVecccscoehDeccansse500cacsaceb60icncensnaTloecearcseBOocscaceeVeccecaslO0ucancsellfeccesnel2Nueesel2t
ABCDEFGHT JKLMNNPOR STUVWXYZ 0123456789
CCCOCCCCLCCCccODDDDODDONDDONDNEFEFEEEFEFEFEEEEFFFEFFFFFFFFFFFFO0000000000000001111111111111111222222222222222233333333333332333%
123456T89ABRCOEFO123456T89ABCNEFN123456TROABCNEF0123456789ABCOEFO123456789 ABCNFFOL23456T89ARCNEF 0123456789ABCNEFOL23456TB9ARCDEFO
131cececelé0eeccocel500ncacoelbNececocelT0onceseelBOesscncelF00cnnsee?200uecsaca2lOcccacees22000acses230cvcncee240seveeca2500qss256
& s -/ ¥ LE)

444444454444644455555555555555556666666666666666TTTTTTTITTITTTTITTE8888388888888889999999999999990AAAAAAAAAAAAAAAARABRBBBBRABARBARAC
123456TR9ABCDFFO123456789ABCDEF0123456789ARCDFFO0123456789ABCDEF0123456789ABCDEFO123456789ARCDEF0122456789ARCDEF01234567B9ABCDEFO

DISPLAY SCREEN OUTPUT:

ABCDEFGHI JKLMNOPQR STUVHXY
CCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDEEEEEEEEE
123456789ABCDEF0123456789ABCDEFQL2345678
COL=0000L $S-03740 FILENAME-HEXFILE

Figure 6. Example Output of a Disk Sector with Character and Hexadecimal Printout

After the unreadable is displayed, you have two options:
® Bypass the data
® Correct the data

$BUILD is evoked by the BUILD procedure (see index entry: BU/ILD procedure).

120

Bypass Unreadable Data

If you wish to bypass the data, press the ENTER key on the keyboard. The $BUILD
utility then searches for the next alternate sector with unreadable data. The next
time $BUILD is evoked, this sector is displayed again.

Correct Unreadable Data

In order to correct the data, use the keyboard function keys to display the portion
of the bad sector that you wish to correct. After the display is shifted to the desired
position, place the cursor on either the character data line or the hex data line.

Type the desired data over the unreadable data. The display screen provides the
following information to help you correct the data:

® The displacement into the record (in decimal) of the character pointed to by the
cursor: COL=00001 on the display screen in Figure 6

® The sector number: S$S-03740 on the display screen in Figure 6

® The filename: FILENAME-HEXFILE on the display screen in Figure 6

After you have keyed all your corrections, if any, for a bad sector, press the REC ADV
{record advance) key. The corrected sector will be rewritten to the disk, and $BUILD
will search for other bad sectors. The next time $BUILD is evoked, the corrected
sector will not be displayed.

Note: If, after keying corrections, you press the ENTER key, the corrected sector

is not rewritten to the disk. If you cannot correct the data and wish to copy the

data from a backup copy on a diskette, advance the cursor into any position in the
bad sector and press REC ADV, which removes the indication of bad data and per-
mits you to copy the file from the diskette.

$BUILD Utility Control Statement Format

Utility control statements are not used.

$BUILD OCL Sequence
The following entries are needed to load and run the program:

// LOAD $BUILD
// RUN

Utility Program Descriptions 121

$COPY—DISK COPY/DISPLAY UTILITY PROGRAM
The disk copy/display utility has several uses:

® Copy an entire file from the disk to diskette(s), from diskette(s) to the disk, or
from the disk to another location on the disk to:

1. Provide a duplicate of a file

Note: |f, after copying a file to a diskette you delete the original file from
the disk, the file on the diskette becomes the master copy of the file.

2. Move a file to a larger disk area

® Delete records from a file (selected records are omitted from the copy; the ori-
ginal remains unchanged).

® Copy a portion of a file; you have the option of deleting selected records from
the copy.

® Copy all data files (except #LIBRARY) on the disk to diskette(s) to create a
backup copy of the files or to obtain more space on the disk; or, restore pre-
viously copied files from diskette(s) to the disk.

| ® Copy an indexed file ordering the records in key order (reorganize the file) to
improve the performance, in some cases, of programs that use the file. Selected
records can be deleted from the copy.

® Add a disk file to an existing diskette file.

® Display all or part of a file (either on the display screen or printer, depending on
the current SYSLIST assignment—see index entries: STATUS procedure and
SYSLIST procedure) to check records for errors; you have the option of deleting
selected records if the entire file is displayed.

$COPY is evoked by the DISPLAY, ORGANIZE, RESTORE, and SAVE procedures
(see index entries: DISPLAY procedure, ORGANIZE procedure, RESTORE proce-
dure, and SA VE procedure).

Notes:
1. If you use $COPY to list a disk segment of an offline multivolume file (see index
entry: offline multivolume file), the listing will include variable system data.
2. $COPY can copy a diskette file only if the file was copied to the diskette(s) by
$COPY.
$COPY Utility Control Statement Formats

The different uses of $COPY require different utility control statements.

122

Use

Copy an
entire
file

Copy a
portion
of a file

Copy all

data files on
the disk to
diskette, or
restore pre-
viously copied
files from
diskette to
the disk

Copy a
sequential
or direct
file to an
indexed file

Add a

disk file to
an existing
diskette file

Display an
entire file

Display
part of
a file

Control Statements

// COPYFILE OUTPUT-DISK [,DELETE-‘position,character’]

// END

// COPYFILE OUTPUT-DISK [,DE LETE-‘position,character']

// SELECT KEY,FROM-‘key*

// SELECT KEY,FROM-'key’, TO-'key’

// SELECT RECORD,FROM-number

// SELECT RECORD,FROM-number, TO-number
// SELECT PKY,F ROM-‘key’

// SELECT PKY,FROM-’key’, TO-'key’

// END

// COPYALL TO- { ::1‘}

// END

// COPYFILE OUTPUT-DISK [,DELETE-‘position,character]
// KEY LENGTH-value-1,POSITION-value-2
/ END

// COPYADD
// END

OUTPUT-PRINT
OUTPTX-PRINT

// COPYFILE [
// END

J/ COPYFILE [OUTPUT-PRINT

OUTPTX-PRINT
// SELECT KEY,FROM-‘key’

// SELECT KEY,F ROM-"key’, TO-key’

// SELECT RECORD,FROM-number

// SELECT RECORD,FROM-number, TO-number
// SELECT PKY,FROM-‘key’

// SELECT PKY,F ROM-‘key’, TO-‘key"

// END

L

] [,DELETE-‘position,character’]

Utility Program Descriptions

NO
,REORG-{YES}

[NO
,REORG- {-\E.S}

123

124

$COPY Parameters

COPYFILE Statement

The COPYFILE statement specifies copy, display, and reorganization.

OUTPUT-DISK

OUTPUT-PRINT

OUTPTX-PRINT

DELETE-‘position, character’

REORG-NO

REORG-YES

The file or a portion of the file is copied from disk
to diskette, from diskette to disk, or from one area
to another on the disk.

The entire file or only part of the file is displayed.

Note: |f the display is on the display screen, all
lines are truncated to forty (40) characters.

The entire file or only part of the file is displayed
in hex format.

Note: |If the display is on the display screen, all
lines are truncated to forty (40) characters.

This parameter is optional except when REORG-
YES is specified for a sequential file. It means
delete all records with the specified character in
the specified record position. Character can either
be one of the standard characters or the three char-
acters Xdd, where X is constant and dd is the hex-
adecimal equivalent of any character. Position

can be any position in the record (the first posi-
tion is 1, second is 2, and so on) to a maximum

of 999.

Records are copied the way they are organized in
the original file. REORG-NO is assumed if the
REORG parameter is not specified.

REORG-YES can be specified:

® When copying an indexed file from the disk, in
which case the records are to be copied in the
same order as their keys appear in the index.

® When copying a sequential file to a sequential
file. The DELETE parameter—see the descrip-
tion preceding—is required when REORG-YES
is specified for a sequential file.

SELECT Statement

The SELECT statement specifies what part of a file is to be copied or displayed.
The SELECT statement is not valid for a COPYALL request.

KEY
or, FROM-‘key*
PKY

KEY
or,FROM-'key’, TO-'key’
PKY

RECORD,FROM-number

RECORD,FROM-number, TO-number

For indexed files only. Copy or display
only part of a file—from the record iden-
tified by the specified key to the end of
the file (including the record with the
specified key).

For indexed files only. Copy or display
only part of a file—from the record iden-
tified by the specified FROM key to the
record identified by the specified TO key
(including the two records with the speci-
fied keys).

Note: To copy or display only one record,
make the FROM and TO keys the same. |If
the specified record key does not exist, no
records are copied or displayed.

Copy or display only part of a file—from
the record identified by the specified record
number to the end of the file (including the
record identified by the specified number).

Copy or display only part of a file—from
the record identified by the FROM record
number to the record identified by the
TO record number (including the two rec-
ords identified by the FROM and TO
record numbers).

Note: To copy or display only one record,
make the FROM and TO numbers the same.
If the specified record number does not
exist, no records are copied or displayed.

Utility Program Descriptions

125

KEY Statement

The KEY statement specifies the length and position of record keys for a file. The
statement is used to create an indexed file from a sequential or direct file.

LENGTH-value-1 The LENGTH parameter specifies the length of the key in
bytes. Value-1 can be any number from 1 through 29.

POSITION-value-2 This parameter specifies the position of the key in the
records. This position is the leftmost byte of the key.
Value-2 can be any number from 1 through 999,

COPYALL Statement

The COPYALL. statement specifies that all data files on the disk {but not #LIBRARY)
be copied to diskette(s), or specifies that files previously copied be restored from disk-
ette(s) to the disk.

TO- {F1} Specifies that the disk (F1) or a set of diskettes (11} is to con-
11 tain the copy.

COPYADD Statement

Requests addition of a disk file to an existing diskette file. The disk file is added to
the diskette file so that restoring the extended file creates a single disk file. The
user must specify on the COPY N file statement the name of the file to be added
and on the COPYQ file statement the name of the file to be extended.

$COPY Parameter Summary
OQUTPUT and OUTPTX Parameters (COPYFILE)
These parameters specify whether you want to copy or display data files.

The parameter OUTPUT-DISK means the file is to be copied; OUTPUT-PRINT
means it is to be displayed and OUTPTX-PRINT means the file is to be displayed in
hex values.

Copying a File: $COPY can copy a file from one disk to another or from one area on the
disk to another on the disk. Data files copied to and from diskette are not standard
interchange files (see Appendix C). In copying a disk file to diskette(s), the disk file
is, in effect, dumped onto diskette(s), so that when it is copied back to the disk, its
original format and file organization are retained.

The OCL load sequence for the $COPY program indicates (1) the name and unit of

the file being copied, and (2) the name and unit of the copy being created. If the
file is to be created on the disk, then the size of the file can be specified.

126

Displaying Files: Records from the indexed files are displayed in the order of the records,
unless you specify SELECT KEY and/or SELECT PKY and/or REORG-YES. For each
record, the program displays the record key followed by the contents of the record.

Records from sequential, indexed, and direct files on diskette are displayed in the order

- they appear in the file. For each record, the program displays the relative record num-
ber for sequential and direct files, or the record key for indexed files followed by the
contents of the record.

The program uses as many lines as it needs to display the contents of a record (100
characters per line are printed; if the display screen is used, only the first 24 charac-
ters of each record are displayed). Characters that have no graphic display symbol
are displayed as 2-digit hex numbers in over-and-under format.

The following is an example of the way the program displays hex ndmbers:

ABCDEF J12345
B
6

The hex number B6 represents a character that has no graphic symbol.

After displaying the last record, the program prints a message stating the number of
records displayed.

DELETE Parameter (COPYFILE)

The $COPY program can omit records of one type while copying or displaying a single
file.

The form of the parameter for omitting records is DELETE-'position,character’. Char-
acter is the character or hexadecimal equivalent (Xdd) that identifies the records.
Position is the position of the character in the records. For example, the parameters
DELETE-"100,XE7’ and DELETE-100,X’ would yield the same results.

REORG Parameter (COPYFILE)

P

'In copying or displaying an indexed file, the program can reorganize the file so that
the records in the data portion are in the same order as their keys in the file index.
The REORG parameter tells the program whether or not to reorganize the file. The
file can be reorganized while it is being copied from F1 to either 11 or F1.

SELECT KEY and SELECT PKY Parameters
The SELECT KEY and SELECT PKY parameters apply to copying or displaying

part of an indexed file. The SELECT PKY paramter applies to an indexed file that
contains packed keys. Related parameters are FROM and TO.

Utility Program Descriptions 127

128

If none of the keys in the file index begin with the characters indicated in the FROM
or TO parameters, the program uses the key beginning with the next higher characters

- than in the FROM parameter and the key beginning with the next lower characters

than in the TO parameter.

The TO parameter can be omitted. When this is done, the program uses the last key
in the index as the TO key.

There may be fewer characters in the FROM or TO parameter than are contained in
the actual keys.

For example, assume that the following are consecutive record keys in an index:
A0999, A1000, A1010, A1040, A1500, A1990, and A1955. The parameters
FROM-'A10" and TO-‘A15’ refer to record keys A1000, A1010, A1040, and A1500.

If you want to copy or display only one record, make the FROM and TO keys the
same.

SELECT RECORD Parameter

This parameter is used to copy or display a portion of a file. This parameter uses rela-
tive record numbers to identify the records to be copied or displayed.

Relative record numbers identify a record’s location with respect to other records in
the file. The relative record number of the first record is 1, the number of the second
record is 2, and so on.

The related parameters are FROM and TO. The FROM parameter (FROM-number)
gives the relative record number of the first record to be copied or displayed. The

TO parameter (TO-number) gives the number of the last record to be copied or dis-
played. Records between those two records in the file are also copied or displayed.

For example, the parameters FROM-1 and TO-30 mean that the first thirty records
(1-30) in the file will be copied or displayed.)

You can omit the TO parameter. |f you do, the program uses the number of the last
record in the file as the TO number. If you want to copy or display only one record,
use the same number in the FROM and TO parameters.

TO Parameter (COPYALL)

This parameter specifies whether diskette or disk will contain the copy. 11 and

F1 are the only values allowed. When |1 is specified, al! data files on the disk are
copied to the same number of files on one or more diskettes. When F1 is specified,
all files previously copied to diskette(s) are restored to the disk from the diskette(s).

Copying All Disk Files: The output of $COPY when copying all disk data files to diskette
is: Files on one or more diskettes which had no active files on them. Each diskette
file contains information about the file as it appeared on the disk. The set of files is
associated with a name of #SAVE unless a different name was specified via the
LABEL parameter in the COPYO file statement.

Restoring Disk Files: When restoring all previously saved files to the disk, you can specify
the name associated with the diskette files (if the name #SAVE was not used) via
the LABEL parameter on the COPYIN file statement.

To restore only one file from diskette(s) containing all files previously copied from
the disk, you must specify the name of the file to be restored on the COPYIN file
statement, and you can specify a name for the new disk file on the COPYO file
statement.

$COPY OCL and Utility Control Statement Sequence

When copying, reorganizing, or displaying files, the user must (1) describe the disk
files being copied or displayed and (2) describe the file being created. To do this,
the following OCL statements are needed:

// LOAD $COPY
/1 FILE NAME-COPYIN ['UN'T‘ {ﬁ—'}] ,LABEL-filename

A

// FILE NAME-COPYO [’UN'T‘{ *

}] ,LABEL-filename,
For F1:

BLOCKS-number P
S

{RECORDS-number} LRETAIN-(T

For 11:

1

FETAIN- { retention-days}] JPACK-vol-id

// RUN

// COPYALL...
or

// COPYADD
or

// COPYFILE

// SELECT...
/l KEY...

// END

Utility Program Descriptions

129

130

Statement Entry

// LOAD
$CoPY

// FILE

NAME-COPYIN

F1
UNIT- {” }

LABEL-filename

// FILE

NAME-COPYO

F1
niT- B
v {n}

LABEL-filename

{RECORDS-number
BLOCKS-number

T

RETAIN-< P
S

or

1

PACK-vol-id

[retention-days]

}

Meaning

Name of disk copy/display program.

Name disk copy/display program uses to refer to the file
to be copied, reorganized, or displayed.

identifies either the disk (F 1) or a diskette (11) as con-
taining the file to be copied.

Name by which the file to be copied is identified. This
parameter must be used to specify the name associated
with the entire set of files copied when the COPYALL
statement is used to copy from diskette.

Name disk copy/display program uses to refer to output
file being created. (This OCL statement is not needed for
displaying a file.)

Specifies location of output file: disk (F1) or diskette
(11).

Name by which output file is to be identified. This param-
eter must be used to specify the name associated with the
entire set of files being copied when the COPYALL state-
ment is used to copy to diskette.

Size of output file expressed either as number of records
(RECORDS) or number of disk blocks (BLOCKS). Used
only when copying individual files to the disk.

Retention designation of the disk output file: T is tem-
porary, P is permanent, S is scratch.
Retention designation of diskette output file expressed in

number of days. Default is one day.

The diskette volume label. Meaningful only if the unit
designation is 11.

$COPY Examples
Copy all disk files to diskette(s):

// LOAD $COPY

// FILE NAME-COPYIN,UNIT-F1

// FILE NAME-COPYO,UNIT-11,LABE L-#SAVE,PACK-vol-id
// RUN

// COPYALL TO-I1

// END

Copy a diskette file (JOE) to a disk file (JOEF):

// LOAD $CoPY

// FILE NAME-COPYIN UNIT-11,LABEL-JOE

/! FILE NAME-COPYO,UNIT-F‘I,LABEL-JOEF,BLOCKS-100,RETAIN-P
// RUN

// COPYFILE OUTPUT-DISK

// END

Print from the diskette file JON all records with keys from ADAMS to BAKER:

// LOAD $COPY

// FILE NAME-COPYIN,UNIT-11,LABEL-JON
// RUN

// COPYFILE OUTPUT-PRINT

// SELECT KEY,FROM-ADAMS’, TO-‘BAKER’
// END

Copy back to the disk the entire set of files previously copied from the disk to
diskette(s):

// LOAD $COPY

// FILE NAME-COPYIN,UNIT-11,LABEL-#SAVE
/! FILE NAME-COPYO

// RUN

// COPYALL TO-F1

// END

Utility Program Descriptions

131

132

$DELET—FILE DELETE UTILITY PROGRAM
The $DELET program frees the space occupied by existing files for use by new files.

The space is freed in the following ways:

SCRATCH Changes the diskette file(s) expiration date to the current job date.
For disk file(s), SCRATCH removes the VTOC entry.
REMOVE Removes the VTOC entry with the option of erasing the contents of

the named file(s) on the disk or diskette by overwriting with binary
zeros.

If you want to delete more than one file, additional control statements must be used.
The end statement {// END) must follow the last SCRATCH or REMOVE statement.

You can delete permanent disk data files only by using the $DELET program. The
system file #LIBRARY cannot be deleted.

$DELET is evoked by the DELETE procedure (see index entry: DELETE procedure).

Use

Scratch the VTOC
entry for the
named file

Scratch the VTOC
entry for the
named file iden-
tified by the spe-
cified creation
date

Remove the VTOC
entry of the
named file

Remove the
VTOC entry for
the named file
identified by the
specified crea-
tion date

Remove the
VTOC entries
for all the files
on the speci-
fied disk

$DELET Utility Control Statement Formats

Control Statements

F1

// SCRATCH UNIT- {”

},LABEL-fiIename [PACK-vol-id

// END
mmddyy

} ,LABEL-filename,DATE- { ddmmyy EPAC K-vol-id]
yymmdd

F1

// SCRATCH UNIT- {“

// END

F1

”} ,LABEL-filename [,PACK-vol-id]

// REMOVE UNIT- {
// END

F1 mmddyy

// REMOVE UNIT- {”} ,LABEL-filename,DATE- { ddmmyy [,PACK-vol-id]
yymmdd

// END

,PACK-vol-id
} ,LABEL-ALL | required if
UNIT-I1

F1

// REMOVE UNIT- {“

// END

Use

Remove the
VTOC entry for
the named file
and erase the

contents of
the file

SDELET Parameters

F1
UNIT- ;” f

LABEL-filename

LABEL-ALL

mmddyy
DATE-< ddmmyy

yymmdd
DATA-YES

DATA-NO

PACK-vol-id

Control Statements
// REMOVE UNIT- 3:?% ,LABEL-filename, DATA-YES [,PACK-voI-id]

// END

Specifies the location of the volume containing the file(s) being
deleted. F1 specifies the disk, 11 specifies diskettes.

Identifies by name the file to be deleted. If the file is a multi-
volume file on diskette, the entire logical file will be deleted,

Specifies deletion of all files on the specified volume. For disk-

ettes, the files on more than one diskette can be deleted with
one $DELET request if the diskettes have the same vol-id.

Identifies a file by its creation date.

Specifies that the contents of a file be erased.

Specifies that the contents of a file not be erased. If the DATA
parameter is not specified, DATA-NO is the default.

Identifies diskette by vol-id. Required only when both
LABEL-ALL and UNIT-I1 are specified in the REMOVE
statement,

$DELET Parameter Summary

UNIT Parameter

The UNIT parameter is either UNIT-F1 (disk) or UNIT-11 (diskette). It tells the pro-
gram the location of the volume containing the file(s) being deleted.

LABEL Parameter

Specifies the name of the file to be deleted. For disk requests, LABEL-ALL speci-
fies that all files on the disk except #LIBRARY be deleted. For diskette requests,
LABEL-ALL specifies that all files on the inserted diskette be deleted. The files on
more than one diskette can be deleted by asingle LABEL-ALL request if the disk-
ettes have the same vol-id.

Utility Program Descriptions

133

DATE Parameter

Each file can be further identified by its creation date. For the disk, the optional
DATE parameter can also be used to distinguish a particular file when there is more
than one file with the same name. If date is specified, then only the file with the
specified name and date is deleted; if date is not specified, then all files with the spe-
cified name are deleted. For disk requests, the date must be in the same format as
that of the system date. For diskette requests, the date must be in the same format
as creation date for the diskette file to be deleted. The date parameter is not valid
when LABEL-ALL is specified.

DATA Parameter

The DATA parameter lets you delete the specified file directly from the disk as well
as from the VTOC.

If YES is coded in this parameter, then the specified file will be removed from the
disk and any reference to it in the VTOC will be removed. In addition, a message
will be logged on the display screen or printer for each file removed from the disk.
If NO is coded in this parameter, then the specified file will not be removed from
the disk. However, any reference to it in the VTOC will be removed. [f this param-

eter is not used, DATA-NO is assumed.

The DATA parameter is valid only with the REMOVE control statement.

$DELET OCL and Utility Control Statement Sequence
To initiate the $DELET program through OCL, the following is required:

// LOAD $DELET

// RUN 1 fil ,DATE- (mmddyy
// SCRATCH UNIT- LLABEL- { " ename ddmmyy p| [,PACK-vol-id]

11 ALL

yymmdd
and/or
' ,DATE- (mmddyy -

F1 filename ,DATA-JNO .

// REMOVE UNIT- {| 1 } ,LABEL-{ ALL } ddmmyy l: {YESHEPACK-voL.d]
yymmdd

// END

$DELET Examples

in order to remove the VTOC entry JOE (created October 14, 1974) on the disk, you
could enter:

// LOAD $DELET
// RUN
// SCRATCH UNIT-F1,LABEL-JOE,DATE-101474

// END

134

In order to remove and erase all files named JON on the disk, you would enter the
following:

// LOAD $DELET

// RUN

// REMOVE UNIT-F1,LABEL-JON,DATA-YES
// END

Utility Program Descriptions 135

$DUPRD—DISKETTE COPY UTILITY PROGRAM

The diskette copy program copies a single diskette file or all files on a diskette to
another diskette to provide a duplicate of the file(s). When an entire diskette is
copied, unused space on the input diskette is gathered together into a single free
space on the output diskette. The output diskette must be in the same format
(extended or standard) as the diskette to be copied.

Important diskettes with permanent files are the diskettes normally copied. Because

diskettes can develop surface irregularities as they undergo the wear of continued

use, it is a good idea to copy your important files soon after they are created.
$DUPRD Utility Control Statement Formats

Use Control Statement

Copy all fileson a // COPY11 NAME-ALL,PACK-vol-id [,DELETE- {YES}]

diskette to another NO
// END

Copy one diskette // COPY11 NAME-filename,PACK-vol-id

file to another // END

diskette

$DUPRD Parameters

NAME-ALL Requests that all files on a diskette be copied to another
diskette.

NAME-filename Specifies the name of the single diskette file that is to be

copied to another diskette.

PACK-vol-id Identifies the output diskette.

DELETE-YES Indicates that no expired files on the input diskette are to
be copied. The DELETE parameter is valid only with
NAME-ALL.

DELETE-NO Indicates that expired files on the input diskette are to be

copied to the new diskette. The DELETE parameter is
valid only with NAME-ALL.

$DUPRD Parameter Summary
NAME Parameter

There are two types of NAME parameters:
NAME-ALL and NAME-filename.

136

The NAME-ALL parameter indicates that all files on the inserted diskette are to be
copied to another diskette. The NAME-filename parameter specifies the name of
the single file that is to be copied from one diskette to another.

When all files on a diskette are copied, the contents of the input and output diskettes
are the same, except, possibly, for the volume identification and alternate track in-
formation. Space between files is eliminated:; the files are physically contiguous on
the new diskette.

The diskette that is being copied can contain standard interchange data files or non-
interchange files (see Appendix C). The diskette to contain the copy must not con-
tain active files if all files on a diskette are being copied, or if the file to be copied is
part of a multivolume file. For either NAME-ALL or NAME-filename, if a diskette
to be copied is a portion of a multivolume file, only that one portion of the multi-
volume file will be copied.

To perform the copy, $DUPRD requires enough space on the disk to contain the
data being copied. $DUPRD copies the file or diskette to space on the disk, then
displays a message telling the operator to mount the diskette that is to contain the
copy. After transferring the copy from the disk to a diskette, SDUPRD execution
is complete.

PACK Parameter

The PACK parameter supplies the volume identification (vol-id) of the output disk-
ette. The PACK parameter is always required.

DELETE Parameter

The DELETE parameter can be used if FILENAME-ALL is specified. DELETE-YES
specifies that expired files on the input diskette are to be deleted. DELETE-NO spe-
cifies that expired files on the input diskette are to be copied. DELETE-NO is the
default.

$DUPRD OCL and Utility Control Statement Sequence
To initiate the diskette copy program, the following OCL is required:

// LOAD $DUPRD

// FILE NAME-COPY1,UNIT-11,...
// RUN

// COPYII...

// END

Utility Program Descriptions 137

$DUPRD Examples
Copy all files on a diskette to the diskette with a vol-id of 123456.

// LOAD $DUPRD

// FILE NAME-COPYI11,UNIT-I1

// RUN

// COPY11 NAME-ALL,PACK-123456
// END

Copy diskette file (with filename of JIM and creation date of 01-02-75) to another
diskette (with vol-id of 345678).

// LOAD $DUPRD

// FILE NAME-COPY1,UNIT-11,DATE-010275
// RUN

// COPY11 NAME-JIM,PACK-345678

// END

138

$HIST—HISTORY FILE DISPLAY UTILITY PROGRAM

The $HIST utility program lists, according to the current SYSLIST assignment (see
index entry: SYSLIST procedure), the contents of the HISTORY file. The HISTORY
file is an area on the disk reserved for collecting information such as OCL statement
entered, utility control statements entered, error messages displayed, and the opera-
tor’s response to each error message. Thus, the contents of the HISTORY file allows
you to trace the sequence of events leading to current system status.

Because the HISTORY file is limited in size to thirty-nine 256-byte sectors, the num-
ber of events reflected in the HISTORY file at a particular time varies with the length
of entries in the file. Once the file is filled, each new entry causes the oldest entry to

be dropped from the file. When the file is listed, the oldest entry is displayed or printed
first, and the most recent entry is displayed or printed last.

$HIST is evoked by the HISTORY procedure (see index entry: HISTORY procedure).

$HIST Utility Control Statement Formats

Use Control Statement
Display only previously [// DISPLAY]
displayed HISTORY // END
file data
List complete contents // DISPLAY ALL
of HISTORY file {includ- // END
ing items not previously
displayed)

$HIST Parameters

The DISPLAY utility control statement requests that part or all of the HISTORY
file be displayed or printed. If the DISPLAY statement is not entered, the only in-
formation listed will be that information displayed or printed at the time it was
logged.

ALL ALL specifies that every entry in the HISTORY file is to be displayed
or printed. If ALL is not specified, only those entries previously viewed
by the operator (information displayed at the time it was logged) are
shown.

$HIST OCL and Utility Control Statement Sequence
To initiate the $HIST utility program through OCL, the following is required:
// LOAD $HIST
// RUN

[// DISPLAY...]
// END

Utility Program Descriptions 139

$HIST Examples
Display only previously displayed HISTORY file data:

// LOAD $HIST
// RUN
// END

Display the entire HISTORY file:

// LOAD $HIST
// RUN

// DISPLAY ALL
// END

Display the entire HISTORY file and remove all entries after the file is shown:

// LOAD $HIST

// RUN

// DISPLAY ALL
// END

// LOAD $HINT

// RUN

Note: $HINT is the utility program that clears the HISTORY file if RESET is speci-

fied in the HISTORY command statement. (See index entry: HISTORY command
statement,)

140

$INIT-DISKETTE LABELING AND INITIALIZATION UTILITY PROGRAM

$INIT, which is evoked by the INIT procedure (see index entry: /N/T procedure),
performs three functions:

® [nitializes (formats) diskettes
® Deletes files from diskettes

® Renames diskettes by changing volume label information

Initialize (FORMAT and FORMAT2)

To initialize a diskette, $INIT formats the diskette as an IBM standard interchange
diskette with twenty-six 128-byte sectors per data track or as an extended format
diskette with eight 512-byte sectors per data track (see the description of FORMAT?2
under index entry: /NIT command statement and Appendix C).

During the initialization process the diskette is checked for active files. If one or
more active files exist on the diskétte, the operator is notified of the fact via the
display screen and can choose to cancel the job or continue. If the operator con-
tinues the job, active files are deleted. If no active files are found on the diskette,
SINIT checks for defective tracks, marking (flagging) any defective tracks found.

If track O or more than two other tracks are found to be defective, the operator is
notified of the fact via the display screen and initialization is terminated. Otherwise,
if one or two bad tracks are found, their addresses are preserved in the ERMAP field
on track O (see The /IBM Diskette for Standard Data Interchange, GA21-9182).

To complete initialization, all data sectors (tracks 1-76) on the diskette are written
with 128-byte or 512-byte sectors consisting of blanks. The vol-id and owner-id
fields in the volume label on track O are replaced by the PACK and ID parameter
values, respectively (the parameters are described with the other $INIT parameters).
If the PACK parameter is not specified, the system date is used. If the ID parameter
is not specified, OWNER-ID is used.

The VTOC is initialized to indicate that one file, DATA, occupies tracks 1-73, and
DATA is empty.

Note: All diskettes for a multivolume file must be initialized in the same format;
all diskettes in the file must be in the standard interchange format or have 512-byte
data sectors.

Delete (DELETE)

If the DELETE option of $IN IT is requested, the operator is notified via the display
screen when any active files exist on the inserted diskette. |If active files do exist,
the job can be canceled or the files can be deleted. If the DELETE option is taken,
the VTOC for the diskette is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id specified with the DELETE option is com-
pared with the vol-id in the diskette volume label on track 0. They must be identi-
cal for deletion to occur. The owner-id information specified with the DELETE
option is not compared to information in the volume label.

Utility Program Descriptions 141

Rename (RENAME)

If the RENAME option is chosen instead of FORMAT, FORMAT?2, or DELETE,

only the volume label (track 0) is changed. The vol-id and owner-id fields are replaced
by the contents of the PACK and ID parameters, respectively. These parameters are
specified with the RENAME option. |f a new vol-id is not specified, the system date
is used. If owner-id is not specified, OWNER-ID is used.

Diskette Defects Encountered During Processing

If the system encounters diskettes with physical defects during output operation,
the following information will apply.

If a defect is discovered while a job is being processed, the system will make one or
more attempts (called retries) to process the bad sector. |f the retries are not success-
ful and the program is creating output to diskette, the file is closed at the beginning
of the operation during which the error occurred, and normally at the beginning of
a track. The operator is notified that the diskette contains a defect and is given the
option of inserting another diskette and continuing the operation (which will result
in a multivolume file) or terminating the job and restarting with an error-free diskette.

The diskette containing the defect can be used by the system only for input, unless
the file that was being created when the defect was detected is expired or deleted.

To restore to full use, the diskette should be initialized; however, if the initialization
process results in discovery of more than two defective tracks, the diskette is unusable.

$INIT Utility Control Statement Formats

The utility control statement for $INIT functions must appear in the order shown:

Use Control Statement
Initialize a // UIN OPTION- \{FORMAT }
diskette FORMAT2
[// VOL [PACK-vol-id ,ID-owner-id]
: I system date] [OWNER-lD
// END

Delete files // UIN OPTION-DELETE

onadiskette [/ VOL[PACK-vol-id] [ID-owner-id]
[[mtem___ga.ts .OWNER-ID]
// END -

Rename a [// UIN OPTION-RENAME]

diskette 7/ VOL [PACK-vol-id] [[1D-owner-id7]
[[usth_dats] [mw_smg]
// END -

142

$INIT Parameters

UIN Statement

The UIN statement specifies which S$INIT option is selected.

OPTION- {

FORMAT
FORMAT2

OPTION-DELETE

OPTION-RENAME

VOL Statement

j

Initializes a diskette as a standard interchange diskette
(FORMAT) with 128-byte data sectors or as an extended
format diskette with 512-byte data sectors (FORMAT2).
For more details on FORMAT and FORMAT?2, see index
entry: /NIT command statement.

Deletes files on a diskette.

Renames a diskette. RENAME is the option selected
if no option is specified.

The VOL statement provides information to be inserted in the volume label.

PACK-vol-id
system date

ID-owner-id
OWNER-ID

$INIT Parameter Summary

OPTION- {

FORMAT
FORMAT2

}

The PACK parameter specifies the vol-id. If the PACK
parameter is not used, the system date is the default.

The ID parameter specifies information for the
owner-id field of the volume label. {f the ID param-
eter is not used, OWNER-1D is the default.

if FORMAT or FORMAT2 is specified, the initializa-
tion function of $INIT is selected. The initialization
function of $INIT formats and tests a diskette. Track
0 is built or rebuilt and tested for defects. If any
defects are found on track 0, the diskette is unusable.

Tracks are tested through attempts to write 1Ds and
records consisting of 128 bytes (FORMAT) or 512
bytes (FORMAT2) of hex ‘E5’ on the tracks. If a
flaw is found within a track, the entire track is marked
defective (IDs all X'FF’) and an alternate is assigned.
If more than two bad tracks are found, the job is ter-
minated and the diskette is not usable.

Tracks are initialized by writing sectors of blanks on

all data tracks (1-76). During initialization the VTOC
is set to indicate that one file, DATA, occupies tracks
1-73, and DATA is empty. The vol-id and owner-id
fields of the volume label (track 0) are replaced by the
vol-id and owner-id given in the PACK and 1D param-
eters, respectively (see following). If neither param-
eter is used, the system date and OWNER-ID are written
in the vol-id and owner-id fields, respectively.

Utility Program Descriptions

143

144

OPTION-DELETE

OPTION-RENAME

PACK-vol-id

system date

ID-owner-id
OWNER-ID

For more details on FORMAT and FORMAT2, see
index entry: INIT command statement.

The DELETE function deletes files from a diskette by
setting the VTOC to indicate that one file, DATA,
occupies the entire diskette, and DATA is empty.

The RENAME function places the vol-id specified in
the PACK parameter (see following), or the system
date, if PACK is not used, in the vol-id field of the
volume label (track 0). The vol-id is left-adjusted

and padded with blanks. |f the 1D parameter is used
(see following), as many as 14 characters of owner
identification information, left-adjusted and padded
with blanks, are placed in the owner-id field of the
volume label. If the ID parameter is not used,
OWNER-ID is placed in the owner identification field.

During initialization (FORMAT or FORMAT2) $INIT
writes the vol-id specified by the PACK parameter in
the volume label of the diskette being initialized. The
vol-id can be as many as six alphameric characters.
The system date is written if the PACK parameter is
not specified.

In the DELETE function, the vol-id specified or system
date must be equal to the vol-id existing on the inserted
diskette, or the DELETE function is not performed.

In the RENAME function, the vol-id specified or the
system date is written in the volume label of the mounted
diskette.

The ID parameter specifies owner information to be
written in the volume label to further identify a disk-
ette. As many as 14 characters can be specified. Any
combination of characters except single quotation marks
("), commas, and leading or embedded blanks can be
specified. |f the ID parameter is not used, OWNER-ID
is written in the owner-id field of the volume label.

Owner identification information is strictly for the
user. It is not used by the system to verify that the
appropriate diskette is being used for a job.

$INIT OCL and Utility Control Statement Sequence

To initiate the $INIT program through OCL, the following is required:

// LOAD $INIT

// RUN

—
FORMAT
FORMAT2

// UIN OPTION- DELETE

N RENAME

= .

PACK-vol-id ID-owner-id
VOL !
_/ /vo me_dm] [QWN.EBJD]J
// END

SINIT Examples
In order to name a diskette JIM, you could enter:

// LOAD S$INIT
// RUN

// VOL PACK-JIM
// END

In order to initialize to 128-byte data sectors, test, name (APRO), and insert an

owner identification of FRANT, you would enter:

// LOAD SINIT

// RUN

// UIN OPTION-FORMAT

// VOL PACK-APRO,ID-FRANT
// END

Utility Program Descriptions

145

SLABEL-VTOC DISPLAY UTILITY PROGRAM

The $LABEL utility program displays on the display screen or prints on the printer,
depending on the current SYSLIST assignment (see index entry: SYSL/ST proce-
dure), either an entire disk or diskette VTOC (volume table of contents), or a spe-

cific VTOC entry.

The displayed information is an up-to-date record of the contents of the disk or
diskette. Some common reasons for wanting such information are:

® To check the contents of a diskette before reinitializing it to ensure that it does

not contain active files

® To find out how much disk space is available for new files

® To obtain specific file information, such as the file name, designation (permanent,
temporary, scratch), or the space reserved for the file

$SLABEL is evoked by the CATALOG procedure (see index entry: CATALOG

procedure).

Sample VTOC Displays

In the sample VTOC displays that follow, each item shown is explained after the

display.

Disk VTOC

DEVICE CAPACITY = 5.0 MEGABYTES
AVAILABLE SPACE ON PACK- LOCATION BLOCKS

729 5
937 1049
PACK- SYSTEM UNIT- FL DATE (date)
FILE FILE RECORD RECORDS RETAIN
NAME DATE COUNT AVATLABLE TYPE
#LIBRARY 99/99/99 P
PRMSTR 01/03/75 30 60 T
BCKORD 01/10/75 0L 39 T
KRCINV 01/17/75 100 38 P
TEMPRM 0L/24/75 200 16184 T

*%xk%END OF VTOC DISPLAY#¥dokk

DEVICE CAPACITY

AVAILABLE SPACE

PACK

UNIT

146

FILE
ORG

= =

RECORD FILE KEY KEY CREATION UNITS
LENGTH LOCATION LENGTH LOCATION FORMAT ALLOCATED
00 18 BLOCKS 700
256 718 08 [o]:) BLOCKS 10
64 728 BLOCKS 0L
37 734 05 05 RECORDS 100
20 737 08 o1} BLOCKS 200

The capacity in megabytes (one megabyte is one million
bytes) of the disk used by the system.

The LOCATION (block number, in decimal) of a block
of available space, and the number, in decimal, of
BLOCKS of space available at that location. LOCATION
and BLOCKS are given for all free space on the disk.

The volume identification given in the disk volume
label. The disk volume label (VOL1) is {ocated on
track O.

F1 for disk VTOC displays.

DATE
FILE NAME
FILE DATE

RECORD COUNT

RECORDS AVAILABLE

RETAIN TYPE

FILE ORG

RECORD LENGTH

FILE LOCATION

KEY LENGTH

KEY LOCATION

CREATION FORMAT

UNITS ALLOCATED

The current system date in the current format.
The name of the file described by the VTOC entry.
The creation date of the file described.

The number, in decimal, of records currently contained
by a file. A VTOC entry for the library file, #LIBRARY,
is shown in the preceding sample display. Because
#LIBRARY is not a data file, no record count is

given.

The number, in decimal, of records for which there is
still room in a file. A VTOC entry for the library file,
#LIBRARY, is shown in the preceding sample display.
Because #LIBRARY is not a data file, no record count
is given,

The retention classification of a file: P for permanent,
T for temporary.

File organization: S for sequential, | for indexed, D
for direct.

The length, in decimal number of bytes, of the records
in a file. A VTOC entry for the library file, #LIBRARY,
is shown in the preceding sample display. Because
#LIBRARY is not a data file, the record length

given in the sample display is 00.

The decimal block number of the beginning of data in
a file.

Decimal length of the keys in an index file.

The position, in decimal, of the rightmost byte of the
key in the records in an index file.

The format in which a file was created, either BLOCKS
or RECORDS.

The number, in decimal, of blocks or records used to
allocate a file.

Note: If the RECORDS parameter was used to allo-
cate space, the number shown may be greater than the
number requested, because the system allocates space
in'blocks and rounds up to the next higher block when-
ever part of a block is required.

Utility Program Descriptions

147

Diskette VTOC

DISKETTE DISPLAY DATE - (DATE)
PACK - INVTRY ID - JONES

SPACE AVAILABLE ON THIS PACK IS 1861 BLOCKS — EACH 128 BYTES

FILE FILE FILE FILE RECORD FILE EXPIRATION MVF SEQUENCE OLMY

NAME DATE LENGTH TYPE LENGTH LOCATION DATE FILE NUMBER BLOCK SIZE
KRCINV 0L/17/75 30 SYSTEM 37 27 PROTECT
TEMPRM 01/24/75 33 SYSTEM 20 57 PROTECT

*¥kkkEND OF VTOC DISPLAY*dokkk

DATE The current system date in the current format.

PACK The volume identification given in the diskette volume
label. The volume label for standard interchange disk-
ettes is described in The IBM Diskette for Standard
Data Interchange, GA21-9182. See also Appendix C.

ID The owner identification given in the diskette volume
label. The volume label for standard interchange disk-
ettes is described in The IBM Diskette for Standard
Data Interchange, GA21-9182. See also Appendix C.

SPACE AVAILABLE The number, in decimal, of sectors, 128 bytes or 512
bytes each, available on the diskette. The number rep-
resents space following the last active (unexpired) file
on the diskette.

FILE NAME The name specified when the file described was created.
FILE DATE The creation date of the file described.
FILE LENGTH The number, in decimal, of the 128-byte or 512-byte

sectors contained in a file.

Note: If the file was created by the $COPY utility

(see index entry: SCOPY utility program) and the
record length of the file is 128 bytes or less, a sector

of control information is inserted at the beginning of
the file. This sector of control information will increase
the FILE LENGTH by one. When the file is returned
to the disk, the control information is dropped and
record count returns to the original number.

FILE TYPE Indicates a file's interchange type; STANDARD,
SYSTEM, or UNDEFINED. See Appendix C fora
description of the standard interchange and system
files.

RECORD-LENGTH The length, in decimal number of bytes, of the records
in a file.

FILE LOCATION

The decimal sector number of the beginning of data
in a file.

EXPIRATION DATE The expiration date of a file. PROTECT indicates that

MVF FILE

a diskette file is permanent (RETAIN-999).

Indicator to specify whether a file is a multivolume file:
blank for a nonmultivolume file, CONTINUED for any
volume but the last volume of a multivolume file, LAST
for the last volume of a multivolume file.

SEQUENCE NUMBER A diskette’s sequence number within a multivolume

file if the diskette is part of a multivolume file.

OLMV BLOCK SIZE The number of disk blocks used when creating the

offline MVF.

$LABEL Utility Control Statement Formats

Use
Display the
entire VTOC

Display a VTOC
entry for a parti-
cular data file

$LABEL Parameters

UNIT-F1

UNIT-11

LABEL-ALL

LABEL-filename

Control Statement

// DISPLAY UNIT- {”} LABEL-ALL

F1
// END

"

// DISPLAY UNIT- {F1

} ,LABEL-filename

// END

Indicates that the disk contains the VTOC information to be
displayed or printed.

Indicates that a diskette contains the VTOC information to
be displayed or printed.

Specifies that the entire contents of the VTOC are to be dis-
played or printed.

Indicates the VTOC entry for a particular file is to be displayed
or printed. If the disk contains more than one file with the
same name, the program will display or print all those entries.

$LABEL OCL and Utility Control Statement Sequence

To initiate $LABEL, the following statements are required:

// LOAD $LABEL

// RUN

// DISPLAY UNIT- {“} ,LABEL- {A"" }

// END

" filename

Utility Program Descriptions

149

$LOAD—RELOAD LIBRARY UTILITY PROGRAM

The $LOAD utility returns to the disk a library backed up on diskette by the $BACK
utility (see index entries: 8BACK utility program and BACKUP procedure). When
the $LOAD utility is used, the vol-id in the volume label of the first input diskette
becomes the vol-id in the volume label of the disk. The $LOAD utility assigns error
recording table areas on the disk.

Though $LOAD is the name of the reload utility, the utility is composed of two pro-
grams: $LOAD and $LOADI. $LOAD loads $LOADI, a stand-alone program that
actually performs the function of returning a library to the disk. $LOADI can also
be loaded by an IPL performed from diskette.

The $LOAD utility displays space allocations specified for the library file (#LIBRARY)
and the library directory within the library file. $LOAD also displays the setting of
the INQUIRY/OFFLINE option. For example,

- =)
~===> LIBRARY DIRECTORY SECTORS = oo33\
INCLUDE INQUIRY/OFFLINE? = YES >'decimal
TOTAL LIBRARY BLOCKS - 02397
L J

Space allocations can be altered when they are displayed (For a detailed description
of how to change the allocations, see index entry: RELOAD display). The maximum
number of 256-byte sectors that can be allocated to the library directory is 256. The
number of entries the directory can contain is: number of directory sectors x 11
minus 23. Each entry requires 23 bytes. A description of the contents of each entry
is given in the description of the SMAINT utility copy functions (see index entry:
printing from the library). Each library block contains 2660 bytes.

Unaltered allocations remain at the values in effect when the diskette file was created
by $BACK. If the INQUIRY/OFFLINE option is not changed during the display,
it too remains at the setting in effect when the file was created by $BACK.

$LOAD is evoked by the RELOAD procedure (see index entry: RELOAD procedure).

Note: The $LOAD utility provides the only method whereby you can change the
size of the library directory (alter the space allocated to it). When using SLOAD
(RELOAD), however, be aware that library members that exist on the disk but do
not exist in the backed up library will be lost when the backed up library is returned
to the disk. If you have library members on the disk that you want to save, use the
FROMLIBR procedure to copy them before executing RELOAD or $LOAD, then
use TOLIBR to place them in the backed up library after it is reloaded. (You may
have to increase the size of the backed up library in order to have room for the addi-
tional members.) For information on FROMLIBR and TOLIBR, see index entries:
FROMLIBR procedure and TOL/BR procedure.

Inquiry Option

Certain programs can be interrupted while they are being processed. A request for
interruption is called an inquiry request (made by pressing the INQ key on the key-
board and choosing the 1 option). Programs are usually interrupted to permit another
program to run. Control is then given back to the first program,

The inquiry interrupt involves three steps:

1. When a program that can be interrupted recognizes an inquiry request (the
INQ key has been pressed and the 1 option chosen), a rollout routine moves
the interrupted program from main storage to the disk.

2, The program for which the interrupt was requested must be loaded normally.
The interrupting program can be any type. This interrupting program cannot
be interrupted, but can be cancelled.

Note: The printer does not skip to line 1 of the next page at the end of an
interrupting program.

3. After the interrupting program is executed, the interrupted program moves
back into main storage using a rollin routine. The interrupted program begins
execution at the point of interruption and terminates in a normal manner.

If the inquiry option is selected, a rollout area on the disk is allocated to contain
programs that can be rolled out from main storage. If the inquiry option is not se-
lected, the inquiry interrupt itself is allowed, but attempts to perform the roliout
routine are bypassed.

Note: If the operator presses the INQ key after pressing the STOP key and the IPL
diskette switch-is in the on position, the system displays the contents of main stor-
age on the display screen, beginning with the main storage address specified by the
data switches on the CE control panel. To terminate the display and continue pro-
cessing, the operator can press the START key. (For additional information, refer to
IBM System/32 Data Areas and Diagnostic Aids, SY21-0532.)

Utility Program Descriptions 151

CAUTION

When a program that allows inquiry mode is interrupted by inquiry, the execution
of that program is suspended, permitting the execution of other programs. However,
if these other programs alter the status of the system or the status of files, the effect
may be abnormal termination of the program or erroneous results when the inter-
rupted program regains control.

The system and disk oriented functions listed below have the potential for such
abnormal termination and erroneous results when executed in an inquiry mode:

Utilities — all functions of which are always prohibited:

Utility Function(s)

$BACK (Back up library)
$LOAD (Reload library)
$PACK {Compress file space)
$REBLD {Rebuild VTOC)
$SETCF (Reconfigure system)
$BUILD (Alternate sector)

Utilities — some functions of which are prohibited:

Utility Function(s)
$COPY (Restore all/save all)
$DELET (Delete all)

Utilities — processing of active files prohibited:

Utility Function(s)

$BICR (TRANSFER active file)
$COPY (SAVE/ORGANIZE active file)
$DELET (DELETE active file)

Utilities — processing permitted with warning message:

Utility Function(s)

$COPY (DISPLAY active file)

$LABEL (CATALOG ALL/active file)
Offline Option

For a description of how offline multivolume files are processed, see index entry:
offline multivolume file.

152

$LOAD Utility Control Statement Format

Contro! statements are not used.

$LOAD OCL Sequence

// LOAD $LOAD
// FILE NAME-#LIBRARY,UNIT-11

// RUN

SMAINT—LIBRARY MAINTENANCE UTILITY PROGRAM

$MAINT is evoked by the FROMLIBR, LISTLIBR, REMOVE, and TOLIBR proce-
dures (see index entries: FROMLIBR procedure, LISTLIBR procedure, REMOVE
procedure, and TOL/BR procedure). SMAINT has three major functions:

® Allocate. Allocate specifies and changes the size of the library file (#LIBRARY).

® Copy. Copy

1.

2.

3.

4.

Places library members in the library

Copies library members within the library

Copies library members to a file on the disk or on a diskette

Displays or prints the contents of the library or directory

® Delete. Delete removes library members by deleting them.

The functions of SMAINT and the related utility control statements are described
here in detail, following a general description of the library.

System Library File (#LIBRARY)

Location

The library is the first file on the disk immediately following the fixed area of the

disk.

/

Fixed
AREA

#LIBRARY

DATA
FILE
AREA

The boundaries of the library at any one time are fixed, though they can be changed
by a BACKUP and RELOAD sequence (see index entries: BACKUP procedure and

RELOAD procedure), and by ALLOCATE, a function of SMAINT (see index entry:
ALLOCATE).

Utility Program Descriptions

153

Contents

Reserved | Disk Error Directory | Rollout I Scheduler | Additional | Library
Area Volume Logging | Area Area I Work Main Stor- | Members
Label Area (Optional)l Area age Dump
(VOL1) | (SWA) Area
7.

Disk volume label (VOL 1). The volume label is 2566 bytes long and contains owner
identification information and system control programming information regarding the
disk.

Error logging area. The error logging area is a variable number of sectors used for
recording hardware and hardware-related system errors. The error logging area is
assigned by the $LOAD utility.

Directory area. The directory area contains system information, recorded and main-
tained by $MAINT, and the library directory. The library directory contains an entry
for each member in the library. Each entry describes the corresponding library mem-
ber and identifies its location. $MAINT places an entry in the directory each time it
places a member in the library, and deletes an entry each time it deletes a member.
The size of the library directory can be changed by the $LOAD utility (see index
entry: $LOAD utility program). However, the size of the directory is restricted to

a maximum of 256 sectors.

Rollout area. A rollout area is allocated only if inquiry support or offline multivol-
ume file support is selected (INCLUDE INQUIRY/OFFLINE? = YES on the
RELOAD display—see index entry: RELOAD display). For a description of the
inquiry option and offline multivolume files, see index entries: inquiry option and
offline multivolume file.

Scheduler work area (SWA). The SWA is a 170-sector area reserved for use by com-
ponents of the system control programming.

Additional main storage dump area. This area is set aside for the 24K and 32K main
storage systems.

Library members. The library can contain load members, procedure members, source
members, and subroutine members. Member names can be any combination of char-
acters (numeric, alphabetic, and special) except commas, periods, single quotes),
and blanks. Because the question mark (?) has a special meaning in procedures (see
index entry: procedure parameters) and in certain control statements, the question
mark should not be used in member names. The first character of a member name

| must be alphabetic (this also includes #, $ and @), and the number of characters in
a member name must not exceed eight.

Organization of Library Members within the Library

Members are stored in the library serially; that is, a 20-sector member occupies 20
consecutive sectors.

New library members are placed in the library just as records are placed in an indexed
file; that is, they are placed after the last active member, and their physical order in
the library reflects the sequence in which they were entered.

154

When members are deleted from the library, all space after the last active member is
made available for new members. This means that if you copy a group of new mem-
bers into the library, then later delete these members before adding more, the space
they occupied in the library is freed and can be used for adding other new members.

Gaps can occur in the library either when a member is deleted or when a member is
replaced by a member that requires a different number of sectors. Sectors between
members are unusable. If the number of unusable sectors becomes high, the library
should be reorganized by performing a BACKUP and RELOAD sequence (see index
entry: BACKUP procedure and RELOAD procedure). When a library is reorganized,
members are shifted so that gaps do not occur between them—all unused space is
collected into one free area at the end of the library.
To provide as much space as possible within the prescribed limits of the library, the
system compresses procedure and source members by removing all duplicate blanks.
When the members are retrieved, the blanks are reinserted.

Allocate Function

Allocate Uses
® Specify library size

® Increase library size

® Decrease library size

Allocate Control Statement Formats

Use Control Statement
Specify library // ALLOCATE LIBRSIZE-number
size
Increase library // ALLOCATE INCREASE-number
size
Decrease library // ALLOCATE DECREASE-number
size

Allocate Parameters

LIBRSIZE-number Specifies the size of the library in number of blocks (1 block =
ten 256-byte sectors)

INCREASE-number Increases the library size by the number of blocks indicated

DECREASE-number Decreases the library size by the number of blocks indicated

Utility Program Descriptions

155

Allocate OCL and Utility Control Statement Sequence

// LOAD $MAINT
// RUN

// ALLOCATE...
// END

Note: Within any one run of the SMAINT utility program (that is, for any one

// LOAD SMAINT and // RUN sequence), you cannot increase, then decrease, then
increase the library size, whether you use the INCREASE and DECREASE key-
words or the LIBRSIZE keyword to change the library size.

Allocate Examples
In order to set the library size at 1000 blocks you would enter:

// LOAD $MAINT

// RUN

// ALLOCATE LIBRSIZE-1000
// END

In order to increase the library size by 10 blocks you would enter:

// LOAD $MAINT

// RUN

// ALLOCATE INCREASE-10
// END

In order to decrease the library size by 3 blocks you would enter:
// LOAD $MAINT
// RUN

// ALLOCATE DECREASE-3
// END

Copy Function

Copy Uses
Reader-to-Library ® Add a procedure or source member to the library, or
replace a procedure or source member in the library.
Reader refers to the keyboard, by which the member
is entered into the system.
Library-to-Library ® Copy a member from the library to the library, chang-

ing the name of the member.

® Copy a member having a certain name or all members
having the name.

156

Library-to-File
(record mode or
sector mode)

File-to-Library

Library-to-Printer

e Copy members, either of a specified type or of all types,
that have names beginning with certain characters.

® Copy members, either of a specified type or of all types,
omitting members that have a certain name or have
names beginning with certain characters, or omitting
all SCP (system control programming) members.

® Copy a member from the library to a file.

® Copy a member having a certain name or all members
having the name.

® Copy members, either of a specified type or of all types,
that have names beginning with certain characters.

® Copy all members except SCP members.

® Copy members, either of a specified type or of all types,
omitting members that have a certain name or have
names beginning with certain characters, or omitting
all SCP members.

® Copy all members that have had a PTF applied to them
{(sector mode only).

® Add library member(s) to an existing file that contains
library members.

® Copy a member or members from a file to the library.

® Copy members, selecting members that have a speci-
fied PTF log number.

Note: $MAINT can copy a sector mode file to the library
only if the file was copied from the library by SMAINT.
See the preceding description of Library-to-File and index
entry: TOL/BR procedure.

® Print a member having a certain name or all members
having the name.

® Print all members of a certain type.

® Print members, either of a specified type or of all types,
that have names beginning with certain characters.

® Print members, either of a specified type or of all types,
omitting members that have a certain name or have
names beginning with certain characters, or omitting
all SCP members.

Utility Program Descriptions

157

® Print the directory entries for members of a certain type.

® Print all directory entries and system information in
the directory area.

® Print the system information in the directory area.

® Print directory entries, either for members of a speci-
fied type or for all members, omitting entries for mem-
bers that have a certain name or have names beginning
with certain characters, or omitting all entries for SCP
members.

Note: |f the display screen and not the printer is used to
list library members or directory entries, only the first 40
bytes of each output line are displayed. To ensure that
all the information in a library member or directory entry
is listed, use the printer to list the output. You can use
the STATUS procedure (see index entry: STATUS pro-
cedure) to determine where system output is currently
listed (that is, what the current SYSLIST assignment is);
and the SYSLIST procedure (see index entry: SYSL/ST
procedure) to change the current SYSLIST assignment.

Copy Control Statement Formats

Reader-to-Library: Control statements required for adding or replacing a procedure or
source member are:

p
S

RETAIN-P

z,NAME-name,TO-H I:'] ,RECL-number

// COPY FROM-READER,LIBRARY- g 'RETAIN-R |

Library member (blanks are removed from statements before the statements are
put in the library, and reinserted for printing)
// CEND Must always follow the procedure or source statements being placed
in the library.
Library-to-Library: Control statements depend on the function required.

® Copy a member from the library to the library, changing the name of the member:

S
P RETAIN-P
- - ,/NAME- ,TO-F1,NEWNAME-name |'———>——
// COPY FROM-F1,LIBRARY 0 name [RETAIN-R]
R
® Copy a member having a certain name or all members having the name:
S
P
// COPY FROM-F1,LIBRARY-{ O »,NAME-name,TO-F1 |-BETAIN- | Newn AME-name
R ,RETAIN-R
LL

158

® Copy members, either of a specified type or of all types, that have names begin-
ning with certain characters:

(S
P
// COPY FROM-F1,LIBRARY- O > ,NAME-characters.ALL,
R
ALL

,RETAIN-P
TO-F1 [;__——-RETAIN-R] /NEWNAME-characters

® Copy members, either of a specified type or of all types, omitting members that
have a certain name or have names beginning with certain characters, or omitting
all SCP members:

S
P name
// COPY FROM-F1,LIBRARY- (; ,NAME- {characters.ALL} ,
ALL
name
TO-F1 [g—s';%:—%] /NEWNAME-characters,OMIT- < characters.ALL
! SYSTEM

Library-to-File, Record Mode: Control statements depend on the function required.
® Copy or add a library member to a file:

,RECL-number

// COPY FROM-F1,TO-DISK,F{LE-filename {,ADD-YES

LIBRARY- {ﬁ}

} ,NAME-name,

® Copy or add a member having a certain name or both members—two permitted
types—having the name:

,RECL-number

// COPY FROM-F1,TO-DISK,FILE-filename {,ADD-YES

S
LIBRARY-< P
ALL

} /NAME-name,

® Copy or add members, either of a specified type or of all (both) permitted types,
that have names beginning with certain characters:

. ,RECL-number
// COPY FROM-F1,TO-DISK,FILE-filename {,ADD-YES } ,NAME-characters.ALL,
S
LIBRARY-< P
ALL

Utility Program Descriptions 159

160

® Copy or add all members of both permitted types except SCP members:

,RECL-number

'ADD-YES } NAME-ALL,

// COPY FROM-F1,TO-DISK,FILE-filename {
LIBRARY-ALL
® Copy or add members, either of a specified type or of all (both) permitted types,

omitting members that have a certain name or have names beginning with certain
characters, or omitting all SCP members:

i ,RECL-number fname
// COPY FROM-F1,TO-DISK,FILE-filename {,ADD-YES } ,NAME- 1characters.ALL} .
S name
LIBRARY-{ P ,OMIT- < characters.ALL
ALL) SYSTEM

Library-to-File, Sector Mode: Control statements depend on the function required.
® Copy or add a library member to a file:
// COPY FROM-F1,TO-DISK,FILE-filename,NAME-name,

LIBRARY- [.,ADD-YES]

O vTWw

® Copy or add a member having-a certain name or all members having the name:
// COPY FROM-F1,TO-DISK,FILE-filename,NAM E-name,

S
P

LIBRARY- < O »>[,ADD-YES]
R

ALL

® Copy or add members, either of a specified type or of all types, that have names
beginning with certain characters:

// COPY FROM-F1,TO-DISK,FILE-filename, NAME-characters.ALL,

s
P

LIBRARY- < O »[ADD-YES]
R

ALL

° Copy or add all members except SCP members:
A

// COPY FROM-F1,TO-DISK,FILE-filename,NAM E-ALL,

LIBRARY-ALL [,ADD-YES]

® Copy or add members, either of a specified type or of all types, omitting mem-

bers that have a certain name or have names beginning with certain characters,
or omitting all SCP members:

// COPY FROM-F1,TO-DISK,FILE-filename,

S
ALL P name
NAME- < name ,LIBRARY-< O),OMIT- {characters.ALL [,ADD-YES]
characters.ALL R SYSTEM
ALL

® Copy or add all members {SCP and non-SCP) that have had a PTF applied to them,
with the option to omit specified members or all SCP members:

ALL
name
characters.ALL

// COPY FROM-F1,TO-DISK,FILE-filename,NAME-

S
P name
LIBRARY-< O PTF-YES |, OMIT- { characters.ALL [:,ADD-YES]
R SYSTEM
ALL

File-to-Library: Control statements depend on the function required.

® Copy a member or members from a file to the library:

,RETAIN-P .
// COPY FROM-DISK,TO-F1 l:,RETAIN-R] ,FILE-filename

® Copy a member that has had a particular PTF applied to it, from a file to the
library:

LRETAIN-P .
// COPY FROM-DISK,TO-F1 [—_—RETAIN-R] ,FILE-filename,PTF-number

Note: $MAINT can copy a sector mode file to the library only if the file was copied

from the library by $SMAINT. See the preceding description, Library-to-file, Sector
Mode and index entry: TOLIBR procedure.

Utility Program Descriptions

161

Library-to-Printer: Control statements depend on the function required.

® Print a member having a certain name or all members having the name:

S
P

// COPY FROM-F1,LIBRARY- < O > ,NAME-name, TO-PRINT
R

ALL
® Print all members of a certain type:
S
// COPY FROM-F1,LIBRARY- f) /NAME-ALL,TO-PRINT
R

® Print members, either of a specified type or of all types, that have names begin-
ning with certain characters:

S

P

// COPY FROM-F1,LIBRARY- (0] ,/NAME-characters. ALL, TO-PRINT

R
ALL

® Print members, either of a specified type or of all tybes, omitting members that

have a certain name or have names beginning with certain characters, or omitting
all SCP members:

S
P name
// COPY FROM-F1,LIBRARY- g /ZNAME- {characters.ALL} ,
ALL
name
TO-PRINT,OMIT- {characters.ALL
SYSTEM

® Print the directory entries for members of a certain type:

// COPY FROM-F1,LIBRARY- ,NAME-DIR,TO-PRINT

IO v Wm

® Print all directory entries and system information in the directory area:
// COPY FROM-F1,LIBRARY-ALL,NAME-DIR,TO-PRINT
® Print the system information in the directory area:

// COPY FROM-F1,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT

162

® Print directory entries, either for members of a specified type or for all members,
omitting entries for members that have a certain name or names beginning with
certain characters, or omitting all entries for SCP members:

// COPY FROM-F1,LIBRARY-

name

S
P
O , ,NAME-DIR,TO-PRINT,
R
ALL

OMIT- < characters.ALL

SYSTEM

Note: If the display screen and not the printer is used to list library members or
directory entries, only the first 40 bytes of each output line are displayed. To en-
sure that all the information in a library member or directory entry is listed, use

the printer to list the output. You can use the STATUS procedure (see index entry:
STATUS procedure) to determine where system output is currently listed (that is,
what the current SYSLIST assignment is); you can use the SYSLIST procedure

(see index entry: SYSL/ST procedure) to change the current SYSLIST assignment.

Copy Parameters

FROM-READER

FROM-F1

FROM-DISK

LIBRARY-S
LIBRARY-P
LIBRARY-O
LIBRARY-R

LIBRARY-ALL

The member to be placed in the library is to be read from
(entered on) the keyboard.

Library members are located in the library.

Input is from a file on either the disk or a diskette. A
FILE statement is required to identify the file.

The specified member(s) is a source member.
The specified member(s) is a procedure member.
The specified member(s) is a load member.

The specified member(s) is a subroutine member.

® For copying library-to-file in record mode, specifies
source (S) and procedure (P) members.

® For printing from the directory area, specifies that
system information as well as directory entries are to
be printed.

® For all uses of copy except the two just listed, speci-

fies that all member types (S, P, O, and R) are
involved.

Utility Program Descriptions

163

LIBRARY-SYSTEM Only system information is to be printed from the direc-
tory area.

NAME-name Name of the member to be added, replaced, copied, or
printed.

NAME-characters.ALL Only those members whose names begin with the indicated
characters (maximum of seven) are to be copied or printed.
For example, NAME-PAY.ALL copies or prints all mem-
bers whose names begin with the characters PAY. (Dupli-
cate members with a different name may be created in a
library-to-library copy. See NEWNAME-NAME and
NEWNAME-characters parameter described later in this
list.)

NAME-ALL All members except SCP members are to be copied, or
all the members of a certain type are to be printed.

NAME-DIR Directory entries for all library members of the type indi-
cated in the LIBRARY parameter are to be printed. If
the LIBRARY parameter is LIBRARY-ALL, system in-
formation is also to be printed. NAME-DIR is only valid

with TO-PRINT.

TO-F1 The library will contain the copied members.

TO-DISK The copied members will be in a disk or diskette file. A
FILE statement identifies the unit (F1 or 11).

TO-PRINT The specified members or directory information is to be
printed.

RETAIN-P A member is being entered in the library. If a member

of the same name as the new member already exists in
the library, the system displays a message to that effect
on the display screen and requires an operator response
before replacing the existing member with the new mem-
ber. 1f the RETAIN parameter is omitted, RETAIN-P

is the default.

RETAIN-R A member is being entered in the library. If a member
of the same name as the new member already exists in
the library, it is replaced by the new member. The oper-
ator is not notified that a duplicate entry existed.

RECL-number This parameter specifies the record length of the state-
ments for a source or procedure member. The record

length can be from 40 through 120,

The RECL parameter also specifies that a copy to a file
is in record mode and not in sector mode.

164

ADD-YES

NEWNAME-name

NEWNAME-characters

OMIT-name

OMIT-characters.ALL

Record Mode: Record mode is specified by the
RECL-number parameter used with the TO-DISK param-
eter (each is described in a preceding paragraph). Record
mode can be specified only for source and procedure mem-
bers. Source and procedure member copies made in

record mode are preceded by a COPY record and followed
by a CEND record. (The format of the COPY record is

// COPY NAME-name,LIBRARY- {g} where name is

the member name and P or S indicates procedure or source
member. The format of the CEND record is // CEND.)
The member itself is in expanded format; that is, the data
is not compressed—all blanks are included.

Sector Mode: The TO-DISK parameter without the
RECL-number parameter specifies sector mode. A sector
mode copy can be specified for any type (load, procedure,
source, or subroutine) of library member. In sector mode,
copies are in hex format and consist of control informa-
tion and PTF (program temporary fix) numbers for any
PTFs that have been applied to a member, followed by
the member as it exists in the library.

Add library member(s) to an existing file that contains
library members. If ADD-YES is not specified,
ADD-NO is assumed.

Notes:

1. When adding a member to a disk file, the file must con-
tain enough unused space to hold the member. When
adding a member to a diskette file, the file must be the
last active (unexpired) file on the diskette.

2. The keyword RECL (described in preceding paragraph)
is not allowed if ADD-YES is specified. The record
length is determined by the record length of the exist-
ing file. The record length of the existing file also de-
termines whether a member is added in record or sec-
tor mode. [T the record length of the existing file is
40 to 120, the source or procedure member is added
in record mode. If the record length of the existing
file is 32, the member is added in sector mode.

Name desired for a new member(s). Valid only for a
library-to-library copy.

Beginning characters (maximum of seven) of the name

desired for a new library member(s). Must be the same
number of characters as specified in the NAME-charac-
ters.ALL parameter described in a preceding paragraph.

Omit the entry specified by name.

Omit all entries whose names begin with the specified
characters (maximum of seven characters).

Utility Program Descriptions

165

OMIT-SYSTEM Omit all SCP members.

FILE-filename The name of the file given on the OCL FILE statement
referring to the input or output file.

PTF-YES Specifies that only members that have had a PTF applied
to them are to be copied to the file. Valid only when
copying in sector mode from the library to a file:
FROM-F1,TO-DISK,

PTF-NO The members that have had a PTF applied to them have
no particular significance. They are copied if the name
is the same as the specified name. If the PTF parameter
is not specified, the default value is PTF-NO.

PTF-number Only the member(s) with the specified PTF log number
(00001 through 65535) are selected from the file and
copied to the library. The PTF keyword having a numer-
ical value is only valid when copying in sector mode from
file to library: FROM-DISK,TO-F1.

Copy OCL and Utility Control Statement Sequence

// LOAD $ MAINT

[// FILE] A FILE statement is required only if copying TO-DISK or
FROM-DISK; that is, from the library to a file, or from a file
to the library.

// RUN

// COPY ...

// END

Using the Copy Function
Naming Library Members: Considerations that apply to naming library members are:

® Member names can be any combination of characters (numeric, alphabetic, and
special) except commas, periods, single quotes (‘), and blanks. The question
mark (?) should not be used because it has special meaning in procedures (see
index entry: procedure parameters) and certain control statements. The names
of all IBM-supplied SCP load and subroutine members begin with a pound or
dollar sign (# or $). Therefore, to avoid possible duplication, do not use a pound
or dollar sign as the first character in names you assign. The first character of
each member name must be alphabetic.

® A name can be from one to eight characters long.

® ALL, DIR, and SYSTEM must not be used as member names. They have special
meanings in the LIBRARY, NAME, and OMIT parameters.

® Members of the same type cannot have the same name, but members of a differ-
ent type can. For example, two procedure members cannot have the same name,
but a procedure member and a source member can have the same name.

Printing from the Library: Library members can be printed by using a library-to-printer

request. When the statements are printed, blanks are reinserted into statements
contained in source and procedure members. Load and subroutine members are

printed in hex format.

Library-to-printer requests can also be used to print system information contained

in the library directory area and to print directory entries. Figure 7 shows a sample
printout of system information contained in the library directory area. Figure 8
shows the information given in a printout of a directory entry. The figure is followed

by an explanation of the fields shown.

SYSTEM INFORMATION 01-01-75

START SECTOR OF LIBRARY

END SECTOR OF LIBRARY

TOTAL NUMBER OF LIBRARY BLOCKS
START SECTOR OF DIRECTORY

END SECTOR OF DIRECTORY

DIRECTORY SECTORS

ACTIVE DIRECTORY ENTRIES

AVAILABLE DIRECTORY ENTRIES

START SECTOR, INQUIRY/OFFLINE AREA
END SECTOR OF INQUIRY/OFFLINE AREA
START SECTOR OF SCHEDULER AREA

END SECTOR OF SCHEDULER AREA

START SECTOR OF LIBRARY MEMBERS
END SECTOR OF LIBRARY MEMBERS
ACTIVE LIBRARY MEMBER SECTORS
AVAILABLE MEMBER SECTORS

NEXT AVAILABLE MEMBER SECTOR

Figure 7. Sample Printout of System Information

184/00B8
5600/1L5E0
542/021E
184/00B8
243/00F3
60/003C
345/0159
292/0L24
244/00F4
363/016B
364/0L6C
533/0215
53470216
5600/15E0
1943/0797
2549/09F5

3052/0BEC

The first of the two numbers given in the column at the right is a decimal number,
the second is hex. (In the example 184/00B8, 184 is the decimal value of hex 00B8.)

Utility Program Descriptions

167

LIBRARY DIRECTORY MM DD YY

TYPE NAME START ADDR TOTAL NUM TEXT/RECORD ATTRIBUTES LINK ADDR RLD DISP ENTRY ADDR PROG SIZE

168

X member dec/hex dec/hex

dec/hex 2 bytes dec/hex dec/hex dec/hex dec/hex

Figure 8. Information in Printout of Library Directory Entry

Following is an explanaiion of the fields shown in Figure 8.

TYPE

NAME

START ADDR

TOTAL

NUM TEXT/RECORD

ATTRIBUTES

Type of library member described by the entry:
S source member
P procedure member
o] load member
R subroutine member

Name of the library member.

Sector number of the first sector of the member in both
decimal and hex.

Total number of sectors in the member, in decimal and
hex.

For source and procedure members, record length of the
member, given in decimal and hex. For load members,
the number of text sectors contained in the member,
excluding RLDs—relocation directories—which are the
part of a load member used for adjusting main storage
addresses when the member is moved to main storage
{(For subroutine members, blank.) :

Two bytes, 16 bits, of attributes giving detailed charac-
teristics of the member.

Bit Meaning When On (1)

Byte O:

0 This member is an SCP member. This bit is used to prevent SCP members
from being deleted.

1 Reserved.
2 Reserved.
3 Reserved.
4 This program requires that SWORK and $SOURCE be allocated. $SOURCE

must be filled from the keyboard or a source member..

5 This SCP module is not part of the basic SCP system.

LEVEL
X

A program temporary fix (PTF) has been applied to this program.

This is a load member containing overlays.

Reserved.

Reserved.

This program reads source itself. The member can contain a // COMPILE
statement (see index entry: // COMPILE statement) and a no-source-
required attribute (bit 4 of byte 0 off—0).

Reserved.

This SCP module has been translated from English into another language.
This program requires that a new load address be calculated at load time to
ensure that it is placed in main storage at a point beyond its own common
region.

This program reads utility control statements.

This member contains a where-to-go table. It is used by the transient cross
reference resolver program (#OXRF).

Utility Program Descriptions

169

170

LINK ADDR

RLD DISP

ENTRY ADDR

PROG SIZE

LEVEL

Copy Examples

For load members only. The main storage address, in
decimal and hex, assigned to the member when it is linked
in main storage with other load members.

For load members only. Displacement, in decimal and
hex, of first RLD (relocation directory) in member in

first sector containing RLDs.

For load members only. Main storage address, of entry
point of member in decimal and hex.

For load members only. Decimal and hex number of sec-
tors required to run the program contained in the member.

The release level of the member.

Library-to-Library: The following is an example of a library-to-library copy.

Copy aload member presently named ACCT in order to give it a new name, ACCT1:

// LOAD $MAINT

// RUN

// COPY FROM-F1,LIBRARY-O,NAME-ACCT,TO-F1,NEWNAME-ACCT1

// END

Library-to-File: The following examples demonstrate copying from the library to a file.

Copy a procedure member named PAYROLL in sector mode (compressed data, hex
format) to a disk file named PAY that is 30 sectors long and is to be retained

permanently:

// LOAD $MAINT

// FILE NAME-PAY,UNIT-F1,BLOCKS-3,RETAIN-P

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAY ,NAME-PAYROLL,LIBRARY-P

// END

Copy a source member named SAM in record mode (expanded format, includes
blanks) with a record length of 80 to a disk file named BOB that is 20 sectors long
and is to be retained only temporarily:

// LOAD $SMAINT

// FILE NAME-BOB,UNIT-F1,BLOCKS-2,RETAIN-T

// RUN

// COPY FROM-F1,TO-DISK,FILE-BOB,RECL-80,NAME-SAM,LIBRARY-S

// END

Copy all members named PAYDAY in sector mode to a disk file named PAYROLL
that is 60 sectors long, starts at location 1500, and is a temporary file:

// LOAD $MAINT

// FILE NAME-PAYROLL,UNIT-F1,BLOCKS-6,LOCATION-1500,RETAIN-T
// RUN

// COPY FROM-F1,TO-DISK,FILE-PAYROLL,NAME-PAYDAY,LIBRARY-ALL
// END

Copy source and procedure members named PAYDAY in record mode with a record
length of 120 to a disk file named PAY that is 80 sectors long and is to be retained
permanently:

// LOAD $SMAINT

// FILE NAME-PAY,UNIT-F1,BLOCKS-8, RETAIN-P

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAY,RECL-120,NAME-PAYDAY,LIBRARY-ALL
// END

Copy in sector mode all members whose names begin with a dollar sign ($). Copy
the members to a file named UTIL that has a retention period of 90 days and is on
a diskette whose vol-id is UTILITY:

// LOAD $SMAINT

// FILE NAME-UTIL,UNIT-11,RETAIN-90,PACK-UTILITY

// RUN

// COPY FROM-F1,TO-DISK,FILE-UTIL ,NAME-$.ALL,LIBRARY-ALL
// END

Copy all source and procedure members whose names begin with the characters RPU,
in record mode, with an 80-byte record length. Copy the members to a disk file
named RPSD that is 50 sectors long and is classified as a permanent file:

// LOAD $MAINT

// FILE NAME-RPSD,UNIT-F1,BLOCKS-5,RETAIN-P

// RUN

// COPY FROM-F1,TO-DISK,FILE-RPSD,RECL-80,NAME-RPU.ALL,LIBRARY-ALL
// END

Copy in sector mode all members whose names begin with the characters PA, omit-
ting members whose names start with PAY. Copy the members to a disk file named
PAYR that is 60 sectors long and is classified as a temporary file:

// LOAD $MAINT

// FILE NAME-PAYR,UNIT-F1,BLOCKS-6,RETAIN-T

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAYR,NAME-PA,LIBRARY-ALL,OMIT-PAY.ALL
// END

Utility Program Descriptions

171

Add all members whose names begin with the characters PA, omitting members
whose names start with PAY. Add the members to a disk file named PAYR.

// LOAD $MAINT

// FILE NAME-PAYR,UNIT-F1

// RUN

// COPY FROM-F1,TO-DISK,FILE-PAYR,NAME-PA,LIBRARY-ALL,
OMIT-PAY.ALL,ADD-YES

// END

File-to-Library: The following examples demonstrate copying from a file to the library.

Copy library member(s) from a disk file named SAVED. If the file contains a mem-
ber whose name and type are the same as a member currently existing in the library,
the existing member will not be replaced unless the operator chooses to replace the
member after being notified (by a message on the display screen) that a duplicate
member exists (that is, RETAIN-P is assumed to be on the COPY contro! statement).

// LOAD $MAINT

// FILE NAME-SAVED,UNIT-F1

// RUN

// COPY FROM-DISK,TO-F1,FILE-SAVED

Copy library member(s) from a diskette file named LMT. The operator will not be
notified if LMT contains a member whose name and type are the same as a member
currently existing in the library.

// LOAD $MAINT

// FILE NAME-LMT,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-R,FILE-LMT

Library-to-Printer: The following is an example of a library-to-printer copy.

Copy (print) the system information in the library directory area and copy (print)
all entries in the directory:

// LOAD $MAINT
// RUN
// COPY FROM-F1,LIBRARY-ALL NAME-DIR, TO-PRINT
// END
Delete Function

Delete Uses

® Delete a non-SCP member having a certain name or all non-SCP members having
the name

® Delete non-SCP members, either of a specified type or of all types, that have
names beginning with certain characters

172

® Delete all non-SCP members of a specified type

® Delete non-SCP members, either of a specified type or of all types, except mem-
bers that have a certain name or have names beginning with certain characters

Delete all non-SCP members
® Delete specified members, including SCP members
Note: The following restrictions apply to usihg the delete function:
® The library cannot be totally deleted.
® Except when tailoring your system (see index entry: system modification), you
should not delete SCP members.
Delete Control Statement Formats

® Delete a non-SCP member having a certain name or all non-SCP members having

the name:
S
P
// DELETE LIBRARY-< O ,/NAME-name
R
ALL

® Delete non-SCP members, either of a specified type or of all types, that have
names beginning with certain characters:

S
p
// DELETE LIBRARY-< O > ,NAME-characters.ALL
4 R
ALL

® Delete all non-SCP members of a specified type:

// DELETE LIBRARY- NAME-ALL

DO VW

® Delete non-SCP members, either of a specified type or of all types, except mem-
bers that have a certain name or have names beginning with certain characters:

S
P name
// DELETE LlBRARY‘ g 'NAME- {characters_ALL}
ALL
name
OMIT- {characters.ALL}

Utility Program Descriptions

173

174

® Delete all non-SCP members:

// DELETE LIBRARY-ALL,NAME-ALL

® Delete specified members, including SCP members:

// DELETE LIBRARY-

name
,NAME- < characters.ALL /,
ALL

O vWw

‘name
IZOMlT' {characters.ALL}] RETAIN-S

Delete Parameters

LIBRARY-S

LIBRARY-P

LIBRARY-O

LIBRARY-R

LIBRARY-ALL

NAME-name

NAME-characters.ALL

NAME-ALL

OMIT-name

OMIT-characters.ALL

RETAIN-S

Source members are deleted.

Procedure members are deleted.

Load members are deleted.

Subroutine members are deleted.

All types (S, P, O, and R) are deleted.

Name of the member or members being deleted.

Only those members whose names begin with the indi-
cated characters {(maximum of seven) are deleted. For
example, NAME-INV.ALL deletes members whose names
begin with the characters INV.

All members of a specified type are deleted, or all mem-
bers except SCP members are deleted. - When NAME-ALL
and LIBRARY-ALL are specified, only non-SCP mem-
bers are deleted.

Members of the name specified are not deleted.

Members whose names begin with the specified characters
(maximum of seven) are not deleted.

SCP members identified by other parameters in the delete
control statement are deleted.

Delete OCL and Utility Control Statement Sequence

// LOAD $SMAINT
// RUN

// DELETE ...

// END

Delete Examples
Delete a non-SCP source member named PAYROLL:

// LOAD $MAINT

// RUN

// DELETE LIBRARY-S,NAME-PAYROLL
// END

Delete all non-SCP members whose names begin with the characters INV:

// LOAD $MAINT

1/ RUN

// DELETE LIBRARY-ALL,NAME-INV.ALL
// END

Delete all non-SCP procedures:
// LOAD $MAINT
// RUN

// DELETE LIBRARY-P,NAME-ALL
// END

Utility Program Descriptions 178

$MGBLD—CREATE MESSAGE MEMBER UTILITY PROGRAM

The $MGBLD utility program creates a message load member in the library. A mes-
sage load member is the special type of library load member from which the SCP
retrieves the text associated with the message identification code (MIC) specified by

a calling program.

$MGBLD is evoked by the CREATE procedure (see index entry: CREATE

procedure).

$MGBLD Utility Control Statement Format

// MGBLD SOURCE-sourcename [scn { ;gs}] [REPLACE- { \N((E)S}]

$MGBLD Parameters

SOURCE-sourcename

YES
SCP- NO
YES
REPLACE- NO

Specifies the name of the library message source member
that contains the control statement and message text
statements (MIC and text) required for creation of a mes-
sage load member. See index entry: message source
member for information about message source members,

If YES is specified, the message load member created is
identified as an SCP member and cannot be deleted by
the REMOVE procedure (see index entry: REMOVE
procedure).

If NO is specified, the message load member is not iden-
tified as an SCP member. (Default is NO.)

If YES is specified, the message load member replaces a
member with the same name, if one exists.

If NO is specified, a member having the same name is

not replaced—an error message is displayed on the display
screen if an attempt is made to replace a member. NO is
a default value.

$MGBLD OCL and Utility Control Statement Sequence

The statements required to initiate the SMGBLD program are:

// LOAD $MGBLD
// RUN

// MGBLD SOURCE-sourcename, ...

// END

176

Message Source Member

The message source member is put into the library like any other source member.
For example, it might be copied from reader-to-library or library-to-library —see
index entry: $MAINT utility program—or entered by a program such as the source
entry utility described in /BM System/32 Utilities Program Product Reference
Manual—Source Entry Utility, SC21-7605.

Two types of statements are required in the message source member: a contro/
statement and one or more message text statements (comment statements are
optional).

Control Statement

The control statement specifies the name of the message load member to be created
and whether a first or second level message load member is being created. The for-
mat of the control statement is:

load-name [,level]

load-name The name to be given to the message load member created.

level A value of 1 specifies that a first level message load member is to
be created (maximum of 40 characters per message, excluding the
MIC); a value of 2 specifies that a second level message load mem-
ber is to be created (maximum of 200 characters per message,
excluding the MIC). If the level parameter is not specified, 1 is
assumed.

Note: Level 2 messages cannot be displayed independently of
level 1 messages. A level 2 message can be displayed only after
the level 1 message of the same MIC is displayed.

Message Text Statement

The format of the message text statement is:
MIC Text

® MIC (message identification code). MIC must be specified within the first four
characters of the message text statement. Itis a 1 to 4 character decimal number
from 0 to 9999. It must be in ascending order, relative to the message identifica-
tion code for the preceding message text statement, unless the same MIC is speci-
fied on consecutive message text statements to cause concatenation of the text
area. The number of statements that can be concatenated is restricted to the
minimum number required to specify up to 200 characters of message text area.

® Text (text area of the message text statement). The text area of each message
text statement starts at position six and extends to the end of the message text
statement (length of statement depends on record length of message source
member). The text for a message is the series of characters from the start of the
text area to the last nonblank character of the text area for the MIC. If text can-
not be contained on one message text statement, it can be continued on following
message text statement(s) containing the same MIC. The text area on following
statement(s) is appended to the text area for the first statement before trailing
blanks for the total text specified are dropped. A message text of one character
blank will be generated for a message text statement containing a blank text area.

Utility Program Descriptions 177

178

Comment Statement (optional)

The format of the comment statement is:

* ...comment ...
Comment statements have an * as their first character. Comment statements can
be interspersed with the message text statements. These statements, intended to
provide additional information about the message, do not become part of the mes-
sage load member.

An Example of Creating a Message Source and Load Member

Assume you want to enter the following statements into the library as a message
source member named USERMI. Assume also that you want to enter them via the
keyboard; that is, via the reader-to-library copy function of SMAINT (see index
entry: SMAINT utility program).

USERMSG,1 (This is a control statement; USERMSG is the load-name and
1 is the message level.)

1234 ENTER YESTERDAY'S DATE. (These are message text statements.
1235 ENTER TODAY'S DATE. 1234, 1235, and 1236 are MICs. The
1236 ENTER TOMORROW'S DATE. message text follows the MICs.)

* THE ABOVE MESSAGES ARE FOR PROGX. (This is a comment statement.)

To create a message source member named USERMI from the above statements, you
would enter on the keyboard:

// LOAD $MAINT

// RUN

// COPY FROM-READER,LIBRARY-S,NAME-USERMI,TO-F1,RETAIN-P,RECL-40
USERMSG,1

1234 ENTER YESTERDAY'S DATE.

1235 ENTER TODAY'S DATE.

1236 ENTER TOMORROW'S DATE.

* THE ABOVE MESSAGES ARE FOR PROGX.

// CEND

// END

To create a message load member named USERMSG from the above source member

(USERMI), you could use the CREATE procedure (see index entry: CREATE pro-
cedure), entering:

CREATE USERMI

$PACK—DISK REORGANIZATION UTILITY PROGRAM

$PACK reorganizes the disk so that all free space on the disk is collected in one area.
The reorganization is accomplished by successively moving each data file as close to
the library as possible.

If a file is being moved to a free space that is smaller than the file, $SPACK must over-
lay portions of the file in the process of moving it. Consequently, $PACK takes spe-

cial precautions to ensure that data is not lost if a system failure occurs while $PACK
is being used. If it is possible that data may be lost after such a failure, $PACK must
be the first program run, except for $LABEL (see index entry: $LABEL utility pro-

gram), after successful restart of the system.

To determine if $PACK must be rerun after a system failure occurred while $PACK
was being used, evoke the SLABEL utility to display the disk VTOC. If data integ-
rity on the disk was unaffected by the system failure, each VTOC entry is displayed.
If there is a chance that data may be lost from a file, instead of that file's label being
displayed, the following message is displayed on the display screen:

$PACK MUST BE RUN BEFORE INFORMATION CAN BE OBTAINED FROM THIS FILE.

$PACK is evoked by the COMPRESS procedure (see index entry: COMPRESS
procedure).

Note: Because files are physically moved by $PACK, the locations specified by

LOCATION parameters in FILE statements for the moved files (see index entry:

// FILE statement) will not be valid. To determine new file locations after using

$PACK, use the $LABEL utility or CATALOG procedure to display the disk VTOC.
$PACK Utility Control Statement Format

Because $PACK always reorganizes the disk in the same manner, utility control state-

ments are not used.

$PACK OCL Sequence

// LOAD $PACK
// RUN

Utility Program Descriptions 179

180

$REBLD—-REBUILD DATA FILE UTILITY PROGRAM

For each file on the disk, a corresponding format 7 record exists. A format 1 record
contains system information that describes a file. $REBLD is used to restore, in the
disk VTOC, format 1 records for disk output files that were being processad when a
system failure occurred—a failure caused, for example, by a power failure or inadver-
tent IPL. When $REBLD is used after a system failure, the output files are closed
and the format 1 records are written to the disk VTOC, allowing the data that was
written to the files prior to the system failure to be accessible to the user. In effect,
by restoring format 1 records to the VTOC, $REBLD restores data files that

might otherwise be lost. If $REBLD is not used after a system failure, certain out-
put files may not be accessible to the user.

$REBLD searches the scheduler work area in the library for format 1 records that
are opened or opened and closed but not written to the disk VTOC. When such a
format 1 is found, a check is made to determine if the format 1 is for an input file

or for an output file. If the format 1 is for an input file, it is updated to a completed
status and written to the disk VTOC as in normal end-of-job processing. |f the for-
mat 1 is for an output file, another check is made to determine the file organization.

Sequential file The logical end of file is made equal to the physical end of file.
The format 1 is updated to a completed status and written to
the disk VTOC via normal end-of-job processing.

Indexed file The last indexed entry is checked for a valid data record. If
not valid, the indexed entry before it is checked, and so on,
until an index entry with a valid data record is found. The for-
mat 1 is updated to a closed status. The keys are sorted and
the format 1 is written to the disk VTOC by normal end-of-job
processing.

Direct file The format 1 is updated to a completed status and written to
the disk VTOC by normal end-of-job processing.

Add and update files are treated as output files. $SREBLD restores only temporary
(RETAIN-T) and permanent (RETAIN-P) files. Scratch files (RETAIN-S) are not
restored.

As SREBLD is run, messages are issued giving the LABELs (from // FILE statements),
creation dates, and organization (sequential, indexed, or direct) of files restored and
the key of the last valid record for indexed files. If no files required restoring, a mes-
sage to that effect is issued. $REBLD is evoked by the REBUILD procedure (see
index entry: REBUILD procedure).

Note: Unless the system failed while the $PACK utility was being used (see index
entry: $PACK utility), SREBLD must be the first program run after a system failure.

$REBLD Utility Control Statement Format

Utility contro! statements are not used.

$REBLD OCL Sequence
// LOAD $REBLD
// RUN
$SETCF—SET UTILITY PROGRAM
$SETCF is used to define the following items:
® System environment
® BSCA environment
® OVERRIDE RPG BSCA specifications
® TRACE functions
When the system is created for the first time (the initial IPL), values for these items
are recorded in the system. These values can be altered by $SETCF. If a value is
never altered, it retains its original status. If an item is altered, the new value is re-

flected in subsequent IPLs until the item is changed again (except for the DEBUG-Y
parameter which is reset by IPL or by the TRACE procedure).

$SETCF is evoked by the SET, ALTERBSC, OVERRIDE, and TRACE procedures
(see index entries: SET procedure, ALTERBSC procedure, OVERRIDE procedure,
and TRACE procedure). :

Set the System Environment
The following system environment items can be defined by $SETCF:
® BSCA

® Number of lines printed per page

Print belt image

System date format

System date
Utility Control Statement Format for Setting the System Environment

VES MDY
/I SETCF [LINES-number] |,IMAGE- { } ,FORMAT- <DMY
No YMD

Note: Though each particular parameter is optional, at least one parameter must be
entered.

Utility Program Descriptions 181

182

Parameters for Setting the System Environment

LINES-number Specifies the number of lines to be printed per page. The value
specified can be 1 through 84.

Note: See index entry: // FORMS statement for the way the
value specified is used to determine the actual number of lines
printed per page.

IMAGE-YES The print belt image is to be modified to reflect a changed print
belt. An IMAGE OCL statement (see index entry: //IMAGE
statement) identifying the new image must precede the accom-
panying // RUN statement if IMAGE-YES is specified in a
// SETCF statement.

IMAGE-NQ The print belt image is not to be modified. IMAGE-NO is the
default value if IMAGE-YES is not specified.

FORMAT-MDY System date format is to be month-day-year.
FORMAT-DMY System date format is to be day-month-year.

FORMAT-YMD System date format is to be year-month-day.

OCL and Utility Control Statement Sequence for Setting the System Environment

// LOAD $SETCF
[// DATE...]

Note: If a date is given, it becomes the system date.
[// IMAGE ...]

Note: If aprint belt image is specified by $SETCF, it becomes the image set by
IPL. If an image is specified outside $SETCF, the image is established only until
the next IPL is performed, at which time a different image may be specified for
the system.

// RUN
// SETCF ...
// END

Example of Setting the System Environment

Replace the current print belt image with the image contained in the source mem-
ber named BELT:

// LOAD $SETCF

// IMAGE MEM,BELT
// RUN

// SETCF IMAGE-YES
// END

Set the BSCA Environment

The foilowing BSCA (binary synchronous communications adapter) items can be
set by $SETCF:

® BPS (bits per seconds) rate

® Modem clocking

® Debug facility

® Error retry count

® Standby line

® Modem test

® Non-U.S.A. tone

Note: The items listed are all related to telecommunications programming that uses
the BSCA. For background information on binary synchronous communications,
see General Information — Binary Synchronous Communications, GA27-3004.

SETB Utility Control Statement Format for Setting the BSCA Environment

Use the SETB utility control statement to set the BSCA environment:

pus [{5 oo {1]] e {3 v 57}
e 3] o 4] o (1]

For an explanation of the SETB parameters, see AL TERBSC Command Statement
Format.

Note: Though each parameter is optional, at least one parameter must be specified.

If a parameter is omitted, the previous value is retained until a default value is
given (except for the DEBUG-Y parameter which is reset by IPL or by the TRACE
procedure). 1f DEBUG-Y is specified, the system TRACE procedure (see index
entry: TRACE procedure) is replaced by the BSCA trace function.

Parameters For Setting the BSCA Environment

Parameter Meaning
BRATE-F Use the full rated speed of the modem.
H Use only half the rated speed of the modem.
CLOCK-Y The System/32 must provide the programmed clocking facility.
N Modem has the clocking facility.
DEBUG-Y Built-in debug facility is required, BSCA trace is requested.
N Built-in debug facility is not required, BSCA trace is not requested.

Utility Program Descriptions 183

184

ERC-number Error retry count. The standard number of retires provided is
seven (the default number); if more than seven are desired, enter

7 a number up to 265. Valid numbers are 7 through 255.
SLINE-Y Switched line will be used as backup (standby) line for a point-to-
point line. ‘
N The normal line is to be used.
TEST-Y IBM data modem is being used. Automatic wrap test includes

modem testing when a permanent error occurs, unless the RPG 1|
program specified a permanent error indicator for the BSCA file.

N Non-IBM data modem is being used. Automatic wrap test does
not include modem testing.

TONE-Y Non-U.S.A. special tone is required.
N Non-U.S.A. special tone is not required.

Example of Setting the BSCA Environment

Change the current BSCA error retry count to 10:

// LOAD $SETCF
// RUN

// SETB ERC-10
// END

Override RPG BSCA Specifications

The following RPG BSCA (binary synchronous communications adapter) specifica-
tions can be overriden by $SETCF:

® Tributary station address
® Line type
Note: The items listed are all related to telecommunications programming that

uses the BSCA. For background information on binary synchronous communica-
tions, see General Information — Binary Synchronous Communications, GA27-3004.

Utility Control Statement Format for Overriding RPG 11 Specifications

// SETR [ADDR-nn] |,LINE-

- 3xTVO

Notes:

1. Though each parameter is optional, at least one parameter must be specified.

2. To reset the ADDR parameter to the addressing characters specified by the RPG
specifications, reenter a valid // SETR control statement omitting the ADDR
parameter. The addressing characters will default to the RPG specifications.

Parameters for overriding RPG |1 BSCA Specifications:
ADDR-nn Hex equivalent of one of the pair of tributary station addressing
characters. See Appendix G for the $/32 tributary station polling

and addressing characters.

Defaults to RPG specifications.’

LINE-C CDSTL (connect data set to line) switched line (World Trade
Only)
P Point-to-point leased line.
R Line type specified in RPG source statements.
S Point-to-point switched line.
T Tributary station line on multipoint.

An example of overriding RPG 1l BSCA specifications is:

Change an existing tributary station address to 1 (in effect, the addressing char-
acters are changed to 11), EBCDIC line code:

// LOAD $SETCF
// RUN
// SETR ADDR-F1
// END
Set Functions to be Traced
A trace of the following system functions can be requested by using $SETCF:
® Wait
® Disk 10S
® Control storage disk 10S
® Push
® Puil
® Disable interrupts
® Enable interrupts
® Queue
® Control storage load
® Main storage load
® Transient load
Note: Setting functions to be traced is a function of $SETCF that is intended pri-

marily for IBM service personnel. The function is evoked by the TRACE procedure
(see index entry: TRACE procedure).

Utility Program Descriptions 185

186

Utility Control Statement Format for Setting Functions to be Traced

// TRACE [ALL-Y] ’:WAIT- {E}] Emos-{é}] [:CSFDIOS- {E_}J
o {3}] [{3}] [prvore {1}] [ewmse {2}
Joveve- {3}] [socs- fu}] fromven- {1} T e {1)]

Note: The parameters can be specified in any order. (If ALL-Y is specified, all
other parameters specified are ignored.) Though each particular parameter is
optional, at least one parameter must be specified. A maximum of ten can be
specified. However, the entire SCP trace function is disabled if DEBUG-Y is
specified in the ALTERBSC command statement or in the // SETB Utility
Control Statement of the $SETCF utility (see index entries: ALTERBSC
procedure and BSCA environment).

Parameters for Setting Functions to be Traced

ALL-Y All traceable system functions are to be traced.
WAIT-Y Each evocation of the wait function is to be traced.
N Evocations of the wait function are not to be traced.
FDIOS-Y Each evocation of disk 10S (input/output supervisor) is to be
traced.
N Evocations of disk 10S are not to be traced.
CSFDIOS-Y Each evocation of control storage disk 10S is to be traced.
N Evocations of control storage disk 10S are not to be traced.
PUSH-Y Each evocation of the push function is to be traced.
N Evocations of the push function are not to be traced.
PULL-Y Each evocation of the pull function is to be traced.
N Evocations of the pull function are not to be traced.
DISABLE-Y Each evocation of the disable interrupt function is to be traced.
N Evocations of the disable interrupt function are not to be
traced.
ENABLE-Y Each evocation of the enable interrupt function is to be traced.
N Evocations of the enable interrupt function are not to be

traced.

QUEUE-Y

N

LDCS-Y

N

LOADER-Y

N

XIENT-Y

12

Each evocation of the queue function is to be traced.
Evocations of the queue function are not to be traced.

Each evocation of the control storage transient loader is to be
traced.

Evocations of the control storage transient loader are not to be
traced.

Each evocation of the main storage relocating loader are not
to be traced.

Evocations of the main storage relocating loader are not to
be traced.

Each evocation of the main storage transient loader is to be
traced.

Evocations of the main storage transient loader are not to be
traced.

OCL and Utility Control Statement Sequence for Setting Functions to be Traced

// LOAD $SETCF

// RUN

// TRACE ...

// END

Example of Setting the Functions to be Traced

Trace evocations of the wait function:

// LOAD $SETCF

// RUN

// TRACE WAIT-Y

/{ END

$STATS—STATUS DISPLAY UTILITY PROGRAM

$STATS displays current system information on the display screen, and prints it, if
the printer is assigned for logging (see index entry: LOG procedure), so that you
can determine whether or not certain items need to be changed for a job. A detailed
description of the information displayed by $STATS is given with the description of
the STATUS procedure, which evokes $STATS. (See index entry: STATUS

procedure.)

Utility Program Descriptions

187

188

$STATS Utility Control Statement Format

Utility control statements are not used.

$STATS OCL Sequence

// LOAD $STATS
// RUN

Part 5.

System Configuration, Installation, and Modification

System Configuration, Installation, and Modification 189

190

Introduction To System Configuration, Installation, and Modification

This part describes:

® Configuration and installation of IBM System/32 system control programming
and any related PTFs at initial system installation or subsequent system update.

® Individual installation of IBM System/32 program products and any related PTFs
(program temporary fix) and verification of correct installment.

® Modifying your system by deleting certain SCP components and/or program pro-
ducts from the library so that you have more disk space for other library mem-
bers or data files.

Three SCP procedures are described in this part: CNFIGSCP, INSTALL, and

APPLYPTF. The formats of the command statements that evoke these procedures
are:

APPLYPTF %%ITE‘\ |:A'L—L':|
UT1nn ptfid
CNFIGSCP
INSTALL [DFU] [,SEU] [,SORT] [,RPG]
Other procedures are called by the preceding procedures. The other procedures can

be called individually by their associated command statements and are described else-
where in this manual.

Introduction To System Configuration, Installation, and Modification 191

192

System Configuration and Installation

This section describes configuration and installation of both your initial version and
subsequent versions of IBM System/32 system control programming and program
products.

DISKETTES REQUIRED

The diskettes required to perform system configuration are:

® Two PID (program information department) distribution diskettes that contain
| the system control program (SCP).

They are called SCP diskettes.
® PID distribution diskettes containing any program products erdered,

® A diskette containing PTFs (program temporary fix) for the system control pro-
gram and/or program products.

This diskette is called the PTF diskette. If this diskette is necessary, it will be
provided by the customer engineer.

® Two of your diskettes on which a backup of the system control program can be
made. They are called backup diskettes.

® Backup diskettes for each of the program products installed, if you want backup
copies.

©® Backup diskettes for the tailored SCP so that you can quickly reload the library
in case of a problem.
Other Requirments
During the building of your SCP, you will be prompted for the following information:
® Print belt image for your system
® The date format you will be using
® QOptional SCP support for BSCA, if desired
® Optional SCP support for RPG 11, if desired

® Optional BSCA support for RPG, if desired

® Whether or not a PTF diskette is available

System Configuration and Installation 193

Using the information supplied by the prompts, an SCP will be built that contains
the support requested. if a PTF diskette is available, the PTFs.are applied to the
SCP on the disk.

SYSTEM CONFIGURATION STEPS
The following steps create an SCP on the disk using the PID distribution disk-
ettes. The SCP diskettes received from PID are used only during these system con-
figuration steps, and should then be stored until the next SCP release is available.
CAUTION
The system configuration steps remove the current library (if any) from the disk.
Save all library members you want to retain (see index entry: FROMLIBR procedure)
before executing the following steps.

The system configuration steps are:

1. Set the IPL switch on the CE control panel to DISKETTE and set the IMPL
switch to DISK.

2. Insert the first SCP diskette.

3. Press the LOAD key on the operator panel. The following display appears:

-~

| ---) LIBRARY DIRECTORY SECTORS = 0037
INCLUDE INQUIRE/OFFLINE = NO

I TOTAL LIBRARY BLOCKS = 0281

L)

4, The values displayed are those of the PID diskette. If an error message is
displayed, read the following procedures:

Error Procedure For INVALID VTOC/LIBRARY

It wili be necessary to save all of the disk data files if you have not already
done so (for information on how to save the disk data files, see index entry:
SAVE procedure). After the files have been saved, go back to step 1.

If you have already saved, or if you do not want to save your data files, the
following action deletes them and corrects the INVALID VTOC/LIBRARY
condition:

CAUTION
The following action deletes all data files from the disk.

® Hold down the SHIFT key and press the DUP key.

® Key a hyphen (-}, then a plus (+); press the REC ADV key and check any
other error messages. If there are none, go to step 5.

194

Error Procedure When the Library is too Large

You can do (or repeat) any part of the INVALID VTOC/LIBRARY error
procedure, or you can decrease the library size by going to step 5.

Error Procedure For Any Other Error Message

Note: The errors covered by this procedure probably are the result of an
error made in step b.

Go to step 5. If you have already been to step 5, adjust your allocations for
directory sectors and library blocks and pre?.s the REC ADV key after each
entry until the error messages no longer appear; then go to step 7.

If you want a larger library or if you plan to apply PTFs to any program
products, you should now allocate enough directory sectors and library
blocks to contain the program products, the SCP, and any other programs.
See index entry: system modification, for a description of how to allocate
directory sectors and library blocks. See index entry: /ibrary requirements,
to determine the number of directory sectors and library blocks required by
the program products. Press the REC ADV key after each entry.

If any error messages are displayed, go back to step 4.

If no error messages are displayed, press the ENTER key to copy the SCP to
the disk.

When the following display appears, remove the first PID SCP diskette and in-
sert the second PID SCP diskette.

r ')

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE- date, SEQUENCE NUMBER 02
---> PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE
IF CORRECT VOLUME NOT INSERTED

The second PID SCP diskette is copied to the disk when you press the ENTER
key.

When the following display appears, set the IPL and IMPL switches to DISK
and press the LOAD key.

RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK

. _J

System Configuration and Installation

195

196

10. When the ENTER COMMAND message appears, enter a CNFIGSCP command
statement of the format:
CNFIGSCP

11. The system will prompt you for the variable information needed. Follow the
instructions displayed on the display screen. The final message is SYSTEM
CONFIGURATION COMPLETE.

The system you will be using has now been configured. If necessary, PTFs have been
applied to the SCP. The SCP PID distribution diskettes should now be stored for
safekeeping until the next SCP release.

At this time, a backup copy should be made of the system. This backup copy can
then be used when building unique systems, as explained under system installation
steps.

To make the backup copy of the SCP, it is necessary to initialize two diskettes on
which a copy of the SCP can be kept. Use the INIT procedure (see index entry:
INIT procedure) to accomplish this. After the two diskettes have been initialized,
you are ready to backup the SCP system onto the diskettes. Use the BACKUP pro-
cedure (see index entry: BACKUP procedure) to make the backup copy.

Before proceeding with the system installation steps, you should determine if any
of the program products you ordered require PTFs. |f so, the PTFs should be
applied at this time and a backup copy made of each 'program product. Even if no
PTFs are needed, it is recommended that you make a backup copy of the program
product PID distribution diskettes and use that copy when installing program pro-
ducts. The PID distribution copy should be stored for safekeeping until the next
release from PID is available.

To apply PTFs to the program products, it is necessary to have the program products
on the disk. See index entry: program product installation, for information on in-
stalling program products. When a program product has been copied to the disk,
PTFs can be applied, if necessary. Use the APPLYPTF procedure to apply the PTFs
(see index entry: APPLYPTF procedure). After required PTFs are applied (if any),
backup copies of program products can be made. See index entry: program product
installation, for information on how to create a backup copy of a program product.
Backup copies of program products are used during system installation to create the
unique systems desired.

SYSTEM INSTALLATION STEPS

This section describes how to install a unique system using the backup diskettes
created during the system configuration steps. The first function performed is set-
ting the library size according to the options you give after entering the RELOAD
command statement. Any required application programs should next be installed
on the system.

The INSTALL procedure (see index entry: INSTALL procedure) is then used to:
® Load the selected program products onto the disk

® |Initialize the diskettes needed to back up the system

® Copy the system onto these diskettes

The system installation steps are:

1.

2.

3.

Insert the first SCP backup diskette created during the system configuration
steps described in the preceding section. Enter the RELOAD command state-
ment (see index entry: RELOAD procedure). When the following display
appears, check the values displayed and change them, if necessary. See index
entry: system modification, for a description of library requirements to deter-
mine the correct values for your system; (also, see index entry: RELOAD
display, for a description of the display and a description of how to change
the values displayed):

(" Y
---> LIBRARY DIRECTORY SECTORS = 0033
INCLUDE INQUIRY/OFFLINE? = NO
TOTAL LIBRARY BLOCKS = 0239
. J

Note: The values shown in the preceding display are sample values only.

When the following display appears, insert the second SCP backup diskette.

(" A

INSERT DISKETTE WITH FILE LABEL—-#LIBRARY
DATE- date, SEQUENCE NUMBER nn
—-—=> PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE
IF CORRECT VOLUME NOT INSERTED

When the following display appears, press the LOAD key.

()

RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK

When the ENTER COMMAND message appears, enter the DATE command
statement (see index entry: DATE procedure) 1o set the system date to the
current date.

If you want to have any application programs on the backup copy of this
system, they should be loaded at this time. The letter accompanying IBM
application package describes how to put the programs onto the system.
Refer to that letter for installation instructions for IBM application programs.

System Configuration and Installation

197

6. Enter the INSTALL command statement of the format:
INSTALL [DFU] [,SEU] [,SORT] [,RPG]

The particular command statement you enter depends on the program products
you wish to install. See index entry: INSTALL procedure, for a description
of the command statement parameters.

After the INSTALL command is entered, system directory information is
printed—see index entry: printing from the library, for a description of the
information printed.

7. The system will prompt for the diskettes needed to complete the system install-
ation. You will also be prompted to initialize the number of diskettes needed
to back up the system. See Calculating the Number of Backup Diskettes
Required for the System, which follows, for a description of how to determine
the number of diskettes you must initialize. If they are already initialized, you
do not have to initialize them again. Otherwise, initialize them now.

| Note: The diskettes are not formatted, they are only renamed.

As initialized diskettes are inserted, the system is copied on them. The final
message will be SYSTEM INSTALLATION COMPLETE. If you want additional
unique systems, repeat the system installation steps as often as necessary.

CALCULATING THE NUMBER OF BACKUP DISKETTES REQUIRED FOR THE SYSTEM

To determine the number of diskettes required to make a diskette backup copy of a
system, you need system directory information. If you are installing a system, this
information is printed by step 6 of the system installation steps (see System Installa-
tion Steps, preceding). If you are not installing the system, you can have the system
directory information printed by using the LISTLIBR procedure or the SMAINT
utility program (see index entries: L/STLI/BR procedure and SMAINT utility pro-
gram—a sample of the information printed is given under index entry: printing from
the library).

After printing the system directory information, determine the number of backup
diskettes you need by following these steps:

1. Add decimal 23 to the decimal number of active directory entries.

2. Divide the result of step 1 by 11 and round to the next highest number if you
have a remainder (this determines the number of active directory sectors).

3. Add the result of step 2 to the decimal number of active library member sec-

tors (this determines the total library sectors referred to in the chart following
step 4).

198

4., Use the result of step 3 and table 1 to determine the number of diskettes needed
to hold your system. For extended format, use table 2.

Table 1. Standard Format Diskette Table 2. Extended Format Diskette
Total Total
Library Diskettes Library Diskettes
Sectors Required Sectors Required
906 1 1128 1
1868 2 2312 2
2830 3 3496 3
3792 4 4680 4
4754 5 5864 5
5716 6 7048 6
6678 7 8232 7
7640 8 9416 8
8602 9 10600 9
9564 10 11784 10
10526 11 12968 11
11488 12 14152 12
12450 13 156336 13
13412 14 16520 14
14372 15 17704 15

APPLYPTF PROCEDURE

The APPLYPTF procedure applies PTFs to the library. It is called by the CNFIGSCP
procedure, described following, or directly, by the APPLYPTF command statement.

PTFs applied by the APPLYPTF are read from a PTF diskette.
The APPLYPTF procedure evokes the SMAINT utility (see index entry: SMAINT

utility program).

APPLYPTF Command Statement Format

SC1inn
APPLYPTF | RG1nn lzs'll:ll-lo numbef:I
UT1nn ! s

APPLYPTF Parameters That are Not Prompted

SC1nn PTFs that change the SCP are applied; nn is the version number (re-
lease number) of the system.

RG1nn PTFs that change the RPG Il program product are applied; nn is the
version number (release number) of the product.

UT1nn PTFs that change the IBM System/32 utilities program product
(DFU/SEU/Sort) are applied; nn is the version number (release num-
ber) of the utility.

System Configuration and Installation 199

200

ALL Apply all PTFs from the selected PTF file.

PTF Apply only the PTF corresponding to the number given. This number
log is the PTF log number and is indicated on the cover letter for each
number PTF. ltis also indicated in the PTFXREF source member on each

PTF diskette.

Prompted Parameters for APPLYPTF

Translation Required?

YES PTFs were applied to a translated (non-English} version of a system.
NO PTFs were applied to a system that has not been translated.
SCP PTFs Applied?

if the response to the translation required prompt was yes, a prompt inquires
whether the PTFs applied were SCP PTFs.

YES The PTFs applied were from the SC1nn file.
NO The PTFs applied were not from the SC1nn file.
$MASPC Replaced?

If the response to the SCP PTFs prompt was yes, a prompt inquires whether
the load member SMASPC was replaced. The PTF cover letter distributed with
each PTF diskette lists the members that will be replaced by the PTFs on the

diskette.
YES The PTFs applied replaced $MASPC.
NO The PTFs applied did not replace SMASPC.

#RDML Replaced

If the response to the SCP PTFs prompt was yes, a prompt inquires whether
the load member #RDML was replaced.

YES The PTFs applied replaced #RDML.
NO The PTFs applied did not replace #RDML.
CNFIGSCP PROCEDURE

The CNFIGSCP procedure is used for system configuration. It is distributed with
each version of the system on an SCP diskette and is removed from the system once
system configuration is complete. The CNFIGSCP procedure prompts the user for
the print belt image, the date format, RPG |l SCP support required, and the existence
of a PTF diskette.

The CNFIGSCP procedure evokes the SMAINT and $SETCF utilities (see index
entries: SMAINT utility program and $SETCF utility program).

CNFIGSCP Command Statement Format

CNFIGSCP

Prompted Parameters for CNFIGSCP

Belt Image Option
48 Sets the print belt image and its length in the system configuration record,
64 arecord in the library directory that defines the system in terms of its com-

ponents. A length of 48 or 64 can be specified.

Date Format Option
YMD Sets the system date format in the system configuration record: year-month-
MDY day (YMD), month-day-year (MDY}, or day-month-year (DMY).
DMY

BSCA Support for SCP

YES Copies the SCP support for the BSCA.

NO BSCA SCP support is not copied.

RPG 11 SCP Support Option

YES Copies the optional SCP support for RPG Il from the SCP PID diskette to
the system.

NO RPG Il SCP support is not copied.

BSCA Support Option
YES Copies the BSCA RPG support from SCP PID diskette to the system.
NO BSCA support for RPG is not copied.

Note: The CNFIGSCP procedure will be changed to prompt you for BSC
options (CLOCKING, TONE, and TEST) if you want SCP support for BSC.

PTF Diskette Available
YES Prompts user to insert the PTF diskette and then issues the APPLYPTF
command statement to copy SCP PTFs to the system (APPLYPTF SCPO1,
ALL).

NO PTFs are not applied.

System Configuration and Installation

201

INSTALL PROCEDURE
The INSTALL procedure allows the user to apply selected program products to the
system and initialize the diskettes needed to back up the system. The INSTALL pro-
cedure prompts for the volume ID desired on the backup diskettes and whether the
diskettes need to be initialized or not. The procedure then copies the tailored system
onto the backup diskettes.
The INSTALL procedure evokes the following utilities: SMAINT, $INIT, and
$BACK (see index entries: $BACK utility program, $INIT utility program, and
SMAINT utility program).

INSTALL Command Statement Format
INSTALL [DFU] [SEU][,SORT] [,RPG]

Note: These parameters are not positional and can be entered in any order desired.

INSTALL Parameters that are Not Prompted

DFU The DFU (data file utility) function of the IBM System/32 utilities program
product is installed as part of the system.

SEU The SEU (source entry utility) function of the IBM System/32 utilities pro-
gram product is installed as part of the system.

SORT The sort function of the IBM System/32 utilities program product is installed
as part of the system.

RPG The RPG If program product is installed as part of the system.

Prompted Parameters for INSTALL
Diskette Volume 1D
------ Enter a name that has a maximum of six characters. This name will
be placed in the VOLID field on the diskettes if diskettes need to be
initialized. It will also be used as the VOLID parameter when the
system is copied to the backup diskettes.
Diskettes to be Initialized
YES The diskette inserted will be initialized using the volume ID entered.
(After each diskette is initialized, you will be prompted for any more

diskettes to be initialized.)

NO No diskettes need to be initialized. The procedure will copy the sys-
tem onto the diskettes that you have already initialized.

202

Program Product Installation and Verification

PROGRAM PRODUCT INSTALLATION

The IBM System/32 utilities program product, consisting of the data file utility, the
source entry utility, and sort (DFU/SEU/Sort) is distributed on one diskette. The
diskette has a volume identification of PPUTIL. I1BM System/32 RPG I is distributed
on two diskettes, each with a volume identification of RPGRPG. The method for
installing these program products individually and creating a backup copy of each is
described here.

To Install a Program Product

1. Insert the first (or only) program product diskette.

2, Enter the TOLIBR name command statement where name is the three- or four-
character identifier of the major function being installed:

DFU Data File Utility
SEU Source Entry Utility
SORT Sort

RPG RPG Il

Note: For a description of the TOLIBR procedure, see index entry: TOL/BR
procedure.

3. Enter nameLOAD (that is, DFULOAD, SEULOAD, SORTLOAD, or RPGLOAD)
for each function to be installed. ‘

4, If RPG Il is being installed, message 1485 (END OF RD VOLUME—INSERT
NEXT DISKETTE) appears after the first diskette is read. When the message

appears, remove the first diskette, insert the second, and select option O to
continue.

To Create a Backup Copy of a Program Product

After a program product is installed, create a backup copy by following these two steps:

1. Initialize a diskette(s) with the appropriate volume identification to contain the
copy.
Function to be Copied Volume ldentification
DFU/SEU/Sort PPUTIL (one diskette)
RPG i1 RPGRPG (two diskettes)

Note: You can use the INIT procedure to initialize diskettes—see index entry:
INIT procedure.

2. Enter nameSAVE (that is DFUSAVE, SEUSAVE, SORTSAVE, or RPGSAVE)
for each function (DFU, SEU, Sort, or RPG I1) to be saved.

Program Product Installation and Verification 203

204

PROGRAM PRODUCT INSTALLATION VERIFICATION

You can verify the installation of SEU and RPG II.

SEU Installation Verification

1. Key: SEU SEUTEST,R. Press the ENTER key. The display screen will appear

as follows.
[™
001 0 A096 0001.00 s
ENTER/UPDATE STATEMENT NUMBER: 0001.00
. J

2. Starting in column 1, key: THIS WILL VERIFY THAT SEU IS INSTALLED.
The display screen will appear as follows.

039 0 AQ0%96 0001.00 S
THIS WILL VERIFY THAT SEU IS INSTALLED_

ENTER/UPDATE STATEMENT NUMBER 000L.00

3. Press the ENTER key. The display screen will appear as follows.

-)

00%L 0 A096 0002.00 S

ENTER/UPDATE STATEMENT NUMBER: 0002.00

4,

Press the SELECT FORMAT command key. Key an F and then press the
ENTER key. The display screen will appear as follows.

g) D

001 F K005 0002.00 S

ENTER/UPDATE STATEMENT NUMBER: 0002.00

Press the REC ADV key. The display will flash and appear as follows.

~
PRESS ERROR RESET KEY TO CONTINUE
SEU 1002
FILENAME (POS 7-14) IS INVALID OR
SPECIFIED IMPROPERLY.
\... J

Press the ERROR RESET key and then the EOJ command key. The end of
job options are displayed and the screen will appear as follows.

RETURN TO PROCESSING--NO EOJ
END OF JOB--NO ADDITIONAL OPTIONS

END OF
END OF
END OF

JOB WITH LISTING
JOB WITH SERIALIZATION
JOB WITH LIST AND SERIALIZATION

mpPpwNnEO

ND OF JOB OPTION:

Key a 2 and press the ENTER key. The statement you entered in step 3
(THIS WILL VERIFY THAT SEU IS INSTALLED) will be printed if SEU

is properly installed.
THIS WILL VERIFY THAT SEU IS INSTALLED

Enter the following command statement to remove from the library the
member created to verify the SEU installation:
REMOVE SEUTEST,SOURCE

Program Product Installation and Verification

205

RPG Il Installation Verification
Sample programs are provided with the IBM System/32 RPG || program product.
After RPG 1l is installed, these programs can be loaded from the distribution disk-
ette and executed by entering the command statement RPGSAMPL. This command
statement causes three RPG 1l and two auto report programs to be compiled, exe-
cuted, and then deleted from the disk. The first RPG |l program prompts the oper-
ator for the following information:
1. Enter 123 for KEY prompt.
2, Enter DRESS for DESC prompt.
3. Enter 10 for VALUEA prompt.
4, Enter 30 for VALUEB prompt.
b. Enter 20 for VALUEC prompt.
6. Enter 124 for KEY prompt.
7. Enter COAT for DESC prompt.
8. Enter 40 for VALUEA prompt.
9. Enter 50 for VALUEB prompt.
10. Enter 30 for VALUEC prompt.

After the 10 fields are entered, the operator must press the CMD key and then the
/ key to indicate the end of input.

If RPG Il is properly installed, output of the five sample programs is:

l 1. NO TRANSACTIONS LOADED
2 MASTERS LODADED
IBM SYSTEM/32
2. DATE SAMPLE UPDATE PROGRAM PAGE 0001
NEW NEW NEW
KEY DESCRIPTION VALUE A VALUE B VALUE C
l NO TRANSACTION RECORDS ENTERED

IBM SYSTEM/32

3. DATE SAMPLE INDEXED FILE LISTING PAGE 0001
KEY DESCRIPTION VALUE A VALUE B VALUE ¢ ,0TAL
123 DRESS 10 30 20 20
124 COAT 40 50 30 60
FINAL TOTAL 50 80 50 80

206

DATA FOR SAMPLE PROGRAM

11243JONES HARDWARE 27541021175
11352NU~STYLE CLOTHIERS 27987021475
11886MIDI FASHIONS INC 15771020475
12874ULOOK INTERIORS 25622020975
18274STREAMLINE PAPER INC29703022175
2334TRITE-BEST PENS CO 20842021875
25521 IMPORTS OF NM 29273022075
26723ALRIGHT CLEANERS 19473020775
28622NORTH CENTRAL SUPPLY17816020575
29871FERGUSON DEALERS 27229021075
30755FASTWAY AIRLINES 26158020675
31275ENVIRONMENT CONCERNS20451320675
324578 SOLE SILOS 21425021075
37945HOFFTA BREAKS INC 18276020675

42622EASTLAKE GRAVEL CO 16429020575

2375CASH
3707CASH
10722CASH
6795CASH
27403
1580
79740
46200CASH
7597CASH
6191CASH
T74272CASH
2943
11005CASH
4723CASH

2937CASH

47
174
214
136
548
31

1593
924
152
124

1495

59
220

94

58

47 2328022175
4000022675

214 10508021475
6795022375

238 17055023075
1000022075

1193 58547022775
46200022375
7597022275
6191022275

1685 72587021975
1500023075
11005022075
4723022375

29370223175

Program Product Installation and Verification 207

80C

date CASH RECEIPTS REGISTER PAGE 1
REGION ACCOUNT ACCOUNT NAME INVOICE INVOICE DATE PAJD AMOUNT OISCOUNT AMOUNT BALANCE EXCESS
NUMBER NUMBER DATE OWED TAKEN PAlD DUE DISCOUNT
1 11243 JONES HAROWARE 27541 2/11/775 2721775 23475 ell 23.28
1 11352 NU-STYLE CLOTHIERS 27947 2/14/15 2/25/75 47.07 40430 “Teul7
1 11836 MIDI FASHIONS INC 15771 2704775 2/14/15 107.22 2el4 105.08
1 12874 ULQOK INTERIORS 25622 2/09/175 2/23/75 67495 67.95
1 18274 STREAMLINE PAPER INC 29703 2/21/75 2/33/75 274403 2438 17055 13113
REGIGN TOTALS 560.02 4e99 40be86 148417
2 23347 RITE-BEST PENS CO 20842 2/18/75 2/20/175 15.80 10.00 580
2 25521 IMPORTS UF NM 29273 27207175 2721775 797.40 1193 585447 200.00
2 26723 ALRIGHT CLEANERS 19473 2/07775 2/23/15 462404 462.00
2 28622 NORTH CENTRAL SUPPLY 178106 2/05/75 2/22/75 75497 7597
2 29871 FERGUSON DEALERS 27229 2713715 2722775 6l.91 6le91
REGION TOTALS lv413.08 11.93 19219535 205.8uU
3 30755 FASTwWAY AIRLINES 26158 2/06/15 2719715 742472 16.85 725487 1.90
3 31275 ENVIRONMENT CONCERNS 20451 27067175 2/30/75 29443 15.00 l4e4l
3 32457 B SOLE SILOS 27425 2/10/75 2/20/15 110065 11035
3 37945 HOFFTA BREAKS [INC 18276 2/06/175 2723715 47623 47423
REGION TOTALS 929.43 1685 898.15 14443 l.90
4 ©2622 EASTLAKE GRAVEL CO L6429 2705715 2723715 29437 2937
REGION TOTALS 29437 2937

COMPANY TOTALS 2993190 33.77 29529473 368440 1.9C

System Modification

Some components can be deleted from your system library to free up library space
for other members or to free up disk space for data files by reducing the size of the
library. You can also delete program products from the library.

LIBRARY REQUIREMENTS

The library requirements of the minimum IBM System/32 system control program-
ming are fixed at 33 directory sectors and 239 total library blocks. Inquiry/offline
support adds 11 library blocks on a 16K system, 14 library blocks on a 24K system,
and 17 library blocks on a 32K system.

In addition to the minimum SCP requirements, the IBM System/32 program pro-
ducts, plus the optional BSCA functions, are shown in the following table:

Library Function Directory Sectors Library Blocks
Release 1 Release 2 Release 1 Release 2

DFU 3 3 36 36
SEU 4 4 37 37
SORT 5 5 34 34
RPG 11

SCP support 0 2 12 18

Program product 14 16 139 147
BSC

SCP support1 0 1 0 3

RPG support1 0 2 0 4

1 The library functions are broken out in the table since CNFIGSCP prompts the
user for these separately.

DELETING FROM THE LIBRARY

Before deleting members from the library, determine how much space is presently
available for new members, or how much disk space is available for additional data
files.

Determining Space Available in the Library

To determine how much space is available in the library, use the LISTLIBR proce-
dure or the copy function of the SMAINT utility to print the system information
from the directory area (see index entries: $MAINT utility program and LISTLIBR
procedure). The system information listed will specify the number of additional

System Modification

209

210

entries the directory can contain (AVAILABLE DIRECTORY ENTRIES) and how
many sectors are available in the library for additional members (AVAILABLE
MEMBER SECTORS).

Determining Space Available on the Disk

To determine how much space exists on the disk for additional data files, use the
CATALOG procedure or the $LABEL utility (see index entries: $LABEL utility
program and CATALOG procedure) to display the disk VTOC. Available disk space
is specified in every disk VTOC display.

Note: You can also use CATALOG or $LABEL to display all disk VTOC entries to
determine which files can be deleted (see index entries: $DELET utility program
and DELETE procedure). Use the COMPRESS procedure or $PACK utility (see in-
dex entries: $PACK utility program and COMPRESS procedure) to collect free disk
space in one area.

Selecting Members to Delete

The following members can be deleted from the library without affecting other mem-
bers or SCP functions:

Name Member Type Description

##MSG1 0 (load) Level 1 error messages
##MSG4A 0 (load) Level 2 error messages
Selected procedure P (procedure) Procedures

(see note)

Note: When you delete a library member, be sure not to delete a procedure with a
nested procedure(s) or a procedure ¢alled by all procedures. For example, #ERR
is a nested procedure available to all procedures for error detection.

If ##MSG1 and/or ##MSG4 are detected, there will be no text when an error occurs.

In addition to deleting the preceding members you can delete inquiry/offline rmulti-
volume support and any program product installed on the system without affecting
other system functions.

Deleting (or not including) inquiry/offline support (INCLUDE INQUIRY/OFFLINE?
= NO on the RELOAD display—see index entry: RELOAD display) saves 11 blocks
of library space on a 16K system, 14 blocks on a 24K system, and 17 blocks on a
32K system. Use the LISTLIBR procedure or the copy function of SMAINT to list
library directory entries to determine space gained by deleting procedure members,
#HMSG1, and ##MSG4. See index entry: library requirements to see how much
space is gained by deleting a program product.

Note: To use available space after deleting members, do a BACKUP and RELQAD.

Deleting Members

® #HMSG1, ##MSG4, and procedure members are deleted by using the delete func-
tion of SMAINT. See index entry: $MAINT utility program.

® Inquiry/offliine support is deleted by specifying NO to the INQUIRY/OFFLINE
option of the RELOAD display. The RELOAD display is described in following’
paragraphs.

® Program product functions are deleted by entering a nameDROP command state-
ment for each function to be deleted—that is, by entering DFUDROP, SEUDROP,
SORTDROP, and/or RPGDROP. The procedures evoked by these four command
statements are deleted from the system when the related program product func-
tions are deleted.

After you have deleted members, you can change space allocated to the library by
using the RELOAD display, described in the following paragraphs.

Notes:

1. Do not delete any procedure that is used by a procedure which you are not
deleting.

2. To gather into one usable area the disk space created by deleting from the
library, you must copy the library to diskette(s) and then reload the library.
That is, BACKUP then RELOAD. See index entries: BACKUP procedure
and RELOAD procedure.

RELOAD DISPLAY

The RELOAD procedure (described under index entry: RELOAD procedure) is used
to perform an IPL from diskettes on which the library has been copied using BACKUP
(described under index entry: BACKUP procedure). RELOAD creates a new library
on the disk, but does not disturb data files on the disk.

The RELOAD display appears when you insert the first backup diskette for a particu-
lar copy of the library and enter the RELOAD command statement (described under
index entry: RELOAD command statement) or press the LOAD key when the IPL
switch on the CE control panel is set to DISKETTE.

The RELOAD display shows the number of sectors allowed for the library directory,
indicates whether or not inquiry or offline multivolume files are supported, and shows
the total number of blocks allowed for the library (system file #LIBRARY). A sample
display follows:

r N
--—-> LIBRARY DIRECTORY SECTORS = 0033
INCLUDE INQUIRY/OFFLINE? = NO
TOTAL LIBRARY BLOCKS = 0239

- J

System Modification 211

212

If Values in the RELOAD Display are Correct

If the values shown in the RELOAD display are correct for your system, press the
ENTER key. The library is read from the diskette to the disk and the following dis-

play appears:

INSERT DISKETTE WITH FILE LABEL-#LIBRARY
DATE- date y SEQUENCE NUMBER nn
---->» PRESS ENTER KEY AFTER INSERTING
WARNING-LIBRARY MAY BECOME UNUSABLE
IF CORRECT VOLUME NOT INSERTED

The INSERT DISKETTE display always appears after a diskette has been read to
the disk. When the display appears, remove the diskette and insert the next diskette
as indicated. When all the diskettes have been read, the following display appears:

RELOAD COMPLETE - REMOVE LAST
DISKETTE AND IPL FROM DISK

Remove the diskette, set the IPL and IMPL switches on the CE control panel to
DISK, and press the LOAD key. The following display appears:

#*%%*% INITIAL PROGRAM LOAD COMPLETE %%
DATE (date)
LINES/PAGE nn
ENTER COMMAND
READY

Enter a DATE command statement (see index entry: DATE procedure) or a SET
command statement (see index entry: SET procedure) if the date or number of
lines printed per page is to be changed.

If Values in the RELOAD Display are to be Changed

To change the values displayed, do the following:

® |f the arrow is pointing at the first line (LIBRARY DIRECTORY SECTORS):

1.

If there is no change to the line, press the REC ADV key. The arrow and
cursor move to the second line.

If a change to this line should be made, enter the change over the existing
data (you may omit leading zeros) and then press the ENTER+ key. The
arrow and cursor move to the second line.

Note: The formula for computing the number of entries the directory can
hold is (number of directory sectors x 11) minus 23, A directory entry is
required for each member in the library.

If all lines of the display are now correct, press the ENTER key. Data is
read from the diskette onto the disk, and the insert diskette display
appears.

® |f the arrow is pointing at the second line (INCLUDE INQUIRY/OFFLINE?):

1.

If there is no change to this line, press the REC ADV key. The arrow and
cursor move to the third line.

If a change to this line should be made, enter the change (YES or NO) over
the existing data and then press the REC ADV key. The arrow and cursor
move to the third line.

Note: The inquiry/offline option requires a disk area in which to roll out
an interrupted program or process an offline multivolume file segment. The
size of this area is 11 blocks on a 16K system, 14 blocks on a 24K system,
and 17 blocks on a 32K system. This area must be represented in the total
number of library blocks if inquiry/offline support is included.

If all lines of the display are now correct, press the ENTER key. Data is

read from the diskette onto the disk, and the INSERT DISKETTE display
appears.

System Modification

213

214

® |If the arrow is pointing at the third line (TOTAL LIBRARY BLOCKS):

1.

If there is no change to this line, press the REC ADV key. The arrow and
cursor move to the first line.

If a change to this line should be made, enter the change over the existing
data (you may omit any leading zeros) and then press the ENTER+ key.

Note: The number of blocks assigned to the library must be sufficient to
contain the library directory and the disk area (rellout area) required by
inquiry/offline support, if it is included, as well as all library members. You
should allow some space in the library for new members because of the in-
convenience of expanding the library once remaining disk space is allocated
to data files.

If all lines of the display are now correct, press the ENTER key. Data is read
from the diskette onto the disk, and the insert diskette display will appear when
the first diskette has been read.

Appendix A. Records, Blocks, and Sector Conversion

RECORDS TO BLOCKS CONVERSION FOR DISK — RECORDS GIVEN ON // FILE
STATEMENT

Determining the Number of Sequential or Direct File Blocks
Do the following to determine the number of blocks in a sequential or direct file.

1. Multiply: number of records x record length = number of characters.

number of characters (from step 1) = number of blocks (if there is a
number of characters per block (2560}

2. Divide:
remainder, round to the next

higher whole number)

Determining the Number of Indexed File Blocks
Do the following to determine the number of data blocks in an indexed file.
1. Multiply: number of records x record length = number of characters.

number of characters (from step 1)
number of characters per block (2560)

2. Divide: = number of data blocks (if there
is a remainder, round to the next

higher whole number)
Do the following to determine the number of index blocks in an indexed file.
1. Add: key field length + 3 = index entry length

2. Divide: 'number of characters in a sector (256) = number of entries per sector
index entry length {from step 1) .
(drop fraction)

number of records

number of entries per sector (from step 2) = number of sectors (if there is a

remainder, round to the next
higher whole number)

3. Divide:

number of sectors (from step 3)+ 3

= number of index blocks (if there
number of sectors per block (10)

is a remainder, round to the next
higher whole number)

4, Divide:

To determine the total number of blocks required for an indexed file, add the num-
ber of data blocks required to the number of index blocks required.

Appendix A. Records, Blocks, and Sector Conversion

215

DISK SECTOR NUMBER TO BLOCK NUMBER CONVERSION

To convert sector number to block number, subtract 1 from the sector number, di-
vide the result by 10, and drop the remainder. Examples:

10511 = sector number 10520 = sector number
(10511 -1)+10=1051.0 (10520 - 1) + 10 = 1051.9
1051 = block number 1051 = block number

DISK BLOCK NUMBER TO FIRST SECTOR IN BLOCK CONVERSION

To find the first sector in a block, multiply the block number by 10 and add 1.
Example:

1051 = block number

(1051 x 10) + 1 = 10511
10511 = first sector in block 1051

216

Hex and Decimal Chart

Appendix B. Hex and Dacimal Conversion

Byte Byte Byte
0123 4567 0123 4567 0123 4567
Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec
0 0] O 0| 0 0 0 0| o 0 0 0
1 1,048,5676| 1 65,536 | 1 4,096 1 256 | 1 16 1 1
2 2,097,162 2 131,072 | 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 | 3 12,288 3 768 | 3 48 3 3
4 4,194,304| 4 262,144 | 4 16,384 4 1,024] 4 64 4 4
5 5,242,880| 5 327680 | 5 20,480 5 1,280 5 80 5 5
6 6,291,456| 6 393,216 | 6 24,576 6 1,636 | 6 96 6 6
7 7,340,032 7 458,762 | 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 | 8 32,768 8 2,048 | 8 128 8 8
9 9,437,184 9 589,824 | 9 36,864 9 2304} 9 144 9 9
A 10,485,760 | A 655,360 | A 40,960 A 2,660 A 160 A 10
B 11,534,336 | B 720,896 | B 45,056 B 2816 B 176 B 1
c 12,682,912 C 786,432 | C 49,152 c 3072| C 192 C 12
D 13,631,488| D 851,968 | D 53,248 D 3328| D 208 D 13
E 14,680,064 | E 917,604 | E 57,344 E 3584 | E 224 E 14
F 15,728,640 F 983,040 | F 61,440 F 3840| F 240 F 16
6 5 4 3 2 1

Position

Appendix B. Hex and Decimal Conversion

217

218

Hex to Decimal Example

To find the decimal value of the hex value 1FA, you would find that in position 3
of the preceding hex and decimal chart, hex 1 equals decimal 266; that in position
2 of the chart, hex F equals 240; and that in position 1, hex A equals decimal 10.

If you add these decimal values together, you have the decimal value of hex 1FA:

256 + 240 + 10 = 506,

Hex Dec Hex Dec Hex Dec
1 256 | F 240 A 10
3 2 1

Position

Decimal to Hex Example

To find the hex value of the decimal 5634, you would find that the next lower deci-
mal number in the preceding hex and decimal chart is 512 in position 3, equal to
hex 2. You then subtract 512 from 534 and use the difference (22) to find the next
hex value. The next lower decimal number in the chart is 16 in position 2, equal to
hex 1. The difference between 22 and 16 is 6. The remaining 6 is found in position
1 of the chart, equal to hex 6. Therefore, the hex value of decimal 534 is 216.

Hex Dec Hex Dec Hex Dec
2 512 1 16 6 6
3 2 1

Position

Appendix C. Diskette Formats and Diskette Data Files

Diskette data files for IBM System/32 reside on diskettes that are initialized in one
of two physical formats.

DISKETTE FORMATS

1BM System/32 processes diskettes that are initialized either in the standard inter-
change format or in the IBM System/32 extended format. The sectors in track 0

of both formats are 128 bytes long. Data sectors on standard interchange diskettes
are also 128 bytes long. Data sectors on extended format diskettes are 512 bytes
long. The INIT procedure and $INIT system utility can initialize diskettes in either
format (see index entries: "IN/T procedure and $INIT utility program).

DISKETTE DATA FILES

IBM System/32 creates and processes two kinds of diskette data files: standard
interchange files and IBM System/32 system files.

Standard Interchange Files

Standard interchange files are described in The /BM Diskette for Standard Data
Interchange, GA21-9182. In supporting standard data interchange, |BM System/32
permits the use of the following data set label fields in addition to the data set label
fields defined for standard data interchange:

Field Position in

Name Data Set Label Description

Volume 46-47 Volume sequence specifies the sequence of vol-

sequence umes in a multivolume file. The sequence must

number be consecutive, beginning with 01 (to a maxi-
mum of 99). Blanks indicate that volume se-
quence checking is not to be performed.

Creation 48-53 Date the file was created. Format may be

date MMDDYY, YYMMDD, or DDMMYY, where
MM is month (2 digits), DD is day (2 digits),
and YY is year (2 digits).

Expiration 67-72 Date the file can be purged.

date

Appendix C. Diskette Formats and Diskette Data Files 219

220

Standard interchange files are created by the TRANSFER procedure and $BICR
system utility. The copy of a diskette file created by the COPY 1 procedure or
$DUPRD utility is a standard interchange file if the original diskette file is a stand-
ard interchange file. (For a description of the procedures and utilities just men-
tioned, see index entries: COPY/1 procedure, TRANSFER procedure, $BICR
utility program, and $DUPRD utility program.)
Standard interchange files can reside only on diskettes initialized in the standard
interchange format.

System Files
System files differ from standard interchange files in that:

® System files can be recorded on track 74 of a diskette.

® The following fields of the data set labels for system files are defined as:

Field Name Position Contents

Offset to 18-22 A value indicating the starting position of the next
next sequential record relative to the EOD (end of data).
record If the field is blank (hex 40), the next record starts

at the EOD address. Any other value in the field
is a decimal value to be used as a negative displace-
ment from EOD.

Value Meaning
Record 28 blank Records are unblocked and unspanned.
attribute {hex 40)

R Records are blocked and spanned.

Records that are unblocked and unspanned have a
physical length of 128 or less. Records whose length
is less than 128 are left-justified in sectors and padded
to the right with binary zeros.

Blocked records are recorded with no pad between
them and spanned records can logically extend
across sectors, tracks, and volumes (diskettes).

Physical 34 Contains a value indicating physical record (sector)
record length: blank (hex 40) indicates sector length of
length 128 bytes; 2 indicates sector length of 512 bytes.
Interchange 44 E—indicates system (noninterchange) file.

type

indicator

System files are created by the BACKUP, FROMLIBR, ORGANIZE, and SAVE pro-
cedures, and by the $BACK, $COPY, and $MAINT utilities. The copy of a diskette
file created by the COPY 11 procedure or $DUPRD utility is a system file if the ori-
ginal diskette file is a system file. (For a description of the procedures and utilities
just mentioned, see index entries: BACKUP procedure, COPY 11 procedure,
FROMLIBR procedure, ORGANIZE procedure, SAVE procedure, $BACK utility
program, $COPY utility program, $DUPRD utility program, and SMAINT utility
program.)

System files can reside on both standard interchange and extended format diskettes.
Position 76 of the volume label (VOL1) of a diskette contains a 2 if the diskette is
in the extended format.

Appendix C, Diskette Formats and Diskette Data Files 221

222

Appendix D. {1BM SCP Service Procedures

The procedures described here are IBM-provided service procedures designed to help
you and IBM service personnel diagnose and correct system problems that may occur.

The following table, Figure 9, shows the formats of the command statements that
evoke the service procedures. The table is intended for quick reference. Complete
descriptions of the procedures and command statements foliow the table.

The descriptions of the service procedures and related command statement formats
provide the same kind of information as is provided by the procedure descriptions
in Part 2. The use of brackets, capital letters, and so on to describe command state-
ment formats is the same here as in Part 2.

For additional information, see the /BM Systems Data Areas and Diagnostic
Aids, SY21-0532.

APAR vol-id, [object program name] [,source program name]
BUILD

MAIN

CONTROL

HISTORY PRINTER JE1
bumP PTF "} CRT :] li,l1}
CONFIG

DISK

PATCH [::71] [,[NOHEX]

TRACE [%I*:‘_:;] [.WAIT] [,FDI0S] [,CSFDIOS] [,PUSH] [,PULL] [,DISABLE]

[LENABLE] [,QUEUE] [,LDCS] [,LOADER] [XIENT]

Figure 9. Command Statement Formats for IBM Service Procedures

Appendix D, IBM SCP Service Procedures

223

224

APAR PROCEDURE

The APAR procedure collects diagnostic information that can help I1BM service per-
sonnel isolate and correct programming problems that may occur in the system. The
APAR procedure collects the information in two files, APARFILE and FIXDFILE.
The APAR procedure creates the two files on a diskette.

Recorded in APARFILE is the information saved on the CE cylinder at the time of

a program check interrupt (programming problem). The CE cylinder is two tracks

reserved on the fixed disk for diagnostic information. The information that exists

on the CE cylinder after a program check consists of:

Note: Beware of customer security requirements.

® Contents of control storage and the first 16K of main storage at the time of the
program check. (Main storage beyond 16K is stored in APARFILE, but is not on
the CE cylinder — it is written within the library.)

® Last 20 sectors of the HISTORY file.

The APAR procedure also records:

The PTF (program temporary fix) log module (in APARFILE)
® The system configuration record (in APARFILE)

® The scheduler work area (in FIXDFILE)

® The disk VTOC (in FIXDFILE)

® The volume label error logging tables and library contro! sector from the disk
(in FIXDFILE)

® The rollin/rollout area (in FIXDFILE)

The APAR procedure evokes the $FEAPR utility program.

APAR Command Statement Format

APAR vol-id, [object program name] [,source program name]

APAR Parameters

vol-id Volume identification of the diskette to contain the two
files APARFILE and FIXDFILE.

object program name The name of the object program causing the program
check interrupt.

source program name The name of the source program from which the object
program causing the program check interrupt was
created.

BUILD PROCEDURE

The BUILD procedure helps you correct data on the disk after an error has occurred
during a disk read or write operation. The BUILD procedure evokes the $BUILD
utility program to display and print unreadable data so you can find and correct it.
See index entry: $BUILD utility program, for a description of how to display and

correct data after a disk read or write error has occurred.

BUILD Command Statement Format

BUILD

BUILD Parameters

None

DUMP PROCEDURE

The DUMP procedure prints or displays information saved on the CE cylinder and

other protected sectors on the disk. This information, consisting of the contents of
main and control storage and the last 20 sectors recorded in the HISTORY file, may
have been saved as a result of a program check interrupt or may have been saved be-

cause the RESET and CE START keys were pressed.

DUMP also prints or displays the PTF (program temporary fix) log module and
system configuration record. If disk is specified, selected sectors from the disk
(if F1) or a diskette (if 11) may be displayed or printed (see index entry: APAR

procedure),

The DUMP procedure evokes the $F EDMP utility program.

DUMP Command Statement Format

PRINTER] [.Fi
* |cRT A

MAIN
CONTROL
HISTORY
PTF
CONFIG
DISK

bDuUmP

If MAIN, CONTROL, HISTORY, PTF, or CONFIG are specified with 11, the
specified items are printed or displayed from a diskette file created by the APAR

command.

Appendix D, IBM SCP Service Procedures

225

DUMP Parameters

MAIN The system status, system communication area (SCA), program level
communication area (PLCA), DTFs (define the files) and 10Bs
(input/output blocks) are dumped; a prompt for main storage address
limits follows. After the selected area of storage is dumped, a new
limits prompt is issued. You have the END option (terminate the
DUMP) after each prompt for main storage limits. MAIN is a default
value.

CONTROL The direct area is dumped; a prompt for the control store address
limits follows. You can respond with the limits or END.

HISTORY Dump the saved HISTORY file.

PTF Dump the PTF log module.
CONFIG Dump the system configuration record.
DISK Area of F1 or 11 can be dumped. Prompts will be issued for the sec-

tor number and number of sectors to be dumped. At the completion
of that dump, prompts are issued for the next group of sectors. You
can respond with the limits or END.

PRINTER Output is on the printer. PRINTER is a default value.,

CRT Output is on the display screen, 240 characters at a time. The key-
board function keys can be used to display different portions of the
dump.

F1 The disk contains the information requested by the MAIN, CONTROL.,

HISTORY, PTF, CONFIG, or DISK parameter. F1 is a default value.

11 If disk is specified, specified sectors from the diskette may be dis-
played or printed.

PATCH PROCEDURE

The PATCH procedure enables |BM service personnel to patch, or modify, a disk or
diskette sector by keying modifications from the keyboard.

The PATCH procedure evokes the $FEPCH utility program.

PATCH Command Statement Format
PATCH [ﬁl] [,[NOHEX]

If MAIN, CONTROL, HISTORY, PTF, or CONFIG are specified, the specified
items are printed or displayed from a diskette created by the APAR command.

226

PATCH Parameters

F1 A disk sector is to be patched. (F1 is a default value.) A prompt re-
questing the sector number is displayed. That sector is displayed on
the display screen, 40 characters at a time. The keyboard function
keys can be used to display the entire sector. The first line of the dis-
play contains printable EBCDIC characters. If the NOHEX parameter
is specified, the hex representation of only unprintable characters is
displayed on lines 2 and 3. If NOHEX is not specified, the hex repre-
sentation of all characters in the sector is displayed on lines 2 and 3.
Line 4 is used to display the displacement into the record
(COL=nnnnn) and the sector number (SS=nnnn).

The patch data is entered from the keyboard as the affected portion(s)
of the sector is displayed. After all changes are made to a sector, the
sector is written back to the disk by pressing REC ADV. The next
sequential sector is then displayed. Another sector can be displayed
by pressing ENTER. Then a prompt will be given. To end job, enter
END in response to prompt.

11 A diskette sector is to be patched. The method for patching a diskette
sector is the same as for patching a disk sector. See the preceding des-
cription of the F1 parameter.

NOHEX The hex representations of only unprintable characters are to be displayed.

TRACE PROCEDURE

The TRACE procedure provides the ability to compile a history of, or trace, impor-
tant SCP events occurring in the system. Whenever a request indicator byte (RIB)
or other branch to the supervisor—part of the SCP— is issued, its value, or function,
is checked. If the function is one of those for which a trace has been requested, a
12-byte entry describing the function is placed in a trace table in main storage. The
table can contain 21 entries. If the table is filled, new entries replace those recorded
first in the table; that is, the table is a wraparound table.

If the contents of main storage are saved on the CE cylinder because a program check
interrupt occurred or because the RESET and CE START keys were pressed, the trace
table, being contained in main storage, is available on the disk. It is printed or dis-
played by the DUMP procedure (see index entry: DUMP procedure) if DUMP is used
to print or display the saved contents of main storage. If the contents of main stor-
age are printed, the trace table is formatted to clearly identify the table and the kinds
of information contained in the entries.

Appendix D. IBM SCP Service Procedures 227

228

The following system functions can be traced:
® Wait

® Disk 10S

® Control storage disk 10S

® Push

e Pull

® Disable

® Enable

® Queue

® Control storage load

® Main storage load

Transient load

Information provided by the trace includes request indicator byte values or supervi-
sor call (SVC) codes, register contents, and selected disk 10B (input/output block)
information.

TRACE evokes the $SETCF utility (see index entry: $SETCF utility program).

TRACE Command Statement Format

TRACE [%:;—t:] [WAIT,] [FDIOS,] [CSFDIOS,] [PUSH,] [PULL,] [DISABLE,]

[ENABLE,] [QUEUE,] [LDCS,] [LOADER,]} [XIENT]

Note: If OFF is specified, OFF must be the first parameter. If either ALL or OFF
is specified, all other parameters specified are ignored. The remaining parameters
can be specified in any order. A maximum of ten parameters can be specified.
However, the entire SCP trace function is disabled if DEBUG-Y is specified in an
ALTERBSC command statement or $SETCF SETB utility control statement (see
index entries: AL TERBSC procedure and BSCA environment).

TRACE Parameters
ALL
OFF
WAIT
FDIOS
CSFDI10S
PUSH
PU LL
DISABLE
ENABLE
QUEUE
LDCS
LOADER

XIENT

All traceable system functions are to be traced. ALL is a default value.

None of the system functions are to be traced.

Each evocation of the wait function is to be traced.

Each evocation of disk 10S (input/output supervisor) is to be traced.
Each evocation of control storage disk 10S is to be traced.

Each evocation of the push function is to be traced.

Each evocation of the pull function is to be traced.

Each evocation of the disable interrupt function is to be traced.
Each evocation of the enable interrupt function is to be traced.

Each evocation of the queue function is to be traced.

Each evocation of the control storage transient loader is to be traced.
Each evocation of the main storage relocating loader is to be traced.

Each evocation of the main storage transient loader is to be traced.

Appendix D. IBM SCP Service Procedures

229

230

Appendix E. IBM SCP Procedure Contents

This appendix shows the OCL and utility contro! statements contained in each 1BM
procedure. This appendix is intended as a reference for programmers who want to
know what is executed when a procedure is evoked.

ALTERBSC

// LOAD $SETCF
// RUN

v o {1 v (3] oo {1 1] [one- {31
e {11 L {11] [rove {3}

// END

APAR

// LOAD $FEAPR

// FILE NAME-APARFILE,RETAIN-999,PACK-vol-id,UNIT-11

// FILE NAME-FIXDFILE,RETAIN-999,PACK-vol-id, UNIT-11

// RUN

[// FROMLIBR object program name, LOAD,APARLOAD,,999,vol-id]
[// FROMLIBR source program name, APARSRCE,,999,vol-id]

APPLYPTF
// LOAD $MAINT
SC1inn
// FILE NAME- < RG1nn p ,UNIT-11
UT1nn

// RUN

If the 2nd parameter is ALL:

SC1nn
// COPY FROM-DISK,TO-F1,FILE-<{ RG1nn },’R ETAIN-R
UT1inn
If the 2nd parameter is “ptfid’’:
SC1inn
// COPY FROM-DISK,TO-F1,FILE-{ RG1nn j ,PTF-ptfid, RETAIN-R
UT1nn

// END

Appendix E, IBM SCP Procedure Contents

231

232

If the language translation of SCP PTFs is requested, these additional OCL state-
ments are generated:

// LOAD $MAINT

// FILE NAME-TRANS,UNIT-I1

// FILE NAME-SCRTAB,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,FILE-TRANS,RETAIN-R
// COPY FROM-DISK,TO-F1,FILE-SRCTAB,RETAIN-R
// END

// LOAD $TRANS

// RUN

// TRANSLATE SOURCE-SRCTAB

// END

// LOAD $MAINT

/l RUN

// DELETE LIBRARY-O,NAME-$TRANS

// DELETE LIBRARY-O,NAME-$TRATAB

// DELETE LIBRARY-O,NAME-TRNSMSG1

// END

BACKUP

// LOAD $BACK
// FILE NAME-#LIBRARY,LABEL-{ filename

#LIBRARY
PACK-vol-id,UNIT-11
// RUN

1

} 'RETAIN- {retentnomdays

BUILD

// LOAD $BUILD
// RUN

CATALOG

// LOAD $LABEL
// RUN ,
; 1"
1

// DISPLAY UNIT-
// END

,LABEL- ALL

filename%

CNFIGSCP

Set belt option:

// LOAD $SETCF
// IMAGE MEM,{

// RUN
// SETCF IMAGE-YES
// END

BELT48 }
BELT64

b

Set date format option:

// LOAD $SETCF
// RUN

YMD
// SETCF FORMAT- { MDY }

DMY
// END

Load SCP support for BSCA (the procedure name is CNFIBSCA):

// LOAD $MAINT

// FILE NAME-BSCALDAD,UNIT-11

// RUN

// COPY FROM-DISK, TO-F1,RETAIN-P,FILE-BSCALOAD
// END

Load SCP support for RPGII (the procedure name is CNFIRG1):
I1f you want BSCA support for RPG, use the following procedure:

// LOAD $MAINT

// FILE NAME-RPGSUBR,UNIT-I1

// FILE NAME-RPGLINK,UNIT-I11

// FILE NAME-BSCASUBR,UNIT-11

// RUN

// COPY FROM-DISK, TO-F1,RETAIN-P,FILE-BSCASUBR
// COPY FROM-DISK, TO-F1,RETAIN-P,FILE-RPGSUBR
// COPY FROM-DISK,TO-F1,RETAIN-P,FILE-RPGLINK
// END

If you do not want BSCA support for RPG, use the following procedure:

// LOAD

// FILE NAME-RPGSUBR,UNIT-11

// FILE NAME-RPGLINK,UNIT-11

// RUN

// COPY FROM-DISK,TO-F1,RETAIN-P,FILE-RPGSUBR
// COPY FROM-DISK, TO-F1,RETAIN-P,FILE-RPGLINK
// END

Apply PTFs to SCP and optional programs (the procedure name is CNFIPTFS),
see index entry: APPLYPTF procedure.

Remove the CNFIGSCP procedures from the library:
// LOAD $MAINT
// RUN

// DELETE LIBRARY-P,NAME-CNFI.ALL,RETAIN-S
// END

Appendix E, I1BM SCP Procedure Contents

233 .

234

COMPRESS

// LOAD $PACK

COPYIM

CREATE

// RUN
// LOAD $DUPRD
// FILE NAME-COPY11 [.DATE-date], UNIT-I1
// RUN
filename , YES
// COPYI11 NAME- ALL ,PACK-vol-id [,DELETE- %HQ_ :]
// END
// LOAD $MGBLD
// RUN
YES
// MGBLD SOURCE-sourcename, REPLACE- 3N0 f
// END _

DATE

// DATE-date

DELETE

// LOAD $DELET

// RUN

// SCRATCH LABEL-filename [.DATE-date] ,UNIT- 3 'F11€
and/or

// REMOVE LABEL-filename,DATA-

// END

YES
NO

$ [,DATE-date] ,UNIT- 3 F1 g

DISPLAY

// LOAD $COPY

// FILE NAME-COPYIN,LABEL-filename [,DATE-date] ,UNIT-F1
// RUN

// COPYFILE OUTPTX-PRINT

[// SELECT RECORD,FROM-number-1 [,TO-number-Z]]

// END
DUMP
// LOAD $FEDMP
// RUN
MAIN
CONTROL
HISTORY \ | PRINTER E1
// DUMP | LIST- PTF I:,OUTPUT- 3CRT %] I:,INPUT- " :l
CONFIG
DISK
// END
FROMLIBR

// LOAD SMAINT

[fllename-1] g I£F1is

J/ FILE NAME- h.brary name-1 'RETAIN- T specified blocks
filename-2 - 8
name-1 or

% ,PACK-vol-id

etention-days

-

F1

UNIT- 3”

or, if ADD is specified,

filename-
// FILE NAME- [—-Y—-—"bra’ name-1} | pACK-vol-id] UN|T-§F1%

[fllename -2] N — "

name-1 If UNIT-11
// RUN
s
P library-name-1
// COPY FROM-F1,LIBRARY- { O » ,NAME- 1 °rary-name
R name-1.ALL
ALL

[fllename 1
FILE- library-name-1

. TO-DISK,OMIT-SYSTEM [,ADD-YES]
filename-2
name-1

// END

Appendix E, IBM SCP Procedure Contents

236

236

HISTORY

// LOAD $HIST

// RUN
[// DISPLAY [ALL]]
// END
// LOAD $HINT
// RUN
INIT
// LOAD SINIT
// RUN FORMAT
FORMAT2
// UIN OPTION- DELETE
RENAME
vol-id owner-id
[/I VOL PACK- {system date} AD- {OWNER-ID}]
// END
INSTALL
Print System Directory:
// LOAD $MAINT
// RUN
// COPY FROM-F1,TO-PRINT,LIBRARY-SYSTEM,NAME-DIR
// END
Delete INSTALL procedures from tailored system:
// LOAD $MAINT
// RUN
// DELETE LIBRARY-P,NAME-INST.ALL,RETAIN-S
// END
LINES
// FORMS LINES- {"““‘b‘”}
66
LISTLIBR
// LOAD $MAINT
// RUN s
DIR P
// COPY FROM-F1,NAME-{ "Prarvnames | ippagy. (O % topRINT
name.ALL R
ALL ALL
SYSTEM

// END

LOG
PRINTER ,EJECT
// LoG {CRT } {,NOEJECT}

ORGANIZE

// LOAD $COPY

/] FILE NAME-COPY IN,LABEL-filename-1 [,[DATE-date] ,UNIT-F1
P

// FILE NAME-COPYO,LABEL-filename-2,RETAIN- {S} JUNIT-F1
T

or
// FILE NAME-COPYO,LABEL-filename-1,RETAIN- { ‘;e‘e"“°"'days}

PACK-vol-id, UNIT-11 -
// RUN
// COPYFILE QUTPUT-DISK [,DELETE-‘position,character’], REORG-YES
// END

OVERRIDE
// LOAD $SETCF

// RUN

// SETR [ADDR-nn] | ,LINE-

- »nwnxmovO

// END

PATCH

// LOAD $FEPCH
// RUN

F1 NO
// PATCH INPUT- {” } JHEX- {_Yﬁ}
// END

REBUILD

// LOAD $REBLD
// RUN

RELOAD

// LOAD $LOAD
// FILE NAME-#LIBRARY,LABEL-

{ filename
// RUN

41BR ARY} [.DATE-date] [,PACK-vol-id] ,UNIT-I1

Appendix E. IBM SCP Procedure Contents 237

238

REMOVE

// LOAD $SMAINT

// RUN
S

library-name P
// DELETE NAME- name.ALL ,LIBRARY- (0]

ALL R

ALL
// END
RESTORE
// LOAD $COPY filename-1
// FILE NAME-COPYIN,LABEL- { #SAVE [, DATE-date] ,UNIT-I1
filename-2
. ,RECORDS-value-1
// FILE NAME-COPYO [,LABEL-filename-2] {,BLOCKS-vaIue-2 } [LUNIT-F1]
// RUN
// COPYALL TO-F1
or
// COPYFILE OUTPUT-DISK,REORG-NO
// END
SAVE

// LOAD $COPY

SET

// EILE NAME-COPY N [,LABEL-filename-2] [, DATE-date] ,UNIT-F1

. filename-2

// FILE NAME-COPYO |,RETAIN- {’f"emm“'days}il LABEL- {filename-1}
- #SAVE,

PACK-vol-id,UNIT-11
// RUN
// COPYALL TO-11

or
J/ COPYFILE OUTPUT-DISK,REORG-NO

or
// COPYADD

// END

// LOAD:$SETCF
[// IMAGE MEM,source-name]}
[// DATE date]

// RUN
MDY YES
/I SETCF [LINES-number]|,FORMAT-{ DMY ¢ | | IMAGE- { }
YMD NO

// END’

STATUS

// LOAD $STATS
// RUN

SYSLIST

PRINTER
// SYSLIST | CRT
OFF

TOLIBR

// LOAD $MAINT

/1 FILE NAME-filename [,DATE-date] ,UNIT- {::1' }
/I RUN

// COPY FROM-DISK,FILE-filename,RETAIN- {
// END

} ,TO-F1

xlo

TRACE

// LOAD $SETCF
// RUN
ALL-Y,

WAIT-N,\ | [FDIOS-Y,] [CSFDIOS-Y,] [PUSH-Y] [PULL.Y,
/I TRACE [{WAlT-Y,}] [FDIOS-N] [-N] [N][-N]
[DISABLE-Y,] [ENABLE-Y,] [QUEUE-Y,] [LDCS-Y,] [LOADER-Y,] [XIENT-Y]

-N -N -N -N -N -N
// END

TRANSFER

// LOAD $BICR

// FILE NAME-COPYIN,LABEL-filename-1 [, DATE-date] ,UNIT- {::11}

Transfer disk to diskette:

// FILE NAME-COPYO, LABEL-filename-1,PACK-vol-id [':ete"“"*’ays])
UNIT-11 or

Transfer diskette to disk, with ADD:

filename-2

// FILE NAME-COPYO,LABEL- ! ..
filename-1

} [, DATE-date] ,UNIT-F1 or

Transfer diskette to disk, without ADD, size specified:

,RECORDS-value-3

// FILE NAME-COPYO,LABEL-filename-1 {,BLOCKS—value-4

} JUNIT-F1

Appendix E. IBM SCP Procedure Contents 239

240

TRANSFER (continued)
Transfer diskette to disk, without ADD, using size of input file:
No COPYO FILE statement is generated.
// RUN

Diskette standard interchange file to disk sequential file, or disk sequential, indexed,
or direct file to diskette standard interchange file:

[// TRANSFER]

Diskette standard interchange file to disk sequential file with ADD:
// TRANSFER ADD-YES

Diskette standard interchange file to disk indexed file, without ADD:
// TRANSFER ADD-NO,KEY LEN-value-1,KEYLOC-value-2

// END

Appendix F. IBM System/32 Characters

The following characters are from the standard 64-character print belt. They include
the characters on the standard 48-character print beit.

Hexadecimal
Character Equivalent

Blank (not represented 40
on the print belt)

¢ 4A
4B
< 4C
(4D
+ 4E
I 4F
& 50
! _ BA
$ 5B
* 5C
) D
; 6E
- 6F
- (minus) 60
/ 61
! 6B
% 6C
— (underscore) 6D
> 6E
? 6F

Appendix F, IBM System/32 Characters 241

242

Character

)

- @ :H: 2]

(grave accent)

(single quote)

Hexadecimal
Equivalent

79
7A
7B
7C
7D
7E
7F
C1

C2

8

C5

Cé

Cc7

cs

C9

D1

D2

D3

D4

Db

D6

D7

D8

D9

Hexadecimal

Character Equivalent
\ EO
S E2
T E3
U E4
\ ES
w E6
X E7
Y E8
z E9
0 FO
1 F1
2 F2
3 F3
4 F4
5 F5
6 F6
7 F7
8 F8
9 F9

Note: This character set is shown in ascending sorting sequence; that is, the blank
character is the lowest—will be sorted before any other character—and the 9 charac-
ter is the highest.

Appendix F, IBM System/32 Characters 243

244

Appendix G. Polling and Addressing Characters for

System/32 Tributary Stations

Polling and addressing characters must be used together in certain pairs; that is,
once a polling character is selected, the complementary addressing character is
determined; once an addressing character is selected, the complementary polling
character is determined.

The pairs of valid polling and addressing characters for both EBCDIC and ASCII
codes are as follows:

EBCDIC

Polling
Character

BB
cc
DD
EE
FF
GG
HH
I
3
KK
LL
MM
NN
00
PP
Qo
RR

Hexadecimal Addressing
Representation Character
c2c2 SS

C3C3 TT

caca uu

C5C5 vv

C6C6 ww
Cc7C7 XX

C8C8 YY

CoC9 zZ

D1D1 1

D2D2 22

D3D3 33

D4D4 44

D5D5 55

D6D6 66

D7D7 77

D8D8 88

D9D9 929

Hexadecimal
Representation

E2E2
E3E3
E4E4
EBES
EGE6
E7E7
E8BES
EQE9
F1F1
F2F2
F3F3
FAF4
F5F5
F6F6
F7F7
F8F8
FOF9

Appendix G. Polling and Addressing Characters for System/32 Tributary Stations 245

ASCH
Polling Hexadecimal Addressing Hexadecimal
Character Representation Character Representation
AA 4141 aa 6161
BB 4242 bb 6262
cC 4343 cc 6363
DD 4444 dd 6464
EE 4545 ee 6565
FF 4646 ff 6666
GG 4747 gg 6767
HH 4848 hh 6868
] 4949 ii 6969
JJ 4A4A 1] 6A6A
KK, 4B4B kk 6B6B
LL 4CAC || 6C6C
MM 4D4D mm 6D6D
NN 4E4E nn 6EGE
00 4F4F oo 6F6F
PP 5050 pp 7070
QQ 5151 qaq 7171
RR 5252 rr 7272
SS 53563 ss 7373
T 5454 tt 7474
Uy 5555 uu 7575
vV 5656 w 7676
ww 5757 ww 7777
XX 5858 XX 7878
YY 5959 vy 7979
Y4 5ABA zz 7A7A
To specify the addressing characters in the ADDR-nn parameter of the SETR utility
control statement or the OVERRIDE command statement format, give the hex
representation of one of the characters. It will be duplicated by the system to pro-
vide the two addressing characters.
.For example, ADDR-F7 is given to specify the EBCDIC addressing characters 77
which correspond to EBCDIC polling characters PP. ADDR-70 is given to specify
the ASCII addressing characters pp which correspond to ASCI! polling characters
PP.

246

Appendix H. ASCII and EBCDIC Codes

The coded character sets for ASCI| (American National Standard Code for Infor-
mation Interchange) and EBCDIC (extended binary coded decimal interchange
code) are shown in the following tables. Use the set that your programming
system supports.

Appendix H. ASCH and EBCDIC Codes 247

EBCDIC Codes

Main Storage Bit Positions 0, 1,2, 3
Main Storage 0000} 0001} 0010} 0011 | 0100| 0101 0110|0111 | 1000 1001} 1010} 1011 | 1100| 1101} 1110} 1111
Bit Positions
4,5,6,7 Hed O 1 2 3 4 5 6 7 8 9 A B c D E F
0000 0 |NUL|DLE|DS spP & - { \ 0
0001 1 | SOH | DC1 | sos a j ~ A J 1
0010 2 |STX|DC2|FS |sSvYN b Kk s B K S 2
0011 3 |ETX|DC3 c | t c L T 3
0100 4 |PF |RES|BYP|PN d m u D M u 4
0101 5 |HT [NL |LF |Rs e n v E N \% 5
EO
0110 6 |LC |BS Tel UC f o w F 0 w 6
PR
0111 7 |DEL|IL sc| EOT g p X G P X 7
1000 8 CAN h q Y H Q Y 8
1001 9 [RLF|EM \ i r z 1 R b4 9
]
1010 A [SMM]|cC |sm ¢] |
1011 B |VvT $ s #
1100 C |FF |IFS pca | < * % @
1101 D |CR [1GS |ENQ|NAK] () _ ’
1110 E |SO |IRS |ACK + ; > =
111 F |si IUS |BEL [suB | | 7 ? "

248

Duplicate Assignment

ASCIl Codes

Main Storage Bit Positions 0, 1, 2, 3

Main Storage 0000| 0001 {0010 | 0011} 0100|0101 J0110] 0111 | 1000 [1001 [1010 |1011 J1100 |1101 J1110 1111
Bit Positions
4,5,6,7 Hex| 0 | 1 2| 3| 4|5 {6]| 7|8 |9 |AaAa]BBlc|D]E]|F
0000 o |NnuL|loLe|sp | o |l @)l P | v] b

0001 1 |soH|oct | 1 1 Alalalaq

0010 2 |stx|oc2| " | 2| B | R|{b |

0011 3 {eTx|pc3 | # | 3 C s c s

0100 4 |[eoT|pca| $ | 4 | D | T | d | t

0101 5 [ENQ|NAK| % | 6 | E | U | e | u

0110 6 |[Ack|syN| & | 6 | F | v | ¢ v

0111 7 |BEL|ETB | * 71 6l wi|giw

1000 8 |Bs |can| { 8 | H| x| n | x

1001 9 |HT |em |) 9 | 1 Yy | i y

1010 A |LF |suB | * J z | z

1011 B [vT |esc | + | ; K| 0|«]

1100 cler Jes |, | <| L |\ | :

1101 D |CR |Gs - = M] m }

1110 E |so [ms S| N| T n]| ~

11 F{st |us / ? o| _ | o |DEL

Appendix H. ASCIl and EBCDIC Codes

249

250

Appendix |. Data Link Control Characters

The following characters and character sequences are recognized by System/32
BSCA. For detailed information on data link control characters, see General
Information — Binary Synchronous Communications, GA27-3004.

Name Mnemonic ASCII Code EBCDIC Code
Start of heading SOH SOH SOH

Start of text STX STX STX

End of transmission block ETB ETB ETB

End of text ETX ETX ETX

End of transmission EOT EOT EOT
Enquiry ENQ ENQ ENQ
Negative acknowledge NAK NAK NAK
Synchronous idle SYN SYN SYN

Data link escape DLE DLE DLE
Intermediate block character ITB uUs 1US

Even acknowledge ACK O DLEO DLE (70)
Odd acknowledge ACK 1 DLE1 DLE/
Wait before transmit — Pos. Ack. WACK DLE; DLE,
Mandatory disconnect DISC DLE EOT DLE EOT
Reverse interrupt RVI DLE<L DLE@
Temporary text delay TTD STX ENQ STX ENQ
Transparent start of text XSTX DLE STX
Transparent intermediate block XITB DLE IUS
Transparent end of text XETX DLE ETX
Transparent end of trans. block XETB DLE ETB
Transparent synchronous idle XSYN DLE SYN
Transparent block cancel XENQ DLE ENQ
Transparent TTD XTTD DLE STX DLE ENQ
Date DLE in transparent mode XDLE DLEDLE

Appendix |, Data Link Control Characters 251

262

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright © 1970 by American
National Standards Institute, Incorporated), which

was prepared by Subcommittee X3K5 on Terminology
and Glossary of the American National Standards
Committee X3.

ANSI definitions are identified by an asterisk. An asterisk
to the right of the term indicates that the entire entry

is reprinted from the American National Standard
Vocabulary for Information Processing; where definitions
from other sources are included in the entry, ANSI
definitions are identified by an asterisk to the right of

the item number.

alternate sector: A sector on disk assigned by the system
in place of a sector that has become unusable.

attribute bytes: A 2-byte field called attributes in the
library directory that contains the characteristics of a
library member.

block: A unit of space assignment for files on the disk.
One block is equal to 10 sectors.

BSCA (binary synchronous communications adapter):
A flexible form of line control which provides a set of
rules for communications between two devices.

CE cylinder: A cylinder on disk for use as a save area
for the dump of main storage, control storage, and the
history file. Also used as a read/write area for CE
diagnostics.

command statement: A statement that is used to request
the performance of a particular function. It always
contains the command name and may include parameters.
Specifically, a command statement is a special form of
the / / INCLUDE OCL statement. A command statement
evokes a procedure and can pass information to the
procedure via parameters included in the statement.

The procedure named by the command name is evoked
by the command statement.

Glossary

comparison parameter: A parameter that is used in a

test that compares one value to another. A comparison
test is performed within a procedure; the next action
performed by the procedure usually depends on the result
of the test.

condition parameter: See comparison parameter and
existence testing parameter.

conditional expression: A conditional expression is used
among OCL statements to modify procedures. Valid
conditional expressions for IBM System/32 are |F and
ELSE.

configuration record: See system configuration record.

continuation: The use of more than one record to
contain a single OCL statement. Continuation is valid only
for FILE OCL statements.

default value: A value assigned by the system when no
value is selected by the user.

directory: See /ibrary diredtory.

directory area: The area on the disk that contains the
library directory.

disk block: See block.

error logging area: A variable number of sectors on disk
used for recording hardware, and hardware-related system
errors.

existence testing parameter: A parameter that is used in
a test performed within a procedure that tests for the
existence of a specified file or library member, or tests
the setting of an external indicator.

file segment: The portion of an offline multivolume
file that can reside on the disk. A segment consists of
the information stored on one diskette.

format 1: A record containing system information that
describes a file. There is one format 1 record for each
file on the disk. Format 1’s are in the volume table of
contents (VTOC).

Glossary 253

identifier: The group of characters that distinguishes
one control statement from another. For example,
SWITCH is the identifier in a / / SWITCH OCL statement.

indicator settings parameter: The parameter on the
SWITCH OCL statement that defines the setting of the
external indicators.

initial program load (IPL): The loading of the system
control programming into main storage. This.prepares
the system for execution of jobs.

initialize: To use the INIT procedure or $INIT utility
program to prepare a diskette for use by naming the
diskette, removing the entries from the VTOC, and
formatting the diskette.

inquiry option: The system function that processes
inquiry requests.

inquiry request: A request by the operator (made by
pressing the INQ key) that stops the job that is running,
if it is an interruptable program so that another program
or function can be performed.

IPL: See initial program load.

job stream: The input to the system. The job stream
can contain OCL statements, utility control statements,
and input data.

keyword: A group of characters, usually a word, that
identifies a parameter in a control statement.

keyword parameter: A parameter that contains a
keyword.

level: See procedure level.

library: An area on the disk that contains procedure
members, source members, load members, and subroutine
members, as well as areas required by the system control
program.

library directory: The library component that contains
information about each member in the library (for
example, name and location),

library member: A named collection of records or state-
ments in the library that can contain source statements,
format descriptions, OCL statements, or executable
instructions,

254

load member: A collection of instructions, stored in the
library, that the system can execute to perform a
particular function, whether the function is requested by
the operator or specified in an OCL statement.

megabyte: One million bytes,
member: See /ibrary member.

message control statement: A statement that specifies
the name and level of the message load member to be
created.

message identification code (MIC): A 4-digit number
associated with a specific error or informational message.
The MIC is printed following the program identifier to
allow the message to be reviewed after the program is
signed off.

message load member: A special type of library member
from which the SCP retrieves the text associated with a
specific message identification code (MIC).

message source member: A special type of library source
member containing control and message text statements.

message text statement: Statement in a message source
member that specifies the message identification code
(MIC) and text associated with that code.

MIC: See message identification code.

multivolume file: A diskette file that resides on more than
one diskette, or that can be expanded from one diskette

to more than one diskette. See also offline multivolume
file.

nested procedure: A procedure that is evoked by another
procedure. A nested procedure is a procedure within a
procedure.

null entry: An entry that contains no value. For
example, if CATALOG,!1 is entered, the first parameter
position contains a null entry.

object program: A set of instructions in machine
language. The object program is produced by the compiler
from the source program.

OCL: See operation control language.

offline multivolume file: A multivolume file that is
processed in segments by the system. Each segment is
processed before the next segment is copied to or from
the disk.

operation control language (OCL): The control language
used to communicate with the system control program.
OCL is composed of statements with which specific
system functions are requested.

parameter:* A variable that is given a constant value for
a specific purpose or process.

positional parameters: Parameters in a statement that
must appear in a designated sequence.

procedure: A named collection of related OCL statements,
and possibly, utility control statements, that describe

a specific function or set of functions. A procedure is
evoked by a command statement or included OCL
statements.

procedure level: ldentifies the precedence of a particular
procedure in a progression of nested procedures. For
example, if procedure A evokes procedure B, which in
turn evokes procedure C, procedure C is a third level
procedure.

procedure member: A named collection of related OCL
statements, and possibly, utility control statements
stored in the library.

record mode: The mode of system operation in which
data is transferred by the system one record at a time.
The record mode of operation is used by the library
maintenance utility (SMAINT) when plaging user-
generated source or procedure members into the library
or a file,

relocation directory (RLD): The part of a load member
used for adjusting main storage addresses when the member
is moved to main storage.

rollout area: An area on disk that is allocated if inquiry
support or offline multivolume support is selected.
Programs interrupted by an inquiry request (INQ key
pressed and the 1 option selected) are stored in the
rollout area while the interrupting program is processed.

scheduler work area (SWA): An area on disk reserved
for use by the scheduler program. The scheduler is part
of the SCP.

sector: A unit of data recorded on disk. A sector of data
is the smallest amount of data that can be read from disk
or the smallest amount of data that can be transferred by
a single data transfer operation.

sector mode: The mode of system operation in which
data is transferred by the system either one sector at a
time or several sectors at a time. (Only whole sectors

are transferred.) The sector mode of operation is used by
the library maintenance utility (SMAINT) when placing
user-generated members into the library or a file.

segment:” See file segment.

source member: A collection of records (such as RPG Il
specifications or sort sequence specifications) that are
used as input for a program. Source members are stored
in the library.

source program: A set of instructions that represents

a particular job as defined by the programmer. These
instructions are written in a programming language such
as RPG Il, and are translated by a compiler into an
object program.

statement parameter: The portion of an IF expression
that defines the action to be taken if the condition

exists as specified. The statement parameter can be an
OCL statement (except comment or end of data) or a
utility control statement. The initial / / of the statement
is not entered as part of the expression. CANCEL and
RETURN are also valid entries in the statement parameter.

subroutine member: A subroutine that needs to be link
edited (joined) before being loaded for execution,
Subroutine members are stored in the library.

symbolic parameter: A parameter that does not contain
akeyword, For example, // LOAD $COPY. $COPY is
a symbolic parameter. See also keyword parameter.

system configuration record: Information stored in the
library directory that describes the system and its
programming support.

system library: See library.

system utility programs: A set of programs provided with
the system that are used to perform the everyday routine
tasks required by a data processing system.

utility control statement: A control statement that gives
a utility program information concerning the output you
want the program to produce or the way you want the
program to perform its function.

Glossary 255

utility program: See system utility programs.

value: For OCL, the user entry in response to a keyword
parameter — for example, UNIT-F1. F1is a value. If no
value is entered by the user, the system control program-
ming may assign a default value,

volume label (VOL1): A one-sector area on the disk or
diskette containing user and system control programming
information for the disk.

volume table of contents (VTOC): A table of contents on
the disk or diskette that describes each file on the disk or
diskette.

VTOC: See volume table of contents.

256

$BACK utility program (backup library) 116
$BICR utility program (standard interchange)
control statements 117,118
description 117,118
example 118
$BUILD utility program (alternate sector rebuild)
control statements 121
description 119-121
example 120
$COPY utility program (disk copy/display)
control statements 122-130
description 122-131
examples 131
$DELET utility program (file delete)
control statements 132-134
description 132-135
examples 134,135
$DUPRD utility program (diskette copy)
control statements 136, 137
description 136-138
examples 138
$HIST utility program (HISTORY file display)
control statements 139
description 139, 140
examples 140
$INIT utility program (diskette labeling and initialization)
control statements 142-145
description 141-145
examples 145
$LABEL utility program (VTOC display)
control statements 149
description 146-149
examples 146-149
$LOAD utility program (reload library)
control statements 153
description 150
example 150
$LOADI program 150
$MAINT utility program (library maintenance)
allocate function
control statements 155, 156
description 155, 156
examples 156
copy function
control statements 158-166
description 156-172
examples 166-172
delete function
control statements 173, 174
description 172-175
examples 175
general description 153-155
$MGBLD utility program (create message member)
control statements 176, 177,178
description 176-178
example 178

Index

$PACK utility program (disk reorganization) 179
$REBLD utility program (rebuild data file)
control statements 181
description 180, 181
$SETCF utility program (set)
OVERRIDE RPG BSCA specifications 184
control statements 184
description 181, 184
example 185
set BSCA environment 183
control statements 183
description 181, 183
example 184
set functions to be traced
control statements 186, 187
description 181, 182, 185-187
example 187
set system environment
control statements 181, 182
description 181, 182
example 182
$SOURCE file 98
$STATS utility program (status display) 188
$WORK file 98
* (comment) statement (see also comments)
description 33
statement summary 11
/* (end of data) statement
description 34
statement summary 11
//* (message) statement
description 34
example 34
parameter summary 14
statement summary 11
// COMPILE statement
description 15
example 15
parameter summary 12
statement summary 10
// DATE statement
description 16
example 16
parameter summary 12
statement summary 10
// FILE statement
description
disk 17-20
diskette 17, 20-22
example
disk 20
diskette 22
parameter summary
disk 12
diskette 12-13
statement summary 10

Index

257

// FORMS statement
description 23
example 23
parameter summary 13
statement summary 10

// IMAGE statement
description 24-25
examples 25
parameter summary 13
statement summary 10

// INCLUDE statement
as a command statement 39
description 26-27
example 26-27
parameter summary 13
statement summary 10

// LOAD statement
description 27
example 27
parameter summary 13
statement summary 10

// LOG statement
description 28
example 28
parameter summary 13
statement summary 10

// MEMBER statement
description 29-30
examples 30
parameter summary 13-14
statement summary 10

// PAUSE statement
description 30
statement summary 11

// RUN statement
description 31
statement summary 11

// SWITCH statement
description 32
example 32
parameter summary 14
statement summary 11

// SYSLIST statement
description 33
example 33
parameter summary 14
statement summary 11

? restrictions
in comment statements 33
in file names 17, 21

™m? 42-43,44

?n‘default’? 43, 44

nR? 43,44

nR’'msg-id'? 43, 44

nT'default’? 43, 44

?R? 43,44
##MsG1 210, 211
#H#MsG3 40

##msca 210, 211
#LIBRARY (see system library)

258

abbreviations viii
add
a disk file to a diskette 82, 122
a disk file to the library 89
(see also $MAINT utility program copy function)
a standard interchange file to a disk file. 91,117
library members to a file 65
(see also SMAINT utility program copy function)
library members to the library 89
(see also SMAINT utility program copy function)

allocate function (see $MAINT utility program allocate function)

ALTERBSC command statement
description 56
format summary 49
ALTERBSC procedure
contents 231
description 56
alternate sector 119, 263
alternate sector rebuild utility program (see $8UILD
utility program)
an example of creating a message source and load
member 178
APAR command statement
description 224
format summary 223
APAR procedure
contents 231
description 224
APARFILE 224, 225
application programs 197
APPLYPTF command statement
description 199, 200
format summary 191
APPLYPTF procedure
contents 231
description 199, 200
ASCIl codes 249
attribute bytes 168-169, 253

backup
program products 203
system library 57, 116
BACKUP command statement
description 57
format summary 51
backup diskettes
creating 59, 136
program products 203
system 195, 198
backup library utility program (see $BACK utility program)
BACKUP procedure
contents 232
description 57
belt image option 201
(see also print belt)
block 253
block number to first sector in block conversion 216

BSCA 253
BSCA environment 183
BSCA library requirements 209
BSCA support 201
BUILD command statement
description 225
format summary 223
BUILD procedure
contents 232
description 225
bypass unreadable data 120, 121

calculating the number of backup diskettes required
for the system 198, 199
CATALOG command statement
description 58
format summary 51
CATALOG procedure
contents 232
description 58
CE cylinder 224,225
changing
directory and library size
using $MAINT allocate function 15§
using RELOAD display 211-214
using RELOAD procedure 79
disk space allocation 81
characters, list of 241-243
CMD key 39
CNFIGSCP command statement
description 201
format summary 191
CNFIGSCP procedure 200, 201
coding rules
general 6-7
OCL statements 5-6
utility control statements 113
command key messages 40
command key request 39-40
command istatements (see also ALTERBSC, APAR, APPLYPTF,
BACKUP, BUILD, CATALOG, CNFIGSCP, COMPRESS,
COPYI1, CREATE, DATE, DELETE, DISPLAY, DUMP,
FROMLIBR, HISTORY, INIT, INSTALL, LINES,
LISTLIBR, LOG, ORGANIZE, IOVERRIDE, PATCH,
REBUILD, RELOAD, REMOVE, RESTORE, SAVE, SET,
STATUS, SYSLIST, TOLIBR, TRACE, TRANSFER)
as INCLUDE statements 26, 39
definition 253
in sample jobs 107-109

tables of
SCP 51-54
service 223

system configuration, installation, and modification. 191
comments (see also * (comment) statement)
definition 6
examples 7
for messages 178
rules for using 7

comparison parameter 45, 263
COMPILE OCL statement (ses // COMPILE statement)
COMPRESS command statement
description 58
format summary 51
COMPRESS procedure
contents 234
description 59
condition parameter 44-47
conditional expresions: IF and ELSE 44-47, 253
configuration record, system 85, 255
configuration, system 4, 189-213
continuation 7-8, 253
continued FILE statements 7-8
control statement for message source member 177
control storage dump * 225, 226
conventions for describing
command statements 55
OCL statements 9
utility control statements 114
conversions
block number to first sector in block 216
hex and decimal 217-218
records to blocks 216
sector number to block number 216
convert a
disk file to standard interchange file 91,117
standard interchange diskette file to disk file 91 , 117
copy function (see $BACK utility program; $COPY utility
program; $DUPRD utility program; $MAINT utility
program copy function)
COPY11 command statement
description 69, 60
example 60
format summary 51
COPYI1 procedure
contents 234
description 59-60
correct unreadable data 120, 121
CREATE command statement
description 61
example 61
format summary 51
Create message member utility program (see $MGBLD
utility program)
CREATE procedure
contents 234
description 61
creating another version of an existing output file 19
creation date
disk 20
diskette 22

data file utility (see DFU)
data link control characters 261
data set label 219, 220
DATE command statement
description 62
format summary 51

Index

259

date format (see also // DATE statement, DATE command
statement, SET command statement)
display 86
in // FILE statement 16, 21-22
option 201
DATE OCL statement (see // DATE statement)
DATE procedure
contents 234
description 62
date, setting (see also // DATE statement, DATE command
statement, SET command statement)
job 16
system 16
decimal and hex conversions 217, 218
decreasing the library size 155
default value
definition 263
showing in formats 55, 114
DELETE command statement
description 63
example 63
format summary 51
delete function of SMAINT utility program 173-175
DELETE procedure
contents 234
description 63
deleting a file
at diskette initialization 69, 141
caution 194
using DELETE 63, 132
deleting from the library 80, 209-211
(see also SMAINT utility program delete function)
deleting records from a file 75, 122
describing a disk file 97,98
(see also // FILE statement)
determining space available in the library 209
determining space available on the disk 210
DFU (data file utility)
applying PTFsto 196-198
installing 203
diagnostic information 224
directory (see library directory)
disk block 253
disk capacity display 86
disk copy/display utility program (see $COPY utility
program)
disk files
adding to diskette 83, 122
adding to library 89
(see also SMAINT utility program copy function)
converting to standard interchange diskette 91, 117
copying 75, 83
creating 97,98
deleting (see deleting a file)
deleting records from 75, 122
describing 97,98
(see also // FILE statement)
displaying 64, 122
obtaining space for 97
space allocation 81
disk free space, compressing 58, 179

260

disk read/write error 119, 225
disk record to block conversion 216
disk reorganization utility program (see $PACK utility
program)
disk volume label (VOL1) 154, 221
diskette copy utility program (see $DUPRD utility program)
diskette data set label 219, 220
diskette defects 142
diskette files
adding to disk 91, 117
converting to disk 91, 117
creating 98, 99
expiration date for 21-22
standard interchange 219, 220
system 220, 221
diskette formats 219-221
(see also $INIT utility program; INIT procedure)
diskette formats and diskette data files 219-221
diskette free space, compressing 59, 136
diskette labeling and initialization utility program (see
$INIT utility program)
diskettes
backup 198
PIiD 193
PTF 193
SCP 193
DISPLAY command statement
description 64
example 64
format summary 51
DISPLAY procedure
contents 235
description 64
displaying a file 64, 122
displaying messages and OCL statements 28, 74
displaying system information 86, 187
displaying VTOC 58, 146
DUMP command statement
description 225, 226
format summary 223
DUMP procedure
contents 235
description 225, 226

EBCDIC codes 2-48

ELSE expression 46-47

end of data 34
(see also /* (end of data) statement)

end of OCL statements 31

entering OCL. statements 3

erasing a file 63, 132

error logging area 154, 253

evoking a procedure 39-41

examples
$BICR utility program 118
$BUILD utility program 120
$COPY utility program 131
$DELET utility program 134, 135

examples (continued)
$DUPRD utility program 138
$HIST utility program 140
SINIT utility program 145
$LABEL utility program 146-149
$LOAD utility program 150
$MAINT utility program
allocate function 166
copy function 166-172
delete function 175
$MGBLD utility program 178
$SETCF utility program
BSCA environment 183
OVERRIDE RPG BSCA specifications 184
system environment 181
trace functions 185
/] * (message) statement 34
// COMPILE statement 15
// DATE statement 16
// FILE statement
disk 20
diskette 22
// FORMS statement 23
// IMAGE statement 25
// INCLUDE statement 26-27
// LOAD statement 27
/!l LOG statement 28
// MEMBER statement 30
// SWITCH statement 32
/] SYSLIST statement 33
COPY11 command statement 59, 60
CREATE command statement 61
creating a message source and load member 178
creating an offline multivolume file 100
DELETE command statement 63
disk VTOC display 146
diskette VTOC display 148
DISPLAY command statement 64
ELSE expression 46, 47
FROMLIBR command statement 67
IF expression 46, 47
INIT command statement 70
LISTLIBR command statement 73
OCL and procedure jobs 107
ORGANIZE command statement 76
printing of library directory entry 168
printing of system information 167

procedure coding 47-49
reading an offline multivolume file 101
REMOVE command statement 80
RESTORE command statement 82
SAVE command statement 84
TRANSFER command statement 93
existence testing parameter 44-45, 253
expiration date 21-22
extended format, diskette 219-221
(see also $INIT utility program; INIT procedure)
external indicators 32, 82

file
disk (see disk files)
diskette (see diskette files)
permanent 19
scratch 19
temporary 19
file delete utility program (see $DELET utility program)
FILE OCL statement (see // FILE statement)
file segment 100, 253
FILEBKUP procedure, example of procedure coding 47-49
FIXDFILE 224, 225
format diskette 69, 141
format 1 record 189, 253
FORMS OCL statement (see // FORMS statement)
free space, disk 58, 179
FROMLIBR command statement
description 66-67
examples 67
format summary 52
FROMLIBR procedure
contents 235
description 65-67

general form of OCL statements 5-6
glossary 253-256

hex and decimal conversions 217, 218
hex form of standard characters 241-243
HISTORY command statement
description 68
format summary 52
HISTORY file 68, 225, 226
HISTORY file display utility program (see $HIST utility
program)
HISTORY procedure
contents 236
description 68
how to use this manual ix

identifier
definition 253
OCL statement 5
utility control statement 114
IF expression 44-46
IMAGE OCL statement (see // IMAGE statement)
INCLUDE OCL statement (see // INCLUDE statement)
increasing the library size 155
indicators, external 32, 86
information in OCL. statements 5-6
INIT command statement
description 69, 70
examples 70
format summary 52

Index

261

INIT procedure
contents 236
description 69-70
initial program load (IPL)
definition 3, 264
from diskette 79
initialization 254

(see also $INIT utility program; INIT procedure)

INQkey 1562

inguiry
interrupt 115, 151, 162
option 1561, 152, 264
request 152, 264
support 79

INQUIRY/OFFLINE option (see also RELOAD display)

availability on system 86

deleting 210, 211

requesting 79, 160
INSTALL command statement

description 202

format summary 191
INSTALL procedure 202
installation

application program 197

program product 203-208

system 193, 196-198
international format of expiration dates 21
introduction

to OCL statements 3

to procedures 37

to system configuration, installation, and

modification 189

to system utility programs 114
IPL (initial program load)

definition 3, 254

from diskette 79

job date 16, 62

job stream
and // INCLUDE 26
definition 4, 264
modifying procedure 42-47

keyword parameter
definition 254
OCL statement 6
utility control statement 114

label
data set 219, 220
disk file 17

diskette file 21

262

level, procedure 41, 255

librarian (see SMAINT utility procedure)
library (see system library)

library directory

area 154,254
changing the size of 79, 150
(see also RELOAD display)

definition 254

entry 154, 168

formula for number of entries 150
information in entries 168

library maintenance utility program (see SMAINT utility

program)
library members
creating a file from 65
definition 3, 254
deleting 80, 209-211
naming 154, 166
organization of 154, 155
library requirements 209
LINES command statement
description 71
format summary 52
lines printed per page
displaying number of 86
setting number of
using. $SETCF utility program 181
using // FORMS statement 23
using LINES procedure 71
using SET procedure 86
LINES procedure
contents 236
description 71

list of abbreviations viii
listing the
files 64, 122
HISTORY file 68
system library 72
VTOCs 58
LISTLIBR command statement
description 72-73
examples 73
format summary 50
LISTLIBR procedure
contents 236
description 72,73
load member 3, 254
LOAD OCL statement (see // LOAD statement)
load program 27
loading and running programs 105, 106
LOG command statement
description 71
format summary 50
LOG OCL statement (see // LOG statement)
LOG procedure
contents 237
description 71

main storage
display 152
dump 225
megabyte 254
member (see library members)
MEMBER OCL statement (see // MEMBER statement)
message control statement 177, 254
message display 28, 74
message identification code (see MIC)
message levels 29
message load member
and command key requests 40
creating 171,61, 176
definition 254
example of creating 178
message member 29, 34
(see also message load member; message source member)
message OCL statement (see // * (message) statement)
message source member 177, 254
message text statement 177
messages to operator 34
MIC (message identification code)
definition 254
for creating command key requests 40
for creating message load members 176, 177
modifying a procedure job stream 42-47
multivolume file 99, 254
(see also offline muitivolume file)

naming library members 154, 166
nested procedure 41, 254
null entry 46, 254

object program
definition 254
errorin 224
running 15, 105, 106
obtaining space for a disk file 97
OCL (operation control language) statements (see also
* (comment), /* (end of data), // * (message), // COMPILE,
// DATE, /{ FILE, // FORMS, // IMAGE, // INCLUDE,
// LOAD, // LOG, // MEMBER, // PAUSE, // RUN,
// SWITCH, // SYSLIST)
and job stream 3-4, 107-109
coding rules for 5-8
definition of 5-6, 255
description of 15-34
displaying 28, 74
entering 3
general formof 5
identifiers for 5
information in 5-6
introduction to 3-4
tables of 10-14
offline multivolume file 99-104, 254

operation control language (OCL) statements (see
OCL statements)

ORGANIZE command statement
description 75, 76
examples 76
format summary 53

ORGANIZE procedure
contents 237
description 75, 76

overflow, printer 23

OVERRIDE command statement
description 77
format summary 53

OVERRIDE procedure
contents 237
description 77

OVERRIDE RPG BSCA specifications
control statements 184
description 181, 184
example 185

parameters
condition 44-45
definition 255
existence testing 44-45
keyword 6
OCL 6
positional
defined 42, 255
showing in formats 53
procedure 26, 42
statement 45
symbolic 6
table of OCL 12-14
utility control statement 114
PATCH command statement
description 226, 227
format summary 223
PATCH procedure
contents 226, 227
description 226, 227
pause message 30
PAUSE OCL statement (see // PAUSE statement)
permanent file 19
PID distribution diskette 193
polling and addressing characters 245,246
positional parameter
defined 42, 255
showing in formats 55
print belt
characters
entering from keyboard 24-25
entering from source member 25
list of 241-243
displaying image of 86
setting image for
$SETCF utility program 181
// IMAGE statement 24
SET procedure 85

Index

263

printing from the library 167-170
printing system information 167
procedure coding, example 47-49
proceclure member 3, 265
procedure name 26

procedure parameters 26, 42

procedures (see also ALTERBSC, APAR, APPLYPTF, BACKUP

BUILD, CATALOG, CNFIGSCP, command statements,
COMPRESS, COPYI1, CREATE, DATE, DELETE,
DISPLAY, DUMP, FROMLIBR, HISTORY, INIT, INSTALL,
LINES, LISTLIBR, LOG, ORGANIZE, OVERRIDE,
PATCH, REBUILD, RELOAD, REMOVE, RESTORE,
SAVE, SET, STATUS, SYSLIST, TOLIBR, TRACE,
TRANSFER)
creation of 38
definition 37, 2565
evoking 26, 39-41
execution of 41
introduction to 37-47
levels of 41, 255
nested 41
parameters 26, 42
SCP 38
service 38, 223
system configuration, installation, and modification 191
program check 225
program date (see job date)
program product installation 203-208
prograrn product PTFs 196
prograrns, loading and running 105, 106
PTF diskette 193

read/write error, disk 119, 225
reading an offline multivolume file 101
REBUILD command statement
description 78
format summary 53
rebuild data file utility program (see SREBLD utility
program)
REBUILD procedure
contents 237
description 78
record mode 89, 255
record, block, and sector conversions 216
release level, displaying 86
RELOAD command statement
description 79
format summary 53
RELOAD display 211-214
reload library utility program (see $LOAD utility program)
RELOAD procedure
contents 237
description 79
relocation directory (RLD) 255
REMOVE command statement
description 80
examples 80
format summary 53

264

'

REMOVE procedure

contents 238

description 76
rename diskette 142
reorganize disk 174, 59, 179
reorganize library 57,116
RESTORE command statement

description 81, 82

examples 82

format summary 53
restore disk files (see RESTORE command statement;

RESTORE procedure)

RESTORE procedure

contents 238

description 81, 82
restore system information 78
retention period 16, 62
RLD (relocation directory) 255
rollout area

definition 255

use of 152, 164
RPG II

applying PTFsto 196

compiler 15

installation 203

installation verification 206-208
RUN OCL statement (see // RUN statement)

SAVE command statement
description 83, 84
examples 84
format summary 53
SAVE procedure
contents 238
description 83, 84
scheduler work area (SWA) 154, 2565
SCP diskette 193
SCP procedures 38, 51-93
(see also procedures)
scratch file 19
sector 255
sector mode 89, 255
sector number to block number conversion 216
segment, file 99, 2563
selecting library members to delete 210
service procedures 223-229
(see also procedures)
SET command statement
description 85
format summary 53
SET procedure
contents 238
description 85
set utility program (see $SETCF utility program)
setting
job date 16
number of lines printed per page 85, 182
print belt image 85, 182

setting (continued)
system date/date format
$SETCF utility program
// DATE statement 16
DATE procedure 62
SET procedure 85
system environment 85, 181
trace functions 181, 185-187
SEU (source entry utility)
applying PTFsto 196
installation of 203
installation verification 204, 205
skip to next page, printer 28
source entry utility (see SEU)
source member 3, 255
source program
causing error 224
definition 255
specified in // COMPILE statement 15
sort
applying PTFsto 196
installation of 203
space allocation, changing
disk 81
library 79, 1565
library directory 79, 150
specifying library size 155
standard interchange diskette 219
(see also INIT procedure; TRANSFER procedure)
standard interchange file 219, 220
(see also TRANSFER procedure)
standard interchange utility program (see $BICR utility
program)
statement identifiers, OCL 5
statement parameter 45, 255
statement tables
command
SCP 51-54
service 223
system configuration, installation, and modification 191
OCL. 10-14
statements
command (see command statements)
OCL. (see OCL statements)
utility control (see utility control statements)
STATUS command statement
description 86, 87
format summary 54
status display utility program (see $STATS utility program)
STATUS procedure
contents 239
description 86, 87
subroutine member 3, 255
substitution in procedures 42-44
SWA (scheduler work area) 154, 255
switch indicators 32, 86
SWITCH OCL statement (see // SWITCH statement)
symbolic parameter 6, 255
SYSLIST command statement
description 88
format summary 54

181,182

SYSLIST OCL statement (see // SYSLIST statement)
SYSLIST procedure
contents 239
description 88
system configuration 4, 189-214
system configuration, installation, and modification
system configuration record 85, 255
system date/date format
displaying 86
setting
$SETCF utility program
// DATE statement 16
DATE procedure 62
SET procedure 85
system environment, setting 85, 181
system failure 179, 180
system file 220, 221
system information
displaying 86, 188
restoring 78
system installation
system library
definition 3, 255
deleting from 80, 209-212

189-214

181,182

193, 196-198

description 153-1565
determining space available in 209
listing 72

requirements 209
space allocation 79, 160
system list (see // SYSLIST statement; SYSLIST
procedure)
system modification 209-214
system status, displaying 86-188
system utility programs (see also $BACK, $BICR, $BUILD,
$COPY, $DELET, $DUPRD, $HIST, $INIT, $LABEL,
$LOAD, $MAINT, $MGBL.D, $PACK, $REBLD, $SETCF,

$STATS)
definition 255
description 116-188

introductionto 113,114
utility control statements for (see utility control
statements)

tables
OCL statement 10-11
OCL statement parameters 12-14
SCP command statements 51-54
service command statements 223
system configuration, installation, and modification
command statements 191
temporary file 19
text statement, message 177
TOLIBR command statement
description 89, 90
format summary 54
TOLIBR procedure
contents 239
description 89, 90

Index

265

TRACE command statement
description 227-229
format summary 223
trace functions 181, 185-187
TRACE procedure
contents 239
description 227-229
trace table 227
TRANSFER command statement
description 91-93
examples 93
format summary 54
TRANSFER procedure
contents 229-230, 239, 240
description 91-93

using OCL statements and procedures 95-110
utility control statements

conventions for describing 114

definition 4, 255

rules for coding 114

writing 113
utility programs (see system utility programs)

value 256
vol-id (volume identification) 22
VOL1 (volume label)
disk 154, 256
diskette 221
volume label (see VOL1)
volume table of contents {see VTOC)
VTOC (volume table of contents)
definition 58, 256
listing 58, 146-149
VTOC display utility program (see $LABEL utility program)

writing over an existing disk file 19
writing utility control statements 114

266

READER’'S COMMENT FORM

IBM System/32
System Control Programming GC21-7593-1
Reference Manual

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of |BM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your |BM
representative or to the 1BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

Due to the current paper shortage, we will not send a reply to your comments uniess you
check the box below.

I would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-7593-1

— ot e m—— o a— —— — ———t —— o— —— i w— — — — o— — — o—— — —— o— ono—— ———_ tin —— aane i — — an—

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

|
B
]

flonl
]

®
International Business Machines Corporation
General Systems Division
5775D Glenridge Drive N.E.
Atlanta, Georgia 30301
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

(9€-ZES "ON 81 4) |enuepy asuasajay butwweboiy jos

— — e w— — am—— o ommm m—me v - m— —— e — — — — — — — t— — oo— —— —— o—— o—— o o—— — o— o——

Juo) wasAg Ze/s WAl

ul pajulig

L-€6GZ4-1209

GC21-7593-1

@

international Business Machines Corporation
{ieneral Systems Division

%775D Glenridge Drive N.E.

Atlanta, Georgia 30301

{LUSA Only)

1BM World Trade Corporation
#21 United Nations Plaza, New York, New York 10017
{international)

{98-ZES 'ON 8lid] lenuepy 8ousL88Y Bugwwexﬁozd |ciiuod U..Iale\S 2E/S N8I

VST W peluilg

§4-1205

L-€s

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	replyA
	replyB
	xBack

