
IBM System/3
RPG II Additional Topics
Programmer's Guide

Program Numbers:
5702-RG1 (Model 10)
5704-RG1 (Model 15)
5704-RG2 (Model 15)
5705-RG1 (Model 12)

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

Third Edition (July 1974)

This is a major revision of, and obsoletes, GC21-7567-1. Information concerning IBM
System/3 Model 15 has been added and numerous corrections have been made. Changes to
text and illustrations are indicated by a vertical line to the left of the change; new or
extensively revised illustrations are denoted by the symbol 0 at the left of the caption.

This edition applies to the following IBM System/3 RPG II program products:

Version Modification Program Number System/3 Model

15 00 5702-RG1 8 and 10 Disk
6 00 5704-RG1 15A,B,C
2 00 5704-RG2 15D
4 00 5705-RG1 12

Changes are periodically made to the information herein; before using this publication
in connection with the operation of I BM systems, refer to the latest IBM Systeml3
Bibliography, GC20-8080, for the editions that are applicable and current.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM publications
and for technical information about the system should be made to your IBM representative
or to the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader's Comment Form at the back of this publication to make comments about this
publication. If the form has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. Comments become the
property of IBM.

© I nternational Business Machines Corporation 1971, 1974

--- ------ - -------- - ---- - - ----------_.- Technical Newsletter

IBM System/3
RPG II Additional Topics
Programmers Guide

©IBM Corp. 1971, 1974

This Newsletter No. GN21-5709

Date 21 December 1979

Base Publication No. GC21 - 7567 - 2

File No. S3-28

Previous Newsletters GN21-5616
GN21-5389'

This technical newsletter applies to current versions and modifications of the applicable System/3
programs listed in the edition notice, and provides replacement pages for the subject publication.
These replacement pages remain in effect for subsequent versions and modifications unless
specifically altered. Pages to be inserted and/or removed are:

v through viii (text rearranged)
3-7,3-8
3-17,3-18
5-65,5-66
5-75,5-76
6-33,6-34
6-37,6-38

6-47,6-48
7-7 through 7-10
7-19, 7-20
7-31, 7-32
9-49,9-50
10-41, 10-42

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

Miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department" 245, Rochester, Minnesota 55901

1211 cl\n (',..~... 1 Q'7Q

,-- -,-------------- - ---,---,-_.-

)

)

Technical Newsletter

IBM System/3
RPG II Additional Topics
Programmer's Guide

©IBM Corp. 1971,1974

Th is Newsletter No. G N 21-5616

Date 30 June 1978

Base Publication No. GC21-7567-2

File No. S3-28

Previous Newsletters G N 21-5389

This technical newsletter applies to the current versions and modifications of the applicable
System/3 programs listed in the edition notice and provides replacement pages for the subject
publication. These replacement pages remain in effect for subsequent versions and modifications
unless specifically altered. Pages to be inserted and/or removed are:

Cover
Title Page, Edition Notice
v, vi
3-11 through 3-16
4-3,4-4
4-27,4-28
5-53 through 5-56
5-56.1 through 5-56.6 (added to accommodate new and moved text)
5-77,5-78

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

• Expanded description of the RPG II Linkage Editor, page 5-54

• Included miscellaneous technical changes

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. 1978 Printed in U.S.A.

TIm)! Technical Newsletter

~\

J

This Newsletter No.

Date

Base Publication No.

File No.

GN21-5389

24 May 1976

GC21-7567-2

53-28

Previous Newsletters None

)

\

)

IBM System/3
RPG II Additional Topics
Programmer's Guide

©IBM Corp. 1971,1974

This technical newsletter provides replacement pages for the subject publication. Pages to be
inserted and/or removed are:

i, ii
1-5, 1-6
3-21,3-22
3-27 through 3-32
3-39,3-40
4-3,4-4
4-7,4-8
5-5,5-6

5-9,5-10
5-49,5-50
5-67,5-68
5-77 through 5-80
6-9,6-10
7-9, 7-10
7-19 through 7-22
8-27,8-28

9-1,9-2
9-27,9-28
9-41 through 9-44
9-49,9-50
9-55,9-56
10-11 through 10-14
10-21 through 10-24

Changes to text and illustrations are indicated by a vertical line at the left of the change; new or
extensively revised illustrations are denoted by the symbol. at the left of the caption.

Summary of Amendments

• References to Model 8 and Model 12 have been added.
• Miscellaneous additions and corrections.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

"'IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© IBM Corp. 1976 Printed in U.S.A.

)

)

This manual presents advanced RPG II programming topics
for application programmers and students, who must code
programs for IBM System/3:

I
• Model6

• Model8

• Model 10 (Card System)

'. Model 10

• Model 12

• Model 15

The System/3 Model 8 is supported by System/3 Model 10
control programming and program products. The facilities
described in this publication for the Model 10 are also appli
cable to the Model 8, although the Model 8 is not referred
to. Note that not all devices and features that are available
on the Model 10, are available on the Model 8. Therefore,
Model 8 users should be familiar with the contents of the
IBM System/3 ModelBlntroduction, GC21-5144.

PREREQUISITES I,

This manual assumes that you have coded and tested some
basic RPG II programs that include listing records on a
printer, simple calculations, group totals, and the use of
more than one record type. You may have gained this
experience through I BM education courses, programmed
instruction courses, or previous data processing experience.
Introduction to RPG /I, GC21-7514, contains some of
this basic information.

ORGANIZATION OF THE MANUAL

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

Preface

This publication has eleven chapters. Chapters 1-6 cover
information that is basic to most data processing jobs:
RPG II program logic, detailed information about writing
input, output, and calculation specifications and the con
cepts and specifications involved in multifile processing.
Additional programming topics that youmay require for
your job are presented in Chapters 7-11: controlling input
and output during calculation time, tables, arrays, data
structure, and the DEBUG operation.

RELATED PUBLICATIONS

There are numerous IBM System/3 publications containing
further information on RPG II. The following are the re
lated reference manuals:

• IBM System/3 Card System RPG" Reference Manual,
SC21-7500

• IBM System/3 RPG " Reference Manual, SC21-7504
I (Model 10, Model 12 and Model 15)

• IBM System/3 Model 6 RPG" Reference Manual,
SC21-7517

If you are programming on a disk system, it would be help
ful if you would understand 'the disk concepts and disk file
processing information in the following books before read
ing this book:

• IBM System/3 Disk,'Concepts and Planning Guide,
GC21-7571

• IBM System/3 RPG /I Disk File Processing Programmer's
Guide, GC21-7566

ii

)

This publication is a programmer's guide; it is not intended
to serve the same purpose as a reference manual of language
specifications and does not replace a reference manual.
RPG II programming topics are approached and organized
according to their normal use in a data processing job, using
examples whenever possible. Unlike a reference manual,
individual chapters are self-contained units of information,
intended to be read from beginning to end. However, if you
desire information about a specific topic, you may go
directly to that topic by using the index or the table of
contents. If an individual chapterhas a special prerequisite
topic, that topic is clearly identified on the title page of
the chapter.

Althoug~ the chapters are complete units, there is a logical
progression of topics through chapters 1-6. Therefore, you
may wish to read them consecutively. If you have read the
RPG /I Programming Fundamentals Programmed Instruc
tion course, you do not need to read chapters 1-6 consecu
tively.

How To Use The Manual

For ease of illustration, many of the examples in this book
use card-like figures to represent records. This does not
imply that a card device must be used for input or output
in these situations. Any of several input/output devices
might be used, depending on which System/3 model and
configuration you are using.

Review Questions

Review questions and answers are provided at the end of
each chapter. Where chapters contain several related topics,
these questions are grouped by subtopic. If you wish, you
may turn to the end of the chapter after you complete each
subtopic, to answer the review questions and reinforce what

. you have learned, before continuing the chapter.

iii

iv

)
Contents

HOW TO USE THE MANUAL iii Editing 3-12
Methods of Editing 3-12

CHAPTER 1. RPG II LOGIC • 1-1 Editing and End Position 3-19
Introduction. 1-2 Using *PLACE To Print Duplicate Information. 3-19
Basic Data Processing Logic 1-2 Specifications For Using *PLACE 3-22
Basic RPG II Logic 1-4 Formation Of Print Lines 3-22

Specific Steps in Basic RPG II Logic 1-6 Printing A Field Several Times On The Same Line 3-26
First Program Cycle. 1-7 Using Two Printer Output Files in One Program 3-27
Summary of Basic RPG II Logic 1-7 Model 10 Card and Disk Systems 3-28

RPG II Logic Related To Indicators 1-7 Model 6 3-28
1 P (First Page) Indicators 1-13 File Description Specifications 3-28
Last Record Indicator (LR) 1-16 Output Format Specifications. 3-29
Record Identifying Indicators (01-99) 1-19 Example: End-of-the-Month Billing 3-31
Field Indicators (01-99) 1-25
Resulting Indicators (01-99) 1-31 REVIEW 3 3-33
Halt Indicators (Hl-H9) 1-35 Overflow and Fetch Overflow 3-33
Overflow Indicator (OA-OG, OV). 1-41 Forms Alignment 3-34
Matching Records Indicator (MR) 1-42 Editing 3-34
Setting Indicators 1-43 *PLACE 3-35

Dual Printer Output Files 3-35
REVIEW 1 1-45

ANSWERS TO REVIEW 3. 3-36
ANSWERS TO REVIEW 1 . 1-46

CHAPTER 4. CARD OUTPUT OPERATIONS. 4-1

) CHAPTER 2. DESCRIBING AND USING INPUT. 2-1 Introduction . 4-2
Introduction . 2-2 Punching And Printing On Cards 4-2
Control Fields 2-2 Punched Output. 4-2

Split Control Fields. 2-5 Printing On Cards 4-2
Checking the Sequence of Record Types. 2-6 Using One File For Both Input And Output. 4-8

Order of Record Types Within a Group 2-6 Punching Into The Same Card That Is Read. 4-8
Checking the Order of Record Types in a Group 2-12 Punching Into A Blank Card In The File 4-11
Incorrect Records Within a Group 2-12 When To Specify A Combined File 4-14
Sequenced and Unsequenced Record Types in a Group 2-14 Stacker Selection 4-14
Unexpected or Unused Records Within a Group 2-14 Input And Combined File Cards 4-15

Field Record Relation Indicators . 2-15 Stacker Selecting Output File Cards 4-17
OR Relationship 2-15 Merging Input And Output File Cards 4-19
OR Relationship With Field Record Relation Entries 2-16
Field Record Relation with Control Fields 2-18 REVIEW 4 4-21
Field Record Relation with Split Control Fields 2-18 Punching and Printing On Cards 4-21

Conditioning Use of Input Files (External Indicators) 2-19 Using One File For Both Input And Output. 4-21
Using One Program to do More Than One Job 2-19 Stacker Selection 4-23
Ending The Program Before Processing All Files
Completely. 2-22 ANSWERS TO REVIEW 4. 4-25

REVIEW2 2-25 CHAPTER 5. CONTROLLING OPERATIONS IN AN

RPG II PROGRAM 5-1
ANSWERS TO REVIEW 2 . 2-28 Introduction. 5-2

Additional Uses of Indicators To Control Calculations
CHAPTER 3. CONTROLLING PRINTER OUTPUT 3-1 and Output. 5-2
Introduction . 3-2 Preventing Operations From Being Done When
Using Overflow and Fetch Overflow To Control Page An Error Occurs 5-2

Formatting . 3-2 Controlling Which Operations Are Done for a
Overflow Indicators. 3-2 Specific Program Run. 5-7
Specifications for Using Overflow Indicators 3-4 Controlling Calculations When Overflow Occurs 5-11

)
Preventing Records From Printing Over The Performing Calculations On The Basis of the Results

Perforation . 3-6 Of Other Calculations. 5-12
Fetch Overflow 3-8 Con troll ing Operati ons on the Basis of the Next Record

Aligning Forms 3-12 In A File 5-17

v

Page of GC21-7567-2
Issued 30 June 1978
ByTNL: GN21-5616

Processing Card or Disk Files

Checking For Duplicates
Doing Special Operations When There Is Only

One Record In A Group .
Doing Special Operations For The Last Record

In A Group.
Additional Points To Consider AboLit Look Ahead.

Moving Data .
Specifications For Moving Data
S"aving Information From A Field By Move

Operations .
Separating One Field Into Two Parts.
Changing Field Type (Alphameric or Numeric)

Branching In Calculations
Bypassing Calculations .
Branching Backward

Using Subroutines in Calculations.
Using Subroutines To Do The Same Calculations
Several Times In One Cycle

RPG " Linkage Editor .
Linkage Editor Map.
Simple Overlays .
Special Open.
Overlay Starting Addresses.
Fitting Available Storage
RPG " Logic and Function Shifting

Special Uses of Control Level Indicators.
Internal Control Level Indicator LO .

Using Control Level Indicators As Calculation
Conditioning Indicators

Group Printing .
Binary Field Operations (Controlling Switches) .

B ITON Operation Code
BITOF Operation Code
TESTB Operation Code
Example.

Increasing The Speed of Operations (Dual I/O Areas)
Dual Input Areas
Dual Output Areas

REVIEW 5
Additional Uses Of Indicators
Controlling Operations On The Basis of the Next

Record In A File .
Moving Data .
Branching In Calculations •
Using Subroutines In Calculations
Special Uses Of Control Level Indicators.
Binary Field Operations
Dual Input/Output Areas

ANSWERS TO REVIEW 5.

vi

5-17
5-20

5-26

5-28
5-28
5-28
5-29

5-31
5-33
5-34
5-36
5-36
5-42
5-44

5-45
5-54
5-55
5-56

5-56.1
5-56.1
5-56.3
5-56.3
5-56.4
5-56.4

5-59
5-59
5-67
5-67
5-67
5-68
5-69
5-69
5-69
5-71

5-73
5-73

5-74
5-74
5-75
5-75
5-76
5-76
5-76

5-77

CHAPTER 6. MATCH FIELDS AND MULTIFILE
PROCESSING.

Introduction .
Checking Sequence Of Records Within A File

, File Containing Only One Record Type . '.
File Containing More Than One Record Type

Using Match Fields With Field-Record Relation for
More Than One Record Type in a File .

Match Fields The Same For All Record Types .
Match Fields Differ Between Record Types .

Matching Records: One Record Type In Each File.
Processing Order: More Than One Matching Record

In A Secondary File

Processing Order: More Than One Matching Record
In The Primary File •

Matching Records: Records Which Have No Match
In The Other File .

Matching Records: More Than One Record Type'
In A File

Match Fields In Different Locations ~n The Same
File .

Processing Records Which Do Not Have Match
Fields

Matching Records: When All Records In One File
Have Been Processed •

Use of Match Fields and Control Fields in the Same
File.

Determining Whether Files Should Be Primary or
Secondary

REVIEW 6
Review Problem.

ANSWERS TO REVIEW 6.
Solution To The Review Problem.

CHAPTER 7. PROGRAMMED CONTROL OF INPUT AND
OUTPUT

Introduction.
Altering The Order of Processing Files (Force Operation)

Specifying The Next File To Process •
Alternating Processing Between Two Files
Forcing A Number of Records From a File
Look-Ahead To Determine Whether A File Is To

Be Forced .
Processing Demand Files (Read Operation) .

Considerations For Using READ and Demand Files
Repetitive Output (Except Operation)

Using EXCPT and *PLACE
Conditioning The Use of EXCPT Operation

REVIEW7
FORCE
READ
EXCPT

ANSWERS TO REVIEW 7 •

6-1
6-2
6-2
6-2
6-6

6-8
6-8
6-9

6-12

6-12

6-20

6-20

6-26

6-26

6-29

6-30

6-34

6-38

6-41
6-44

6-46
6-49

7-1
7-2
7-2
7-2
7-4
7-7

7-15
7-22
7-26
7-26
7-26
7-29

7-31
7-31
7-32
7-33

7-34

./

)

)

)

CHAPTER 7. PROGRAMMED CONTROL OF INPUT
AND OUTPUT

Introduction
Altering The Order of Processing Files (Force

Operation)
Specifying The Next File To Process . .
Alternating Processing Between Two Files .
Forcing A Number of Records From a File .
Look-Ahead To Determine Whether A File Is To

Be Forced
Processing Demand Files (Read Operation) . . .

Considerations For Using READ and Demand
Files

Repetitive Output (Except Operation)
Using EXCPT and *PLACE. . . .
Conditioning The Use of EXCPT Operation

REVIEW 7
FORCE
READ.
EXCPT

ANSWERS TO REVIEW 7

CHAPTER 8. TABLES ...
Introduction

Searching a Single Table
Designing Table Input Records.
Describing Table Input Records With Extension
Specifications.

Coding The Table Lookup Operation (LOKUP) .
Two Table Search.

Designing Table Input Records For Two Tables
Describing Two Tables With Extension
Specifications.

Coding The Table Lookup Operation (LOKUP)
Using Table Data In Calculations and Output . .

Conditioning Operations On The Basis of a Table
Lookup I •...•.•••..•

Referencing Data Foll6wing A Successful Search
Searching For Low, High, or Equal Conditions
Moving Data In A Table Entry . . .
Modifying The Contents Of A Table

Loading Tables
Compile Time Tables
Pre-execution Time Tables. . . .
Loading Pre-execution Time Tables

Output of an Entire Table

REVIEW 8
Review Problem

7-1
7-2

7-2
7-2
7-4
7-7

7-15
7-22

7-26
7-26
7-26
7-29

. 7-31
7-31
7-32
7-33

.7-34

8-1
8-2
8-4
8-4

8-5
8-7
8-8

8-11

8-13
8-14
8-14

8-14
8-16
8-19
8-21
8-22
8-25
8-25
8-25
8-26
8-28

. 8-29
8-30

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

CHAPTER 9. ARRAYS
Introduction
When To Use an Array Instead of a Table
Defining An Array.
Referencing All Elements In An Array . .

Array to Array Calculations
Calculations Using Arrays and Single Fields (Or

Constants) .'.
Adding All Elements Within An Array
Output of an ,,Entire Array
Accumulating G"roups Of Totals

Referencing Individual Elements of an Array
Indexing An Array
Output of Individual Elements of An Array.
Referencing Only Part of a Field

LOKUP Of An Array
Searching An Array For A Particular Element
Searching An Array For More Than One Element .
Output During An Array Search

Loading Arrays
Compile Time Arrays
Pre-execution Time Arrays. . .
Storing Input Data Into Execution Time Arrays
Array Data Consecutive On More Than One Record

(Model 6, Model 10 Disk System, and Model 15)

REVIEW 9

ANSWERS TO REVIEW 9

CHAPTER 10. WORKING WITH DATA
STRUCTURE

Character Structure
Representation Of Characters On 96-Column Cards .
Representation Of Negative Numbers
Representation of Characters In Storage
Difference Between Character Representation on
Cards and In Storage

Identifying Bit Combinations With Numerical
Values

Assigning Numerical Values to Zone and Digit
Portions

Saving Disk Storage Space .
Collating Sequence of Characters

Collating By Zone or Digit ..
Altering the Collating Sequence.

Specifying Changes In Collating Sequence.
Coding Characters To Be Equal
Recording Specifications For The Altered
Sequence

9-1
9-2
9-2
9-2
9-4
9-4

9-7
9-8
9-9

9-14
9-19
9-20
9-22
9-23
9-27
9-27
9-32
9':'34
9-35
9-35
9-36
9-38

9-44

.9-53

.9-55

. 10-1
10-2
10-2
10-3
10-4

10-4

10-13

10-16
10-19
10-21
10-25
10-28
10-28
10-33

10-38

vii

Altering The Structure of Characters .
How Move Zone Operations Work
Coding a Move Zone Operation
Differences In The Move Zone Operations
Field Format and Move Zone Operations
Example of a Move Zone Operation
Choosing the Model Character For Factor 2

Translating Characters
Need For File Translation
Specifying File Translation . .'.
Recording Specifications For The Translation
Table

REVIEW 10
Character Structure
Collating Sequence of Characters .
Altering The Collating Sequence .
Altering The Structure of Characters
Translating Characters

ANSWERS TO REVIEW 10

viii

10-39
10-39
10-39
10-40
10-41
10-41
10-42
10-44
10-44
10-44

10-48

1049
10-49
10-49
10-50
10-50

.10-50

10-51

CHAPTER 11. DEBUG . .
Introduction
Using The DEBUG Function

Specifications For DEBUG
Format of Records Created By DEBUG
Getting Results From DEBUG
Placement of DEBUG
Making Your Program Work For All Cases.

REVIEW 11

ANSWERS TO REVIEW 11

INDEX

· 11-1
11-2
11-2
.11-2
11-4
11-5
11-5
11-5

· 11-7

· 11-8

· X-1

--

Chapter 1. RPG II Logic

CHAPTER 1 DESCRIBES:

Basic R PG II logic.

RPG II logic related to indicators.

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:

Basic three-step logic of a data processing job.

Detail time and total time.

Specific steps in a basic RPG II job that includes detail and total operations.

RPG II logic related to the following indicators: 1 P, LR, record identifying
indicators, field indicators, resulting indicators, halt indicators (H 1-H9), overflow
indicators (OA-OG, OV), matching records indicator (MR).

Note: You can use the review questions contained in Review 1 at the end of this
chapter to test your comprehension of the chapter. Answers follow the review
questions.

RPG II Logic 1-1

INTRODUCTION

What procedures do you follow if you are preparing bills to
send to customers? Before you can do anything you need
some information. You have to know three things: (1)
the customer's balance at the beginning of the month; (2)
his purchases; and (3) his payments. Once you have
gathered this information, you can perform the necessary
calculations to find the amount due. Finally you record
this amount on the bill. You go through these same pro
cedures for each customer.

This is a type of job you can easily have your computer do
for you. To do the job, however,the computer must know
the same things you know. You must, therefore, tell it
exactly what information to expect, what to do with the
information, and what to give you as a result. This you do
through specifications you write: File Description; Exten
sion; Line Counter; Input; Calculation; and Output-Format.

To do this billing job, you do things in a logical order. You
read information first. You do calculations second. Finally,
as a result of the calculations, ,you record the amount owed.
Then you begin to do the same things in the same order for
the next customer.

The computer must also do things in a logical order. The
information you supply through specifications doesn't give
the computer the logic it needs to do your job; the RPG II
Compiler supplies this. RPG II logic supplied by the com
piler is the framework for your jC?b. When your source pro
gram is compiled, your source statements are fitted into the
framework of RPG II program logic to make a complete
program. The generated program then has all the informa
tion it needs to do your job in a logical manner.

What happens if, in doing your billing job, you find that a
customer,paid more than he owed? You know immediately
that he has a credit balance and indicate so on the invoice.
How does the RPG II program recognize this situation?
And how does it know what to do when such a situation
occurs?

The RPG II program uses signals which tell it when a partic
ular situation occurs and what to do when that situation
does occur. These signals are known as indicators. There
are many different kinds of indicators which signal many
different situations. You, as a programmer, must know how
to specify the indicators so that they signal to the computer
what you want them to.

1-2

RPG II logic is built around these indicators. Their status
(on or off) affects the sequence of the program's operations.
The logic is set up to test the status of various indicators at
specific times. By testing indicators, the program knows
what to do next.

RPG II program logic is d~signed to take care of all types of
jobs. You must understand this logic to write specifications
which make correct use of it.

Because the logic is a rather complex topic, it is described
segment by segment. However, when you have finished
reading this section, you will have a picture of how the
complete RPG II program logic works.

BASIC DATA PROCESSING LOGIC

Usually, all records in a file of input records are not read at
once. Your computer probably is not large enough to store
and work with information from all records at the same
time. Therefore, records are read one at a time. Three

• I steps, as shown in Figure 1-1, are done for each record read.

The phrase program cycle refers to all the operations per
formed from the time one record is read until the next rec
ord is read.' One program cycle is therefore one revolution
around the circle used to illustrate the program logic. Since
one program cycle (one'revolution) is needed for each rec
ord read, many program cycles are required for every job.

Consider how the three step logic shown in Figure 1-1 works
for a job which requires a detailed listing of purchases made
by each customer. The input file is in ascending order by
customer number. Each record contains customer name
(NAME), number (NUM), and charge (CHRG). Information
from the record is merely transferred to the printed page.
One line is printed for each record read. Each record read
is known as a detail record and each line printed is a detail
line.

The job begins: the first record is read. No calculations are
performed. A record is then printed. This ends the first pro
gram cycle. The second begins with the reading of another
record. Figure 1-2 shows the input and output of the detail
printing job.

Suppose, however, instead of merely listing the charges
made by each customer you also wish to find the total
charges for each customer, as shown in Figure 1-3.

)

•

•

•
•

Write or punch
results

•
•

• .. •

Read a record

•

• •

•

•

• Perform ~Icula~

Figure 1-1. Basic Logic of a Data Processing Job

1645
1645
1762
1796

I
JOE AARON
JOE AARON
BILL BELL
JOHN BART

Input file

Figure 1-2. Detail Printing Job

7.42
6.43

131.42
24.93

Printed report

1645
1645

1762

1796
1796

JOE AARON
JOE AARON

BILL BELL

JOHN BART
JOHN BART

Figure 1-3. Calculating and Printing Totals

7.42
6.43

13.85*

131.42

131.42*

24.93
2.98

RPG II Logic 1-3

To do this, you mUlit do calculations to accumulate a total
in addition to printing out individual (detail) records. But
when do you print out the total you have calculated? The
total for a customer, of course, should be printed after all
detail records for that customer have been printed (Figure
1-3). However, in the three-step logic discussed so far, there
is no provisi,on for printing a total record. Neither is there
a way to distinguish between individual input records in
order to determine when all records for a customer have
been read.

If the RPG II program used only the three-step logic, it
would not be able to do this job and many others like it.
It could adequately work with information from only one
record at a time, as in the detail printing job. It could not
correctly do operations to accumulate data from several
records.

1-4

•

•

•

Perform detail
output operations

Perform detail
calculations

•

•

• Perform total
output operations

•
•

Figure 1-4. Basic RPG II Logic

Detail
time

•

•

•

BASIC RPG II LOGIC

RPG II logic, therefore, is an extended version of this 3-ste
i

p.
logic. It calls for calculations and output operations to be
done at two different times in one program cycle (see Fig
ure 1-4). The names detail and total have been given to the
times at which calculation and output operations are per
formed. Total time, as the name suggests, is the time in
which total operations are done on data accumulated from
a group of related records. T,~e printing of total charges for
Joe Aaron (Figure 1-3) is an example of a total time opera
tion. Detail time is the time in which operations are per
formed for individual records. An example of a detail time
operation is the printing of an individual charge for Joe
Aaron. Remember, detail operations are done for every
record read, but total operations are done only after a cer
tain group of records are read (see Figure 1-5).

•

Read a record

Perform total
calculations

•

•

•

)

)

Detail operatiO)rn:s.~, _---------------;-; 1713 LEE ARMSTRONG 379

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

1713 LEE ARMSTRONG 571

1713 LEE ARMSTRONG 475

1713 LEE ARMSTRONG 298

1645 JOE AARON 643

1645 JOE AARON 742 Total Operations:

Done only after
all records in
one group have
been processed.

~ __________________________ ~GROUPl

Figure 1-5. Detail Versus Total Operations

Because this basic RPG II logic is only a framework for your
job, you have to supply additional information so that your
job will be complete. Only then will your program work
correctly. For example, the RPG II compiler supplies your
program with the logic framework which enables it to do
detail and total operations. But you must tell it when total
operations should be done and which calculation and output
operations are to be done at detail time and which are to be
done at total time.

Remember that the only way you can tell the program
whatto do in certain situations is to use indicators. Con
trol level indicators are used to tell the program:

1. When to do total operations.

2. What operations are total operations.

If you were finding total m9nthly charges for each cus
tomer, how would you know when to record totals for
each customer? When you encounter a record with a dif-

ferent customer number in the NUM field, you know that
you have gathered all the information for one customer.
(You could use the NAME field to tell you this, but there
is a chance that two customers may have the same name.)
You would then record that total before gathering infor
mation for the next customer.

Any field used to control and direct processing is known
as a control field. You indicate to the compiler program
which field is a control field by assigning one of the control
level indicators (L 1-L9) to the field in columns 59-60 of
the Input sheet. You also use this same control level indi
cator to tell the program which calculations are total calcu
lations by entering the indicator in columns 7-8 of the
Calculation sheet. Those calculations that are not con
ditio,)ed by a control level indicator (in columns 7-8) .are
detail calculations. Control level indicators are not used
in the Output-F<:>rmat sheet to indicate detail and total
records. Rather a T is used in column 15 to indicate a
total output oper~tion; and H or 0 is used to indicate
an operation done at detail time.

RPG II Logic 1-5

Specific Steps in Basic RPG II Logic

Figure 1-4 shows very generally the sequence of events in an
RPG II program cycle. The RPG II logic actually consists
of definite steps taken during the cycle. When you do a job
you mentally ask yourself questions such as, "Do I do this
now? Do I have all my information? What shou Id I do
next?" RPG II logic also asks questions. It uses your pro
gram to find the answer and thus determines what to do
next. The questions, and specific steps taken based on the
answers to the questions, are shown in Figure 1-6.

, According to RPG II logic, after a record is read the program
checks to see if information in the control field of the record
just selected is different from the control field information
in the previous record. (The program always saves the con
trol field information so that it can make a comparison.) If
there is a change, the proper control level indicator (the one
you assigned) is turned on. This means that all records

"

1-6

from one group have been read. All total operations can
then be performed. Control level indicators are always
turned off before the next record is read.

• • • • •
•

Turn off control
level indicators
L1-L9 •

Read a record

•

Perform detail
output operations
(those identified
by 0 or H) '" Detail "'\.

time 4
/ I ,

// ,
/ Total"

/ / time ,

/ / '
Perform detail
calculations (those
with blanks in
columns 7-8)

-/ "-
/ / ,

/ "

•
/

/ I '
Move data from
record read at
beginning of cycle

• / into processing
area

/ "

•
Perform total output
operations (those
identified by a T)

• •

Perform total
calculations (those
conditioned by LO-L9
or LR in columns 7-8
of Calculation sheet)

Figure 1-6. Steps in RPG II Total and Detail-Time Logic

Change in control field?
I f yes, turn on control
level indicatiors

,
\. ,

•

•

•

•

)

Notice the step between total and detail time. Here data
from the record read at the beginning of the cycle is moved
into a processing area and becomes available to use in cal
culations and output. Data from this record is not available
at total time. Total operations are performed only on data
accumulated from previous records. Detail operations on
the record which caused the control level indicator to be
turned on are done only after total operations for previous
records.

Why are total operations done before detail operations?
Think of what would happen if the record which caused
the control level indicators to be turned on were processed.
Information on this record would be added to information
from records in the previous group. As a result, the totals
printed would be in error since they contained information
from one record in the next group (the record just read).
To prevent data from the first record in a new control gropp

from being accumulated in the totals for the previous
group, total operations are done before detail operations.

First Program Cycle

When control fields are specified for a record, the first pro
gram cycle may be slightly different from the others.

Control level indicators are turned on by the first record
containing control fields. This happens because contents
of the control fields on this record are different from the
blank control field areas that were in main storage before
the record was read. To prevent printing of blank totals on
the first cycle, RPG Illogic causes total operations to be
bypassed on the first cycle.

Note: If the initial input records do not contain a controf
field, total calculations and total output operations are
bypassed on each program cycle through and including the

first cycle in which a record with control fields is read.

Summary of Basic RPG II Logic

Figure 1-7 shows specifications for the group printing job
previously discussed and the logic for the first four pro
gram cycles. Follow the logic involved in each program
cycle step by step. Remember, the cycle repeats itself from
the time the program is started until the last record is
processed.

Be sure you understand this basic logic before proceeding
further.

RPG II LOGIC RELATED TO INDICATORS

It was previously stated that RPG II logic is built around
indicators. This section discusses how logic related to in
dicators fits into the basic RPG II detail and total time
logic shown in Figure 1-4.

In your specifications, you use indicators to tell the pro
gram what to do and when to do it. Although you use in
dicators, you do not set them. Naturally the indicators
don't turn on and off by themselves. The compiler supplies
logic which is needed to control the setting of indicators.

Indicators are set to signal various conditions that occur
during the execution of a program. In addition to setting
indicators, RPG II logicalso causes tests to be made for
yarious indicators at certain times in the program cycle.
Specific operations are performed as a result of these tests.

It is very easy to think that an indicator is on when it really
is off or vice versa. It is extremely important that you know
when indicators are on and when they are off in the pro
gram cycle. Many programs fail just because the program
mer did not understand RPG II logic concerning indicators.
The following paragraphs will discuss the time in the pro
gram cycle at which indicators are set and the time at
which they are tested.

RPG II Logic 1-7

RPG INPUT SPECIFICATIONS GX21-9094 U/M 050"
Printed in U.S.A.

IBM International Business Machine Corporation

o 2 I

o 3 I

o 4 I

o 5 I

Date

Record Identification Codes

-3

Filename

Iii Position

~~~ 
~uti 

Position Position 

1 2 

Page []]Of_ 

Field Location 

Field Name 

From To 

75 76 77 78 79 80 

~;~:~f:ation I I I I I I I 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 303132333435 3637383940414243 44'45464748 49 50 51 5253 54 5556575859606162636465666768 697071 72 73 74 

12 l5 tJUIM 1 
III 125 . 'NIAIMr: 

121b 1322~IHIG . 

RPG CALCULATION SPECIFICATIONS 
IBM International BUSine~s Machine Corpor8t~on 

Form GX21-9093 
Printed in U.S.A. 

1 2 75 76 77 78 79 80 

Page []]Of_ ~;~:~f:ation I I I I I I I Program 

Programmer Date 

C Indicators Result Field 
Resulting 

~ Indicators 

- g~ 
At . Jd :i =-

Arithmetic 

=:0 Factor 1 Operation Factor 2 Plus IMinusl Zero Comments 
~3~ Name Length ce S Compare 

Line .... occ ~~ 1>211<211-2 
E !l en Lookup(Factor 2)is 
~ 8 5~ ~ 5 5 'u -

z Z C:I: High Low Equal 
3 4 6 6 7 8 9 10 1112 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 61 5253 54 55 56 67 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

011 I C I ell r.lH(;1 I I I I I I ~In[)j I rbtrlAlLI I I I I irlolrlA.ILI I 1B12 I I I 11111111111111 

01 2 1 c I I I I I I I I I I I I I J 
- 1- I - I I I I I I I I I I I I I I 

RPG 
_IBM International Business Machine Corporation 

Program 

Programmer Date 

0 ~ Space Skip O~tput Indicators 

- ~~ 
Jd 1 e -- .. ~ ~ 

Line Filename ;. ~ 
~~ ~~ 

~ ... ell 
~ ... "ADD i ! 0 0 0 E o R < z z z 

.f 'A~D 

11111J111 I I I I I I I 
I I I I I I I I I I I I I I I I 

OUTPUT SPECIFICATIONS 

--'" 
Commas 

ItI! Field Name 
Ves 

i

mil Ves 
End No 
Positon No 

~ in 0:: 
Output :::; 

'AUTO ." Record ii; 
'C a:: w 

I 
I 

Zero Balances 
to Print 

Ves 
No 
Ves 
No 

I I 
I I 

1 2 

11111111111111 
I I I I I I I I I I I I I I 

GX21 -9090 U/M 050" 
Printed In U.S.A. 

75 76 77 78 79 80 

Page []]Of_ ~;~:~f:ation 1 I. I I I I I 

No Sign CR - X • Remove 
Plus Sign 

1 A J V· Date 
2 8 K Field Edit 
3 C L Z ~ Zero 
4 0 M Suppress 

Constant or Edit Word 

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~ 40 41 42 43 «~~048~~~~~54~WAWW~~~~~~68~~W~ 71 72 73 74 

0 1 olp IRlr INT ID 1 ~11 
o 2 0 tJlUM IJ~ 
o 3 0 NIA ME. ILlI~ 
o 4 0 rlHG 11 Iblt 
0 5 0 IT 2~ 1 
o 6 0 ... A l!ls Ib~ II\, 11M 
o 7 0 Ihl \*' 
o 8 0 

o 9 0 

1 0 0 

Figure 1-7 (Part 1 of 5), Illustration of Detail and Total Time 

1-8 



) 

) 

1645 JOE AARON 

• 

• 

7.42 

• 

Turn off 
control level 
indicator L 1 

Perform detail output: 
Print the record 

Perform detail calculation: 
Add CHG to TOTAL 

• 
00000 

742 
00742 

• 

• 
Move data from record 
selected into 
processing area 

• 
• 

"'--------------, 
// 1645 JOE AARON 742 I 
I I 
I I 
I I 
I I 
I I 

• 
I I 
I I 
I I 

I I 
L ___ ~~~ _________ J • 

• 

1645 JOE AARON 742 

Bypass total 
operations because 
this is the first record 
with a control field • 

• 

Change in control field? 
Yes, turn on control 
level indicator L 1 

• 

• 

• 

J 
Recall that there is 
always a control break 
on the first cycle, 
although total operations 
are bypassed. 

Figure 1-7 (Part 2 of 5). Illustration of Detail and Total Time 

RPG II Logic 1-9 



1645 
1645 

JOE AARON 
JOE AARON 

• 

• 

Perform 
detail calculation: 
Add CHG to TOTAL 

00742 
643 

• 01385 

7.42 
6.43 

• 
• 

Move data from record 
• selected into 

processing area 

• 
• 

Figure 1-7 (Part 3 of 5). Illustration of Detail and Total Time 

1-10 

• 

• 

/r-----------i 
( 1645 JOE AARON 643 : 

I I 

I I 
I I 
I I 
I I 

• I I 
• L_ _ __ J 

1645 JOE AARON 643 

• 

•• 
Change in control field? No 

• 

• 



) 

1645 

1645 

1762 

JOE AARON 
JOE AARON 

BILL BELL 

• 

• 

7.42 
6.43 

13.85* 

13.42 

Turn off 
Control level 
indicator L 1 

Perform detail calculations: 
Add CHG to TOTAL 

00000 
1342 

01342 

• 

• 
Move data from record 
selected into 
processing area 

• • 

Perform total output: 

• 

1645 JOE AARON 
1645 JOE AARON 

• 

Print TOTAL, 
reset field to 
zero 

• 

Figure 1-7 (Part 4 of 5). Illustration of Detail and Total Time 

• 

~-----------, 

(// 1762 BILL BELL 1342 ~ 
I 1 

I I 
1 I 
I I 

.. 1 I 
: I • L ___________ _ 

Change in control field? 
Yes, turn on control level 
indicator L 1 

• 

• 

• 

• 

RPG II Logic 1-11 



1645 
1645 

1762 

1796 

1645 
1645 

1762 

JOE AARON 
JOE AARON 

BILL BELL 

JOHN BART 

• 

• 

7.42 
6.43 

13.85* 

13.42 

13.42* 

24.93 

Turn off 
control level 
indicator L 1 

Perform detail output: 
Print the record 

Perform detail calculation: 
Add CHG to TOTAL 
00000 

2493 

02493 

• Move data from record 
selected into 
processing area 

• 

JOE AARON 
JOE AARON 

BILL BELL 

• 
7.42 
6.43 

13.85* 

13.42 

13.42* tf:':" 

• 

• • 

,------------, 
,/ 1796 JOHN BART 2493 I 

( I 
I I 
I I 
I I 
I I 
I 
I I 
I I 

.f;;:!f!I#/!(!!f!f!"~ - - - __ I 

------------~~~ 

• 

1796 JOHN BART 2493 
record 

• 

• 

• 
Change in control field? 
Yes, tu rn on control 
level indicator L 1 • 

Perform total output: 
Print TOTAL, 
reset field to 
zero 

• 

Figure 1-7 (Part 5 of 5). Illustration of Detail and Total Time 

1-12 



) 

) 

1P (First Page) Indicators 

It was stated before that the first program cycle is slightly 
different from the others because total operations are by
passed on the first cycle. Another difference in the first 
cycle is that the first page indicator (1 P) is on during the 
beginning of the cycle. Any records conditioned by the 1 P 
indicator are printed before the first record is read. 

This indicator is used to condition records which are to be 
printed on the first page of a report. These records are 
usually headings used to identify information found on the 
page, but may also be detail lines. 

• 
• 

• Turn off control 
level indicators L 1-L9 
and 1P 

• 
Perform heading and detail 
output for which conditions 
have been met, including 1 P 
output (first cycle only) 

• 
Perform detail 
calculations 

Move data into 
• processing area 

• 

START 

. (1P is on) 

• 

Bypass total 
• operations 

• 

Figure 1-8. Logic for the First Page (1P) Indicator 

The 1 P indicator is turned on only for the beginning of the 
first cycle. It is turned off before a record is read and is 
never used again during the program (see Figure 1-8). 

Notice in Figur~ 1-8 that the program performs 1 P output 
and other heading and detail output first when it is started. 
This is a/ways true. In any program, 1 P output and any 
other heading or detail output for which specified condi
tions have been met is performed before the first record is 
read. On succeeding cycles, however, it is usually easier to 
think of reading a record as the first step in the cycle. 

• 
• 

Change in control field? 
If yes, turn on control • 
level indicators 

• 

• 

• 

RPG II Logic 1-13 



Assume that a heading is desired on the report created by 
the previous example (Figure 1-7). The heading should be 
printed on the first page before any records are printed. 
Thus the heading line is conditioned by 1 P (see Figure 1-9). 
Figure 1-10 shows what happens in the first cycle according 
to RPG Illogic. 

RPG OUTPUT 

Program 

Programmer Date 

o -
u:: Space Skip Output Indicators 

~ ~~-+----'-----r------r--------~----~ 
c ~ I .I i i ~ ~ And And 
I- eli 

Field Name 

Filename Line 

f;"oo ~ 
~~r.:-
AND 

o 0 
Z Z ·AUTO 

SPECIFICATIONS 

t> Commas 

Ves 
Ves 
No 
No a: Positon 

! ~ ~utPut ~ 
~ ~ Record ~ 

1 2 

Page [[]Of_ 

Zero Balances No Sign CR to Print 

Ves A J 
No B K 
Ves C L 
No 0 M 

Constant or Edit Word 

GX2t·9090 UIM 050· 
Printed in U.S.A. 

75 76 77 78 79 80 

~~:;~f:ation I I. 1 1 1 1 1 

X· Remove 
Plus Sign 

V • Date 
Field Edit 

Z . Zero 
Suppress 

5 6 7 8 9 10 11 12 13 14 1S 16 17 18 19 20 21 22 23 24 25 26 27 78 2'9 30 31 32 33 34 35 36 37 38 39 40 4' 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 ,'7 68 69 70 71 72 73 74 

o 1 alp IRlr NT H 32 11P 
o 2 a 10 \ AI JIM P.F IQ' 
o 3 a .~0 \/J AIM E' 
o 4 a 6~ \ ('" J II ... ,. I,. , 

o 5 a In 11 It I 
o 6 a . NIUIM 10 
o 7 a NIA 1M 1= 41) 
o 8 a rl~IG A(/} 
o 9 a 
1 0 a 
11 a 

1 2 a 
1 3 a 
1 4 a 
1 5 a 
1 6 a 
1 7 a 
1 8 a 
1 9 a 
2 0 a 

a 
a 
a 
a 
a 

tL IL OL 69 89 L9 99 59 t9 £9 t9 19 09 65 85 L5 95 95 tS ~~ tS 15 os 6~ 8. L~ 9t 5~ n £. tt It O. 6£ 8£ Lt 9£ St t£ ££ tt 1£ OC 6t 8t it 9t St ~t ct tt It Ot 61 81 LI 91 SI U £1 tl II 01 6 8 L 9 5 ~ C t I 

Figure 1-9. Heading Line Conditioned by the First Page Indicator 

1-14 

/' 



) 

) 

NUMBER 

1645 

CHARGES NAME 

"::;\\\\~~:~E AARON 742 

I • 
\\\\\\ . 
\~;h :::~lr~u~:~:~~~::~~~1 

.:.:::~~ conditions have been met, 
including 1 P output (first 
cycle only) 

• 

START 

• 
Perform detail .. 
calculations 

Move data into 
• processing area 

• 

(1Pison) 

• 

• Bypass total operations 

• 

Figure 1·10. Program Cycle Illustrating the 1P Indicator 

• 
• 

/r----------:- I 
( 1645 JOE AARON 742 I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I . ________ J 

• 

• 

• 
Change in control field? 
Yes, turn on control 
level indicators • 

RPG II Logic 1-15 



Last Record Indicator (LR) 

The last program cycle is also a little different from the 
othe:rs. When the record with a /* in positions 1 and 2 is 
read, the LR (last record) indicator is turned on. Since the 
/* record has no data on it, detail operations need not be 
performed. Thus RPG II logic is set up so that detail 
operations are not done when LR is on (see Note). Total 
operations are done. The program then ends. 

When the last record indicator is turned on, all control level 
indicators are also turned on. Thus all total operations con
ditioned by L 1-L9 and LR are performed. See Figure 1-11 
for specific steps in the end of job logic. 

1-16 

• 

• 

• 

HALT 

• 
• 

• 
• 

Perform total 
output operations 

• 

Figure 1-11. Logic for the Last Record (LR) IrftJicator 

• 

• 

You use LR to condition all operations done at the end of 
the job. These usually include the calculating of totals for 
all records and/or writing or punching summary informa
tion. Suppose the previous example (Figure 1-7), which 
found total charges for each customer, required the state
ment List Complete as of (date job was run). 
Since this is to print out after all records have been 
processed, it is conditioned by LR (see Figure 1-12). 
Figure 1-13 shows what happens during the last program 
cycle according to RPG II logic. 

Note: Detail operations are done if LR has been turned on 
during calculations, rather than by reading a /* record. 
However, when LR is turned on in calculations, the other 
control level indicators are not turned on . 

• 
• 

Perform 
total 

Read a 
record 

Was the record 
just read an end 
of file ( / * ) record? 

lfso turn 
on all control 
level indicators 
and LR • 

• 

• 

• 

/ 



) 

RPG OUTPUT 
IBM Intern.tlon.1 Business MKhine Corpor.tion 

Program 

Programmer Date 

0 
-

Line 

! 
E 
.f 

Filename 

'AUTO 

Ii: Space Skip Output Indicators 

~~~-+--~--+---~----~--~ 
c It. I I
~ ~ ~ ~ .I
~ ~ ;ii ::(And And

I- US ~

f-;\ro"o ~

';~ro

ffr
a:

~ en

8 ~
~ ~

Field Name

o 0
Z Z

SPECIFICATIONS

:> Commas

I
Ves

I Ves
End No
Positon No
in a:
Output ..J

Record en
0:

1 2

Page [Do,_

Zero Balances No Sign CR to Print

Ves A J
No B K
Ves C L
No 0 M

Constant or Edit Word

GX21·909(I U/M 050'
Printed in U.S.A.

75 76 77 78 79 80

~;:;~,:.tion I I. 1 1 1 1 1

X • Remove
Plus Sign

V' Date
Field Edit

Z = Zero
Suppress

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 3233 34 35 3637 38 39 40 4' 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 0 - I I I I
L.. I I I I

0 7 0

o 8 0

o 9 0

1 0 0

,l ! : I : ;
1£ "" '"

'*, I I ; ; i ~!- I

iT I~ IL R \ ! ' , i r-r-t-7 :
---- -~-l---l.--L ..

1\: , &;3 \ 1. 11[51 rlr- Mlp Il 1= ITiE ~ OFl'
1 1 0 InlA 11E y b'l I I , I

I I

1 2 0 H+ -LL ~ ,-t- I ' I ; , :

Figure 1-12, Total Lines Conditioned by LR

RPG II Logic 1-17

1-18

•

•

•

HALT

•

7940

•

•
•

Perform total
output operations

f. 2.97
13.56*

LIST COMPLETE AS OF 10/20/71

Figure 1-13. Program Cycle Illustrating the LR Indicator

•

•

•

Perform
total

/--------,
/ 1* I

(I
I I
: I
I I
I I
I I '-__ _ __J

record

Was the record
just read an •
end offile
(/ *) record?

lfso tum
on all control
level indicators
andLR •

•

•

)

Record Identifying Indicators (01-99)

You assign a record identifying indicator to each type of
record in the input file. If certain 'operations are to be per
formed for one record type only, you',may c~ndition those
operations by the appropriate record identifying indicator. '
By this method you can tell the RPG II program what oper
ations to perform when it: processes a specific re~ord type.

•

•
•

Turn off
control level indicators
and record identifying'
indicators

•

Perform detail
calculations

•
Move data
into processing
area

•
•. Perform total

output

• •

"\ Figure 1-14. Logic for Record Identifying Indicators

)

•

After the program has selected the next record to process,
it turns on the record identifying indicator which you as
signed to that record type. This indicator is turned off only
at the end of each prog~am cycle; thus it is on during both
detail and total operations. Detail and total operations con
ditioned by the record identifying indicator, currently on,
will then be performed.

Figure 1-14 shows specific steps in the RPG Illogic related
to record identifying indicators .

•
•

Perform total
calculations

Turn on record
identifying indicator •
identifying the
record selected
for processing

Change in control field?
If yes, turn on control
level indicators •

•

•

RPG II Logic 1-19

. Consider the use of record identifying indicators in a billing
job. A monthly file is kept which contains records of pur
chases and payments made by each customer. In addition,
the file contains a balance forward record for each cus
tomer. Figure 1-15 shows the three input record types used
and output records required.

Control
Field

NUM PAYMNT Payment
Record

PURCHS ~t---- Purchase
Record

NUM NAME BALFOR +-+--- Balance
S

A

Forward
Record

Figure 1-15. Input and Output for Billing Job

The three record types are defined on the input sheet. Each
type is given a different record identifying indicator. The
record identifying indicators are then used to indicate which
operations are to be performed for each record type. Fig
ure 1-16 shows the input, calculation, and output-format
specifications for the job. Use these"specifications to help
you follow, step by step, the operations performed in the
program cycles shown in Figure 1-17.

(Number) (Name) (Balance)

.(Purchases)

"
. (Payments)

(Balance)·

RPG INPUT SPECIFICATIONS GX21-9094 U/M 050'
Printed in U.S.A.

IBM Internation,l Busines. Machine Corporation

Program

Progr8mmer Date

I 2 Record Identification Codes
Field Location B

t--] 1 2 3

2'. 8

r~ line Filename Ii
~ 1l

8. j t;;i a: ~ .8 Position t Position t Position
~e

From To

] g.e~ ~~ ~ ~~~ ~ ,..--,..-§ ~ S 6 ~~ o ~ ~ o R z a: ~uO
f;'N f[)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38 3940 41 42 43 44 45 46 47 48 49 50 51

0 1 IS It IL IL II INC; ~111 II rt.l Iqlh rl~
o 2 I It h
o 3 I I~ I~I"
o 4 I 1311 J"~

o 5 I .~ biN 1rl1,1c1 IGlh ~IA
o 6 I II 11
o 7 I I~ I ':10

o B I Ojl:t, Alii'" 12.!'Jl ~b ,..~

o 9 I 1 1'7
1 0 I

I

I~l ~~ ~

11 I
. ~ -

Figure 1-16 (Part 1 of 2). Billing Job Specifications Using,Record Identifying Indicators

1-20

1 2

Plge[TIOf_

~ .~ ~
:§-8 ·5 Field Name D u:~ ~ 3

~ r~ i '2 ~~ 0 8

52 53 54 55 56 57 66 59 60 61 62

N lllM Ii
INi.Q 1M I,:

ILII"I IJ.I~ FhJc

~ILJIM
~I'l R H

NUM
2P Alv MNT

75 76 77 78 79 80

:~;:;:.tionl 1·1 1 1 I I

Field , '

g Indicators
. .,
~
a:

j Zero
Plus Minus or

:i .. Blank

...
6J64 6566 6768 6970 71 72 73 74

)

RPG CALCULATION SPECIFICATIONS . .

IBM International Business Machine Corporation

Program

Programmer Dale

.C Indicators Resu It Fie Id
",-

~ ~~
At At =0 Factor 1 Operation Factor 2

~~~ Name Length line I- '0 cr.-
E ~ ~ 15 15 15 & 8 5 z z z 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Ja 39 40 41 42 43 44 45 46 47 4B 49 5051 

0 1 C 120 B~ L F IOIR' ADD PI IDlr ~Ic:. ~A Il F "R 
o 2 C BI~ BIA LF lolR S1A IpA IVIM NIT ~A II 11= "'Q 
o 3 C 

o 4 C 

ft " -

RPG OUTPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 ~ Space Skip Output Indicators 
Commas - ~~ I(i.\ ... 

At 1 
Field Name 

Yes 0 .... II Yes ....... l!! ~ 
line Filename ~ ; 

~~ 
End No 

~ ~ Positon No 
[ I- Vi 

~ in 0:: ~ f-;\f[)f[; ~ E ~ ° 0 0 Output g 
.f o R z z z 'AUTO . ., Record 

"0 Ii: 
A ~f[) w 

~ 
:€ g 
~ ; 
c;:.a' 
E « 
.~ "; 
OJ: 

1 2 

Page [DOf_ 

Resulting 
Indicators 

Arithmetic 

Plus IMinus\ Zero 

Compare 

1>211 <211-2 

lookup(Factor 2)is 

High low Equal 

Form GX21-9093 
Printed in U.S.A. 

75 76 77 78 79 80 

~~;~f~atiDnl I I I I I I 

Comments 

52 53 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 2 

Page [DOf_ 

Zero Balances 
No Sign CR -to Print 

Yes 1 A J 
No 2 B K 
Yes 3 C L 
No 4 0 M 

Constant or Edit Word 

. 

GX21-9090 U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;~f~ation I I I I I I I 

X c: Remove
Plus Sign

Y • Date
Field Edit

Z • Zero
Suppress

.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 «%~g4B~~~~~54~~~~~W~~~M~~~6868ro 71 72 73 74

o 1 OR t-P I(IRT I" I~rh'h lL~
o 2 0 ItJlM l.1J; .-f--i-
o 3 0 I~A MIE ~1<1i
o 4 0 iRA , Il= nlR~ Ib~
o 5 0 In 11 121~
o 6 0 , 'p \ ~Ir ll~ 1 12.~
o 7 0 D lL 1310
o 8 0

r"I-LL 1410J t"'A J II",
o 9 0 h" lLl2. It 1
1 0 0 'RA llF hlRlA 16~
1 1 0 16lL . \

~'
1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

1 9 0

2 0 0

0

0

0

0

0
ZL IL OL 69 B9 L9 99 99 ~ C9 ~9 19 09 69 as L9 99 99 ~ C9 ~g 19 09 6~ 8~ L~ 8~ 9~ I>t C~ ~~ I~ O~ 6C 8C LC 9C 9C Ii: CC ~C IC OC 6Z 81: L~ 9~ 9~ ~~ C~ U 1~ O~ 61 81 LI 91 91 ~I Cl ~I ,"-_O~ 6 8 L 9 9 V C ~ I

Figure 1-16 (Part 2 of 2)~ Billing Job Specifications Using Record Identifying Indicators

RPG II Logic 1-21

1645 JOE AARON 47.68

•
•
Turn off control
level indicator L 1
and record identifying
indicator 10.

Perform detail
output

Perform detail
calculations'

• Move data
into processing
area

•
•

.'

• • •

167,0 HENRY ABLE 495

1645 25~~

1645 643

1645 742
----------....,

/1645 JOE AARON 4768 I
I I
I I B

I ': I I
I I

s
A

I ! A

I B I

------~
Record
Identification Code

1645 JOE AARON 4768

Bypass total
operations

•

B

record

• Turn on record
identifying indicator 10

Change in control field?
Yes, turn on control

, level indicator L 1

•

•

•

Figure 1·17 (Part 1 of 3). Program Cycle Illustrating Use of Record Identifying Indicators

1·22

/

)

)

)

1645 JOE AARON 47.68

7.42

•

output

•
•

Turn off record
identifying indicator

20

Perform detai I
calcu lations:

4768 (BALFOR)
742 (PURCHS)

5510 (BALFOR)

•

• Move data
into processing
area

•

• • •

• •

Figure 1-17 (Part 2 of 3). Program Cycle Illustrating Use of Record Identifying Indicators

167,£) HENRY ABLE 495

/ 1645

1645 643
r---- -- --------,

(/ 1645 742 :

I I
I I
I I
I I
I I
I I
I I
I A

Change in

Turn on

I
AI

record identi- 0
fying indicator
20

•

control field? No 0

S

B

RPG II Logic 1-23

1645 JOE AARON

7.42
6.43

•

47.68

•

Turn off record
identifying indicator
20

Perform detail

Perform detail
calculations:

5510 (BALFOR)
~ (PURCHS)

6153 (BALFOR)

•

• Move data
into processing
area

•
•

• • •

•

Figure 1-17 (Part 3 of 3). Program Cycle lIIustra~ing Use of Record Identifying Indicators

1-24

167~ HENRY ABLE 495

1645 250~
r--------~-l

(/ 1645 643 I
I I
I I
I I
I I ,B
I I
I I S

I A I L___ _ ______ J

•

record

A

Turn on
record identi- •
fying indicator
20

•

•
Change in
control field? No

•

)

-

Field Indicators (01·99)

, Field indicators are used to test a field on an input record
for a plus, minus, zero or blank value. Any operations
that are to be performed only when a numeric field is plus,
minus, or zero or when an alphameric field is blank may
be conditioned by the appropriate field indicator.

Note: A numeric field that is all blanks will turn on an
indicator specified for all zeros. However, if an alphameric
field is all zeros, the field will not turn on an indicator
specified for all blanks.

Field indicators are turned on or off after data from the
record to be processed has been moved into the processing
area. Figure 1-18 shows the RPG 1/ logic related to field
indicators.

•
•

Turn off
control level

• and record identifying
indicators

Perform detail
output

Perform detail
calculations

•

•
Move data
into processing
area. Turn'
field indicators
on or off

•

• Perform total
output

• •
\1

J Figure 1-18. Logic for Field Indicators

•

For each program cycle, field indicators are set to reflect
the result of the test on a field. If the condition tested for
is satisfied, they are turned on; if the condition is not satis
fied, they are turned o~f. A field indicator that is set as
the result of a test retains its setting until another test is
made using the same indicator.

When the indicator is on, any detail and total operations
conditioned by the field indicator may be performed. before
testing of a field again resets the indicator. Remember that
at total time, however, the field indicator will have the set
ting established in the previous cycle.

• •

Perform total
calclliations

Turn on record.
identifying
indicator

Change in
control field?
If yes, turn on

control level •
indicators

•

•

R PG II Logic 1-25

Consider the use of field indicators in the billing job pre
viously described. The same record types are used as in the
previous job. The only difference is the additional field, ,
discount (OISCRT), in columns 39-40 on the balance for
ward record.

All employees receive a discount on everything they buy:
The rate of discount they receive is recorded in the OISCRT
field. All accounts other than employee accounts have a
zero in the discount field since they receive no discount~

Each time a record with a B in position 96 is read>O ISCRT
must be tested. Only when it contains a positive value
should discount be calculated. Figure 1-19 shows the input,
calculation, and output-format specifications for this job.

Use these specifications to help you follow, step by step,
the logic for each program cycle shown in Figure 1 ~20.

RPG INPUT SPECIFICATIONS GX21-9094 U/M 050'
Pri,ntedin U.S.A.

IBM International Business Machine Corporation

1 2 75 76 77 78 79 _80

Programmer Date
Page CD of _ ~Z~;~f:ation I I I I I- - I 1

Program

I N
Record Identification Codes Field Field Location

I--- ~ 1 2 3 .g Indicators

I
co. ~ 0 ~

Filename
~.,- 0 :!2~

Line Z ~ 0

-" Field Name irl -;;;] .2:!Qi "0

0- g ~§ z 0 ~ z 0 ~ ~ ~ ~ ~ u.i.i: ! Zero
> Vl Position Position Position From To f:r Plus Minus or l- E co "0 ~~ g e
~ ~ 1 ~ E~j -: N ~ ~~~

"0 Blank
,-+-- ~u6 ~ u

.~

~ ~6
-;;

~~'D
z u u 0 u:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 6566 67 68 69 70 71 72 73 74

0 1 11=\ ITII LIT N(; ~ I ~ 11 ~ 9b "18
0 2 I I '7 NUIM 11
0 3 I Is 13~ NA MIE
o 4 I I~;' l:l ') tr'" It:OIR
o 5 I I~IQ 1"11(£ ILll Ills IrlRIr Iqlq
o 6 I ~I) 11\1,.., I:>rt 191fl Ir lA
o 7 I I 17 1~1'Jlf'V
o 8 I I~ 131t INIA IrvlF
o 9 I IA I 1~lg 1?lo lie r14-l~
1 0 I ..c..1:t 1,,1-'~~ i9l1:l ~5 '-.

11 I 11 17 IN1ulf.1
1 2 I Is 13~ tJlA 1M 1= .
1 3 I 1=-1, 13 IS lIP IAlv MINT
1 4 I
, c ~

Figure 1-19 (Part 1 of 2). Billing Job Specifications Using Field Indicators

1-26

)

" \
)

IBM Intern.lional BUlin'" Machine c~rPOr.tion
Program

Programmer Date

C Indicators
~ - 0_

AL At
::gj

Factor 1
~~~ 

Line ~ '0 o:~ 
E ~ en 

~85~ (; ° z z 

RPG CALCULATION SPECIFICATIONS 

Resu It Fie Id 

Operation Factor 2 ,~ ;; 

Length ~ ~ Name 
g~ 
u ~ 
a ::c 

1 2 

Page [I] of_ 

Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero 

Compare 

1 >211 <211 ~ 2 

Lookup(Factor 2)is 

High Low Equal 

Form GX21-9093 
Printed in U.S.A. 

75 76 77 78 79 80 

~~;~;~f:ation I I I I I 1 I 

Comments 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3a 39 40 41 42 43 44 45 46 47 48 49 5051 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 c 191'7 2~ Ip , IRIr I-I~ Mlu IL T IOlr s'r IRIr IDr fJlr 14'1-1 
o 2 c i9i9 20.\ Ip I IRr I-I~ 51ulB !nlI sir 1o J Qlr I", c. 
o 3 C ')~ ISA IL F "A ~IDln Ipil R',. 1"1e; ~A IIJ:' hR 
o 4 c 3t2l 1Q.4 I) r: I"IR lSlUIB 'nl. 

""" IR~ J Ie hD 
o 5 C 

RPG OUTPUT SPECIFICATIONS GX21-9090 UIM 050" 

IBM International Busine$l Machine Corporation 

Printed in U.s.A. 

I Program I l I I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Punching Graphic 
pagernOf_ ~~~;:;;:ation [ I. 1 1 I I I I Programmer Date I Instruction Punch I I I I I 

0 .... S Space Skip Output Indicators 
Commas Zero Balances No Sign CR - X = Remove 

- e~ !ttl v to Print Plus Sign 

1 L 
Field Name 

Ves Ves 1 A J Y = Date a-
:m Ves No 2 B K Field Edit - .. ~ ! Line Filename ;. :u No Ves 3 C L Z = Zero 

~~ Q)« a: Positon No No 4 D M Suppress 

~ ~i5 
~ 

ill 0; in a: 
I- A~D ~ ~ 0 ° ° 

;9 5 Output g Constant or Edit Word 

~ ~~D 
z z z "AUTO ~ ~ Record 

0: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3809 40 41 42 43 44 45 46 47 4a 49 50 51 52 53 54 55 56 57 58 59 50 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 I,.. ,1'\ n 3~~ l~ I 

o 2 0 tJlu~ 11.'5 
o 3 0 NIA MJ:' 1';,5 
o 4 0 ~IA .. -'- ~b ~ I"'1Ii,M 

0 5 0 10 1 21(Jj 
o 6 0 plU IRr IHC;i1 2125 
o 7 0 In 1 3£1 
o 8 0 p~ IVM INTl LJt7J 
o 9 0 rr Il2 '11 
1 0 0 BIA IL F hRA h0 
1 1 0 

1 2 0 

1 3 0 

1 4 0 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

1 9 0 

2 0 0 

0 

0 

0 

0 

0 
U IL OL 69 S9 L9 99 S9 1'9 C9 Z9 19 09 6S as LS 99 S9 1>9 CS Z9 IS 09 6~ 8V Lv 9. 9. 11> C. ZV Iv OV 6C 8C LC 9C SC I'C C& ZC 1& OC 6Z 8Z LZ 9Z SZ tZ cz ZZ IZ OZ 61 81 LI 91 51 vI CI ZI II 01 6 8 L 9 S ~ C Z I 

!Figure 1-19 (Part 2 of 2). Billing Job Specifications Using Field Indicators 

; 

RPG II Logic 1·27 



193 BILL AMES 47.68 

• • • 

276 H BOLE 593 1~ 

2~1 JIM ARNO 1693 

JIM ARNO 1693 rj 

193 BI LL AMES 743 
-----------, 

193 BI LL AMES 4768 J16 1 

I 
I 
1 
I 
I 
I B 
IA 
I 

BI 

· .. "dt~~;~- - - --~" 

B 

S 

Record .Identification 
Code 

• 193 BILL AMES 4768 ~6 

Turn off control 
level indicator L 1 and I 

• record identifying 
indicator 10 

output 

• 

Perform detail 
calculations 

Move data into 
processing area. , 
Turn field indicator 

• 99 on (DISCRT is plus) 

• 
• Bypass total operations 

• 

Figure 1·20 (Part 1 of 3). Program Cycles Illustrating Use of Field Indicators 

1·28 

record 

Turn on record 
identifying • 
indicator 10 

Change in 
control field? 
Yes, turn on control 
level indicator L 1 

• 

• 

• 



) 

) 

193 

BILL AMES 

BILL AMES 47.68 

6.99 

• 

• 
Turn off record 
identifying indicator 
20 

Perform detail 
output 

Perform detail calculations: 

• 

7.43 7.43 47.68 
x.06 -.45 6.98 ------.45 6.98 54.66 

• Move data into 
processing area 

• 

• • 

• • 

Figure 1-20 (Part 2 of 3). Program Cycles Illustrating Use of Field Indicator. 

• 

H BOLE 593 10 

JIM ARNO 1693 

JIM ARNO 1693 $1 
;----------1 

(/ 193 BI LL AMES 743 
I I 
J I 
I I 
I I 
I I 
I I B 

I AI 
L-__ _ __ --J 

Turn on record 
identifying • 
indicator 20 

• 

• 
Change in control field? No 

• 

B 

S 

RPG II Logic 1-29 



193 

193 

BILL AMES 47.68 

6.99 

<) 

Turn off control, 
level indicator L 1 
and record identifying 

o indicator 10 

Perform detail 
output 

Perform detail 
'0 calculations 

Move data into 
processing area. 

• 

o Turn field indicator 
99 off (DISCRT is 0). 

Perform total 

BILL AMES 

6.99 

• 

• 

276 H BOLE 593 1f/J 

201 JIM ARNO 1693 
,/"-----------, 

• 

( 201 JIM ARNO 1693 9) I 
I I 
I I 
I I 
I I 

I : 
I I S 
I 
I B l L__ _ ____ ....J 

2~1 JIM ARNO 1693 95 

• Perform total 

Turn on record • 
identifying 
indicator 10 

Change in 
control field? 

Yes, turn on • 
control level 
indicator L 1 

• 

• 

B 

Figure 1·20 (Part 3 of 3). Program Cycles Illustrating Use of Field Indicators 

1·30 



) 

Resulting Indicators (01-99) 

Resulting indicators are assigned to signal something about 
the result of a calculation operation. Any operation which 
is dependent upon the result of the calculation can then be 
conditioned by a resulting indicator. 

Resulting indicators may be turned on or off at either de
tailor total calculation time. An indicator which is set as a 
result of the calculation operation retains this setting until 
the next time a calculation is done for which the same in
dicator is a resulting indicator and the condition is not 
satisfied. Figure 1-21 sho~s the RPG Illogic related to re
sulting indicators. 

• 
Turn off 

• 

control level 
and record identifying 

• indicators 

Perform detail 
output 
operations 

Perform detail 
calculations. 
Turn Calculation 
resulting indicators 
on oro!! 

• 

• 

Move data 
into processing 
area. Turn 
field indicators 
on or off 

• 

• Perform total 
output 

• 

Figure 1-21. Logic for Resulting Indicators 

• 

• 

A resulting indicator may change status in the same cycle. 
This happens when one indicator is assigned to signal the 
result of both a totaf and detail calculation. The total cal
culation could turn it off and the detail calculation could 
turn it on, or vice versa. The indicator will not, however, 
be reset to show that a field is blank or zero after being 
blanked out by the Blank After function (B in column 39 
of the Output-Format sheet). 

The use of resulting indicators is demonstrated by an inven
tory job which determines whether an item needs to be re
ordered. After inventory has been taken, the quantity on 

hand is recorded for each item. If the quantity on hand is 
100 or less, reorder should be immediate. If the quantity 

• • 

Perform total 
calculations . 
Turn Calculation 

Turn on record 
identifying • 
indicator 

Change in 
control field? 
If yes, turn on 
control level 

indicators • 

• 

• 

RPG II Logic 1-31 



is over 100,the ite~ need not be reordered at this time. A 
list of all items is printed. All items to be reordered are in
dicated with a'double asterisk. Figure 1-22 shows the 
specifications for the job. Use these specifications to help 
you follow the program cycles shown in Figure 1-23. 

RPG INPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Date 

Filename 

Position 

Record Identification Codes 

z 0 ~ Position 

i § ~ 
z 0 ~ Position 

-= N ; 
~o6 

Field Location 

From To 

1 2 

pageDJof_ 

Field Name 

GX21·9094 U/M 050· 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;:f:ation I I I I 1 I 1 

Field
Indicators

Zero
Plus Minus or

81ank

9 1011'121314151617 IS 19202122232425262729 29 30 31323334 35363738394041424344454647 4B 49 50 51525354 55565758596061626364656667 6B 697071727374

o 1 I r !t..Ilv E IN lAB ~l
o 2 I 11 IllCi'J 'I irlE M
o 3 I lLl
o 4 I 1312. l.jl~ UJ QI J IV
o 5 I '.

RPG CALCULATION SPECIFICATIONS
IBM Intarnational BUlinaa MeChinl Corpotlt!on

Program

PrOlIrammer Date

C Indicators Result Field
~

'----'- 9~
At Jd ::0 Factor 1 Operation Factor 2

~.§~ Length Name Line
I- ~:;i
E ~, 0 0 .f 85 ~ z z

3 4 5 6 7 8 9 10 11 12 1314 15 18 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 4B 49 5051

0/1/ C / hlTlvI I I I I I I tbM)pl l~~ 111111 II " I " 01 2 1 C I '"""" I \ I I """"I " " I " I 1 I

RPG OUTPUT SPECIFICATIONS
IBM Intern.tional BUliness Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators Commas
r--- ~~ 1(11

....

Jd ·1
Field Name

Ves olt II Ves,
~ ~

Line Filename =. t
~~

End No

~1 II: Positon No
8. I- <lS

~
!l ;;; In II: ~ ~fofo !; 85

~ i ~ 0 0 0 Output ~ o R z z z ·AUTO ~ ~ Record

'ArrJro ii::

Ii!
~g
cf ;
~i
u ~
o :r:

1 2

pageDJof_

Resulting
Indicators

Arithmetic

Plus IMinusl Zero

Compare

1>211<211-2
Lookup(Factor 2)is

High Low Equal

Form GX21·9093
Printed in U.S.A.

75' 76 77 78 79 80

~~~;:f:ation I 1 1 I I I I 

Comments 

52 53 54 55 6667 5859 60 61 62 63 54 65 66 67 6B 69 70 71 72 73 74 

I :~Io I II I I III I I , , " , 
I I I 1\ I I I I I I I I I I I I 

Zero Balances 
to Print 

Ves 
No 
Ves 
No 

1 2 

pageDJof_ 

No Sign CR -
1 A J 
2 B K 
3 C L 
4 0 M 

Constant or Edit Word 

GX21·9090 U/M 050" 
Printed in U.S.A. 

75 76 77 78 79 80 

~~;:f:ation I I. 1 I I I I 

X • Remove 
Plus Sign 

V· Date 
Field Edit 

Z • Zero 
Suppress 

3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 29 2930 31 32 33 34 35 36 37 38 ~ 40 41 42 43 44~~Q~~W~~~54~~~~~W~~~54~~~m69ro 71 n 73 74 

o 1 0 Ir~~ :D 12 ~l 
o 2 0 13b 14 '~ I~ I 

o 3 0 lIT EM 25 
o 4 0 Irq: Is ,. ~fl 
0 6 0 

-

Figure 1-22. Inventory Job Specifications Using Resulting Indicators 

1-32 

/ 



\ 
) 

) 

.-/1 

**743J1 WH SOCKS, SZ 6 H 

output 

• 
• 

Turn off record 
identifying indicator 

01 

Perform detail calculations 
(Compare 89 to 100). 

• Turn resulting indicator 
36 on 

• Move data 
into processing 
area 

• 

• • • 

• • 

Figure 1·23 (Part 1 of 2). Program Cycles Illustrating Use of Resulting Indicators 

• 

(desc) 1~2 
.,----------1 

(/ 743J1 (desc) 89 I 
I I 
I I 
I I 
I I 
I I 
I I 
I L ___ _ 

record 

Turn on 
record identifying • 
indicator 01 

Change in 
control field? 
No, there is no 
control field • 

, I 

• 

• 

RPG II Logic 1·33 



1·34 

**743J1 

864M2 

WH SOCKS, SZ6 

BLUE SOCKS, SZ6 

• 
Turn off 
record identifying 
indicator 01 

Perform detail 
output 

Perform detail calculations 
(Compare 102 to 100). 
Turn resulting indicator 
36 off 

• 

• Move data 
into processing 
area 

• 

• 

• 

• 

• 

• 

,-----------, 
(/ 864M2 (desc) 102 . I 
I I 
I I 
I I 
I I 
I I 
I I 
I 
I 
I . I ___ oJ 

864M2 (desc) 102· 

Turn on record 
identifying •. 
indicator· 01 

Change in 
control field? 
No, there is no 
control field • 

• 

• 

Figure '·23 (Part 2 of 2). Program Cycles Illustrating Use of Resulting Indicators 



) 

)' 

Halt Indicators (H1-H9) 

Halt indicators are used to stop the program when a speci
fied condition is satisfied.' Halt indicators may be used as 
record identifying, field, or resulting iodicators. When halt 
indicators are used as record identifying indicators, a halt 
will be caused by a specific type of record; when used as 
field indicators, a halt will be caused by erroneous input 

data; when used as resulting indicators, a halt will be caused 
by erroneous results from calculations. 

• 

• 
HALT' 

Perform detail 
output 

Perform detail 
calculation. 
Turn halt indicators' 
used as resulting 
indicators on or off 

• 

• 
• 

Move data from record 

• 
selected into 
processing area. 
Turn halt indicators 
used as field 
indicators on or off 

• 
• 

Figure 1-24. Logic for Halt Indicators 

• 

• 

A halt indicator may be turned on at one of four different 
times (see Figure 1-24). Its use, of course, will determine 
when it is turned on. The program does not halt immedi- -

ately when a halt indicator is turned on. All total and detail 
operations remaining in the cycle are performed first; then 
the program halts. This means that processing wi II sti II be _ 
completed on information from the record that caused the 
error condition. 

• 
• 

I f total calcu I ations were 
done, halt indicators 
used as resulting 
indicators would be 
turned on or off 

Turn on halt 
indicators when • used as record 
identifying indicators 

Change in 
control field? 
No, there is no 
control field • 

• 

• 

RPG "Logic 1-35 



After a halt you may continue processing by pressing 
START on the processing unit. Halt indicators are always 
turned off before another program cycle begins. 

Suppose a halt indicator were used in the billing job pre
viously described in the discussion of field indicators. The 
halt indicator is used as a field indicator to check for an 
erro ;n the input record. When recording information for 
a customer who makes many purchases and payments, the 

NUM field is sometimes inadvertently omitted from the 
record. Any record with a blank NUM field should be 
corrected. Therefore, you must have some way of telling 
the compLiter to halt if the NUM field is blank. The indi
catorH1 'in columns 69-70 (see Figure 1-25) will do this. 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050' 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

I ~ 
Record Identification Codes 

Field Location 

- ] 1 2 3 

!l c. 

Line Filename ii 
~ 

~·5 'g 
0- j ~ 

g e i ~ ~ :: From > Position 

~ § j 
Position Position To I-

-~-~ " ~o 

~ j ~§ ~~~ ~Et6 o R z z u u 

AN 0 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

0 1 IR ITII IT N:C; ~)ll 10 q,b rA 
o 2 I 1 7 
o 3 I B~ .30.1 
o 4 I ~J :ai"l 

o 5 I 1~lq HCL; 
o 6 I Itt 2 - Iql~ Ir~ "JC/ 

o 7 I 11 7 
o 8 I Is 13~ 
o 9 I I~II I~Q 
1 0 I u. IN ILl q6 ~ls 
11 I It I'] 

1 2 I ~ 1_~'cZ 
1 3 I l~ I 
1 4 I 

1 ~ T 

RPG CALCULATION SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

C Indicators Result Field 
~ 

r-- ~oc 
At Jd ';i.e Factor 1 Operation Factor 2 

~3~ 
Line ~oti 

Name Length 

E ~ en 

~ 8 5 ~ '0 • 0 z z 
3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

0 1 C Z~ RA FI"\R ADD PI la r ut:. ~A I, f: 1'111) 

o 2 C ,~cl RA FAR ~UR .... dl:T AA It F O~ 
o 3 C 

" ~ 

Figure 1-25 (Part 1 of 2). Billing Job Specificatiorls Using Halt Indicators 

1-36 

12 757677787980 

Page OJ of _ ~~~~;~f:ation I I I I I I I 

~ 0 

:~ Field Name -.; 
:9~ 

~ 3 ii:~ 

I:~ ] ) il ~6 0 

52 53 54 55 56 57 58 59 60 61 62 

NJM 1 
~A ME 

"'0 1\1 Fr"IR 
,Wll 111~ IrlRT 

INllltJ 
INIA 1t'!E 

121p Ill~ IrlHS 

NIL M 
NIA MI~ 

VM If\lJ 

1 2 

pageDJOf_ 

Resulting 
Indicators 

Arithmetic 

:J: Plus (Minus( Zero 
~ Compare 

~ 1>2(1<2(1-2 
~ Lookup(Factor 2)is 
:l! High Low Equal 

6 

~ 
i 
a: 
~ u: 

6364 

Field 
Indicators 

Plus 

6566 

Zero 
Minus or 

6768 

Blank 

6970 71 72 73 74 

H.L 

lull 

IJ.lI, 

Form GX21·9093 
Printed in U.S.A. 

75 76 77 78 79 80 

~;~;~;:ation I I I I I I I 

Comments 

53 54 55 5667 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 



RPG OUTPUT SPECI FICATIONS GX21·9090 U/M 050" 

IBM International Business Machine Corporation 

Printed in U.S.A. 

I Program I Graphic I I I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Punching 
Page []]Of_ ~~~;~f:ation 1 1.1 I I I I l Programmer Date I Instruction Punch I I I I I 

0 ~ Space Skip Output Indicators 
Commas Zero Balances No Sign CR - X - Remove 

- e~ 1(" 
... to Print Plus Sign 

At L 
Field Name 

Ves Ves 1 A J V = Date 
e - II -". ~ ~ Ves No 2 B K Field Edit 

Line Filename :; 4i 
~ ~ 

. No Ves 3 C L Z • Zero 
8. ti a: Positon No No 4 0 M Suppress 

~ ~J5 
~ 

~ en in 
f- i-;:;: 'D'D ~ ~ 0 0 ;3 5 Output ~ Constant or Edit Word E o R ..: z z z "AUTO ~~ Record .f AiN~ 

it 

3 4 5 6 7 8 9 10 II 12 13 14 IS 1617 18 19 20 2122 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 «~~~~~50~~~~~W~~W50~~~~~~~~wro 71 72 73 74 

0 1 OiR Eip lolRrI" In l~r'lib 11~ 
0 2 0 IN M lLls 
o 3 0 ~A M!r: als 
o 4 0 P.A IFD ~lA It..~ 
0 5 0 '0 II 12~ 
0 6 0 p~ Rlr H51 12~ 
0 7 0 D !1 l3ltll 
o 8 0 '" II N""ll 'q.l. 

I' 11 r 
0 9 0 T 11 It J 
1 0 0 ~A I IF: I"'1IRlA !b'Q! 
1 1 0 '61. \ ~I 

1 2 0 

1 3 0 

1 4 0 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

1 9 0 

) 
2 0 0 

0 
.. 

0 

0 

0 

0 
ZL lL OL 69 89 L9 99 59 1>9 C9 Z9 19 09 69 99 L9 99 59 1>9 C9 Z9 IS 09 6t 8t Lt 9t 9t » Ct Zt It Ot 6C 8C LC 8C SC tC CC ZC IC OC 6Z 81: LZ 9Z 9Z tZ CZ ZZ IZ OZ 61 81 LL 91 51 tl CI ZI LL 01 6 8 L 9 5 t C Z I 

Figure 1-25 (Part 2 of 2). Billing Job Specifications Using Halt Indicators 

RPG II Logic 1-37 



Figure 1~26 shows the three program cycles. In the first 
cycle there is no error. In the second, a halt occurs because 
of a blank number field. The third begins with another 
record being read. 

• 
• 

• • 

1645 JOE AARON 643 

JOE AARON 742 

/1645 -JOEAARON- 47681 
, I 

( I 
I I 
I I 
I I 

I I A 
I I 
I B I 
L___ _-::-_____ J 

A 

• 
Turn off 1645 JOE AARON 4768 

1-38 

• 
control level indicator L 1 
and record identifying 
indicator 10 

Perform detail 
output 

Perform detail 
calculations 

• 

• 
Move data into 
processing area 

• 
• 

Bypass total operations 

• 

Figure 1-26 (Part 1 of 3). Program Cycles Illustrating Use of Halt Indicators 

Turn on record 
identifying • 
indicator 10 

Change in 
control field? 
Yes, turn on • 
control level 
indicator L 1 

• 

• 



'\ 

) 

) 

The second cycle shows that operations are performed on 
the record that contains the blank NUM field. The record 
containing an amount of 742 has a blank account number 
field. Thus it is not known whether this record really be
longs to Joe Aaron. But Joe is charged 742, regardless, 

1645 JOE AARON 47.68 

7.42 

• 
RESTART 
turn off H1 

Turn off record 
identifying 
indicator 20 . ~ 

HALT 

output 

Perform detail 
calculations: 

4768 
742 

5510 

• 

• 
Move data into 
processing area . 
Turn H1 on 
(Blanks in NUM) 

• 
• • 

since detail operations are performed before the halt occurs. 
In order to prevent processing data which could be in error, 
you must write specifications which will bypass operations 
when an error occurs. This will be discussed later in the 
chapter titled Controlling Operations in an RPG /I Program. 

1645 JOE AARON 643 
r-- --.-- ---I 

/ JOE AARON 742 I 
( I 
I I 
I I 
I I 
I I 
I I A 

I A I 

record 

-----~ 

• Turn on record 
identifying 
indicator 20 / 

I 

• 

• 
Change in control field? 
No • 

Figure 1-26 (Part 2 of 3). Program Cycles Illustrating Use of Halt Indicators 

RPG II Logic 1-39 



1-40 

1645 JOE AARON 

7.42 
6.43 

• 

47.68 

• 

Turn off record 
identifying 
indicator 20 

• 

Perform detail 
output 

Perform detail 
calculations: 

5510 (BALFOR) 
643 (PURCHS) 

6153 (BALFOR) 

• 

• Move data into 
processing area 

• 

• • 

• • 

Figure '-26 (Part 3 of 3). Program Cycles Illustrating Use of Halt Indicators 

1645 JOE AARON 643 

Turn on 
record identi- • 
fying indicator 

20 

• 

• 
Change in control field? 
No • 

/ 



) 

) 

) 

Overflow Indicator (OA·OG, OV) 

Overflow indicators are used to signal when the end of a 
printed page has been reached. They are assigned to the 
printer file' and turn on when the overflow line is printed. 
This could be either at detail or total output time. Those 
lines which you wish to print at the end of one page or at 
the beginning of another are conditioned by the overflow 
indicator. 

• 

• 

• Turn off control 
level, record 
identifying, and 
halt indicators 

• 
Halt if 
halt indicator 
is on 

Set off overflow 
indicators if 
performed during 
this cycle 

occurs, turn on 
overflow indicator 

Perform detail 
calcu lations. 
Turn calculation 
resulting indicators 
on or off 

Move data into 
processing area. 
Turn field 
indicators 

• on or off 
Is overflow indicator 
on? If so, perform 
output operations 

• 

• conditioned by 
overflow indicator 

• 
• 

Perform total 
output.· If 
overflow occurs 
turn on the 
overflow indicator 

• 

Figure 1-27. logic for Overflow Indicators 

Figure 1·27 shows RPG II logic related to overflow indica· 
tors. A more detailed discussion of the purpose and use of 
overflow indicators can be found in the chapter titled Con
trolling Printer Output. 

• 
• 

Perform total 
calculations 

Turn on record 
identifying • 
indicator 

Change in control field? 
I f yes, turn on appro
priate control level 
indicators • 

• 

• 

RPG II Logic 1-41 



Matching Records Indicator (MR) 

Thus far, you have been concerned with only one input file. 
According to RPG II logic discussed so far, a record is read 
from the input file, then processed. Another is read and 
processed and so on. Suppose you have more than one in· 
put file; from which file is a record read? 

RPG II logic has been designed so that your program can 
select the next record for processing. Figure '·28 shows 
general steps in the logic (multifile logic) required when 
more than one input file is used. 

1-42 

• 
Turn off 

• control level, 
. recordJdenti
fying, and halt 

• Halt if 
halt 
indicator 
is on 

Perform detail 

Perform detail 
calcu lations. 

indicators 

Turn calculation 
resulting indicators 
on or off 

• 
Move data into 
processing area. Turn 
field indicators on or off 

• 

• 

TurnMR 
on or off 

• Perform total 
output 

• 

Fipure 1·28. Simplified Matching Record Logic 

• 

• 

The matching record indicator (MR) is used only when you 
are processing more than one input file. It indicates when -
fields on records from different files match. MR is set only 
after total operations are performed. Thus, at detail time, 
MR always signals the matching status of the record just 
selected for processing; at total time, it reflects the matching 
status ·of the previous record. . 

Specific steps in the multi·file logic are described in the 
chapter titled Match Fields and Multifile Processing. At 
this time, it is sufficient to know at what point in the pro· 
gram cycle records are selected for processing and at what 
point MR is turned on . 

• • 
Read a 
record 

Multi·file logic: logic 
used to select the 
record to process 
when more than one 
input file is used . 

Perform total 
calculations. Turn 

Are end·offile 
conditions met? 

Are multiple input 
files being used? 
If so, determine 
the next record 
to process 

Turn on • 
recording identifying 
indicators 

• 
Change in control field? 
If yes, turn on control 
level indicators • 

• 



) 

~\ 

.-/' 

Setting Indicators 

You have just seen the normal setting of indicators accord
ing to'RPG II logic. You, in your program, can alter this 
setting by turning any indicator (except 1 P) on or off 
through use of the operation codes SETON andSETOF 
(see Figure 1-29). An indicator may be set during either 
detail or total time. It will be set at the time the SETON 
or SETOF code is executed and will retain the setting you 

, give it until it is reset according to the program logic. 
(Refer to the logic for the,various indicators, earlier in this 
section, to determine when they are set on and off in the 
logic cycle.) 

Indicators of various types may be used anywhere in the 
program. For example, you can use LR as a record identi
fying indicator, L 1-L9 as resulting indicators, or L 1-L9 as 
record identifying indicators. If you need to set indicators 
yourself, you should be thoroughly familiar with RPG II 
program logic so that you will use the indicators correctly 
in your program. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.s.A. 

IBM Internatlonll Business Mach."e Corporation 

1 2 75 78 77 78 79 80 

Page [I] of_ ::;~f~calion I I I I I I I Program 

Programmer Dale 

C Indicators Result Field 
Resulling 

~ Indicalors 

At At 
Arithmetic ~ 9[2 

~ Plus IMinusl Zero i.e Factor 1 Operation Factor 2 Comments 
& :; z Compare 

Line 
>..Jc( Name Length ~ 1>211<211-2 t- (5 t£ 
E ~ (I) 

'0 :!: Lookup(Faclor 21is 
& 8 5~ ~ 0 :l! High Low Equal z z 

3 4 5 6 7 8 9 10 1112 13 l' 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 53 54 55 58 57 58 59 eo 61 62 63 64 65 66 67 68 6Q 70 71 72 73 74 

a 1 C IS~ Irb~ Il~ 1112 ITU lRlhl II rzj IJ It 12. ~IN 
a 2 C 

a 3 c~ 1 51~ rr"F ~'9 fJ EN 9~q ~FIE 
a 4 C 

o 5 C 
1--
~ Ie 

r-I-- I 

Figure 1-29. Setting Indicators 

RPG II Logic 1-43 



1·44 



) 

J 

1. Arrange the following steps in the order they occur in the RPG II· logic cycle start
ing with Read a record. 

a. Read a record 
b. Total output 
c. Move data from input area to processing area 
d. Detail calculations 
e. Detail output 
f. Total calculations 

2. In the RPG II cycle, total calculations and total output are for data ·from: 
a. the record just read 
b. records read in previous RPG II cycles 

3. When is the 1 P indicator on? When is it turned off? 

4. Which steps are bypassed during the first program cycle? 

5. When the LR indicator comes on, the last program cycle ends after ___ _ 

therefore operations are not performed when LR is on (/* record read). 

6. When are record identifying indicators turned on? When are they turned off? 

7. When are field indicators (the indicators which test the contents of an input field) 
turned on or off? 

8. Halt indicators may be turned on at various times depending on how they are used. 
If a halt indicator is turned on, when does the computer stop? 

9. Calculation resulting indicators are turned on during total or detail calculations. 
When are they turned off? 

Review" 

Review 1 1-45 



Answers To Review 1 

1-46 

.1. a, f, b, c, d, e 

2. b 

3. 1 P is on at the beginning of the first program cycle only. It is turned off before 
the first record is read. 

4. total calculations and total output 

5. total output, detail 

6. Record identifying indicators are turned on right after a record has been read and 
identified. They are turned off at the end of each RPG " cycle. 

7. Field indicators are set just after data is moved from the input area to the proces
sing area. 

8. The computer halts after detai I output. 

9. Resulting indicators remain on until reset by another calculation. 

( 

/ .. 



) 

) 

) 

Chapter 2. Describing and Using Input 

CHAPTER 2 DESCRIBES: 

Specifying and using control fields and split control fields. 

Checking the sequence of record types. 

Describing input record types using the OR relationship. 

OR records with field record relation. 

Field record relation with control fields. 

Conditioning use of input fiI~s. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Function and coding of input fields on the Input sheet. 

Function of RPG II indicators. 

RPG II object program cycle (Chapter 1). 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Function and RPG II coding for control fields and split control fields. 

How to handle typical record type sequence checking situations. 

Function and RPG II coding for field record relation. 

Uses for conditioning input files. 

Setting external indicators. 

Note: You can use the review questions contained in Review 2 at the end of this chapter 
to test your comprehension of the topics in the chapter. Answers follow the review 
questions. 

Describing And Using Input 2-1 



INTRODUCTION 

For every R PG II program, you must describe the input 
information you are processing. This includes describing 
input files, record types within each file, and fields within 
each record type. Input files are described on the File 
Description sheet; record types and fields within each input 
file are describ~d on the Input sheet. . 

i 
) 

From previous :instruction, reading, and experience, you 
should already know how to describe and use input files, 
record types, and fields. You should also know how to use 
RPG II indicators to condition operations. This chapter 
describes additional ways to use input with control level 
indicators, field record relation indicators, and external 
indicators. 

CONTROL FIELDS 

A basic type of report in any data processing installation is 
a detail list that consists of one line of printing for each 
record read, such as a transaction listing. Figure 2-1 shows 
what a detail report would look like. 

Because product classes are repeated for each line, the 
report is cluttered and hard to read. The same report (Fig
ure 2-2) grouped by class is much easier to read. Here, all 
items from one class are listed together with headings used 
on each page to identify the information. Since all items 
on one page apply to the same class, the class is printed 
only once. Such a report is sometimes referred to as a 
group-indicated report. Group-indication is the printing of 
control information on one line per group. The date is 
printed at the bottom. 

2-2 

A control field is any field used to indicate when a certain 
type of processing should be done. Since the CLASS field 
(Figure 2-3) controls processing, it must be specified as 
the control field. Each time a record is read, this control 
field is checked for a change in contents (control break). 
When a control break occurs, a different type of processing 
or additional processing is to occur. In this case, a change 
in the CLASS field indicates: 

1. Skip to the bottom of the page. 

2. Print the date. 

3. Skip to a new page. 

4. Print heading. 

CLASS ITEM NO DESCRIPTION 

00124 
00124 
00124 

00124 
00125 
00125 
00125 
00125 

00125 
00126 

7657352 
63241B1 
43151CK 

76738K2 
54321K4 
56422K4 
57381J4 
58324B1 

57421C2 
67341B3 

SWEATER, V-NK, SZ 32 
SWEATER, V-NK, S2 34 
CARDIGAN, SZ 36 

CARDIGAN, SZ 40 
T-S~'HRT, WH, SZ 30 
T-SHIRT~WH, SZ 32 
T-SHIRT, WH, SZ 40 
T-SHIRT, WH, SZ 42 

T-SH I RT, BK, SZ 46 
WOOL SOCKS, BL 10 

IN STOCK AS OF 10/30/70 

Figure 2-1. Printed Report of all Items in Stock 

ON HAND 

10 
16 
17 

8 
11 
14 
15 
8 

12 
11 

,/ 



) 

CLASS 

00124 

CLASS 

00125 

CLASS 

00126 

ITEM NO 

46732J1 

6324181 

43151CK 

DESCRIPTION 

SWEATER, V-NK, SZ 32 

SWEATER, V-NK, SZ 34 

CARDIGAN, SZ 36 

IN STOCK AS OF 10/30/70 

ITEM NO DESCRIPTION 

54321K4 T.:sHIRT, WH, SZ 30 

56422K4 T-SHIRT, WH, SZ 32 

57381J4 T-SHIRT, WH, SZ 40 

5832481 T-SHIRT, WH, SZ 42 

IN STOCK AS OF 10/30/70 

ITEM NO 

6734183 

6743283 

DESCRIPTION 

WOOL SOCKS, 8L 10 

WOOL SOCKS, GR 10 

IN STOCK AS OF 10/30/70 

Figure 2-2. Report Group - Indicated by Product Class 

CLASS ITEMNO DESC ONHAND 

5 6 12 13 32 33 38 39 

Figure 2-3. Item Record 

DATE 

ON HAND 

10 

16 

17 

ON HAND 

11 

14 

15 

8 

ON HAND 

44 

11 

9 

~ 
I 
I ) 

Describing And Using Input 2-3 



Coding Control Fields 

The RPG II specifications for the program are shown in 
Figure 2-4. The entry L 1 on line 02 of the Input Sheet 
(Figure 2-4, insert A) establishes the CLASS field as a con· 
trol field. When the information in the control field 
changes (a control break occurs) L 1 is turned on. The L 1 

indicator is used on the Output· Format Sheet (Figure 2-4, 
insert B) to condition those operations which should be 
performed only when a control break occurs. Note that the 
L 1 indicator is used in line 08 to condition the CLASS field 
in the detail output line. This causes the CLASS field to be 
printed only for the first record of a new control group. 
That is, the CLASS field is printed only when it changes. 

RPG INPUT SPECIFICATIONS GX21·9094 UIM 050· 
Printed ",U.S.A. 

IBM International Business MachIne CorporatIon 

Program 

Programmer Date 

E 
] 

I Record Identification Codes 

Il 
~·o Filename iii ~ i 

~ 
~ Position 
'2 

5 ~ 0 R z 

Line 

t t Position Position 
~ Cl ~ ~ Cl ~ 
0 § 0 § <5 z 6 z 

AND 

Field Location 

0 

~ .~ 

t ;;; r? 
a: From To 

~ e ~ i ..J ] 
0 ~ <5 

III ~ 
z 0: Cl 

I 2 

Page [[]Of_ 

~ 0 

:2-0 Field Name ] .~ :¥ ...... 
g'g> g ~:~ 

8 .. .c; 
:<u 

75 76 17 78 79 80 

~~~~;~f:ation I I \ \ I I I 

·8
~
"0

J
~
u::

Field
Indicators

Zero
Plus Minus or

Blank

3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3637 38 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o I

o 2

o 3

o 4

RPG

Oate

0 ~ Space Skip Output Indicators
I--- ~~

Jd 1 Cl ~ -...
~ ~ line Filename ;; ;

~ ~ III <{

~ ~~
I- ~ro'D ~ ~ 0 0 0 E o R z z Z

.f t;"~ro
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30

0 I 00 Jtr IPlulT IH 1210111 11
o 2 0 blR '1"IIvl~ II
o 3 0

o 4 0

0 5 0

o 6 0

0 7 0 :", 11 ~I
o B 0 ILll
o 9 0

I 0 0

I I 0

I 2 0 II 1,1~1Il II I
I 3 0

@ 0

• I e I n

Figure 2-4. Defining and Using a Control Field

2-4

OUTPUT

Field Name ~
a:

·AUTO
~ ~
~ ~

31 32 33 34 35 36 37 38 39

~ IASls
I L I I II:. 11'.1-

In II; Is''''
~.I III I\. 1t..1~~

InlA h"IE Iy

SPECIFICATIONS GX21·909Q U/M 050"
Printed in U.S.A.

I 2 75 76 17 78 79 80

Page [0 of_ :~;~f:ation I \. \ \ I I I

t? Zero Balances X OK Remove Commas No Sign CR to Print Plus Sign
V· Date

I I Ves Ves I A J
Ves No 2 B K Field Edit

End No Ves 3 C L Z ,. Zero
Pasitan No No 4 0 M Suppress

in a:
Output g Constant or Edit Word
Record

0:

4041 4243 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

12l;' 'If" IliA Isis'
~0 \ r IT "1,.. NIII

IblLl ' I" J; ."
I~~ IIIP h"1 l'IlN I

1912 \ I Ii\. ' ... I

12.l5
Itll~
619
~H

53 \lr!N SiT '-'K lAls hlF"
Ibl2

Split Control Field~

)
Two separate parts of afield or two separate fields can be

. used as one cC?ntrol field known as a split control field.
This is done by assigning the same control level indicator to

)

both parts of the field. The compiler will consider the data
in the split control fields as one continuous field.

Suppose you have a 3-character customer number field in
the record and now need a 6-character field. The problem
is how to put a' larger customer number (such as 100010,
100020) in a 3-character field. You cannot change records
easily because there is no room for expansion on either
side of the customer number field (Figure 2-5), and to ex
pand the field, the entire record format would have to be
changed. All programs using these records would also have
to be changed to accommodate the changed record format.
This would be considerable work and inconvenience. RPG
II provides the split control field feature to meet changing
data processing needs with minimum effort.

, I CUSTllio "I ITEMNO DESC

34 12 13 32 33

Figure 2-5. Three Digit Customer Field

CNUM2 ITEMNO
1

DESC

3 4 12 13 32 33

Figure 2·6. ,One Customer Number Split into Two Parts

The solution to the problem is to add a 3·character portion
to the customer number field using three columns which
are not adjacent to the original customer number field
(Figure 2-6). The original three numerals of the,customer
number remain in the original field. The three additional
numbers are put in the new customer number field.

At the end of each month, a report is produced consisting
of:

1. Customer number.

2. A description of each purchase.

3. The cost of each purchase.

4. The total cost of all purchases.

OTYORD COST

37 38 44

OTYORD COST CNUM1

37 38 44 45 47 48

Describing And Using Input 2·5

The report is group-indicated as shown in Figure 2-7.

The customer number determines when totals would be
printed and thus must be used as a control field. However,
on each record the customer number is split into two parts
(two fields). Both must be used in order to get the correct
customer number (Figure 2-8).

Coding Split Control Fields

Split control fields must be described in specification lines
which follow one another (Figure 2-8, insert A).

CNUM1, the field in columns 45-47 of the record, must be
specified on the Input sheet before CNUM2, the field in
positions 1-3. This is required because the three digits in
CNUM1 are the first three digits of the customer number.

Parts of a split control field may be either alphameric or
numeric. In this example, they were both defined as numer
ic (indicated by the entry in column 52). If one of them,
however, had been defined as numeric and one as alphamer
ic, they both are considered numeric by the compiler.

CHECKING THE SEQUENCE OF RECORD TYPES

Many data processing jobs require the use of several kinds
of information. Sometimes, this information must be in a
special order to produce the correct results.

Order of Record Types Within a Group

For example, to do end-of-the-month billing, you need
several kinds of information. For each account YOI:J must
know:

1. The balance forward at the beginning of the month.

2. Payments made during the month.

3. Purchases made during the month.

To get the amount due, you subtract payments made from
the balance forward and then add new purchases to that
amount.

Information concerning balance-forward,payments, and
purchases is usually on more t~an one record. Payments
are usually recorded as they are received. Purchases are
recorded as they are made. The balance' forward is also
kept on a separate record.

CUSTOMER PURCHASES COST

001249 #14NAILS 2.49
9NAILS 3.78

$ 6.27 •

001254 HAMMER 1.29
ELECTRIC SAW 42.85

$44.14 •

001497 2' X 4's 17.93

$17.93 •

001972 PLYWOOD 7.43

$ 7.43 •

002024 TILE 87.93

$87.93 •

Figure 2-7. Report Group Printed by Customer Number

2-6

/

)

)

)

RPG INPUT SPECIFICATIONS
IBM International BlJ'Sinesl Machine Corporation

Date

Record Identification Codes
Field Location

c:
0

al ." ." Filename

GX21·9094 U/M 050'
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page [D of _ ~~~~;~f:ation 1 1 1 1 1 I I

~ ° ~~ Field Name ~~

. .8
~
"C

Field
Indicators

~ 3i
~ Position Position g ge t;

~
Position

~
a: From To

~
~

l:[J Zero
Plus Minus or

Blank ;S e Q g e
~

i!!

~
"C

0 o~ 6 15 § c55
'g ~ ~6

0;
z U z u z ii:: Q u::

AND
9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 4445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 72 73 74

IBM International Business Machine Corporation

Program

Programmer Date

c Indicators

Line

3 4 5 6

IBM International Business Machine Corporation

Program

Programmer Date

0 u: Space Skip

~~ -
Q --".

~ ~ Line Filename = Qj
1l. ~ al <

~ ~J5
~

f- A Do ~ ~ ~ o R
r;-r;;-O

3 4 5 6 7 8 9 1011 1213 14 15 1617 18 1920 21 22

o 1 aiR Elp ~R~ IH 2~1
o 2 a hlR
o 3 a
o 4 a
0 5 a
o 6 a I.' 1
o 7 a
o 8 a
o 9 a
1 0 a
1 1 a T 12
1 2 a

I© a
a

Figure 2-8. Using a Split Control Field

RPG CALCULATION SPECIFICATIONS

Result Field

RPG OUTPUT SPECIFICATIONS

'" Output Indicators
Commas

Field Name 1(;1 v

1 L m
Ves
Ves
No

Positon No
ill in a:

0 0 0
;3 Output g z z z 'AUTO ." Record
;B ii::

1 2

Page [D0f_

Resulting

1 2

Page [D0f_

Zero Balances
to Print No Sign CR -

Ves 1 A J
No 2 8 K
Ves 3 C L
No 4 0 M

Constant or Edit Word

Form GX21-9093
Printed in U.S.A.

75 76 77 78 79 80

~~~;~f:ation 1 1 1 1 1 I I 

GX21·9090 U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;~f:ation 1 I. 1 1 1 '1 I 

X ::;; Remove
Plus Sign

V = Date
Field Edit

Z = Zero
Suppress

23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 «048~48~50~~~~~~U~~W~~~M~M~M~ro 71 72 73 74

lip
irlv

:15 '" Ills'l It-. K I

135 \ P IllR (0 I\.! AI.c; I=~'
'\h \r 11"\15 rl

~l
.1 rN JM' l'~

, 1 r~ 11M' lu""
1/"1 E' 5 1r '4lb
I'll SIT 1 ISb

,11
"Ar c. 1M 8 bq \ 0. ,

1711 \ 1f I

Describing And Using Input 2-7

Thus, to do'the billing, three different types of records
are necessary for each account. Furthermore, these rec
ords must be read in a special order. The balance forward
record must come first. The payment and purchase records
can be in any order; it makes no difference whether you
subtract all payments first, or add all receipts first, or add
receipts and subtract payments in any order. However,
you must decide on the order of these records for your,
program and keep them in that order, since the computer
will always expect them in a certain order.

Management of a retail store requires all receipts to be
listed and subtracted before purchases are listed and added.
Thus, the order in which the records must be read is:

1. Balance Forward.

2. Payments.

3. Purchases.

®

DOE, JOHN

®

Rememberthat these three types of records are necessary
for one account. When they are organized, they are organ
ized according to account. Each record has a name on it.
All records with the same name must be grouped together

, in the file and must be in the order indicated (see Figure
2-9, part A).

What ifone of the records accidentally got out of order? '
Some customer would end up with the wrong amount.

© DRITT, ED

DRITT, ED

-Payment
DRAKE, A

~--Balance /

__ }- Pu~ha~

-~~ Paymenl

1_---- Balance

1---- Purchase

1_--- Payment

1 --- Balance

Figure 2-9. Order of Record Types Within a Group

2-8

)

)

)

To prevent this, you direct your program to check for rec
ord sequence by entries in columns 15-16 on the Input
sheet. These columns are titled Sequence and are used for
indicating the sequence of record types for each account.

These sequence columns are used for every program you
write. If you are not checking for a special order, these
columns must contain alphabetic entries. If you are check
ing for a special order, these columns must contain numeric
entries (01-99).

Since it is first, the Balance record must be given the se
quence entry 01 (see Figure 2-10). What sequence entries
wouldthe Pavment and Purchase records have? Logically,
they would be 02 and 03 respectively (Figure 2-10). How
ever, you could have used 09 and 20. You may use any ~um
bers from 01-99 just as long as the numbers used are in as
cending order. However, 01 must a!ways be used.

RPG INPUT SPECIFICATIONS GX21"9094 U/M 050'
Printed in U.S.A.

IBM Internation.1 BUlin.u Machine Corporltion

Program

Programmer Date

I s
\l

~]
11 2'. €.;s

Line Filename j ~ 8. ~ ~ ~]] ...-1-"...- §
~~ z

I-
AND

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 IIR ITIL IL tr INI~ IDI/l
o 2 I

0 3 I "'1-
o 4 I

o 5 I IL.
o 6 I

Figure 2-10~ Record Sequence"

Record Identification Codes
Field Location

1 2 3

]
iIlJ! IX: Position

Z c ~ Position ill Position

~~
From To

Z c ~ tl II; -; ~ g i§~ i§g ~ () OUi;;:

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 51

Balance Record

I I I II
Payment Record

I II II
Purchase Record
11"1 II

.~
"~
f.

~
i! c

1 2

paga[]]of_

~ l;

~~ Field Name 3 "-,,-

l·r J j~
52 53 54 55 56 57 58 5960 61 62

75 76 77 7B 79 BO

~~~;~f:ation I I I I I I I 

Field 

is 
Indicators 

i 
IX: 

] Zero 
Plus Minus or 

:s! Blank 

~ 

6364 6566 6768 69 70 71 72 73 74 

Describing And Using Input 2-9 



Since there are three different types of records, each should 
be identified by a code so 'that the con,puter knows which 
record type wa~ read. 'Record identifying indicat,b~s sho'uld 
be specified for each record type. All fields in each record 
typ'e' must also be described. Figure 2-'11 'shows how the " 
~ecord,s kept by theretail store were described.' , 

How does the entry speCify;ing sequen'ce help y~u che~k for 
record sequence? Suppose a payment record was read after 
a purchase record. This would be incorrect order. The pro
gram knows that a 02 record type doesn't come after a 03 
type and will automatically halt because of the mistake. 

More Than One Record Type Per Group 

What would happen if two payment records (02 record 
type) were read in a row? The program would halt because 
it expects a 03 record type to follow a 02 type. It does not 
expect tw<;> 02 types in a row. But what if a customer ac
tually made two payments during the month? Or what if 
he bought.more than one i~em during the month? You 
wouldn't want the program to halt whenever it read more 
'than one payment of purchase record per customer. 

You must make another entry to indicate whether the pro
gram can expect to read one or more records of the same 

type in one group. This entry is made in column 17 (Num
ber) of the Input sheet. A 1 indicates only one record per 
type; an N 'indicates one or more records per type. In this 
example, only one balance record is needed. However, , 
there may be more than one paym'ent record or purchase 
record. Figure 2-12 shows these entries. 

Optional Record Types In, the Group 

It is also possible in this example to have no purchase rec
ord. A customer might not have purchased anything during 
the month. Ifso, a balance record would be read after a 
paVment record for the previous customer (see Figure 2-9, 
part G). According to the specifications shown, this is 
incorrect order. The program would halt. 

, To prevent halting in this situation, you must make another 
entry, this time in column 18. Place the letter 0 in column 
18 to indicate that the record type is optional (it mayor 
may not be present). If you leave column 18 blank, the 
computer assumes, that the record type must always be 

i present. 

Of the three record types, which must always be there? 
The balance forward record should be present. Leave col
umn 18 blank for it. The other two record types are op
tional. Enter the letter 0 for each (see Figure 2-13):. 

RPG INPUT SPECIFICATIONS GX21,9094 U/M 050· 
Printed in U.S.A. 

IBM International Business Machine Corporation 

12 '757677787980 
Program 

Programmer Date 
Page OJ of _ ~;~~;~f:ation I I I I I I I 

I B Record Identification Codes Field 
B Field Location 

- ~ 1 2 3 g Indicators 

B c. ~ 5 ~ 
Line Filename ~ Z 

~ .... 
il :~ :E~ 

'';; 0 Field Name 3 '0 

8. ~§ ~ 0; ~ u:~ 
~ 

Zero 
~ ell Position geg Position Ii; Position Ii; '" a:: From To !.[ Plus Minus or 

j.! i ~.e ~ ~~ 
t; t .... ~ 1 ~ --- () ~ 2 ~f)6 ~~~ '~ ~a ~ 

Blank 

.£~- Z 0 a:: Z u u ~u 0 u: 
AND 

3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24 2526 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5960 61 62 6364 65 66 6768 69 70 71 72 73 74 

0 1 IR rr II II rr INlr .. ill III ~It ~I 
o 2 I '1 12~ INlA IMIJ: 
o 3 I I, , l'1iZ lain !OIR 
o 4 I 1411 \4 17 ~IQlA IDll'IF 
o 5 I l'il~ lslh "'It' Islr IN~ 
o 6 I Itl2 l1.2 q6 ~I:> 
o 7 I II 12.P5 INIA MIl: 
o 8 I 12.1 12.'7 QIA ,T I' INII 
o 9 I ~I.~ II.~ q!1l Irl3 
1 0 I 11 122J NIA MII= 
11 I "I" 1~5 rlr EI~ 
1 2 I 131b ~2. riD SiT 
1 3 I 

-

Figure 2-11. Description of Sequenced Record Types 

2-10 

/ 



RPG INPUT SPECIFICATIONS' 
IBM International Business Machine Corporation 

) Program 

Programmer Oat. ; 

I Ij Record I Codes 
Field Location 

,. 

-
Line 

I! 
Filename ~'Q'f' 

IJII 
Position 

fl§ IJ 
Position 

fl§ II Position Ifl§ Ii From 
To 

11 fO d,~~ IA 
21 22 23 24 251 26 32 133 134135 36 37 38 143 44 45 46 47 4B 49 50 51 3 4 5 16 7 8 9 10 11 12 13114 127 28 29 30 31 139 140 141142 

10 1 IS II II I IT INt=. (/J 1 Balance 
10 2 'I FlllCord pElr gro l Ip. 

10 3 I I I I , 

10 4 I I II 
10 5 I 1"1. icates one or more 
10 6 I )ayment Record per grou 
10 7 I I I I I I I j I r I ,. 

10 6 I I I I 
10 9 I eJ one or mOrl I I 

1 0 I Purchase Records per group 
11 I I II I I I I I II I I I I I I 

Figure 2-12. Number of Each Record Type Per Group 

RPG INPUT SPECIFICATIONS 
IBM International BU5ines~ Machine Corporation 

Program 

Programmer Oat. 

I Record Codes 
Field Location 

I--- 2 3 

Line 

,! 
Filename 

~I§ 
:=5 

I§ 
Fir-lill :] 

Position 

fl§ I) Position ,~!§IJ 
Position 

Ifl§ IIIj1i 
From To 

I! [§" 
IA N~h;t;J 3 4 5 i 6 7 8 9 10 11 12 to 21 22 23 24 25 126 127 28 29 30 31 132 133 134135 36 37 45 46 47 4B 49 50 51 

10 1 I~ ITIL Lit INt; ~J.. A indicates that 
10 2 I Record must prese~ 
10 3 I I I I I I I I I II 
10 4 I III III 
10 5 I I ..... o indicates that the IV. ~ 

10 6 I Payment Record is optional. 
! 0 7 I I III III I I I I II I 
10 6 I II I I III 
!o 9 II ~-~ ',., D " that the 

1 0 II M ase Record is nn-tlnn<>1 

11 II J IIIILIIIIIL I' 
- I- I I I I I I I I I I I I I I I I I I I 

----\ I Figure 2-13. Optional Record Types in a Group 

--/ 

GX21·9094 U/M 050· 
Printed in U.S.A. 

1 2 75 76 77 78 79 60 

I Page OJ of _ ~~~;~f:ation I I I I I 1 I 

Field Name ~ 
;!'.~ 

~ 

152 53 54 55 56 57 58 15960 161 62 

" 

1 2 

Page OJ of_ 

Ij Field Name 

:n !) 
152 53 54 55 55 57 68 159 60 ,61 62 

Field 
Indicators 

1 Plus Minus 
!~:ro 
I Blank 

16364 165 66 67 68 .69 70 71 72 73 74 

"~I 

GX21·9094 U/M 050· 
Printed in U.S.A. 

75 76 77 7B 79 80 

~~;~f:ation I I I I I I' I 

Field 
Indicators 

: Plus IMinus ~:ro 
Blank 

16364 165 66 167 68 69 70 171 72 73 74 

Describing And Using Input 2-11 



Checking the Order of Record Types in a Group 

II, summary, three entries must be made to ensure proper 
checking of the sequence of records in a group. 

1. 

2. 

3. 

Columns 15~16 must contain a numeral from 01 
through 99 that indicates the order in which records 
must be read. 

Column 17 must contain an entry that indicates 
whether or not more than one record of a type can 
be expected. A 1 indicates that ,only one record of 
a type will be accepted. An N indicates that more 
than one record of a type wi II be accepted. 

Column 18 must contain an entry which indicates 
whether or not the record type is optional. The let
ter. 0 indicates that the record type is optional. A 
blank indicates that the record type must be present. 

Incorrect Records Within a Group 

The entries for checking the sequence of record types with
in a group will determine that the records in groups A and 
B shown in Figure 2-14 are in order. Suppose, however, 
that the payment records for John Hill and A. James were 
mixed up (Figure 2-15). The program using the sequence 
specifications just described would not find this error. The 
record types are still in proper order, but the records them

selves are in the wrong groups. To ensure that records are 
in the right group other specifications have to be made. 

HILL, JOHN 

For the end-of-month billing example, the NAME field is 
used as a control field. A change in the NAME field indi
cates the end of one group and the start of another. Since 
the balance record is always the first one in a new group, , 
the balance record type should be the only one that causes 
a control break. If the records are mixed up, as shown in 
Figure 2-15, a control break wi II occur before all records 
of one group have been read. For ~xample, when the 
Arnold James' payment record is read after a John Hill 
balance record, a control break occurs because information 
in the NAME field changes. There should be no control 
break at this time. If there is a control break here, the 
results of the report will be inaccurate. 

JAMES, A 

® 

JAMES, A 

JAMES, A 

j_payment 

t------Balance 

Purchase 

Payment 

Balance 

Figure 2·14. Correct Data Records in a Group 

2-12 



) 

) 

) 

To prevent this, certain calculation specifications must be 
made. Line 01 of the Calculation sheet shown in Figure 
2-16 shows that indicator H 1 is set on. H 1 is a halt indica
tor. When it is on, processing halts after calculations and 
output operations have been performed for the'record just 
read. 

® 

I 

JAMES. A 

I-payment 
I 

L_-.LJ ______ J-I-----Balance 
I 

HILL, JOHN 

...... -- Purchase 

10+---- Payment 

.... --- Balance 

Figure 2-15. Incorrect Data Records in a Group 

RPG CALCULATION SPECIFICATIONS 
IBM International Busint .. Machine Corporation 

Program 

Programmer Date 

C Indicators Result Field 
~ - gee 

At At ~Q Factor 1 Operation Factor 2 

~j~ Length Line Name 
... '0 a: 
E ::. (I) 

'0 '0 & 8 5 ~ z Z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 t9 20 2t 22 23 24 25 26 27 2829 30 3t 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 5t 

01 1 1 c .~ NrlllL I I 11 Jill J IsII=IT~N I J .111 I I I I II I I I I I 
01 2 1 c I I I I I I I I I I I I I I I I I II I I I I Ilill I I 
_1_1 - 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Figure 2-16. Haltinu When Incorrect Record if Found in a Group 

Form GX21-9093 
Printed In U.S.A. 

1 2 75 76 77 78 79 80 

Page [OOf---..:. ~~~~f:ation I I I I I I I 
Resulting 
Indicators 

Arithmetic 

Plus 1 Minusl Zero 
Comments 

Compare 

1>211<211=2 
LookuplFactor 2)is 
High Low Equal 

54 55 5657 5859 60 6t 62 63 64 65 66 67 68 69 70 7t 72 73 74 

1~ll I I II I I 11 I I I I I II I 
I I I 11111111111111 
I I I I II I I I II I I I I I I 

Describing And Using Input 2-13 



Look at the indicators which condition the SETON opera
tion, L 1 and N01. A control break (L 1 turns on) caused by 
record type 01 (balance record) is correct. But a control 
break (L 1) caused when any other record type (02 or 03) 
is read indicates that a record is in the wrong group. This 
is an error condition. Thus when L 1 is on (a control break 
has occurred) with any record identifying indicator other 
than 01 (N01), the halt indicator H 1 is set on to stop proc
essing. 

Halting on an error is one way of handling error conditions. 
This method allows you to stop, correct the record in error, 
and start processing over again. This often wastes time since 
you must restart the computer each time an error is found. 
Programming to bypass the error is more often done. This 
will be discussed at a later time. 

Sequenced and Unsequenced Record Types in a Group 

So far we have talked about having records in a group which 
must be in a special sequence. However, you may also have 
records in the group which need not be in any sequence. In 
this case, all records which do not need to be in sequence 
are specified on the Input sheet before those that do. Re
member that unsequenced records must have alphabetic 
entries in columns 15-16, and blanks in columns 17-18. 

Unexpected or Unused Records Within a Group 

If the computer reads any record types which are not spec
ified, it will halt. Often you may have several record types 
within a file, but the job being done requires the use of only 
a few of the record types. Do you still have to specify 
each type? No, you don't. But remember each time an un
described type is found, the program halts. This could result 
in wasted time. Therefore, to prevent halting and to elimi
nate a description of each record type, you specify a catch
all indicator in addition to specifying all record types needed 
(see Figure 2-17). 

RPG INPUT SPECI FI 
These record types are not IBM International Business Machine Corporation 

I Program 

I Programmer Date 

I 9 
l:l 

'-- ~ 1 

i 
c. 

Filename 
'::;'-

Line ~ ) ~ 
~ & Position I- :8 ] ~ r--!-r-- 5 o R z 

'A N"'D 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 2~ ;.;. 

o 1 IIR I,:r hlR ID.S Nls ,ql~ ~[~ 
o 2 I 

o 3 I ~ll1 tZlll ~[~ 
o 4 I 

o 5 I 

o 6 I 

o 7 I 

o 8 I ~12 J la oJl, ~[b 
o 9 I 

1 0 I 

11 I 

1 2 I 

1 3 I ,.,(1-.. 1 ..... ,.[1 ... 'ql/, 
1 4 I 
. - -

Figure 2-17. Catch-All Sequence Entry 

2-14 

J Punching Graphic I 
I Instruction Punch I 

Record Identification Codes 

2 3 

~ Position ~ Position ge ~Q 

~~ j~ ~ ~ l~ 
for5'~ 27 28 29 30 31 32 33 34 35 36 37 38 

1~lcA F?J... ~[r R ~H .. 

'rJl. 

if' ~ 

~I" 

I 
I 

~' 
~h1 f! 

~ ~ <5 

39 40 41 

1~1('!r 

i 

I 

described for they are not 
needed. The catch-all 
sequence entry causes all 
to be considered as type 99. 

I 

E 

( A 

0 

0' 

1 

B 

Identification Code 

* n (blank) 

C 

These record types are 
individually described 
because they are used 
for the job. 



) 

'\ 
) 

) 

According to the specifications in Figure 2-17, any record 
read which does not have one of the identification codes 
specified, is considered to be record type 99. If no opera
tions are conditioned by record identifying indicator 99,· 
none will be done for all records which are considered type 
99. 

You may also use a catch-all indicator specification to pre
vent halting when unexpected records (record in wrong 
file, blank record, etc.) are read. Unwanted card records 
are normally stacker selected into a special stacker so that 
they can be removed from the deck at the end of the job. 

Figure 2-18 shows specifications that describe three un
sequenced record types used in the program and a catch-all 
indicator which will be assigned to unwanted record types 
found in the file. When records are not in a special order, 
(alphabetic entries in columns 15-16), the catch-all indicator 
is described last with no Record Identification Codes. The 
catch-all indicator turns on if a card is read which can not 
be identified by any of the preceding Record Identification 
Codes. 

RPG INPUT: 
IBM International BUSiness Mach"lne Corporation 

Program 

Programmer Dal. 

I ~ 
Record Identification Codes 

- ] 1 2 

1: c. 

Line Filename 1 ~ ~·o 

! 1l 
~ Position m Position i;; Positio 
"E ~ ~ ~ ~ e ~ 

~ c-r-c-g ~ ~ N .. 

o R z ~ u <5 ~u<5 
'Ar;'o 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 

0 1 If' lAIR In~ lAA ttlll 'Rb r~ 

o 2 I 

o 3 I 

o 4 I Iss rlJ2. 'qb ~12 
o 5 I 

o 6 I 

o 7 I 

o 8 I Irl' rl513 ·qb ~l3 
o 9 I 

1 0 I 

11 I Ino ~~ 
1 2 I .. T 

Figure 2-18. Unsequenced Record Types with Catch-All Sequence 
Entry 

FIELD RECORD RELATION INDICATORS 

You may have some programs which process several dif
ferent record types. Two or more record types might con
tain identical fields. To eliminate coding these identical 
fields for every record type you may use the OR relation
ship which indicates that certain fields are found on all 
record types. Not all fields are identical in different record 
types, however. You must have some way of specifying 
those fields found on only specific record types in the OR 
relationship. Field record relation indicators indicate those 
fields found on only specific record types. 

Field record relation indicators will relate: 

• A field to a specific record type in the OR relationship. 

• Control fields and split control fields to a specific record 
type in an OR relationship. 

• Match fields for more. than one record type (see Match 
Fields and Multifile Processing). 

OR Relationship 

You can eliminate duplicate coding by using an OR relation
ship to describe identical record types. This method also 
reduces the size of the program. 

When using the OR relationship, you need to write the 
names of identical fields from more than one type of rec
ord only once on the Input Sheet. OR relationship speci
fications indicate that the fields mimed may be found on 
all of the record types. The following input specifications 
are necessary to set up the OR relationship: 

1. Record identifying indicators (01-99) for each record 
type. 

2. The letters OR in columns 14-15 for all record types 
other than the first. 

3. Entries describing the record identification code of 
each record type (columns 21-41). 

Describing And Using Input 2-15 



The record identifying codes must be described for all types 
of records in the file before any fields are described (Figure 
2-19). 

The letters OR are placed before the description of each 
record type except the first. OR indicates that the fields 
listed may be found on all record types. In this example, 
the fields listed may be found on records identified by an 
N, D, or 0 in column 96. Identical fields are described 
after the entries which establish the OR relationship. 

OR Relationship With Field Record Relation Entries 

In the example of printing a report by product class, all 
record types had identical fields (Figure 2-3). Suppose that 
the information on each record type is organized different
ly; the records have some fields which are identical and 
some which are not (Figure 2-20). Now you want to print 
only a description of new items. The record identified by 
an N is the only one with the DESCfield. All record types 
still have CLASS, ITEMNO, DATE, and ONHAND fields. 

The OR relationship can be used when all fields are not 
identical. In this case, additional entries must be made in 
the field record relation columns (63-64) on the Input 
,sheet. The entry consists of any of the record identifying 
indicators (01-99) assigned to a record type specified in the 
OR relationship. The record identifying indicator entered 
in columns 63-64 relates a field to a particular record by 
identifying the record type in which the field is found. 

When columns 63-64 are blank, the fields listed are assumed 
to be found in the positions specified on all records in the 
OR relationship. When an entry is specified in columns 
63-64, the field is found only on the record type having that 
record identifying indicator. 

To use the OR relationship with field record relation entries 

you must: 

1. Code the specifications describing record types in the 
ORrelationship (Figure 2-21, lines 02,03, and 04). 

2. 

3. 

Describe all fields which are identical on all record 
types (Figure 2-21, lines 06, 07, and 08). In this 
example, the identical fields are CLASS, ITEMNO, 
and DATE. 

Specify all fields that are found only on the first rec
ord type in the OR relationship, then the second rec
ord type, then the third, and so on (Figure 2-21, lines 
10,'11,12, and 13). 

In this example, the only fields for the first record type 
which have not been described are DESCand ONHAND. 
For each field, the entry 01 must be made in columns 
63-64. This entry means that DESC and ONHAND are 
found on only the record type 01 identified by an N in 
column 96. 

RPG' INPUT SPECIFICATIONS GX21-9094 U/M 050' 
Printed In U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Dale 

I Record Identification Codes 

I---

Line Filename 

i 
l; Position Position Position 

~ E' ~~ 
t; ~ 0 l!! 

0 8 <5 0 N 

z 6 ~u z u 

Field Location 

0 
-;;; 

g -in 

l; Ji ~ 
a: From To t; ! ..J ~ 

~ 
~ OJ Ii 6 0: 0 

1 2 

Page []JOf_ 

~ 0 

;E-t; 
Field Name ] .~ Qj 

u..i.L 

.sE' g -£ :s 
.3 ~6 

75 76 77 7B 79 BO 

~~~;~f:alion I I I I I i I 

c
0

~
'C

J
'C
0;
u:

Field
Indicators

Zero
Plus Minus or

Blank

3 4, 5 6 7 8 9 10 11 12 13 14 15 16 t7 18 19 20 21 22 23 24 25 26 2~ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

01 II KJAA ~I, qh ~IN

02 I OR ~12 ~b ~In

o 4 I

o 5 I 12 IIITEM!N'"
o 6 I JI~ 132 InIES'"
o 7 I 33 I ... " AND
o 8 I

Figure 2·19. Using the OR Relationship to Describe Identical Record Types

2-16

/

)

)

\

CLASS ITEMNO DESC ONHANO !
5 6 12 13 3233 40

New Item Record

~
CLASS ITEMNO ON HAND ~

~
~

DATE

5 6 12 13 20 90 9596

Regular Item Record

~
CLASS ITEMNO ONHAND ~

~
~

DATE

5 6 12 13 20 90 9596

Discontinued Item Record

Figure 2·20. Record Types with Some Identical Fields

RPG INPUT SPECIFICATIONS
IBM International Business Machine CorpOr~tion

Program

Programmer Date

I ii Record Identification Codes
Field Location

I---] 1 2 3

i
c.
';'.

line Filename Z ~ 0 &l
~ ~§ ~ 0;

tll Position :0 Position
_ S

Position

jji
From To

~.g ~ ~~~ ~ e ~ ~§ ~ r-I-r- :> c. irl ~ u G o ~ ~
~~~ z 0 a: zuu z u 
AND 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

o 1 1* Inll= ~~ IRIT ip,11= ~llL IRIH{ t<11 h"ly IpIE~ lIN ITIHIE ~R IRIE IL ~ rrlI "'IN 
o 2 Itt I- I- I" i. ~~I 19~ j,.IN INIV I~IN It< IH~ 

o 3 I '"'IQ ~I;) ~Ib Irl'" 
o 4 I f.-IR ~13 Iqlb It- II" 

90 

(") 

o 
o 
m 
II 
o 

(") 
o 
o 
m 
II 

o 

0 
';:; 
';;; 
0 

C>. 

~ 
'g 
c 

DATE 

9596 

1 2 

'8 
o m 
II 
Z 

Page [00'_ 

~ 0 

:2-tl Field Name ] .~~ 
u.u. 

f:~ ~ ~2 
:Ou 

52 53 54 55 56 57 58 5960 61 62 

I~II-I T!D ~IT IRish" 

o 5 I~ ITIH IE:I~II= Il:lr 11= II Itllc:. IAIRII= Irlr IEIN rrlr IrlAll IllN IAIL HII- I~ ITY IIJI~IS 
o 6 I II 1.5 Irll IAIc;I~ 
o 7 I III IL I, IIlr IFIMIN 
o 8 I 19c2 IQI.<" ~In IMrlJ: 
o 9 1* Irlu IJ:~IJ: Il=lr 11= IL InLc; l4.IRIE' II=~ IIINln """IN ~INIE Ip~ IRh" Illr IAQ IRI~ 1~lr ~IY Ipl~ 
1 0 I 11.3 I~I;> 11:11: 1~1r 
11 I 1313 I"'fIUJIll IliA I" I,., 
1 2 I 1113 1.1 'U 1"1,, In 
1 3 I lIB bbl l/tlro-.I", u 11\11 I", .. T I 

../e Figure 2·21. Field Record Relation 

GX21,9094 U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

~~::~':ation I I I I I I I 

Field 

.§ 
Indicators 

~ 
1: 

~ 
Zero 

Plus Minus or 
'0 Blank 
w 
u: 

6364 65 66 67 68 69 70 71 72 73 74 

~ 

~ 

~ 
~Il 
~ll 
lal2 
~13 

Describing And Using Input 2·17 



The DESC field is related to the record identified by an N 
because this is the only record type having a DESC field. 
ONHAND, however, is found on all record types. ON
HAND must be related to the record having an N in column 
96 because it is in a different location on this record type. 
The field location of ONHAND must be specified and re
lated to the corresponding record type by the record iden
tifying indicators (Figure 2-21, line 11). 

Rememberthat when fields are not identical on all record 
types, the field must be described and related to all record 
types on which it is found. 

All fields relating to only one record type should be entered 
as a group and must be given the same record identifying in
dicators in column 63-64. 

If most fields are common, describing the record type with 
field record relation usually reduces the number of specifi
cations you must write and the amount of storage necessary 
to hold the instructions. 

Field Record Relation with Control Fields 

Control fields can also be related to a specific record type 
in an OR relationship by field record relation entries. In 
Figure 2-22 the CLASS field is a control field (L 1 in col
umns 59-60). It is also found on all record types; blanks 
in the columns 63-64 indicate this. However, if a control 
field is found on only one record type, the control field 
must be 'related ·to the record type in which it is found by 
an entry in columns 63-64 (Figure 2-22, line 07). 

The number of control fields need not be the same for 
every record in the OR relationship. Regardless of the num
ber of control fields per record type, all control fields and 
all other fields related to the same record type should be 
entereu as a group (Figure 2-22, lines 07 and 08). 

Field Record Relation with Split Control Fields 

The rules applying to field record relation with control 
fields also apply to field record relation with split control 
fields. In addition, wnen split control fields are found on 
record types described in an OR relationship used with field 
record relation entries, all portions of the split control field 
must be assigned the same control level indicator and the 
same field record relation entry. This is necessary because 
all parts of a split control field are on the same record rather 
than on two different records. 

RPG INPUT SPECIFICATIONS GX21 ·9094 U/M 050' 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

PrO!1ammer Dale 

I ~ 
Record Identification Codes 

r--- ] 1 2 ·3 

c. 
~ ~·o Line Filename I ~ ~ ~ ~ ~ g ... 1i Position 

Z C ~ Position Position 
~c 

~ r-r-r- 5 ] ~ § a ~~6 ~§ o R Z 

f;:r;;~ 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 

0 1 It tJV lEN TR YAA OH ~Ib ~N 
0 2 I ""R 12J? 191b ~n 
0 3 I O'R (23 IqlA ~f' 

o 4 I 

o 5 I 

o 6 I 

0 7 I 

o 8 I 

o 9 I 

1 0 I 

11 I 

1 2 I 
. - -

Figure 2·22. Field Record Relation with Control Fields 

2·18 

Field Location 

'il 

~ ~ ~ From To 

~~~ 
41 42 43 44 45 46 47 48 49 50 51

1 .r;
h 12

q(lj 9.r;
I ~ 30

... 1'\

1 2

pageDJOf_

~ 0
0 :2'4:; ." Field Name .;;;

3 .~ "ii
~ u.U::

~ .sg'
~ -£ :~ .~

~6 c

52 53 54 55 56 57 58 5960 61 62

roll A.c;~ Ll
Trr t:.M.N

1(1] J 110\ IE
1'\11= sr L2

1"(,..
~J .:1""1{.

, n It..Il"I

I ~ I .. JI\ IfI.IJ"\ IL

L~ t!!:.. 11\ ' .. ,("\

75 76 77 78 79 80

~~~;~f:ation I I I I I I I 

Field 

c Indicators 
0 ." 
~ 

] Zero 
Plus Minus or 

." Blank 
-.; 
LL 

63 64 6566 67 68 69 70 71727374 

~II 
ell 
(J, 
el_~ 

1"'" 

( 



) 

CONDITIONING USE OF INPUT FILES (EXTERNAL 
INDICATORS) 

Thus far, in this chapter, you have read about jobs that 
require the complete processing of all input files specified. 

The following topics will illustrate how you can use RPGII 

to do jobs for which: 

1. It is not necessary to process one or more of the files. 

2. It is not necessary to process an entire file. 

SALES ANALYSIS 

ITEM NUMBER AMOUNT SOLD DATE 

46732 "! 09/15/70 

8 09/16/70 

2 09/17/70 

09/19/70 

46739 12 09/15/70 

20 09/16/70 

25 09/17/70 

8 09/18170 

3 09/19170 

Figure 2·23. Two Similar Reports from Two Different Jobs 

Using One Program to do More Than O'ne Job 

Have you ever thought how useful it would be 'if, when 

doing similar jobs, you could use one program to perform 
more than one function? 

Consider, for example, the following jobs. Two types of 
reports are required each week. One is a sales analysis reo 

port showing what items sold during the week. The second 
is an inventory report showing balance on hand for each 

item in stock. Notice the similarity in the format of the 

reports (Figure 2·23L 

BALANCE FORWARD 

ITEM NUMBER AMOUNT SOLD DATE BALANCE 

46732 7 09/15/70 

8 09/16/70 

2 09/17/70 

09/19/70 

150* 

46733 

32* 

46739 12 09/15/70 

20 09/16/70 

Describing And Using Input 2·19 



Two files are available: the MASTER file which contains 
balance forward records for all items in the store; and a 
transaction file (TRANS) which contains all the weekly 
sales for edch item (Figure 2-24). Both files are in ascend
ing order by item number. 

The sales analysis report merely requires a listing of records 
found in the transaction file. 

The inventory report requires that records from two files 
be matched. (If you are not familiar with multifile pro
cessing using two input files, see the chapter Match Fields 

Item Number 

Note; On disk systems, 
MASTER & TRANS 
could be disk or 
console files. 

45671 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

MASTER 
FILE 

\ 
\ 

123 .. 5 678910 \I 1213141516'17 18 1920212223242526272829303132 

3334353637383940"'424)4445464748495051525354 55565758596061626364 

B 979899100101

1
'0210310410510610','08109110111 11211311411511611711811912012112212)124125126127128 B 

A A 
8 ITEM BALANCE DATE 8 
4 FORWARD 4 

! 3 4 J. 7 8 9 10 III" 13 14 15 I. 17 18 19 20 21 22 23 24 25 2. 27 28 29 30 31 32 ! 
A A 
8 8 
4 4 
2 2 
1 1 B 333435363738394041424344454647484950 51525354555657585960 61626364 B 

A 
8 
4 
2 

~~"~~M~nnH~nnnnW~~~~~~~~M~V~~"~~ 

IBM3700 

A 
8 
4 

2 
1 

and Multifile Processing. ) When records from both files 
match, the number sold is subtracted from the balance on 
hand. The new balance is then printed on the report 
following the list of transactions: 

One report requires two files; the other only one. How 
could you write one program to produce reports which 
have such different file requirements? If you had some 
wayof telling the program when to expect the use of one 
file and when to expect two files, it could be done. 

This you can do with external indicators. 

I 

/ 
I 

/ 
/ 

/ 

00123 

TRANSACTION 
FILE 

Item Number 

~ 

/----------------------------'~ 

~ 97 98 99 100 101 102 103104 105 106 107f8 109 110 111 112 113 114 115 II. 117 118 119 120 121 122 123 124 125 ". 127 128 ~ 

~ ITEM QUANTITY DATE ~ 

~ I 2 3 4 J. 7 8 9 10 "I" 13 14 15 I. 1718192021 22 23 24 25 2. 27 28 29 30 31 32 ~ 
B B 
A A 
8 8 
4 4 
2 2 
1 1 

33 34 35 36 37 3839 40 .. 4243 44 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 6061 62 63 64 
B B 
A A 
8 8 
4 4 
2 2 

16566676869707172 737475167778798081 82838485868788899091 9293949596
1 

IBM3700 

Figure 2-24. Format of Records Used to Produce Sales Analysis and Balance Forward Reports 

2-20 



"\ 
) 

J 

Setting External Indicators 

You are already familiar with several types of indicators 
used in theRPG II language. These indicators are used to: 

1. Signal the occurrence of a specific condition, such as 
matching records, control break, or last reco~d .. 

2. Control when certain operations should be per
formed; such as only when a control break occurs, 
or when a specific record type is ,read. 

Most indicators are set by the program on the basis of the ' 
conditions which occur during the execution of the pro
gram. External indicators, however, are set by you prior 
to the execution of the program. You do this in one of the 

following ways, depending on which System/3 model you 
have: 

Model 10 Card System: In order to set external indicators 
in the Card System, enter an Indicator Control Card in the' 
System Initialization Program. The control card myst have 
the following format: 

Columns 

1-2 

3 

4-6 

7 

8-15 

16-96 

Entry 

/ / (two slashes) 

blank. 

INO 

blank 

One-position entries indicating the setting 
of U1 through US. Indicator U1 is set in 
column 8, U2 in column 9, and so on, as 
follqws: 

1 
o 

Indicator is ~urned on 
Indicator is turned off 

~ (blank) Indicator remains as it 
wasset in, the last job 

blank' 

Figure 2-25 shows an Indicator Control Card which causes 
external indicators U1 and U8 to be set on, indicators U2 
through U6 to be set off, and indicator 'U7 to remain as it 
was in the 'previous program'. 

Once an indicator is set, it is not changed during the entire 
program. The only way the setting may be changed for the 
next program is by another Indicator Control Card entered 
in the System Initialization Prog~am. 

U1 

1 

\ 
\ 

U2 

0 

\ 
\ 

U3 U4 

0 0 

U5 U6 U7 

0 0 

/ 
/ 

ua 

1 

/ 
/ 

/ 

- I ndicators set 

- Punches' 

65 66 67 68 6970 71 72 73 74 7S 76 77 78 79 80 8\ 82 83 84 85 86 87 8889 90 91 92 93 94 95 96 

~~~a~~m~m~mm~oom~ruMM_mM"BrnUmm~mrn~ 

B B
A A
8 8
4 4
2 2

~ 1 2 3 4 5 6 7 • 9 1011 12 13 14 15 16 ,7,.,92,021 22 23 24 25 26 27 2. 29 30 31 32 ~
A A
8 8
4 4
2. 2
1 1 B 33 343536373839404'424344 45 46 47 484950 51525354 S5 565758596061626364 B

A
8
4

A
8
4

2 2

1 ~~n~~~nnnu~~nH~~~~~M~%n~~~~~~~e%1
181013700

Fig~re 2-25: Indicator Control Card (Model 10 Card System)

Model 10 Disk System and Model 1-5: Although most
indicators are set by the program, you set external indicators
prior'to the execution of the program. This is done by
including a SWITCH statement in your Operational Control
Language. The format of the SWITCH statement is:

1/ SWITCH indicator settings

The indicator settings are:

indicator is turned on.

o indicator is turned off.

X indicator is unaffected.

Describing And Using Input 2-21

Figure 2-26 shows a SWITCH statement which sets external
indicators Ul and U8 on and indicators U2 through U6 off.
Indicator U7 is unaffected.

Once an indicator is set, it is not changed until you provide
another SWITCH statement or perform IPL. You cannot
use the SETON or SETOF operation codes with external
indicators.

On the Model 15, when operating in job mode, SWITCH
settings are reset to 0 at end of job.

Model6: The operator sets external indicators prior to
execution of the program by responding to the SWITCH
keyword displayed by the system. An eight-position re
sponse is possible, corresponding to the eight external in
dicators. Possible entries for each position are:

indicator is turned on.

o indicator is turned off.

x indicator remains unchanged.

For example, if the operator keys XXXX10XX in response
to the SWITCH keyword:

• Indicator U5 is turned on.

• Indicator U6 is turned off.

• Indicators Ul, U2, U3, U4, U7, andU8 remain un
changed.

While displaying the SWITCH keyword, the system displays
the previous external indicator setting. If all indicators are
to remain unchanged, the operator responds to SWI TCH by
pressing PROG START.

Indicators set by the SWITCH keyword retain their settings
until another SWITCH statement changes them or the next
IPL occurs.

1 4 8 12 16 20 24 28

Itt
VI 5M 111" rlH 1 rl 'I: ~/j '11:1 xl

Figure 2-26. SWITCH Control Statement

Using an External Indicator to Condition a File

You can assign an external indicator to a file. When the in
dicator is on, the file is used; when it is off, the file is not

2-22

used. This then is how you can tell a program when to ex
pect one file and when to expect two. Consider again the

two' jobs discussed previously: sales analysis and inventory.

The TRANS file is needed for both jobs, the MASTER file
is only needed for the inventory job. Thus, the MASTER
file is assigned the Ul indicator. You set the indicator on
for the inventory job (MASTER is used here) and off for
the sales analysis job (MASTER is not used here).

The Ul indicator is assigned to a file on the File Description
sheet in columns 71-72. Any of the eight external indicators
(Ul-U8) could be used. Ul was arbitrarily chosen for this
example (Figure 2-27).

Naturally, the calculations performed and the type of re
port written out will depend upon which job is being done.
Different calculation and output-format specifications are
needed for each. In order to determine which specifica
tions to use for a particular run of the program, calculation
and output-format'speCifications must also be conditioned
by the external indicator. This topic will be further
discussed under Controlling Operations in an RPG 11 Program.

When writing a program which can do two jobs, be certain
that the two jobs are very similar. Where the jobs require
many different calculations and output operations, it would
be easier to write two different programs than to use ex
ternal indicators.

Ending the Program Before Processing All Files Completely

When should end-of-job operations take place? The pro
gram would normally end after all records have been pro
cessed. When you are reading one file, you usually want to
process all records in that file. Normally, you wouldn't
want to process a few records and then end the program
unless, of course, you found an error condition. The com
puter also operates under the assumption that all records
in the file should be processed before the program ends.
The LR (last record) indicator which conditions end-of-job
operations is not turned on until the last record has been
processed.

Suppose, however, that you are using two files in your pro
gram. The computer assumes that all records in both files
must be processed before the program ends. If you want,
the program to end before all records in both files are pro
cessed (for example, when the secondary file runs out of
records), you can specify this. This is done by placing an E
in column 17 of the File Description sheet for the file which
will terminate the program.

)

)

File Description Specification

F File Type Mode of Pr"",,!sing

File Designation ~:~ge~o~! ~~~;'~:I~i:;d ~
Extent Exit

-
End of File

for DAM

Record Address Type , Name of
~Q1JOnce Symbolic

Ii Filename Type of File Device Device
Label Exit

File Format I

I~ Core Index Line " Additional Area I""

III .wl~11
Nioverfl~

I! Block Record
I~:S Key Field

11
1",

I~
Length Length

;) g Starting
Location IK

3 4 5 16789 1011121314 21 2, 2, 124 25 26 27 28129 30 13132'3334135363738 139 140414,43444546 4' 48 49 50 61 52 153 54 65 56 57 58 59 60 61 62 63 54 65

o 2 IFM ~~ trlEIR rip ~!~ 9 16 MIFV" U 2
01 3 IF T IRIA INl" fils lAl~ 9Jb 'MII=Ir J J
01 4 IF P IRlr NIT 1""\ 1= lCJjf: pair NTE:IR

01 5 IF

01 6 IF

017 IF I,

o Is IF

019 IF

110 F

F

F
ZL IL OL 69 89 L9 99 59 t9 t9 Z9 19 09 6589 LS 95 55 K,tS ZS IS OS 6~ Bt Lt 9t St tt tt Zt It Ot 6t at Lt 9t st tt tt Zt It. Ot 6Z az LZ 9Z SZ tZ tz zz IZ OZ 61 BI LI 91.51 tl tl ZI II 01

Figure 2-27. Assignment of an External Indicator

Figure 2-28 shows the File Description sheet used in a
billing program that is to end when the last record of the
secondary file has been processed. This is indicated by an
E in column 17.

File Description Specification

F File Type Mode of Processing

'ile Designation
;; ~·~cord Add;e~:'~~;d - End of File

\ R.. ,rl Arlrl,.<, Type
Filename Sequence

Type of File ~ Device
File Format

Line " Additional Area

I! Ig

wltl
IN :Overfl~

IIII
Block Record

1~li
Key Field

I~
Length Length I;) Starting

Location

Extent Exit
for DAM

Name of
Symbolic
Device

Label Exit

Core Index

C'.nnHn".Hnn ' ;n.'

IK ~

ca,

",umoer OT raCKS
i

.. u"'~. u. ~ .. <" ..

~~~ncl 
~ 

~~n~ 

wil I~ 
166167 

6BL95ttZI 

~", 

;:~"'u •. U' •• c~. 

Number of Extents 

!::nd 

~ 
~~n~ 

I~ 
3 16 7 8 9 II 12 13 14 

~I 
120 21 2, 23 ! 2j 25 26 27 128129 30 131132 33 34 135 36 37 38 39 4C 4' 42 43 44 45 46 147 48 49 60 61 62 154 55 66 67 58 69 16061 62 63 54 65 66167 58 69 170171 72 7374 

1012 IFM~~ rrl;IR Cib Ml=lrlllll 

1013 FIBl4llln ulE q~ MI=Irlul2 

014 ,F 

01 5 !F 

01 6 IF 

01 7 iF 

o Is F 

019 F 

11 0 F 

F 

IF 
ZL IL OL 69 89 L9 99 59 t9 t9 Z9 19 09 69 89 LS 99 55 K t9 ZS IS OS 6t Bt Lt 9t St tt t~ zt It Ot 6tat Lt 9t st tt tt zt It OE 6ZazLZ 9Z sz tZ tz zz IZ OZ 61 BI LI 91 51 tl tl ZI II 01 6 8 L 9 5 t t Z I 

~\ Figure 2-28. End-of-Job Specification 

) 

Describing And Using Input 2-23 



To indicate that the program will end only after all records 

from all files have been processed, you have the option of 

leaving column 17 blank for all input, update, or combined 
files or of placing an E in column 17 for all of these files. 
Figure 2-29 shows both ways of specifying that all files 
must be completely processed before end-of-job. For more 

information concerning end-of-job for programs using more 

than one file, see Match Fields and Multi-file Processing. 

File Description Specification 

F File Type ~e of Processing 

File Designation ~:~~t~n~! Kl:~~~~~io;;rl - End of File 
R. A, ,Type 

Filename Sequence 
Iype 01 ~oIe Device 

File Format 

I~ Line "Arlrli,i';n.1 A, 

II~ 1-' ,.,. ~ 
I':"~ 

IJ 
i I~ Key Field M ~ .. ~ i~ Starting I:) Location 

~ 516 7 8 9 12 13 14 11~1 11lL19 21 22 23 24.25 26 27 128 '29 30 31 132 33 34 35 36 37 38 13914041'4243444546 

1012 IFMIAS tr If IR II 9b IMIF~IUll 
10 13 IFlr IRlA NS lA r IT II II II q~ IMII=' ~Iu~ 
10 14 IF lin:\a~:';~ 
10 Is IFI-- J -Ira 10 16 IF 
10 17 IFM ~ls rrlEIR qf., MF Irlull 
10 Is 'F" 1 .. 1 .. '". IAI' 

T1i 
91, M~ 'rill:' IK~ N!I 

10 19 'F 
11 1

0 iF 
F 
F , 

~a. 

i 
Extent Exit 

~~~~;n~:;r~~~IOW for DAM 
Name of Number of Extents Symbolic

Device ~
Label Exit

Tape

Core Index ~
~~n;:

Continuation Lines

[~ K ~
!47 48 49 50 51 52 53154 55 56 57 58 59 160 61 62 63 54 65 66167 68 69 170171 72 73 74

f1l
~

... --
1=;'\
~:.I

I'
tA I, 01 6! S! LI 91 9! 111 £! t9 19 09 69 99 L9 99 99 vs t9 t9 19 09 6v 8v Lv 9v 9v vv tv tv Iv OV 6t lit Lt 9t 9t vt tt tt It ot at at a 9t 9t vt tt t! It Ot 61 81 LI 91 91 VI tl tl II 01 6 8 L' 9 S v ttl

Note: On disk systems, the files shown here might be on different devices, such as disk or console.

Figure 2-29. Two Ways of Specifying that All Records in All Files Must be Processed Before the Program Can End

2-24

,/-

)

)
! 2 2 22
156 7 I

--....,

j

1. A sales analysis report is to be group-indicated by salesman number as shown on
the print chart below (GX20-1776) ...

The fields on input file records are arranged as follows:

Positions
1-2
3-8
9-23
30
96

Salesman number (last two digits of the three possible)
Amount of sale
Customer name
Salesman number (first digit of the three possible)
1 identifies the record type

Fill in the input specifications forthis program choosing your own file and field
names.

I i
PAGE ____ _ I

:-Fold back 01 dolled lino.
I

~ Fold in 01 dOlled lino.

: DATE ____ _

111 11 111 111
23 3 333 333 33 44 44 44 44 445 555 55 55 556 66 66 66 66 67 777 77 77 7 7 II I II 18 181 119 989 99 99 990 00 00 000 001
801 234 517 19 01 23 45 67 190 1 23 45 67 890 1 2 34 56 78 90 1 23 45 67 89 01 23 45 678 90 1 23 45 67 890 1 2 34 5 I; 7 890

I

~L IEl~ IA\'j~ ILlY IS

IC;A LIESM N lU 11417

'/.. IX IX~)(X I}(,IX IX~ .~D(
I

i
I

1)1,1)(X~ • lXl)(~ (t fit II 01-

X D(,IX X Ix. Ix 0< ~ ("" ItJIf (~b"

-
111
111
1 23

~I.,::;

111
111
456

Review 2

I
NOTE: Dimension!
Exact measurement
with a ruler rather t

111 11 1111 1 I
111 22 22 2 2 2 ;
789 01 2345 6,

I~ Isllo 'r,

1..-'fIO !a)

Review 2 2-25

2-26

2. A large warehouse requires a weekly report showing the quantity of each item in
stock. Three types of records are found in the file for every item in stock:
a. In Stock, which records the quantity in stock at the beginning of the week. This

record must be present, and there can be only one per item. It is identified by a
a in column 96.

b. Receipt, which records the quantity brought into the warehouse. This record is
optional. There may be several per item. It is identified by an I in column 96.

c. Issue, which records the quantity shipped out of the warehouse. This record is
optional. There may be several per item. It is identified by an 0 in column 96.

ITEMNO I DATE I INSTOK I
I I I

1 2 3 4 5 6 7 8'9 10 11 12 13 14 115 Iii 17 18 19 20 21 ~2 23 24 25 26 27 282930 3i

INSTOCK Record

ITEMNO I DATE I SHIPIN I
1 7 3 4 5 6 7 C 19 10 Ii I~ 13 14115 IS 17 IS 19 20 211.2 23 24 25 La 27 28293031

RECEIPT Record

ITEMNO I DATE lOUT I
I I I

. 1 2 3 4 5 G 7 81 ~ 1J 11 11 Il 11115 16 17 18 i9 20 211222324252627282930 31

ISSUE Record

The records are grouped according to item number. All records of one item number must
be in the order listed previously. Using the information given, write the Input specifica-.
tions which are necessary to:
a .. Check the sequence of the records in each group.
b. Prevent halting if unwanted or unused record types are read.

/

)

)

3. Rewrite the Input specifications shown below using field record relation entries. _

RPG INPUT SPECIFICATIONS GX21 "9094 U/M 050'
Printed in U.S.A.

IBM Intern.tion,' BUlin'" Machine Corporation

Program

Programmer DOle

I -!
~] 1

B ~.

1'5 ~ Line Filename ~ ~ £" Position
I- .8
]

"E
r-f-r-§ ! o R z
f;;:~'o

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a 1 lip lAir IF IT I, 11= IN IS 11~ lL
a 2 I~ IplAlv IRIA rrl~ IrlA IRID
a 3 I

a 4 I

a 5 I

a 6 I

a 7 I

a 8 If* ~IT 1",lrlk IAlllln 1~lo IN In
a 9 I IN I; I~~ 11
1 a I

11 I

1 2 I

1 3 I

1 4 I

1 "
...

1 2

Page CD of_

Record Identification Codes
Field Location

2 3

~
2 0

0
-'" ~~ :d -in Field Name ! - ~

;; &. u.u.
~ Position Position ! i ~ From To .~.~

~ ~ ~ ~~ ~ ~ ~ ~ g "§ .~ '~

.3 ~ u 0 ~uO ~u Ociio:: 0 "'.s= ::;;u

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

IrlR

I, hid 1 .. 1- IkNb
~ 1,,1(1 I~I~ Iptr It 12
~

I- I. II ~

11~ 17~ INIA IMI~
I~~ I~~ ILI~ IA~ IRIAh'

Inl~ In :J IrlT Irlr 1,,15
~I"

17 l~~ ~tl= 1J:1f(1l\J~
lLJ 1';;1(1) 11:10 II "
Il. IQIAllr I ... ,I ... IL IJ

133 ~17 INltl I ... I~
If I~ 114 1?ln 1~ln IAII"ll

RPG INPUT SPECIFICATIONS

75 76 77 78 79 80

~~;~;~f:ation I I I I I I I

c:
0
-'" .!l!

a:
"<l

J
"<l
;;
u:

63 64

Field
Indicators

Plus

65 66

Zero
Minus or

67 68

Blank

6970 71 72 73 74

GX21"9094 U/M 050'
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer

I--
Line

~
I-
E

~

3 4 5 6 7 8

a 1 I~
a 2 I

a 3 I

a 4 I

a 5 I

a 6 I

a 7 I

a 8 I

1 2 75 76 77 78 79 80

Date
Page CD of _ ~~;~;~f:ation I I I I I I I

~ Record Identification Codes Field Field Location
Indicators] 1 2 3

~
c:

"'" B ~. 0

£ ~·o 0

~~ Filename j ~ :d -in Field Name ! "<l

~ ! ~ ~
Ii? ! Zero

Position
~eN

Position - ~ Position From To 0'>0'> Plus Minus or 1i ~~ ~ c: c:

.--.-§ 1 = ~ ~ -~
g ~ :~ "<l 81ank

b ~.! .3 ~.! ;;

~~ z z u u ~uO ~ u Ociio:: 0 ::;;u u::
I-

A N 0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 5758 59 60 61 62 6364 65 66 67 68 69 70 71 72 7374

~h l!ll~lf". IW IK K ~IL

4.

5.

Mis _:J,I~ II I,.. IT
12 ~!d wlc I~'t< I~~
~ "'Vl IJ;"IO T I "
It. n II"J I .. I I ... I, II

I'~ I,~ IhllA IMI~
I~~ l~l~ III~ 1~1c.. !1,lklT'"

To write an RPG II program which will produce either of two similar reports re- '
quiring the use of one or two input files, you must enter a (an) ______ _
indicator in columns of the sheet for the optional file.

You are reading two files, NAMADD and TRANSACT. TRANSACT."ecords will
have a field added to them at output -time. The program should stop when the 'last
record from TRANSACT has been processed.

Make the necessary File Description entries for NAMADD and TRANSACT.

Review 2 2-27

Answers To Review 2

1.

RPG INPUT SPECIFICATIONS

Program

Programmer Date

I Record Identification Codes
Field Location

-
~ c.
~ :?-.~
j ~ ~ 0

.8 "0

'Or;c-~ ~

~
3i Position I; Position I; Position Ii; a: From To

~ ~ ~ 1:> ~ ~ ~ e
& ~ ...J

0 0 ~ 0 ~ a>
Z u <5 z z u <5 ii:

Filename Line

'I 2

Page []JOf_

~ 0
0 :9-0
''; Field Name] .~ ~
0 LLLL
"-

iI ~ e
.~

~ 0 ~u

GX2' ·9094 UIM 050'

75 76 17 78 79 80

~~~;~f:ation I I I I I I I 

0 

~ 

] 
"0 
0; 
u:: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

';+;;'0 
9 10 " 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5, 52 53 54 55 56 57 58 59 60 6, 62 63 64 65 66 67 68 69 70 ;, 72 73 74 ' 

.0 1 ISlAlL ~!E='ITIL FINS ~1 9b rl1 
o 2 I BI~ I~~ t1l C\ / Is N t"'l11 II 
o 3 I 1 2(1. 5 11 Is ~I"II' 1 , 
o 4 I 13 92 AMlr 
o 5 I 19 123 rlJ Ie l 'AIM 
o 6 I 

o 7 I 

o 8 I 

o 9 I 

1 0 I 

11 I 

1 2 I 

1 3 I 

1 4 I 

1 5 I 

1 6 I 

17 I 

1 8 I 

1 9 I 

2 0 I 

I 

I 

I 

I 

I 
lL 'L OL 69 89 L9 99 59 l>9 C9 19 .g 09 65 85 L5 9S SS tS CS lS IS OS 6t 8t Lt 9t St tt Ct It It Ot 6C BC LC 9C SC tc CC lC IC OC 6l 8l Ll 9l Sl tl El II Il Ol 61 81 LL 91 SL tl CI II II 01 6 8 L 9 S t C l I 

2-28 

The two fields which make up the salesman number should be assigned the same 

control level indicator to indicate that both fields are to be considered as one. 

The split control fields must be specified on two adjacent lines. Since the first 

digit of the salesman number is in position 30, this single digit field should be 

specified before the field containing the last two digits of the number. The 
program determines the order in which the digits areto be arranged by the order 
in which the fields are specified. 

/ 



) 

2. 

RPG INPUT SPECIFICATIONS GX2' -9094 U/M 050' 
Printed In U.S.A. 

IBM Internallonal BUSiness Machine Corporation 

1 2 75 76 77 78 79 80 

Page CD of _ ~~~;~f:"ion I I I I I I I Program 

Programmer Date 

I s Record Identification Codes Field 
~ Field Location 

~ 1 2 3 c Indicators 
f---

~ 
0 

i 
c. 0 

~ 
1'0 

0 !JJ8 Line Filename ~ ki 
-;;; 

Field Name -.; "0 -~ .~ :!i 
0- ~ 0; 0 .5 u.u. 

! Zero 
> Position 

~ @ j 
Position - e Position Ii; From To 

Q. 

.£ g' Plus Minus or I- 2l "0 = e ~ ~ 0 ~ ~ -5 :£ Blank 

~ r--r- § j o ~ ~ 
"0 

~~6 .3 ~.2 -.; 
o R Z Z U U Z U 0 :;u u: 
t-;;:~ro 

3 4 5 6 7 8 9 '0 " '2 '3 14 15 '6'7 '8 '9 20 2'222324 2526 27 28 29 30 3' 32 33 34 35 36 37 38 39 40 4142 4344454647 48 49 50 5' 52 53 54 55 56 57 58 59 60 6' 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 If{ IEIr hlR IDS Nis qlq ~I-. INrir QI~ !/lI'" ,.. Iqlh f..jrf"l 
a 2 I 11 Iqb IF[ lEt D5 
o 3 I a5LL 1 tnll. qh rlf"' 

a 4 I lL {3 IT II -It. '/ iN 
o 5 I ~ lLj IDlA. IrF 
o 6 I lL~ 12.1 (2jlriN lST hK 
a 7 I r/'.I, AI~ ml? q~ '"'II 
o 8 I 11. S III/ Il:MIN 
o 9 I 19 11 L/ IO!A irE. 
1 0 I 11~ 12 I Oilc; lUll PiT N 
11 I qb rlr\ I 

r/~~ IV CLL-4 
1 2 I l1. 8 IrlT iEM if\J " 
1 3 I ~ 114 lOlA IrF 
1 4 I ~l5 11 I O!~i, IT 
1 5 I 

1 6 I 

1 7 I 

1 8 I 

1 9 I 

2 0 I 

I 

I 

I 

I 

I j 
ZL IL OL 69 89 L9 99 59 >9 e9 Z9 19 09 65 as L5 95 S5 .S es zs IS OS 6. a. L. 9' S ••• e. z. I. O. 6e 8C Le ge se .c ee ze Ie oe 6Z al a 9l Sl .l el II Il Ol 61 al LI 91 SI ., el II "01 6 a L 9 S • ell 

Any alphabetic sequence entry must be entered first to catch all record types not 
being used for the program. This prevents halting when an unused or unidentified 
record is fo.und in the input file. The three record types being sequence checked 
must be assigned sequence numbers in ascending order with the INSTOK record 
first, the RECEIPT record second, and the ISSUE record third. Since there is only 
one INSTOK record per group, a 1 must be entered in column 17. This record 
must be present so column 18 is left blank. Both of the remaining record types 
require an N in column 17 and an 0 in column 18. They are optional, and there 
may be more than one per group. Any record identifying indicators (01-99) you 
choose are correct. 

Answers To Review 2 2-29 



3. 

RPG INPUT SPECIFICATIONS GX21 ·9094 , U/M 050' 
Printed in U.S.A. 

IBM Intern~t,onal Business Machine Corporation 

1 2 75 76 77 78 79 80 

Page [TIOf;...... ~~~;:f:.tion I I I I I I ·1 Program 

Programmer Date 

I ~ 
Record Identification Codes Field Field Location 

~ 1 2 3 Indicators 
I----

E ° 

i ~·o 
c: ° ~ 0 :2~ Line Filename ~ ii .;); Field Name ] .~ "ii ~ 0. & ~ 0; 0 u.u::: Zero 

> Position ~ Position ~ Position ~ ~ ~ From To, .s~ ~ Plus Minus or f-

r-r-r-~ "E ~~l ~ 12 ~ ~Q ~ 
~ ~ ~~~ 

-£ :~ "C 81ank 

~ ~~c5 ~§ '2 ~6 ~ o R z z u U Q 

f-;:'Nfo 
3 4 5 6 '7 8 9 10 II 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 65 66 67 68 69 70 71 72 73 74 

0 1 lIP AIY IFI IE INls 11 Cl J Ir'R 
0 2 I h'R 12.(l 1 Ir C 
0 3 I ~IR l~(l .1 ~rr 
o 4 I 2 1.1111 ~IE ,: II< IN"" 
o 5 I Lj 1!l11L Ii ~ fJlT IL Il 
o 6 I b I- lL 1.1 i"'lll.l~ "'IN 
o 7 I l~ 2.i4 ",\A MiE 11 tl 
o 8 I 

" .":J. fl .~I~ 12. P IA Y IR~rr I~ 
o 9 I ~~ "1,7 NA Mlf I:J ft 
1 0 I l~ 11"1IL l:. 1fo\f"1~ I~H~ 
11 I 1.0'1 2. ILl NA ME I~~ 
1 2 I 3fl ~1.3 IU-I R~ l\.IJuln I~(lj 
1 3 I 

1 4 I 

1 5 I 

I 6 I 

I 7 I· 

I 8 I 

1 9 I 

2 0 I 

I 

I 

I 

I 

I 
II 1£ O£ 69 89 £9 99 99 ~ £9 19 19 09 69 89 £9 99 99 ~9 £9 19 19 09 6~ 8~ £~ 9~ 9 ••• £~ l~ II> O~ 6£ 8£ ££ 9£ 9£ >£ ££ l£ 1£ O£ 6l 8l a 9l 9l ~l £l II Il Ol 61 81 £1 91 91 ~I £1 1I II 01 6 B £ 9 9 ~ £ l I 

2-30 

Because these record types contain common fields, the OR relationship may be used 
to describe them. However, since not all fields are common to all record types, 
field record relation entries must also be used. All common fields-WEEKNO, 
EMPNO, and DEPT-are described first. The NAME field, although found on all 
record types, is in different locations. Thus, it must be related to all record types 
by specifying it and its end position three times and using the record identifying . 
indicator in columns 63-64 to indicate the record type with which it is associated. 
PAYRAT is found in only record type 10. Thus 10 is placed in the Field Record 
Relation columns (63-64). DEDAMT and HRSWKD are related to the record type 
on which they are found in the same way. Remember that all fields related to one 
record type must be grouped together. 

4. An external indicator (U1-U8); 71-72; File Description. 

/' 



) 

) 

5. 

File Description Specification 

F File Type Mode of Processing File Addition/Unordered 

File Designation Length of Key Field 01' Extent Exit Number of Trecks - of Record Addre .. Field ~ for DAM for Cylinder Overflow 
End of File , Name of Record Address Type 

Symtiolic ii1 Number of Extents 
Filename Sequence 

Type of File Device i Label Exit 
..J Device Tape 

File Format Organization w .:3 Rewind 
Line or Additional Area ! Core Index 

~ 

e~ e Overflow I ndicotor Condition 
8- Block Record N -15 Ul-!L 
~ ~e ~ ~ ~ Key Field 'I Continuation Line. 

g ~~ c~ 
Length Length 

a: ~ ~ Starting >c 
l!:. 

g~ ~ ~ w<u. :::J :::- Location W K Option Entry a: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 3334 35 36 37 36 39 4041 42 4344 4& 48 47 48 49 50 61 52 53 54 65 56 57 68 59 60 81 62 83 54 65 56 67 68 69 7071 72 73 74 

o 2 F\I IAIM Il\lnl1'\ Irp F ~b rtF Ie Jl 
o 3 FT IR~ INIc.. IAf'" I'rlr SF J: qlc r-\J:.'~ 12 
o 4 F 

o 5 F 

o 6 F 

o 7 F 

o 8 F 

o 9 F , 

1 0 F 

F 

F 
~L IL OL 69 89 L9 99 99 \>9 £9 ~9 19 09 69 99 L9 99 99 \>9 £9 ~9 19 09 6~ 8~ L~ 9~ S~ » £~ ~~ I~ O~ 6£ BE L£ BE !it K tt ~t 1£ at u u L~ 9~ !I~ ~z £z ~z I~ O~ 61 81 LI 91 91 ~I £1 ~I II 01 6 8 L 9 9 ~ £ ~ I 

In the example above, TRANSACT is specified as a combined MFCU file because it 
isto be both read and punched. An E is entered in column 17 for this same file to 
indicate that the program should end when all TRANSACT records have been 
processed. 

If you have a disk system, however, TRANSACT could be a disk update file (U in 
column 15). NAMADD would probably also be a disk file. An E would still be 
entered in column 17 for the TRANSACT file. 

Answers To Review 2 2-31 



/' 

2·32 



) 

) 

) 

Chapter 3. Controlling Printer Output 

CHAPTER 3 DESCRIBES: 

RPG II overflow and fetch overflow to control page formatting. 

RPG II fetch overflow object program cycle. 

Aligning printer forms. 

Editing with edit words. 

" Using the special RPG"II word, *PLACE, to print duplicate information. 

Dual printer files. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

The R PG II object program cycle for overflow. 

Function of RPG II indicators. 

Using edit codes to punctuate numeric data. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

RPG II overflow and fetch overflow. 

Effects of fetch overflow on the RPG II object program cycle. 

Aligning printer forms. 

Using edit words. 

Coding for the Dual Feed Carriage Feature on the IBM 5203 Printer and coding for 
Dual Feed Tractors on the IBM 2222 Printer. 

Note: You can use the review questions contained in Review 3 at the end of this 
chapter to test your comprehension of each topic in the ch~pter. Questions are 
grouped according to the topic to wh ich they apply. Answers follow the review 
questions. 

Controlling Printer Output 3-1 



INTRODUCTION 

The most important part of any RPG II program is the 
result-the output. This chapter describes the RPG II cod
ing necessary to format and punctuate printed output to 
make it easier to read and understand. Methods are also 
described for duplicating information on the output record 
and using dual printer files to print two rep,orts in the same 
program. 

Using the printer, you can create a report consisting of in
dividual lines (records) recorded consecutively on stock 
paper. You may also use it to record information on your 
own preprinted forms, such as on bills, invoices, and checks. 
Regardless of the paper or form you are printing on, you 
are always interested in obtaining a report that is neat and 
readable. This means that the format of the report and 
data on the report must be considered when planning the. 
program. 

RPG II coding for the different printers available on , 
System/3 is nearly identicaL Differences in coding are 
noted. The available printers are: 

• IBM 5203 Printer (Model 10) 

• IBM 1403 Printer (Model 10 Disk System and Model 15) 

• IBM 5213 Printer (Model 6) 

• IBM 2222 Printer (Model 6) 

USING OVERFLOW AND FETCH OVERFLOW TO , 
CONTROL PAGE FORMATTING 

RPG II performs automatic page formatting. With standard 
66 line forms, it leaves five blank lines at the top of a page 
and six at the bottom. (Six lines are printed per inch; eight 
lines per inch are also possible.) However, automatic page 
formatting may not always meet your needs. If you want 
control over page formatting, you can ,use an overflow 
indicator (OA-OG, OV). For instance, assume that at the 
end of every month you prepare an inventory report which 
consists of a list of the quantity of all ite~s in stock by 
product class. Items are listed by product class, and each 
product class should start 011 a new page (Figure 3-1). 

3-2 

Suppose the heading were to start on line 11 of each page. 
To have an equal margin (ten spaces) on top and bottom, 
line 56 should be the last printed line on the page (assum
ing 66 lines per page). For this report, you must use an 
overflow indicator to control page format. 

Overflow Indicators 

Overflow indicators, like other indicators, are used to do 
two things: 

• Signal a certain condition. 

• Control when specific operations (including those whicr. 
control page format) are performed. 

For example, in the monthly inventory report, items in 
stock are listed by product class. 'The report consists of 46 
lines per page (starting line is 11 and ending line 56). Some 
product classes are going to have more than 46 different 
items in stock. ' 'Forthese classes, additional pages (overflow 
pages) are required to list the items. 

Normally, the overflow line is the last line you want to 
print on the page. For this report, the overflow line would 
be line 56. When this line is printed, the overflow indicator 
(if one is assigned) is turned on to signal that the last line 
you wished printed on the page has been reached. 

'When the overflow indicator is on, you know that the over
flow line has ~een reached. At the end of the page, opera
tions, such as 'advancing to a new page (the overflow page) 
and printing headings on the new page, can be performed. 
By assigning and using overflow indicators, you can print 
special lines at the bottom of the 'page and at the top of the 
new page. Because you do these operations only when the 
overflow indicator is on, you will have to condition these 
operations by the overflow indicator. 

,/ 

./ 



) 

) 

CLASS 

,00124 

- -

CLASS 

00125 

CLASS 

00126 

ITEM NO DESCRIPTION 

46732J1 SWEATER, V·NK, SZ 32 
63241B1 SWEATER, V·NK, SZ 34 
43151CK CARDIGAN, SZ 36 

-
IN STOCK AS OF 10/30/71 

-- -- - - - -

ITEM NO DESCRIPTION 

54321K4 T·SHIRT, WH, SZ 30 
56422K4 T·SHI RT, WH, SZ 32 
57381J4 T·SHI RT, WH, SZ 40 
58324B1 T·SHI RT, WH, SZ 42 

IN STOCK AS OF 10/30/71 

ITEM NO 

67341B3 
67432B3 

DESCRIPTION 

WOOL SOCKS, BL 10 
WOOL SOCKS, GR 10 

-

-
IN STOCK ASOF 10/30/71 

Figure 3·1. End·of·Month Inventory Report 

ON HAND Line 11 

10 
16 
17 

Line 56 

- - ---

ON HAND 

11 
14 
15 
8 

ON HAND 

11 
9 

Line 11 

Line 56 

Line 11 

---
Line 56 

Controlling Printer Output 3·3 



Specifications for Using Overflow Indicators 

You must specify to the RPG II compiler how reports 
should be printed. To tell it what to do, you make ·Iine 
counter, file description, and output-format specifications. 

Line Counter Specifications 

Line counter specifications, found on the bottom half of 
the Extension and Line Counter sheet (Figure 3-2), are used 
exclusively for defining the number of lines you want' 
printed on each page. 

Every time you use an overflow indicator to control foro' 
matting, you should prepare line counter specifications. 
Otherwise, a page length of 66 lines will be assumed with 
line 60 as overflow line. 

Figure 3-3 is a sample Line Counter sheet for the inventory 
report. Columns 7-14 are for filename. Only a printer, file 

name can be used here. Columns 15-22 contain the entries 
for report formatting: 

• Columns 15-17: Place in these columns the number of 
available lines per page. Your page can contain a max
imum of 112 lines . .The inventory report uses standard 

" 11 'inch paper, providing 66 lines per page. 

• Columns 18-19: Put the letters FL in these columns to 
show that the previous. speCifications gave form length. 

• Columns 20-22: Enter in these columns the number of 
. the overflow line, when you want the overflow indicator 
to be turned on. In the exaiTlple given, it was 56. You 
can use any number from 1-112. 

• Columns 23-24: Enter the letters OL in these columns 
to show that the previous specification was the overflow 
line. 

Notice that columns 25-80 are 'not used. 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21·9091 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1. 2 75 76 77 78 79 80 
Program 

Programmer Date 
Page [[] of _ . ~~;~;~f:ation I I I I I I I 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 

Line 

- Number of the Chaining Field 

From File~ame 

To Filename 

of Number 

j~ 
Table or .§ 3 

Table or Entries of' Length 
Array Name 

Length 

~~ Per Entries 'of of 
Array Name 

Record Per Table Entry :§ ~ ~ 
(Alternating Entry 

~~ 
1: 

or Array 
Format). ~ 

~~i ~~& 

Comments 

3 4 5 6 7 8 9 10 It t2 t3 t4 t5 t6 t7 t8 t9 20 2t 22 23 2425 26 27 2B 29 3031 32 33 34 35 36 37 38 39 4041 42434445 46 47484950 5t 52 53 54 55 56 57 58 59 60 61 62 6364 6566 67 68 69 70 71 72 73 74 

0 1 

o 2 

o 3 

0 4 

o 5 

o 6 

o 7 

o 8 

Line Counter Specifications 

L 4 , 10 11 12 

-
Line 0. 

I-

~ 
Filename 

1: ] ] 
~1 

.c 1: ~! ] ~~ ~! ] ~.8 ] ~i: ] ~.8 .8 ~~ ~ ~!; ~ !! 1: !.8 
., E ., E 2 ~ ., E '2 g ., E 2 § ., E 2 § ., E ~ § .~ 5 ~ § " E <: E " E <: E " E 2 5 ., E 2 § .~ :l 5 5 :J~ .= ::J :J~ .= :::I .5 :::I .S: ::J 6~ :J~ 6~ :Ji :5:i ...JZ z z UZ ...JZ UZ UZ ...JZ UZ ...JZ uz ...JZ UZ ...JZ UZ uz 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 t7 18 19 2021 22 23 24 25 26 27 2B 29 30 31 32 3334 35 36 37 3839 40 41 42 4344 454647 4a 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 

1 1 

1 2 

L 

Figure 3-2. RPG II Extension and Line Counter Specification Sheet 

3-4 

,/ 



Line Counter Specifications 

) 
L 
~ 

10 11 12 

~ 

1l a1l 1l 1l 1l ~1l .0 ~jJ II ~1l 1l ~~ ] ~~ 1l ~~ 
,5 f ]}j 1l ~1l 1l ~.8 1l ~~ 

.. E 
~ 5 

.. E 5 ", E C E .. E ~ 5 .. E ~ § .. E 2 § .. E C E .. E ~ § C E .. E C E .. E Ii E .. E ~ § :J:i .S :J :3£ 6~ .S ::::J :3:i ~:E .£ :::J .2 ~ .E ::I 6~ .S :::J 6~ .S :::J 
ti~ :3i ... z ..JZ z ..JZ UZ UZ UZ ..JZ UZ ..JZ uz ..JZ ..JZ ..JZ UZ 

Li~" Filename 

3 • 6 6 7 8 9 10 11 12 13 ,. 15 16 17 18 19 2021 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4546 47 4849 50 61 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1 1 L~IR~INIT Ib61~IL 1~lb~IL 
1 2 

Figure 3·3. Line Counter Specifications 

File Description Specifications 

You must assign an overflow indicator to the printer file 
when you want to control the format of printed reports. 
This is done by an entry in columns 33·34 of the File De
scription sheet (Figure 3-4). You may 'choose to enter any 
of the following overflow indicators: OA, DB, DC, 00, DE, 
OF, OG, or av. The one you choose, however, must be 
used throughout the program: L mustalso be' entered in 
column 39 to indicate that li,ne counter specifications are 
used. 

These two entries indicate to the RPG II compiler that it 

"") should not provi,de automa, tic page formatti~g, ~ut should 
format according to your specifications. If you do not 
make an entry in columns 33-34 of the File Description ' 
sheet for a printer file, an automatic skip to line 1 occurs 
on overflow. ' 

. File Description Specification 

F File Type Mode of Processi ng File 

I 

Ii 
Extent Exit Number of Tracks - ~; '~'~cord Address Field for DAM 

End of File 
", ,Type Name of 

Sequence Symbolic 
Filename Type of File I;;) Device Device I~ 

Label Exit Tape 
File Format 

Line ' Additional Area Core Index 
~ 

I! li'~ Iwl~11 
IN IOverflow Indicator ~~~;: 

II 
Block Record 

1~li~ i~ j"I' 
r~n'in""i~n I 'n, 

Ij Length Length I:) Starting 
I~ ;~ I";::: Location IK 

! 3 4 5 1617 8 9 '0" '2 '3 2' 2: 2: 124 25 26 27 128129 30 13, 3637 313 139140 434.4546 147 4S 40 60 61 52 1,,1 .. 66 66 67 68 60 I., ., .2.3 so 65 166 67 168 69 170171 72173 74 

1012 IFi.- lAIR Infi II IMIF!r lJl1 
1013 IFlp IRII INh" Iri 11 Ipll1 [It-J rrlE.l~ 
1014 IF 

10 Is IF 

1016 IF 

1017 IF 

1018 IF Different device names could be used here, 
1019 IF depending on your system configuration 
11 10 IF and model. The device name for the Model 6 

IF printer would be TRACTR1. 
IF 

ZJ , 0' 69 89 L9 99 59 l>9 £9 Z9 '9 09 69 89 L9 9S 59 os £9 ZS 'S 09 6~ 8~ L~ 9~ 5~ ~ £~ Z~ ,~ O~ 6£ 8£ L£ 9£ 5£ ~ ££ Z£ ,£ O£ 6Z 9Z a 9Z 5Z ~Z £Z ZZ 'Z OZ 6, 8, Ll 9, 5, ~, £, Zl "0, 6 BL95~£Z' 

Figure 3-4. Assigning an Overflow Indicator to the Printer 

~ 

Controlling Printer Output 3-5 



\ 
\ 

Output-Format Specifications 

When RPG II handles overflow, pages are advanced auto
matically. When you handle overflow, you must specify 
that forms should advance. This is done by specifying a ' 
skip to the first printing line on the page. For the end-of
month inventory report (Figure 3-1), this would be a head
ing on line 11. Figure 3-5 shows the correct specification 
for forms advancement. Remember to make a skip specifi
cation on a line conditioned by the overflow indicator 

, (Figure 3-5). If you forget, a continuous listing will be the 
result. 

When the printer reaches the end of a printed page, RPG II 
also allows you to ignore that the end of the page has been 
reached and continue printing. You do this by assigning an 
overflow indicator and never using it to condition output' 
files. Lines will be printed, from the top line to the bottom 
line of each page, even over the·perf~ratiori. If you do not 
want this to happen, remember to use an overflow indicator 
to condition the output operations which are to be done 
when the end of the page is reached. 

RPG OUTPUT 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 S Space Skip Output Indicators 

- ~~ :1 L 
Field Name 

e --.. !! ~ 
Line ' Filename ~ ; 

~ ~ ~g 
~ t- Oi 
t- "Acto ~ ~ 0 0 0 E 
~ o R z z z 'AUTO 

A~fo 
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 1920 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 

0 I olp Hit NT H 8J1 IP 
o 2 0 aiR ,.,v 
o 3 0 

o 4 0 

0 5 0 

0 6 0 

0 7 0 

~ ~ 

Figure 3-5. Specifications for Forms Advancement 

3-6 

1(:;1 

Ell 
a: 

Xl 0; 

;3 5 
~ ~ 
38 39 

Preventing Records From Printing Over the Perforation 

Suppose yourpr'ogram prints severai detail and/or total 
'records per program cycle as shown in Figure 3-6. In this 
case, the overflow indicator could be turned on: 

1. When the detail record is printed. 

2. When anyone of the total records is printed. 

If overflow occurs when the detail record is printed, all 
total lines will also be printed before forms advance, pro
vided a level 3 control break has occurred (L 1-L3 are on). 
Remember the specification to skip to the next page is on 
the heading line conditioned by. the overflow indicator. 
This heading line is reached only after total records are 
printed. 

Assume that line 58 was specified as the overflow line for 
this program. Assume also that the detail record printed on 
the overflow line and that a level 3 control break occurred 
when the next card was read. One page of the report would 
look like that shown.in Figure 3-7. Because all total rec
ords are printed before overflow is sensed, the last total 
record is printed on the fourth line of the next page. One 
total record was even printed over the perforation. 

What can you do to eliminate this situation? You could 
specify the overflow line high enough on the page so that 
all total records would be printed on the page after the 
overflow line has been reached. For the report shown in 
Figure 3-7, the printing of total records requires 14 lines (in
cluding spacing lines). Thus for the case where a detail rec
ord is printed on the overflow line, you would have to 
specify line 44 as the overflow line to prevent printing 
past line 58. 

SPECIFICATIONS 

'" Commas ... 
Yes 
Yes 
No 

Positon No 
in 
Output :) 
Record ;;:; 

Q: 

I 2 

Page [I] of_ 

Zero Balances No Sign CR -to Print 

Yes I, A J 
No 2 B K 
Yes 3 C L 
No 4 0 M 

Constant or Edit Word 

GX21-9090 U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;~f~cation I I I I I I I 

X - Remove
Plus Sign

Y = Date
Field Edit

Z = Zero
Suppress

40 41 42 43 «%~~~~~~~~~~~D~~~~~~M~~DM~ro 71 72 73 74

12.l5 ,,. I. A I" c; I

~~ , II T E.IM NO'
511 ' I", ,:" ~-

1" IN' K 1'"

71A \~N IHA !NO'

/

/

"
\

)

)

RPG OUTPUT SPECIFICATIONS GX21·9090 U/M 050·
Printed in U.S.A.

IBM International Business Machine CorPOrlltion

1 2 75 76 77 78 79 80

Page [D of_ ~~~:::ation \ \. \ I I I I Program

Programmer Date

0 ~ Space Skip Output Indicators
Commas

Zero Balances
No Sign CR - X = Remove

~ @~ I(j v to Print Plus Sign

1 1
Field Name

Ves Ves 1 A J V = Date
e -

,LJ Ves No 2 B K Field Edit -..
~ ~ Line Filename ~] No Ves 3 C L Z = Zero

~ ~ ID <{ Positon No No 4 0 M Suppress

~ to- <l5 in a:
to- "A"D"D ~ 0 0 0

;3 Output g Constant or Edit Word

~ o R
:;;: z z z ·AUTO

~
Record

~N"D
ii::

3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4\ 42 43 44 45 46 47 48 49 50 5\ 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 oip I-!FR H 211e! ""'IV IHll Nil
o 2 0 hR lip
o 3 0 I,,~ 'w IFII=!K y R'': lof"l IRIr I

o 4 0 ~ 12. f"'IV
o 5 0 ~IR IP
o 6 0 12~

,
IOIlv In,: 'pIT I

o 7 0 2q
,

:5~ 1 !~ SM AN'
o 8 0 h(2l 'N ., 1M 9'J:'R lAM 1'"':0 INT I

o 9 0 In 12. ~l
1 0 0 AIM Ie J INT J 1~(lJ

1 1 0 1 Nil 1MB I~R 50
1 2 0 1 ~~ 115 IrvN 3e1
1 3 0 2 f'\~ PT lin
1 4 0 .~ "'1 V l~
1 5 0 rr l212 II
1 6 0

1 7 0

1 8 0

1 9 0

2 0 0

0 t; ~IT ~:T JR Ihl~
0 T 1212 L 12
0 Jt- ,.,11 II J 1=1 ~15
0 T 122 ' I~
0 1"\1 IvlT "'IT Jg Ibl.z:;

ZL lL OL 69 89 L9 99 99 1>9 £9 Z9 19 09 69 ag L9 99 99 1>'9 £Y Z9 19 09 6~ 8~ L~ 9~ 9~ » £~ Z~ 1~ O~ 6£ 8£ L£ 91: 9£ ~ ££ Z£ 1£ 0. 6Z 8Z LZ 9Z 9l ~Z £Z ZZ lZ OZ 61 81 L1 91 91 ~1 .1 ZI 11 01 6 8 L 9 9 • • Z 1

Figure 3-6. Several Total Records Per Cycle.

54 __________________________ ~ ______ ~J~O~E~B~R=O~W~N~ __________ 4~09~.1~0~ ______________________ ~
55

~~ -------------------,--------------------1..:.:.:::::.:..:::.:::::...------------;;;:if;~~~:::~t~!
60 __ ~

61 ,

~ 7~m
63--~~~------------------~

~ I
65---~1
66' _______ _ ______ ~.eU2__ _
01 -
02
03--------------------------------~--~

04 13,421.67
05---~~~-------------------4\

06
---~ I

~--- ---~--------------------------------------~--~
Figure 3-7. Printing Over the Perforation

Controlling Printer Output 3-7

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

This is not the best solution, however. Suppose overflow
was caused by the second total record instead of the detail
record. Only one more total line would be printed before

. forms advanced. Much of the page is not used in this case
since the last line is printed on line 50 (see Figure 3-8). As
you see, this is a very uneconomical solution since much
paper can be wasted.

Fetch Overflow

RPG II provides you with a better solution for preventing
printing over the perforation than the one previously dis
cussed. This solution uses the RPG II routine known as
fetch overflow. Fetch overflow specifications allow you to
alter the basic RPG II overflow logic (see Overflow Indi
cator, Chapter 1). You can cause forms to advance at the
time total or detail records are printed, instead of waiting

~ ~

~
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

for the usual time. Figure 3-9 shows the two additional
times when operations conditioned by the overflow indi
cator may be performed. (Remember that forms advance
at this time.)

During the regular program cycle, the RPG II program tests
only once to see if the overflow indicator is on; this occurs
imm~diately after total output. By using the fetch over
flow specification, you can tell the computer to check if the
overflow indicator is on before it prints total or detail rec
ords. You do this by simply entering an F in column 16 of
the Output-Format sheet for any detail or total record.
When an F is encountered, a test is made before that line is
printed.

If the overflow indicator is on when the test is made, all
operations conditioned by the overflow indicator are
immediately performed. These operations usually include
forms advancement and the printing of headings. In order
for the line to be printed, all other indicator conditions
tested for on the same line as the overflow indicator must
also be satisfied. -- ~

78.45 }
168.17 I

I

755.67

\
4,989.72 ~(

13,421.67 J

I
I

I
--

------------ - --- ------ -- -- --- -(
J - -- -

Figure 3-8. Specifying the Overflow Line High on the Page

3-8

)

)

•
Turn off control
level and record

/)i\1f overflow indicator \{ identifying

i!!!i~!:ison, perform output\\\\\ • indicators
:fit (total, heading, detai/}). Set off overflow indicator

.' '.: overflow indicator .'. leave on if fetched during
';:':;' conditioned by the \ if performed this cycle;

·'i ··.·.C ·~· •• ·.·.···.perlorm d:,:::::::~::tions or

. _ "" Turn on overflow indi
cator if overflow line
is printed

Perform detail
calculations

•

Move data into
processing area

Is overflow indicator on?
If so perform all operations
coriditioned by the overflow
indicator and turn overflow
indicator off

•
•

Perform total output:
Turn on overflow indio
cator if overflow line

is pri;.ed •••••••••• l.. •

•

\/:~ turn off the overflow.:::;.
':{\:Jndicator "::/::::::::::::;::}}irri!::/i?

···:::':::.;.;-;.;::::::::::)))H}i::::::::

Figure 3·9. Logic for Fetch Overflow

•

Perform total
calculations

Turn on
resulting •
indicator

Change in
control field?
Yes, turn on
control level
indicator

•

•

Controlling Printer Output 3·9

Figure 3-10 shows two fetch overflow specifications (lines
07 and 09). Consider how these operations are performed.
When it is time for the specification in line 07 to be done,
a test is made to see if the overflow indicator is on. If it is
on, the overflow routine is fetched; this causes the follow
ing operations to be performed.

1. All total lines conditioned by the overflow indicator
are printed.

2. Forms are advanced' (provided a skip to a new page
has been specified in a line conditioned by the over
flow indicator).

3. Heading lines conditioned by the overflow indicator
are printed.

4. The overflow indicator is turned off.

5. The record specified in line 07 is printed.

Another test is made to see if the overflow indicator is on
because of the specification (F) in line 09. If line 07 causes
forms to advance, the overflow indicator would not be on
at this time. The total record specified in specification line
09 would be printed normally.

RPG OUTPUT
IBM International BUSiness Machine Corporation

Program

Programmer Oal.

Output lI,dicators o ~ I ~ Space Skip

Field Name

n!~
! ADD

~ ~*D
3 4 5 6 7 8 9 10 11 12 13 20121

Filename Line

I~ 'AUTO

32 33 34 35 36 J7

Lip

~Il

Figure 3-10. Fetch Overflow Specifications

3-10

However, if the record specified in line 07 were printed on
the overflow line, the overflow indicator would be on and
the specification in line 09 would cause the overflow routine
to be performed.

Consider again the example as shown'in Figure 3-6. When the
detail line was printed on the overflow line, all total lines
were also printed before forms advanced. As a result, print
ing occurred over the perforation onto the next page
(Figure 3-7).

What records should most logically be printed on an over
flow page? Your answer is probably all those records that
printed on or over the perforation. It would indeed be nice
if all total records could be printed on the next page when
a detail record was printed on the overflow line (see Figure
3-11).

If the program knew before it printed the first total record
that the overflow line had been reached, forms could be ad
vanced before the total records were printed. By specifying
an F in column 16 of the first total specification, you can
tell the program to check to see if the overflow indicator is
on. If it is on at this time, forms will advance before total
records are printed. Specifying an F in column 16 of the
first total specifications will cause all total records to be
printed on an overflow page.

Would an F for the first total line take care of all situations?
S,uppose that overflow did not occur until the first total rec
ord was printed. The remaining total lines, having no fetch
overflow specification in column 16, would not cause the
program to check to see if the overflow indicator was on.
Thus, they would be printed on the same page (Figure 3-12).
Counting the spaces, this would mean the last print line
would be eight lines beyond 58 (the overflow line) or on
line 66.

If this is feasible for your report, you could allow printing
on line 66. If not, you could have the overflow indicator
checked at the second total line. In this case, if the first
total line caused the overflow indicator to turn on, the sec
ondtotal line would fetch the overflow routine. Thus, the
last total records would be printed on the overflow page.

How can you determine on which line to place the F, that
will fetch the overflow routine (provided the overflow in
dicator is on)? You should study all possible overflow
situations. By counting spaces and lines, you can calculate
what would happen if overflow occurred on each detail and
total line. This is essentially the method used in the previous
discussion.

,/

- --- ---) ~

_'\

'" l
54 JOE BROWN 409.10

55
56 78.40 j "';';';';::::::::::-:"

57 iiOVerfIO:,
58 168.17 '::{:::line
59 \ 60
61 \ 62
63 ~ 64
65 -I _66 _______ - - ------------ -----
Page 2

755.67

4,989.72 I
13,421.67 /

) ~. -- -~ ----- ./ --- /' -
Figure 3-11. Printing Total Records on the Overflow Page

168.17

__ ~7~~§1 _______ ~

61
62 4,989.72
63---~-----------~

64
65--~

66

) Figure 3-12. Printing on the Last Line on the Page

Controlling Printer Output 3-11

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

ALIGNING FORMS

Regardless of the type of printing forms you are using, it is
always necessary to have the forms aligned so that printing

is done on the correct line. If printing occurs above or be

low the line, your report looks messy and is hard to read.

How can you be sure the first line will be printed in the

correct position? You can align the forms in the position

you feel is correct. But you can never be sure until you try.

To try the alignment, the program must be executed; a

record must be printed. Suppose the forms are incorrectly

aligned, and as a result, the first printing line is incorrectly

positioned. In this case, you can stop the computer and

realign the forms so that, hopefully, the second line will be

correct. This can go on for several tries, however. I n the

meantime, the first few records printed on the report will

have been incorrectly aligned.

RPG II has the facility to print the first line repeatedly until

forms are aligned properly. This eliminates printing the

first several lines of a report before correct forms alignment

is attained. The use of this facility requires two specifica

tions:

1. An output line conditioned by the 1 P indicator.

2. The entry of 1 in column 41 of the control card.

When these specifications are made, the first line condi

tioned by the 1 P indicator is printed. All processing then
stops. The operator has time to reposition the forms if

necessary. When this is done, the operator has the option

of having the 1 P line printed again or of continuing process

ing. This he indicates by specific settings of the console

switches on the processing unit. (See halt 1 P in the IBM
System/3 Models 8 and 10 Halt Guide, GC21-7540 for a

complete description of the alignment process.)

All space and skip entries specified for the 1 P line are per

formed when forms are being aligned. This should be con

sidered in planning for forms alignment.

If spooling printed output on the Model 15, the 1 P forms

alignment option will be ignored and the user can request

alignment by means of the OCl PRINTER statement.

EDITING

Formatting a printed report is one way of making the re

port easy to read and understand. Formatting, however,

concerns only the spacing and arrangement of data on the

printed page. It does not concern the data itself. Data

must also be readable before the rep?rt can be understood.
Editing makes a field readable.

3-12

When fields are printed out according to basic specifications

they appear exactly as they are inside the computer. This is

shown by the following examples: "

Type of Field Field Before Printing Field After Printing

Alphameric JOHN T SMITH JOHN T SMITH

Numeric 004765K 004765K

The alphameric field, when printed, is easy to read and

understand, but the numeric field is confusing. How should

it be read? What does the K mean? K is actually a com

bination of a digit and the sign of the field. But in this

form, the reader would have to guess what it says (see

Character Structure in Working With Data Structure for

more information).

Editing is the means by which data is made more readable

and understandable. Editing a field m"eans punctuating it

by removing the sign of the field from the rightmost digit

and placing it at the end of the field, adding commas, dec

imal points, minus signs, dollar signs, or any other constant

information.

Only numeric fields need to be edited before they are

printed. Notice the difference between the following

edited and unedited data taken from the same numeric

amount field:

004765K

$476.52CR

unedited data

edited data

The edited amount field is certainly much more precise

and understandable than the unedited field.

Methods of Editing

A field can be edited by two methods: (1) edit codes anu

(2) edit words. Several different codes are available. Each

code edits in a slightly different way according to a pre

defined pattern. All, however, remove the sign of the field

so that the rightmost digit will always print as a number.

(See Character Structure in Working With Data Structure
for more information.) The Y edit code is used for date
fields only.

Figure 3-13 shows the edit pattern for all codes. Choose

the code which will edit a field the way you want it to

appear and enter this code in column 38 of the Output
Format sheet.

) Sign For Negative Balance Print Out On Zero Balance *
Edit Decimal Domestic and Zero

Code Commas Point No Sign CR - (Minus) United Kingdom World Trade I World Trade J Suppress

1 Yes Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 Yes

2 Yes Yes No Sign Blanks Blanks Blanks Yes

3 Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 Yes

4 Yes No Sign Blanks Blanks Blanks Yes

A Yes Yes CR .00 or 0 ,00 or 0 0,00 or 0 Yes

B Yes Yes CR Blanks Blanks Blanks Yes

C Yes CR .00 or 0 ,00 or 0 0,00 or 0 Yes

D Yes CR Blanks Blanks Blanks Yes

J Yes Yes - .00 or 0 ,00 or 0 0,00 or 0 Yes

K Yes Yes - Blanks Blanks Blanks Yes

L Yes - .00 or 0 ,00 or.O 0,00 or 0 Yes

M Yes - Blanks Blanks Blanks Yes

X **

) Y *** Yes

Z Yes

* Zero balances for the World Trade format are written in two ways, depending on the entry made in column 21 of the control card
specifications.

** The X code performs no editing.

*** The Y code is used for date fields. It suppresses the leftmost zero only. The Y code edits a three to six digit field according
to the following pattern:

nnln
nnlnn
nnlnnln
nnlnnlnn

If a data field of six digits is packed on disk and the Y edit code is used with the data field, an error will occur. To solve this
problem, move the data field to another field.

Figure 3-13. Edit Codes

)

Controlling Printer Output 3-13

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

For example, if you wish a field called AMOUNT which
has two decimal positions to be zero suppressed and punc

tuated with decimal points and commas (when needed) but
with no sign, you choose the code that will do this. The
chart in Figure 3-13 shows that two codes will accomplish
this-1 and 2. If you wish a zero balance to print, you
would choose the code 1. If you wanted blanks to print

when the field is zero, you would use the 2 code.

Using edit codes is a convenient way of editing. However,

the codes by themselves can't do everything you might

want to do.

Punctuating With a Dollar Sign

Suppose you wanted a dollar sign to be printed on the re

port for the AMOUNT field. An edit code won't put the
dollar sign there. You will have to specify this in addition

to the edit code you are using.

According to the printer spacing chart (Figur~ 3-14), the
AMOUNT field is six characters long. It begins in column

70 and ends in column 75. However, the minus sign

would extend the amount field to column 76, as shown
in Figure 3-15 and Figure 3-16. The dollar sign, if printed,

should be in column 69. Line 11 in Figure 3-15 shows the
specification for editing the AMOUNT field by the edit

code J. This code is used so that negative values will print
with a minus sign (-) following the field. The dollar sign can

be specified as a constant ending in column 69 and must be
specified in line 12, the line following the edit code.

____________________________ PAGE ____ -----

TERS PER INCH, 6 LINES PER VERTICAL INCH) DATE ______ _

, 1 , 1 , , , , , 1 2 2 22 22 22 22 3 3 33 3 3 3 3 33 44 44 44 44
1 23 45 67 ., o , 23 45 , 7 II 9 01 23 45 , 7 1111 0' 23 45 67 1111 0' 23 45 & 7

1

2

3
4 I ,

5

6 II.I:E 1fT I~'A It:
7 !

• , X~ ~X XX IXX

I
I

Depending upon its contents, the AMOUNT field, when
printed out, could look like any of the following (where
N is any number):

$NNN.NN
$ NN.NN

$ N.NN

$.NN

The blanks between the first digit and the dollar sign are

the result of zero suppression. The dollar sign remains in

position 69; this is known as a fixed dollar sign.

Often, it is desirable, as in writing checks, to eliminate these
empty spaces. There are two ways of doing this: (1) mov

ing the dollar sign so that it is always next to the first digit;
and (2) filling the spaces with asterisks.

Instead of having blanks between the dollar sign and the

first digit, you can cause the dollar sign to print next to

the first digit. In this case, the amount field would look

like one of the following:

$NNN.NN

$NN.NN
$N.NN

$.NN

A dollar sign that changes positions is known as a floating
dollar sign. It is specified by placing the entry '$' in col

umns 45-47 on the same specification line as the edit code
(see Figure 3-16). Remember that the fixed dollar sign was
specified by placing $ in columns 45-47 of the line follow
ing the edit code (Figure 3-15).

i
I

:-+- fold bock 01 doH.d lin •.
I

:--
I

44 5 5 55 55 55 551 66 66 & 6 6& 67 7 7 7 7 77 7 7 71111 II 8 1111 1111 1111 , , 9' '99
119 o , 2 3 45 & 7 1190 1 2 34 5' 7 II 90 , 2 34 56 7 II 90' 23 45 , 7 1111 01 23 456

,
Wl: E~ L'r' C;J!lL 5 tRIPP . I~IT

i

5M AN , : orr .!J}..

I . I

X.x)(X): lXX ~. ~X- X XD(·XX , C l;.p T) (it; 1(, J'jill (ff ~O 'tJfI 1,) IT.ll
10 !

11 I
12 I I

13 , I

14 I I I

15 I I : I I I , : I I I I ,

Figure 3-14. Printer Spacing CharvCEditing)

3-14

(

./

) IBM internltional BUlineu Machines CorJ)orIdon

Program

I Programmer I Oat.

0
.!!o

:§ Space Skip

- ~~
~~ ~~ Line Filename i~
~~ ~.:: ! E L

~

E
r;;:OO ~ ~

~ *~"o
<!;

3 4 5 6 7 8 9 10 11 12 13 14 15 16 t7 18 19 20 21 22

o I Op Rl NT E.R. III ~1(J4
o 2 0 O~
o 3 0

o 4 0 IH :z
o 5 0 O~
o 6 0

o 7 0

o 8 0

. .0 9 0

I 0 0 ~ 1
I I 0

I 2 0

. " n

Figure 3·15. Fixed Dollar Sign

)

IBM International BUSiness Machine Corporation

Program

Programmer Date

0 ~ Space Skip

- @ "§
t ~
0-

~~ ~ ~ line Filename
~ t OJ «

~ ~ Ji
t- "Aro"D 0

E ~
~ o R OJ

r;:'No
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 I Op IR~ Nrr IE IR. H 2~~
o 2 0 hR
0 3 0

o 4 0 H 2
0 5 0 ICR
0 6 0

0 7 0

o 8 0

o 9 0
-r-

I 0 0 1"'1 1
I I 0

.-. -------- - r-
I 2 0

" n

) Figure 3·16. Floating Dollar Sign

RPG OUTPUT

I J Punch I I I I

Output Indicators

!{j

AL 1
Field Name

bJ
ex:

-8 ~
0 0 80

z z z 'AUTO ~~
2324 2526 27 28 29 30 31 3233 34 35 36 37 38 39

ov
if

01/
111'

Page of GC21·7567·2
Issued 30 Ju ne 1978
By TNL: GN21·5616

SPECI FICATIONS GX21·909Q.·, UM/050' I
Printed in U.S.A. ;

I I I

Position

in a:
Output g
Record c::

4041 42 43 44

'8
3
1

I

v

• 1

Commas

Ves
Ves
No
No

I

Zero Balances
to Print

Ves
No
Ves
No

I 2

page[DOf

No Sign CR

I A
2 B
3 C
4 0

-

:

J
K
L
M

Constant or Edit Word

75 76 77 78 79 80 i
~~:;~f~ation 1 1 1 1 1 1 II

X :::.: Remove
Plus Sign

V = Date
Field Edit

Z c Zero
Suppress

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 •

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 I
I ' IL ~E ~ Llv l<1A I~~ In ,,-{(II' ,...~ rrJ

I ID F:f IT'
I-

~ Ie; AlE lAw'
IA ~o U NT' I
'If ~T l4 L' I (J.1. 11\ •·.· .••. l \ 1< I

AIM ()!/J Ali'rl-r

. ':

RPG OUTPUT

Oulput Indicators

rr 1 1
Field Name

a:

.g ~
0 0 8 U
z z z 'AUTO ~ ~
23 24 25 26 2728 29 30 31 32 33 34 35 36 37 3839

~Iv

lip
+

r"'Ilv
~Ip

.-

. _.- .. t--_ .

r- -

-~ .1. - ---I-f-- . --

f-.- --f--r- - -... - AM IOU ~I J_

1 ~i II i ... · ..
The fixed dollar sign is specified

I···. 11$, 1< by placing '$' in columns 45-47 of
~ the line following the edit code, i .•• .. :

SPECIFICATIONS GX21·909Q U/M 050'
Printed.n U.S.A.

75 76 77 78 79 80

~~:;~f:.tion 1 I. I 1 1 1 I

> Zero Balances X • Remove Commas No Sign CR to Print Plus Sign

Ves Ves I A J V • Date

I I Ves No 2 B K Field Edit
End No Y~s 3 C L Z = Zero
Positon No No 4 0 M Suppress

In a:
Output ...J Constant or Edit Word
Record OJ c::

4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

.. --

Ibe IW iEIE 1<11 y C,A II 1= Ie; IKI~ I-' n: I '

33 10 !J:lp r'
.'1J I.e, IAIL EL; MIA AJ'
75 'A T'

r- .
Mh I'N

-S !:L Ir 1/"1 IT A!L' t-
1ILJ I \ $/~ The floating dollar sign is specified

1 I··' by placing '$' in columns 45·47
of the same line as the edit code,

I
I
I

Controlling Printer Output 3·15

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

Punctuating With Asterisks

To indicate that asterisks should fill the spaces caused by
suppression of leading zeros, place the entry ,*, in columns
45-47 of the same specification line as the edit code. If a

dollar si~n is to appear before the asteris~, it must be speci
fied on the next line. With the specifications shown in Fig
ure 3-17, the AMOUNT field, depending upon its contents,
could look like any of the following:

$NNN.NN
$*NN.NN
$**N.NN
$* * * .NN

Refer to the IBM System/3 RPG /I Reference Manual,
SC21-7504 for a more detailed explanation and further
considerations.

Punctuating With Dashes

What code would you use for the following job? A report
listing all employee names, addresses, telephone numbers,
and social security numbers, is desired. A file is kept on all
employees. Each record includes one employee name, ad
dress, telephone number, and social security number among

other things.

RPG OUTPUT
IBM International BUSiness Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

f--- ~!
Jd L

Field Name

~~ ~~ Line Filename
Ii -6 to «
~ ~

f- f;:ro'o 0
0 0

j ~~f-
to ;;: Z Z z 'AUTO

AND
3 4 5 6 7 8 9 10 11 12 13 1415 1617 18 19 20 21 22 23 24 2526 2728 29 30 31 32 33 34 35 36 37

0 1 O~If(IN It-IR 11-1 121(ij~ r.IV
0 2 0 I"'I~ IIlp
o 3 0

o 4 0 I", 12 hlv
0 5 0 ~I~ Illp
0 6 0

0 7 0

0 8 0

0 9 0

~~-
I--- - f---f-

1 0 0 In II

~I
a:

~ ~
8 ~
~ ~
38 39

1 1 0 IAI~ au INIr ,I ,-I- 1-1---

1 2 0

1 3 0

1 4 0

Figure 3-17. Punctuating with Asterisks

3-16

The telephone number and social security number are
entered in the record as one continuous number with no

dashes. Remember that fields will print out exactly as they
are recorded. Thus the telephone number will appear as
2820804. This.is rather hard to read. 282-0804 is much
better. How will you get the dash to appear?

A dash is a type of punctuation. So some type of editing
must be done. Can you find a code that will edit this way?
No, there is none available.

For this case, you will have to set up your own editing pat
tern. An edit word gives a pattern for punctuation. For the
phone number you need three digits, a dash, and then four
digits. You specify the edit word in columns 45-70 of the
Output-Format sheet. The word, like any constant, must
be enclosed in quotes. Figure 3-18, line 04, shows how the
telephone number field is edited: three blanks, a dash, and
four blanks.

Unless the social security field is also edited, it will print

out in one long string of numbers, such as 472446357.
Form the edit word to make the social security number
read: 472-44-6357. It should look like the edit word
shown in Figure 3-19, line 05 . .Notice that a leading 0
(zero) is included in the edit word in addition to the num
ber of places required for the data. This prevents zero sup
pression when the SOCSEC field is edited.

SPECIFICATIONS GX21-9090 U/M 050'
Pnnted in U.S.A.

1 2 75 76 77 78 79 80

Page IT] of _ ~Z~;~f:a1ion 1 1_ 1 1 1 1 I

S> Zero Balances X = Remove Commas No Sign CR to Print Plus Sign

Yes Yes 1 A J Y = Date

I Yes No 2 B K Field Edit
End No Yes 3 C L Z = Zero
Positon No No 4 D M Suppress

in a:
Output -' Constant or Edit Word
Record to

Ci:

40 41 42 43 4 4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1--,- - 1--

IblB '1\.1" IE l: IK Iv lc;lQ I. I~lc; 1011: loh IclT I

3f3 \ DE Ip IT I
f-- f--

1511 \ IslA It 11=15 IMIA IN'
171; \ IA 1M", INIT' -I---1---1----

!B~ \ iT It"IlT IAIL I

1\1< II
1715 * 'I>

To fill empty spaces caused by zero
suppression with asterisks, place ,*,

169 ll' "Ii in columns 45-47 of the same line
+-1-- as the edit code.

RPG
") IBM InternatIonal Business Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

- @B
t:: ~

1 L 0-

~~ ~ ~
Line Filename ~ ~ ~ ~

! ... cl5

"A'D'D ~ ~ 0 0

~ ::t 0

o R z z z

A~'o
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30

0 I Op RI INrr 1= IR In 11 ~l
0 2 a
0 3 a
o 4 a
0 5 a
n " n

Figure 3-18. Edit Word for Telephone Number

)

RPG
IBM International Business Machine Corporat,on

Program

Programmer Date

0 u: Space Skip Output Indicators

- @~
t~

At L 0-

Line Filename ~~ ~~ 1t ~ CD «

! ~Ji
"A '0 '0 0 :u

j ~ 0 0

o R
CD z z z

A~ro
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30

0 I Op RI iN IT" IEIR In II (211
0 2 0

0 3 0

o 4 a

0 5 a

" a roo

Figure 3-19. Edit Word for Social Security Number

OUTPUT

Field Name Ifi
I~

~
"AUTO

~
31 32 33 34 35 36 37 38 39

NA 'MIE
lAD nlR
h-E IllE

OUTPUT

Field Name @i
ru
iil
;3

'AUTO
~

31 32 33 34 35 36 37 38 39

NA 'MI~
lI\o nlR
irE IliE
I"n Ir.le; .J:~

SPECI FICATIONS

Commas
v

Ves
Ves
No

Positon No
in 0::
Output g
Record c:

I 2

Page CD of_

Zero Balances No Sign CR -to Print

Ves I A J
No 2 B K
Ves 3 C L
No 4 0 M

Constant or Edit Word

GX21·9090 U/M 050-
Pt-intedin U.S.A.

75 76 77 78 79 80

~;~;~f:.tion 1 I. I I I I I

X :0: Remove
Plus Sign

V = Date
Field Edit

Z = Zero
Suppress

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

31!Zl
.l\~
Iblll

, -

SPECIFICATIONS

Commas
.....

Ves
Ves
No

Positon No
in 0::
Output g
Record c:

I

Zero Balances
to Print

Ves
No
Ves
No

GX21-9090 U/M 050-
Printed in U.S.A.

12 757677787980

Page CD of _ ~;~;~f:ation 1 I. I I I I I

No Sign CR - X = Remove
Plus Sign

I A J V = Date

2 B K Field Edit

3 C L Z = Zero

4 0 M Suppress

Constant or Edit Word

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

131~
Lr;llt
Ibll7 I - J

171'\ 'bl - - I

Controlling Printer Output 3-17

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

Punctuating by Leaving Blanks

A company has rather long account numbers. To make
them easier to read and handle, blanks are left after every
third digit when the number is printed.

Is there a code that will insert blanks? No, again you have
to specify your own edit word. In an edit word, blanks in
dicate where the digits go and ampersands indicate where
blanks will go. The account field consists of ten digits.
The edit word shown in Figure 3-20, insert A, will put
blanks after every three digits.

Punctuating by Adding Constant Information

RPG

nching
truction

ndicators

1
0
z

'7 28 29 30

A
-~I

~~
~~ _C
I 'I
I I I

OUTPUT

Field Name Ifi
1m
~

;9
'AUTO

~

31 32 33 34 35 36 37 38 39

IAr Irn INT

wl~ IIG ~T

wlE II r.. HiT

SPECIFICATIONS

1 2

Page [0 of_

"- Zero Balances Commas
to Print

No Sign CR ..
Ves Ves 1 A J
Ves No 2 B K
No Ves 3 C L

Positon No No 4 D r"
in

~ Output Constant or Edit Word
Record

il:

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 I

5~
, IF: I(~

I

1::J7
, f! Il IBis ~I~ If!h ~'

67
, (]j £11 lAS E!I~ I~h ~' For shipping purposes, the catalog department of a depart

ment store must know the weight of every item it sells.
The weight in pounds and ounces is recorded in a 6-digit
field. The last two digits are ounces, the first four digits
are pounds. When printed out on a report, the constants
LBS and OZ must be inserted. Otherwise, the data would
not be understandable. Again to do this, an edit word is
needed because no edit code will insert LBS and OZ.

Figure 3-20. Edit Words

The printed field is shown on the printer spacing chart in
Figure 3-21. One space is needed between the digit and
LBS and between the digit and OZ. Two spaces separate
pounds from ounces. Remember in the edit word, blanks
are specified for digits, ampersands are specified for blanks;
and constant information is inserted where desired. The
edit word should be as long as the field shown on the printer
spacing chart. Figure 3-20, insert B, shows the correct edit
pattern for this field.

10, ______________ PAGE ____ _

~ACTERS PER INCH, 6 LINES PER VERTICAL INCH) OATE ____ _

I
I
:-fold back at dotted line.
I

11 111 111 1 1 2 22 2 2 222 223 33 33 3 3 3 334 44 44 44 44 455 55 55 55 55 666 66
1 23 45 67 890 1 23 456 789 o I 234 567 89 01 234 567 89 o 1 234 56 7 II 901 23 45 67 89 01 2 34

1

2
3 i
4 I

5
6 XX XXIXX XX XX i)(X ~X XI)(X I! ~)()CIX alS XIX
7 i (AI I~~, ~.
I

9 I

10 I
11

12 I

13 i !

14

Figure 3-21. Print Chart (Weight Field)

3-18

66 66 677 777 777 7 7 888 888
56 78 90 1 23 456 7 8 90 1 23 45

88 889 999
67 890 I 23

99
45

I
I

:-
I

1
99 99 (
67 89 (

)

)

Edit words can do all kinds of editing for you. They can
even be set up to do the same thing as the edit codes. All
you have to do is show where the commas, decimal points,
credit signs, etc. should appear. A zero is used to indicate
where zero suppression stops. For example in Figure 3-20,
insert C, the 0 shows where zero suppression is to end in
the WEIGHT field.

Edit codes are a faster and more convenient way of editing
than edit words. Therefore, edit words are normally used
only when edit codes alone cannot accomplish the job.

Editing and End Position

When specifying end positions for fields which are to be
edited, either by edit words or edit codes, be sure to allow
enough room for the edited field. If the field to be edited
is six characters long on the input record, do not allow only
six positions for it on the printed report. By the time the
field is edited, it may contain many more characters than
six. For example, the WEIGHT field which is to be punc
tuated with the constants LBS and 02 is only a 6-character
field on th,e input card. But when printed out after editing
it requires 15 spaces. Always specify an end position on
the Output-Format sheet (columns 40-43) that takes into
account the length of the edited field.

ITEM
NO·

NAME

QTY

CUSTNO

PRICE AMT

TOTAL TOT

ITEM
NO

_J Figur.3-22. Invoice Form

USING *PLACE TO PRINT DUPLICATE INFORMATION

Using *PLACE, you can tell the RPG II compiler to print
duplicate information. When you specify *PLACE on the
Output-Format sheet, the fields listed above it will be
printed in a different position on the same line. This elim
inates much duplicate coding.

For example, assume that your distribution firm prepares
invoices on their data processing system. The invoice (Fig
ure 3-22) sent to each customer consists of two parts: one
part the customer keeps, the other he tears off and sends
along with his payment. Many fields are common to both
parts of the invoice. For example, NAME and CUSTNO
(customer number) are printed on the first line of each part.
All fields in the fourth line of the report, except for the
description (DESC) fields, and all fields in the total line are
found in both parts of the invoice. The second part is al
most a duplicate of the first.

NAME CUSTNO

AOOR

CITY

OESC QTY PRICE AMT

TOTAL TOT

Controlling Printer Output 3-19

Figure 3-23 shows the printer spacing chart for the invoice.

What output-format specifications would you write to print
fields twice on the same line? You could define the field
and give the end position for it each time you wanted to
print the field. Figure 3-24 shows the coding necessary
using this method. There is an easier way to do this, how
ever. This is through the use of *PLACE.

J. _______________ PAGE __ ---

CTERS PER INCH. 6 LINES PER VERTICAL INCH) DATE ____ _

I
I

:-fold bock 01 doH.d Ii
I

I I I I I 1 I 1 I I 2 2 2 2 22 222 2333333
I 23" 5 1 7

33 3 :5 4 44 444 44445 55 5 5 55 55 51.11 II
"01 2 :5 4 51 7 II , 0 I 2 :5 4 5 1 7 II '012345 171'0 I 2 345 17 II' ° I 23 45 17 II' 01 2 :5 4

1 I
2 \

3 I I

4

S I , If WAI\j[E: (SITI"l IJ I

7 I

• I

9
10 I i I If I

'11 : I
12 I I I

13)(X~il(I X.)(·1) I I ~ 1)11)1 IXlX! I

11111 7 7 7
5171'0 I 2

i

I

:'1
I

14 /JiT~ II (L+ITIY PI) ,/, J
15 I

I

16 I

17 : , i i
11

,
I

19 1 i I

20 i
21 I

22 I

23 I

24 1
2S I

26 i I

27
2. I

29 I

30 ! I I

31 :

32 17 11~ ~I}O)tI~~ • X~
33 01 IT
34
3S I
36
37
3.
39

40
41

42
43

....
4S
46
47 I :

4.

4'
SC I

!

Figure 3-23. Printer Spacing Chart for Invoice

3-20

i
I

~
I

7 7 777 7 7 I II I 11111 I II I 19' '9 "'9
:5 4 5 17 I' 01 2345 .71 , ° I 23 45.7:

I(1511V'1)

I

i I

I

I) I}I~ I~I) • I~ I~ • III
~ITIY if. 1M I ~)

I

I

i
!

I I

rr 17~ll ~~I)(IX ~ . \XI)(
I (17 rlf)

I !

I I

/'

J

)

)

RPG
IBM Intern.tional Busines. Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

- e~
At 1 e--... ~ ~

Line Filename ~ Gi
~~ It tl

~ ~~
~

I- Afore ~ 2l
0 0 0 E ~ z z z

~ r;~'o
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 01 IVV 1:1 '~ ',.., 12~1c; MR ~~
o 2 0

o 3 0

o 4 0

0 5 0

o 6 0 " l2 MR tljJ
0 7 0

o 8 0 1'\ I~ MR (2jl
o 9 0

1 0 0 '" lL MR all.
1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

1 9 0

2 0 0

0

0

0

0

0

OUTPUT

Field Name f
II:

~ ~
'AUTO ~~

31 32 33 34 35 36 37 3!139

~iA !ME.
Irl LeiT INr

INA IM~
Irl is, NI"I

~ID IDR

Irlf Iry

fT lEI", ru"
"ITIY

PIR II ,. E ,~

AM hJ Nr:~
r- ~1'1 N:""

DE 51-

"TV
PR llrlF' l~
A~ "1, Nrrl3

SPECIFICATIONS

Ii' Il> Commas

Ves
Ves

End No
Positon No
in II:
Output ::;
Record iil

li:

1 2

Page [0 of_

Zero Balances No Sign CR -to Print

Ves 1 A J
No 2 8 K
Ves 3 C l
No 4 0 M

Constant or Edit Word

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

GX21-9090 U/M05O"
Printed In U.S.A.

75 76 77 78 79 80

:~~'f~cation I I I I I I I

X • Remove
Plus Sign

V - Date
Field Edit

Z - Zero
Suppress

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71727374

'2.'i
3~
75
~b

7~

,5

IflJ
23
3~
":\B
!J:i12l

1712
B:~
917
Iqli

lL 1£ O£ 69 89 £9 99 S9 1'9 £9 Z9 19 09 6S as £S 99 SS 1'9 £S lS IS os 6~ 8~ £~ 9~ S. ~ £. It I. O. 6£ 8£ ££ 9£ 5£ >£ t£ l£ It .0£ 6l 8l a 9l Sl ~l £l U Il Ol 61 81 LI 91 SI .1 £1 II II 01 6 8 £ 9 S • £ l I

RPG
IBM International Business Machine Corporation

Program

Programmer Date

0 u: Space Skip Output Indicators

- ~J
At 1 e-

~~ ~~ Line Filename
~~ m<

~ I- U5
~

I- 1-;\ 010 ~
t

b
j :!i 0 0

o R z z z

A~ro
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 0 II" 3~ MR Illl
o 2 0

o 3 0

o 4 0

0 5 0

o 6 0

0 7 0

o 8 0

OUTPUT SPECI FICATIONS

Commas

Ifl
...

Field Name
Ves

li Ves
No

Positon No

~ in II:
Output ~ 'AUTO .~ Record

'0 li: w

1 2

Page [0 of_

Zero Balances
No Sign CR -to Print

Ves 1 A J
No 2 B K
Ves 3 C l
No 4 0 M

Constant or Edit Word

GX21·9090 U/M OSC'
Printed in U.S.A.

75 76 77 78 79 80

::~af:ation I I I I I I I

X ... Remove
Plus Sign

V - Date
Field Edit

Z ... Zero
Suppress

31 32 33 34 35 36 37 38 9 40 41 42 43 44~46~48~ro~~~54~~~~~~~~~~~66~68~ro 71 72 73 7.

128 'T I_IT ~IL I

'(loa- 13 13'8
8 11 '$,
185 'T lair !All I

TIOIr 138 :qi5
~B'B '$ I

Figure 3-24, Output-Format Specifications for Invoice (Coding Each Field Twice)

Controlling Printer Output 3-21

Specifications for Using *PLACE

*PLACE is a special RPG II function which can be used to
accomplish duplicate printing with less coding. To the RPG
II com'piler the specification *PLACE means: Duplicate
that part of the line which has been specified and place the
duplicated information in a different position on the same
line. *PLACE means a special function is to be performed.
You should not use this specification as a field name, since
the RPG II compiler will assume you want the preceding
field duplicated. When using *PLACE you first define, for
each record, all the fields which are to be duplicated. Give
the end position for each field as you normally do. Then
enter the word *PLACE on the line below the fields which
are to be duplicated. Figure 3-25 shows the entries for the
first detail line of the invoice.

The compiler does not know where to print unless you
specify an end position on the *PLACE entry. In Figure
3-25, the end position given for the *PLACE entry was 86.

The *PLACE specification duplicates not only letters but
also blank spaces. It will duplicate all the characters (in
cluding blanks) from position 1 to the end position speci
fied for a field. Thes~ duplicated characters are then placed
so that they end in the end position specified for the
*PLACE entry.

When specifying an end position for the *PLACE entry,
you must know exactly where you wish the fields to print.
You must also consider tbe amount of space needed for
the printing-oralr characters to be duplicated. Always
specify an end position which "allows room for the printing
of duplicated fields.

RPG OUTPU,.
IBM Internationa' Business Machine Corporation

Program

Programmer Date

0 f Space Skip Output Indicators
I--- ~~

Jd 1
Field Name

0-- ... ~ ~
Line Filename ;. ;

~~ ~~
~ I- cl5

~
I- -;;:CoO ~ ~ 0 0 0

] ~~-
z z z 'AUTO

AND
3 4 5 6 7 8 9 10 II 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37

0 1 011 !Nlv "!J rE 1"\ 21ct~ MIR rll
o 2 0 NA 1rv1~
o 3 0 W"lJ 1ST N"
o 4 0 *p It A I,. f
0 5 0 Coo

-

~]

I
~

;3
.'" ;lJ

38139

A *PLACE specification must not be conditioned by indi
cators in columns 23·31. *PLACE is automatically condi
tioned by the same indicators that condition the field or
fields to be repeated.

Formation of Print Lines

When System/3 performs printer output, a whole line is
printed at once, regardless of how many fields are in that
line. Before printing, the whole nne is moved to an area of
storage exactly as it is to be printed. Data is placed in this
storage area one field at a time.

The sequence in which data enters the storage area depends
on the sequence that field names are specified on the RPG II
Output-Format sheet. The first field recorded on the Output
Format sheet 'is entered first, then the second, etc. Each
field is inserted into the storage area according to its end
position entry on the Output-Format sheet. If you have
made conflicting entries in your specifications (for example,
one field overlapping another) the last field mentioned is
the one that will print in its entirety.

*PLACE operates in the same way as normal field names.
The operations associated with *PLACE are performed in
the sequence *PLACE is specified on the Output-Format
sheet in relation to other output entries.

SPECIFICATIONS

Commas ...
Ves
Ves

End No
Positon No
in a:
Output g
Record

ii;

1 2

Page [I] of_

Zero Balances No Sign CR -to Print

Ves 1 A J
No 2 B K
Ves 3 C L
No 4 0 M

Constant or Edit Word

GX21·9090 UIM 050'
Printed in U.S.A.

75 76 77 78 79 80

:~;~f~ation 1 I. 1 1 1 I I

X = Remove
Plus Sign

V = Date
Field Edit

Z a Zero
Suppress

40 41 42 43 «%~Q~~~~~~~~~n~w~~~~~~~n~wro 71 72 73 74

2~
~Ib
alb

Figure 3-25. Output-Format Specifications for First Line of Invoice (Using *PLACE to Print Fields Twice)

3-22

/'

)

i'
10 20 30 40 50 60 70 80 90

I I I

JOHN FITZGERALD

A. Result of
field description
~ntries

I

4758321 I

Fi{Jure 3-26. Line Formation (First Line of Invoice)

I

Follow the formation of the first line to be printed on the
invoice. According to the specifications in Figure 3-25,
the NAME field ends in position 25 and CUSTNO in 36.
The first part of the line is completed with these specifica
tions (Figure 3-26, insert A). Because of the way lines are
formed, the end position for the *PLACE entry must be at
least two times the higher end position specified for a field
that is to be duplicated. This ensures that the last field
mentioned will not overlap the field preceding. In this case
the same fields are to be printed again on the second part
of the same line. Since the end position was 36, the sec
ond part of the same line must end at least in position 72
(two times higher than the end position for the field to be
duplicated). It is decided they are to end in position 86.
The second part of the line is formed by the *PLACE entry
(Figure 3-26, insert B).

RPG OUTPUT
IBM International BUSiness Machine Corporation

Program

Programmer Date

0 u: Space Skip Output Indicators
.1--- ~~

1 L
Field Name

e !t

Line Filename ~~ ~ ~
~ ~ en <{

~ .. ~ '00 .. ~
~

E ~ 0 0 0

~~f-
z z z 'AUTO .f

AND
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37

o 1 alI INIV IT I .. 11"1 12 Vi le; IMR ~IJ loz
o 2 a I~
o 3 a I~ ~ MIR 011 I'
o 4 a 11 , I~IIY. N"'"'
0 5 a I,*'p iliA 'rl~
o 6 a ~T['r'
o 7 a IplA :I~'E

I I I I I

I JOHN FITZGERALD 4758321 1 L_ _ _____________ ~

II;
1m

~ ,:::
"0
w

38 39

l3

B. Result of ·PLACE
entry

Using Different Spacing for Duplicated Fields

The second and third lines of the invoice do not have fields
to be duplicated. However, the fourth line of the invoice
requires that all fields be duplicated. Notice that different
spacing is required for the duplicated fields because a field
called DESC must be inserted between ITEMNO and QTY.

Figure 3-27 shows correction specifications. You want to
start with ITEMNO since it is the first field. ITEM NO is
specified as usual; the end position is given. Then *PLACE
is specified with the correct end position, 50 in this case.
These specifications cause the line to look like that in Fig
ure 3-28, insert A.

SPECIFICATIONS

" Commas ...
Yes
Yes
No

Positon No
in a:
Output ~ Record

0:

1 2

Page [Do,_

Zero Balances
No Sign CR -to Print

Yes 1 A J
No 2 B K
Yes 3 C L
No 4 0 M

Constant or Edit Word

GX21-9090 U/M 050'
Printed in U.S.A.

75 76 77 78 79 80

~~:;~f:ation 1 I. I I I I I

X = Remove
Plus Sign

Y : Date
Field Edit

Z : Zero
Suppress

40 41 42 43 «~.~~~50~~~~~WDW~50~~~~~~n~~ro 71 72 73 74

11~
15~
121_1
1311ll

o 8 a
..,

~~ la'J INlTl3 I:::\IA
o 9 a ~Ip I, IA IrlJ: Iql;
1 0 a In,lE 6 lr 1712
1 1 a ~

I(

~'I Figure 3-27. Specifications for Fourth Line of Invoice

.-/.

Controlling Printer Output 3-23

o 100

47535

47535 38 1.10

: 47535

41.80 ~ _ 47535 47535

41'80~ .. 47535 WOOL SOCKS, GR, SZ 9

, ~A' Line after first

38 1.10 41.80

47535 38 1.10 38 1.10 41.80

·PLACE

I B. Line after second
I ·PLACE

I C. Line after speci·
I fication of the
I DESC field

TOTAL ___ _ TOTAL ___ _

Figure 3·28. Fourth Printed Line

Now, the remaining three fields are specified and an end
position is given for each. *PLACE is entered after them
to signify that the above three fields should be duplicated.
Remember that when fields are duplicated, all information
from position 1 to the highest end position specified for a
field is used. In this case, positions 1 through 38 are ~upli·
cated and placed so that they end in position 95.

QTY, PR ICE, and AMOUNT are in positions 1 through 38,
but ITEMNO is also there since it ends in position 10. Thus,
all four fields are duplicated and placed so that they end in
96. Figure 3·28, insert B shows resulting formation of the
line. ITEMNO now appears three times, once in the DESC
field area where it should not be.

3·24

I n this example, we can specify the field DESC to end in
position 75. It will overlay the unwanted ITEMNO field
and thus get rid of it. Figure 3·28, insert C shows the line
as it will be printed.

For each job you do using *PLACE, you will have to cal·
culate exactly what happens when lines are formed.

Duplicating Constants

*PLACE can duplicate constants as well as fields. The same
specifications are used for both. Figure 3·29 shows the
specifications for the last line of the invoice. In this case
*PLACE duplicates a field and two constants. As you can
see, using *PLACE eliminates duplicate coding.

/'

/'

\

)

RPG
IBM International Business Machine Corporation

Program

Programmer Dale

0 u:: Space Skip Output Indicators

~~ -

At 1 o !t - "" ~ ~ Line Filename i ~ m <
~ ~~
I- r-;o"D 0

~ 0 0 0 E

~ 2.~r-
en z Z z

AND
3 4 5 6 7 8 9 1011 1213 1415 1617 18 19 20 2122 23 24 2526 27 2B 29 30

a 1 OIT N,V '_lr -IE D 12lD~ MIR ([1
0 2 a
0 3 a
0 4 a
0 5 a
0 6 a
0 7 0

a 8 0

0 9 0 IT 312 MIR Ll
1 0 0

1 1 0

1 2 a
1 3 0

OUTPUT

Field Name rr
a:

~ Ci
;3 5

'AUTO ~ ~
31 32 33 34 35 36 37 38 39

:<
i ~

i ~
c

Ie

h''''jf AlB
i*,P lA r IF=

SPECI FICATI ONS

:> Commas

Yes

I I Yes
End No
Positon No
in a:
Oulpul ..J

Record m
0:

1 2

Page [TIo,_

Zero Balances
to Print No Sign CR

Yes 1 A J
No 2 B K
Yes 3 C L
No 4 0 M

Constant or Edit Word

GX21·9C!90 U/M 050'
Printed in U.S.A.

75 76 77 78 79 80

::;~':.'ion 1 I. I I I I I

X • Remove
Plus Sign

V • Dale
Field Edil

Z = Zero
Suppress

4041 4243 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6B 69 70 71 72 73 74

I:U 'tr hI li:\ll 1$ I

1318
IQl5 I

I 1

Figure 3-29, Using *PLACE to Duplicate Constants (Last Line of Invoice)

Controlling Printer Output 3-25

Printing a Field Several Times on the Same Line

*PLACE can be used to print the same field several times in
the line. All you have to do is enter *PLACE along with an
end position for each time you want the fields duplicated.
If you want the field duplicated twice, you need two
*PLACE entries.

Assume that periodically a store prepares mailing labels for
each customer who has an account with them. They use
the labels when they send out special advertisements. The
mailing label has only name, address, and zip code on it.

0,
I

10
I

20
I

30
I

40
I

50
I

60
I

I NAME J I NAME

I ADDR I I ADDR

I CITY I I STATE I I CITY

I ZIP I

Figure 3-30. Mailing Labels

RPG OUTPUT
IBM International Business Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

I- ~~ vi

At 1
Field Name

o- m - ... !! ~
Line Filename = t ~~ ~~

! I- cl)
!! ~ ADD ~ ~ ° ° l5

~ ~~D
z z z 'AUTO ." '0

w

Since the label has to be only a few inches wide, the man
ager found he could print three labels side by side on his
120-print position printer (Figure 3-30).

You can see that each field needs to be printed three times
on each line. In the examples discussed so far, *PLACE was
used to duplicate fields only once.

Figure 3-31 shows the specifications for the first line.
NAME needs to be entered three times per line. The orig
inal field specification prints it one time: the two *PLACE
entries cause it to be printed two more times.

I
I

70
I

I

I

lSTATEI

ZIP I

80
I

SPECIFICATIONS

Commas

"
Ves
Ves

End No
Positon No
in a:
Output g
Record

ii:

I

I

I

Zero Balances
to Print

Ves
No
Ves
No

90
I

100
I

NAME

AD DR

CITY

110
I

I

I

120
I

I I STATE I
I ZIP I

GX21-9090 U/M 050'
Printed in U.S.A.

I 2

pagernOf _

75 76 77 78 79 80

~~:;~f:ation 1 I. I I I I I

No Sign CR - X = Remove
Plus Sign

I A J V = Date

2 B K Field Edit
3 C L Z - Zero

4 0 M Suppress

Constant or Edit Word

3 4 5 5 7 8 9 10 II 12 13 14 15 1517 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 43 «%~~~~W~~~M~~n~~OO~~~M~~"M~M 71 72 73 74

0 I 0 ASE' n 32 r25:1
0 2 0 NA 'itE. ,35
0 3 0 *p 'Arl~ .ill
o 4 0 *", [Ar 1,:- J.'l5

I Figure 3-31. Using *PLACE for Producing Mailing Labels

3-26

)

)

USING TWO PRINTER OUTPUT FILES IN ONE
PROGRAM

Two System/3 printers, the IBM 5203 Printer on the Model
10 Card and Disk systems and the IBM 2222 Printer on the
Model 6 allow you to produce two separate printer output
files on the same printer in a program (Figures 3·32 and
3·33). The forms can be narrower than standard forms and
are often special forms such as checks or invoices.

Primary tractor

A minimum of 17 print positions, between
the left carriage tractor and the right
carriage tractor, are not available for printing.

Figure 3·32. 5203 Printer with the Dual Feed. Carriage Feature

Figure 3·33. 2222 Printer with Dual Feed Tractors

I 53958A

Secondary tractor

I 54019A

Controlling Printer Output 3·27

Page of GC21-7567-2
Issued 24 May 1976
By TN L: GN21-5389

Model 10 Card System, Model 10 Disk System, and
Model 12

The feature of the 5203 printer that allows you to produce
two separate printer output files is known as the Dual Feed
Carriage Feature. The feature is available on 96, 120, and
132 position printers. One form is controlled by the left
carriage of the printer and the other form is controlled by
the right carriage. There is space between the right and left
carriage tractors that cC?~tains no form. When you are print
ing on two forms you lose at least 17 print positions
because no forms can be placed in this space (see Output
Format Specifications, later in this section).

Model 6

The 2222 printer on the Model 6 has dual tractor feeding,
a primary tractor and a secondary tractor. All 220 posi
tions of the printer are available for printing, that is, there
need be no positions lost between the primary tractor and
the secondary tractor.

The tractors that control the right-hand and left-hand forms
on the printer are adjustable. That is, the width of the
forms and the starting and ending print positions for each
form are variable.

To print two output files for one program, each of the two
printer files is considered a separate output file and must·
be described as such. These output files require special
descriptions on the File Description and Output-Format
sheets.

File Description Specifications

I
Model 10 Card System, Model 10 Disk System, and Model
.12: Figure 3-34 is a sample File Description sheet for the
Dual Feed Carriage Feature. The two output files to be
printed must be assigned to the device names PRINTER and
PRINTR2 on the File Description sheet (columns 40-46).
PRINTER is the device name for the left carriage of the
printer. The right carriage is assigned the device name.
PRI NTR2. Record Length entries (columns 24-27) for the
two printer files should be the same. Entries under Block
Length (columns 20-23) must be the same as Record Length
entries. You are responsible for ensuring that output to the
PRINTER device is confined to the left-hand form and out
put to the PRI NTR2 device is confined to the right-hand
form. You can easily layout your two reports using the
Printer Spacing Chart.

. File Description Specification

F File Type

File Designation -
End of File

Filename Sequence

File Format

line

~ ~ Block
~ ~ Length

~w~~

Record
Length

:)

Mode of Processi n9

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
.J

Organization w
or Additional Area ~

Overflow Indicator U

~~ -5
::: I- Key ~ield .~

~ g ~::~~~:n:n

Device
Symbolic
Device

File Addition/Unordered

Extent Exit ~umber of Tracks

~ for DAM for Cylinder Overflow
Z Name of Number of Extents en

Label Exit
1! Tape

.:l Core Index
Rewind

~
Condition

Continuation Lines Z
Ul·~

=> ~ K Option Entry ~
3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 4243444546 4748495051 52 53 54 55 56 57 58 59 6061 626364 65 66 67 sa 69 70 71 72 73 74

02 1~llslK FIT NP LJT rip IF loJct lrLlltt
Fh IT P Tl r- IF 1312 1 L~~ o 3 Ip RI11NIT J= IR
F~ TP T2

,... 11= 1. 3 12 ll~12 o 4 P R II 1M rr R 12
o 5 F

o 6 F

o 7 F

o 8 F

o 9 F

1 0 F

F

F
ZL IL OL 69 89 L9 99 S9 \>9 t9 ~9 19 09 6S lIS LS 9S SS \>9 t9 ~5 15 05 6v 8v Lv 9v SV vv tv ~v Iv OV 6£ 8£ Lt 9t St vt tt ~t It Ot ~ ~ a 9~ S~ v~ t~ ~l I~ O~ 6' 8' LL 91 5' vI tl ~I II 01 6 8 L 9 5 v t ~ I

Figure 3·34. File Descriptions for Two Printer Files on Model 10 Card System, Model 10 Disk System and Model 12 (5203 Printer)

3·28

"\
)

./

)
/

Model6: Figure 3-35 shows the File Description sheet
entries for the dual tractors on the 2222 printer. Th~ two
printer files are assigned device names TRACTR1 and
TRACTR2 on the File Description sheet (columns 40-46).
TRACTR 1 is the primary tractor (left-hand print unit) and
TRACTR2 is the secondary tractor (right-hand print unit).
Under Block Length (columns 20-23) for each file enter the
beginning print position for that file. Under Record Length
(columns 24-27) enter the ending print position for that
file. Print positions for TRACTR 1 and TRACT~2 cannot
overlap.

Output-Format Specifications

Spacing and skipping on the two forms are completely in
dependent. You can specify different spacing and skipping
for each output file. Spacing and skipping are entered in
columns 17-22 of the Output-Format sheet.

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

I Model 10 Card System, Model 10 Disk System and Model 12:
Remember, there are 17 print positions you cannot use,
because there is a space between the left and right carriage
tractors which cannot contain a form. This is important
when you are planning where to position your printing on
each form. The first character to be printed on the form in
the right carriage (PR INTR2) must be at least 17 positions
away from the last character on the form in the left carriage
(PRINTER). Suppose you decide to use print positions
1 through .80. Because the first character in the right car
riage must be at least 17 positions away from the last char
acter in the left carriage, print position 98 is the first avail
able position:

80 (End position of the form in the left carriage)
+17 (Number of print positions you cannot use)

97

Therefore, 98 is the first available position. If the length of
your print line is 35 characters, the last position for the
second form is 132.

File Description Specification

F File Type Mode of Processi ng File Addition/Unordered

File Designation Length of Key Field or Extent Exit N,,~I Tracks
f--

End of File
of Record Address Field In this example, TRACTR1 has 132 print (OverflOw

Record Address Type
positions; the form on the secondary

of Extents
Filename Sequence

Type of File Device r---
...J ape

File Format Organization Ui tractor has 88 print positions. All 220 ewind
Line or Additional Area ~

print positions are used in this case, no ~ c

~
N Overfl~g Condition

ei2 Block Record ~ (; positions are lost between tractors. Ul'~

~~
Key Field o~

Length Length ~t: Starting ~ c~ ~ 0.. C
g~ ~::, Location ~ "'-w~ ... K Option Entry II:

3 4 5 7 8 9 to tl 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74

o 2 Fir IN:P I,r flp J: lL~~ ll.(Z~ "'I 5K
o 3 F~ tiT ip J irll n ~ 1 lL 32 r'R IAr i~Rl
o 4 F II IJ-I tJlT 2 '" r: lLe13 i2.2fl rRI~ ',HI..!
o 5 F

o 6 OF "-
o 7 F

o 8 F \

o 9 F

1 0 F °

F

F
lL It OL 69 B9 L9 99 S9 t9 £9 19 19 09 6S as LS 9S SS t!i £9 lS IS os 6. 8p L. 9. SP » CP ZP Ip OP 6C 8C LC 9C SC PC CC ZC IC OC 6Z 8Z LZ 9Z SZ pZ Cl II Il Ol 61 81 LI 91 SI pi CI ZI II 01 6 8 L 9 S p C l I

I

Figure 3-35. File Descriptions for Two Printer Files on Model 6 (2222 Printer)

Controlling Printer Output 3-29

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

REYNOLDS INDUSTRIES, INC.
111 W. SECOND ST.

TELEPHONE
408-286-9100

SOLD TO

SHIPTO

SAN JOSE, CALI F. 95113

S. W. KINGS
498 RIVER STREET
SAN JOSE, CALIF. 94067

IMPERIAL DESIG~ HOMES
DIVISION OF S. W. KINGS
8343 BRANCH STREET
SUNNYVALE, CALIF. 95117

ORDER DATE

7/10/70
ORDER NO.

13826
SALESMAN

G. JONES

QTY.

96
40

350
200
175

INVOICE
NO.

13826
13827
13828
13829

ITEM
NUMBER

391468
411116
411132
411732
511117

CUST.
NO.

430975
431030
432450
434960

DESCRIPTION

OCTAGON BOX 4 INCH
TWINLITE SOCKET B
SOCKET ADAPTER BRN
SILET SWTCH IVORY
PULL CORD GOLD

INVOICE REGISTER
7/15/71

EXTENDED DISC.
AMOUNT AMOUNT

$ 471.58 $
238.96 4.78

57.70
208.62 4.17

$

UNIT PRICE

.23

.60

.32
1.20

.42

TOTAL

INVOICE
AMOUNT

471.58
234.18

57.70
204.45

FINAL TOTALS $12,263.97 $145.29 $11,118.68

Figure 3-36. Sample Invoice and Invoice Register

3-30

CUST. NO.

430975

SHIP DATE

7/15/70

EXTENDED
AMOUNT

$ 22.08
24.00

112.00
240.00

73.50

$471.58

/

)

Example: End-of-the-Month Billing

Assume that your company invoices its customers using
your data processing system. It is your responsibility to
prepare and print the invoices to be sent to the customers.
You are also going to keep an invoice register; a record of
every invoice that is sent out. Since you have a dual feed
printer, you will print both the invoice and the invoice
register at the same time. You might name your two out
put files INVOICE and INVREG.

The format of your output must be determined. In this
case, INVREG will have the standard length of 66 lines,
while I NVO ICE will have a nonstandard form length of 50.
Heading information is printed on the top of each report.
INVOICE uses a preprinted form for much of its heading
information. INVOICE has a 63 print position line and
INVREG has a 50 print position line. Figure 3-36, insert
A is a sample invoice and Figure 3-36, insert B is a sample
invoice register.

Since INVOICE has a nonstandard form length, it must be
defined on the Line Counter sheet. You will use line 43 as
the overflow line. Figure 3-37 shows a sample Line Counter
sheet. (Note that since I NVREG has a standard form length~
it does not have to be defined on the Line Counter sheet.)

Line Counter Specifications

L 10 11 12

Filename ~ 1
1i ~1i 1i ti ~ 1i ~.8 1i ~~ 1i ~~ 1i ~.! lJ !.8 .c ~.! ~.8 1i ~1i 1i ~.8 1i ~]

~~
.c

" E " E " E ~ 5 " E 2 ~ " E 2 § " E ~ § " E ~ § " E iij E " E 2 § " E iij E " E 2 § " E 2 § .!: ~ ~ § .~ ::J ...J ~ .= ::J .s :J .S ::J :J~ .5 ::J .S ::J tii .S ::J .5 ::J 6i .S ::J :J~ ...JZ LLZ ...J2 02 ...J2 UZ ...JZ UZ ...JZ UZ U2 ...JZ UZ ...JZ ...JZ UZ ...JZ ...JZ UZ UZ

-
Line !

~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 52 5354 5556 57 58 59 6061 62 63 64 65 66 67 6869 7071 72 73 74

Figure 3-37. Line Counter Specifications for INVOICE

Controlling Printer Output 3-31

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

RPG OUTPUT You also want to have headings printed on the top of ev~ry
page. Because you do these operations only when an over
flow indicator is on, you have to condition these operations
by the overflow indicator. Figure 3-38 shows the File De
scription sheets for Model 10 (Insert A) and Model. 6 (I nsert
B). Figure 3-39 shows the Output-Format sheet to print
headings at the top of ev~ry page. (Remember that skipping
and spacing on the two carriages are independent.)

IBM Internationa' BUlinea Machine Corporation

Note for Mode/10 and Mode/12 Users: Recall that the
right form (in this case INVREG) must be at least 17

. positions away from the form in the left carriage. Because
INVOICE will have a 63 print position line, you assign posi
tions 1-63 to it. INVREG is a 50 print position line and you
assign it to positions 81 through 130.

Program

Programmer

0
I---

Line

~
I-
E
~

3 4 5 6 7 8

0 1 oliN
o 2 0

o 3 0

o 4 0

0 5 0'"

~ 6 0

o 7 0

Filename

9 10 II 12 13

"'~I~

1 -

Date

~ Space Skip Output Indicators

e~ Field Name
o!!:

At 1 - .. ~ ~ ~ t
~~ ~ ~

I- clS
~

"ADIo ~
t

b ~ 0 0

~~ro
z z z ·AUTO

14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 31

1-1 12 ~ll lip
"'IR ~r:

H ~~~ llP
'"'R hV

Figure 3-39. Heading Specifications for INVOICE and INVREG

F -
Filename

Line

8-
~
E

.f

File Type

File Designation

End of File

Sequence

File Format

Block
Length

Record
Length

File Description Specification

Mode of Processi ng

Length of Key Field or
of Record Address Field

Record Address Type

Type of File .J
Organization w
or Additional Area ~

Overflow Indicator U
N -5

~ ~ Key Field .~
D:: a Starting ~
<" ~ Location W

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Core Index

Continuation Lines

Option Entry

File Addition/Unordered

Number of Tracks
for Cyli nder Overflow

Number of Extents

Tape

~
Condition

~ Ul-'!!!.-

~
3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 52 53 54 65 66 57 68 69 60 61 62 63 54 65 66 67 68 69 70 71 72 73 74

o 2 Fir NV
..... 7" ~f ,... Is:- 132 1 BI2 his:- IPR TIN [TE'R

o 3 Fir NV Hf:.[.,
,... 1= L~2. 1131, r~v IPR IrlN rrQ2

o 4 FIT NP IT !I [p I!:: F qb [9112 MF ~Iull
o 5 Fr- JI'C to1l\lc .,Ir Is:- 117 illl KIl,; 1M. ~~ ~2 Inr lc;IK ~l
o 6 F
o 7 F

@F
~ F

File Description Specification

F File Type Mode of Processing File AdditionlUnordered

File Designation Length of Key Field or Extent Exit Number of Tracks - of Record Address Field for DAM for Cylinder Overflow
End of File

Name of Record Address Type Symbolic Number of Extents
Filename Sequence Device Label Exit Type of File

.J Device Tape
File Format Organization w

Core Index ~ line or Additional Area ~

~ ~ N
Overflow Indicator U Condition

8- Block -5 Ul-'!!!.-
~ ~ Record ~ (; Key Field .~ Continuation Lines g '" Length Length ::::1-

Starting ~
~ § ~~ :l ~o ::J
~ .f ii:w ~:::: Location K Option Entry ~

3 4 5 6 7 8 9 10 II 121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 68 59 60 61 62 63 64 65 66 67 6869 7071 72 7374

o 2 FT NV , I~
,... J:'. I 1613 hlJ: Ur IRA Ir rr [Rll

o 3 FI ro. .. ,. roo 1= b,4 1 11~ f-oiw
'" V

Kr- It< ~ IIolL
o 4 Fr ~p ~T r[pJ:" !F qb ~~ IDll Sk CiJl
o 5 Fr ~\A AI!!. Jlr ~ 1.1; III 17R ~17 AT r:l;tt: ~h ID[r ~'j.(alii

r®F l F

Figure 3-38. File Description Sheet for End-of-Month Billing

·.3-32

)

)

Overflow and Fetch Overflow

1. When you are not using overflow indicators or line counter specifications, but are
allowing RPG 1\ to handle overflow automatically, ~ow many lines are assumed per
page? What is the first line printed? What is the overflow line?

2. Code the line counter specifications which are necessary to define a form of 50 lines
with the overflow line 8 lines from the bottom. What entries must also be made on
the File Description sheet?

3. When is the overflow indicator turned on and when is it tested?

4. Describe a situation where printing can occur below the overflow line.

5. How does the fetch overflow specification alter the normal program cycle?

6. Given the following information, supply the Fetch specifications, for the output
shown in Figure 3-40, which will prevent printing records on or over the perforation.

• Number or printing lines per page is 66. The overflow line is 58.

• There are seven total lines in all. Since all are conditioned by the same control
level indicator, they will all print when a level 1 control break occurs.

• Overflow should be forced if the overflow line is printed prior to beginning total
output .

• Total lines 1, 2, and 3, must print on the same page. Total lines 4 through 7
must print on the same page.

RPG OUTPUT SPECIFICATIONS

Review 3

GX21-9090 U!M 050'
Printed in U.S.A.

IBM International Business Machine Corporation

Program

~rogrammer Date

0 ~ Space Skip Output Indicators

~ e~
1 1 C -

~~ ~ ~
Line Filename ~~ ~~

! ... cil
~Dro 0

~ 0 0 0

~ .£.'!!'f-
~ z z z

AND
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 2B 29 30

o 1 O,p RIT I~T E'IR r 13 IL ,
o 2 0

o 3 0 'T 12 I, ,
o 4 0

o 5 0 if' 1112. It 1
o 6 0

o 7 0 'T 1112 it t
o 8 0

o 9 0 T. ~ t l
1 0 0

1 1 0 T' 2. Ll
1 2 0

1 3 0 T 11 Ll
1 4 0

• Figure 3-40. Total Specifications (Question 6)

Field Name ~,~

IJ End
a: Positon

~ ~ in
Output

'AUTO ~ ~ Record

31 32 33 34 35 36 37 38 39 40 41 42 43

T" TIA !l11 Rbl

- 2. , R~ tll-l

ry-'" Tl4 1_~1 Rlqj

T''"' riA 141 A~

T""" ,Tll I c\ I ~~

T'"' TA , t.,l R~

rrn TA , 71 R~

Commas

"
Ves
Ves
No
No

a:

g
0:

Zero Balances
to Print

Ves
No
Ves
No

1 2

pageDJOf_

No Sign CR -
1 A J
2 8 K
3 C L
4 0 M

Constant or Edit Word

75 76. 77 78 79 80

~~~~f:ation ,. /., I " I 

X c; Remove 
Plus Sign 

Y • Date 
Field Edit 

Z :::0. Zero 
Suppress 

«~~~~~50~~~~~~~~~50~~~~~~m~~H 71 72 73 74 

Review 3 3-33 



3-34 

Forms Alignment 

7. Why is accurate forms alignmentt important? 

8. What entries must be made in the RPG II specification sheets to repeat printing the 
first heading line of a report until the forms have been correctly aligned? 

Editing 

9. Choose the correct edit codes for the following punctuation. 
a. 1,342,650.00CR (for zero balance, print .00) 
b. 1,246,900- (for zero balance, leave the field blank) 
c. 1694824.25- (for zero balance, leave the field blank) 
d. 12/13/71 

10. Construct an edit word for a 12-digit account number so that it will print out with 
the format XXX XXX XXX XX-X. 

11. On the Output-Format sheet, specify the edit code and any other entries necessary 
to print out a dollar amount with the format $**1,234.56CR. The field must end in 
position 50. If the tield is zero, print 00. 

/ 



) 

*PLACE 

12. What is the function of *PLACE? 

13. I n the example shown, is *PLACE used correctly? If not, why not? 

RPG OUTPUT SPECI FICATIONS 
IBM International Business Meehlne CorporatiOn 

GX21·9090 U/M 050· 
Printed in U.S.A. 

75 76 77 78 79 80 
Program 

Programmer Date 

1 2 

page'[Dof_ ~~~;~f:ation I I I I I I I 

~ Space Skip Output Indicators 

e~ 
I 1 c -

Filename ~~ ~ ~ 

Ii. ~ ~~ And 
~5S 

"Aofo" ~ < ° ° ° 0 R z z z 

A~ro 

o 
~ 

Line 

F;,1d Nom' , ..... ' -En-d-~ &> Commas Zero Balances No Sign CR X = Remove 
to Print Plus Sign 

I I 
Ves Ves A J V = Date 
Ves No B K Field Edit 
No Ves C L Z = Zero 
No No -0 M Suppress 

·AUTO 
Constant or Edit Word 

r-r-r-1--T-r--t-r--,-+-----i.,. ~ Positon 

~ 5 ~utPut ~ 
~ ~ Record ~ 

3 4 5 6 7 8 9 ,0 " '2 13 14 15 16 17 18 '920 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 3637 38 9 4041 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 5859 60 61 62 63 64 656667 68 69 70 71 72 73 74 

01 O~IRJIN~ In 11~13 ~~ 
o 2 0 

o 3 0 

o 4 0 

14. 

2b. 
37 

Write the output specifications to print two mailing labels in a row using *PLACE. 
The first label ends in print position 25, the second in60. Each mailing label will 
have three lines and look like this: 

NAME 
ADDRl 
ADDR2 

(25 characters) 
(25)-

(18) ZIPCODE (5) 

Dual Printer ,Output, Files 

15. What does the use of the dual feed printer allow you to do? 

16. What limitations exist when designing forms for use with the Dual Feed Carriage 
Feature on the 5203 printer? 

17. How do you distinguish between the two feeds on the RPG II specification sheets? 

Review 3 3-35 



F 
-

Line 

Answers To Review 3 

Filename 

1. Sixty-six lines are assumed per page. First line printed is 06 and the overflow line 
is 60. 

2. 

File Type 

File Designation 

End of File 

Sequence 

File Formal 

Block 
Length 

Record 
Length 

File Description Specification 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File ..J _ 
Organization w 
or Additional Area ~ 

Noverfl~g 

~ ~ Key ~ield .~ 

~ g ~=:~~:n:B 

Device 

Extent Exit 
~ for DAM 
!:!! 
Z Name of 

Symbolic Ci! 
Device 

~ 
Label Exit 

Core Index 

Continuation Lines . 

K Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 

~ File _ 
Condition 

U1-~ 

~ 
:l ~ < 

3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 2021 222324252627 28 29 30 31 323334 35 36 37 38 394041 4243444546 4748495051 52 5354 55 56 5758 59 6061 626364 65 66 67 68 697071 72 7374 

01 21 F,YIKCLii\ii-,-i I I r"I I I I I FJI~ I rJ~ r 11 I/IPlOITlM1TI';IR I I I I I I I 1 I I I I I I I 1 I I 

L -
line 0. 

~ 

] 
Filename 1 

1l ~~ 
" E .S :::J ~ § ..JZ u..Z 

1 
1l 6 t ~ 

o~ " E " E .5: :::J ..J ~ .S ::J ..JZ OZ ..Jz 

Line Counter Specifications 

~~ ~ ~~ t ~~ ~ ]f ~ J:l 

~~ " E 1 5 " E 3~ " E " E 
~i .= j .E j .S :I uz ..JZ -'Z uz ..Jz 

10 11 12 

~! ~ ] I ~ 0; t 1!~ ~ 1!~ ~ ~11 C J:l .c 
2 § .5 § " E fi E ~ § " E ~~ " E ~ § .5 ::::I 6i .S § .S :::I .S ::I uZ ..JZ uz ..Jz -,Z uz -,z -'z uz 

3 4 5 6 7 8 9 1011 1213 14 15 1617 181920212223242526272829 3031323334353637383940 414243444546474849505152535455565758596061·62636465 666768697071 72 73 74 

1 1 LlpRlrlNlr ~I~~~ ~Iwb~ 
1 2 L 
_~~~~-~4-~~~+-~-+4--~~~+-~-+~~-+~+-~~4-+4-+4-+-~~+-~-+4-~-+4-~~~4-~-+4-+-~~4-~-+~~~~ 

L 

3-36 

Form length is 50 lines and overflow line is 42. Any overflow indicator OA-OG or 
OV must be entered in columns 33-34 of the File Description sheet. L must be 
entered in column 39 to indicate that Line Counter specifications are used~ 

3. If the printer has printed on the overflow line either during'totalor detail output, 
the overflow indicator specified in the File Description sheet is turned on. The over
flow indicator is tested and overflow output performed only after total output. 

4. a. When more than one detail or total line is printed during one cycle and a line 
other than the last total line is printed on the overflow line. 

b. When the last detail line for a control group prints on the overflow line, the total 
lines for that group will print below.the overflow line. 

~. The overflow indicator is tested prior to printing each line specified with fetch over
flow rather than waiting until all total output has occurred. If the indicator is on 
when tested, overflow output is performed immediately and then the line specified 
is printed. 

/ 



) 

) 

) 

6. F in column 16 of lines 1 and 7 of Figure 3-40. F in column 16 of line 1 causes 
forms to advance if the overflow indicator is on, assuring that total 1 will not print 
below the overflow line and total 3 will not fall over the perforation. Since totals 4 
through 7 must all print on the same page and will not all fit below the overflow line, 
enter F in the specifications for total 4 to cause a skip to the next page if the over
flow indicator is on. Since totals 5-7 must print on the same page as total 4, no fetch 
specification should be entered for them. 

7. Forms must be aligned accurately so that printing is correctly positioned on each 
page and so that printing occurs exactly where you want it, not above or below. 

8. There must be -at least one line on the output sheets conditioned by the 1 P indicator. 
A '1' must be ~ntered in column 41 of the control card. 

9. _ a. A 
b~ K 
c. M 
d. Y 

10. Blank spaces show where digits are to be placed and &'s show where blanks go. The 
entir~ word must be enclosed in quotes. 

RPG OUTPUT SPECIFICATIONS GX21-110110 UIM ow 
Printed In U.S.A. 

IBM Internl.ion" 8ulinftl MechiM Corpor •• ion 

1 2 

Page [D of_ 

75 76 77 78 79 80 

:~;~:Cltion I I I I I I I Pr01lrlm 

Progrlmmar Dltt 

0 ... @i Space Skip Output Indicators 
Commas Zero Balanc .. No Sign CR - X • Remove 

r--- (;}j .. to Print Plus Sign 
Field Name a!!: 

At 1 I 
Ve. Ve. 1 A J V • Date 

~ ~ ; = Ve. No 2 B K Field Edit 
Line Filename j - ~ 

End No Ve. 3 C L Z • Zero 

. ~ ~ :( 

~ ~ 
Positon No No 4 0 M Suppress 

~ ... 
5 In a: ... ~Dro l; 

0 ~ ~ Output ::J Constant or Edit Word E ~ .:: 
o R « z ·AUTO ~~ Record 0; 

~ ~~~ 
~ 

3 4 5 6 7 8 9 10" 12 13 14 15 16 17 18 1920 21 22 2324 2S 26 27 28 29 30 31 32 33 34 35 36 31 38139 40 41 42 43 «%~g~~~~~~~~~~~~ro~~~~~~~MMro 11121374 

o 1 0 

o 2 0 Air IrT IN'" 11[~ 
, 

& i& & - l 

o 3 0 

o 4 0 

o 5 0 

o 6 0 

o 7 0 

o 8 0 

o 9 0 

1 0 0 

1 1 0 

1 2 0 

1 3 0 

1 4 0 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

1 9 0 

2 0 0 

0 

0 

0 

0 

0 

Answers To Review 3 3-37 



11. The A edit code will zero suppress and insert commas, decimal points, and the:credit 
sign CR. The asterisk entered in columns 45-47 will cause all places zero suppressed to 
be filled with asterisks. The dollar sign must be specified on the line following the 
edit code. When printed in position 38, it will come right before the asterisks. 

RPG OUTPUT SPECIFICATIONS GX21·9090 UiM 050· 
Printed in U.S.A. 

IBM International BusineSI Machin. Corporation 

Program 

Programmer 

0 
I---

line 

! 
E 
~ 

3 4 5 6 7 8 

0 1 0 

0 2 0 

0 3 0 

o 4 0 

n . n 

3-38 

1 2 75 76 77 78 79 80 

Date 
Page [D0f_ ~~::~;:ation I I I I I I I 

... E Space Skip Output Indicators 
Commas Zero Balances No Sign CR - X - Remove 

to Print Plus Sign ~~ 
1 L 

Field Name ttl Ves Ves 1 A J V - Date 
e - Ves No -"" 2 8 K Field Edit 

Filename ;; t ~! Ell End No Ves 3 C L Z ~ Zero 
Ii 0< a: Positon No No 4 0 M Suppress > lI: co « 
I- '" ~ 

!l a; in 

ADD t "0 .:. 

~ ~ ::: ° 0 0 8 U Output Constant or Edit Word 
o R « z z z ·AUTO ~~ Record 

r;:;:N"o i>: 

9 1011 12 13 14 15 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6B 69 70 

AIMh NTA 5~ 1*' 
39 11$' 

12. The function of *PLACE is to easily code the printing of duplicate information on 
the same output line. *PLACE places information from print position 1, through 
the highest end position previously defined for a field into the print positions indi
cated by the end position in the *PLACE entry. 

13. It is not correct. The end positon in the *PLACE specification is not high enough. 
The duplicated information will overlay the field called ACCTNO. The end position 
on the *PLACE line should be at least twice the highest end positi~n previously; 
specified for'that record. 

14. Two labels must be printed. Therefore, for each line you must specify the original 
field and a *PLACE entry, which will cause the contents of the original field to be 
duplicated. 

71 72 73 74 

/ 



-...,\ 

) 

RPG OUTPUT SPECIFICATIONS 

Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

IBM International Busine" Machin. Corpor.tion 

GX21,9090 U/U 050' 
Printed in U.S.A. 

I\-p_ro_gr_am ________ -.-______ -Il Punching 

I Programmer Date I Instruction 

Graphic I 

Punch T 
I I I I Card Electro Number 

I I I I 
1 2 

Page [0 of_ 

75 76 77 78 79 80 

~~;~f~cation 1 I, 1 I I I I 

'AUTO 

Posi.ton 
in a: 
Output :::J 
Record C:l 

ii: 

p Commas Zero Balances No Sign CR - X· Remove 
to Print Plus Sign 

Ves Ves A J V = Date 
Ves No B K Field Edit 
No Ves e L Z a Zero 
No No 0 M Suppress 

Constant or Edit Word 

o 
-

S Space Skip Output Indicators 

@"§ 
t:: ~ 

I 1 0 .... ....... 
~! Filename ~ t 

~ ~ '" « 
And 

I- ci) 
~ r;:;-fof-o ~ <1 0 0 0 

~~fo 
z z z 

Field Name 

Line 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3D 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 

o 2 a 'MA. M~ 2.~ 
o 3 a *p LA I,.. r: b(2l 
o 4 a 'n II rlt; 
o 5 a At". rH~I' 2g 
o 6 0 *p fA ',. 1= bClJ 
o 7 0 1"1 11 oj;-
o 8 0 JJ. UI.:;1 is 
o 9 0 ~r p" 1"'11') z; 
1 0 0 itlD Iii rt b0 
1 1 0 

1 2 0 

1 3 0 

1 4 0 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

1 9 0 

2 0 0 

0 

0 

0 

0 

0 
U 1£ O£ 69 Il9 L9 99 59 1'9-&9 19 19 09 65 85 £5 95 55 t5 t9 l5 15 05 61' 81' £1' 91' 51' "" &1' ll' II' 01' 6& 8& L& 9& 5& 1'& && l& 1& 0& 6l 8l a 9l 5' 1" &l U Il Ol 61 81 LI 91 51 1'1- &1 II II 01 6 8 L 9 5 t & l I 

15. The dual feed carriage allows the printing of two independent reports simultaneously. 

16, A minimum of seventeen print positions must be left blank between the two output 
forms. 

:117, Model 10 Card System, Model 10 Disk System, and Model 12: The only difference 
is that the device name on the File Description sheet for the left carriage is PR INTER 
and for the dght carriage is PRINTR2, 

Model6: The only difference is that the device name on the, File Description sheet 
for the left tractor is TRACTR 1 and, for the right tractor is TRACTR2. 

Answers To Review 3 3-39 



3-40 



) 

) 

Chapter 4. Card Output Operations 

CHAPTER 4 DESCRIBES: 

Puncned output. 

Printing on cards. 

Using one file for both input and output. 

Selecting the stacker for output cards. 

Merging input and output file cards. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Using the printer to produce a simple listing. 

Using control fields. 

RPG II object program cycle for detail and total operations. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Coding for punching a combined or output card file; summary punching. 

Formatted printing and unformatted printing (*PR I NT) on cards. 

Uses and coding for combined files. 

Stacker selecting input, combined, and output card files. 

Coding for merging input and output card files. 

Note: You can use the review questions contained in Review 4 at the end of this 
chapter to test your comprehension of each topic in the chapter. Questions are 
grouped according to the topic to which they apply. Answers follow the review 

questions. 

Card Output Operations 4-1 



INTRODUCTION 

Thus far, in this manual, the program output usually has 
been a printed form or report. Punched cards generally 
have been used as a source of input data. However, cards 
can be used for output as well as input. This chapter des
cribes RPG II coding for output operations using the IBM 
5424 MFCU, available on the System/3 Models 10 and 15, 
and the IBM 2560 MFCM, available on the System/3 Model 
150nly. 

You might want to have card output for many reasons. 
Perhaps you want to generate a new file or change an input 
file in some way, such as by reformatting the records, add
ing data, deleting data, adding new records, or deleting un
wanted records. The output you choose might be data 
punched on the cards, printed on the cards, or both. I n
formation can be printed on cards for identification, inter
pretation of the punched data, or any other purpose you 
desire. You can punch and print data on blank cards or on 
cards that already contain data. You can also direct cards 
to a specific stacker or more output file cards with cards 
from an input file. 

PUNCHING AND PRINTING ON CARDS 

Punching and printing on individual output cards are con
trolled separately. Punched cards need not be printed; . 
printed cards need not be punched. 

Punched Output 

Punched output can be used to: 

• Create a file of cards that is different from the input card 
file 

• Add new records to a· card file 

• Add fields to input records 

• Punch a s~mmary card from a group of input cards 

RPG II coding for punched output is similar to coding for 
printer output. Ei~her the primary hopper (device name 
MFCU1 or MFCM1) or the secondary hopper (device name 
MFCU2 or MF·CM~) can be used as the output device; the 

other hopper is used as the input device. In some cases, 
punching can be done on the input cards themselves (see 
Using One File for Both Input and Output, in this chapter). 
Remember, however, if only one MFCU hopper is used, it 
must be M FCU 1 (Model 10 Card System only). 

4-2 

On the Output-Format sheet, you can specify heading, de
tail, and total output, just as you can with a printer file. In 
some cases, you may want to punch only total records by 
summing the data on several input records and punching a. 
separate card for the total. This is known as summary 
punching. Do not specify an edit code for punched output 
unless you want to have punctuation punched -into the out
put cards. 

Printing On Cards 

It is advantageous to print the same information on the 
card as was punched on the card. This way you can easily 
interpret what information is recorded on the card. Also, 
printing information on the card makes it easier to recreate 
a card that is damaged to the extent that it cannot be read 
by the MFCU or MFCM, or duplicated by the data recorder. 

Although you may print the same information on the card 
. that is punched on the card, it is not always'necessary to 

do so. You may print entirely different fields from those 
that are punched. 

The 96-column card has space at the top for four lines of 
printing (Figure 4-1). Each line can contain 32 printed 
characters, for a total of 128 print positions. 

The 80-column card can be printed only on the MFCM 
Model A 1 with the optional print feature. Up to six print 
lines can be used. Each line can contain up to 64 printed 
characters, for a total of 384 print positions. 

The MFCM print heads can be set to 'print in 25 different 
print line positions, from above the 12-punch position to 
below the 9-punch positions (Figure 4-2). The print heads, 
numbered 1 through 6, must remain in sequence from top 
to bottom, with print head 1 at the top. Therefore, with 
six print heads installed, print head 1 cannot be set below 
line 20 and print head 6 cannot be set above line 6. Inter
mediate line positions are located on and between each row 
of punch positions. Print-position 5 (between the 11-row 
and O-row) should be avoided, if possible, because the feed 
wheel may cause some smudging of characters printed in 
that position. In punched fields, printing in even-numbered 
line positions should be avoided because punching may 
obliterate some characters. 

/ 



) 

) 

Formatted Printing (MFCU) 

Using formatted printing, you may print a field or constant 
in any of the 128 print positions available on a 96-column 
card. The first three lines are the lines usually printed. The 
fourth is printed only if necessary because printing on the 
fourth line increases considerably the amount of time needed 
to print, and thus increases the time needed to do the job. 

Printing lines 

I 2 3 • 5 Ii 7 .. 9 10 11 12 13 .. 15 16 17 18 11 20 21 Z2 23 24 25 2& 27 28 2t 30 31 32 

»~»~n~»~~~o"~~~uu~~~»Y"~~~~~~uuul 
U~~""ro~nnNnnnnn~~H"U""~""~~~~""" 

V.H~~mm~m~m~~Mm~~~~~mMM~~~m~~~m~ 
B B 
A A 
8 8 
4 .4 
2 2 

~I 23. 567.'~"~UU~~~R~ro~nnu~HV~H~~U~ 
A 
8 

A 
8 

4 4 
2 2 

~»~»~n~»~~~o"~~~U~~~~»~"~~""~~UU"~ 
A A 
8 8 
4 4 
2 2 

1 U""""ro~nnNnnnnn~~Huu""~""~fl~~~""l 
11M 3700 

Figure ~-1. Printing Lines on a 96-Column Punch Card 

,;b, , . , . , . ".""".,,",,.,," >u" .. " "u,"".»»""'iuu~ .... *u." .. ,~ ... '; .. ""."~.",.,,,,,,,,,,,,,,,,,,,,,, """ "''''1 

00000000000000000000000000000000000000000000000000000000000000000000000000000000 
123456789WnUn"~ffinm~ro~nn~~~v~~~~~n~~$~~~~~~~"~UUq"~~~~M~~~~~~~u~~~~~~~ronnnM~mnnn~ 

111 111111 11 111111111 111 1111111111111111111111111111111111111 111 1111111 1111111111 

22222222222222222222222222222222222222222222222222222222222222222222222222222222 
12345678910nUn"~ffinm~ro~nn~~~v~~~~~n~~$~~~~~~~"~UUq"~~~~M~~~~~~~u~~~~~~~ronnnM~mnnn~~ 

33333333333333333333333333333333333333333333333333333333333333333333333333333333 
~ 

44444444444444444444444444444444444444444444444444444444444444444444444444444444 
123~56 78910nUn"~ffinm~ro~nn~~~vn~~~~n~~$~~~~~~~"~UUq"~~~~M~~~~~~~~~~~~~~HronnnM~m~nn~ 

55555555555555555555555555555555555555555555555555555555555555555555555555555555 

66666666666666666666666666666666666666666666666666666666666666666666666666666666 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2D 21 2223242526 21 2.29 3a 31 32 33 34 3536 37383940 41 42434445464748495051 525354 55 5~ 57 ~8 S960 61 6263 6465 6& 6H0E9 70 71 12 73 71 757& 77 7879 eo 

7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

8888888888888888888888888888888888888888888888888888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 888888888888 
I 2 3 4 5 6 1 8 9 10 1112 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 3D 31 32 33 3435 36 37 38 3940 41 42 43444546 474849 50 51 52 53 54 55 56 57 58 59 ED 61 62 636465 66 6768 69 70 11 12 73 74 75 76 77 18 79 80 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 

"- liM 

• Figure 4-2. Printing Lines on an aO-Column Punch Card 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14-
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Card Output Operations 4-3 



Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

For each field or constant you wish printed by the MFCU, 
you must make the following specifications on the 
Output-Format sheet: 

1. If a field is to be printed, enter the field name in col
umns 32-37. 

2. Enter * in column 40 to indicate that the field is to 
be printed not punched. 

3. Enter any end position from 001 to 128 in columns 
41-43. 

4. If a constant is to be printed, enter the constant in 
columns 45-70. 

For example, to print the fields on the card stmwn in Fig
ure 4-3, the specifications in Figure 4-4 lines 06-10 are 
necessary. You indicate punchiRg of these fields by speci
fying an end position witPaut the asterisk (see Figure 4-4, 
lines 02-05). If yo.u-1ntend to punch fields and print fields, 
you need two specifications per field. If you have seven 
fiel,(;k'fo be both punched and printed, you need 14 specifi
cations. 

Because printing and punching are two separate functions, 
it is possible to print a field without punching it and punch 

RPG OUTPUT 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 ~Space Skip Output Indicators 

I--- ~~ Field Name 

I 1 0-
-", e ~ 

Line Filename :; :u 
~~ ~i5 And 

! ~Ji e rp;7ito ~ ! 0 0 0 

~ ~~ro 
z z z 'AUTO 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 2324 2526 27 28 29 30 31 32 33 34 35 36 37 

o 1 oC AR leo ulT Ie 
o 2 0 ~A ME 
o 3 0 AD DR 
o 4 0 AC CiT NO 
o 5 0 SAL 
o 6 0 NA ME 
o 7 0 ~D DR 
o 8 0 l4C crr H~ 
o 9 0 B!AL 
1 0 0 ~Ir All' ~~ 
1 1 0 

1 2 0 

1 3 0 

1 4 0 

Ifii 
IUJ 

Xl 
;3 
~ 

38139 

JAN IC'E T SWENSON 
• 2 3 .~!5 , 7 8 , 10 11 12 13 lot 15 •• 17 '8 19 20 21 z.z U 2. Z5 21 27 2' 2t 30 31 32 

CHARLESVILLE.IDAHO· 74632448' 
n~"H~»»~~U~"~"~UU~M~n~"~n~"~~u~U 

p'17458 
""~""ro~nn~~n"nn~~n~«"HV""~~n"«"" 

OK 
~M"~~mm~m~m~~MmmU~~~mM"~m~m~~~m~ B...... .... ...... . ... B A·· ... · ... · .•• .... ..A 

8 • •• • -·-8 
4 •• ••••• ••• 4 2 .•. . •• • •• ...2 1 ~~~~~~7~ •• • • ···········1 B..... .~"~Uu~.~~~ro~nn~~~vHH~~nB 

A • ••• • A 
8 • • •• 8 
4 • • ••• •• ••• 4 
2.-. •• • • • • 2 
1". .•• •• 1 
~nu"»~»»~~u~«~unuu~M~n~""~~"~~"~~B 

A A 
8 8 
4 • 4 
2 •• 2 

1 """""ro~nn~~nnnn~~n"u""v""~~n"u""1 
IBM 3700 

Figure 4-3. Formatted Printing on a 96-Column Card 

a field without printing it. If you punch and print the same 
field, you may put each in different positions. In other 
words, you may format the punched fields in a different 
way than you format the printed fields. 

SPECIFICATIONS 

..h 
Commas 

v 

Yes 
Yes 
No 

Positon No 
in a:: 
Output g 
Record 

0: 

1 2 

Page [[Jo,_ 

Zero Balances 
No Sign CR -to Print 

Yes 1 A J 
No 2 B K 
Yes 3 C l 
No 4 D M 

Constant or Edit Word 

GX21·909().2 U1M 050' 
Printed in U.S.A •. 

75 76 77 7B 79 SO 

~~;~'~cation 1 I. 1 1 1 1 1 

X • Remove 
Plus Sign 

Y • Date 
Field Edit 

Z = Zero 
Suppress 

40 41 42 43 «%%~~~~~~~~~~~~~ro~~~M~~~~Wro 71 72 73 74 

2~ 
lI-CZ 

48 
Sll-

~" 2QJ 
~10 IISS 
~~ ~11f 
1K1(lJ lil 
~l 1218 

Figure 4-4. Specifications for Punching and Printing on a Card (Formatted Printing - MFCU) 

4-4 



) 

) 

) 

Formatted Printing - MFCM 

, Using formatted printing, you can print a field or constant 
on any six of the 25 print lines available on an SO-column 
card. For each field or constant you wish printed by the 
MFCM, you must make the following specifications on the 
Output-Format sheet: 

1. 

2. 

3. 

When printing a fiE~ld, enter the field name in columns 
32-37. 

Specify a print' head number' (1-6) in column 41. 

Specify a print end~position(01-64) in columns 42 
and 43. (The leading zero is required when specifying 
print positions 01-09.) 

4. When printing a constant, enter the constant in 
columns 45-70. 

• Figure 4-5. Formatted Printing on,an ~O-Column Card 

For example, to print the fields shown in Figure 4-5, the 
specifications shown in Figure 4-6 are necessary. Coding 
lines 02 through 05 cause the fields to be punched. Coding 
lines 06 through 10 cause the fields and a constant, 
BALANCE, to be printed. As you can see, two specifications 
are required for each field that is to be both punched and 
printed. In order to obtain the desired printing results, the 
MFCM print heads must be aligned mechanically prior to 
running the program. 

Note: The fourth line of printing also could have been 
printed using print head 4, with print heads 5 and 6 set to 
line positions lower on the card. 

Because printing and punching are two separate functions, 
it is possible to print a field wit~out punching it and to 
punch a field without printing it. 

Card Output Operations 4-5 



RPG OUTPUT SPECIFICATIONS GX21-9090 U/MOSO· 
Printed in U.S.A. 

IBM Internltlonal BUltnlSS Machine Corporation 

I Program I Graphic I I I I Card Electro Number 
1 2 75 76 77 7B 79 BO 

Punching 
pageDJOf_ ~~;~f:ltion I I I I I I I I Programmer Oat. I Instruction Punch I I I I 

0 ~ Spac. Skip Output Indicators 

f; D;> Commas Zero Balances No Sign CR, - X .' Remove 

- e~ 
to Print Plus Sign 

,Field Name 

At 1 I 
Ves Ves 1 A J V - Date 

e - Ves No 2 B K Field Edit -.. ~ ~ 
Line Filename ~ t 

~ ~ 
End No Ves 3 C l Z • Zero 

~ ~ a: Positon No No 4 0 M Suppress 

! .... ci5 
~ 

II 0; in a: ." ..:. f;:7ifo ~ !l 
0 0 ~ 8 U Output ~ Constant or Edit Word 

~ ~~f-
< z z ·AUTO ~ ~ Record 

it 
AND 

3 4 5 6 7 8 9 10 11 12 13 1415 16 "7 18 19 20 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 «~~O~~~~~~~~~D~~~~~~M$~~~~ro 71 72 73 74 

0 1 Ot,.. lAIR Inlr. hIlT Ir ~ll 
0 2 0 NIA IM'f 12~ 
0 3 0 lAin In'R l/.jlo 
o 4 0 ~~ Ir rr IN~ ILjIA 
0 5 0 IBIAll 1514 
0 6 0 I~IA I~F: il121(lj -
0 7 0 lAin ID~R i2121e 
0 8 0 Air ICiT N~ :~~ISl 
0 9 0 5~17 '11= Illil lillN ""'IF I 

1 0 0 IRIAI! IA l51~ltj 1-1-1-
1 1 0 

1--1-- I-- -

• Figure 4-6. Specifications for Punching and Printing on a Card '(Formatted Printing - MFCM) 

Unformatted Printing (*PRINT) - MFCU'and MFCM 

Using formatted printing, recall that if you wish to both 
punch and print a field, you must have two entries per field 
on the Output-Format sheet: a punch entry and a print 
entry. If you want several fields to be both punched and 
printed, there is a great deal of coding involved. 

RPG II has a special reserved word, *PR INT, which allows 
you to punch and print fields and constants with less coding. 
When *PR INT is specified, it causes all previous fields 

described for the record to be printed. Use of *PRINT is 
known as unformatted printing. 

Figure 4-7 shows the use of the *PR INT specification. 
NAME, ADDR, ACCTNO, and BAL are to be punched. 
Following these field names in columns 32-37 is the entry 
*PR INT. This entry causes the previous four fields to also 
be printed on the card (see Figures 4·8 and 4-9). 

4-6 

Using *PRINT with the MFCU causes fields and constants 
. to be printed in positions corresponding to the punch posi· 

tions. For example, ACCTNO is punched in positions 41·48 
and also is printed in positions 41-48. 

On the MFCM, there is not space to print 80 characters on 
one line. Therefore, data punched 'in columns 1-64 is 
printed in print positions 1·64 by print head 1; data punched 
.in columns 65·80 is printed in positions 49-64 by print 
head 2 (Figure 4·9). 

The word *PR INT can be used only once for a record and 
must be entered after the description of all fields that are 
to be both punched and printed. Suppose, instead of print· 
ing all four fields (NAME, ADDR, ACCTNO, and BAL), 
you want to print only NAME and ACCTNO. In this case, 
the entry *PRINT must follow NAME and ACCTNO. 
ADDR and BAL must be described after the *PR INT entry 
(Figure 4·10). 

Columns 7·22 and 39·74 must always be left blank on the 
*PR INT specification line. 

/ 

/ 

/ 



I 

.; 

RPG OUTPUT SPECIFICATIONS 

ip Output Indicators 

II i 
il1> Commas Zero Balances 

to Print 

1 1 
Field Name 

Ves Ves 
Ves No 

End No Ves 
a: Positon No No 

II en in a: 
~ 0 0 0 ;3 5 Output ~ Cons1 « z z z 'AUTO ~ ~ Record ~ 

21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 139 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 

N~ HI}: IL~ 
~In Inlo ~~ 
IA II IN '~IR 
BIAlt 1514 
~Ip Il<lr INIT 

Figure 4-7. Punching and Printing on a Card Using *PRINT 
(Unformatted Printing) 

Figure 4-9. Unformatted Printing on an 80-Column Card 

Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

JANICE T SWENSON CHARLESVILLE. 
1 2 3 • 5 • 7 • • 10 11 12 13 ... 15 II 17 18 It 20 21 Z2 U U ZS 21 27 21 21 30 31 32 

IDAHO 74632448,017458 
»~~~n~U~~U~44~"~«u~~"nU"H"H"~~"U44 

nN"~~mm~m~m~~~m~~~~~m~Mwm~w~~mm~ B...... .... ...... . ... B A·· ... · ... · .•. •... ··A 
8 • •• • • 8 
4 •• ••••• ••• 4 2 ... • • • • •• ...2 1 ...... · .. · · .... ··.··.·1 
B~~~~~. .~"~UU~MVqa~~UnNHHvHH~VUB 

A • •• • • A 
8 • • •• 8 
4 •• ••• •• ••• 4 
2 • ••• •• 2 
1· • •• •• • 1 
B»~~~n~u~~U~44~"~«u~~"nU""~"9~~"U44B 

A A 
8 8 
4 4 
2 2 

1""VN"~nnnU~u"nn~~n"u""v""~~"""""1 
111(3700 

Figure 4-8. Unformatted Printing on a 96-Column Card 

Card Output Operations 4-7 



RPG OUTPUT SPECI FICATIONS 

Output Indicators 
Commas Zero Balances 

~ 

f' 
., to Print 

At 1 
Field Name 

Ves 

I 
Ves 

Ves No 
End No Ves 
Positon No No 

&l in a: 
0 

;3 Output g Constan 
z z z 'AUTO .t: Record 

;E ii:: 

22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38139 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

NIA IMIJ:' 121~ 
!4lr Irlr IN I,.. I~I~ 
~Ip IQiT ItJlT 
1A1~ InlR II.JIQ 
1~l4 I~~ 

Figure 4-10. Using *PRINT to Specify Fields When Some are 
Punched Only 

You may use any indicator in columns 23-31 to condition 
the *PR INT entry. That specification will then be per
formed only when the condition set by the indicator is 
met. For example, according to the specification in Fig
ure 4-11, line 05, the fields will be printed only when 10 
and 21 are both on at the same time. 

Editing A Field Printed on the Card 

Any field that is to be printed, using either formatted or 
unformatted printing, can be edited. This, of course, will 
make the.printed field easier to read and understand. 

Editing a field to be printed on the card is done in the same 
way as editing a field to be printed on the printer. How
ever, editing should be kept at a minimum so that the length 
of the printed field won't be considerably larger than the 
length of the punched field. Zero suppression or merely re
moval of the sign are often done since they do make the 
printing easier to read, but still keep the printing in a one
to-one relationship with the punches. 

4-8 

RPG OUTPUT SPECI FICATIONS 

Output Indicators .. 
ip Commas Zero Balances 

1(:; .. to Print 

I 1 
Field Name 

I 
Ves Ves 
Ves No 

End No Ves 
And Positon No No 

&l in 

~ 0 0 0 
;3 Output 2 Cons' 

z z z 'AUTO j3 Record ~ 

21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 

NIA IMIJ: 12~ 
Air InlR l5~ 
~IE IE 1~ltl 

II~ blJ ~Ip IRIT IN IT 

Figure 4-11. Conditioning *PRINT Entry 

USING ONE FILE FOR BOTH INPUT AND OUTPUT 

I n your experience with RPG II, you have used card files as 
input files and output files. Suppose, however, you wanted 
to punch into the same card that was read into the com
puter. Is it possible to use input and output files to do this? 
No, input cards are only read and output cards are only 
punched or printed. What you need is a combination of the 
two. The RPG II language allows such a file combination. 
This type of file is called a combined file. 

Note: In this discussion, only the MFCU is used for refer
ence; unless noted otherwise, the MFCM can be used in the 
same way. 

Punching Into the Same Card that is Read 

A company keeps a daily record of the amount of each item 
sold. At the end of the week the daily amount sold for each 
item is punched into the card in six different fields, one ·field 
per day. These cards are then used in a program which totals 
the daily amount sold for each item and punches that total 
into the same card that contained the daily'amounts. ' 

Figure 4-12 shows the format of the data card which is read. 
Each card contains the end of the week date (DATE), the 
item number (ITEMNO) and daily amounts sold (FL01 
through F L06). Figure 4-13 shows the same card after it 
has been punched. TOTAL is the field punched after the 
total amount sold has been ca'lculated. 

/ 



) 

i " ~::E· ~~I~:~::'·~ ~::. :~: -c:: I:-rL:; 
~ 1 2 r3 14 r5 ~ 
i~) ~~ j' " " " " · " · .,." "" .. """"",." " ; 
~ 51 61. ~ 

33 34 35 )6 37 3' 3t 40 4' 42 U .... 5 " .7 ..... 50 51 52 53 ~ 5, ,. 57 sa " '0 It I' U It 
B B 
A A 
8 8 
4 4 
2 2 

1 ""uu"~nn»unnnnn~~u"NH"~""~~»""""' 
11 .. 3700 

Figure 4-12. Combined File Card Read 

) 
~ ~ I ~ B . DATE ITEMNO LD FLO FLO FLO FLOB 

; 1 2 3 4 15; 
B 123. "7 ~uu~.n~~~vunUHHpn»~~nB 

~LD FLO TOTAL I A:B 
~ 5 6 
~u~~»v»»~~~"""«n""~~U"~"HgH"~~»""~ 
A A 
B 8 
4 4 
2 2 

1 "Muu"~nn»unnnnn~~u"N"""""~~"""""' 
1 ... 3700 

Figure 4-13. Combined File Card After Punching 

Card Output Operations 4-9 



To describe this program, you will need four types of 
specifications sheets: File Description, Input, Calculation, 
and Output-Format. On the File Description sheet, you 
define the file as a combined file with a letter C in column 15. 
File Description entires for a combined file are the same as 
those for an input file except for column 15. (See Figure 
4-14, insert A.) Cards will be both read and punched on 
MFCU1. With the exception of the device name, specifica
tions in Figure 4-11 apply to the MFCM, as well. 

On the Input sheet (Figure 4-14, insert B) you should de
fine only the fields which are to be read. Remember the 
TOTAL field is not in the cards when the cards are read 
and therefore, is not described on the Input sheet. Since 
tf:le TOTAL field is to be created during the job, it is de
fined on the Calculation sheet (Figure 4·14, insert C). 

The Output~Format sheet (Figure 4-14, insert D) describes 
o'nly the information that is to be punched into the card. 
Here again you describe the TOTAL field. 

Note: Be sure the card columns to be punched contain 
blanks, to prevent problems with invalid punch combinations. 

File Description Specification 

F 
r---

Filename 

Line 

!'l. 
~ 

~ ·f 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Block 
Length 

Record 
Length 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

~~~:n~:a~/!~ ~ 
or Additional Area "8
Overflow Indicator U

>l5 :---5
::::: t- Key ~ield .~
Ci:' a Starting x
~ :::: Location W

Device
Symbolic
Device

File Addition/Unordered

Extent Exit Number of Tracks

~ for DAM for Cylinder Overflow
Z Name of Number of Extents in

Label Exit
~ Tape

~ 'Core Index Rewind

~
Condition

Continuation Lines
~

Ul'~

:::>
~ K Option Entry ~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 2 Fis JiM AR IE MIF"r Jil
o 3

o 4

o 5

o 6

o 7

® F

RPG INPUT SPECIFICATIONS
IBM International BUSIness Machine Corporation

Program

Programmer Date

I 0 Record Identification Codes
l'l Field Location

r--- ~ 1 2 3

i
c.

j'a Line Filename ~ ai
~ II;

Iii
~

Position Position - !1 Position From To ~ 'E ~e~ ~ e ~ ~ Cl

j r-f-r-§ ! '0 ~.! ~~6 b ~ o R Z Z U U Z U

f-;"N"D
3 4 5 6 7 8 9 10 11 12,13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

0 1 liS 1M IrlA R'ol AlA ~1
0 2 I '1 It,
0 3 I 7 1.14
0 4 I : J I \ 15 llR
0 5 I '. 19 ,,'2
o 6 I 23 ')~
0 7 I 27 ~~
o 8 I .~ , ":1'"

@ I 3.'5 .=lls
~

Figure 4·14 (Part 1 of 2). Specifications for Reading and Punching Each Card

'4-10

GX21·9094 U/M 050'
Printed In U.S.A.

1 2 75 76 77 78 79 80

Page CD of _ ~~~~;~f:ation I I I I I I· I

Field

c Indicators

~
0

0

~ 0 ;2-b . .,
Field Name. 'in -;; .~ Qi 'E' 0 ~ U-LL

! Zero
.5 g' Plus Minus or g] "5 :s '0 Blank

.~

.3 ro~ -;;
Cl :;;u u:

52 53 54 55 56 57 58 59 60 61 62 6364 65 66 67 68 69 70 71 72 73 74

DA TIE
r

~ '" ~F i'nll
I~ 1= nl~

~~ I nl~

1m 1= 014
In< ... nlJ:i
I~F' nib

)

)

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Busines. Machine Corporation
1 2 ., 75 76 77 78 79 80

Programmer Date
Page OJ of _ ~~~;~f:ation I I I I I I I Program

C Indicators Result Field
Resulting

~ Indicators

i--- 0_

AL Jd

11 Arithmetic
-'0::

:E = Plus TMinuSf Zero =0 Factor 1 Operation Factor 2 Comments

~3~ ~ ~ Compare
Name Length 1>211<211-2 Line aa: g ~

E E ~ ~ 0 ~ u - Lookup(Factor 2) is

.E 85 .g z a :I: High Low Equal
3 ·4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 c IJ:" IL InlL ~1~ln II J I 'MIL
o 2 c I~I' Inl2 lAlnlo rr~ trlAIL
o 3 c IFlt I"I~ lAlnD h"~ ITIAl!
o 4 c IFII !I'll" lADID II II MIL
o 5 c IJ:'I, In~ IA In In rrlo ITIAIL

.© I~IL l"lb IAIDlo C II JII IAll
n I

RPG OUTPUT
IBM Intern.tionll Business Machine Corporation

Date

0 ~ Space Skip Output Indicators

I-- ~~ Field Name

At 1 0--.,. ~ ~
Line Filename :; t

~~ ~ M
! ~~ ~

~~ ~ ~ 0 0 0 E
,*~'o

z z z ·AUTO .e

II lJ JIM Il~
Iorol,.. I IA
... 1,. !...IA
h"1A. LIlA
IT IIIR IL
fp;'" ''''IA

SPECI FICATIONS

1 2

Page OJ of_

~ Zero Balances Commas No Sign CR -
1M "

to Print

Ves Ves 1 A J

I~ Ves No 2 B K
End No Ves 3 C L
Positon No No 4 0 M

Xl in

~ ;3 Output Constant or Edit Word
." Record
"C Ii: w

GX21·9090 UiM 050·
Printed in U.S.A.

75 76 77 78 79 80

~~~;~f~cation I I. 1 I 1 I 1 

X = Remove 
Plus Sign 

V = Date 
'field Edit 

Z IS Zero 
Suppress 

3 4 5 6 7 B 9 10 11 12 13 14 15 1617 18 19 20 2122 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 4243 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 11 o ~I'IIM~ IAIRln !n I I rlJl1 I I I I I I I I 

~@ 0 I I I I I I I I .1..1_I,I..l 8 J 1415 llUIII"\IL 
n I I I I I I I I I I I I I I I I 

Figure 4-14 (Part 2 of 2). Specifications for Reading and Punching Each Card 

Punching into a Blank Card in the File 

You have just learned how to use a combined file when you 
wish to read and punch the same card. What if you wish to 
read several cards and then punch another card in the same 
file?· Remember any time you want to read and punch cards 
fr~m the same fih~, that file must be defined as a combined 
file: . 

Assume that a company which keeps a weekly record of 
items sold, uses these records at the end of the month to 
determine the quantity of items on hand. For each item, 
four different types of cards are read (Figure 4-15). 

1. 

2. 

3. 

4. 

I I I I I I I I I I 
I I I I I I II I I 
I I I I I I I I I I I 

Onhand, which contains the number in stock at the 
beginning of the month. 

Issues, which contains the number sold during the 
month. There is one of these cards for each week. 

Receipts, which contains the number added to stock' 
through reorder. 

New On hand, which is blank. After calculations have 
been performed to determine the number on hand, , 
this number and the date anda code are punched into 
the card. This card, when punched, will be used as 
next month's Onhand card, and will be in the same 
format as the current Onhand card. 

Card Output Operations 4-11 

;( 



Each of these card types is identified by a code in column 
96 (see Figure 4·15). (This code would be column 80 if 
the MFCM were used.) 

p."~~wm~m"ma"~maQMM~mMM~mum~m~m~ 
B B 
A A 
8 8 
4 ITEMNO DATE INSTOK 4 
2 2 

~I 13.1171'~"UUu~.n~u~~U"""HVHH~~H~ 
A A 
8 8 
4 4 
2 2 

~"~.HUHH~~UO«U"U".~~U"~"H~H"~~Q""~ 
A 0 A 
8 W 8 
4 0 4 
2 , , 0 2 

1 IS II 17 .. I. 70 71 7Z 73 ,.- 71 71 77 71 71 10 .. II U" II .. 17 .. " to " ., n •• tI~' 1 

.... 3700 

Onhand Card 

p."~~wm~m"m"~~maUMM~mMM~mum~m~m~ 
B B 
A A 

: ITEMNO DATE ISSUES ! 
2 2 

~I 13.117"~"UUu~.n~u~~U"""HVHH~~H~ 
A 
8 
4 
2 

A 
8 
4 
2 

~"M.HUHH~~UO«U"U".~~U"~"H~H"~~Q""~ 
A '7 A 
8 W 8 
404 
202 

1 IS .. 17 .. I. 70 71 71 73 7. 71 71 77 ,. 71 10 .. II .3 .. II II 17 .. It to " t2 n ••• ~, 1 

.... 3700 

Issues Card 

Figura 4·15. Four Card Types 

4·12 

p."~~wm~m"maa~maQMM~mM"~mUm~m~~~ 
B B 
A A 

! ITEMNO DATE RECPT 
'8 

4 
2 2 

1 
B 
A 
8 
4 
2 

UUUd.nW~~~U""H~VHH~~H~ 
A 
8 
4 
2 

B
1 "M»HUHH~~UO«U"U".IO~q"~"H~U"to~Qfl"B1 

, 0:' 
A I A 
8 W 8, 
404 
2 . 0 2 

1 II II 17 .. I. 70 71 71 73 ,. 71 71 77 71 71 10 " II II .. II .. 17 .. " to " '1 .3 .. "~ 1 

.... 3700 

Receipt Card 

p."~~wm~mamaa~maQMM~mM"~mUm~m~~. 
B . 'B 
A A 
8 e 
4 4 
2 2 

~I 13.117 •• ~nUUUd.nW~~~U""HH"H"IO~H~ 
A A 
8 8 
4 4 
2 2 
1 ' " 1 
B 33 M » HUH 3t ~ ., U 0 •• U " U •• 10 II II n ... " H P U It 10 .. Q '~ B 

A , A 
8 we 
4 Q4 
2, 02 

111 .. 17 .... 70~7Z73,.7I7I777171IO .. IIU~ .... ~ ... to .. t2n .. "~1 
.... 3700 

New Onhand Card 

/ 



Again, you will ne~d four types of specification sheets to 

) 

write your program: File Description, Input, Calculation, 
and Output-Format. On the File Description sheet, you 
must enter the filename, file type, and device (see Figure 
4-16, insert A). Since this file is both read and punched, 
the file. type ~ust be C to denote a combined file. 

On the Input sheet, you must describe all four card types 
and assign record identifying indicators. These indicators 
will be used later to condition those operations which are 
to occur only when a specific card type has been read. 

These cards must be read in a certain order. The onhand 
card must come first, the new on hand (blank) card must 
come last. The issues and receipts cards may be in either 
order, but must always be in the same order for any pro
gram. For this program, assume that receipts cards follow 
issues. Remember to indicate that cards are to be in a cer
tain sequence by using numeric sequence entries for all card 
types. These entries will direct the program to check for 
sequence. Figure 4-16, insert B, shows input specifications 
for this program. 

On the Calculation sheet, you define the calculations 
(Figure 4-16, insert C) which must be performed to deter
mine amount on hand. The record identifying indicators 
assigned on the Input sheet are used to condition calcula
tions. For example, only when an issues card is read (02 is 
on) will number sold (ISSUES) be subtracted from INSTOK. 

File Description Specification 

F File Type Mode 01 Processing File Addi.tion/Unordered 

File Designation Length 01 Key Field or 

~ 
Extent EXit. Number 01 Tracks - 01 Record Address Field for DAM lor Cylinder Overllow 

End 01 File Z Name of Record Address Type 
Symbolic ill Numberol Extents 

Filename Sequence 
Type 01 File Device Label Exit 

..J Device :il Tape 
File Format Organization w .:: Rewind 

Line or Additional Area -1l Core Index 
~ 0 

c 
C N 

Overflow Indicator ~ Condition 
~ ~ Block Record !o<: (; 

..---- 0 UH~ 
0: Key Field .~ Continuation Lines g Length Length ::::1-

Starting ~ 
~ 

~~ ;) ~g :::l 
~ itw Location K Option Entry ~ 

) 3 4 5 7 8 9 , 0 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 3334 35 36 37 38 39 40 4 I 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 sa 69 7071 72 73 74 

±I FI"IUlNld-,IRlpl ~p F I R~ I Iql6 I I II MI~IL 1l!1 I I I I I 
~F IIII I I ~ I I ~ I I I I I I I I I I I I I I 

I L .. .L 

RPG INPUT SPECIFICATIONS GX21 ·9094 UIM 050' 

For the M FCM, change 96 to Printed in U.S.A. 

IBM Internatio 

I Program 
80 in these positions and 

I I I Card Electro Number 
1 2 75 76 77 78 79 80 

ling Graphic 
Page [001_ ~~~~;~I:ation I I I I I I I I Programmer change the device name. Iction Punch I I I I 

I g 1 Record Identification Codes Field 
11 Field Location 

\ Indicators - ] 1 2 3 

~ 
.g 

i pO~ion 
c 0 ~ ~ ... ." :E-o 

Line Filename Z ';:: 0 ~ 'in Field Name ] .!!"ii "0 

0. ::§ ~ ~ ~ 0: 
~ u..U: J Zero 

> Jl ~ Position ~ Position 
~c 

From To .. ~~ Plus Minus or l- i ·l "E ~ e ~f5 :::; E "0 

i~ 
Blank 

~ ~ 
2122124 

i!! g ~§ ~~ ill .~ ~ 
"0 

ro :-;;-- ~ S <5 
-.; 

20 ~u it c u:: 
t-;" 'Nrc 

3 4 5 6 7 8 9 10 1 I 12 13 14 15 16 17 18 1920 2526 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45'46 47 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 65 66 67 68 69 70 71 72 73 74 

0 1 I 1\1 1"IRlp fzllLl ~11 F?lh ~,.., 

o 2 I 1 IS r I-
I'" 1\1 

o 3 I q 11~ "A :Tlt; 
o 4 I 1; 213 ~1 NS rrl"'liK 
o 5 I ~12N tll2 ~~ ~I 
o 6 I 1 Is r I t:.11' N 
o 7 I q 111.1 I"'I,A IT IE 
o 8 I 15 212 ~r 5S IIJ E. ~ 
o 9 I 

,..,. 
.t"~ Fill, rR V .. 1."1 I\! 

1 0 I 1 8 'I- 1'1 NII"\ 

11 I q llLi .I:'A ,TIE 
1 2 I !15 'I:> li~ /=Ir IPT 
@ I rl141 ~"I Alb ~ 

T 

) 
-, Figure 4-16 (Part 1 of 2). Specifications for Reading and Punching Combined File Cards 

Card Output Operations 4-13 



RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed In U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

c Indicators 

Factor 1 Operation Factor 2 

Line 

Date 

0 LL Space Skip Output Indicators 

~I r-- Field Name 1(1 

At L c - II -... 

j! Line Filename ;. Q) 
8. 1\ a: 

~ ~bl 
~ 

~ 0; 
l- I ADD ~ 

Ii; 
l5 85 

] ~ 0 0 

o R z z z 'AUTO ~~ f;:"N'D 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

0 I °rJ "1 IN TH iRP "B f?jl~ 
o 2 0 1 J ~"'J N

iA 

o 3 0 nA rrl~ 
o 4 0 IN ~rr "IK 
@ 0 

-

Result Field 

Name 

Commas ... 
Yes 
Yes 

End No 
Positon No 
in a: 
Output ~ Record n: 

12 

Page [00'_ 

Resulting 
Indicators 

1 2 

pagerno,_ 

Zero Balances No Sign CR to Print -
Yes I A J 
No 2 B K 
Yes 3 C L 
No 4 0 M 

Constant or Edit Word 

75 76 77 78 79 80 

:~:~'~~tion 1 1 1 1 1 1 I 

Comments 

Printed In U.S.A. 

75 76 71 78 79 80 

:~:~':.tion 1 1- 1 1 1 1 I 

X ., Remove 
Plus Sign 

Y • Date 
Field Edit 

Z = Zero 
Suppress 

40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

Is 
lLlLI 
~13 
~Ib 'I(l ~ 

:--
""'I~ ..... - For the MFCM, change 96 to 80. 

I 

Figure 4·16 (Part 2 of 2). Specifications for Reading and Punching Combined File Cards 

On the Output-Format sheet (Figure 4·16, insert D) you 
must show the fields which are to be punched. Since only 
the blank card is punched, punching occurs only when 04 
is on. Because the card punched will be used as next month's 
Onhand card, ITEMNO, DATE, INSTOCK and a code must 
be punched. 

When To Specify a Combined File 

How do you know whether to describe a card file that must 
be read into the computer as an input or asa combined file? 
If you remember these basic rules you will have no trouble 
deciding. 

1. If the file contains cards that are to be both read and 
punched, it must be a combined file. 

2. 

4-14 

If cards in the file are to be stacker selected on some 
basis other than card type, the file must be described 
as a combined file (see Stacker Selection, Selecting on 
a Basis Other Than Card Type). 

STACKER SELECTION 

Stacker selection is the means by which you can separate 
certain cards from all others in the file. If stacker selection 
entries are not made, all cards automatically fall into speci
fic, predefined stackers: 

MFCU1: Stacker 1 
MFCU2: Stacker 4 
MFCM1: 
MFCM2: 

Stacker 1 
Stacker 4 (Model A2) or Stacker 5 (Model 
A1) 

Note: Unless stated otherwise, this discussion applies to 
both the MFCU and the MFCM. 

/ 

/-



Input and Combined File Cards 

) I nput file cards are stacker selected by input specifications. 
Combined file cards can be stacker selected by either input 
or output specifications. 

Selecting on the Basis of Card Type 

Stacker selection by input specifications must be on the 
basis of card type. This means you may separate all cards 
of one type from the input file by specifying a special 
stacker into which they should be stacked. 

Suppose you want to create a monthly list of all items in a 
retail store. Three card types are used: one for new items, 
one for discontinued items, and one for all other items. 
The manager wants to take all cards describing discontinued 
items out of his file. He can do this by specifying the stacker 
into which the card type is to be selected. The specification 
in Figure 4-17, insert A, line 02, will separate the discontin
ued item cards (card identified with a D in the last column) 
from the other cards by putting them in stacker 2. 

Notice that the OR relationship was used in describing the 
three card types. When stacker selection is done with the 
OR relationship one rule must be kept in mind: each card 

)'~ type will fall into the stacker indicated for it. For example, 
Figure 4-17, insert A, shows the stacker selection entry 2 
for the second card type. The other card types have no 
stacker selecton entry. They are, therefore, stacked in 
stacker 1 if they were entered in the primary hopper or in 
stacker 4 or 5 if entered in the secondary hopper. According 
to Figure 4-17, insert B, card type 02 falls into stacker 2, 
card type 03 falls into stacker 3. Where does card type 01 
fall? It will fall into either stacker 1,4, or 5 depending 
upon the device used and the hopper in which the file was 
entered. 

Selecting on a Basis Other Than Card Type 

Suppose you wish to stacker select input file cards on some 
basis other than card type, such as the result of calculations, 
the results of matching records, or the conten'ts of an input 
field. FC?r example, assume that the cards which contain 
information concerning new, discontinued, and available 
items in the store also contain the amount on hand at the 
end of the month. In addition to listing all items, records 
of items which need to be reordered are selected to a 
separate stacker. The critical reorder point occurs when 
there are 25 items or less left on hand. (This, of course, 
does not apply to discontinued items.) Thus, in the cal
culations, ONHAND is always compared to 25. If the 
amount is equal or less than 25, the item needs to be re
ordered. All cards describing items to be reordered are to 
be separated from the others in the file by stacking them 
in a special stacker. 

Where would you specify the stacker select entry that 
would do this? There are only two possibilities - Input 
sheet or Output-Format sheet. Remember that input cards 
can be stacker selected on the I nput sheet on the basis of 
card type only. In our example, not all cards of anyone 
type will describe items that need to be reordered. There~ 
fore, the selection is not on the basis of card type and can
not be specified for an input card on the Input sheet. This 
leaves only the Output-Format sheet on which to specify 
this stacker selection. But since our file is not an output 
file, how could it be specified on the Output-Format sheet? 
Remember that a combined file serves for both input and 
output. Therefore, a file from which cards are to be 
stacker selected must be defined as a combined file. 

Card Output Operations 4-15 



RPG INPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

.Program 

Programmer Date 

I il Record Codes 
Field Location 

2 3 r---

Line ~ Filename I~ § 
15 

IJlh 
Position 

II§ 
.j Position 

II§IJ 
Position 

III§ 
From To 

Ii "'0 !A- I! i 
iA IN" "0 

121 22 23 ~. 25 34135 36 37 44 45 46 47 3 4 5 6 7 8 9 10 11 12 13 ',4 20 126 127 2B 29 30 31 32 133 48 49 50 51 

10 1 II 1i\lIV It"-N lilR r~A rll 91b ~N 
10 2 I r"'IlR ~2 qlb Ir-'n 

~;!~i-.··-•. 10 3 II OIR ~3 qlb Ir-Io-'i 

o 4 I lL Is 
o 5 I I Ib 112 
o 6 I I ~13 312 
o 7 I !313 ~Is:t 

-I r,'" I i3iq 141 t:@I- L

--

-----'--
_ For the MFCM, change 96 to 80. 

RPG INPUT SPECIFICATIONS 
IBM I 

GX21-9094 U/M 050' 
Printed in U.S.A. 

1 2 75 76 77 78 79 80 

Page [I] of _ ~~~~;~f:ation I I I I I I I 
I 

Field 
Indicators 

Ij 
Field Name I~_~ ~:ro 

III 
Plus IMinus 

Blank 

52 53 54 55 56 57 58 5960 161 62 63 64 16566 167 68 69 70 171 72 73 74 

DE IplT 
1 I ... A-Il: ,., N 

I"'IE :f;~ 
1'1.,.. Nrl lA Min 

iDA iflE 

GX21-9094 U/M 050' 
Printed in u.s A. 

Program I Graphic I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Punching 
Page [I] of_ 

Program I I I I I I I Programmer Date \ I Instruction Punch I I I Identification , 
I j Field Location Field 

1 
Indicators 

~ 

'1" ~\ Il§IJ 
j 

, 

Line 

Ii 
Filename ~I§ 

i iii 
Field Name 

:~~ro 
Position 

J 
Position j§ From To I Plus Minus 

ro "Rr- iii ] II§ j Blank 

IA Nio 
3 4 5 16 78910"'2'31 '4 1'5 1'6 17

1'8 19 20 21 22 23 24125 126 27 28 29 30 31 
1
3233 134 35 36 37 38 44 45 46 41 4B 49 50 51 '52 53 54 55 56 57 58 159 60 61~ ~4 165 66 6758 169 70 71 727374 

1011 IItr "I .. t21LL ~!b roN , .. " ~N IH:IY }ol~ 

i
O 12 II kR (lJ12 ~ib ~n 2 

1

0 13 II 'rtR ~!-~ ~h ("'/"'1 ~ 
:014 II 1 5 ID~ PT 
10 15 II I.. 112 IItr EM INn 

10 16 II 1~ l~ 2. IDII= S,.. 
:017 II 33 BB ~I'" 111\ n 

I~B ) II ;q ~l ID~ TF 
...J _ 

I Figure 4-17. Statker Selecting Cards in an OR Relationship 

4-16 



Figure 4-18 shows the entries which are necessary to stacker 
select all cards (except discontinued) cards) which contain 
25 or less in the ONHAND field. The file would be de-

) scribed as a combined file by placing a C in column 15 of 
the File Description sheet. 

card types by input specifications and others by output
format specifications. However, one card type should not 
have both types of stacker selection specifications. If it 
does, the input entry is ignored. Furthermore, if you are 
punching or printing on combined file cards that are also 
to be stacker selected, the stacker selection entry must be 
on the Output-Format sheet. 

'\ .. 

) 

Figure 4-18, insert A, shows that the ONHAND field is 
compared with 25. If the compare is equal or less, in
dicator 10 turns on to indicate that the item should be 
ordered. Indicator lOis then used on the Output-Format 
sheet to condition the stacker selection entry (Figure 4-18, 
insert B, line 01). When 10 is on (there are 25 or less of 
the item left) and the card is not a discontinued item (in
dicator 02 is not on), the card is selected into stacker 2. 
All other cards go into stacker 1. 

Rules for Stacker Selecting Cards from a Combined File 

Combined file cards can be stacker selected by both input 
and output-format specifications. I nput stacker selection 
is based on card type alone; output stacker selection can 
be on any other basis. In fact, you can stacker select some 

Stacker Selecting Output File Cards 

Output file cards are stacker selected by' output specifica
tions. For example, stacker selection by output specifica
tions can be made on the basis of results of calculations, 
matching records, content of fields, and error conditions. 
Output stacker selection can be based on card type, but 
card type selection is usually done with input specifications. 

Consider an end-of-the-month inventory program that: (1) 
finds the balance on hand for each item,(2) determines if 
and when an item should be reordered; and (3) finds any 
items that are overstocked. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM I.,ternattonal BUSiness MAchine Corpor,tion 

12 757677787980 
Program 

Programmer Date 
Page OJ of _ ~~~;~f:ation I I I I I I I 

C Indicators Result Field 
Resulting 

~ Indicators 

~ 0_ 

AL At 

c 
Arithmetic 

-'0:: 
Plus IMinusl Zero =0 Factor 1 Operation Factor 2 .g :t Comments 

~~~ Name Length ~~ Compare 

Line 0 a:.~ g ~ 1>211<211=2
E ::. II) Lookup(Factor 2)is
~ 8 5- ~ 0 0 'u -

z z o ::t: High Low Equal
3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o '_d C I ~NI~lAINIDI I I I r1jMPI 2151 I II I I I I II II I I I I lbj Il~ 11111111111111
@c I I 1'1 I r II T I I II I I ITT T T If T I I 1'1 I I I I I I lIilllllllllll

RPG OUTPUT SPECIFICATIONS GX21-9090 U/M 050-

IBM Interl"lational BUSiness Machine Corporatton

1 2 75 76 77 78 79 80

Programmer Date ~~~;~f:ation 1 I, 1 I I I I
Program

Page OJ of_

0 ~ Space Skip Output Indicators

f f;;> Commas Zero Balances No Sign CR X = Remove

I--- ~~
to Print Plus Sign

I L
Field Name

Yes Yes 1 A J Y = Date
0- I I ~~ ~ ~

Yes No 2 B K Field Edit

line Filename End No Yes 3 C L Z = Zero
~ -jj III « And 0:: Positon No No 4 D M Suppress

~ ~~ ~ ~ in 0::
1- "A Co 0 0

0 0 0 8 U Output g Constant or Edit Word
j ~.!!-

OJ :t z z z 'AUTO ~ ~ Record
Q:

AND
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1'1.1 05IEIL~UrI J)2 I I 11t?S tJ~, I II II III II I III I I I 111111 I I I II I I I I I
@a 111111 I I I I I I I I II I I I I III I I I I I I I-I 1111111 I I I
,I , I 1 I I I I I I I I I I I I I I I

Figure 4-18. Stacker Selection on the Basis of Calculations

Card Output Operations 4-17

Two files are used: an input file and an output file. The
input file contains three types of cards (Figure 4-19):

1. Inventory Balance cards, which contain the number
in stock ,at the beginning of the month, and the max
imum and minimum quantities which should be kept
in stock.

2. Issue summary cards, which contain the total number
issued during each week. Since this is an end of the
month job, there may be several of these.

3. Receipt cards, which contain the number added to
stock through reorder.

Each item must have a balance card. The other two cards
are optional. The output file contains blank cards.

For each item, the total number in stock will be calculated
from information on the input cards and then punched into
a blank o~tput file card along with all other fields found on
the balance card. The format of the output card must be
the same as the input balance card, since this output card
is used as the balance card for next month's inventory.

Before the balance on hand is punched into the blank cards,
the amount is compared to the maximum and minimum
quantities in stock established for each item to determine
reorder procedure. As a result of the comparison, four con
ditions could occur:

1.

2.

3.

4.

If the amount in stock is zero or back-ordered, the
item should be reordered immediately.

If the amount is greater than zero but equal to or
. below the minimum, normal reordering procedures
should be followed.

If the amount is between maximum and minimum,
the item does not need to be reordered.

If the quantity is greater than the maximum, the
manager should be notified of the overstocked item.

Instead of putting all newly punched balance cards into
one stacker, it would be more convenient, when preparing
to reorder, if they were stacked into different stackers:
one stacker for items requiring immediate attention (re
order immediately or greatly overstocked), one for items
to be reordered normally, and one for items which need
not be reordered. To separate them, you specify different
stackers they could go into on the basis of the amount in
the INSTOK field.

4-18

I 2 3 .. 5 6 7 8 9 10 11 12 13 '4 15 16 17 19 19 2021 U 23 z.t 25 26 27 28 29 3031 32

97 ..ge-!9'"1OO 101 ta2 103 104 105 106 107 108 log 110 111 112 tl3 114 1T5 H6 117 118 119 120 121 122 123 124 125 126 127 129
B B
A
8

4 ITEMNO
2

DATE INSTOK MAX

A
8
4
2 ,

B

,
8 9 10 11 1213 " 15 t6 1718 19202122232' 25 26 27 28 29 30 31 32 B

A A

: MIN !
2 2 , ,
Bn~~~"~»~~~~«~~a~U~~~~~MM~~»~~~~HB

A ~A
8 W 8
4 04
2 02

, ~"~""ronnnu~nnn»~~~~ue"~~"~~nn""~'
181013700

Inventory Balance Card

1 2 3 .. 5 6 7 • 9 10 11 12 13 '" 15 16 17 18 19 20 21 Z2 23 U 25 26 27 28 29 30 31 32

A
8
4
2

ITEMNO DATE ISSUES
A
8
4
2

~I 23. '67 •• ~"~U~U~~~uro~unN~nnHn~~n~
A
8
4
2

A
8
4
2 , .,

B~~~~"~»~~~~«~~a~u~~~~~MM~~"~~~~HB

A A
8 W 8
4 04
2 02

, ~"67"" 70 n n n 7. ~ 76 n n 79.0., .2.3 U 0 ••• 07 ••••• 0., .2 n" .5Yo '

111013700

Issue Summary Card

I 2 3 .. !Ii 6 7 8 9 10 11 12 13 '''' 15 16 17 18 19 2021 Z2 Z3 2. 25 26 2728 29 30 31 32

~M"~~~m~m~m~~Mm~ru~~~mMM~m~mm~mmm
B B
A A
8
4

8
4

2 2
ITEMNO DATE RECPT

~I 23. '.7 •• ~"~U~U~~~u~~unN~nnHn~~n~
A A
8 8
4 .4
2 2

~n~~~"~»~~u~«~~a~U~~~~~MM~~"~~~~H~
A q:. A

8 W 8
4 0 4
2 0 2

1 65 66 67 68 n 70 71 7Z 73 74 75 7$ 77 7111 79 80 8T 82 83 U 85 86 87 88 89 90 91 92 93 ,. g~, 1

181013700

Receipt Card

Figure 4-19. Cards Used for Inventory Job

From which file do cards come that are to be stacker
selected? They come from the output file since they are
the. newly created balance cards. Therefore stacker selec
tion entries must be made on the Output-Format sheet.
Stacker selection entries are on the basis of the compare
operation. Thus these compare operations must set indi
cators whi,ch will be used on the Output-Format sheet to
indicate into which stacker cards must fall. Figure 4-20
shows the program specifications.

Figure 4-20, insert A, lines 01, 02, shows operations used
for finding the number in stock. When a control break
occurs (a card for a new item is read) the number in stock
is compared as many as three times (lines 04-06) to deter
mine into which stacker the cards should fall for reordering
purposes. Resulting indicators are set off (line 03), since
improper selection could otherwise occur due to multiple
indicators set for a single condition.

INSTOK is first compared to zero. If it is equal or below,
indicator 10 is turned on. If INSTOK is greater than zero,
it is compared to the minimum quantity. When INSTOK
is equal to or less than minimum, indicator 20 is turned on.
If INSTOK is greater than minimum, it is then compared
to maximum. Indicator 10 is turned on if INSTOK is
greater than maximum; indicator 30 is turned on if it is
equal or less.

) Any of these indicators can be set: 10, 20, 30. Since they
indicate the amount in the field INSTOK, they also indicate
into which stacker cards should fall. (See Figure 4-20, in
sert B.) If lOis on (I NSTO K is zero or less or greater than
maximum) cards go into stacker 4. If 20 is on (I NSTOK is
greater than zero, but equal to or less than the minimum),
cards go into stacker 2. If 30 is on (I NSTOK is greater
than MI N but less than or equal to MAX) cards go i!1to .
stacker 3. In all cases, five fields and aconstant are punched
punched on each blank card before it is stacked.

Rules for Stacker Selecting Cards From An Output File

If no stacker selection entry is made for the output file,
cards automatically fall into predefined stackers - stacker 1
if the file is in the primary hopper; stacker 4 if the file is in
the secondary hopper. You maYi however, cause cards to
be stacked in any of the four (or five) available stackers
merely by entering 1, 2, 3, 4 or 5 (5 for M FCM Model A 1) in
column 16 of the Output-Format sheet.

All cards from the same file will fall into the specified
stacker unless indicators are used in columns 23-31. If,
as in this example, you want cards to fall into different
stackers, you must use indicators set by calculation opera-

---., ·'1 tions to condition the stacker selection specifications.

J

Merging Input and Output File Cards

Putting cards from two different files into the same stacker
is known as merging cards. Any two files can be merged.
To do so, you merely specify the same stacker for each file.

When input and output file cards are merged, the output
file card for each program cycle is stacked in front of the
input file card read at the beginning of the cycle. Why are
output cards stacked before input file cards? According to
the way the MFCU and MFCM operate:

1. An input card is not stacked until the next input card
is read.

2. Any output card that is punched is stacked immedi
ately.

These statements are the key to the order of merging. Con
sider what this means during a regular program cycle. When
an output file card is punched, it is stacked. This could be
either at total time or detail time. However/the input card
read at the beginning of the cycle is not stacked until the
next card is read. This results in the output card being
stacked in front of the input card. Most often, however,
you would want the merged cards ordered so that input
cards precede output cards.

Reversal of the normal stacking order can be accomplished
by specifying look ahead fields or dual input areas for the
input file. When either of these is specified, input cards are
stacked before output cards.

Stacker selection cannot be specified for input files with
dual input areas. Therefore, if you wish to merge cards
from the input and output file, you must merge the cards
into the default stacker for the input file (defined pre
viously - see Stacker Selection).

Card Output Operations 4-19

RPG CALCULATION SPECIFICATIONS
IBM International Business Machine Corporation

Program

Programmer D.le

C Indicators Result Field

~-~

At 1 ..Ja: =0 Factor 1 Operation Factor 2
~.5~ Name Length Line ,.... "0 a:
E E ~ 0 0 ~ .f 85 z z

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 n 23 24 25 26 27 2829 30 31 32 33 J4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051

o 1 C ~~ II N ST ""K Sil ~ tTlc; 1_~I'j ~~ lIN Sh'" IlH<
o 2 C r2jl3 IRE r pJ" An" tIN str ~~ lIN ~rr r..K
o 3 C lL 5~ TOF
o 4 C 11 It ,\I s- ' !I\

,.,..., MP Itll
o 5 C 111M Il~ 1,'4~ n r,..., M'P IMIIN

®
C IllN llW1 INI212 rrt 'MP IMAI)(LIN ~T JIK
C

RPG OUTPUT SPECIFICATIONS
IBM International Business Machine Corporation

Program

Programmer Date

0 S Space Skip Output Indicators 8>
frl

Commas - @"§
t: .f

1 L
Field Name

Yes
0'" I Yes

~ -Line Filename ;. ;
~ ~

End No
~ ~ a: Positon No

~ I- US

j
l: q; in a:

I- f-;"o'o E
0 0 0 ;3 5 Oulpul g E <

of o R z z z ·AUTO ~ ~ Record

"Ar;:;ro it

.~ X

~i
~i
2 "',;
OJ:

1 2

P.ge[Oo,_

R.sulting
Indicators

Arithmetic

Plus IMinu.1 Zero

Compare

1>211<211-2

Lookup(Factor 2);.

High Low Equal

Form GX21·9093
Printed In U.S.A.

75 78 77 78 79 80

~~~;~':alion I I I I 1 1 1 

Comments 

5253 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

il 
ll.~ i~ 
12.~ 2~ 

II 

1 2 

Page [00'_ 

Zero Balances 
No Sign CR to Print 

Yes 1 A J 
No 2 B K 
Yes 3 C l 
No 4 0 M 

Constant or Edit Word 

aX21·9090 U/M 050· 
Printed in U.S.A. 

75 78 77 78 79 80 

~~;~':"ion I I. 1 1 1 1 1 

--
X .. Remove 

Plu.Sign 
Y - D.,e 

Field Edil 
Z • Zero 

Suppress 

3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 1920 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 olp LJ'N ~IH tr~ 1112 1 
o 2 0 f'I'RI2 12.~ 'r 1 
o 3 0 ,....I~~ I~tt 1. 
o 4 0 It IT rM IN"'" IR 
0 5 0 ~ID lA,Tlc lll"l 
0 6 0 t~N 1ST ~K 12B i 
o 7 0 MIA Ix 312 
o 8 0 MIL IN 411 --f-
o 9 0 qlb 'lA' For MFCM, change 96 to)O. 

® 
... 

~ 
--f-

0 I ~ 
. I - I , 1 1 i-~I I I I I tiTl ·1 I 1 1 I 1 

Figure 4-20. End-ot-Month Inventory Job 

4-20 



) 

) 

) 

Punching and Printing on Cards 

1. Why is it important to print on a card the same information punched in a card? 

2. Using the following information, write the output-format specifications to punch 
and print the following fields on output cards: 

Field End Position 

CUSTNO 5 

NAME 26 

AMT 32 

INVNO 38 

DATE 44 

2 (constant) 96 (use 64 for MFCM) 

The information should be printed in the same relative positions as it was punched. 
Do not use *PRINT for this. For the MFCM (Model 15 only), use print head 1 for 
all fields. 

3. Do problem 2 using *PR INT. 

Using One File For Both Input and Output 

4. When should a file be specified as combined? 

5. If all master cards in a file are to be separated from item cards in the same file, the 
file type should be specified as __ _ 

6. True or False? Both printer files and card files can be combined files. 

7. An electric company wishes to find the amount each customer owes for the electricity 
he used during the past month. The input file consists of three types of records for 
each customer: 

• READ1 which contains the meter reading at the beginning of the month. 

• R EAD2 which contains the meter reading at the end of the month. This card 
will be used as next month's R EAD1 card. It now contains a blank in the last 
column, and must therefore be punched with a 1 in the last column. 

• AMOUNT DUE which contains a blank field (AMTDUE) which will be punched 
with the amount each customer owes. 

For each account these three cards must be present and in the order indicated. 

Review 4 

Review 4 4-21 



4-22 

1 2 3 4 5 6 7 8 9 10 T1 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 123456789101112131415161718192021 2223242526272829303132 

~~~a~am~~~m~~MmmQMMmmMMwm~mm~mm~ ~M~a~am~~~m~~MmmQMMmmMMwm~mm~mm~ 

B B B B
A A A A

: NAME ADDR: : NAME ADDR:
2 2 2 2
1 ,1
B 1213 14 15 16 17181920212223242526272629303132 B ~ 1213 14 15 16 17 18 19202122232425 26 27 2. 293031 32 ~

A
a
4
2

READ1
A
a
4
2

A
a
4
2

READ2
A
a
4
2

11 1 1
33 34 3536 37 38 39 40 41 42 4344 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61 62 6364 B 333435363738394041424344454647484950 5152535455565758596061626364 B

B B
A ~A

a Wa
4 0 4

A
a
4

A
a
4 2 82

1 ~~D~~MnnH~~.nn~~~~~MM%DMM~~~~~~%1
2 2

1 ~~D~~MnnH~~.nn~~~~~MM%DMM~~~~~~%1
IBM 3700

READ1 Card

The program 'must:

IBM 3700

READ2 Card

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202' 22 23 24 25 26 27 28 29 30 3' 32

~M~a~am~~~m~~MmmQMMmmMMwm~mm~mrnrn

B B
A A
a a
4 NAME ADDR 4
2 2
1
B
A
a
4
2

AMTDUE

1213141516171819202122232425262726293031 32 ~

A
a
4
2

1 1
B 33 3435363738394041424344 4546474849 so 51525354555657565960616263;;' B

A A
a Wa
4 0 4
2 02
1 U 1
~~D~~MnnH~~.nn~~~~~MM%DMM~~~~~~%

IBM 3700

Amount Due Card

• Find the number of kilowatt hours (KWH) of electricity used during the month. The
reading has two decimal places.

• Multiply the number of kilowatt hours used by rate per kilowatt hour to find amount
due. (AMTDUE has 2 decimal places.). Rate is $.05 per KWH for the first 50 KWH,
then $.02 per KWH for all over the first 50 KWH.

• Punch the amount due on the appropriate card.

• Separate all three card types into different stackers.

Make the necessary entries on the File Description, Input, Calculation, and Output-Format
sheets.

/

)

)

Stacker Selection

8.

9.

If stacker selection is specified on the Output-Format sheet during detail output
for card 3, which card will be selected? Which card will be selected if stacker selec
tion is specified during total time output after control group A?

B

- 4

- 3

- 2

- 1

At each stop they make, drivers working for a fuel oil company record beginning
and ending meter readings and the number of gallons of oil delivered to the customer.
Later the account number, meter readings, and gallons delivered are punched into
cards.

All regular customers are charged 15r,t per gallon. However hospital and government
agencies receive a 2% discount. The code to show which customers receive a dis
count is in the account field. If the last digit is 0, no discount is given; but if the
last digit is 5, the discount is given.

Write the calculation and output-format specifications to:
a. Check the driver's calculations in determining gallons delivered to each account

by subtracting beginning meter reading from ending meter reading.
b. Calculate the amount charged to each account (AMOUNT).
c. Find total number of gallons sold for the day (TOTALG) and total amount

charged (TOTALA).
d. Print a report listing daily transactions and totals. If there is an error in driver's

calculations, print the account number, code, and a message,'CALCULATION
ERROR'.

e. Stacker select cards for customers receiving discounts into stacker 2. All others
go into stacker 3.

Review 4 4-23

)

)

J

Answers to Review 4

1. Printing the same information that is punched on a card:

2.

a. Enables you to easily see what is on the card. You don't have to analyze each
punch combination.

b. Makes it easier to recreate a card that is damaged to the extent that it cannot be
processed.

RPG OUTPUT SPECIFICATIONS GX21·9090 U/M 050'
Printed in U.S.A.

IBM Intern.tional BUlin,u Machine Corporation

Program

Programmer Date

0 S Space Skip Output Indicators

- ~~

Jd 1
Field Name

c!t
~~ .. ~

Line Filename ~ ~ Ii t
Ii ~~ !! ~ iA oro ~ ~ 0 0 0 E o R « z z z 'AUTO ~ A~7i

3 4 5 6 7 8 9 10 11 12 13 1415 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

o 1 Op RI Nh" D (lj:5
o 2 0 I- sir 1\11"
o 3 0 NA ME"
o 4 0 t\MT
o 6 0 nlVN

o 6 0 lnA TIE
o 7 0

o 8 0 ,. SiT N~
o 9 0 INA MI~
I 0 0 AMT
I I 0 IT N V~"
I 2 0 InA ,TI~
I 3 0

0 S Space Skip Output Indicators

- e~

Jd L
Field Name

c!t
~t ~ ~

Line Filename ~~ ~ ~
~ '" j r;;-oro ~ s 0 0 E

~ ~*"o
« z z z 'AUTO

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 2122 23 24 25 26 27 29 29 30 31 32 33 34 35 36 37

o I Op Rlr INT n r155
o 2 0 ~J SrrN
o 3 0 INA 'M~
o 4 0 IAMT
o 5 0 lIN VINO
o 6 0 bA rr If:
o 7 0

o a 0 if' SiT .Nh
o 9 0 INA 'MIl:
I 0 0 ~MT
I I 0 lIN V~'O
I 2 0 IhA TI~
I 3 0

I 4 0

'(ij

I End
Positon

~ in
;5 Output

." Record
;E

38 39 40 41 42 43

5
12t..
!~2

I~B
ILj~

~b
~Qj III 5
f*0 12b
r.¥OJ 32.
~12l .~A
~OJ :L,~
f*a1 Qb

f:jJ

I End
Positon

~ in
;3 Output

~ Record

38 b9 40 41 42 43

5
~'b
I~~

I~e
~.LI
Ib4

lL Irl5
1L121"
11132
1l.1~g

lllL4 4
111~ L/

" Commas
v

Ves
Ves
No
No

cr:

~
0::

Zero Balances
to Print

Ves
No
Ves
No

1 2

pageDJof_

No Sign CR -
1 A J
2 a K
3 C L
4 0 M

Constant or Edit Word

75 76 77 7a 79 ao

~~~:~f:ation 1 I. I I I I I 

X g Remove 
Plus Sign 

V - Date 
Field Edit 

Z = Zero· 
Suppress 

«%%U~G50~~~~~~~~~50~~~M~~~~~ro 71 72 73 74 

' 2..' 

I I--Solution for MFCU f--

\ 2 I 

Commas Zero aalanc .. 
No Sign CR - X • Remove ... to Print Plus Sign 

Ves Ves I A J V - Date 

Ves No 2 a K Field Edit 

No Ves 3 C L Z = Zero 

No No 4 0 M Suppress 

cr: 

~ Constant or Edit Word 

0:: 

«%%U~G50~~~~~~~~~50~~~M~~~~~ro 71 72 73 74 

"2 I 

1= 
-~f-I Solution for MFCM -f-f-

- -f-f-

I 
\ 2. I 

Answers To Review 4 4-25 



3. 

RPG OUTPUT 
IBM Intern.tionel Business Machine Corpor.tion 

SPECIFICATIONS 

1 2 

GX21-9090 U/M 050· 
Printed in U.S.A. 

75 76 77 78 79 80 

Page [DOf_ :~;~f:ation I I I I I -II Program 

Programmer Dale 

0 
r---

Line Filename 

8. 
~ 
E 
~ 

iL Space 
-'1: 

Skip Output Indi~ators 

e ~r,-+--'---r----r----r---~ 
c - I ,I - , G.I ~I 
~ ~ ~ ~ And And 

I- :;'A~ '-0 -=0 ~ 
~ o 0 

Z Z 

.... iP> 
Field Name 

Positon 
in cc 

·AUTO 
Output ::J 
Record iii 

ii: 

Commas Zero Balances No Sign CR X . Remove 
to Print Plus Sign 

Ves Ves A J V . Date 
Ves No B K Field Edit 
No Ves C L Z = Zero 

No No 0 M Suppress 

Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 323334 35 36 37 38 39 4041 4243 44 45 46 47 48 49 5051 52 53 54 55 56 57 58596061 626364 6566 67 68 69 70 71 72 73 74 

o 1 0 PIRiI NT 
o 2 o r 15TN~ 5 
o 3 o ~AIME 2h 
o 4 o AIMlr 32 
o 5 o INIVN ~B 

06 0 ~~ITf ~4 

-
o 8 

I I I I I I I I I I I I I I I I 11.1 

F 
r---

Line 

8. 
~ 
E 
.f 

3 4 5 6 

Filename 

4. A file should be specified as combined if it is both read and punched or if cards 

from the file are stacker selected on a basis other than card type. 

5. Input (stacker selection is on basis of record type here.) 

6. False, only card files can be designated as combined files. 

7. 

File Description Specification 
.. 

File Type Mode of Processi ng 

File Designation Length of Key Field or Extent Exit 
of Record Address Field for DAM 

End of File 
Name of Record Address Type 

Symbolic Sequence 
Type of File Device Label Exit 

...J . Device 
File Format Organization w 

or Additioni" Area ~' Core Index 

c N Overflow Indicator 
e~ e " 

~ 
Block Record ~ - .~ go: 
Length Length 

~ ;:. Key Field Continuation Lines 

a~ c~ 0: 0: a Starting ~ ::::-0: w~u. ::J ~ :::: Location K Option Entry 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 

01 21 FI_I .. I .... I ..... I_I I I 
J'LIWIIJI ... It"lp If: I IQI~ I ~I~ I I III IMII= t.lu lL I I 

" " I 1/ " I 1/111 
01 31 F I I I I I I I I I I I I I I I III 1111" " II I I I J I I I II " - I .1 - I I I I I I I For MFCM, change 96 to I I I I I I I I I I I I I I I I I I I I I I I I I 

80 and change the device 
name. 

4-26 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 
~ 

Condition 

~ 
UH~ 

:::> ~ ~ 
6G 67 68 69 7071 72 73 74 

I ~ I I 
I I I 
I I I 

/-



) 

Page of GC21-7567-2 
Issued 30 June 1978 
8yTNL: GN21-5616 

RPG INPUT SPECIFICATIONS GX21-9094 U/M 050· 
Printed in U.S.A. 

IBM International BUSiness Machine Corporation 

1 2 75 76 77 78 79 80 

Page OJ of _ ~;~~;~f:ation I I I I I j I Program 

Programmer Date 

I B Record Identification Codes Field 
:J Field Location 

] 1 2 3 Indicators 
'---

~ 
a 

j'0 
a 

;l! 0 31-0 
Line Filename ~ -" Field Name 0; "0 -~ .~ "ii 

0- Jl :;:§ w 0': .3 u...u: a Zero 

1-

il 
Position 

~ ~ j 
Position - 2i Position 

~o 

Jii 
From To 

~ .S ~ ~ Plus Minus or 

~ I ~ e. ~ g -5 :s "0 Blank 

"Qr-;- ~ N ~ o ~ ~ 8 ~6 0; 
Z 0 Z U u ~u6 Z u u: 

A'NO 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 3233 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 

a 1 Ilr IAR IDS eHll bJl ~~ lel lL 
0 2 I 1 lL~ INIA IME 
0 3 I Illb 13 _~ lAiD IDR 
0 4 I 131b IA n l , 

0 5 I ~211 (t)2 191b Ir-
0 6 I II lL~ '~!A IME 
0 7 I lLlb 135 lAin DR 
a 8 I 3{'" ~L ...,,1 ... I" f)i2 V:K !t-~ 

o 9 I rz'~ll ~I~ IQ~ ~l4 
1 0 I II 115 IN;A IN J: 
1 1 I l-'b !3~ lAin In R 
1 2 I 

For MFCM, change 96 to 80.1 - r 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.';. 

IBM International Business Machine Corporation 

1 2 -75 76 77 78 79 80 

Page OJ of _ ~~~~;~f:ation UJJIIJ ~~-m-_~~~~ ____________ .-_____________ ~ 
Eer I Date 

C Indicators Result Field 
Resulting 

~ Indicators 

- 0_ 

AL I Arithmetic 
.Jo:: .g J: Plus IMinusl Zero ~e And Factor 1 Operation Factor 2 Comments 

~j~ Length ~ ~ Compare 

Line ~ '0 cr." 
Name 

~~ 1>211<211-2 
E ~ en LookuplFactor 2)is 

~ 8 5 ~ 0 0 u -
Z Z OJ: High Low Equal 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C 02 iRI~ lAlnl2 5 JIB iR11= Alnll ~h I Rlc; 1712 
o 2 c (l12 !-lIn iRIt; "'n iMlp ;~ qq 
o 3 C - ~h II 1~1c; ,J't1 I II rr ~5 lAlM TO It ~ 1712111 £''11 1'17 
o 4 C rz2 A.5i 15~ 1"111 llir .~5 !AIM TD liE. IH 
o 5 c rl.2 Iqq IJ.lh IRS Sit iB sieJ ~h IRl5 f-
a 6 C ~2 Iqq IJJln 1111~c; Mll Idr ~2 l4IMT 712~ 
o 7 c Q;2 ~q It\lr'n ADlo AIM Tin liE IAIM Tn rUlE 
o 8 C 

Answers To Review 4 4-27 



Page of GC21-7567-2 
Issued 30 June 1978 
By TNL: GN21-5616 

RPG OUTPUT SPECIFICATIONS GX2' -9090 U!M 050· 
PTintedin U.S.A. 

IBM International Business Machine Corporation 

12 757677767960 

Page CD of _ ~Z~;~f:ation 1 I_ 1 I I I I 

Program 

Programmer Date 

0 ~ Space Skip Output Indicators [?> Zero Balances X = Remove 

IT 
Commas No Sign CR -

,-- ~! 
to Print Plus Sign 

I L 
Field Name 

Ves Ves 1 A J V = Date 
0- I I ~i ~ " Yp.s No 2 6 K Field Edit 

Line Filename ~ ~ 
End No Ves 3 C L Z = Zero 

And a: Positon No No 4 0 M Suppress 
~J5 ~ ~ in a: 

l- ADD 0 0 0 8 U Output -' Constant or Edit Word 

~ ~~-
CD :t z z z ·AUTO ~ ~ Record CD 

ii: 
AND 

3 4 5 6 7 8 9 '0 " '2 '3 1415 '6'7 '8 '9 20 2t 22 2324 2526 2728 29 30 3' 32 33 34 35 3637 3839 4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 7, 72 73 74 

a 1 O~ lAIR nc:; 
a 2 0 

a 3 0 

a 4 0 

a 5 0 

8. 

9. 

n2 riJ2 I I I I I I I I I 1 I I I I I 1 I I I 

-f--

1'116 I .1 ' ~ For MFCM, change 96 to 80. .-f-

D3 ~3 
AIM riD ~IF ~12 I II I 11111 II I II I I 111 

I I I I I I I I I I I I I I I I I 
III I 1 1 1 1 I 1 1 II! 1 III 1 I 

Since cards in this file are to be both read and punched the file must be defined as 
a combined file (C in column 15 of the File Description sheet). The card type 

identified by a 1 requires no punching, and therefore can be stacker selected on the 
Input sheet. A 1 was entered in column 42 of the Input sheet to indicate the stacker. 

Leaving this column blank would also indicate that the card type goes into stacker 1 
because cards entered in primary hopper of the M FCU are automatically stacked in 
stacker 1. Output operations are performed on card types 02 and 03. Stacker selec
tion is, therefore, specified for each on the Output Specifications Sheet in column 16. 

a. Card 3 - the card that is being processed. 
b. Card 3 - the card which caused the control break. 

f-r.-I-

f-I-I-

1--'-1-

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
PTinted In U.S.A. 

IBM International Business Machir-e Corporation 

--~~~------r----'--'---'---'LHEEJ Card Electro Numberl 
1 2 75 76 77 78 79 80 

Page CD of _ ~~~~;~f:a!iOn 1 I I I I I I 

C Indicators Result Field 
Resulting 
Indicators 

- a: 
At At 

Arithmetic 

0 Factor 1 Operation Factor 2 .g I Plus I Minusl Zero Comments 

! 
z ~ ~ Compare ex: Name Length line 
~ ~ ~ 1>211<2 1-2 

j a: 0 c 0 U ~ Lookup(Factor 21is 

-' z z z a I High Low Equal 
3 4 5 6 8 9 '0 " '2 '3 '4 15 16 17 18 '9 20 2' 22 23 24 25 26 27 2829 303' 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 505' 52 53 5455 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

a 1 C I ~lL C~~ r'""N!p \ L'1' I I I 1zj2 IGlr IV~ [)Ir 5'1' ~il NIT? - - 1-- - --I--
AIFIGlr IIJI t==-_ a 2 c ~l J: 17 INIr.. 1:\ JR r 11"(1-\' t- bil ~IH 1r;"'K IDR IV IE=:RIS 

a 3 c rll rblRIR IElr rOMP G~~~ , 
J<Z rA Irll AT II f\ !"is 

a 4 c l~ ~11 G'A Ll hlN M JT ~ +- -to' A'M h NT 72.1-1 
a 5 c if]) ~12 ~lL ~~ pU !Nir 

~f1-
.' 12--li I 1011 6" !512.1~ IJ:lr IN r. 'lD Irs I"'"b JNIr -

a 6 c I 10 rll~ ~l h'U Nrr [;~~ I I lAlM !I"'I'I N'T 
a 7 c lll5 ~lL AIM OJ INiT If IblT'~iLk I IA Itt2 lA,lrlr Mil II A n-IE rr loll" 

AD~ 
I 1'_"" 

:~c l~ ~lL r-,IA thiN r!drlAlLIG I '.,..1", I~A '(., IJOll 
a 9 c 

f-I-I= 
1_J±! I-I~ -I-1-1- --

I a c -L'1 11 C 

1 2 c -,=H= ryt 
1 3 C 1 , 1 I I I I I 

4-28 

\. 



) 

) 

) 

RPG OUTPUT SPECIFICATIONS GX21·9090 U/M 050' 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 78 79 80 

Page CD of _ ~~~;~f:ation I I. I 1 I I I Program 

Programmer Date 

0 "- Space Skip Output Indicators 
Commas Zero Balances No Sign CR - X = Remove -:e- to Print ~ e ~ {, v Plus Sign 

I L 
Field Name 

Ves Yes 1 A J V = Date e !t 
~ Ves No 2 B K Field Edit -". 

~ ~ Line Filename = ; No Ves 3 C L Z = Zero 
1l. ~ ~ ~ And Positon No No 4 0 M Suppress 

~ ~i5 
~ ~ in a: 

I- ~ fofo ~ !l 
0 0 0 8 Output g Constant or Edit Word E 

'£~f-
::( z z z 'AUTO ~ Record .f Ci: 

AND 
3 4 5 6 7 8 9 10 11 12 13 1415 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 olp IQlr INrr ~ II 111(2 WzllJ 

o 2 0 IA~ I,.. IT IN'" 17 
o 3 0 Irh IDlE R 
o 4 0 I~I~ (;Ir IN 11 lLlg 
o 5 0 Il=lN 10 I! INIGIl 1217 
o 6 0 ~IA It It blNll 141 
o 7 0 1IliM Inlll INITll l5l5 
o 8 0 In II ~II ItJll ~ 
o 9 0 lAir IrlT IN II" 17 
1 0 0 11--1" IDlE. a 
1 1 0 1217 'IriA Icll 1 IliA tTlr 1"lrJ I~I~ I~I,.., IQ' 
1 2 OL- ai- l .. 1"'12 ~U ~112 I~I"" I~ 

1 3 0 Il"'l=! blll 11\ lut, 
1 4 olp IRlr INIT tr 12 I~ 
1 5 0 !.... ITIA G;l ~lL 
1 6 0 Itlc 1118 Il~j 1~1l) 
1 7 0 

1 8 0 

1 9 0 : 
2 0 0 I 

0 I 

0 , 
0 

0 I 

0 
U IL OL 69 89 L9 99 591>9 t9 Z9 19 09 65 as L5 9S 55 I'S ts ~5 15 OS 6t lit Lt 9. 5t .. tt ~t It Ot 6t at Lt 9t 5t rt tt ~t It Ot & & L~ 9~ 5~ t~ t~ U Il Ol 61 81 LI 91 51 VI tl II II 01 6 8 L 9 5 • ell 

You must be certain to check to. see if the code is 5 or 0, The resulting indicator showing the 
result of the compare is then used on the Output-Format sheet to show into which stacker 
cards should fall. Stacker selection must be specified as a detail operation so that the correct 
card will be selected, Any report formatting you choose is acceptable, 

Answers To Review 4 4-29 



/' 

,/ 

./ 

4·30 



) 

Chapter 5. Controlling Operations I n An RPG II Program 

CHAPTER 5 DESCRIBES: 

Additional uses of indicators to control calculations and output. 

Controlling operations on the basis of the next record in a file. 

Manipulating data by moving it from one field to another. 

Saving storage space and coding in calculations by using branching and subroutines. 

Special uses of control level indicators. 

Binary field operations. 

Increasing the speed of RPG \I operations. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

General usage of the following indicators: 01-99, MR, L1-L9, LR, 1P, OA-OG, OV. 

The concept of matching records. 

Coding of arithmetic operations in calculations. 

RPG \I object program cycle. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Control calculations and output using H1-H9, U1-U8, and Resulting Indicators. 

Condition calculations using OA-OG and OV indicators. 

Use the RPG \I look ahead feature. ' 
1 

Code specifications to move data fro'm one field to another. 

, Branch in calculations using GOTO and TAG. 

Employ subroutines in calculations using BEGSR, ENDSR, and EXSR. 

Cause an artificial control break and total operations using LO. 

Use control level indicators to perform group printing. 

Control calculations using binary switches. 

State advantages of dual input/output areas and correctly code for them. 

Note: You can use the,review questions contained in Review 5 at the end of this 
chapter to test your comprehension of each topic in the chapter. Questions are 
grouped according to the topic to which they apply. Answers follow the review 
questions. 

Controlling Operations In An RPG II Program 5-1 



INTRODUCTION 

There are many ways that you can control the performance 
of RPG "operations. You have already learned the basic 
elements of controlling calculations and output, especially 
the concept of the RPG II object program cycle and the use 
of indicators to condition specifications. This chapter sup
plements those basic concepts by presenting topics that will 
help you improve the performance of your RPG II programs 
and do more complex jobs. 

ADDITIONAL USES OF INDICATORS TO CONTROL 
CALCULATIONS AND OUTPUT 

On the Calculation and Output-Format sheets, you describe 
all the calculations and output to be done in your program. 
Sometimes, all the calculation and output operations must 
be performed on every program cycle. More often, however, 
you want operations done only under certain conditions. 
For example, you may want to perform a calculation or do 
some output only when a control break occurs, do an opera
tion only when a certain record type is read, or do certain 
operations only on certain program runs. 

In columns 7-17 (I ndicators) of the Calculations sheet and 
columns 23-31 (Output Indicators) on the Output-Format 
sheet, you can specify when certain calculation and output 
operations are to be done. Some of the indicators that can 
be used, and the conditions they signal, are: 

Indicator 

01-99 

MR 

L 1-L9 

LR 

1P 

OA-OG;OV' 

5-2 

Condition 

Operation is done only when a specific 
record type has been read, or when the 
result of a calculation or the contents 
of a field are as desired. 

Operation is done only when records 
match. 

Operation is done only when a control 
break occurs. 

Operation is done after all records have 
been read and processed. 

Output record prints only on the first 
page. 

Output r~cord prints only when over
flow occurs. 

You are probably somewhat familiar with the use of these 
indicators from previous education, reading, or other topics 
in this book. However, there are other kinds and uses of 
indicators with which you may not be so familiar. This 
section discusses: 

1. Halt indicators used to tell what operations should 
be done on an error condition. 

2. External indicators used to tell what operations should 
be done for a specific program run. 

3. Overflow indicators used to tell what calculations 
should be done when overflow occurs. 

In addition to these new uses of indicators, this section also 
describes conditioning of operations based on the results of 
certain calculations. 

Preventing Operations From Being Done When an Error 
Occurs 

Halt indicators are used to test for an error condition in 
your data. According to RPG II program logic, a halt does 
not occur as soon as the error condition is found (as soon as 
the halt indicator is turned on). Instead, the program 
cycle is completed before the halt occurs. This means that 
additional operations may be performed in error unless you 
specify otherwise. 

Preventing Calculations When an Error Occurs 

Specifications shown in Figure 5-1 illustrate the use of H 1 
to prevent calculations. Tests are made to determine if the 
INSTOK, TOTAL, or ORDER fields on record types 01,02, 
or 03, respectively, are negative. A negative value in any of 
these fields is an error condition. When an error is found, 
H1 turns on. Since calculations [normally] are done when 
02 and 03 record types are read, conditioning these calcula
tions by NH 1 prevents them from being done when data is 
erroneous. 

Halt indicators can also be specified on the Calculation 
sheet to test for an error. For example, in Figure 5-2, H1 
is set on if the result of operation in line 01 is negative. If 
quantity in stock (lNSTOK) is negative after quantity 
shipped (QTYSH) has been subtracted, an error has occur
red. H 1 turns on and the system will halt after the current 
cycle. 

/' 

/' 



) 

) 

IBM Intern.lIonal Busmeu Machine Corporation 

Program 

Programmer Date 

I ~ 
] , 

~ 

i ~·a Filename Z line 

! & ~ 
] Position 

"0 

~ -f--§ j o R z 
f-;~~ 

3 4 5 6 1 8 9 1011 t2 13 14 15 16 11 18 19 20 21 22 23 24 

0 , 1M hN trlH IRlp ~!111 ~11 Iq~ 
0 2 1 

0 3 1 

0 4 1 

o 5 1 ~I~IN l(ll~ Iql~ 
o 6 1 

0 7 1 

o 8 1 
I .... 1- All: UI~IJ\J I~ 

0 9 1 

, 0 1 

RPG INPUT SPECIFICATIONS 

Record Identification Codes 
Field Location 

2 3 

il 
0; 

~ e ~ Position - ~ Position 
~e 1ji 

From To 
~ e ~ 

o ~ ~ (5 ~ ~ (5 t:! 
z u u z u u z u 

2526 27 28 29 30 31 32 33 34 35 36 31 38 39 40 4142 43 44 45 46 41 48 49 50 51 

~IA 

II IA 

R J It, 
1/1'\ 1~14 

~~ 

17 IllLl 
131q ~I~ 

~IJ 
I, I~ 

R 11111 

GX21·9094 U/M 050' 
Printed in U.S.A. 

, 2 75 76 77 78 79 80 

Page [0 of _ ~~:;~f:ation I I I I I I I 

Field 

0: Indicators 

g ° is ~ ° 12-0 '" Field Name '~ 

~ 
.~ "ii ] ~ ~~ Zero 

~ .s~ Plus Minus or 

1 -5 :~ "0 Blank 
'2 ~~ 0; 
0 :<u u:: 

52 53 54 55 56 51 58 59 60 61 62 6364 65 66 61 68 69 10 71 12 13 14 

IT I ... IT 11\1 ..... II 
hl4 rrlf 

lolr INI5 ITI"-Ik WI, 

lIlT IF'~ I~~ " II 
lIZ I I [l-IAII i~11 

IT I-11= r' IN '- II 
InlA rrtc: , , 1 lll'l bl:JUl 1M! II-I"' IJ.llI . ~ ~ 

RPG CALCULATION SPECIFICATIONS 
IBM International Business MachIne Corporation 

Program 

Programmer Date 

C Indicators Result Field 
~ 

~ 0_ 

AL At -'a: =0 Factor 1 Operation Factor 2 
~3~ Length line .... "0 a:: Name 

E E ~ 0 0 0 ~ 85 z z z 
3 4 5 6 1 8 9 10 1112 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 2829 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 48 49 5051 

01,1 C I ~12 INUll T I"~I IUI"- 1 1 1 ~ltJRI 1 ~~T ~LIII I 1 1 ITlNI~rrICJlK 
01 2 1 C 1 bll~ IMUlr IrlAllSlrblkl 1 1 1 Aldnll )IHII t-IHl 1 1 1 trIMlsr-~k 1 1 
0131 r. I I I I I I I I I I I I I I I I I! I I I I II I I I I 

Figure 5-1. Conditioning Calculations by a Halt Indicator 

RPG CALCULATION SPECIFICATIONS 

Date 

Factor 1 

Figure 5-2. Testing Result Field for Error Conditions 

l'! 
.g J: 

~ ~ 
~~ 
'u -
o :I: 

5253 

, 2 

Page [0 of_ 

Resulting 

Indicators 

Arithmetic 

Plus IMinusl Zero 

Compare 

'>211<211=2 
Lookup(Factor 2lis 
High Low Equal 

Form GX2t·9093 
Printed in U.S.A. 

75 76 77 78 79 80 

~~:~;~f:ation I I I I I I I 

Comments 

54 55 56 51 5859 60 61 62 63 64 65 66 61 68 69 10 11 12 73 14 

1 1 
T T 
I I 

, 2 

Page [0 of_ 

1 
1 
I 

Form GX21·9093 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;~f:ation I I I I I I I 

Comments

Controlling Operations In An RPG "Program 5-3

Preventing an Entire Record From Being Written

Figure 5-3, line 07, shows an output operation conditioned
so that the record specified will be written only when the
halt indicator is not on (NH 1). When the halt indicator is
on (H1), it will be bypassed.

Preventing Fields From Being Written

Suppose, however, that you do not want to bypass the
writing of the entire record; but want some fields written
even when a halt condition occurs. For this case you
should use the halt indicator to condition certain fields
within the record instead of conditioning the entire record.
This way, when an error occurs, some fields will be written
and some will not.

RPG OUTPUT
IBM International Business Machine Corporation

Program

Programmer Date

0 Ijj iSpace Skip Output Indicators
f-- Field Name

I ~ 1 L I- jl~ Line Filename

If
I~ iofo

I~ I~ I~ f£ IR ·AUTO

IA INto
3 4 5 Is 7 8 9 '0 11 12 118 '19 20 21 132 33 34 3S 36 37

0,1 lOr. h"lp J,r II-! 12~l! It 11
10 12 10 ~lq ~Iv INILII
: 0 3 10

o 4 0

o 5 0

o 6 0 .' ,0 ,7 0 10 II
10 :8 0 ~ In!1=' IPT
~ Irl-Is: IN" When H1 is on, this
11

record is not written out. Inl~ lsr
r-

:c:.: ..
{(

Ii
L

~Ii

Figure 5-4 shows the specifications which will bypass the
writing of all fields except DEPT and ITEM NO when an
error occurs.

Doing Output Only When an Error Occurs

It is also possible to condition records or fields so that they
are written only when an error condition occurs. Figure
5-5 shows the specifications which do this.

Using the halt indicator will cause the computer to stop
after all operations are completed for the record causing the
error. You may restart processing immediately, however, by
pressing the start button on the processing unit.

SPECIFICATIONS

...
::.::·.c.::~ Commas

--V

Ves
Ves

End No
Positon No
in

Ii Output
Record

Zero Balances
to Print

Ves
No
Ves
No

GX21·9090 U/M 050-
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page CD of _ . ~Z~:~f:ation 1 I. I I I I I

No Sign CR X = Remove
Plus Sign

1 A J V = Date

2 8 K Field Edit

3 C L Z • Zero

4 0 M Suppress

Constant or Edit Word

3" b. 14041 4243 14414s~4748'95051S253~~~~58596061626364656667~6970 171 72 73 74

121; II In lJ:p h"'
~~ I' IT rrJ:'IM Nf'\I'
111~ I' In II=~ 1rR. IT P irlI I"'IN'
IR~ IIh I~, J 1/\ ~, 1'\'

12l;
ILlbJ
1714

1 Iro.. ." 1111'\ ;r ~~
11 !2 0 rr 12 II ,
: 1 3 0 7Ll Ilr~1 l~'" :,..,. "It\ Als ,..,11= '

1 4 0 ,,~ rr.c y Rt1!
1 5 0

Figure 5-3. Preventing a Record from Printing

54

/'

RPG
IBM International Business Machine Corporation

) Program

Programmer Date

0 I~I~ Spoce Skip ; Output Indicators

-
I~I~

At L !I~ Line Filename

I!Ll
!f of[) iA I~ I~ I~

~~Io
3 4 5 '6 7 8 9 to 11 12 13 202.1

011 01"'1 JT ,l-'lU I H 2f2J~ III
01 2 :0 "':R hvlN 1
013 ,0

01 4
1

0

015 10

01 6 10

o 7 10 D 1 ""'1
o 8 10

1m ~~ r-~ When H 1 is on, these
1 0 r--~ fields are not written out.

r--~
--

M 11

1 2 10 tr 2.
1 3 10

1 4 !o
I I I I I I

Figure 5-4. Preventing Fields from Being Written

) RPG
IBM International Business Machine Corpo~ation

Program

Programmer Date

0 ISpace Skip Output Indicators

~ -

1 1 ~ :j ~ Line Filt.:1ame
~

:f DO I~ I~ ~
10 fl
~~D

3 4 5 6 7 8 9 10 t 1 12 13 20 21

011 O~ [lJ T lr U , t! Z:t1J [L[l
01 2 .0 OR !f'lIVJJ L

01 3 .0

01 4 .0

01 5 0

01 6 0

(j 17 0 ~ [1 :({J[l

~~ This constant prints only
:Lll

10 19

r-;-io when an error condition

~. i-r- occurs.
111

1 12 0 1111 11 13 0 rr [2
114 0

1 15 0

1 16 0

\

,) Figure 5·5. Doing Output When an Error Occurs

OUTPUT

Field Name It'l
:~

'A~TO U
32 33 34 35 36 37 138139

!"lIE lelT
III II~II"

"I~ 5~
.... IA DI~

nlA Til; 1'1'

OUTPUT

Field Name "ti
,I

'AUTO
!f~
:~~

SPECIFICATIONS

Commas
v

Yes
Yes
No

Positon No
in !!; Output
Record ~

1 2

Page [I] of_

Zero Balances
No Sign CR -to Print

Yes 1 A J
No 2 B. K
Yes 3 C l
No 4 0 M

Constant or Edit Word

Page of GC21·7567·2
Issued 24 May 1976
By TNL: GN21·5389

GX21-9090 UIM 050'
Printed in U.S.A.

75 76 77 78 79 80

:~~~f:ation I I I I I I I

X - Remove
Plus Sign

Y - Date
Field Edit

Z • Zero
Suppress

140 41 42 43 «~~~~~50~~~~~~~~~50~~~~~W~~~ro 171 72 73 74

12.15 II '0 IfP IT'

H~ 11.1 rT"EM
171~ I'n IES ~IR
QrJj 1'1"\111. !I\

12l"

~I/'l
1115
B~

17~ 1',lIN 1"-"11

IR1t2

SPECIFICATIONS

.,.
Commas

Yes
Yes

End No
Positon No
in I; Output
Record

",,,I

IP h"II f'lIN I

.r. I

,

'K A [4; rliFl1

1 2

Page [DOf_

Zero Balances
to Print

No Sign CR -
Yes 1 A J
No 2 B K
Yes 3 C l
No 4 0 M

Constant or Edit Word

GX21-9090-2 UIM 050'
Printed in U.S.A.

75 76 77 78 79 80

:~~~f~cation I· I 1 I I I I

X ... Remove
Plus Sign

Y = Date
Field Edit

Z = Zero
Suppress

32 33 34 35 _~ 37 138 39 '40 41 42 43 1« 45 46 47 ~ 49 50 51 52 53 ~5~ 56. 57 58 59 60 61 62 63 ~ 65 66 67 6B 69 70 171 72 73 74

5 'ID EP IT I

(lJ 'll r I: 11'11'1
",,,

~ 'iD ES Ito II< ,ll'" ,11.1~
,

8~ '1('\ t..: LJ IAI ... D' i""

[E[PT ~
II It: rtllNv [(ll
IElse [~

nlM Iu 1\ Ilin ~
~

, IM In IA n ;1= I IE,L iD'

174 'lIIN I~ I v~·K lAS 0 I

~rrE IY 8rll

Controlling Operations In An RPG " Program 5-5

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

Using Indicators Other Than H1-H9 to Bypass Error
Conditions

If you are not interested in halting when an error condition
occurs but still wish to bypass the processing of erroneous
data, you may use indicators 01-99 instead. They, like halt
indicators, may be assigned to check for error conditions in

data on the Input sheet and are then later used to condition
calculations and output operations (see Figure 5-6). They
do not cause a nalt.

When you do not wish to halt the program for an error
condition, you may select cards into a special stacker so that
they will not be mixed with valid data cards. Stacker selec
tion may be done based on the use of the indicator for an
error condition.

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050'
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer Date

I

Date

0 S Space Skip Output Indicators

r--- e~ l.i

1 L
Field Name

e!!:: I ~~ f! ~
Line Filename ~~ ~~

~ I- en
f! ~ ~ ~"olo ~ ~ ° 0 ° 8 E z z z 'AUTO ." ~ r;~~ w

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38~

o I o~ :, h" PJlr H 12 "-llL III
o 2 0 hR ""VIN 1
o 3 0

o 4 0

o 5 0

o 6 0

o 7 0 In ll. ~.L
o 8 0 • I"IE IpT
o 9 0 rrr J:I"1N
I 0 0 I"\I~ ~r
1 I 0

I ~~~n
""' !A ... !n~

1 2 0 rr l2
1 3 0

1 4 0 nl4 TI~ Iv
1 ~ n I I I I I I

Figure 5-6. Using Indicators 01-99 to Prevent Output

5-6

-'"
Commas

v

Ves
Ves

End No
Positon No
in
Output ~ Record

0:

I 2

Page [oo!_

I 2

Page [o0!_

Zero 8alances No Sign CR -to Print

Ves I A J
No 2 B K
Ves 3 C L
No 4 0 M

Constant or Edit Word

75 76 77 78 79 80

~~:~~!:ation I I 1 1 1 1 1
I

Field

GX21-9090 UiM OSC'
Printed in U.S.A.

75 76 77 78 79 80

~~:~~:cation 1 I. 1 1 1 1 1

X ... Remove
Plus Sign

V = Date
Field Edit

Z = Zero
Suppress

40 41 42 43 «%~~~~ro~~~~~w~w~ro~~~~~~~~~ro 71 72 73 74

121.'i 'n 1~lp iT"
,~f2l ' I irlEM Nh'
1111l " 01(: l';r IRI IPT Irf"l :N •
IS'(l '''''' lulL All.! ",
121s
~{zJ.

1714
p,~

1114 'IIIN ~rr rlrlk A5 """IE'
ISle

)
Controlling Which.Operations are Done For a Specific
Program Run

The chapter entitled Describing and Using Input describes
how to condition the use of an input file with an external
indicator so that a program can use different input files in
different program runs. That chapter also describes how to
assign external indicators U1-U8 on the File Description
sheet and how to set the indicators.

This section-describes how external indicators are used on
the Calculation and Output-Format sheets to condition
which operations should be done for a specific program run.

Conditioning Input Files and Related Calculations

Consider for example, calculations done for a sales analysis
program. For each item in stock, monthly total sold (SOLD)
is calculated and then added to last month's year-to-date
total (BALFOR) to find the current year-to-date total
(BALNCE). In the first month of a new year, monthly totals
should not be added to prior year-to-date totals because
totals are not carried over from year to year. This last
statement, the year-to-date addition statement, therefore,
is not done for all program runs. By conditioning the
statement with an external indicator, you can control when
the statement is done. In Figure 5-7, the monthly total. is
added to prior year-to-date only when U1 is on.

When one program is written to do two similar, yet unique,
applications, some calculations may be used for both appli
cations, some for only one. Again you may use external
indicators to control which calculation specifications are
used for each application.

RPG CALCULATION SPECIFICATIONS Form GX21·9Q93
Printeclin U.S.A.

IBM Int.rnltional Busin," MlChin. Corporltion
1 2 75 76 77 78 79 80

Program

Programmer Date
Page [0 of_ ~~~;~f:ation I I I I I I I

) c
Comments

Figure 5-7. Conditioning a Calculation by an External Indicator

)
Controlling Operations In An RPG II Program 5-7

Conditioning Input Files and Related Output Operations

Consider again the example discussed in the section of Chap

ter 2 entitled C~nditioning Use of Input Fi/es. Two reports
were required: sales analysis and inventory (Figure 5-8).
Since the results are so similar (one report merely includes

more information than the other), the jobs are coded in one -

program.

SALES ANALYSIS

ITEM NUMBER AMOUNT SOLD DATE

46732 7 09/15/70

8 09/16/70

2 09/17/70

09/19/70

46739 12 09/15/70

20 09/16/70

25 09/17/70

8 09/18/70

~ 3 09/19/70

~ ---
Figure 5-8. Two Similar Reports

Two files are available: a MASTER file which shows the

balance forward for each item, and a TRANSACTION file

which contains daily records of the number of items sold;
The sales analysis job requires one file since it just creates
a list of transactions. The inventory job requires two files
since, for each item, it subtracts the number sold from the

balance forward to find the new balance forward. An exter

nal indicator was assigned on the File Description sheet (see

Figure 5-9). Its setting indicates to the program which files
are to be used.

BALANCE FORWARD

ITEM NUMBER AMOUNT SOLD DATE BALANCE

46732 7 09/15/70

8 09/16/70

2 09/17/70

09/19/70

150*

46733

32*

46739 12 09/15/70

20 09/16/70

~
""-

File Description Specification

File Type ""-F .. ,uuo u, 'U"O",,'.

I ~:~::~! ~~~:~:I~i:d
Extent Exit Numb~~-om.cks .

f..---
End of File

for DAM for

Ro, ""I Add Type Name of Number of Extents Symbolic
Filename Sequence

Type of File

I~
Device Device

Label Exit
Tape

File Format

Line o Additional Are. Core Index

I.S; I! III! I~II
",Ioverfl~

Ii Block Record I i o~ Key Field ~Lines Length Length Ij I~ Ig ~::~~~:n IK I~ 1""1";: IW"I"-

I, 4 6 Is I 7 8 9 10' 11 12 13 14 21 2. 2: 124 25 26 27 128129 30 131 b213~ 341353637 3S 13914c 41 4 43 44 45 46 147 48 49 60 61 62 1.,1 ... ". 6R .7 ...,. 59 IRn Rl 62 63 64 65 166167

1012 IFM AS rrlErR Irip IA It'iFIr JI2
1013 IF tr !RIA II\JI~ L-is ~ IMIFlr III
1014 IFlp I~II INIT "'" 1Q1~ITIf\ lTI~IH The devices used depend on which 1-1-
1015 IF

System/3 model and configuration you have. 1-1-
1016 IF

Figure 5-9. Assigning an External Indicator to the Master File

5-8

/

/

)
Because the results differ slightly for each job, different
output operations are required. When two jobs are coded
together, you indicate which operations are to be done for
each through the use of an external indicator by setting the
indicator to signal which files are to be used. You can speci
'fy which output operations should be done in the same
way-by conditioning them by the same external indicator.

The Output-Format sheet shown in Figure 5-10 shows speci
fications for both jobs. Appropriate heading and detail lines
are given for each. The total record is only for the balance
forward job. Unless told otherwise, the computer will try
to perform all specifications (provided conditions set by
indicators in columns 23-31 are satisfied) in each cycle. You,
therefore, have to tell the computer which operations to do
for each job.

RPG OUTPUT
IBM Internationa_ Business Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

e~ I-- Field Name t;
0-

AL L I -"" e ~
Line Filename =. G;

i~ Ii tl

~ ~a

j
::l

I- ~roro
~ ~ 0 0 8 E o R z z 'AUTO .f A"'N'o ~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 2324 25 26 27 28 2930 31 32 33 34 35 36 37 3800
o 1 0 -- I- '/.1 13 IP 1 y I'(Nil

o 2 0

o 3 0 H I~ I PiN f
o 4 0

o 5 0 ~ 12 lip
o 6 0

o 7 0

o 8 0

o 9 0 1
1 0 0 D ~ MR ejl L 11
11 0 lIT J;::IM
1 2 0 Q 2.. MR (/'.2 Jli
1 3 0 lc:;1"1 "
1 4 0 In~ tr~ y
1 5 0 1"'\ 2 NM,R rll. JJ
1 6 0 Irtr IEM
1 7 0 " .2 ~, IM!I ItJ II ,
1 8 0 "'R ~I~ 01';) IUl Nilll
1 9 0 11 It IT I,;M
2 0 0 ~h IL 0

2.L 0 'Dl4 IT~ y

.2.2 0 T .3 1 1
123 0 IRld ",r c~

Il~ 0

0

The file description specifications (Figure 5-9) show that
when U1 is on, the MASTER file is used. This means that
the inventory job is being done. Thus when U1 is on, only
the output specifications to print records for the balance
inventory are needed. Condition those output records on
U1 (Figure 5-10, lines 01, 05,10,12,15,22). Condition
those for the sales analysis job on NU1 (when U1 is not on
the MASTE R file is not used).

Conditioning Output Files and Related Output Operations

The program just discussed involves the use of a variable
number of input files. One program may also require the
use of a variable number of output files. In that case, the
output file must be assigned an external indicator. When
the indicator is on, the file is used. When it is off, the file
is not used.

SPECIFICATIONS

Commas
v

Yes
Yes

End No
Positon No
in a:
Output g
Record

Ii:

,1 2

Page [[]Of_

Zero Balances
No Sign CR -to Print

Yes 1 A J
No 2 B K
Yes 3 C L
No 4 '0 M

Constant or Edit Word

GX21·9090 U1M 050-
Printed in U.S.A.

75 76 77 78 79 80

~~:~f~cation I I I I I I I

X = Remove
Plus Sign

Y = Date
Field Edit

Z = Zero
Suppress

40 41 42 43 «%~~~~ro~~~~~~~~WOO~~~M~~~Mroro 71 72 73 74

IS!b 'A All A 'A] Ir 11= F"I""IO 'Lilo '" '
51-. I.~ AIL E.S lAl1\l A 1\0'5 IS'

12.1Q , T TIE'M 1I!1 MA J:IQ 1

11 'm 'A M!n Nh" ~I"\ Lin'
4/ 'n AIT E'
bl3 .p, A'· AN ~:I= I

121~

I~;

l~(lj

12.~

12l;
l,5
1li'0j

Ie, ~
It.. 1 ' *'

Z£ 1£ O£ 69 89 £999 59 til E9 19 19 09 69 as £5 9S 55 t>S E9 Z5 15 os 6. 8. a 9. 5 ... t. Z. I. 0.51: at £t at 5t tl:U zt .t O£ 61: 81: LZ 9Z 5Z tZ tZ U IZ OZ 61 81 LI 91 51 tl tl ZI II 01 6 8 £ 9 5 • t Z I

J Figure 5-10, Conditioning Output Operations by an t;xt'ernallndicator

Controlling Operations InAn RPG "Program 5-9

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

For example, consider a sales analysis job which does the
following:

1. Calculates and records the quantity of ~ach item sold
during the month.

2. Updates the year-to-date total of the number of each
item sold.

3. Creates a new year-to-date record.

The input file, organized in ascending order by item num
ber, consists of two record types: (1) item cards, and (2)
summary YTD cards. Each item card represents an item
transaction. During the job, item cards are counted; and,
when a control break occurs, amount sold is added to the
year-to-date total found on the summary card. The num
ber sold and current year-to-date totals are recorded on the
sales analysis report, and a new summary card containing

the· current-year-to-date total is punched. Notice that the
new year-to-date summary card is stacker-selected into
stacker 1, the default stacker for the primary MFCU hopper
(Figure 5-11, line 11 of the Output sheet). Assu me that
the old summary card is selected into a different stacker by
means of an entry in column 42 of the input specifications.
Thus, the new summary card is automatically placed into
the item file in preparation for the next run of the program,
while the old summary card can be easily discarded.

At the end of the year, new year-to-date summary cards
should not be punched because the year-to-date total is
not carried over into the next year. In this case, the punch"
ing operations should not be done. You can tell the pro
gram whether or not to punch by conditioning the output
operations and the output file by the same external indica
tor. Figure 5-11 shows some of the specifications for the
job.

File Description Specification

F

Line

8-
~
E
If

3 4

o 2

o 3

o 4

o 5 F

Filename

File Type

File Designation

End of File

Sequence

File Format

Mode of Processing

length of Key Field or
of Record Address Field

Record Address Type

Type of File
Organization
or Additional Area

.J

W

Device
Symbolic
Device

Name of
Label Exit

Extent.Exit
for DAM

Storage Index

e Overflow Indicator The devices used depend on
§ ~ ~ Block Record ~ ~ Key Field' which System/3 model and Continuation lines
'3 U i2! Length Length ::::: t- .

g ~ w ~ ~ § ~ g ~:'~:~:n configuration you have. Option Entry ~

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

9 10 II 12 13 14 15 16 17 IS 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3334 353637 38 39 4041 4243444546 4748495051 52 53 54 55 56 57 58 59 6061 626354 65 66 67 68 69 70 71 72 7374

RPG OUTPUT SPECI FICATIONS GX21·9090 U/M OE~·
Printed in U.S.A.

IBM International Business Machine Corporation

1 2 75 76 77 78 79 80

Programmer Date ~;~;~':ation 1 I. 1 1 1 1 I
Program

Page []Jo,_

0 S Space Skip Output Indicators
Commas Zero Balances No Sign CR - X = Remove

f--- ~~ I(i ... to Print Plus Sign
Field Name

1 1 Yes Yes 1 A J Y = Date
e-

I~ Yes No 2 B K Field Edit -".

~~ line Filename ;. ~ No Yes 3 C l Z = Zero

~~ m « Positon No No 4 0 M Suppress

~ f- <l5 e Xl in ex:
f- r:;;;roro ~

!;
0 0

;3 Output g Constant or Edit Word ~ 0

j o R z z z ·AUTO
~

Record
ii:

'AND
3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 1920 21 22 2324 25 26 272B 29 30 31 32 33 34 35 36 37 38pg 40 41 42 43 «~~O~~~~~~54~W~~~~~~~54~WU68Mro 71 72 73 74

o 1 Op IRT NiT" ,... .3 ttP
o 2 0 :5,4 lis A,L F5 AiN IAL IY~ 16 11-/1-1 11011

,
o 3 0 J.4 13 lLp
o 4 0 1215 '11 rrl~ M'
o 5 0 145 'IA Mh II NIT I~I"" llc'
o 6 0 Ib~ 'IV If"~ IR- h"h -"" Air E I
o 7 0 h" 2 It 1
o 8 0 III r 1~1\y INit-- 12l;
o 9 0 v-Irly ~ ~~
1 0 0 -II 1'Ylrln ~ 1.'i1.1]
1 1 olp IN!"I~ ir~ lM 1 2 0 II II II-If" 11\11..- [lfl
1 3 0 rrlTln 12~

Figure 5-11. Controlling Use of a File

5-10

)

)

)

Always be sure to control which calculation and output
operations should be done for the job being run by con
ditioning the operations with the same external indicators
that were assigned to the file. When you condition input
files by external indicators, you may condition output
ooerations if you desire. However when you condition out
put files, you must use the same external indicator used for
conditioning the output operations. If you forget to con
dition the records for an output file conditioned by an ex
ternal indicator, an error will occur.

Conditioning Output Operations Only

So far, you have learned that external indicators condition
files and operations related to the use of that file. External
indicators need not always condition a file; they can condi
tion output operations only. This means that every time
the program is run, the same files will be used, but different
output operations are done depending upon the setting of
the external indicators.

RPG OUTPUT
IBM Internallonal Bus.neu MactHne Corporallon

Program

Programmer Date

0 ~ Space Skip Output Indicators

@~ -
t:~

AL L
Field Name

0-

ii ~ ~ Line Filename
al «

0- 0- (;5
>

~ro'o 0-
0 0 0

~ o R co :::c z z z 'AUTO

A"r-;:;'o

fr
cc

1J ~
<3 U

~ ~

For example, just one specification conditioned by an ex
ternal indicator can change a group-printed report to a
group-indicated report or vice versa. Figure 5-12, part A,
shows that a detail line will print for every card. By adding
an external indicator, you can control whether or not the
detail line will print (Figure 5-12, part B). When U1 is on,
the line prints; when U1 is not on, it will not print.

Controlling Calculations When Overflow Occurs

You normally think of using an overflow indicator to con
dition total or heading records that must be printed on
every page of a report. But you may also use the overflow
indicator to condition calculation operations. Any calcula
tion operation so conditioned will be pe~formed only when
overflow occurs.

SPECIFICATIONS GX21·9090 U/M 050'
Printed in U.S.A.

1 2 75 76 77 76 79 80

Page [DO!_ ~:;~f~cation 1 I. 1 1 1 I I

&> Zero Balances X "" Remove Commas
taPrint

No Sign CR -
Plus Sign

Yes Yes 1 A J Y ~ Date

1 I Yes No 2 B K Field Edit
End No Yes 3 C L Z l1li Zero

Positon No No 4 0 M Suppress

in CC
Output g Constant or Edit Word
Record

ii:

3 4 5 6 1 8 9 10 11 12 13 14 15 1617 18 t9 20 21 22 23 24 25 26 2128 2930 31 32 33 34 35 36 31 38 9 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 61 68 69 10 11 12 13 14

0 1 Op IRII INT Ir 12 ~1

o@o IT IN I-- 115 E'"
lAo III f=M 1315 I-
o 4 0 I", f: s.r I'\l"
0 5 0 IPR rrlf: 11,15
° 6 0 T J. III -
0 7 0 IT'" TA Ibl5
0 B o*,

~(B)
olp [Rlf INT :0 2 It 1 ~1
0 1I1; IL to 1-'11 N

1 1 0 .- IrT £IM l~15
1 2 0 br:: sr l'i15
1 3 0 IpQ T r 1= Ih~
1 4 0 T 1 III
1 5 0 IT'"' T~ bli
1 6 0

1 7 0

1 B 0

1 9 0

2 0 0

0

0

0

0

0
LZ

Figure 5-12. Using U1 to Condition Output Operations

Controlling Operations In An RPG II Program 5-11

Assume, for example, that you are preparing an accounts
receivable report as shown in Figure 5-13. On each page of
the report, you wish to have a total showing the amount of
all accounts receivable on that page. You also wish to find
the total amount of all accounts receivable on all pages.
Thus at the beginning of each page, you must start accumu
lating totals for that page. When overflow occurs you want
to add the amount of the accounts received (page total) to
final total, print the page total and then reset the page total
to zero so that you can start accumulating totals for the
next page. Only the calculations which are to be done when
overflow occurs are conditioned by the overflow indicator.
See Figure 5-14 for the calculation specifications.

Performing Calculations on the Basis of the Results of
Other Calculations

The value of the contents of a field rather than the occur
rence of a certain condition can be used to determine
whether or not an operation will be performed. You have
worked with such situations already. For example, you
have used a field on an input record to determine if
processing should be done. If the field was positive, you
wanted to do all calculations; if it was negative, you did no
calculations. (See Preventing Calculations When an Error
Occurs.)

For the situation just stated the contents of an input field
determined what calculations (if any) were done. In this
section, however, emphasis will be placed upon how results
obtained in a calculation operation can be used to deter
mine whether or not other calculations are performed.

DATE 06/30/0 ACCOUNTS RECEIVABLE REGISTER PAGE 1

CUST NO ACCOUNT NAME INV DATE ACCOUNTS RECEIVABLE
MO/DY/YR

11886 AABY, SHELLEY 4/18/0 86.40

12093 ACKER, ALVIN 4/18/0 403.10

12128 ADAMS, CINDY 4/1,8/0 345.05

12206 ADSON, MARION 4/18/0 700.60

12720 ANTON, MONICA 4/18/0 1,253.40

12803· AXFORD, JOE 4/18/0 48.52

12815 BAILEY, MARLYS 4/18/0 107.05

12900 BALZUM,GERALD 4/18/0 345.10

13260 BATTEY, ADA 4/18/0 165.35

13265 BEABOUT, ART 4/18/0 316.05

12390 BERGERSON, M. 4/18/0 43.60

14619 BI LSTAD, DON 4/18/0 1,129.02

4,943.24 PAGE TOTAL

Figure 5-13. Report with Page Totals

5-12

(
I.

\.

/

I

)

)

)

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporation

1 2 75 76 77 78 79 80
Program

Page CD of _ ~~:;~f:ati~n I I I I I I I
Programmer Date

C Indicators Result Field Resulting

~ Indicators

I--- 0_

AL 1 Arithmetic
..Ja: .g J: Plu. IMinu.1 Zero ::'0 Factor 1 Operation Factor 2 Comments

~3~ Length ~~ Compare
Name 1> 2 1 <: :ill- 2 line ~ '0 a: ~ ~ E ~ '" 0 0 ~ -; Lookup(Factor 2)i.

~ 8 5~ ~ z z OJ: High Low Equal
3 4 5 6 7 8 9 10 111 2 13 1415 1617 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 64 55 5657 5859 60 6t 62 63 64 65 66 67 68 69 70 71 72 73 74
a 1 e III 1~[o,11 II It\lnlo A'" v-Ir -
a 2 e Ir-IV Ip~ rrbrr ~IDID

I_I .. 1- Ir 11-11 INII
a 3 e ~!

Figure 5-14. Conditioning a Calculation by an Overflow Indicator

Using the Results of Arithmetic Operations

Consider how the result of a calculation can be used to de
termine the need for further calculations in a billing pro
gram. For each account, it is necessary to first determine
the amount owed by adding charges and payments (pay
ments are recorded as negative numbers) to the balance due
at the beginning of the month. For any customer owing
money at the end of the month, a service charge of1-1/2
percent is added to the amount due. If he has credit coming,
he must be sent a credit memo instead of a bill. Thus a test
must be made on the amount due field to determine if it is
plus or minus. If it is plus, the customer owes money and
the service charge must be figured before the bill is printed.
If it is minus, he has a credit and must be sent a credit memo.
The card for the customer with a minus balance is stacked
into a special hopper. It is later used in a credit memo run.

I"bl II RI2

1=1I INT
, iT ~12

How can you cause a test to be made on the data? Remem
ber in Figure 5-1 how you tested for a minus quantity. By
entering an indicator (01-99, H1-H9)in columns 54-59, you
can test for plus, minus, or zero depending upon where you
place the indicator.

For this program~ indicator 99 is placed in columns 54-55
to test for a plus condition (see Figure 5-15). When a control
break occurs (all transactions for one account are processed)
and when 99 is on, the 1-1/2 percent service charge is found
and added to amount due (AMTDUE) to find total amount
due.

If indicator 99 is off (no amount due) when the control
break occurs, these last two operations are not performed.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer Date

75 76 77 78 79 80

~~:;~:ation I I I I I I I
1 2

Page CD of_

C ~:::~~ '-J ~ A" At ,"'00' 1 Op',,<loo F~o.' i~ :~ "·;E3;,ro
I~I~~ Name Lengthl~ 11>211<211=2

13 LI~e J~ 11 ~!'!i 1-1 ~""'ll-r-olll-ll~""""'-+-1 ~""""'-I 1920 21 22 2324 25 26 2712829 3031 32133 34 35 36_:37 38 39 40 41 4214344 45 46 47 48149 50 511~ Ii I-~ ~ I~ 16061 62 6364 65 66 676869 7071 72 73 74

Comments

1011 Ie ~!2 1~1-~lnl~IRIAI/~~~ ~'MI' I~
1012 Ie ~~ IAIM~lnJIF IAlto ITIR~N~ IAIMITlnlll~
~10~13~le~~~~~I~~++++.¥~WIM~~~ID~I'~JIE~~~I~~~ILWT~~~~~~~~~~~~IA~I~~~~lr~~~~I~ ~1++++++++444444~~~
1014 Ie II IGI~ ~ IAln~lr ~I~ID InMITln!~ ~~ITlnll~
10 15 Ie

• Figure 5-15. Conditioning Calculations by an Indicator Set as a Result of an Arithmetic Operation

Controlling Operations In An RPG II Program 5-13

The result of any arithmetic operation (ADD, SUB, MUL T,
DIV, Z-ADD, Z-SUB, MVR) can be tested by specifying re
sUlting indicators in columns 54-59. The resulting indica
tors which are set as a result of the test can condition th'ose
operations which are to be performed on the basis of the. re
sult of that test.

Using the Results of Compare Operations

In a compare operation (COMP), fields or literals of the
same type (alphameric or numeric) are compared to each
other to determine their relationship to each other. Indica
tors entered in coll!mns 54-59 are used to indicate whether
the field or literal in Factor 1 is higher than, lower than, or
equal to the field o-r literal in Factor 2.

The results of a compare can also control which calculations
should be done next. For example, when doing an inventory
and reorder application, the compare operation (COMP)
is used to determine if any item needs to be reordered. In
the example shown in Figure 5-16, the field called MIN
(minimum) contains the critical reorder point. The field
ONHAND is compared to MIN. If the amount on hand is
less than or equal to M IN, indicator 99 is on. The reorder.
quantity is calculated by subtracting amount on hand from
the number in the field called MAX which contains the
maximum number which should be in stock. If amount on
hand is greater than M IN, no reordering need be done and
this calculation is not done.

Using the Results of the Test Zone (TES7Z) Operation

Another operation code, TESTZ, is available to test data
during calculations so that you can determine which cal
culation todo next., TESTZtests only the zone portion of
the leftmost charact~r of'an'alph~meric field. TESTZ ~o~'s
not test specifically for plus, minus, or zero; high, low, Qr
equal. Rather, it tells you into which group of zones the
zone tested falls:

• The zones of the character & (ampersand), A-I c~use
the Plus indicator entered in columns 54-55 to be turned
on.

• The zones of the characters } (bracket), - (minus), and
J-R cause the Minus indicator entered in columns 56-57
to be turned on.

• The zones of all other characters cause the indicator
entered in columns 58-59 to be turned on.

The test zone operation equid prove very useful in a large .
billing application. Consider the case of a company which
has so many accounts that billing must be divided. Customers

, whose last names are in the first part of the alphabet are
billed on the 15th of the month; all others are billed at the
last of the month. The master file used in billing is organized
in ascending order according to account number.

The records in this file could be sorted by name so that you
could divide the file for billing. However, this.fileis used,
so often for other purposes that it is a waste of time to .
repeatedly sort it according to name and then sort it aga'in
according to account number.

RPG CALCULATION SPECIFICATIONS Form GX21-9093
Printed In U.S.A.

IBM International Business Machine COr'pOrI~on
l' 2 75 76 77 78 79 80

Program

Programmer Date ::~af~atio~ I 1 1 1 I· I I . i>age[Oof
, -

C Indicators Result Field
Resulting

'" Indicators

'--- ~~
Jd Jd

Arithmetic

=0 Factor 1 Operation Factor 2 Plus !Minus! Zero Comments
~~~ Name Length 

Compare 
Line I- (50:." 1>211<2!1-2 

E ~ '" 
'0 Lookup(Factor 2)1, 

af 8 5 ~ '0 z z High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 cis 47 48 49 50 51 54 55 58 57 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 

0 1 C ~.I 1\ .I,t"\ ,.,.., MP Mr'N ~~ qq 
o 2 C lq~ IMAX t; R I- I .. - lot .. lot 

o 3 C 

o 4 C 

Figure 5-16. Conditioning Calculations by an Indicator Set as a Result of a Compare Operation 

/ 

/ 

/' 

", 



) 

) 

A better way to do the billing is to test the name field in 
each record to see in which part of the alphabet the name falls. 
During the first of the month, if the last name begins with 
letters A-I, you wish to find amount due. TE5TZ will test 
the first letter in the field and tell you in what part of the 
alphabet it is. Figure 5-17 shows the calculation specifica
tions necessary to bill customers whose last names fill into 
category A-I. 

Naturally at the end of the month you will want to bill the 
rest of the customers. But you don't want to write another 
program for end of the month bill ing. 50 you write one 
program to do both jobs and use external indicators to con
dition the specifications for each job (see Figure 5-18). 

RPG CALCULATION SPECIFICATIONS Form GX21.-3 
PrlnlOd In U.s.A. 

Progrlmmtr Dotl 

C Indicators Result Field 
~ 

~ 9- l 1 I 11 Factor 1 Operation Factor 2 

Linl ! Name Length ~ 

! 
g~ .§ 
85' j j j ~ 

3 4 I 8 7 8 II 10 11 12 1314 II II 17 II 111 20 21 22 23 24 21 21 27 \za 211 30 31 32 33 34 31 :IS 37 38 38 40 41 42 43 44 41 48 47 48 49 60 61 52 

o 1 c MR i?Jl I!.~ ~ N4 MI= 
o 2 c MR lL~ A.4 " .4 1\1" A:DD KIolN J.l(YI I~ b2 
o 3 C 

Figure 5-17. Conditioning a Calculation by an Indicator Set as a Result of the TESTZ Operation 

RPG CALCULATION SPECIFICATIONS 

Progrlm 

Progrlnvnor DIU 

C Indicators Result Field 
~ 

f--- 9- l 1 ~-jl Factor 1 Operation Factor 2 :€ e. 
! S ~ 

Linl Name Length '" !! 
I- g ci ~~ 
!8~ j j j ~~ 

3 4 I 8 7 a II 1011 12 13 14 11 1117 11 111 20 21 22 23 24 21 28 27 i211211303132 33 34 :IS :IS 37 :IS 38 40 41 42 43 44 46 48 47 48 49 60 11 52 53 

o 1 c MR ~, III"~ I~ NlA ~r: 
o 2 c MR lLr2J 'OLl IliA A,~ ~If)![) H~ IV~ lAM 

_ ... 
'J: 1-t2 

o 3 C J lLl MI"l AA jl la tJr ~nln TR ANc\ AM Tn J~ b2 
o 4 C 

Figure 5-18. Using TESTZ and External Indicators 

1 2 

Plge[OO'_ 

Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero 
Compare 

1>211<211-2 
Lookup(Factor 2)1s 

High Low EquII 

75 78 77 78 7e 80 

~:~"tltlonl I I I I I I 

Comments 

54 56 58 57 5858 80 81 82 83 54 86 88 67 88 89 70 71 72 73 74 

l~ 
q9 

1 2 

Plge[Oo,_ 

Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero 
Compare 

1>211<211-2 
Lookup(Factor 2)1s 

High Low EqUlI 

FonnGX21.-3 
PrlnlOdIn U.sA 

76 78 77 78 79 80 

~:~":"tlon I I I I I I I 

Comments 

54 55 58 67 58 59 80 61 82 83 84 65 68 87 68 89 70 71 72 73 74 

I~ f II 11 r 

Controlling Operations In An RPG II Program 5-15 



You can use TESTZ to test for any special code you set up 
by using the zone of a character. This is most often done 
when you have no space on your records for any other kind 
of identifying information. For example, when establishing 
a code for the percentage of commission received by each 
salesman, you could use the & to indicate 6 percent and 

TESTZ operation~ Figure .5-19 shows how the code is 
placed in the field containing salesman number. However, 
you'must define the field as alphameric since the TESTZ 
operation can only be performed on an alphameric field. 

Figure 5-20 shows the TESTZ used on the SALSNO (sales
man number) field, which contains the commission code, 
in order to find rate of commission. The results of the'test 
determines what other calculations will be done. 

the minus (-) sign to indicate 15 percent. You would, of 
course, have to punch this code in the leftmost position of 
a numeric field because this is the position tested by the 

SALESMAN -
I 

Whose number is 17657778 

Who e1rns 15% commission 

Has 17657778 punched 
in SALSNO field 

~M"m~mm~m~maa~mmM~M~mMM~m~m~~~~~ 
B • B 
A A' 
8. 8 
4 •••••• 4 
2 •• ••• 2 
1 •• •••• 1 
B 1 2 3 .. 5 • 7 • • 10 11 12 13 '4 15 • 17 I' It 2~ 21 22 23 24 25 2S 27 ~ •.. 2t 30 31 32 B 

A A 
8 8 
4 4 
2 2 

~»~UHnH»~~uu«u"u"a~~~"~"H~9"~~U""~ 
A A 
8 8 
4 4 
2 2 

1 eMvM"~nnnun~"Hn~~u"Ne"v"n~~"""""l 
11M 3700 

Figure 5-19. Punching a Code 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM Intern.tion.1 BUlin.u Machin. Corpo ... ~on . 
1 2 75 76 77 78 79 80 

Page []JOf_ Program 

Programmer Date ~~~~:~tion I I I I I II 

C Indicators Result Field 
Resulting 

~ Indicators 

~ 0_ 

Jd Jd 

I! Arithmetic 
-'IX: 

~~ Plu.TMinusl Zero =0 Factor 1 Operation Factor 2 , Comments 

~~~ 8 ~ Compare 

Line Name Length if 1>211<211-2 I- "0 IX:

~ ~ ~ ..
~ ~ ~i

Lookup(Factor 2)1.
~ 85 .g High Low Equal

3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 82 63 64 65 68 67 68 69 70 71 72 73 74

o 1 c MI~ ~~ lloli ~Il ~ ~IL ~Nh II fj III Ts !~h N~ Ie nlR -1
o 2 C lr.~ MI~ I.00I1 1 .. Is: Ie; Mll~ I. rr If1lb Ir-r-MIM 'i21~ Irl~ I~ ulslJ: Ih~
o 3 c 1111. MI~ r1[' 1c.IA Il I,: ICi Mill lilT lIlt:; Irlc IMIM ~I'lu IrlF - 'JlSIE 115~ - . -

Figure 5-20. Tasting a Field to Determine a Code

5-16

/

CONTROLLING OPERATIONS ON THE BASIS OF THE

) NEXT RECORD IN A FILE

Sometimes, calculations to be performed may depend upon
information in the next record or on the type of the next
record to be processed. For example, in a certain kind of
program, you might want to bypass calculations for the cur
rent record if you know the next record in the file is identical.

)

The RPG II language has a special feature called look ahead,
which extends the basic RPG II logic. It will allow the com
puter to look at information in the next record to be
processed while it is processing the current record. This
means that information in record B can be used while record
A is being processed. By using this feature, you can
write a program that uses information from the next record
available for processing.

Look ahead can be used with card, tape, or disk input files.
This section discussesiook ahead with card (MFCU) and
disk files. For MFCM, tape, and other files, the concept
is similar.

Processing Card or Disk Files

MFCU Files:. (Refer to the representation of the MFCU
card path in Figure 5-21 during'this discussion.) As Card
A is read, data recorded on.it is transferred ,tothe input
area. The card then moves on to the wait station. Accord
ing to the RPG II program cycle, information is transferred
from the input area to the processing area right before de-
tail time. At detail time, then, calculat!ons can be done on
data from the card path which is in the wait station (Card A).

However, when look ahead is specified, another card (Card
B) is read before detail time operations are performed in
the current cycle. Card A is stacked and information from
Card A is moved to the processing area. Then information
on Card B just read is transferred to the input area and is
available for use while processing Card A, now in the
stacker.

Print

Secondary

--- Hopper

--=H"';:::"~++---- Card A is stacked and data from card A

--.....\
). Figure 5-21. The Look Ahead Function with a Card File

is moved to the processing area.

Before card A is processed, data from
card B is read into the input area,
where it is available while processing
card A. '

Controlling Operations In An RPG II Program 5-17

Disk Files: Figure 5-22 shows processing of three of the
records from two disk input files, one primary and one
secondary. The records available for look ahead during the
processing of these records are:

Record Processed Records Available

P1 P2 and S1

P2 P3 and S1

S1 P3 and S2

PRIMARY FILE SECONDARY FI LE

! r ~II Ma~:I~;e!d --r :111
I I
1-------- -----~------J
I I
I I
I I
I I
I I
I I L _________________ J

0Read second
record from
primary file. ,'
r-----···· ------------., I /\\\:".. I

i r (P211 w i
I I
I-----~. ------------J I ·'·';;:i\\h. I

! w !
I . I L ____________ ;.....- ____ J

0Select first record
from primary file
for processing.

Figure 5·22 (Part 1 of 2). Records Available for Look Ahead: Two Input Files

5-18

from secondary file (S1).

Area into which records
are read (read area).

Area into which records
are selected for
processing (process area).

®

Read Area

Process Area

)

)

)

In general, when the record being processed is from an in-
put file, the next record in the input file is available as are
the records which were read but not processed from the
other files.

0Read third
record from

primary file. A\\\\\> r--h::~--------n--:
: ~ W:
L ____ -.:::::iiiii:!::b, __________ J
I .,,"" I

: ~ I
I ~ I

L ________ 'f'-______ J
8select second record

from primary file for
processing.

r:-':"-,
~ 1 : Processed Re~ords
L_!!,.!~J

r----------------,,:"'-l
i 12 (P311 ~ i
I .::: I
~------- ____ -4.iil!!f!" -----J
I ,,,,. ... I
I I

l-______ I"lill _______ J

©

Read Area

Process Area

@

0Read second record
from secondary file.

Read Area

Process Area

r:---,
,1 I
I I
I (P2)1

8select first record from
secondary file for processing.

L. ____ J Processed Records
r,----l
I

LJ~!~

Figure 5-22 (Part 2 of 2). Records Available for Look Ahead: Two Input Files

Controlling Operations In An RPG "Program 5-19

Checki Iig for' Dupli cates '
,.'

Duplicate 'records or records with duplicate fields are some
times considered erroneous. Only one of the duplicates'
should be used for the job;,'

Consider, for example, the case of a company which has a
large turnover in inventory items. Quite frequently new
items are added and others deleted from the inventory. A
number for a deleted part is to be assigned to a new part.
Some mistakes have occurred, however, and one part num
ber has been assigned to two different items. As a result of
this error, inventory balances for these items have not been
updated correctly, and errors have been made on customer
invoices. If this situation is possible, a regular check should
be made for duplicate part numbers.

Each month, a report is created showing the complete in
ventory. All part numbers are listed on the report. You
could look through th~ report to che~k fo:r duplicate part
'numbers, but it would be easier and more accurate if you
could add a few specifications that would check for dup
licates and indicate on the report which item numbers are
duplicate.

By using the look ahead feature you have access toinfor-ma
tion that is coming up. You can then use this information
t6 determine what operations to do. If you a're processing
a record with part number 64322, and you 'know that'the '
next record also has part number 64322, you can'print'a''''''
message indicating duplicate 'part numbers, then halt.' But,
if you are processing the record with part number 64322
and you do not know that the next record also has part
number 64322, you can do nothing special because you are
not aware that you are processing a record which contains
a duplicate entry.

Writing Specifications for Look Ahead

Any field which you want to look at in the next record to
be processed must be defined asa look ahead field. If that
field is also used in normal processing (other than as a look
ahead field), it must be defined in the normal way also.
Thus, most look ahead fields will be specified twice.

Figure 5-23, lines 01-05, shows specifications needed to
describe the input file used in preparing an inventory listing.
When checking for duplicates, PARTNO is the field you
want to use when looking ahead,at the next record; there
fore, PARTNO must be defined as a look ahead field. The
specifications in Figure 5-23, lines 06-07, do this.

RPG INPUT SPECIFICATIONS GX21·9094 UIM 050'
Printed in U.S.A.

IB1« International Business Machine Corporation

Program

Programmer Date

Record Identification Codes I Field Location

-
Line Filename

Position z 0 ~ Position

~ § ~
Position From To

12 757677787980

Page CD 01_, ~~;~I:ation I I I I I I I

o
:~ Field Name
~

~
'il
c

Field
Indicators

-_~-,' 6 1--..---.---1 ~ 0 ~a::
3i-t;

] ~~ "E

-0 ! .. u:(~
~ ~o ~

Zero
Plus Minus or

Blank

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2!s 29 30 31 32 33 ~, 35 36 37 38 39 40 41 12 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

01 Ir'Nlp T A~ ~[:nr
o 2 I II 15 IPA Rf IN"
o 3 I Ib 2lt; DE ~~
o 4 I l2lb .~11 12.lp RI ~IE
o 5 I 1312 ~II; Itllr,~ Inl~1"\

o 6 I lAIR ,*N

o 7 I lL Is N~J{ 1/\1

,

Figure 5-23. Look Ahead Specifications

'1)-20

/

)

)

)

All look ahead fields must be defined as being in a record
type different from the others defined. This is done by
using a unique alphabetic sequence entry in columns 15-16.
No record identifying indicator (01-99) can be used. A
double asterisk (**) is placed in columns 19-20 to specify
that the fields described in the following lines are look
ahead fields. Field location is also specified for look ahead
fields.

INPUT AREA

1

12644

(NEXTNO)

j1264iJ
(PARTNO)

Every look ahead field must be named, but the name given
must be different than whim it was described as a normal
input field. The same field is given two names so that you
can distinguish betweenthe field on the record being·
processed and that same field (the look ahead field) on the
record that is to be processed next (Figure 5-24).

NEXTNO refers to
positions 1-5 in the·
record to be processed next.

PARTNO refers to positons
1·5 .in the record currently
processed.

Figure 5-24. Look Ahead Fie!d: A Field with Two Names

- - Controlling Operations In An RPG II Program 5·21

Using Look Ahead Information

Now that Y9uhave specified the look ahead field, you can
use it as you would any other field. The only exceptions
are that you cannot use it as a result field in calculations,
nor can it be blanked after for output.

I n the listing program, you have to make a comparison
between part numbers from two records. If PARTNO on
the record being processing is the same as NEXTNO on the
next record to be processed, you wish to print a message
indicating duplicate entries. If the PARTNO and NEXTNO
fields do not match, there are no duplicates for that part
number, and the item is merely listed.

Figure 5-25 shows specifications for the program. The opera
tion in line 01 of the Calculation sheet compares the part
number on the record being processed (PA~TNO) to the
part number on the record coming next (NEXTNO). If

they are e'qual, indicator 07 is turned on. Notice on the
OutPut-Format~heet that when 07 is on, the word dup
licate is printed.

The SETON and SETOF operations in lines 02-04 of the,
Calculation sheet are used so that the computer will in- "
dicate a duplicate yvhen the second record having the dup
I,icate part number is processed.

Consider, for example, records A 1, A2, and B. The first
two records are duplicates;the third is not. When A 1 is
processed, the program looks ahead to A2 and, by com
paring, knows that A2 is the same as A 1. When A2 is
processed, the program looks ahead to B. The compare will
say that A2 is not a duplicate si(lce it does not match B 1.
But A2 really is a duplicate because it is the same as A 1.
Thus, when processing A 1 "you have to set an indicator
which will be on when A2 is processed and which will in
dicate that A2 is a duplicate since it matches the previous
record.

RPG CALCULATION SPECIFICATIONS Form GX21-9093
Printed in U.S.A.

IBM I",emltional Busineu Machine CorporatiOn

I Date

1 2 75 76 77 78 79 80

Page CD of _ ~~;~;~:ation I I 1 1 1 1 1
~--Program

C Indicators Result Field
Resulting

~ Indicators

1--- 9~
At 1 1'! Arithmetic

=0 Factor 1 Operation Factor 2 ·2 J: Plu. 1Minu.! Zero Comments
~!~ Length ~ ; Compare

line I- '0 rl
Name

g~ 1>211<2!1-2
E ~ '" Lookup(Factor 2)i.
~85~ ° a ~ -: z z o :x: High. Low Equal

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 5253 54 55 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

a 1 C r-E IA. R TINh r"" Mlp ,N" ~Il IN It-. IYII --
0 2 c rtJi7 Sf ThN ~11
0 3 c slL N(ll17 Sf T~N I ./; 2. rzl7 @. :---~ C !ilL 1£12. Sf IThJ:' ~- l'ilL 52

I

RPG OUTPUT SPECIFICATIONS
IBM International Busmess Machine Corporation

~:_r:_:_:m_er ____________ ~I~D-._t-e--~=~_-~~'-~~~~~~~;-r_~_~~!~n~~~G_p~_:_ic~I ___ ~I~I __ ~1 -L1~1~1 __ 1L-~_rd_EI_ect_rO_N_um_~_r~
1 2

Page CD of_

0 -'" ~ Sp"lce Skip Output Indicators
Commas Zero Balances No Sign CR -

r-- ~~ Iti.l to Print

Il~
Field Name Yes Yes

.,
1 A J o- II -"" l!! ~ -Yes No 2 B K

Line Filename ;. ~
~~

End ' No Yes 3 C L
~~ And And a: Positon No No 4 0 M

~ I- cl5 ~ ~ in a:
I- ~ro'o ~ ~ ° ° ° 8 U Output g Constant or Edit Word
j ~~f-

z z z "AUTO ~~ Record
i>:

AND

GX21-9090 U/M 050·
Prmted in U.S.A.

75 76 71 78 79 80

~~~;~f:ation I I. 1 I 1 I I 

X = Remove 
Plus Sign 

Y = Date 
Field Edit 

Z ~ Zero 
Suppress 

3 . 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 232' 25 26 27 28 29 30 31 32 33 34 35 36. 37 38~ 40 4' 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 olp 'Rlr INT In ~ ~l 
0 2 0 I~,Q 'HTN 2~ -. 
0 3 0 II"\~ sir b~ 
o 4 0 ~ 11\ 11'11. 7~ 

@~ ~7 qti'j 'In Ip I~ Art" IF I 

Figure 5-25. Using Information from the Look Ahead Field to Check for Duplicates 

5-22 

I~ 



) 

) 

) 

When PARTNO equals NEXTNO, 07 turns on. This, in 
turn, causes indicator 51, which is used to indicate that a 
duplicate record is processed, to turn' on. During the next 
program cycle, the compare does not indicate duplicates; 
therefore 07 is not on. But 51 is on, meaning that the rec
ord being processed is a duplicate since the part number on 
it matched the part number on the previ9us record. There
fore, 07 is set on. Remember 07 conditions those output 
operations which'are to be done for duplicates. 

12455 DOOR KNOB 48 DUPLICATE 

• 

• 

• 

Turn off 
record identifying 
indicator 01 

Perform detail 
output 

Perform detail calculations: 
Compare PARTNO fields: 

12455 to 12455 
They are equal so turn 07 on. 
07 is on so SETON 51 . 

Move data from record 
selected into processing 
area. If Lo'ok Ahe'ad is 

. used, read another. record. 
If cards, the first is stacked. 

• • 
Figure 5-26 (Part 1 of 3). Logic for Look Ahead 

• 

Indicator 52 is set on in line 03 to indicate that the last 
duplicate record is being processed. Indicator 52 then con
ditions line 04 so that indicator 51 will be set off and not 
indicate:duplicates in the following cycle. Fig'ure 5-26 
shows the program logic for this job. 

12457 

12455 

o \ 
\ \ 

" , : 
I, /: 

/~ • 
/;'/ Note: This record is read only if 

~f. the Look Ahead feature is used. 
,N:P' 

Read a 
Record 

It is read after data from the '~'f::' 
,_ - ____ hr ... , 

( 12455 I • 
first record is moved into 

the processing area. 

I 
I 
I 12455 
I 
I Turn on • • ..I 

record identifying 
indicator 01 

• 
• 

• 
• 

Controlling Operations In An RPG II Program 5-23 



5-24 

12455 

12455 

DOOR KNOB 48 DUPLICATE 

HINGE,6" 90 DUPLICATE 

• 
• Turn off 

record identifying 
indicator 01 

• 

output 

Perform detail cal cui ati ons: 
Compare PARTNO fields: 

12455 to 12456 
Not equal so turn 07 off 

SETON 07 and 52 using 51 from 
previous cycle. SETOF 51 and 52 

• 

• 
Move data from record selected 
into processing area. If Look 
Ahead is used, read another 
record. If cards, the first card 
is stacked . 

• 
• 

• 

Figure 5-26 (Part 2 of 3). Logic for Look Ahead 

• 

• 

/12457 

/12456 

I I 

• I I 
/1 • I I 

/ I 
I / 

I / 
/ ,-

/ / 
/ / 

~/ 
~ - .- - - - - - - , 

I 12456 I , 
I 

12455 I 

I 

I-

Turn on 
record identifying • 
indicator 01 

• 

• 

• 

./ 

( 



) 

) 

) 

12455 

12455 

12456 

DOOR KNOB 48 DUPLICATE 

HINGE,6" 90 DUPLICATE 

HINGE~ 8" 75 

• 
• 

Turn off 
record identifying 
indicator 01 

Perform detail 
output operations 

Perform detail calculations: 
Compare PARTNO fields: 

12456 to 12457 
• Unequal so turn 07 off. 

• 
• 

• 

Figure 5-26 (Part 3 of 3). Logic for Look Ahead 

• • 

Move data from record sele,cted 
into processing area. If Look 
Ahead is specified, read another 
record. If cards, the first card 
is stacked . 

• 

Turn on'< . " 
record: identifyi n9 
indicat~r en, 

• 

• 

• 

Controlling Operations In An RPG II Program 5-25 



Doing Special Operations When There is Only One Record 
in a Group 

It is often important to know if and when you are process
ingthe only record in a group. The program described in the 
following paragraphs is such a case. 

A report is prepared showing charges made by customers 
during the month (Figure 5-27). The input file is organ
ized in ascending order by customer number. During the 
month some customers will have made one charge; others 
several. 

When only one charge is made per customer, the total line 
is nearly a duplicate of the only detail line. In this case, 
you do not need to print both the detail and total line be
cause the total line will do. 

But how will you know during anyone program cycle 
whether the current record is the only one in a group? 
You can find out by looking at information on the next 
record. Remember, any time information from the next 
record is necessary to determine how to process the cur-
rent record, you must use the look ahead feature. Account 
number is established as a look ahead field in this program. 
Any look ahead field specified applies to all record types. Thus 
each record read contains information that will be looked at 
before the 'record itself is processed. By looking ahead into 
this field you will know whether or not the next record 
to be processed is part of a new group. 

MONTHLY CHARGES 

ACCTNO NAME CHARGE 

47653 JILL ARNDT 4.97 } 
5.99 Detaillines 

23.87 

47653 JILL ARNDT 34.83· Total 

49832 NANCY BENNET 87.93· Total 

59821 JOAN BOND 7.42 Detail 

Figure 5-27. Format of Monthly Charges Report 

Whenever a r'ecord is read, the current ACCTNO field is 
compared to the one coming up. If the fields are equal, you 
know you are processing a record that is not the only one 
in a group. Therefore, a detail line should be printed.' If 
the ACCTNO fields are not equal and this is the first time 
the present account number has been encountered, the cur
rent record is the only one in the group, arid the detail line 
should not print. Figure 5-28 shows the specifications for 
the program. 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050' 
Printed In U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 78 79 80 
Program 

Programmer Date 
Page []]Of_ :~;~f~cation I I I I I I I 

I ~ Record Identification Codes Field Location 
U Indicators 
~ m .g 1---.---.--1 
gt. ~ 0 ~ 

Line Filename ~ - ~.!; ~.~ Field Name -;; ~ ~ "tI 

8. j ~ ~ Position !; Position !; Position t ;;i a: From To ~ .3 ~ '" J Plus Minus !:ro 

~ ~:;; z_ fl !;,._ -z p ~ Z Q tj t - E e :c .f Blank 
E ... ~Ni6 "'NiU ~N~~g .- ... ~]" ~ rei ~r- ~! ~ u 0 ~ U 6 z U 0 cii ii: ~ 8 ~ u ~ 

f-;;~~ 

Field 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 Ilr IJII\ lolf: 1~1c; lolA ~!l 
o 2 I 11 ,., r/, ,~I ... I"H"NIr 1111 
o 3 I Ib I.~fl ~A ME 
o 4 I l312 BHIL.. H}O(~ 

~~ IAR '** 11 -I., ". NI-Il' ~\I 

o 7 I 

nlRI T 

Figure 5-28 (Part 1 of 2). Using Look Ahead to Determine When There is Only One Record in a Group 

5-26 

/ 



) 

) 

--.... 
\ 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printtdin U.S.A. 

IBM Inlern'tion.1 BUlin,ss Machine Corpor.tion 
1 2 75 76 77 78 79 80 

Page [0 of_ :~:~f~ltion I I I I I I I Program 

Programmer Olte 

C Indicators Result Field 
R .. ulting 

~ 
IndlCltors 

-- 0_ 

Jd At :1 ~ 
Arithmetic 

.Ja: 
Plus jMinuslzero ::'0 Factor 1 Operation Factor 2 Comments 

~3~ Length ~ ; Compare 
Name 1>211<211-2 line I- "0 a: ~ i 

E :; '" 
0 0 0 -2 :;; Lookup(Factor 2lis 

~ 85- z z z e :I: High Low Equal 

3 • 5 6 1 8 9 10 1112 13 1. 1S 16 11 18 19 20 21 22 23 2. 25 26 21 28 29 30 31 32 33 34 35 36 31 36 39 40 41 42 43" 45 46 47 48 49 6051 5253 64 55 56 51 5859 50 61 62 63 64 65 66 67 66 69 70 71 72 73 74 

o 1 C ~L ~~ ~rr ~h ~r iMlp Nf:.. IX IN 
o 2 C qq ~l --- ... 

~~ N 

o 3 c ~l ~IJ.I ~~ A Din Tn Tr UG 
o 4 C 1 ~!J;: rrbf 
-@~ 

RPG OUTPUT 
IBM Inrern,llOn" Business M.chlne Corporation 

Program 

Programmer 

0 ~Space Skip Output Indicators 

I--- e~ Ci 

AL 1 
Field Name 

e !!:: 
~ -.. e ~ 

Line Filename = ~ i~ 8. .,. 
> 1II 

~ .... eli ~ .... 'AlOe ! ! 0 0 0 8 
~ ~r;e 

z z z ·AUTO 
~ 

3 4 5 6 7 8 9 1011 12 13 1415 16 17 18 1920 21 22 23 24 2526 27 28 2930 31 32 33 34 35 36 37 38139 
o 1 OK 1::. ... 1-('11 H 3 Tip 
o 2 0 

o 3 0 J.I 1.3 Ilip 
o 4 0 

o 5 0 

o 6 0 

o 7 0 r'\ 12 4 It. 
o 8 0 lllJ. IA IW'<I 
o 9 0 ILll ~iA '/\'IE 
1 0 0 r-~ lAG lA 
11 0 T lLl3 III 
1 2 0 ~ir ~T 'Nit-
1 3 0 N~ ME 
1 4 0 Tlfl tr'" ~,.. ~Ig 
1 5 0 

©~ 

II t1:G 

SPECIFICATIONS 

.. 
Commas ... 

Yes 
Yes 

End No 
Positon No 
in a: 
Output .J 
Record CD 

0;: 

iqq 
1.Jt. 

~12 
l.Ifl 

1 2 

Page [0 of_ 

Zero Balances 
No Sign CR -to Print 

Yes 1 A J 
No 2 B K 
Yes 3 C L 
No 4 0 M 

Constant or Edit Word 

GX21-9090 UiM 050· 
. Printed in U.s.A. 

75 76 77 78 79 80 

::~a;'Cltion I I. 1 1 1 1 -I 

X • Remove 
Plus Sign 

Y a Date 
Field Edit 

Z = Zero 
Suppress 

40 41 42 43 .. 45 46 47 48 49 50 51 52 53 64 55 56 57 58 59 50 6t 62 63 64 65 66 67 66 69 70 71 72 73 74 

155 I I". Iy ,.. ,. ... -po .. I 
IN H 

12.'\ \ A rlr T INt'll 
lCi5 \ N AM ~I 
175 Ir 111\ ("Jr 1,-1 

12_'\ 
II,!; 

05 

11.'5 
05 
175 
11:6 \ ~ I 

Figure 5-28 (Part 2 of 2). Using Look Ahead to Determine When There is Only One Record in a Group 

Controlling Operations In An RPG II Program 5-27 



Doing"Special Operations for the Last Record in a Gro~p 

In some programs, it may be necessary to do special opera
, tions on the last record of a control group. This is because, 

unless the last record in the control group is of a different 
type (have different record identification), it is impossible 

: to know when you are processing the last record in the 
group. When all records are of the same type, you have to 
know what is on the next record before you know whether 
or not you are processing the last record in the group. To 
look at information in the next record, you must use the 

~ look ahead feature. 

Figure 5-29 shows four records which are to be processed. 
The first three belong to one control group; the fourth is 
the beginning of the next group. The last record of the 
grOUIJ (the third record in this case) requires special 
processing; In ~rder to know when the last record in the 
group:is to be processed, you must look at the account 

, number in the next record. When it is different, you know 
~hat the last record inthe group is being processed. 

! : 
J 1 

. Additional 'Points to Consider About Look Ahead 

, You must consider the following things when you are 
, p"l~nning to use'look ahead: 

,. When look: ahead is used with a combined o,r update 
file, and that file is the only input file in the program, 
the field looked at is not on the next record, but on 
the record currently being processed. Therefore, there 
is little use for look ahead with update or combined 
files'in a single file program. In a program with multiple 
input-type files, look ahead fields can be useful in update 
and combined files. For example, if two files with look 

, ahead.fields a're being processed - an input file and a 
i : i combined file, (or update file) - look ahead fields ,in the 
, , 'combined file are available as the input file is being 

, proce~sed (see Figure 5-22): 

• Look ahead is never used with chained, demand, or out
put files. 

• Only one look ahead record type specification may be 
used for a file. ,There may be several fields I isied under 
that one, recordtype' specification however. 

• Any look ahead fields specified apply to all types of rec
ords in the file. Therefore, all records read from the file 
will be treated as if they have look ahead fields. 

5-28' 

48321 

(' ~6::65_4 ________________ ~ 

47654 
(Account field 

specified also as 
a look ahead field) 

In the processing of 
this record, the Look 
Ahead feature shows, 
that the next account 
number is different. 
Therefore, this is the 

, last record of a group 
and as such requires 
special operations. 

Figure 5-29 •. Using Look Ahead to Find Last Record in a Group / 

MOVING DATA 

You can instruct the programto manipulate data in many 
different ways. You can cause data to be added, subtracted, 
multiplied, compared, tested or divided. You can also cause 
data to be moved. When data is moved, a copy of the data 
in one field is transferred to another field. In the,process 
of transfer, it mayor may not be changed depending upon 
your specifications. 

You may wish to move data for many reaso'ns, including: 

1. 

2. 

3. 

To save information from a field. 

To separate one field into 2 or more parts. 

To change a numeric field into an alphameric field or 
vice versa. 

The preceding topics will be discussed later in this section. 
First, however, you must learn how to use the move opera
tion codes. 



) 

) 

J 

Specifications for Moving Data 

Two operation codes can be used to move data: MOVE or 
MOVEL. For both operations Factor 2 and the Result 
Field are always used. Factor 2 may be either a field or 
constant. Any conditioning indicators may be used. How~ 
ever, Factor 1 and resulting indicators may not be specified. 

The MOVE operation code moves a copy of characters 
starting from the rightmost position of Factor 2 into the 
rightmost positions of the Result Field. As a result of the 
move, the contents of the Result Field are changed, but the 
contents of Factor 2 remain the same. Figure 5-30 illus
trates the MOVE operation. 

Factor 2 

The MOVE operation code 
moves a copy of characters 
starting with the rightmost 
position of Factor 2 into the 
rightmost positions of the 
Result Field. 

When Factor 2 and the 
Result Field are the same length 
all characters in Factor 2 
can be moved. Movement starts 
with rightmost character of 
Factor 2 

Result Field 

Factor 2 

Result ~ield 

Factor 2 

Result Field .. 

When Factor 2 is longer than the 
Result Field, only the exact num
ber of characters needed to fill 
the Result Field are moved from 
the rightmost positions of Factor 2 
into the Result Field 

When Factor 2 is shorter than 
the Result Field, all characters in 
Factor 2 are moved into the 
rightmost positions of the 
Result Field. All characters in the 
Result Field .to the left of those 
moved in from Factor 2 remain 
the same as they were 
before the move. 

Figure 5-30. MOVE Operation Code 

If the Result Field is the same length as Factor2,all char
acters in Factor 2 are transferred. However, if the Result 
Field is shorter than Factor 2, only the number of charac
ters needed to fill the Result Field are transferred. On the 
other hand, if the Result Field is longer than Factor 2, all 
characters in Factor 2 are moved to the rightmost positions 
of the Result Field. The excess leftmost characters of the 
Result Field remain unchanged. 

The MOVEL operation is just the reverse of the MOVE 
operation; it moves a copy of the characters starting from 
the leftmost position of Factor 2 into the leftmost posi
tions of the Result Field. Figure 5-31 illustrates the MOVEL 
operation. 

Factor 2 

Result Field 

Factor 2 

Result Field 

The MOVEL operation code 
moves a copy of characters starting 
with the leftmost position of 
Factor 2 into the leftmost 
positions of the Result Field. 

When Factor 2 and the 
Result Field are the same length 
all characters in Factor 2 
can be moved. Movement starts 
with the rightmost character of 
Factor 2. 

When Factor 2 is longer than the 
Result Field, only the exaCt num
ber of characters needed to fill 
the Result Field are moved from 
the leftmost positions of Factor 2 
into the Result Field. 

Factor 2 When Factor 2 is shorter thgn 
the Result Field, all characters in 
Factor 2 are moved into the 
leftmost positions of the 

Result Field 

Result Field. All characters in the 
Result Field to the right of those 
moved in from Factor 2 remain 

, the same as they were before 
the move. 

Figure 5-31. MOVEL Operation Code 

ControlliM Operations In An RPG II Program 5-29 



5·30 

® 

® 

LJ 

PROCESSING 
AREA 

ACCT 

c:J 
ACCT 

Figure 5·32. Data in Storage 

® 

@ 

AREA 

U 

PROCESSING 
AREA 

ACCT 

LJ 
ACCT 



) 

Saving Information From a Field by Move Operations 

Any information in fields specified as input fields is nor
mally only available for one program cycle. Each time a 
record is read, information from the fields on the new rec
ord replaces that which was there from the previous record 
(see Figure 5-32). 

There are times, however, when you wish to save informa
tion from a record so that you can have it available in the 
next program cycle. For instance, you may want to check 
the contents of a field in order to determine if a file is in 
proper sequence or if it has duplicate entries. I n order to 
do this, you must have the data from two fields, the field 
from the record just read and the field from the record 
read in the previous cycle. 

Consider the problem of checking the sequence of, and 
finding duplicate entries for, the file shown in Figure 5-33 .. 
Sequence is to be based on ACCT (account number) and 
must be ascending. Any duplicate or out-of-sequence rec
ords are to be flagged. 

The program must compare the ACCT fields from two 
records: the record currently being processed and the pre
vious record. The current account field should always be 
higher than the previous account field. Would the specifi
cations in Figure 5-34 do the job? They would not, be-

-) cause in one program cycle the field named ACCT always 
has the same information in it. This information is taken 
from the record just read. Just because you use the name 
twice, you won't get two different ACCT fields. 

Record out of sequence 

~ccount Field 

Figure 5-33. Input Field Sequence 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed In US.A 

IBM Internallonat BUSiness Mach,ne Corporation 

Program 

Programmer Date 

Result Field 

Factor 1 Operation Factor 2 

Name Length 

1 2 

pageDJo,_ 

Resulting 
Indicators 

Arithmetic 

Plus JMinus Zero 

Compare 

1 > 211 < 211 • 2 
Lookup(Factor 21 is 
High Low Equal 

75 76 77 78 79 80 

~~:;~':ation I I I I I I I 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 3334 35 36 37 38 39 40 41 42 434445 46 47 48 49 50 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C '-I"'\Mle Ar if' T 
o 2 C 

o 3 C 

o 4 C 

o 5 C 

Figure 5-34. Sequence Checking (Incomplete Specifications) 

Controlling Operations In An RPG II Program 5~31 



® 

L:J 
ACCT 

L:J-.L:J 
ACCT move SAVE 

© 
/ 

@ 

U 
ACCT 

Figure 5-35. Moving Data to Save It 

5-32 



Therefore, each time a record is read, you must save the in
formation from the ACCT field so that it is not destroyed 

~\ when another record is read. This you can do by moving 
j ACCT into another field. (Figure 5-35 illustrates this con-· 

cept.) 

Figure 5-36 shows the specifications needed to do the job. 
Assume that you move ACCT into a field called SAVE. 
The first step is to compare ACCT with SAVE (which con
tains the previous ACCT data). The second step is to move 
ACCT into SAVE. In the first program cycle, SAVE will 
contain all zeros since all numeric fields are set up with 
zeros before the first record is read. I n the next cycle, 
and all cycles thereafter, SAVE will contain the ACCT field 
from the previous record. 

Maybe you are wondering why you would ever want to se
quence check by calculations instead of using the RPG II 
automatic sequence checking function which is done merely 
by specifying a match field. The answer is that, with RPG 
II automatic sequence checking, any out-of-sequence card 
will cause a halt. If you do not wish to halt, but merely 
wish to indicate out-of-sequence or duplicate cards, then 
you must do your own sequence checking. You could also 
use the look ahead feature, since both look ahead and the 
use of moves in calculations give essentially the same results. 

) Separating One Field Into Two Parts 

A company has designed its part numbers to contain two 
different kinds of information. The basic part number is 
contained in the first three characters. The remaining five 
characters contain the price. For example, in the part num
ber 65J00498, the basic part number is 65J and the price is 
$4.98. When preparing invoices, it is necessary to multiply 
unit price times quantity to find the total price. You don't 

want to multiply the whole part number field times quan
tity just because the part of the field contains unit price. 
Somehow, you must separate price from the rest of the 
field. 

To do this you again use a move operation. You cannot 
move the whole field into another field as was done in the 
previous example. This merely creates a second field iden
tical to the first. You want only the last five characters. 
Therefore, you must move the field into a 5-position field. 
This will limit the move to five characters (see Figure 5-37). 

RPG CALCULATION SPECIFICATIONS 

PART NO 

Figure 5-37., Separating the Price from the Part Number 

(Using MOVE) 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 7B 79 BO 
Program 

Programmer Date ~;:;~f:ation I I I I I I I Page [I] 0'_ 

C Indicators Result Field 
Resulting 

~ Indicators 

~ gee- At At 1£ Arithmetic 

=0 Factor 1 Operation Factor 2 .g £ Plus IMinusl Zero 
Comments 

[ ~ ~ Length ~ ~ Compare 

line ~ ~ c£ 
Name g:¥ 1>211<211-2 

E ~ ~ ~ (5 (5 .~ '; Lookup(Factor 2)is 
~ 8 5 ~ z z OJ: High Low Equal 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 C ~V- I,. h' Ir-Ir-l/\l!p lsl4 1'111= R~ IqR 
0 2 c 1M In IV~ lQ"" ir"1r lC;IA IVIE 11;10 
o 3 C 

n ~ I 

Figure 5-36. S~quence C!;;;cldng (Correct Specifications) 

Controlling Operations In An RPG II Program 5-33 



In this case, the MOVE operation was used. Why wouldn't 
the MOVEL operation work as well? Couldn't you move 
left into a 3-character field to separate the price from the 
rest of the part number? Remember that a move leaves the 
original field as it was before the move. MOVEL does not 
remove the first three characters from the original PARTNO 
field. It merely copies them. You still would not have the 
unit cost by itself. But you would have the part number by 
itself (see Figure 5-38). 

RPG CALCULATION SPECIFICATIONS 

PART NO 

PART 

Figure 5-38. Separating the Part from the Part Number (Using MOVEL) 

5-34 

Changing Field Type (Alphameric or Numeric) 

The part number field contains both numeric and alpha
betic characters (see Figure 5-38). If you want the pro
gram to work with th~ zone portion of a character (as it 
must to get the letter J), you have to define the field as 
alphameric (blank in column 52 of the input sheet). How
ever, you cannot use an alphameric field in arithmetic cal
culations. To find total cost, you must multiply unit price 
by quantity. This is an arithmetic operation; thus the field 
must be numeric. 

What do you do if you need one field to be defined as both 
alphameric and numeric? You could define the field twice
once as numeric and once as alpharne~ic. Of course, you 
would have to use two names for the same field since every 
field defined for one type of record must have a unique 
name. 

You may also use a move operation to change a numeric 
field into an alphameric field or vice versa. You can change 
fields by:. 

1. Moving an alphameric field named in Factor 2 into a 
numeric Result Field. 

2. Moving a numeric field named in Factor 2 into an 
alphameric Result Field. 

Figures 5-39 and 5-40 give the rules for and examples of 
the various types of moves you can make to change a field 
type. Figure 5-39 illustrates the MOVE operation and Fig
ure 5-40 the MOVEL operation. If you do not understand 
results obtained in the low order positions, see the chapter 

entitled Working With Data Structures. 

/ 



) 

J 
J 

Factor 2 same length as Result Field 

Factor 2 

Result Field 
Factor 2 

Result Field 

When moving an alphameric 
field into a numeric field, 
the digit portion of all characters 
is moved. The zone portion of 
the rightmost character is also 
moved and used as the sign. 

When moving a numeric field 
into an alphameric field, all 
digits are transferred. The sign 
(zone portion) of the rightmost 
character is also moved. 

------------
Factor 2 longer than Result Field 

Factor 2 

Result Field 
Factor 2 

Result Field 

When moving an alphameric 
field into a numeric field, the 
digit portions of only the number 
of characters needed to fill the 
Result Field are moved. The zone 
portion of the rightmost character 
is also moved and used as the sign. 

When moving a numeric field 
into an alphameric field, only the 
number of digits needed to fill 
the Result Field is moved. The 
sign of the rightmost character 
is also moved. 

Factor 2 shorter than Result Field 

Factor 2 

Result Field 
Factor 2 

Result Field 

When moving an alphameric 
field into a numeric field, the 
digit portion of all characters 
is moved. The zone portion of 
the rightmost character is also 
moved and used as the sign. 
All characters in the Result Fielg 
to the left of those just moved 
in remain the same as they were 
before the move. 

When moving a numeric field into 
an alphameric field, all digits are 
moved. The sign (zone) of the 
rightmost character is also moved. 
All characters in the Result Field 
to the left of those moved in 
remain the same as before the move. 

Figure 5.39. MOVE Operations Involving Fields of Various 
Lengths and Types 

Factor 2 same length as Result Field] 

Factor 2 
When moving an alphameric 
field into a numeric. field, the 
digit portion of all characters is 
moved. The zone portion of the 
rightmost character is also moved 
and used as the sign. 

When moving a numeric field into 
an alphameric field, all digits are 
moved. The zone portion of the 
rightmost character is also moved. 

----------
Factor 2 longer than Result Field 

Factor 2 

..... -.. 
r-M~--r-J8,' (zone of 0 

Result Field 

becomes sign 
of Result Field) 

Factor 2 

becomes sign 
of Result Field) 

When moving an alphameric field 
into a numeric field, the digit 
portions of only the number of 
characters needed to fill the Result 
Field are moved. The zone portion 
of the rightmost character is also 
moved and used as the sign. 

When moving a numeric field 
into an alphameric field, only the 
number of digits needed to fill 
the Result Field is moved. The 
sign of the rightmost character 
is also moved. 

----------------
Factor 2 shorter than Result Field 

Factor 2 
When moving an alphameric 
field into a numeric field, the 
digit portion of all characters 
is moved. All characters in 
the Result Field to the right 
of those just moved in remain 
the same as they were before 
the move. Thus the sign of 
field does not change. 

When moving a numeric field 
into an alphameric field, all digits 
are moved. All characters in 
the Result Field to the right of 
those just moved in remain as they 
were before the move. 

Figure 5-40. MOVEL Operations Involving Fields of Various 
Lengths and Types 

Controlling Operations In An RPG II Program 5-35 



In order for the letter in the part number ever to be read, 
compared, or printed, the field .. lust be defined as alpha
meric. When it is time to multiply price times quantity, the 
price portion of the field must be numeric. Therefore, when 
using the MOVE operation to separate the unit cost from 
the rest of the part number, you should, at the same time, 
change the alphameric unit price into a numeric unit price 
by moving it into a numeric field. To define a numeric 
field, you must specify decimal position along with field 

I length (see Figure 5-41). 

If the 5-character unit cost had preceded the part number 
(for example, 0049865J), you would then use the MOVE L 
operation to get the unit cost alone. Remember, however, 
that th~ zone of the rightmost character is used for the sign 
of the field (see Figure 5-40). The zone of the character J 
is a minus sign. The price will appear as negative. This you 
would not want. 

The part number field 
is defined as alphameric 
since no entry has been· 
made in column 52. 

TIONS 

Field Location 

0 ." .v; 
0 

From To 
.,. 
~ 
.~ 

0 

1 2 

Page [I] ( 

g 
Field Name ] 

1 
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

~PG CALCULATION SPECIFICATIONS The price section 
of the part number 

---'---'---"--"-'--'---'---'-~-=Ca-rd-::E-:-lec-trO-:-N-um--!b& field is changed to 
:~~~n I a numeric field by 
_---" __ --'---'---L---'---'---'---'---'-___ --; moving it into a 

Operation Factor 2 

Result Field numeric field. Two 

Name 

w decimal places were 
:! specified to show 

Length ~ the cents portion 
.~ of the field. 
o 

Figure 5-41. Changing a Field by the MOVE Operation 

5-36 

When using move operations to change an alphameric to a 
numeric field, keep in mind the kind of sign (plus or minus) 
each character will give you: a - (minus sign), or J through 
R gives a minus sign; the rest give a positive sign. If you are. 
aware of this, you will not get unexpected results. Since no 
sign is involved in an alphameric field, you don't need to 
worry about the sign when changing a numeric to an alpha
meric field. 

BRANCHING IN CALCULATIONS 

The detail and total operations written on the Calculation 
sheet are normally executed in the same order as they are 
written. For each record selected for processing, the detail 
operations are performed sequentially from beginning to 
end. If the record selected for processing causes a control 
break, the total operations are performed, in the order 
specified, before detail operations. 

There are many times, however, when it is necessary that 
operations not be performed sequentially. For example, in 
one cycle you may wish to skip some calculations or to do 
others several times. In this section you will learn to alter 
the sequential processing of calculations using the most 
efficient coding. 

Bypassing Calculations 

So far you have been bypassing operations by the use of 
indicators. For each calculation conditioned by indicators, 
a check is made to see if the condition set by the indicators 
is satisifed. (When several sequential operations are condi
tioned by the same indicator(s), the test is only made on the 
first operation.) If the condition is satisfied, the operation 
is performed. Calculations are bypassed or omitted when 
conditions are not satisfied. When bypassing calculations 
in this way, the program has to check the conditions set for 
the operations to determine whether or not to do them. 
This requires time and storage space inside the computer. 

Another way to bypass calculations is to branch .around 
them. With the latter method, the indicator setting for 
each operation is not checked. When the branch is taken 
around operations, the operations are just skipped (see 
Figure 5-42, insert A). 

Two operation codes are used for branching: GOTO and 
TAG. GOTO is the code which causes a branch to another 
spot in the calculations. The TAG operation gives the name 
and location of the spot to which the GOTO operation 
branches. GOTO causes a branch; the TAG code does 
nothing but act as a nametag. 



Figure 5-42, insert B, shows how GOTO and TAG are speci
fied. GOTO signals a branch to the spot named in Factor 2. 

') This name must also appear in the TAG statement, where 
it is entered in Factor 1. The rules for forming a name for 
GOTO and TAG are the same as those for forming any field 
name. 

NEXT is found. NEXT is the name of the TAG statement. 
Any operations between the GOTO statement and the TAG 
statement (those specified in lines 03-05) are skipped. TAG 
does nothing, so the next operation performed is the SUB 
instruction in line 07. 

) 

A GOTO statement can be conditioned by an indicator, but 
a TAG cannot. When a GOTO is not conditioned, a branch 
occurs in every program cycle. 

In the example shown in Figure 5-42, the GOTO operation 
is done only when 01 is on. If the condition is satisfied, a 
branch is taken to that point in the program where the same 

If branching were not done, the three operations skipped 
by the branch would have to be conditioned by NO 1 so 
that they would not be done when 01 turned on. And, of 
course, a check would have to be made in each program 
cycle to determine if the operations should be done or not. 

There are many situations in which branching will help you 
write more efficient and effective programs. The following 
sections will explain more fully the use of GOTO and TAG. 

0(1 __ 

} 

Skip these 
operations if 

__________ 01 is on. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Business Machine Corporat!on 
1 2 75 76 77 78 79 80 

Program 

Programmer Date :~~~f:ation I I I I I I I Page [DO!_ 

c 
If! 

~~~~!:~s 
~ Ijl~

A Hhmetic

, A ~d AId Factor 1 Operation Factor 2 Plus Minusl Zero Comments

Line ! I~I~
:ompare

IJ:
Name Length 1>2 1 <211-2

13 4 I; ~ ,~ 10 11 !,~ J I!I! ,I~, '2);s

1920 21' 22 232425 26 27

I~'~.~.~""
143 44 45 46 47 4S 49 50 51 ~i9:5 i 5~o:" :i~~ 160 61 62 63 64 65 66 67 68 69 70 71 72 73 74

10 1 c RAil ~r 1= lAlnln lc; ig,llll' 1\1 r 11= I~ rJJ
10 12 C rlll r,1"rr
1 01 3 C ~ h'==t::
a 14 C ," --~-'

a 16 C ~".", ,---f-
a 16 C N~.x iT lAIC;
: a 17 c RA It IN r,: ~II I~ ... - RI~ ,~ r~ ,
(B\ C
,~r. "

Figure 5-42. Bypassing Calculations by Branching Around Them

Controlling Operations 11;'1 An RPG II Program 5-37

Branching When Different Record Types Require Different
Operations

When doing different operations for different recordWpes,
you use the record identifying indicators to show what opera
tions should be done for each record type read (see Figure
5-43). When you have several record types and each type
requires several operations, you can see that many condition
ing indicators are necessary.

For situations like this, you can branch directly to the set
of calculations which should be done for the record type
just read. When those calculations are done, you can then
branch to the end of all calculations. This eliminates check
ing operations to see if a set of calculations should be done
for the record'type being processed. In fact, record identify
ing indicators do not need to be specified for the individual
operations. Figure 5-44 shows the recommended branching
structure used for different record types which require dif
ferent operations. Using this structure not only makes your
programs more efficient but also makes them easier to under
stand and document.

Consider the use of such a bran~hing structure in a sales
analysis program. Each day the manager of a retail store
wishes to know total cash sales, total charge sales, and total
refunds. The input file, arranged in ascending order by ac
count number, contains four different record types:

1. Charge records record total charges and refunds (if
any) for a particular account.

2.

3.

4.

Payment records record any payments received. They
are included in the file, but are not needed in this job.

Refund records record any refunds made for an ac
cou'nt. No cash and charge sales were made by this
customer.

Cash sales records record total cash sales and cash re
funds (if any) for a particular account.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed In U.S.A.

IBM International Business Machine Corpor8t~on
r Program I Graphic I I I I Card Electro Number

1 2 75 76 77 78 79 80'
Punching

pageDJOf_ ~~~;~f:ation I I I I I I I I Programmer Date I Instruction .1 Punch I I I I

C Indicators Result Field Resulting
Indicators

- At At .~
Arithmetic

Factor 1 Operation Factor 2 Plus!Minu$f Zero Comments
8- '8 Compare

line ~ Name Length ~ 1>211<211-2
E E b b b ':rl Lookup(Factor 2)is

~ z z z c High Low Equal
3 4 I; 6 9 10 II 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 54 55 5657 5859 6 o 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C ~IL iRIl; ~i~IV ~n'n
1_1- ~I(} These operations are II 11t'(1~ IHIr-

o 2 C ~II 'RIF= Ir 1,:lv ~nlD It: I INIR II; ,. J:T NIR I~'" rJ'd. done on record type 01.
o 3 C ~12 ~ID ,J~ IrlD ,..,.. 'Mlp 'lZ lL' Iql, 1\ , I I I I I I I 1 I I I I
o 4 C ~12 lAin .1 1,. IrIln .,.,.. Il\1lp 'rfJ 12' Iql, I I I I I I I I I I I I
o 5 C (I,';) ~l AID .HJ lsrr A,C:f:' !AID J~ lL\N IH": JI~ :t\N ~~ These operations are

o 6 C (l'~ ~11. 14ln .I J Ish" ~lnlD F[NLA I.e J Ftr II\JIA n I 1-,111 done on record type 02.

o 7 c ~2 ~12 lAin .1 J lc;h" 'A I,.., In IT II 1M II H I,,~ I) This operation is done
o 8 C O'~ I~ Il-ltot A!nln 1M II ~ on record type 03.
o 9, c (JLl !TI~ Ie; II~ ~rllf:l II ~~ I~ rrl c;lc: ~~ These operations are
1 0 c ~14 Ir~~ I~ ~Inlr: 1r=lr INII l.sls 11=11 INcr- Ic;~ I-'~ done on record type 04.
11 C rli5 IRIJ:' IfooU [IR lAlnlrl II IIIK It:~ II If(lrol"l This operation is
1 2 C ~:h IR.I~ '-IAIJl lAIM) II IIIK II:. [., II I :H 1"'.I"l

done on record type 05.
1 3 C t7~ I- I_I_ lAin'''' These operations are IN 1M II II I~IL II II IJoe
1 4 c I?lb r,..,11l I,IJI I~ Irl ~lDID It=lr Nlo IPI~ IFlr N~ Ipl~ ~~ done on record type 06.
1 5 C rzll, 1-1 .. IJIII. ,'" ~Inln 1\111= laiN

I. ~ro ·11 I I I 1 I I I I I I I I~H

I II I I I I I I I I I I

Figure 5-43. Operations Performed for Different Record Types

5~38

/

)

)

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM Internltional BUsines' Machine Corporlt!on

1 2 75 76 77 78 79 80

Page [Do,_ :~;~:.tion I I I I I I I Program

Programmer Oate

C Indicators Result Field
Resulting

~ Indicators

I--- ~a:
At Jd

I!! Arithmetic

:~ ~ Plus IMinusl Zero GiQ Factor 1 Operation Factor 2 Comments
!3~

~ ~ Compare
Line Name Length ~i 1>211<211-2 I- 00:

e ::. '" Lookup(Factor 2)is
~ 85 ~ 15 15 'u -

z z C J: High Low Equal
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 35 37 3B 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 c ~lL Gin IT~ IRI,., JlrlL
o 2 C ~~. ~I'" Irln I~II"I II rrl2.
o :"$ c l1.B r:~ tr~ RID l rrl3
o 4 C ~~ Gb ~(,o, ~I'" Il'rl4
o 6 C (;1/"1 IT 11"1 If:NI~
o 6 C I~'~ JITil rrlA~
o 7 c 1('
o 8 c IJ
o 9 c II
1 0 C GI/"I IT I" lENin
1 1 C 1- rrld; IK l..l

1 2 C Ie
1 3 C I~
1 4 c r.;1I'l Irv, If~ID
1 5 C lRo lulri3 triAIl;
1 6 C It:
1 7 C I ~
1 8 C r,'" IT I,... I~N·I"I
1 9 c IRb JrrlLl Tl4It;
2 0 C ~

c I~II\ID TIAIG
c
c
c
c

U IL OL 69 89 L9 89 SII til t9 III 19 09 69 89 L9 99 99 til t9 ~9 15 09 6~ ~ L~ 9. 5~ n t:~ ~~ I~ ~ 6t: 9t: Lt: 9t: 9t: ~ t:t: ~t: IE at: ~ 8Z L~ 8Z ~ .~ t:~ U I~ O~ 61 81 LI 91 51 ~I EI ~I II 01 6 8 L 9 5 ~ t: ~ I

Figure 5-44. Recommended Branching Structure

Controlling Operations In An RPG 1/ Program 5-39

IBM Intern.tion.1 BUliness Machine Corporation

Program

Programmer Dal.

I -
i line Filename ~ ~ l

f- 1i
~ -f--~

o R z
f;f-;;"ii

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

o 1 IIDlA II c
o 2 I :

o 3 I

o 4 I

o 5 I lAr
o 6 I

o 7 I

o 8 I A""
o 9 I

1 0 I I
11 I At"
1 2 I

1 3 I

• =--.. I
(A) I

"1 I _

IBM Intern.tional BUlin'" Machine Corpof'l~on
Program

Programmer

c -
&

Line ~
E
.f

Indicators

;
Z

DII8

~
] 1

go.

r~
Position

j
18 19 20 21 22 23 24

~11 Q;

rJj~ F1!b

rtJ3 ~Ih

~4 AlS

Factor 1

RPG INPUT SPECIFICATIONS

Record Identification Codes
Field Location

2 3

ii
t _ !l ~ ~ ~ Position Position From To

~ 2 E ~ e e ~~ ~~~ ~~6 ~ U <5 ~ U

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 51

... ~ q'b ~II-I

11 Is
lLril Illb

2.IQJ lib
rip

lL Q

ll~ lib
"R

lL .s
llrl ,I~

Irr q'h "'A
lL 18

lLrl II~
12~ ~It..

RPG CALCULATION SPECIFICATIONS

Result Field

1 2

Page [JJ0f_

0

-.. Field Name
~

~
·2
0

52 53 54 55 56 57 58

A -IT 'IV
ILl" AI !,-,..-

12'" He; !RIE:~

A II'N.'I"'
12.P AY Mr-Jr

Ar rrr IN'"
bR s=r: liNn

Ar rlr IN'r,
2'"
-:>,..

!

Ac;11-J
Ac; HRI1=

Resulting
Indicators

Arithmetic

E 0

~i] LLLL

II g
'8

59 60 61 62

Operation Factor 2

Name Length ~
Plus IMinusl Zero

Compare

1>211 <211-2
Lookup(Factor 2)1.
High Low Equal

E
~

GX21-9094 U/M 050'
Printed in U.S.A.

75 76 77 78 79 80

~~~;~f:tion I I I I I I. I 

co 
0 -" 
~ 
"C 

.J 
"C 
-;; 
iL 

6364 

Field 
Indicators 

Plus 

6566 

l~ 

IlL 

Zero 
Minus or 

6768 

Blank 

69 70 71 72 73 74 

Form GX21-9093 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~:;ation I I I I I I I 

Comments

3 4 i; 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 54 55 56 57 58 59 50 81 82 83 84 85 88 87 68 89 70 71 72 73 74

Ole Rf'lJTlzl
o 2 C

o 3 C

o 4 C

o 5 C

o 6 C 5 lJlB
,.. ". Il\n,.:1'"

o 7 C

o 8 C "IHl:IKII:.It- AOID I II KIl!'"

o 9 C

1 0 c
lIe 1t'{1'" II'" Aloin

J:~IR rlYp~ rzlLj
15 C ~A5H ~Ioln rr -, ~U

KI~I"

Figure 5-45. Sales Analysis Job

5-40

\
1

)

Figure 5-45, insert A, shows the input specifications for all
record types. Notice the record identifying indicators as
signed to each record type.

In the calculations, all charges, cash sales, and refunds are
totaled. If a refund is given along with the cash or charge
sales for an account, the amount of the refund is subtracted
from the amount of the cash or charge before the cash or
charge is added to the total. Figure 5-45, insert B, shows
the calculation specifications for the job. As you see, the
recommended branching structure was used. If a charge
record (type 01) is read, a branch is taken to ROUT01. Cal
culations specified in lines 06-98 are performed. Then a
branch is taken to END, for there are no more operations to
do for that record. Branching for record types 03 and 04 is
handled in the same way as for record 01. However, when a
payment record is read (02 turns on) no calculations are per
formed because this job is not concerned with payments.
Therefore, a branch is taken to END. In this way all calcula
tions are bypassed. They are not even checked to see if con
ditions established by indicators are satisfied.

Branching in a Matching Records Job

Suppose that you are doing a matching record job which re
quires that all calculations be done when records match.
All specifications can be conditioned by MR (see Figure
5-46), or GOTO and TAG can be used to branch around all
calculations when records do not match (see Figure 5-47).
In this example, GOTO is conditioned by NMR. When rec
ords do not match, all calculations are skipped and a branch
to END occurs.

RPG CALCULATION
nternational Business Machine Corporation

Date

Indicators

At Jd Factor 1 Operation Factor 2
8.
~

] ~ '0 '0 z Z

6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 2829 30 31 32 33 34 35 36 31 3B 39

C MR
c MR
c f'itR
c MR
c f\1R
c MR
c MR
c MR
c
ft I

J Figure 5-46. Conditioning all Specifications by MR

RPG CALCULATIO
International Business Machine Corporation

Date

Indicators

At 1 Factor 1 Operation Factor

~
l-

E '0 0 '0
~ z z Z

6 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 2829 30 31 32 33 34 35 36 31 3B

C INlfI'lR GI"I Tn I,:: Nln
c -~
c
c
c
c

c
c
c
c IfND TIAIt;
c
,.

Figure 5-47. Branching in a Matching Records Job

Branching When An Error Condition Occurs

Branching is an easy way to bypass all calculations which
should not be performed when an error occurs. Figure 5-48
shows an example of this.

RPG CALCULATIO
International Business Machine Corpor.tion

Date

Indicators

At At Factor 1 Operation Factor

~
l-
E

'0 '0 '0 & z z Z

6 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 2829 30 31 32 33 34 35 36 31 38

C J-fll (;1"1 T~ FNID
c
c
c
c

c
c ~IN" TAG
c

Figure 5-48. Branching When an Error Occurs

Controlling Operations In An RPG II Program 6-41

Branching at Different Points in the Program

Within one program you may use any number of GOTO
and TAG operation codes. One or more GOTO statements
may have the same name (Figure 5-45, insert B, lines 02, 09,
and 12). However, each TAG must have a different name.
If two TAGs had the same name, your program would not
know where to branch.

Branching at Detail and Total Time

You may branch from one detail calculJltion to another de
tail calculation or from one total calculation to another
total calculation. However, you cannot branch from a de
tail to a total calculation or vice versa.

Branching Backward

So far, you have learned only about branching forward in
order to skip statements that you do not wish to perform.
The GOTO statement can also branch backward. In this
way you can go back to statements that were already done
in order to do them again.

Doing the same statements over and over again in one pro
gram cycle is called looping. The statements done several
times in one cycle, plus the branching statement, make up
the loop. Figure 5-49 shows the basic structure of a loop.

When would you want to branch backward? Suppose you
want to print out several mailing labels for each customer
by using the EXCPT operation code (see Repetitive Output
(EXCPT Operation) in the chapter, Programmed Control of
Input and Output for an explanation of the EXCPT opera
tion). EXCPT is used to write several output records in one
program cycle. If you want to put out 25 mailing labels for
Joe Aaron, you would have to write the EXCPT operation
25 times - one time for each record. However, instead of
writing EXCPT 25 times, you could use a loop. One EXCPT
code is specified. It is performed and then a backward
branch is taken so that EXCPT will be done again.

01---------------------\:) LOOP

Figure 5-49. Structure of a Loop

5-42

Look at Figure 5-50. The loop just described is coded here.
But look at what will happen: An EXCPT record will be
printed; a backward branch will cause the EXCPT to be done
again; then another branch, and another EXCPT. When
would execution of the statements in the loop end? As
coded here, execution of these statements would go on in
definitely.

You want to stop printing mailing labels for Joe Aaron after
25 have been made. Therefore, you have to keep track of
the number printed. This is done through the use of a spe
cial count field which is constantly updated to reflect the
number of times looping has occurred. Figure 5-51 'shows
the way this is done. At the beginning of each cycle,
COUNT, the field used to keep track of the number of rec
ords printed, must be zero. Each time a record is put out,
1 is added to COUNT. COUNT is then compared to 25, the
number of mailing labels desired. When COUNT equals 25,
calculations will be complete for that program cycle, ~nd
looping will stop. When COUNT is less than 25 (indicator
10 is on), a branch is taken back to the beginning of the cal
culations so that they can be done again.

In this example, 25 mailing labels are created each cycle (for
each re'.:ord read). If a different number of records are re
quirec to be printed or punched for each cycle, you have to
comrJare the COUNT field to another fieldwhich contains
the number of records to be put out in that cycle (see Figure
5-52).

RPG CALCULATION SPECI Fie
1855 Machine Corporation

Date

Indicators

Jd At
f---

Factor 1 Operation Factor 2

~

15 15 z Z
)11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 4

~Ib 'AITI~ trl4~_1-
t-~ ... 11
r,~ rrn ~G AI N

Figure 5-50. An Uncontrolled Loop

')
/

)

IBM Intern.tlonal BUlln.u Machine Corporltlon

Program

Programmer Data

C Indicators
~ - 0_

Jd Jd ~~ Factor 1
!.§~

Line ~ '0 a:."

~~; ~ I; I;
z z

RPG CALCULATION SPECIFICATIONS

Result Field

:~ = Operation Factor 2
l'l ~

Name Length i!
II ..
c::t:

1 2

Page [DO!_

R.sulting
Indicators

Arithmetic

Plu.!MinuSf Zero
Compare

1>211<211-2
Lookup(Factor 21is

High Low Equal

Form GX21-!1093
Printed In U.S.A.

75 76 77 78 79 80

:~:~!:atlon I I I I I I I

Comments

3 4 5 6 7 8 9 10 11 12 1314 16 18 17 18 19 20 21 22 23 24 26 28 27 28 28 30 31 32 33 34 35 38 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 5857 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C Ito,... ,INT ~ Jlp, ifo~ NIT rh IN iT I~ rl
o 2 C ll\r; It\1r tJ h"~IG
o 3 c IEIY 110111
o 4 C [~OID ril'l IN IT ~lt"'I JNrr
o 5 C Ir:O IllNiT "''''' 1M'" 121.; II~
o 6 C l~ ICtIr-trn IAI(:, ~lrN
o 7 C

Figure 5-51. A Controlled Loop

RPG CALCULATION SPECIFICATIONS
IBM I"remldon" BUII~ Machine Corpora~on

1 2

Page [DO!_ Program

Programmer Date

c ~ Indicators Result Field ~~i:!:'
~ 9 - I I ! Arithmetic

i I And p),d Factor 1 Operation Factor 2 ~ ~ Plu. J::~ Zero

Line ~.!l. Name Length ~ ~ 1 >2Tl <211-2

~ ~ ~ ~ .~ :!: Lookup(Factor 2)1s
.f85~ ~ ~ ~:EHighLowEqual

Form GX21·9093
Printed in U.S.A.

75 76 77 78 79 80

:~:~;:ation I I I I I I I

Comments

3 4 5 8 7 8 9 10 11 12 13 14 16 18 17 18 19 20 21 22 23 24 25 28 27 28 28 30 31 32 33 34 38 38 37 38 39 40 41 42 43 44 46 48 47 48 49 50 51 52 63 54 65 68 57 68 59 50 61 62 63 64 65 68 67 68 69 70 71 72 73 74

o 1 c ~~llINT Ic;lll~ NIT ifoh 11\ T 12~
o 2 c IAGlc\lrN
o 3 c
o 4 c 11 IAloln ~ ~ L INIT
o 6 c V''''IIIN,T il~
o 6 c Flri=llln IMIAV
o 7 C

Figure 5-52. Printing a Various Number of Records in Each Cycle

Controlling Operations In An RPG II Program 5-43

You can have as many loops in your program as you need.
You can even have one loop within another loop (see Fig
ure 5-53, insert A).

Keep in mind, however, that an uncontrolled loop is an end
less loop. Each loop you create must be controlled so that
it will be performed onlya limited number of times. Always
set up a condition which when satisfied will cause looping
to stop (see Figure 5-53, insert B).

USING SUBROUTINES IN CALCULATIONS

A routine is something done over and over again. The cal
culations in your program can be called a routine because
the operations are done again and again (on each program

1 ------------------1

------11
------·11
------It
-----1 _________________ l

""-_r.:::;;-

®

cycle). A subroutine is a routine that is part of another
routine. That is, a subroutine is a group of operations that
can be used by the main routine several times in the same
program cycle. A subroutine can also be a sequence of
operations that is coded once and included in several dif
ferent programs.

Subroutines can be used to:

e Eliminate duplicate coding by performing the same cal
culations several times in the same program cycle or in
several different programs.

Ci) Reduce the storage requirements of RPG II programs
(see Controlling Overlay by Using Subroutines in this:
chapter).

RPG CALCULATION SPE
IBM International B~sine$1 Machine Corporation

Program

Programmer Dote

C Indicators

- At . Jd factor 1 Operation Factor 2
~

line ~

] 15 5 15 z z Z

3 4 I; 6 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 4

o 1 C

o 2 C 'rtf"', p~ TAr,
o 3 c
o 4 C on plE TAt;
o 5 c
o 6 C

o 7 C 1~ C;"" T'f"I IL I" ~IPR
o 8 c
o 9 c lL 1 GI"I Tb II h hiD A
1 0 c
11 c The backward branches

Figure 5-53. A Loop Within a Loop

@r will be done only when
conditions are satisfied.

5-44

/'

)

)

Using Subroutines to do the Same Calculations Several

Times in One Cycle

In many 9f your programs, the same operation(s) may be
required several times in one cycle: When coding the job,
you can specify the operations as many times as needed.

This often involves large amounts of coding, however. If
the same operations are to be done several times in succes
sion, you can often use looping to reduce the amount of
coding. This was explained in the previous section.

What if the same operations are not done several times in
succession, but are performed, instead, at many different

points in your program? Creating a loop couldn't work in
this case. As an example, consider the job which creates a

weekly sales commission report. The report desired (Fig
ure 5-54) shows two things:

1. Total commission earned by each salesman.

2. Total commissions paid in each district.

The area in which all salesmen work is divided into three
districts: A, S, and C. Some salesmen work in only one

district. Others may work in parts of two or more districts.

For each salesman, the input file contains a record format
ted as shown in Figure 5-55. The amounts in the district
fields show total weekly sales made by that salesman in
each district. If the salesman did not work a district or
made no sales in that district, the field contains a zero.

The report must contain the commission earned in each dis

trict by each salesman. In addition, total commission must
be accumulated for each salesman and for each district. The
percentage of commission is:

• 3 percent of the gross sales .01 to 1000.00 dollars.

• Plus 2 percent of the gross sales 1000.01 to 5000.00
dollars.

• Plus 1 percent of the gross over 5000.00 dollars.

COMMISSION REPORT

Salesman DistA Dist B Dist C Total

Joe Arness 41.93 23.16 9.43 74.52-0)

Bob Brown 113.16 24.93 138.09

Charles Butler 26.98 449.16 109.38 585.52

\..

1 r 1,998.02 * 986.43 * 1,043.97 * -0

Figure 5-54. Sales Commission Report

DIST DIST DIST

" .,,'" " 52 ~ ~ "" 51 5a 59 J SALESMAN . A B C
1 2 3 4 5 6 7 a 9 10 11 12 13 '4 1515 17 Ie 19 2021 22 n 2425 26272829:W 31 32 3334 3536373839 40 41 42 4344 45 46

Figure 5-55. Input Record for Sales Commission Report

Controlling Operations In An RPG II Program 5-45

Figure 5-56 shows ~he calculations needed to find the infor
mation required for the report. You first compare the con
tents of each district field to zero to find out if the sales
man sold anything in that district. If it is not zero, you cal
culate the commission (COMM) earned. You then add com
mission earned to total commission for the salesman
(MANTOT) and to total commission paid in each district
(TOTALA, TOTALB, or TOTALC).

The calculations needed to find commission earned are the
same for each district (Figure 5-56, inserts A, B, C, lines
3-16). Why code these calculations three times? Why not
code them once and branch to them each time they are
needed? (See Figure 5-57.)

Using the branching you have learned about so far, the
branching that uses GOTO and TAG, you could easily
branch to the calculations needed to find commission. But
since you could branch to them from three different places,
it would be difficult to determine to which point in the
calculations you should return. You could return to the
point where totals are accumulated for district A, the point
they are accumulated for district B, or the point they are
accumulated for district C. Imagine the number of indica
tors and SETON and SETOF operations necessary to do
this. Wouldn't it be nice if the program would automatically
go back to the point from which it branched?·

RPG " can do this through the use of a subroutine. Your
entire program is the main routine. The operations to be
performed several times in the program cycle make up a
subroutine. In this case, the main program uses the sub
routine to find commission earned.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM Jnternationa' BUliness Machine Corpol'I~on
I Program I Graphic I I I I Card Electro Number

1 2 75 76 77 78 79 BO
Punching

Page [DOf_ ~~;~;':Ition I I I I I I I I Programmer OIl. I Instruction Punch I I I I

C Indicators Result Field
Resulting

~ Indicators

I--- ~
Jd At :§ g

Arithmetic

K3 Factor 1 Operation Factor 2 Plus IMinusl Zero Comments

Length ce ; Compare
line ~o Name

~~ 1>211<211-2
E :> Lookup(Factor 2)is
.f 8 0 0 0 'u ::

Z Z Z ox High Low Equal
3 4 5 6 7 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C ... I-h IMQ ~ :qlq .., ~

o 2 C qlq t;h tr"" 'R
o 3 c - I .. ~I,.., IMP I/~ (lr/l rlt 11~ ~~ \

~ I~

o 4 c U2J nrr C:;iflA !MIll T ~'3 ~h MIMIA 1,.21-1
o 5 c 1fll Gh TO ~IA 'P'A IA
o 6 c - ~~ fYjp s-Ia ~(/] lila I/~ I I 1/11 115 II~

o 7 c 11 nlr ~rrl.Ll ~I' A !,-~ flJ't1J t?J~ ~v FIR /'2 Calculations
o 8 c LJ ""'1 v :t:IR Mil IT ~2 ~,.. MIMIA U) required to find
o 9 c 11 I~~ .. ~~ ~ID"" IYI ~ 1Y11I"'11Io\ commission earned.·
1 0 c 11 ~Ic Tn " IA LR

11 c 12 '- ... Is 8 I,,~ ~~ i(ll}' Ir.V :EIR IJ.~ II~

1 2 c 12 ~Iv !~IR M tT ~~ I.... " 1'"1 J..I H
1 3 c 12 llllt2l fZC2 ~D~ I,.

MIl'll A ..
J If M

1 4 C II J II~ L~ trAG
1 5 c l-t"'I M~A ADlJ II"R.IN 1"'1 A N'" -- 1,12
1 6 C ;,.. -. AlJD A """A IA 7;' IY IIYI P-

I 7 C I~ T~!G

@.c
I

Figure 5-56 (Part 1 of 2). Calculations for Sales Commission Program

. ·5-46

/
I

(
1

I

',,-.

)

)

j
--....-.

RPG CALCULATION SPECIFICATIONS
. IBM Internltional BUlinl" M.chine Corporlt!on

I-p_rog.:.,.r_am _______ -r-_____ ---ll Punching

I Instruction

Graphic I Card Electro Number

I

1 2

Page [DOf_
Programmer

C
I--

Oate - Punch

Indicators

Factor 1 Operation

Result Field

Factor 2

Resulting
Indicators

II! Arithmetic

.g ::t: PluslMinu$f Zero
'g ~ Compare

Name Length ~ ~ 1 >211 <211-2

15 15 ·a - Lookup(Factor 2)is
Z Z c ::t: High Low Equal

Form GX21-9093
PrlnttdlnU.S.A •

75 76 77 78 79 80

:~~~~f:atlon I I I I I I I

Comments

3 4 I; 6 9 10 " 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 46 49 50 51 52 53 54 65 66 57 56 59 50 61 62 63 64 65 68 67 68 69 10 11 72 13 14

o 1 C Dllsrrls
o 2 C 1t}1C) ~

o 3 C Il"'Ilr lc;lTlR I. rJj rzJ~ l2lrl II~ IL~ 1\
o 4 C Ilia Inll ~triR ~iL IllT l2B 1"11",11"1 ~171'"
o 6 C LL: Ia rr~ trIA It If.:!
o 6 C I""lr lslrlE 1l\'1t7l ~~ ~~ II I, IIII 1.1,
o 7 _ C 111 InlI Is IT Is I 6 Is l~ lel€ ~~ IroIV 1,:11;1
o 8 C Illl Ir-Iv iJ:'IR I~ lIlT rtl2 Irlr-IMlrvl~ k.4)

Ip,lnln 1111 I~i~ rzi~ II-Ifol ~~IA II
I"', I" 11' o 9 C

1 0 C 1111 tJ"1r-IT~ Itl~
1 1 C ,12 Ir,rr lc;1T1~ 5" ~rl k'lkl hlv IEIR
1 2 C 1112 Ir-Iv II=I~ ~llltlr lit 11 u~ k..I
1 3 C 1112 It IJ Qj rlltl : IA I,.. ID IfTlr<I~ ~1t-1 ,I~I~IR I)
1 4 C 1-1-!-rIA I~' IrlAIG
1 5 - C Irh 1~1~IA 1Ml4 ~Ir IrIT IAAIA IN'"

I I-r ~12
1 6 C 'IYI 'fY 1M IA lr In rrl", trL4 ILIA ~ I~ hb
1 7 C j,..

RPG CALCULATION SPECIFICATIONS
IBM Intlmational Business Machine Corporation

1 2
Program

Programmer

Graphic 1 1 -' Card Electro Number

I-p-unch--+-+--t-I-+-+I ~+I-ll Page [I] of_
1 Punching I------------.--o-ot

-. ------ll Instruction

C -
8-

Lin. ~
E

~

Indicators Result Field

Factor 1 Operation Factor 2

ReSUlting
Indicators

!'! Arithmetic

.g ~ Plus IMinusl Zero

·s ~ Compare
Name Length ~ .2. 1 >211<211-2

15 15 15 .~ ~ Lo.okuP(Factor 2)io
z z Z C ::t: High Low Equal

Calculations
required to find
commission earned.

FOrm GX21-9093
Printed in U.s.A.

75 76 77 78 79 60

::~;cation I I I I I I I

Comments

3 4 5 6 9 10 11 12 13 14 16 16 11 18 19 2D 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 31 36 39 4D 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 68 57 56 59 60 61 62 53 64 65 68 61 68 69 10 71 12 13 74

o 1 C ''''lrlSlrlr
o 2 C 1919
o 3 C hlr S~lr II t1 I'~ \

o 4 C Il~ -'" ~Ic IMJ'V It.b~
o 5 C It~ ThtrAIL ~
o 6 C ~ lib I" I, I.
o 7 C lLlL In~ I5lrlr hlv If 1111 Calculations
o 8 C IILL "'Iv ~I~ MlllllT ~12 I/YlPi k.I I required to find
o 9 C Ill! I3le I. ~12 lMi~ commission earned.
1 0 C llLL IT II jqlt Ie.
11 C 1L12 InlT Is iT If" sit IR I"~U If~
1 2 C l! 12 Inlv 1s:IR IMlllllr rtll I" ~
1 3 C ILI2 111 le r21f2 IAlelD ~1f"I IM~~
1 4 C Irll"l IrlA IL If" Ir~IG
1 5 C 11'111¥ IAlrln II1J lAIN II 11 ~IA r-.Jlr IclT 1,,/2
1 6 C II., IA 11'1 In IT IrlT ~ It I,. II tI~

II- 170
1 7 c
@lc

1J;~fIO IT IA Il;

Figure 5-56 (Part 2 of 2). Calculations for Sales CommissicH; p,.,gram

Controlling Operations In An RPG II Program 5-47

Not this:

But this:

District A

District A

~ calcul~te.
\ commission

Accumulate totals

District B

~ calculate
S commission

Accumulate totals

District C

1
calculate
commission

Accumulate totals

~
Accumulat~

District B _ ~ Calculate

_-~.-J7 Commission

District C

Accumulate totals

Figure 5-57. Branching to Similar Calculations

Specifications for Coding a Subroutine

Subroutines are specified on the Calculation sheet after all
detail and total operations. Every statement in the sub
routine must be identified as part of the subroutine by the
letters SR in columns 7-8. (See Figure 5-58.) In addition,
two operation codes, BEGSR and ENDSR, are needed to
establish the beginning and end of the subroutine.

Every subroutine used in the program must have a unique
name. The rules for forming a subroutine name are the
same as those for forming a field name. The name must
appear in Factor 1 on the same line as the BEGSR opera
tion code.

5-48

RPG CALCULA-
IBM International Businesl Machine Corporation

Program Punching 1 Graphic 1

Programmer 10ate Instruction .1 Punch
1

C Indicators
~ - 0_

AL At -'a:
Fa =0 Factor 1 Operation

line ~3~
I- '00:
E l:l C/I

0 0 ~ ~ 8 5~ z Z

3 4 I; 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 .:

o 1 C
o 2 C
o 3 C
o 4 C
o 5 C
o 6 C
o 7 CISIR C;IUI~ Ir-Ileo I'"-~Io

o 8 CIc;IR
o 9 CISIR
1 0 C 1S1~
1 1 CISIA
1 2 CI~IR 1~11\o InlsR
1 3 C

Figure 5-58. Structure of a Subroutine

Calling the Subroutine

When using GOTO and TAG, you use a GOTO operation
code to branch to the next operation to be performed.
When you do the operations in a subroutine, you do not
branch to the subroutine; you call it.

When you call a subroutine, you use the execute subroutine
(EXSR) operation code. This operation code can be placed
anywhere in the calculation operations. Whenever the
EXSR operation code is encountered, all operations in the
subroutine will be performed. After the subroutine has
been executed, RPG II branches back to the main program
and continues execution with the next statement after the
EXSR statement (Figure 5-59).

Factor 2 must contain the name of the subroutine to be
executed. This same name must appear on a BEGSR
instruction.

/

(
'-

(

(
\.,

)

)

Main Program

EXSA ~.----------_____ • , //

:s><~

.,#
....-

Subroutine

Figure 5-59. EXSR (Order in Which Calculations are Performed)

Fields Used in a Subroutine

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

The same fields can be used by both the subroutine and the
main routine. You may define the field in either routine.
However, the name and characteristics of the field must be_
the same in both routines .

The fields you define in a subroutine should be ge.neral so
that they apply to all situations for which a subroutine is
used. For example, if 0 1ST A is used as the field name in a
subroutine to calculate district sales, you a/ways take in
formation from the DISTA field when calculating commis
sion. However, you want the routine also to handle infor
mation from the fields DISTB and DISTC. Using specific
fields limits the correct use of a subroutine to one situation.

Instead, if you use a general field name such as SALES, this
one subroutine can be used to calculate commission in all
three districts (Figure 5-60, insert C). However, because
there is no input field called SALES, you should use the
Z-ADD operation code to place information in this field
(Figure 5-60, insert B). The information in the appropri
ate district field (DISTA, DISTB, or DISTC) is moved into
the field called SALES before the subroutine is executed.
When finding commission earned in district A, DISTA is
moved into SALES; when finding commission earned for
district B, DISTB is moved into SALES, etc. In this way,
you ensure that the subroutine uses the correct information
each time it is called.

RPG INPUT SPECIFICATIONS GX21·9094 UiM 050'
Printed in U.S.A.

IBM International Business Machine Corporation

Program

PrOQl'ammer

I
i----

Line
0.
>
I-

~

Date

Filename

Position g
0
z

Record Identification Codes

:;; Position ~ Position

.e 1::

~§
g 0

~ ~ § !::! ~ 0 0 ZO 0

Field location

0 . .,
~ .;;;

:;; ~ ,f
a: From To 1:: ::; ~

a Iii 'il 3l 0: 0

1 2

Page OJ of_

~ 0

:B-o Field Name] .!!'i)
~u:

.s~ g
*~ 8 :':0

15 16 77 18 19 80

:~;~f~cation I I I I I I I

0

~
"E

~
"0
0;
u:

Field
Indicators

Zero
Plus Minus or

Brank

3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 64 55 56 51 68 59 60 61 62 63 64 65 66 67 68 69 70 71 72 13 14

o 1 lie; lAl, ~~ ~'A ~!t
o 2 I II 121" IJJIA 'MI~
o 3 I 121b l:lb ',n IT~ rrlA qq
o 4 I I~~ 13A 12 In II Lc; rrl~ qg

®~
1,LJld Ih [:)1 f..lc. rr'" ~7

~

Figure 5-60 (Part 1 of 4), Sales Commission Program (Using a Subroutine)

Controlling Operationsln An RPG /I Program 5-49

RPG CALCULATION SPECIFICATIONS Form GX21-9093
P,inted In U.S.A.

IBM International Business Machin. Corpot1ltlon

Program

Programmer Date

c Indicators

~

" Factor 1 Operation Factor 2

Result Field

Name

.!
's

Length ~
E

1 2

Page [[]Of_

Resulting
Indicators

Arithmetic

Plus IMinusl Zero

Compare

75 76 77 78 79 80

~:~·;;'cation I I I I I I I

Comments
3.

line ~
E

.2 15 15 15 "2 z z z C

1 >211 <211-2
Lookup(Factor 2lis

High Low Equal
3 4 6 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 65 56 57 sa 69 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

ole InlT l"wlA
o 2 C Iqlq
o 3 C

o 4 C

o 5 C

o 6 C

o 7 C

o 8 C

o 9 C

1 0 C

lIe

1 2 C

1 3 C

1 4 C

1 5 C

1 6 C

1 7 C

1 8 C

1 9 C

Figure 5-60 (Part 2 of 4). Sales Commission Program (Using a Subroutine)

Using Subroutines in the Sales Commission Report Example 3.

Now that you have learned how subroutines are used, de- 4.
fined, and executed, see how they are used in the sales com-
mission report program. All specifications are shown in Figure
5-60. 5.

First a record is read. Now commission earned in each dis
trict must be calculated ..

1. DISTA is compared to zero to see if the salesman sold
anything in that district. If the field is greater than
zero, commission must be calculated. If the field is
zero, a branch is taken to B, where another compari
son is made.

2.

5-50

Before the subroutine can be called, it must be sup
pHed with the correct amount of sales. Thus, the con
tents of DISTA are moved into SALES.

6.

The subroutine is called by the EXSR operation code.

The commission is calculated by oper~tions specified
in the subroutine.

The subroutine is finished when ENDSR statement is
executed. The instruction following EXSR is exe
cuted. The commission found by the subroutine is
added to the total commission earned by the sales- "
man (MANTOT) and to the total commission paid in
the district (TOTAlA).

Now D ISTB is compared to zero to see "if: commission
earned should be calculated. If so, information from
the field DISTB is moved to SALES, and:the" sub
routine is called. The next steps are basically the same
as those already described. Follow the rest of the pro
gram.

)

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Busine" Machine Corporation

1 2 75 76 77 78 79 80

Page [DOf_ :~;~f:ation I I I I I I I Program

Programmer Date

C Indicators Result Field
Resulting

~ Indicators

I---- 0_

AL At !! Arithmetic
-'a: =0 Factor 1 Operation Factor 2 :E = Plus IMinusl Zero Comments

~~~ Length ~ ~ 
Compare 

Line Name 1>211<211a2 .... "5 a:: ~~ E E ~ ~ S S '0 - Lookup(Factor 2)is 
.E 85 ..g " '" z z OJ: High Low Equal 

3 4 £; 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 5253 54 55 56 57 59 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C rh MJY1 ALO "-I-I ''',1,(.1 :NII tr.IR Nil 

o 2 C rh fYiM Af"ID tl" T~ ~ 1M r 112 
o 3 C ~-A ''1~1'j ~12 
o 4 C ~INn r~c; 
o 5 C~E c.11l c.1111~ 
o 6 CSR 5~ I E5 ,..,.. 

~p I. OJ rf:rJ: ~rl ltlZ '1(2 
o 7 C~R lrll S~ I 'Els M L:r .C2l3 Irr ~~ ~12~ 
o 8 c~g J OJ r.,r ITh il=I Nlr ~~ 
o 9 CSR SIA LFlS ,-,.. 

Mil' I" rfI Ol~ czj(t 12 111L ~l 
1 0 CSR 11 c,.IA 'F='lc; sis II (J': ~~ t1l~ if"-v fiR bl2 
11 C~R .L1 "IV J=R MJ .ttl" rzll2 ir"r 1\11~ J.i 
1 2 CSR 11 3~ a.l~ Ann ir"D M~ ~I""I MIJII 
1 3 cS~ .11 G'" T'" iF T iNlr ~I-I 
1 4 cSR 12 5~ I~ls St 113 l5'ft Ifl~ ~~ hV :EIR 
1 5 cSR t2 ""IV .E.IR M:tl lLlT • Ojll lr-i""I MIM H 
1 6 cSR 12 ILL ~I. rze AII'lII"'l ~n IM[C!1 Ir-", ~Ni~ 
1 7 C SIr< .ell INlr lsH FIN I ... ~", 

,© C 
1 II C 
2 0 C 

C 

C 

C 
C 

C 

U LL OL 69 89 L9 99 59 t9 E9 Z9 L9 09 65 as L5 9S 55 1'9 ES ~s L9 05 6. 8. Lt 9. S. » E. ~t L. Ot 6£ st LE 9E 5E VE E£ ~E LE DE 61: 8Z L~ 9~ S~ t~ £~ ~~ L~ O~ 6L 8L LL 9L SL .L EL ~L LL OL 6 8 L 9 9 t E t L 

Figure 5-60 (Part 3 of 4). Sales Commission Program (Using a Subroutine) 

Controlling Operations In An RPG II Program 5-51 



RPG OUTPUT 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 ~ Space Skip Output Indicators 

- e~ I(;;! 

At 1 
Field Name 

0-

!m -... 
~! Line Filename = :u 

~~ ID <{ a: 

~ I- ~ Xl en 
~ fo'o "0 .:. 

I-

~ 0 8 U E o R 
::( z z z 'AUTO ~~ .f Ip:fr:ifo 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 2930 31 32 33 34 35 36 37 38pg 
o I aiR I~IP ~IRrr ~ Illl~ Lila 
o 2 a 
o 3 a ~ 1~ll~_ lLlp 
o 4 a ""'I~ ir-,V 

o 5 a 
o 6 a 
o 7 a 
o 8 a 
o 9 a 
I 0 a I~ ~ ~ll 
I I a INI~ 1f"1t;; 
I 2 a ~!r, ~~!A lLlB 
I 3 a ~YIMIM lllA 
I 4 a 10-"" f.1 1M Ir lLlB 
I 5 a I ... I~ Ia .,..,.\1 
I 6 a IT IL IQ 
I 7 a II I~ ~II 
I 8 a 
I 9 a - -In I~IJ 
2 0 a 

a -, ..... -I,Q ~!~ 

@ 
a 
a 

SPECIFICATIONS 

'" Commas ... 
Yes 
Yes 

End No 
Positon No 
in a: 
Output g 
Record 

ii: 

I 2 

Page [I) 0'_ 

Zero Balances 
No Sign CR -to Print 

Yes I A J 
No 2 B K 
Yes 3 C L 
No 4 0 M 

Constant or Edit Word 

GX21-9090 U/M 050' 
Printed in U.S.A. 

, 757677787980 

~~~::':tion I I. 1 1 I I I 

X • Remove
Plus Sign

Y = Date
Field Edit

Z = Zero
Suppress

40 41 42 43 «~~O~~~~~~~~~~~WW~~~~~M~M~ro 71 72 73 74

~19 I -II" Nlr lSL~ lr',..IN 1~1~ILl ILOIIT I

~l5" ' Ie; IAII 1 1,.. 1",.1.1\ II.. ,

Lsis 1 i,... [~rr ~,

Ibl5 'n lr~rr Ip 1

1715 ' In tr5tr "'"
lLll~ 'rr ~tr~ •

Wl5
lSI5
1bL'i
171~

l1lL~

L~I'i
51b ,*'
bls
?? 1 if I

1~
ic" I~I

Figure 5-60 (Part 4 of 4). Sales Commission Program (Using a Subroutine)

Using Valid Subroutine Operations

Any operation code that can be used in calculations can be
used in a subroutine except BEGSR and ENDSR. This
means that you can use all arithmetic, compare and testing,
move look-up, EXSR, and branching operations.

There are limitations on some of the operations:

1. You may only branch to another statement in the sub
routine when using the GOTO statement (Figure 5-61,
insert A).

2. You may branch to the ENDSR statement if you put
a name in Factor 1 of the ENDSR statement.

5-52

3.

4.

5.

You may not branch to a statement outside of the
subroutine (Figure 5-61, insert B).

You cannot branch to a TAG within the subroutine
from a GOTO outside of the subroutine (Figure 5-61,
insert C).

You cannot have a subroutine coded within another
subroutine. However, one subroutine can call another
subroutine. This means that within one subroutine
you may have an EXSR statement (Figure 5-62). A
subroutine, however, cannot call itself and cannot call
the subroutine which called it.

/

j
C Indicators

~

At AL Factor 1 Operation Facl

11
line ~

~ 0 0 0
Z Z Z

3 4 5 6 9 10 11 12 13 14 15 1617 18 19 20 21 22 73 24 25 26 27 28 29 30 31 32 33 34 35 36 37

~ DO THIS: Use a GOTO statement
0
'-

to branch to another
0 statement within the
f-
0 subroutine.
'-
o 5 C

o 6 C
o 7 C

o a c
o 9 C

1 0 C
11 ClslR 5 EA A£ IGlsi~
1 2 C5iR
1 3 C~IR I2llL Gh T'"' EINn
1 4 CSR
1 5 CC;R

A CSR IENlD I~N J'1,<;1~
- I ®,

C Indicators

3
>----- ~ At AL

1l.]
Factor 1 Operation Fac1

Line >..J
f- (5

§ ~
~ 0 b

~ 8 z Z

C Indicators

3
r--- ~ At AL] Factor 1 Operation Fact

Line g
0 0 0 8 z z Z

3 4 5 6 7 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 3 4 5 7 9 10 11 12113 14 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

C NOT THIS: Use a GOTO statement NOT THIS: Use a GOTO statement
c to branch to another outside the subroutine
C statement outside the to branch to a TAG G'" Tr, NA ~E

Ie subroutine. INA ~IE. ITIAG statement within the
o 5 C subroutine.

-
o 6 C o 6 C
o 7 C a 7 C
o a C o a C
o 9 C o 9 C
1 0 C 1 0 C
1 1 CSR IP,I~ -;C;R 11 C51A JJ.J: r .. [c:;,R
1 2 CSR

,
1 2 C5lR

1 3 CsR r:,!1"l T{) NIA ft1IE 1 3 ClslR NIA ,ME T~IG
1 4 CSR 1 4 ClslR
1 5 CSR 1 5 C lSIR
1 6 CSR 11= P"'cS
,®,~ C

1 6 ClslQ. FIr\/ InlslR

© C
I

Figure 5-61. Branching Within a Subroutine

)

Controlling Operations In An RPG II Program 5-53

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

IBM International Business Machine Corporation

Program

Programmer Date

C Indicators
-~

f--- 0_

AL At -'a: =0
Line

~]~
i- -0 a:
E !:; U)

b b .f 8 5- ~ z Z

RPG CALCULAl

Factor 1 Operation Fac

3 • 5 6 7 8 9 1011 12 13 I. 15 1617 18 19 20 21 22 23 24 25 25 27 28 29 30 31 32 333435363

0
Use one subroutine to ~ DOTHIS:

I- call another subroutine
o " u

o 4 C
o 5 C
o 6 C
o 7 CI~IR Lc; J IplA 11l.1c= 1r..Ic.lc
o 8 c!=.l~
o 9 CI~I~
1 0 c 1c;1~ 1&:1)(1c;IR ic;IU Iplp
11 Clc;IR
1 2 CI~IQ ~IN 1r'\~I~
1 3 C~I~ 15;IIJ Iplp lo.l~ I,.. It" Irl

1 4 CIc;I~
1 5 ClslR
1 6 Clsl~
1 7 C 1c:;111 I ..

1 8 C

RPG CALCULAT
IBM International Business Machine Corporation

Program

Programmer Date

C Indicators
~

f--- 0_

AL At -'a: =0 Factor 1 Operation Fac
~~~ 

Line .... ori 
E ~ '" 

b b & 85- ~ z Z 

3 4 5 6 7 8 9 10 11 12 13 14 15 1611 18 19 2C 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 3" 

0 1 , I,.. I I I I I I I I I 
~ NOT THIS: Code a subroutine with- I 
f- in another. subroutine I 0 

o 4 C 
o 5 C 
o 6 C 
o 7 C~IR Ie; J IQIIl 1c1J: ~1c:.11:I 
o 8 clc:.IR 
o 9 C~IR 
1 0 ClslR lc; J IplA Inll" ,..~In 

11 C ic;IR 
1 2 C~IR iJ:IN In~1R 
1 3 ClslR 
1 4 clt:;IR 1 ... 1'1 11 ~IM 
1 5 c 

-

Figure 5-62. Using EXSR Within a Subroutine 

5-54 

Conditioning Subroutine Statements 

Any indicator which is valid in columns 9-17 can be used 
to condition an operation within the subroutine. That 
operation will then be performed only when the conditions 
established by the indicators are satisfied. The BEGSR and 
ENDSR operation code, however, cannot be conditioned 
by any indicators. 

The EXSR statement can also be conditioned by indicators. 
In this case, the entire subroutine will be performed only 
when conditions for the EXSR statement are met. For ex
ample, in Figure 5-63, insert A, the subroutine will be per
formed only if MR is on. 

Control level indicators cannot be used to condition state
ments within a subroutine since SR must appear in columns 
7-8. The indicators used on the EXSR statement determine 
whether the entire subroutine is performed at detail time 
or at total time (Figure 5-63, insert B). 

RPG II LINKAGE EDITOR 

The output of the RPG II compiler becomes input to the 
linkage editor, which builds the load (object) module for 

( 
\ .. 

later execution. The module can be cataloged into the /" 
library, punched into cards, or written to diskette. \, 

The linkage editor combines the translated RPG II source 
code with the system library modules necessary to complete 
the program. The map of the linkage editor's output is 
printed following the compiler diagnostic messages (if 
present). The map also indicates the amount of internal 
storage used by portions of a program. 

The RPG II compiler used on Models 4, 6,8, 10, or 12 
includes its own linkage editor, called the RPG II Linkage 
Editor. On Model 15, the RPG II compiler uses the overlay 
linkage editor that is part of the SCPo The following refers 
to the RPG II Linkage Editor, although conceptually, it is 
identical to the overlay linkage editor. 

( 



) 

) 

) 

Page of GC21-7567-2 
Issued 30 June 1978 
By TNL: GN21-5616 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Businesl Machine Corporation 

1 2 75 76 77 78 79 80 

Programmer Date ~~~~;~f:.tion I I I I I I I Program 
Page [I] of_ 

C Indicators Result Field 
Resulting 

ci Indicators 

I-- ~- At At l'! Arithmetic 
.Ja: ::0 Factor 1 Operation Factor 2 :€ I Plus IMinusl Zero Comments 

~~~ Length ~ ; Compare 

line t- '00:-
Name

~i 1>211<211g2

E E ~ .~ ':; Lookup(Factor 2lis
.f <35 z z Z C:I:

3 4 5 6 7 8
b b ~I
9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 53

Hi9hJLOw
7

1!EQual
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C 1
o 2 c MR ®, IFly l~R lc;lu AlA
o 3 c IT
o 4 c I
o 5 C ® o 6 C 1 ~~ lsR slu BS
o 7 c IT

Figure 5-63. Conditioning Calculations Within a Subroutine

Linkage Editor Map

Figure 5-63.1 illustrates the information available on the
RPG II Linkage Editor map.

The Start Addr column gives the physical location in .
storage of each module. Figure 5-63.1 shows the modules
in ascending sequence by address (which may not always be
the case). The root section indicates the beginning of the
program just after the system supervisor (OEOO, in this
case). The root section is 1,000 hexadecimal bytes long
(see Code Length column); therefore, the next available
location is 1 EOO. Note that the next higher address in the
example is 1 EOO for the input mainline section.

Start Name if Code Name Title
Addr Overlay Length

OEOO 1000 RGROOT Root
1 EOO 0100 RGMAIN Input Mainline
1 FOO 0100 RGSUBS Record 10
2000 0050 RGSUBS Input ctrl rtn
2050 0010 RGSUBS Subseg
2060 0020 $$CSIP 5444 consec input
2080 0080 RGMAIN Input fields
2100 0050 RGMAIN Detail calcs
2150 0100 $$PGLC Lokup routine
2250 0200 RGMAIN Detail output
2450 OBOO RGSUBS Constants

Figure 5-63.1. linkage Editor Map

1111 I I I I I I I I
SUBA will be executed at detail I
time if MR is on. I
I I I I I I I I I I I I
I I I I I I I I I I I I

SUBA will be executed at total time. I
I I I I I I I I I I I I

The Code Length column gives the storage requirements
in hexadecimal. The Name column gives the name of
system (and user) modules and designates the compiler
created segments (which begin with RG). The functions
of modules are described, where practical, in the title
column.

The root section contains I/O buffers, constants, and
v,ariables required to run RPG II programs. Subseg is a
section that has functions that are not easily describable
by the compiler. For example, a calculation subroutine
is called a subseg.

The RGMAI N sections are the basic RPG " functions,
such as input, detail calculations, total output, and so on.
RGSUBS designates functions within the RGMAIN
functions. The modules are listed in functional sequence;
the subsections follow the main function. In Figure 5-63.1,
the lokup routine follows the detail calcs section because
a table look-up was performed in detail calculations.
Similarly, the constants section, because it fol!tJws the
detail output section, was defined on the output
specifications for detail (or heading) lines.

Controlling Operations I n An RPG II Program 5-55

Simple Overlays

An overlay structure begins if the load (object) module
built by the linkage editor is larger than the available main
storage in a machine (the size is specified on the H-card or
is assumed to be that of the machine used for compilation).

The linkage editor begins with low-usage modules such as
execution time table dump and load routines, file open
and close, LR calculations and output, and so on. It
allocates an overlay fetch area large enough to hold the
largest of the selected routines (or groups of routines) and
calls for an overlay fetch routine, which will load into that
overlay area the selected routines as they are needed. The
overlay fetch routine checks to see if a requested overlay is

already in the overlay area before going to the disk library
to load it. This action saves time by avoiding unnecessary

loads from disk.

With overlays, the root section occupies the lowest position
in storage as before. It is followed by the overlay fetch

routine. The overlay fetch area comes next, followed by
the secondary root routine, or root 2. Root 2 is made up
of those routines that do not have to be overlaid.,

I

All the overlaid routines are given names in the Name If
Overlay column. The names are $##nnn! where nnn is
a three-digit overlay number.

Figure 5-63.2 shows a storage map of a program and
Figure 5-63.3 shows a library map of the same program.

Figure 5-63.4 is a diagram that illustrates the maps shown
in Figures 5-63.1 and 5-63.2. The library map indicates the
overlay size in the # Text Sectors column. You can see in
Figure 5-63.3 that overlay #2 ($##002) is the largest,
occupying seven sectors; this is equivalent to 0700 bytes in
hexadecimal (all storage requirements will be stated in four
hexadecimal digits). The storage map shows the overlay
fetch area of 0700 bytes. It also indicates that overlay

#2 contains the total calculations and is actually only
0630 bytes long (0600 for total cales, 0020 for constants,
and 0010 for exception output). Therefore, overlay #2
occupies seven sectors: six are flJII and the seventh has only
0030 bytes of code in it. If the user wants to reduce the
size of the program's overlay area, he would first try to

reduce the size of total calculations.

5-56

Start Name if Code
Addr Overlay Length

OEOO 1000
1 EOO 0100

1FOO 0700

2600 0100
2700 0100
1FOO $##001 0200
2100 $##001 OOAO
1FOO $##002 0600
2500 $##002 0020
2520 $##002 0010

Figure 5-63.2. Storage Map

Overlay Relative
Name Start CITIS

$##001 00 00 16
$##002 00 01 02
$##003 00 01 OA
$##004 00 01 11

Figure 5-63.3. Library Map

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

Name Title
~

\

RGROOT Root
RGSUBS Overlay fetch

routine
RGSUBS Overlay fetch

area
RGMAIN Input mainline
RGMAIN I nput fields
RGMAIN Detail cales
RGSUBS Constants
RGMAIN Total cales
RGSUBS Constants
RGSUBS Exception.

#rext Start
Sectors Address

03 lFOO
07 1FOO
06 lFOO
04 lFOO

(

)

Page of GC21-7567-2
Issued 30 June 1978
By TNL: GN21-5616

Root

Overlay Fetch Routine

Overlay
Fetch
Area

$##001 $##002

Figure 5-63.4. Diagram of Linkage Editor Map and Storage Map

The Relative Start G!T/S column gives relative library
locations in cylinder, track, and sector for the overlays.
This information does not pertain to this discussion.

Special Open

Sometimes a storage map will not list an overlay #1 but will
have other overlays starting with $##002. This indicates
that the special open has been implemented. The user
cannot directly cause this to happen. The linkage editor
provides this feature when it reduces a program's storage
requirements. Special open does not affect throughput.

When the open/close overlay is the largest one, special
open is implemented, rather than having that code increase
the storage required for the rest of the program. Special
open causes some of the unoverlaid code in root 2 to
overlay the open routine after the files have been opened;
it overlays some of root 2 with close at end-of-job.

$##003 $##004)
Root 2

Overlay Starting Addresses

As the maps in Figure 5-63.5 show, there are two starting
addresses for overlays. The main starting address for the
illustration is 1 FOO. The starting address for the suboverlay
is always higher; in this case, it is 2300.

Storage Map

Start Name if Code
Addr Overlay Length

1FOO $##D02 0200
2100 $##D02 0100
2200 $##D02 0002
2300 $##D03 0100

2400 $##D03 0100
2300 $##D04 0300

Library Map

Overlay
Name

$##D01
$##D02
$##D03
$##D04
$##D05
$##D06
$#/IfJ07

Relative
Start CITIS

Name Title

RGMAIN Detail cales
RGSUBS Transfer vector
RGSUBS Contants
$$PGRI Reset Resulting

indr
RGSUBS Subseg
RGSUBS Exception

#rext
Sectors

Start
Address

07
04
02
03
03 .

04
02

1FOO
1FOO
2300
2300
1FOO
2300
2300

. Figure 5-63.5. Storage and Library Maps

Controlling Operations In An RPG II Program 5-56.1

$##002 is a main overlay with suboverlays. There are two
indications of this: first, it includes a module RGSUBS
(which is titled transfer vector), and second, it is followed
on the maps by overlays with higher starting addresses.

The ,size of the overlay fetch area is the larger of (1) the
largest overlay with suboverlays plus the largest suboverlay,
or (2) the largest overlay without suboverlays. In Figure
5-63.5, the size of the overlay fetch area is equal to the sum
of the sizes of $##002 and $##006. This is not obvious
from the maps, but the block diagram (Figure 5-63.6)
drawn from the maps makes this clear. Overlay 2 is the
largest main overlay with suboverlays, so it determines the
starting address for all suboverlays. Overlay 6 is the largest
suboverlay . Together, overlays 2 and 6 require 8 sectors or
0800 bytes, which is greater than the 7 sectors (or 0700
bytes) for overlay 1.

If a user wants to reduce the size of the overlay fetch area,
he could reduce the size of either $##002 or $##006.
One sector, however, is all the user can expect to save
because $##001 is just one sector smaller than the overlay
fetch area.

Root

Overlay Fetch Routine

Overlay
Fetch
Area

$##001

Figure 5-63.6. Diagram of Storage and Library Maps

5-56.2

$##002

$##003 $##004

Root 2

$##005

$##006

Page of GC21-7567-2
Issued 30 June 1978
ByTNL: GN21-5616

$##007

(

)

)

)

Page of GC21-7567-2
Issued 30 Ju ne 1978
By TNL: GN21-5616

Fitting Available Storage

The linkage editor removes modules from root 2, placing
them into the overlay structure until the program fits into

available storage (or until there are no more modules to
overlay, which means the program is too large to fit).
After a fit is obtained, there may be unused space in
storage. If there is, an attempt is made to find small
modules that can be removed from the overlay structure
and placed back into that free space.

This process of moving overlaid modules back into main
storage might give you a missing overlay, that is, a
suboverlay without a main overlay. In the storage map,

you can sometimes notice unoverlaid modules among
the overlays. This is a result of moving modules from main

storage to an overlay and back again.

The linkage editor moves code rather than allowing
available storage go unused. Having code moved back to
main storage can improve speed of execution, but is not
under the control of the user. The linkage editor moves the
code when it can.

RPG II Logic and Function Shifting

The basic functional areas of RPG II logic are summarized

in the following sequence:

1. Detail Output-Detail and heading output (except for
overflow lines) are performed.

2. Physical Input-Records are read from primary and
secondary files, as necessary, and the I D indicator

is set.

3.

4.

Total Calculations-All calculations with L and a
number in columns 7 and 8 are performed. This
includes all exception output specifications if EXCPT
is performed, or all required input specifications
for READs or CHAINs performed, or any user
subroutines called with EXSR.

Total Output-Total output (except for overflow
lines) is performed. You should note that total
calculations and output are attempted on every
cycle.

5. Overflow Output-All output lines with overflow
indicators conditioning them are performed.

6. Logical Input-Data read in Step 2 is moved to the
fields named on the input sheet, and the
corresponding field indicators are set.

7. Detail Calculations-All calculations without Land
a number in columns 7 and 8 are performed. See
Step 3 for more information.

These functional areas can be identified by the titles of
routines in the storage map. A user can reduce the size
of any of these areas by one of three methods:

• Removing function from the program

• Using more efficient coding

• Shifting function from one general area to another

The removal of function from a program often results in
a second program being written to perform those functions.
Some system designs include luxuries that are not essenti\'ll
to the job. These functions may be removed from the
program.

Functions that cannot be removed can often be moved to
another area. Some total calculations can be moved easily
to detail calculations.

Controlling Operations In An RPG II Program 5-56.3

Page of GC21·7567·2
Issued 30 June 1978
By TNL: GN21-5616

The following multiply statement could be moved to detail
calculations by conditioning it with the 01 indicator, just
like the add, and deleting the L 1 indicator on the MUL T
statement. The results will be identical. Similarly, some
calculations can be moved from detail to total; however,
a new record I D indicator will be on so the user may have

to use an extra indicator.

C
CL1

01 AMT
TOTAL

ADD
MULT

TOTAL
RATE

TOTAL
DISCNT

Primary and secondary input are done at input time.
READ and CHAIN are performed during calculations. If
calculations are too big, a file processed with the CHAI N
operation code might be first sorted and then matched as
a secondary file against the primary. If input is too big, a
secondary file could be made a demand file and processed
with the READ operation code during calculations.

Output, like calculations, can be shifted between detail and
total calculations. Even overflow output can be moved
to the following detail or total calculations by using a
numeric indicator, which is SETON conditioned by the
overflow indicator. EXCPT is output performed during
calculations. Some output functions may be moved from
output to calculations (either detail or total).

Any calculation overlay or suboverlay that does an EXCPT
will contain all E output specifications. If a suboverlay has
EXCPT in it and is too large, that operation can usually be
moved to another subroutine. If the subroutines are large,
they can usually be divided into seve'ral smaller subroutines.

Calculation sections cannot be divided by the linkage editor
to be separate overlays; subroutines can. They will become
suboverlays to the main detail or total calculations overlay.
If one subroutine calls another subroutine, both will appear
in the same suboverlay. To divide them up, the first
subroutine must return to regular calculations from which
the second subroutine can be called.

Using shared I/O for disk files can save a great deal of space
in some programs. With the resulting smaller overlay
structure, performance may be improved. Alternatively,
larger disk file buffers and double buffering could be
specified. These two techniques use extra storage
(resulting in more overlays) but may still perform faster
because of the speed improvement in disk operations they

provide. Selection between larger disk I/O buffers or shared
buffers must be made by trial for each program.

Information about the overlay linkage editor can be found
in the IBM System/3 Overlay Linkage Editor Reference
Manual, GC21·7561.

5·56.4

SPECIAL USES OF CONTROL LEVEL INDICATORS

At this time, you should be familiar with the normal use of
control level indicators, L 1·L9. You know that by assign·
ing them on the Input sheet and using them on the Calcula·

tion and Output Specifications sheets you can do total
operations.

In this section, you will learn to work with a special internal
control level indicator LO. You will also learn to use L 1·L9
indicators to condition calculations and to perform group

printing.

Internal Control Level Indicator LO

LO is a unique control level indicator which is always on.
You cannot assign it to a field, as you do L 1·L9, by enter
ing it in columns 59·60 of the Input sheet. But, you can
use it to condition a calculation or output operation. The
operation so conditioned will be done at total time for
every program cycle, since LO is always on.

The main purpose of the LO indicator is to allow you to
specify total operations when indicators L 1·L9 are not
available or when they cannot accomplish the job.

(

\
J

/

)

)

Suppose you want to print the report shown in Figure 5-64.
The report is a listing of items a company has sold in each
of its two districts. The report includes total sales for each
district (DISTOT) and a grand total of sales in both districts
(GDTOT). The input records are grouped by district with
District 1 records preceding District 2. Each record con
tains an item number field (ITEM), an item description
'(DESCR), and an item cost field (COST), as shown in Figure
5-65.

A record identification code in position 1 indicates in which

district the item was sold. Normally, the fi~ld containing
the record identification code could be used as a control
field in the printing of district totals. However, each dis
trict has more than one record identification code. District

34J261 PORTABLE COMPRESSOR
46F419 PORTABLE GENERATOR, 30KW
21P006 HYDRAULIC JACK

1 uses either a 1 or an M as an identifier and District 2 uses
either a 2 or an N. Since the contents of the record identifi
cation field can change without actually having a change in
district, this field cannot be used as a control field. Neither,
of course, can the ITEM, DESCR, or COST fields be used as
control fields.

Artificial Control Breaks

When it is necessary to do total operations but no control
fields are available to cause a control break, you can use LO
to cause an artificial control break. Figure 5-66, insert 8,
shows the use of LO to permit total calculation operations.

623.21
1,459.95

260.00

1 Additional
items

DISTRICT TOTAL 87,347.16*

34J261 PORTABLE COMPRESSOR
16A300 PORTABLE SPRAYER
800610 PORTABLE GENERATOR, 50KW

DISTRICT TOTAL

GRAND TOTAL

Figure 5-64. Format of District Sales Listing

Record
1.0. Code

t
ITEM : DESCR : COST

I 1 I

623.21
930.00

3,016.50

1 Additional
items

131,219.04*

218,566.20**

112 3 4 5 6 718 9 1011 121314 1516 17 18 19 20 21 22 232420262128 2q 30\3; 3233 34 3~ .1637\383940

Figure 5-65. Format of Sales Record

Controlling Operations In An RPG II Program 5-56.5

This page is intentionally left blank.

(

(

5-56.6

/

RPG CALCULATION SPECIFICATIONS Form GX:21,9093
Printed In U.S.A.

1 2 75 76 77 78 79 80

Olta ~~~~;~f:atiOn I ! ! ! ! I I Program

Programmer
Page [OOf_

C Indicators Result Field
Resulting

~ Indicators

I-- SiC Jd Jd I~
Arithmetic

=0 Factor 1 Operation Factor 2 Plus TMinusr Zero Comments
I!I. !~ Campara

Name Length ii 1>211<211-2 Line (: gffi
~ Lookup(Factor 2)1.

85 '2 ';
Z Z Z c:c

3 4 5 6 7 8
b b :1
9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 282!1 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53

Highs!! LOw
7

1,EQuai
54 65 68 67 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74

o 1 C 1
o 2 e IM~ ~ II=' 1)(Ic;IR lslJ IB~
o 3 c
o 4 e I
o 5 e 11
o 6 ell ~. (~) ~I)([c;IR ~C;IU 1918
o 7 e II f

Figure 5-63. Conditioning Calculations Within a Subroutine

You must give priority to subroutines to determine which
subroutines, rather than object cycle routines, should be
stored on disk. Those subroutines used infrequently should
be the first routines stored in the object library. Priority is
established through the order in which the subroutines ap
pear at compilation time. The last subroutine in your source
program will be the first subroutine stored in the object
library. Consequently, you should place an infrequently
used subroutine as the last subroutine in your source
program:

Subroutine
1

Subroutine
2

Subroutine
3

The last subroutine in your
.. --- source program is the first

subroutine stored on disk.

I I I I 11 of 1111 1
SUBA wil.1 be executed at detain
time if MR is on. I
I I I I 11 111 I I I
I II I I I II I I I I

SUBA will be executed at total time.

1111 r I II II I I
I

SPECIAL USES OF CONTROL LEVEL INDICATORS

At this time, you should be familiar with the normal use of
control level indicators, L l-L9. You know that by assign
ing them on the Input sheet and using them on the Calcula
tion and Output-Format sheets you can do total operations.

In this section, you will learn to work with a special internal
control level indicator LO. You will also learn to use L l-L9
indicators to condition calculations and to perform group
printing.

Internal Control Level Indicator LO

LO is a unique control level indicator which is always on.
You cannot assign it to a field, as you do L l-L9, by enter
ing it in columns 59-60 of the Input sheet. But, you can
use it to condition a calculation or output operation. The
operation so conditioned will be done at total time for
every program cycle, since LO is always on.

The main purpose of the LO indicator is to allow you to
specify total operations when indicators L l-L9 are not
available or when they cannot accomplish the job.

COIIUl1l1i~g Operations In An RPG II Program 5-55

Suppose you want to print the report shown in Figure 5-64.
The report is a listing of items a company has sold in each
of its two districts. The report includes total sales for each
district (DISTOT) and a grand total of sales in both districts
(GDTOT). The input records are grouped by district with
District 1 records preceding District 2. Each record con
tains an item number field (ITEM), an item description
(DESCR), and an item cost field (COST), as shown in Figure
5-65.

A record identification code in position 1 indicates in which
district the item was sold. Normally, the field containing

the record identification code could be used as a control
field in the printing of district totals. However, each dis
trict has more than one record identification code. District

34J261 PORTABLE COMPRESSOR
46F419 PORTABLE GENERATOR, 30KW
21P006 HYDRAULIC JACK

1 uses either a 1 or an M as an identifier and District 2 uses
either a 2 or an N. Since the contents of the record identifi
cation field can change without actually having a change in
district, this field cannot be used as a control field. Neither,
of course, can the ITEM, DESCR, or COST fields be used as
control fields.

Artificial Control Breaks

When it is necessary to do total operations but no control
fields are available to cause a control break, you can use LO
to cause an artificial control break. Figure 5-66, insert 8,
shows the use of LOto permit total calculationoper(ltions.

623.21
1,459.95

260.00

1 Additional
, , items

DISTRICT TOTAL 87,347.16*

5-56

34J261 PORTABLE COMPRESSOR
16A300 PORTABLE SPRAYER
800610 PORTABLE GENERATOR, 50KW

DISTRICT TOTAL

GRAND TOTAL

Figure 5-64. Format of District Sales Listing

Record
1.0. Code

t
ITEM : DESCR : COST

I I I
1 '2 3 4 5 6 7 18 9 10 11 12 13 14 1~ 16 J7 18 19 20 21 22 ,~ i4 2~ 25 2l 2~ 29 3013; 323)3.1 35 :i6 nl38 39 4D

I

Figure 5-65. Format of Sales Record

623.21
930.00

3,016.50

1 Additional
items

131,219.04*

218,566.20**

")

....... ".

RPG INPUT SPECIFICATIONS
IBM International Business Machine Corporation

1--_________ --. ______ ---11 Punching

1 Instruction Date

Graphic I
Punch I

I
I

Card Electro Number I 1 2

Page [00'_

Record Identification Codes
Field Location

Filename

Position Position Position From

~ 0
0 :B~ 0,. Field Name] .!!Gi
0 u..u:::

To
D-

.S ~ ~ g
~~ '2 .3 Cl :<u

GX21-9094 U/M 050'
Printed in U.S.A.

75 76 77 78 79 80

::~~'~cation I I I I I I I

·8
~
"E

!
"0
Q;
u:

Field
Indicators

Zero
Plus Minus or

Blank

I
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 i

RPG CALCULATION SPECIFICATIONS
IBM International Business Machine Corporation

Il-p_ro...:9_ram ________ --. ______ o---11 Punching I Graphic I I
1 Programmer Date I Instruction .1 Punch 1 1

Factor 1 Operation Factor 2

I
I

I
1

Card Electro Number

Name

·~I~
Length Iii

~I~

Form GX21·9093
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page [00'_ ~~~;~~ation I I I I I I I
~l

Indicator 21 is used to signal
a ch.;mge in record type. This
techniique only works for two
record types.

19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48149 50 51 '52153154 55 58 57158 59 50 61 62 63 64 65 66 67 68 69 70 71 72 73 74

10 1 Ic ~J

102 Ic ~)

10 3 Ic
10 4

~IASW ~IDID ll~~11 II Il.l~11 - ~2
rns~ ~ID~ IL~II II ~II

1:")11= I It-

~L II II

[~IL II II I., JII I

Figure 5-66 (Part 1 of 2). Calculations Using an Artificial Control Break (LO Indicator)

I

Controlling Operations In An RPG II Program 5-57

'.
RPG

mM Intern.llonal Business Machine Corpar •• ion

Program

Programmer Date

0 ... Space Skip Output Indicators

t---- ~I
AL 1 a --.. e ~

Line Filename ;. ~
~~ 8. "1j

~ ~Ji
I- ~~ro ~ ~

0 0 0 E :t z z z
~ o R

"A~'o
3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 0,,", IUlr PIT lc lL ~l
0 2 0 ,..,~ ~12
0 3 0

o 4 0

0 5 0

0 6 0 IT ~12 (2i.2. 12lL " f--
0 7 0 I"I!R I~
0 8 0

0 9 0

1 0 0

1 1 0 IT 12 'LIR f-r- -,
1 2 0

1 3 0

© 0

11151 0

1 6 0

J. 1.1 ...

OUTPUT

Field Name ,
a:

~ !
8 U

'AUTO ~~
31 32 33 34 35 36 37 38pg

[IT IfM
IJ.~ 110<

,.~ 5T .L

IJ.~' , 1.IA

CO! I T L

SPECIFICATIONS

.1$> Commas

Yes I I Yes
End No
Positon No
in a:
Output g
Record

ii:

1 2

'Page [0o,_

Zero Balances
No Sign CR -to Print

Yes 1 A J
No 2 B K
Yes 3' C L
No 4 0 M

Constant or Edit Word

GX2HI090 U/M OSC'
Printed in U.S.A.

75 76 77 78 79 80

~~:~'~cation I· 1 1 1 1 1 I

X • Rem""e
Plus Sign

Y = Date
Field Edit

Z a Zero
Suppress

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

I/~
~I~

I~I~

~!~ I 11. ~ J IK1 J h"o irA II I

Ib~
IblL I If I

~I(l I I ... I ... r'" !TIAL I

1e,lfl
~12 1fJt. ~I

Figure 5-66 (Part 2 of 2). Calculations Using an Artificial Control Break (LO Indicator)

Assume that the following five records are read:

/*

Identifying

Code ~ _ ------...

5·58

(
/~

c

The operations performed on these five records are as fol- Using Control Level Indicators as Calculation Conditioning
lows: Indicators

) Record Indicators On Operations Performed Control level indicators are normally entered in columns 7-8
of the Calculation sheet where they specify which calcula~

(1) LO 01 turns on. tions are to be done at total time. They may, however, be
No total operations are per- used in columns 9-17 also where they indicate which detail
formed because conditions operations are to be done on the first record of a control
in lines 5-6 (Calculations group.
sheet) are not met.
(Remember that operations Control level indicators are turned on near the beginning ~f
conditioned by control level the program cycle if the contents of the control field on the
indicators in columns 7-8 are record just read are different from the contents of the pre-
performed first, but are by- vious control field. Since the indicator is not turned off un-
passed on th e fi rst R PG II til the end of the cycle, it is on during total and detail time.
cycle.) Thus, it is available to use as a conditioning indicatbr during
COST is added to DISTOT. detail time as well as total time.
21 is set on.
ITEM, DESCR, and COST When an operation is not conditioned by control leve,l indi-
are printed out. cators specified in columns 7-8 of the Calculation sheet,_ the
01 is turned off. operation is done at detail time. If the operation is condi-
21 remains on. tioned by a control level indicator specified in columns 9-17,·

and not in 7-8 the operation is still done at detail time, but
(2) LO,21 01 is turned on. only when the control level indicator is on. And when is

No total operations are per- the control ,level indicator on? Only during the processing
formed. of the first record in a control group as only the first record
COST is added to D ISTOT. in a new group causes a control break.
ITEM, DESCR, and COST

)
are printed out.
01 is turned off. Group Printing
21 remains on.

In group printing, data from groups of input records is
(3) LO,21 02 turns on. summarized and printed as totals on a report. Sometimes,

DISTOT is added to GDTOT. a field on each record in an input file is accumulated and
(Conditions for the total only the final total is printed. At other times, subtotals are
operation in line 5 have been created by adding the contents of a field from a certain
met.) group of records and printing the result.

D ISTOT is printed out.
COST is added to D ISTOT.
21 is set off. Printing Only the Final Totals
ITEM, DESCR, and COST
are printed out. It is possible to add the contents of a field from all data

02 is turned off. records, and print only the total accumulated. You may
want to do this when you are not interested in any of the

(4) LO 02 is turned on. detail information, but you do need a summation of that

No total operations are per- information.

formed.
COST added to DISTOT. Figure 5-67 shows the coding for a program that finds the

ITEM, DESCR, and COST totals for two fields of information and prints, only those

are printed out. totals. Notice, when printing only totals, the Input sheet

02 is turned off. need only contain those fields that will be used in the calcu-
lations or in the printing. The Output-Format sheet shows

(5) LR DISTOT added to GDTOT only a total line (T in column 15). That line is not printed
(LR indicator is on). until the last record has been processed (LR in columns ,
DISTOT and GDTOT printed 24-25). Then, one line is printed, containing the total

) out. quantity, total cost, and a constant (see insert on Output-
Format sheet).

Controlling Operations I n An RPG II Program 5-59

\
\

F

Filename

Line

File Type

File Designation

End of File

Sequence

File Format

Block
Length

Record
Length

File Description Specification

Mode of Processi ng

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
..J
W

or Additional Area ~

Organization

N Overflow Indicator g
~ ~ Key Field .~
c: 0 Starting ~

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Core Index

Continuation Lines

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

File
Condition
Ul·U8

< :::: Location W Option Entry

RPG INPUT SPECIFICATIONS
IBM Intern.tiona! Business Machine Corporation

Program

Programmer Date

I Record Identification Codes
,Field Location

~

Line Filename

~ ...
~

3i Position I; Position I; Position a; a: From To
~ ~

t; ~ t; ~ 0 ~ ..J :! ~ 5 N ~ III 0 l) 6 0 l) a
Z Z 6 z u 6 Ci:

0
.;;;
0

Q.

~
~

1 2

page~Of_

~ a
:!2~ Field Name

~
.~ "ii
LLi.L
.5 gt g
~~ .3 :';;u

GX21·9Q94 U/M OSO·
Printed In U.S.A

75 76 77 78 79 80

:~:~f:ation I I I I I I I

0

~
'tJ

j
0;
u::

Field
Indicators

Zero
Plus Minus or

Blank

3 4 5 6 7 8 9 10 tl 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 58 596061 62 6364 65 66 61 6B 69 70 71 72 73 14

o 2 I I~rl IllY
o 3 I I~ l,bblrif-,Ic::IT

RPG CALCULATION SPECIFICATIONS
IBM Intern.tion,1 BusinelS Machin. Corporltion

I-p_ro_g_r._m ________ ~-------__il Punching
I Instruction Programmer Dill

Indicators

t--:_:_:ic---i-_t--I-t--t-_II--+--+I-il Card Electro Number I

Result Field

1 2

P.~~Of_

R .. ulting
Indicators c ~

~ ~_ § ,I Alnd .~ ~ PIU~~~:'~~ero
And Factor 1 Operation Factor 2 -

~ ! ~8 -; Compar.
Line ... '0 a: Name Length ~ i 1>211<211-2

E ~ CI) 0 0 .~ '; Loo. kup(Factor 2)is

Form GX21·9093
Printed in U.S.A.

75 76 77 78 79 80

~~~:~f:llion I I I I I I I 

Comments 

~ 8 5· ~ Z Z 0 J: High Low Equal 
3 4 I; 8 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 73 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 48 47 48 49 SO 51 52 53 54 55 56 57 56 59 60 61 62 63 ~ 65 66 67 6B 69 10 71 72 13 14 

o 1 c III I , IY IT 
o 2 c IAlDln rrit-.Tlrlr-Is IJ 
o 3 C 

RPG OUTPlJ 

Program I 
Programmer Date : 1363 178.35 TOTALS FOR QTY AND COST 

o I 

0 

1·~1f.-
ISpace Skip Output Indicators 

~ I~ Field Name 

Line Filename Ii Ijl~ AL A~ I I 4 I 0 I M I Suppress I 

If 
I! Ig; POllton No No 

I~II in I~ iArcto l~ l~ :~ I~ Output Constant or Edit Word 

~~Io 
·AUTO Record 

13 4 5 16 17 8 9 10 11 12 13 20 121 132 33 34 35 36 37 138 b9 140 414~ ."148 4. 50 51 52 53 54 55 56 57 58 59 60 61 62 63 ~ 65 66 67 6B 69 70171 72 73 74 

1011 loi-I-ITI~ I~ IT I, it 11.1~ 
1012 10 ITlllT I/IYI~ lt~ 
1013 10 rr~ trlr ~sl~ 1213 
10 14 10 ~Iq I'IT l("'iT !All lei IFI"'IR If.-ITlv lA~ln 1,-1,.. j~rrl' 
lois 10 

• Figure 5-67. Group Printing - Printing Only the Final Tota's 

5-60 

/ 

I 

\, 

( 



\ 
I 

,/ 

'\ 

Group Printing of Subtotals 

Figure 5-68 shows group printing of subtotals. The input 
records for the program contain item, quantity, and cost 
fields; they were previously sorted by like items. 

Figure 5-69 shows the codingto produce the report. Since 
a subtotal is to be calculated for each different type of item, 
the field ITEM is designated as a control field on Input 
specifications. The calculations show that, as each input 
record is read, the values in the OTY and COST are 
accumulated into subtotal fields. At each control break, 
the subtotal fields, SUBOTY and SUBCOS, are accumulated 
into final total fields. 

The Output-Format sheet in Figure 5-69 shows coding for 
three different types of printed lines: 

• A detail line, which is printed for each input record read. 
Note the use of a control level indicator on the ITEM 
field., This causes the field to be printed only for the 
first record of each control group (see Figure 5-68), 
making the report less cluttered and easier to read. This 
is known as group indication (see index entry) . 

• 'A total line, conditioned by L 1, which is printed only 
after each complete group of like items was read, that 
is, after each control break. 

) • A final total line, conditioned by LR, which is printed 
only once, after all records werE~ processed. 

If you want the subtotals to be the sums of only the 
quantities and cost in one section (for instance, only those 
quantities and costs under item ABCD), it is necessary to 
set those fields back to zero after they have been printed 
and added into the final totals. This process is indicated 
in column 39. The B entries indicate that the totals, SUB 
QTY and SUBCOS, are to be blanked out, or zeroed out, 
after they are printed, when the control field (ITEM) chang
es. They are set back to zero so that they can correctly 
accumulate the quantities and costs for the next item. 

Controlling Operations In An RPG II Program 5-61 



ABeD 25 25.00 
0 60 60.00 

65 65.00 

0 :L50 :L50.00 SUBTOTALS 

0 MNOP :LO .20 
2000 40.00 

50 :L.OO 
0 :L80 3.60 

2240 44.80 SUBTOTALS 
0 

I 
I XYZZ 40 80.00 

01 49 98.00 

I 89 :L78.00 SUBTOTALS 
I 

01 
I 2479 372.80 FINAL TOTALS 

• Figure 5·68. Group Printing - Report Showing Subtotals 

File Description Specification 

F 

line 

8. 
~ 
E 
J! 

3 4 

o 2 

o 3 

o 4 

Filename 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Block 
Length 

Record 
Length 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

~~;:n~:a~i~~ ~ 
or Additional Are. ~ 

N Overflow Indicator c 

~ l; Key Field .~ 
a: ~ Starting ~ 
~ ::- Location LU 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Core Index 

Continuation lines 

Option Entry 

File Addition/Unordered 

Number of Track. 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

File 
Condition 
Ul·U8 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050· 
Printed in U.S.A. 

IBM International Busin," Machine Corporation 

Program 

Programmer Date 

l; I Record Identification Codes 
5 ~--------~----------~--------~ ] 

Line Filename 

t Position 

~ ~ ~ 
~u6 

Position z 0 ~ Position 

i § ~ 

Field Location 

From To 

12 757617787980 

Page r&l of _ . ~~~;~f~cation I 1 1 1 ·1 1 1 

Field Name 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 5 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 25 27 28 29 30 31 32 33 34 35 35 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 55 57 58 59 50 51 52 53 54 55 66 67 68 59 70 71 72 73 74 

o 2 I ~ IrITIJ=~ IL 1 
o 3 I 5 ~flJ IllY 
o 4 I q 
o 5 I 

• Figure 5·69 (Part 1 of 2). Group Printing - Printing Subtotals 

5·62 

/ 

/ 



) 
./ 

) 

RPG CALCULATION SPECIFICATIONS Form GX21-11013 
Printed in U.s.A. 

IBM In.rn"lonll BUllnt .. Mechint Corpor.~on 
Program 

Cill 

C Indicators 
~ 

r-- 9-
Jd Jd ji Factor 1 Operation Factor 2 

8. 
Lin. ~l~ 

&~5j 0 j Z 

Result Field 

l!! 
~g 
l'l ~ 

Name Length Q. ~ 

~i 
~~ 

1 2 

page~Of_ 

Resulting 
Indicato" 

Arithmetic 

Plus JMinuslzero 
Compare 

1>211<211-2 
Lookup{Factor 21i. 

High Low Equal 

76 78 77 78 79 80 

::~"f~tlon I I I I I I I 

Comments 

3 4 e 8 7 8 I 10 1112 13 14 15 18 17 18 II 20 21 22 23 24 26 28 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 5657 58 59 50 81 62 63 84 65 88 87 88 89 70 71 72 73 74 

o 1 C rll hrlv ~IDID 
o 2 C rl.:! 11-", SrT ~'DID 
o 3 C L 5 1""1 .... - ~I[JID 
o 4 C I .1 [c:., Ip,~ ,...~ IAlnl£l 
o 6 C 

o 6 C 

RPG 
DM Intemltion .. Business MKhine CotpOt'ltion 

PrOWIRuner Oat. 

0 E;Space Skip Output Indicators 

r-- iEi 
t::.:: 

AL 1 e .... ...... 
j :; Line Filename ~ ~ 

&-" d;< 
! 

> ~ ... en 

! A 'Do ! 0 b 0 

~ o R z z z 

~ND 
3 4 6 6 7 8 9 10 II 12 13 14 16 16 17 18 1920 21 22 2324 25 26 27 28 2930 

o 1 0"" TP J IT " 1'" 0111 
o 2 0 IL LL 
o 3 0 

o 4 0 

o 6 0 IT 21 LL 
o 6 0 

o 7 0 

o 8 0 

o 9 0 h" 12~ R 
1 0 0 

1 1 0 

1 2 0 

1 3 0 

1 4 0 

l~ ..,.'-
1"1 IllY 

~ J p.'r hl~ 

J:[ NI"'I ITlv 
'J:~ Nr hlc; 

OUTPUT 

Field Name In 
I 
ill 

8 
'AUTO -~ 

] 

31 32 33 34 35 36 37 3839 

IT IEI~ 
"'Tlv I~ 
~,.. ~h" I~ 

lc; AI
- "'Ir I_:u~ 

~ r:l~ /"'Ie. 12. R 

I,: .. N
I
- Tyl3 

J:r ~I~ ""c.l~ 

i';IL 111 IY 
~IIII':I 

~Ir N~ ITly 
I:lr I\Ir 1""115 

SPECI FICATIONS 

Commas ... 
Yes 
Yes 

End No 
Positon No 
in 0: 
Output g 
Record 

ii: 

~I~ 
~12 

Q~ 
Q~ 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

l' 2 

pageWOf_ 

No Sign CR -
1 A J 
2 B K 
3 C L 
4 0 M 

Constant or Edit Word 

GX21-9090 U/M 050' 
Prin«td In U.s.A. 

75 78 77 78 79 80 

::~f~cation I I. I I I I I 

X • Remove 
PlulSign 

Y • Oat. 
Field Edit 

Z • Zero 
Suppress 

40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 84 65 66 67 88 89 70 71 72 73 74 

4 
L.~ 

23 

l~ 

2'.1 
3~ liS IUtn l~ S' 

113 
21; 
~I~ 'F- ",p, I'rl'l rlt\ IL IS I 

• Figure 5-69 (Part 2 of 2). Group Printing - Printing Subtotals 

-..." 

) 

Controlling Operations In An RPG II Program 5-63 



Group Printing wit!] Two Control Level Indicators 

Certain programs require two or more control levels. Nine 
levels (L 1-L9) are possible. This program uses two of these, 
L 1 and L2, to produce the report shown in Figure 5-70. 

Each record in the input file contains the part number of 
an item, the quantity of items sold, and a number to identi
fy the salesman who sold those items. The file has been 
previously arranged by salesman number. That is, all records 
for salesman number 12 are together, all records for sales
man number 13 are together, and so forth. Records are 
also grouped by item number within each salesman group. 

On the printed report, the salesman number is to be printed 
once; part numbers are in the next column with the sums 
of quantities for each part number in the rightmost column. 
Subtotals are printed for each salesman and a final total 
is printed at the end of the report. 

Figure 5-71 shows the coding to produce the report. Since 
the PARTNO field changes most frequently (there are 
several part numbers for each salesman) that field is the 
lowest level control field and is assigned indicator L 1 on the 

5-64 

Input sheet. The next higher level control field, which does 
not change as frequently, is SLSNUM; therefore, SLSNUM, 
is assigned indicator L2. The calculation on the first line 
(01 indicator specified) occurs for every record that is read. 
OTY is added to a total, OTYSUM. Line 2 occurs only , 
when the control field, PARTNO, changes, because L 1 
(columns 7 and 8) controls this calculation. So, when L 1 
is on, OTYSUM is added to another total, SUBTOT. T~e 
third line describes the calculation of a finaltotal, FINOT. 
This calculation occurs when L2 is on (when the control' 
field, SLSNUM, changes). 

When the higher level control level indicator (L2) is on, the 
lower level indicator (L 1) is also on. As shown on the Out
put-Format sheet, when L 1 is on, PARTNO and OTYSUM 
are printed (lines 03 and04). However, the field SLSNUM 
is conditioned by L2, so itis printed only for the first record 
of each L2 control group. When L2 is on, SU BTOT an~ 
the constant SUBTOTAL are printed (lines 05-07). When 
LR is on, FINTOT and the constant FINAL are printed. 

The two subtotals, OTYSUM andSUBTOT, are zeroed 
after printing by entering a B in column 39 (lines 04 and 
06). Detail lines need never be blanked after, nor does a 
final total (regulated by the LR indicator). 

/ 
I 

\ ... ,. 



\ 
) 

,-

) 

SALESMAN NUMBER 

12 A235 375 

0 12 B124 100 
12 C140 200 

0 675 SUBTOTAL 

0 13 A235 50 
13 C140 400 

0 450 SUBTOTAL 

0 14 B124 600 
14 C140 325 
14 D896 110 

0 14 E091 370 

1405 SUBTOTAL 

0 
2530 FINAL 

Figure 5-70. Group Printing - Report Produced Using Two Control Level Indicators 

File Type 

F File Designation 

End of File 

Filename Sequence 

File Format 

Une 

IBM International Business Machine Corporation 

Program 

Programmer Date 

Record 
length 

File Description Specification 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File .... 
Organization w 
or Additional Area ~ 

N Overflow Indicator ~ 

~ 0 Key Field .~ 
~ a Starting ~ < :::: Location W 

Device 

RPG INPUT SPECIFICATIONS 

Record Identification Codes 

Symbolic 
Device 

K 

Nameo! 
Label Exit 

Page of GC21-7567-2 
Issued 21 December 1979 
By TNL: GN21-5709 

Extent Exit 
!orDAM 

Core Index 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

File 
Condition 
Ul-U8 

Continuation Lines 

Option Entry 

1 2 

GX21-9094 U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

Page EiI2J of_ ~~:;~f:ation I I I I I I I 

I Field Location Field 
Indicators 

f----

Line Filename 

Position ~ Position :;; Position tl ~ ~ ~~ 
t> ~ § ~ ~ ~ 0 0 z u 6 zu 6 z 

0 

~ 'in Field Name 
~ 

0 

c:: From To 
0-

.... ~ 
CD ~ (I) ii: 

~ 0 

~~ ] LLLL 

ff ~ 

~ :EU 

c 
0 
-;; 

~ 
'0 

J 
'0 
a; 
u: 

Zero 
Plus Minus or 

Blank 

3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5960 61 62 6364 65 66 67 68 69 70 71 72 73 74 

o 1 I r II t-. I , IAA 1211 
o 2 I 1 LI IplAIRr'Nh 1 

"' .... o 3 I 
~IL IY 

o 4 I q ,r1.0c:,.'J IC:;Nr ~I" 
o 5 I 

Figure 5-71 (Part 1 of 2). Group Printing with Two Control Level Indicators 

Controlling Operations In An RPG II Program 5-65 



Page of GC21-7567-2 
Issued 21 December 1979 
By TNL: GN21-5709 

IBM Intern.tion.1 Busine" Machine Corporetion 

Program 

Programmer Date 

C Indicators 
~ 

I--- ~~ .AL At 

Une 
~3~ 

..... ,ori 
E ::; U) 

,LS5" ~ 0 0 z Z 

Factor 1 

RPG CALCULATION SPECIFICATIONS 

Result Field 

2 
Operation Factor 2 .g J: 

Name Length ~i 
'u -
O:I: 

1 2 

page~Of_ 

Resulting 
Indicators 

Arithmetic 

Plu •. IMinu.1 Zero 

Compare 

1>211<2(1-2 
lookup(Factor 2)i, 
High low Equal 

Form GX21·9093 
Printed in U.S.A. 

75 76 17 78 79 80 

~~~;~f:ation 1 1 1 1 1 1 I 

Comments

3 • 5 6 7 8 9 10 1112 13 I. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 49 49 5051 52 53 54 55 5657 5859 50 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 C !lIl f'I~y Af"I.D
o 2 C 1 ~IT YS I'JIM An~D
o 3 C 2 Sil g I"'h" ADln
o 4 C ,

RPG
IBM International .. Business Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

- e~
1 1 0--... e ~

Line Filename !. CLi

~~ ~~
! I- v;

ADD ~ ~ E 0 0 0

**0
< z z z

~
3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 2122 23 24 25 26 27 28 29 30

o 1 Ole. II 1-"' toO- IJR '11 l~ '.1
o 2 0

o 3 0

o 4 0

0 5 0 T 12lL L 12
o 6 0

o 7 0

o 8 0 T I~IIZ IR
o 9 0

1 0 0

1 1 0

1 2 0

r'lT VC; IU~

S JoI II

,:-lr NT Il"li

OUTPUT

Field Name '(il
IT]

~
·AUTO ~

31 32 33 34 35 36 37 38 39

c::; c;IN ' 1M
IPA RrT- NIt;
..... T ,ylc:. " M '!:lID

5J MI I .,jl~

IF!! INT ' T3

""'T Ivs 1M
; I

I~

l- 11\1

SPECIFICATIONS

:~ll

~!c2l
~rJJ

1 2

page~Of_

Commas Zero Balances No Sign CR -to Print

Ves Ves 1 A J
Ves No 2 B K
No Ves 3 C l

Positon No No 4 0 M
in a:
Output g)

Constant or Edit Word
Record

ii:

GX21·9090 U/M OSC'
Printed in U.S.A.

75 76 17 78 79 80

~~~;~f:ation 1 I. 1 1 1 1 I 

X II: Remove 
Plus Sign 

V ~ Date 
Field Edit 

Z .~ Zero 
Suppress 

40 41 42 43 «~~~~49~~~~54~~"~~~~~~~~M"M~ro 71 72 73 74 

2. 
ll~ 
lil7 

Lt.17 
1211 'S I1B .... " "-A , 

lil1 
12.14 ' IF IT NIA 

, 

Figure 5-71 (Part 2 of 2). Group Printing with Two Control level Indicators 

5-66 

,. 
i 

/ 
I, 
\, 



) 

) 

BINARY FIELD OPERATIONS (CONTROLLING 
SWITCHES) 

Note: This topic is intended for IBM System/3 Model 6, 
Model 10, Model 12, and Model 15 programmers. 

RPG II provides certain operation codes which set and test 
individual bits in storage. These individual bits can be set 
and tested to allow you further control over processing. 
When this is done, the bits are called switches and their 
functions are similar to that of RPG " indicators. The 
operation codes which set and test the bits are known as 
binary field operations. A binary field isa one-byte field 
containing 8 bits identified left to right by the digits 0-7. 
The bits can be set on, set off, and tested. Since each bit 
can be utilized, there are eight indicators in every byte. 

When using binary field operations, remember how data 
fields are initialized by the system: 

• Alphameric fields are initialized to Hexadecimal '40'. 

• Numeric fields are initialized to Hexadecimal 'FO'. 

You should initialize the binary field containing the bits to 
be set and tested to binary zero (Hexadecimal '00') at the 
beginning of the program. 

BITON Operation Code 

Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

Figure 5-72 shows a Calculation sheet containing the BITON 
operation code. This operation code causes specified bits in 
Factor 2 to turn on (set to 1) in the field named in the Re
sult Field. The field named in the Result Field must be a 
one~position alphameric field. Since it is one position in 
length, a 1 must be entered in column 51 of Field Length. 
One or more of the eight bits can be turned on. To turn on 
the first bit in a field, enter 0 in Factor 2. These bit num
bers must be enclosed by apostrophes. 

You can condition the operation with indicators in columns 
7-17. You may also turn on a bit in an array element, but 
that array element must b~ one position in length. 

In Figure 5-72, bits 0, 1, and 7 are set to 1 in the binary 
field labeled CODE. 

BITOF Operation Code 

Figure 5-73 is a sample Calculation sheet containing the 
BITOF operation code. This operation code causes speci
fied bits identified in Factor 2 to turn off (set to 0) in a 
field named in the Result Field; In Figure 5-73, bits 0, 3, 
and 4 are turned off (set to 0) in the binary field labeled 
CODE. 

All other specifications are the same as those specified under 
BITON Operation Code. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.s.A. 

IBM Intern.tion .. BUline. MlChln. Corpo,..~on 
1 2 75 76 77 78 79 80 

Pt09,am 

Programmer Dot. ~~~a;:tion I I I I I I I Page [Do,_ 

c 
1ft 

~:~~~ 
I---

AL 

Aithmetic 

Aid Factor 1 Operation Factor 2 Ix Plus Minus' Zero Comments 

Line I! ':;: :ompare 
, Name Length 1<211-2 

3 4 51~ :j~ .~ 10 ~1I11~ I~ u ;,' rliITlT,"u um" m n" n"" 
7 8 iiIIiiiii 

'28 29 30 31 32 '33 34 35 38 37 38 39 40 41 42 143 44 45 48 47 48 

,0: 1 IC ~ I :r1f'l~N ' :<ll ~7' ~ir'n~~ 
'01 2 IC II . 
01 3 Ie II I III 
014 Ie J J 

" " I 
0,5 Ie I' 

Note: The shaded columns I 
0 ' 6 Ie are not used. Leave them blank. I 
0,7 Ie I I I I I I I I I I I I I I I I I I 

Figure 5-72. The BITON Operation Code 

Controlling Operations I n An RPG "Program 5-67 



TESTB Operation Code 

Figure 5-74 is a sample Calculation sheet with the TESTB 
operation code. This operation' code causes specified bits 
identified iri Factor 2 to be tested for an off or on condi
tion. Resulting indicators in columns 54-59 are set depend
ing upon the conditions. At least one resulting indicator 
must be used with the TESTB operation, and as many as 
three can be named for one operation. Two indicators may 
be the same for one TESTB operation, but not three. Re
sulting indicators in these columns have the following mean
ings: 

• Columns 54-55: An indicator in these columns is turned 
on if all the bits in Factor 2 are off (set to 0). 

• Columns 56-57: An indicator in these columns is turned 
on if two or more bits were tested and found to be of 
mixed status, some bits on and other bits off. 

• Columns 58-59: An indicator in these columns is turned 
on if all the bits in Factor 2 are on (set to 1). 

In Figure 5-74, bits 4, 5, and 6 in the binary field named 
CODE are tested. Resulting indicator 66 is turned on if 
bits 4, 5, and 6 are off. If some are on and others off, re
sulting indicator 77 is turned on. If they are all on, result
ing indicator 88 is turned on. 

I 

All other specifications are the same as those sJecified 
under BITON Operation Code. However, you need not 
define the Result Field as one position in length, since this 
is done when the field is used in a BITON or BITOF opera
tion code. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
PrlntodlnU.8.A. 

IBM InUrn.lionei Business Meehin. corpora~on 
Program 

Programmer 

c 

Figure 5-73. The BITOF Operation Code 

1 2 

pageDJOf_ 

are not used. Leave them 
blank. 

75 76 77 78 79 80 

::~;'cation I I I I I I I 

Comments 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
PrlntodlnU.S.A. 

IBM InM.rnational Busing" Machine Corporation 

Program 

Programmer Date 

C Indicators 
~ - 0_ 

AL At ..Ja: 
::-0 Factor 1 Operation 

& i z 
line 

>..J~ 
..... '0 a:.'" 
E l:I en 

b b ~85~ z z 
3 4 I; 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 

01 1 1 C I 111111111 rrll:blJ ilj 

012 1 C l I I I I J I I II I J I J 

Figure 5-74. The TESTB Operation Code 

5-68 

Result Field 

Factor 2 

Name Length 

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

'w15~I/11 I I I' ,:~d~ I I I 
II LII1111 I I I I I I I 

I I I 

1 2 

pageDJOf_ 

75 76 77 78 79 80 

::;~f~cation I I I I I I I 
Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero Comments 
Compare 

1>211<211=2 
Lookup(Factor 2)is 

High Low Equal 
54 55 5657 5859 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 

b~ 1717 ~R I I I I I 1.1 I J I I IIJ 
I I r 11111111111111 

I I I I I I I I I I I I I I 



Example 

~ Fields are sometimes present in customer master files to in
~) dicate particular types of customers. When such a master 

file is created, each of the conditions indicating a particular 
customer type is represented in a record by a one-position 
field. Since each position occupies one byte of storage, four 
positions indicating customer types will be stored in four 
bytes of storage. You can use binary field operations to 
convert each one-byte record position to one bit of informa
tion on disk. Therefore, four bytes of information can be 
reduced to four bits of information on disk. 

For example, assume you have a customer master file on 
cards. You have four columns containing the following in
formation: 

• Whether the customer is a wholesaler or retailer. 

• If the customer is entitled to a discount. 

• If orders should be checked by the credit department. 

• If due to a bad payment history, the shipment should be 
sent cash on del ivery. 

Now you want to place the card file on disk, and the in
formation from the four columns in four bits in a binary 

) 
.. , field labeled CHECK. The four columns will be labeled 

WHLSE, DSCT, CREDIT, and COD respectively. The fol
owing operations should be performed: 

1. If WH LSE is equal to 1, turn on bit 0 in CH ECK. 

2. If DSCT is equal to 1, turn on bit 1 in CH ECK. 

3. If CREDIT is equal to 1, turn on bit 2 in CHECK. 

4. If COD is equal to 1, turn on bit 3 in CHECK. 

Figure 5-75 shows correct coding for this problem. Re
member that before setting up data in a binary field, the 
binary field should be set to binary zero. This can be done 
by the BITOF instruction (Line 1, Figure 5-75). 

INCREASING THE SPEED OF OPERATIONS (DUAL 
I/O AREAS) '-

During the normal RPG II cycle, a record is read, calcula
tions are performed, and output is produced. The cycle is 
repeated for each record. 

The speed at which the cycle is done depends upon the 
speed at which records are read and output produced. Cal
culations take less time than reading, printing, writing to 
disk, or punching. The speed of doing output can be in
creased by using dual input/output areas. 

Dual Input Areas 

When dual input areas are used, the program cycle is 
changed. First a record is read. At the same time, calcula
tions are being performed on this record, another record is 
being read. Thus, the contents of two records are in the 
computer at the same time. Figure 5-76 shows how the 
records are processed when two input areas are used. 

Dual input areas can be specified for sequential disk files or 
direct disk files processed sequentially, for card files desig
nated as input files, or for tape input files. No stacker 
selection can be specified for card files. Dual input area~ 
cannot be specified for combined or update files, table, or 
demand files. When shared input/output is specified in the 
header card, all devices which can use shared input/output 
are automatically excluded from use of dual input areas. 
(Note to Model 6 Programmers: Dual input areas can be 
used for data recorder input files. Dual input areas cannot 
oe assigned to disk, data recorder, or ledger card device files 
using a shared input/output area, specified in column 48 
of the Control sheet.) 

Controlling Operations In An RPG II Program 5-69 



RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM InternatIonal Busine" MachIne CorpOr"ion 

Program 

Programmer D.t. 

C Indicators 

-
At AL Factor 1 

~ line to-
E 

'0 ~ 0 0 
z z Z 

Result Field 

Operation Factor 2 

Name Length 

1 2 

P.ge~Of_ 

Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero 
Compare 

1>211<211-2 
Lookup(F.ctor 21i, 

High Low Equal 

75 76 77 78 79 80 

~~~;~f:ation I I I I I I I 

Comments

3 4 5 6 9 '0 1112 13 14 1S 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 48 49 5051 54 55 56 57 58 59 60 61 62 63 64 65 66 61 68 69 10 11 12 13 ,.

o 1 c sir rr~ 11= ' 1£2IL 1 ... 1 .. 1 • .1 ..
.'"'1

o 2 C IlAlu ~III~
,..,..

IMlo II
o 3 C h~ ~rr ~r I/'Vlp 11
o 4 c ,.. I Joj 'f- ITII ~',. ~Ip 11
o 5 c .. t,..!1J Irlro 1I\Ilp I,
o 6 C l~ M~II

, lZ I

o 7' 'c ILL '- N \ 11 ' '''''111
o 8 C 11, M N' 12 I

10- 9 c II L~ ~
~, [3'

1 0 C .. ,..

Figure 5-75. Example of Binary Field Operations

Input area 1

Input area 2

Input area 1

Input area 2

Input area 1

Input area 2

Record B

Record C

Record 0

(~, Records A and Bare
) initially read into

storage.

~ ::~~:~.o;;!~;~ c
) is read while Record f B is processed.

i
l After Record B is

processed, Record 0
is read while Record
C is processed.

Note: The shaded areas represent records being processed.

Figure 5-76. Dual Input Areas

5-70

1~11 ' ,.. ILJlc Irlw lL
ll~

'lI.J
11 L?
III~

"'Iu It lr 10(

"'I~ Iclr lot

!rILl 1t'1.- It

~IH ~~k

Dual input areas require more computer storage space than
one input area, because two records are in storage during
each cycle. If you have a large program, you might not
have enough storage space to accommodate two input areas.
The effect of dual input areas can be determined only if you
have knowledge of a program's processing requirements and
experience in RPG II programming. In some cases, you can
only make a final determination by actual experimentation.
(Note to Disk Programmers: If your program plus two input
areas require more space than is available, certain RPG II
object cycle routines remain on disk during execution and
are called into storage as needed. If too many routines re
main on disk, the performance of your program may be de
creased by the use of dual input areas rather than increased.)

Specifications

One entry on the File Description sheet is required to speci
fy dual input areas: any digit (1-9) in column 32 assigns du'al
input areas for the specified file. Figure 5-77 shows the file
MASTER has been assigned dual input areas.

(

c

)

)

)

File Type

File Designation

File Description Specification

Mod. of Processing

Length of Key Field or
of Record Address Field

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder O •• rflow

Record Address Type Name of Number of Extents
Type 01 file -J Device ~:~liC Label Exit r-::Ta-pe--:--i

End of File

Filename Sequence

Organization W Aew;nd
or Additional Are. ~ Core I ndex ~

File Format

Line
.e C N Overflow Indicator U Condition
~ 5 Block Record ~ 5 Ul us
__ <:: Length th ~ ~ Key field .~ Continuation Lines Z . r--
~ w ~ ~ long ~~ g ~:~~!.! Option Entry ~ ~

3 4 5 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 .~ ~ ~'34 35 36 31 38 39 4041 42 43 44 45 46 41 48 49 50 51 52 53 54 55 5& 51 58 59 60 61 62 63 64 65 66 61 68 69 10 1\ 12 13 14

o 2

o 3

o 4

o 5 Specification of dual input areas
I-
O
+

6
+-+-+-+-+-f-++-+-+-+-+-I-+-+-+-t-++-I-+-+--t-if-+-I-+-If-t-I for ca rd fi les is a I so do ne with

o 7 F a digit in column 32.

o 8 F

o 9

1 0 F

F

F

Figure 5-77. Specifying a Dual Input Area

Dual Output Areas

When dual output areas are used, the program cycle is
changed. A record is written or punched out at the same
time calculation and output operations are being done in
ternally to produce the next record. (Calculation opera
tions are not done at the same time as writing or punching
when only one output area is used.) Figure 5-78 shows
how output records are produced using dual output areas.

Dual output areas, like dual input areas, require more com
puter storage. Consequently, the same space considerations
that apply to dual input areas also apply to dual output
areas. Dual output areas can be used for sequential and
direct disk output files, Model 10 printer files (5203 printer),
tape files, and card output files. Dual output areas cannot
be specified for combined or update files. Also, dual out
put areas cannot be assigned to Model 6 data recorder, disk
or ledger card device files and Model 10 or Model 15 disk
files that use a shared input/output area.

Specifications

One entry is required on the File Description sheet to speci
fy dual output areas: any digit (1-9) can be entered in col
umn 32 for an output file. Figure 5-79 shows the file
PRINT has been assigned dual output areas.

Controlling Operations In An RPG II Program 5-71

~ Record A is in output area 1.
While record A is being written

Output area 2 Record B

< or punched calculations are

(performed on record B, and it
is moved to output area 2.

~ When record A is finished, record
B is ready to be written or punched.

~
While record B is being written or
punched from area 2, record C is
calculated and moved into area 1.

Output area 1 Record C

1
Record D is calculated and
moved into area 2, while
record C is being written or
punched. Output area 2 Record D

Note: the shaded blocks represent records being written,
punched, or printed.

Figure 5-78. Dual Output Areas

File Description Specification

Fil.Type

F File Designation ~::gth of Key Fie~~ield
~

End of Fila
n. A. ,Type

Filename Sequence
Type of Fila Device

Fila Format

Uno ". Additional Ar ••

X,I
.~

.I~ I
N IVY····~

Block Record

,il~ Key Field

11
~ ltng1l\ length

I:) Starting
g location

3 4 5 16l--"-~.!Q 12 13 14 ~~_T,l ~~lf!11 ~~~ .34'35 36 37 3S I~l~o 41~~~~46

1
0

1
2 IFR IElAlf"I lip F 121t;lh 1 L2IA hI! slk

10
1
3 Ir-~ I.I1LL lrjl! ,...

IE lll~ 12 1l3~ IplR tiN rlf:R

10 1

4 IF

1
0

1
5 IF

1
0

1
6 IF

1
0

1
7 IF

lola IF

10 19 IF

11 10 IF

l'"-
IF

lOa.

Extent Exit Numoer OT rICKS
for DAM

Name of Number of Extents Symbolic Label Exit Device
~ Core Index
~

Condition
Ul-l!!!...-.

r~"I ••• 1.

I~ I~ K

147 46 49 50 51 52 5:l154 55 56]iL~59 60 61~.!!;l~65 166 167 6869 170171 72 73 74

I'll!

1I. IL OL 69 89 L9 99 99 W t9 t9 19 01' 69 II'l L9 99 59 .s ts t9 19 09 6. a. L. 9. 5 ... t. t. I. Ot 6t 6t Lt 9t 9t ~ tt tt It at 6t lit Lt 9t st .t tt tl It 01 61 81 LI 91 51 .1 tl tl II 01 6 8L9S.ttl

Figure 5-79. Specifying Dual Output Areas

5-72

(

"

(

'\
)

Additional Uses of Indicators

1. What effect do halt indicators have on System/3 operations? How can you use halt
indicators to handle error situations?

2. Describe a method to eliminate an output file for one program run without having to
rewrite specifications and recompile the program.

3. When conditioning a calculation specification with an indicator, what happens when
the indicator is on? What happens when it is off?

4. Describe what the TESTZ operation does.

5.

Result Field

Review 5

Using this TESTZ specification, tell what the status of indicators 93, 94, and 95 will be

6.

when the field TEST contains: I

a. ABC
b. &/*
c.JOH
d.789·

Result Field

Review 5 5-73

Using this COMP specification, tell what the status of indicators 96, 97, and 98 will
be when the fields FIRST and SECOND contain:

First Second
a. 16942 17942
b. 16000 15000
c. 19645 19645
d. 18921 18931

Controlling Operations on the Basis of the Next Record in a File

7. Basically, what does the look ahead facility allow you to do? What limitations apply
to its use?

8. To the input specifications given add those which will allow you to look ahead in
order to read the next part number (PARTNO) and next code in colun:m 96.

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050·
Printed in U.S.A.

IBM Intern.tionel Business Machine Corporation

1 2 75 76 77 78 79 80

Page CD of _ ~~~;~f:ation I I I I I I I Program

Programmer Date

~ Record Identification Codes Field Field Location
] ·8

Indicators

~. g ~ 15 ~ ~.,- :9~ ' .. 0 ~ :~ Field Name] ~~ j ~ m m 0:; , ~ Zero
Position Position Position m'" a: From To "'''' Plus Minus or

"E g e~ ~.e t go ~~~ ~ 1 i~ Blank e " ~ 0 S6 ~S6 '0 t! ·il 0:;
z zu ci)Q:: 0 u:

I
I--

Line Filename

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 Ir Nip Il T
o 2 I

o 3 I

o 4 I

o 5 I

5-74

AlA IIt2l Alb. I,. q

J b
.. I .. - I
t"'~IH. N

1 1':1,2 1['\lr 15'"
B3 lO(~ lilT '-:!

Moving Data

9. With MOVE, which position of Factor 2 is moved first and where is it positioned in
the Result Field?

10. What happens in a MOVE operation if Factor 2 is larger than the Result Field?
What happens if it is smaller?

11. With MOVEL, which position of Factor 2 is moved first and where is it positioned
in the Result Field?

12. What sign does a numeric Result Field have after a MOVEL operation?

/~

/

)

\
)

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

13. FIE LD 1, a 4-position positive numeric field, contains 3456; FIE LD2, an 8-position
negative numeric field, contains 87654321. What will the contents of the Result Field
be after each of the following instructions is executed, if FIELDl and FIELD2 contain
the above values before each instruction is executed?

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S,A.

IBM International Business Machine Corporation

Program

Programmer

C
-

8.
Line ~

& a
Z

3 4 5 6 9 10

a 1 C

a 2 C

a 3 C

a 4 C

a 5 C
f-
a 6 C

a 7 C

a 8 C

n !I r.

1 2 75 76 77 78 79 80

Date
Page [D0f_ ~~:~f:.tion I I I I I I I

Indicators Result Field
Resulting
Indicators

At

a
Z

1112

Arithmetic

At Factor 1 Operation Factor 2 Plu. IMinusl Zero Comments

Name Length
Compare

1>211<211-2

a Lookup(Factor 21is
Z High Low Equal

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 JJ J4 35 J6 37 J8 39 40 41 42 4J 44 45 46 47 48 49 5051 54 55 56 57 58 59 60 61 62 63 64 65 68 67 68 69 70 71 72 73 74

~f'\ V~ Fr~ In I Fr I},;J D2. -

M'" ViE L1= liE LIl:'2 1=r IE L C1

MI" viE FI IEL 'r. 2. FT I~IL 1"'\1

Mr. 'VI~ FTI~ 1[11 J:r 1f"IL 1"'112

Branching in Calculations

14. What is the purpose of branching?

15. How is branching specified in RPG II?

16. By using branching, how can you structure a program, which has several record
types each of which requires different calculation operations, so that it is easy to
write and efficient to run?

17. What must you always include in a program that has a loop? What will happen if
you do not include this?

Using Subroutines in Calculations

18. When should a subroutine be used?

19. What are the operations used to define and execute a subroutine? What entry must
be made in each calculation line of a subroutine that is different from all other

calculations?

20. What limitations in the use of GOTO and TAG apply to subroutines?

21. Where must subroutines be coded?

Review 5 5-75

5-76

Special Uses of Control Level Indicators

22. When would you use the LO indicator?

23. How can you specify calculations to be performed only on the first card of a group?

24. When should you specify blank after (8 in column 39 of the Output-Format sheet)
for an output field?

Binary Field Operations

25. What are bit switches used for?

26. Code the calculation specification to:
a. Set on bits 4 and 7 in a field called TESTER.
b. Set off bits 1, 2, and 3 in TESTE R.
c. Test to see whether bits 1, 2, and 3 in TESTER are all on or all off. Set on indi

cator 01 if they are all on and set on indicator 02 if they are all off.

Dual Input/Output Areas

27. For which device and file types can you specify dual input/output areas on your
system?

Answers To Review 5

1. Halt indicators may be turned on as record identifying indicators, as a result of a
test on a field, or as a result of calculations. When they are on, they cause the
system to halt after all calculations and output operations have been performed for
that program cycle.

Because a program cycle is completed before the system halts, operations may be
performed on erroneous data. Halt indicators, when used as conditioning indicators,
allow you to bypass calculations and output operations which would usually be done.
They also alloW you to print error messages and stacker select any cards with errone
ous information.

2. Use an external indicator (U1-UB) to condition the output file and operations speci
fied for that file. When the indicator is on the file is used; when it is off, the file is
not used. The file is conditioned by an external indicator specified in columns 71-72
of the File Description sheet. The output specifications must be conditioned by that
same external indicator entered in columns 23-31 of the Output-Format sheet.

3. If the indicator is on, th~ step will be executed. If the indicator is off, the step will
not be executed.

4.

5.

6.

7.

B.

TESTZ examines the zone portion of the leftmost character in an alphameric field.
If that position contains & or A-I, the plus indicator will turn on. If that position
contains -, f ' or J-R, the minus indicator turns on. For all other characters, the
zero indicator turns on.

93 94 95
a. on off off
b. on off off
c. off on off
d. off off on

96 97 98
a. off on off
b. on off off
c. off off on
d. off on off

Look ahead allows you to use data on the next record to be processed. Normally
only the data on the record currently being processed is available to the RPG " pro
gram. Look ahead is most often used with input files. If it is used with combined
or update files, information in the look ahead field while the combined or update
file is being processed will be from the record currently being processed, not from
the next record in the file.

** must be specified in columns 19-20 to indicate that the fields listed are to be
looked at in the next card available for processing. Look ahead fields must be given
different field names than those used when describing the file. Any alphabetic
characters may be used in columns 15·16.

Answers To Review 5 5-77

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

RPG INPUT SPECIFICATIONS . GX21-9094 U/M 050'
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer

I
-

Line Filename

Date

1)

5i -_~ j ~
1l

r--r-5 o R Z

";"N"ro

Position
~
0 z

Record Identification Codes

~ Position ~ Position

.e ~~ z
§ ~ ~

~ 6 6 0 ~u z

Field Location

c
0

il ." ·in

t~
0

0: From To
C1.

tl t :::; E
~~ in .~

0:: 0

1 2

Page [00'_

Ol
-'

0
-' ~-tS Field Name 3 .!!"ii

u..~

f:r j ~6

75 76 17 78 79 80

~~~:~f:ation I I I I I I I 

C 
0 

~ 

1 
." 
0; 
i.i: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 It NP 
o 2 I 

o 3 I 

o 4 I 

o 5 I 

o 6 I 

o 7 I 

o 8 I 

5-78 

Jir AlA J~ ~Ih ~q 

lL b -"'/i II'( I '" 
11 3~ I:lI ~,. 

1313 '., I rt: 'IIY ..... H 

Al4 ** II ~ INt=. IX liN 

Iql~ :ql~ Nix tr'"ln 

9. The righthand, low~order position of Factor 2 is moved first, to the righthand, low
order position of the Result Field. 

10. If Factor 2 is larger, the number of positions moved will be equal to the size of the 
Result Field. If Factor 2 is smaller, the whole field will be moved and the lefthand 
positions of the Result Field will be unchanged. 

11. With MOVEL, the leftmost position of Factor 2 is moved first to the leftmost posi
tion of the Result Freid. 

12. The sign of the Result Field after a MOVEL operation is performed will be the same 
as that of the low-order character of Factor 2 unless Factor 2 is smaller than the Re
sult Field in which case the sign is unchanged. 

+ 
13. a. 87653456 

b. 8765 
c. 4321 
d. 34564321 

14. Branching alters the sequence in which calculations are executed. It allows you to: 
a. Skip calculation operations. 
b. Execute operations in an order other than the normal sequential order. 
c. Perform the same calculations several times in one cycle . 

. 15. Branching in RPG II is specified by the operations GOTO and TAG. GOTO tells the 
computer to branch to a location indicated in Factor 2 of the instruction. The TAG 
statement is placed at the point in your program to which you want to branch. The 
name in Factor 1 of the TAG statement is the same as the name in Factor 2 of the 
appropriate GOTO. Every GOTO requires a TAG or the program will not know 
where to branch to. Several GOTO statements may branch to the same TAG, but the 
name on each TAG statement must be unique. 

/ 



16. Condition several GOTO statements with the various record type indicators. Write 
the set of specifications for each record type separately and include them in the pro
gram. The set of specifications for each record type will begin with a TAG statement 
and end with a GOTO stat~ment which branches to the end of all calculations. The 
program will test the record type and branch to the correct set of specifications. At 
the end of the set of specifications, it will branch around all other specifications to 
the end of the calculation section. 

17. If a program has a loop, there must be some way to stop the looping. The branch 
back instruction must be conditioned so that when certain conditions have been met, 
the statement will not be executed. If this condition is not specified or cannot be 
met, the program will go into an endless loop. 

18. A subroutine can be used whenever the same calculations must be executed at several 
different places in a program. 

19. The first line of a subroutine must have the BEGSR operation code in columns 28-32 
with the subroutin~ name in Factor 1. The last line in a subroutine must have 
ENDSR operation code in columns 28-32. This line can have a name in Factor 1, and 
this name can then be referenced by a GOTO statement. Every subroutine line mu~t 
have SR in columns 7-8. 

20. No branches can be made from a GOTO statement within a subroutine to a TAG 
statement outside that subroutine. No branches can be made from outside the sub
routine to a TAG statement within the subroutine. 

21. All subroutines must appear on the Calculation sheetafter all detail and total 
calculations. 

22. LO would be used if you need to perform some calculation steps at total calculation 
time and there is no normal control level indicator (L l-L9) available. A common use 
of this is to set on the other control level indicators when control fields are not 
available. 

23. Detail calculations are distinguished from total calculations by the fact that columns 
7-8 of the Calculation sheet are left blank for detail calculations. Since the control 
level indicator stays on through detail calculations it can be used like any other indi
cator in columns 9-17 to control detail calculations. The control level indicator will 
be on for only the first card of a new control group. 

24. Blank after should be used to reset a field to zero that. is used to accumulate and 
print a total for each control group. This allows the field to start with a zero 
value for the new control group. 

25. Bit switches are used to code and test for specified situations .. With System/3 Model 
10 Disk System and Model 6, they are stored in one-byte alphameric fields in storage 
and on disk. One example is credit information in an accounts receivable file. The 
first bit might mean a COD only; the second, payment due in 30 days; the third, 
credit limit $1000; etc. When these,conditions are coded as bit switches they take 
up less disk space than single character codes that might be used in the same way. 

26. See coding sheet. 

Answers To Review 5 5-79 



Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

IBM International Business Machine Corporation 

Program 

Programmer Date 

C Indicators 
~ 

I-- ~ At Jd 
8.~ 

Line >-' 
I- '0 
E !: 

15 15 ~8 15 z z Z 

I 
I 

Factor 1 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

Graphic I I I I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Punching 
Page [I] of_ ~~~;~f:.tion I I I I I I Instruction Punch I I I I I I 

Result Field 
Resulting 
Indicators 

Arithmetic 

Plus Minusl Zero Operation Factor 2 Comments 

Length 
Compare 

Name 1>21<211-2 

Lookup(Factor 2lis 

High Low Equal 
3 4 5 6 7 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 4B 49 50 51 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 c 
~III' Jri 'ILl l' rrlE Sir IER It ~J ~r-, 1111 1'\ 2.15~ 

o 2 C If"! II It- \ 1112 I~ , h""1(; :5r, IE: R 
,..., 

It:~ rrlT ~N 2l'ilJ-
o 3 c tr~ Islr IE' 112 I~ , (~I'" III~II"C ~t2 b-II w-

1J:1c;;, IT IT N 121c;1r 
o 4 C 

, 

o 5 C 

o 6 C 

n 7 f' I 

27. Mode/10 Card System: 

• M FCU input files (no stacker select; no table or demand files) 

• M FCU output files (no stacker select) 

• PR INTER output files 

• PR INTR2 output files 

• TAPE input file 

• TAPE output file 

Mode/10 Disk System and Mode/12: 

• MFCU or 1442 input files (no stacker select; no table or demand files) 

• MFCU or 1442 output files (no stacker select) 

• PR INTER output files 

• PR INTR2 output files 

• DISK input files (sequential and direct only) 

• DISK output files (sequential and direct only) 

• TAPE input files 

• TAPE output files 

5-80 

I 



Model 6: 

• DISK input files (sequential and direct only; no shared liD) 

• DISK output files (sequential and direct only; no shared liD) 

• DATA96 input files 

Model 15: Same as Model 10 Disk System, plus: 

• 2501 input files 

• MFCM input files (no stacker select; no table or demand files) 

• MFCM output files (no stacker select) 

Answers To Review 5 5-81 



i~ 

5-82 



) 

) 

) 

Chapter 6. Match Fields and Multifile Processing 

CHAPTER 6 DESCRIBES: 

How to assign match fields to one or more files. 

Use of match fields to sequence check records in a file. 

Using matching records to control the processing of multiple input files. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

How to identify input record types on the Input sheet. 

How to use field-record relation. 

How to specify stacker selection on the MFCU. 

RPG II object program cycle. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Checking the sequence of records within a file using match fields. 

Using match fields with field-record relation for more than one record type in a file. 

Matching records when there is only one record type in a file. 

RPG II logic for processing files by matching records. 

Matching records when there are more than one record type in a file. 

Matching records when all of the records in one of the files have been processed. 

Using match fields and control fields in the same file. 

How to determine whether a file should be primary or secondary. 

Note: You can use the review questions contained in Review 6 at the end of this 
chapter to test your comprehension of the topics in the chapter. Answers follow 
the review questions. 

Match Fields And Multifile Processing 6-1 



\ 

INTRODUCTION 

Match fields are data fields on separate records that are 
compared to establish a relationship between the records. 
Match fields have two functions, depending on whether the 
related records are the same input type file or in separate 
input type,files. (An input type file can be an input, update: 
or combined file.) 

Within a file, match fields are used to check the sequence 
of records on which they appear. The sequence checking is 
accomplished by comparing match fields in one record with 
the match fields in the next record of the same file. When 
two or more input type files are used by a program, the se-

, quence of each file can be checked just as sequence was 
checked for a single file. All files that are sequence checked 
by match fields must be in the same sequence, either as
cending or descending. 

In addition to sequence checking records within a file, match 
fields can also be used to establish a relationship between 
records that are in separate files. That is, match fields can 
be used to match records from two or more input type files 

. to determine which record is to be processed on the current 
cycle. If two files are used in the same job and you do not 
specify the order of processing, the primary file is complete
ly processed first. Only then are records from secondary 
files processed. By specifying that the order of processing 
is to be determined by comparing the contents of match 
fields, however, you can cause records from secondary files 
that are related to a record in the primary file to be proc
essed before the next primary record. 

The processing of more than one input type file, with or 
without match fields, is termed multifile processing. Selec
tion of records from more than one file based on the con
tents of match fields is known as multifile processing by 
matching records. 

Multifile processing is commonly used in applications where 
data files are set up to contain only a certain type of infor
mation. For example, a master payroll file might contain 
data which does not change often, such as an employee's 
pay rate. Another payroll file, which would consist of new 
records every week, might contain data such as the number 
of hours an employee worked in the week. To produce a 
paycheck or other report, information from both files 
must be used. Furthermore, the records from the two files 
must be processed in a particular order. Matching records 
can be used both to determine which record to process on 
each program cycle and to sequence check the records with
in each file. 

6-2 

Note to Disk Programmers: For ease of depicting input rec
ords and files, card-like records are shown in illustrations 
throughout this chapter. This does not imply that the proc
essing must be done using card files. The files can be read 
from any System/3 device that can be used as an input de" 
vice. Also, throughout the chapter, two input-type .files 
are used in examples to illustrate RPG II logic for matching 
records. RPG II logic and the rules for record selection do 
not change when more than two files are used. See the 
RPG II reference manual for your system for examples 
using more than two files. 

CHECKING SEQUENCE OF RECORDS WITHIN A FILE 

File Containing Only One Record Type 

As you know, an A or D entry made in column 18 of a file 
description specification indicates that the records in the 
file described are to be in sequence. If you specify that the 
file EMPLOYEE is to be in ascending (A) sequence, which 
employee records in Figure 6-1 are in the correct order? 
Actually all three arrangements show the file in ascending 
order: the first is sequenced by department number, the 
second by name, and the third group by employee number. 

As you can see then, before the program can check the se
quence of records in a file, you must specify the field or 
fields which are to determine the order. The fields on which 
the sequence is to be checked (called match fields) are iden
tified on the I nput sheet by coding one of the entries M 1-
M9 in columns 61-62 (see Figure 6-2). 

Records within a file r:nay be sequenced on the basis of one 
or more data fields. Up to nine fields may be used by assign
ing one of the entries M1-M9 to each match field. Entering 
M1 on the same line as you describe the DEPT field (Figure 
6-2) causes the records to be sequence checked according to 
department number. Thus, this file should be in ascending 
order as shown in the first group of Figure 6-1. 

When you specify more than one match field to check se
quence, the program considers all the match fields to be one 
continuous field, even though the fields may not be adjacent 
in a record .. For this reason, all match fields assigned to a 
particular record type are considered to have the same type 
of data (alphameric or numeric). The individual fields are 
checked in order according to the level of the match field 
entry assigned to the field. M1 is the lowest level; M9 is 
considered the most important. 



'\ 
) 

) 

(425 / AKREJA 

" L372 .' / THOMASSE 

! 361 " 
DAHM PA 

" 218 I NELSON KR 

I 

DEPARTMENT 
NUMBER 

Figure 6-1. Sequenced Files 

3186 05 029 

2043 03 037 

3672 02 017 

4061 03 051 

1-

1-

1-

NELSON KR I 
I 

DAHM PA I 
I 

AKRE JA I 

THOMAS SE 

I 

EMPLOYEE 
NUMBER 

THOMASSE I 2043 
I 

NELSON KR I 4061 
I 

I 3672 

EMPLOYEE 
NAME 

051 

017 

05 029 

03 037 

J 

I 

3186 05 

03 037 

03 051 

02 017 

029 

Match Fields And Multifile Processing 6-3 



RPG INPUT SPECIFICATIONS GX21·9094 u/M 050' 
Printed in U.S.A. 

IBM Intf!rnallonal Business M~lne Corporation 

Program 

Programmer Date 

I 5 Record Identification Codes 

- ~ 1 2 3 

;' ~ €.~ 
Line Filen.ame j ~ ~ ~ t _ !l 

Position Position Position 
l- E '2 ~ ~ ~ = ~ ~ ~ -1--5 ! o R Z ~ U 6 ~u6 

r;:'No 
3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 1920 21 22 23 24 25 26 21 28 29 JO 31 3233 34 35 36 31 38 

0 1 lle:: MPI- II .... fYS tal 
0 2 I 

0 3 I 

0 4 I 

0 5 I 

0'16 I 

0 7 I 

Figure 6-2. Assigning a Match Field for Sequence Checking 

The input specifications shown in Figure 6-3 show that 
three fields on an EMPLOYEE record are to be used for 
sequence checking. Since all records in a particular region 
are to be together, the REGION field is assigned the high
est (M3) match field entry and, thus, is checked first .. 
DSTRCT is the next match field (M2), and DEPT is the 
last (M 1). 

~~ 
~u 

3940 

1 2 75 76 77 7B 79 80 

Page [D0f_ :~;~f~cati~ I I I I I I I 

Field Field Location 
Indicators 

g .g 
g ° ~ 

52-0 a: 
ti :~ Field Name ] ~~ "E 

~ ~ § 
~ ! Zero 

From To i:~ Plus Minus or 
E 1 ~l~ ~ 

." Blank 

~6 "ii u: 

4142 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 68 5960 61 62 6364 6566 6166 69 10 11 72 13 14 

1 .~ ~E. ~IT ~.L 
5 13 ~A ME 

16 19 ~~ U~ BEIR 
22 2.~ 'f<E. 1(:,1 '"'~ 
26 28 ~'=> II II'< II 

Figure 6-4 shows three records from the EMPLOYEE file. 
The three match fields shown would be considered one 
field. If the file is specified to be in ascending order (on 
the'File Description sheet), the records are in order since 
03037372 is lower than 03051218, which is lower than 
05029425. However, if the file is to be in descending se
quence, record 1 and record 3 must be switched. 

RPG INPUT SPECIFICATIONS GX21·9094 UIM 050' 
Printed in U.S.A. 

IBM Internallonal Business Machine Corporation 

Program 

Programmer lIate 

I Record Identification Codes 

-
Line Filename 

0-
> 
I-

~ 
Position t t Position Position g 

§ 
tl §:e B g e t'? 

tl ~~ 6 ~ ~ Z 

Field Location 

0 

E ." 
~ 

;;; ~ 
a: From To 

~ g ~ t'? 

tl ~ ·il 
ii: c 

1 2 

Page [0 of_ 

g 0 

:!2-a Field Name ] .!!"ii 
u..u:: 

Ii ~ 
8 ::.u 

75 76 77 7B 79 BO 

:~;~f:alion I I I I I I I 

5 
.~ 

~ 
"E 

! 
~ u: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 61 66 69 10 11 12 13 14 

o 2 I L 
o 3 I 

o 4 I J 1l"lt7lIAII IlI..o~rr: 
,""".'1'1' I.... '-

o 5 I 

o 6 I ~8 tl~IT Relr 
o 7 I 

Figure 6-3. Assigning More than One Match Field for Sequence Checking 

6-4 

/ 



\ 
) 

../ 

) 

425 AKREJA 3186 05 

218 NELSON KR 4061 03 051 

I 

372 I 

·1 

DEPT 
(M1) 

THOMAS SE 2043 I 03 I 037 

I 

Region 
(M3) 

I 

DSTRCT 
(M2) 

Figure 6-4. Match Fields Checked According to Level Assigned 

Processing halts when the first record out of sequence is 
read. You can then correct the order of the records to con
tinue processing. Note, however, that only an error in the 
direction of the sequence is detected. When sequence check
ing a file with"match fields, RPG II does not cause the proc
essing to stop when a duplicate match field is read. This 
can be accomplished, however, by coding the sequence check 
using calculation specifications. 

029 

M3 M2 M1 

I I - Record 3 -----+- 05 : 0291 425 
I I 

• Record 2 -----+- 218 

• Record 1 

REGION 

DSTRCT 

DEPT 

In the last example, all records in the EMPLOYEE file were 
the same record type; that is, they contained the same type 
of information in the same location on each record. There
fore, a particular match field could always be found in cer
tain positions for every record in the file. 

Match Fields And Multifile Processing 6-5 



File Containing More than One Record Type 

When some or all of the fields on a record are in different 
positions than the fields on other records in the same file, 
you have different record types. Suppose your EMPLOYEE 
file is made up of two different record types, one type for 
salesmen and one type for all other employees. An S in 
position 96 identifies records of salesmen; an 0 identifies 

the other employee records. Two different record types 
are necessary because salesmen receive a percent commis
sion on sales, while other employees receive a set weekly 
salary. Although commission and salary fields appear on 
only certain records, all EMPLOYEE records contain an 
employee number, department, and district, as shown in 
Figure 6-5. However, these common fields appear in dif
ferent locations on different record types. 

RPG INPUT SPECIFICATIONS GX21-9094 U1M 050' 
Pflnledln U.S.A. 

IBM International B~'ineSl Machine Corporation 

Program 

Programmer Date 

I ~ 
r--- ~ 

Line Filename ~ 
~ 

~.~ 

0. j ~ 0 

> 
1l t-

1 ~ r--,....g 
o R Z 

Position 

fj;;N"'D 

Record Identification Codes 
Field Location 

1 2 3 

0 -" -;;; 

Position 
~ 

To 
~ 

From Position 

.~ 

0 

1 2 

Page [I] of_ 

'" .... 
0 .... 

Field Name :9-0 
] .9:!iii 

LLi.L 

g .~ g' 

~] .3 ::;;:u 

75 76 17 78 79 eo 

~~:~f:aljOn I I I I I I I 

c: 
° 
~ 
"C 

j 
"C 
Q; 
u:: 

Field 
Indicators 

Zero 
Plus Minus or 

81ank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 61 68 69 10 11 72 13 14 

o 1 IE:MIFLCY~~AA 916 ~S 
o 2 I 1 Il"" I" 1M 

o 3 I 7 
o 4 I lQ 12 
o 5 I 116 
o 6 "' 
o 7 , 
o 8 \ 
o 9 '\ 
1 0 I~ 
11 I 96 C~ 
1 2 I 1 ~ Il)!EiPi7 
1 3 I v 
1 4 I 11 11 &j121~IALA RY 
1 5 I 121 bSiTRCT I 

1 6 I v 
1 7 I I 
1 8 I 

1 9 I 

2 0 I 

Record for Other Employee 

1 Z J,. , !~ .. ~~~".~?n··· .. •• .. ··,,···· .. 11···,,··· .. · .. ·,,··~ 135 

Record for Salesman 

Figure 6-5. File Containing Two Record Types 

6-6 



For this particular program, you want a list of all employ
ees, in ascending sequence according to district. Further
more, the records within a district are to be in sequence 
according to department and employee numbers. To ensure 
the sequence of the file, three fields on each record must be 
checked, as shown in Figure 6-6. DISTRCT is the most im
portant category and, therefore, is assigned the highest 
match field entry. 

M3 M2 M1 

Since there are two different record types, a particular 
match field may not always be in the same record positions. 
For instance, DSTRCT is in positions 15-16 on salesmen 
records, and in positions 20-21 on records for other em
ployees. You must tell the program where to locate the 
match fields for each record type (Figure 6-7). Once the 
program determines the record type by checking the code 
in position 96, it then looks at the appropriate match field 
positions for that record type. 

Record Type "0" for Other Employee 

293 387 07564 04 
I Z 3'SI7.t~"~~W~~W~~w~uu~nHVHH~~n 

M3 M2 M1 

Record Type"S" for Salesman 

~~~--:--c/ -------'7 

135 15 425 07
, 2 3 .. 5 • 7 8 • 10 It 12 13 14 IS 16 17 18 It 20 21 U 23 21 25 21 27 21 29 30 31 32

Figure 6-6. Match Fields in Different Locations on Two Records

RPG INPUT SPECIFICATIONS GX21-9094 U/MOSO"
Printed in U.S.A.

IBM International BU5ine$S Machine Corporation

I I I I I Card Electro Number
1 2 75 76 77 78 79 80

Program Punching Graphic
Page []]o,_ :::~':ation I I I I I I I Programmer Date I Instruction Punch I I I I

I s Record Identification Codes Field
~ Field Location

I---] 1 2 \ 3 Indicators

~
0

!
c. 0

~
Filename Z f's ~

0 :2-0
line -in Field Name] .!!:!Qi "E

0- c1l ~§
Z 0 ~ - ~

-.; ~ u..U:

~
Zero

~ Position Position Position ~ ~ ~ From To .s~ Plus Minus or

~
~.g ~ ~ ~ ~

~e ~ ~o

~l~
~] -£ :s -0 Blank

"O'R- :l 0- il 15.t:! ~ ~§ "g .3 ~~ -.;
Z 0 a: z u u zuu 0 :2:u u:

"A'No
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 4142 434445464 7 48 49 SO 51 52 53 54 55 56 57 58 5960 61 62 6364 6566 6768 6970 71 72 73 74

0 1 IF iMP ""y F"F:. ~A rAl g{, rs
o 2 I 1 i~ 1'"/1, f"I M Ml
o 3 I 71 Salesman /=--fYlM
o 4 I ~~ 1~ CE. 'PiT M2 record
o 5 I lJ.I5 1'6 r.,.;i~ It< I M3 ,
o 6 I A~ (/)2 916 rt,...,

"" o 7 I 00C DE PT f..12.)
o 8 I s:l "'f\1 1-'1\1 I M "11 Other employee I
o 9 I L l~ 2_" ilL ~RY record
1 0 I 2 21 !I~ I~ 1 ~~ ,

I I I I

Figure 6-7. Assigni"ng Match Fields to Different Record Types

Match Fields And Multifile Processing 6-7

Fields from different record types which have been assigned

the same match value may have the same name. As shown
in Figure 6-7, M2 has been assigned both to the DEPT field
on salesman records and to the DEPT field on other em
ployee records.

If, match fields are assigned to more than one record type in
a 'program, all of the records (with match fields) must be
assigned the same number of match fields. Furthermore, all
match fields (on different record types) which are given the
same value (M 1-M9) must be the same length. Thus, all M 1
fields must be the same length, all M2 fields must be the same
length, and so on. This, of course, means that the total
length of the match fields must be the same for each of the
records.

In this example, the EMPLOYEE file contains only two
types of records and both are assigned match field entries.
However, match fields need not be specified for all record

types in a file. Record types which do not contain match
fields are processed in the order they are read. The sequence
check, then applies only to the record types to which
match field entries have been assigned.

USING MATCH FIELDS WITH FIELD-RECORD
RELATION FOR MORE THAN ONE RECORD TYPE
IN A FILE

In the last example, each of the record types in the EM
PLQYEE file is described with a separate set of input speci
fications. Since all of the fields to be used for matching are
in different columns on the different record types, the same
match field entries are assigned once for each record type.

DEPT DSTRCT COMM
(1-3) (8-9) (14-15)

EMPNUM
(25-27)

Match Fields the Same for All Record Types

Often, however, you may find that although there are dif
ferent record types in a file, many of the fields are the same
on all record types. That is, many fields have the same
name, contain the same type of data, and are always found
in particular positions of any record type in the file. For
example, salesmen records and other employee records
might be organized as shown in Figure 6-8. For both rec
ord types, all fields are the same except the COMM and
SALARY fields and the record identifying code in position
96.

When only a few fields differ, record types can be described
on the Input sheet in an OR relationship. Instead of using
separate sets of input specifications, common fields need
to be described only once. As shown in Figure 6-9, entries
under Field Record Relation (columns 63-64) can then
identify the fields which are unique to a particular record
type. Notice that fields which are the same for all record
types are described first. All fields related to a particular
record type are then described before specifying the fields
related to one of the other record types.

DSTRCT, DEPT, and EMPNUM arethe three match fields
to be used in sequence checking the EMPLOYEE file.

Since they are described only once on the Input sheet with
out any field record relation entries, the match field entries
also need be assigned only once (Figure 6-9). When record
types are described in an OR relationship and a match field
entry is assigned to a field without any field record relation
entry, the match field will be used for all record types.

Salesman Record

IS)
~ I • ., .. I' eo .' .s ... 0 .. t2 IJ t7 .. (

15 135 425 07
I 2 1 .. 5 • 7 • , 10 11 12 13 ,4 15 16 17 ,. 19 2021 U lJ 21 25 Z6 27 28 29 30)1-32

~ __________________________________ --J

DEPT DSTRCT SALARY
(1-3) (8-9) (13-17)

EMPNUM
(25-27)

Other EmployeR Record

}

~ ? ~. . . 7 9 ~ 10 11 " ~ ? ~ ~ ~ II 19 '0 " 22 ., 24 25 a. 27 .. 29 '0 "JZ (.. ., B7 0 , ? t7 ..

j

Figure 6-8. Same Match Fields for Both Record Types

6-8

RPG INPUT SPECIFICATIONS
IBM International Busine$$ Machine Corporation

1 2

) Page []]Of_ Program

Programmer Date

)

I ~ Record Identification Codes

] 1 2 3
~

!
go.

r~ Line Filename ~ 0.
> ~ Position - :;; Position - ~ Position I- .8 1! ~ ~ i ~ e ~
~ -~-5 ~ o _.<: ~flc5 o R Z Z U U

"Ar-;;-o
3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 JJ J4 35 J6 37 J8

0 1 IE MP La VE EAA (tJll qc> Clc:
o 2 I vR ~2 '1~ CIC
0 3 I

o 4 I

o 5 I

o 6 I

o 7 I

o 8 I

Figure 6-9. Assigning Match Fields Once for Two Record Types

Match Fields Differ Between Record Types

In the last example, although some fields differed between
record types, all the fields to be used in matching were the
same (same name, format, and record positions). Suppose,
however, that one of the match fields, DEPT, is in different
record positions for each record type. The two record types
in the EMPLOYEE file are shown in Figure 6-10.

Field Location

il
~~~ From To 

~~ ~~~ ~u 

3940 41 42 4J 44 45 46 47 48 49 50 51 

1 3 
8 q 

12.5 2.7 
lllJ 15 
u.~ 17 

EMPNUM 
(1-~) SALESMAN RECORD 

(Record Identifying Indicator 01 

0 

'in Field Name 
.e 
~ 
"2 
0 

52 53 54 55 56 57 58 

DE PT 
os rrR CIT 
EPo( PN UIM 

2.C OMM 
25 AL ARIV 

DSTRCT 
(20·21) turns on when this record type is read.) 

15 425 

EMPNUM 
(1-3) 

SALARY 
(10-14) 

07 

OTHER EMPLOYEE RECORD 

DE;lT I DSTRCT (Record Identifying Indicator 02 

---5~, ____ (_2_0~r._1_) _______ turns on when this record type is read.) 

387 293 07564 04 o 
I 2 J .. S , 7 • • 10 11 Il 13 .. 15 t6 17 t. t. ZO 21 U U 2" Z5 21 Z7 ZI ZI 30 )1 32 U &l .... 15 II '7 .. II to II t2 13 .. IS H t7 II 

~ Figure 6-10. Match Fields Differ Between Record Types 

~ 0 

~{3 

] .!!"ii u..u::: 

f:f e 
~ ~c5 

5960 61 62 

~2. 
M3 
1M! 

Page of GN21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

GX21-9094-2 U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

~~;~f:ation I I I I I I I 

Field 
Indicators 

0 

~ 
." 

j Zero 
Plus Minus or 

." Blank 
£ . 

6364 6566 6768 69 70 71 72 73 74 

leJl 
I2Jll 

Match Fields And Multifile Processing 6-9 



According to what you have learned so far, you might as
sign match field entries as shown in Figure 6-11. 

However, the specifications shown in Figure 6-11 will not 
work. There is an additional rule to remember in assigning 
match field entries when field-record relation is used and 
the match fields differ between record types. If one (or 
more) of the match fields in either file is assigned without 
a field-record relation, the rest of the match fields must be 
assigned in the same way, without entries in columns 63-64. 
Of course, the specifications which assign some of these 
match fields with field-record relation are still necessary. 
Notice in Figure 6-11 that two of the match fields (M 1 and 
M3) are associated with all record types (without field
record relation entries). Therefore, an additional entry 
(dummy entry) should be made (see line 05 of Figure 6-12) 
to assign the M2 match field (DEPT) to all record types also. 

Actually the M2 match field isn't the same for all record . 
types, since the location of the field varies. Therefore, how 
do you know which entries to make in the Field Location 
columns of this dummy match field entry? You know that 
anyone match field is always the same length, regardless of 
record type or location in the record.· In this case, DEPT is 
three positions long. Any numbers which give the correct 
length of the match field can be specified as Field Location. 

As shown in Figure 6-12, positions 12-14 are specified for 
the dummy match field. When this specification line is per
formed, the program looks at the three positions of data 

(positions 12-14) on whichever record type was read. Of 
course, the M2 match field is not in positions 12-14 on 
either record type so you don't want this incorrect data to 
be used in sequence checking. It won't be, because all of 
the match field entries are checked before the sequence 
checking is performed. If the record read is record type 01, 
line 07 is performed. This entry tells the program that the 
data in positions 10-12 should be used for the M2 field. On 
the other hand, if record type 02 is read, line 08 is per
formed and the data in positions 5-7 is used instead of that 
in positions 12-14. Actually, then, when either of the spec
ifications in lines 07 or 08 is performed (depending onrec
ord type), the data used as the match field is changed, as if 
the dummy entry had never been specified. 

Although the specifications in Figure 6-12 will cause the 
EMPLOYEE file to be sequence checked correctly, there is 
a way to reduce the number of specifications required. As 
mentioned, for a dummy entry you can specify any record· 
positions which give the correct length for the match field. 
However, if you specify the actual positions associated with 
that match field on one of the record types, there is no 
need for the specification which relates those positions to 
the match field for that record type (Figure 6-13). Thus, 
by entering 10 to 12 (line 05, Figure 6-13) as the positions 
for the M2 field, you can eliminate the match field entry 
(line 07) in which the M2 field is described for record type 
01. 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050' 
Printed in U.S.A. 

IBM International Business Machine Corporation 

I Program I . Graphic I I T T Card Electro Number 
1 2 75 76 77 78 79 80 

Punching 
Page [OOf_ :~:~f:ation I I I I I I I I Programmer Date I Instruction Punch I I T T 

I H 
Record Identification Codes Field Field Location 

r---- ~ 1 2 3 c Indicators 
Ol 0 

C. 
..J l; 

~ ~ j'l; 0 ..J 12-t; 
Line Filename 

i ~ ~ ·in Field Name ] .!!'i) 

] -! - ~ i ~ ~ From 
Q. u..u: Zero 

,..--,..-1 
Position Z C t; Position Position 

~~ 
To 

~ I:r Plus Minus or 

~ 
"E 

E ~ i ~ $2 ~ e 
" 81ank 

~ ~~6 
.~ ! ~6 

Q; 

o R z z u u ~u OUiIi:; 0 u: 
'A"N'D 

3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 J4 35 36 37 38 39 40 41 42 43 44 45 46 47 4849505 1 52 53 54 55 56 57 58 5960 61 62 6364 6566 6768 69 70 71 72 73 14 

0 1 IF ~'P IL"" Y£ £AA ~1 96 CS 
o 2 I tJR ~2 1.j6 ,.,,... 

~I..I 

o 3 I 1 ~ r:: ... I M '1111 !\ 
o 4 I 2<2 12 ~ . ., «c.;r ~''i , 

These 
o 5 I ~ 1 MI\I, 1J.1 specifications 
o 6 I 1rJ lL JE .... r ~2 aL are incorrect. 
o 7 I 5 ? DE T ~2 QZ \ 
o 8 I 1~ 1'"1 t. .... M !J!:lly ~2 ) 

o 9 I 

Figure 6-11. Incorrect Match Field Entries for Records Described with Fi~ld Record Relation 

6-10 



) 

J 

RPG INPUT SPECIFICATIONS GX21-9094 UIM 050· 
Pnnted in U.S.A. 

IBM Intern.tion.1 BUliness Machin. Corporation 

J I I I .1 Card Electro Number 
1 2 75 76 77 78 79 80 

Program Punching Graphic 
Page [OOf __ ~~::~f~ation I I I I I I I Programmer Date I Instruction Punch I I I I 

I s Record Identification Codes Field 
11 Field Location 

Indicators 
f-- ] 1 2 3 

~ ·2 

i 
go. ° ~ '>'. 0 :B-t; 

Line Filename ~ )~ ~ -0; Field Name 0; .!!:!'i) "E 
8- ~ \; - $ 

0; ~ .3 u.u: 
~ 

Zero 

~ Position Position Position ~ ~ ~ From To .~~ Plus Minu$ or 1i ] ~~~ ~ e ~ ~o ~ j -5 :~ -0 Blank E r--r-5 ~ N '" ~ § ~1~ ~ ~~ 0; 

.f o R Z ~ u 6 :!tuo ::;;u u: 
r;"Nro 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 434445464 74849505 152 53 54 55 56 57 58 5960 61 62 6364 6566 67 68 69 70 71 72 73 74 

I~ Mt.iL ,.,.1 .. AA 

C2llL 96 cs I Dummy entry so that o 1 T'/;. ~H~ 
o 2 I OR (/J~ 96 1'I'r all match fields are 

~~ 

o 3 I 1 ~ ~IJ'-'l 1-''fV ~M ~1 assigned without 

o 4 I 2~ 2'.1 ~I 'kIV'/ MI~ ~ field-record relation. 

o 5 I 1 1. IE~IT fvil2~ 
o 6 I Performing either of these 71Z .... 1'-1 M'1"i ~ 
o 7 I specifications actually voids ~1 12 CE- PIT ~~ 'J. 
o 8 I what has been done as a result It 7 r'E ... :r frJI2 ~ 
o 9 I 

of performing the dummy entry. 1 1 ~:::; AL ~IB:" ~ 
- I I I I I I I I I I I I I I I I I I 

Figure 6-12. Assigning Match Fields for Records Described With Field Record Relation 

RPG INPUT SPECIFICATIONS GX21-9094 UIM 050· 
Printed in U.S.A. 

IBM Internationel Business Machine Corporation 

1 2 

Page [0 of_ 

75 76 77 78 79 80 

::~;cation I I I I I I I 
Program 

Programmer Date 

I Field Location Field 

- 1 2 3 Indicators 

Line I! Filename I~I§ ~ 

dl~ 
If Field Name j 

!i iill 
Position 

~I§ J 
Position 

I~I§ 
II Position 'ii~ 

From To 

il f, Plus Minus I~:'o 

ro Ar-
ISlank 

IA Nio 
20 [21 22 23 24 25 126 27 28 29 30 3 4 5 16 7 8 9 10 11 12 13 36 37 38 4445464 7 48 49 50 51 152153 54 55 56 57 58 159 60 61 62 :63 64 ~66 6~ 68 169 70 171 72 73 74 

011 il=IM" h ,.It- AlA ~~ ~16 ~S ,'"' ,.. 
01 2 II OR (Z2 ~~ CO 
,01 3 II :3 CiA., 'fll. '/ IJ. ~ 
014 II 2 I~l ~7 '1<.:" T ~I~ 
015 II 

--
io 16 II This entry eliminated 
,017 II since the dummy entry I In:1 
o Is II specifies the match field 

H-f-

r- " 
is in positions 10-12. 

I-t-
01 9 II rtI.<' "'\1U1, ~ 

I~ I I I I I I I I I I I I I I I I I I I I I I 

Dummy entry so that all match 
fields are assigned without field-

F igure 6-13. Eliminating Specifications in Assigning Match Field Entries record relation. 

Match Fields And Multifile Processing 6-11 



After performing the dummy entry (line 05), the program 
knows the M2 match field is to be found in positions 10-12. 
If record type 01 is read, the M2 field actually is in posi
tions 10-12. Thus, line 07 doesn't have to be performed, 
since it does not change anything. Of course, if record type 
02 is read, the specification in line 08 is performed. This 
says, for record type 02, use positions 5-7 for the M2 field 
instead of positions 10-12. 

The field name specified for the dummy entry can be any 
name, since field names are ignored in selecting match 
fields. I n this case, DEPT was specified since it happens 
that the M2 fields on both record types have the same 
name. If the names to be used differ, it is still a good prac
tice to use a name given to the match field on one of the 
record types. 

MATCHING RECORDS: ONE RECORD TYPE IN EACH 
FILE 

One of the most common forms of multifile processing in
volves using one file to obtain data from another file. Fig
ure 6-14 shows a weekly sales report to be printed which is 
used to determine which items are selling best at which 
location. A SALES file contains records of individual items 
sold, giving the quantity and location. The description of 
each item, however, must be obtained from an ITEM mas
ter file. The ITEM master file consists of one ITEM record 
for each item in stock. 

6-12 

For this program, let's assume that each file contains only 
one record type. All ITEM records are in one format and are 
identified by the character I in position 1. All records in 
the SALES file are identified by an S in position 1 and are 
also in one format (certain type of information in same 
location on everyrecord). The SALES records for a partic
ular item can be associated with the related ITEM master 
record by a common match field containing the item num
ber (see Figure 6-14). 

Processing Order: More Than One Matching Record in a 
Secondary File 

I n the ITEM master file, there is only one record for each 
item, but in a program run there may be several SALES rec
ords for that particular item. Let us suppose there is always 
at least one SALES record for each ITEM record. There
fore, there should be no records in either file which do not 
have a matching record in the other file. Both files are speci
fied with match fields in ascending sequence. 

To produce the report in Figure 6-14, in what order should 
records from the two files be processed? First an ITEM 
master record should be processed; that is, the item number 
and description printed. Then, all the SALES records which 
are for the same item (match fields the same) should be 
processed. The quantity and location of each sale should 
be printed under description. Thus, after every ITEM rec
ord processed, one or more SALES records must be proc
essed before the next record from the ITEM master file is 
processed. 

How does RPG II know when to stop printing SALES rec
ords and to process the next ITEM? As we said, the SALES 
records for a particular item are read one at a time and 
printed. When the match field on a SALES record is for a 
different item, that SALES record is not processed immedi
ately. Instead, the next ITEM master record is processed to 
print the description for the new item. Then the SALES 
records for that item are printed. As you can see, to deter
mine the correct order of processing, both files must be in 
the same sequence according to the match field; in this case, 
in ascending sequence by item number. 

( 
\ .. 



) 

) 

) 

NUM 

ITEM File 

--

PRIMARY FILE 

ITEM 

101 

117 

Match Field Containing 
Item Number 

SALES REPORT 

DESCRIPTION QUANTITY 

43 
62 

157 
~ 

49 
38 
67 

038 

049 

157 

062 

043 

QTY 

SECONDARY FILE 

LOCATION 

MN 
SD 
SD 

MN 
WS 
MN 

--------------
Data From 
ITEM Records 

Data From 
SALES Records 

SALES File 

WS 

MN 

M.N 

LOCATN 

Figure 6-14. Matching SALES Records with Related ITEM Records to Produce a Printed Report 

Match Fields And Multifile Processing 6-13 



How RPG /I Logic Determines From Which File to Process 
a Record 

Using the same example, let's see how the RPG II logic de
termines from which file a record is to be processed. The 
ITEM master records are the primary file and the SALES 
records are the secondary file. When two input files are 
used in a program, the program cycle is slightly different for 
the first record read. You can follow the logic flow shown in 
Figure 6-15 as we discuss the first program cycle and sub
sequent cycles for this job. Pay special attention to when 
the record identifying indicator is on, identifying the rec
ord to be processed, and when the MR indicator is turned 
on and off. 

At the beginning of the first program cycle (Figure 6-15, 
part A), a record is read from each file. The first step is to 
determine which record to process. The program deter
mines if match fields are specified for both record types. 
In this case, both the ITEM record and the SALES record 
contain an M 1 field. The match fields from each file are 
then compared to see which is lower in sequence. (If the 
file had been in descending sequence, the program would 
check for the highest match field.) In this case, neither 
field is lower as the match fields on the primary and sec
ondary records are both 101. When match fields from the 
two files are the same, the record from the primary file is 
always selected for processing. 

Now the appropriate record identifying indicator is turned 
on to identify the type of record selected for processing. 
Thus, 01 would be turned on for the ITEM record from the 
primary file. 

Once a record is selected for processing and the record 
identifying indicator is turned on, the program determines 
whether the MR indicator should be on during processing 
of the record. Since the match fields are equal (both 101), 

a matching record condition exists. The M R indicator is 
not turned on yet, however, because the selected record is 
not ready to be processed yet. 

First, the program checks to see if any total operations are 
to be performed for previously processed records. Total 
calculations and total output are performed only if control 
fields change or if the last record in the file has already been 
processed (LR on). Since there are no control fields in 
either file, control level indicators will never be turned on 
during this program. Furthermore, this is not the last record. 
Neither condition has occurred; therefore, total-time opera
tions are bypassed. 

6-14 

At this point, the M R indicator is turned on to indicate that 
the matching record conditon exists. Now the program is 
ready to perform the detail operations for the record which 
was selected for processing. Thus, the item number and 
description from the primary file record are printed. The 
program knows which operations are to be performed be
cause the operations are either conditioned to be performed 
only when record identifying indicator Q1'and the M R in
dicator are on or they are not conditioned by indicators. 

Once the processing of this record is completed, the record 
identifying indicator is turned off (01 off). This completes 
the first program cycle; that is, one record has been proc
essed. 

For the processing of all subsequent records, look at the 
program cycle in Figure 6-15, part B. The entire cycle will 
be repeated for each record processed. 

At the beginning of the first cycle, a record was read from 
both the primary file and the secondary file. However, 
since only one record is selected for processing at a time, 
one record (in this case, a SALES record) still remains in 
the input read area. Therefore, a record from only one file 
is read at the beginning of the second cycle and for all fol
lowing program cycles. The record read will be from the 
same file as the last record processed. Thus, for the second 
cycle, the second record from the ITEM file would be read 
into the primary file read area. 

Now that a record from each file is in the read area again, 
the second record can be selected for processing. Once 
again the first step in the logic is to determine if match 
fields are specified for the records from both files. I n this 
program, there is only one record type per file and both are 
assigned match fields. Therefore, the answer to this ques
tion is yes for every program cycle of this program. 

The match fields from both records are then compared. In 
this case, the secondary file SALES record is for the first 
item number (101). Since the ITEM record for the first 
item (101) has already been processed, the primary file rec
ord in the read area is for the second item number (117). 
The match field on the SALES record is lower in sequence 
than the match field on the ITEM record; therefore, the 
SALES record is selected to be processed. Once again, a 
record identifying indicator (02 for a SALES record) is 
turned on to identify the type of record selected. 

At this point, the MR indicator is still on because the pre
vious comparison (item 101) did give a match. The setting· 
of MR has nothing to do with the record which was just 
selected for processing. The indicator will not be set to re-

( 
\. 

flect the current condition until just before the record ( 

selected for processing (SALES record for item 101) is '" 
processed. 



\. 

) 

• 
• 

• 
Turn off record 
identifying indicator 

• 

Perform heading output 
and detail output for 
selected record 

Perform detail 
calculations for 

• selected record 

Turn M R on or off 
for selected record 

• 
• 

• 

Perform 
total output 

• 

• 

Primary file 

I nput Read Area 

Secondary file 

" Read record 
from each 
file. Turn 0 

LR if last 

Are match fields specified 
for both? 

Yes, so compare match fields 
to select record 

Perform total 
calculations 

Turn on record identifying • 
indicator 

• 
Determine whether MR will 
be set on or off 

Change in control field? 
Yes, turn on control • 
level indicator 

• 

® RPG II Logic for First Program Cycle 

Figure 6-15 (Part 1 of 2). Logic of Matching Records 

Match Fields And Multifile Processing 6-15 



6-16 

• 
• 

• 
Turn off record 
identifying indicator 

• 

Perform heading output 
and detail output for 
selected record 

Perform detail 
calculations for 

• selected record 

• 
Turn MR on or off 
for selected record 

• 
• 

Perform 
total output 

START 

~ 

• 

Primary file 

• 

Secondary file 

"-
Read record 
from one of 
files. Turn on 

r---' 
• 117 I 

',j---..... LR if last 

i ITEM I L ___ J 

Input Read Area 

Are match fields 
specified for both? 

Yes, so compare match 
fields to select record 

Turn on record identifying • 
indicator 

• Determine whether MR will 
be set on or off 

Change in control field? 
Yes, turn on control • 
level indicator 

• 

Perform total 

® RPG II Logic for Subsequent Program Cycles 

Figure 6-15 (Part 2 of 2). Logic of Matching Records 



'\. 
I 

,) 

....... ,,', 

Since the next record to be processed has been selected, the 
RPG II pr01ram now determines how the MR indicator is 
to be set for processing this card. Is there a matching rec
ord condition? You are probably thinking that there is not, 
because the match fields are not the same (secondary file, 
101; primary file, 117). However, when the match fields 
are not equal and a secondary file record has been selected, 
the match field on the secondary file record (SALES) is then 
compared with the match field of the last primary file rec
ord processed. The last ITEM record processed has a match 
field of 101, the same as the match field of the SALES rec
ord to be processed. Therefore, there is another matching 
record condition. 

The MR indicator is not set again and the record selected 
(SALES 101) is not processed (detail operations not per
formed) until after any total operations to be done for pre
vious records are completed. Since there are no control 
fields and this is not the last record in the file, total opera
tions can be skipped in this program cycle. 

At this point, immediately before processing the selected 
record, the M R indicator is set. Although M R is alreadyon 
for the previous record processed, it is set on again for the 
processing of this record (SALES record for item 101). All 
detail operations conditioned for record type 02 (or for both 
02 and M R indicators on) are then performed. Thus, the 
quantity and location fields on the SALES record are printed. 

After printing the SALES record, processing for this record 
is complete and record identifying indicator 02 is turned off. 
In the next program cycle, another SALES record is read 
from the secondary file to replace the SALES record just 
processed. 

For the rest of the SALES records related to the first item 
number (101), the comparison of match fields would indi
cate that the secondary file records are lower in sequence 
than the item number (117) on the ITEM record of the pri
mary file. Thus, all sales records for item 101 are processed. 
Furthermore, the MR indicator will be on during processing 
of all the records, since the match fields (101) will always 
be the same as the match field on the last primary record 
processed. 

At the beginning of the next program cycle, a SALES rec
ord for the next item number (117) would be read. On 
comparing the SALES record match field with the match 
field on the ITEM record in the read area, there is a match 
again. The ITEM for item 117 would then be processed be

fore the SALES records for that same item. 

Specifications for a Matching Records Program 

Figure 6-16 shows the three specification sheets - File De
scription, Input, and Output - to be used for this program. 
Since the data from the two input files is only to be printed, 
calculation specifications are not necessary. 

The File Description sheet defines the two input files to be 
used in matching, as well as the printer file, on which the 
report is to be printed. Notice that the two input files must 
both be specified as being in the same sequence (A in col
umn 18). The P and S entries in column 16 indicate to the 
system whether an input type file is to be considered as a 
primary or secondary file. 

File Description Specification 

F 
f---

Filename 

Line 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Record 
Length 

:) 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File 
oJ 

Organization W-
or Additional Area ~ 

Overflow Indicator U 
N ~S 

~ ; Key Field .~ 
0: a Starting ~ 
~ ::: Location W 

Device 
Symbolic 
Device 

File Addition/Unordered 

Extent Exit Number of Tracks 

~ for DAM for Cylinder Overflow 
Z Name of Number of Extents en 
1! 

Label Exit 
Tape 

.:l Core Index 
Rewind 

~ 
Condition 

Continuation lines 
~ 

Ul·~ 

:::l 
~ K Option Entry "< 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 4243444546 47 4B 49 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 7071 72 73 74 

o 2F 1 £~ IIF ~ ~ 16 MFtrUl 
03 F L£S I~ ~ 6 ~iF~~2 

o 5 F 

o 6 F 

o B F 

Both files in I 
ascending sequence' ,-t-lI-+-t-II-++-t-+-+-+-+-t-+-t-I-+-+-t-+-+-t-+-+-+-+-++-+-t-+-+-+-++-t-+-+-t-+-t-I-+-+-+-+-t-H 

o 7 F 

o 9 F I I 
1 0 F I I 

I Figure 6-16 (Part 1 of 2). Specifications for Matching Records Program 

Match Fields And Multifile Processing 6-17 



IBM International Business Machine Corporation 

1 Program 

I Programmer Oat. 

I ~ 
~ -

I ~ .... 
Line Filename ~ '+=0 0 

~ =5 ~ ell 
.8~ I-

1 ~ § 'g -f--o R 20 

A~D 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 

o 1 II IIEilv, 'AfJ (/,). 
o 2 I 

o 3 I 

o 4 I 

o 5 IS AL 1£5 PE tl2 
o 6 I 

o 7 I 

o 8 I 

IBM International Business Machine Corporation 

Program 

Programmer Date 

RPG INPUT SPECI FICATIONS GX21-9094 UIM05O' 
Printed in U:S.A. 

I I I r~.s.le~o Number 
1 2 75 76 77 78 79 80 

Punching Graphic 

Page [DO!_ 
Program I I I I I I I I Instruction Punch I I I Identification 

Record Identification Codes Field Field Location 
1 2 3 c: Indicators 

~ 
0 

° 
0 

~ 
ii ~-s .;;; Field Name ] ~~ 

"C 

iii 
,f J Zero 

Position zc~ Position I;; Position From To .£g' Plus Minus or 
ge~ ~~ ~ e 

~ ~ j -fi:s "C Blank 
~ N .. ~ ~ ~6 

0; 
2 U U ~oO ~u ;;: 

21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 SO 51 52 53 54 55 56 57 58 5960 61 62 6364 6566 6768 69 70 71 72 73 74 

1 CI I I I II , I I I I ~ 1U.11.A.1 ~ ML I I I I I !Ii One record type in each file. ~ 2~ ., 'I"r/.J ... , Match field 
/ ~I;o ~6 2,.. ",r C~ r"i' in each file 

lL ~S i.-"~ containing 

I." ,1lJ l I ~~~ M'L--- item number. 

I~ IJ r/,'1I, r 
LI& LI6 LI" A'A 

RPG OUTPUT SPECI FICATIONS 

17 N 

I 2 

Page [DO!_ 

I 
I 

I 1 J .1 

I III 

GX21-9090 UIM OSO' 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;~!:ation 1 I. 1 1 1 1 1 

0 '" u:: Space Skip Output Indicators Zero Balances X a Remove
-:E Commas No Sign CR -to Print - e~ Field Name tii v Plus Sign

Jd 1
Ves Ves I A J V = Date

0_

~ -"" e ~ Ves No 2 B K Field Edit

Line Filename ;. ;
~~

End No Ves 3 C L Z = Zero
8.~ Positon No No 4 0 M Suppress .

~ ~~ E Xl in

~ I- ~ 0"0 ~
Ii;

~ 8 Output Constant or Edit Word

~ ~ 0 0

o R 2 2 2 'AUTO
~

Record

'A~fo
Q:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o I 011< '~Il. rr J;lT ~ ·~e.l16 lIP
o 2 0 C~ h~

o 3 0 ~17 11 1E.1f'J rf~ l5t: RI 'fJ11 1J.~ ~I
o 4 0 ~13 I~ I IJ ~T T¥ It: CA 1111 'C~ I

o 5 0 (J ~ ~'f< (/.1)

o 6 0 v.Jlu~ 16 r Printing data from ITEM record.
o 7 0 Int-I It< l-' I~l)
o 8 0 In L ~M a2 1 ~

o 9 0 ~ITrr ;2: 'HII.J ! Printing data from SALES record.
I 0 0 ~IC I"',ll ITN ~~)
11 0

ITEM DESCRIPTION QUANTITY LOCATION I-
I 2 0

f-L-',
I-

I 3 0 1 Report that 101 ---- I-
I 4 0 43 ·MN I will be printed, 1-1- I-
I 5 0 62 SO 1:-
I 6 0 r 157 SO I-
I 7 0 117 - - I-
I 8 0 49 MN I-
I 9 0 38 WS

67
1-

2 0 0 MN -
I Figure 6-16 (Part 2 of 2). Specifications for Matching Records Program

6-18

/"

/'

)

File description specifications also associate each input file
with a particular device. On the MFCU, the primary file is
usually entered through the primary hopper (device entry
MFCU1); the secondary file is usually read from the sec
ondary hopper (device entry MFCU2). However, in multi
file processing using the MFCU, either file may be associ
ated with either of the two hoppers.

The contents of the two input files are described on the
I nput sheet, with a separate set of specifications for each
file. Entries in columns 19-27 identify the two record types.
Record identifying indicator 01 will turn on if an ITEM rec
ord is selected for processing; indicator 02 will turn on if a
SALES record is selected. The single match field in each
file is specified by assigning the M1 entry in columns 61-62,
as you learned previously.

Lines 01-04 of the Output sheet specify that headings are
to be printed at the top of every page of the report.

As you recall in the discussion of matching record logic, the
01 record identifying indicator is on whenever an ITEM rec
ord is being processed. Furthermore, ITEM records are
processed only if a matching record condition exists (MR
on). Therefore, conditioning the printing of the item num
ber and description by MR and 01 ensures that the informa
tion is coming from the ITEM record.

The quantity and location are to be printed only when a
SALES record is being processed. Because the MR indica
tor is on during the processing of both ITEM records and
SALES records, it isn't sufficient to condition this output
line only on the basis of MR. Therefore, the printing of
quantity and location is conditioned by both the M R in
dicator and the 02 record identifying indicator.

I n this case, calcu lation specifications are not required.
However, if calculations are required and are to be per
formed only if a matching (or not matching) record con
dition exists, calculations must also be conditioned by the
MR (or NMR) indicator.

Match Fields And Multifile Processing 6-19

Processing Order: More Than One Matching Record in the
Primary File

For the example just presented, there was more than one
record in the secondary file with the same match field.
That is, a single ITEM record was related to a number of
SALES records. In such a case, the order of processing was
the first primary file record, followed by its related sec
ondary file records, then the next primary file record, fol
lowed by its related secondary file records, and so on.

Let's take a look at another set of files, in which each rec
ord has a matching record in the other file. Figure 6-17,
part A, shows that there may be more than one primary file
record which matches the same secondary records. In what
order do you think these records would be processed? The
first primary file record processed would not necessarily be
followed by its related secondary file records. I nstead, all
primary file records with the same match field AA would
be processed; then all secondary file records for AA (see
Figure 6-17, part B).

Actually, the RPG II logic used to determine the order in
which such files are processed is the same as that discussed
previously. Remember that whenever the match fields on
the two records in the read area are the same, the primary
file record is always selected for processing. Thus, during
the first program cycle, the first primary file record (AA)
is compared to the first secondary file record (AA). The
match fields are the same, so the first primary file record is
processed. Then the second primary file record (again AA)
is read and compared to the first secondary file record (AA),
still in the read area. Since there is a match again, this sec
ond primary file record is processed.

For both of the last two examples presented, every record
in the secondary file had at least one or more related rec
ords in the primary file. Since a matching record condition
always exists, the MR indicator was on during the process
ing of every record in both files.

6-20

Matching Records: Records Which Have No Match in the
Other File

In the multifile programs presented, there was at least one
SALES record for every ITEM master record. Therefore, all
records had a related record in the other file. Of course, in
multifile processing, it is possible to have primary file rec
ords with no related records in the secondary file, as well as
secondary file records with no related primary file records.
In either case, the record with no related record in the other
file is called an unmatched record. For instance, if only
certain items are sold, there would be an ITEM master rec
ord for every item and SALES records for only some of
those items. The ITEM records for which no sales were
made would be unmatched records.

Unmatched records can be in either or both files, but they
are usually found in the primary file. I n this example, it is
quite probable that for anyone item, no sales have taken
place. However, it is not as likely that sales have occurred
for an item for which there is no record in the ITEM master
file.

,/

/'
(
\",

/'
I
I

)

)

."'"

More than one
primary file
record with f
same match field; f

LST

/KP

/KP

/KN

fAA

AA

P

P

P

i-

-

1sT
P LKP

P /KN

P IKN

/ AA

fAA

'AA

I-

I-

"" ..

.

Primary File Secondary File

(

AA

1 ST

tT
/KP

/KP

(KP

/KN

/KN

KN

® FI LES BEFORE PROCESSING

P

5

P

5

P

P

5 '.
5

1-

5 ~ PI -
-5 J

SJdarv records with match field AA

Primary records with same match fields
processed before the secondary records
with same match field

® ORDER OF PROCESSING THE FILES

. __ / Figure 6-17. More than One Primary File Record with Same Match Field

5

5

5

,5

5

5

5

-
I-

I-

I-

!-

I-

Match Fields And Multifile Processing 6-21

Processing Order: Unmatched Records

Let's assumethat the two files for this program consisted of
the records shown in Figure 6-18, part A, with the primary
file containing two unmatched records. The RPG II logic re
lated to matching records would determine the order in
which to process the records (Figure 6-18, part B). As ex
plained earlier, first the ITEM master record for item 101 is '
processed, followed by all SAl:,ES records for item 101. Re
member, if a record is selectedl for processing during a pro
gram cycle, the next record from that same file is read at
the beginning of the next cycle. Therefore, when the first
SALES record for item 117 is read, another matching rec-
ord condition exists. Thus, the primary file record (ITEM
record for item 117) is processed first. The next primary
file record for item 124 is then read to replace the ITEM
record processed. Since SALES records with match fields
of 117 are lower in sequence than 124, the two SALES
records for item 117 are processed. Furthermore, although
the match fields (117) on the SALES records are not the same
as that of the ITEM record in the read area (124), they are
the same as the match field of the last ITEM record proc
essed. Therefore, the MR indicator is on when each SALES
record for 117 is processed.

When the next SALES record (item 239) is read, there still
isn't a match with the ITEM record for 124. The match
field on the ITEM record is lower than that on the SALES
record; therefore, the primary file record for item 124, an
unmatched record, is processed first (Figure 6-18, part B).
Since the files are in ascending sequence, this means that
there is no record in the secondary file with a match field
of 124. Therefore, MR will be turned off just before the
ITEM record for 124 is processed.

6-22

This program cycJe shows that even if there is no matching
record condition, the primary file may be selected for proc
essing. This is because RPG II logic looks for the record
with the lowest match field, regardless of whether the
record is from the primary file or the secondary file.

Now the next primary file ITEM record (239) is read. Since
it matches the SALES record in the read .area, the primary
file record is automatically selected for processing. Although
a matching record condition exists for the ITEM record
selected, at this point the M R indicator is still off because of
the last record processed (unmatched ITEM record for 124).
The status of MR is not changed until right before detail
operations for the selected record are performed.

Following the ITEM record for 239, the SALES record for
item 239 is processed. Then, as before, the unmatched
ITEM record for item 286 is processed, since it is lower in
sequence than item 321 on the next SALES record. To
complete the processing, the primary file ITEM record for
item 321 is processed, followed by the two sales records for
item 321.

I n summary, then, RPG II sets the M R indicator to off im
mediately before processing any unmatched records. M R is
turned on before processing a record that has a matching
record in the other file. After a record has been processed,
the indicator remains as it was until it is set again immedi
ately before the next record is processed.

Regardless of the records in a file, there is an easy way to
determine if a matching record condition exists and if the
M R indicator will be turned on:

1. When a primary file record is selected for processing,
MR will be turned on if there is a secondary file rec
ord in the read area with the same match field.

2. When a secondary file record is selected for process
ing, MR w'ill be turned on if the last primary file rec
ord processed had the same match field.

)

)

/1 321

/1-286

/1 239

/1 124 P

p

P

r- ...

P

r--r-----. Unmatche
Record

d

/5 321

(5 321

(5 239

LS 117

(5 -117

/5 101

LI 117 P r--i'U
re

nmatched
cord

/5 101

I 101 P 5 101

\ l- I
Item 1- Item
Number - Number

'-
-

ITEM Master File SALES File

,(Primary File) (Secondary File)

@ FILES BEFORE PROCESSING

/S 321 5

/5 321 /1 /1321

/1286

LS 239 S

{I 239 P

LI 124 P

/5 117 5

/5 117 5 1-

Unmatched
record

Unmatched
record

LI117 P 1-

/5 101 5 1-

/5 101 5
1-

LS 101 5 '-
i-

I 101 P
1-

,-

I-

I-

I-

1-

,-

® PROCESSING ORDER OF FILES

Figure 6-18. Processing Files with Unmatched Records

5

5

5

5

5

5
i-lJ321

5

5
-'239

iJ]117

1101

Match Fields And Multifile Processing 6-23

St"acker Selectionof Unmatched Card Records

When records from two files are assigned match fields, a
record from one file may be processed, then a record from
the other file, and then a record from the first file again.
However, regardless of the order in which the records are
processed, all cards which enter through the primary hop
per 'of the MFCU or MFCM are automatically stacked in
stacker 1. All cards entering through the secondary hopper
end up in stacker 4 (stacker 5 on the MFCM Model A 1).

If there are unmatched records in either file, you can sep
aratesuch cards from the others in that file by stacker
selecting the unmatched cards into a different stacker. As
you .Iearned in the chapter Card Output Operations, cards
from an input file can be selected into a different stacker
by entering the number of the stacker on the Input sheet.
However, this can be done only when input cards are to be
stacker selected on the basis of record type.

Stacker selection of a card becaus~ it has no matching rec
ord inthe related file must be specified in column 16 of the
Output sheet (Figure 6-19, part A). However, an input file
cannot be specified on the Output sheet. Therefore, the
input file containing the card to be stacker selected (the
card with no related record) must be defined as a combined
file on the File Description sheet (Figure 6-19, part B). The
combined file name can then be used on the Output sheet
for stacker selection.

Notice on the Output sheet that stacker selection is speci
fied for the combined file ITEM (line 11), since only the
ITEM file' contains unmatched records. The filename indi
cates fromwhichfile the cards will be output. Since a
matching record condition cannot possibly exist for any un
matched records, MR must be off. Therefore, the stacker
selection of records is conditioned by NMR (off).

:;-24

Any record, conditioned for stacker selection by the M R
indicator, should be specified as a detail-time record (see,
Figure 6-19, part A, column 15). Otherwise, the next rec
ord to be processed would be stacker selected instead of the
record you want. This is because the detail-time processing;
of a card is done within one program cycle and the proc
essed record automatically passes into the normal output
stacker, if not stacker selected. The total-time operations
for that same record are not performed until the next pro
gram cycle, after another record has been selected for proc-:
essing. During total-time operations, although the status of,
the M R indicator is still set f()r the previously processed re~
ord, the only record'available to be stacker selected is the:
card just selected for processing.

Whenever you wish to have a certain type of output based
on a matching or not matching record condition, it can be
important that a record identifying indicator be used with
MR or NMR to condition the output. The record identify
ing indicator determines from which record type the infor
mation will be punched, stacker selected, or printed. For
the printer output file, output can come from either the
SALES file or the ITEM file (Figure 6-19, part A). There
fore, record identifying indicator 01 or 02 is specified to
indicate which record type is to be printed (lines 05 and
08). Record identifying indicator 01 is entered on line 11
in addition to NMR so that stacker selection will occur for
the ITEM file only when an ITEM record has been processed.

(

)

)

)

RPG OUTPUT
IBM Internalional BUSiness Machtne Corporation

Program

Programmer Date

0 !~I~ iSpace Skip, Output Indicators

I--- fA l;
Jd 1

Field Name

I~I~ ru line, Filename

] J'b il! !OLD' Il ~I,' !~ .~

~~~ 
'AUTO 

; 3 4 5 6 7 8 9 10 II 12 20121 In 33 34 35 36 37 38139 

[0 [I OIK~ k"[1 r-t 1~la6 I~ 
10 12 0 ~R Ot 
10 13 0 

10 ,4 0 

!t1 5 0 r iJ MIf< ~1 V 

I P 1

6 0 NUM 
[0 [7 0 I-~ KIF 
lio 18 .0 C 11 r-iIR (Z~ 
lio 19 0 r;;TY 12 

[0 0 IIili'lil· ~o ~~ IT IN 
1[1 0'" ITt:.trI 

~ 
I~i hM11( ~1 

'1 12 0 mtlli 
'I 13 0 V 

K 0 ~ ..... Stacker selected during I 
0 detail output time. I 

SPECIFICATIONS 

;; Commas 

Yes 
Yes 

End No 
Positon No 
in 

Ii Output 
Record 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

1 2 

pageDJo,_ 

No Sign CR -
1 A J 
2 B K 
3 C L 
4 0 M 

Constant or Edit Word 

GX2'·~ U/M 050· 
Printed in U.S.A. 

75 76 77 78 79 80 

~~::~'~Cltion I I. 1 1 1 1 1 

X - Remove 
Plus Sign 

Y - Date 
Field Edit 

Z - Zero 
Suppress 

14041 42 43 144 45 4647 48 49 50 51 52 ~J 546566 57 68 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 

217 I[ rf;.fv ~ II'( I '1-"11 I~rl 

Gl'l I~ UA NT rrl'r LO IC~ 71~ I 

~ 
~Il 

~l':5 
15t1 

File Description Specification 

F File Type Mode of Processing File AdditionNnordered 

File Designation Length of Key Field or Extent Exit Number of Tracks - of Record Address Field for DAM for Cylinder Over.flow 
End of File 

Record Address Type Symbolic 
Name of Number of Extents 

Filename Sequence Device Label Exit Type of File iiii Device Tape 
File Format Organization . Rewind 

Une or Additional Area .a Core Index ~ 
c e .... Overflow Indicator 8 Condition 

!l ee Block Record r---a Ul'~ 
~ 

~~ 
:::E " ~ Key Field .~ Continuation Lines 

c~ Lenglh Lenglh :::t- ~ E a: 0:0 Starting 5 

.f :::.'" w< ... ::J <:::. Location .ll 
K Option Entry ~ ~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 24 25 26 27 262930 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 ~ 47 48 49 60 51 52 53 54 66 66 57 68 69 60 61 62 63 64 65 66 67 6869 7071 72 7374 

o 2 Fll ITEN "'Ip ~~ '16 ft1f CUi 
o 3 F~ ~L ~S IlS ~'" '16 ~iF CU~ - - ,.., 132 plR IN Tt:I~ o 4 F ... III "'" 
o 5 F 

o 6 F 

o 7 F 
--I-

o 8 F 

o 9 F 

1 0 F 

(ID F 

F 
ZL IL OL 69 89 L9 99 !lSI t9 E9 III 19 09 69 89 L9 99 S9 t9 E'i t9 IS OS 6~ 8t L~ 9~ S~ "' £t t~ I~ 0" 6£ 8£ L£ 8£ st t£ ££ t£ 1£ O£ 61: az; Lt !It !It tt £t u: It Ol: 61 81 LI 91 SI ~I £1 tl II 01 68L9St£ t I 

Figure 6-19, Stacker Selection of Unmatched Records 

Match Fields And Multifile Processing 6-25 



MATCHING RECORDS: MORE THAN ONE RECORD 
TYPE IN A FILE 

~ 
Match Fields in Different Locations in the Same File 

Let's consider again the specifications necessary in assigning 
match fields for the weekly sales report. This time, however, 
suppose the SALES file used in producing the report con
tains two record types, charge records and cash records (see 
Figure 6-20). Both record types contain the item number, 
quantity, and location. In addition, charge records contain 
an account number, which cash records do not have. The 
cash sales records are identified by a C and an S in positions 
1 and 2. Charge sales records contain an S in position 2, but 
no C in position 1. Furthermore, the match fields are in dif
ferent locations on the two types of SALES records. 

Recall the discussion of assigning the match fields for se
quence checking within a file (see Checking Sequence of 
Records Within a File). When match fields are used in more 
than one record type in a file, the match field entries must 

either be specified one for each record type or in a field
record relation. The way they are coded depends on whether 
the match fields are found in different locations on each / 
record type. If match fieids are in different record locations, \, 
they may be coded either way. However, the ease of coding 
separate specifications for each record type may be more 
important to you than the specifications and storage often· 
saved by using field-record relation. 

In assigning entries for match fields which are to be used 
for matching records from two files, the same considera
tions must be made. The only difference is that, for match
ing records, you are concerned with two files, rather than 
one. You know that the match field entries on the Input 
sheet must be assigned separately for each file. Then, if one 
of the files has more than one record type containing the 
match fields, the record types in that file can be described 
separately or with field-record relation. If you use field
record relation, just be sure a particular match field field 
entry applies to all of the appropriate record types within 
the file. 

1945 

Match field in different 
location on different 
record types 

( 

\". 

0174 

0268 

0485 

0093 

0165 

NUM DESCRP PRICE 

\ 1-

-
1-Match field in same location 

on every record 1-

ITEM File 

(Only One Record Type) 

1-

CHARGE 
RECORD 

CASH 
RECORD 

Figure 6-20. More than One Record Type in File Used for Matching 

6-26 

157 SO 

062 so 

QTY 

SALES File 

(Two Record Types) 

( 
"'-



As shown in Figure 6-21, first the ITEM file is described as 
it was before (see Figure 6-16, part B). The M 1 entry is as

~ -signed only once since there is only one record type in this 
) file. The two record types in the SALES file have been de-

~ 'scribed in an OR relationship, because most of the fields 
are in the same location on both types of SALES record. 
Note that alUields which are the same for both record types 
of the SALES file are specified first with no field-record re
lation entry. Then all the fields associated with the first type 
of SALES record only (02 for charge records) are specified, 
followed by those for the next record type (03 for cash rec
ords). The M1 entry must be assigned twice for the SALES 
file since the match field ITNUM is in different locations on 
the two record types. 

For all records of the same record type, the match fields (as 
well as all other fields) must necessarily be in the same loca
tion for every record of that type. -However, match fields 
may be in different locations within the same file, providing 
there is more than onf record type. 

Although there is more than one record type in the SALES 
file, the order in which the records are selected for process
ing would be the same as explained previously for only one 
record type in each file. Before a comparison of match 
fields can be made between files, RPG II must first deter
mine what type of record was read so it knows where the 
match field is located on that record. 

There are some important restrictions on the use of match 
fields for matching records between files. All records for 
which match fields are specified must contain the same 
number of match fields. This applies to both files, regard-
less of how many record types are in either file. I n the sales 
report program, only one match field (item number) was used. 
However, just as for sequence checking, up to nine match 
fields may be used to match records between files. 

In assigning match fields to records, remember that for 
matching purposes, RPG II considers all match fields of the 
same value (M 1-M9) to be in the same format, numeric or 
alphameric. Thus, if anyofthe match fields are defined as 
being numeric, RPG II looks at only the digit portion of all 
the other match fields with the same M 1-M9 value, even 
though some may be alphameric fields. 

If more than one match field is assigned, all the match fields 
in a record from one file must be equal to all the match 
fields in the record from the other file before a matching 
record condition exists. For example, assume that M1, M2, 
and M3 are match fields assigned to records in two files. In 
comparing records from each file, if the M1 and M2 fields 
are the same, but the M3 fields differ, the records do not 
match. If the files were specified to be in ascending sequence, 
the record with the lower value match field (M3, M2, M 1 
combined) would be selected for processing. 

) RPG INPUT SPECIFICATIONS GX21-9094 UtM 050· . Printed In U.S.A . 

IBM International Business Machine Corporation 

I Program I I I I I Card Eleetr? Number 
1 2 75 76 77 78 79 80 

Punching Graphic 

Page. [0 of_ ~~~~;~f:ation I I I I I I I I Programmer Date I Instruction 
Punch I I I I 

I 9 Record Identification Codes Field 
~ Field Location 

Indicators - ] 1 2 3 ~ 5 0 

g'. 
-;:; 

i 2' 0 

~ 
Filename ~ 1'5 

0 ~~ Line iii Field Name -.; .~ "ii -0 

Co ::§ 
Iii 

0 j u..~ 0 Zero 
> Jl Position 

~@j 
Position 

_ .'!l 
Position From To "" .~ ~ ~ Plus Minus or f- .8 ~ -0 ~~ ~ 

~ ~ ~ ] 
~ e ~ ~ -5 :s -0 Blank 

roAr- o ~ ~ ~ u ~ .3 ~~ -.; 
z u u zuu ::<u u: 

r;N"ro 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 5 152 53 54 55 56 57 58 59 60 61 62 6364 65 66 67 68 69 70 71 72 73 74 

0 1 II ITE~ A~ ~1 lL ell Match field assigned I 
o 2 I Z. LJ~ I~UI'v1 ~1 ~~I once for item file. 
o 3 I ~ 2 II-S 11'0' 
o 4 I ;2" 26 ~I~ ~I Clf 
o 5 IlS ~L IEre; ~:E rtJ2 lN cV" It. ~Iq ~~ Charge records. 
o 6 I Cf<. tz>~ 1 C~ 2 ~~ I~~ Cash records. 
o 7 I r lL ~~ [7 'l 
o B I 12 ~~ eA IIfj 
o 9 I lL ~II ITN IIt1 ~1 i"'-r-_ Match field 
1 0 I r/l£l ,., Nr.Jfv 11J1,2 V assigned for 
11 I ~~ liT NUM ~'l III I " 

both record 
1 2 I types of sales 

1 3 I file. 

1 4 I 

1 5 T I I I I I I I I I 

"""\\ 
) Figure 6-21. Describing Record Types and Assigning Match Fields for Two Files 

Match Fields And Multifile Processing 6-27 



1/* 

Match Field 
(shaded) 

/ 
I 

I S 20964 !inli 008 

013 

039 

so 
WS 

SO 

_'-CS ?~?: 295 NO 

I S 23746!iull 076 MN 

/ S30896 iU'i!! 038 WS 

l csltti~ 049 MN 

7 JULY 1969 

Category records with 
no match fields 
assigned 

/* 
1945 

SMALL APPLIANCES 

0174 
:-~~~-----~=::::aI_r++-I..L.. Unmatched 

0268 Record 

LAWN GARDEN EQUIPMENT 

AUTOMOTIVE SUPPLIES 

ITEM records 
. (primary file) 

0485 

0093 

Figure 6-22. Files Containing Records Without Match Fields 

6-28 

Unmatched 
Record 

SALES records 
(secondary file) 

043 MN 

5 

1-

1-

1-

1-

1-

1-

1-

1- . 



Processing Records Which Do Not Have Match Fields 

Up to now, all records in a file have been assigned match 
) fields to be used in matching records from ·one file with 

those in the other file. Some files, however, may contain 
some records which are not to be matched; thus, such rec
ord types would not contain match fields. 

As you recall, the ITEM file was organized in ascending se
quence according to item number. Item numbers are as
signed such that items can be grouped according to a gen- . 
eral category. Allitems assigned numb~rs from 100-199 
are automotive supplies, those from 200-299 are lawn and 
garden equipment, 300-399 are small household appliances, 
and so on. In addition to the ITEM records for each item, 
then, the ITEM master file contains a record preceding each 
group, identifying the general category to which the items 
belong (Figure 6-22). These category records are distin
guished by an * in position 1. 

The SALES file also contains a record type which does not 
have a match field. In addition to the two types of sales 
records, one for cash sales and one for charge sales, there is 
a DATE record at the beginning of the SALES file, identi
fied by 5 in position 96 (see Figure 6-22) .. 

The two record types in the ITEM master file and the three 
record types in the SALES file would be described asshown 
in Figure 6-23. On the basis of the record id~ntifying codes, 
one of the record identifying indicators which are assigned 
to the record types (positions 19-20) will turn on to indicate 
which record type was read. 

Notice tha~ the input specifications (Figure 6-23) assign a 
match field to only some of the record types present in the 
two files. The category records from the ITEM file and the 
date record from the SALES file are not to be matched 
with records from the other file. 

Since match fields are used to determine the order in which 
records are processed, when will the category and date rec
ords be processed? Records for which no match fields are 
specified are processed immediately as they are read. To 
understand the order of processing and when the MR indi
cator is on, then, let's discuss how RPG II logic operates 
during the program cycles for this program. 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050' 
Printedh, U.S.A. 

IBM Int,rn.tion,1 BUlin", Machine Corpor.tion i 
Program , I I I I Card Electro Number 

1 2 75 76 77 78 79 80 
Punching Graphic 

Page [00'_ ~~~~;~f~ation I I I I I I I Programmer Oat. , Instruction Punch 1 1 T 1 
) 

I a Record Identification Codes Field I 
.~ Field Location 

r-- ~ 1 2 3 g 6 
Indicat~rs 

II ~. a ~ 
J 

';.. 0 :9~ Lin. Filename Z 'S a ~ .;; Field Name 3 .!!"ii "C 

& :: 0 ~ II ~ 
4i J:. u.L,L j Zero 

~ l! ~ :;; Position 
Z c tl 

Position 
~e~ 

Position 

~~ ~~~ 
From· To 

~ "0 .~g> Plus Min'j' or 

~ §.~ g i§~ ; t :: ! -£ :~ il Blank - f-- ~fJ6 ~ u O~~ 
.~ 

~6 / 2-~o Z 0 '" c u:: 
. A 

rh 68 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45· 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 ~3 64 65 66 69 70 71 72 73 74 

I 0 1 II TlE.rtt l4A rJ.ll 1 ~I I I 
o 2 I 2 4'0 'Nu\N Ml I ~I'lte~ records 
o 3 I ~ ~(1) Inl'"'l""i II«I- Ill' with match fields. 
o 4 I 12': I,... 1",-'''r ~I£ , I ~~ ~ \ 

o 5 I lAE (2;2 1 f1~ ( Category:records. ~-f-f-
o 6 I ~ l25 ~A IT6 RY ~ 
o 7 II~ AL IE~~ 1fJ.. ,. ~'~ liN r. n 2- C~ I 

\ 
o 8 I ,.,~ ~q. ~ f"4f"1 l2 CI~ , Cash and 

o 9 I lL~ IJ. row , '( charge 

1 0 I ~1 ~, 'L.iJ 
sales records 

~R II N > with match 
11 I 1~ )..7 (1jI ITN (;(\1 Mil 
1 2 ":iii 7rtiA f'HJf'.1 

fields. 
I Qj3 l 

1 3 I ":iii 5(2 IiI NUM (\1L 2l)l 1 I 
1 4 I ~I' ~I=\ q{-j DJ:; I: I 
1 5 I e J~ Me rv 1 ttl >' Date record. 
1 6 I L'~ 1. '" ,.. .... I IUr Mf'\. 

I 

) Figure 6-23. Describing Records With and Without Match Fields Assigned 

Match Fields An.d Multifile Processing 6-29 



At the beginning of the first program cycle, the first record 
is read from each file. RPG II then decides i't match fields 
are specified for both records. Asmentioned, a record for 
which no match fields are assigned is automatically 'selected 
for processing before the record in the other fil~. 

In this case, neither record in the read area has match fields. 
Therefore, which should be processed? Without match 
fields, the two records cannot be compared 'to see which is 
lower in sequence. When both records do not have match 
fields, the record from the primary file has priority and, 
thus, is selected for processing. 

Since match fields are not assigned to this record typeithere 
can be no matching record in the other file. Therefore, im
mediately before a record without m'atch fields is process'ed, 
the MR indicator is turned off. 

For the next program cycle, the ITEM ,record for item 101 
is read to replace the category record processed. The date 
record from the secondary file is still in the read area. Since 
the secondary file record has no match fields, no comparison 
is made, and the date record is automatically processed. 
Once again, the MR indicator is turned off right before proc
essing a record without match fields. 

The remaining records would be processed in the order 
shown in Figure 6-24. When records with match fields are 
in the read area, the record with the lowest match field is 
selected for processing. If both match fields are the same, 
the record from the primary file is always selected. Of 
course, if one of the records has no match field, it is proc
essed immediately after the record it follows, regardless of 
which file it is in. As shown in Figure 6-24, there are match
ing SALES file records for the ITEM file record with a 
match, field value of 286. Since a record without match 
fields (the category record for SMALL APPLIANCES) fol
lows this ITEM record in the primary file, the record with
out match fields is processed before the SALES records 
which match ITEM record 286. You should be aware that 
this processing order may be undesirabte in your program. 

6-30, 

MATCHING RECORDS: WHEN ALL RECORDS IN ONE 
FILE HAVE BEEN PROCESSED 

When you are using two' or more input-type data files in a 
program, end of file is always reached in one file before all 
the cards in the other file have been processed. This is be
cause the matching record function can only select one card 
at a time for processing. Furthermore, each file often con
tains a different number of records. 

Usually, in multifile processing~ you want the program to 
contin ue until all records from all files have been processed. 
RPG " logic will do this. The last record indicator (LR) is 
not turned on until the last record in the last file is read. 

Let's go over the last few program cycles in the example 
last presented. At a particular point in the program, there 
will be two records left in the primary file (item 321 and a /* 
record) and three records in the secondary file which have 
not been processed (two for item 321 and a /* record). 

At the beginning of a program cycle, the ITEM record for' 
321 'and the first SALES record foritem 321 would be'in' 
the read area. Since both match fields are the same, the 
primary file record is processed, \lIiith the'MR indicator 
turned on before processing. 

The next primary file record, an end of file (/*) record, is ' 
then read. In a single file program, reading a /* rec~rd tells / 
the program there are no more data records to process. The \" 
last record (LR) indicator is then turned on causing total 
time operations to be performed, and thEm the program 
ends. 

In multifile processing, however, reading a /* record from 
one file does not necessarily mean that all records from all 
files have been processed. Thus, the program must deter- ; 
mine if ehd of file has previously been reached in'the other 
file(s). In thiscase,the SALES file still contains three un
processed records. Therefore, reading the /* rec'ord from, 
the primary file merely indicates that there are no more 
records from that' file to process. The. remaining data rec
ords in the SALES f!'e are processed, one at a time, in the 
order in which they are read. 

When ~he end of file record from the secondary file is read, 
the program determines if end of file has been reached in 
the other file. ,Since it has, the LR indicator,is'then turned 
on. ,In this program, there are not total calculations ortotal 
output to be pe~formed; thus, the program is ended. 



\ 

S' 20964 321 008 ' so 

321 013 " WS 

No Match Field 
Assigned 

239 

321' ~-------- 1945 

5 14690 :~r~~:#.~~~:~~~ 039 so 

CS ~:~~:r~§.~~{, 295 : NO 

SMA~L APPLIANCES 

286 0174' 

239 076 

0268 
No Match Field 
Assigned ---- * LAWN GARDEN EQUIPMENT 

124 -~--..;--- 0485 

117 038 WS 

117 049 MN 

117 0093 

157 SO 

10358 101 , 062 ' SO 

101 043 MN 

0165 

1969 5 P 

5 

5 

Records With No /; 
Match Fields --------------

5 * AUTOMOTIVE SUPPLIES 

5 

5 

5 

,-.......;.- Secondary File Record 
P 

P Primary File Record 

Figure 6-24. Processing Order of Records with No Match Fields 

Match Fields And Multifile Processing ,6-31 



In other multifile programs, you may want the program ended 
when.a cer.tain file has been completely processed, although 
there are records left in anotherfile. As you know, by enter
ing an E in column 17 of the File Description sheet you can 
specify which file is to end the program. For example, say 
the rrEM and SALES files contain the records shown in . 
Figure 6-25. Since both files are in ascending sequence, once 
all SALES records have been processed, there wouldn't be 
much point in processing the remaining ITEM master rec-
ords for which no sales were made. Thus, an E (end of file) 
entry could be specified for the SALES file. 

You should be aware, however, that in a matching records 
program, specifying the end of file entry for a particular file 
will not always cause processing to end immediately when the/ 
last record of that file is processed. If the file which has not 
been completely processed contains records which match 
the last record processed from the completed file, the matc~
ing records will be processed before the program is ended. 
Furthermore, processing will continue for any records with
out match fields, until the next record with a match field i~ 
read. 

File Description Specification 

F : File Type Mode of Processing File AdditionlUnordenld 

File Designation length of Key Field or . Extent Exit Number of Tracks 
f.....- of Record Add .... Field ~ for DAM for Cylinder Overflow 

End of File Z Name of Record Add .... Type Symbolic Us Number of Extents 
Sequence Label Exit Filename Type of File .... Device Device -:8 T_ 

File Format Organization iii !I Core Index ~ Une or Additional Are. ~ 
Q Condition 

elt: -e Overflow Indicator 

l Block ~ -§ U1-~ ~a: o~ 
Record 

~ ~ Key ~ield i Continuation Unes 

~~ 
length length ~ 

~ :l ~ 0 Startlng)( ::l ~ ,f ::: ... w< ... ::: Location W K Option Entry < 
3 4 & 8 7 8 9 10" 12 13 14 15 18 17 IS 19 20 21 22 :z:: 24 25 25 27 282930 31 32 3334 3& 38 37 38 39 40 41 42 43 44 45 48 47 48 49 50 61 52 53 54 55 68 57 68 69 80 61 62 63 64 65 66 67 6869 707172 7374 

o 2 Fir 7'f~ lIP 
o 3 F5 AL ~~ ll'S 
o 4 F 

o 5 F 

ITEM file 

Af" 96 
f~lf 96 

MIF 
MJ: 

Records would not 
be processed 

cull 
I'I)~ 

Figure 6-25. Specifying When Processing is to Stop in a Matching Records Program 

6-32 ' 

SALES file 



) 

\, 

) 

) 

Assume the secondary SALES file contains the records 
shown in Figure 6-26. Following each group of sales rec
ords for a particular item is a record which gives the total 
sales for that item. The total records do not have match 
fields and thus are selected for processing as soon as they 
are read. 

An end of file entry is assigned to the primary ITEM file. 
Since both files are in the same sequence, once all ITEM 
master records are processed, any sales records which still 
remain in the SALES file must be either records which 
match the last primary record processed, records for which 
there is no valid item number, or total records which are not 
to be matched. 

Page of GC21·7567-2 
Issued 21 December 1979 
By TNL: GN21-5709 

When the /* record in the primary file is read, the program 
checks the other file. The two SALES records for item 321 
match the last primary file ITEM record processed. Thus, 
they are automatically processed. The next record in the 
SALES file, a total record without match fields, will cause 
the LR indicator to be turned on, and the program will 
end. However, if an end of file entry was not assigned to 
the primary ITEM file, or if the end of file entry was assigned 
to the secondary SALES file, all records in the SALES 
file will be read and processed. 

/ /* 

I TOTAL -
t 468 

/468 

) 

I 
} 

Not 
Processed 

L TOTAL ----- -, 
f ( 321 

Records Processed 
d-of-File 
in ITEM 

After En 

-j 
Reached 

(321 
-f-

File 

L TOTAL J 
(239 

1-

(239 
I-

L 321 

(239 

l117 

f TOTAL -
[117 -
~ TOTAL 

1-

/101 -
101 101 

1- I-

I-
1-

1-

- -
- -

ITEM File 

Figure 6-26. Processing a Matching Records Job After End of File 

Match Fields And Multifile Processing 6-33 



USE OF MATCH FIELDS AND CONTROL FIELDS IN 
THE SAME FILE 

In the previous example, the ITEM and SALES files were 
matched according to an item number field so that individ
ual sales could be printed under the item description. Sup
pose you also wish to have the sales for each item totaled 
and printed, as shown in Figure 6-27. 

To perform total operations on a group of records, itis 
necessary that control fields be assigned to distinguish one 
group from the next. For this program, the same item num
ber field used for matching the records would be specified as 
a control field on the Input sheet (Figure 6-28). Although 
your files may contain both match fields and control fields, 
there is no relationship between the two functions per
formed. Even if the same fields on a record are used as both 
match and control fields, the only similarity is that the same 
data will be used in performing each function. 

ITEM DESCRIPTION 

101 

117 

239 

QUANTITY LOCATION 

43 MN 
62 SD 

157 SD 

262 TOTAL 

49 MN 
38 WS 
67 MN 

154 TOTAL 

MN Match fields are checked first to determine from which file 
the next record is to be processed (see Figure 6-29). In ef
fect, the matching record function is creating one file for 
processing by merging the data from two files. (Of course, 
after processing, the two files are automatically separated 
again into the appropriate stackers.) Figure 6-27. Printing Totals for Matching Records 

In addition, comparison of the match fields determines 
whether the M R indicator will be turned on or off for proc
essing of the selected record. As discussed previously, the 
MR indicator is to be on for processing of a primary file 

RPG INPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

GX21-9094 U/M 050' 
Printed in U.S.A. 

1 2 75 76 77 78 79 80 

Page CD of _ ~Z~;~f:ation I I I I I I I 

I j Field Field Location 
Indicators 

f--- 1 

Line Filename 

iii If" d 
j Field Name 

In If 
Position 

il§ I Position II Position ~~ I~ From To Plus Minu, I~~ro 

"0 ~- Ii § 1 I Blank 

~ ~ I~ 

3 4 516 
A INO 

1718 11920 21 22 23 24 25 126 13233 134 35 36 37 38 

:I:I~~OO'. 
7 8 9 10 " 12 13 14 115 16 27 28 29 30 31 44 45 46 47 48 49 50 51 1656667 68,69 70 71 72 73 74 

1011 IJ.I riEI/Y, ~4 rtl lL K!l I I 
i
O 12 II 2 1J ~ Item number 

101 3 II 6 2.~ ~ fields used as 

1
0

1
4 II 23 It-i;CIS I both match 

~V""" fields and 
1015 II~ All IF~ ~~ (22 1 ~,~ II 

10
1
6 II -.. a ~I[ 17N ~. 

control fields. 

1
0

1
7 II >< 1'¢ ~~ ITY 

10 18 II 11- L'6 , (jC AITN1 ~ 

10 19 II I I 
I I I I I I 

Figure 6-28. Assigning the Same Field as a Match Field and as a Control Field 

6-34 

/ 

'. ", 

! 

I ., 



I 

~ 
Detail-Time 
Operations 
Performed 

• 

• 

• 
• 

Turn off record 
identifying indicator 
and control level 
indicators 

Detail output for 
selected record 

Detail calculations 
for selected record 

• 

• 

MR set on or off 
for selected record 

• 
• 

Figure 6-29. RPG II Logic of Obtaining Totals for Matching Records 

record only if there is a matching record in the secondary 
file. Likewise, if a secondary file record is selected, MR is 

• 

to be on for its processing only if a matching record from 
the primary file has already been processed. If an unmatched 
record is selected, MR is set off, of course. At this point, 
however, the matching record function only determines how 
the MR indicator is to be set; the status of MR is not actual-

~', Iy changed yet. 

START 

• 
Read another • 
record 

Select record to 
process in this cycle 
and turn on record 
identifying indicator 

for selected record 

Is Control Field on 
selected record different? 
If same, go to process 
selected record 
I f different, turn on 
control level indicator 

If control level indicator on, 
do total calculations and 
output for previous control 
group 

Performed 

• 

• 

• 

Control 
Level 
Function 

Once the matching record function has selected the next 
record to be processed, the control level function then con
siders the records as one file in determining if a control 
break has occurred. This check is made before the selected 
record is processed and, thus, before the M R indicator is 
set for the record just selected (see Figure 6-29). The con- ' 
trol field (item number) on the selected record is checked 
to see if it is different from that on the previously proc
essed record. If it is the same, no totals are to be printed; 

Match Fields And Multifile Processing ?-35 



so the MR indicator is set, the QTY accumulated into 
TOTAL, and the individual record is printed. However, if 
the item number is different from that on the previously 
processed record, this means that all individual sales for 
the last item number have been printed. The change in the 
control field causes a control level indicator (L 1 was as~ 
signed) to be turned on. Any total calculations and total 
output (operations conditioned by the control level indica
tor) are then performed for the previous c,ontrol group. In 
this case, the total of all sales for the previous item are 
printed. 

When total operations are performed, the selected record 
has not been processed yet. Therefore, during total time, 
MR is still set for the previously processed record. Once 
total operations are completed, M R is then set for the 
selected record (the first record in the next control group) 
so it can be processed. 

6-36 

Whenever a control field changes (control break), a control 
level indicator is automatically turned on. Furthermore, 
whenever a control level indicator is on, total operations 
will be performed. In a matching records program, however, 
there may be times when a control break occurs and you 
don't want total operations to be done. Thus, you must 
specify that total operations are to be performed only under 
certain conditions. 

For this program, sales are to be added and the total printed 
only if there is an ITEM master record with matching SALES 
records for that item. I n such a case, M R would have been: 
set on for the last SALES record of the group. MR would 
still be on, then, when the control break occurs. Thus, detail 
operations to accumulate sales should be performed when
ever M R is on and the total operations to print the TOTAL 
should be conditioned to be performed only with L 1 and 
MR on (Figure 6-30). 

r-" 
/ 
I 

',-



) 

RPG CALCULATION SPECIFICATIONS 
IBM International Business Mad"lIne Corporation 

Program 

Programmer Date 

RPG OUTPUT SPECIFICATIONS 
IBM International Business Machine ~'lrpor.lion 

Program 

Programmer Date 

0 I~I~ ISpace Skip Output Indicators 
Commas 

I-- If I 
v 

l~ 
AL 1 

Field Name 
Ves I;; 

Ijl~ l\ill Ves 
Line Filename 1!li No 

f I~II 
Positon No 

1010 
in 

~ IA ~ ~ ~ 
Output 

10lR "AUTO Record ~ 

Zero Balances 
to Print 

Ves 
No 
Ves 
No 

1 2 

Page OJ 0'_ 

Page of GC21-7567-2 
Issued 21 December 1979 
By TNL: GN21-5709 

Form GX21-9093 
Printed in U,S,A. 

75 76 77 78 79 80 

~~~;~':ation I I I I I I I 

GX21·9090 UlM 050"
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page OJ of _ :~;:;:ation 1 I. 1 I I I I

No Sign CR X = Remove
Plus Sign

1 A J V = Date

2 B K Field Edit

3 C L Z = Zero

4 0 M Suppress

Constant or Edit Word

IAINIO
3 4 5 6 7 8 9 to 11 12 20 21 '32 33 :l!:J5 36 37 138 !39 140 41 42 43 441454647~4950515253~55565758~6061626364656667~W70 71 7273 74

all IL vlKI7 ~ 1~(/)6 lP
1012 0 ~~;G ~!F
10 13 0 '127 I'I IT'f'M ,.;.., J<il IHT lIn Nil

10 14 0 !~~ .,... It A NIT TY l.X CA !TII~ "

10 i 5 10
.,..,

r\1iR rtfL I.J

1016 0 r-J M ~
10 17 0 .:""I 1"<11- ~Il
lois 0 I.J M1< t2l~
10

1
9 0

!!I
GITY tl! '1+14

10 0 i}...c 1'11.£1 TN ~!a
111 0 !:fn 1213 ~lLl
1 12 0 1/ I ~L.. ~ 'fT:LJ

11 13 0 5/.1 liT ~T ~IL '
1 14 0

Figure 6-30. Controlling Performance of Total Operations in a Matching Records Program

Match Fields And Multifile Processing 6-37

Since there can be unmatched records in either file, you can

have an ITEM record with no matching SALES records or
invalid SALES records for which there are no matching ITEM
master (see Figure 6-31). Although a control break would
occur following the processing of the unmatched records,
you don't want total operations to be performed. The MR

indicator would be off for the unmatched records. There

fore, if you condition total time output specifications with
L 1 and MR on, total time would be bypassed for such cases.

DETERMINING WHETHER FILES SHOULD BE
PR IMARY OR SECONDARY

A basic question arises in any multifile processing application:

Which file should be designated the primary file and which

is to be the secondary file? Since almost all multifile pro
grams involve the use of match fields to determine processing
order, an understanding of matching record logic is generally

essential for determining which file should be the primary

file.

Since files vary among applications, we can't state absolutely
that a certain file is always to be primary or secondary.

However, now that you understand the basic matching rec
ords concepts, the following points may help you to make

the best file designation.

If the match fields on records from two or more files are
compared and found to be the same, the primary file rec

ord is always selected. Furthermore, the primary file would
be given priority if none of the available records contained
match fields. In general, then, if all match conditions are

the same, the primary file record is the first processed.

With this idea in mind, we can say that if data from file A

must be available to the program before file B can be proc
essed, the file containing the necessary data (A) should be
designated as the primary file. For example, say you have

two files to process to do a customer billing application. The

customers' names and addresses are recorded in one file while

6-38

the customers' transactions are in another file. A name and

address is to be printed on a bill before a customer's charges

and credits. The name and address record must be available
for output and, thus, must be processed before the related
transaction cards. In this case, the name and address file
should be specified as the primary file.

Let's consider another case in which one file is to be used
only as input while the other "file is to be used for both in
put and output. I n other words, the program requires one

input file to be read and one combined or update file to be

both read and written or punched. Usually, information

from the input file would be necessary to calculate the data

to be output to the combined or update file. Or, perhaps
the actual input file data is to be output to the combined or

update file. Either way, the combined or update file should

be specified as the secondary file, so the data from the pri

mary input file is available before the output is done.

I n general, the type of data which must be available before

processing another file is permanent record information,

such as would be found in a master file. For instance, an

employee's hourly wage from a master file is necessary be
fore the computer can use the number of hours worked
from an employee detail file to calculate net pay. There

fore, a master file is often the primary file, while a detail

or transaction file is the secondary file. Of course, this is

only a guideline and should not be considered the rule for
all situations.

As a final point, if the first record in one of the files must
be the first record processed in the program, you must make

sure that this record would be selected. To do this, first
decide which file you think should be primary and which
secondary, according to the suggestions presented. Then,
determine which record would be selected first in the pro

gram by the RPG II logic of matching records. If the record
which would be selected is not the record which must be
processed first, the primary and secondary file designation

should be switched.

(

) ~
"-----------==l--- LR turned on. MR on from previous record

. s'.* 156 so total operations done for previous control group.
(SALES for 156 totaled and printed) Job is then
ended.

25

MR turned on

S 156 14

MR turned ali

MR turned on

S 124 36

MR turned on

S 101 08

MR turned on

S 101 23

MR turned on

MR turned on

SALES File

(Secondary File)

101

ITEM File

(Primary File)

L 1 turned on. M R on from previous
record so SALES for 124 are totaled
and printed. MR then set off for
this unmatched record.

L 1 turned on. MR off from previous
record so total operations skipped. Then
MR turned on for this matching record.

L1 turned on. MR still on for
previous record so SALES for 101
are totaled and printed. MR then
set off for this unmatched record.

L 1 turned on automatically for
first record. Total operations are
skipped in first program cycle,
however. MR then set on for

. this matching record.

Figure 6-31. Use of MR Indicator to Determine Whether Total Operations are to be Performed

Match Fields And Multifile Processing 6-39

,/

6-40

)

)

1. What are match fields used for when assigned to a single file?

2. If a record type has two match fields, which match field is assigned M 1 and which is
assigned M2?

3. Referring to the following I nput sheet, indicate the errors in assigning match fields
and the reasons the specifications are in error.

RPG INPUT SPECIFICATIONS

Review 6

GX21·9094 U/M 050·
Printed in U.S.A.

IBM InternatiOnal Business Machine Corporation

I' 2 . 75 76 77 78 79 80

Page [DOf_ ~~~~~~f~ation I I I I I I I Program

Programmer Date

I B Record Identification Codes Field
:3 Field Location

Indicators
~ 1 2 3 c -

~
0

a
. .,

!l c. ~ ';... 0 :E~ Line Filename 1 Z)6 il ';;; Field Name] .~ Qi] ! ~§ I;~
~ u..u::: Zero

Jl Position t Position t Position From To
f:~

Plus Minus or

f! i ~~~ ~e~ ~~ ~ 0

~
~ " Blank

r--r- ~f)c5
.~

8 ~6 Q;

o R zoo: ~ U 6 ~ u Oene: 0 u::
'AN"'D

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 08 69 70 71 72 73 74

0 1 IlC ~rp Lh
o 2 I

0 3 I

o 4 I

o 5 I

o 6 I

o 7 I

o 8 I

o 9 I

1 0 I

11 I
. ~ -

r=' Ir I1ln (ZjlL ~~ ~S IT I- ,...!11

1 .-,: 1 ... 1, ,,...
M ML

~ 'IL '; fYlM

lL(zJ lL2 ~IErF Mr2
lLl5 lL6 lD~ leT Mt~

':"8 ~~ 911 ",.., v
lL ~ ![)IE, M2
~

,..;,..
'lJM 1(\11 t/J{;.'''I

1Lil J.. ,?'r'/\ ,()v

~~ ~1 r~ 17 RI(.;,J

4. Must match fields be assigned to all record types in .i3 file?

5. Given the following data about a file named EMPLOYEE, code the input specifica
tions which describe the record types in an OR relationship:

6.

Record type 01 identified by the character A in position 96.
Record type 02 identified by the character B in position 96.

Field Name

NAME
DEPT
CODE
ADORES
EMPNUM (match field)

Record Positions

5-15
1-4
8-9

16-30
42-45

Record Type

record type 02 only
both record types
record type 01 only
record type 02 only
both record types

What are match fields used for when assigned to multiple input, update, or combined
files?

Review 6 6-41

Refer to the following program cycles to answer questions 7 and 8:

~I· • . ~ • •
Detail Calculatio'ns
and Output Record 1 selected

•

Detail Calculations
and Output Record 2 selected

•

J \ J
•

•
Total Calculations
and Output

• •
PROGRAMCYCLE 1

Total Calculations • and Output
• • •

PROGRAM CYCLE 2

7. When is the MR indicator set on and off for the first record selected for processing?

8. ' When is the record identifying in,dicator for record 1 set on and off?

9. Define an unmatched record.

10. If a primary file record is selected for processing, what condition must be met for the
MR indicator to be set on for that record?

11. If .a secondary file record is selected for processing, what condition must be met for
the MR indicator to be set on for that record?

12. Assume an ITEM file read from the MFCU or MFCM contains two record types. Which
specification line on the following Output sheet is correct in order to stacker select
unmatched records of record type 01 into stacker3? What are the other two stacker
selection specifications incorrect?

RPG OUTPUT SPECIFICATIONS GX21·9090 U1M 050'
Printed in U.S.A.

IBM International Business Machine Corporation
1 2 75 76 17 78 79 80

Page [Do,_ ~~~~~':ation 1 I. 1 1 1 1 1
Program

Programmer Date

0 ~ Space Skip Output Indicators Commas Zero Balances No Sign CR - X • Remove
i----- E~ (i:! v to Print Plus Sign

Jd 1
Field Name

Ves Ves I A J V • Date
0 I Ves No 2 B K Field Edit,

~ ~
line Filename ~ ;

~~
End No Ves 3 C L Z • Zero

8.15 Positon No No 4 0 M Suppress

! ~~

j
!l in

~ j
A~D ~ 0 ~ 0

;3 Output Constant or Edit Word

r;;~~
z z 'AUTO

~
Record

0::

3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 43 «~~O~~~~~~~~~D~WOOM~~~~~D~~m 71 72 73 74

0 I 01 IT~j\- 1"'1 ~MR
o 2 0*
o 3 01 ITlE" ~ rtl N'ft1I~
o 4 O~
0 6 OI ITEf'J t'l NM'R. rill!
0 6 0

6-42

,/

)

13. An item number field is assigned as a match field for processing the two files shown.
Identify the matching records (records for which MR is on), the unmatched records,
and the records with no match field assigned.

* DATE 05 69 HAUS ST 051309

JA

Item
Number

Item
Number

Primary File Secondary File

14. Referring to the files shown in question 13, specify the order in which the records
would be processed.

15. What does an E in column 17 of the File Description sheet indicate? What does an
A or D in column 18 indicate?

16. Whatd6 the following input specifications cause to happen?

RPG 'INPUT SPECIFICATIONS GX21-9094 U/M 050'
Printed in U.S.A.

IBM International Business Machine Corpolltion
1 2 75 76 77 7B 79 BO

Page []]Of_ :~;:f:gtion I I I I I I I Program

Programmer Date

I 9 _ Record Identification Codes
Field Location Field

B Indicators - ~ 1 2 3

~ -g
~

8'. .~
l5 ~ ~.~ :E.g

Line Filename
j ~ i! -ti Field Name] &i:~] ~ ~ t t !! ~ ~ ~ Zero

Position Position Position From To _~8' Plus Minus or t- 11 "E Z 0 tl ~~~ ~o ~ 1 i~ Blank E ~~g "0
r--r-§ ~ i § ~ .wSll ~ § II If .f o R Z ciio: 0

~N'o
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5960 61 62 6364 656j1 6768 69 70 71 72 73 74

0 1 I~ ~I Ie: M~IlIA AA ~I'i 96 (Y~
,

0 2 I 1 5 ~IE ~r ~N Ll Mil
0 3 Ie O~M PA (/i6 "j6 t"'_~

o 4 I
-. 815 sq 'KIt!:. NL '1 MJ.

o 5 I
ft " .

Review 6 6-43

6-44

Review Problem

The data processing department is to prepare a weekly labor distribution report show,ing
the total number of hours worked by each employee, as well as the total number of hours
worked by all employees within a department. Therefore, the report must be organized
by department number and by man number within a department.

Two input files are,necessary to provide data for the report:
a. PMSTE R is a master payroll file containing three types of records:

• Date record:- first record in file.

• Department name records.

• Employee master records.

The employee records are in ascending sequence by department'number and by man
number within a department. A department name record appears within the file immedi
ately before the group of employee records for that particular department.

b. LABOR is a file of daily records containing the number of hours an employee worked.
Since each employee's daily hours are recorded on a separate record, there will be more
than one LABOR record for each employee.

The LABOR file is also in ascending sequence by department number and by man num
ber within a department.

PMSTER File - 3 Record Types

Date Record Layout

Department Name Record Layout

1.0.

CODE

DPTNME

FI RSTI SECNDI

Department Name Manager's Name

Employee Master Record·Layout

1.0. DEPT MANNO

/
Man

Number

NAME

Employee Name

RATE

Hourly

Rate (2 decimal

positions)

LABOR File - 1 Record Type

MANNO HRSWKD

Hours

Worked

In processing the two files, there should be an employee master record related to all LABOR
records. In fact, more than one LABOR record will match the same employee master record
from the PMSTER file. However, it is possible that the LABOR file contains the following
unmatched records:

• Records with errors in match fields .

• Records for new employees for whom employee master records have not yet been
created.

If you read the LABOR file from the MFCU or MFCM, unmatched LABOR records should
be stacker selected into stacker 3. Processing should end when the last record from the
LABOR file has been processed.

For this program, see if you can code the following:

1. File description specifications (read the files from MFCU, MFCM, or DISK).

2. I nput specifications.

3. Output-format specifications necessary to stacker select unmatched LABOR cards
using the MFCU or MFCM.

Review 6 6-45

Answers To Review 6

1. Match fields are used to sequence check cards within a file.

2. The higher entry, M2, is assigned to the more important field.

3. Reasons for specification errors:

Line 07 -. Match fields of the same level must be the same length. Also, fields
having the same name must be the same length, regardless if they are
assigned as match fields or not.

Line 08 - Match fields of the same level must be in the same format (alphameric
or numeric) if the fields have the same name. Also, fields with the
same name. must be in the same format (alphameric or numeric), re
gardless if they are assigned as match fields or not.

Line 10 - Every record type assigned match fields must contain the same number
of match fields.

4. No. Remember that record types without match fields are selected before record
types with match fields.

5. All fields which are common to all record types must be described first. All fields re
lated to' a particular record type are ,then described together as a group. Following
the common fields, fields related to' either record type 01 Dr thO.se related to record
type 02 may be described next, as follows:

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050·
Prinled in U.S.A.

IBM International Business Machine Corporation

Program

Programmer Date

I Record Identification Codes

-

Position Position
~ t;

~§ l ~ ~ ~ ~ e
0 ~ g z U <'3 zu z u

:_i"5
Position

Filename Line

Field Location

0

~
.;;;
0

'1 a: From To "-

~ ...J

a CIl ~ ii:

1 2 75 76 77 78 79 80

Page OJ 01 _ ~Z~;~I:ation I I I I I I I

~ 0

~-o Field Name] .~ "ii
u..~

.s~ e -5 :5
~ ~~

:;;u

c:
0 . .,
~
"0

j
"0
0;
u:

Field
Indicators

Zero
Plus Minus or

Blank

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 IIF~P L hly F fAA (ljl qb rlA.)
o 2 I hI? 12l'2, 9h rls II
o 3 I II I~ ,,~ PiT
o 4 I 4'2 '-115 EM PN J'M ;~-.L

o 5 I S 1'-1 11- ~ll
o 6 I 5 lit; N.ll j'4f~ ~12
o 7 I 11.Ib 3~

... I~
I~fc\ rz~ A 11'\

o B I

6-46

/

)

)

6.

7.

8.

Match fields are used for two purposes:
a. Sequence checking the cards in each file

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

b. Matching reco~~s between the two files to determine the order of processing

M R set on between total time and detail time operations during program cycle 1.
MR set off between total time and detail time operations during program cycle 2.

Record identifying indicator set on immediately after record is selected during pro
gram cycle 1.
Record identifying indicator set off following detail time operations during program
cycle 1.

9. An unmatched record is a record in either input file which does not have a matching
record (same match field) in the other input file.

10. There must be a record in the secondary file with the same match field(s) as the
record in the primary file.

11. The match field(s) on the secondary file record must be the same as the match field(s)
on the last primary file record processed.

12. Line.03 is a correct specification for stacker selection of unmatched records.
Line 01 is incorrect because there is no record identifying indicator specifying the
type of record to be stacker selected.
Line 05 is incorrect because stacker selection of a record on the basis of a matching
or not matching record condition should be done at detail time, not at total time.

13. Matching records are records from both files containing item numbers 101, 107,
212, and 298.

The three unmatched records from the primary file contain item numbers 105, 105,
and 267. The one unmatched record in the secondary file contains item number 187.

The *OATE record from the primary file and the two name records from the secondary
file are records with no match fields assigned.

14. The records would be processed in the following order:

Item
Number

Primary File

06 69
14

13

12

10

Item
Number

ST 061309
16

15

11

JA 060689
8

Secondary File

Answers TG Review 6 647

Page of GC21·7567·2
Issued 21 December 1979
By TNL: GN21·5709

6·48

15. An E means the program should check that file for end of file. If end of file is
reached (a /* record read), usually processing of records is stopped. However, if
end of file is reached in a matching records program, the matching records and
records with no match fields from the other file are processed before the pro
gram is ended.

An A or 0 entry indicates that an input file is in ascending or descending sequence
according to the match field(s) on the records.

16. First, the REGION match fields are compared to determine if there is a matching
record condition and, thus, which record to process. Next, the contents of the
REGION field are checked on the record selected to determine if a control break
has occurred and, thus, if L 1 should be set on.

I

\

;'

'-,
\

./1

"""',
)

F
f---

Line

8-
~

~
3 4 5 6 7

o 2 Fp

o 3 F

o 4 FIt(

o 5 F

o 6 F

o 7 F

o a F

o 9 F

1 0 F

F

F

Filename

Solution to the Review Problem

1. File Description Specifications
a. MFCU or MFCM files:

File Description Specification

File Type

File Designation

End of File

Sequence

File Format

Record
Length

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
Organization

..J

W

or Additional Area -g
Overflow Indicator U

N r---- g
S ~ Key Field .~

~ g ~::~~~:n ~

Device
Symbolic
Device

K

Name of
Label Exit

Extent Exit
for DAM

Core Index

Continuation lines

Option Entry

File AdditionlUnordered

Numoor of Tracks
for Cylinder Overflow

Numoor of E"tents

Tape

~
Condition

Z Ul-'r!!!-

~
8 9 .0 " .2 .3 '4 '5 '6 17 '8 '9 20 2. 22 2 24 25 26 27 28 29 30 3. 32 33 34 35 36 37 38 39 404. 42 43 44 45 46 47 48 49 50 5' 52 53 54 55 56 57 58 59 60 6. 62 63 64 65 66 67 68 69 70 7. 72 73 74

~5 TlfR trp
IA~ "'IR ~S

r.fJ It(, ~

AF'
E~ F

r= O'RT t\JTEIR

J
If MFCM, change
record length to
80 and device names
to MFCM1 and MFCM2

U IL OL 69 119 L9 99 99 t9 t9 Z9 19 09 69 as L9 9S 95 t9 t9 Z9 15 os 6. In' Lt 9. 5. » t. Z. I. O. 6t Ilt Lt 9t 5t tt tt Zt It DC 6Z 9Z LZ 9Z 5. tZ tZ zz IZ OZ 61 81 LI 91 51 .1 tl ZI II 01 6 8 L 9 9 t t Z I

b. Disk files (sequential):

File Description Specification

F -
Filename

File Type

File Designation

End of File

Sequence

File Format

Mode of Processing File AdditionlUnordered

~:~!~: ~~~~I~::;d ~ ;;t~n~xit :~~n:;r~~loW
Record Address Type Symbolic ~ Name of Number of Extents

Type of File ..J Device Device 1i Label Exit Tape

Organization W .:J Rewind
or Additional Area -g Core Index ~ Line

C Overflow Indicator U Condition

~ t: ~ alock Record l>! ~ r---- § Ul-U8
~ ~ en Length Length :::: t Key Field .~ Continuation Lines ~ ~
a~ a~ ~ D..C Starting ~ K Entry::l ~a: ;:;: it W < II. ...J < :::: Location W Option <

8-
~
~
~

3 4 5 6 7 8 9 '0 " .2 .3 .4 '5 '6 17 '8 .9 20 2. 22 23 24 25 26 27 28 29 30 3' 32 33 34 35 36 37 38 39 404. 42 43 44 45 46 47 48 49 50 5' 52 53 54 55 56 57 58 59 60 6. 62 63 64 65 66 67 68 69 70 71 72 73 74

o 2 Irp l41= 12l,~ nlr Sk ttl I I
o 3 ["sfiAF
o 4 Ftc: t-t' KI F plr:n NTIEIR
o 5 F

o 6 F

o 7 F

o a F

o 9 F

1 0 F

F

F
U IL OL 69 119 L9 99 59 t9 t9 Z9 19 09 69 as L9 9S 59 t9 t9 Z5 15 os 6. In' Lt !It 5. » t. Zt It 0.6t Ilt Lt 9t 5t tt tt zt It DC 6Z 9Z a 9Z 5Z tZ tZ U IZ OZ 61 81 LI 91 51 tl tl ZI II 01 6 8 L 9 5 • t Z I

Answers To Review 6 6-49

2. I nput Specifications

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050'
Printed in U.S.A.

IBM International Businen Machine Corporation

Program

Programmer Dale

I ~ Record Identification Codes

] 1 2 3 i---

i
c.
~

Line Filename ~ ~ 0 8. l =6 ~ ~ Position ~ Position Position ij-;;- ~ e ~ g e ~ '0

~ § .~ j r-r-r- ~ ~ c5 ~~6 a R zo
f;:'Nfo

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38

a 1 III-' 11-11-< lAlA rll LL Ir~
a 2 I

a 3 I

a 4 I

a 5 I

a 6 I IAIA ~12 I, Ir~
a 7 I

a 8 I

a 9 I

1 a I

11 I I.-Ir ~i':l LL ~I,.,

1 2 I

1 3 1,*
1 4 I~
1 5 III 14~ 'r ~ ir r 0'1 II ,.
1 6 I

1 7 I

1 8 I

1 9 I

2 a I

3. Output Specifications

RPG OUTPUT
IBM Intern.tional Bu;:iness Machine Corporation

Program

Programmer Date

o ~ Space Skip Output Indicators

e~ Field Name !M]
Cl - 1 1 II -.,. ~ ~ ~ t

~ ~ ~ ~
I- '" ~

~

'A fofo ~ ! 0 0 0
;3

a R z z z 'AUTO :B I-;:;:~to

i---

Line Filename

!
E
.f

1 2 75 76 77 78 -79 80

Page [[jO!_ ~~~~;~!:alion 1 1 1 1 1 I 1

Field Field Location
c Indicators

~
0

~ 0

~ :~ j2-t;
Ii Field Name] .!!:!~] ~~e ~ u.u. Zero

From To f:f Plus Minus or - ~ 1 ~~ Blank

3~~ -2 '0

;,gu ~6
Q;

Cl u:

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 58 59 60 61 62 6364 6566 67 68 69 70 71 72 73 74

12 ILj~ IrlE IPIT It ~ IMI.2.
lS 1,.,1;... 1...1 .. I" II ~ I
~ I~b' NIll IMI~

l~lL
I_I ... I_I ... • '-If

1.:2 1212 I~IP 1-
liN II-

1213 121~ I~II IRlc; h'lr
12.14 121~ ~II=' IrlN l"'l1

12LI) ~I? IA~h'

12 1_1_1- I-
I'U. 1I'l1l1l-

12 4rz .. 1-111 1112 N2
I~ 1,-,1.-.1 . .- 1111 ft11

lLlL Ir I, I ... , ""I:' L In

It I" b ~1 1 ... - - \

u ."l If-

SPECIFICATIONS GX21·9090 U/M 050'
Printed in U.S.A.

Positon
in a:

~:~~~ g
Ii:

Commas

Ves
Yes
No
No

Zero Balances
to Print

Yes
No
Yes
No

1 2 75 76 77 78 79 80

Page [[jO!_ ~~~;~!:ation 1 I. I I I 1 I

No Sign CR

A
8
C
o

- X = Remove
Plus Sign

J Y = Date
K Field Edit
L Z = Zero
M Suppress

Constant or Edit Word

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2; 28 29 30 31 32 33 34 35 3637 38 39 4041 4243 44 45 46 4748 49 5051 52 53 54 55 56 57 58 59 6061 626364 656667 68 69 70 71 72 73 74

a 1 0 IAIA ~~ Irl~ INI~~ ~~
a 2 0

a 3 0

a 4 0

6-50

(
\,

J

---,
J

Chapter 7. Programmed Control of Input and Output

CHAPTER 7 DESCRIBES:

How to alter the order of processing input files using FORCE.

How to read one or more records per cycle from a demand file.

How to do repetitive or exception output during calculations.

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:

Multifile processing.

Look-ahead.

End-of-file condition.

*PLACE.

RPG II program logic (Chapter 1).

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE:

RPG II FORCE operation code.

Using FORCE with the look-ahead feature.

Using the RPG II READ operation code to process demand files.

RPG II EXCPT operation code.

Note: You can use the review questions contained in Review 7 at the end of this
chapter to test your comprehension of each topic in the chapter. Questions are
grouped according to the topic to which they apply. Answers follow the review
questions.

Programmed Control of Input and Output 7-1

INTRODUCTION

Normally, records are read, identified, selected for process
ing, and output according to the fixed logic of the R PG II
object program. Sometimes, however, you need to have
direct control over the input and output of your program.
RPG II provides several operation codes which give you this
control. By using the FORCE operation code in your own
calculation routine, you can override normal RPG II multi
file logic for selecting input records for processing. You
can also do certain kinds of input and output during calcu
lation time by using the READ and EXCPT operation codes.

Note: The CHAI N operation code also allows programmed
control of input and output operations. The CHAI N opera
tion is explained in IBM System/3 RPG 1/ Disk File Pro
cessing Programmer's Guide, GC21-7566.

ALTERING THE ORDER OF PROCESSING FI LES
(FORCE OPERATION)

RPG II uses two methods to determine the order in which
records are processed in a multifile program.

" If match fields are not specified for either file, all records
in the primary file are processed, followed by those in.
the secondary files in the order defined on the File De
scription sheets.

• When match fields are assigned, the RPG II logic of
matching records determines from which file the next
record is to be processed.

The order of processing determined by RPG II logic is ap
propriate for most of your multifile programs. However,
for certain programs, it may be necessary to have some of
the records in the two files processed in an order other than
that in which RPG " logic would select the records.

A record can be processed out of order only if you indicate
to the program that the file containing that record is to be
forced. To do this, you must code additional specifications
to override normal RPG II multifile logic.

7-2

Regardless of how your files are organized, the following
situations require that you alter the order of processing:

1.

2.

Match fields cannot be assigned to the files and you
wish to:
a. Alternate processing between two files.
b. Process a primary file record followed by a par

ticular number of secondary file records.
c. Process a secondary file record only when it

matches a primary file record. 'l

Match fields are assigned to both input files. You
wish to process one primary file record, followed by
matching secondary file records, then the rest of the
matching primary records.

To alter the order of processing, you must first determine
which file is to be processed-when and under which con
ditions. Once you know the order, the next step is to deter
mine, for a particular programming cycle, whether the RPG
II logic will select the appropriate record or if you must
force the processing of that record.

The first record to be processed in any program can only be
selected by RPG II logic in the usual way. Thereafter, to
alter the order of processing, you tell the program to force
a record from a file which would not ordinarily be processed
next. Once the forced record is processed, and providing an
other record is not forced, the RPG II logic selects the next
record in the usual way. This is the record which would
have ordinarily been processed if the other file had not been
forced .

Specifying the Next File to Process

To process a record out of its normal sequence, you specify
on the Calculation sheet the FORCE operation code and
the name of the file which is to be forced in the next pro
gram cycle (Figure 7-1).

/

)

)

Assuming a record type 01 from the primary file is being
processed, the calculation on line 01 is performed. The next
detail-time calculation specification for record type 01 indi
cates that the secondary file (SECOND) is to be forced. The
FORCE does not occur immediately, however. This speci
fication only tells the program to remember that a record
from the file SECOND is to be processed next. Anyaddi
tional calculations and/or output for the record being proc
essed are performed first to complete the present program

. cycle.

At the beginning of a normal program cycle, RPG II logic
looks at the two records available in order to select the one
to process during that cycle. However, if the record from
the file which would not normally be selected is to be proc
essed, this must be indicated to the program before the be
ginning of the ,cycle. If a file is to be forced, there is no
need for RPG II logic to compare the records and make a
selection. This is the reason that, if a file is to be forced,
the FORCE must be indicated during the program cycle
immediately before the cycle in which the FORCE is to
occur.

Depending on your program, you may not have to force a
record in every program cycle. For such situations, you
must indicate when the FORCE is to be done by speci
fying conditioning indicators in columns 9-17 of the Calcu
lation sheet (Figure 7-1). Whether the FORCE is to be per
formed in the next cycle or not may depend on any of sev
eral conditions:

• The type of file or record type being processed at the
time.

• The number of records which have been processed.

• The result of a calculation performed.

• The contents of a field on the record being processed.

• The contents of a field on a record which has not been
processed yet.

With these points in mind, let's discuss a job in which you
can determine if the order of processing must be altered on
the basis of the type of record being processed.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporation

12 757677787980
Program

Programmer Oat. Page CD of _ :~:~f:ation I I I I I I I

C Indicators Result Field
Resulting
Indicators

~

At At
Arithmetic

Factor 1 Operation Factor 2 Plus IMinusl Zero Comments
8- Length

Compare

Line ~ Name 1 >iTl <2"f1-2
E

15 15 ~
Lookup(Factor 2)i,

~ z z High Low Equal
3 4 I; 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C ~lJ. 1_1.-ITIA IAlnlo lc;~ IL '~ 11 IT'"
o 2 C ~12 ~ITI'(IMlu IL T ICIQ IT~I~ ~IMI~ INIT
o 3 c ~Il 11:r,... I~" It- 1..,1t- III

o 4 C Condition under
o 5 c which force is to Additional calculations. I
o 6 C be performed.
o 7 C

o 8 C

o 9 C

1 0 C

Figure 7-1. Specifying the File to be Processed in the Next Program Cycle

Programmed Control of Input and Output 7-3

Alternating Processing Between Two Files

The two files in Figure 7-2 each contain one record for every
salesman in a company. The MASTER records are arranged
in alphabetical order by salesman name; the MONTH file is
arranged in ascending sequence by salesman number. Al
though there is no common match field, the records in the
two files are, nevertheless, in a one-to-one correspondence.
Salesmen numbers have been assigned such that they corres
pond to the order of the salesmen names. Thus, the first
record in each file is for Baker (salesman #10); the second
record in each file is for Costello (salesman #20), and so on.

MASTER File

40

30

Commission
Rate

Figure 7-2. Files to be Alternately Processed

7-4

55

26

1
Date

The two files are to be processed to determine the amount
of commission earned by each salesman. To do this, a sales
man's commission rate from his MASTER record must be
multiplied by the amount of his sales contained on his
MONTH record (Figure 7-2). The calculated commission is
then recorded in the salesman's MONTH record.

137896

367560

089760

159085

276848

345695

1
Sales

MONTH File

'\

)

)

The two files are defined and the records described with
the specifications shown in Figure 7-3. MASTER, the pri
mary file, is assigned record identifying indicator 01. Indi
cator 02 is assigned to the secondary file, MONTH. Since
MONTH is a card file to be used for both input and output,
it is defined as a combined file. (MONTH could also be de
fined as an update file, on another device.)

This program must process the two files alternately; that is,
every primary file record processed must be followed by a
secondary file record. Likewise, every secondary file record
processed must be followed by another primary file record.
In this case, the MASTER record for a salesman is read to
make the commission rate available. His MONTH record is
then processed, to calculate the commission and record the
amount in the MONTH record. Then, the next MASTER
and the next MONTH record are processed in the same way
for the second salesman.

Fi Ie Description Specification

F
File Type

File Designation -
End of File

Filename Sequence

File Format

Una

E!e E! 8. Block
~ ee ~ length
E ~~ c~
.f W~IL

3 4 5 6 7 8 9 10 \I 12 13 14 15 16 17 18 19 20 21 22 23

o 2 FM ~5 rn;iR r;p ~I=
o 3 F I"

... "'ls lAF= IN H
o 4 F

o 5 F

IBM International Business Machine Corporation

Program

Programmer Date

I
f---

Line Filename

Position

Record
length

24 25 26 27

Alb
Iqlb

Mode of Processing File Addition/Unordered

Length of Key Field or Extent Exit Number of Tracks
of Record Address Field ~ for DAM for Cylinder Overflow

Z Name of Record Address Type Symbolic iii Number of Extents
Label Exit Type of File

.J
Device Device 1! Tape

Organization Ui .:l Rewind
or Additional Area ~ Core Index ~

... Overflow Indicator 8 Condition

:.<: 1;
-6 Ul-~

:::::1-
Key Field -~ Continuation lines Z

0: ~g Starting ~
KI

:> ~ ::J Location Option Entry ~
28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 62 53 54 55 56 57 68 59 60 61 62 63 64 65 66 67 68 69 7071 72 7374

MII= r JLl I II I I I I I
Mll=r ? Other devices can

be used, depending
on the system and
configuration

RPG INPUT SPECIFICATIONS GX21-9094 U/M 050'
Printed in U.S.A.

1 2 75 '76 77 78 79 80

Page [0 of_ ~~~~;~f:ation I I I I I I I
Record Identification Codes Field

Indicators

~ Positi~n ~ ~
Position

~~
tl ~ § E E c

~
0 6 6 15 § z u ~u z Q

Field Location

c
0

hl 'in

jl ~
0: From To

~
~

:::;
co .~

Vi Ci:: c

~ 0

~~ Field Name] ILIL

1 II ::.u

0

~
'C

j
'C
;;
u::

Zero
Plus Minus or

Blank

3 4 5 6 7 8 9 10 \I 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 lit/, IA~ TII=IR AlA 17l: I
o 2 I II 12_(?j NIA 1f\1~
o 3 I 121~ I.,. ..J.

t1

o 4 I 12.ll -" 1 ... 1- ..
~

o 5 l'IYI IV 11-1 Ala ~!2
o 6 I lL 14m J~ I~
o 7 I Is IqO! ~~J MR IJ: R
o 8 I J 12 ',1.., 2C; ~ 1='5
o 9 I

Figure 7-3. Specifications to Define and Describe Files to be Processed Alternately

Programmed Control of Input and Output 7-5

Since no match fields are assigned, RPG II logic would nor
mally process all records in the primary MASTER file before
any of the secondary MONTH records. To alternate the files,
you must tell the program to force a secondary file record
every time a primary file record is being processed. When a
MASTER record is being processed, record identifying in
dicator 01 is on. Thus, you should condition the FORCE
operation to be performed only if 01 is on (Calculation
sheet in Figure 7-4).

At the beginning of the program, RPG II logic automati
cally selects the first record, which is a primary file record.
Since 01 is on, the FORCE operation is performed; that is,
the program notes that a MONTH record is to be forced at
the beginning of the next cycle.

During processing of the forced record (02 on), the com
mission is calculated and recorded in the MONTH record
(Figure 7-4). Only the specifications for record type 02 are
done. Therefore, the FORCE operation is not performed.

Since no FORCE was indicated in this cycle (02 on), RPG II
logic again takes over to select a record, at the beginning of
the next cycle. Thus, the second primary file MASTER rec
ord is processed (01 on). Processing of the files continues
with the next MONTH record being forced and then another
MASTER record being selected by RPG II logic until all rec
ords have been processed.

RPG CALCULATION SPECIFICATIONS Form GX21-9093
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer Date

C Indicators
~

------ 0_

AL At
...Ja: =0 Factor 1 Operation

~~~ 
Line I-'Ori 

E ~ '" 
.f85~ 0 0 z z 

3 4 I; 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

0 1 C ~~ IRA rrl=' 1'1111 T 
0 2 c ~lL ~n R"I~ 
o 3 C 

0 4 C 

n c ,. 

RPG 
IBM International Business Machine Corporation 

Program 

Programmer Date 

Space Skip Output Indicators 

~J 
0- I L -"" ~ ~ Filename E 11; 

~~ '" « 
And 

~ ci5 
~ 

~ D~ ~ ~ 0 0 0 

~~~ 
Z Z z

o
f---

Line

~
~

E
~

12 757677787980

Page CD of _ ~~~;~f:ation 1 1 1 1 1 1 1

Result Field
Resulting
Indicators

i'! Arithmetic

Plus!Minu"J Zero Factor 2 :e = Comments

Length cf ~ Compare
Name 1>2/1<2/1-2 ~~ Lookup(Factor 2)is 'u -

OJ: High Low Equal
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 5253 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1c;IA , 11= C. ,.
'"I I~ ",121-1

NI' H

OUTPUT SPECIFICATIONS

Commas

Field Name fl
(ill

End

v

Ves
Ves
No

Positon No
~ in a: ;3 Output -'

"AUTO j3 Record '" ii:

Zero Balances
to Print

Ves
No
Ves
No

GX21..gog0 U/M 050-
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page CD of _ ~~~;~f:ation 1 I. 1 1 1 1 I

No Sign CR X - Remove
Plus Sign

A J V = Date
B K Field Edit
C L Z = Zero

0 M Suppress

Constant or Edit Word

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 4243 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 626364 656667 68 69 70 71 72 73 74

o 1 0 I'""IN-I"" I~
o 2 0

o 3 0

Figure 7-4. Conditioning Operations on Basis of Record Type

7-6

)

Forcing a Number of Records from a File

In the last example, the FORCE operation was performed
only if a particular record identifying indicator was on.
Now let's consider a case in which you condition the
FORCE operation on the basis of whether a resulting in
dicator is on or off.

Suppose you have a number of customers who periodically
order items to be delivered from a central warehouse. One
record is kept for each unit in stock in the warehouse, and
another record for each customer's order of a particular

unit.

Orders are processed according to the type of unit ordered.
Therefore, for" a particular run, the primary file (ORDER)
contains all order records for only one type of unit, and the
secondary file (STOCK) contains all in-stock records for
that type of unit.

5648 4607 10

4607 12

4607 12

4607 07

4607 04

4607 05

09

Customer Unit Qty

Number Ordered

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

For this run, the ORDER file (Figure 7-5, insert A) contains
the week's order records for television sets, unit number
4607. The records show which customer placed the order,
and the quantity of television sets wanted. The STOCK file
consists of a separate record for each television set (unit
4607) in stock (Figure 7-5, insert B). Each record proviqes
the unit number, list price, and serial number of the item.

There are two purposes for processing the files. First, you
want an indication of which orders can be filled and which
orders cannot be filled. Secondly, the STOCK file is to be
kept up-to-date so it only contains as many records as there
are television sets available.

35905 WS61770

35905 TS91870

35905 M320CEW

35905 4361G11

35905 K124110

35905 S15206H

4224320

35905 D21AX32

4607 35905 126AJ41

I I
Unit List Serial
Number Price Number

® @ L-__________________________ -J

ORDER file STOCK file

Figure 7-5. Files for Processing Customer Orders

Note: System/3 will allocate two decimal places in the list
price, although a decimal does not appear in the field.
The list price in the stock file is logically represented as
$359.05.

Programmed Control of Input and Output 7-7

The program should produce a printed report showing which
orders can be filled, and the amount each customer owes
(Figure 7-6). Thus, you must determine the amount due
for each item and the total amount for each order. A rec
ord from each file must be available before you can calcu
late the information.

Files for this program must be processed in a specific order.
The quantity ordered (OTY) from an ORDER record must
be available first. This quantity is used to determine how
many STOCK records are to be processed. When enough
STOCK records for an order have been processed, the next
ORDER record is selected to repeat the process.

Looking at the two files, you can see that every record has
a common field containing the unit number. It does no
good to assign a match field to control processing order,
because the unit number is always the same for every rec
ord. All records in the primary file would be processed
before any secondary file records.

Remember, there is no way you can control selection of
the first record to be processed in a program. RPG II logic
always selects a primary file record first when match fields
are not specified. Since an ORDER record must be avail
able first for this program, the ORDER file should be des
ignated as the primary file.

CUSTOMER ITEM QTY SERIALNO

1938 4607 09
126AJ41
DZ1AX32
4324320
S15206H
K124110
4361G11
M320CEW
TS91870
WS61770

2012 4607 05

2637 4607 04

3425 4607 07

Figure 7-6. Printed Report Showing Customer Orders Processed

7-8

Controlling the Number of Times FORCE is Performed

After RPG II selects and processes an ORDER record, you
must FORCE the processing of a number of STOCK rec
ords. The quantity ordered (OTY) from the ORDER rec
ord is used to control the number of times you force second
ary file records. The quantity is stored in a field, called
COUNT, to keep track of how many records are left to be
forced for an order. Each time a STOCK record is forced,
the number in COUNT is reduced by one. When COUNT
reaches zero, enough STOCK records have been processed
for that particular order. Then RPG II logic can again take
over to process the next ORDER record (Figure 7-7).

The calculation specifications shown for this program (Fig
ure 7-8) only determine if a record is to be forced in the
next cycle.

Assume the first ORDER record (record type 01) has been
selected, making the quantity ordered (OTY) available. The
first calculation specification (line 01) for this record type
stores the quantity in the COUNT field. Then the program
determines if any STOCK records are to be processed for
this order (line 05). If COUNT is greater than zero, indica
tor 27 turns on. With 27 on, line 06 is performed, indica
ting a STOCK record must be forced in the next program
cycle.

COST TOTAL

359.05 359.05
359.05 718.10
359.05 1077.15
359.05 1436.20
359.05 1795.25
359.05 2154.30
359.05 2513.35
359.05 2872.40
359.05 3231.45

359.05 359.05
359.05 718.10
359.05 1077.15
359.05 1436.20
359.05 1795.25

398.95 398.95
398.95 797.90
398.95 1196.85
398.95 1595.80

367.03 367.03
367.03 734.06
367.03 1101.09
367.03 1468.12

(

"I)

)

At the beginning of the second cycle then, the first STOCK
record (record type 02) is selected (by being forced). Line
03 is performed to reduce ~he COUNT by one for this rec
ord being processed. The COUNT is then compared to zero
again (line 05) to determine if any more STOCK records are
to be processed for this order. If COUNT is still greater than
zero (27 set on again), line 06 is performed again, indicating
another STOCK record is to be forced at the beginning of
the next cycle.

During processing of the second STOCK record, COUNT is
again reduced by one (line 03). Assuming COUNT is now
at zero, the COMPARE operation on line 05 sets indicator
27 off. With 27 off, the FORCE operation on line 06 is not
performed during this cycle. At the beginning of the next
program cycle then, RPG II selects the next ORDER record
from the primary file in the usual way.

START

RPG " selects

ORDER record

NO

FORCE a'

STOCK record

Subtract 1

from quantity

YES

I s quantity greater
than zero?

Figure 7-7. Determining When Stock Records Must be Forced to
Fill an Order

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporation
1 2 75 76 77 78 79 80

Program'

Programmer Date
Page [0 of_ :~;~;:ation I I I I I I I

C Indicators Result Field
Resultirig

~ Indicators

~ 9~ At Jd .~
Arithmetic

=0 Factor 1 Operation Factor 2 PlusJMinusJ Zero Comments
~~~ 's Compare 

line Name Length ~ 1>211<211-2 ~ '0 a;," E E E ~ iJ 

~ 15 '2 Lookup(Factor 2li, 

of 85 fi z 0 High Low Equal 
3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 J4 35 J6 37 J8 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 5657 5859 60 61 62 6J 64 65 66 67 68 69 70 71 72 73 74 

0 1 C ~l rw11~ V'i;. ~rl~ ~h It Ail ct2J 
a 2 C:lf 

a 3 C i?J2 r-h IJNT C; R rzl. r~ , N,T 
a 4 C~ 

a 5 C rir1 11J~7 "'1" IMip r2JC2l i2"1 
a 6 C 27 t- it( ,"'~ Tlr leik 

Figure 7-8. Controlling the Number of Times a File is Forced 

Programmed Control of Input and Output 7-9 



Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

At this point, add the specifications for calculating the 
amount due and for printing the report (Figure 7-9). An 
ORDER record is selected first, making the QTY available. 
Calculation lines 01,02, and 06 in Figure 7-9 are performed 
for this record (record type 01). First, a TOTAL field, to 
be printed for each group of customers, is set to zero (line 
01). Next, the quantity ordered is moved into the COUNT 

field (line 02). If COUNT is greater than zero, indicator 27 
is turned on (line 06), and line 07 is performed; the pro
gram is instructed to force a STOCK record at the beginning 
of the next cycle. Before forcing, however, the output speci
fications (Figure 7-9, lines 08-11) are performed to print 
data from the ORDER record. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Prlntedl" U.s.A. 

IBM International Business Machine Corporlt!On 
1 2 75 76 77 78 79 80 

Programmer Date 
Page [I] of_ ~~~:~f:.tion I 1 1 1 1 1 1 

Program 

C Indicators Result Field 
Resulting 

~ Indicators 

- ~ 
At At 

Arithmetic 
0 Plus JMinusJ Zero 

8.~ 
Factor 1 Operation Factor 2 .'" . Comments 'g Compare 

line >..J Name Length ~ 1>211<211=2 I- "0 E E E 0 0 0 'fi1 Lookup(Factor 21is 

.f 8 z z z 0 High Low Equal 
3 4 5 6 7 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 3S 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C 01 II 1 AIL 5 18 rr tAI.L 
o 2 C tiJl1. M'" IvlE ~rrY 
o 3 C t?J12 r- TA'L 'ADI" ~l'" ~IT 
o 4 C ~l2 ,-1", 1\1 IT 5~IB rlJll. 
o 5 C~ 
o 6 C rh I NrT ',-It'-iftiP ~rl 
o 7 C l217 l- lK I~i~ 1 ,-t'I 
o 8 C 

RPG OUTPUT 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 "- Space Skip Output Indicators 

@~ - Field Name Ci t: ~ 

1 1 C - I ~~ ~~ Line Filename 
~~ III <{ 

!l. I- <l5 

j 
:c 

~ "Afoo Ii; ;3 
~ ~ 0 0 0 

~~~ 
z z Z ·AUTO .~

Jl
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 3S

o 1 °IK IrlY :JHn H L~~'b l~P
o 2 0 ~R f"'I'F
o 3 0

o 4 0

o 5 0

o 6 01*

o 7 of*
o 8 0 r"I ~11
o 9 0 GU lsr
1 0 0 rT EM
1 1 0 QTlr
1 2 0 In 0'112
1 3 0 5~ RI IAl-
1 4 0 rh ST
1 5 0 T~ ITAI!.-

-
Figure 7-9. Specifications to Process Customer Orders

7-10

IT~ TIAIL '7~
Ir,.... JMr 12~
~,... IA
,.,.. UINT

27

SPECIFICATIONS

1 2

Page [I] of_

'" Zero Balances Commas to Print No Sign CR -
Ves Ves 1 A J
Ves No 2 B K

End No Ves 3 C L
Positon No No 4 0 M
in 0:
Output 2 Constant or Edit Word
Record ~

GX21·9090 U1M 050·
Printed in U.S.A.

75 76 77 78 79 80

~~~;~f:.tion I I. I I I I I 

X ~ Remove 
Plus Sign 

Y II' Date 
Field Edit 

Z = Zero 
Suppress 

9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

29 Ir Is" fYI~K IT I;;~ I"\TY I 

31 's IFIR rl4 IN ,.." 

I'll .. ''- ~lsT '"' 
, 

12 
20 
2.5 

3b 
.;~ 

, 
~ 

, 
,bl • 125 

, 



Following output, the next cycle begins with a forced 
STOCK record (record type 02) being processed. The cost 

) 
is added to a TOTAL field (line 03) to accumulate the total 
amount due on the order. 

Then, COUNT is reduced by one for the record being proc
essed (line 04). Once again COUNT is compared to zero 
(line 06) to determine if line 07 should be performed; that 
is, to determine if another STOCK record is to be forced 
for the next cycle. The COST and TOTAL calculated for 
the STOCK record are then printed, by performing the out
put specifications on lines 12-15. 

The record selected at the beginning of the next program 
cycle depends on whether a FORCE operation was indicated 
in the previous cycle. If calculation line 07 had been per
formed, another STOCK record would be processed (by be
ing forced). If not, RPG II would select the next ORDER 
record from the primary file. 

Controlling Processing After Reaching End of File 

In a multifile program, end of file entries can be specified 
for any, all, or none of the input files. If an end of file entry 
is specified for only one file, processing stops after all 
records from that file have been processed. (Remember, 
however, if match fields are assigned to the files, the pro-

) 
gram continues to process the records which match the last 
record processed or which have no match fielcs.) If end of 
file entries are specified for all or for none of the input files, 
processing continued until all records in all files have been 
processed. 

For this program, suppose ORDER and STOCK are card 
files, and processing must continue until both reach end of 
file. However, if one file runs out before the other, you 
don't want to perform the usual calculations ard output for 
the remaining file. The remaining cards must be processed 
in another way; that is, by selecting them to a ~pecial stack
er. If all orders are filled, any remaining STOCK cards 
should be selected to stacker 3. If there aren't enough items 
in stock to fill all orders, any remaining ORDER cards 
should be selected to stacker 2. 

To continue the program until both files have been com
pletely processed, specify end of file entries on the File Des
cription sheet, either for both of or for neither of the two 
input files (Figure 7-10). By doing this, the LR indicator 
won't be set on to end the program until the last record of 
the last fi Ie has been processed. 

With end of file specified for both files, let's consider what 
will happen when only one of the files reaches end of file 
(see Figure 7-9). First, suppose the STOCK file reaches end 
of file before all ORDER cards are processed. Since both 
files are not at end of file, processing will not stop. Instead, 
after processing the next ORDER card, the program will try 
to force the appropriate number of records from the STOCK 
file. With no more STOCK cards to force, another ORDER 
record will be selected. Once again, the program will try to 
force STOCK records for that order. The process continues 
until all primary file ORDER records have been processed. 
Furthermore, every time a new ORDER record is processed, 
it is printed on the report and the card goes into stacker 1, 
as if the order were being filled. 

A similar problem arises if the ORDER file reaches end of 
file first. Suppose the last order has just been filled. 

File Description Specification 

F 
File Type Mode of Processing File AdditionNnordered 

File Designation Length of Key Field or Extent Exit Number of Tracks 
I-- of Record Address Field ~ for DAM for Cylinder Overflow 

End of File Z Record Address Type Symbolic in Name of Number of Extents 
Filename Sequence 

Type of File Device Label Exit 
..J Device 

~ 
Tape 

File Format Organization w Rewind 

Line or Additional Area .g Core Index 
~ 

0 

~ '" 
Overflow Indicator U Condition 

8- S~ Block Record ~ 0 
,---- g Ul-'r!!!-

~ 

~~ 
Length Length :::::t-

Key Field j Continuation Lines 
~ 

~ o~ a: 0:0 Starting :l ~ 
::::: ... W~II. ::J ~::::: Location K Option Entry ~ a: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 24 25 26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 52 53 54 55 5& 57 58 59 60 61 62 63 64 65 66 67 6869 7071 72 7374 

o 2 FI( IHl ~~ ~P!; ~ q~ M~ ""111 II I I 1111 
o 3 F~ T~ rk ~S~ ~ C1t., MIJ=f" 2 1111 I II I 
o 4 Ft'( t-t-" to( 

,.., r:: ,~, DR -N T,t: Q Other devices can 
o 5 F be used, depending 
o 6 F on the system and 
o 7 F configuration 
o 8 F 1.1 J LliL 1 Ii 
o 9 F I I I I I I I II I 

Figure 7-10. Continuing Processing Until Both Files Reach End-of-File 

Programmed Control of Input and Output 7-11 



After processing the last STOCK card for th~t order, no 
more STOCK cards are to be forced, so RfG II logic tries 
to select the next primary file ORDER record. In doing so, . 
the /* card from the ORDER file is read. Since the program 
is to continue until both files are processed, RPG II logic 
automatically processes the remaining records in the other 
file (STOCK). As each remaining STOCK record is processed, 
the calculations and output for that record type are per
formed and the card goes into stacker 4, as if the record 
were being used to fill an order. 

Although processing is to continue until both files reach 
end of file, you must have a way of determining when the 
first file runs out and which file it is. This is necessary so 
that normal calculations and output for the remaining cards 
can be bypassed and stacker selection specifications per-

formed instead. Reading a /* card from a file will not neces
sarily indicate that end of file has been reached in all files. 
The LR indicator is turned on only when the /* card of the / 
last file has been read. Therefore, a trailer card should be 
placed at the end of each file (Figure 7-11), before the /* 
card, to indicate when all cards of the file have been proc
essed. When a trailer card is read, the record identifying in
dicator associated with that card turns on to indicate which 
file has been completely processed. For this program, the 
trailer card in the ORDER file will turn on indicator 03, 
while the trailer card in the STOCK file will turn on indi

cator 04. 

Let's look at the completed calculation and output specifi
cations for this program (Figure 7-12) to understand how 
the trailer cards are used to control processing. 

( Trailer card 
record type 03 (,.--.-( /'-=Jcard 

record type 04 

/1--1 -------.v /r.-L -----
/ [J / ( 

I, 

/' 

/ / I~--------~ \'" 

/ 'I 1-, 
II vlRDER cards /1------------

/ record type 01 

/ I J~-Jj --------, 
/ V~ 11-----------. 

)1 1_ ~I 

-
I .... 

1-

1-

ORDER file STOCK file 

Figure 7-11. Use of Trailer Cards to Control End-of-File Processing 

7-12 



) 

Assume the trailer card from the ORDER file (record type 
03) isread, indicating all ORDER cards have been processed. 
When record identifying indicator 03 is set on, you know 
that any remaining STOCK cards are to be selected to 
stacker 3. However, indicator 03 cannot be used to condi
tion the stacker selection. As soon as the trailer card has 
been processed and the first of the remaining STOCK cards 
read, indicator 03 is set off and record identifying indicator 
02 (for the STOCK card) is set on. Therefore, while the 
trailer card is still being processed, you must set on an indi
cator which will stay on until the last STOCK card has been 
stacker selected. As calculation line 01 shows, record iden
tifying indicator 03 is used to SETON indicator 33. (The 
use of N34 on line 01 will become clear as the program is 
explained.) 

Now when a STOCK card is selected for processing, the pro
gram must determine if normal calculations and output 
should be performed for the record (record type 02). Since 
indicator 33 is on, normal calculations and output should 
be bypassed and the STOCK record stacker selected instead. 
To do this, all of the specifications for record type 02 could 
be conditioned to be performed only if indicator 33 is off 
(N33). However, to eliminate the extra coding and indicator 
testing, calculation line 02 instructs the program to skip the 

calculations when 33 is on, merely by branc~ing to the end 
of calculations. Normal output for STOCK reco~ds is then 
conditioned so it isn't performed if indicator 33 is on (out
put lines 10-13). Output line 19 then instructs the program 
to stacker select the STOCK card if 33 is on. 

Now, let's assume the STOCK file runs out before the 
ORDER file. When the trailer card from the STOCK file 
(record type 04) is read, you know that the remaining 
ORDER cards must be selected to stacker 2. For the same 
reason as previously explained, the record identifying indi
cator of the trailer card cannot be used to condition the 
stacker selection. Therefore, record identifying indicator 
04 is used to SETON indicator 34 (Figure 7-12, calculation 
line 04). 

In addition, while the trailer card is being processed, you 
must determine if the last order was completely filled. If 
there had been enough STOCK records to fill the order, the 
quantity in the COUNT field would have been reduced to 
zero. Therefore, when record identifying indicator 04 is on, 
COUNT field should be checked (calculation line 05). If 
COUNT is greater than zero, indicator 36 is set on. With 36 
on, a message will be printed indicating how many items of 
the last order could not be filled (output lines 14-17). 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

IBM I"ternational Business Machine Corporation 

Program 

Programmer Date 

1 2 75 76 77 78 79 80 

Page CD of _ ~~~;~f:ation I I I I I I I 

C Indicators Result Field 
Resulting 

~ Indicators 

- ~ I 1 Arithmetic 
0 PluslMinu;[ Zero 

8.~ Factor 1 Operation Factor 2 'a Comments 
Compare 

Line >...J Name Length ~ 1>211<211-2 I- "0 E E E 0 0 0 .~ Lookup(Factor 2lis 
.f8 z z z c High Low Equal 

3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 54 55 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 c ~I,,"I' :N I~I~ I~ j;"11ol ArT 1!='Nln 
o 2 c BI~ t;b rr~ '~'Nln c;11< Ir'p "A I, I'-I.e; 1r:~IR 
o 3 cf* Q(: ~rr '"'J: Ic;h" hrlK 
o 4 c IrJC "i ... b blf:.1 It I~ILJ C;T ~~Ik An- IEINr 
o 5 c rtJlLJ !"n .IINIT ~"" ~Ip a~ I~II-. r:: T IL A15h' w II< 

o 6 c 131LJ r;h rrh ~NID 5K IT Ip rll Irlc:. II=I""'IR 
o 7 C~ Iru: ~~ J"'\,f: hiD ,nil: ID~ 
o 8 C b, h"h trlAIL ~It I~ rr-J,Tl411 !TIn ITIAIL nl7 lillJ:' I~h r, IA IFI, In 
o 9 c ~Il M~ Ivl~ ""ITly r-~ Ill"lr 17~ 1c;!J:'~ Jlp Irlrt ,~ IT~IR 
1 0 c ~12 If rrlA 11 ~Inln l-o-ir'o Lsrr rr h IT~ll 
, 1 c t2j1, "h l'IINrr SIIJIa (2,1 r I" ,INT RiJ:' 'n I IrJ; N Jlrv Rr: r_ 

1 2 c~ ~I~ Irls rrh I~"" IRriJ: 
, 3 c "1(' 1,INrr Irlr ~Ip I"ttl 1211 :n: Irlr- lh.ilT 1_1- "'I_! ... 

r"!l~ !f:!H 

1 4 C 1211 t- I/'( II-I, II- tr~ IAN 'til, J,.; IR ~ 
, 5 c~ 
1 6 c II:INID T~~ 
1 7 r. 

Figure 7-12 (Part 1 of 2). Controlling Operations at End-of-File 

Programmed Control of Input and Output 7-13 



At this point, the first of the remaining ORDER cards is 
read. Since indicator 34 is still on, all calculations for the 
ORDER card are bypassed (see calculation line 06). The 
normal output for the ORDER record is to be performed 
only if indicator 34 is off. Thus, the printer output for rec
ord type 01 (output lines 06-09) is skipped and the record 
is selected into stacker 2 instead (output line 20). 

As you have seen, the trailer cards from each file are used 
to set on particular indicators. When the ORDER file 
trailer card (record type 03) is read, indicator 33 is set on. 
Likewise, indicator 34 is set on when the STOCK file trailer 
card (record type 04) is read. The indicator which is set on 
(33 or 34) is used to prevent certain operations from being 

performed and to cause remaining records in the other file 
to be stacker selected. 

Of course, reading a trailer card does not mean there are 
always cards remaining in the other file. For instance, as
sume all ORDER cards have been processed, but not all 
STOCK cards. When the ORDER file trailer card is read,it 

RPG OUTPUT 
IBM Inwrnational Business Machine Corporation 

Program 

Programmer Date 

0 ~ Space Skip Output Indicators 

- e~ 

Jd 1 
Field Name 

o!!:. 
;:~ ~ ~ 

line Filename ~ ~ ~ ~ 
! ~ en 

I E ADD ~ 0 0 0 

~ ~.!!.-
« z z z ·AUTO 

AND 
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 

o 1 01'( Il-ItJ tn H '~~b I'p 
o 2 0 ~R ,,",'f: 
o 3 0 

o 4 0 

o 5 0 

o 6 0 n ali/. INl~~ 
o 7 0 Irlll 1ST 
o 8 0 Irrr I~M 
o 9 0 ~ITIY 
1 0 0 1"\ 

11 0 lc;1~ IRT ~I 
1 2 0 r-1I"'t lc; T 
1 3 0 r rr AIL 
1 4 0 n (J)L.J Blh 
1 5 0 

1 6 0 ,..,... NT 
1 7 0 

1 8 0* 

1 9 05 
_ ..... 

I~I"" 1'"113 ~f~ 
2 0 0 H II-IH Dl2 3~ 

0 

Figure 7-12 (Part 2 of 2). Controlling Operations at End-of-File 

7-14 

~;i 

I 

~ 
~ 
38 39 

3 
~ 

~ 

signals that the remaining STOCK cards should be stacker 
selected. As the STOCK cards are stacker selected, one-by
one, eventually you reach the end of STOCK by reading 
the trailer card from the STOCK file. At this point, both 
files have reached end of file, the LR indicator is automat
ically set on, and the program is ended. 

When the ORDER file trailer card is read (03 set on), then 
you want to know if the STOCK file has been completely 
processed. If it has, the STOCK file trailer card (record 
type 04) has already been read, and the indicator set on by 
04 (indicator 34) would still be on. With 34 on, there's no 
point in having record type 03 set on indicator 33. Like
wise, if indicator 33 is on (ORDER at end of file) when the 
STOCK file trailer card (record type 04) is read, there's no 
point in having record type 04 set on indicator 34. For this 
reason, the calculations on lines 01 and 04 of Figure 7-12 
have been conditioned by N34 and N33, respectively. 

As you know, the setting of an assigned indicator can de
termine whether a FORCE is to be performed or not in the 

SPECIFICATIONS 

'" Commas .... 
Ves 
Ves 

End No 
Positon No 
in a: 
Output g 
Record 

il:: 

1 2 

Page [0 of_ 

Zero Balances No Sign CR -to Print 

Ves 1 A J 
No 2 8 K 
Ves 3 C L 
No 4 0 M 

Constant or Edit Word 

GX21·9090 UlM 050· 
Printed In U.S.A. 

75 76 77 78 79 80 

~~~;~f:ation 1 I. 1 1 1 I I 

X'" Remove
Plus Sign

V ~ Date
Field Edit

Z • Zero
Suppress

40 41 42 43 44 45 46 47 48 49 60 61 62 63 64 66 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

21q dr Il ~II fYit:J(lIlT !;~ I"IlrlY ,
311 '6 Ie:R irA 'N I" ,
hl l~ hslr ITh TA Il I

12
2~
2;-

I~~
l"~
1,1

.'~Q I II Nil IRlf r= IT~ FI IL l. I

~3
'IS III I f:.. fYI~ "'F' 'W J-W

I

/

(
I

following program cycle. Either a record type, data on a
record, or the result of calculations performed during proc
essing of a record can set the particular conditioning indi
cator on or off.

In the examples presented thus far, something about a rec
ord which was currently being processed determined whether
the conditioning indicator was set on and whether an un
processed record was forced. In the last example, the QTY
field on the ORDER card determined how many STOCK
records were to be forced.

Look-Ahead to Determine Whether a File is to be Forced

For some programs, you cannot determine whether a record
is to be forced in the next cycle until you know something
about the records which have not been processed yet. Thus,
you must look ahead in one or both files at the next record
which is not yet available for processing. In looking ahead,
you may be checking to determine what record type is next,
to see what data is on the next record, or to determine if
the next record has the same match field as the record be
ing processed. What you find in looking ahead can deter
mine which file is to be processed next and, also, whether
the file must be forced or not.

Before considering the use of FORCE with look-ahead, how
ever, you should evaluate your system design. If at all pos-

sible, you should organize your files in such a way that the
normal RPG II logic can determine the appropriate order of
file processing. In this way, you do not have to code addi
tional specifications to control the order. Of course, from
time to time you may have jobs in which you must use
FORCE and look-ahead.

Doing Matching Records Without Match Fields

If two files are organized such that the same match fields
cannot be assigned to the two files, you can still process the
matching records together by using look-ahead fields and
the FORCE operation. (This cannot be done, however, if
the look-ahead file is defined as a combined or update file.)
Look-ahead can be used to determine if certain fields (not
assigned as match fields) on an unprocessed record match
those on the record being processed. If they match, FORCE
is performed to cause the matching unprocessed record to
be selected next.

As an example, assume a report is to be prepared showing
the amount of each salesman's sales and his quota. The re
port should also compare the total of district sales with the
district quota.

The two files available for this program are described in
Figure 7-13. The primary file (MASTER) contains a district
record (record type 01), followed by all salesmen's MASTER

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050·
Printed in U.S.A.

IBM International Business Machine Corporation

1 2 75 76 77 78 79 80
Program

Programmer Date
Page CD of _ ~;~~;~f:ation 1 I I '1 I I I

I s Record Identification Codes Field
11 Field Location

Indicators
~] 1 2 3

~ ·8

i
0 ~ ~·o 0 :9~

Line Filename Z
.,

Field Name " al '';;] .~ "ii

~ ~§ ~

Iii
0 LLU::

~
Zero

Jl Position gel Position Position From To .~ g' Plus Minus or to i l] ~ e ~ go ~ g -£ :S Blank

~ ~§ .~ " r--r- -0 ~ ~ o~~ 8 iG~ -;;

~~"D
z 0 ~ z u u zuu 0 :2:u u:

3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5960 61 62 63 64 6566 67 68 69 70 71 72 73 74

a 1 IM lAS 1rll='IR 01111 ~11 I, ~In
a 2 I I~ ["Ill Inls rrlN JIM
a 3 I 17 lIb 171",1.-. ''"'frill District recordr
a 4 I lLl~ 121~ lol~ tTlJ\1 !r.,IR
a 5 I ~121N 1:zj12 II IrlM

a 6 I I';). 1"-" !e: IN /11'11
a 7 I Ih I"I~ I" I~ Salesman I
a 8 I lllCi!l 12/" INIA IIYI,; ! master record J

a 9 I 12.11 l'l.l, I;> I.-, 1"'lrlA I
1 a I~
11 I~ lAlL 1,;1c; lL\IA ~L:J, II Irtc;
1 2 I I/, 1,.,1" I .. I. I .. I. '11M ~ SALES record
1 3 I 11i:~ I'll I..II~ IAJh'

? I I I I I I I I

~ Figure 7-13. Describing Files to be Matched Without Match Fields

)

Programmed Control of Input and Output 7-15

records (type 02) associated with the district. These are in
turn followed by the next district record (01) and its related
salesmen MASTER records (02) and so on. Although the
records are grouped by district, all salesman MASTER rec
ords in the file are still in ascending sequence by salesman
number. The secondary file (SALES) contains only one rec
ord type (03), a record for each individual sale. The SALES
file is also in ascending sequence by salesman number. While
the MASTER file contains a record for every salesman (as
sume there are no MASTER records missing), the SALES
file may contain only one, several, or even no records for a
particular salesman.

To produce the report, the records should be processed in
the following order:

1. District record (record type 01).

2. Salesman MASTER record (record type 02).

3. All SALES records for that salesman (record type 03).

4. Next salesman MASTER record.

5. SALES records for that salesman.

6. Next district record (after all salesman MASTER rec
ords associated with the first district have been proc
essed).

There is no common field on all three record types which
can be assigned as a match field to cause the records to be
processed in this order. Totals are to be accumulated by
salesman number; but the MANNUM field is contained only
on the salesman MASTER and SALES records. The district
records do not contain this information.

If the MANNUM fields are assigned as M1 match fields for
only two of the record types, the records will be processed
in an incorrect order. Following the last salesman MASTER
record (02 record type) for a particular district, the next
record in the same file is another district card. Since dis
trict records have no M 1 match field entry assigned (no
MANNUM field), the district record is processed immedi
ately before the SALES records for the last salesman.

Although this program cannot be done using match fields,
you can match the records yourself by using the look-ahead
capability to compare fields (Figure 7-14). The object is to
match a salesman's SALES record with this salesman
MASTER record. Thus, the MANNUM field on a SALES
record is defined as a look-ahead field. While processing a
salesman MASTER record, you then look ahead (in calcu
lations) at the unprocessed SALES record to determine if

7-16

Start

RPG II selects
record from
primary file

FORCE the
SALES record
to be processed

No

record so selec
next primary
file record)

No

(select next
primary file
record)

No

(select next
primary file
record)

Figure 7-14. Using Look Ahead to Determine if Records Match

the salesman number is the same as on the record being proc
essed. If they match, the FORCE operation code is used to
process the SALES record as if RPG II logic were perform
ing a matching records job. You then continue to force the
rest of the SALES records which contain the same salesman
number. For each record, look-ahead is used to check the
MANN UM field to determine if the SALES record should
be forced. When look-ahead indicates that the next SALES
record is for a different salesman number, the SALES rec
ord is not forced. Instead, RPG II takes over to select the
next primary file record which is either another salesman

'"

MASTER record or the next district record. /
(
"-

)

)

)

Now that you und~rstand the steps involved in this program,
look at the specifications in Figure 7-15. The Input sheet
describes the records in each file and defines the look-ahead
field for the SALES records. Only the calculations neces
sary to determine which record is to be processed next are

shown. To actually prepare the report, you would need file
description specifications to define the files and additional
calculation and output specifications to accumulate totals
and print the data.

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050'
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer Date

I ~
~] 1

!l :E-.""
Line Filename i ~ ~ 0

~ =5 ~ Jl
~-;; Position ... "0

~ §.~ 8 "O'ii'- z 0 ~

"A'No
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24

o 1 1M AS T'~iR ~llL 1i'S1 11
o 2 I

o 3 I

o 4 I

o 5 I 'Qj2.N ~21 II
o 6 I

o 7 I

o 8 I

o 9 I

1 0 1*
11 15 A' J:S AA 113 I

1 2 I

1 3 I

1 4 I AlA *~
1 5 I

1 6 I

- T

IBM International BUlines. Machine Corpor.t~on
Program

Programmer Date

C Indicators
~

r- ~ Jd Jd
8.~

Factor 1

Line >-'
... "0
E ~ 15 15 15 ,f8 z z z

Record Identification Codes

2 3

Z 0 ~ Position Zo~ Position go
~~~ ~§~ ~§ z u u 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

ro!f) 

rM 

"s 

1 2 

pageDJo,_ 

75 76 77 78 79 80 

~~~~:~':ation I I I I I I I 

Field Field Location
Indicators c:

~
0

0
~ 0 :9-8

[;l :~ Field Name
~ .~ ~ "E

Q; !:. u.u.

! Zero

~ ~ E: From To I:r Plus Minus or g g
~~~ 

"0 Blank 
'2 .3 ~6 

0; 
0 u: 

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 65 66 67 68 69 70 71 72 73 74 

I 
B 5'fi"l ns TI~ JIM 
7 I'; 2() "I "'TA District record 

I ~. 2~ DC; r'M GR 

3' .~~ OS T'N liM 
10 Qrf, M.1 1\11\1 1M Salesman 

1m 2~ NA f'1F master record 

27· ~~-2" In TA 

Ih /'"'~ : .. 1M SALES record 

1112 l! , l':::~ LlIN r' 1/ 

la~l1 I~II,,~ 
Look-ahead field ~~+-Ie, III" on SALES record 1-1-

I I I I I I I I I I 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

Result Field 

~ 

Operation Factor 2 :E :; 
Name Length ce ~ 

g~ 
'u ~ 
o :x: 

1 2 

pageDJof_ 

Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero 
Compare 

1>2/1<211-2 
Lookup(Factor 2)is 

High Low Equal 

75 76 77 78 79 80 

~~~~~:ation I I I I I I I 

Comments

3 4 5 6 7 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 c NIZh Mod AiAI

o 2 Clf

o 3 c*
o 4 c~
o 6 C 21~
o 6 C

M ',..", MP kN II fill

Ir=h IQr IF .C; IAI Fe;

I~
\

If salesman numbers are the same (23 on),
force the next SALES record.

Figure 7-15. Using Look Ahead to Match Records

~3
1

\

\
\

If salesman master record (02) or SALES
record (03) being processed, check salesman
number on the next SALES record

Programmed Control of Input and Output 7-17

Processing a Primary, Then Matching Secondary Records
Before Matching Primary Records

Another reason for looking ahead to determine which rec
ord to process next is when you want to process the files in
an order other than the usual order of matching record
logic. In such cases, all files must have match fields. The
match fields on the next records available for processing
are looked at to determine which record will ordinarily be
selected and, thus, if it is necessary to force a record in
stead.

To illustrate altering the order of matching record logic,
let's consider a sample billing program in which the records
are to be processed in a particular order. However, note that
the example is presented only to show you why and how
look-ahead fields are used to determine whether a particular
file should be processed. Actually, the desired results could
also be obtained by processing the records in a different

4C 01 998

735 GEST BRUCE 4856
NINTH STREET MPLS MN

5E 02 396

L_B __ 04 ____ 2_76--...

C 631 3D 01 450

N 631 DEAN THOMAS 986 OAK
GLEN DRIVE ST PAUL MN

N 563 CARLSON V 46 FIRST
AVENUE HOPKINS MN

4B 03 297 I
3A 02

(Charge Record)
940 'Record Type 02

~----------------------~
N 402 AKRE J 311 HAWK Record Type 01
INS DRIVE BRAINERD MN lJ (Name and Address)

1-

1-

FIRST file

Figure 7-16. Files With More than One Matching Record

7-18

order using the normal RPG II logic. We are not necessarily
suggesting that your files be organized in the same way for
your billing purposes. In fact, it is possible that the files for
the sample program could be organized in a different way
such that look-ahead with FORCE would not be necessary
to process the records in the desired order.

Organization of the Files: The two files for the billing ap
plication (Figure 7-16) can each contain two record types.
The primary file (F I RST) contains a name and address rec
ord for every customer (record type 01) followed by the
customer's charge record (record type 02) if any purchases
were made during the month. The secondary file (SECOND)
contains one record for every customer showing his previous
balance (record type 03). If the customer is entitled to a
discount, a record containing his discount rate follows the
balance card. As you can see, both files are in ascending se
quence according to a common match field containing the
customer number.

15

0000

6875

754 I
-------10-----------., Record Type 04

J-. ___________ --nTr (Discount Record)

B 402 2986 _1 I-+-I+-I J R Record Type 03

I J (Previous Balance)

.-

SECOND file

/

)

)

The specifications in Figure 7-17 define the files for this ap
plication. As entries in col umn 18 of the I n put sheet show,
record type 02 (charge records) in the primary file and rec
ord type 04 (discount record) in the secondary fi Ie mayor
may not be present for a particular customer. The use of
the look-ahead fields defined on lines 11-12 and 19-20 will
become clear as we explain the program.

File Description Specification

F

Uno

8-
~
~
(l

3 4

o 2

o 3

o 4

Filename

File Type

File Designation

End of File

Sequence

File Format

Block
Length

IBM International Business Machine Corporation

Program

Programmer Date

Record
Length

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
Organization

..J
W

or Additional Area -3

~ Overflow Indicator ~
~ 0 Key Field "2
;;: ~ Staning ~
~ ;:;, Location W

Device

R~G INPUT SPECIFICATIONS

Record Identification Codes

Symbolic
Device

K

Name of
Label Exit

Page of GC21-7567-2 "
Issued 24 May 1976
By TNL: GN21-5389

Extent Exit
for DAM

Core Index

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

File
Condition
Ul-U8

Continuation Unes

Option Entry

configuration GX21"9Q94"2 u/M 050·
Printed in U.S.A.

1 2 75 76 17 78 79 80

Page [D of_ ~~~;~f:'tion I I I I I I I

I ~ Field Field Location
Indicators

~ ~ 1 2 3 c:

~
0

S €·o c: 0

~
ii

0

~~ Line Filename ~ "iii Field Name]] ~ j ::~ ~

Jii
,f Zero

Position

~~j
Position - ~ Position "From To I:i Plus Minus or t-

~.g ~ ~ ~ E ~~ ~ g Blank j "0 Or;- ~ b ~ ~uc5 ~ U
"M 8 ~~ 0;

Z U U C :;;u ii:
Ar,;j)"

3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 JJ J4 35 J6 37 J6 J9 40 41 42 4J 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 6566 6768 6970 71 72 73 74

o 1 IF IR S1 NS ~1 11 CAl
o 2 I 3 5~ CU SN uM Ll Ml
o 3 I 17 22 NA ME
o 4 I 25 '-'i4 ST RE EiT
o 5 I 46 6~ CT YS irA
o 6 I NS ~2. 1 CC
o 7 I 3 51~ CU SN UJ.A il , M'
o 8 I '1 8 Il ElM
o 9 I 1(2) 11 1(lJIG rrv
1 0 I 13 V; 12. C HA R~E
11 I IAA fl'~
1 2 I 3 :5K:lJ NX TN ON
1 3 IS EC OND NS ~3 1 ~B
1 4 I 6 8rtJ eN UM IflR Ll ~:l
1 5 I 18 2:1 1B ~L NeE
1 6 I N5 ~q 11 CD
1 7 I 6 :8:¢ (N ~M BR :Ll IMl
1 8 I 11 12 1D SR AilE
1 9 I BB ~~
2 0 I 16 80 NX Ire ST

• Figure 7-17. Force With Look Ahead: Process Primary, Them Matching Secondaries Before Matching Primaries

Programmed Control of Input and Output 7-19

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

Determining the Order of Processing: To produce a bill,
a customer's name and address are to be printed, followed
by his previous balance (Figure 7-18). Any additional
charges for the month are to be added to the previous bal
ance to obtain a new balance. Some customers are entitled
to a discount, which must be determined before adding the
monthly charges to the previous balance.

If the two files are processed by RPG II logic according to
matching records, all matching primary file records are proc
essed before any matching secondary file records. In other
words, first the name and address record is selected, fol
lowed by any charge records. Only after processing all the
primary records for a particular customer are his balance
and discount records processed.

Providing a customer has no charge records, the order of
processing determined by RPG II is correct. That is, after
the name and address record (the only primary record with
the same match field), the balance record from the second
ary file is processed. If there is a discount record with the
same match field, it is then read, even though the discount
data is not necessary when there are no charges.

On the other hand, for customers who have incurred charges',
the order of processing the matching records must be altered.
Instead of·processing all matching primaries before the match
ing secondaries, only the first primary record is processed.
The matching secondary records are then processed, fol
lowed by the remaining matching primary records.

Determining When to Force A File: The calculation and
output specifications to process the records anp print the
bills are shown in Figure 7-19. For every customer group,
the name and address record (record type 01) from the pri
mary file is read first and printed at the top of thebilling
form. RPG II logic automatically selects this primary rec
ord as the first to be processed.

You want customer's balance record (record type 03) from
the secondary file to be processed immediately after the
name and address record. What you must determine then,
while the name record (record type 01) is still being proc
essed, is whether the balance record dm be selected normal
ly or if it must be forced. ,You know that if there is a charge
record for this customer in the primary file, it has the same
match field as the name and address record. Furthermore,
if there is a charge record with the same match field, this
record will be selected for processing rather than the sec
ondary file balance record. Thus, while processing the name
record, you must look-ahead at the next available primary
record to determine if its match field is the same as the
match field of the record being processed. To do this, line
01 of the calculation specifications (Figure 7-19) compares

7-20

the look-ahead match field (NXTNUM) on the primary file
record not yet available to the match field (CUSNUM) on
the name record being processed. If the fields are equal (in
dicator 21 set on), you must force the balance record (line
02 of Calculation sheet).

While the balance record is being processed, you must de
termine from which file the next record is to be processed.
To do this, calcylation line 05 is performed. If there is a
discount record in the secondary file for this customer, the
match field on the next available secondary file record will
be equal to the match field on the balance record being
processed. Thus, the look-ahead match field (NXTCST) for
the secondary file is compared to the balance record match
field. If equal, indicator 22 is set on, indicating the next
available secondary record (a discount record) should be

. processed. Whether to force the discount record depends on
whether there are still primary file records which match. If
there were charge records in the primary file, the balance
record being processed was forced and, thus, indicator 21 is
still on.

ABC COMPANY DATE 10-25-68

AKRE J
311 HAWKINS DRIVE
BRAINERD MN

ITEM OTY CHARGE PREVo BALANCE $ 29.86

3A 02

03

8.46

2.67 4B

BALANCE DUE $ 40.99

ABC COMPANY DATE 10-25-68

CARLSON V
46 FIRST AVENUE
HOPKINS MN

ITEM OTY CHARGE PREVo BALANCE $ 7.54

Figure 7-18. Bill Showing Order in Which Data Must be Printed

/'

)

IBM International Business Machine Corporation

Program

Programmer Date

C Indicators
~

~ ~
At At

~~
Factor 1

Line >-'
I- "0
E ~

.fa s 0 s
z z z

RPG CALCULATION SPECIFICATIONS

Result Field

~

Operation Factor 2 .g J:

Length ~~ Name
~~
'u -
e :I:

1 2

Page OJ of_

Resulting
Indicators

Arithmetic

Plus IMinusl Zero
Compare

1>211<211-2
LookuplFactor 2lis
High Low Equal

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

Form GX21·9093
Printed in U.S.A.

75 76 77 78 79 80

:~~~f:tion 1 1 1 1 1 1 I

Comments

3 4 5 6 7 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 J4 35 36 37 J8 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5651 58 59 60 61 62 63 64 65 66 61 68 69 10 11 12 13 14

a 1 C Qll r J ISN 1M r,.. MP NX ITIN M
o 2 C Qll 121 ':'" Q~ J:lc;~ IN
o 3 C~
o 4 C~
o 5 c ~B Irl\l MRI~ rr Mlp ~l' IT" 1ST
o 6 c (zl3 2.1 22 J:'-' Q~ ... -
a 7 c~
o 8 c~
o 9 c~
1 0 c ~2 2.12 ,. "1"\ I,. I ... rvJJ IUr ":'i RA rrl=
11 c ~12 2~

,. 1\,., 1,.1,. 'c;.lJlA D~ rNtr
1 2 c~
1 3 c ~12 RlA 'N ~I~ AolD r 1-

1 4 r.

RPG OUTPUT
IBM International Business Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

- ~~ lj

1 1
Field Name

e- li -"" ~ ~
Line Filename ~ Ai

~~ ~ ~
~ I- u;

~ ~ I- "A 0'0 ~ ~ 0 0 0

~ o R z z z ·AUTO ." ."

r;-~to w

3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 1920 21 22 2324 2526 21 28 2930 31 32 33 J4 35 36 31 38

o 1 08 IL LS 10 1(?j5 ~l
o 2 0 ~A [ME
o 3 a UM ON n-H
o 4 0 vD ~V
o 5 0 ulv EA R'
o 6 0 ro 11 1~ll
o 7 0 Srr R,E EI
o 8 0 rn 3 laJll
o 9 0 ~T)/S T~
1 0 0 D 13 ~13
11 0 8A LN CEIJ
1 2 0 D ~ rtJ2
1 3' a :Iir E.M
1 4 0 iGTY
1 5 0 CH AR GIE!
1 6 0 r l6~ lj.,J.

I

I ... N ~2~
~ I_~ ...

32.

!R14 Nif- r; 42
I

SPECIFICATIONS

....
Commas Zero Balances

v to Print

Yes Yes
Yes No

End No Yes
Positon No No
in a:

L~

12.12

IIts -H ~RIF A. rf-jG

RE' blR 1)'1 TF y~S

1=1"'1 Rrl,; ~lQ N~. R.~~

rs rrlu FIRJ: A 'ns ~tr
R£ r? IY~ c;- IF''"' R"'~
fl.F r'EIR IRA ",r" R''; ,.

fF IBl4 Ii-IN" '1= '" IR~ J:I'\

,[F ~ N R~ rh IR"
R~ AD rll. " r I'IA ~,..

Dr 5~M NT '" I .. I~ 1,..,-

At"I,Q T'"" P,R E.V lBlA

GX21·9QS02 U1M 060·
Printed in U.s.A.

12 757677787980

Page OJ of _ :~~~f~cation 1 I. 1 1 1 1 I

No Sign CR - X E Remove
Plus Sign

1 A J Y ~ Date

2 B K Field Edit
3 C L Z = Zero

4 0 M Suppress

Output -' Constant or Edit Word
Record en

Q:

9 40 41 42 43 444 5 46 41 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 61 68 69 10 11 12 13'14

lJ h
lij
1 I~
~~ I.

Print name, address, and date
L

2.5

2~

~~ Print previous balance I

8 I

2(l I
Print monthly charges I

35 I I I I I I I I I I I

1 7 0 !BA LN ~E IJB 60 } Print accumulated new balance
1 8 0 when name and address record
1 9 0 for next customer is read
2 0 a I I I I I I I I I I I I

• Figure 7-19. Specifications for Processing Matching Secondary Records Before Matching Primary Records

Programmed Control of I nput and Output 7 -21

The FORCE of a discount record on calculation line 06 is
conditioned, then, by two resulting indicators: 22 on means
there is a discount record to be processed and 21 on means
that the discount record must be forced since the balance
record was forced.

After determining which file is to be processed next and,
then, whether that file is to be forced, output processing
continues for the record being processed. That is, the bal
ance is printed on the bill.

Providing a discount record is present, this record is proc
essed next. No calculations and output are performed for
this record, however. The discount rate (DSRATE) is merely
stored so that data can be used to calculate discounts when
charge records are processed.

In the next program cycle, RPG II logic determines which
record to process next. If there is a charge record in the
primary file, this record is selected since its match field is
the same as the match field on the previously processed
record.

When a charge record (record type 02) is selected, the first
step is to determine if the charge is to be discounted. If a
discount record was processed for this customer, indicator
22 is still on. Thus, the calculations on lines 10-11 are per
formed only if 22 is on. The charge, whether discounted or
not, is then added to the previous balance to accumulate a
new balance (line 13). The individual charge is then printed
and any remaining charge records are processed in the same
way.

When all charge records for this match group are processed,
a name and address record for the next customer is available
in the primary file, while his balance record is in the sec
ondary file. As before, since both records match, RPG II
logic selects the primary file name record to process first.

Referring to the input specifications for this program, the
customer number field on the name record was assigned as a
control field, as well as a match field (see Figure 7-17).
Since the customer number on the name record just select~d
differs from that on the previous name record, a control
break occurs. Before processing the name record for the sec
ond customer, then, total operations for the previous group
are performed. Thus, the output specifications in Figure
7-19, line 13, cause the new balance (which has been ac
cumulating for every charge record processed) to be printed
on the customer's bill.

7-22

Effect of Forcing on the MR Indicator

In this last example, we assumed that for every customer,
there is at least one record in the primary file (name record)
and one record in the secondary file (balance record). For
every record processed then, there exists a matching record
in the other file'.

Although a matching record condition actually exists for all
records, the MR indicator is not necessarily turned on for
every record. When RPG II logic selects records in the usual
order, the MR indicator is on during the processing of these
records. However, MR is never turned on for a record which
is forced. If a file is to be forced, the RPG 1/ logic doesn't
even compare the two files and, thus, doesn't determine if a
matching record condition exists. A forced record is proc
essed, then, as if it contained no match fields.

The last example did not require that any calculations or
output be conditioned on the basis of matching records.
Nevertheless, you must be aware of the effect forcing has
on the MR indicator so you won't incorrectly think MR is
on when it is actually off.

PROCESSING DEMAND FILES (READ OPERATION)

Using the FORCE operation, you can override normal RPG
II logic for selecting records on the next program cycle.
Suppose, however, you want to select records to be proc
essed during the current program cycle. For example, a
company maintains a file of employee numbers, NUMBRFLE.
Each number is on a separate record (Figure 7-20). Those
records containing numbers that are already assigned to em
ployees are identified by a flag (character X in position 8 of
the record). If the number has not been assigned to an em
ployee, the record does not have a flag.

For each record that is read from the fi Ie of new employee
records, NEWNAME (Figure 7-20), one or more records
must be read from NUMBRFLE to find a number that can
be assigned to the new employee. The new number must
be found during the current cycle, since the new employee
record is added to the employee master file, NAMEFILE
(Figure 7-20), after a number is assigned.

,/"--

)

)

)

Read from the demand
file until an unused
number is found

ADAMS

ADAMS
0097694

WILLIAMS

NEWNAME input file
(New employee records on disk)

wi/PM/
e
?}!

READ

,,~~\\~\~\\\~%,,\~:f}~

WILLIAMS
7705220

2066421

0065321 X

NAMEFI LE output file
(Employee master file on disk)

NUMBRFLE
(Demand file of all
employee numbers)

Figure 7·20. Using the READ Operation and a Demand File to Assign Man Numbers to New Employees

Programmed Control of Input and Output 7-23

containing the READ operation will turn on after each
READ operation if an end of file condjtion is reached. In

By designating NUMBRFLE as a demand file (Figure 7-21,
insert A) you can request input from the file as many times
as necessary during a single program cycle. In order to re
quest input, you must use the READ operation code in the
calculation portion of your program (Figure 7-21, insert C).
Each time a READ operation is done, a record is read from
NUMBRFLE.

the example, new employee records are listed on the printer /'
as they are added to NAMEFILE. If end of file is reached
on NUMBRFLE before numbers have been assigned to all
new employees, indicator 77 is turned on and the new em
ployee records to which numbers have not been assigned
are listed with an appropriate identification.

It is possible that end of file for the demand file could be
reached during a program cycle. Two options are available
to handle this situation. In the example (Figure 7-21, insert
C), an indicator has been entered in columns 58-59. An in
dicator specified in columns 58-59 of the specification line

If an end of file indicator is not entered in columns 58-59,
the program will halt when end of file is reached on the de
mand file and each time READ is executed thereafter.

File Description Specification

Line

Fil. Typo

File_ D .. Igr>ltion Extent Exit ~~;;,;;~ ~':'~;Id I~ for DAM ;moer OT HacKS

End of Fil. Record Add Typo I~ Name of ,,~ U. ~M"'~
Sequence Device Symbolic I:! L bel Exit

File Format ~ypo of Fil. iii Device I~ a !~A"
i ~Addition.1 At'"-~ Core Index ~

F
"n,

Filename

:5. ,.~ .. " •• ;~ V'°r--!!. III A 0 in column 16 identifies an input, update, !:,!"~~ion
~ or combined file as a demand file. IK ~ I~

'.'." "'''',.~.~'' •• 'N~3'''~"~''.' •• ' •• ''.' '"~ .. "'''_ .. m •• '.'M ... " "." ••• ,,, •• ,.,,,.,.,,
10 12 FIN~ .1 ... ,.- ~ Aoh qb ~IFr" J:t
I 0 13 F N If: F 1215 b ~ n Ir S J((11

I 0 14 II'" ,; ~ II" IE F 1215 ~ 1 2. P, 7 A I II rzjll D II s ~ A !2l1

l/A\ I~A '-IL rlslr 1= Ill~~ 11 2~ ~IV pl~I NTi~IR Other devices can
r~" 1111

be used, depending
on the system and

RPG INPUT SPECIFICATIONS configuration

Graphic I I f-p_ro_9ra_m ______ --, _____ ----l1 Punching

J Instruction
I

1 2

Page [JJoi_ I Card Electro Number

Punch I I Programmer Date I I
Record Identification Codes I Field Location

- 1 2 3 '

Line Filename

From

g l5
a :2~
';;; Field Name] i£~ ~

To
~ 1

.E ~
~~ '~

0 :!:u

Position _ ~ Position

~ ~ ;
~u6

Position

GX21-9094 U/M 050'
Printed in U.S.A.

75 76 77 78 79 80

~~~;~f~ation I I I I I I ] 

c: 
0 

~ 

j 
." 
0; 
u: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 I NII= d A ... NiS ~lJ. 
o 2 I R Iq~ N~ Mf' 
o 3 I ~Ni5 (2j!2 
o 4 I L 1 Nil I ........ It-K 

@~ S e IFIL AIG IRIp, 

Figure 7-21 (Part 1 of 2). Coding to Use a Demand File to Assign Man Numbers to New Employees 

7-24 

( 



) 

) 

-~'" 

IBM. International Business Machine Corporation 

Program I 
Programmer Date I 

C Indicators 
~ - 0_ 

AL At ..Jo:: =0 Factor 1 

line ~~~ 
r- "0 a: 
E !:l (J) 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Prin1ed.nU.S.A. 

Graphic .1 I I I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Punching page~Of Program L I 
1 1 1 LJ Instruction .1 Punch I I I I I I Identification • 

The indicator in columns 58-59 of a READ 
Result Field specification will turn on each time READ 

encounters an end-of-file condition in the 
Operation Factor 2 demand file. If no indicator is used, the 

Name Len program halts each time end-of-file is 
~ 8 5- ~ " " encountered. z z 

3 4 5 6 7 8 9 10 It 12 13 14 15 16 t7 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5 

o 1 C It f"'\ ~!P !'r[i\ Iio'.ciil'i ['tH,'!; 
o 2 c 

IRiF lAo I' ~I -1_- f 1717!( ''11'''\ l/otl,.. 
o 3 C 

·Cc 

I-'Ihp ~;f>:i INlti !KIN I I 

@c NI717 Mirl IVE I Iy' ~:L ~G 
n I.., I r I I I , 

RPG OUTPUT SPECIFICATIONS 
IBM International BUSiness Machme Corporation 

GX21·9090 U/M 050' 
Printed .n U.S.A. 

Program 

Programmer 

o 
r--

Line 

345678 

o 2 0 

o 3 0 

o 4 ol~/11 

o 5 o 
o 6 

1 2 75 76 77 78 79 80 

Date 
Page [I] of_ ~~~;~;::ation 1 I. 1 1 1 1 I 

u: Space Skip Output Indicators :> Zero Balances X = Remove 

i ~he end-ol-lile indicator can be used to ~ I I "';;" .0;:" ,o;.~ '; ; ,- ;;:'::" 
i condition operations which should or 0:: ~~~,on ~~ ~~s ; g ~ Z = ;':~~ress 
~ should not be done when the demand ~ en in 0:: 

o'R file is at end of file. ~ ~ ~~~~~ ~ 

Filename 

Constant or Edit Word 

~~~~r-~--~~~~n-~~-r------~ w m ~ 

9 10 11 12 13 ~ ,~ ,~ 17 18 19 20 21 22 23 24 25 261~ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

INA'MIE

!B
lip

I
I

!
I

o 7 o f"IlR
o 8 0

o 9 0 11) 1 ~11N17
1 0 0

1 1 0

1 2 0 1/"'\ lL I'll 77

1 7 0

1 8 0

1 9 0

2 0 0

o
o
o
o

o

Figure 7-21 (Part 2 of 2). Coding to Use a Demand File to Assign Man Numbers to New Employees

Programmed Control of Input and Output 7-25

Considerations for Using READ and Demand Files

The following files can appear as Factor 2 in a READ opera
tion (all must be designated demand files with a D in col
umn 16 of the File Description sheet):

1. Sequential disk files processed consecutively and
specified as input or update files.

2. Indexed disk files processed sequentially by key and
specified as input or update files.

3. Indexed disk files processed sequentially within
limits and specified as input or update files.

4.

5.

6.

Direct disk files processed consecutively as input or up
date files.

Console and CRT files specified as input files.

Card files specified as input or combined files.

7. Ledger card files specified as input or combined files.

8. Data recorder files specified as input files.

9. Tape input files.

10. SIOC input and update files (SPECIAL device).

11. Teleprocessing input and combined files (BSCA device).

12. Device independent input files.

When using the READ operation for demand files remem
ber:

1. Demand files (except those assigned to the Model 6
KEYBORD) can only be processed by the READ
operation.

2. Control levels, matching fields, and look-ahead fields
are not allowed with demand files.

3. Numeric sequence testing on the Input sheet is not
allowed for demand files.

4. The MR indicator may not be entered in columns
63-64 (Field Record Relation) on the Input sheet.

5. When a demand file is conditioned by a U1-U8 indi
cator which is not on, no records will be read from
that file and the end-of-file indicator in columns
58-59 will not turn on.

7-26

6. When reading from several demand files during the
same RPG II cycle, record identifying indicators as
signed to the demand files will remain on throughout
the cycle if the-previous READ operations were
executed successfully.

REPETITIVE OUTPUT (EXCPT OPERATION)

RPG 1/ has a special operation code called EXCPT which
allows you to write or punch as many records as are re
quired during one program cycle.

Normally a record is written or punched at either detail or
total output time. Using EXCPT, records can be put out
during detail or total calculation time. Each time you use
the operation code EXCPT, specified records are written
immediately. For example, if you use eight EXCPT opera
tion codes in succession, you can get an exception output
cycle eight times. The records are identical if the data fields
in the exception records are not altered between the EXCPT
operation codes on the Calculation sheet.

When you use the EXCPT operation code, you also must
specify which records are to be put out during calculation
time. These records are identified by an E in column 15 of
the Output-Format sheet. Only those output lines identi
fied by an E will be put out during an exception output
cycle.

Using EXCPT and *PLACE

The reserved word *PLACE duplicates fields and places
them on the same line. In the discussion of *PLACE in
Chapter 3, an example is used in which three mailing labels
were printed for each customer using *PLACE. If you
wanted to print 15 labels for each customer, however, you
could not use only the reserved word *PLACE. The only
way would be to print the same three mailing labels five
times in succession.

In the RPG II program cycle, each record specified is written
or punched only once per cycle. For each record read by
the program shown in Figure 7-22, the detail line specified in
lines 01-04 is written only once. Remember that the *PLACE
entry causes the field to be duplicated. Using *PLACE
one line is printed with three identical names. The same is
true for each of the other records specified. If you want to
print 15 identical mailing labels, you need all records printed
five times each.

)

)

RPG
IBM Internation.1 Business Machine Corporation

Program

Programmer Date

0 "- Space Skip Output Indicators

~I ~

At L e --"" ~ ~ line Filename ~ lii
8. ~ III «

~ ~~
t- r.t\o'D ~ '!1

0 0 0 E ::;:
.f a R z z z

r.t\~fo
3 4 5 6 7 8 9 10 11 12 13 1415 1617 18 1920 2122 2324 25 26 27 2B 29 30

0 1 Olp IRtr NT 11"'1 1=\12.
o 2 0

o 3 0

o 4 0

0 5 0 :n !2
o 6 0

o 7 0

o 8 0

o 9 0 In 1.2.
1 0 0

1 1 0

1 2 0

1 3 0

1 4 0 1"'\ i~
1 5 0

1 6 0

1 7 '0

1 8 0

1 9 0

2 0 0

0

0

0

0

0

OUTPUT

Field Name II
a:

"AUTO

~ ~

~ ~
31 32 33 34 35 36 37 38 39

·N AM~
f,y-:p I, A Ir I,:
f*lp Il A rlf

~f"'I OIR
~!p UA "'I~
~Ip 1Ll4 rlF'

~1: Trv-
F;rr AITE
v-ID UA rll=
~p Ill4 rlF·

1;zI1:ip
~Ip IL A ~F
~Ip II A ~I=

SPECIFICATIONS

?> Commas

Yes

I Yes
End No
Positon No
in a:
Output ..J

Record III
0::

Zero Balances
to Print

Yes
No
Yes
No

GX21·9090 U/M 050-
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page CD of _ ~;~~;~f:.tion / /. I I I I I

No Sign CR X = Remove
Plus Sign

1 A J V = Oate
2 B K Field Edit
3 C L Z = Zero
4 0 M Suppress

Constant or Edit Word

4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1~15
1115

lLlll;-

1315
1"7~

IIlLl5*

lis
1?l5
b;5

lllLI5

I~I"
1"715

lLlLl5

tL IL OL 69 69 L9 99 99 ~ £9 ~g Ig 09 69 99 L9 99 99 V9 £!l ~!l 19 Oil 6~ 8~ L~ g~ S~ » £~ ~~ I~ O~ 6£ S£ L£ 9£ 9£ ~ ££ ~£ 1£ O£ 6~ ~ Ll 9~ S~ ~~ £~ Z~ I~ O~ 61 81 L I 91 !ll ~I £1 ~I II 01 6 8 L 9 9 ~ £ ~ I

Figure 7-22. Detail Output Operations

Programmed Control of Input and Output 7-27

IBM International BUlineu Machine Corporation

Program

Programmer Date

c
i~ -

A"d A'~d Factor 1

Line I~ 3<1

3 4 51! 1: I~ I~
7 '8 9

~I ..
115115 117118 19 20 21 22 23 24 25 25

01' Ie
0 12 Ie J
o 3 Ie If

0:4 Ie ~
Eaeh time EXCPT is executed, the
four output lines identified by an
E in column 15 are written

RPG CALCULATION SPECIFICATIONS

Operation Factor 2

Name Length

'34 35 35 37 38 39 40 41 42 143 44 45 46 47 48 149 50 51 52

~r rpT
FX rlpT

~.A ,.,

, 2

Page [0 of_

~~i~~;~rs
Arith",~etic

Ix Plus IMinusl Zero
I:;; Compare
1~1'>21'<21'·~

Form GX21·9093
Printed in U.S.A.

75 76 77 7B 79 BO

~~~~;~f:ation I I I I I I I 

Comments 

:~I~i9~ 5~O;' :::~~ 60 61 52 53 64 65 56 67 68 59 70 71 72 73 74 

, 

IBM In'"n.';on.' Bu.;n ... MOCh;\ Corporo';on 

RPG OUTPUT SPECIFICATIONS GX21·9090 U1M 050-
Printed in U.S.A. 

Program \ I Graphic I Card Electro Number ' 2 75 76 77 7B 79 ao 
Punching Page [0 of_ ~~~;~f:ation I 1.1 I 1 I I Programmer I Instruction I 

\ 

0 \ .... ~,~ Space Skip Output Indicators 
Commas Zero Balances No Sign CR - X - Remove 

I--- til v to Print Plus Sign , ~ I~ ,! ~ .1 1 
Field Name Ves Ves , A J V ~ Date 

I Ves No 2 B K Field Edit 
Line Filename 

~ 
End No Ves 3 C L Z ... Zero 

f 
And 

~II 
Positon No No 4 0 M Suppress 

~ DO 
in 

Ii I~ I~ I~ Output Constant or Edit Word 
-AUTO Record 

3 4 5 6 7 8 9 10 11 12 1"17 1811920121 313:3_34 35 36 37 38 la9 40 41 42 43 1441454547484950515253~555557585950515253~556557~~~ l71 72 73 74 

10 1' vt' IWIl. HI II- -4 

10 12 0 NIA IMF. l31'i' 
10 13 0 ;l(lp IL A irE:. 1115 
10 14 0 ,*p ~A irE 111lS 
1015 0 If: 2 
~ 16 ,0 Aln IDR 3~ 

\ ! ': 17 
I 

0 *Ip II A 1rJ: 71.'1 
1 lola ,0 ~Ip It A ~f. ILlL'i" 

013 10 If 2 
10 0 rlr TV 2ls 

'1' 0 _I.- ~~ ~II '" It:. 

I' 12 
10 ~Ip IAV" ~ 7l'l 

I' 13 0 ~p Arf 11~ 
, 14 0 ?, 
, 15 0 i~IP ~5 
, 16 ,0 fl,r'I ,IA r ,~ 75 
, 17 

1

0 ~p IL lA rlf llL .t; 
, la '0 

, 19 '0 

21 0 10 

0 

10 

10 

-
,0 

10 

tL IL O. 59 89 L9 99 S9 1>9 &8,Z9 19 09 6! 8! LS 99 S9 1>9 ts ZS IS 05 5t 8t U 9t St tt tt Zt It Ot 6t 81: Lt 9t St tt tt Zt It 01 sc: 8Z LZ 9Z 9Z tZ tz zz IZ OZ 51 81 LI 91 91 tl tl ZI II 01 6 8 L 9 S t t Z I 

Figure 7·23. EXCPT Operation Code Used with Exception Records 

7-28 

, 

,/ 



Figure 7-23 shows the specifications necessary to print 15 
mailing labels per customer. The *PLACE specifications on 

)

' the Output-Format sheet will cause three mailing labels to be 
printed side by side on the paper. Each EXCPT code used 
on the Calculation sheet causes all records identified by an 

) 

E in column 15 of the Output-Format sheet to be printed 
one time in the order shown on the sheet. Because all four 
lines are to be printed on the mailing label, all are identified 
by an E. The five EXCPT codes will cause five rows of three 
mailing labels each to be printed. 

Anothe~ set will not be printed at detail output time, be
cause all records having an E in column 15 can be printed 
only at calculation time when the EXCPT operation code 
is encountered. 

EXCPT can be used with punched cards or disk as well as 
printed output. It operates in the same way in all cases. 
Each time the EXCPT code is encountered, output lines 
identified by an E in column 15 are executed. 

Only output files may have EXCPT records specified; 
EXCPT cannot be used for combined files. 

Conditioning the Use of EXCPT Operation 

There are two ways you can condition an EXCPT opera
tion: (1) on the Calculation sheet; and (2) on the Output
Format sheet. 

The EXCPT operation can be conditioned on the Calcula
tion sheet in the same way as any other operation. As 
shown in Figure 7-24, the EXCPT records are put out only 
when MR is on. 

An indicator used on the Calculation sheet controls the 
printing or punching of all EXCPT records. Individual 
EXCPT records are controlled by indicators specified in 
columns 23-31 of the Output-Format sheet. These indica
tors are used in the same way for EXCPT records as they 
are for all other records. 

Restriction: Overflow indicators cannot be used to condi
tion an EXCPT line. This means that an EXCPT record 
cannot be a record that is printed only when the end of the 
page has been reached. 

Remember, these lines are exceptions. They print only at 
calculation time, not at output time. Therefore, they could 
/not possibly be printed when other overflow lin~s are. 

An EXCPT line may be, however, printed on the overflow 
line. If it is, the overflow indicator will be turned on as 
usual. EXCPT lines can even fetch overflow. You may 
place an F in column 16 of any exception line. If the over
flow indicator is on when the EXCPT line having an 'F in 
column 16 is reached, all lines conditioned by the overflow 
indicator will be printed before the exception line is printed. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

IBM International Business Machine Corporat!on 
, 2 75 76 77 78 79 80 

Program 

Programmer Date :~~f:ationl I 1'1 I I I Page []]Of_ 

C Indicators Result Field 
Resulting 

~ Indicators 

f-- 90: 
At Jd 

Arithmetic 

~e Factor 1 Operation Factor 2 Plus I MinusI' Zero 
Comments 

~5~ Length 
Compare 

Line Name 1>211<21',-2 I- '0 a: 
E ~ en 

~ 15 Lookup(Factor 21is 
~ 85 ~ z High Low Equal 

3 4 I; 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 5657 58 59 60 61 62 63 54 65 66 67 68 69 70 71 72 73 74 

0 , c 1,.11"1 5tT" ~Inl'" Ir-/rIAll " 1I'Iol 
0 2 c lj'tjiR IJ:lx ~Iph" 
0 3 C :-,:1" 

0 4 C -, 

0 5 C " 

- -
Figure 7-24. Conditioning the EXCPT Operation Code 

) 
Programmed Control of Input and Output 7-29 



./ 

.r 



) 

FORCE 

1. What processing situations would require you to alter normal RPG II multifile logic 
by using the FORCE operation? 

2. What two considerations are necessary to determine how the order of processing 
must be altered in a program? 

3. Describe what occurs when a FORCE operation is performed. 

4. A commission report is to be prepared listing each salesman and his commission 
amount. For each salesman record (MASTER file), there are seven commission 
records (COMMIS file). The records are described as follows: 

RPG INPUT SPECIFICATIONS 

Review 7· 

GX21·9094 U/M 050· 
Printed in U.S.A. 

IBM International Business Machme Corporation 

1 2 75 76 77 78 79 80 

Page OJ of _ ~~~~;~f:ation I I I I I I I Program 

Programmer Date 

I a Record Identification Codes Field 
~ Field Location 

~ 1 2 3 c: Indicators -
~ 

a . ., 
c: ';.. a :2{g ~ 

Line Filename ~ 10 
. ., 

Field Name 0; .;;; .2 Q; ] c- o; 0 j u...u:::: Zero 
Jj Position 

~ ~ j 
Position - ~ Position Iii From To 

0-

.S~ Plus Minus or t- ~Cl ~ 
~ r--r-~ J ~@j g -£ :~ " Blank 

~ § .3 ~~ 0; 

o R Z Z U U ZUU Cl ::;;u u: 
r;"Nf[) 

3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

a 1 I I .. " '-ifR AlA f1l:L.I 11 'r":l IH'") 
0 2 I z.. 7 I~IL IO.L 
0 3 I A 112 ~IL 102. 
0 4 I 13 1:1 ~Is It 5 NIBR 
0 5 I l~ [38 ~lA M~ 
o 6 I~ 

0 7 Ir .".1"1 1~ ~IB C1J1 1 rx 
o 8 I J B ~r MR J.\tJ" ~ 
a 9 I Itt LI.:'\ (1)1 11'1 NIU"" 
1 a I I I/-'Iol SII 5N IBR 
1 1 I 

1 2 T 

Review 7 7-31 



Page of GC21·7567·2 
Issued 21 December 1979 
By TN L: GN21·5709 

a. Are the following calculation specifications correct for the required order of file 
processing? 

RPG CALCULATION SPECIFICATIONS 
IBM 'nt,rn'lion,1 BusiMU Machin. Corpor.tion 

F",m GX21·9093 
Prin1edinU.S,A. 

12 757677787960 

Page IT] of _ :~;~f:llion I I I I I I ] Program 

Program"",r 011. 

C Indicators Result Field 
Resulling 

~ Indicators 

I---- 9~ At At 
~-

Arllhmllic 

-0 Operation Plus IMinu.1 Zero 

!~~ 
Factor 1 Factor 2 :€ = Comments 

Il ~ Campa .. 
line Name Length ... 5 

1>211<211-2 
E gill ~~ Lookup(Faclor 2)i • 
.f~5~ ~ 0 2 :;; z OJ: High Low Equal 

3 • 5 6 7 8 9 10 11'2 13 I. 15 16 17 18 19 20 21 22 23 2. 25 26 27 28 28 30 31 32 33 ~ 35 36 37 38 39 40 41 42 .3 44 45 46 .7 .a 49 50 51 5253 54 55 68 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7. 

o 1 C ~1I 
o 2 c* 
o 3 C~ 

o 4 c r1.l7 
o 5 CH 
f-

o 6 c rzl7 
~ 1 -

7·32 

Nl. 1 

~- AD 07 ,.,.., 
NT l~ - -

rlr lI~rr .~ llA J ,.~ NT 1~ 1.1 .. 

r:"'" ~,. r:r ITII"I 1 .IOt 
I I 

b. On what condition will a record from MASTER be processed? 
c. On what condition will a record from COMMIS be processed? 
d. What specification changes must be made to process seven COMMIS records 

following each MASTE R record? 
e. Is FORCE necessary to process the records? Why? 

5. Consider again the MASTER and COMMIS files as described in question 4, without 
match fields. However, assume that, for every MASTER record, there may be any 
number of related COMMIS records. 

Using look·ahead fields and FORCE, code the necessary input and calculation 
specifications for determining the proper order of file processing. Compare the 
number of specifications to the number required if the files were processed by 
matching record logic. 

READ 

6. List four ways in which a demand file differs from an ordinary secondary file. 

/ 



./ 
I 

l' 
.I 

EXCPT 

7. What occurs when the EXCPT operation code is executed? 

8. In a program, you need to punch a specified number of cards for each item. This 
number will be punched in each input card. Refer to the coded Input sheet for 
record layouts and code the Calculation and Output-Format sheets for the program. 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050' 
Printed in U.S.A. 

IBM Intern.tional Business Machine Corpor.tion 

Program 

Programmer Oat. 

I Record Identification Codes 

~ 

Line Filename il 

C ~ 
J 

~~ Position 
~ 

Position 

~~ 
Position 

~ 1:) t _ i!! Cl 

a~ c; ~6 ~ § z ~u 

Field Location 

° '0; 

From 
~ 

a:: To g ...J 

~ '2 
Cl 

1 2 

Page [0 of_ 

~ 0 

j2.g 
Field Name ] .!!~ 

"-"-
.~~ e "fi :s 

~ ~6 

75 76 77 78 79 80 

~~:;~f:ation I I I I I I I 

.§ 

~ 
] 
-c 

~ 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 11 N:t- I[ L J; IAA ~l 1 "11 
o 2 I 12 7 lrrr IEM AJI~ 
o 3 I S~ IS2 0N JM RJ;IR 
o 4 I 11 Iq /0 I'A RD 
o 5 I 

o 6 I 

o 7 I 

o 8 I 

o 9 I 

1 0 I 

11 I 

1 2 I 

1 3 I 

1 4 I 

1 5 I 

1 6 I 

1 7 I 

1 8 I 

1 9 I 

2 0 I 

I 

I 

I 

I 

I 
U IL OL 69 89 L9 99 59 t9 t9 19 19 09 65 as L5 95 59 t9 t9 l5 19 09 6~ 8~ L~ 9~ 9~ t~ t~ l~ I~ O~ 6t at L£ 9£ 5t tt ££ l£ 1£ Ot til u a 9l Sl ~l £l l~ Il Ol 61 81 LI 91 51 ~I £1 U II 01 6 8 L 9 9 ~ £ l I 

Review 7 7-33 



Answers To Review 7 

·7-34 

1. a. Match fields cannot be assigned to the files and you need to: 

• Alternate processing between two files. 

• Process a primary file record followed by a number of secondary file records. 

• Process a secondary file record only when it matches a primary file record. 

b. Match fields are assigned to both files and you need to alter the order of match
ing record logic to process a primary file record, then matching secondary file 
records before matching primary file records. 

2. a. When each file must be processed and under which conditions. 
b. Whether RPG II logic would select the appropriate record or if the file must be 

forced. 

3. No action occurs at the time the specification is performed. At the beginning of the 
next program cycle, the next record from the file specified as Factor 2 of the 
FORCE operation is selected (by being forced) for processing. 

4. a. No, the specifications a.re incorrect. 
b. A MASTER record will be processed in every program cycle until end of file is 

reached. 
c. A COMMIS record will not be processed until all records in the MASTER file 

have been processed. 
d. Lines 05 and 06 should not be conditioned by record identifying indicator 07. 

The COMP operation should be performed for every record type to determine if 
the FORCE is to be performed. It may be necessary to force a COMM IS record 
following either a MASTER record or another COMMIS record. For this reason, 
you must be able to perform the FORCE operation while processing either of 
the record types. 

e. The FORCE operation is not necessary. The RPG II logic of matching records 
can determine the proper order of processing if the SLSNBR fields on each 
record type are assigned as match fields on the Input sheet. 



'\ 
) 

) 

) 

5. Input specifications to define look~ahead field: 

RPG INPUT SPECIFICATIONS 
IBM International BUSiness Machine Corporation 

Program 

Programmer Date 

I Record Identification Codes 
'Field Location 

I--- 2 ' 3 

Line Filename 

Position Position ~ Position 

~ ~ j 
~u6 

From To 

c: 

:~ 
~ 

~ 
.~ 

c 

1 2 

pageITlo,_ 

~ 5 

~~ Field Name ] u..u.. 

l l·~ 
~& 

GX21·9Q9.I U/M 050' 
Printed in U.S.A. 

75 76 77 78 79 80 

~:;~f:ation I I I I I I I 

.~ 
~ 

] 
.., 
0; 
u: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 86 67 68 69 70 71 72 73 74 

o 1 1M A~ tr ~,R 1 I'Ir: 
o 2 1 2 i IFIL to! 
o 3 1 R 12. f: II 11"'12. 
o 4 1 lll3 lL, rts Il5 MiBR 
o 5 1 ltls l3g N~ ~F= 
o 6 1

1

- 1"111"1 ~ IRQ 1 ,.~ 

o 7 1 11 . ~'L IrllK AiT'f 
o 8 1 lll~ lL" ~", N M 
o 9 1 12 1-,0 '"' ~N R~ 1 0 1 

11 1 ~ ~u: N~ N~t( 

1 2 1 . T I 

Calculation specifications to determine order of file processing: 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Prlnt.d in U.S.A. 

IBM International BUlin.ss Machine Corpor.tion 

Program 

Programmer Date 

C Indicators 
~ 

~ 0_ 

AL At =~ Factor 1 Operation Factor 2 
~3~ 

Line ~oti 
E ~ '" 
&85~ (; (; 

Z z 
3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

o 1 C N'A N'~If'( 
,.,., IMP Cit lsN I~'R. 

o 2 c 12.~ 
O 3 C~ 
o 4 CIJt Il.lL If"IN IME ~IN5 TIHlf- N~ X1 ~h M~ rl§ 511 I'Ilf\I '~r~ 
o 5 Cill AND M lsT A!~ IPR ,"V" J:c::. ~Ir: f'\ RIE: Fn Ri~ AN 
o 6 C 

~ .. ~ I 

Result Field 

j:z: 
Name Length ~ ~ 

~~ 
~ :;; 
c:t: 

43 44 45 46 47 48 49 50 51 52 53 

Irh Dn Ir C; II=~IR. 

1 2 

pageITlo,_ 

Resulting 
Indicators 

Arithmetic 

Plus I Minusl Zero 
Compare 

1 >211 <2(1-2 
Lookup(Factor 2hs 
High Low Equal 

75 76 77 78 79 80 

~::~:'.tion I I I I I I I 

Comments 

54 55 56 57 58 59 60 81 62 63 64 65 86 67 86 89 70 71 72 73 74 

~I II h hK ~~ "'h IIl1I'11 I~IE.I' 

~l4 Mf- F" 'Rr- E-

T!~IE. r I IRIA ~ 1\1 IT ~IA It ~ IC;M ~N 
hrr II-IER MA 5rr ER RI~ IRI[ 

Answers To Review 7 7-35 



If match field entries had been assigned to the SLSNBR fields on the Input sheet, 
input specification lin~s 10 and 11 would not be necessary to define the look-ahead 
field. No calculation specifications would be required to determine the order of 
processing. 

6. a. ,A demand file is processed only by the READ operation code during calculations. 
Demand file records are never selected by normal RPG II multifile logic. 

b. Match fields cannot be assigned to a demand file. 
c. Look-ahead fields cannot be defined for a demand file. 
d. Reading an end of file record (/*) from a demand file does not set the LR 

indicator on. Instead, an end of file indicator can be entered in columns 58-59 
of the READ specification line. This indicator will turn on each time a READ 
is executed which encounters an end of file condition in the demand file. 

7. I mmediate output for specified records occurs. These records are coded as excep
tion records by an E in column 15 of the Output-Format sheet. 

8. See Specification sheets. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM Intern,tion.1 BusiMIf MKhine Corporation 

Program 

Programmer Olle 

C Indicators 
~ - ~ At At 

!l E 
Factor 1 Operation 

Line > ..J 
I- 0 

E ~ 
~ ~ ~ .f8 

3 4 5 6 7 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 2829 30 31 32 

0 1 C 

o 2 C 

o 3 C 

o 4 c ~IT ~IRrr rr~IG 
o 5 c (ll I=r ~Ipir 
o 6 c ~1 S 1 lA 
o 7 c tZl ~5 r;h iTh 
A ~ -

RPG 
IBM Intern'lion,1 Business Machine Corporation 

Program 

Programmer Dale 

0 Skip Output Indicators 

-
Line Filename 

~ 
l-
E 
.f 

Result Field 

Factor 2 

Name Length 

33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 48 49 5051 

L N 
~I ... AR~ 

OUTPUT SPECIFICATIONS 

[?> Commas 

I I Ves 
Ves 
No 

Field Name f-.---"'T"""I 
~r End 

Positon No 
in a: 
Output :::; 

Record ~ 

1 2 

page,DJo'_ 

Resulling 
Indicators 

Arithmetic 

Plu. JMinu.lzero 
Compare 

1>21<21-2 
LookuplFlclor 2li. 
High Low Equal 

75 76 77 78 79 80 

~~:;~':llion I I I I 1 1 I 

Comments 

54 55 56 51 58 59 60 81 62 63 64 65 66 67 68 89 70 11 12 13 14 

rlla:; 

Zero Balances 
to Print 

Ves 
No 
Ves 
No 

1 2 

pageDJo,_ 

No Sign CR 

A J 
B K 
e L 
0 M 

Constant or Edit Word 

GX21·!J090-2 VIM 050· 
Printed in U.S.A. 

75 76 77 78 79 80 

~~;~f:llion 1 I. 1 1 1 1 I 

X - Remove 
Plus Sign 

V - Dale 
Field Edil 

Z -Zero 
Suppress 

3 4 5 6 1 8 9 10 II 12 13 14 15 16 11 18 1920 21 22 23 24 25 26 21 28 29 30 31 32 '3334 35 36 31 38 39 4041 4243 44 45 46 41 48 49 5051 52 53 54 55 56 51 58 59 60 61 626364 6566 67 68 69 70 71 7273 74 

~II 
o 2 0 

o 3 0 

7-36 

/ 
I 



.... \ 

) 

\ 
Chapter· 8. Tables 

CHAPTER 8 DESCRIBES: 

Uses for tables. 

RPGII coding used to search tables. 

Designing table input records . 

. LOKUP operation code. 

Use of table data in calculations and output operations. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

RPG II object cycle. 

Matching records processing. 

Use of indicators to condition, operations. 

'AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

State uses for tables. 

Define a table on the Extension sheet. 

Code problems using a single table. 

Code problems using related tables. 

Define and code the LOKUP operation code with tables. 

Describe data and store it in a table. 

Note: You can use the review questions contained in Review 8 at the end of this 
chapter to test your comprehension of the chapter. Answers follow the review 
questions. 

Tables 8-1 



INTRODUCTION 

If you wish to make a telephone calltoaperson; you must 
first determine his telephone number. Imagine trying to ob
tain the number if no telephone directories were available! 
For such reasons, similar items of information are grouped 
and organized so they can be'referen,ced easily and qU-ickly. 

A table is a collection of related data organized in such a 
way that each item of information can be referenced by its 
position within the table. A telepho-ne directory consist~ of 
two tables of information:' a narre'listarrarigedalphabeti~ : 
cally and a number list arranged in no apparent order. Each 
telephone number, however, occupie's ~ po'sition in the num
ber list corresponding to the position of a particular name in 
the name list. 

Each item within a table is called a table element., Thus, 
each name would be an element of the name tabl~, while 
each number would be an element of the telephone number 
table. 

If you wished to determine Ken Adams' telephone number, 
you would look through the list of names to locate KEN 
ADAMS. This procedure of checking the elements ofa ' 
table one at a time to find a particular entry is called search
ing a table. Before looking through the name list,-you must 
know what information you wish to find, the name KEN 
ADAMS. This data is referred to as the search, word. ' 

As shown in Figure 8-1, the name list is'searched to find 
an entry which is equal to the search word. The matching 
entry, KEN ADAMS, is found in the third element of the 
name table. His corresponding telephone number, then, is 
found by selecting the third element in the number table. 

When two related tables are used, as in a telephone direc
tory, actually only one table is searched (name table). When 
the search condition (in this case, an equal match) has been 
satisfied, the data in the corresponding element of the sec
ond table becomes available. Thus, the first table is used as 
a means of locating data in the second table. 

A telephone directory is an example of tables which organ
ize information that we must reference over and over again 
in our every day lives. Likewise, tables can be used to or
ganize data which must be referenced repeatedly in your 
data processing jobs. 

8-2 

Search Word 

NAME Table NUMBE R Table 

ABRAMS JOHN ,~ 286-6424 

289-2933 

ADAMS KEN ••• • 938-7515 

ANDERSON THOMAS E •• 935-8381 

BABITT ROBERTA ••• 288-7587 

BARSNESS RICHARD ••• 938-3932 

WIK GAl L • • • • . • • • • 288-4663 

Figure 8-1. Searching a Table 

Let's assume that customers have purchased various items 
from a company ~ales,~atalog. The sales file (Figure 8-2) 
would contain records showing the customer's account num
ber(CUSTMR), the item ordered (lTMORD), identified by 
a code, and how many were ordered by that customer 
(OTYORD). 

Furthermore, the company keeps an inventory file (Figure 
8-2) to contain data about each item which is carried in 
stock. A separate record is kept for each item showing the 
item code. (ITEM), the quantity on hand (OTYSTK), and 
the unit cost of each item (COST). 

Before you can ship the customer's orders, you must first 
determine if the item ordered is still carried in stock. To do 
this, a clerk could spend time looking up each item ordered 
to see if that item is recorded in the inventory file. How
ever, the same item will probably be ordered by many cus
tomers. Thus, the same inventory file records would have 
to be referenced over and over again. 

/' 



SALES File 

) Record 

2 

3 

4 37 
I Z 31 5 "'~ZIlI"'5""""20' 

CUST~ QTVORD 
ITMORD 

) 

Figure 8-2. Data for Determining if Orders Can be Filled 

) 

Record 

2 

3 

4 

6 

6 

7 

8 

INVNTRV File' 

2600 
• 1 • 

ITEM \ 
~TVSTK 

1:10 
IZI') I. 15 " 11 II t9 :0 

\' " ' 

COST 

Tables 8~3 



Searching a Single Table 

RPG II can search for the data in much less time by per: ' 
forming a table lookup function. As shown in Figure 8-3, ~ 

a table (TABITM) would be set up in sto'rage to contain ali 
of the items available (see Loading Tables in this chapter 
for methods of loading table data into storage). 

The second field ,of each sales record tells the program 
which item to look up. For every sales record read into th~ 
computer, TAB ITM is checked to see if the search word 
(item code on the sales record) matches an entry in the 
table. 

In addition to searching for data quickly, use of the table 
lookup can often reduce the number of RPG II specifica
tions needed in a program.)~11 you must~ois, set"up ,and, 
define the table, and specify that the lookup operation is. 
to be performed. 

TABITM 
! , 

A 23 

.' A87 ' 

B 21 

B 83' 

C46 

C 72 

C89 

! 
Search 

Y 33 
Word 

Y 58 

,2i7 

"F\,o"'''~m 
CUSTMR ITMORD QTYORD 

SALES record 

Figure 8-3. Searching a Table for a Particular Data Item 

8·4 

Designing Table Input Records 

Data used to create a table must be obtairied from table in
put records. These records can be taken from the~eyboard 
or CRT, punched ca'rds, m'agnetic tape, or disk. The records 
are read by the computer and entries are placed side by side 
in storage to form the table. 

The inventory file for this company indicates that 98 types 
of items are carried in,stock. Therefore, the 98 item codes 
must be contained in table input records to provide the en
tries for TABITM. 

Number of Table Input Records Required fo.r a Table 

How many records would be 'necessary to punch the 98 
item codes? That is entirely up to you. The number of 
records required to contain the table data depends on the 
number of entries you want on each record. 

Number of Entries on a Table Input Record 

Table input records may either contain one entry or a num
ber of entries. The point to remember is that all table input 
records for a single table must contain the same number of 
entries, except for the last record. 

The use of one entry per record is very convenient if it is 
necessary that the entries be in a particular order. Then to 
add or delete entries, you merely add or remove a record. 
Otherwise, you would have to recreate all of the records 
from the point of change to the end of the table. However, 
in the TABITM table, item code entries need not be in order, 
so including a ~~mber of e~tri~s in each record reduces the 
number of records required. 

For TABITM, 98 entries must be recorded on table input 
records. If 96-column cards are used, 32 entries fit on each 
record, since each item code is three characters long. There
fore, to save card space, you could punch three table input 
records containing 32 entries each and a fourth table input 
record for the remaining two entries. (See Figure 8-4.) In 
this way, all records contain,the same number of entries 
except the last record. 

Of course, you do not have to fill the entire record with en
tries, as we have done. For instance, you may want the last 
36 columns of a card to contain no punches. In that case, 
you could punch 20 entries (card columns 1-60) into each 
of four table input records. The remaining 18 entries could 
then be punched into a fifth record. 

/ 



) 

) 

Records 

1,2 and 3 

32 Table 

Entries 

2 Table 

Entries 

Notice in Figure 8-4 that the two entries in the fourth table 
input record are placed side by side. Since there are unused 
card columns on the record, why not space the entries? 
You cannot, because all entries must be continuous on the 
record, with no blank columns between entries. Further
more, the first entry on each record must begin in position 
one. 

Describing Table Input Records with Extension Specifica
tions 

Once the table input records have been designed, you then 
describe them to the RPG II Compiler program. Ordinarily, 
the data on input records is described by entering specifica
tions on the Input sheet. However, you describe the data 
on table input records by coding extension specifications 
on the upper half of the Extension and Line Counter sheet. 
(Hereafter, we will refer to the upper portion of the form 
as the Extension sheet and the lower portion as the Line 
Counter sheet.) 

Figure 8-4. Four Table-Input Records for TAB,ITM Entries 

Figure 8-5 shows the extension specifications needed to de
scribe the table containing item codes. As you can see, a 
single table can be described using only columns 27-45. Of 
course, remember that the page and line number (columns 
1-5) and form type (E in column 6) are also part of the en
tire specification line. 

IBM IntematK)nal Business Machine Corporation 

Program 

Programmer Date 

E Record Sequence of the Chaining File 

t--- Number of the Chaining Field 

Line 8. 
~ 

~ 
From Filename 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 1 E 

o 2 E 

o 3 E 

0 4 E 

0 5 E 

0 6 E 

0 7 E 

0 8 E 

E 

E 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 

Extension Specifications 

Number 
of Number Table or 

Table or Entries of Length j~ Array Name 
Length 

To Filename 
Per Entries of of 

Array Name 
Record Per Table Entry :§ ~ ~ 

(Alternating Entry 

~ or Array 
Format) 

~~l 0: 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 5253 54 55 56 

riA IPJlr rr~ 132. Iq~ I~ 

1 2 

Page [0 of_ 

~ 
fl 
5i 
j 

formX21.gog1 
Printed in U.S.A. 

75 76 77 78 79 80 

Program rTTTrn 
Identification 

Comments 

~S6S600~~~~~S6~S6S6ronnn~ 

Irrr I~IM Ir 'L I~I~ lIN sh"lJ< 

, 

-" 
) Figure 8-5. Describing Table-Input Records 

Tables 8-5 



The extension specifications provide the following informa
tion about each table to be used: 

1. 

2. 

3. 

Name of each table (columns 27-32). 

Number of table entries per table input record (col.' 
umns 33-35). 

Number of table entries per table (columns 36-39). 

4. Length of each entry (columns 40-42). 

5. 

6. 

7. 

Whether packed or binary data is contained in the 
table (column 43). 

Number of decimal positions in each num~ric entry 
(column 44). ", 

Sequence of table entries, if any (column 45). 

Each type of entry will be discussed in turn. 'From File
name (columns 11-18), To Filename (columns 19-26), and 
the entries in columns 46-57 are described later in this chap
ter. 

Assigning Table Names 

Every table used in a program must be assigned a name 
from three to six characters long. The table name may con
tain any combination of alphabetic characters and numbers. 
However, the first three characters of the name must be 
TAB. 

With these points in mind, which of the following table 
names are not acceptable and why? 

TABA 15ABCD 

TABC TABSTATE 

TB123 *TAB 

TAB$2 

TAB C and *TAB are not acceptable, as table names ,cannot 
contain blanks or special characters, such as the *. TAB$2, 
on the other hand, is an acceptable table name, since $ is 
one of the three special characters which can be considered 
an alphabetic character. (The other two are # and @.) 

The names 15ABCD and TB 123 are invalid because they 
do not begin with the alphabetic characters TAB. Since 
TABSTATE contains more than six characters, it cannot 
be an acceptable table name. T ABA and T AB$2 are the 
only two valid table names shown. 

8-6 

If possible, it is helpful to assign table names which are 
meaningful. For this example, the name TAB ITM has 
been assigned. Such a name gives an indication of what 
kind of data is contained in the table (in this case, item 
codes). 

When a single table is being used, as in thi~ case, the table 
name is entered in positions 27-32 of the Extension sheet 
(see Figure 8-5). 

Number of Table Entries per Table Input Record 

The number of entries in each table input record is speci
fied in columns 33-35. Figure 8-5 shows 32 entries per rec
ord for TABITM. In this way, the compiler program will 
exp.ect all table input records to contain 32 entries, except 
the last record which may have fewer entries. Notice that 

,the number entered in these columns should end in column 
35. 

Number of Table Entries Per Table 

The number of entries which can be contained in the entire 
table is entered in columns 36-39 of the Extension sheet. 
As shown in Figure 8-5, the number (98 for TABITM) should 
end in column 39. 

Length of an Entry 

The length of each table entry is indicated in columns 40-42, 
with the number ending in column 42. Numeric table en
tries may be up to 15 digits long, while alphameric entries 
can be as long as the maximum record length for the device 
(256 maximum). 

For TAB ITM, the length 3 has been entered. It is possible 
to specify only one length. Therefore, this necessarily means 
that all entries in a table must be the same length. 

At this point, you may be wondering what to do if all en
tries are not the same length. For instance, you might wish 
to make a table contain,ing the months of the year. The 
solution is simple - all entries are made.to be the length of 
the longest entry . .The word SEPTEMBER contains the 
most characters. Therefore, each entry should be 9 charac
ters long. To make JUNE an entry with length of 9, you' 
would place 5 blanks after the letter E (see Figure 8-6). In

serting extra blanks to lengthen the data entry is referred to ' 
as padding with blanks. If your table entries were numbers, 
instead of letters, you would pad the short entries with 
zeros or blanks. (For numeric entries, the zeros or blanks ( 
would probably be placed in front of the number.) \ 



) 
J A N U A R Y b b 

F E 8 R U A R Y b 

M A R C H b b b b 

A P R L b b b b 

M A Y b b b b b b 

J U N E b b b b b 

J U L Y b b b b b 

A U G U 5 T b b b 

5 E P T E M 8 E R - Longest Table Entry 

0 C T 0 8 E R b b 

N 0 V E M 8 E R b 

D E C E M 8 E R b 

Table Of Months 

Figure 8-6. Making Table Entries the Same Length 

) Padding a table entry with blanks should not be confused 
with spacing entries on a record. As mentioned, no blanks 
can occur between entries. However, blanks can be part of 
an entry in order to make all entries the same length. 

Packed or Binary Table Data (Systems with Disk Storage) 

An entry must be made in column 43 if the data for a pre
execution time table is in packed decimal (P) or binary (B) 
format on disk or tape or in packed format on 80-column 
cards (not allowed on 96-column cards). This entry applies 
only to numeric tables. For numeric tables in packed deci
mal format, the unpacked decimal length of the entries 
must be entered in columns 40-42 (Length of Entry). For 
numeric tables in binary format, enter the number of bytes 
required in storage for the binary field. For a two-position 
binary field, the entry in column~ 40-42 is 4; for a four
position binary field, the entry is 9. 

Entries with Decimal Positions 

When the entries of a table are numeric, it is necessary to 
specify in column 44 the number of decimal positions (0-9) 
in each entry. Even if a numeric entry contains no decimal 
positions, a 0 must still be entered to indicate numeric data. 
When decimal positions are not specified (column 44 left 
blank, as in Figure 8-5), RPG II considers the table entries 
to be alphameric. 

Sequence of Table Entries 

For TABITM, the item codes need not be in any particular 
order. Thus, column 45 is left blank in Figure 8-5. How
ever, if the table entries are in ascending or descending 
order, an A or a D is entered under Table Sequence (column 
45). Note that if a table is to be in sequence the entry is 
made on the Extension sheet. For input files, other than 
table files, the sequence entry is always made on the File 
Description sheet. 

Coding the Table Lookup Operation (LOKUP) 

Once the table input records have been described, you tell 
RPG II to search the table by coding the LOKUP operation 
on the Calculations sheet. This involves specifying: 

1. The LOKUP operation code. 

2. The name of the table to be searched. 

3. The data which is being searched for. 

4. Conditions which must be satisfied for a successful 
search. 

Tables 8-7 



As shown in Figure 8-7, the operation code LOKUP is en
tered in columns 28-32 of the Calculations sheet. This 
operation code causes a search to be made for a particular 
item in the table named in Factor 2. Thus the name of the 
table being searched, TABITM, is entered under Factor 2 
(columns 33-42), beginning in column 33. Remember that 
the table being searched must have been previously de
scribed on the Extension sheet. 

Factor 1 (columns 18-27) contains the field name of the 
data which is used for comparison during the table search. 
I n this case, the second field of the sales record (called 
ITMORD) contains the code for the item ordered (the 
search data). Thus, ITMORD is entered, beginning in col
umn 18. 

The fields on each SALES record have been described on 
the I nput sheet. The field (lTMORD) which contains the 
search data must have been described so that it agrees with 
the way the table e,ntries have been described. That is, the 
search data and the table entries must have the same length, 
the same number of decimal positions, and the same format 
(alphameric or numeric). As shown in Figure 8-8, both 
ITMOR D and the table entries are defined as three charac
ters long and as alphameric (no decimal positions specified). 

In this case, the item which is being searched for must be 
an exact match of the search data. This is referred to as 
searching for an equal condition only. The lookup pro
cedure would begin at the first element of TABITM and 
continue, one element at a time, until an equal entry is 
found. For this reason, it isn't necessary that the table 
elements be in ary particular order when searching for an 
equal condition'

j 
. 

8-8 

Of course, if the item searched for is not found after check-
ing all elements of TABITM, the company does not carry /' 
that item in stock. Thus, the equal condition must be satis- i 
fied if this search is to be successful. 

But, how will you know if the search was successful? To 
determine this, you must know if an equal match was found 
or not. Thus, you should assign a resulting indicator for the 
lookup which will turn on if (and when) the equal condition 
is satisifed. 

As shown in Figure 8-7, the indicator 05 is assigned by en
tering 05 on the Calculation sheet under Lookup Equal 
(columns 58-59). If an entry cannot be found in the table 
to correspond to the search dat~, the 05 indicator will turn 
off. 

TWO TABLE SEARCH 

As you have seen, a single table can be searched merely to 
see if certain information (an item code) is in the table. 
However, usually you will want to do more than this. For 
example, when the orders are shipped, you will also want 
to send bills to each customer for the amount of the order. 
Before RPG II can print the bills, it must calculate the 
amount each customer owes. To do this, the unit cost of 
each item must be determined. The unit cost of an item is ,/-
then multiplied by the number ordered to give the total \ 
amount due from a customer for that type of item. 



\ 
.-./ 

-.., 

RPG CALCULATION SPECIFICATIONS 
IBM International Busin.ss Machin. Corporation 

Program 

Programmer Date 

C Indicators Result Field 
~ 

r-- 0_ 

AL At 
-'a:: =0 Factor 1 Operation Factor 2 

~~~ Name Length 
Line '0 a:

E E ~ a a a
.f 85 z z z

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 3a 39 40 41 42 43 44 45 46 47 48 49 5051

0111 C I .LIT IMIDKln I I I HI<\"\p ... 1",1 Bit ITIM I I I I I I I I I I
01 21 C I I I I I I I I I I I I I I I I II I III \ I I I I I I I

1.1 I

~ :e g
~ ;
~~
·2 ';
ox
52 53

Fa.m GX21·9093
Printed in U.S.A.

1 2 75 76 77 78 79 80

Page [00'_ ~~~~;~':ation I I I I I I I
Resulting
Indicators

Arithmetic
Plu. IMinusl Zero Comments

Compare

1>211<211-2
LookuplFactor 2)j,
High Low Equal

54 55 5657 5B 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

I I o1s Irlsl cr:-IT~M lrlNllslrlkl
I I I II I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I

Figure 8-7. Specifying a Single-Table Search

\,

IBM International Business Machine CorporatiOn

Program

Programmer Date

I - 1

'" I~ §

ro~r-lili
Filename

Line I!
Ij

RPG INPUT SPECIFICATIONS

1 2

Page [00'_

Record
Field Location

2

To

GX21·9094 U/M 050·
Printed in U.S.A.

75 76 77 78 79 80

~~~~;~':ation I I I I I I I 

Field 
Indicators 

IZero 
Plus Minus I ~~ank 

lA'Nio 
3 4 5 16 7 8 9 10 11 12 131'4 '51'6 17 18 19 20 .21 22 23 24 25126127 2B 29 30 31 32133 34,35 36 37 454647148 49 50 51152 53 54 55 56 57 58159 60 61 6216364 65 66 i67 6B 169 70 71 72 73 74 

10 1 II~ AI 11=1c; 
10 ,2 II 

AlA I I 

I n Ie I~ I I I I I I I I I 

Table Entry: 
3 Alphameric Characters 

RPG ON AND LINE COUNTER SPECIFICATIONS 
IBM International Business Machine Corporation 

To Filename Table or 

Search : 
3 Alphameric Characters 

1 2 

Page [0 of_ 

Form X21-9091 
Printed in U.S.A. 

75 76 77 78 79 80 

Program rTTTrn 
Identification ~ 

Comments 

~:igUre 8-8. Specifying the Same Length for Search Word and Table Entry 

Tables 8-9 



At this point, you have already created a table (TABITM) 
listing the codes of all items the company sells. The unit 
cost for each item (a 5-digit field on each inventory file 
record) can be stored in a second table, called TABCST. 
This table should be organized such that the position of a 
cost within TABCST corresponds to the position of its re
lated item code in TABITM (Figure 8-9). 

INVNTRY 

file 

98 

item 

<, codes 

I 
ITEM OTYSTK 

-
-
-

-+- 3 Characters-

TABITM 

\ 
COST 

00140 

00025 

01623 

00129 

-
~ 

----
~5Digits-

TABCST 

Figure 8-9. Creating Two Related Tables 

8-10 

98 

unit costs 

Let's take a look at one of the records in the SALES file 
(Figure 8-10) and see how the two tables can be. used in 
determining the "appropriate cost for the item ordered. 
The procedure is much the same as the way you located 
Ken Adams' telephone number in the telephone directory. 

SALES record 

569823 

A23 

A87 

B 21 

C36 

C42 

C65 

TABITM 

Figure 8-10. Performing a Two-Table Search 

37 

t 
OTYORD 

00140 

00025 

01623 

r---' 
.-.00129 I L ___ J 

02575 

00249 

TABCST 



) 

) 

First, TABITM is searched to find the table element which 
contains the same item code as the search word (B83) on 
the SALES record. If no match is found, that SALES rec
ord can be selected into a special stacker so the customers 
can be notified of the orders which can't be filled. How
ever, in this case, the equal entry is found in the fourth 
element of TABITM. The entries in TABCST were organ
ized to correspond with entries in TAB ITM. Therefore, the 
fourth element of TABCST contains the unit cost for the 
search word. The program can then use the information 
referenced (unit cost) to calculate the amount to be billed. 

When two related tables are usea, as in this example, actu
ally only one table is searched. When the search condition 
(in this case, an equal match) has been satisfied, the data in 
the corresponding position or element of the second table 
(related table) becomes available. Thus, the first table is 
used as a means of locating data in the second table. I n a 
telephone directory, a person's name is used as a means of 
locating his telephone number. 

Designing Table Input Records for Two Tables 

Records With Entries For Only One Table 

I n designing the table input records for T ABITM, you were 
concerned only with entries for a single table. Thus, four 
table input records were created to contain only item codes. 

Another set of table input records could be created to con
tain the 98 unit cost entries for TABCST. Each unit cost 
entry (from the inventory records) requires five columns 
(three digits for dollars, t'wo digits for cents). Again, it is 
up to you' to determine how many records you wish to use 
and the number of entries to be contained in each record. 
For example, let's say that 18 entries (columns 1-90) are 
punched into each of five table input cards and the remain
ing eight entries are punched into columns 1-20 of a sixth 
card. 

As shown in Figure 8-11, you would then have two separate 
table input files: records for TABITM containing only item 
codes and TABCST records containing only unit cost 
amounts. 

I 
I 

I 
I 

I 2 Item Code Entries 

32 Item Code Entries 

32 Item Code Entries 

32 Item Code Entries 

Table-Input File 

forTABITM 

(4 records) 

1-

.. 1-:-
-

I 8 Unit Cost Entries 

J 
I 18 Unit Cost Entries 

18 Unit Cost Entries 

18 Unit Cost Entries 

18 Unit Cost Entries 

18 Unit Cost Entries 

Table-Input File 

forTABCST 

(6 records) 

-
-

1-

i 

1-

-

Figure 8-11. Separate Records for Each Table 

Tables 8-11 



Records With Entries For Two Tables 

Another method of designing table input records allows you 
to use only one table input file for both tables. This may 
save input record space and will usually reduce the number 
of RPG II specifications needed to describe the table input 
records. Entries from the first table are alternated with 
entries from the second table (Figure 8-12). The records 
are then referred to as alternating format table input records. 

As you can see, a table input record c:m begin (position 1) 
with an entry from either the first table or the second table. 
However, if you decide to use the alternating fqrmat, eve~y 
record in the table input file must begin with the same type 
of table entry (table 1 or table 2). 

The number of entries that you put on an alternating fo'r
mat, table input record is still up to you. If you wish, a 
single record can contain one code for TABITM and one 
unit cost from TABCST. Or, the record may contain as 
many pairs of related entries as possible. In this case, all 
records, except the last, must contain the same number of 
entries. 

Every record in file 
begins with entry 
for the same table 

Single Table - t"nput File. 
Entries for TABITM a~d 

TABCST in Alternating 
Format. 

Figure 8-12. Alternating-Format Table-Input Records 

8-12 

For TABITM and TABCST, each pair of related entries will 
require eight card columns. By punching 12 pairs of entries 
in a record, an entire card can be filled. Thus a table input 
file to contain all entries (98 pairs) from both tables can 
c()nsist of 'niriealternating format, table input cards. The 
first eight records might each contain 12 pairs of entries 
and the last record might contain two pairs of entries. 

As mentioned before, entries for TAB ITM are each 3-char
acter alphameric data. For TABCST, 5-digit numeric en
tries are needed. All of the entries for a single table must 
be alike; that is, all alphameric or all numeric. However, 
the en!ries. f,of an alphqm~ric table and the entries for a 
numeric table can both be on the same table input record 
when an alternating format is used. 

Although each table input record contains entries from both 
tables, actually two separate tables are created in storage 
from these records. The RPG II Compiler knows that two 
tables are to be set up, rather than a single table, because of 
the way the records are described on the Extension sheet. 

. l·' 

. Last record contains 
two pairs of entries 

'"'' 



Describing Two Tables with Extension Specifications 

'\ 
RPG EXTENSION AND LINE COUNTER SPECIFICATIOI' 

) When two related tables are used in a program, you have the 

) 

) 

choice of designing two table input files (one for each table) 
or only one table input file consisting of al,ternating format 
table input records. 

If you decided to set up TABITM and TABCST using sep
arate files, as discussed earlier, the two tables would be de
scribed as shown in Figure 8-13. Since each table has its 
own set of input records, a separate line of extension speci
fications is needed for each table. 

Now take a look at Figure 8-14 which describes the same 
two tables. Notice that only one extension line is coded 
when alternating format, table input records are used. 
Since one line is coded for each set of input records, the 
second table of the alternating format record must be en
tered on the same extension line as the first table. 

Remem~er that two separate tables are created, even if you 
use alternating format records. Therefore, both tables must 
have unique names, which are specified on the Extension 
sheet. The table whose entry appears firston a table input 
record is named in columns 27-32. The name of the alter
nating table (in this case, TABCST) is entered in columns 
46-51 of the same line. The alternating table is always the 
table whose entry is the second one in a pair of related en
tries. 

Notice that Number of Entries Per Record (columns 33-35) 
and Number of Entries Per Table or Array (columns 36-39) 
do not have corresponding specification columns for alter
nating tables. Since the number of entries per record and 

Extension Specifications 

Number 
of Number " - Table or 

length .£! 0 length Table or Entries of 
]~ Array Name To Filename 

Per Entries of of 
Array Name 

Record Per Table Entry 

ill 
(Alternating Entry 

or Array 
Formatl 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 333435 36 37 38 39 40 4142 4344 45 46 47 48 49 50 51 5253 54 

TA lair ITM 3rl Qls l1 
Ttl IBlr Ish" 1.8 q'e ~ 12 

Figure 8-13. Describing Separate Table~lnput Records 

number of entries per table must be the same for each of 
the alternating tables, separate specifications are not needed 
for the second table. 

However, the Length of Table Entry (columns 52-54) must 
be indicated since it may be different for the two tables. 
In Figure 8-14, a 3 has been entered in columns 40-42 as 
the table entry length for TAB ITM, while a 5 has been en
tered in columns 52-54 specifying the length of the unit 
cost entries for TABCST. 

The unit cost entries for TABCST are in the form of 12467, 
which would represent $124.67. Therefore, a 2 has been 
entered for the number of decimal positions(column 56). 
This specification indicates that the entry is numeric and 
contains two decimal positions.' 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 78 79 SO 
Program 

Programmer Date 
Program rTITrn 
Identification Page [0 Of_ 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 
of Number Table or .g e Table or Entries of length 

~~ Array Name 
length 

Per Entries of of .~ ~ 
Array Name 

Per Table Entry :)~~ 
(Alternating Entry "- .. 

Record :3 ~ ~ or Array 
Formatl 

~~j ~~j 

Number of the Chaining Field 

To Filename line ~ 
I-

~ 
From Filename 

Comments 

Figure 8-14. Describing Alternating-Format Table-Input Records 

Tables 8-13 



The table entries Jor TABCST are not in any special alpha
betic or numeric order which the RPG II Compiler program 
could check for accuracy. Thus, no table sequence is speci
fied for TABCST (column 57 is left blank). Likewise, tele
phone numbers in a directory are not in sequence. However, 
just as phone numbers are arranged to correspond with re
lated names, the T ABCST entries have been arranged so a 
particular unit cost corresponds with its related item code. 

Coding the Table LooKup Operation (LOKUP) 

Now that both tables have been set up, TABITM is to be 
searched to find the table element which contains the same 
item code as the code (search word) on the SALES record. 
This simple lookup procedure is coded with the same cal
culation specifications as you used before (Figure 8-15). 
The field name or literal constant which contains the search 
code is entered under Factor 1 (ITMORD), the LOKUP 
operation is specified in columns 28-32, and the name of 
thetable being searched (TABITM) is entered under Factor 
2. If an equal match is found in searching the table, result
ing indicator 05 will be turned on, as specified in columns 
58-59. 

However, you want to do more than just see if the item 
ordered is carried in stock. If the search is successful, you 
also ,want to determine the appropriate unit cost for the 
ordered item. 

To reference the second table (TABCST), additional speci
,fications must be entered on the same line of the Calcula
tion sheet. As Figure 8-15 shows, the name of the table 
(TABCST) from which you wish.data to be made available 
is entered as the Result Field (columns 43-48). If (and 
when) the equal search is satisfied, the corresponding data 
looked-up in TABCST will be made available. 

Field length and decimal positions have not been entered in 
columns 49-52. These specifications are not required since 
the table named under Result Field (TABCST) was previous
ly described on the Extension sheet. However, if you want 
to enter these specifications again on the Calculation sheet, 
the numbers must agree with those in the extension specifi
cations. For TABCST, field length must be 5 (in column 51), 
the length defined for a TABCST entry, and the number of 
decimal positions must be 2 to agree with the Extension 
sheet. 

USING TABLE DATA IN CALCULATIONS AND OUTPUT 

You perform a table lookup because you want the informa
tion referenced to be used in some way. In some programs, 
youmay wish to,use the data in a calculation. At other 
times, you merely want the data to be used for output. 

Conditioning Operations on the Basis of a Table Lookup 

In the sales job, the specifications for.a LOKUP operation 
instructed the program to search TABITM for an entry equal 
to an item in a SALES record .and then make available the 
appropriate unit cost entry from a second table. If the 
search was successful, resulting indicator 05 would have 
been, turned on. 

Providing the item code is carried in stock (successful 
search), you want to use its unit cost to determine the 

. amount the customer owes for the number of items or
dered. In other words, the calculation specification in line 
02 of Figure 8-16 should be performed. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed In U.S.A. 

IBM "'nternational Business Machine Corporation 

~~.am / / Graphic I I I I / / 
/ Card Electro Number 

1 2 75 76 77 78 79 80 

- Punching 
Page [0 of_ ::;~f~ation I I I I I I I I Instruction .1 Punch I / / / I I / Record identifying indicator 

for SALES file. Result Field 
Resulting 
Indicators 

Arithmetic 
~ ~ \ I I Plus I MinusJ Zero i f2 And And Factor 1 Operation Factor 2 Comments 

. ~.5 ~ Length 
Compare 

Lme I--eg Name 1>211<211-2 

~~5~~ ~ ~ Lookup(Factor 2)is 

High Low Equal 
3 4' I; 6 7 8 9 \oJ 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 4B 49 50 51 54 55 5657 58 59 60 61 62 63 64 65 66 67 58 69 70 71 72 73 74 

011 I C I ~L ~ rr ~YJ(JKlU I I I 1//nI<I,'/o ~l4IA" h-IM I I I n-IAIRr IcdT I I· I I Ill~ r'JI~lll c.b[c; IT I tlFI IIITIM 
01 2 1 c I I I I I I I I I I I I I I I I II I I II I I I I I I I I I I I I III I I I I / / / / I 

1.1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I II 

Figure 8-15. Specifying a Two-Table Search 

8-14 

( 



) 

) 

) 

RPG CALCULATION SPECIFICATIONS Form GX2l·9093 
P.,.lnted in U.S.A. 

IBM Internationel BUliness Machine Corpor.t~on 
1 2 75 76 77 78 79 80 

Program 

, Programmer Date 
Page CD of _. :~;~f:ation I I I I I I I 

C Indicators Result Field 
Resulting 

~. Indicators 

I-- o_ 
At AL 

Arithmetic 

. ~Q Factor 1 Operation Factor 2 .g ~ Plus IMinusl Zero 
Comments 

& j; Z ~~ Compare 
> .... < Name Length 1 >2Tl <211-2 Lin • .... "0= ~~ E J:> en 

~ ~ u ~ LookuplFactor 2)is 
af85~ .... 

H,gh Low Equal Z Z 0:>: 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 54 65 66 67 66 69 70 71 72 73 74 

o 1 c ~lJ. 1/'1 1t'C Irlk IFh-IAIB IIITI~ 
o 2 c ~l'i ~lt ;"'1 ... 1 ... 1 ... I,.f... IMIL IllT -l.J IT ,~ 

o 3 C 

" -

Figure 8-16. Performing Calculations Only After aSuccessful Search, 

However, if the item code was not found, indicator 05 
would have been turned off and no cost entry would be 
available for the item ordered. For the example given, you 
could have the SALES record for the current lookup selec
ted into a separa.te stacker. In this way, you can identify 
which customers must be notified that their orders cannot 
be filled. 

Note: In order to select a stacker for input records on the 
basis of a calculation operation (for example, LOKUP), the 
file must be defined as a combined file on the File Descrip
tion sheet and the stacker must be specified on the Output
Format sheet. See the chapter entitled Card Output Opera
tions for a discussion of stacker selection. 

Ordinarily, all calculation specifications are performed be
fore any output is done. But if the search for an item was 
unsuccessful, you would be unable to calculate a bill for 
the customer correctly. 

RPG OUTPUT 

H 1 
Graphic I I In order to specify stacker selection Punching 

Instruction Punch I I based on the results of a calculation 

operation (NOS), SALES must be 

defined as a combi~ed file. 
Itput Indicators 

Field Name 

1 1 Line Filename i~~~ > .. m 

! I- ci5 
~ 

~trlD ~ ~ ° 0 0 E 
f-fJ < Z Z z 'AUTO 15 ~~ u. 

A N 
!1~ 17 3 4 5 6 7 8 9 10 11 12 13 1415 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

o 11 ol~lAl, IJ:I~I I I"'L~ I I IN~!5 ~11 I I I I I 
o 21 o 1 IT I II • I I I I I I I 

Figure 8-17. Performing Output Only if Search Was Unsuccessful 

I 
I 

If: 
I~ 

ex: 

~ ~ 
!g~ 
w m 

3839 

'- Ir~ 5rr ~IF trrrM "'~IM 
,.,,, 1ll1., r~IJ.." 

I.l\~ I,... , ItJh" 1t.,!2 IA'M Irll Nrr Inll :~ 

Therefore, there must be a way to bypass the calculations 
if the lookup is unsuccessful. This is done by entering 05 
as a conditioning indicator in columns 10-11 (see Figure 
8-16). The calculation operations will be done only when 
05 is on. In this way, the same resulting indicator used to 
determine the results of the lookup becomes a conditioning 
indicator to determine if a calculation operation should be 
performed. 

If the item is not carried in stock (05 off), any calculations 
conditioned by 05 are not performed. The program then 
performs the output specifications since there are no more 
calculations to be done. (See Figure 8-17.) For this ex
ample, a card is selected into a different stacker only when 
the search iS,unsuccessful, not for every item ordered. Thus, 
the output specification is conditioned by entering N05 
(05 not on) and the record identifying indicator in columns 
23-28. 

SPECIFICATIONS GX21-!I09O UiM 050' 
Printed in U.S.A. 

I I I I Card Electro Number I 1 2 75 76 77 78 79 80 

Page CD of_ ~~~;~f:.tion I 1.1 1 1 1 I I I 

Commas Zero Balances No Sign CR " X - Remove 
to Print Plus Sign 

Ves Ves 1 A J V • Date 
Ves No 2 8 K Field Edit 

End No Ves 3 C L Z - Zero 
Positon No No 4 0 M Suppress 
in ex: 
Output :::; Constant or Edit Word 
Record ~ 

"-

40 41 42 43 «%~~4B~~~~~54~~~~~~~~~54~66~M~W 71 72 73 74 

I II I I 1111111 111111 I I I II I II T 
I II 1/ I I I I I I I I I I I I I j I I 11 1 TI T 

Tables 8-16 



At this point, then, you know that you mayor may not 
want certain calculations and output specifications per
formed, depending on the results of a table lookup. This 
is accomplished by using conditioning indicators. 

Referencing Data Following a Successful Search 

According to the RPG II program cyCle, input specifications 
are performed first, followed by calculations and then out
put. Thus, after reading a data record, all calculations for 
that record and then all output operations for that record are, 
performed, before the next data record is read and processed. 

With this logic in mind, let's take a look at the output wanted 
from the table lookup program just discussed. TABITM con
tains the codes of all items carried in stock. The related table, 
TABCST, contains the unit cost for each item. A SALES 
file contains the records of c~stomer orders, providi~g th~ 
customer number, code for the item ordered, and the quan,
tity ordered. 

The purpose of the program is to calculate the amount each 
customer owes and pi"int'the information on a report. The 
report'is to contain more than just the total amount due, 
however. As shown in Figure 8-18, each order should have 
a line printed with data trom the SALES record, (item or
dered, quantityordered), data looked up from TABCST 
(unit cost), and data from calculations' (total amount du'e). 

After the first SALES record is read into the co~puter, 
Figure 8~19 shows thatTABITM is searched to find an entry 
equal to the item code on that' SALES record (lTMORD). 
If a successful search is made, indicator 05 is turned on and 
the table entry looked up is availabl'e for use in' further cal
culations or output operations. I n this program, you want to 
multiply the looked-up cost by the number of items the 
customer ordered (field QTYORD on the SALES record). 

REPORT 

QUANTITY ITEM UNIT COST TOTAL 

- - . 
-c -- -- -- - - ,--

- -- - , I' 

Figure 8-18. Output from a Table Lookup 

What is the name of the field containing the cost? The 
specifications in line 02 of Figure 8-,19 shows this instructi:on. 
The name of the table (T ABCST) which' provided the cost ' 
has been entered under Factor 1. Whenever a table name 
is used as a factor in any operation other than a LOKUP (in 
this case, the operation MUL T), the name re~ers to the dat~1 
item made available by a LOKUP. Thus, TABCST in line 
02 refers to the unit cost of the item just looked up. 

Since the table na~e, TABCST, is used only as a factor and' 
not as the result field of the MUL T operation (line 02), the 
contents of the TABCST data item are :not changed. It still 
contains the unit cost for the item on the sales record. 

Once all calculations have been performed, the RPG 1\ pro
gram performs the output specifications (Figure 8-20) for 
this same SALES record. The specifications in line 01 are 
not pe'rformed, since the SALES record is selected'into 
stacker 3 only if the search is unsuccessful (indicator 05 
off). However, the rest of the outputspecifications are per
formed. Suppose the R EPO RT file is defined on the File 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 ' 
Printed in U.S.A. 

IBM InternatiOnal Business Machine CorpOret~on 
Program 

Programmer Date 

C Indicators 
~ 

I-- g~ J~ Jd ig Factor 1 

~.5~ Line .... '0 a: 
E ::; (I) 

& 85 ~ 15 15 z z 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

a 1 C ~lL .1 J 11'1 'H 
o 2 C t2llS £1jl rrA Ip,'- C;T 
a 3 C 

Figure 8-19, Referencing Looked-up Table Data 

8-16 

" 

Result Field 

.~ Operation Factor 2 

/ 
'g 

Name' Length ~ 
E 
'2 
0 

2B 29 30 31 32 33 J4 35 36 37 3B J9 40 41 42 43 44 45 46 47 4B 49 50 51 52 

!ro,k I, 0 1- - h"A IB~ 5T IHlJ:j .1111'1 

f't1ll 'iT 1 , ... lAM" INT t,2 

1 2 

pageDJOf_ 

Resulting 
Indicators 

Arithmetic 

Plu. 1 Minusl Zero 
Compar. 

1>211<211-2 
Lookup(Factor 21is 
High Low Equal 

75 76 77 78 79 80 

~~~;~f:ation I 1 I· 1 I· 1 1 

"

Comments

54 55 5667 5B 69 60 61 62 63 64 65 66 67 6B 69 70 71 72 73 74

rJjl Cj

/'

,/

,/

RPG OUTPUT SPECIFICATIONS

Program

Programmer Date

o
f---

Field Name

Skip Output Indicators

Line Filename tr
S> Commas

I I Ves
Ves

End No
a: Positon No

'AUTO
~

en in a:

~
Output g .'= Record

"0 c: W

1 2

Page [0 of_

Zero Balances No Sign CR to Print

Ves A .J

No B K
Ves C L
No 0 M

Constant or Edit Word

GX21·9090 U/M 050'
Printlld in U.S.A.

75 76 77 78 79 80

~~~;~f:ation 1 I. 1 1 1 1 1 

X . Remove 
Plus Sign 

V' Date 
Field Edit 

Z = Zero 
Suppress 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 4243 44 45 46 47 48 49 5051 52 5354 55 56 57 58 59 60 61 6263 64 6566 67 68 69 70 71 72 73 74 

o 1 ole; IAll 11= Ie; iI"Il~ IN~ L; rlll 
~lL 

-I- . 
o 2 aiR 1J:"lp l~rRIT b 11 Its 
o 3 a ~IL ~IT IMIR 
o 4 a III 1""1 1M 
o 5 a liT n 
o 6 a trlA 1~lr Ie; rr L~ 
o 7 a ~IM I,-J II\[TI3 
o 8 a 

Figure 8-20. Output of Data Looked-up in a Table Search 

Description sheet as a printer output file. Lines 02-05 cause 
the data from the SALES record to be printed on the report. 
By referencing the name of the table looked up (TABCST) 

)
. in line 06, the program prints the data contained in the table 

element, the unit cost for this first SALES record. Line 07 
then tells the program to print the amount due, which was 
previously calculated. 

Once all output has been performed for the first record, the 
RPG II cycle causes the input specifications to be performed 
again. Thus, the next SALES record is read in, and a table 

I~ 

112 
Ill~ 
13 V'-

1511 

LOKUP is performed for the second record. On a successful 
search, the unit cost for the second SALES record is made 
available. The cost for the second item can then be used in 
calculations and output specifications by referring to the 
name of the table looked up. 

Each table LOKUP operation performed searches for only 
one entry from a table. This data is then available to be 
used in calculations and output specifications for that rec
ord. The data available does not change until thp next table 
lookup is performed for that table. 

Tables 8-17 



TABAMT TABTAX TABAMT TABTAX TABAMT TABTAX TABAMT TABTAX TABAMT TABTAX TABAMT TABTAX 

.16 

.49 

.83 
1.16 
1.49 
1.83 
2.16 
2.49 
2.83 
3.16 
3.49 
3.83 
4.16 
4.49 
4.83 

5.16 
5.49 
5.83 
6.16 
6.49 
6.83 
7.16 
7.49 
7.83 
8.16 
8.49 
8.83 
9.16 
9.49 
9.83 

10.16 
10.49 
10.83 
11.16 
11.49 
11.83 
12.16 
12.49 
12.83 
13.16 
13.49 
13.83 
14.16 
14.49 
14.83 

15.16 
15.49 
15.83 
16.16 
16.49 

.00 

.01 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

.10 

.11 

.12 

.13 

.14 

.15 

.16 

.17 

.18 

.19 

.20 

.21 

.22 

.23 

.24 

.25 

.26 

.27 

.28 

.29 

.30 

.31 

.32 

.33 

.34 

.35 

.36 

.37 

.38 

.39 

.40 

.41 

.42 

.43 

.44 

.45 

.46 

.47 

.48 

.49 

16.83 
17.16 
17.49 
17.83 
18.16 
18.49 
18.83 
19.16 
19.49 
19.83 
20.16 
20.49 
20.83 
21.16 
21.49 

21.83 
22.16 
22.49 
22.83 
23.16 
23.49 
23.83 
24.16 
24.49 
24.83 
25.16 
25.49 
25.83 
26.16 
26.49 

26.83 
27.16 
27.49 
27.83 
28.16 
28.49 
28.83 
29.16 
29.49 
29.83 
30.16 
30.49 
30.83 
31.16 
31.49 

31.83 
32.16 
32.49 
32.83 
33.16 

.50 

.51 

.52 

.53 

.54 

.55 

.56 

.57 

.58 

.59 

.60 

.61 

.62 

.63 

.64 

.65 

.66 

.67 

.68 

.69 

.70 

.71 

.72 

.73 

.74 

.75 

.76 

.77 

.78 

.79 

.80 

.81 

.82 

.83 

.84 

.85 

.86 

.87 

.88 

.89 

.90 

.91 

.92 

.93 

.94 

.95 

.96 

.97 

.98 

.99 

33.49 
33.83 
34.16 
34.49 
34.83 
35.16 
35.49 
35.83 
36.16 
36.49 
36.83 
37.16 
37.49 
37.83 
38.16 

1.00 
1.01 
1.02 
1.03 
1.04 
1.05 
1.06 
1.07 
1.08 
1.09 
1.10 
1.11 
1.12 
1.13 
1.14 

38.49 1.15 
38.83 1.16 
39.16 1.17 
39.49 1.18 
39.83 1.19 
40.16 1.20 
40.49 1.21 
40.83 1.22 
41.16 1.23 
41.49 1.24 
41.83 1.25 
42.16 1.26 
42.49 1.27 
42.83 1.28 
43.16 1.29 

43.49 1.30 
43.83 1.31 
44.16 1.32 
44.49 1.33 
44.83 1.34 
45.16 1.35 
45.49 1.36 
45.83 1.37 
46.16 1.38 
46.49 1.39 
46.83 1.40 
47.16 1.41 
47.49 1.42 
47.83 1.43 
48.16 1.44 

48.49 1.45 
48.83 1.46 
49.16 1.47 
49.49 1.48 
49.83 1.49 

Figure 8-21. Two Related Tables for Determining Sales Tax 

8-18 

50.16 
50.49 
50.83 
51.16 
51.49 
51.83 
52.16 
52.49 
52.83 
53.16 
53.49 
53.83 
54.16 
54.49 
54.83 

1.50 
1.51 
1.52 
1.53 
1.54 
1.55 
1.56 
1.57 
1.58 
1.59 
1.60 
1.61 
1.62 
1.63 
1.64 

55.16 1.65 
55.49 1.66 
55.83 1.67 
56.16 1.68 
56.49 1.69 
56.83 1.70 
57.16 1.71 
57.49 1.72 
57.83 1.73 
58.16 1.74 
58.49 1.75 
58.83 1.76 
59.16 1.77 
59.49 1.78 
59.83 1.79 

60.16 1.80 
60.49 1.81 
60.83 1.82 
61.16 1.83 
61.49 1.84 
61.83 1.85 
62.16 1.86 
62.49 1.87 
62.83 1.88 
63.16 1.89 
63.49 1.90 
63.83 1.91 
64.16 1.92 
64.49 1.93 
64.83 1.94 

65.16 1.95 
65.49 1.96 
65.83 1.97 
66.16 1.98 
66.49 1.99 

66.83 
67.16 
67.49 
67.83 
68.16 
68.49 
68.83 
69.16 
69.49 
69.83 
70.16 
70.49 
70.83 
71.16 
71.49 

I 
~:g~ 
2.02 

i 2.03 
i -2.04 

2.05 
2.06 
2.07 
2.08 
2.09 
2.10 
2.11 
2.12 
2.13 
2.14 

71.83 2.15 
72.16 2.16 
72.49 2.17 
72.83 2.18 
73.16 2.19 
73.49 2.20 
73.83 2.21 
74.16 2.22 
74.49 2.23 
74.83 2.24 
75.16 2.25 
75.49 2.26 
75.83 2.27 
76.16 2.28 
76.49 2.29 

76.83 2.30 
77.16 2.31 
77.49 2.32 
77.83 2.33 
78.16 2.34 
78.49 2.35 
78.83 2.36 
79.16 2.37 
79.49 2.38 
79.83 2.39 
80.16 2.40 
80.49 2.41 
80.83 2.42 
81.16 2.43 
81.49 2.44 

81.83 2.45 
82.16 2.46 
82.49 2.47 
82.83 2.48 
83.16 2.49 

83.49 
83.83 
84.16 
84.49 
84.83 
85.16 
85.49 
86.83 
87.16 
87.49 
87.83 
88.16 
88.49 
88.83 
89.16 

2.50 
2.51 
2.52 
2.53 
2.54 
2.55 
2.56 
2.57 
2.58 
2.59 
2.60 
2.61 
2.62 
2.63 
2.64 

89.49 2.65 
89.83 2.66 
90.16 2.67 
90.49 2.68 
90.83 2.69 
91.16 2.70 
91.49 2.71 
91.83 2.72 
92.16 2.73 
92.49 2.74 
92.83 2.75 
93.16 2.76 
93.49 2.77 
93.83 2.78 
94.16 2.79 

94.49 2.80 
94.83 2.81 
95.16 2.82 
95.49 2.83 
94.83 2.84 
95.16 2.85 
95.49 2.86 
95.83 2.87 
96.16 2.88 
96.49 2.89 
96.83 2.90 
97.16 2.91 
97.49 2.92 
97.83 2.93 
98.16 2.94 

98.49 2.95 
98.93 2.96 
99.16 2.97 
99.49 2.98 
99.83 2.99 

100.16 3.00 



) 

) 

Searching For Low, High, or Equal Conditions 

Up to this point, table lookup operations have involved 
searching for only an equal condition. However, in some 
cases, you may have a search word which is less than or 
greater than an entry in the table be!ng searched. 

Assume that a 3 percent sales tax is charged in the state in 
which you do business. Since the tax rate (3 percent) is the 
same for all amounts, it is a simple data processing opera
tion to calculate the amount of tax for every customer's 
order. However, merely to show you how a low or high 
search works, let's use a table lookup to determine the tax 
due on an order. 

The tax due on certain amounts is calculated, and the in
formation is organized into two tables (see Figure 8-21). 
T ABAMT is a list of various amounts of purchases while 
TABTAXcontains the sales tax due on the amounts. 

Assume you had to lookup the sales tax for a customer 
order totaling $9.16. By placing a resulting indicator 
(01-99) in columns 58-59 of the Calculation sheet (Figure 
8-22), you specify that an equal condition is to be satisfied. 
The computer then searches TABAMT, starting at the be
ginning of the table, until the table entry 916 (representing 
$9.16) is located. At that time, the resulting indicator (in 
this case, 23) is turned on and the sales tax of 27¢ is made 
available. 

On the other hand, what if a customer ordered items which 
total $5.767 TABAMT contains no such entry. Thus, indi
cator 23 is turned off, indicating an equal condition cannot 
be satisfied. What the calculation specifications shown in 
Figure 8-22, a correct tax amount will never be made availa
ble for this purchase. 

However, since TABTAX contains all possible tax amounts, 
a sales tax entry must be present for a purchase of $5.76. 
Looking at the two tables in Figure 8-21, you can see that 
a sale of $5.49 requires a tax of 16¢ . But the sale was 
greater than $5.49; therefore, the tax will be more than 16¢. 
Take a look at the next entry. For a sale of $5.83, the tax 
is 17¢. Furthermore, any sale which is less than $5.83, but 
greater than $5.49 (the previous entry), will also require a 
tax of 17¢ . 

In this case, TABAMT is organized in ascending sequence. 
Therefore, the T ABAMT entry (5.83) which will give the 
appropriate tax for $5.76 is the first TABAMT entry higher 
(greater) than the actual search word. 

As you learned previously, a resulting indicator must be 
used to indicate what condition is to be satisfied for a suc
cessful search. To specify that a LOKUP is to retrieve a 
table element higher (greater) than the search word, a re
sulting indicator must be entered in columns 54-55 (Look
up High) of the calculation specification. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Print_din U.S.A. 

IBM Intern'Clonal Busineu Machi",e Carpor,tion 

Program 

Programmer Oal. 

C Indicators 
~ 

~ 0_ 

AL At =~ Factor 1 Operation 

~.s~ 
line t- '0 a;" 

E E ~ .. 
0 15 .f 8 5 ~ z Z 

3 4 5 6 7 8 9 10 II 12 13 I. 15 IS 17 18 19 20 21 22 23 2. 25 26 27 28 29 30 31 32 

o 1'1 C I ~lnIAIM-1 I II HkhlP 
01

2

' 

C , 

'"'''' " I 1 , l 
I I I I I I I I I I 1.1 I I I I 

Figure 8-22. Searching for an Equal Condition 

Result Field 

Factor 2 

Name Length 

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 .9 5051 

T~I~Alrwtrl I I I i,lAlsrlAIx I I 
'Jill"" " " I 

I I 
I I I I I I I I I I I I I I I I 

1 2 

paee[Oo,_ 

75 76 77 78 79 80 

~;~;~':alion I I I I I I I 
Resulling 
Indicators 

Arithmetic 

Plus IMinusl Zero Comments 
Compare 

1>2\1<2\I K 2 

Lookup(Faclor 21is 

High Low Equal 
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

I I [2.13 I I I , , , , , , , , , " 
I , I """I""'" I I I I I I I I I I I I I I I I I 

Tables 8-19 



Sequence of Tables 

(---

Since customer orders can be any amount, the table lookup 
must be coded to handle all possibilities. For some orders, 
an equal match can be found in T ABAMT; for others, the 
table entry will be higher than the search word. Therefore, 
the same resulting indicator (23) should be assigned to turn 
on if either a high or equal condition is satisfied (see columns 
54-55 and 58-59 of Figure 8-23). 

To perform a table search for an equal condition only, it \" 
isn't necessary that table entries be in any particular order. 
Starting at the beginning of the table, the table elements 

A table can also be searched to locate an entry which is 
lower in value than the search Word. In such a case, the 
table is searched for the entry which is lower (less) than, 
yet closest in value to, the search word. Searching for a 
low condition is specified the same way as searching for a 
high condition, except the resulting indicator is entered in 
columns 56-57, rather than 54-55. 

In coding a table lookup, either one or two conditions may 
be specified. A particular search may be successful by sat
isfying: 

,1. An equal condition only. 

2. A high condition only. 

3. A low condition only. 

4. Either a high or equal condition. 

5. Either a low or equal condition. 

Searching for either a low or high condition (for the same 
LOKUP operation) would not be specified, since a majority 
of items in the table will satisfy one of the two conditions. 
The condition(s) which must be satisfied can depend on the 
type of data in the table, the data used as the search word, 
and the sequence of the data within the table. 

are checked, one at a time, until an equal entry is found or 
the end of the table is reached, whichever occurs first. 

However, when searching for high or low conditions, table 
entries must be in either ascending or descending sequence. 
This is because the program must select the entry which is 
higher or lower than, yet closest in value to, the search 
word. With the table entries in sequence, the program can 
determine where in the sequence the search word value 
would appear if it were in the table. For ,example, if table 
elements 2-4-6-9-11 are in ascending sequence, a search 
word of 7 would naturally come between elements 6 and 
9. Thus, element 6 would satisfy the low condition, while 
element 9 would satisfy the high condition (closest in value 
and yet higher than the search word). 

Likewise, if the table is in descending sequence 11-9-6-4-2, 
the search word (7) would come between 9 and the 6. 
Regardless of the sequence (A or D), 9 would satisfy the 
high condition, while 6 wouldsatisfyt,he low condition. 

I f the table elements are not in sequence, as 2-4-11-9-6, the 
LOKUP might retrieve the wrong element. The elements 
are checked one at a time from the beginning of the table. 
Therefore, the computer would determine that a search 
word of 7 would come between the 4 and the 11. A search 
for a low condition would incorrectly retrieve element4, '. 
because the next element (11) is greater than the search 
word (7). While the last element (6) is actually closer in 
value to the'search word, it would not be made' available. 
Likewise, a search for a high .condition would retrieve 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

75 76 77 78 79 80 

~~~~;~f:ation I I 1 I· I I I 
1 2

Page [00'_

C Indicators Result Field
Resulting

::i Indicators

- 0_

AL At
Arithmetic

..Ja:
Plus IMinusl Zero =0 Factor 1 Operation Factor 2 Comments

~..i~ '. Name Length
Compare

line t- (5 a;- 1>21<211=2
E ; (.I]

15 15 L06kup(Factor 2)is
& 8 5 ~ z z High Low Equal

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 5051 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

a 1.1 I C I 'iR1T"'~liY1-' I I I I Ink!. lip rrlAIBl4IMTI I I I T IA IBh" lAlx I I 11h I lza 11111111111111
01 21 C 1 I I I I II I II I I I I I I I II

1.1 I 1 ,I I,. " , , , , , , , , I I I I I

Figure 8-23. Searching for High or Equal Condition

8-20

c

\
\

)

)

element 11, because it is the first entry encountered after
element 4, which is greater than the search word. ,Element
9, which is closer in value, yet higher than the search word,
would not be retrieved since the table is not in sequence.

The sequence of a table is specified by entering an A or D
under Table Sequence (columns 45 and 57) on the Exten
sion sheet (see Figure 8-24). When an entry is made in a
sequence column, the RPG II program will check the table
entries to ensure they are in the appropriate order (ascend
ing or descending) when loaded.

Generally, table entries are arranged in ascending order, if
a sequence is necessary. For certain applications, however,
you may find descending sequence more suitable. For ex
ample, you may find that the entries with higher values
are to be referenced more often. By placing such entries at
the beginning of the table (highest to lowest), you may de
crease the amount of time required to search a table.
Table entries to be in descending order are designated by
entering a D in the columns 45 and 57, rather than an A.

The fact that a table should be in sequence can affect the
design of the table input record. In general, when using cards,
table input records containing one entry per record
(or pair of entries if alternating format is used) are more
desirable for sequenced tables. I n this way, when a se
quenced table is to be updated with additions or deletions
the change cards can simply be inserted or removed.

Moving Data in a Table Entry

Suppose you wish to use a table TABCOD to LOKUP data
from a related table, TAB 123. TABCOD contains codes
for all items carried in stock. TAB 123 contains informa
tion about each of the items.

Up to now, we have discussed table entries containing
single items of data. However, a table entry may contain
more than one field of information. For example, each
entry in TAB 123 contains a 15-character ite,!Jl description,
followed by a 4-digit unit cost with two decimal positions
and a 3-digit quantity in stock. A pair of related entries
from TABCOD and TAB123 might appear as in Figure 8-25.

TABCOD

Defined as Numeric

Table Entry

TAB123

~-"'-4D' ~3D' . 15-Character - IQlt - IQlt
Description Cost Quantity

Defined as Alphameric

Table Entry

Figure 8-25. Table Entries of More Than One Data Field

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091
PrintedinU.5.A.

mM Intem.tion" Business M.chine Corporltion

1 2 75 76 77 78 79 80
Program

Programmer Date
Program rTlTITl
Identification Page [0 of_

Extension Specifications

E Record Sequence of the Chaining File
Number - Number of the Chaining Field of Number Table or e Table or Entries of Length j~ Array Name

length

Line &
To Filename

Per Entries of of ~ Comments

~
Array Name

Record Per Table Entry :1~~
(Alternating Entry a: ~

~
From Filename or Array

Format) g ~~! ii: j

3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 333435 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 525354 5556 ~56~OO~~~54ffim~56mronnn~

01 1 1 E I J I I Jllil 11 I I I I I IrlA 1a.I.ll MIT I 1I 13~ I Ie; 12lA "'lAlsh'IRIX I 13 2A 1111111111111111
01 2 1 E I I I I I I I II I II I I I I II I I I I I II I I I I I I II II II I I II I I II I I I I II

I

Figure 8-24. Specifying Sequence of Table Entries

Tables 8-21

As you know, following a successful search, you can use the
entire looked-up entry in calculations and output merely by
specifying the table name. If the table name TAB123 was
specified on the Output sheet, the description, cost, and
quantity would all be printed or punched, as follows: 10
IN BAND SAW0950107. The data items would be run to
gether, just as they appear in the table entry.

If a table entry contains several fields of data, often you
may wish to use only part of the table entry in a particular
program. For example, to do your billing, you need only the
item description and cost from TAB 123. To reference only
part of an entry, the data in the TAB123 entry must be
separated after the successful search. This is done by mov
ing the data from TAB 123 into smaller separate fields, which
can then be used in calculations and output.

As shown in line 02 of Figure 8-26, first the contents of
TAB 123 are moved to the left into a 15-character alpha
meric field. This isolates the description, which can then be
printed by referring to the DESCRP field name on output
specifications. To isolate cost, which is in the middle of
the table entry, you must first move it, along with one of
the outer fields (quantity or description), into a temporary
work field. Thus, line 03 moves the rightmost seven char
acters (cost and quantity) into an alphameric field, WORK.
Since the cost is now in the left part of the WOR K field,
moving the field to the left only four places will isolate cost
from quantity. In this way, the field COST can be used to
reference only the cost information. Furthermore, COST
is specified as a numeric field so that cost data is in the
proper format for use in calculations.

The data from the table entry is now separated into new
fields which can be used in calculations or to output the
single items of data.

Modifying the Contents of a Table

At some point, you may wish to make changes to the data
contained in a table. These changes can be temporary, for
a particular run; or they can be permanent, such that every
time a job is run which references that table, the program
uses the changed table data. '

Making Temporary Changes to Table Data

Temporary changes to the entries in a table can be made by
calculation specifications which are actually a part of your
RPG II program. For example, two tables provide the item
code (TABITM) and unit price (TABCST) for each part. If
you change the price of a part for a particular run, you must
necessarily change the entry in TABCST for that part.

As Figure 8-27 shows, TABITM is searched to locate a cer
tain part code. On a successful search, the unit price for
that part is made available from the corresponding entry of
TABCST. This information is available for the table named
under Result Field (line 01).

By using the name of the table referenced (TABCST) in any
operation other than the LOKUP (see line 02), you are ac
tually referring to the table entry last looked-up. Thus, by
moving the field to TABCST, you are actually storing the
new unit price for that item in the table.

RPG CALCULATION SPECIFICATIONS Form GX21-9093
Printed in U.S.A.

IBM International Business Machine Corporation

1 2 75 76 77 78 79 80
Program

Programmer Date :~:~f:ation I I I I I I I Page [DOf_

C Indicators Result Field
Resulting

~ Indicators

- 0_

AL Jd .~
Arithmetic

=~ Factor 1 Operation Factor 2 Plus 1 Minusl Zero Comments
~~~ 'a Compare 

Line Name Length ~ 1>211<211-2 t-ori E E E ~ ~ (; (; .~ Lookup(Factor 2lis 
J! 8 5 ~ z z C High Low Equal 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 55 57 5859 50 61 62 63 64 65 65 67 68 69 70 71 72 73 74 

o 1 C [ ", !K ') r'I 'k~ 'p-~A R ',. ~In rrlLl Pol I, ~ 411 ,..,,. Arr~ lrTM ""'A T~ 
o 2 c ~2 1"1"" I~ TA AI 21~ ''''!I= c;.". 'r:lP l~ Pl LL r'lFIF ...... tot I-' 

o 3 c ,,,,,1' MI\ v ,I;: riA R'J 2~ W,.. R.'k i P J L ""f"'! ST jr" 'TV 
o 4 c ~IL pf-' viI=' WI"'! QIt 

,..,.. 
Si tiL r-,... ST ""N LV T" NUM 

o 5 c "Ill. "'/"'1 ~r Mf I, - -- T"" riAL h2. T'"' riAL Dl ~ rJ~' Yi foiL 
o 6 C 

- -

Figure 8-26. Isolating Part of a Table Entry 

8-22 

,/ 
I 

\ 

c· 



) 

) 

) 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Business Machine Corpor.t~on 
1 2 75 76 77 78 79 80 

Program 

Programmer Date ~~:;~':ation I I I I I I I Page []]o,_ 

C Indicators Result Field 
Resulting 

~ Indicators 

'--- 9;r- At Jd ~ 
Arithmetic 

iQ Factor 1 Operation Factor 2 .g :r: Plus IMinusl Zero Comments 
& i.V; 

Length ~ ~ Compare 

Line ~~~ Name 
~~ 1>211<211-2 

E ~ ~ ~ 
~ 15 'u !!:: Lookup(Factor 2)is 

~ 8 5 ~ z ox High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 C lIlT Mif1 ~n 111f1IK IC,T ~S 1 TIN 
a 2 C 4b M~ Iv!;' rll AI\.! ric 

o 3 C 

Figure 8-27. Modifying a Table Temporarily 

As you can see, the use of a table name as the result field 
of a calculation operation is one means of modifying the 
contents of that table. Since the changes are indicated by 
specification entries, the changes must be planned for while 
you are still writing the RPG II program. Otherwise, the 
instructions could not become a part of the object program. 

It is very important to note that any changes made to a 
table during execution of the program exist for that run 
only unless additional specifications are made that indicate 
a permanent change. Thus, the next time the program is 
run, the original table data is used. 

Making Permanent Changes to Table Data 

Whether the contents of a table must be permanently 
changed generally depends on the type of data contained 
in the table. For example, a table used to keep inventory 
records will undoubtedly change quite often. Assume a 
company uses a table to hold the quantity on hand for each 
part manufactured. Every time the company manufactures 
more of a particular part or sells (and delivers) a part, the 
quantity on hand for that part must be increased or de
creased, accordingly. 

The only way to make a permanent change to the data in a 
table is to change the table input records. If the data is 
changed as a result of calculation specifications performed 
during a run, the changed data can be punched into cards 
or written to another output device during the run .. In this 
w~y, the output can be used as table input records for the 
next run. 

IA~ I~T ~~ 
I~~ ~T 

Short Tables for Adding New Table Entries 

Rather than changing data already stored in a table, there 
may be cases in which you want to add additional data to 
an already existing table. For example, assume your com
pany wants to keep a list of employee numbers and hourly 
wages in two tables, TABEMP and TABWAG. At the pres
ent, there are 46 employees on the company payroll; thus, 
there should be 46 entries in each table. However, you know 
that the number of employees may increase to about 90-100. 
Therefore, you will want to add entries to the table as new 
employees are hired. 

At the time the table input records are set up, you must de
scribe them on t~e Extension sheet. This means that you 
specify the number of entries per table. I f you were to spec
ify only 46 entries per table, it would be necessary to code 
new extension specifications every time the number of table 
entries changes. Since the extension specifications are com
piled and become part of the object program, it would be 
necessary to recompile the program to make such a change. 

Tables 8-23 



If you know beforehand that the size of your table will in
crease, you can initially build a short table. I n a short table 
only some of the table entries contain actual table data. 
The program fills the unused entries with blanks. Thus, 
TABEMP and TABWAG can be defined as 100 entries each; 
although for now, you plan to use only 46 entries in each 
table (see Figure 8-28). Of course, be aware that enough 
storage wi" be reserved for 1 00 entri es. The storage re
quired for the unused table entries will not be available to 
hold any other data. 

As new employees are hired, the new table entries can be 
added by inserting additional table input records. The 
original extension specifications still correctly describe the 
table, as they merely indicate the maximum number of en
tries allowed for each table. 

Whether the RPG II source program and the table input rec
ords must be recompiled depends on which method was 
selected originally for loading the table. The methods of 
loading tables and their effect on short tables is discussed in 
a following section. 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091 
Printed in U.s.A. 

IBM InternatiOnal Busineu Machine CorPOration 

Program 

Programmer Date 

E Record Sequence of the Chaining File 

Number of the Chaining Field 

line 
~ ... 

From Filename 
j 

EMPLOYEE 
NUMBER WAGE 

Table Entries to be 
Added (Record 
Inserted in PAYROLL 
Table I nput Records) 

To Filename 

Figure 8-28. Adding Entries to a Short Table 

8-24 

Table or 
Array Name 

46 

Unused 
Entries 

Extension Specifications 

Number 
of Number 

j~ Entries of Length 

Entries of Per 
Record Per Table Entry :3 ~ ~ 

or Array 

~~i 

TABEMP 

--
~ 

---a..------

... 
---z----

-
---------

7 2 1 846 ----------
---. 

--
~ -
~ 

~ 

----"1 

--, 

---- .. ......... 
~ 

1 2 75 76 77 78 79 80 

Page [D0f_ ~~~;~f:ation I I i.1 m 

Table or e Array Name 
Length 

Comments of ~ 
(Alternating j Entry 

~ Format) 

c: ~ 

TABWAG 

-------
~ -
~ 46 -----------------
2.1 5 100 

--- ----
----- Entries -------...-"L---
---

;' 

( 



) 

) 

LOADING TABLES 

)
\ Table data can be loaded into the computer at two different 

points: at the time your RPG II source program is compiled 
(compile time tables) or at the beginning of your RPG II 
object program execution (pre-execution time tables. How 
often you wish to make permanent changes to the data con
tained in the table usually dictates the time at which you 
choose to load that table. The choice should be made as you 
plan your application, since your decision may affect the 
design of your table input records and the specification entries 
required. Furthermore, loading of the table input records 
differs, according to the type of table used. 

Compile Time Tables 

Tables loaded at the same time as your RPG 1\ source pro
gram are referred to as compile time tables. In other words, 
the table file is compiled (or translated into the machine or 
object language) along with the RPG \I source program. In 
this way, the table data is actually a part of the object pro

gram. Every time you run the particular object program, 
then, the table(s) are brought into storage at the same time 
as the program. As you can see, one definite advantage in 
creating compile time tables is that you avoid the necessity 
of loading separate table files into the computer every time 
you wish to run that object program. 

Changing Compile Time Tables 

Temporary changes to data in a compile time table exist 
only for a particular run and are made as easily as for any 
table. Calculation specifications which have been previous
ly coded in the program can modify any of the table 
elements. 

Making permanent changes to a compile time table or add~ 
ing new entries to a short compile time table requires re
compiling the entire RPG \I source program along with the 
new or changed table input records. The object program 
produced then contains the current table data. Of course, 
this process of recompilation requires extra time. 

Loading Compile Time Tables 

A table to be compiled with your program should follow 
the RPG \I source program (Figure 8-29). There should be 
a record immediately before the table containing ** in posi
tions 1 and 2. Position 3 must be blank but remaining posi
tions may be used for comments, such as the table name. 
If more than one table is to be compiled, an ** record should 
be placed before each table. Furthermore, the compile time 

tables must be loaded in the same order as they are described 
on the Extension sheet. The end of file record (/* in posi
tions 1-2) which usually comes at the end of the source pro
gram is then,placed after the last compile time table~ 

Model 10 Disk System, Model 6, and Model 15 users may 
place compile time tables in the source library following 
the source program. The samy record sequence as shown 
in Figure 8-29 is used. See the applicable reference man
uals for your system for specific procedures. 

Pre-execution Time Tables 

In general, if a table is to be permanently modified often, it 
is better to create a pre-execution time table. Such a table 
file is not compiled with your RPG II source program. In
stead, only the source program is compiled or translated 
into the object program. Once the object program has been 
loaded into the computer to be executed, the table file is 
loaded separately. Like any other input data file, the table 
file is then used by the object program, r'ather than being a 
part of the program. 

Card System Users: The source program 
and table input records as shown here 
are placed in the secondary MFCU 
hopper. The RPG II compiler program 
is placed in the primary hopper. 

Figure 8-29. Loading Compile Time Tables 

Tables 8-25 



Changing a Pre-execution Time Table 

Modifying a pre-execution time table takes much less time 
and effort than changing a compile time table. Modifying 
the contents of the table permanently (whether a short 
table or a full table) can be done by inserting and deleting 
change records. In any event, only the table file is changed. 
Since there is no need to make changes in the RPG " object 
program, it isn't necessary to recompile the entire program. 

Loading Pr~-execution Time Tables 

Pre-execution time tables are similar to any other input data 
files in that the RPG II object program uses the files when 
the program is executed. However, unlike other data files, 
pre-execution time tables are read completely before opera
tions involving the tables are done. An end of file record (/*) 
must follow every pre-execution time table file, regardless 
ot'whether the table is short or full (Figure 8-30). The ** 
record that precedes each compile time table is not used for 
pre-execution ti me tables. 

Model 10 Card System Users: The table files 
are loaded from the secondary MFCU hopper. 
The RPG II object program is loaded from 
the primary hopper. 

Other Systems: Table files loaded at pre
execution time may be loaded from console, 
cards, disk, or tape. 

Figure 8-30. Arrangement of Input for Pre-execution Time Tables 

8-26 

The table files should be in the same order as for compile 
time tables. All table files are to be loaded in the same 
order as they are described on the Extension sheet. Further
more, if both pre-execution time table files and other input 
data files are to be used by a program, all tables must be 
loaded before the data files. 

Specifications for Pre-execution Time Tables 

Since a pre-execution time table is a separate file to be used 
by the program, the entire file of table input records must 
be defined on the File Description sheet, just as any other 
file must be. This specification sheet is not required for 
compile time tables because the records are not used as a 
file. Instead compile time table data becomes a part of the 
object program. 

Figure 8-31 shows the file description specifications required 
to define a pre-execution time table input file. A filename, 
different than the table name, should be assigned to the en
tire table file (columns 7-14). In this case, the file called 
SALESTAX contains data for both TABAMT and TABTAX. 
An I in column 15 distinguishes that SALESTAX is an input 
file. Notice, also that the File Designation entry (column 
16) must be a T, to indicate that this is a table file, as well. 
The Device entry (columns 40-46) indicates the device from 
which the table file is read; in this example, we are using 
MFCU2. 

Ordinarily, if an input file is to be in a particular sequence, 
an entry (A or D) is made in column 18 of the File Descrip
tion sheet. However, when specifying a sequence for table 
files, the sequence columns (45 and 57) on the Extension 
sheet must be used, rather than the sequence column on 
the File Description sheet. An E has been entered in col
umn 39 of the File Description sheet to indicate that the 
records in this table file are further described on the Exten
sion sheet. 

Looking at Figure 8-31, you can see that the filename as
signed on the File Description sheet is also entered under 
From Filename (columns 11-18) of the Extension sheet. 
This common entry tells the computer that the extension 
specifications describing TABAMT and TABTAX tables are 
associated with the SALESTAX file defined on the File De
scription sheet. For compile time tables, no entry is made 
in columns 11-18. This is because no file description speci
fications are made and, thus, no filename is assigned to com
pile time table records. 

I 

\ 

( 



--j 
-----

) 

I 

./ 

F File Type 

-
Filename 

File Format 

Una 

File Description Specification 

\1odeo~i~ 

~:,,~th of Key Fie~~ield 

'T~I'" 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

Extent Exit 
for DAM 

.. u"""'" u. """"" 

t:°tI4:t-tIFHI-H~±::!:;±±~:±±jItINo entry made in column 18 - sequence ...... t' E in column 39 indicates Extension 
j-
0
t-15-t-fi-f-F+-+-+-1 F Ie differs .If-I- of table files specified on Extension sheet t-t-b~ specifications are used. 

016 iF ifrom table. ~~." , ....... /' 

IBM IntemahonaIBus;nessMach;neCo,porohon \ ~ EXTENSION AN,D LINE "'7~ SPECIFICATIONS 

. Program '\ ~Ching Graphic .1 L.-1' 1 

. Programmer ~ J Ins~ Y 1 

Card Electro Number 

\ ~&n~lon Specifications 

E ,,,. Chaining File 

f--

,-
specification to a particular File 
J' "" 

Figure 8-31. Defining a Pre-execution Time Table File 

1 2 

Page [DOf_ 

Form X21-9091 
Printed in U.S.A. 

75 76 77 78 79 80 

Program rTrTlll 
IdentificatiQn 

Comments 

Tables 8-27 



OUTPUT OF AN ENTIRE TABLE 

Up to now, we have discussed how to write or punch only 
individual table entries, one at a time. In this way, only 
table entries which satisfy a search condition (which have 
been placed in the hold area) have been used as output. 

For various reasons, you may want an entire table written 
or punched out. Perhaps you want a listing of the table en
tries to determine if any changes should be made. If your 
program updates a table, you may wish to output all the 
entries to be used as table input the next time the program 
is run. 

An entire table can be written or punched out only at the 
end of the job; that is, after all other output has been com
pleted (LR on). Even if the table is a short table, all entries 
are put out including those which are unused (blanks or 
zeros). 

Writing or punching an entire table at end of job is very 
easy to specify. Just as for any type of output, the output 
file must be given a name and assigned t.o an output device 
on the File Description sheet. However, no output specifi
cations are necessary for end of job table output. You mere
ly specify the name of the output file in columns 19-26 of 
the Extension sheets on the same line'as you described the 
table input records. With the extension specifications shown 
in Figure 8-32, the table will be put out automatically at 
end of job. 

The output data may not be exactly the same as the 
input data, because table entries are put out as they are at 
end of job. Thus, if your program has changed or updated 
any table entries, the modified data will be put out, not the 
original data. Except for printer output, however, the for
mat of the table output records will be the same as the in
put records. 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091 
Printed in U.S.A. 

JBl« Internallonal Busmess Machine Corporation 

1 2 75 76 77 78 79 80 

Page [001_ ::;:I:ation!' I I I m Program 

Programmer Date 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 

I--- Number 01 the Chaining Field 01 Number 00 Table or 0 Table or Entries 01 Length :jii ;;C Array Name 
Length 

~ Comments Line To Filename 
Per Entries 01 0- 01 

0. Array Name "- " (Alternating Entry ~ > Record Per Table Entry 

ill 
II: f-

From Filename Format) 

~ ~ 
or Array i 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 J4 35 J6 37 J8 J9 4041 42 4344 45 46 47 48 49 50 51 52 53 54 5556 ~~Wro~~5JM~~~MwronnnM 

0 1 E IL I 5T IIINIGI 1-A1~.l v' 1312 q~ 13 IIlrlM Irh In r:lc. r.t'\1 5Tk 
o 2 E - 14-t I I 111 I I 
o 3 E I auses entire table to be 
0 4 E I 'printed at end of job. 
0 5 E 1/ l I I L I I Jl I I 

I I I I I I I I I I I I I 

/ File Description Specification 

F ~leTYpe Mode 01 Processing File AdditionNnordered 

length 01 Key Field or Extent Exit Number 01 Tracks File Designation 
~ r---- of Record Address Field for DAM for Cylinder Overflow 

End of File Z Record Address Type 
Symbolic u; Name of Number of Extents 

Filename Sequence 
Type 01 File Device Label Exit 

:::! Device ! Tape 
File Format Organization w .:l Rewind 

Line or Additional Area -g Core Index 
~ 

0 
0 ... Overflow Indicator 0 Condition 

!. e~ 
~ Block Record !Io! 15 r---ti Ul-'r!!!-~ 

~~ Length Length ::::f-
Key Field -~ Continuation Lines 

~ 
] w~~ II: £La Starting ~ :> 

~ ::::11- ::J ~:::: Location K Option Entry ~ 
3 4 5 6 7 9 10" 12 13 14 IS 16 17 18 19 20 21 22 2 242528 27 282930 31 J2 JJJ4 J5 J6 37 J8 J9 4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061625JM65 66 67 M69 707172 7374 

o 2 F rs Irlr NG Iro. 11~12 1 .... -
11'1f"C IN K 

o 3 F 

o 4 F 

o 5 F 

o 6 F 

Figure 8-32. Specifications for Output of Entire Table at End of Job 

8-28 



) 

") 
./ 

(Answers to review questions follow the review.) 

1. a. Design the table input records for an inventory table of item numbers. Each item 
number is a five-digit number. There are 123 unique items in stock. Use either one 
record per item or one record for a number of items. State the maximum number of 

. records necessary to contain the table data. State the minimum number of records 
necessary to contain the table data. 

b. Assign a name to the inventory table. 
c. Define the table by coding the necessary extension specifications. 
d. Code the calculation specifications necessary to search the table for an item num

ber which matches the item number (ITEM NO) on an order record. 
e. Why must a resulting indicator be specified in columns 58-59 of the Calculation 

sheet for the LOKUP operation? 

2. a. Design alternating format table input records to create two related tables from the 
following data. Put one set of entries on each record. 

Item Number Costs 

10 $ 10.00 
17 75.00 
27 125.00 
68 1.25 

102 .01 
700 .05 

1640 7.03 
2796 72.05 
4333 111.11 

b. Define the tables by coding the necessary extension specifications; 
c. Using ITEM as the search word, code the calcul.ation specifications for a two-table 

search which makes the appropriate cost available. 

3. How does a programmer specify that a table search is to satisfy a high, low, or equal 
condition? 

. 4. What indicates whether a table lookup was successful or not? 

5. How does a programmer reference looked-up table data in calculation and output 
specifications? 

6. If looked-up table data is to be referenced in calculations or output, how can a pro
grammer ensure that the appropriate information will be used? 

7. How may table data be changed during execution of an RPG II program? 

8. What must be done to change table data permanently (to exist for more than the 
present run of the program)? 

Review 8 

Review 8 8-29 



9. What is a short table? 

10. What is the advantage of using a short table? 

11. Which specification sheets are necessary to program for output of an entire table at 
end of job? What is the use of each type of specification required? 

Review Problem 

To perform invoice billing, a corporation processes two input files together in a matching 
records program. As.the following input specifications show, the primary CSMSTR 
(customer master) file contains a record for every customer who has placed an order, giving 
the customer number, name, and address. The secondary ORDER file contains data about 
each order: customer number, item ordered, weight of item, and cost. 

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050' 
Printed in U.S.A. 

IBM Inte,n,1,onal BUSiness Mach.ne COrporallon 

Program 

Programmer 

I 
I--

Line 

~ 
I-
E 

.f 

3 4 5 6 7 

0 1 Ir 

0 2 I 

0 3 I 

0 4 I 

o 5 I 

o 6 I 

0 7 I 

o 8 I 

o 9 I 

1 0 I . 

8-30 

Date 

E 
Record Identification Codes 

] 1 2 3 

g'. g ~.i5 Filename 1 ~ ~ Position t Position - !J Position ! ~ ~ e ~ ~ e ~ %0 
,....-I-,.....§ 

~ ~ ~ <5 ~f)6 ~ § o R z 
1"A"Nrci" 

Field location 

c 
0 

~ ." .'" ;; rf. 
~ ~ ~ From To 

~ 
~~~ '2 0 

1 2

pageDJOf_

~ 0

j~ Field Name 3 "-,,-

"'''']
iJ 8

75 76 77 78 79 80

~~~;~f:ation I I I I I I I 

Field 
Indicators 

0 . ., 
~ 
j Zero 

Plus Minus or 

~ 
Blank 

u: 

8 9 10 11 12 13 1415 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 J8 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 65 66 67 68 69 70 71 72 73 74 

IS 1M 

KIL 

lsrrR INS rzll 1 r~ 

II:. If< 

L~ lla~ rt 1ST N~ 1f\11 
11 !2.1 :NA 11'1~ 

12.~ !3b 'A It<'" ....... 
N'S ~12 1 ril-l 

B k~ Irll c;r IN" 1\11 
17 lLL au. IT I- !VI 

lLl2. II '-I IlIA. II='T r;~T 
1115 lL "f I,!. SoT 

According to company policy, merchandise is delivered by truck unless a customer has re
quested delivery by parcel post. To date, the following 15 customers (by number) have re
quested parcel post service: 

174 
195 

·2105 

2109 
169 

2733 

596 
456 

1100 

1157 
1366 

290 

1475 
377 

1977 

The customer always pays parcel post charges. The charge is in accordance with the weight 
of the ordered item, as follows (assume no order weighs more than 30 pounds): 

/ 



) 

) 

WEIGHT IN POUNDS POSTAL CHARGES 

j# 
2 

·3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

-----------
_______ $0.45 

-------~ 
--~ 

----~ 
--~ 

---------~ 
--------~ 

--~ 
.65 
.65 ---------
.70 
.70 ====== .75 ____ .75 

______ .75 

------~ .80 
.85 
.85 
.85 
.90 
.90 
.95 
.95 
.95 

1.00 
1.00 
1.05 
1.05 

Note: Any fraction of a pound over the weight 
shown takes the next higher rate. 

To produce invoices, the billing program must do the following: 
a. Determine if a customer has requested parcel post delivery. 
b. If so, determine how much postage is required for the weight ordered. 
c. Print the amount of postage due on the invoice (printer output file named INVOICE). 

This can best be done by setting up three tables: 

• A table of customers who have requested parcel post delivery . 

• Two related tables of weights and postal rates. 

Review 8 8·31 



8-32 

Your job is to: 

1. Design table input records for the three tables. The table of customers requiring par
cel post service should be created as a pre-execution time short table to allow for fre
quent additions and deletions. A table of 24 entries should be sufficient for contain
ing additions. The weight and postal rate tables should ~e loaded at compile time, 
since they will not be modified. 

2. Define and describe the tables with file description and extension specifications. 

3. Code the LOKUP operation(s) on a Calculation sheet to determine how much post
age is due, if any. 

4. Code the output specifications to print the amount of postage due on an order. 

" '0.' • " •• _;. ~ 

( 
I 

\. 

( 
\ .... 

c 



I 

) 

--..., 

~ 

Answers To Review 8 

1. a. The, maximum number of records necessary to contain the table data is 123, with 
each record containing one item number entry in positions 1-5. The minimum 
number of records necessary to contain the table data depends on the maximum 
record length of th,e, device. For 96-column cards, for example, the minimum 
number is seven records. Records one through six would each contain 19 item 
number entries punched in columns 1-95. Record seven would contain the remain
ing nine item number entries punched in columns 1-45. For disk, all entries could 
reside on a single record, since the maximum record length is 9999. 

b. The table name assigned (for example, TABINV) must meet the following require
ments: 

• Three ,to six characters long 

• May contain any numbers and alphabetic characters (including, $, #, @) 

• Must begin with TAB 

• May not contain embedded blanks 

c. 

RPG EXTENSION AND LlNE'COUNTER SPECIFICATIONS Form X21-9091 
Prmle-d In U,S,A. 

IBM InUtrnatlonal Business Mechine Corporation 

Program 

Programmer Date 

E Record Sequence of the Chaining File 

- Number of the Chaining Field 

Line 
~ 

To Filename 

t- From Fjlename 

~ 
3 4 5 6 7 8 9 10 1\ 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

0 1 E 

o 2 E* hR 
o 3 E 

0 4 E 

0 5 E 

0 6 E 

0 7 E 

0 8 E 

E 

E 

L -
Line ~ 

t-

] 
Filename 

~ 1: ~ 1) 
" E " E ~ ~ :5£ ~ .S: ::J 

z -'z z :J 

Extension Specifications 

Number 
of Number 

C _ 

Table or 
Table or Entries of Length j~ 

Length 

Per Entries of Array Name 01 
Array Name 

Reqrd Per Table Entry ~ ~ ~ 
(Alternating Entry 
Formatl 

or Array 
~~j 

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

h"IA Islr N,v 1 lL12~ I; It 

rr~ Istr INV lLq 11 12 '?! lJi ~ 

Line Counter Specifications 

a; ~ ~ 'ii ~ 1) "ii ~ 1) ~~ ~ ~~ Cii :u 
C,O C,O C.c .c C.c 

.! ; " E 2 ~ " E 2' 5 " E ~ § " E ~ § .~ § ~ § .= ::J .S: ::J :5:i .S: ::J uz -'z uz -'z uz uz -'z uz -'z uz 

1 2 

Page [DOf_ 

0 
~ 

a: ~ 
~ j 

75 76 77 78 79 80 

Program InTrn 
Identification 

Comments 

55 56 ~56Wro~~~~~~~56~ronnnM 

~ I~IN I-IR Y ~ ,1"'1:1". ;'"' 

MIA INI'f ~IN TIR II f s~ IRE'" 

10 \I 12 

a; ~ .1l ~1i ]:8 1i ~~ .c C,O .c 

" E C E " E C E " E C E " E ~ § .S: ::J ll~ .S: ::J 2 ~ .E ::J 2 ~ :J~ -'z -'z uz -'z uz uz 

3 4 5 6 7 8 9 10 1\ 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 ~ 64 65 ~ 67 56 69 70 71 72 73 74 

1 1 L 

1 2 L 

L 

Answers To Review 8 8-33 



d. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in u.s.A. 

IBM Internation,l Business Machin. Corporation 

2 

3 

1 2 75 76 77 78 79 80 

Programmer Date 
Page [Do,_ ~~~;:f:ation I I I I I I I Program 

C Indicators Result Field 
Resulting 

~ Indicators 

- ~~ AL AL 

1'! Arithmetic 

Factor 1 Operation Factor 2 .g J: Plus IMinusl Zero Comments 
~.s~ Length ~ ; Compare 

line Name 1 >211 <211-2 .... '00:" ~~ E ::. (I) Lookup(Factor 2)is 

& 8 ~j 15 15 ~ 2 "; z z C :t: High Low Equal 
3 4 5 6 7 8 9 ,0 ",2 '3 ,4 '5 16 17 '8 19 20 2' 22 23 24 25 26 27 2829 30 3' 32 33 34 35 36 37 38 39 40 4' 42 43 44 45 46 47 48 49 50 5' 52 53 54 55 56 57 58 59 6061 62 6364 6566 6768 69 707172 73 74 

0 1 c 
0 2 C 

0 3 C 

0 4 C 

0 5 C 

2. 

001001 000 
I, 4,5 9,1011 

lilt: IN ~~k I ... IMtj Nlv !21L rs !rtrM 

e. A resulting indicator must be set on if the item number is in the table to indicate 
whether the search is successful or not. 

a. Nine records required for nine pairs of item number/cost entries: 

006800125 164000703 

~N ~IT h"IK 

1213 Tot 15 1617 181920 4 I, 4,5 9 ,10 11 1213 '4 15 16 17 18 1920 7 I, 4,5 9,10 11 1213 '4 151617 181920 

010200001 279607205 001707500 
I' A.5 9.10 11 12 13 .. 15 I~ 17 18 " 20 5 I, 4.' 9,10 11 121314151617181920 8 I' 4., 9t

10 
" 

1213 , .. 1516 17 1819 20 

002712500 070000005 
I' 4.' 9.10 II 121314151617181920 6 I' 41' 9 110 11 1213 '4 1516 17 181920 9 

b. 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 

433311 
I, 41' 

1 11 
9.10 11 12 13 14 15 16 17 18 19 20 

Form X21·9091 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 

From Filename 

To Filename 

of Number 
c _ 

Table or Entries of Length :~ ~ 
Array Name Per Entries of 

Record Per Table Entry :) ~ ~ 
or Arrav ~~l 

I'--- Number of the Chaining Field 

Line 

Table or 
Array Name 

L,mgth 
of 

(Alternating Entry 0: 
Format) ~ 

~ 

1 2 

pageDJof_ 

0 
~ 

I 
~ 

75 76 77 78 79 80 

~~;:f:ationl I i I m 

Comments 

3 4 5 6 7 8 9 10 11 12 13 14 ,5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 J3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 rll~nHI' rv 1 q 5 '2 
o 2 E 

o 3 

8-34 

( 
'" ', ...... 



/ 

) 

) 

c. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U,S.A. 

IBM International Business Machine Corporation 

I Program 

C 
I--

~ 
Line ~ 

E 

~ ~ 
3 4 5 6 9 10 

0 1 c 
0 2 C 

0 3 C 

0 4 C 

I Date 

1 2 

pageDJOf_ 

75 76 77 78 79 80 

~~~:~f:.tion I I I I I I I 
Indicators Result Field

Resulting
Indicators

At At
Arithmetic

Factor 1 Operation Factor 2 :¥ g Plus IMinusl Zero Comments

Name Length ~ ~
Compare

~~ 1>211<211=2
LookuplFactor 2)is

'0 0 '2 ~
z

11 12

z OJ: High Low Equal
13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 53 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

trlT If 1M ~K lip ITlA Blr TIM I ~J"J ~ ~li

3. To search for a high condition enter a resulting indicator in columns 54-55 on the same
line of the Calculation sheet as you have specified the LOKUP operation code.

To search for a low condition, enter a resulting indicator in columns 56-57.

To search for an equal condition, enter a resulting indicator in columns 58-59.

If more than one condition will satisfy a search, a resulting indicator should be entered
for each condition. The same resulting indicator may be used for both conditio~s or a
different indicator may be specified for each condition.

4. The resulting indicator specified for the high, low or equal condition (columns 54-55,
56-57, or 58-59) will be set on if the particular search condition is satisfied. The indi
cator will be off if the search was unsuccessful.

5. In any calculation and output specifications which follow a LOKUP operation, use of
a table name refers to the table data found by the lookup.

6. The resulting indicator specified with the LOKUP operation can be used to condition
calculation and output specifcations that follow the LOKUP.

7. When a table name is specified as the result field of a calculation operation, other
than LOKUP, the result of the operation is placed in the table, replacing the last ele
ment looked-up. This assumes that a search was previously performed on th~ speci
fied table.

8. The·table input records must be recreated. If calculation specifications change table
data during execution, the programmer may code specifications which cause the
changed data to be output as new table records. The new output records can then be
read in place of the old table input records the next time the program is run.

9. A short table refers to table input records which contain fewer entries than the exten
sion specifications indicate the table can contain.

10. The advantage of using a short table is that entries may be added to a table without
changing the extension specifications which describe the table.

Answers To Review 8 8-35

. f

8-36

11. File Description sheet - assigns the name and device of the output file

Extension sheet - indicates automatic table output at end of job when name of the out
put file is entered in columns 19-26

I nput, Calculation, and Output sheets - not required

Answer to Review Problem

1. Customer Number Table Input Records

Since the largest customer number is four digits in length, each entry would require
four positions. A customer number less than' four digits should be padded in front of
the number with zeros or blanks, to form a 4-position entry.

The simplest table input records to design and maintain for this table would contain
one entry per record in positions 1-4. With this design, 15 records would be necessary
for th~ 1 q~ust.t>,mer numbers. To add entries to the table, merely add table input
records.

An alternative method is to place the 15 entries in positions 1-60 of a single record.
A record can contain a maximum of 24 4-digit entries. Entries may be added to the
table by placing new customer numbers in unused positions of the same record. How
ever, to delete entries, the entire record would have to be recreated.

Weight and Postal Rate Table Input Records

The WEIGHT field from the ORDER input file is to be used as the search word for
locating the appropriate weight in the table. Therefore, the weight table entries must
be the same length and format as the search word: three digits in length with one
decimal position. The corresponding postal rates can be three digits with two decimal
positions, to accommodate the largest entry 1.05.

Using an alternating format, one record could be used for each pair of entries (posi
tions 1-6), for a "total of 30 table input records. Otherwise, the first 16 pairs of
entries could be contained in positions 1-96 of one record with the remaining 14 pairs
contained in positions 1-84 of a second record.

If separate records are to be used for each table, the 30 weight entries could be in
columns 1-90 of one record, and the 30 postal rate entries in columns 1-90 of another
record. Using separate table format, 30 records would be required for each table, if
each record contained only one entry .

.. - ' ~ .,. , '" ':C''''

/

(

(

)

2. Specifications to define and describe customer number table:

File Description Specification
~ Indicates this table file further

F
File Type t,lode olProcessing described on extension sheet. File ,

File Designation ~;"'::,~! ~~;~:I~ield ~~mber 01 Tracks - ~ torUAM End 01 File
Record Address Type Z Name of Number 01 Extents

~--"""-
Symbolic in

Filename Type 01 File ':il Device Device ~
Label Exit

File Format .:l ~ Core Index Line ,.. Additional Area ~ ~
Condition

! II Ii
g "'~-~1

wl~li
Block Record I ~5 Key Field Continuation Lines

U1.\:!!--
length Length

I~ I~ 'g Starti~g :l ~
, , ::>

Location I'"
3 5 '6 17 8 9 10 11 12 13 14 115 '16 17118 119120 21 22 23 24 25 26 27 28129 30 131 32 133 34 1353637383!1 41 42 43 44 45 46 '" . The devices used for these files !,«;1l~ 1101711.2 173 7~
01 2 IFlr ~N II M [,T Ib r=1" F~ \12. can vary, depending which

01 3
~ trp IAF llol~ "'r 151-< system and configuration you ~I' :>11 1'\

01 4 I t'(1-11(trs l4 Iqlb "'~Ir i J use.

01 5, ,Fir NV I'Ilr rlf If-, 111~12 PR IrlN Ir~R lJ IJ III II II I I I I I I I I
o~ ,F " Pre-execution time table file containing

table-input records must be loaded

before other data files. . ,
."

\ Igth Extension Specifications :'CCI'\;' VVU' u.
/

E\ ,Chaining

~"" Number
f---

\
. 01 the Chaining Field 01 Number

lilill
To Filename Table or Entries of Length Length

Line I! Per Entries of Array Name 01 Comments
Array Name

Record Per Table Entry I~ (Alternating Entry

I! ~
From Filename or Array !i Format)

V
3 4 5 16 7 8 ill 12 1~ 14 15 16 17 18 ~3() 211323 ~ 25 _26_ ~ 28 29 3031 13334 35 ~ 47 48 49 50 51 152 53 54 155156 1~~~w~~~~~~~w~wnn73M

10 1 IE ~IIJ SIN 1M irA ~r c: 1 12"'1 ~ rl I {;I\ T~ Y'I" II<I- 110<

01 2
IE '*

01 3 IE ~ f"R 1',
o 4

IE * II "
1
015 IE If- I, C;IN II ~ ToO AI" I 2~ • ~ 'r-.. MJ , T F('jT P1= R~ R~ J

1
0

1
6 IE " ----

o 7 IE ~""'1 Short table: 9 entries may be added --,-- I lois IE II II to the 15 entries present.

Specifications to define weight and postal rate tables:

Extension Specifications ~

E Record Sequence of the Chaining File / Number
- Number of the Chaining Field of Number Table or .g e Length o 0 Length

To Filename Table or Entries of
~~ Array Name Line

~ Per Entries of of .~ ~ Comments
Array Name (Alternating "- ~

f- Record Per Table Entry

ill
Entry

ill ~
From Filename

or Array
Format)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
o 1 E IT

I", ,,.1-..
lib 13~ I~ J IT A o.ln 1\.,- ~ 2- Mil It II" IPIA rrlR sil IR~ if'1 IRin,f

o 2 E* 1f"1IR >
o 3 E

o 4 E~

o 5 E

o 6 E

o 7 E*
o B E

E

E

~
No entry indicates

compile time table

~IR

hlR

ITIJ.4

riA

w~

IrlA
ITA

1M ~(, 1

I"!II\ 'r,1T 1
lRlR Air ,
181", hIT 3~
I,..I~ Inl-t- .3~

13~ 13 1 I"" 3 2. II J

~e 13 1 II
I~(J 13 .2. I

___ I-'

13(l 13 1
1-

M:U
l3~ B 12 MIJ

File Description sheet not required since they are compile time tables.

Ipl4 IrlR If'R Il='r irllRI'"'I I)

~IN ITIR IT / 11':1 1= r.'" IRf"'I

'l:N 1-
IKlI IK~ It<

,L IT
1- ~II RE 1t'1 II-IN J IK 11-'

liT If=. IN I ;W, IE 11 R'E r'D

Alternating

Format

Answers To Review 8 8-37

3. Calculation specifications for LOKUP operations: .

Line 01 - When a CSMSTR record is read (01 on), use CUSTNO field as search word
to deterrTJine if that customer requires parcel post service. Indicator 21 set on if
customer number in table.

Line 03 - When an ORDER record is read (02 on) and that customer requires parcel
post (21 on from successful search), then search weight table using WE IGHT field as
search word. Indicator 23 set on when correct weight found (same number of pounds
or next higher entry if weight is in fractions of pounds). When 23 is set on, correct postal
charge is available from postal rate table.

RPG CALCULATION SPECIFICATIONS Form OX21·9093
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Prog~ammer

c ~.
- ~

1:. ~
Line ~ ~

E ~
&8

3 4 5 6 7

Ole

o 2 C *
o 3 C

(5
z

Indicators

o
Z

o
Z

Date

Result Field

Factor 1 Operation Factor 2

Name Length

1 2

Page [0 of_

Resulting
Indicators

Arithmetic
~ Plu. IMinu •• Zero
t; Compare

~ 1>211<211-2
~ Lookup(Factor 21i.
:I! High Low Equal

76 76 77 78 79 80

~~~;~f~ation 1 I I 1 I I I 

Comments 

9 10 11 12 13 14 15 16 17 18 1920 21 22 232425 26 27 2829 3031 32 3334 35 36 37 3B 39 40 41 42 434445 4B 47 48 49 5051 53 54 55 56 57 58 59 50 61 62 53 64 55 66 67 68 69 70 71 72 73 74 

4. 

wlt=IIIf-,H7 

Output specifications to print postal charge on invoice: 

Line 01 - If customer required parcel post and correct postage charge has been determined 
(23 on), print the postage chart from the postal rate table, TA.BRAT" 

RPG OUTPUT SPECIFICATIONS OX21 -9090 UiM 050" 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 78 79 80 

Programmer Date 
Page [0 of_ ~~~;~f~atiOn 1 I. 1 1 I I I 

Program 

0 ~ Space Skip Output Indicators Commas Zero Balances No Sign CR X • Remove 

r---- e~ It1 ... to Print Plus Sign 

Jd 1 
Field Name Ves Ves 1 A J V - Date 

e - II Ves No 2 B K Field Edit -"" ~ ~ Line Filename ;. ~ End No Ves 3 C L Z - Zero 

~ ~ CD <{ Positon No No 4· 0 M Suppress 
1:. f- ci5 

~ ~ in 

~ ~ A 100- ~ ~ 0 0 0 Output Constant or Edit Word E o R z z z "AUTO Record 
~ 'AND ~ a: 

3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 3839 40 41 42 43 44 45 4B 47 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 Or INV 1'"\11 ~ ~ /'"'\ 1~3 cl2 
0 2 0 tr" Ir"Il ... I" .... 41.5 ' I~ I 

0 3 0 

8-38 

./ 

\, 

( 
" 



) 

CHAPT~R 9 DESCRIBES: 

Use of arrays and RPG II coding to reference an entire array or individual elements 
of the arrays. 

XFOOT operation code. 

LOKUP operation code. 

BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

Use of and coding for tables. 

Exception output. 

RPG II object cycle. 

OR relationship. 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Determine the use of arrays as opposed to the use of tables. 

Define an array on the Extension sheet. 

Code problems that reference all elements in an array. 

Code problems referencing individual elements in an array. 

Define and code the LOKUP operation code with arrays. 

Describe data and store it in an array. 

Note: You can use the review questions contained in Review 9 at the end of this 
chapter to test your comprehension of the chapter. Answers follow the review 
questions. 

Chapter 9. Arrays 

Arrays 9·1 



Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

INTRODUCTION 

An array is a continuous series of data fields stored side by 
side so they can be referenced as a group. In an array, each 
individual data field is called an element. Figure 9-1 shows 
an array of 12 elements containing the total sales for each 
month of the year. Each element of the array has the same 
characteristics; that is, each contains data in the same for
mat (alphameric or numeric), of the same length, and with 
the same number of decimal positions. An array element 
may be positive, negative,· or unsigned; within a numeric 
array, elements may be positive or negative. 

An array is very similar in concept to a table. Both arrays 
and tables are set up by coding extension specifications. 
The type of data which you can put in an array is the same 
as that which you can put in a table. The data can be 
punched on cards, keyed in by the operator, or written on 
disk or tape. The data can be loaded into an array at com
pilation time or just before execution time. An array can 
also be built from data extracted from normal input files or 
from data produced during the program as a result of calcu
lations. The way data is arranged in storage is the same for 
tables and arrays; one element of data immediately follows 
another. The uses, however, of tables and arrays differ con
siderably. 

WHEN TO USE AN ARRAY INSTEAD OF A TABLE 

In most cases, tables contain constant data such as tax rates, 
shipping instructions, or discount rates. The constant data 
is then used for calculations or printing with variable trans
action data. Arrays are generally used for variable data and 
totals which are used independently of the variable trans
action data. 

You should use arrays instead of tables when you want to 
reference all elements at one time. Arrays can reduce the 
number of RPG II specifications you must code for such a 
program, as well as the time required to reference the 
entries. Arrays should also be used when you are able to 
directly reference a data item within a group of items and 
do not need to do a look-up based on a search word. 

DEFINING AN ARRAY 

You tell the RPG " program that you wish to set up an 
array by coding extension specifications in much the same 
way as you would code them for tables. As shown in Fig
ure9-2, coding on the Extension she'et varies slightly, de
pending on when the array data is to be read into the array 
that is set up by the RPG "compiler. Array data can be 
stored in the array at three different times (see also Loading 
Arrays): 

1. Compile time. The array records immediately follow, 
and are compiled with, the source program. (If you 
have a Card System, both array data and source pro
gram are loaded from the secondary hopper.) 

2. Pre-execution time. The array records are read like 
any other data file, except that they are all read be
fore any processing is done. (If you have a Card Sys
tem, both array records and object program are loaded 
from the secondary hopper.) 

3. Execution time. The array is loaded from informa
tion in input records or data generated by calculations. 

The following Extension sheet entries are used to define and 
describe arrays (see Figure 9-2): 

Columns 11-18 (From Filename): Pre-execution time arrays 
are read from an input file similar to other data files. The 
name of the file containing the array must be entered in col
umns 11-18 of the Extension sheet. This file mustbe desig
nated as a table file in column 16 of the File Description 
sheet. A table file is read completely and data is loaded into 
the array before execution of the program begins.· The same 
MFCU file can be named in these columns for more than 
one array. Input files on other devices can contain only one 
array. On the Card System, pre-execution time arrays must 
be loaded from the secondary MFCU hopper. 

Each element Two decimal positions 
in each element 

1258.72 

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC 

Figure 9-1. 12-Element Numeric Array 

9-2 

/ 



) 

) 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091 
Printed in U.s.A. 

IBM Intern.tional Business Machine Corporation 

1 2 75 76 77 78 79 80 
Program 

Programmer Date ::~a':tion I I I I m Page [00'_ 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 

I--- Number 0' the Chaining Field of Number 
Table or Entries of 

Line To Filename 
Per Entries ~ Array Name 

I- From Filename 
Record Per Table 

~ or Arrav 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

0 1 E II\I~I .... 
~ P-

o 2 E III'" FT III~ 1A 1 ... 
11 112 171c; (J 

o 3 E IA In lolAlv 1l(J 
o 4 E 

o 5 E 

Figure 9-2. Defining Arrays 

Columns 19-26 (To Filename): If you want your entire 
array to be written to an output file at end of job, enter 
the name of the output file in columns 19-26. You 
cannot use the To Filename entry to write execution 
time arrays to an output file; instead you must use 
output specifications (see Output of an Entire Array, 
later in this chapter). 

Columns 27-32 (Table or Array Name): All arrays used in 
your program must be assigned a name of six characters 
or less which is entered in columns 27-32. The rules for 
naming arrays are similar to those for naming tables; an 
array name can consist of any combination of alphabetic 
characters and numbers. However, while the first charac
ter must be an alphabetic character, an array name cannot 
begin with the letters TAB. This is the way the compiler 
distinguishes between an array and a table. 

Columns 33-35 (Number of Entries Per Record): For com
pile time and pre-execution time arrays, enter the number 
of array elements in each input record. These columns must 
be blank for execution time arrays. 

Columns 36-39 (Number of Entries Per Table or Array): 
These columns are used to enter the number of elements in 
the array (from 1 to 9999). This number should be entered 
so that the last digit is in column 39. 

Columns 40-42 (Length of Entry): The length of each 
element (number of characters, including blanks) should be 
specified in columns 40-42, with the number ending in col
umn 42. The length, which must be the same for every 
element in the array, cannot be greater than 255. 

c _ 

length ° c Table or Length o· 
:~ ~ Array Name ~ 0' 0- of Comments 
11. .. (Alternating Entry :)~~ 

Entry 

i i 
~~l 

Format) 

! 
40 41 42 4344 45 46 47 48 49 50 51 52 53 54 5556 D~~OO~~~54~mDm~ronnDM 

!.12 ~ 1,.1 "" I~ 
11:\ lQ IPIR 11= - I='ly 11= ,. II T I~IN 

l~ ~ ~I)( lJ:r rrlT rlN 

, 

Column 43 (Packed/Binary): Disk or tape users may spe
cify in column 43 that pre~executiontime array data is in 
packed decimal or binary format. On a disk system, 80-
column card users can specify packed pre-execution time 
data. 

Column 44 (Decimal Positions): If the elements in an array 
are numeric, the number (0-9) of digits to the right of the 
decimal point should be entered in column 44. Even if no 
decimal positions arepresent, a zero must be specified if the 
elements are to be considered numeric. A blank in column 
44 indicates that the elements are to contain alphameric 
data. Remember, however, that if arithmetic operations are 
to be performed on the elements, the array must be defined 
as numeric. 

Column 45 (Sequence): If your ·array data is in sequence, 
enter A (ascending) or D (descending) in ·column 45. Se
quence is not checked for execution time arrays, but this 
column must contain an entry if high or-low look-up is used 
(see LOKUP of an Array). 

Columns 46-57 (Alternating Arrays): Columns 46 through 
57 are used if two related arrays are set up in an alternating 
format on input records. Alternating arrays cannot be de
scribed with execution time arrays. 

The extension specifications.only res~rve. the appropriate 
space in storage for the array. In a following' section, you 
will learn how data is stored i~~he array. 

Arrays 9-3 



REFERENCING ALL ELEMENTS IN AN ARRAY 

Suppose a company employs 15 sales clerks whose daily 
sales are recorded on a punched card (SALES). As Figure 
9-3 shows, field 1 ,contains sales for clerk #1, field 2 for 
,clerk #2, and so on. There is one SALES. record for each 
day. In addition to a daily amount, the company wishes to 
have a monthly sales total for each clerk. Therefore, at the 
end of the month, the daily sales amounts for a clerk must 
be accumulated. 

As shown in Figure 9-4, an array (MONTH) of 15 elements 
is set up to contain 'the ,monthly totals. Another array, 
called DAY, could be set up to contain the 15 sales amounts 
for one particular day. The daily sales record is read and 
each clerk's sales amount is placed in the appropriate 
element of array DAY. 

I~I Iclerk 3 I 
, Daily record I~I Iclerk 8 I for January 1 Icle7k1"21 I~I 

Array to Array Calculations 

Once the first SALES record is read and the data stored in 
the DAY array, the 15 elements of DAY are added to the 
15 elements of MONTH. In other words, element 1 of 
DA Y is added to element 1 of MONTH, element 2 to ele
ment 2, and so on (Figure 9-5). 

I~I 
I~I 

Ic~1 
I~I 

1~41 Ic~1 

1cle;k21 I~I I~I I,~I 
1cl;;k71 1de;k81 1de;k91 I~I 

-----I clerk 11 I 1de;k121 1~31 1cle;k"i41 1cle;k151 

SALES Records 

Figure 9-3. SALES Records 

9-4 



- --
-", -- """"""" 

~ ~ 

I ~ --/ 

clerk 1 clerk 2 
sales sales 

sales 

clerk 11 clerk 12 
sales sales 

2 3 4 5 6 7 8 9 

clerk DAY array 

000000 000000 000000 000000 00000o 000000 00000o 000000 000000 

2 3 4 5 

'\ Figure 9-4. Using Arrays to Contain Sales Data 

) 

, 

t 
0015.21 0012.86 0025.31 0008.93 0017.83 

1 2 3 4 5 

) + + + + + 

I 0072.18 0142.96 0063.90 0089.61 0076.95 

1 2 3 4 5 

6 7 8 

MONTH array 

9 

DA Y array (totals for day 4) 

0019.24 0015.67 0032.81 0042.21 

6 7 8 9 

+ + + + 

0128.76 0134.21 0062.34 0079.83 

6 7 8 9 

-----,...,...,.. 

clerk 3 
sales 

sales 

clerk 13 
sales 

10 

000000 

10 

0021.87 

10 

+ 

0052.24 

10 

MONTH array (accumulated totals for days 1,2 and 3) 

\ 
j j j j j j j j j j 

0087.39 0155.82 0089.21 0098.54 0094.78 0148.00 0149.88 0095.15 0122.04 0074.11 

2 3 4 5 6 7 8 9 10 

-- --..--
~ ~ 

~ ~ -- .......-

clerk 4 clerk 5 
sales sales 

clerk 10 
sales sales 

clerk 14 clerk 15 
sales sales 

11 12 13 

000000 000000 000000 

11 12 13 

0019.67 0018.46 0013.45 

11 12 13 
( 

+ + + 

0148.75 0063.69 0057.24 

11 12 13 

j j j 
0168.42 0082.15 0070.69 

11 12 13 

MONTH array (accumulated totals for days 1,2,3 and 4) 

Figure 9-5. Adding One Array to Another Array 

SALES record 

14 15 

000000 000000 

14 15 

0028.37 0023.95 

14 15 

+ + 

0138.78 0053.96 

14 15 

j j 
0167.15 0077.91 

14 15 

Arrays 9-5 



The 15 accumulated sale amounts (results of the add'itions) 
are stored in MONTH. Then, another SALES card is read 
into the DAY array. The new DAY fields are then added 
again to the accumulated totals in MONTH. 

This method is similar to using two tables and adding ~m 
entry from one'table to an entry in the other table. How
ever, performing the operations using tables requires more 
specifications than to doing the job using arrays. 

With tables, you must reference each element (sales amount 
for a clerk) separately. First, you must perform a table 
lookup to find the appropriate sale amount from the day 
table. Of course, since you do not know the amount of 
each sale, you cannot search the day table directly. A re
lated table of sales clerk numbers must be set up and 
searched. Only after you find the appropriate sales clerk 
entry is the corresponding sale amount in the day table 
made available. Then you must lookup the corresponding 
element of the month table. At this point, use of the table 
names in calculations or output would finally refer to each 

of the entries looked up. An addition operation would then 
be required to add the two entries and place the result in the 
month table. After all this, you have accumulated a total 
for only one of the sales 'clerks. 

To repeat the same procedure 14 more times for the other 
sales clerks' entries, the program must read 14 records and 
go through 14 program cycles. This occurs when you use a 
table name in specifications. The name refers to only one 
element, the entry just looked up. 

On the other hand, if you have defined your groups of data 
as arrays rather than tables, only one calculation specifica
tion is necessary. The' name of an array actually refers to 
all of the elements in that array. Adding the array DAY to 
the array MONTH causes every element of one array to be 
added to corresponding elements of the other array (1 to 1, 
2 to 2, 3 to 3, etc.). Since the MONTH array is specified 
under Result Field, the result of each addition is placed back 
into the appropriate element of MONTH (Figure 9-6). 

RP~ EXTENSION AND LINE COUNTER SPECIFICATIONS FOl"mX21-9091 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 

r--- Number of the Chaining Field of Number Table or length 00 

To Filename Table or Entries of 

~~ Array Name line 

! Per Entries of Array Name 
Record Per Table Entry :i ~ ~ 

(Alternating 

~ 
From Filename 

or Array 
Format) 

~~: 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 333435 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 

0 1 E 1r-11n 'Mlrlu 1'-,\ IA 12 
o 2 E I"'~IV 115 ~ I~ 
o 3 E 

RPG CALCULATION SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer . 

C Indicators Result Field 
~ 

'-- 9~ 
At At ::-0 Factor 1 Operation Factor 2 

~~~ Length Line Name 
l- '0 a:
E ~ ~ ~

0 0 ~ 8 5 ~ z z
3 4 I; 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51

011 I C I IrluNll'll-Illll1 ~Inld I IDlAlvl I I I I I I
,..I.J .• L.I..1

" ·'IUI'''"IHI

01 2 1 c I
1 I " I " I I I II J 111111111 I II r 1 I I

I I I I I I I I I I I I

Figure 9-6. Referencing All Elements of an Array

9-6

1 2

pageDJof_

75 76 77 '78 79 80

~~~f~cation I I I I' m 

length 0 
~ of Comments 

Entry II: B 

~ ~ 
N 

52 53 54 5556 ~~~50~~~M~OO~mmWnnnM 

T~ ~'r~ ~ MN 
Ir~ IHie l'" C~V 

IrH lSlL Is 
c:,lA It 1~1c; 

Form GX21·9Q93 
Printed in U.S.A. 

12 757677787980 

Page OJ of _ ~~~;~f:atlon I I I I I I I 
Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero Comments 
Compare 

1>211<211-2 
lookup(Factor 2lis 

High low Equal 
54 55 5657 58 59 60 61 62 63 M 65 66 67 68 69 70 71 72 73 74 

I I I AttlLlIM 1c;lt\III,:151 1 1 I 
I 1 I I " I I I I I " I I I I 

(r' 

\. 



) 

Notice on the Calculation sheet in Figure 9-6 that no result
ing indicators have been specified for this arithmetic opera
tion. When an array name is specified in a calculation, the 
operation is performed on every element of the array. There
fore, there are a multiple number of results; in this case, 15 
sales totals. A resulting indicator can indicate the condition 
of only a single result. Thus, resulting indicators cannot be 
used when referencing an entire array as a Result Field. 
There are two exceptions when resulting indicators can .be 
used, as explained under Adding All Elements Within An 
Array and Searching An Array For A Particular Element. 

Operations Which Can be Performed on Arrays 

As mentioned, an operation to be performed on an array is 
performed for every element in the array. A result is then 
produced for each element operated on. For this reason, 
certain operations cannot be performed on arrays, because 
the results have no meaning. The operation codes COMP 
(compare), TESTZ (test zone), MVR (move remainder), 
TESTB (test bit), BITON (set bits on), BITOF (set bits off), 
and DSPL Y (display) cannot be used with an array. 

Performing Operations on Arrays of Different Lengths 

In the last example, all arrays used in an operation were of 
the same length; Factor 1, Factor 2, and the result array 
each contained 15 elements. Thus the operations were 
carried out until all elements were processed. 

2 3 4 5 6 7 

DAY array 

+ + + + + + + 

8 

2 3 4 5 6 7 8 

MONTH array 

Figure 9-7. Operations on Arrays of Different Lengths 

+ 

Suppose, as shown in Figure 9-7, that DAY only contains 
12 elements while the MONTH array contains 15 elements. 
In such a case, the operations are performed only until the 
last element in the shortest array has been processed. Thus, 
the 12 elements of DAY are added to the first 12 elements 
of MONTH, and the 12 results are placed in the first 12 
elements of MONTH. The remaining three elements of the 
result field (MONTH) remain unchanged. Likewise, if the 
result array is shorter than any of the factors (arrays), the 
operation is repeated only for the number of elements in 
the shortest (result) array. 

Calculations Using Arrays and Single Fields (or Constants) 

Another way in which you can perform calculations onan 
entire array is by adding (or multiplying, etc.) the same 
value to every element in the array. For example, suppose 
the sales clerks are to receive a commission of 10 percent of 
thei,r sales, to be paid !3t the end of the month. After all 
dailysales have been accumulated into the MONTH array, 
you want to multiply each of the 15 elements in MONTH 
by the value .10 and to place the commission amounts in 
another 15-element array called COMMIS. 

To do this, it is not necessary to set up a 15-element array 
for the commission rates, with each element containing 
the value .10. In an array operation, when one of the 
factors is a field (containing a value) or a constant, the 
operation is performed using the same field or constant on 
every element in the array. 

9 10 11 12 

+ + + + 

9 10 11 12 13 14 15 

Unchanged 

Arrays 9-7 



You can also use a field or constant as both factors to place 
the same result in every element of an array. The calculation 
specifications in Figure 9-8 show the single field named 
DISCNT being subtracted from the single field AMOUNT, 
with the result placed in a 5-element array named DUE. The 
value (017) in DISCNT is subtracted from the value (243) 
in AMOUNT, and the result (226) is placed in each of the 
five elements of the DUE array. 

Adding All Elements Within An Array 

In accumulating a monthly sales total for each clerk, the 
amount each clerk sold was determined. Suppose, in 
addition, the company also wants to know the total of all 
sales each day. 

As mentioned before, each clerk's daily sales are stored in a 
separate element of a 15-element array named DAY. To 
obtain a total of all sales for the day, you must add together 
the contents of all elements in the array. The sum can then 
be placed in a single field. 

The XFOOT operation code (Figure 9-9, columns 28-32) 
tells the computer to sum the contents of every element in 
the array named in Factor 2. Columns 18 through 27 .. (Fac
tor 1) of the Calculation sheet are left blank since the 
XFOOT operation involves only the values in one array. 
The sum of the DAY array elements is then placed in the 
single field named in columns 43 through 48 (Result Field). 

In most types of array calculations, multiple results are 
produced in accordance with the number of elements in an 
array. However, performing an XFOOT operation provides 
only one result, the total of all elements. For this reason, 
you specify a single field name rather than an array name, 
under Result Field. Furthermore, since there is only one 
result, a resulting indicator may be assigned in columns 
54-59 to determine if the sum is plus, minus, or zero. In 
this case, a resulting indicator was not specified (Figure 9-9) 
because the sales amounts will always be positive. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International BusinlSl Meehine Corpor.tion 12 757677787980 
Program 

Programmer Date 
P~ge OJ of _ ~~~;~f:.tion 1 1 1 1 I· 'I 1 

C Indicators Result Field 
Resulting 

~ Indicators 

- 0_ 

AL At 
Arithmetic 

..Ja: Plus IMinusl Zero =0 Factor 1 Operation Factor 2 Comments 
!. ~ Z 

Length 
Compare 

line 
,...J« Name 1>211<211-2 I- 0 a:," 

E E ~ ~ 0 0 
Lookup(Factor 2lis 

02 85 :'i z z High Low Equal 
3 • 5 6 7 8 9 10 1112 13 1. 15 16 17 18 19 20 21 22 23 2. 25 26 27 28 29 30 31 32 33 ~ 35 38 37 38 39 .a 41 .2 0 ••• 548.748 .9 50 51 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

011 I C I IAIMruNrr-1 , , , ~'u'BI , 100 1sC.~'T' I , I lolulEl , , , , , , , 
11111'"11111' 

0'2' C , II I II I I I I I , , , II II· II I II II II , 
" 

T 
, , 

11111'"""" 1.1 I I I I I 

G AMOUNT field 

B DISCNT field 

r~z::::;=~"""""\---" 
226 I 226 I 226 226 226 DUE array 

element 1 element 2 element 3 element 4 element 5 

Figure 9-8. Storing the Same Data in All Array Elements 

9-8 

/ 



/ 

"', 
) 

RPG CALCULATION SPECIFICATIONS 
IBM International Business M,etune Corporation 

Program 

Programmer Oate 

C Indicators 
~ 

~ 0_ 

Jd At -Ja: ::0 Factor 1 Operation Factor 2 
~~~ 

Line I- '0 c£
E l:l '"

.f 8 5" ~ '0 '0 z z
3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42

01 '1 C 1 1 .1 J 1 1 1 I I I 1){IFi(.1 ~ij 11AI'r'1 I I I I I I
01 2 1 c II I

'T 1.1 I I I II I I I 1 I 1 I I I I I I I I

9

DAY array

Figure 9-9_ Adding All Elements of an Array

Output of an Entire Array

You may want to have an entire array writte:1 or punched
out. Perhaps you want to look at the contents of the array
at some point during the program run or at the end of the
run. Or, you may want to have array elements put out to
be used as input the next time the program is run_ Output
of an entire array can be specified in two ways, with exten
sion specifications or with output specifications.

Result Field

.g X

Name Length ~I
2 ':;
C :I:

43 44 45 46 47 48 49 5051 5253

II 011 IIJIAI", 1171,
I I I I I I I
I I I I I -.

11

Form GX21-9093
PrinttdinU.S,A.

1 2 7576 77 78 79 80

Page [00'_ ~~~:~':ation I I I I I I I
Resulting
Indicators

Arithmetic

PlusTMinu,r Zero
Compare

Comments

1 >211 <211-2
LookuplFactor 2)"
High Low Equal

54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1 1 1 1 Til I I r Tl I I T 1T
I I I II I I I I I I I I I I i I ., T ., -'·1 I I I I I I I I

12 13 14 15

TOTDA Y field

Arrays 9-9

By Extension Specifications

Like tables, compile time arrays and pre-execution time
arrays can be written out at end of job by simply entering
the name of the output file under To Filename (columns
19-26) on the Extension sheet (see Figure 9-10). The out
put file must be named on the File Description sheet, but
no output specifications are necessary. The entire array, :
including unused elements (blanks or zeros), is put out.

With the Extension specifications shown in Figure 9-10,
the array, AR RAY1, is put out automatically at end of job.

The data output may not be exactly the same as the data
input. Your program can change or update array entries,
causing modified data to be put out, not the original data.
Except for printer output, however, the format of the
array output records will be the same as the input records.

By Output Specifications

The second method of specifying output of an entire array
is with output specifications. By specifying the array name
under Field Name (columns 32-37) on the Output sheet, all
elements within the named array are punched, printed, or
written on the indicated output file (Figure 9-11). All types
of arrays, compile, pre-execution, and execution, can be put
out using output specifications.

Any output conditioning indicators specified in columns 23
through 31 of the Output sheet determine when during the
program the array elements will be printed or punched. If
no indicators are specified, the entire array is printed or
punched every time a record is processed. Indicators can be
specified to put out array data during detail cycles or at
total time. You may want to put out array data at total
time by customer or inventory item, for example, to be
used as input to subsequent update runs.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS FormX21-9091
Printed in U.S.A.

IBM Intern.tionel Business Machine Corporation

Program

Programmer Date

Extension Specifications

1 2

pase[]]of_

75 76 77 78 79 80

Pr~ram rllTrn
Identification

E Record Sequence of the Chaining File
Number

r--- of Number Table or .g e Table or Entries of length j~ Array Name
length

To Filename
Per Entries of of ~~ Array Name
Record Per Table Entry

~ ~ ~
(Alternating Entry

~~
f!

Format) Ii
or Array ~~j ~~!

Comments

Number of the Chaining Field

Line 8.
~

~
From Filename

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3738 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 7172 73 74

0 1 E '"" IITIFlrlL E 1\ - lL l~ ltla'l1 I '" 12
o 2 E ~~r~~ I I I I I I I
o 3 E

o 4 E

o 5 E

o 6 E

If I Causes entire array to be I
~~~~+-~~+4~+-~~~I~~~1-~~+4~+-~ .put out at end of job. -r+-r+~~-r~r+1-~~~r+1-~~~-1 

~~++++++~~~!-~~~rrrr~++++~;-ri I I I I I I I I I I I I I I I~HrHr~++++++~~~Hr~HH 

File Description Specification 

r, I. Type File AdditionlUnordered 

F 

Una 

Mode of Processing 

V File Designation length of Key Field or Extent Exit Number of Trocks 
of Record Address Field for DAM for Cylinder Overflow 

I Filen1me c End ~:~ormat ~;~::: Type ~ Device ~:~I~ ~::~ ~~it NUmbe~;:~nts 
or Additional Area -g Core Index ~ 
Overflow Indicator 0 Condition 

! . g ~ i Block Record l<: ~ ~ .~ Continuation lines z U1-\!!!-
~ ~ a ~ Length Length ::: I- Starting ~ 

j g~w<~ :l ~g location W K Option Entry ~ ~ 
3 4 5 6 7 8 9 lJ 11 12 13 14 15 16 17 18 19 20 21 22 Z! 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 52 53 64 55 58 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

....... I ... 

,t-',K1NIt-IK Fit- IT F I If: n o 2 

o 3 F 

o 4 F 

o 5 F 

o 6 F 

Figure 9-10. Specifications for Output of an Entire Array at End of Job 

9-10 

/' 

/' 

( 



) 

", 
) 

) 

RPG OUTPUT 
IBM International Busine~s Machine Corporation 

Program 

Programmer Date 

0 ~ Space Skip Output Indicators 

~ @"§ 
t:: tf 

Jd L 
Field Name 

0--.. e ~ 
Line Filename ~ iii 

~ ~ ~ t 
~ ~~ e 
I- AreD ~ 0 0 0 E o R ~ z z z 'AUTO & "A"N'o 

3 4 5 6 7 8 9 10 II 12 13 1415 1617 16 19 20 21 22 2324 2526 27 28 29 30 31 32 33 34 35 36 37 

01 1 1 o IRI~lpld~TI T I' I I !R I I II I 
0/2/ ') 

/ / /"/ / / / / MONrr/H/ 

Figure 9-11. Output of an Entire Array 

RPG II determines where the array data is to be put out on 
a card, printer file, disk or tape by the end position column 
you specify in columns 40 through 43 of the Output sheet. 
The array elements are put out such that the last element of 
the named array ends in the column indicated. Note, how
ever, that if all elements in the array cannot be put out on 
one output record, the array elements must be referenced 
separately on the Outp'ut sheet. Output of individual ele
ments will be discussed 'later. 

The output of an entire array by means of output specifica
tions. requires only one specification. An entire array can 
be written, printed or punched at any time during th,e run 
or at end of job, depending on how the output specification 
is conditioned. Again, during the run, this is possible only' 
if a single output record can contain this entire array. 

You must specify how you want the data elements to appear 
on the output record. Alphameric elements appear on an 
output record just as they appear in storage; however, 
numeric array elements may be edited or unedited. If no 
editing is specified, the elements are printed or punched just 
as they appear in storage, with the last element ending in the 
end position column of the output file. In other words, one 
element will immediately follow another with no punctua
tion and no blanks between elements. 

Usually, printed array output is easier to read and has a 
better appearance if edit codes or edit words are used to 
punctuate the data and insert spaces between elements. If 
punched output, disk output, or tape output is desired, 
generally the array output records are used as input the 
next time the program is run. Therefore, editing is usually 
not specified, so the elements will be in the appropriate 
format to be used as input. 

I 
a: 

IC (;; 

;3 5 
~~ 
36 39 

SPECIFICATIONS , GX21 ·9090 u/M 050' 
Pnnted in U.S.A. 

1 2 75 76 77 78 79 80 

Page OJ of _ ~~~;~i:ation 1 "I. 1 1 1 I I 

'3> Zero Balances X = Remove Commas No Sign CR to Print Plus Sign 

Ves Ves 1 A J V = Date 

I I Ves No 2 . B K Field Edit 
End No Ves 3 C L Z = Zero 

Positon No No 4 0 M Suppress 

in a: 
Output ~ Constant or Edit Word 
Record 

0:: 

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

I II I I 1111111 111 I I I 1111 1'1 I 1 11 
IIRI_'i" I I 111111/ / / I-I / / III / / / / "' I I I I 

Editing affects the position which is specified as the end 
position of the output record. If each element in a 5-
element array contains seven characters, 35 positions would 
be necessary to output the entire array in unedited form. 
On the other hand, if punctuation and blanks are inserted 
for each element, the number of positions required increases. 
When specifying an end position, you must allow enough 
positions to output all edited elements. 

Regardless of whether editing is specified or not, when out
put of an entire array is performed, every element of that 
array is put out in the same format. ,If an edit code or edit 
word is specified, every elementis edited in the same way. 
Since all elements of an array contain the same type of in
formation, ordinarily you want the elements punctuated in 
the same way. If, however, one element must be edited dif
ferently from another element in the same array, you must 
put out the elements separately. The means of referencing 
individual elements of an array is discussed later in this sec
tion. 

When an edit code is specified in column 38 of the Output 
sheet, every element of the named array will be punctuated 
accordingly. Furthermore, any edit code specified for an 
entire array also causes two blank spac~s to be inserted be
tween each element. The insertion of blanks is taken into 
consideration by the program so that the last element ends 
in the position specified. 

Arrays 9-11· 



As shown in Figure 9-12, the edit code 3 causes all five 
elements of the SALES array to be printed with decimal 
points inserted, leading zeros suppressed, and zero balances 
present. In addition, two blanks are automatically printed 
before each element since an edit code was specified. 

If no edit code specifies exactly how you want the array 
fields to be edited, you can specify the punctuation by 
using an edit word (columns 45-70). In this way, you can 
edit array elements with dollar signs, zero suppression, 
blanks, constant words, or any combination of punctuation 
desired. When edit words are used, all punctuation must be 
specified. Unlike edit codes, edit words do not cause two 

RPG OUTPUT 
IBM International Business Machine CorpOration 

Program 

Programmer Date 

0 u: Space Skip Output Indicators 

r--- ~J 
1 1 

Field Name 
c -
E~ ~~ Line Filename 
8. -lI OJ « 

~ ~~ l!! 
I- "Aro:o ~ ~ 0 0 ~ E 

~ ~~'D 
z z ·AUTO 

3 4 5 6 7 8 9 10 II 12 13 14 15 1617 18 19 20 2122 23 24 25 26 27 2:1 29 30 31 32 33 34 35 36 37 

01 11 OIRIElp()Rh-1 ~ I I " I I I 
01 2 1 ° 1 1 1 1 1 1 1 1 F;IAI\ .1~lsl 

004561 01783 29684 00000 I 08063 Array 

(ii 

m 

~ 
-'= "0 w 

38 39 

I~IR 

blanks to be automatically inserted in the output record be
fore each array element. Figure 9-13 shows an edit word 
specified without blanks; one element of SALES immedi
ately follows the next on the output record. Any extra 
blanks which are to appear must be indicated in the edit 
word by an &. Notice, in Figure 9-14 that the two blanks 
specified are to be printed as part of every element. Thus, 
the second blank following the last element will be the 
character which ends in the end position column. Notice 
that an additional two columns have been allowed for each 
element (five elements). The end position column has thus 
been increased by ten over that in Figure 9-13. 

SPECIFICATIONS 

~ 

Commas 
v 

Ves 
Ves 
No 

Positon No 
in 

:l Output 
Record iii 

0: 

1 2 

Page [0 of_ 

Zero 8a lances No Sign CR -to Print 

Ves 1 A J 
No 2 B K 
Ves 3 C L 
No 4 0 M 

Constant or Edit Word 

GX21-9090 U/M 050· 
Printed in U.S.A. 

75 76 77 78 79 80 

~~~;:f:.tion I I I I I I I 

X • Remove
Plus Sign

V· Oat.
Field Edit

Z • Zero
Suppress

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

I II I I ""111111"" II " I I I 11.
1IIIb I 1 1 I I I I I I I I I I I I I II " I I III

Two blanks inserted before element Two blanks inserted before element

~~ero suppressed U Three zeros suppressed

-I -----4.56 17.83 296.84 .00 80.63
-...--

3 blanks , 5 blanks

Figure 9-12. Output of an Entire Array With Edit Codes

9-12

Output of
array

position 112

/'

\' , .

/'
(

'"

(

)

'-,
)

RPG OUTPUT
IBM International Business Machine Corporation

Program

Programmer Date

0
r---

Line

!
E
~

LL Space Skip Output Indicators

~ 1~-+--~--r----r----~--~
0- I .1 -". ..
~ ~ ~ ~ And And

t- ~DO ~
~

Field Name ~
0:

in en

;3 !2
, ..

~ "0
w

Filename

o 0 z z "AUTO

SPECIFICATIONS

:> Commas

Ves

I I Ves
End No
Positon No

in 0:
Output -'
Record <Xl

Ii:

Zero Balances
to Print

Ves
No
Ves
No

GX21 9090 UlM 050·
Printed," U.S A.

I 2 75 76 77 78 79 80

Page OJ of _ ~~~~;~f:ation I I I I I I I

NoSign CR X Remove
Plus Sign

V " Date

K FIeld Edit

L Z Zero

M Suppress

Constant or Edit Word

3 4 5 6 7 8 9 10 11 12 13 14 15 t6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 7t '72 73 74

~O+l+-~0-llfUlJk'I"!;;,f1I~::..p..41I<[\fJ++-tJIDI4-++-H-++++-HH-++++-H-I-+-+-I-+-+--f--t-4-+-+-+--t-4I-+-+-".t.-+-+-I--t-t--+-+-+-t-t-t--+----+-r-r- -' .. --t----1-+-+--+-+--t--l
02 0 ~!811 ~I~ R ~112 '1$ ~
o 3 0

00456 01783 29684 00000 08063 Array

No blanks inserted

$.00$ 80.63

End position
112

Figure 9·13. Output of an Entire Array With Edit Words

RPG OUTPUT
IBM International Business Machine Corporation

Program

Programmer Date

0 ~ Space Skip Output Indicators

r-- e~
Jd L

Field Name
o-
-".

~ -line Filename ~ ;
~~ ~ .><

>- l.:
~ f- cl5

~
f- r:o:roro ~ ~ 0 0 0

~ o R
<t z z z 'AUTO

A~ro

Output of
array

SPECIFICATIONS

" Commas

It I v

Ves

lE] Ves
No

Positon No
in in 0: ;3 Output -'

~
Record <Xl

Ii:

I 2

Page OJ of_

Zero Balances
No Sign CR

to Print

Ves I A J
No 2 B K
Ves 3 C L
No 4 0 M

Constant or Edit Word

Program I
Identification

X = Remove
Plus Sign

V " Date
Field Edit

Z = Zero
Suppress

GX21-9090 U/M 050·
Printed," U.S.A.

75 76 77 78 79 80

II I I I I

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 OR ~p ~IRIr 10 '" , , " , , , ,

o 2 0 ~A IFC;- 13 12..2- '$ [7j &i&' III IllJIJJ 1
o 3 0 \11 I Insert two blanks 1-\

f--
a 4 0

I at end of each field. - f--

o 5 0
- - f--

00456 01783 29684 00000 08063 Array

SALES

~4.56 $ 17.83 $296.84 $.00 $ 80.63 ~~ Output of
-l array

~---- End POSition 122

Figure 9·14. Editing Every Element of an Array

Arrays 9-13

Accumulating Groups of Totals

As you have seen, arrays can be used to accumulate a total.
In a previous exam·ple, elements containing daily sales were
added to obtain monthly totals, which were stored in the
MONTH array.

To carry this concept further, one of the most common
uses of arrays is accumulating more than one group of totals.
Such a procedure is called rolling of totals, since one total
is used to obtain a greater total, which is then used to cal·
culate an even larger total, and so on. Each total is rolled
into or accumulated into the next total.

Figure 9-15 shows the organization of the Nelson Company.
The company's two regions are each divided into three
branches, which are in turn made up of two to six stores
each.

Company sales data is recorded on cards as shown in Figure
9-16. For each store there is a separate. record providing
the 12 sales amounts for each month of the year. The sales
records are organized such that stores are grouped within a
branch and branches grouped within a region. Three one·
position fields on each record identify it with a particular
store, a particular branch, and a particular region.

NELSON COMPANY

Store 1 Store 1 Store 1 Store 1 Store 1 Store 1

Store 2 Store 2 Store 2 Store 2 Store 2 Store 2

Store 3 Store 3 Store 3 Store 3 Store 3

Store 4 Store 4 Store 4

Store 5 Store 5

Store 6

Figure 9-15. Company Organization by Groups

9-14

1C4

Branch cift 1C3
1C2

lCl

Region I

Branch B,JL-.._l_B2 ___________ _
, 1/1Bl

Branch AI; 1A3
1A2

------------------------,
lA1

I JAN I FEB IMARI APR I MAyl JUN I

Figure 9-16. Sales Records Organized by Groups Within Groups

Note: The same sales data shown
here in punched card form could
be keyed directly into the system
by an operator on a console device
using data in any printed sales
records. The sales data could
also be keyed into a disk file,
which would then be read by
the program to produce the
sales report.

. Arrays 9-15

SALES REPORT /'

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC

STORE --- '----...- - --
STORE - -- -- ,'\~

STORE - -
BRANCH A TOTAL - - - - -

STORE - - -
STORE - - - -- - -

BRANCH B TOTAL -' --- -
STORE -
STORE --- - ---
STORE -- - --
STORE ..- ~ '- ~--- - ~ ~

BRANCH C TOTAL -- -
REGION I TOTAL -- --

STORE ---- - -- ~
ST'ORE -- - -
STORE -"\.--- - - -

~ ,,'
STORE --
STORE -- -

BRANCH A TOTAL ~ -,
STORE - -
STORE -- --
STORE """- -

BRANCH B TOTAL

STORE

STORE

STORE

STORE

STORE

STORE

'BRANCH C TOTAL

REGION II TOTAL

COMPANY TOTAL

Figure 9·17. Sales Report by Groups Within Groups

9·16

)

).

J

A sales report must be produced showing the monthly sales

for each store, for each branch, for all branches within a
region, and for both regions (the total monthly sales of the
entire company). The report, a series of accumulated totals,
should look like the one in Figure 9~17.

To produce the report, four arrays of 12 elements each
should be set up, as shown in Figure 9-18. The first array,
STR, will be used to hold the 12 sales amounts entered from
the sales records. The other three arrays will be used to ac
cumulate the necessary totals for each branch, each region,
and the entire company.

In general, this program should accumulate store totals into

the BRNCH array, branch totals into the REG array, and

SA LES record

region totals into the COMP array. Thus, the specifications,

must perform two functions:

• Add all elements of one array to all elements of another
array .

.• Print all elements of each array;

To have the program produce the correct totals, you must
specify that one array is to be added to another array and.

printed. To do this, the two fields which identify a record
with a particular branch and region. should be specified as

control fields. A change in the branch (or region) control
fields will cause a control break,' indicating the records for'

all stores in a particular branch (or region) have been proc:

essed.

$JAN $FEB $MAR $APRIL $MAY $JUNE $JULY $AUG $SEPT $OCT' $NOV $DEC

STR array

BRANCH array

REG array

COMP array

Figure 9-18. Four Arrays for Group Totals

Arrays 9-17

As shown in Figure 9-19, control level indicator L 1 is turned
on when the first record is read for a store in a different
branch. Likewise, L2 is turned on (and thus L 1 is automat
ically turned on) when the fi~st record is read for. a store in
a different region. Th~ specifications on lines 06-17 merely
describe the store sales data for each month of the year.

The specifications in Figure 9-20, insert A, illustrate how
control level indicators are used to control the performance
of calculations and output.

As a sales record is read, the. 12 monthly totals for that
store are placed in the array STR.. (H~w data gets into an
array will be discussed later.) Each time new data is placed
in STR (every time a card is processed), the elements are
added to the BRNCH array to accumulate totals for the
branch (Calculation sheet, line 01). The store totals are
printed as each record is processed, because every time a
new card is read the data previously in the STR array is re
placed by the totals for the next store (output lines 01-02).

When all store records for a particular branch have been read
and .their totals printed and accumulated in the BRNCH ar-

ray, an L 1 control break occurs. The control break is indi
cated by reading the first store record in the next branch.. /
Before processing this next record, the branch totals. are \,
printed and the BRNCH array is filled with zeros to prepare
for accumulating the next branch totals (Figure 9-20, ins~rt
B, lines 03-04). Before printing and zeroing the BRNCH
array, however, the branch totals are added to the REG array
(Calculation sheet, line 02).

The same program cycles are repeated for the rest of the
records in region I. Remember, however, tha,t data is ac-.
cumulated into the REG array only when processing for a
brancp is complete (L 1 on).

Once records for all branches within region I. have bee'n proc
essed, L2 is turned on, indicating the first record in the next
region has been read, but not yet processed. With L2 on,
the 12 accumulated region totals are printed (Output sheet,
lines 05-06). Before output of the REG array, however, cal
culations conditioned by L2 on are performed; that is, the
region totals are added to the company array COMP (Calcu
lation sheet, line 03). The calculation is done before output
so the region totals can be saved before REG is filled with
zeros.

RPG INPUT SPECIFICATIONS GX21·9094 U/M050·
Printed in U.S.A.

IBM International Business Machine Corporation

I Program I Graphic I I I I Card Electro Number
1 2 75 76 77 78 79 80

Punching
Page [[]Of_ ~~~~;~f:ation I I I I I I I I Programmer Date I Instruction Punch I I I I

I ~
Record Identification Codes Field Field Location

~ 1 2 3 c Indicators
r--

~
0 .;:;

~ :E-.~ 0
0 ~

Line Filename ~ ~
';:; Field Name 32-0

~ 0
.~] .~ Qi -0

1i & 0; 0 u.u: J Zero - ~
0-

~ 1l Position - ., Position Position

~~
:u(/) a: From To

~ I:~ Plus Minus or

~
'E =2~ ~ e e jj~] -0 Blank

r--;-5 ~ o ~.c o~~ ~ u
.~

8 ~~ 0;

o R Z Z u u zuu 0 :<u u:
r;N"ro

3 4 5 6 7 8 9 to It t2 13 1415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4501647 48 49,5051 52 53 54 55 56 57 58 59 6 061 62 53 64 65 66 67 68 69 70 71 72 73 74

0 1 IIc..IA IF Ie; AA rtllL
lL~

, -I-1-1-
o 2 I J RF" r..lr f""tr.J IL 12 Fields which

-I-1-1-
a 3 I 2. 1,,\"" '11.," ~IL.L identify ,

record.
I-I---

o 4 I ~ l~(l ;~T "'IR
o 5 1*
a 6 I .' ~~ .~17 ~JA \
o 7 I 3~ 412 2.~B
o 8 I 4'4 tll7 tM!R
o 9 I 4P; 5 12 21Alp
1 0 I ~I":I, .57 I2.MIV -I---
II I 51e b2 12) IN \ 12 fields to

-r---
I 2 I I· blS !hq I2.J 11 array STR

-f--f--f--
.1 3 I 7 1ft 114 12. iA 'G
1 4 I i715 17q 12.51p
1 5 I 18~ I -Ilj 4f1~ It
1 6 I IAI; IQq 1~1'41\.
1 7 I Iqti iQ4 12Dlr II

I:igure 9-19. Identifying Groups by Assigning Control Level Indicators

9-18

I
J

)

The same procedure is followed for all store records in
region II. During every program cycle, the store totals are
printed and accumulated to form a branch total; when L 1
is on, the branch total is printed and accumulated into a
region total.

When the end of file is reached, the LR indicator is turned
on. Automatically, all control level indicators assigned (L 1
and L2) are also turned on. Therefore, after the last store
record has been printed and the store totals added to
BRNCH (Figure 9-20, insert A, line 01), any specifications
conditioned by L 1, L2, or LR are performed. In other
words, the totals for the last branch are added to REG (Fig
ure 9-20, insert A); then the region totals are added to
COMPo Following the calculations, three sets of totals are
printed; totals for the last branch (Figure 9-20, insert B,
lines 03-01); then the region II totals; and, finally, the com
pany totals.

REFERENCING INDIVIDUAL ELEMENTS OF AN
ARRAY

In addition to referencing all elements of an array, you can
use an individual array element'in calculations or' output.
Suppose you have an array with each element containing
the quantity in stock of a particular part manufactured by
your company. Element 1 contains the quantity in stock
for part #1, element 2 for part #2, and so on. When a ship
ment of ordered parts is received, the quantity in stock
must be updated to reflect the current inventory. This
means you should reference (add to) only particular elements
of the array.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporation

1 2 75 76 77 78 79 80

Page [I] of_ ~~~~;~f:ation 1 1 1 1 1 -I 1
Program

Programmer Date

C Indicators Result Field
Resulting

~-
Indicators

-
At At

Arithmetic

=~ Factor 1 Operation Factor 2 .g £ Plus IMinusl Zero
Comments

~~~ Length ~ g Compare 

Line Name 1>211<211-2 ~ "0 a:." ~~ E ~ '" Lookup(Factor 2)is 
~ 8 5" ~ 15 ~ 

'(3 -

Z o :I: High Low Equal 
3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 e BR Nrl-l AD I:: ISTIR I~KIN H :A" ,.. JIM IBR Nrl~ :1""1r 
o 2 ell II R:(;. r; Ar"'C IRR INr--H RE(:. 'A, " r JIM iR E: (; tJ"n :fAIL 
o 3 el, ~ Irl- MP AnD ~FIG ron IMP 'A'r r 11M .... ,..., f".P Tn iTll 
o 4 e 

RPG OUTPUT SPECIFICATIONS GX2I,9090 U/M 050" 

IBM International Business Machine CorpOration 

1 2 75 76 77 78 79 80 

Page [I] of_ ~~~;:f:.tion 1 I, 1 1 1 1 1 
Program 

Programmer Date 

0 -'" ~ Space Skip Output Indicators 
Commas Zero Balances No Sign CR - X == Remove 

- ~~ fEi 
to Print Plus Sign , 

I 1 
Field Name 

Ves Ves 1 A J V = Date o !!: I -"" ~ ~ 
Ves No 2 B K Field Edit 

Line Filename :;. Ai End No Ves 3 C L Z :a Zero 
& 1l '" ~ And Positon No No 4 0 M Suppress 

& ~J3 
f ~ in a: ~ fp;fo"o i;; ;3 

E ~ ~ ° 0 0 Output ..J Constant or Edit Word 
o R Z ,2 Z "AUTO Record '" ~ ~'Nro ~ ~ 

3 4 5 6 7 8 9 10 II 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 0 It:.r :I'\L1 'n 
o 2 0 5iTiR ~ 1122. 
o 3 0 J 1213 ILl 
o 4 0 I .. ..... 31R 1122 "· ... ,KIN 1M 

0 5 0 r 1~13 112 
0 6 0 1R.lfle; 3lB J22 
0 7 0 r IL R 
o 8 0 11"''''' IM[p 3 l22 

Figure 9-20. Accumulation and Output of Group Totals Using Arrays 

Arrays 9-19 



Indexing an Array 

As you learned, if a calculation or output specification con
tains an array name alone, that specification is automatically 
performed for every element of the array. To reference only 
a single element of an array, you must identify that element 
for the RPG II program. This is done by placing a comma 
after the array name, followed by an index which points to 
the particular element (Figure 9-21). This index can be 
either the actual number of the element to be referenced or 
the name of a field containing the number of the element to 
be used. 

Recall Defining an Array. The name used to refer to an ar
ray cannot exceed six characters in length. When referencing 
individual fields, both the array name and an index are nec
essary to refer to the data. Therefore, usually the array name, 
plus the comma, plus the index cannot exceed six characters. 
The name used to refer to an individual array element must 
be one to six characters long unless the name (with index) 
used to refer to an individual array element is specified only 
as Factor 1 or Factor 2 on the Calculation sheet. In this 
case, the array name plu5comma plus index may be as 10hg 
as ten characters. However, the array name portion of the 
reference still cannot exceed six characters. 

I 
if an index field IF LD is specified, only one character (B) 
can be used as the name of the array because the indexed 
name is specified under Result Field. However, COM, 
INDEX on line 07 is valid, even though longer than six 
characters, because it is specified only under factor col
umns. 

Specifying an Index Which Does Not Change 

If you know exactly which element is to be used in a calcu
lation or output operation and the specification is to ref
erence the same element in every program cycle, you may 
use a'constant as the index., Assume a 7-element array 
(SLS) is defined to contain a salesman's six daily commis
sion amounts and his total commission for the week. The 
six daily amounts from one of the salesmen's input records 
are read into elements 1-6 of the array. The seventh 
field on the input record contains zeros and is read into 
element 7 of the array (Figure 9-22, insert A). 

The array elements are defined as 5-digit numbers with two 
decimal positions. Once the data is in the array, the XFOOT 
calculation operation is performed to add all elements ~f the 
array and place the total in the seventh element (Fi~ure 
9-22, insert B). The weekly total for every salesman is al
ways stored in the seventh element. Therefore, the actual 

''-... 

Figure 9-21, line 01 ,shows a valid reference to the ninth 
element of an array named ARY1. However, if the array 
contains ten or more elements, some of which may have to 
be referenced, the name of this array would have to be 
shortened to provide enough positions for the index (Fig
ure 9-21, line 04). The limit of six characters applies even 
if the name of a field is used as an index. As line 07 shows, 

number 7 can be specified as the index. In addition, a $25 // 

IBM Internationa' Business Machine Corporation 

Program 

Programmer O.t. 

Factor 1 

bonus is to be added to a salesman's total if his weekly com- " 
mission exceeds $175 (Figure 9-22, insert C).' Thus, in every 
program cycle, element 7 must first be compared to $175 to 
determine if the bonus is to be added to the contents of 
element 7. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Print_din U.S.A. 

1 2 75 76 77 78 79 80 

Page [0 of_ ~;::~f:ation I I I I I I I 

_~~;:;s 

Factor 2 

110 Arithmetic 

I,g I~ Plus IMinu,l~ro_ 

I 'iii I 1;: _ Cornpa-,e 
Name Length Ii I~ 1 >211 <211-2 

OperatIon Comments 

1~li '2);, 

t9 20 21 22 23 24 25 26 27 '28 29 30 31 32 '33 34 35 36 37 J8 J9 40 41 42 143 44 45 461.' . Hi9hJ.~O::"J~~U.1 
AIRYLl,. A ADin 1(lj ~IRIY .1 f=f=~ Actual number used as index. 

II I I I \I 

11 72 73,74 

-1-1--

( 
\~ 

Figure 9-21. Referencing a Particular Element of an Array 

9-20 



I 
I 

Element 

027.80 042.37 031.87 

025.93 000.00 

DOE, JOHN 

2 3 4 

SLS array 

5 6 7 

RPG CALCULATION SPECIFICATIONS 

Reference every Reference only 
element of array 7th element of array 

Element 7 

SLS array 

RPG CALCULATION SPECIFICATIONS 

Element 7 

Figure 9-22. Specifying a Number as an Index 

® 

© 

Arrays 9-21 



Specifying an Index Which Can Be Changed 

On the other hand, if the array element will vary when a 
particular specification is performed, the index should be a 
field name rather than an actual number. In this way, the 
number stored in the index field can be changed during the 
program to indicate which array element is to be referenced. 

An array (STK) is used to contain the quantities in stock of 
all parts manufactured by a company. Element 1 of the ar
ray contains the quantity for part #1, element 2 for part 
#2, and so on. When additional parts are manufactured, the 
values in the appropriate elements must be updated. There
fore, records are punched daily for each type of part pro
duced. Each record contains the part number (NM) and the 
quantity of that part produced (OTY). 

To perform the updating, the contents of the OTY field 
must be added to one of the array elements for every rec
ord processed. Thus, an index must be used in order to 
reference only the individual element to be updated. Since 
each daily record is for a different part number, the array 
element to be increased will vary each time the specification 
is performed. For this reason, an actual number cannot be 
specified as the index, because OTY would be added to the 
same element for every part number. Instead, the NM field, 
which contains the part number for each record, can be 
specified as the index (Figure 9-23). Then, every time the 

addition specification is performed, the part number just 
stored in NM indicates which element of the array is to be 
referenced. 

Output of Individual Elements of an Array 

To put out individual elements of an array, you code the 
same output specifications you would for normal fields. 
The only difference is that under Field Name on the Output 
sheet you must specify the array name followed by a comma 
and an index. The index then points to the particular 
element to be put out (Figure 9-24). 

Thus, referencing individual array elements for output is 
the same as referencing them for calculations. If the same 
element is to be put out every time the output specification 
is performed, an actual number can be used as an index. 
Otherwise, if different elements are to be put out individu
ally, a field should be specified which contains the changing 
index value. In any case, the array element (array name 
plus comma plus index) on the Output sheet cannot exceed 
six characters in length. 

Edit codes and edit words can be used to punctuate an in
dividual numeric array element. If an entire array is to be 
put out but the elements require different punctuation, each 
element and its editing should be specified individually. 
Editing to be done on an individual array element is specified 
and performed just as it would be for any normal element. 
This means that, if an edit code is specified for an individual 
array element, two blanks are not automatically inserted be
fore the element, as was the case with an entire array. Fur
thermore, although any type of output can be edited, editing 
is generally not specified for an array element which is to be 
punched on a card or written on disk to be used as input to 
another run. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Business Macnine Corporltion 

1 2 75 76 77 78 79 80 
Program 

Programmer Date Page CD of _ ~~~;~f:ation I I I I I I I 

C Indicators Result Field 
Resulting 

~ Indicators 

- 9~ 
At I Arithmetic 

:=0 And Factor 1 Operation Factor 2 Plus I Minusl Zero Comments 
~3~ Length 

Compare 

Line .... (5 rr."' 
Name 1 >211 <211-2 

E ~ ~ ~ 
~ 15 

Lookup(Factor 2Jis 
.f 8 5 ~ z Hi9hs!,LOw

7
\,EQual 

3 4 5 6 7 8 9 10 1112 13 14 15 IS 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

011 I C I Sh-Ikl ,INIM I I I IAbo11 drlYllll1 j I c.h'IKI INM JJ 
" " I 

JI~li»\l'-I~1 ~IN'VII'" IIUM.IY 
I I I I 

Figure 9-23. Specifying the Name of a Field as an Index 

9-22 

,/ 

r 
I 

\ ...... 



) 

-" ) 
J 

RPG OUTPUT 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 S Space Skip Output Indicators 

I-- ~~ If] 

At 1 
Field Name 

0-

ILJ - "" ~ -Line Filename ;. Qj 

~~ lltS 

~ ~~ 
~ :g 

~ "ADD ~ ~ 0 0 0 8 
~ ~~D 

z z z 'AUTO .t: 
"0 w 

3 4 5 6 7 8 9 10 11 12 13 1415 1617 18 19 20 2122 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

o 1 °IK 1t:1J-" RiT 11"1 
o 2 0 ;C:;IL 5 7 B 
o 3 0 

o 4 0 

o 5 0 

o 6 0'- IAR OS ,.., 
o 7 0 STI< N'fvl~ 
o B 0 

Figure 9-24. Output of Individual Array Elements 

Referencing Only Part of a Field 

When a field is referenced in a specification, all characters 
within that field are used in the calculation or output. 
However, you may wish to reference only some of the data 
stored in a field. For example, consider the case during 
address printing where the·zip code is within the same field 
as the city and state on an input record but must be printed 
on a separate line on the output record (Figure 9-25). 

I nput record 

1458761 NELSON KENNETH RAY 

NORTH' 

I ROCHESTER;t5MINN1S55901-!:%f:Ststst5t5lSrS I 
CSZ field 

Figure 9-25. Referencing Parts of a Field Separately 

SPECIFICATIONS GX21-9090 U/M 050' 
Printed in U.S.A. 

Positon 
in 
Output 
Record 

40 41 42 43 

12.1~ 

1~12 

--" 
Commas .... 

Ves 
Ves 
No 
No 

~ 
ii: 

Zero Balances 
to Print 

Ves 
No 
Ves 
No 

1 2 

Page [I] of 

No Sign CR 

1 A 
2 B 
3 C 
4 0 

J 
K 
L 
M 

Constant or Edit Word 

75 76 77 78 79 80 

~~:;~f:.tion 1 I. 1 1 1 I· I 

X = Remove 
Plus Sign 

V = Date 
Field Edit 

Z = Zero 
Suppress 

«~.Q.~50M~~~H~D~~50M~~MU~D~~ro 71 72 73 74 

I I I I I I I I I I I I I II ! I Referencing the same element I 
by using actual number as index . 

I Ll I III l J-J 11 1 1J 
I I II I I I I I I 1·1 I I I 
J J J J J J I II II I I I I I Referencing different elements 

by using a field as the index I 

The indexing capability of arrays can be used to enable you 
to reference specific characters from an input field. This is 
accomplished by setting up two arrays; one to contain the 
entire field of data and one to hold only the specific charac
ters you want to reference, 

Output record 

NELSON KENNETH RAY 

~UENORTH 

\HJ:rti}$!fi;M!i!!~~ . 

"" CSZ field to be printed as: 

Arrays 9-23 



First, the entire field from which you wish to use data is 
stored in an array of the same name as shown in Figure 
9-26; (See Loading Arrays, Storing Input Data into Execu
tion Time Arrays later in this chapter for an explanation of 
this method of loading an array.) This array is previously 
defined as containing as many one-byte elements as there 
are characters in the field' to be referenced. Thus, each 
character of the one field is actually stored in a separate 
element of the array. The array elements can then be ref
erenced one at a time (using an index) until an element con
taining a specific character is located. This process of check
ing the elements of an array for particular data is referred to 
as field scanning. 

After scanning the elements and locating a specific charac
ter, you can then move that character and any characters 
(elements) on either side of it to a smaller array. This ar-

CSZ field (30 characters) 

ray will then contain the portion of the original input field 
which you wish to reference separately in calculations or / 
output. 

For an address printing program, let's assume the input records 
are defined as shown in Figure 9-27. The CSZ field contains 
the city/state and zip code. Although names of the city and 
state may vary in length, the zip code is always five digits 
long. Any righthand, unused positions of the CSZ field will 
contain blanks. 

The two arrays for this program are defined with the exten
sion specifications in Figure 9-28. CSZ is set up to contain 
30 elements, one for each character of the CSZ field from 
the input record. The five elements of the ZIP array will be 
used to contain the zip code portion of the CSZ-field. 

ROCHESTER;t5MINNt555901~ 

I' R I 01 C I HIE 1 SiT 1 E "R I ' 115 I'M II I N I N I 15 I 5 15 I 9 I 0 11 I is liS 'is 115 liS 115 liS liS I ~ I 
CSZ array (30 elements) 

ZI P array (5 elements) 

Figure 9-26. Isolating Part of a Field 

9-24 



/ 

/ 

IBM InternatIonal Bu~ine51 Machine Corporation 

Program 

Programmer Oate 

I ~ 
r-- ~ 1 

11 
Co 

~ .... 
Line Filename j ~ ~ 0 

~ =6 Position 
I- ~; 'E 

~ 5 .~ ~ 'Or;- zo c:: 
A'NO 

3 4 5 6 7 8 9 10 II 12 13 1415 16 17 18 19 20 21 22 23 24 

0 1 lit Nip Il T IAA ~lL 
0 2 I 

0 3 I 

o 4 I 

o 5 I 

o 6 1* "Is~ IFlr I~IL D I,..,... ,..t .. ~I ... 
0 7 I 

-

RPG INPUT SPECIFICATIONS 

Record Identification Codes 
Field Location 

2 3 

~ 
~ 3i c:: ~ Position ~ ~ ~ Position From To 

~ CO ~c a ~ g o ~ j ~ § z u u ~fl6 OU5o: 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

I ~ 

i.tJ 35 
3b h.5 
It!~ ql~ 

NI~ "Ir Tly "" - -;z 1101 -~ I J Pt II~ .~ 

1 2 

Page 0] of_ 

~ .~ 
0 

!! -" Field Name 3 ~ 

iI ~ 1 'g 
C ::;u 

52 53 54 55 56 57 58 5960 61 62 

~h D~ 

NIA MI£ 
srr RE lET 
1"'15;1 

" r'\ 

GX21·9094 UiM 050' 
Printed in U.S.A. 

75 76 77 7B 79 BO 

~~~;~f:ation I I I I I I I 

Field

.g Indicators

~
j Zero

Plus Minus or
Blank '0

~

6364 6566 6766 69 70 71 72 73 74

ROCHESTER,~MINNb55901~~~~~~~~~

Figure 9-270 Defining a Field to be Scanned CSZ field

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS
IBM Intimation. Business Mec:hine Corpo,.tion

1 2

Programmer Oate
Page 0] of_

Program

Extension Specifications

E Record Sequence of !he Chaining File
Number

Number of !he Chaining Field of Number

j~
Table or S Table or Entries of Length Length

Line 8-
To Filename

Per Entries of Array Name of ~
~

Array Name
Record Per Table Entry :)~~

(Alternating Entry c:: f!
From Filename Formatl ~ Ii

j or Array
~~l ~ j

Figure 9-28. Defining Arrays for Field Scanning

Form X2HI091
Printed in U.s.A.

75 76 77 78 79 80

Pr~ram rTTTrn
Identification

Comments

Arrays 9-25

To locate the zip code in the CSZ array, the elements must
be scanned one at a time, beginning with the last (rightmost)
element of the array. Thus, the index field (C) for refer
encing the individual fields of CSZ is initially set up in the
Calculation sheet to contain the value 30 (Figure 9-29, line
01). When the last (rightmost) character of the zip code is
located, it should be, moved to the rightmost (fifth) element
of the ZIP array. Therefore, a 5 is initially set up in the in
dex field (Z) which will reference a particular field of ZIP
(Figure 9-29, line 02).'

With the index fields set up, the program can begin scanning
CSZ for the zip code. The elements of CSZ are checked,
from right to left, until the first nonblank character is
located. As line 04 shows, a character is compared to a
blank. If it is blank, the index value is decreased (line 05)
so the next character to the left can be compared to a blank.
When one of the characters checked is not a blank (indicator
20 off), the last character of the zip code has been located.
This ends the field scanning.

The program can now proceed to perform the next group of
calculations which move the located character to the right
most position of the ZIP array (line 09). The character in
the CSZ array which was moved to the ZIP array is now
made blank (line 10) so the city and state line can be,printed
without the zip code. The index values for both arrays are
decreased by 1, so the next zip code character (to the left
of the last one moved) can be moved from CSZ to the next
portion in the ZIP array. When the value of Z become~ 0
(indicator 21 is on), all five characters of the zip code have
been moved to the ZIP array and made blank in the CSZ
array.

After calculations, the output specifications in Figure 9-30
cause the name and address to be printed~ The NAME and
STREET fields are printed exactly as they appear on the in
put record. City and state, on the other hand, are printed
from the CSZ array rather than the input field, because the
zip code has been blanked out. The zip code, which was
moved to the ZIP array, is then printed alone on the next
output line.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporet!on

Program

Programmer Date

C Indicators
~

I--- 9Q? At At ::0 Factor 1 Operation Factor 2

~~~ 
Line t- '0 a:,-

E ~ <II 

& 8 5- ~ ~ 0 z 
3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

a 1 C l- A~ 1"'131:2 
a 2 C 2- AD IDI5 
a 3 C FI INn i!...p rAGJ 
a 4 C II- .c;~ :r r"'" /ViP I I 

a 5 C 12.~ ~ 5 A lL 
a 6 C 12k2 r...'" Tf"I t-lN ~fJ 

a 7 C*f;l{ 
o 8 . C M() ,,~ trip TAG 
a 9 C M'" Vl~ ~ 51~ r 
1 0 'C M"" V If. , , 
11 C I" 5 '8 lL 
1 2 C ~ 5 18 lL 
1 3 C IN21 (;" rrb ~D Iv~ lrp 
1 4 C* 
1 5 C }f 

1 6 C* Ill., .. ""ll,T hN iL.,1 11\1£ 11~ IS '"fIl-

1 7 C* b TP TI, 1":1 IT!V ~ND srr AtrlE IARIE plR !rl~ T'6. lt"I 

1 8 C 
. ~ ft 

Figure 9-29. Field Scanning 

9-26 

Result Field 

.~ 
Name Length ~ 

E 
'2 
c 

43 44 45 46 47 48 49 5051 52 

If- ~~ 
~ lli1 

,. 

~I PI')~ 
'-5 ~I,l--,. 
~ 

l 51"\ ~.I-I ~N 

1 2 pagernOf _ 

75 76 77 7B 79 BO 

~~~;~f:ation I I I I I I I 
R .. ulting
Indicators

Arithmetic

Plus IMinusl Zero Comments
Compare

1>211<211-2

Lookup(Factor 2);s

High Low Equal
54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

trlN nx IFhR ~lc:;l~ IAR
lr~ inx l~r"IR 1~ITlp ~R

20. [5 "1-/ lbtR A P,II '.61~ U

Iv I; ~- "IE R E5 [,N lox
~H leK INXT Ir/-l lAID ILlr

I\1nlv lL ,.114 l4R 1~lp 1"0
RI AINlk ~llJrr ~It Ip" !n

.. 1~1~t- rrlN nJ:ix nl=
1211 p,~ TIH AI,.. Inl" I ...

,"" MlvE INlxT "H AIR

~L L iriS
1\1\111 H :JT i: III-' I~

/

)

)

RPG OUTPUT SPECIFICATIONS GX21·9090 U/M 050·
Printed in U.S.A.

IBM International Busin'51 Machine Corporation

Program

Programmer

0

Line

~
I-

~

Filename

Date

u:: Space Skip Output Indicators

~ I~-+---.--r---~----~---;
c -
~]j~
~ ~ ~ «
I- cii

ADD j

Commas

Yes
Yes
No
No

1 2 75 76 77 78 79 80

Page []]Of_ ~~~:~f:ation I I I I I I I

Zero Balances No Sign CR - X ~ Remove
to Print Plus Sign

Yes 1 A J Y = Date
No 2 B K Field Edit
Yes 3 C L Z = Zero

No 4 0 M Suppress

Constant or Edit Word

3 4 5 6 9 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1

o 2

o 3 0

o 4 0

0 5 0

o 6 0

0 7 0

o 8 0

Figure 9-30. Output of Part of a Field

LOKUP OF AN ARRAY

Searching an Array for a Particular Element

An array can be searched to determine if a particular
element of data is stored in the array. Actually, ~he array
lookup is coded and performed in almost the same way as
a single table lookup. As the Calculation sheet in Figure
9~31 shows, you specify:

1.

2.

3.

4.

5.

Only city and state will be printed since
zip code blanked out.

Only zip code will be'printed.

The search word to be used.

The LOKUP operation code.

The array to be searched.

The condition which must be satisfied.

The resulting indicator which turns on if the condi
tion is met.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Bu,ines. Machine Corporation
1 2 75 76 77 78 79 80

Page [0 of_ ~~~:~f:ation I I I I I I I Program

Programmer Date

C Indicators Result Field
Resulting

~ Indicators

I-- 0_

AL Jd :~ ~
Arithmetic

..Ja:
:::0 Factor 1 Operation Factor 2 Plus 1 Minusl Zero Comments

~.s~ Length ~J
Compar.

Line Name 1>211<211-2 ... 15 a:
g ~ ~ ~ '0 '0 'u - LookuplFactor 2lis
& 8 5 ~ z z c:z: High Low Equal

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 58 67 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 c ~TI~ IIII)(nll\lnll\l/I I I I I I I I I 116 I I I I I I I I
o 2 C I~ ~I I T Y 1 I I I I I I I I
o 3 c

Condition which satisfies search Actual search word Name of array
o 4 c

or field containing to be searched and which resulting indicator
o 5 c

search word is turned on
I I I I I I I I I I

Figure 9-31. Searching an Array for a Particular Element

Arrays 9-27

Page of GC21-7567-2
Issued 24 May 1976

.By TNL: GN21-5389

The array lookup continues, one element at a time, until
the search condition is satisfied or the end of the array is
reached, whichever occurs first. As is the case for table
lookups, array elements must be in sequence (A or D) if
searching for either a low or high condition. Additional
coding is necessary if searching an out-of-sequence array
for either high or low. (See Searching an Array for More
Than One Element and Output During an Array Search.)

Although array and table searches are similar, there is an
important difference you must be aware of. Remember,
the array lookup is similar to a single-table lookup, not a
two-table lookup. Only one array is specified in the look
up operation. Any element which is referenced as the result
of a successful search can only be from the array actually
searched. In other words, the array can not be searched to
make an element from another array availa~le, as is the case
when two related tables are used in a lookup operation. For
this reason, no result field may be specified in an array look
up operation.

Starting the Search at a Particular Element

Another very important difference between tables and ar
rays concerns where the search can begin. In a table search,
only the name of the table to be searched can be specified
as Factor 2 of the lookup operation. As a result, a table
search always begins at the first table element. Likewise, if
only an array name is specified as Factor 2 of a lookup
operation, the search automatically begins at the first
element of the named array.

With arrays, however, you also have the capability of be
ginning an array search at any element you specify. Under
Factor 2, you specify the array name, followed by a comma
and an index. The index, whether an actual number or the
name of a field containing a number, points to the array
element where the search is to begin (Figure 9~32).

In a large array where you know that the value you are
searching for is not in a particular section of the array,
search time can be greatly decreased by beginning the
lookup at a particular element. Suppose you have a 300-
element array name ARY containing the values 001 through
300 in ascending sequence. To locate a value of 047, only
47 elements would have to be checked before the search
co~dition was satisfied. However, to locate the value 289,
289 elements would have t6 be checked, if the search began
at the first array element.

Now, divide the array into three parts of 100 elements each:

Elements 1-100: values 001-100.

Elements 101-200:· vallJes 101-200.

Elements 201-300: values 201-300.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.s.A.

IBM 'ntemationar Business Machine Corpo,..ti~n
1 2 75 76 77 78 79 80

Program

Programmer Date ~~;:;:ation I I I I I I I Page [0 o!_

c Iii
Resulting
Indicators

~

AI\d

Arithmetic

Aid Factor 1 Operation Factor 2 :r Plus IMinusl Zero
Comments

line ,! .:;: Compare
Name Length =Q-1»211 <,211-£.

13 _" 5 11 IJ~ I.~ Ito 1111,~ 1131141 ~ 116117 18 19 20 21 2.2 23 24 25 26 27 '28 29 30 31 32 33 34 35 ~'N~mmlmllJ 41'42 L4 414.454R 47 "" '495051 " '! l~i9:51~o:7::~~ 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

io 11 C C\IQ rlJ ilAJln "'H I' il-

I
~Ib -roo 'Actual number

10 1
2 Cf){. ~IR

'-1-:- as index
10 13 c ~IA '-U WD ,..11(II 10 AQ I I :2.11,
10 1

4 IC ~~ rl I I I I IIII
10 15 C

~ ing j
10 16 Ic I I I J I

! I

Figure 9-32. Starting an Array Search at a Particular Element

9-28

)

)

For any value of less than 101, the first third of the array is
searched, beginning at element 1. For values greater than
100, but less than 201, the second third of the array is
searched, beginning at element 101. Likewise, a search is
started at element 201 to locate any value greater than 200.
In any case, no more than 100 elements have to be checked
to satisfy the search condition.

For this example, the number of the array element at which
the search is to begin will vary, depending on the value being
searched for. Figure 9-33 shows that three LOKUP's have
been coded. Only one of the lookup operations is performed
for a particular value.

To determine which LOKUP (line 04,05, or 06) is per
formed, you must first determine in which part of the array
the value is located. The first COMP (compare) operation
(line 02) checks for a value in the first 100 elements. If the
value is less than 101, indicating the first one third of the
array, indicator 33 is set on. If 33 is on, the LOKUP begin
ning at element 1 is performed (line 04). However, if the
value is not in the first third of the array (33 off), another
compare (line 03) is necessary to determine if the value is in
the second third of the array (indicator 44 set on). Thus,
the LOKUP beginning at element 101 (line 05) is performed
with indicator 44 on. If neither indicator (33 or 44) was set
on, the value must be in the last third of the array, if it is in
the array at all. Therefore, with both 33 and 44 off, the
LOKUP beginning at element 201 is performed.

For the first LOKUP (line 04), it is not necessary to actually
specify the numeric value 1 as the index, in the same man
ner as 101 is specified for the second LOKUP. When no in
dex is specified with the array name, the search automatic
ally begins at the first field, as if the index were 1.

Note: Setting off indicator 44 (line 01) prevents an error
in the lookup function. What would happen if the SETOF
operation was not used and indicator 44 was set on in the
first cycle and 33 in the second cycle? In that case, 44
would not be set off in the second cycle because the N33
condition would not be satisfied in line 03. Thus, both
lines 04 and 05 would be executed. The LOKUP operation
in line 04 would be successful and indicator 66 would turn
on. The LOKUP operation in line 05 would not be success
ful and 66 would be turned off. Thus, a not-found condi
tion would result even though the LOKUP was successful.

If the value of the index changes, as in this case, you can
use an index field to contain the number of the array field,
rather than using the actual number. In this way, it is nec
essary to code only one LOKUP. Of course, you must
place the appropriate number in the index field every time
before the lookup operation is performed. Thus an index
field will not always reduce the number of specifications
required.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM International Business Machine Corporlt!on

1 2 75 76 77 78 79 80
Program

Programmer Oate Page CD of _ ~~~~;~f:ation I I I I I I I
-Resulting

C Indicators Result Field

~-
Indicators

- At At
Arithmetic

-'a: ::0 Factor 1 Operation Factor 2 Plu,_LMinusLZero Comments

~~~ Length 
Compare 

Line Name 1>211 <211 a2 .... '0 a: 
E E ~ - '0 '0 

Lookup(Factor 2)is 
~ 85 ~ z z High Low Equal 

3 4 I; 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 5667 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 c 5E rrhlF 44 
o 2 c VA I IJIF ""(") Mlp IlJlL l1B FI IR C;T ~IJ.I IrlR 10? 
o 3 c INI~:l, VA I Jle: ,.~ ~Ip 2J?Jl1. 1'f14 t;E rn ND ~H IT IR n? 
o 4 C I~~ VA I 'JIE :lO:K ',... .. ,.. 'bib ST lARrr ~IT IFI! 1"1 ~11 ,,",Jot "-IY 

o 5 c "ILl V~ , liE hif,( '1"11\ rJl\ ,11 lill b"~ ST AR,T I=ll n t:t.~ illJ 
o 6 C ~ .. 'I viA , 'JI~ 't 11"'111< I" "I,.,. 121151 'bb ST aRT 11=11 n :..t2 ~l 
o 7 C 

o 8 C 

) Figure 9-33. LOKUP with an Actual Index 

Arrays 9-29 



As shown in Figure 9-34, first the compare operations. are 
performed to determine whether the value is in the first, 
second, or last-third of the array. The results of the com
pare operations determine which number should be zero
added into the index field, IXFLD, before the lookup is 
performed. 

See the previous Note for an explanation of the use of the 
SETOF operation in Figure 9-34 (line 01). 

Determining if a Search Is Successful 

At this point, we should discuss the index field and how its 
contents are changed as a result of the lookup operation. 
Before the look,up is performed, you determine the value 
which is to.be placed in the index field. The array search 

then begins at the element number specified. The array 
lookup continues, one element at a time, until the search 
condition is satisf,ied or the end of the array has been 
reached, whichever occurs first. If an index field is speci
fied, the number of 'the array element first satisfying the 
search condition is stored in the index field. However, if 
the end of the array is reached and none of the elements 
satisfy the search, a 1 is placed in the index field. In' any 
case, if an actual number, not an index field, is specified as 
the index, the actual index is not changed to reflect the 
success of the search. 

The way in which you determine a successful search is 
whether the resulting indicator assigned hasbeen turned C!n 
or off. Thus, if the resulting indicator is off and an index. 
field had been specified, the index field should contain the 

value 1, the result of an unsuccessful search. If the first 
field of an array satisfied the search condition,' the index 
field would also contain the value 1; however, in such a case, 
the resulting indicator would be on. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM t"ter"atlonal BUSiness Machtne CorpOrltion 

Program 

Programmer Date 

C Indicators 
~. 

t--- ~ 
At 

I 
~ ~ 

And Factor 1 Operation Factor 2 

line >..J 
I- '0 
E g 0 0 :£ ~ 8 z z 

3 4 5 6 7 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

o 1 C SF' rrhF 
o 2 c \/iA L ll~ r,... mlp 1~11 
o 3 c INI~I~ VAL IE. rn Mlp 2.~ll 
o 4 c 1_~13 z- '"I .... ..... '" ,." 

o 5 c ItJlq ~- AID "" ~l 
o 6 c INI~ I~I"I lu t- Alo "'2 ~l 
o 7 c VAL IE 1"\'1<' nl\ D , II xl~ In 1 

o 8 C 

ft ft ~ 

Figure 9-34. LOKUP with an Index Field 

9-30 

Result Field 

0 ." 
Name 

0 
Length ~ 

E 
u 
0 

43 44 45 46 47 48 49 5051 52 

IxlF D R(2l 
IxlF n 

IIXIF 0 

1 2 

pageDJOf_ 

75 76 77 78 79 80 

r~~;~f:ation I I I I I I I 
Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero Comments 
Compare 

1>211<211~2 
Lookup(Factor 2)is 

High Low Equal 
54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

'-ILl 
:~B ~ Ii '1<151 :'H IrR (')1 

'4~ 'N't""I -I~ I=r 'Nr TI-l IT ~ n? 
~T ~RT 14T r: In ... ~ 
srr iAIRT 1Ft n I#IL ~L 
I" rr IAIRT lc J..1" ~12 ~11. 

I" ~ 

\ ... 

( 

( 



Referencing an Element Which Satisfies a Search 

./ After a successful search, you can use the data from the 
element which satisfied the condition only if the array name 
with an index field is specified in the LOKUP specifications. 
If an index field is specified, the number of the field which 
satisfied the search is stored in the index field. Therefore, 
specifying the array name with the index field in a sub
sequent calculation or output specification refers to the 
element which satisfied the search. 

However, if no index field is available (array name specified 
alone or with a numeric index), the number of the element 
cannot be determined and, therefore, the data cannot be 
referenced. You can only determine if one of the array 
elements does contain the data for which you searched, 
according to the on-off status of the resulting indicator. 

The ability to reference a data item which satisfies a search 
is one of the major differences between an array lookup 
and a table lookup. During a table lookup, when a field is 
found which satisfies the search, the table name alone refers 
to the data item which satisfied the search. Following a 
lookup for an array, specifying the array name alone refers 

to the entire array, rather than to any particular element. 
The only wayan individual array element can be referenced 
is by specifying the array name with an index. 

Assume you wish to search an array CH G to check for 
amounts over $100. If you only want to determine if there 
are any elements containing a greater amount, the search 
can be coded as shown in Figure 9-35. If indicator 16 is on, 
indicating a successful search, you can then print a message 
stating there is a charge over $100. Otherwise, if indicator 
16 is off, you can print a message stating all charges are 
under or equal to $100. With the LOKUP specification 
shown, however, you would have no way of knowing how 
many elements or which elements satisfied the search 
condition. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

) Program 

IBM Intern.lional Business Machine Corporation 

Programmer Oate 

75 76 77 78 79 80 

~~~;:f:ation I I I I I I I 
1 2

Page [DOf_

C Indicators Result Field
Resulting

~ Indicators

- 0_

AL Jd
Arithmetic

...Ja:
Plus IMinusl Zero :::0 Factor 1 Operation Factor 2 Comments

~3~ Length
Compare

Line .- "0 a:.~
Name 1>211<211=2

E :. en

"
Lookup(Factor 2)is

~85~ " z z High Low Equal
3 4 5 6 7 8 9 10 1112 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 C 1~~ rtJ~ "'I< lP r"H~ I1b
0 2 C

0 3 C

Figure 9-35. Determining Only if a Search Is Successful

Arrays 9-31

If you wish to know which element satisfied the search or,
perhaps, how much over $100 the amount is, the array
lookup should be coded with an index field (Figure 9-36).
The index field can be preset to contain the value 1, so the
search begins at the first element of the array. If the search
is satisfied, IX will contain the number of the first element
over $100; and the resulting indicator will be turned on.
The contents of IX can then be printed to indicate which
element satisfied the search. The actual contents of that
element can be printed by specifying the array name with
the index field (Figure 9-36, Output sheet).

Searching An Array for More Than One Element

The previous exam'ple points out an important considera
tion: an array LOKUP operation is completed when the
first element is found which satisfies the search condition.
If you wish to find all elements which satisfy the condition,
you must code additional specifications which cause the
program to loop back in calculations to repeat the lookup
operation from the point where the last search was success
ful.

As an example, assume your company manufactures 25 dif
ferent items, identified by item codes 1-25. A 25-element
array QTY (Figure 9-37) is used to keep track of the quan
tity in stock of each item. The first element contains the
quantity of item code 1, the second element contains the
quantity of item code 2, and so on.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed In U.S.A.

IBM I,..ternational Busine" Machine Corporation

1 2 75 76 77 78 79 80
Program

Programmer Date
Page CD of _ ~~~~;~f:ation I I I 1 1 1 1

C Indicators Result Field
Resulting

~-
Indicators

~

At At
Arithmetic

..Ja: ::0 Factor 1 Operation Factor 2 .g :r Plus IMinusl Zero
Comments

~j~ ~~ Compare

line I-ori
Name Length "C;:o' 1>211<211~2

E ~ en E « Lookup(Factor 2)is

~85~ 0 15 'u -
z z OJ: High Low Equal

3 4 I; 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 5253 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 C ~- lAin I~ll rrlx B~
0 2 C*,

o 3 c*
0 4 C II "-l!(l '~(). ~Ik [lllp "IJ.I (;: ~ Iry ill

RPG OUTPUT SPECIFICATIONS GX21·9090 U/M 050·

IBM International Business Machine Corporation

1 2 75 76 77 78 79 80

Programmer Date ~~:;~f:ation I I. 1 I 1 1 I
Program

Page CD of_

o
~

"- Space Skip Output Indicators
Commas Zero Balances No Sign CR - X = Remove

e~ {i
-v to Print Plus Sign

Field Name
o !t: I L [ill

Yes Yes A J Y = Date

~~ e ~ Yes No B K Field Edit
Filename ~ ~ No Yes C L Z = Zero

~ ~ And Positon No No 0 M Suppress
.... u; ill in a:

ADD ~ ~ 0 0 0
;3 Output g Constant or Edit Word

~~-
z z z ·AUTO Record

~ 0:
AND

Line

!
E
~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 4243 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 61 626364 656667 68 69 70 71 7273 74

o 1 On llTPJi D Ib
o 2 0 Ill'
a 3 0 "'HG, rx
o 4 0

o 5 0

Figure 9-36. Determining Which Array Element Satisfies the Search

9-32

,/

//

"

QTYARRAY

Array Element

2 3- 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

047 068 051 023 076 083 105 069 053 117 014 087 032 046 083 106 024 048 071 029 108 067 035 p08 075

Below stock level of 25

Figure 9-37 _ More than One Array Element Which Satisfies the Search Condition

100 items are to be manufactured and added to stock when
ever the quantity of an item falls below 25_ To determine
which items are to be manufactured, every week the QTY
array is searched, comparing the array elements with a search
word (M FGPT) of 25 from a data card. When a quantity is
found to be less than 25 (search condition Low), the item

. code and quantity in stock are printed.

From Figure 9-37 you can see that four items must be manu
factured. The specifications in Figure 9-38 will not locate
all of the items with quantities less than 25. The lookup
operation shown will locate only the first quantity below
25. If only one data card (containing the search word) is
read, the specifications are performed once. As you know,
for every data card read, the program cycle is repeated. How
ever, even if several data cards with the same search word

are read, every time the lookup is repeated, the search begins
again at element 1 of the array. Therefore, the same array
element satisfies the search every time, and the other three
quantities are never found.

To locate more than one element satisfying the same search
condition, the LOKUP must be repeated within a single pro
gram cycle. Not only must the LOKUP be repeated, but the
search must begin at the point where the previous search
ended. You can repeat the LOKUP using the GOTO and
TAG operations, as shown in Figure 9-39. To make sure the
repeated search begins where the last search left off, you
must specify the array name with an index field in the
LOKUP specification. The contents of the index field is
then updated after each successful search to indicate at
which array element the next search should begin.

RPG CALCULATION SPECIFICATIONS Form GX21-9093
Printed in U.S.A.

IBM International Business Machine Corporat~on
1 2 75 76 77 78 79 80

Program

Programmer Date
Page [0 of_ ~~~;~f:ation I I I I I I I

C Indicators Result Field
Resulting

~ Indicators

- 0_

AL Jd
Arithmetic

-'0::
Plus Minusl Zero ::0 Factor 1 Operation Factor 2 Comments

~~~ Name Length 
Compare 

Line ~ '0 cl 1>211<211-2 
E ~ en 

S S 
Lookup! Factor 2) is 

.f 8 5~ ~ z z High Low Equal 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 J8 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

01 1 1 C I MIF r;lph-1 I I I I 'dOKlulp dTlvllllll1 I I I I I I I I !313 I bTl "I ILElslsl tr'"IAI"II~lr 
01 2 1 C I I I I I I I I I I I I I I 1 r T TTTII T T II I I I I I I I 11 I I I I I I I I I I I I 

) Figure 9-38. Array Search Which Locates Only One Element 

Arrays 9-33 



The first search should begin at element 1. Thus, as Figure 
9-39 shows, the index field I X is initially set up to contain 
the value 1. (The field is zeroed before adding 1, since you 
have no way of knowing the contents of IX at the beginning 
of the program run.) The TAG operatio'n is not performed; 
therefore, the computer skips this specification and per
forms the LOKUP. 

When the first OTY element less than 25 is found, the num
ber of the element (04) is placed in the index field. Pro
viding the LOKUP was successful (33 on), a 1 is added to 
the value in the index field, to indicate at which element 
the next search should begin. The value in the index field is 
then compared to 26 to see if the entire array (25 fields) has 
been searched. If there are still array elements to be checked 
(indicator 44 on), the program branches back (GOTO) to 
perform the LOKUP again. The search would then begin 
again, only at the element following the last element which 
satisfied the search. The calculation specifications would 
be repeated over and over until all items to be manufactured 
are located and until the end of the array is reached. 

Output During an Array Search 

The specifications in Figure 9-40 search through the OTY 
array to locate more than one element. In this case, it does 
no good to search through an array unless you know what 

data was found. For this reason, each quantity less than 25 
and its related item code are printed. Following each suc-
cessful search, the item code number (same as the number /' 
of the array element containing the quantity) is stored in 
the index field IX. Thus, the field IX can be printed. The 
actual quantity which satisfied the search can be printed by 
specifying the array name with the index field in the output 
speci fi cati on. 

Since the output specifications usually are not performed 
until all calculations are done, normal output would be in
valid since there would be an attempt to reference array 
element 26. 

In order to print each item code (field number) located in 
the array search (and its quantity), output must be done be
fore the contents of the index field are c~anged. 

You have learned that using the EXCPT operation on the 
Calculation sheet makes it possible to perform output spec
ifications before calculations are finished and then to return 
to finish the calculation operations. As Figure 9-40 shows, 
following a successful LOKUP, the EXCPT operation then 
causes the data placed in the index field to be printed, fol
lowed by the contents of the array element which satisfied 
the search. After the exception output has been performed 
(output lines identified by an E in column 15), the program 
continues with the calculation specifications by executing 
the calculation which follows the EXCPT operation. ./ 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

IBM Internation.1 BUliness Machine Corpor.t!0n 

Program 

Programmer Oat. 

C Indicators Result Field 

f-- ~ 
Jd Jd 

§ 
~ Factor 1 Operation Factor 2 ~ 8. c( 

Lin. ~ ~ 
Name Length ~ 

] E 
rr." 0 0 ~ '2 
.... z z C 

3 4 5 6 8 9 10 II 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B ~9 50 51 52 

o 1 C .... :.-- -:--. ..... ~- An nr11 fx 2.Cl 
o 2 C V Af:.t AIN 'T At; 
o 3 C V tvr: t=wPT I ,.. Ifl ,..,.. 

-IY TX 
o 4 C V I"I~ rx ADn au TlC 
o 6 c ":l. Tr rl'" ~p 2.1-1 
o 6 C r\ 4L1 ~I'l, /(; r ~r:. OTN 
o 7 C "- ",'" 

o 8 C ~- -~ .... 
o 9 C 

,- I 

Figure 9-39. Repeating a LOKUP to Locate All Array Elements Satisfying the Search Condition 

9-34 

1 2 

pageDJof_ 

Resulting 
Indicator. 

Arithmetic 

Plus 1 Minusl Zero 
Com par. 

1>211<211-2 
Lookup(Factor 21is 

High Low Equal 

75 76 77 78 79 80 

:~;~f:ation I I I I I I I 

Comments 

54 55 5667 58 59 50 61 62 63 64 65 66 67 66 69 70 71 72 73 -74 

ST AIRrr Air I=lD ttl 

-~~ "'TY l~ 55 Til II .,ro 

ADO 70 II N ')FX 

~I.J ~I\ID n~ Aft ",III II,? 

Nr"I -~ "A R"""" NE' tT 



) 

) 

LOADING ARRAYS 

In the beginning of this chapter (Defining an Array), you 
learned that arrays are divided into three types based on 
when the array data is stored into the array. The three 
different times are compilation time, pre-execution time, 
and execution time. Data can be stored in any of the fol
lowing ways: 

• Compilation time: keyed in on a console (keyboard) 
device; read from punched cards, tape, or disk source 
library 

• Pre-execution time: keyed in on a console device; read 
from punched cards, tape, or disk 

• Execution time: Extracted from an input file on a con
sole device, punched cards, tape, or disk during execu
tion of the program 

• Execution time: Created by calculations performed 
during the program 

Compile Time Arrays 

Arrays loaded at the same time as your RPG II source pro
gram are referred to as compile time arrays. The array is 
compiled along with the RPG II source program. The array 
data actually becomes partof the object program. One 
definite advantage in creating compile time arrays is that 
you need not load separate array files into the computer 
every time you wish to run that object program. 

RPG CALCULATION SPECI FICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Business Machine Corporation 

I I Card Electro Number 
1 2 75 76 77 78 79 80 

Program Punching Graphic 
Page [0 of_ ~~;~f:ation I I I I I I I Programmer Date I Instruction Punch I 

C Indicators Result Field 
Resulting 

Cl Indicators 

"--- ~-
At At 

Arithmetic 
-'0: 

:E =- Plus IMinusl Zero =0 Factor 1 Operation Factor 2 Comments 
~~~ Length ~ ~ 

Compare

Line ori
Name

~~ 1>211<211-2
E ~ en Lookup(Factor 2)is

.f85~ 0 b 'u -
z Z OJ: High Low Equal

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 J4 35 36 37 38 39 40 41 42 4J 44 45 46 47 48 49 5051 5253 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C t!- lAD !1"'I·0'l1 trlY ':Jrl. r ... HRh' If:' Il IEMlr "NIE
o 2 C ~(; IAIIN rr-iAr,
o 3 C Irv-:F ~IPT II hlk 1'-' IY I~ rlx 1':\3 ""TY II E lslS rl~ Af\! 21"
o 4 C =\~ HI=' Iylr PW PR rlNlr IRF DI> ""rv
o 5 C 3~ ~)(........... l4lnlo IOJl1 IIY AnD rr'" If\! nl~Y
o 6 c ~3 lrx I '1 r 1"~lp 21~ 144 i:ND bl= I\n nl" 'I
o 7 c ~4 ~3 II (;I~ ITb ~r.. Atr 1\1 NI"I -s IJ:'~ IRr ~ IN~ XT

I RPG OUTPUT SPECI FICATIONS GX21·9090 UiM 050'

I Printed in U.S.A.

IBM International Business Machine Corporation

I Program I /·1 I I Card Electro Number
1 2 75 76 77 78 79 80

Punching Graphic
Page [0 of_ ~~~~;~f:ation I I I I I I I I Date I / I Instruction Punch I I : Programmer

I

0 Skip / S Space Output Indicators
Commas Zero Balances

No Sign CR - X = Remove

- ~~ til v to Print Plus Sign

I /
Jd 1

Field Name
Ves Ves 1 A J V = Date

O- II Ves No 2 B K Field Edit

Line Filename ~~ 5 s No Ves 3 C L Z = Zero
1l. ti ~ :t

I
PositO" No No 4 0 M· Suppress

~ ~~
D~J ~ in 0: I I- r;:;: m Output g Constant or Edit Word

§ ~ ° 0 0

.£ ~"o
z z z 'AUTO ;E Record

u. <i:
A

lJ 1& 3 4 5 6 7 8 9 10 II 12 13 14 15 16 1920 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 Op IRI Nrr IH Iii e5lb liP
o 2 0 45 'I :r1.EM ~h ot ~rr IY'
o 3 0 ~I' '12. 1::\3
o 4 0 lTix 2q
o 5 0 ~!T IY, lIx 45

Figure 9-40. Output of Array Element as it is Located in the Search

Arrays 9-35

Changing Compi/~ Time Arrays

Temporary changes to data in a compile time array exist
only for a particular run and are made as easily as for any
array. Calculation specifications which have been previous
ly coded in the program can modify any of the array ele
ments.

Making permanent changes to a compile time array requires
recompiling the entire RPG II source program along with the
new or changed array input records. The object program
produced then contains the current array data.

Loading Compile Time Arrays

An array to be compiled with your program should follow
the RPG II source program (Figure 9-41). There should be
a record immediately before the array containing ** in posi
tions 1-2. Position 3 must be blank but remaining positions
may be used for comments (such as the array name). If
more than one array is to be compiled, a ** record should
be placed before each array. Furthermore, the compile time
arrays must be loaded in the same order as they are described
on the Extension sheet. The end of file record (/* in posi
tions 1-2) which usually comes at the end of the source pro
gram is then placed after the last compile time array.

Model 10 Card System Users: The source program
and array input r!!cords as shown here are placed
in the secondary.M FCU hopper. The R PG II
Compiler program is placed in the primary hopper.

Figure 9-41. Arrangement of Input for Compile Time Arrays

9-36

Model 10 Disk System, Model 15, and Model 6 users may
place compile time arrays in the source library following the
source program. The same record sequence as shown in /'"
Figure 9-41 is used. See the applicable reference manuals fOi :"
your system for specific procedures.

. Pre-execution Time Arrays

In general, if an array is to be permanently modified often,
a pre-execution time array is easier to use than a compile
time array. A pre-execution time array is not compiled with
your RPG II source program. Instead, once the object pro
gram has been loaded into the computer to be executed, the
array is loaded separately like an input data file. The array
is then used by the object program, rather than being a part
of the program.

Changing a Pre-execution Time Array

Modifying a pre-execution time array is easier than changing
a compile time array. Modifying the contents of the array
permanently (whether a short array or a full array) can be
done by inserting and deleting change records. I n any event,
only the array file is changed; there is no need to make
changes in the RPG II object program.

Loading Pre-execution Time Arrays

Pre-execution time arrays are similar to any other input data
files in that the RPG II object program uses the files when
the program is executed. Unlike other data files, however,
pre-execution time arrays are read completely before execu
tion of the program continues.

The array files should be in the same order as for compile
time arrays. All array files are to be loaded in the same order
as they are described on the Extension sheet. Furthermore,
if both pre-execution time array files and other input data
files are to be used by a program, all arrays must be loaded
before the data files. An end of file card (/*) must follow
every pre-execution time array file, regardless of whether
the array is short or full (Figure 9-42).

I

/
(

(

!
./

Model 10 Card System Users: The array files are
loaded from the secondary MFCU hopper. The
RPG II object program is loaded from the primary
hopper.

Other Systems: Array files loaded at pre-execution
time may be loaded from console, cards, disk or tape.

Specifications for Pre-execution Time Arrays

Since a pre-execution time array is a separate file to be used
by the program, the entire file of array input records must
be defined on the File Description sheet, just as any other
file must be. Figure 9-43 shows the file description specifi
cations required to define a pre-execution time array input
file. A filename, different from the array name, should be
assigned to the entire array file (columns 7-14). A unique
filename should be assigned because the single file may ac
tually contain data for two arrays, if alternating format rec

ords are used. Figure 9-43 shows a file called AR FI LE,
containing data for both AR RAYA and AR RAYB. An I in
column 15 says that ARFI LE is an input file. Notice
also, that the File Designation entry (col.umn 16) must be a
T, to indicate that this is an array file, as well (T stands for
either a table file or an array file). The Device entry (col
umns 40-46) indicates the device from which the array file
is read (for the Model 10 Card System, the entry must be
MFCU2).

) Figure 9-42. Arrangement of Input for Pre-execution Time Arrays

File Description Specification

F File Type Mode of Processing File AdditionNnordered

File Designation Length of Key Field or Extent Exit Number of Tracks
I-- of Record Address Field for DAM for Cylinder Overflow

End of File
Record Address Type Symbolic Name of Number of Extents

Filename Sequence
Type of File Device Label Exit

oJ Device Tape
File Format Organization w Rewind

Uno or Additional Area -g Core Index
~

0
~ N

Overflow Indicator 0 Condition
8- ~~ Block Record r---5 Ul·~
~ e~ ~ !ol :; Key Field .~ Continuation Lines

~ a~ o~
Length Length ~t: Starting ~ ~ a: "-0 :l

.f :::::0:: w<u. :::r ~::: Location K Option Entry <
3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 24 25 26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6869 7071 72 7374

o 2 F JRiFn: ILiEI I rlT 1= Iq~ 19~ r:ln 151K
o 3 F Filename differs from
o 4 F array names

IBM Int.m.tiOn.IBu,;n.S5Mach;n • .co,po,~ ~PG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21·9091
Printed in U.S.A.

\. '-J I Graphic I Card Electro Number
1 2 75 76 77 78 79 80

Program Punching
pageDJOf_

Program I I I I I I I \. ~uction I Punch I Programmer Date Identification

\ ~ Extension Specifications

E Record Sequence of the Chaining File

TOF~ ~
f--- Number of the Chaining Field of

~
c _

Table or
Length 00 Length ~ Table or Entries of ~~ Array Name Comments line

~ . Array Name Per Entries

~
of

Record Per Table ~~
(Alternating Entry a: i'l I- From Filename ~ Format) ai

~
~'9 303'32

or Array

~~ & ~ &
i'-

3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 33 34 35 36 37 38 39 40 41 42 4344 45 ~7 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 E I I 'AIRFlr IL.IE I I I II I ale QI~~IA I I; It.~~ Ill.. IniA !l\lnlnlAlvla llis 15 AILlTIE.IR~AtrlIJM;1 IAI ... I,..IA~
o 2 E

Information which relates this 'I I I I I I I I I I I I I I I I I JJ1J I I I I I I I I II
n I ~ I " ,I

specification to a particular
File Description specification

Arrays 9-37
Figure 9-43. Defining a Pre-execution Time Array File

OrdinarilY, if an input file is to be in a particular sequence,
an entry (A or D) is made in column 18 of the File Descrip
tion sheet. When specifying a sequence for array files, how
ever, the sequence columns (45 and 57) on the Extension
sheet must be used, rather than the sequence column on the
File Description sheet. An E has been entered in column 39
of the File Description sheet to indicate that the records in
this array file are further· described on the Extension sheet.

Looking at Figure 9-43, you can see that the filename as
signed on the File Description sheet is also entered under
From Filename (columns 11-18) of the Extension sheet.
This common entry tells the computer that the extension
specifications describing AR RAYA and AR RAYB arrays
are associated with the AR FILE file defined on the File
Description sheet. For compile time arrays, previously de
scribed, no entry is made in columns 11-18, since no file
name is assigned to compile time array records.

Storing Input Data into Execution Time Arrays

When an execution time array is defined in an extension
specification, an array is set up in the computer, ready to
receive array data. You have learned that the array data
can either be generated by calculations in your program or
be taken from an input file that your program reads. There
is an important difference between the input file used to
build an execution time array and the input file used to
build a pre-execution time array (see Loading Arrays, Pre
execution Time Arrays). That is, the input file from which
an execution time array is built is not a special array file
designated by a T in column 16 of the File Description sheet.
Therefore, the array data is not automatically loaded into
the'array at the beginning of execution time. Instead, you
must describe the input data to be loaded into the array on
input specifications and ensure that the necessary data is in
the array before doing operations that use the array data.

Fields of array data to be read from input records must be
. described on the Input sheet. The input specifications in
,dicate where the data is located on the record. How the ar
ray information is described and stored depends on three
factors:

1. How the array data is organized on a record.

2. Whether the data for an array is contained in one or
more records.

3. Which System/3 model you are using.

9-38

An input record containing array data can contain only data
for that array or can contain both array data and other data
fields to be used in the program. In either case, the array
data is organized in one of two ways:

1.

2.

All array elements may occupy consecutive positions
on the record; that is, each element immediately fol
lowing another with no blanks or other data between
the elements.

The array elements may be scattered on the record, in
any order, with blanks or normal input fields placed
between the array elements.

The way in which the data is organized and the size of the
array generally determines the number of input records re
quired to contain the array data.

Array Data in Consecutive Positions on One Record

If array elements are in order in consecutive positions on a
record, describing and storing the data is very easy. All of
the array data on the one record may be described on the
Input sheet as if it were a single field. Thus, only one input
specification is necessary to indicate a name for the field
and the columns on the record where the array data begins
and ends (Figure 9-44). By specifying the name of the ar
ray as the field name, the data is automatically stored in the
appropriate elements of the array as the input record is read.

When you describe an input record of array data, you specify
no entry in column 52 (Decimal Positions) of the Input sheet.
Since the array name and characteristics have been previously
defined on the Extension sheet, the entry in column 44 of
the Extension sheet indicates the number of decimal posi
tions in each array element.

Array Data Scattered on One Record

When array elements are scattered on an input record, each
field must be described separately on the Input sheet to in
dicate where each item of array data begins and ends. Two
methods are available to load the data into the array:

1. Assign a unique field name to each field of array data
on the input record, then code calculations to move
each data field individually into the appropriate array
element.

2. Assign the array name with the proper index to each
field of array data in the input record and the array
will be loaded automatically as the data is read. (This
method of loading array data is not available'for the

. System/3 Model 10 Card System.)

/

IBM International Business Ma~~jn8 Corporation

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091
Printed in U.S.A.

Program
I' 2 , , 75 76 77 78 79 80

Programmer Date Page OJ of _ ~~~~;~f:ation I I I I III
../ Extension Specifications

E Record Sequence of the Chaining File
Number

From Filename

f--- Number of the Chaining Field

To Filename

of Number
.20 Table or 0 Table or Entries' of Length

~~ Array Name
Length

~ Per Entries of of
Array Name

Record Per Table Entry § ~ ~
(Alternating Entry

i ~ Formatl
or Array

~~i j

Comments

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 4243 44 45 46 474849 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 7172 73 74

I I I I I I I IPIM I' I I 111 15 12. I 111 1
I I I I III III· 't\ II I III I

',,"

INPU~CIFICATIONS
IBM International Business Machine Corporation

RPG

I I
I 1 1

1 2

I I I I I I
1 1 1 1 1 1

GX21·9094 U/M 050'
Printed in U.S.A.

75 76 77 78 79 80
I-p_ro....:.gr_am ________ ----r _______ --11 Punching I Graphic III I I'\.t II II Card Electro Number I

Programmer Date I Instruction I Punch I" Page OJ of_ ~~~~;~f:ation I I I I I I I

I
I---

Line Filename

Field i\.. Field Location

I '\. ~ 0

~ _ ~.~ ''\ 0 _ ~ ~ ~
~ ~ - ~ 0 irl K '" Field Name o;]i :§ ~ Zero
Jj =: Q ~ Position _ ~ Position _ 2:l Position _ ~ ~ a:: From To ~ j ~~ ~ Plus Minus or

i g "5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 ~ ~ :~ :g Blank
()~r- ~ 0- £ ~ u c5 ~ U 6 ~ U <5 ~ ~ Q <3 :E c5 ~
1-1-1-

3 4 5 6 7 8 9 10 11 12 13 1~ 1~ 1~ 17 18 19 20 21 22 23 24 25 2627 2829303132333435 363738 3940414243 4445464748 49 50 51~ 53 54 55 56 57 581~9 60 61 62 636465666768 697071 72 73 74

Record Identification Codes

Indicators

0111 IlrlNlpltJlirr b5lJ I I 11 r~ I I I I I I I I I ~ I I I I I I 1 1 1

01 21 I -I I I I 1 1 1 1 I I I I I I~ I I~b blAlv I I 'I I I I I I I
I I I I I I I I I I I I I I I I I I I ,-rT I ,

Position 3 Position 32

S

Array field

PAY array

Input Record

Figure 9·44. Storing Data in an Array

Arrays 9·39

Assume that a 6-field array named EMP is set up by coding
extension specifications. The six fields of data for the array
are scattered on a record, as shown in Figure 9-45. Addi
tional input information (blanks and other input fields) is
recorded between the array fields. Furthermore, the array
fields are not in the order in which they are to be stored.

When you describe the array data, you must identify each
field by a separate line of input specifications, because the
array data is not continuous. Normal input fields can be
described along with the array fields. Separate fields can
be identified and stored as follows:

I 2 1 • , • 7 • • 10 t1 12 Il lot 15 16 17 II " 20 21 Z2 n Jot n II 27 28 Z!:I 10 31 3Z

Array I I Array
Field Field

»~"H~H"~~UU«u~~q~~~~n~

I
Rate I I Array A
Field Field

5
UH"~nnn~~n"nn~~n~~~"U""~~H""""

Figure 9-45. Scattered Fields of Array Data in One Input Record

9-40

All System/3 Models: One way to identify and store array
data is shown in Figure 9-46. Unique field names are as
signed to individual fields of array data on the Input sheet.
Once the scattered fields have been described on the Input
sheet, each field of array data is stored in the array using a
MOVE calculation. Since each field has a unique field name
and must be stored in a specific array element, a separate
move specification must be 'coded for each field to be
stored.

The specifications which move the array data into the array
elements should generally be specified first on the Calcula
tion sheet. This ensures that the data will be in the array
when any calculations on the array (specified later on the
Calculation sheet) are performed.

Input
Record

EMP.
1

EMP.
2

EMP.
3

EMP.
4

EMP.
5

EMP
Array

EMP.
6

/

(
"-.

~)

\.
)

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091
Printed in U.S.A.

IBM International Business Machine Corporation

Program

Programmer Date

E Record Sequence of the Chaining File

i--- Number of the Chaining Field

Line
~

To Filename

I- From Filename

~
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

011 I E I I I I I I I II I I I I I I I

IBM International Business Machine Corporation

Extension Specifications

Number

of Number Table or
Table or Entries of Length

~~ Array Name
Per Entries of Array Name
Record Per Table Entry

i11
(Alternating
Format)

or Array

27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 4344 45 46 47 48 49 50 51

IEIMlpl I I I I II~ I 15 rD L l I I I

RPG INPUT SPECIFICATIONS

Length
of
Entry a:

g
Q:

52 53 54 55 56

I I

1 2

pageDJof_

e
~

i
&

75 76 77 78 79 80

~~~~;~f:ation I I I I I I I 

Comments 

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

I I I I I II I II I I I I I I 

GX21-9094 U/M050· 
Printed in U.S.A. 

I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Program Punching Graphic 
pageDJOf_ ~~~~;~f~ation I I I I I I I Programmer Date I Instruction Punch I I 

I ~ Record Identification Codes 
Field Location 

~ 1 2 3 I--

II 
go. 

~ j*5 Line Filename Z ~ 
~ ~§ 

! ~ ~ ell Position 
g e N Position Position From To I-

~.g ~ ~ e ~ ~~ ~ O~- :i g ~ o ~ ~ ~ ~ g z u u ~u QcijQ: 

A~D 
3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

0 1 If Nip IIJT ~A ~l 1 nls 
o 2 I 5 q 
o 3 I 13 17 
o 4 I L8 121. 
o 5 I 25 ~q 
o 6 I ?!~ I:~q 
o 7 I ~'"I I~'e 
a 8 I 7L {I 
a 9 I ~5 ISq 

RPG CALCULATION SPECIFICATIONS 
IBM International Business Mach in. Corporation 

Program 

Programmer Date 

C Indicators Resu)t Field 
~ - 0_ 

AL Jd 
-'a: =0 Factor 1 Operation Factor 2 

~3~ line Name Length 
t- '0 a: 
E E ~ ... 15 15 
~ 8 5 ~ z z 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 

a 1 C ~l ~Io lIE ~F J In1 fMlp 1. 
o 2 c rill MI" V~ ~IF 1D2 (:,M Ip,2. 
o 3 c ell M" V'~ lAlJ: in"::\ £M Ip,; 
o 4 c rl!L MI""I V'E ~~ :tlo""l 

I J;M Ip, ~ 
a 5 C rz~ MI""I V~ l41,: :"In~ ~M Ip.> 5 
o 6 c rl1 M'" Vf ~Ij: il Ii'll, !;:~ Ip,'b 
a 7 C ( I 
o 8 C > . Additional calculations using the I 
a 9 C 

ar;ay data. 
1 0 c I 

11 C ~ I I I I II I II II I I I I II '-]1 

Field 
Indicators 

~ 
0 

t: 0 ~ 0 

i~ " .. Field Name 0; "E 
~ j LLLL 

! Zero 

~:~ Plus Minus or 
~ ] "0 Blank 
"2 8 ~cS 

0; 

0 u: 

52 53 54 55 56 57 58 5960 61 62 6364 65 66 67 68 69 70 71 72 73 74 

I I I I I I I I I 
lA.IF 011 t I Fields containing array data. 
~ 

LLH 
~ 
~ 
~ 

~IK 

~ 

~g 
~ ; 
~~ 
'u -
0% 
52 53 

IFIL DI2 
RlS 
I,: r'I:"l 
IF "I" 
Fl nl3 
AIT ~ 
11=1, nl~ 

~ } I Normal input field. W 
! I Fields containing I 
\ array data. 

~ I Normal input field. 
} I Field containing array data. I 

Form GX21-9093 
Printed in U.S.A. 

12 757677787980 

Page rn of _ ~~~;~f:ation I I I I I I I 
Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero Comments 
Compare 

1>211<211-2 
Lookup(Factor 2)is 

High Low Equal 
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

I 

""II Figure 9·46. Loading Array Data From Scattered Fields by Assigning Unique Field Names 

,/ 

Arrays 9-41 



Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

All System/3 Models (Except Model 10 Card System and 
Model 15C): Figure 9-47 shows a second way to load an 

. array from scattered fields. The array name with an index 
is assigned to each field of data in the input record. In this 
way, the data is loaded directly into the array as the fields 
are'read. No move calculations are necessary. 

Array Data Consecutive on More Than One Record (Model 
10 Card System) 

Consider a case where the array data on all input records is 
organized consecutively. Data for a 25-element array named 
TAX is contained on two input records (Figure 9-48). The 
first record contains 19 fields, the second record, six. Each 
numeric field is five characters long. The data is Qrganized 
on the records in the order it is to be stored in the array. 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS Form X21-9091 
Printed in U.S.A. 

IBM Internallonal Business Machine Corporation 

1 2 75 76 77 78 79 80 
Program 

Programmer Date ~~~~;~f:ation I I I I I I I Page CD of_ 

Extension Specifications 

E Record Sequence of the Chaining File 
Number 

r---- Number of the Chaining Field 

From Filename 

To Filename 

of Number Table or 
Table or Entries of Length 

1~ 
Length Ci 

Array Name Per Entries of Array Name of $ 
Record Per Table Entry ~ g ~ 

(Alternating Entry II: ~ 
or Array 

Format) g ~ .~ £ j "- 0 Ci: 

Comments Line 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 67 68 69 70 11 12 73 14 

o 1 ~MP b 5 ~ 
o 2 

o 3 

RPG INPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

I ~ Record Identification Codes 
Field Location 

~ ] 1 2 3 

11 f:e; 
Line Filename Ii 

~ ! j ~ 
~ 

II; Ii; 
0; 

1l Position 
~e~ 

Position 

~ ~ ~ 
Position 30 

~ U'l c:: From To 

j ] ~ ~ ~ -,--5 b ~ ~ ~ § ~u6 .2 '" CD 

~~_z z u u uViQ: 

AND 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 18 1920 21 22 23 24 25 26 21 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

0 1 Ilr INlp III IT IAA (;']IJ ll. InR 
0 2 I I." ~ 
0 3 I 1,1::a. 111 
0 4 I lll~ I, J 
0 5 I 12'-" 12C, 
o 6 I 31.; 13!q 
0 7 I 14~ ~S 
o 8 I 111, 
o 9 I IQ~ Igq 
1 0 I 

Figure 9-47. Loading Array Data From Scattered Fields by Means of Input Specifications 

9-42 

GX21·9094 U/M 050· 
Printed in U.S.A. 

12 757677787980 

Page CD of _ ~~~;~f:ation I I I I I I I 

Field 

c: Indicators 

~ 
0 

15 
~ 0 :!a-t; 

~ 
Field Name ] Li:~ "E 

! Zero 

~ i:~ Plus Minus or e Blank .g 
~ 

"0 

~cS 
0; 0 u: 

52 53 54 55 56 57 58 59 60 61 62 63 64 6566 6168 69 70 71 72 73 14 

Ell'1 !Pll.ll 
IE: II" IPI,12 

lIlt-! Ig~ 

IE IN jp, [Lj 

II=I~ PI'~ 
IEIM PI, 13 

1 ... 1 .. 

ILIKI~ II:. 

IE~ Ipl't 15 

/ 
( 



) 

) 

B 
A 
8 
4 
2 
1 
B 
A 
8 
4 
2 

1 2 3 .. 5 6 7 8 9 10 11 12 13 14 15 16 .7 18 19 2021 2.2 23 2. 25 26 27 28 29 30 31 32 

~~~~amm~m~m~~oom~ro~~MmM~~~~m~~~m~ 

2

~ • 1

7 8

3 4 5 6

B
A
8
4
2

~U~~~g~~ro~n~~~uvHH~~U~

9 10 11 12

A
8

13 4
2

~»~~~"~n~~Q~«6"aUU~~~~~"~D~"~~~~H~
A A
8 8

~ 14 15 16 17 18 19 ~

1 ~"~u"ronnnu~nnnn~~~~u~H~H~~~~~M~"1
IBM 3700

B
A
8
4
2
1
B
A
8
4
2

1 2 3 .. 5 6 7 a 9 10 11 12 13 '4 15 16 17 18 19 2021 Z2 23 2" 25 2& 27 2' 29 3031 32

333.3536373839404' .2 .3 U 4' 46.7484950 51 52 535 .. 55 5657585960616263 '4

~~~~a_m~m~m~~oom~ro~~MmM~~~~m~~~m~ 

20 21 22 23 24 25 

B 
A 
8 
4 
2 

~u~~~v~~ro~n~~~uvHH~~U~ 

A 
8 
4 
2 

~»~~~"~n~~Q~«6"aUU~~~~~"~D~"~~~~H~ 
A A 
8 8 
4 4 
2 2 

65 66 67 68 69 70 71 72 73 74 j 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 tot 95 96 1 

IBM 3700 

--------------~---------------~ 
TAX Array 1-19 20-25 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 
IBM International Business Machine COrporation 

1 2 

FormX21-9091 
Printed in U.S.A. 

75 76 77 78 79 80 

Page [DOf_ ~~;~f:ation I I I I I I· I 
Program 

Programmer Date 

E Record Sequence of the Chaining File 

r--- Number of the Chaining Field 

Line 2i 
~ 

~ 
From Filename 

3 4 5 6 7 8 9 10 It t2 t3 14 15 16t7 t8 

01 1 I E I I I I I I I II 

IBM International Business Machine Corporalion 

I Program 

t Programmer Date 

I -
~ 

Line Filename j ~ 
! ::0 

~~ 

~ § .~ r'Q'R- zo 
~Nro 

Extension Specifications 

Number 
of Number 

c _ 
Table or 

To Filename Table or Entries of Length .g ~ 
Array Name 

Per Entries of ~; Array Name 
Record Per Table Entry :5 ] ~ 

(Alternating 

or Arrav 
Format) 

~~l 
t9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 J4 35 36 37 38 39 40 41 42 4344 45 46 41 48 49 50 51 

I I II I II h-IAIYI I I I I I ILI5 I~ I I I II 

RPG INPUT SPECIFICATIONS 

Length 
of 
Entry a: 

2 
~ 

52 53 54 55 56 

I I 

g 
:! Comments 

I 
~ 

U56W~~~~54~56U56~MnnnM 

I II I I I I I I I I I I I I I 

GX21·9094 U/M 050· 
Printed in U.S.A. 

I I I I I Card Electro Number 
1 2 75 76 77 78 79 80 

Punching Graphic 
Page [0 of_ ~~;~f:ation I I I I I I I I Instruction Punch I I I I 

the array elements on the 
.1 

Record Identification Codes 
Field Location second record need not be 

~ 1 2 3 ors 

loaded separately on the ~ 
c. 

r~ ~ Model 10 Disk System, 
~ ~ ~ ~ f!: Model 6, or Model 15, 

Zero 
Position Position Position go From To or 

'E g o tl ~e N 
~~~ 

Blank

~ o ~ j ~t36 '0 ~ since the MOVEA operation Z u u Zu
code is available on these

3 4 5 6 7 8 9 10 It t2 13 14 15 16 17 t8 19 20 2t 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 systems. 69 70 n 72 73 74

o 1 II INlp ~rr APt 011 11 Ol1.
o 2 I 12 ~b trl4lX
o 3 I AA WlJ2 lL n12.
o 4 I !2 b triA be ~ 12~
o 5 I 17 II L rr14 I.r. (2.1
o 6 I 11~ ll.~ ITIA IX, ~2
o 7 I 1L11 121 rrlA Ix, i23
o 8 I 12.12 12~ rrlAlx 12.'1
o 9 I :211 BL rr~ Ill't 2.;

Figure 9·48. Loading Array Data Consecutive on More than One Record (Model 10 Card System)

Arrays 9-43

Page of GC21-7567-2
I!;sued 24 May 1976
By TNL: GN21-5389

(.

It is important ,to note that when data is stored in an array
by spedfying the array name as the field name, the informa
tion is placed at the beginning of the array. Thus, the 95
columns of data from this first input record are stored in
elements 1-19 of the array (Figure 9-48).

Although the data on the second record is also arranged
consecutively, each element is loaded separately. The sec
ond record cannot be defined as a single array field and
stored automatically in the array because the data would
be stored at the beginning of the array, destroying the d~t.a
previously stored at the beginning of the array. Instead, the
data from the second record is loaded by defining the in
dividual fields as array elements on the Input sheet (Figure
9-48). The data could also be loaded by assigning a unique
fieldname to each field of array data on the second record
and using MOVE operations to move ea~h field to its proper
array element. In this case, specifications would be similar
to those for the EMP array in Figure 9-46.

In this example, the method of defining and storing data in
the TAX array is relatively simple. tiowever, if there are a
large number of data fields contained on records other than
the first, storing the data can require a great number of
coding lines. Suppose, for example, the TAX array consists
of 50 fields. Three records are required to contain the data.
The first two records contain 19 fields each; the third con
tains 12 fields. Storing the data using the method shown in
Figure 9-48 requires 31 separate lines of coding to load the
data on records two and three. Because of this, you might
want to consider loading the array as a compile time or pre
execution time array, instead.

9-44

I. Array Data Consecutive on More Tha. n One Record (Model
6, Model 10, Model 12 and Model 15)

\ On the Model 6, Model 10, Model 12 and Model 15, it is
much easier to load array data that"i's consecutive on more
than one input record. Consider the previous example
(Figure 9-48). The cr°lt.y data on the second record can be
described as a ~lgle field on these systems, because the
MOVFA operation code is available on these systems to
move data from a field to an array. Figure 9-49 shows the
coding necessary to load the TAX array when the MOVEA
operation is used in calculations.

Using the MOVEA operation, data that is consecutive on
many input records can conveniently be loaded during
program execution. See your RPGII Reference Manual for
a complete description of the use of MOVEA.

/'

)

)

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS FOrm X21·9091
Printed in U.S.A.

IBM Intern.liona' BUline51 Machine Corporation

Program

Programmer Date

ExtensiolYSpecifications

E Record Sequence 01 the Chaining File
Number

t--- Number 01 the Chaining Field 01 Number c _
Table or

Length ,90

To Filename Table or Entries 01

~~ Array Name Line
~ Per Entries 01 Array Name

Record Per Table Entry :J ~ ~
(Alternating ... From Filename Format) E or Array ~~j ~

3 4 5 6 7 8 9 10 11 t2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 :8 39 4041 42 4344 45 46 47 48 49 50 51

01 1 1 E I I 1111111 1111111 Tlo.lxl I I I I I 12.1; Its II II I
01 2 1 E I I I I I I I II I I I I I I I I I I " I I II I I I II II I

RPG INPUT SPECIFICATIONS
IBM International 8USin~ss MKhinl Corporation

Program

Programmer Oat.

Record Identification Codes I Field Location

r---

Line Filename a:

j ! ~~ From Position
~

Position

~~
Position go t; :u a: To

~ ~§ ~~
~

0
~u 0 ~ z u u

Length
01
Entry

~
ii:

52 53 54 55 56

I I
I I

1 2

pageDJOI_

~
!!.
Il
5
j

75 76 77 78 79 80

~;~;~f:ation I I I I I I I

Comments

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1111111111111111
1111111111111111

1 2

pageDJOI_

~ (;

GX21·9094 U/M 050·
Printed in U.S.A.

75 76 77 78 79 80

~~~;~I:ation [ I I I I I I 

.g 
Field 
Indicators 

:j ~ ~~ Field Name ] .!!]! j ~ 

~ 
'2 1 0 

u..u.. 

I·~ 
~B 

"0 

~ 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 JJ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 I T NIPll IT IAlA II Inl 
o 2 I 

o 3 I 

o 4 I 

o 5 I 

RPG CALCULATION SPECIFICATIONS 
IBM Intemationll BUlin ... Mechine Corporation 

Programme, Oat. 

C Indicators Result Field 
~ ---- ~~ Jd Jd Factor 1 Operation Factor 2 

! E z 
Length Line 

>.J« Name 
I- "0 Ii 
~ ~ ~ - ~ ~ ~ 85 -i 

3 4 I; 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 JJ 34 35 J6 37 J8 J9 40 41 42 43 44 45 46 47 48 49 50 51 

o 1 c ~2 I I P1 .JIVI~ I J ~lxld~ol I I I rlAlrl, hlzl I I 
o 2 c I I I I I I I I II I JJ J I J Jl 
o 3 C I I I I I I I I I I I I I I I I I I 

:~ g 
~ S 
~~ 
'0 :: 

C J: 

52 53 

Form GX21·9093 
Printed in U.s.A. 

1 2 

pag·DJOf_ 

75 76 77 7B 79 80 

:~~;~f:ation I I I I I I I 
Resulting 
Indicators 

Arithmetic 

Plu. IMinusi Zero 

Compar. 
Comments 

1>211<211-2 

Lookup(Factor 2)i, 

High Low Equal 
54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

I I I II I I I I I I I I I I I I 
J j I II I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I 

• Figure 9-49. Loading Array Data Consecutive on More Than One Record (Model 6, Model 10 Disk System, and Model 15) 

Arrays 9-45 



Array Data Scattered on More Than One Record 

Regardless of how many records are used to contain array 
data, if the fields are scattered on the records, each field 
must be individually loaded into its appropriate position in 
the array. However, a separate specification is not always 
necessary for each field of data to be loaded. In some cases, 
th~ same specification can be used for all the records. This 
depends on whether all the input records for a single array 
are organized in the same format and whether the fields 
from different records can be assigned the same name. 

Assume that a 22-element array, named ARA, is defined. 
The data for the array is scattered on six input records, as 
shown in Figure 9-50. Although the array data is not con
secutive, the four fields on each of the first five records are 
in the same format on each record. The remaining two fields 
on the sixth record are in the same format as the first two 
fields on all other records. 

Since the array data follows the same organization on all 
records, describing one set of fields (Figure 9-51) actually 
describes the fields on all records; except the last. A sep
arate input specification should be coded to indicate that 
record 6 only contains two of the fields. (Note on the In
put sheet that records 1-5 are described in an OR relation
ship. Therefore, a specific card sequence cannot be speci
fied in columns 15 and 16. You can assume that the arra-y 
input records are in sequence. Record type 1 is the first 
record read and record type 6 is the last.) 

9-46 



6 I FLD221 

) 

S I F~D171 I FLD1al 

IFLD191 

I FLD20 I 

FLD1S1 

I FLD14\ 

IFLD161 

IFLD91 IFLD101 

IFLD1d 

I FLD12 I 

2 I FLDSI FLD6 

IFLD7J 

I FLDal 

I FLD1 I I FLD21 

) I FLD31 

I FLD41 

Organized in 
Same Format 

Figure 9·S0. Array Data Scattered on More than One Record 

) 
Arrays 9-47 



IBM Internat,onal"Bul,nISS Machin. Corpor.tlon 

Program 

Programmer Oate 

I s 
~ 1 -:---

!! 8'. 
Ii ~·5 Line Filename ~ 

~ j ~ ~ 
=0 Position ~-;;-

] ~ § .~ 'oRr- zo 
r;'No 

3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21222324 

0 1 III NP JT IAA iejl IL 
o 2 I 1f'1~R leJI2 lL 
o 3 I hlR rl:13 lL 
o 4 I ~'R 12'l l1. 
o 5 I hlR ~5 lL 
o 6 I 
o 7 I 
o 8 I 
o 9 I 
1 0 I IRA I~b lL 
11 I 
1 2 I 

RPG INPUT SPECIFICATIONS 

Record Identification Codes 

GX21·9094 U/M 050' 
Printtd in U.S.A. 

1 2 75 76 77 78 79 80 

page[Dof_ . ~~;~f:ationl 1 I- I I I I 

Field Field Location 
Indicators 2 3 

i ~ ,~ ~ 

~ 
~:2 a: 

~ Field Name u j .s ~~ Zero 
k; Position ~ Position ~ ell a: From To !.~ Plu. Minus or z 0 ~ ~ ~ ~ ~e ~ t ::J ~ ~ ~ § ~ ~~~ 'il ~~ 

:s! Blank 

~u6 ~~ 0 8 ~ 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 3940 4142 43 44 45 48 47 48 49 50 51 52 53 54 55 58 57 58 5960 81 62 6364 65 66 6768 69 70 71 72 73 74 

InJ 
02 
n~ 
h~ 

In" 
i; I()~ FL inlA 

2:.~ 2.1, rtF lola 
41 L.l1~ "C In~ 

171~ In 1"'1 

nib 

l'i at1 Ir:. In~ 
12.l~ :217 ttlr: LnR 

Figure 9-51. Describing One Set of Array Input Fields for Several Records 

9-48 

./ 

\ 

( 

( 
'--



~J 

) 

Because the fields on the different records have the same 
field names, only one MOVE specification is necessary for 
each unique field name. The specification on line 07 of 
Figure 9-52, when repeated for .each record, moves FLDA 
of that record to the appropriate element of the ARA array. 
Lines 09 and 10 are performed for every record except the 
last, which does not have fields FLDC and FLDD. 

Since the fields on the input records are in the same order 
as they are to be stored in ARA, a definite pattern is estab
lished as to where the data is to be moved. Fields from rec
ord 1 are stored in array elements one through four, fields 
from record 2 in array elements 5 through 8, fields from 
record 3 in array elements 9 through 12, and so on. 

Array index fields can be used to indicate to which array 
elements that data is to be moved. For each unique field 
name, an individual index field should be set up. In this 

Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

way, the values in the index fields only have to be changed 
every time another array input record is processed. When 
the first record is read, the index fields A, B, C, and Dare 
initialized to 1, 2, 3, and 4, respectively, to prepare for 
moving the fields from record type 1 (Figure 9-52, lines 
01-04). After the four fields are moved, the value 4 is 
added to each of the index fields so they pointto where the 
four fields on the next record should be stored (Figure 9-52, 
lines 12-15). The same calculation specifications are re
peated until fields F LDA and F LDB from the sixth record 
have been moved to the last two array elements. 

Conditioning Operations Until All Array Data is Stored 

All information must be stored in an array before you can 
reference the data by specifying the array name or array 
name with an index. Thus, any specifications to load the 
data into the array must be specified before any calculations 
which use the array information. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093-2 
Printed in U.S.A. 

IBM International Business Machine Corporation 

12 757677787980 

Page CD 01_ :~;:I:ation I I 1 1 1 I· I 
Program 

Programmer Date 

C Indicators Result Field 
Resulting 

~ Indicators 

- ~ At Jd .~ 
Arithmetic 

Factor 1 Operation Factor 2 Plus IMinusl Zero 
Comments &~ "8 Compare 

line > .... Name Length ~ 1 >211 <2TI-2 f- 0 E E E 
0 0 15 "2 Lookup(Factor 21is 

.fa z z z c High Low Equal 
3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 J9 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 5859 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74 

o 1 C ClJ z- l4D!D IA 2.~ SEll UP liN DEl( 
o 2 C (2l i!- lAD 102 18 2~ FI El DS iFKJR 
o 3 C ((jl ~- AD ~3 ~ 2~ MO VI NIG ~A Il~ 
o 4 C Qjl -A OIC:q ~ 2(2 
o 5 C* 

o 6 C* 

o 7 C lolvE FL DIA. AI~ :AI,IA Mia vie D~ rfA rrb 
o 8 C OVE FL B AR I~I.IE! PR lop elf< AR R~N 
o 9 C Na olvle FL c AI~ I~ .C FII El IDS 

1 0 C NCt~ lOVE FL ID AR IA .II: 
11 C,* 

1 2 C M~ A ~ID A ~N ell< E~ SE I~ DE:X 
1 3 C N~ B ~D B V~ LU ES T(; Mic ~E 
1 4 C N~ C ADD ~ D~ irA FR b~ HE ~T 
1 5 C N~ rn ADD tD RE ckJ RD 
1 6 C 

Figure 9-52. Using the Same MOVE for Fields from Several Records 

Arrays 9-49 



For every record of array data, RPG II goes through a com
plete program cycle, just as it does to process any other data 
card. This means that input, calculation, and output speci
fications can be performed every time an array input record 
is processed. You want input specifications to be performed 
to describe the array record to the system and, perhaps, to 
load the array data at the same time. Perhaps, calculation 
specifications which move the data from the record to the 
array should also be performed. However, if. there are still 
some array records which have not been processed (thus, 
not stored in the array), calculations and output which ref
erence the array must not be performed. For example, if 
only five fields of data have been loaded into a 10-element 
array, adding all elements of the array or printing all ele
ments will certainly not provide the results you want. 

Once the last array input record has been stored, any speci
fications referencing the array elements can be performed. 
Thus, you must specify a conditioning indicator (columns 
9 through 17 on Calculation sheet and columns 23 through 
31 on Output sheet) which indicates When the last array 
record has been processed. 

Lines 02 through 13 of the Calculation sheet in Figure 9-53 
are performed to move data from the six array input rec
ords (see Figure 9-50) into the array ARA. When the last 
record is processed (record identifying indicator 06 on), the 
two array operations on lines 16 and 17 can be performed 
during that program cycle. Therefore, when record type 6 
has been stored, indicator 33 is set on (Figure 9-53, line 14). 
Indicator 33 (or any other indicator which is set on) can 
then condition the XFOOT and SUB operations to be per
formed in a program cycle. 

The record identifying indicator 06 was not specified to 
condition the array operations, because 06 is on only for 
the cycle inwhich the sixth array record is processed. Since 
the array operations on lines 16 and 17 must be performed 
in the following program cycles also (for example, if normal 
data records follow the array records), they must be condi-' 
tioned by an indicator which is on during the following 
cycles. Once indicator 33 has been set on, it remains on ' 
through following program cycles, until set off (line 01) 
when another group of array records are processed. 

RPG CALCULATION SPECIFICATIONS Form GX21·9093 
Printed in U.S.A. 

IBM International Business Machine Corpor.tion 

1 2 75 76 71 78 79 80 
Progra~ 

Programmer Date 
Page [DOf_ ~~~;~f:.tion I I I I I I I 

C Indicators Result Field 
Resulting 
Indicators 

r-- ,At Jd 
Arithmetic 

Factor 1 Operation Factor 2 
0 Plus I Minusl Zero Comments 

8. 0 Compare 

Line ~ 
Name Length ~ 1>211<211z2 

E E LookuplFactor 21is 
& () () () .~ 

z z z c High Low Equal 
3 4 5 6 9 10 " 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 43 49 50 51 52 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C ~1 01::.1 ~3 
o 2 C rtJlL ~ .. An "'1 A 12rlJ 
o 3 c 1211 ~- A'C r"l12 121 12~ 
o 4 c 01 Ii!,- An I~ ,.. ilia 
o 5 c (2;1 ~- AD J'I~ D 12~ 
o 6 C ....,~ VJ: IF ln~ AR ~,A 
o 7 C M'" Vf J: lOB AIR lA, B 
o 8 c N~b ,..,f'I VE F In .... AIR AJ'r 
o 9 c N~I.. t"J ..... Vl~ 11= L Inn ~IRA :" 
1 0 C N~~ A Ann ~ A 
11 C N(i~ A A [I"" ~ .B 
1 2 c NQJb ,. AD,O ILj ,. 
1 3 c Nrlb n An:O l&.j '" 
1 4 C !2 ~i:.l -;'E, "''-1'( 13l~ 
1 5 C* 

1 6 c 131~ XIF I_I ... irA IRIA 1c:.11 M14I. 7~ 
1 7 c l3B AlA A~ 12.12 SI 113 l~ ~IRA 12.2 

Figure 9-53. Conditioning Operations Until All Array Data is Stored 

9-50 



Figure 9-54 shows how the array operations must be condi
tioned for another situation. In this case, record identifying 
indicator 06 does not set on indicator 33 because informa
tion (DSCNT) from data records following the array records 
must be available before the array operations can be per
formed (line 16). If indicator 06 caused indicator 33 to be 
set on, the array operations would be performed during the 
program cycle in which the sixth array record is stored. At 
that point, the DSCNT data is not available. Therefore, rec
ord identifying indicator 09 (the first type of data card fol
lowing the array records) sets on the conditioning indicator 
33 instead. 

At this point, we must mention a problem which can come 
up if array elements art;: contained on more than one record 
(or the same record typ,e), and the records contain normal 
input data as well as arr~y data. Assume t~~ee cards con
tain the array data and a~1 the data must be stored in the 
array prior to performing\any calculation or output opera
tions. This means the three records must be read before 
processing. As each new record (of the same" record type) 
is read, the data from the previous record is,.destroyed, un
less it has been moved or stored in a special place, such as 
an array. Since normal input data (nonarray fields) from 
the first two records is no longer available once the third 
record has been read,any calculation or,c>utPlJt specifica
tions which reference this input data might give incorrect 
results. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 78 79 80 

Page [DOf_ i~~;~~ationl 1 1 1 1 1 "I 
Program 

Programmer Date 

C Indicators Result Field 
Resulting 
Indicators 

- Jd Jd ~ 
Arithmetic 

Factor 1 Operation Factor 2 Plus IMinusl Zero Comments 
~ 

'g Compare 

line ~ Name Length ~ 1>211<211m2 
E 

& '0 '0 '0 'il Lookup(Factor 2)is 
z z z ~ High Low' Equal 

3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C ~Il ""'I~ II J't" 38 
o 2 C ~l l- ~D 101 IA 12rl \ 
o 3 C IZll ~- ~D In 2. IB ~~ 
o 4 c ~Il ~- ~ID ID~ r 12~ 
o 5 c rlll. ~- ~ID 11'l~ D 1212 '-.-... 
o 6 C 1M!" Iv IE. ,:/ [)A AIR 'AlA I Move data 
o 7 c Mh W~ FI iDe A'RIA R \ from input 
o 8 c INI~I~ MI~ Vf J: 11 ""r lAIR A)" record into 
o 9 c IN~I,= Min VI=. I=IL ron ~IR Al'"' I array 

1 0 c INWlI~ A ~In'" 'I IA . -. 
11 C NI~~ .A ~IDn L.f B 
1 2 c NrJ.lh r ~ID'" L/ r ". 

1 3 c IN~I~ Ir" lAID. D 1.1 'n I 
1 4 C ~fq ~IE: T"'tJ Ia.~ 
1 5 c~ ", 

1 6 cko' I~I~ AR A} 212 ~ R ~ Nil" ~IR ~1 :2.[2 
1 7 C ~ 13[3 lit ... it\IRA .... ~ 5 MIA Illl , 
1 8 C 

.... " ...... 

1 9 
.... ...... '-I 

----I 
09 set on by reading first data I Field of data on the data records which follow -,- -f-

2 0 l the array input records. record following array input records. 

I Figure 9-54. Conditioning Operations Until All Array Data is Stored and Input Data is Available 

Arrays 9-51 



,/ 

'--

9·52 



"\ 
) 

1. In which of the following ways is an array like a table (state true or false and the 
reasons for your answer)? 
a. Each can be referenced as one group of information. 
b. Each is a continuous series of data fields (elements) stored side by side. 
c. A particular item of data can be individually referenced in either a table or an 

array. 
d. Each is defined by coding extension specifications. 

2. Can one array be compared to another array to determine which is greater or less? 
State the reason for your answer. 

3. Explain what happens if an array (a) of i8 elements is added to an array (b) of three 
elements, with the result placed in an array (c) of 18 elements. 

4. The following array (ARASIX) is to be set up during a program run: 

2 72 5 20 15 

Review 9 

) a. Define the array on an Extension sheet. 

) 

b. If ARASIX is multiplied by 3, what data will be placed in the result array RESARA? 
c. Should the result array R ESARA be defined on the Extension sheet also? 
d. If so, code the necessary extension specifications to define R ESARA. 
e. What is accomplished by defining an array on the Extension sheet? 

5. a. Explain what happens when an XFOOT operation is performed. 
b. If ARASI X (refer to question 3) is specified on the Calculation sheet as Factor 2 

of an XFOOT o'peration, what data would be placed in the result field? 

6. How does a programmer sp~cify that an entire array is to be printed or punched (a) 
during output time in the object program cycle; (b) at end of job? 

7. How does a programmer specify whether an entire array or only a particular array 
element is to be operated upon or used for output? 

Review 9 9·53 



9·54 

~. Data for a SALES array is recorded on a one·record input file called I NF I LE in the, 
following format: 

Field Columns Field Columns 

Clerkl 1·10 Clerk6 51·blJ 
Clerk2 11·20 Clerk7 61~70 

Clerk3 21-30 Clerk8 71·80 
Clerk4 31·40 Clerk9 81-90 
Clerk5 41·50 record code 91 (not array data) 

Each of the clerk fields contains data with two decimal positions. Code the specifi· 
cations necessary to: 
a. Define the array as a pre-execution time array. 
b. If necessary, describe the input record and store the data in the SALES array. 

9. Show two ways that data from the first five fields of the following record could be 
stored in an execution time array named SET (15 elements, three numeric characters 
each, no decimal positions). Column 1 of the record contains aP as the record 
identifying code. 

Field Columns Field Columns Field Columns 

Fld1 2·4 Fld6 22·24 . Fld11 42·44 
Fld2 6·8 Fld7 26·28 Fld12 46-48 
Fld3 1()'12 Fld8 30-32 Fld13 50-52 
Fld4 14-16 Fld9 34-36 Fld14 54-56 
Fld5 18-20 Fld10 38-40 Fld15 58-60 

10. a. Code the output specifications to print the 13th element of the array SET 
(output filename PRINT). 

b. Code the specifications to print the entire array SET at end of job (output 
filename PRINT). 

11. SEARCH is the name of a field containing data you wish to locate in the 6-element 
PAY array. Code the specifications to search the array to determine if the data is 
present. If present, print the number and contents of the array element. If more 
than one array element satisfies the search, each isto be printed. 

12. Code specifications to: 
a. Add ARA 1 to ARA2 and place the result in ARA2. 
b. Sum all elements of ARA2 and place the result in TOTAL. 
c. Print both results. 

/ 
\, 

c 



) 

) 

E 
~ 

Line 
~ 
f-

~ 
3 4 5 6 

01 11 E 

01 2 1 E 

E 
:--

Line 

Answers To Review 9 

1. a. False. Only one table element can be referenced at one time. 

b. True. 

c. True. 
d. True. 

2. No .. An operation to be performed on an array is repeated for each element in the 
array. Therefore, a compare (COMP) operation cannot give a meaningful result for 
the entire array. The two arrays, however, could be totaled using the XFOOT 

. operation and the resulting totals could be compared. 

3. The first three elements of array a would be added to the three elements of array b, 
with the three results placed in the first three elements of array c. The remaining 
15 elements of array c (result array) remain unchanged. 

4. a. Entries shown are required; no other entries should be made. The entry in 

column 44 is necessary to indicate the elements are numeric for arithmetic 

operations. 

Extension Specifications 

Record Sequence of the Chaining File 

7 8 

I 
I 

Number 
Number of the Chaining Field of Number Table or .2 0 

9 10 

I 
I 

To Filename Table or Entries of Length j~ Array Name 
Length 

Comments 
Per Entries of of 'g ~ 

Array Name (Alternating 0.. ., 

Record Per Table Entry ~ ~ ~ 
Entry 

ilJ 
From Filename 

or~.rray ~~j 
Format) 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 4041 42 4344 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

1111111 I I I I /I I 1/\ lolnlt! h- ~ II II~ I 12. fl· II II I I I L III II I I 11111 -' -' 1 
LLI]J]] I I I I I I I 111J J JJ J 11 11 I] JJ J I I I I I I I II J ] J I I I I I I 

b. 

3 6 216 15 60 45 

c. Yes, all arrays to be used in a program must be defined on the Extension sheet. 

d. Entries shown are required; no other entries should be made. Length of array 
element (columns 40-42) must be 3 to contain the largest addition result. 

Extension Specifications 

Record Sequence of the Chaining File 
Number 

Number of the Chaining Field of Number 
c _ 

Table or .2 a Length o Q Length Table or Entries of 

~~ To Filename 
Per Entries of Array Name of .~ ~ Comments 

Array Name (Alternating 0.. ., 

Record Per Table Entry 
:) ~ ~ 

Entry 
0:: - " 

From Filename 
orArr~y ~~j 

Format) ~ ·1 i 
0:0(1) 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 5253 54 5556 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

oj 11 E l l It III II 1.1 ILL I I RIEI5~IRlL1 I I -' J Jb JJ3 I?J II II J I I """""""" I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I " I I ( I I I I I I I I I 

e. An area in storage sufficient to contain the array data is reserved. The actual 

array data may be stored in the array later, when input records are read or 

during calculations. 

Answers To Review 9 9-55 



Page of GC21-7567-2 
Issued 24 May 1976 
By TNL: GN21-5389 

E 
f---

Line 

3 4 5 

01 1 1 

5. a. The XFOOT operation causes all elements in the array specified as Factor 2 to be 
added together. The single result of the additions is placed in the result field 
specified with the XFOOT operation. 

b. The total of all elements in the ARASIX array (115) would be placed in the 
result field. 

6. a. The name of the array is specified under Field Name (columns 32 through 37) 
on the Output sheet. The filename (columns 7 through 14) mustalso be specified, 
as for output of any field. 

b. The name of the output file is specified under To Filename (columns 19-26) on 
the Extension sheet. No entry is necessary on the Output sheet. (This method 
of array output cannot be used for execution time arrays.) 

7. The array name is specified alone (on the Calculation or Output sheet) to reference 
the entire array. The array name must be followed by a comma and an index 
number or index field to reference only a particular array element. 

8. a. Extension specifications to define the array: 

Extension Specifications 

Record Sequence of the Chaining File 

~ 
f-

~ 
6 7 8 

E I 

Number 
Number of the Chaining Field of Number Table or .g e .2 c 

9 10 

I 

Length Length 
To Filename Table or Entries of 

~~ Array Name Comments 
Per Entries of of .~ ~ 

Array Name 
Entry :J ~ ~ 

(Alternating Entry "- " 
Record Per Table :J ~ ~ From Filename or Array 

Formatl 

~~l ~~j 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 4748495051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

rlNIF II ILiEI I " I II I I ~141, Iclel I~ II A lL~ ,2. 11 I J I II 111J I I I I I I I I I I I I 
1 1 1 1 1 1 1 1 1 I I 1 1 1 I 1.1 I I 1 1 1 1 1 1 I 1 1 1 I 1 I I 1 I I 1 1 1 1 1 1 1.1 1 

b. Input specifications to describe the input record and store the data in the SALES' 
array are not necessary, since the array is automatically loaded before execution 
of the program. 

9. First method: 

RPG INPUT SPECIFICATIONS GX21,9094 U/M 050· 
Printed in U.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer 

I 
f---

o 1 II 

o 2 I 

o 3 I 

o 4 I 

o 5 I 

o 6 I 

o 7 I 

9-56 

Date 

Record Identification Codes 

Filename 
Ii; Ii; Position ~ Position Position 

~ e ~~ ~ ~ 0 1:; 

~ N g 0 ~ 6 ~ 2 r5 ~u U 

Field location 

0 

il 'u; 

~ ~ 

'" From To 

~ :::J ~ 
;a '2 

cil Ii: 0 

12 757677787980 

Page CD of _ ~~~;~f:ation I I I /. / / / 

~ 0 

:9-0 Field Name ] .!!'"ii 
u.i.L 
.~~ 

1 "fi :s ~o5 

c: 
0 

'''' ~ 

1 
'0 
0; 
u: 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

'Nlp J1" lAA rL1i L I'P 
12. ~ ~f IT 1 

" IB 5.E' ITI) 2.. 
11~ l~ Sf: iTl.3 
1~ 11" ~E IT ~ l.l 
lils 2~ c::'E h"1,5 

" 



/ 

/ 

Second method: 

IBM International Business Machine Corporation 

Program 

Programmer 

I 
t---

Line 
Co 
> .... 

~ 

Date 

Filename 

Position 

RPG INPUT SPECIFICATIONS 

Record Identification Codes 
Field Location 

Position Position From· To 

1 2 

pageDJOf_ 

Field Name 

GX21·9094 U/M 050· 
Pnnted in U.S.A. 

75 76 77 78 79 80 

~Z~;~f:ation 1 1 1 I 1 I I 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 61 68 69 10 71 72 13 74 

OIl r'Nlp~Jrr 
o 2 I ~~FlIDl 
o 3 I 

o 4 I 

o 5 I J.lb~ F 'D14 
o 6 I IS 2~/2F 015 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Printed in U.S.A. 

IBM International Business Machine Corporation 

1 2 75 76 77 78 79 80 
Program 

Programmer Date 
Page DJ of_ ~~~;~f:.tion I I I I I I I 

C Indicators Result Field 
Resulting 

ci Indicators 

~ 
2!_ 

At At c 
Arithmetic 

...Ja: 
:::0 Factor 1 Operation Factor 2 :E !. Plu. IMinu.1 Zero Comments 

~~~ Length ~ ~ 
Compare

Line Name 1>211<211-2 f- '0 a:: g~
E ::. '" Lookup(Factor 2)is

~85~ 15 0; ::::

Z Z c :x: High Low Equal
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 51 5859 60 61 62 63 64 65 66 61 68 69 10 11 72 73 74

a 1 C ~1 M" Iv~ I=t IDL blf: rr ,!/
a 2 C (Zll Mf'I ViE ~l In 2. s.e-rr 2
a 3 C ~L 'M'n IVIE. F' 103 s~ IT» 3
o 4 c (2.1 t\1'1"l ~IE F In "I s~ II.1.'1.I
a 5 C "-11 M'" [ViE 1=' n5 S:E. 1T}5

10. ao Output of 13th element of SET array:

RPG OUTPUT
IBM Internationa,1 Business Machine Corporation

Program

Programmer Date

o
I---

u:: Space Skip Output Indicators

~~ Field Name !ei

Jd L c ~ l[jj -"" e ~ ~ Qj

~~ i'l.-t5
~~ e ~ Ii" roo ~ ~ 0 0 0

o R z z z °AUTO
~ r;-ND

line Filename

SPECIFICATIONS

-'"
Commas

Ves
Ves
No

Positon No
in a:
Output g
Record

<>:

Zero Balances
to Print

Ves
No
Ves
No

1 2·

pageDJof_

No Sign CR -
A J
8 K
C L
0 M

Constant or Edit Word

, GX21·9090· U/M 050'
. ,Printed in U.S.A.

75'7677 787980

~~~~;~f:ation I : I. I 1 I I I 

X s Remove 
Plus Sign 

V s Oate 
Field Edit 

Z ~ Zero 
Suppress 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 474849 50 51 52 5354 65 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 0 IPIRlr NIT 
o 2 0 

o 3 0 

Answers To Review 9 9-57 



b. Output of entire SET array at end of job since SET is an execution time array, 
must be done using output specifications, as shown below: 

RPG OUTPUT SPECIFICATIONS OX2l -9090 U/M 050' 
Printed In U.s.A. 

IBM Intern'tion,l Busin'ss Machin. Corporation 

Program 

Programmer 

0 
-

Line Filename 

~ 
~ 

E 
~ 

; 
3 .4 5 6 7 8 9 10 II 1213 

0 1 olp IRrr Nir 
0 2 0 

0 3 0 

1 2 75 78 77 78 79 80 

O.t. 
Page [JJOf_ ::;~f:tion I I. I I I II 

Output Indicators ~ Space Skip -'" Zero Balances X • Remove Commas No Sign CR -to Print 

~~ (I 
.... Plus Sign 

1 1 
Field Name 

Ves Ves 1 A J V· Oat. 
0 ..... I Ves No 2 B K Field Edit ........ 

~ il =. :u End No Ves 3 C L Z • Zero 
&'" ~ < Positon No No 4 0 M Suppress > ~ 
~ III 

~D j ~ in a: 
A ~ C; 0 0 Output g Constant or Edit Word 

o R « z z z 'AUTO ," Record 
"0 Q; 

~NO w 

14 15 16 17 18 1920 2122 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 

T IR 
5f'T rJl2. 

If SET were a compile time array or a pre~execution time array, output of the 
entire array could be accomplished by entering the output filename in To File
name (columns 19-26) in the extension specification for the array: 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS 

71 72 73 74 

FOO'm X21,9091 
Printed in U.S.A. 

IBM Int.rn'~iO"'1 Business Machine Corpor.tion 

1 2 75 78 77 78 79 SO 

Page [JJOf_ ~~~;~f:atiOn I I I ,., I I Program 

Programmer Date 

Extension Specifications 

E ~ecord Sequence of the Chaining File 
Number 

I--- Number of the Chaining Field of Number Table or 

~ Table or Length .20 Length 
To Filename Entries of 

~~ Array Name Comments Line I!l Per Entries of of 

~ 
Array Name 

Record Per Table Entry :§ ~ ~ 
(Alternating Entry a: !l 

From Filename Format) ~ j ~ 
or Array 

~~l ~ 

3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 t9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 Ef)f lr~ 11"l"" !f; Tr IMI~. 
o 2 E ""1( IN S:E. T' [5 15 .3 tZ 
o 3 Eift 'If plR IE- IE l( E.r Tr oN rTr M'E. : 
0 4 E I!.JJH N 5~rr I.! I; lit; .~ rzl 
0 5 E 

9-58 



) 

) 

) 

11. 

RPG CALCULATION SPECIFICATIONS 
IBM International BUllntlS M.chine Corporation,. 

Program 

Programmer Oato 

C Indicators Result Field 
~ 

t--- 0_ 

Jd Jd ~e Factor 1 Operation Factor 2 
~ t z 

line >..J< Name Length 
t- 'Oa:.-
E ~ en 

~ 85 ~ b b 
Z Z 

3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 4344 4S'<C(; 4748 49 5051 

:i g 
8 ~ "" ; 
~~ 
u ::!:: 

C :z: 
52 53 

1 2 

, page[Oof_ 

R .. ulting 
Indicators 

Arithmetic 

Plu. ! Minu.! Zero 
Compare 

1>2I1<2!1-2 
Lookup(Factor 2)is 
High Low Equal 

F .... G)(21·9OI3 
Prlnt.d In U.S.A. 

75 78 77 78 7& 80 

~~:~f:ltlon I I I I I I I 

Comments 

54 55 56 57 56 59 60 61 62 63 64 65 66 67 sa 69 70 71 72 73 74 

o 1 C z- IA'D lelL rx 1m 
o 2 C IAt .. !AT it\! TIA~ 
o 3 C .- hI< JIJ:l l"'~ IIolf"ll: ~ 

o 4 C ~I~ ~)C t" Ph" 
o 5 C ~;3 rx A nl"l 
o 6 C 12.8 rx ,.,..., M'p 
o 7 C ,2.~ 2.~ (;f'I Tn 
o 8 C 

n n ,. 

RPG 
IBM International Business Machine Corporation 

Program 

Programmer Date 

0 -
Line 

~ 
I-

] 

Output Indicators iL: Space 
w:S 
~ ~~-+---r--t----~I---~I--~ 
;:~at ,I ,I 
~~~~ And And 
I- Ui !

"A'Do ~
o R

fAND

Skip

Filename

! 0
< Z

IpA:Y T't

1I.
11
lAr; 14tr N

OUTPUT

Field Name

·AUTO

IX

SPECIFICATIONS

f,", il*
Positon

Commas

Ves
Ves
No
No

..il--. .. IN""

24

'1 2

Ic~ 'f"IN

G)(21·8090 U/M 050"
Printed In U.S.A..

75 78 77 78 79 80

Page [0 of_ ~~:~f:tion I I I I I I I

Zero Balances
to Print

Ves
No
Ves
No

No Sign CR

A
B
C
o

x -= Remove
Plus Sign

J V - Date
K Field Edit
L Z - Zero
M Suppress

Constant or Edit Word

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5J 54 55 56 57 58 59 60 61 62 63 64 65 66 67 sa 69 70 71 72 73 74

o 1 0plRlr NT 213
o 2 0 Irx 15
o 3 0 1714
o 4 0

Answers To Review 9 9·59

RPG CALCULATION SPECIFICATIONS form aX21·t0S3
Prl.led I. U.s.A.

Progrlm

Progrlmmer Dill

C Indicator.
~

~ 9- l Jd it Factor 1 . Qperation,

! Lin,

! 1~
,1, !. .' '~'; ~;" .. ,," ..

dS j J j

Result Field
"

g-
Factor 2· . ., :r

Name Length 1-= .~

.' J;

1 2

PIGI[DOf~

Raulting
IndlCltorl

Arithmetic

PlUI 'Mlnul' Zero
. Compare

1>2,1<2/1-2
Lookup(Flctor 2111
High Low Equll

75 78 77 78 79 80

::~"f~Cltlon I I I I I I I

Comment.

3 4 is 8 7 8 I to It 12 13 14 t& 18 17 18 II 20 21 22 23 24 2& 28 27 28 28 30 31 32 33 34 3& 31 37 31 31 40 41 42 43 44 4& 48 47 48 .1 eo &1 02&3 &4 && &1&7 &1&8 eo II 82 &3 &4 85 &I 87 &I ee 70 71 72 73 74

o 1 C AR ~ll ~Db AIR All
o 2 C iX.lto IIH iHAI2
o 3 C

RPG OUTPUT
IBM Intern.cion" aUlineu Mechine Corpor.lion

Progrlm

Programmer Da" .

0 Output Indicators· * @I Spa« Skip

I--- ~!elt! Name t:d:

1 '.l ' " '" e
Line Filename !i Al

ell 0(And

! [~ro~ ! i ~ . 0

! ~~ro
0(z z, 'AUTO

3 4 8 8 7 8 8 10 It 12 13 14 1& 18 17 18 18 2Ci 2t 22 21 24 2& 28 27 28 2820 31 32 33 34 '35 31 3'

o 1 Op Rt N~ I" ..
o 2 0 A'R ~2
o 3 0 .' Tb rrAIL
o " 0

~ '., .; : ' "

'1,,:-

,9-60
.-.{ ,

"11
II

a:

~ !
~!
3131

ilR A,2
M

SPECIFICATIONS

...
Co";mal

.. ":'
Vis
Va

End No
POllton No
In a:
Output ::J

'Record ~

~~

Zero aallncn
to Print

Vn
No
Vn
No

1 2

PIGI[DOf_

No Sign CR -
1 ;A J
2 8 K
3 C L

" D M

Constant or' Edit Word

GXUIOIO U/M oeo'
PrI.IOdI.U.S.A.
\

75 78 77 78 711 80

::::Cltlon I I I I I I I

X - Remove
PlulSlgn

V- Olte
Field Edit

Z - Zero
SupprHl

40 41 42 43 444848~48~&oIIU2&3&4&1&187&1"eollU2&3&4"&l87eeee~ 71 72 73 74

~~
cqLj

)

, Chapter 10. ~orki ... With Data S"uet"r,

CHAPTER 10 DESCRIBES:

Representation of characters on cards.

R epresent.ation of characters in storage (disk and inside the compu'ter) ..

Packed and binary data.

Collating sequence of characters.

Move zone operations.

File translation.

AFTER READING THIS CHAPTER· YOU SHOULD B~ ABLE TO:

Describe the representation of characters and negative numbers on cards.

Describe the representation of characters on disk and in~ide the computer.

Define byte, bit, zone portion and digit portion.

Compare the storing of characters on cards to the stori~g of characters in storage.

Identify bit combinations with numerical values.

Assign numerical values to zone and digit portions.

Define unpacked decimal format, packed decimal format. and binary format.

Describe the hexadecimal numbering system.

Describe the collating sequence of characters.

Code specifications to change the collating sequence.

Alter the structure of characters in storage by using move zone operation~

Translate characters by coding the Translation Table ~n~ Alternate Collitin .. S~eet.

Note: You can use the review questions contained i., RlWitIW 10 al the end of this
chapter to test your comprehension of each topic in the chapter. Questions are
grouped according to the topic to which they apply. Answers follow the review
questions.

Working With Da~a Structure 10-1

CHARACT'ER STRUCTURE" ,",

Representation of Characters on 96-Column Cards

Punched cards provide data the computer is to work with.
Each of the 96 columns of a card can contain punches for a
single character. Therefore, up to 96 characters of informa
tion can be represented on a single record.

Each column of a ~ar~ consists of six punch positions,'
labeled 8, A, 8, 4, 2, and 1, from the top of a column to
the bottom. Characters are represented by a combination
of from zero to six holes punched in the punch positions of
a single column.

Numeric Characters

0 1 2 3 4 5 6 7 8 9

B ' ,
Zone I--

Punch A A

Positions 8
;

" "' 8 B
~ 4 4 4' 4

Digit ~ 2 2 2 2 r--,- 1 1 1 1 1

, "

Alphabetic Characters

A B C D E F G H I J K

Zone
B B B '8 B B B B B B B B

t:: A A A A A A A A A

Punch 8 8 8
Positions ~ 4 4 4 4 Digit

~ 2 2 2 2 2 -,- 1 1 1 1 1 1

Special Characters

~ i I- , . ,J' ¢ "., < (:: ;: I I $. 1

Zone" ~ B B B B B B B B B B B

'A A "A A A A A A

Punch 8 8' :8 8i 8 8 8 8 8' 8 8
f--

Positions 4 ~ 4 4 4 '4 4 4
Digit

f--
2 2 2 2 2 2 2

1 1 1 1 1 1

Figure 10-1. Character Set and Punch Combinations

10-2
. '

L

B

2
1
:

;

B

8
'4

2

Since there are six punch positions available, the number
and positions of the holes may be varied to form 64 dif-

/'

ferent punch combinations. Each unique combination of"
punches is associated with a particu lar character. There-
fore, you can represent anyone of 64 different characters
in a card column (Figure 10-1).

A card column consists of both a zone portion and a digit
portion. 8 and A are referred to as zone punch positions,
while 8,4,2, and 1 are digit punch positions. The com
binations of zone and digit punches make it possible to
separate the characters into three groups (Figure 10-1):

• Alphabetic letters are represented by at least one punch
in both the zone and digit portions of a column.

• The 28 special characters can consist of no punches,
only zone punches, only digit punches, or both zone
and digit punches.

o Positive numbers are represented by holes only in the
" digit punch po'sitions. The one exception is the number

o which is represented by a single punch in the A zone
'punch position.

M N 0 P a R S T U V W x y Z

B B B B B B
A A A A A A A A

8 8 8 8
4 4 4 4 4 4 4 4

2 2 2 2 2 2
1 1 1 1 1 1 1

-, - I & % - > ? : # @
,

= " ~
B B

':' A'A A A A A A

8 8 8 8 8 8 8 8 8 8 8 8 8

:4 " 4 4 4, 4 4 4 4 4

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

/

)
I

Representa-don of Negative Numbers

Note that positive numbers are represented only by digit
punches. Negative numbers (-1 through -9 and -0) can
also be represented to the computer. However, to indicate
that a number is negative, a column must contain both the
punch combination for the number and the punch com
bination for the minus sign. As column 7 of Figure 10-2
shows, the 8 and 1 digit-punch positions are punched to
represent the number 9. A -9 is represented in column 12
by the same digit punches plus a hole in the B zone-punch·
position.

As mentioned, all 64 possible punch combinations are as
sociated with a character. Therefore, adding a B'zone punch
to the punch combination of a number means the punch
combination for any negative number is the same as the
punch combination already assigned to one of the 64 char
acters. The negative numbers -1 through -9 are represented
by the same punch combinations as the letters J through R;
-0 has the same punch combination as the special charac-

ter f
Note: Although the value -0 (negative zero) is not used by

itself, it can exist as a punch combination in the units
position ota data field.

Punch
Position -1

B

A

8

4

2

Punch
Position

B

A

8

4

2

•

•

I
•

•

-2 -3

• •

• •
•

I I
K L

• •

• •
•

CHARACTERS

-4 -5 -6 -7 -8 -9 -0

• • • • • • •
•

• •
• • • •

• •
• • •

I I I I I I I
M N o P Q R

• • • • • • •
•

• •
• • • •

• •
• • •

'J' The RPG II program determines whether the punch com
bination is a letter or a number according to whether an

• Figure 10-3. Negative Number Punch Combinations the Same as
Punch Combinations for J-R

entry has been made in column 52 of the input specifica
tions. Column 52 is used to specify the number of decimal
positions in a field. If an entry is present, the RPG II pro
gram assumes any charaCter in that field to be numeric. Ab
sence of an entry in column 52 tells the RPG II program
that it is reading either a letter or a special character in an

Digit Punches
Only for Positive
Number

)
J

Positive 9 Character
Negative 9 Character
(Prints as "R")

2
1
e'
A
8
4
2

9 R
, 7 8 • 10 11 12 13 14 15 16 17 18 II 2021 U 23 24 2526 27 28 29 3031 32

:}:
g~"UU~~~~~~ro~uu~nuvH»~~ne

A
8
4
2

~n~~H~U"~~«O"~«~«U~~~U~""~U"~~~""~
A A
8 8
4 4
2 2

1 ""~""Mnn»~nnnnn~~u"""""""~~U""""'
181013700

Figure 10-2. Punches for Negative Numbers

"B" Punch for Minus Sign

Digit Punches for Number

Working With Data Strudure 10-3

alphameric field. By examining column 52, the RPG II pro
gram recognizes when the 8 zone punch is associated with
the punch combination of one of the letters J through R or
the punch combination of a negative number.

In the discussion so far, you have learned how data is re
corded in a form which the computer can understand. The
·data is represented as punched holes on 96-column cards.
Before the RPG II program can use the data, as in calcula
tions or output operations, it must store the information.
The data is then available in computer storage whenever it
is needed during the run of a program.

Representation of Characters in Storage

When you look at the punch area of a card, you cannot
immediately determine which characters are stored on the
card. First, you have to determine which character is as
sociated with a particular punch combination. The punched
holes, then, are the means of representing characters on a
card. Similarly, a character such as the letter A is not stored
on disk or inside the computer in a form you would recog
nize as the letter A. On disk or inside the computer, there
is also a means of representing characters.

Information from each of the 96 columns of punched cards
can be transferred to disk. Data from each column is stored
in corresponding positions on disk in the form of magnetized
spots.

Characters are represented electronically in computer storage.
The storage area of the computer consists of a number of
magnetic bits, which can be turned on or off by passing an
electric current through them. The exact details of how this
is done is not important to this discussion; what is important
is that each bit can be in either an on state or an off state.
We use a 1 to show a bit that is on; while a 0 represents a bit
that is off (Figure 10-4).

"off" bit
\ jOn"bit

The magnetic bits inside the computer or on disk are ar
ranged in groups, called bytes, just as the punch positions
on a card are arranged in groups called columns (Figure
1 0-4). Just as each column on a card can contain a charac
ter, each byte in storage can also contain a character. A
particular combination of on and off bits in a byte represent
a certain character inside the computer, just as a particular
combination of punched and unpunched positions in a col
umn represent that character on a card.

Data is represented on a card, character by character; like
wise, data is stored inside the computer, character by charac
ter. Just as you can look at a punched card and refer to a
character by the particular column containing that charac
ter's punch combination, the computer can reference a
character by the particular byte in storage which contains
that character's bit combination.

Difference Between Character Representation on Cards
and in Storage

Although there are many similarities in the way a character
is represented in storage and on a punched card, it is im
portant to note one difference. While a card column con
sists of six positions, a byte consists of eight positions or
bits. Thus, within the computer, eight positions are used
to represent a single character, whereas only six positions
are available on a card.

A byte is divided into a zone portion and a digit portion,
just as a card column is (Figure 10-5). The four digit posi
tions, in both a byte and a column, are labeled 1,2,4, and
8. However, a byte contains four zone positions, whereas
a card column contains only two zone positions.

o 1 0 1 100 1 , I I
101 100 1 1 1 101 0 1 1 0

--------------- --------------- ---------------Byte 1 Byte 2 Byte 3
(Containing Bit Combination
for a Single Character)

Figure 10-4. Representation of Characters in Storage

10-4

/

Zone
Portion

Digit
Portion

8

4

2

•
c.'

" ",

•
()

•

BYTE

8 4 2 1 8 4 2 1
~~

Zone
Portion

Digit
Portion

4
2

N2 13 14 15 l' 17 'I " 2021 U 23 24 25 26 27 28 2S1 3031 32

~m~~~~~~~oom~~~~MmM~~~~mm~mmm
• B

•
A
8
4
2
1

• 7 •• 10 II 12 13 ,4 1!Ii .. t7 ,I II 20 21 22232425262728293031 32 B

A
8
4
2

1 1 B 33 3.t 35 ,,. 37 3. 31 "0 4. U 43 .U 45 " 4' ... ott 50 51 !liZ 53 5.f 5S .56 57 !l8 !Ii 60 61 62 63 U B

A A
8 8
4 4
2 2

1 "MUM"~nnn~nn"»n~~~"u""v""W~n"H"ul
11"'3700

Figure 10-5. Correspondence Between a Byte and a Card Column

)

Working With Data Structure 10-5

Since there are four digit positions in botn a byte and a
card column, the digit portion of a byte corresponds one
for-one with the digit portion of that' character's punch
combination. That is, if a digit punch posit_ion is punched,
the corresponding digit bit is set on (1) in storage. Like
wise a digit bit is set off (0) if the corresponding punch posi
tion does not contain a punch. To check this, note how the
digit portion of the plus sign (+) character is represented on
a card and in storage (Figure 10-6); (Note: Ampersand (&)

is an exception to this rule; see Figure 10-7.)

The zone portions of a card column and a byte do not cor
respond one-to-one, however. This is because there are four
zone bits in storage for each character, while there are only
two zone positions in a card column. Looking at Figure
10-6 again, you can see that even though A and 8 punch
positions contain punches for the plus sign character, the
2 and 1 zone bits in storage are not on.

Since the zone portions differ, a translation takes place
when a card is read and the data (characters) is stored inside
the computer. The machine reads the punch combination
on the card and electronically produces the appropriate bit
combinations in storage. Such translations (shown in Fig
ure 10-7) are automatic; therefore, you need not becon~"
cerned with how the computer knows which bits to turn on
and off.

When programm ing in RPG II, however, you do have to be
concerned with zones and digits as they are represented'in
side the computer.; The division of the' card column into
zone and digit portions is only for conv~nience.

On the Input sheet, you can specify record identification
codes. If you choose to use only the zone portion of a
character, you will be using the zone positions as they are
in storage. Assume that a record identification code with

+ .
1 2 3 .. 5 6 7 1).9 10 11 12 13 ,. 15 16 17 18 19 2021 Z2 23 z.4 25 26 27 28 29 30 31 32

~~"~~mm~~~~~~Mm~~~MMmMMwm~mm~mm~

• B
• A • •
•

8
4
2

2 3"'7.'W"~n~~~n~~w~n"~UUvHHro~ll~
A
8
4
2 , ". .,

n~~~n~»~~o~«~~nu~~~~~~"~n~~~~~~~
B ,,' c,. B
A
8
4
2

IBM 3700

A
8
4
2

, /

• • • • • '.1 Column 5 of the card

Punch
Position B

Bit
Position

A 8 4 2

1

0 o o

8 4' 2. 8 ---------------
Zone
Portion

4

Figure 10-6. Similarity in Digit Portion of Byte and Card Column

10-6

Byte in Storage Containing Plus (+) Character

2

(
\..

Punch Punch

)
Combination

Bit Character
Zone Digit Combination

Combination
Character Bit

Zone Digit Combination.

B I A /S 4 2 1 Zone Digit B Ais 4 2 1 Zone Digit

-6 0100 0000 A • • 0 1100 0001
(blank) B • • • 1100 0010

1 • • • • 0100 1010 C • • • • 1100 0011

• • • • • 0100 1011
(period)

D • • • 1100 0100

< • • • • 0100 1100
E • • • • 1100 0101

(• • • • • 0100 1101
F • • • • 1100 . 0110

+ • • • • (I 0100 1110
G • • • • • 1100 0111

I • • • • • • 0100 1111
H • • • 1100 1000

& • • • 0101 0000

I • • • 0101 1010

I • • • • 1100 1001

} or-O • • 1101 0000

$ • • • • 0101 1011
J or-1 • • 1101 0001

* • • • 0101 1100
K or-2 • • 1101 0010

) • • • • 0101 1101
L or-3 • • • 1101 0011

; • • • • 0101 1110
M or-4 • • 1101 0100

-, • • • • • 0101 1111
Nor -5 • • • 1101 0101

- • 0110 0000
Oor-6 • • • 1101 0110

(minus) P or-7 • • • • 1101 0111

I • • 0110 0001

• • • • 0110 1011 ,)
Qor-S • • 1101 1000

R or-9 • • • 1101 1001

% • • • 0110 1100 S • • 1110 0010

• • • • 0110 1101 T • • • 1110 0011 -
(u nderscore) U • • 1110 0100

> • • • • 0110 1110 V • • • 1110 0101
? • • • • • 0110 1111 W • • • 1110 0110

: • • 0111 1010 X • • • • 1110 0111

• • • 0111. 1011 y • • 1110 1000
@ • • 0111 1100 Z • • • 1110 1001
, • • • 0111 1101

(apostrophe)
+0 • 1111 0000

= • • • 0111 1110
1 • 1111 0001

" • • • • 0111 1111
2 • 1111 0010

3 • • 1111 0011

4 • 1111 0100

5 • 0 1111 0101

6 • • 1111 0110

7 • • • 1111 0111

S • 1111 1000

9 • • 1111 1001

-""'"
___)igure 10-7. Bit and Punch Combinations for Characters

Working With Data Structure 10-7

the zone of a $ character in column 1 is to turn on result-
ing indicator 21. If an input record is read with the charac
ter J in column 1, indicator 21 will not turn on. Even
though the card zone punches for $ and J are the same (both
have the 8 zone punched), the bit combinations in storage
for the $ and J do not have identical zone portions (Figure
10-8).

ZONE PORTIONS OF CARD

Zone
Punches
Identical

Punch Combination for Character $

--9798 991OO101102103IO<tt05!06101108109nO In ItZ"3 11~ 115 U6 117 118 "912012112212312412'5126127128
B. B
A A ---8'. 8
4 4
2 • 2

~~z"",e'~"n~u~.~~~ro~uU~~~V»Hro~n~
A A
8 8
4
2

4
2

~»~~~""n~~tlu«~«~"~~~~~~"~~""~~~n«~
A A
8 8
4 4
2 2

1 e""""~nnn~~n"nn~~~nue""""~~"""""1
IBM 3700

Zone
Portions
Differ

Punch Combination for Character J

3 • !Ii I 7 • , 10 11 12 13 W 15 16 17 18 tt 20 21 21 23 24 25 Zfi 27 28 2' 30 31 32

____ 17 II .. t00101102103Io.&105M>1t07108anO 111 112"3 "" 115 115 117 118"9120 IZl12212312",251Z6127128
B. B
A A -----r 8
4 4
2 2

~'l3. "'8.~"n~u~.~~~ro~uU~~~V»Hro~n~
A A
8 8
4 4
2 2

~»~~"""n~~tlu«~«~"U~~g~~""~""~~~n«~
A A
8 8
4 4
2 2

1 e""""~nnn~~n"nn~~~"ue""""~~"""""1
IBM 3700

Figure 10-S. Difference in Zone Portions of a Byte and a Card Column

10-S

ZONE PORTIONS IN STORAGE

Bit Combination for CharactAr $

~ fl1 I
" I ,/ I

I

S 4 2 8 4 2 \
'. -----------Zone Portion

Bit Combination for Character j

~ I rJ lJ ~ I
J

8 4 2 8 4 2 -----------Zone Portion

There are exceptions which should be noted in specifying
that the zones of characters be used to identify records.

''\ According to Figure 1 0-9, the zone of the letter J is used
) to identify record type 01, while the zone of a minus sign

is used to identify record type 02. Recorded on cards, both
characters have a B zone punch. However, inside the com
puter, their zone representations differ.

EJoooo
.8421

J 8 0001

8421

Although the zones differ, the RPG II program considers
the two the same. Thus, a card with a minus punched might
turn on either the 01 or 02 indicator. Likewise, a card with

. the letter J could turn on either indicator.

Similarly, the zone of the character blank is treated the
same as the zone of 0 through 9. Also, the zone of &
(ampersand) is treated the same as the zones of the letters
A through I. To avoid confusion, you should not specify
both (zones of the characters J and -; blank and 0-9; & and
A-I) for identification of record types which are to be used
in the same program.

'" Figure 1 0-1 0 shows the groups of characters that have
)

\

)

zones that test as equal for purposes of record identifica-
tion and the TESTZ operation. Notice that these group-
ings are different from the groupings of characters for
purposes of collating sequence by zone (Figure 10-28).

RPG INPUT ~
IBM International Business Machine Corporation

Program

Programmer Date

I 5
I--- ~

Record Identification Codes

i
c.

Line Filename ~
~

! & 1
0

Position .8 -c

j c-I-c-§ j 0 R z

Position Positiol

'A'No
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37

o 1 11= Til IF;A lAA ~'1 R~ I~.J
o 2 1i¥
o 3 I ISR ~2. A(l iZ-
o 4 I

Figure 10-9. Exception: Zone Representation Considered the Same

Working With Data Structure 10-9

Bit
Collating

Character Combination
Sequence
of

Zone Digit Zones

4 0100 1010

0100 1011
(period)

< 0100 1100 1

(0100 1101

+ 0100 1110 ,
0100 1111

I 0101 1010

$ 0101 1011

* 0101 1100 2

) 0101 1101

; 0101 ,110
-, 0101 1111

I 0110 0001

, 0110 1011

% 0110 1100 3

- 0110 1101
(underscore)

> 0110 1110

? 0110 1111

: 0111 1010

0111 1011

@ 0111 1100 4
,

0111 1101
(apostrophe)

= 0111 1110

" 0111 1111

& 0101 0000

A 1100 0001

B 1100 0010

C 1100 0011

D 1100 0100

E 1100 0101 5

F 1100 0110

G 1100 0111

H 1100 1000

I 1100 1001

Figure 10-10.Character Groups With Zones that Test as Equal for
Record 10 and TESTZ

10-10

Bit Collating
Character Combination Sequence

of Zones
Zone Digit

0110 0000
(minus)

} ·1101 0000

J or-1 1101 0001

K or-2 1101 0010

L or-3 1101 0011

M or-4 1101 0100 6

N or-5 1101 0101

o or-6 1101 0110

P or-7 1101 ·0111

Qor-8 1101 1000

R or-9 1101 1001

S 1110 0010

T 1110 0011

U 1110 0100

V 1110 0101

W 1110 0110 7

X 1110 0111

y 1110 1000

Z 1110 1001

b 0100 0000
(blank)

(
+0 1111 0000

1 1111 0001

2 1111 0010

3 1111 0011

4 1111 0100

5 1111 0101 8

6 1111 0110

7 1111 0111

8 1111 1000

9 1111 1001

)

I
/

Consider another example which points out the difference
in how negative numbers are stored and how you may think
they are stored. The minus sign alone is represented ~n a
card and in storage as shown in Figure 10-11, insert A.
Only the zone portion of the card contains a punch. Fig
ure 10-11, insert a, shows how a positive 5 is represented
on a card and in storage. In this case, only the digit portion
of the card contains punches. Note Figure 10-11, insert C,
for the punch and bit combinations which represent a -5.

When checking the cards you can see that the digit punches
for the positive ~ and the negative 5 are the same. Further
more, the digit bits in storage for the two characters are also
the same. The zone punch for -5 is the same as the zone
punch for the minus sign character. However, the zone bits
in storage for the two characters are not the same. There
fore, you should not always assume that in storage, the
zone bits for a negative number would be identical to the
zone bits for the minus sign (Figure 10-11).

The reason is that the computer checks the entire punch
combination (both zone and digit portions) of a column to
determine which zone bits are to be on or off. Since the
entire punch combinations (not only zone punches) for the
minus character and the negative 5 are different, their zone
bits in storage are also different.

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

A conclusion can be drawn from the previous examples:
each unique punch combination is associated with a dif
ferent bit combination. Of course, in discussing negative
numbers before, we stated that the punch combinations of
-1 through -9 and -0 are the same as the punches for the
letters J through R and ~ . Thus, the bit combinations
for the negative numbers are also the same as those for J
through R.

Consider again the number of positions available to repres
ent a character. A characteristic of codes involving different
combinations (such as bits on and off or punches) is that the
greater the number of positions available to represent any
one combination, the greater the number of combinations
that are possible. As mentioned, with six pun~h positions,
64 unique punch combinations can be made, and, therefore,
64 different characters can be represented on a card. With
eight bits (positions), 256 unique combinations of on-off
bits can be created and, therefore, 256 different characters
could be represented inside the computer. However, you
only need 64 characters to program the computer; there
fore, only 64 of its 256 bit combinations are associated with
a printable character.

Working With Data Structure 10-11

Representation of Minus (-) Character Representation of "5" Character (Positive)

~."m~mm~~um~~~m~MMM~mMM~m~~~~m~~ ~."m~mm~~~m~~~mmMMM~mMM~m~~~~m~~

B. B B B
A A A A
8 B B B
4 4 4· 4
2 2 2 2
1
B
A
8
4
2

o 5'7 •• ~u~u~~wn~~W~UnNnHV"H~~U~

A
8
4
2

~'230 5'7 •• ~:~u~~wn~~~~UnNnHV"H~~U~
A A
B B
4 4

~n~"»»HH~~UU«~"U"U~~~"~""»""~~~""~
~ .' ~
Bn~"u»»H~~UU«~"U""~~~"~""»""~~H"«B

A A A A
8 8 B B
4 4 4 4
2 2 2 2

1"NVA"~nnn~n~nnn~~U"M""V""~~H""""1 1 "NVA"~nnn~n~nHn~~U"Nn"V""~~H"«R"1
JIM 3700

o o

BIT 8 4 2

@

JIM 3700

o o o o·

8 4 2

® 8 4

Representation of "-5" Character (Negative)

N
, 2 3 .. 5 • 7 • • to· 11 12 13 " 15 11 17 'I ,. 20 ZI Z2 23 Z4 2! 21 27 28 2t 30 31 32

~."m~mm~~um~~~mmMMM~mMM~m~~~~m~~
B. B
A A
B B
4. 4
2 2
1. 1
B' 230 5'7 •• ~u~u~~wn~~~~UnNnHV"H~~UB

A A
B
4
2

8
4
2

~n~"»»HH~~UU«~"U"U~~~"~""»~"~~H""~
A A
B 8
4 4
2 2

1 "NVA"ronnn~~~nnn~~U"M""V""~~H"«n"1
JIM 3700

o !o o

BIT 8 4 2 8 4

Figure 10-11. Representation of a Negative Number

10-12

o o

2 8 4 2

'

Identifying Bit Combinations with Numerical Values.

Each unique combination of eight bits can be associated
with a numerical value. Before discussing how the numerical
value is determined for a character, perhaps first you would
like to know why numerical values are assigned.

As mentioned before, data can be represented on punched
cards. Actually, after reading a card, the computer does not
immediately determine what character is punched. It can,
however, distinguish one punch combination from another
punch combination. Furthermore, the particular combina
tion of punches indicates to the computer which bits should
be set on and off to represent that punch combination in
side the machine. At this point, the representation on the
card is just a particular group of punches and the representa
tion in storage is merely a particular combination of on and

off bits.

To use the byte of data for output, the computer must
know what character to punch or prjnt. This is done by
associating a numerical value with each unique bit com
bination. The computer automatically knows that a certain
value is related to a particular character, such as the value
209 indicates the character J.

Consider how a numerical value and how the character are
determined. Each of the eight bits in a byte are assigned a
number. The values begin with 1 for the 1 bit and are
doubled for each of the next bits (Figure 10-12). By add
ing.only the numbers which correspond to bits which are
on (1), anumerical value is obtained for a byte. As Figure
10-12 shows, first the punch combination (for the charac
ter F) in column 7 is translated into the bit combination in
storage. The bits on result in a numerical value of 198,
which the computer associates with the character F.

Any difference in the bit combination results in a differ
ence in numerical value. Therefore, every character is as
sociated with a different numerical value. The greatest
numerical value which can be associated with a bit combina
tion is 255 (all eight bits on), while the lowest numerical
value is 0 (all eight bits off). This results in a total of 256
possible numerical values. Only 64 different characters can
be represented on a 96 column card; therefore, we are con
cerned with only 64 of the different numerical values. How
ever, as Figure 10-13 shows, the 64 numerical values associ
ated with the characters can range anywhere from 0 through
255. The numerical values missing from the chart are not
related to any printable character.

A
8
4
2

F

A
8
4
2

~nunHnH»~~UU«~U~UU~~U~~"~~9"~~U"«~
A A
8 8
4 4
2 2

1 eMvg"ronnnunnnnn~~uuN""uun~~"""""l
111013700

\
One Byte in Storage

------------------~.

BIT 8

Numerical t
Value
Assigned 128

Add Value of
Bits That Are On

o

4 2

t t
64 32

128 + 64

o o

1 8 4 2

t t t t
16 8 4 2

+4+2

NUMERICAL VALUE 198 = F CHARACTER

o

1

t

198

Figure 10-12. Determining a Numerical Value for a Character

Working With Data Structure 10-13

I

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

Bit Numerical
Combination Value

00000000 0
00000001 1

-
00000010 2
00000011 3
00000100 4
00000101 5
00000110 6
00000111 7
00001000 8
00001001 9
00001010 10
00001011 11
00001100 12
00001101 13
00001110 14
00001111 15
00010000 16
00010001 17
00010010 18
00010011 19
00010100 20
00010101 21
00010110 22
00010111 23
00011000 24
00011001 25
00011010 26
00011011 27
00011100 28
00011101 29
00011110 30
00011111 31
00100000 32
00100001 33
00100010 34
00100011 35
00100100 36
00100101 37
00100110 38
00100111 39
00101000 40
00101001 41
00101010 42
00101011 43
00101100 44
00101101 45
00101110 46
00101111 47
00110000 48
00110001 49
00110010 50

Character

-
,

Figure 10-13 (Part 1 of 3). Numerical Values Associated with Characters

10-14

Bit
Combination

00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001'
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101

.'

Numerical
Value

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
72
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

Character

"

Blank

~

<
(

+
I
&

I
$
*
)

;
-,
-
I

/

~
/

Bit Numerical
Combination Value Character

Bit Numerical
Combination Value Character

01100110 102
01100111 103
01101000 104
01101001 105
01101010 . 106
01101011 107 ,
01101100 108 %
01101101 109 -
01101110 110 >
01101111 111 ?

10011001 153
10011010 154
10011011 155
10011100 156
10011101 157 -",

1 001111 0 158
10011111 159
10100000 160
10100001 . 161

01110000 112 10100010 162

01110001 113 10100011 163

01110010 114 10100100 164

01110011 115 10100101 165

01110100 116 10100110 166

01110101 117 10100111 167

01110110 118 10101000 168

01110111 119 10101001 169

01111000 120 10101010 170

01111001 121 10101011 171

01111010 .122 : 10101100 172

01111011 123 #
01111100 124 @

10101101 173
10101110 174

01111101 125
, 10101111 175

01111110 126 = 10110000 176

01111111 127 " 10110001 177

)

10000000 128
10000001 129
10000010 130
10000011 131

I 10000100 132
10000101 133
10000110 134
10000111 135
10001000 136
10001001 137
10001010 138
10001011 139
10001100 140
10001101 141
10001110 142
10001111 143
10010000 144
10010001 145

10110010 178
10110011 179
10110100 180
10110101 181
10110110 . 182
10110111 183
10111000 184
10111001 185
10111010 186
10111011 187
10111100 188
10111101 189
10111110 190
10111111 191
11000000 192
11000001 193 A
11000010 194 B
11000011 195 C

10010010 146 11000100 196 D

10010011 147 11000101 197 E

10010100 148
10010101 149

11000110 198 F
11000111 199 G

10010110 150 11001000 200 H

10010111 151 11001001 201 I

10011000 152 11001010 202
11001011 203

Figure 10-13 (Part 2 of 3). Numerical Values Associated with Characters

)

Working With Data Structure 10-15

Bit Numerical
Combination . Value Character .

11001100 204
11001101 205
11001110 206
11001111 207
11010000 208 (or-O
11010001 209 J or-1
11010010 210 K or-2
11010011 211 L or-3
11010100 212 M or-4
11010101 213 N or-5
11010110 214 o or-6
11010111 215 P or-7
11011000 216 Qor-8
11011001 217 R or-9
11011010 218
11011011 219
11011100 220
11011101 221
11011110 222
11011111 223
11100000 224
11100001 225
11100010 226 . 5
11100011 227 T
11100100 228 U
11100101 229 V
11100110 230 W
11100111 231 X
11101000 232 Y
11101001 233, Z
11101010 234
11101011 235
11101100 236
11101101 237
11101110 238
11101111 239
11110000 240 0
11110001 241 1
11110010 242 2
11110011 243 3
11110100 244 4
11110101 245 5
11110110 246 6
11110111 247 7
11111000 248 8
11111001 249 9
11111010 250
11111011 251
11111100 252
11111101 253
11111110 254
11111111 255

Figure 10-13 (Part 3 of 3). Numerical Values Associated with Characters

10-16

Assigning Numerical Values to Zone and Digit Portions

You have seen how a single numerical value is determined
for a combination of eight bits. The numerical value of a .
character in storage can also be expressed as a pair of num
bers, rather than a single value. One number designates
the value of only the four zone .bits; the other number
represents the value of the four digit bits.

You may be wondering why a character would ever be as
sociated with two paired numbers, since it can be associ
ated with just a single number. In certain jobs, you may
be concerned with only the digit po~tion or only the zone,
portion of a character. For example, if records within a
group are to be sequence checked only on the basis of the
zone of a character, the computer must look at only the
zone bits and determine a numerical value for the zone por
tion alone in order to make the comparison. Also, if you
want to alter the collating sequence or translate a file, both
to be discussed later, you must know the separate values
for the zone and digit portions of a character.

Determining separate zone and digit values is similar to de
termining a single value for an entire bit combination; that
is, values are assigned to each of the bit positions. The
values which correspond to on bits (1) are then added to
obtain a value.

/"
I

I,

\,-

(

To determine separate values, the zone and digit portions (",
are each treated as separate 4-bit combinations. The four
bits in each portion are assigned the values 1,2,4, and 8

(Figure 10-14), The rightmost zone and digit bits each have
the value 1; while the leftmost bits in each portion are as-
signed the value 8. A value for the zone portion of a byte
is determined by adding only the values corresponding to
zone bits which are on (1). Likewise, a digit value is ob-
tained by considering only digit bits which are on.

Bit

Assigned
Value

Zone

o

8 4 2

8 4 2

Digit

o o 0

842

8 4 2

Figure 10-14. Assigning Values for Zone and Digit Portions of a
Character

(

)

)

)

As Figure 10-15, insert A, shows, the bit combination for
the slash (/) character produces a zone value of 6 and a digit
value of 1. Putting the two values together, the entire char
acter can be expressed as the value 61. Note, however, that
this is not the same as the numerical value 61 in our decimal
numbering system. If we were to determine a numerical
value for the entire a-bit combination, we would obtain the
value 97 (Figure 10-15, insert B).

As mentioned before, with eight bits or positions in a byte,
256 different a-bit combinations can be formed. The 256
combinations can be associated with the numerical values
0-255 (Figure 10-16, insert A). If either the zone or digit
portion are considered separately, however, only four bits
or positions are available. Therefore, a maximum of 16 dif
ferent 4-bit combinations can be represented in either the
zone or digit portion of a byte. The 16 zone or digit com
binations can be associated with the values 0 through 15
(Figure 10-16, insert B).

The value obtained for a zone or digit bit combination is
referred to as hexadecimal number. Hex means 6, while
decimal referes to 10. Hexadecimal, then, means 6 + 10, or
16. A hexadecimal number can be anyone of 16 possible

Bit Combination
for" /" Character

Bit

Values For
"ON" Bits

@

Bit Combination
For" I" Character

Bit

Values For
"ON" Bits

®

VALUE BY ZONE AND DIGIT

Zone Digit

0 0 0 0 0

8 4 2 8 4 2

4 + 2 + 1

Zone Value 6 Digit Value

VALUE FOR ENTIRE BIT COMBINATION

o o o 0 0

8 4 2 8 4 2

64 + 32 + 1

Value 97

Figure 10-15. Difference in Value of Entire Character and Value
of Zone and Digit Portions of Character

values (0-15). Putting the two hexadecimal numbers for
the zone and digit portions together gives a hexadecimal
value for the entire character. 61 is the hexadecimal value
for the / character. Keep in mind that this hexadecimal
value is actually two separate values, one for the zone and
one for the digit portion.

All of the 256 possible a-bit combinations can be repre
sented by a hexadecimal value; that is, two hexadecimal
numbers. However, each hexadecimal number can take up
only one position. If a zone portion has the value 15 and
a digit portion has the value 12, the hexadecimal value for
the character cannot be expressed as 1512. Consequently,
a zone or digit portion whose numerical value is 10 or
greater (2-position number) must be represented in a slight
ly different form. This is done by assigning a single letter
as a substitute for the number. The letters A through F
serve as the hexadecimal forms of the values 10 through 15
as shown in Figure 10-17.

DETERMINING NUMERICAL VALUE FOR ENTIRE BYTE

Bit 8 4 2 8 4 2

Value Assigned
128 To Bit 64 32 16 8 4 2

Maximum 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255
Numerical
Value

®
DETERMINING NUMERICAL VALUE FOR ZONE OR DIGIT

ZONE DIGIT

Bit 8 4 2 8 4 2

Value Assigned
To Bit 8 4 2 8 4 2

8+4+2+ 1 = 15 8 + 4 + 2 + 1 = 15

Maximum Numerical Maximum Numerical
Value For Zone Bits Value For Digit Bits

Figure 10-16. Maximum Values for Entire Character and for Zone
and Digit Portions

Working With Data Structure 10-17

Decimal Hexadecimal
Number Value

0 0
1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 8
12 C
13 D
14 E
15 F

Figure 10-17. Hexadecimal Values of Numbers 0-15

An 8-bit combination with a zone value of 15 and a digit
value of 12 is expressed as having a hexadecimal value of
FC. Because the complete numbering series is composed
of numbers 0 through 9 followed by letters A through F,
a hexadecimal value for the zone and digit portion of an
8-bit combination can appear as a pair of numbers (61), a
letter and a number (C4, 4F), or a pair of letters (DB).

Since zone and digit values are determined separately, a
single combination of eight bits can have the same hexa
decimal number for both the zone and digit portion. Thus,
11, 22, 33, AA, and other such values represent 8-bit com
binations which have the same bits on in both their zone
and digit portions.

Entirely different 8-bit combinations can have identical
zone hexadecimal numbers or identical digit hexadecimal
numbers, but not both. That is, the zone portion of one
character can contain the same bits on and off as the zone
portion of another character. In such a case, the identical
zone bit combinations would give identical zone hexa
decimal values. However, if they are different characters
and the zone values are identical, the digit bits and, thus,
the digit values, must differ. This is because no two charac
ters can have the same 8-bit combination.

Figure 10-18 shows the hexadecimal values associated with
the 64 printable characters the computer recognizes. The
hexadecimal values are in sequence just as the regular num
erical values are. Furthermore, the hexadecimal value as
sociated with a character is equivalent to the numerical
value associated with that character. However, there is no
need for you to be able to translate back and forth between
numerical values and hexadecimal values. If you must use
a character's hexadecimal vlaue in your programming, you
can refer to the chart showing the appropriate value.

10-18

Hexadecimal Numerical
Character Value Value

81ank 40 64
c 4A 74 . 48 ~5

< 4C 76
(4D 77
+ 4E 78
I 4F 79
& 50 80
I 5A 90
$ 58 91
* 5C 92
) 5D 93
; 5E 94
"1 5F 95
- 60 96
I 61 97
, 68 107
% 6C 108
- 6D 109
> 6E 110
7 6F 111
: 7A 122
78 123
@ 7C 124 , 7D 125
= 7E 126
" 7F 127
A C1 I 193
8 C2 ! 194 ,
C C3 195
D C4 196
E C5 197
F C6 198
G C7 199
H C8 200

(
I C9 201
} or-O DO 208
J or-1 D1 209
K or-2 D2 210
L or-3 D3 211
M or-4 D4 212
N or-5 D5 213
o or-6 06 214
P or,-7 07 215
Qor-8 08 216
R or-9 09 217
S E2 226
T E3 227
U E4 228
V E5 229
W E6 230
X E7 231
y E8 232
Z E9 233
0 FO 240
1 F1 241
2 F2 242
3 F3 243
4 F4 244
5 F5 245
6 F6 246
7 F7 247
8 F8 248
9 F9 249 (

Figure 10-18. Hexadecimal Values Associated with Characters

)

)

Saving'Disk Storage Space

As you have learned, each byte of storage, whether on disk
or in the computer, can contain one character. That char
acter can be a decimal number or an alphabetic or special
character. The format of the characters is known as un- ,
packed decimal format. Each byte of storage is divided into
a 4-bit zone and a 4-bit digit part. Figure 10-19 shows the
unpacked decimal format.

The zone part of the low-order (rightmost) byte indicates
whether the decimal number is positive or negative. In un
packed decimal format, the zone part is included for each
digit in a decimal number; however, only the zone over the
low-order digit serves as the sign. The low-order digit is the
only digit which makes use of the zone portion. Figure
10-20 shows the unpacked decimal format for decimal num
ber 9,269.

Packed Decimal Format

I n packed decimal format means that one byte of storage
can contain two decimal numbers. A decimal number will
occupy the zone portion which is unused in unpacked deci
mal format; This format allows you to put almost twice as
much data into a byte as you can using the unpacked deci
mal format.

'The low-order byte in packed decimal format is also divided
into two 4-bit parts. Each byte, except the low-order byte,
contains one decimal digit in each A-bit part. The low-order
byte contains a decimal digit in the leftmost 4-bit part (bits
0-3) and the sign of the decimal field in the rightmost 4-bit
part (bits 4-7). Figure 10-21 shows packed decimal format.

o ----... ~~7'0 ---..... ~7'O ----1 7'0 ---..... ~7'O

Figure 10-19. Unpacked Decimal Format

Zone Zone Zone
Positive

Sign

The sign part of the low-order byte is used to indicate
whether the numeric value represented in the digit parts is
positive or negative. Compare how the decimal number
9,269 is represented in packed decimal format (Figure
10-22) with its unpacked representation (Figure 10-20).

o -------... ~~ 7 0 -----------~~~ 7

Digit Digit Digit Sign

Figure 10-21. Packed Decimal Format

Positive
Sign

_-------3 Bytes--------

'Figure 10-22. Packed Format of Decimal Number 9,269

.. 7

1101 = Minus sign
1111 = PI us sign

----------- 4 Bytes -----------

Figure 10-20. Unpacked Format of Decimal Number 9,269

Working With Data Structure 1 O~ 19

You can specify packed input, output, table, or array fields:

• Packed input fields. Enter a P in column 43 of the Input
sheet. This causes the data to be unpacked before it is
stored.

• Packed output fields. Enter a P in column 44 of the
Output-Format sheet. This causes the data to be packed
before it is written out.

• Packed table or array fields. Enter a P in column 43 and/
or 55 of the Extension sheet. The data will be unpacked
before it is stored. Packed tables or arrays are allowed
only at pre-execution time.

Since data must be represented in unpacked decimal format
once it is inside the computer, you must give the RPG pro
gram an indication when input fields are in a different for
mat.

Because data must be represented in unpacked decimal for
mat before It can be processed, unpacked decimal fields
may be stored on disk to eliminate converting the fields
from packed to unpacked format during input. However,
storing unpacked fields on disk requires more space than
storing packed fields.

Binary Format

You can save even more disk space than in packed decimal
format by storing numeric data in binary format. In binary
format, each numeric field on disk must be either two or
four bytes long. Each two-byte binary field can contain a
value equivalent to four decimal places; each four-byte
binary field can contain a value equivalent to nine decimal
places. In other words, a numeric value in binary format
occupies approximately half as many bytes of disk storage
as the equivalent value in unpacked decimal format.

Positive
Sign

o : 8192 : 4096 : 2048 : 1024 : 512 256 128

o o o o o o o

Each two-byte binary field consists of a sign bit followed
by a 15-bit numeric value. This value can be as large as
9,999. When a two-byte binary field from disk storage is
read into the computer, the RPG II program converts it to
a four-byte unpacked decimal field. Figure 10-23 shows a
two-byte field in binary format.

o 1- - - -- - - - -15

I ~ I
Figure 10-23. Two-Byte Field in Binary Format

Each four byte binary field consists of a sign bit followed
by a 31-bit numeric value. This value can be as large as
999,999,999. When a four-byte binary field from disk
storage is read into the computer, the RPG II program con
verts it to a nine-byte unpacked decimal field. A four-byte
binary field is shown in Figure 10-24.

o 1 - - - - - - - - - - - 31

I ~ I I NU~ber I I
Figure 10-24. Four-Byte Field in Binary Format

I n each case, the sign portion of the high-order byte (left
most) is used to indicate whether the numeric value is
positive or negative. Notice that in the binary format the
zone portion of the decimal number is not given. Compare
how the decimal number 9,269 is represented in binary
format (Figure 10-25) with its packed and unpacked repre
sentation (Figure 10-20 and 10-22).

64 32 16 8 4 2 = 9,269*

o o o

* The numeric value for each binary byte is obtained by adding the numbers which correspond to the bits that are on.
(Bits that are on are represented as 1 's.) The sign bit is not included in the value of the number. The bit to the right
of the sign bit is always 0, because the maximum value of a two-byte binary field is 9,999.

Figure 10-25. Binary Format of Decimal Number 9,269

10-20

I

/

Since data must be represented in unpacked decimal for
mat w~en it is inside the computer, you must indicate to
the RPG II program when fields are in another format.
You can specify binary input, output, table, or array fields:

• Binary input fielc!s. Enter a B in column 43 of the Input
sheet. The data is then converted into decimal before it
is stored.

• Binary output fields. Enter a B in column 44 of the
Output-Format sheet. The data is then converted into
binary before it is stored.

• Binary table or array fields. Enter a B in column 43
and/or 55 of the Extension sheet. The data will be con
verted to decimal before it is stored. Binary tables or
arrays are allowed only' at pre-execution time.

COLLATING SEQUENCE OF CHARACTERS

To perform data processing applications efficiently, you
usually organize your information in some order or sequence.
Imagine trying to locate a person's phone number if the
names in a telephone book were not in alphabetical order.
Of course, before using this order or sequence, you must
know what it is. Through the learning process, you know
that alphabetical order means that A comes before B, B
before C, and so on. Likewise, in numerical sequence, 1 is
less than 2,2 less than 3, and so on.

In most of your data processing applications, the computer
must be able to recognize an order or sequence of data. For
example, if you instruct the computer to sequence check a
file according to an alphabetic department code on each
record, it must be able to determine if the department T
record should appear before the department X record, or
vice versa. I n another instruction, perhaps the computer is
to compare two quantities, such as 3 and 8, and turn on an
indicator if the first quantity is less than the second quan
tity. The computer must determine if 3 is less than 8 or if
8 is less than 3.

The previous two tasks would be easy for you to perform
because, through memorization or habit, you know the
natural order of the alphabetic characters A through Z and
the numbers 0 through 9. However, a computer has not
memorized such orders. For the computer to perform these
tasks, an order or sequence of characters must be esta~lished.

To further point out the need for a set order of characters,
assume the computer must check to make sure records in a
file are in proper order according to a department field.
Some department codes are alphabetic, as department A;
while some department codes are numbers, such as depart
ment 8. Should the numeric department records appear be
fore the alphabetic department records, or vice versa? It is
likely that the answer would depend on who is asked. How
ever, for efficient data processing, you certainly do not want
records sorted one way one time and another way the next
time. Thus, the computer must use one set order of charac
ters.

Every character recognized by the computer must hold a
certain position in this order in relation to the position of
the rest of the characters. Such an order is referred to as a
collating sequence of characters. By definition, to collate
means to arrange or verify that data appears in proper order
or sequence.

There can be any number of collating sequences. The se
quence used depends on the particula'r order in which char
acters are to be recognized. In any case, the computer
should use only one collating sequence at a time.

The standard collating sequence of 64 characters is shown
in Figure 1,0-26. The blank, which is the first character, is
considered as the lowest in, the sequence while the number
9, the last character, is the highest in the sequence. Note
that all of the special characters, except the f (brace), are
first in this sequence, followed by the alphabetic characters
A through Z in their natural order, and then the numbers 0
through 9 in their natural order. The only character which
you might not expect to be in its position is the } which
comes between the letters I and J.

This collating sequence is the order used by the computer
for the purpose of sorting cards, comparing numbers to de
termine which is greater or less, checking the sequence of
records in a file, and matching records from two files to de~
termine which record should be processed next. According
to the collating sequence, the computer compares two char
acters to determine if one comes before or after the other,
or is less than or greater than the other .. Of course, you
specify which characters (or fields of characters) are to be
compared.

Working With Data Structure 10-21

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

For sorting, sequence checking, and matching, you can
specify an ascending or descending collating sequence. For
example, if records are to be in ascending sequence, the
characters being checked should be in the order shown in
Figure 10-26. That is, a card with a blank sh"ould come be
fore a card with the letter K. (The blank character is lower
in sequence than the letter K.) Likewise, a card with the
letter K should come before any records containing one of
the numbers 0 through 9. If you specify descending se
quence, the computer compares to make sure they are in
theopposite order, the characters higher in sequence coming
first.

As mentioned, a computer cannot memorize the order of
characters; it must use another method for remembering
the collating sequence. To do this, it uses the values associ
ated with characters to determine each character's relation
to another character in the sequence.

I n a previous discussion, a value is calculated for each bit
combination in storage. The value can be thought of as a

" single numerical value"for the entire 8-bit combination or
as a 2-digit hexadecimal value, which is actually one hexa
decimal number for each 4-bit combination (zone and digit).
A hexadecimal value is another way of representing a num
erical value.

Once a value is calculated, the computer uses it to deter
mine which character is represented. Thus, the numerical
value 193 (same as hexadecimal value C1) is associated with
the character A while the numerical value 243 (hexadecimal
valueF3) is associated with the numeric character 3. Per
haps you wonder why a particular value, such as 193 (C1)
is related to the letter A, rather than a different value.

The values associated with the 64 characters were originally
assigned such that the natural sequence of the values corres
ponds with the positions characters are to hold within the
collating sequence. For example, the character A is associ
ated with value 193 (hexadecimal C1), 8 with 194 (C2), C
with 195 (C3), and so on. Just as A is lower than 8 and 8
is lower than C in the collating sequence, 193 (C1) is less
than 194 (C2), and 194 (C2) is less than 195 (C3).

10-22 "

1 Blank 23 #
2 e 24 @

3 25
,

4 < 26
5 (27

"-;;--

6 + 28 A
7 I 29 B
8 & 30 C
9 I 31 0

10 $ 32 E
11 * 33 F
12) 34 G
13 , 35 H
14 I 36 I
15 - (minus) 37 }
16 I 38 J
17 , 39 K
18 % 40 L
19 _(underscore) 41 M
20 > 42 N
21 ? 43 0
22 : 44 P

Figure 10-26. Standard Collating Sequence

45 Q

46 R /
47 S
48 T
49 U
50 V
51 W
52 X
53 Y
54 Z
55 0
56 1
57 2
58 3
59 4
60 5
61 6
62 7
63 8
64 9

Figure 10-27 shows the 256 possible bit combinations, their
numerical and hexadecimal values, and the characters associ
ated with each. In this list of bit combinations, the numer
ical values are in 'order from 0 through 255 (hexadecimal
values 00 through FF), and the associated characters are in
the standard ascending collating sequence.

/:1

Bit Hexadecimal Numerical
Combination Character Value Value

00000000 00 0
00000001 01 1
00000010 02 2
00000011 03 3
00000100 04 4
00000101 05 5
00000110 06 6
00000111 07 7
00001000 08 8
00001001 09 9
00001010 OA 10
00001011 OB 11

.' 00001100 OC 12
00001101 OD 13
00001110 OE 14
00001111 OF 15
00010000 10 16
00010001 11 17
00010010 12 18
00010011 13 19
00010100 14 20
00010101 15 21
00010110 . 16 22
00010111 17 23
00011000 18 24
00011001 19 25
00011010 1A 26
00011011 1B 27,
00011100 1C 28
00011101 1D 29
00011110 1E 30
00011111 1F 31
00100000 20 32
00100001 21 33
00100010 22 34
00100011 23 35
00100100 24 36
00100101 25 37
00100110 26 38
00100111 27 39
00101000 28 40
00101001 29 41
00101010 2A 42
00101011 2B 43
00101100 2C 44
00101101 2D 45
00101110 2E 46
00101111 2F 47
00110000 30 48
00110001 31 49
00110010 32 50

Page of GC21-7567-2
Issued 24 May 1976
By TNL: GN21-5389

As you can readily see, the value associated with a charac
ter does not always immediately follow the value associated
with the previous character in the sequence. For example,
the <;:haracter S follows the character R in the collating se
quence of characters. However, the numerical value of S,
226 (hexadecimal E2), does not immediately follow the

Bit Hexadecimal Numerical
Combination Character Value Value

00110011 33 51
00110100 34 52
00110101 35 . 53
00110110 36 54
00110111 37 55
00111000 38 56
00111001 39 57
00111010 3A 58
00111011 3B 59
00111100 3C 60
00111101 3D 61
00111110 3E 62
00111111 3F 63
01000000 Blank 40 64
01000001 41 65
01000010 42 66
01000011 43 67
01000100 44 68
01000101 45 69
01000110 46 70
01000111 47 71
01001000 48 72
01001001 49 73
01001010 e 4A 74
01001011 4B 75
0100110 < 4C 76
01001101 (4D 77
01001110 + 4E 78
01001111 I 4F 79
01010000 & 50 80
01010001 51 81
01010010 52 82
01010011 53 83
01010100 54 84
01010101 55 85
01010110 56 86
01010111 57 87
01011000 58 88
01011001 59 89
01011010 I 5A 90
01011011 $ 5B 91
01011100 * 5C 92
01011101) 5D 93
01011110 ; 5E 94

, 01011111 I 5F 95
01100000 - 60 96
01100001 I 61 97
01100010 62 98
01100011 63 99
01100100 64 100 '
01100101 65 101

Figure 10-27 (Part 1 of 3). Characters and Values Associated with the 256 Bit Combinations

!
I Working With Data Structure 10-23

numericalvalue of R, 217 (hexadecimal D9). The reason
for the gap is because the bit combinations with the numer
ical values 218 through 225 are not associated with any of
the 64 printable characters. Regardless, the computer de
termines that R is lower in sequence than (comes before) S
because the value of R (217 or hexadecimal D9) is less than
the value of S (226 or hexadecimal E2).

Bit Hexadecimal Numerical
Combination Character Value Value

01100110 66 102
01100111 67 103
01101000 68 104
01101001 69 105
01101010 6A 106
01101011 , 6B 107
01101100 % 6C 108
01101101 - 60 109
01101110 > 6E 110
01101111 7 6F 111
01110000 70 112
01110001 71 113
01110010 72 114
01110011 73 115
01110100 74 116
01110101 75 117
01110110 76 118
01110111 77 119
01111000 78 120
01111001 79 121
01111010 : 7A 122
01111011 # 7B 123
01111100 @ 7C 124
01111101

,
70 125

01111110 - 7E 126
01111111 " 7F 127
10000000 80 128
10000001 81 129
10000010 82 130
10000011 83 131
10000100 84 132
10000101 85 133
10000110 86 134
10000111 87 135
10001000 88 136
10001001 89 137
10001010 8A 138
10001011 8B 139
10001100 8C 140
10001101 80 141
10001110 8E 142
10001111 8F 143
10010000 90 144
10010001 91 145
10010010 92 146
10010011 93 147
10010100 94 148
10010101 95 149
10010110 96 150
10010111 97 151
10011000 98 152

Bit
Combination

10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011

Figure 10-27 (Part 2 of 3). Characters and Values Associated with the 256 Bit Combinations

:0-24

Hexadecimal Numerical
Character Value Value

99 153
9A 154
9B 155
9C 156
90 157
9E 158
9F 159
AO 160
A1 161
A2 162
A3 163
A4 164
A5 165
A6 166
A7 167
A8 168
A9 169
AA 170
AB 171
AC 172
AD 173
AE 174
AF 175
BO 176
B1 177
B2 178 ..
B3 179
B4 180
B5 181
B6 182
B7 183
B8 . 184

B9 185
BA 186
BB 187
BC 188
BO 189
BE 190
BF 191
CO 192

A C1 193
B C2 194
C C3 195
0 C4 196
E C5 197
F C6 198
G C7 199
H C8 100
I C9 101

CA 202
CB 203 ...

)

)

)

Bit Hexadecimal Numerical
Combination Character Value Value

11001100 CC 204
11001101 CO ~05

11001110 CE 206
11001111 CF 207
11010000 } 00 208
11010001 J 01 209
11010010 K 02 210
11010011 L 03 211
11010100 M 04 212
11010101 N 05 213
11010110 0 06 214
11010111 P 07 215
11011000 Q 08 216
11011001 R 09 217
11011010 OA 218
11011011 OB 219
11011100 OC 220
11011101 00 221
11011110 OE 222
11011111 OF 223
11100000 EO 224
11100001 E1 225
11100010 S E2 226
11100011 T E3 227
11100100 U E4 228
11100101 V E5 229
11100110 W E6 230
11100111 X E7 231
11101000 y E8 232
11101001 Z E9 233
11101010 EA 234
11101011 EB 235
11101100 EC 236
11101101 EO 237
11101110 EE 238
11101111 EF 239
11110000 0 FO 240
11110001 1 F1 241
11110010 2 F2 242
11110011 3 F3 243
11110100 4 F4 244
11110101 5 F5 245
11110110 6 F6 246
11110111 7 F7 247
11111000 8 F8 248
11111001 9 F9 249
11111010 FA 250
11111011 FB 251
11111100 FC 252
11111101 FO 253
11111110 FE 254
11111111 FF 255

Figure 10-27 (Part 3 of 3). Characters and Values Associated with
the 256 Bit Combinations

Collating By Zone Or Digit

You learned from a previous discussion that the zone and
digit portions of characters can be treated as separate and
distinct groups of four bits, each with its own hexadecimal

number.

Different characters may have identical zone bits or iden
tical digit bits, but not both. Consequently, different char
acters may be associated with the same zone hexadecimal
number of the same digit hexadecimal number but not both.
As an example, the character A is associated with the value
C1, B is associated with C2, and K is associated with 02. A
has the same zone value (C) as B, while K has the same digit
value (2) as B. However, B is the only character with both

a zone value of C and a digit value of 2.

I n most data processing tasks, the computer uses entire
characters or the values of those characters to make com
parisons, to determine which is greater or less, and so on.
However, for certain purposes, such as sorting cards, you
may wish to have the computer check only the zone or
only the digit portion of characters. In such a case, the
computer must use a collating sequence based on zone or
digit values rather than the standard collating sequence
based on the entire value.

If the computer uses a collating sequence based on the zone
portions of characters, any differences in the digit bits are
ignored. Only the value of the zone bits are considered.
The reverse occurs if a collating sequence based on the digit

portions of characters is to be used.

The fact that certain characters have the same zone or digit
values can be used to group characters within a collating se
quence. On the basis of zone values, the 64 printable char
acters are divided into eight groups (Figure 10-28). The
zone bits (and values) are identical for all characters within
a group. If collating is to be on the basis of digit values, the
characters can be divided into. 16 groups (Figure 10-29). In
such a case, digit bits (and values) are identical for all char

acters within a particular group.

Using the standard collating sequence, the computer con
siders each character to hold a specific position in the se
quence. Therefore, no two characters can be considered
equal; one must come before another or be less than an

other character.

On the other hand, using a collating sequence based on zones
or digits, one group of characters follows another group of
characters. The characters within a group can occupy any
position within that group. Thus, there is an order of groups
but no particular order of characters within a group.

Working With Data Structure 10-25

Bit
Collating

Character Combination
Sequence
of

Zone Digit Zones

Bit Collating
Character Combination

Sequence
of Zones

Zone Digit (
b 0100 0000 A 1100 0001

(blank)
B 1100 0010

4 0100 1010 C 1100 0011

0100 1011
(period)

D 1100 0100

< 0100 1100 1
E 1100 0101 5

(0100 1101
F 1100 0110

+ 0100 1110
G 1100 0111

I 0100 1111
H 1100 1000

& 0101 0000
I 1100 1001

I 0101 1010
} 1101 0000

$ 0101 1011
J or-1 1101 0001

* 0101 1100 2
K or-2 1101 0010

) 0101 1101
Lor -3 1101 0011

; 0101 1110
M or-4 1101 0100 6

-, 0101 1111
Nor -5 1101 0101

- 0110 0000
o or-6 1101 0110

(minus) P or-7 1101 0111

I 0110 0001 Oor -8 1101 1000

, 0110 1011 R or-9 1101 1001

% 0110 1100 3

- 0110 1101

S 1110 0010

T 1110 0011
(

(underscore)
U 1110 0100

> 0110 1110 V 1110 0101
? 0110 1111 W 1110 0110 7
: 0111 1010

X 1110 0111
0111 1011 y 1110 1000
@ 0111 1100 4 Z' 1110 1001 ,

0111 1'101
(apostrophe)

+0 1111 0000

= 0111 1110
1 1111 0001

" 0111 1111 2 1111 0010

3 1111 0011

4 1111 0100

5 1111 0101 8

6 1111 0110

7 1111 0111

8 1111 1000

Figure 10-28. Collating Sequence by Zone 9 1,111 1001

c
10-26

Bit
Collating

Character Combination
Sequence
of

Bit
Collating

Character Combination
Sequence
of

Zone Digit Digits Zone Digit Digits

() 0100 0000 H 1100 1000
(blank)

Qor-8 1101 1000
& 0101 0000

Y 1110 1000 9
- 0110 0000 1

(minus) '. 8 1111 1000

} 1101 0000 I 1100 1001

+0 1111 0000 R or-9 1101 1001 .

/ 0110 0001 Z 1110 1001 10

A 1100 0001 9 1111 1001

J or-1 1101 0001 2 ¢ 0100 1010

1 1111 0001 ! 0101 1010 11
I

B 1100 0010 : .. 0111 1010

K or-2 1101 0010 0100 1011
(period)

S 1110 0010 3
$ 0101 1011 12

2 1111 0010
, 0110 1011

C 1100 0011
0111 1011

Lor -3 1101 0011

T 1110 0011 4 < 0100 1100

* 0101 1100
3 1111 0011

- % 0110 1100 13
D 1100 0100.

@ 0111 1100
M or-4 1101 0100

(0100 1101
U 1110 0100 5

) 0101 1101
4 1111 0100

- 0110 1101 14
E 1100 0101 (underscore)

Nor -5 1101 0101 ,
0111 1101

V 1110 0101 6 (apostrophe)

5 1111 0101 + 0100 1110

F 1100 0110 ; , 0101 1110

o or-6 1101 0110 > 0110 1110 15

W 1110 0110 7 = 0111 1110
-

6 1111 0110 I 0100 1111

G 1100 0111
-, 0101 1111

P or-7 1101 . 0111 ? 0110 1111 16

X 1110 0111 8 " 011,1 1111

7 1111 0111

Figure 10-29. Collating Sequence by Digit

)
Working With Data Structure 10-27

Note that in the collating sequence by zone shown in Fig

ure 10-28, any character in group 5 is considered lower in

sequence than any character in group 6. If records are
sorted in ascending order by zone, a record with the letter
D (group 5) comes before a record with the letterN (group
6).

Now consider a case in which characters from the same zone
group are to be compared. Assume one record contains the
letter D (group 5) and the next record contains the letter F
(group 5). Which should be sorted first according to a col
lating sequence based on zones? Since the computer ignores
the digit bits of each character, they are considered equal

because they both have the same zone value. Therefore, no
one character must. come earlier in the sequence than an
other character from the same group. The sequence of the

characters is the same order in which the records are read.
Thus, if the D card is read first by a sort program, the

D record comes before the F record. On the other hand,
if the F card is read first, the F record comes before the
D record. In either case, the records are in proper sequence

based on zones.

ALTERING THE COLLATING SEQUENCE

A collating sequence is the order in which characters are ar
ranged. As you know, all characters are associated with dif

ferent numerical values in order that the computer may
recognize them. The sequence of numerical values (ascend

ing or descending sequence) determines the order in which

characters associated with the values are recognized.

The association of a particular character with a numerical

value is an arbitrary decision. Thus, the collating sequence
itself is arbitrary. System/3 is programmed to expect the
collating sequence discussed previously in the section Col
lating Sequence of Characters. This does not mean, how
ever, that you must always use this sequence. You can
change it and there may be times when you desire to do so.

10-28

For example, you may want alphabetic characters to follow

the numbers instead of preceding them. Suppose that a com
pany originally started with a few departments. The depart. /r

ments were assigned numbers from 01-99. Two columns
were devoted to department numbers in various records.
The company expanded and departments increased. Soon
there were more than 99 departments. To avoid having to

change the department field from two to three characters
in all records, the manager decided to use the letters of the
alphabet to represent department numbers: 99, AO, A 1,
etc. In this case, A must follow the number 9 in the se~

quence. Thus it is necessary to alter ,the collating sequence
so that numbers come before alphabetic characters.

There can be other reasons than the one just explained for

altering the collating sequence. Your language may de
mand that you have characters such as A', A', 0, if, E'in

cluded in the alphabetic sequence (A, A', B) . . Since the 64

graphics do not include these characters, other seldom used
characters can be substituted for them and repositioned in
the collating sequence. For example, a number-symbol (#)

repositioned between the letters A and B can substitute for

an A; an at-sy~~ol (@) repositioned be~ween 0 and P sub
stitutes for an O.

These are only a few reasons for "altering the collating se

quence. You may have others. Just remember that you
can alter the collating sequence in any way that fits your
needs.

Specifying Changes in Collating Sequence

To change the collating sequence, you must associate char
acters with different numerir,al values. The following sec
tions will explain how this is done.

/--
I
\

:E
Q
7'
5'
co
:E
~.

:T

o
~
Cl

~
2
~
c:
@

9
I\)
<0

."
C·
~
CD
..a

~
?
." o

~
Z
CD

It
CD a.
~
l>
::;:'

~
:J
Cl ..
CD

n
2-
Di .. ;.
Ie
C/)
CD .c
c:
CD
:J
n
CD
C/)
"C
CD
n
::;;

~r .. o·
:J
III

")

IB~

System/3
Code Graphic

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
001 01 OO(»
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010

IBJ.1:

Date

Program

Programmer

Cor. Cor.
Line Size to [.~ Size to

Replaced
BylTakes

Entry Place Of Code

00 00110011
01 00110100
02 00110101
03 00110110
04 00110111
05 00111000
06 00111001
07 00111010
08 00111011
09 00111100
OA 00111101
DB 00111110
DC 00111111
00 01000000
OE 01000001
OF 01000010
10 01000011
11 01000100
12 01000101
13 01000110
14 01000111
15 01001000
16 01001001
17 01001010
18 01001011
19 01001100
lA 01001101
lB 01001110
lC 01001111
10 01010000
lE 01010001
lF 01010010
20 01010011
21 01010100
22 01010101
23 01010110
24 01010111
25 01011000
26 mOll00l
27 _.01011010
28 01011011
29 01011100
2A 01011101
2B 01011110
2C 01011111
20 01100000
2E 01100001
2F 01100010
30 01100011
31 01100100
32 01100101

"'-_--I \ ./

International Business Machines Corporation Form X2HI092

Printed in U.S.A.

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
1 2 75 76 77 78 79 80

I Punching I Graphic I I I I I I I I Page CD Program I I I I I I I
Instruction I Punch I I I J I I I I

Identification
..

Control Card Specifications

i~
1:1

i;; !
Er~f~

:;
Number ~

-¥. ~ c ,,...£ ~ Of Print .~ Refer to the specific System Reference Library manual for actual entries.

International Business Machmes Corporation Form X21-9096
Printed in U.S.A.

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

System/3
Replaced Replaced

System/3
Replaced

System/3
Replaced

BylTakes System/3 BylTakes BylTakes BylTake.
Graphic Entry Place Of Code Graphic Entry Place Of Code Gr.phic Entry Place Of Code Graphic Entry Place Of

33 01100110 66 10011001 99 11001100 CC
34 01100111 67 10011010 9A 11001101 CO
35 01101000 68 10011011 9B 11001110 CE
36 01101001 69 10011100 9C 11001111 CF
37 01101010 6A 10011101 90 11010000 } 00
38 01101011 6B 10011110 9E 11010001 J 01
39 01101100 % 6C 10011111 9F 11010010 K 02
3A 01101101 - 60 10100000 AO 11010011 l 03
3B 01101110 > 6E 10100001 Al 11010100 M 04
3C 01101111 ? 6F 10100010 A2 lln101n1 N n~

30 01110000 70 10100011 A3 11010110 0 06
3E 01110001 71 10100100 A4 11010111 P 07
3F 01110010 72 10100101 A5 11011000 Q 08

Blank 40 01110011 73 10100110 A6 11011001 R 09
41 01110100 74 10100111 A7 11011010 OA
42 01110101 75 r-10101000 A8 11011011 DB
43 01110110 76 10101001 A9 11011100 DC
44 01110111 77 10101010 AA 11011101 DO
45 01111000 78 10101011 AB 11011110 DE
46 01111001 79 10101100 AC 11011111 OF
47 01111010 : 7A 10101101 AD 11100000 EO
48 01111011 # 7B 10101110 AE 11100001 El
49 01111100 @ 7C 10101111 AF 11100010 S E2

¢ 4A 01111101 70 10110000 BO 11100011 T E3
4B 01111110 = 7E 10110001 Bl 11100100 U E4

< 4C 01111111 .. 7F 10110010 B2 11100101 V E5
(40 10000000 80 10110011 B3 11100110 W E6
+ 4E 10000001 81 10110100 B4 11100111 X E7
I 4F 10000010 82 10110101 B5 11101000 Y E8
& 50 10000011 83 10110110 B6 11101001 Z E9

51 10000100 84 10110111 B7 11101010 EA
52 10000101 85 10111000 B8 11101011 EB
53 10000110 86 10111001 B9 11101100 EC
54 10000111 87 10111010 BA 11101101 ED
55 10001000 88 10111011 BB 11101110 EE
56 10001001 B9 10111100 BC 11101111 EF
57 10001010 8A 10111101 BO 11110000 0 FO
58 10001011 8B 10111110 BE 11110001 1 Fl
59 10001100 :~----- 10111111 BF 11110010 2 F2

I 5A 10001101 11000000 CO 11110011 3 F3
$ 5B 10001110 BE 11000001 A Cl 11110100 4 F4

5C 10001111 8F 11000010 B C2 11110101 5 F5
) 50 10010000 90 11000011 C C3 11110110 6 F6

5E 10010001 91 11000100 0 C4 11110111 7 F7
-, 5F ~- 92 11000101 E C5 11111000 8 F8

60 10010011 93 11Oci0110 F C6 11111001 9 F9
I 61 10010100 94 11000111 G C7 11111010 FA

62 10010101 95 11001000 H C8 11111011 FB
63 10010110 96 11001001 1 C9 11111100 FC
64 10010111 97 11001010 CA 11111101 FO
65 10011000 98 11001011 CB 11111110 FE

11111111 FF

Forms For Altering the Collating Sequence

Figure 10-30 illustrates two forms on which you must
specify changes to the collating sequence. One form is the
RPG II Control Card and File Description sheet; the other
is the Translation Table and Alternate Collating Sequence
Coding Sheet which is used for listing the actual changes in
'sequence. Both forms are used in conjunction with the
RPG II Input, Output and Calculation sheets.

A letter S entered in column 26 of the RPG II control card
notifies the program that additional information will be
furnished to the program so that the collating sequence
can be altered. All other columns contain the information
that must normally be entered to process a job.

The Alternate Collating Sequence Coding Sheet lists 256 bit
combinations along with their hexadecimal numerical values.
As you learned from discussions of character structure, hexa
decimal values are written in the form of two character
values. One value represents the numerical value of the char
acter's zone; the other represents the numerical value of the
character's digit. The 64 printable graphics are listed beside
the bit combinations and numerical values with which they
are associated.

Coding a Change in Sequence

Each change in the collating sequence is specified in the
Replaced By column on the coding sheet. In this column,
place the hexadecimal value of the graphic whose position
in the normal sequence is to be changed. The character
corresponding to the hexadecimal value entered in the
Replaced By column replaces the character which is present
ly associated with the bit combination shown on the same
line.

Figure 10-31 illustrates entries made to change the normal
collating sequence. Hexadecimal values entered on the sec
ond and third lines of the sample coding sheet reverse the
order in which the numbers 1 and 2 are recognized by the
computer.

Numerical values entered on the second line of the sample
specify that the number 2 (hexadecimal value F2) replaces

the number 1. In other words, in the new sequence the
number 2 is associated with the value F 1 instead of the
number 1. Hexadecimal values on the third line specify that
the number 1 (hexadecimal value F 1) replaces the number
2. These two specification lines cause 2 to come before 1
in the collating sequence (0,2, 1,3).

10-30

Code

11110000

11110001

Character Associated
with Bit Combination

System/3
Graphic Entry

0 FO

1 F1
--------. ---. -- -------------- -_._-----

11110010 2 F2

11110011 3 F3

11110100 4 F4

11110101 5 F5

Numerical Value of
the Replacement Character

/
Replaced
by

F2

F1 ...-,

IF
II
II

\ + I~ Numerical Value
of Bit Combination 2 Replaces 1

1 Replaces 2
8-Position Bit Combinations

Figure 10-31. Explanation of Alternate Collating Sequence Sheet

Effect of the Coded Change in Sequence

Any alternate collating sequence you specify is used tem
porarily. It is used only for the program which contains
the alternate collating sequence specifications. Even more
specifically, it is used in that program for operations which
involve sequencing, such as checking sequence of records,
comparing fields, or matching records.

You may think, according to specifications in Figure 10-31,
that the character 2 read into the computer is always re
placed by a 1. This is not true. The computer associates
characters with the values you specify only before sequen
cing operations involving:

1. Compare operations on alphameric fields.

2. Matching or sequence checking match fields.

)

)

How does the computer keep track of the collating sequence
to use? ,The computer keeps all your instructions for alter
ing the sequence in storage. The area in storage which holds
this information may be pictured as shown in Figure 10-32.
These instructions combined with the pattern for normal
sequence give the computer the correct collating sequence to
use.

Numerical Value
of
Bit Combinations

Associated Characters

Normal Collating
Sequence

Altered Collating
Sequence

FO 0 0
/------'-------- ----. -_ .. _-------+----------/

F1 1 2 -------_ .. _- --_._----

F2 ---... - - .. _----_. -_.- -
F3

1-----_ ... ------------_ ..

-------------1---------/
2

3

1
:-_. __ .. __ ._------_. ----

3

F4 4 4
1--... _---_. ..-.------------ --.-.-------- .. -.-.-.------.-.. ----.. -----.---.-----

F5 5 5 _._---_. ._--_ _--- ._---- ._-.-.. __ . ---.. -. -_ ... _--. __ ._--_.-
F6 6 6 --.------- . _. -_ .. _ .. _------ -._. -----_._--------_. ----_._-- - ----------------
F7 7 7

Figure 10-32. Storage Area Holding Alternate Collating Sequence
Instruction

Consider the use of an altered sequence when determining
which record to select for processing in a multifile program.
The collating sequence has been changed so that 2. comes
tiefore 1.

F.1 and 1 ----~. F1 and 2

F2 and 2 ----.~ F2and1

F3 and 3 ---_I F3 and 3

Figure 10-33 illustrates how the program u~es the alternate
sequence. Two cards are read into the read area. Just be
fore the compare operation which is done to determine
which match field has a lower value, the program checks to
see if the characters used in the compare are affected by the
alternate collating sequence instructions. They are. The
character 1 normally associated with the value F 1 is replaced
by the character 2; the character 2 normally associated with
the value F2 is replaced by the character 1.

When doing the compare, the program substitutes these
values. For the match field having the character 2, the.
program uses the bit combination whose value is F1 instead
of the bit combination for F2. Similarly for the match field
containing a 1, the program uses the bit combination of
F2 instead of the bit combination for F 1. As a result of the
compare, the primary card containing a 2 iJl the match field
is chosen for processing. This card was chosen because F1
(now associated with character 2) is lower in sequence than
F2 (now associated with the character 1).

After the compare, characters are again associated with
values as assigned in the normal collating sequence.

Working With Data Structure ·10-31

B
A
8
4
2e
1

Bit Combinations in
Storage

Substituted Bit
Combinations

Primary File

F2

~ i 11110001
1,-;;::::::::::::;:::::::

F1

B
A
8
4
2e
1

2

Match

Compare to

Figure 10-33. Using Alternate Collating Sequence (0, 1,2,3,4,9)

1O-3~

Secondary File

F1

Compare to· determine
low Match Field. For
Compare should alternate
collating sequence be used?

COLLATING SEQUENCE

Associated Character
YES

Numerical
Value of Normal Altered
Bit Combination Coli. Seq. Coli. Seq.

FO 0
F1 1 2 } F2 2 1
F3 3
F4 4

11110010 I~.------------------ Use altered sequence for
compare by using

F2

Primary file card selected
for processing because F1
is lower in value than F2.
The new collating sequence
is 0, 2,1,3,4, etc.

values associated with
characters as spaclfied.

/'
I

,/'
I

\.

)

Coding Characters to be Equal

Entries can be made to allow two characters to occupy the
same position in the collating sequence; that is, they are as
sociated with the same numeric value. When two characters
occupy the same position in the sequence, the computer
recognizes one character as being the same as the other.

Figure 10-34 illustrates the specifications which allow a
blank or zero to occupy the same position in an altered
sequence (assume the field is alphameric). The hexadecimal
value associated with the character blank is replaced by the
hexadecimal value (FO) which is already associated with the
zero. Because the zero and blank are associated with the
same numerical value, they are recognized as the same char
acter. Figure 10-35 shows why a field containing a blank
is equal to a field containing a zero when the altered se
quence is used.

International Business Machines Corporation

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

System/3 :~~ac:!
Code Graphic Entry Place Of Code

~.-t----t---~:~--1t-----I ~~ ~~~ ~~
00110101 35 01101000
00110110 36 01101001
00110111 37 01101010
00111000 38 01101011
00111001 39 01101100
00111010 3A 01101101
00111011 38 01101110
00111100 . 3C 01101111
00111101 3D 01110000
00111110 3E 01110001
00111111 3F 01110010
01000000 Blank 40 ~ trJ 01110011
01000001 41 .'", 01110100

1---:0::-,~0000~1;-,:0'--t ___ +--=4~2 ___ -t ___ -l 01110101
01000011 43 ~110
01000100 44 01110~

System/3
Graphic

%

>

Entry

66
67
68
69
6A
6B
6C
60
6E
6F
70
71
72
73
74
75
76
77

Replaced
BvITakes
Place Of Code

10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010

System/3
Graphic Entry

99
9A
9B
9C
90
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
AB
A9
AA

Replaced
BvITakes
Place Of

01000101 45 01111000
01000110 46 01111001 ~~ r;~""~~;..,;~,;.~~~~",,I-t ___ +--=:~c-;~;--t------I
01000111 47
01001000 48 ~~~~~~~~ ~ Zero Replaces Blank. -=~-=-::~:-:-:7~~=-=~-I----+-""':~":~=--+----l
01001001 49
01001010 ¢ 4A I---:~~~~~~~~~~~~,-t~@~-~~~=~~-+-~~,~ ~;~~~:~~~~~~~~---4--=~~~~-t----l
01001011 4B
01001100 < 4C
01001101 (40
01001110 + 4E

01111110 = 7E f>'~""'.;;.OI:,..:I-=-OO::.::O:..:.I-+ ___ -+-...::.B:.,:.I_-+ ____ -I
01111111" 7F 1-"'7-'-~""",,11;..::0-l ___ -+-....:B:..:2'---+ ___ -l

~:~~~~I-t ___ +-~:U~_-+ ___ --I ~~~~~~~:~~~:~~~"""",,~---1r--=::":!~-+----l
I---'~~=~"-'~"'~-t---+-~:~~--+-----I ~~~ :~:~~ ~ ~

01010001 51 10000100 84 10110111 B7
01010010 52 10000101 85 10111000 B8
01010011 53 10000110 86 10111001 B9

Code

11001100
11001101
11001110
11001111

System/3
Graphic Entry

CC
CO
CE
CF

11010000} DO
11010001 J 01
11010010 K 02
11010011 L 03
11010100 M 04
11010101 N 01;

11010110 0 06
11010111 P 07
11011000 Q 08
11011001 R D9
11011010 OA
11011011 DB
11011100 DC
11011101 DO
11011110 DE
11011111 OF
11100000 EO
11100001 El
11100010 5 E2
11100011 T E3
11100100 U E4
11100101 V E5
11100110 W E6
11100111 X E7
11101000 Y E8
11101001 Z E9
11101010 EA
1;101011 EB
11101100 EC

Form X21-9096
Printed in U.S.A.

Replaced
By/Takes
Place Of

01010100 54
01010101 SS

10000111 87 1-"~0~11~1~01~0-l ___ -+-....:B~A~-+ ___ -l~~I~I1~0~1~10~1-1 ___ -+-....:E~0~-+-----I
10001000 88 10111011 BB fl'NJ110 EE

01010110 56 10001001 B9 10111100 BC 11101 ~::: :::::::~:~t::::::::::::::::: ::::::::E$::::: ..
J!..1010111 57 10001010 8A 10111101 BO
~011000 58 10001011 8B 10111110 BE
01011001 59
01011010'\ . 5A

11110010 2 ··F2

1111 0011 3 F3 I---':-::~",,-:-~~~~~,-t---.-+--:.=-'~'---+------I ~~~~ ~~
01011011 ~ 5B 10001110 8E 11000001 A Cl 11110100 4 F4

-'l1011100 5C 10001111 8F 11000010 B C2 11110101 5 F5
01011101 I 50 10010000 90 11000011 C C3 11110110 6 F6
01011110 5E 10010001 91 11000100 0 C4 11110111 7 F7
0'0'11"'" 5F
01100000 60 ~--+---+-~:~~-~----~ 11111000 8 F8

11111001 9 -';;F~9--t----~

01100001 I 61 10010100 94 11000111 G C7 11111010 FA
01100010 62 10010101 95 11001000 H C8 11111011 FB
01100011 63 10010110 96 11001001 I C9 11111100 FC
01100100 64 10010111 97 11001010 CA 11111101 FO
01100101 65 10011000 9B 11001011 CB 11111110 FE

11111111 FF

Figure 10-34. Specifying Blank Equal to Zero in New Collating Sequence

Working With Data Structure 10-33

Field A = Blank

Bit combinations
in storage

~I ~1~rtJ~~~~
--.- ---.--

40
I
I
I
I
I
I
I

Substituted I
bit combinations I

~I l
1111~~~ Compare to
--.----.--

FO

Compare Field A to Field B

Field B = 0

1111¢¢~
Compare Field A to Field B.

---------------. For compare should Alternate
Collating Sequence be used?

,
'.

FO

Numerical Associated Character

Value of Normal
Bit Combinations Coli. Seq. '

40 Blank

E9 Z

FO 0
F1 1

Use Alternate Sequence,

1111 ~¢rtJ~ 1 ·------ ~:I;:k~:~~e~s~~;h
--.- --.- Characters as Specified

FO

Result: FO is the same as FO
Fields are equal; Blank
is the same as zero.

Altered
Coli. Seq.

0

Ye s

'.

Figure 10-35. Using Alternate Collating Sequence (Blank Equals Zero)

10-34

/

/'

./

I

./

Example of the Coging of an Altered Sequence

Figure 10-36 shows a part of the normal collating sequence,
and one of several ways in which the sequence can be
changed. Arrows depict changes required in the positions
of characters to alter the sequence as shown at the right side
of the figure.

I n I ike manner, arrows in Figure 10-37 show entries on the
coding sheet which must be specified to alter the sequence.
Note that letters B through I are to be repositioned to allow
the at-symbol (@) to appear between letters A and B. Iden
tical results could be achieved by repositioning the value for
the letter A to the line above, making it correspond to bit
combination 1100000.

To produce the sequence shown in Figure 10-36 and 10-37,
the appropriate hexadecimal values must be specified in the
Replaced By column beside each graphic involved in the
change. Figure 10-38 shows the actual coding required to
alter the sequence.

Notice that each number which is to be collated before the
alphabetic character is assigned a hexadecimal value which
has no graphic associated with it. These values have no as
sociated graphics that could have been assigned to the values
previously associated with numbers. This is not necessary,
however, because these values have no associated graphics.
When two graphics are involved in the change, then both
must be assigned different values except when they are to
be considered equal.

PORTION OF THE
NORMAL SEQUENCE

I

D
E
F
G
H
I

T
J
K
L
M
N
o
P
Q

R -s--.
T
U
V
W
X
y

2
3
4
5
6
7
8
9

ALTERED SEQUENCE

1

" ------o
1
2
3
4
5
6
7
8
9
A
@

B
C

D
E
F
G
H

--L.-
J
K
L
M
N
o
P
Q

R
~

S
T
U
V
W
X
Y
Z

}

Figure 10-36. Normal Sequence Versus Altered Sequence

Working With Data Structure 10-35

International Business Machines Corporation

TRANSLATION TABLE ANO ALTERNATE COLLATING SEQUENCE CODING SHEET

System/3
Graphic

Blank

Entry

33
34
35
36
37
3B
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
4B
49
4A
4B

< 4C
(40
+ 4E

Replaced
ByfTakes
Place Of

1-.~I ___ -II-_4~F_-+ _____ -t
& 50

51
52
53
54
55
56
57
58
59
5A
5B
5C

I 50
5E
5F
60

/ 61
62
63
64
65

Code

01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000

System/3
Graphic

%

>

.• :./t.:.:

= '\

Entry

66
67
6B
69
6A
6B
6C
60
6E
6F
70
71
72
73
74
75
76
77

7B
79
7A
7B
7C
7D
7E
7F
BO

10000001 Bl
10000010 '82
10000011 ~
10000100 8~

Replaced
ByfTakes
Place Of Code

10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111

System/3
Graphic Entry

99
9A
9B
9C
90
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
AB
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
63
B4
B5
B6
B7

10000101 B5 "\. 10111000 BB
10000110 86 "\ 10111001 B9
10000111 B7 '\ 10111010 BA
10001000 88' 10111011 BB
10001001 89"\. 10111100 __ BC

10001010 8A"\. 10111101 - ... RO
10001011 8B "\. 10111110 BE - ...
10001100 8C ~ 10111111 BF

Replaced
ByfTakes
Place Of

---80-- -----'1\
:::::~~ 8E I ,,1--:::-:-:~=-=OO~OO:-=I-+""' .. A:-:.-. -'---i---=~=-=I'---+-----t
10001111 8F r711';:0~000;;;;-;-10;;-'::f.!:~B':il:;:;c-:. --+---;;;C~2--t-----l
10010000 90 11000011 :;' C:;;;;: C3

t-1:=:00"-'1:.::;000==1-+ ___ -+-...:9:.:.1 __ +_____ 11000100: ; 0 :;:; C4

~.-+---+-~:=~'--+-----l ~~~i-~tHr:-~·---t------f
10010100 94 11000111 ;; G ;:;: C7
10010101 95 11001000 :; : H:;:::, C8
10010110 96 11001001 ': ~ I :;;;;: C9
10010111 97 11001010 r;=t::;: CA
10011000 98 11001011 CB

Figure 10-37. Changes Necessary for Altered Sequence

10-36

Code

11001100
11001101
11001110

System/3
Graphic Entry

CC
CO
CE

11001111 ::::::::::: CF
11010000 ;: } .!::;: DO
11010001 '::n:' 01

11010010 K \ 02

Form X21-9096
Printed in U.S.A.

Replaced
By/Takes
Place Of

11010011 L 1 ___ t-=03"----i ___ --i

11010100 M' 04
11010101 N' n<;
11010110 0 \ 06
11010111 P '_-+--'0""7'---+ ___ -1

~.:~-- ~'--\,--+---"~:..:::~--+----I
11011010 \ OA
11011011 , DB
11011100\ DC
11011101 'DO

11100000 \ EO
11100001 --\ \-l---'E=-=I'---+-----t

11100010 1 E2
11100011 T \ E3
11100100 U J E4
11100101 V I E5
11100110 W , E6
11100111 X / E7
11101000 Y / E8
11101001 Z./ E9
11101010 r EA
11101011 EB

11101100 ___ +_-"-EC"-~I_-----
11101101 ED
11101110 EE
11101111 .':::;::: EF
11110000 ;;;'0;;;;: FO
11110001 ::;·1 ;:;:: Fl
11110010 :;;; 2 ;;;;; F2

~11:;::3:;;;; F3
111101l)!J"":;:;4 :;:;: F4
11110101 :;:: 5 :;:;: F5
11110110 :;: 6;:;:: F6

::::~~ LHf- ~i-,--t----I
11111001 ;;;9 ;:;' 'F9
11111010 . :,::::::., FA

11111011 FB
11111100 FC
11111101 FO
11111110 FE
11111111 FF

International Business Machines Corporation Form X21-9096
Printed in U.S.A.

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

)
System/3

Replaced, Replaced
System/3

Replaced Replaced
By{Takes System/3 By{Takes By{Takes System/3 By{Takes

Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of

33 01100110 66 10011001 99 11001100 CC
34 01100111 67 10011010 9A 11001101 CO
35 01101000 68 10011011 9B 11001110 CE
36 01101001 69 10011100 9C 11001111 .. :.: .. :.:: CF
37 01101010 6A 10011101 90 11010000 '. ~ }:~ .. :. DO
38 01101011 6B 10011110 9E 11010001 ,:3;.;. 01
39 01101100 % 6C 10011111 9F 11010010 K\ 02
3A 01101101 - 60 10100000 AO 11010011 L\ 03
3B 01101110 > 6E 10100001 Al 11010100 MI 04
3C 01101111 ? 6F 10100010 A2 11010101 N \ 05

3D 01110000 70 10100011 A3 11010110 o t 06
3E 01110001 71 10100100 A4 11010111 P I 07
3F 01110010 72 10100101 A5 11011000 o \ 08

Blank 40 01110011 73 10100110 A6 11011001 R \ 09
41 01110100 74 10100111 A7 11011010 \ OA
42 01110101 75 10101000 A8 11011011 I DB
43 01110110 76 10101001 A9 11011100 \ DC
44 01110111 77 10101010 AA 11011101 \ DO
45 01111000 78 10101011 AB 11011110 \ DE
46 01111001 79 10101100 AC 11011111 \ DF
47 01111010 : 7A 10101101 AD 11100000 \ EO
48 01111011 Ai.:- 7B 10101110 AE 11100001 El
49 01111100 .::@;.,: 7C 10101111 AF 11100010 S \ E2

¢ 4A 01111101 .. ~ .. :-x 7D 10110000 BO 11100011 T E3
4B 01111110 = \ 7E 10110001 Bl 11100100 U I E4

< 4C 01111111 .. \ 7F 10110010 B2 11100101 V I E5
(4D 10000000 \ 80 10110011 B3 11100110 W I E6
+ 4E 10000001 \ 81 10110100 B4 11100111 X I E7
I 4F 10000010 \ 82 10110101 B5 11101000 vI E8
& 50 10000011 83 10110110 B6' 11101001 zJ E9

51 10000100 \64 10110111 B7 :fl 11101010
,

EA DO
52 10000101 ~5 10111000 B8 I 11101011 EB
53 10000110 ~ 10111001 B9 11101100 EC
54 10000111 81\ 10111010 BA 11101101 ED
55 10001000 88 \ 10111011 BB 11101110 EE
56 10001001 89 \ 10111100 BC 11101111 ,:,:.;:.:0. EF
57 10001010 8A \ 10111101 BD 11110000 :'O~:::: FO
58 10001011 8B 10111110 BE 11110001 '1:;:; Fl
59 10001100 8C I' 10111111 BF ~ """- 11110010 2 :;:: F2

I 5A 10001101 8D 11000000•.• CO 1~ 3 ;::: F3
i; 5B 10001110 8E 11000001 :;~;::::: Cl 11110100 : 4 :;:; F4 . 5C 10001111 8F 11000010 :·B::::: C2 "7~ 11110101 ; 5 ;:::: F5
I 50 10010000 90 11000011 ·:C:;:; C3 C 11110110 6 ;::: F6

5E 10010001 91 11000100 ·0:::: C4 C 11110111 7 :::: F7 .., 5F 10010010 92 11000101 ; E;:;: C5 11111000 8 :;:; F8
60 10010011 93 ----;tODo 11 0 ; F :;:; C6 r- 11111001 :9,:::' F9

I 61 10010100 94 11000111 ::G:::: C7 ~. 11111010 :::::!:::: FA
62 10010101 95 11001000 : H:::: C8 11111011 FB
63 10010110 96 11001001 ·:1;:;: C9 ,.~ 11111100 FC
64 10010111 97 11001010 ;:f.;:;. CA . (11111101 FD
65 10011000 98 11001011 CB 11111110 FE

11111111 FF

Figure 10-38. Coding for Altered Sequence

)

Working With Data Structure 10-37

Recording Specifications for the Altered Sequence

After you have coded all specifications for the alternate col
lating sequence, you can record them so that they can be
used by the computer. Records describing the alternate se
quence are to be formatted as follows:

Positions

1-6

7-8

9-96

Entries

AL TSEQ (This entry allows the com
puter to recognize that this record is
describing an alternate sequence.)

Blank

The hexadecimal values involved in
changing the sequence.

In positions 9-96, there are 22 groups of 4 positions. Each
group (9-12, 13-16, etc.) must contain two hexadecimal
values involved in changing the sequence. The first two
positions of a group are for the hexadecimal value taken
from the Entry column of the Alternate Collating Sequence

Note:
Although a card is shown in this
figure, remember, alternate collating
sequence data can also be entered
by means of keyboard or disk.

ALTSEQ 87F088F189F2BAF3BBF4BCF5
I 2 3 ~ S , 7 • 9 10 11 12 13 ,.. 15 16 17 18 '9 20 21 zz 23 24 25 26 27 28 29 30 31 32

Coding Sheet. The last two positions in a group are for the
hexadecimal value taken from the Rep/aced By column of
the coding sheet (Figure 10-39).

More than one record may be used to specify changes in
collating sequence. However, each additional record must
be formatted in the same way as the first.

The first blank appearing in positions 9-96 is recognized by
the compiler as the end of the record. Consequently, blanks
must not appear between pairs of hexadecimal values.

A record containing **k) (two asterisks and a blank) in posi
tions 1 through 3 must precede the sequence records.

All records (except the RPG II control card) used for alter
ing the collating sequence must follow RPG II specifications
(or file translation specifications, when used) and must pre
cede any tables being entered.

Form X21-9096
Printed in U.S.A.

HEET

Replaced
System/3

Replaced
System/3 By/Takes By/Takes
Graphic Entry Place Of Code Graphic Entry Place Of

99 11001100 CC
9A 11001101 CO

i 9B 11001110 CE
9C 11001111 t..--- CF
90 ~ ~ ----- ~ V

~r-,:=-.. .-..... ------- .A"<lIllOO U E4 -- B2 ~,...-- 11100101 V E5
B3 11100110 W E6
B4 11100111 X E7

B5 .••. 11101000 Y EB
.-:::::W:::::::::::: :::::::::;:~::::::::'. 11101001 Z E9

:::: ::{i17 ~ ~:::::: 11101010 EA DD
:::::::.

~?~~~:~Z~~~~~:~~~:~~?,~~~~~S2~~~;~~ ~
C 6C 5C 7C6C8C 7C9C8CAC9EAD0
6' 66 67 68 69 70 71 72 73 74 75 76 n 78 79 80 81 82 83 84 85 86 81 , ,: 92 93 '4 95 96

!l7 98 99 100 101 102 103 '~~~;%~::t~~:~~~ 112 11~ 114 115 116 1:7 1:8 119 ;20 121 122 1:?3 IN '''5 U6 127 12~
B • • •• .::::::. • :::~ •.• • ••• ••• ••• B

----.::- :::~ BB 11101011 EB
:.::::~:::::::::::: :::::.:::: ;::::::::. 11101100 EC

BA 11101101 ED
BB 11101110 EE
BC 11101111 EF
BO 11110000 FO
BE 11110001 F1
BF 11110010 F2
CO

~ : : ;: : 0 ,,;,::; 0'0; : 0 ; 0: : ; : : : ; 0 :; ; : ~
.' , ... 5 6 '7 : •• :+.;1.-,.-»:.)3 ,4 15 I 17 11 19 20 :<'1 22 23 2<1 ~5 ~E 17 2!1 29 30 31 32 ! . .. ::: ·:::::tji::j~::::::::: .:: :::::::. ~

8 •• 8
4 ••• ••• •• •• •• .4
2 •••••••••••••••••••••••• 2
1 •• •••••••••••••• 1

33 34 35 36 37 38394041 4243 U 45 46 '7 48 4950 51 52 5354 5S ~G ~7 59 !i! 60 GI 62636. B. • • • • • • • ••• ••• B
A. • • • • • • • ••• •••• A

11110011 F3
A C1 11110100 F4

i

B C2 7l. 11110101 F5
C C3 (' 11110110 F6
0 C4 ('\ 11110111 F7

C5 ..- 11111000 FB
C6 11111001 F9

G C7 '" 11111010 FA
H C8 11111011 FB
I C9

,.
11111100 FC

CA
,.

11111101 FO
CB 11111110 FE

11111111 FF

8 •••• 8
4 • • ••• • • 4
2 ••• ••••• ••• • • • 2

1 ~~~~~~~n~N~~~~~~~~~~~~~~MR~~~~~"1
IBM 3700

Figure 10-39. Punching Alternate Collating Sequence Cards

1 ()"38

ALTERING THE STRUCTURE OF CHARACTERS

You learned in the discussion of character structure that
each System/3 graphic is represented in the machine by a
unique setting of eight bits; four zone bits and four digit
bits. If any change is made to either the zone or digit bits,
the entire character is changed. For example, if the A bit
of the letter M is changed from on to off, the letter M be
comes the letter D (Figure 10-40).

You can, of course, change a character before it is read into
the computer by punching different zone punches on the
card. But yO,U can also change a character after it has been
read. This is done by changing the zones of characters
through the use of move zone operation codes.

Why would you ever want to change the zone of a character
after it has been read? One common reason for changing
zones is to deliberately change the sign of a field from posi
tive to negative, or vice versa.

This is necessary when a numeric field read in from a special
file has its sign in the high-order (leftmost) position of the
field. Numeric fields are required to have the sign in the
low-order (rightmost) position of the field. Thus, a numeric
input field having its sign in the high-order position must
have its sign moved to the low-order position. The move

"\ zone operations allow you to do this.

84218421

-M

-0

Figure 10-40. Changing Zones Changes Characters

How Move Zone Operations Work

Move zone operations involve only the zone portion of char
acters. The computer does not actually move the zone of
one character to the zone portion of another. Rather, it
changes a character by making its zone identical to the zone
of the character which you indicate should serve as the
model. The character serving as a model is not changed by
the operation.

Thus, in order to use the move zone operations you must
have:

1. A character which needs to be changed.

2. A character that has the zone you want the changed
character to have.

For example, if you want the low-order (rightmost) position
of the field AMOUNT to be changed from a positive 5 to a
negative 5 you must have a character to serve as a model
whose zone portion is the same as the zone of a negative
five.

Coding a Move Zone Operation

Figure 10-41 illustrates the way in which a move zone opera
tion is coded. The name of the field containing the character
to be changed must be entered in the Result Field. Either a
constantof the name of the field which contains the model
character must be entered in Factor 2. The move zone opera
tion code is specified in the Operation columns (28-32).
Any conditioning indicators you wish to use can be speci
fied, but resulting indicators cannot be used.

RPG CALCULATION SPECIFICATIONS

Card Electro Numbe

Result Field

Operation
0

Factor 1 Factor 2 . .,
"8

Name Length ~
e
"2
c

18 t9 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

t'IH

I

7
Operation describes
character - positions
affected by movement
of the zone.

Hlz I"IIFlr It .cA

"
Location of the model
character or constant.

IF T IEIL InJlJ
\

1\

Location of character
changed by the move
zone operation.

Figure 10-41. Coding for a Move Zone Instruction

Working With Data Structure 10-39

Differences in the Move Zone Operations

There are four different move zone operation codes avail
able. Each code involves the zones of characters located in
different positions; namely:

1. High-order positions in both Factor 2 and the Result
Field.

2. High-order position in Factor 2 and low-order in the
Result Field.

3. Low-order positions in both Factor 2 and the Result
Field.

Factor 1

18 19 20 21 22 23 24 25 26 27

Alpha 1 Field

to
High

Factor 1

18 19 20 21 22 23 24 25 26 27

Operation Factor 2

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

~I-I IHI;t ""'A tip I-IIAll

Operation Factor 2

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

MI, ~;Z ~IN 111M ~IRI

Numeric 1 Field (Factor 2)

Result Field

Name Length

43 44 45 46 47 48 49 5051

IA Iplu A"

Alpha 2 Field

Result Field

Name Length

43 44 45 46 47 48 49 50 51

~II p~ 'Air

Move
Low
to
High

Alpha 1 Field (Result Field)

Figure 10-42. Move Zone Operations

1040

4. Low-order position in Factor 2 and high-order in th~
Result Field.

Since only the zones of high and low-order characters in a
field or constant are involved in the move zone operations,
only the high or low-order positions of a field can be
changed.

Figure 10-42 illustrates the ways in which the four opera
tion codes affect the zone of a character in the Result Field.

Result Field

Factor 1 Operation Factor 2

Name Length

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

MII-I II ;Z ~A I, p 'HlAli NI" M't: I~ I
I
I

I

Alpha 1 Field (Factor 2)

Numer 1 Field (Result Field)

Factor 1 Operation Factor 2

18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42

Mil I~ ~N II !M I~~II

Numeric 1 Field (Factor 2)

Low /

to I
LoW

Result Field

\

Name Length

43 44 45 46 47 48 49 60 51

N'l IN If: ~2

\

Numer 2 Field (Result Field)

)

'\
;'

\
I

/

Move From High-Order Zone to High-Order Zone (MHHZO)

This operation code moves the zone of the high-order (left
most) alphameric character in the constant or field entered
in Factor 2 to the high-order alphameric character in the
Result Field.

Move From Low-Order Zone to High-Order Zone (MLHZO)

This operation code moves the zone of the low-order (right
most) character in the field or constant entered in Factor 2
to the high-order alphameric character in the Result Field.
The Result Field must be alphameric; Factor 2 can be either
numeric or alphameric.

I Move From High-Order Zone to Low-Order Zone (MHLZO)

This operation code moves the zone of the high-order alpha
meric character in the constant or field entered in Factor 2
to the low-order rightmost character in the Result Field.
Because of its high-order zone, Factor 2 must be an alpha
meric field. The Result Field can be either alphameric or
numeric.

Move From Low-Order Zone to Low-Order Zone (MLLZO)

This operation code moves the zon~. of the low-order charac
ter in the field or constant entered in Factor 2 field to the
low-order character in the Result Field. Both Factor 2 and
the Result Field can be either numeric or alphameric.

Field Format and Move Zone Operations

As you read the description of each move zone operation,
you probably noticed that special attention was given to
the types of fields which can be used with each operation.
Keep in mind that you cannot move from or to the high
order positions of a numeric field because the computer
does not use the high-order zone of fields defined as
numeric.

Page of GC21-7567-2
Issued 21 December 1979
By TNL: GN21-5709

Which of the following move zone operations can be done
if the two fields involved have formats as given below?

1. Alphameric to Alphameric: MHLZO

2. Alphameric to Numeric: MHHZO

3. Numeric to Alphameric: MLHZO

4. Numeric to Alphameric: MHHZO

5. Numeric to Numeric: MLHZO

6. Numeric to Numeric: MLLZO

Items 1,3, and 6 can be done. Items 2, 4, and 5 cannot be
done. Item 2 suggests that the zone of the high-order posi
tion in the numeric field be changed. The computer does
not use high-order zone of numeric fields. Item 4 suggests
that the zone of the high-order character is to serve as a
model. It cannot because the computer does not work with
the zones of high-order characters in a numeric field. Item
5 cannot be done because again it involves high-order posi
tions of numeric fields.

Example of a Move Zone Operation

Now that you know how the various move zone operation
codes work, let's see how they can be used to change the
sign of the field, VALUE, from the high-order to the low
order position.

Naturally any field that has zones other than in the low
order position must be defined as alphameric if those zones
are to be used by the computer. But if the field is to be in
volved in an arithmetic operation, it must be numeric.

To allow for both possibilities, you could define the field
twice; once as alphameric and once as numeric. (Two
unique field names are needed.) Another possibility is to
define the field once as alphameric and then change it into
a numeric field by moving it into a numeric field. This is
what is done in the example (Figure 10-43).

Working With Data Structure 10-41

Before doing any arithmetic operation, you must get the

sign in the low-order position of a numeric field. You may

want to first determine what the sign is by means of a

TESTZ operation. Remember that TESTZ turns on the

minus indicator when it finds the characters -, f ' or J
through R in the high-order position of the tested field.

The specification in Figure 10-43, insert B, line 02, causes

indicator 20 to turn on if the sign of the field is minus. If

indicator 20 is on, the zone of VALUE, which is the minus

sign to the computer, is moved to the low-order position of

the AMOUNT field. If the field tested is plus, no zone is

moved because a numeric field having no minus sign is auto

matically assumed to be positive.

Notice that the MHLZO (Move High to Low Zone) opera

. tion code was used to change the zone of the low-order

position of the AMOUNT field by giving it the same zone

as the high-order position of VALUE.

Note: This example can also be accomplished without us

ing a TESTZ operation. First, move the zone of the h igh

order position of the field VALUE to the low-order posi

tion. This puts the sign in the low-order position. The
alphameric VALUE field can then be moved to the numeric

AMOUNT field and the arithmetic operation can be per
formed.

Choosing the Model Character for Factor 2

Before specifying a move zone operation, you must have a

character designated in Factor 2 whose zone will give the

desired zone in the Result Field.

Usually you will use move zone operations to change the

signs of fields. Using any numbers in Factor 2 will produce

a positive character in the Result Field. Using anyone of

the character } or J-R in Factor 2 will give you a negative

character. The - (minus, X'60') character does not work
to make a character negative using the move zone opera

tion. Remember that negative numbers are punched with

a B punch (minus sign) over the number. The punch com

binations of negative numbers have the same numeric value

in the computer as J-R. Thus, when you specify that the

zone of a character should be made like the zone of J-R,
you will get a minus character. See Character Structure
for more information.

Use Figure 10-28 as a guide for selecting the zone which

will produce the desired change.

RPG INPUT SPECIFICATIONS GX21·9094 U/M 050-
Printed in U.S.A

IBM International Business Machine Corporation

Program

Programmer

I

Line
0.
>
I-

~

Filename

Date

o

~
ie'. - ~.~

Jj ~ § ~ 0

-~-il~ o A Z 0 ~
-f----
AND

Position

Record Identification Codes

~

~ 1
Position g ~

Position
e ~ 0 8 0 6 z z U

Field Location

0
;::

~ .;;;

;ji From
J:

g g c:: To
~ e ..J

0 ~ <5 ~ co ~ z ii: 0

1 2 75 76 77 78 79 80

Page OJ of _ ~~~~;~f:alion I I I I I I I

~ 0

:2-0 Field Name] .~ :§
.~ g' g
~~ 8 :;;u

.~

~
'C
0

~
'C

~

Field
Indicators

Zero
Plus Minus or

Blank

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

~'J

RPG
IBM International Busines. Machine Corporation

CALCULATION SPECIFICATIONS Form GX21-9093
Printed in U.S.A.

~m
------------~------,-----r_~-~~.~~~~--------~ 1 2 75 76 77 78 79 80

~---- Page OJ of _ ~~~~;~f:ation I I I I I I J

C Indicators Result Field
Resulting

::i Indicators

- ~~
At

T- .~
Arithmetic

QiS2 And FaCTOr 1 Operation Factor 2 Plus IMinusl Zero Comments
~5~ Name Length ~ Compare

Line '0 rr.
6

E 1>211<211-2
E ; '" Lookup(Faclor 2)is
~ 8 56 ~ ~ ~ ~ Z z High Low Equal

3 4 6 6 7 8 9 10 1112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5061 !:i2 54 55 56 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 C M/""\ V~ VA J~ AJ\1 ~l NT A2 ---- -- .•
0 2 C ,,.."'" V/J.' IF 2<l
o 3 C 2.~ ~1-4 J~ lvA r: 11M r\, AJT

@. c
- I

Figure 10-43. Using Move Zone Operations to Change the Sign of a Field

10-42

\,

(

"

~
o
~
5'
to

~
;:+'
:J

o
~
III

~
c:
~
E;
CD

o
J:,.
w

'11
jD'
5;
CD
~

f
!="
'11
o
3
In

2
CD
CD c..
CD
c..
Q
!!
iD
~
III
:l
In
iii
0'
:l
en
'C
CD
n
:;;

g'
0'
:l
In

\.~

IB~

System/3
Code Graphic

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010

IBr.,

Date

Program

Programmer

Cor. Core
line Size to ~ ~ Size to

Replaced
ByITakes

Entry Place Of Code

00 00110011
01 00110100
02 00110101
03 00110110
04 00110111
05 00111000
06 00111001
07 00111010
08 00111011
09 00111100
OA 00111101
OB 00111110
OC 00111111
00 01000000
OE 01000001
OF 01000010
10 01000011
11 01000100
12 01000101
13 01000110
14 01000111
15 01001000
16 01001001
17 01001010
18 01001011
19 01001100
lA 01001101
lB 01001110
lC 01001111
10 01010000
IE 01010001
IF 01010010
20 01010011
21 01010100
22 01010101
23 01010110
24 01010111
25 01011000
26 01011001
27 01011010
28 01011011
29 01011100
2A 01011101
2B 01011110
2C c-ill911111
20 01100000
2E 01100001
2F 01100010
30 01100011
31 01100100
32 01100101

"----./ "--_/
International Business Machines Corporation Form X21-9092

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
Printed in U.S.A.

1 2 75 76 77 78 79 80

I Punching I Graphic I I I I I I J I Page IT] Program I I I I I I I Instruction I Punch I I I) J 1 I)
Identification

Control Card Specifications

'm Ii; &
II) ~ '" '5 en ~ :§ 8 Number g'
~ ~ g :E ~ .~ ~ Of Print .~ Refer to the specific System Reference Library manual for actual entries.

International Business Machines Corporation Form X21-9096
Printed in U.S.A.

TRANSLATION TABLE AND ALTERNATE COLLATING SEOUENCE CODING SHEET

Replaced Replaced
System/3

Replaced Replaced
System/3 ByITakes System/3 ByITakes ByITakes System/3 ByITakes
Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of

33 01100110 66 10011001 99 11001100 CC
34 01100111 67 10011010 9A 11001101 CO

35 01101000 6B 10011011 9B 11001110 CE

36 01101001 69 10011100 9C 11001111 CF

37 01101010 6A 10011101 90 11010000 } DO

38 01101011 • 6B 10011110 9E 11010001 J 01

39 01101100 % 6C 10011111 9F 11010010 K 02
3A 01101101 - 60 10100000 AO 11010011 L 03
3B 01101110 > 6E 10100001 Al 11010100 M 04

3C 01101111 ? 6F 10100010 A2 11010101 N 05

3D 01110000 70 10100011 A3 11010110 0 06
3E 01110001 71 10100100 A4 11010111 P 07

3F 01110010 72 10100101 A5 11011000 0 08

Blank 40 01110011 73 10100110 A6 11011001 R 09

41 01110100 74 10100111 A7 11011010 OA

42 01110101 75 10101000 A8 11011011 DB

43 01110110 76 10101001 A9 11011100 DC

44 01110111 77 10101010 AA 11011101 DO

45 01111000 78 10101011 AB 11011110 DE

46 01111001 79 10101100 AC 11011111 OF

47 01111010 : 7A 10101101 AD 11100000 EO
48 01111011 # 7B 10101110 AE 11100001 El
49 01111100 @ 7C 10101111 AF 11100010 S E2

¢ 4A 01111101 70 10110000 BO 11100011 T E3
4B 01111110 = 7E 10110001 Bl 11100100 U E4

< 4C 01111111 .. 7F 10110010 B2 11100101 V E5
(40 10000000 80 10110011 B3 11100110 W E6

+ 4E 10000001 81 10110100 B4 11100111 X E7

I 4F 10000010 B2 10110101 B5 11101000 Y E8

& 50 10000011 83 10110110 B6 11101001 Z E9
51 10000100 84 10110111 B7 11101010 EA
52 10000101 85 10111000 B8 11101011 EB
53 10000110 86 10111001 B9 11101100 EC
54 10000111 87 10111010 BA 11101101 ED
55 10001000 88 10111011 BB 11101110 EE
56 10001001 89 10111100 BC 11101111 EF
57 10001010 8A 10111101 BO 11110000 0 FO

58 10001011 8B 10111110 BE 11110001 1 Fl
59 10001100 8C 10111111 BF 11110010 2 F2

! 5A 10001101 80 11000000 CO 11110011 3 F3

$ 5B 10001110 8E 11000001 A Cl 11110100 4 F4
5C 10001111 8F 11000010 B C2 11110101 5 F5

I 50 10010000 90 11000011 C C3 11110110 6 F6
5E 10010001 91 11000100 0 C4 11110111 7 F7

I 5F 10010010 92 11000101 E C5 11111000 8 F8

60 10010011 93 11000110 F C6 11111001 9 F9
I 61 10010100 94 11000111 G C7 11111010 FA

62 10010101 95 11001000 H C8 11111011' FB
63 10010110 96 11001001 I C9 11111100 FC
64 10010111 97 11001010 CA 11111101 FO
65 10011000 98 11001011 CB 11111110 FE

11111111 FF

TRANSLATING CHARACTERS

I n the previous discussion, you learned that the program
can alter the structure of characters by moving zones. But,
through the file translation function of the RPG II language,
it can do even more. It can translate one character into an
other.

The translating function is known as file translation because
characters can be translated either when they are read in or
before they are recorded in the output file. The program
acts like an interpreter. Just as a human interpreter trans
lates languages (a word in German for a word in English),
the computer translates characters by replacing one charac
ter with another.

Need for File Translation

Think of the use for file translation when translating codes.
Codes are often used as a security measure to prevent access
to classified information. Information is recorded on cards
in coded form. In order to process the information, it must
be decoded. A coded character must be replaced by the cor
responding decoded character.

For example, a firm which keeps all information 'classified
uses the characters in the word FITZGERALD as a code
for the numbers 0 through 9. F is the code for zero, I for
one, etc. When recorded on a card, the number 1432 ap
pears as IGZT. If a field containing IGZT is read into the
computer and used in arithmetic operations, results received
are wrong. IGZT must first be decoded, or translated into
1432.

Specifying File Translation

Specifications for file translation are identical to those used
to alter the collating sequence.

Forms Used for a File Translation

Figure 10-44 shows the forms on which you must specify
the way in which files are to be translated. One form con
sists of the RPG II Control Card and File Description sheet;
the other consists of the Translation Table and Alternate
Collating Sequence Coding Sheet for listing the characters to
be translated. Both forms are used in conjunction with the
RPG II Input, Output, and Calculation sheets.

10-44

Only column 43 in the RPG II control card relates to the
change in sequence. A letter F entered in column 43 noti-
fies the computer that additional irformation furnished for
translating files. All other columns contain the information \,
that must normally be entered for a program.

The Translation Table and Alternate Collating Sequence
Coding Sheet lists 256 bit combinations along with their
hexadecimal numerical values. You learned from discus
sions of character structure that the left-hand number in
the hexadecimal value represents the numerical value of the
character's zone and the right-hand number represents the
numerical value of the character's digit; The 64 printable
characters are listed beside the bit combination and hexa
decimal values with which they are associated.

Coding the Translation

Each character that will be affected during the translation
of a specified file must be identified on the coding sheet.
I n the column entitled Replaced By, enter the hexadecimal
value of the character which is to replace the character pres
ently associated with the bit combination shown. This
means that the character associated with the value found in
the Entry column will be translated into the character associ
ated with the value entered in the Replaced By column.

Figure 10-45 illustrates the entry made on the coding sheet (
to translate a character. If an input file is to be translated, \..
this entry means that the letter F wi" be translated as the
number 0 (FO is the hexadecimal value associated with 0).

Code

11000100

11000101

11000110

11000111

11001000

11001001

\

Character Associated
with Bit Combination

System/3
Graphic Entry

0 C4

E C5

F C6

G C7

H C8

I C9

Nu merical-V:;-ue

of Bit Combination

8-Position Bit Combination

Numerical Value of
Replacement Character

/
Replaced
By

FO_~_

/
/

/

L Is translated to 0

Figure 10-45. Explanation of File Translation Coding Sheet

(

\

)

)

If the output file is to be translated, this entry means that
the number 0 will be translated back into an F before being
written out. You can think of the character associated with
the value in the Entry column as being the character read in
or printed out. On the other hand, the character associated
with the values in the' Replaced By column is the character
represented in the machine (Figure 10-46).

Differences Between File Translation and Alternate
Collating Sequence

Because of the similarity of entries used in coding an alter
nate collating sequence and a file translation, these functions
may seem identical. They are not, however. The difference
occurs in the way the program works with the characters in
volved.

When alternate collating sequence is used, the characters
are altered only temporarily for sequencing operations.
The original bit combination of the character, obtained
from the punch combination for that character, is not
changed. Temporary substitution of another bit combina
tion is done instead.

For file translation, bit combinations are actually changed.
As a result, one character is changed (translated) into an
other. This translation occurs before your program instruc
tions are executed.

What Files Should Be Translated?

Any input files which contain information recorded in
coded form should be translated if correct results are to be
obtained. All characters which you specify to be translated
are translated whenever they are encountered. This means
if you specify an F to be translated to 0, all F's read in will
be translated. When there are several other fields on the
cards in addition to the one containing coded information,
remember all characters specified to be translated are trans
lated regardless of fields.

When printing or punching information out, you mayor
may not find it necessary to specify file translation for the
output files. If you have translated (decoded) your input
file, you should translate information back into coded form
before it is written or punched out. If all F's are translated
as D's when read in, then all D's should be translated to F's
before they are put out. Keep in mind that only characters
which you specify are involved in the retranslation.

Worki ng With Data Structure 10-45

International Business Machines Corporation

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

System/3
Replaced
ByfTakes

Graphic Entry Place Of

1 33
34
35

-

- - -- -

'EFZTG

IIII

:;
Input File

Input data is
translated

u ".~~. Un

EFZTG- 50324
50324 x 10 = 503240
503240- E F.ZTG F

Data is translated
before being put out

Figure 10-46. File Translation

1046

System/3
Replaced
ByfTakes

Code Graphic Entry Place Of

01100110 66
01100111 67
01101000 6B
01101001 69
01101010 6A

6B
6C
60 -

-
-
-
-
-
-
-
-
-
-
-
-
--
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--
.-
-
-
-
-
-
-

EFZTGF

Output File

System/3
Replaced
ByfTakes

Code Graphic Entry Place Of Code

10011001 99 11001100
10011010 9A 11001101
10011011 9B 11001110 '
10011100 9C 11001111
10011101 90 11010000
10011110 9E 11010001
10011111 9F 11010010
10100000 AO 11010011
10100001 Al 11010100
10100010 A2 11010101
10100011 A3 11010110
10100100 A4 11010111
10100101 A5 11011000
10100110 A6 11011001
10100111 A7 11011010
10101000 A8 11011011
10101001 A9 11011100
10101010 AA 11011101
10101011 AB 11011110
10101100 AC 11011111
10101101 AD 11100000
10101110 AE 11100001
10101111 AF 11100010
10110000 BO 11100011
10110001 Bl 11100100
10110010 B2 11100101
10110011 B3 11100110
10110100 B4 11100111
10110101 B5 11101000
10110110 B6 11101001
10110111 B7 11101010
10111000 B8 11101011
10111001 B9 11101100
10111010 BA 11101101
10111011 8B 11101110
10111100 BC 11101111
10111101 BO 11110000
10111110 BE 11110001
10111111 BF 11110010
11000000 CO 11110011
11000001 A Cl &7 11110100
11000010 B C2 11110101
11000011 C C3 11110110
11000100 0 C4 F~ 11110111

~'*~~-
E C5 F5 11111000 F--r--=. ..

r:cd 11111001 C6
11000111
11001000
11001001
11001010
11001011

G C7 F¥ 11111010
H C8 11111011
I C9 /:1 11111100

CA 11111101
CB 11111110

11111111

File Translation specifications used
for translating both input and output
files as follows:

FIT Z G ERA L 0

I I I I I I I I I I
o 1 2 3 4 5 6 789

Form X21·9096
Printed in U.S.A.

/

System/3
Replaced
ByfTakes

Graphic Entry Place Of

CC
CO
CE
CF

} 00
J 01
K 02
L 03 F8
M 04
N 05
0 06
P 07
a DB
R 09 1=';'

OA
DB
DC
DO
DE
OF
EO
El

S E2
T. E3 F.2
U E4
V E5
W E6
X E7
Y E8
Z E9 F=3

EA
E8
EC
ED
EE
EF

0 FO
1 Fl
2 F2
3 F3 '
4 F4
5 F5
6 F6
7 F7
8 F8
9 F9

FA
FB
FC
FO
FE
FF

If you'do not specify file translation for output files, in
formation is put out exactly as it is in the machine. If you

'do not intend to translate card or printer output files, be
// certain that all characters from the input file are translated

into a value 'associated with a printable graphic. Anyhexa
decimal value which does not have an associated graphic
cannot be written or punched out (Figure 10-47).' If an un
printable graphic is specified to be put out, a blank appears
in its place.

International Business Machines Corporation

'TION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

I Syste~:3 I
Entry

"I;

lational Business Machin es Corporation

_: ALTERNATE CO LLATING SEQUENCE CODING SHEET

I

j

·am/3 I
Replaced
ByITakes

ntry Place Of

I
-

changed
not be

C6 (F) when
to an AO can
printed for A
no associate
The printer
file must be
lated so that
will print ou

o has
d graphic.
output
trans-
AO

t as F.

'-

Code

10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100

11°0Q!9~
11000110
11000111
11001000
11001001
11001010
11001011

\ Figure 10-47. Printable Graphics
I

/

System/3·
Graphic Entry

99
9A
9B
9C
90
9E --- 9F , AO

A"
A2\
A31
A4
A~ \

A6 I
A7 \
AB J
A9 \
AA \
AB I
AC .-
AD \
AE \
AF \
BO \
Bl \
B2
B3
B4
B5
B6
B7
BS
B9
BA
BB
BC
BO
BE
BF
co

A Cl
B C2
C C3
0 C4

C5_
F C6
G C7
H C8

C9
CA
CB

Replaced
System/3 ByITakes

Place Of Code Graphic

r+oi:::6~ _.
- 10011011 -

10011100
10011101
10011110
10011111
10100000
10100001
10100010

Replaced 10100011

ByITakes 10100100
Place Of 10100101

10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000 '
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001 A
11000010 B
11000011 C
11000100 0
11000101 E

11000110 F
11000111 G
11001000 H
11001001 I
11001010
11001011

Form X21·9096
Printed in U.S.A.

Replaced Replaced
ByITakes System/3 By/Takes

Entry Place Of Code Graphic Entry Place Of

99 11001100 CC
9A 11001101 CO
9B 11001110 CE
9C 11001111 CF
90 11010000 } DO
9E 11010001 J 01
9F 11010010 K 02
AO 11010011 L 03
Al 11010100 M 04
A2 11010101 N 05
A3 11010110 0 06
A4 11010111 P 07
A5

~-:::-- 9 08
A6 R 09
A7 11011010 OA
AS 11011011 DB
A9 11011100 DC
AA 11011101 DO
AB 11011110 DE
AC 11011111 OF
AD 11100000 EO
AE 11100001 El
AF 11100010 S E2
BO 11100011 T E3
Bl 11100100 U E4
B2 11100101 V E5
B3 11100110 W E6
B4 11100111 X E7
B5 11101000 Y EB
B6 11101001 Z E9
B7 11101010 EA
B8 11101011 EB
B9 11101100 EC .. --
BA 11101101 ED
BB 11101110 EE
BC 11101111 --- EF
BO 11110000 0 FO
BE 11110001 1 Fl
BF 11110010 2 ./ F2 .,
co 11110011 ;Y F3
Cl 111101cV 4 F4
C2 111l¢ill 5 F5
C3 4,{:~::~ 6 F6
C4 ./ 7 F7
C5 ./ 11111000 8 FB
C6 Fa>' 11111001 9 F9
C7 11111010 FA
C8 11111011 FB
C9 11111100 FC
CA 11111101 FO
CB 11111110 FE

11111111 FF

C6 (F) when changed
to a FO will print
out as a zero. No
further translation
is necessary.

Working With Data Structure 10-47

Recording Specifications for the Translation Table

After you have written all specifications for file translation,

you can record them so that they can be entered into the
system. Records containing these specifications must be

formatted as follows:

Positions

1-6
or

1·8

7-8

9-96

Entry

*FILES

A filename

Blank if not required

Numerical values involved in translating

characters

If all files (both input and output) are to be translated, use
the entry *F I LES in positions 1 through 6. If only one file

is translated, use that filename in positions 1 through 8. If
several, but not all files, are to be translated, you must for
mat separate records for each file.

, I n positions 9 through 96, there are 22 groups of four posi
tions. Each group (9-12,,13-16, etc.) must contain two

hexadecimal values involved in the translating of one char
acter. The first two positions of the group are for the hexa

decimal value taken from the Entry column of the Transla
tion Table and Alternate Collating Sequence Coding Sheet.

The last two positions are for the hexadecimal value taken

from the Replaced By column of the coding sheet.

10-48

More than one record can be used to specify the characters
which must be translated. However, each additional record

must be formatted in the same way as the first. All records
for one file must be grouped together. An error will occur
if four records are entered in the following order:

1. FILEA

2. FILEA

3. FILEB

4. FILEA

Also, the first blank appearing in positions 9 through 96 is
recognized by the computer as the end of the translation

specifications. Consequently blanks should not appear be
tween pairs of hexadecimal values.

A record containing * *L? (two asterisks and a blank) in posi

tions 1 through 3 must precede the file translation records.

All records used for file translation except the RPG II con
trol card must follow RPG II input, calculation, and output
specifications and must precede any tables or alternate col
lating sequence records used.

/

)

Character Structure

1. Into what two portions may every column of a 96-column card and every byte in
storage and on disk be divided?

2. Do all characters that have an A zone punched in the zone portion of a 96-column
card have the same zone representation in storage? Why or why not?

3. Calculate the numerical value of each of the following binary numbers as recorded in
one byte of storage:
a. 11000100.
b. 11010101.
c. 11101000.
d. 11110011.

4. Express the numerical value of the bytes shown in Question 3 as a pair of numbers
(hexadecimal value), rather than as a single value.

Collating Sequence of Characters

5. What does the computer use to determine the collating sequence of characters?

6. Arrange the following characters in ascending collating sequence. Arrange the same
characters in ascending collating sequence by zone and digit.

Character Hexadecimal

I
Numerical

Value Value

C C3 195

I 61 97

p 07 215

J 01 209

* 5C 92

T E3 227

R 09 217

4 F4 245

6- 50 80

9 F9 249

0 FO 240

Review 10

Review 10 10-49

10-50

Altering the Collating Sequence

7. Fill in the Alternate Collating Sequence Coding Sheet to:
a. I nsert a U between U and V (use the # sign to represent U).
b. Make a blank fall in the same sequence as zero.

Show how this information would be recorded in an alternate collating sequence
record.

8. I n what RPG II operations is the alternate collating sequence used? .

9. Where is the sign located in a numeric field?·

Altering the Structure of Characters

10. The TESTZ operation checks the zones of:
a. any position in a field.
b. only the low-order position in the field.
c. only the high-order position in a field.

11. A field may be alphameric for any move zone operations. Check those fields (Factor
2, Result) which can be numeric for the following move zone operations:

Operation Factor 2 Result

a. MHLZO

b. MLHZO

c. MLLZO

d. MHHZO

12. Code the calculation specifications to make the contents of a positive numeric
AMTDUE field negative.

Translating Characters

13. What is the difference between the way the computer works with characters involved
in an alternate collating sequence and the way it works with characters involved in
file translation?

14. Fill in the coding forms to translate A's to l's and 8's to 3's. Show how these speci
fications would be recorded in a translation table record when all files are to be
translated.

(

)

Answers To Review 10

1. Zone and digit.

2. All characters which have the same zone punch in a 96-column card do not neces
sarily have the same zone representation in storage. There are four zone bits for

3.

4.

5.

each character in storage and only two zone positions in a 96-column card column.
Therefore a translation must take place when the character is read. The computer
checks the entire punch combination (both zone and digit) of a character to determine
which bits are turned on or off in order to represent the character in storage.

a. 196
1 o 0 o 1 0 0

128+64+0+0 + 0+4+0+0 = 196
b. 213
c. 232
d.243

a. C4
1 1 0 0 o 1 0 0

C = 8+4+0+0 + 0+4+0+0 = 4
b. D5
c. E8
d. F3

The computer uses the numerical values associated with characters to determine the
collating sequence of characters.

Answers To Review 10 10-51

10-52

6. When characters are collated by zone and digit, they are collated in this order:

Character Numerical
Value

& 80

* 92

/ 97

C 195

J 209

p 215

R 217

T 227

0 240

4 244

9 249

When characters are collated by zone the left half of the hexadecimal value is used to
determine the order; when collating by digit the right half of the hexadecimal value is
used. When characters are collated by zone or digit, several may hold the same posi
tion in the sequence and thus belong in the same group. Within that group they may
hold any position.

Characters collated by zone are in this order:

Character

/

C

T

Hexadecimal
Value Used

£0

~C

61

Q3

Q7

~1

.Q9

E3

F4

F9

FO

* Characters within brackets
may be in any order since
they are in the same group.

Characters collated by digit are in this order:

I
Hexadecimal

Character Value Used

0 } FO

*
& 5Q

/ } 61

*
J 01

C } . C~

T E3

4 F4

p 07

R } . 09

9 F9

* 5C

* Characters within brackets
may be in any order since
they are in the same group.

,/

......

7.

International Business Machines Corporation Form X21·9096
Printed in U.S.A.

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET)
System/3

Replaced
System/3

Replaced
System/3

Replaced
Systcm/3

Replaced
ByfTakes ByfTakes ByfTakes ByfTakes

Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of Code Graphic Entry Place Of

~. 33 01100110 66 10011001 99 11001100 CC
00110100 34 01100111 67 10011010 9A 11001101 CO
00110101 35 01101000 68 10011011 9B ~10Qlli.'L

-~-- ~
00110110 36 01101001 69 10011100 9C 11001111 CF
00110111 37 01101010 6A 10011101 90 11010000 } DO
00111000 38 01101011 6B 10011110 9E 11010001 J 01
00111001 39 01101100 % 6C 10011111 9F 11010010 K 02
00111010 3A 01101101 - 60 10100000 AO 11010011 L 03
00111011 3B 01101110 > 6E 10100001 Al 11010100 M 04
00111100 3C 01101111 ? 6F 10100010 A2 11010101 N _OS
00111101 3D 01110000 70 10100011 A3 11010110 0 06
00111110 3E 01110001 71 10100100 A4 11010111 P 07
00111111 3F 01110010 72 10100101 A5 11011000 a 08
01000000 Blank 40 Fm 01110011 73 10100110 A6 11011001 R 09
01000001 " 41 01110100 74 10100111 A7 11011010 OA
01000010 '\ 42 01110101 75 10101000 A8 11011011 DB
01000011 \. 43 01110110 76 10101001 A9 11011100 DC
01000100 \. 44 01110111 77 10101010 AA 11011101 DO
01000101 45 01111000 78 10101011 AB 11011110 DE
01000110 46 01111001 79 10101100 AC 11011111 OF
01000111 -\.47 01111010 .• :~:::.;. 7A 10101101 AD 11100000 EO
01001000 ~ 01111011 ::#'::: 7B 10101110 AE 11100001 El
01001001 4~ 01111100 ':~~::: -~ 10101111 AF 11100010 S E2
01001010 ¢ 4A\. 01111101 70 - ~ .112.110000 BO 11100011 T E3
01001011 4B \. 01111110 = 7E 1011uuu - Bl 11100100 ::U:::', E4
01001100 < 4C ~ 01111111 " 7F 10110010 B2 ---. 11100101 ::: ::V:::::: E5
01001101 (40 10000000 80 10110011 B3 ~::: :W::::: E6
01001110 + 4E \. 10000001 81 10110100 B4 11100111 ::: X::::: E7
01001111 I 4F --- 10000010 B2 10110101 B5 11101000 ::: y::::' E8
01010000 & 50 "'rn08QQ..l, 83 10110110 B6 11101001 ::: Z::::: E9
01010001 51 10000100 -- Jl4 10110111 B7 11101010 ::: ::::::::::., EA
01010010 52 10000101 85-- 10111000 B8 11101011

...
EB

01010011 53 10000110 86 r-- '-WJ..llOOI B9 11101100 EC
01010100 54 10000111 87 101110llr- BA 11101101 ED
01010101 55_ 10001000 88 10111011 r-M-- 11101110 EE
01010110 56 10001001 89 10111100 BC --- 11101111 . ::::::~:" EF
01010111 57 10001010 8A 10111101 BO 1l"T'roe9Q..':: :0;::::: FO
01011000 58 10001011 8B 10111110 BE 11110001 ::: ::t::::::: Fl
01011001 59 10001100 8C 10111111 BF 11110010 '.~: .. '. F2
01011010 ! 5A 10001101 -80 11000000 CO 11110011 3 F3
01011011 $ 5B 10001110 8E 11000001 A Cl 11110100 4 F4
01011100 5C 10001111 8F 11000010 B C2 11110101 5 F5
01011101) 50 10010000 90 11000011 C C3 11110110 6 F6
01011110 5E 10010001 91 11000100 0 C4 11110111 7 F7
01011111 -, 5F ~. 92 11000101 E ~- 11111000 8 F8
01100000 60 93 1iOo011o 'F-- C6 11111001 9 F9

)
01100001 / 61 10010100 94 11000111 G C7 11111010 FA
01100010 62 10010101 95 11001000 H C8 11111011 FB
01100011 63 10010110 96 11001001 I C9 11111100 FC
01100100 64 10010111 97 11001010 CA 11111101 FO
01100101 65 10011000 98 11001011 CB 11111110 FE

11111111 FF

ALTSEQ 4~F0E57BE6E5E7E6E8E7E9E8
1 2 3 .. 5 Ii 1 • 9 10 11 12 Il M 15 11 17 18 It 20 21 2.2 Z3 24 25 26 27 21 29 30 31 32

E AE9

~M"~~mm~m"m~~~m~~~~~m~~~w~mmmmm~
B B
A A
8 8
4 4
2 2

~I 2 3' "7"W"UU~~~~~~ro~un~~~naH~~U~
A A
8 8
4 4
2 2

~u~~~n»»~~UO«6"a"d~~~~~~~~»~~~~nH~
A A
8 8
4 4
2 2

1 "H~H"Mnnn»nnnnn~~~n"~"~""~~"n"""'
18N37oo

)
Answers To Review 10 10-53

8. An alternate collating sequence is used only for alphameric compare operations and
matching or sequence checking operations done on match fields.

9.

10.

11.

12.

The sign of a numeric field must be in the low-order (rightmost) position of the low
order byte.

C

Factor 2 Result Field
a. X
b. X
c. X X
d.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM Internatlonel Busin ... MKhine Corporation

Program

Programmer

C
~

~
Line ~

~
~ ~

3 4 5 6 9 10

0 1 C

o 2 c
o 3 C
~ -

10-54

12 757677787980

Date
Page [[] of _ ~~:;~f:ation I I I I I I I

Indicators Result Field
Resulting
Indicators

At 1 :i ~
Arithmetic

Factor 1 Operation Factor 2 Plus IMinusl Zero Comments
lS ~ Compar.

Name Length ~i 1>211<211-2

b b ~~
Lookup(Factor 2)is
High Low Equal z z

1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5657 5859 60 61 62 63 64 65 68 67 68 69 70 71 72 73 74

I I I W'-1 1

,., I, 2. ~, lJ I AM IrlD I'l F=

IORI MIL It ~ ~I .1 ' AM ITn II ~

I I I
I I I

13. I n file translation a character is actually translated into another character because the
computer changes bit combinations. All affected characters are changed for the entire
program. The bit combinations for characters involved in an alternate collating
sequence are not changed. Bit combinations are substituted for others during se
quencing operations only.

/
I
\

\
)

)

)

Code

00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101

System/3
Graphic

Blank

¢

<
(

+
I
&

!
$

)

-,

J

14.

International Business Machines Corporation

TRANSLATION.TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

Replaced
ByfTakes

Entry Place Of

33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F
60
61
62
63
64
65

Replaced
System/3

Replaced
System/3 ByfTakes ByfTakes

Code Graphic Entry Place Of Code Graehic Entry Place Of

01100110 66 10011001, 99
01100111 67 10011010 9A
01101000 68 10011011 9B
01101001 69 10011100 9C
01101010 6A 10011101 90
01101011 6B 10011110 9E
01101100 % 6C 10011111 9F
01101101 - 60 10100000 AO
01101110 > 6E 10100001 AI
01101111 ? 6F 10100010 A2
01110000 70 10100011 A3
01110001 71 10100100 A4
01110010 72 10100101 A5
01110011 73 10100110 A6
01110100 74 10100111 A7
01110101 75 10101000 A8
01110110 76 10101001 A9
01110111 77 10101010 AA
01111000 78 10101011 AB
01111001 79 10101100 AC
01111010 : 7A 10101101 AD
01111011 # 7B 10101110 AE
01111100 @ 7C 10101111 AF
01111101 70 10110000 BO
01111110 = 7E 10110001 Bl
01111111 " 7F 10110010 B2
10000000 80 10110011 B3
10000001 81 10110100 B4
10000010 82 10110101 B5
10000011 83 10110110 B6
10000100 84 10110111 B7
10000101 85 10111000 B8
10000110 86 10111001 B9
10000111 87 10111010 BA
10001000 88 10111011 BB
10001001 89 10111100 BC
10001010 8A 10111101 BO
10001011 8B 10111110 BE
10001100 8C 10111111 BF
10001101 80 11000000 CO
10001110 8E 11000001 A Cl Fl
10001111 8F 11000010 B C2 F~
10010000 90 11000011 C C3
10010001 91 11000100 0 C4
10010010 92 11000101 E C5
10010011 93 11000110 F C6
10010100 94 11000111 G C7
10010101 95 11001000 H C8
10010110 96 11001001 I C9
10010111 97 11001010 CA
10011000 98 11001011 CB

*FILES C1F1C2F3

~~~~~mm~~~m~~~mmro~M$m~M~~~~m~mmm 

B B 
A A 
8 8 
4 4 
2 2 

1 I 2 3 • 5 • 7 • 9 10 \I 12 13 .,. 15 \6 17 18 19 20 21 22 23 2' 25 26 272. 2. 30 3\ 32 1 
B B 
A A 
8 8 
4 4 
2 2 

~n~~~n~n~~uo«~~~~uro~~~~M~~"M~~~~"~ 
A A 
8 8 
4 
2 

IBM 3700 

4 
2 

Form X21·9096 
Printed in U.S.A. 

Replaced 
System/3 ByfTakes 

Code Graphic Entry Place Of 

11001100 CC 
11001101 CO 
11001110 CE 
11001111 CF 
11010000 } DO 
11010001 J 01 
11010010 K 02 
11010011 L 03 
11010100 M 04 
11010101 N 05 
11010110 0 06 
11010111 P 07 
11011000 Q 08 
11011001 R 09 
11011010 OA 
11011011 DB 
11011100 DC 
11011101 DO 
11011110 DE 
11011111 OF 
11100000 EO 
11100001 El 
11100010 S E2 
11100011 T E::l 
11100100 LT E4 
11100101 V E5 
11100110 W E6 
11100111 X E7 
11101000 Y E8 
11101001 Z E9 
11101010 EA 
11101011 EB 
11101100· EC 
11101101 ED 
11101110 EE 
11101111 EF 
11110000 0 FO 
11110001 1 Fl 
11110010 2 F2 
11110011 3 F3 
11110100 4 F4 
11110101 5 F5 
11110110 6 F6 
11110111 7 F7 
11111000 8 F8 
11111001 9 F9 
11111010 FA 
11111011 FB 
11111100 FC 
11111101 FO 
11111110 FE 
11111111 FF 

Answers To Review 1 0 10-55 



/ 

'I)' 

c 
10-56 



) 

) 

) 

Chapter 11. DEBUG 

CHAPTER 11 DESCRIBES: 

How to use the DEBUG operation. 

Format of records created by DEBUG. 

·BEFORE READING THIS CHAPTER YOU SHOULD BE ABLE TO DESCRIBE: 

RPG Illogic for indicators (see Chapter 1, RPG /I Logic). 

AFTER READING THIS CHAPTER YOU SHOULD BE ABLE TO: 

Code the Control Card and Calculation specifications necessary to employ the 
DEBUG operation. 

Place the DeBUG operation within your program so that it will provide meaningful 
data. 

Note: You can use the review questions at the end of this chapter to test your com
prehension of this topic. Answers follow the review questions. 

DeBUG 11·1 



INTRODUCTION ',' 

A program that you write may not always work perfectly 
the first time or even the first few times it is run. The 
reason for this is that the program contains errors - errors 
that you were not aware you were making when you wrote 
the program. Some of the errors you can make are easy to 
find; others may be very difficult to find. Nevertheless, 
they all have to be corrected. But how do you do this? 
Where do you start? 

Just knowing the types of errors which are commonly made 
can give you a hint as to w,hat YOLJ shoLJld check., Most of 
the errors made fall into o~e of the fol'lowlng'tategories: ,.,,' 

• Incorrect use of RPG II entries on the specification~ 
sheets. 

• Errors in describing input data or the format bfoutput 
data. 

It would certainly be helpful to you to find out just how 
far along in your program everything is working correctly. 
But how can you find out information your program is 
working with at various points in your program? 

The RPG II language has a special operation code which 
shows you so~e 'ofth~ 'i'nfor~ati~~'th'e'computer is work

ing with. This c()de is known as the DEBUG code. The 
code received it~"name from the slang term "bugs" which 
is used to mean errors in a program. To debug a program, 
, , I :' . .' ~ " . .'. ~: ! J I ';, 

therefore, means'to get all the errors out of it. This is what 
the DEBUG code helps you do. 

" The' DEBUG cotJe will"ciausec{maximum of two different 
types of records to be printed or punched out showing 

','ybu: ',', ", 

• What data is contained in a specified field. 

• What indicators are on. 
, ~'. J I, '.f i . ~ . . 

• Errors in specifying the calculation operations. One of the most commonerror~ found in a program is the 
incorrect use of indicators. If the programmer fails to 

• Specifying calclJl~ti~n'operationsin':the wro:ng se'quence. I :"",'" thoroughly understand RPG' I i"logfc, he may condition an 

The RPG II Compiler, when compiling your program, will 
diagnose the specificatiohs t6 see if they contain errors. 1(' 
they do, the compiler will print messages teliirig:you the'" 
errors made. In this way, you can find errors made in the 
specifications. 

USING THE DEBUG FUNCTION 

You may, however, have made all correct entries on the 
sheets and still get the wrong results. What can you do 
then? You can, of course, check through your work. But 
this does not always show you where the error(s) lies. 

Sometimes, the specifications you write will not cause the 
computer to do what you think they will. It is often pos
sible to miss an error because you assume that a statement 
or group of statements needed to perform a certain task 
work correctly, when, in fact, they do not. For example, 
you may pass statement 06 believing it is correct when it is 
not and spend hours looking for errors in the rest of the 
statements which are really correct. 

r', 

11-2 

operation using an indicator which he thinks is on when it 
is really not. Thus the program does not work properly. 

If,' at any poiht'in your calculatiOn's, you want to check to 
see if you are using indicators properly you can specify 
DEBUG. This code will cause a record to be put out show
ing what indicators are on at the point DEBUG is specified. 
If you wish to know the contents of a field in addition to 
knowing what indicators are on, you can also specify so in 
the DEBUG statement. A second record type will then be 
put out showing the contents of the field. 

Specifications for DEBUG 

When using DEBUG, the first specification which you must 
make is on the control card. A 1 in column 15 indicates 
that DEBUG is going to be used (see Figure 11-1). If this 
column is left blank, all DEBUG statements will be treated 
as comments. 

Then in columns 28-32 (Operation) on the Calcultion 
sheet, specify the code DEBUG. You may specify it at any 
point in the calculations and as many times as you want. 

For each DEBUG statement, enter in columns 33-42 (Factor 

/ 

2) the name of the file on which DEBUG records will be 
written or punched (see Figure 11-1). Use the file name 

previously assigned on the File Description sheet. The same 
output file must be used for all DEBUG operations in a pro- ( 
gram. \ 

" ", 



) 

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS GX21-9092 UMI05O· 
P\-intedinU.S.A. 

IBM International Business Machine Corporation 

Program 

Programmer Date 

Control Card Specifications 

all DEBUG specifications will be treated_as comments. 

RPG CALCULATION SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

C Indicators Result Field 
~ 

I--- 0_ 

AL At 2 -'0: 
;iQ Factor 1 Operation Factor 2 .g £ 

~~~ ~ ~ Name Length Line t- 15 a: ~~ E E c/) .. ~ 15 15 ~ ~ ~ 8 5 ~ z Z 

3 4 5 6 7 8 9 10 11 t2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 J4 35 36 37 J8 J9 40 41 42 4J 44 45 46 47 48 49 50 51 52 53

0 1 C

o 2 C

o 3 C !nlcr- Ir.. '" II T PI IL 'E.
o 4 c
o 5 ,..

V '->-
o 6 DEBUG may be specified at IL

1-1-
any point in the program. 1,\ 1""-_ o 7Ir EB JG hJ T'F III ~ '-I-

\ o 8 C

o 9 C " 1 0 c \

I I C \

I 2 C Inl~t:l ~~ Ilf I~:r IL iE-
I 3 C

Figure 11-1. Specifications for DEBUG,

75 76 77 78 79 80

::,,!~af:tioo I I I I I I I

i~~~OO~~~~~oo~Mroronnn~

11T1111-[111 1 1 rill 1

1 2

Page [DOf_

Resulting
Indicators

Arithmetic

Plus IMinusl Zero
Compare

,>2£1<21,-2

LookuplFactor 2)is
High Low Equal

Form GX21·9093
Printed in U.S.A.

75 76 77 78 79 80

~~~~;~f:tion I I I I I I I 

i 

Comments 

54 55 56 57 58 59 60 61 62 63 64 65 66 67 M 69 70 71 72 73 74 

DEBUG 11-3 



The ent\jes just descri~ed will give you a record showing 
what indicators are on. If you also want to know the con
tents of a field, you must make another entry: The name 
of the field whose value you wish to know must be entered 
as the Result ,Field in Columns 43~48 (see Figure 11-2, in
sert A). 

Columns 18-27 (Factor 1) are optional. If you have several 

DEBUG statements, you may wish to know which records 
were caused by a particular DEBUG statement. You can 
name the DEBUG statement by entering a literal in columns 

18-27. This name will then be included in the records which 
the statement causes to be put out (see ·Figure 11-2, insert 
B). 

Columns 7-17 may contain any valid conditioning indicator. 
The external indicators Ul-U8 are most often used here. 
They make the DEBUG statement optional. Through their 
u'se you can establish, prior to a run, whether or not you 

wish to use DEBUG (see Chapter 5, Controlling Operations 
in an RPG /I Program for uses of Ul to U8). Columns 
53-59 cannot be used for the DEBUG statement. 

Format of Records Created by DEBl)G 

Two records may be created by the DEBUG operation. 
Record 1 is required; Record 2 is optional. Record 1 (Fig
ure 11-3) will look like this: 

Positions 

1-8 

9·16 

17-18 

19-33 

34 

35-37, 
38-40, 
etc. 

Entry 

DEBUG = 

The name entered in Factor 1 of the de
bug statement. These columns will be 

blank if no entry is found in Factor 1. 

Blank 

INDICATORS ON = 

Blank 

Name of the indicators which are on. 
Each indicator is followed by a blank. 
If a large number of indicators are on, 
more than one record may be requir~d 
to show all indicators. 

RPG CALCULATION SPECIFICATIONS Form GX21-9093 
Prlnted!n U.S.A. 

IBM Intern.tional Business Machine Corpor.t~on 
1 2 75 76 77 78 79 80 

Program 

Programmer Date :~;~;'ation I I I I I I I Page [00'_ 

C Indicators Result Field 
R .. ulting 

~ Indicators --- ~~ ~L Jd 

Arithmetic 

Factor 1 Operation Factor 2 Plus JMinusJ Zero Comments 

~~~ Compare 
Line Name Length 1>211<211-2 I- '0 a:

E ::: en
'0 '0 Lookup(Factor 21is

~85~ z z High Low Equal
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 4i; 47 48 49 50 51 54 55 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

o 1 C

o 2 C

a 3 C ® 1"'1J::IA r...r IT~ Ir LIE. !=Lr IE.IL " plR [INT trJ\l nit r:II IFIL 10
o 4 C I I I

o ; c I~
\ I 1 I , ' OE. IBJ r .. 1"'1 Jtr Ftr IE J:r 1:1 r N,Jl 1'11,; nle R ,:,..

a 6 C
I I I I

Figure 11-2. Additional Entries Which Can Be Made for DEBUG

114

(
\" ..

)

)

)

Record 2 (Figure 11-3) will look like this:

Positions

1-14

15 -

Entry

FIELD VALUE =

The contents of the field named as the

result field in the debug statement. If
the field is rather large, only 80 of the
rightmost characters are displayed.

Getting Results from DEBUG

DEBUG will not automatically provide you with the specific

reason your program is in error. But by showing the indica

tor setting and contents of fields at various points, it can

give you a clue as to where the error lies. From there, you
will have to work through the logic of sections in your pro
gram to find specific bugs.

Placement of DEBUG

DEBUG statements can be placed anywhere in the calcula
tions. However much thought should be given to their posi

tion. If they are not placed in proper positions, they may

give misleading information and be of no help at all. For

Record 1

DEBUG = DEBUG 1 INDICATORS ON = 204202 11 MR

Record 2

FIELD VALUE = 005648219R

Figure 11-3. Format of DEBUG Records

example, if you are concerned about the status of an indica
tor at a certain point in your program, be sure to position

DEBUG so that the indicator has no chance to change be
fore it is displayed.

If you want to find out if a statement or group of state
ments is working correctly you must know what is in the
field involved immediately before and after the statement(s).
This means placing DEBUG before and after the state
ment(s) you are checking. In order to determine if the re

sults obtained from these statements are correct, you will

have to manually make the same calculations and compare

the two results. In this case, however, you must make cer
tain your own calculations are correct. Much time can be

wasted trying to make the computer arrive at the same

wrong answer you have calculated.

Making Your Program Work for All Cas.es

Be certain that you test your program to see that it will

handle correctly all possible situations which might arise.
If you test for only one or two situations, you can be sure
your program works only for those situations. This means

that the data you use to test your program be complete
and valid so that it tests all possible situations. In this way,
you can be sure your program can handle all situations

without encountering hidden 'bugs'.

DEBUG 11-5

(
\ ..

(

11·6

./,'

J
./

1. What does DEBUG do in an RPG II program?

2. Write a DEBUG statement to display on the file called OUTFILE a field called
ANSWER and the indicators that are on at this point. Identify the DEBUG records
with the constant - TEST1. What entries in other specification sheets must be made?

Review ,11

Review 11 11-7

Answers To Review 11

1. DEBUG allows you to display the contents of a data field in your program and to list the
indicators that are on.

2. A 1 must be entered in column 15 of the RPG II control card.

RPG CALCULATION SPECIFICATIONS Form GX21·9093
Printed in U.S.A.

IBM Intlm.,ionel Bu.ioeu MKhin. Corpor.~on
1 2 75 76 77 78 79 80

Page [00'_ ~~~;~':ation I I I I I I I Program

Programmer Oat.

C Indicators Result Field
R .. ulting

~ Indicators

r-- 0_

Jd Jd :i ~
Arithmetic

-'II: =0 Factor 1 Operation Factor 2 Plu. \Minus\ Zero Comments
!~~ l!I ~ Compar.

Line Name Length ~i 1>2\1<2\1-2
~g~ Lookup(Factor 2lis
&~5I 1> 15 ~ ~ z Z High Low Equal

3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 Ii 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 5657 5859 50 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 C 'IT I~~ h"lL I In:r is:. I. ~h IUT il=l1 LIE 1\ ~ ,..If'!!

0 2 C

o 3 C

0 4 C

'11-8

)

\,

./

* (asterisk; star), printing on cards 4-3
* * (look ahead fields) 5-21
*PLACE 3-19

conditioning by indicators 3-22
used with EXCPT 7-26

*PRINT (unformatted printing on cards) 4-6

accumulating totals 5-59
advancing printer forms 3-6
aligning printer forms 3-12
altering character structure 10-38
altering the order of file processing 7-2
alternate collating sequence 10-27
alternating format

arrays 9-3
tables 8-12

alternating processing of files 7-4
AL TSEQ card 10-38
arithmetic operations

using.<1 results 5-13
arrays

accumulating groups of totals 9-14
adding elements (XFOOT) 9-8
array to array calculations 9-4
calculations with single fields or constants 9-7
compile time arrays 9-35
defining 9-2
of different lengths 9-7
editing 9-11
execution time 9-38
indexing 9-20
loading

compile time 9-36
execution time 9-38
pre-execution time 9-36

LOKUP 9-27
MOVEA operation 9-44
operation codes, restrictions 9-7
output

during a search 9-34
of an entire array 9-9.
of individual elements 9-22

pre-execution time 9-36
referencing all elements 9-4
referencing individual elements 9-19
referencing part of an element 9-23

,. storing data into (see loading)
when to use array instead of table 9-2
XFOOT 9-8

artificial control break (LO) 5-56
asterisks, punctuating with 3-16

automatic overflow (page formatting) 3-2

balances (see editing)
BEGSR (begin subroutine) operation code 5-48
binary field operations 5-67

BITOF operation code 5-67
BITON operation code 5-67
TESTB operation code 5-68

binary format 10-19
BITOF (set bits off) operation code 5-67
BITON (set bits on) operation code 5-67
bits (numerical value of) 10-13
blank after function (with resulting indicators) 1-31
branching in calculations

backwards 5-42
bypassing calculations 5-36
for an error condition 5-41
GOTO operation code 5-36
in a matching records job 5-41
repeating calculations 5-42
TAG 5-36

Index

when different record types require different operations 5-41
bypassing calculations 5-36
bytes, definition 10-4

calculation specifications
using results of arithmetic operations 5-13
for arrays

accumulating groups of totals 9-14
adding all fields (XFOOT) 9-8
array to array 9-4.
using single fields or constants 9-7

binary field operations 5-67
branching 5-36
conditioning 5-7,5-12,5-59
subroutines 5-44
used to control input and output 7-1
using table data 8-14
(see also individual operation codes)

card column structure 10-2
card path, MFCU (diagram). 5-17
card type, stacker selection based on 4-15
cards, printing on 4-2
cards, stacker selection of 4-14
carriage tractors (see dual feed carriage)
catch-all record identifying indicator 2-15
CHAIN operation code (see IBM Systeml3 RPG II Disk File
Processing Programmer's Guide, GC21-7566)

changing field type 5-34
changing array data

compile time 9-36
execution time 9-38
pre-execution time 9-36

changing table data
compile time 8-22
pre-execution time 8-26

Index X-1

character set 10-2
character groups with zones that test equal 10-9
character structure

altering 10-39
on cards 10-6
negative number 10-3
in storage (core or disk) '10-4,

characters, translating, 1 0-44
checking tor duplicate records

using look ahead 5-20
using move operations 5·31

checking sequence' of records
using match fields 6-2
using move operations 5-31

checking sequence of record types 2·6
codes, use in file translation 10-44
collating sequence

altering of 10-30
ALTSEQcard 10-38
specifications
by zone or digit

combined file
definition 4-8

10-38
10-25

used with look ahead 5-28
used to read and punch the same card 4-8-
used with stacker selection 4-14,4-17

compare operations
using the results 5-14

compile time arrays 9-35
compile time tables 8-25
conditioning calculations

based on information in next card 5·17
based on LOKUP operation 8·14,9·27
based on results of other calculations - 5·12
using external indicators 5-7'
using halt indicators 5·2
using overflow indicators 5-11

conditioning use of input files 2~19, 2·22 '
conditioning operations when storing array data '9·49
conditioning output operations '5·2
conditioning subroutine statements 5·54
consecutive file (see IBM System/3 RPG /I Disk File Processing

Programmer's Guide, GC21·7566)
in calculations with arrays 9· 7
use in editing 3-18

control break 2·2
artificial (LO), 5-56

control card
alternate collating sequence 10-38
file translation 10-48
setting external indicators (Model 10 Card System) 2·21

control fields
definition 1·5
logic for initial program cycles' 1·7 '
with field record re-fi:ltion '2·18'
with match fields 6-34
split control fields 2·5

control group
determining first only record in 5-26
determining last record in 5·28
incorrect records in 2·11
number of each record type in 2·11

optional record types in 2·'11
order of record types in 2·6
sequenced and unsequenced record types 2·14
unexpected or unused record types in 2·14

control level indicators
artificial control break (LO) 5·56
to condition calculations 5·59
to condition subroutines 5·54
fi rst cycle difference 1· 7
general use 1·5
group printing 5·59
special use 5-55

controlling printer output 3·1
cycle, RP\.i Illogic 1·1

first cycle 1·7
last cycle 1·16

dashes, punctuating with
data structu re 1 0-1

binary format 10-20

3·16

negative numbers 10-3
packed decimal format 10-19
unpacked decimal format 10-19

DEBUG function 11·1
format of debug records 11·4

decimal positions in table entries 8-7
demand files (READ operation) 7·24

end-of.file indicator 7·24
coding rules and considerations 7·26

designing table. input records - 8-4
detail time

logic 1·6
operations 1·4

device name, dual carriage printers
PRI NTER; PRI NTR2 3·28
TRACTR1; TRACTR2 3·29

digit, collating by 10-25
digit portion of character

card 10-2
disk 10-4

direct files (see IBM System/3 RPG II Disk File Processing
Programmer's Guide, GC21·7566)

dollar sign, punctuating with 3-14
,fixed 3-14
floating 3-14

dual feed carriage printer 3·27
dual input/output areas 5-69
dummy match field 6-10
duplicate information, printing (*PLACE) 3-19

duplicating constants 3·24
duplicate records, checking for 5-20

edit codes 3-12
chart 3-13

edit words 3-12, 3-16
editing

definition 3-12
arrays 9-11

I/'
i

)

)

with asterisks 3-16
with blanks 3-18
on cards 4-8
with constants 3·18
with dashes 3·16
end position 3-19
fixed dollar sign 3-14
floating dollar sign 3-14
zero balances 3-13
zero suppression 3-13

element
array 9-2
table 8-2

end·of.file
input file 2·23
FORCE operation 7·11
multi·file processing 6-30
READ operation (demand files) 7·24

end of job (see end·of·file external indicator; halt indicator;
last record indicatod

end position
when editing 3-19
when using *PLACE 3·22

ENDSR operation code 5-48
entries (see table entries)
equal search condition 8-19
error conditions 5-41

(see also halt indicators, Hl·H9)
errors in program, finding 11·1
EXCPT operation code 7·26

conditioning EXCPT 7·29
used in a loop 5-42
with *PLACE 7·26

execution time arrays 9-38
EXSR operation code 5-48
extension specifications

for arrays 9-2
for one table 8-5
for two tables 8-13

external indicators (U1·U8)
conditioning input files and calculation operations 5-7
conditioning input files 2·19,2·22
conditioning input files and output operations 5-8
conditioning output file and output operations 5-9
conditioning output operations only 5-11
setting on Model 10 Card System !indicator contror'card) 2·21
setting on Model 10 Disk System and Model 15 (SWITCH OCL

statement) 2·21
setting on Model 6 (SWITCH keyword) 2·22

fetch overflow 3·8
field indicators, logic
field record relation

with control fields
with match fields

1·25

2·18
6-8

OR relationship with 2·16
field scanning 9-23
file designation

'determining whether file should be primary or secondary
file translation 10-42

6-38

'"\ I final totals, printing 5-59

)

first page (1 P) indicator, logic 1·13
first program cycle 1· 7
fixed dollar sign 3-14
floating dollar sign 3-14
FORCE operation code 7·2

altering the order of file processing 7·2
alternating processing between tvvo files 1·4
controlling number of FORCE operations 7·9
controlling processing at end-of.file 7·11
effect on MR 7·22
with look ahead 7·15
performing matching records without match fields 7·15
use of trailer card 7·12

format of data (see data structure)
format of DEBUG records 11·4
formatted printing on cards 4-2
formatting reports 3-2
forms advance (fetch overflow) 3-~ 2
forms alignment 3-12
forms length 3-4

GOTO operation code 5-36
group indication 2·2
group printing 5-59

halt indicators
conditioning operations 5·2
logic cycle 1·35

halting
for record out of sequence in a control group 2·10
for record out of sequence in a file 6-5.
for errors in data 5-2
for incorrect record type in a control grouil 2·13

hexadecimal values (chard 10-18
high search condition

arrays 9-31
tables 8-19

increasing speed of input and output (dual 1/0 area) 5-69
indexing arrays 9-20
indicators

definition 1·2
control level (L1·L9)

function 1·5
special uses 5·55

to control calculations and output
external (U1·U8)

conditioning operations 5-7
setting 2·21

field indicators, logic 1·25
field record relation 2·16
first page (1P), logic 1·13
halt indicators (Hl·H9)

logic 1·35
to prevent operations on an error

,b:·

5-2

Index X·3

last record (LR), logic 1-16
LO 5-55
matching records (MR), logic 1-42
overflow (OA-OG, OV) 3-4
record identifying, logic
resUlting

logic 1-31

1-19

use with arithmetic operations 5-13
setting indicators (SETON, SETOF) 1-43

indicator control card (Model 10 Card System) 2-21
input areas, dual 5-69
input data, storing in execution time arrays 9-38
input files

conditioning use of 2-19
merging input and output cards 4-27
stacker selection 4-14

input, programmed control of 7-1
input records

arrays 9-35
tables 8-4

interpreting punched data 4-2

last record (LR) indicator, logic 1-16
level indicators (see control level indicators)
line counter specifications 3-4
loading arrays

compile time 9-36
execution time 9-38
pre-execution time 9-26

loading tables
compile time 8-25
pre-execution time 8-26

logic, basic data processing 1-2
logic, RPG II (see RPG Illogic)
LOKUP operation code

arrays 9-27
with one table 8-7
with two tables 8-14

look ahead feature
checking for duplicates 5-20
with combined or update files 5-28
finding last record in group 5-28
with FORCE 7-15
logic cycle for
with MFCU files
records available

5-23
5-17
5-18

to find single record groups 5-26
specifications 5-20

loop in calculations 5-42
loop with EXCPT 5-42
low search condition

arrays 9-33
. tables 8-20

LR (last record) indicator 1-16
LO (internal control level indicator) 5-55 .
L 1-L9 indicators (see control level indicator~)

Index X-4

match fields
assigning, rules for 6-7
with control fields 6-34
definition 6-1
dummy match field entry
with field record relation

rules 6-10

6-10
6-8

in different locations in a file 6-26
M1-M9 entries 6-2
sequence checking with

one record type in file 6-2
more than one record type 6-6

matching records
definition 6-2
with control fields 6-34
end-of-file with 6-30
first cycle 6-14
performed using FORCE with look ahead 7-15
logic cycle 6-14, 6-38
more than one matching secondary 6-12
more than one record type in a file 6-26
one record type in each file 6-12
processing records without match fields 6-29
record identifying indicator with 6-14
total operations with 6-14,6-34

matching records indicator (see MR)
merging input and output file cards 4-24
MFCM output operations 4-1

printing on cards 4-2
formatted 4-5
unformatted (*PRINT) 4-6

punched output 4-2
combined files 4-8

stacker selection 4-14

MFCU files, look ahead with 5-17
MFCU output operations 4-1

printing on cards 4-2
formatted 4-3
unformatted (*PRINT) 4-6

punched output 4-2
combined files 4-8·
interpreting punched data 4-2
summary punching 4-2

stacker selection 4-14
MHHZO (move high order zone to high order zone)

operation code 10-40
MH LZO (move high order zone to low order zone)

operation code 10-40
MLHZO (move low order zone tohigh order zone)

operation code 10-40
MLLZO (move low order zone to low order zone)

operation code 10-40
modifying table contents 8-22
MOVEA operation code 9-44
move zone operation codes 10-39

example 10-41
field format 10-41
model character 10-42
operation codes 10-41

moving data
to change the field type
MOVE operation code
MOVEL operation code

5-34

,/

\,

(

(

)

)

to sa . information 5·31
to separate fields into two parts 5·33
in a table entry 8·22

MR (matching records) indicator
effect of FORCE on 7-22
logic cycle 1-42
used to condition subroutines 5·54
when on 6-17
when turned on 6-14,6-22

multifile processing
definition 6-2
end-of-file specification 6-30
general description of logic 1-42
(see also match fields; matching records; MR indicatod

M1-M9 (see match fields)

negative numbers, structure of 10-3
number of each record type in a control group 2-11
numerical values

of bit combinations 10-12
of zone and digit portions 10-15

object program cycle (see RPG II logic)
operation codes

BEGSR 5-48
BITOF 5-67
BITON 5-67
DEBUG 11-1
ENDSR 5-48
EXCPT 7-26

used in loop 5-42
EXSR 5-49
FORCE 7-2
GOTO 5-36
LOKUP 8-14,9-27
MHHZO 10-40
MHLZO 10-40
MLHZO 10-40
MLLZO 10-40
MOVE 5-29
MOVEA 9-44
MOVEL 5-29
READ 7-22
TAG 5-36
TESTB 5-68
TESTZ 5-14
XFOOT 9-8

operations
arithmetic, using results of 5-13
binary field 5-59
compare, using results of 5-14
controlling with look ahead 5-17
detail 1-4
total 1-4

optional record types in a control group 2-11
OR relationship 2-15

with field record relation 2-16
with stacker selection 4-15

output-format specifications
arrays

during an array search 9-34
entire array 9-9
individual fields 9-22

dual feed carriage printer 3-27

staCkerie ection using 4-15
using tabl data 8-14

output area, dual 5-69
output car· s

mergip'g with input cards 4-19
stacker selecting 4-17

output operations
conditioned by external indicators 5-8
MFCU 4-1

output, printer 3-1
output, programmed control of 7-1
output, table 8-28

overflow

automatic 3-2

fetch overflow 3-8

calculations with 5-11

indicators 1-41,3-2

line counter specifications 3-4

logic 1-41

overflow line, standard 3-2

. overlay, controlling with subroutines 5-54

packed decimal format 10-19

*PLACE

with constants 3-24

different spacing 3-23

with EXCPT 5-42

formation of print lines 3-22

with indicators 3-24

specifications 3-22

pre-execution time arrays 9-36

pre-execution time tables 8-25

preventing operations when an error occurs 5-2

primary files, determining whether files should be primary or

secondary 6-38

primary tractor (dual printer files) 3-37

PRINTER device name 3-28

*PRINT 4-6

Printer files, dual }:27

printer forms alignment . 3-12

printer forms, designing 3-12
printer output, controlling 3-1
printing duplicate information 3-19
printing on cards 4-2
printing only final totals 5-59
printing over the perforation 3-6
PRI NTER2 device name 3-28
print-head (MFCM) 4-5
processing order of files (see matching records; multifile processing)
program cycle 1-2

(see also RPG II logic)
programmed control of input and output 7-1

Index X-5

program errors, finding (see DEBUG)
punch combinations 10-2
punched output (MFCU) 4-2

summary punching 4-2
punching into a blank card 4-11
punching into the same card that is read 4-8
punctuating a field (see editing)

reading and punching the same card 4-8
READ operation code 7-22
record identification code 2-6
record identifying indicators

catch-all indicator 2-15
in field record relation 2-15
logic for 1-19
with matching records 6-14
in sequence checking record types 2-9

recording specifications for an altered collating sequence 10-38
records, designing table input 8-4,8-11
record types

branching in calculations for different 5-41
OR relationship of 2-15
sequence checking of 2-9

reducing coding and storage requirements
in calculations (subroutines) 5-44
in describing similar or identical records (field record

relation) 2-15
when printing duplicate information 3-19
when punching and printing cards 4-8

reducing job time
dual input/output areas 5-69

referencing individual array elements 9-19
related tables 8-13

repeating calculations
by branching 5-42
using subroutines 5-45

repeating the first print line 3-12
repetitive output (EXCPT operation) 7-26
resulting indicators

with arithmetic operations 5-13
logic for 1-31
with LOKUP 8-7,9-27
with READ 7-22
with TESTB 5-68

rolling of totals (arrays) 9-14
RPG II logic

detail time 1-6
fetch overflow 3-8
first program cycles 1-7
related to indicators 1-7

field indicators 1-25
first page (1 P) indicator
halt indicators (H 1-H9)
last record indicator (LR)

1-13
1-35

1-16
matching records indicator (MR) 1-42,6-14
overflow 1-41
record identifying indicators 1-19
resulting indicators 1-31
setting indicators 1-43

total time 1-6

_______ I-'-'ndex_>< .. 6

saving disk storage space
binary data format 10-20
packed decimal format 10-19

saving information by move operations 5-29
scanning fields 9-23
searching arrays 9-27

determining search success 9-30
for a particular element 9-27
output during search 9-34
starting the search at a particular element 9-28
referencing the element found 9-31

searching tables 8-2
for high, low, or equal 8-19
referencing the data found 8-.16

secondary file
determining whether a file should be 6-38

secondary tractor (dual carriage printer) 3-27
selecting a stacker on the MFCU 4-14
separating a field into two parts 5-33
sequence checking

by calculation specifications 5-31
of a file using match fields 6-2
of record types in a control group 2-6

sequential disk file (see IBM Systeml3 RPG /I Disk File Processing
Programmer's Guide, GC21-7566)

setting external indicators 2-21, 2-22
setting indicators (SETON, SETOF) 1-43
SETOF operation code 1-43
SETON operation code 1-43
short tables 8-23
skipping 3-29

skipping calculations (branching) 5-36
spacing 3-29
split control fields 2-6 ('

with field record relation 2-18

SR (subroutine) lines 5-48
stacker selection 4-14

at total time 4-17,5-10
of combined file cards 4-17
of input cards

based on calculations 4-15
based on card type 4-15

of output fi Ie cards 4-17
of unmatched records 6-24

standard forms length 3-2
standard overflow line 3-2
storing data into execution time arrays 9-38
structure of characters (see character structure)
subroutines

calling 5-48
conditioning 5-54
fields available 5-49
limitations 5-52
overlays 5-52
repeating calculations 5-45
specifications 5-48
valid operations in 5-52

subtotals (group printing) 5-59

'

--

summarizing data (group printing) 5-59
summary punching 4-2

example 5-10
/ suppressing leading zeros 3-13

SWITCH keyword (Model 6) 2-22

)

SWITCH OCl statement (Model 10 Disk System and~
Model 15) 2-21

switches
binary field operations 5-67

tables 8-1
assigning !able names 8-6
binary table data 8-7
compared to arrays 9-2
compile time 8-25
definition 8-2
describing input records 8-5
designing input records

one table 8-4
two tables 8-11

entries with decimal positions 8-7
length of entry 8-6
loading 8-25
modifying contents of 8-22
moving data in an entry 8-22
number of entries per input record 8-4, 8-6
number of entries per table 8-6
number of input records required 8-4
output 3-28
packed table data 8-7
pre-execution time 8-25
related 8-8
searching 8-2, 8-14
sequence 8-7
short 8-23

TAG operation code 5-36
TESTB operation code 5-60
testing the con,~ents of a field 5-12
TESTZ operation code 5-14

character groups with zones that test equal (table) 10-10

total operations
logic 1-6,6-38
with matching records 6-14,6-34

tractors (dual carriage printers) 3-27
TRACTR1 device name 3-29
TRACTR2 device name 3-29
trailer card

use in force operation 7-12
translating characters

coding for 10-44
forms used 10-44

unexpected record types in a group 2-14
unformatted printing on cards (*PRINT) 4-4
unmatched record

stacker selection of 6-24
unsequenced record types in a control group 2-14

update files, look ahead with 5-28
U1-U8 indicators 2-19

XFOOT operation code 9-8

zero balances 3-13
zero, negative
zero suppression

10-3
3-13

zone portion of character
collating by 10-25
testing (TESTZ) 5-14
zones that test equal (table)

zone punches 10-2
10-10

OA-OG, OV indicators (see overflow indicators)
01-99 indicators (see record identifying indicators: resulting

indicators: field indicators)
1P indicator logic for 1·13
1403 Printer 3-2
2222 Printer 3-27
2560 MFCM 4-2
5203 Printer 3-27
5213 Printer 3·2
5424 MFCU 4-2

Index X-7

/'

)

)

READER'S COMMENT FORM

IBM System/3
RPG II Additional Topics
Programmer's Guide

YOUR COMMENTS, PLEASE •••

GC21·7567·2

Your comments assist us In Improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a repl.,'.

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-7567-2

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WI LL BE PAID BY ADDRESSEE:

I BM Corporation
General Systems Division
Development Laboratory
Pu bl ications, Dept. 245
Rochester, Minnesota 55901.

ARMONK, N.Y.

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold Fold

I nternational Business Machines Corporation
General Systems Division
875 Johnson Ferry Road N. E.
Atlanta, Ga. 30342

I BM World Trade Corporation

'\

)
c
f ,..
S
c:

\,

a
c:

G
('
1\

..
to:
a ..
~

821 United Nations Plaza, New York, New York 10017
--(Internation-al)--

)

)

READER'S COMMENT FORM

IBM System/3
RPG II Additional Topics
Programmer's Guide

YOUR COMMENTS, PLEASE ...

GC21-7567-2

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

• Thank you for your coooeration. No on!:t~np npt'PC:C:<>ru if .,.,,,ilo"" i~ +I.~ I I ... A

GC21-7567-2

Fold

III
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

ARMONK, N.Y.

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold Fold

I nternational Business Machines Corporation
General Systems Division
875 Johnson Ferry Road N. E.
Atlanta, Ga. 30342

»
0.
0.
;::;" o·
::J
Q)

-i
r

-n
(1)

Z
?
Cf)
w
~
~

I~---

I"
IBM World Trade Corporation I

~~821-Un~~Nation~P~H~New~MkrNew~Mk~Oml~~~~~~~~~~~~~~~~~~~~~~~~JI~~~
(I nternational)

I

'\

)

)

IT: .:- \ ~ ,.,0'. 1 -: '"! -,;)\'1 • ~ ~ , I ,

: " , ; ,i.) III ~\',H' ~ .. ; ~ t ~ ~ 1 ~ [.
" I :

; : ~ ~ ; j ,I t II I ; I ' ~ 'l' c I • .. .:" ~ j ~ ,: ~ j i '~i," i .~

;"ilii(I~' I.
I f.di;)1t :"Ii':' ,'it"

; , , \ i:; PIt. i ~ f.; Ii, Ii;

_

:.

-
~ ",

'.
>,

-.

-"

i
\ -

,
~~..:

"

"

