
\
'

l
-~

I
. i

•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••• •••••• • ••••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ... 1::::::: ..
•••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• •••••• •••••••••••• •••••• •••••••••• • •••• •••••••• • ••• •••••• • ••• •••• ••••• ••••••• •••• • ••••••• •••• • •••••• •••••••••••••• •••••••••••• •••••••••••• •••••••••••••• •••• • •••••• •••• • •••••••• ••••••• ••••• •••• ••••
•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• •••••• •••••••••••• •••••• •••••••••• • •••• •••••••• • ••• •••••• • ••••• •••••• •••••• •••••• •••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • ••• •••••• •••••• •••••• ••••••

•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••• •••• •••••• •••••• • ••••• •••••• • ••••• •••••• • •••••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• •••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • ••••• ••••• • ••••• •••••• • ••••• ••••••• • ••••• ••••••• •••• • ••• •••• ••••• • ••• •••• •••••• • ••• •••• • •••••••••• ••••••••••••••••••• ••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• ••••••

Licensed Material-Property of IBM

IBM System/3 Model 6
System/3 BASIC Logic Manual

Program Number 5703-XM1

L Y34-0001-1
File No. S3-23

Program Product

Page of L Y34-0001-1
Revised November 15, 197 3
By TNL: LN21-7729

Second Edition {November 1971)

This is a major revision of, and obsoletes, LY34-0001-0 and Technical Newsletters
LN34-0020 and LN34-0032. Technical changes or additions to the text and illustrations
are indicated by a vertical line to the left of the changes.

This edition applies to version 1, modification level 4 of IBM System/3 Model 6
System/3 BASIC, Program Product 5703-XMl, and to all subsequent program changes
until otherwise indicated in new editions or Technical Newsletters. Changes are period
ically made to the information herein. Before using this publication in connection with
the operation of IBM systems, refer to the latest System/3 Bibliography, Order No.
GC20-8080, for the editions that are applicable and current.

Some illustrations in this manual have a code number in the lower corner. This is a
publishing control number and is not related to the subject matter.

Requests for copies of IBM publications should be made to your IBM representative or
the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, send your comments to IBM Corporation, Publications, Department 245,
Rochester, Minnesota 55901. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1970, 1971

ii

Licensed Material-Property of IBM

I

I
I

{_

\ .

Technical Newsletter

I BM System/3 Model 6
System/3 BASIC Logic Manual

© IBM Corp. 1970, 1971

Th is Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

LN21-7729

November 15, 1973

L Y34-0001-1

S3-23

LN34-0075

This Technical Newsletter, a part of version 01, modification 05 of IBM System/3 Model 6, System/3
BASIC, provides replacement pages for the subject publication. These replacement pages remain in
effect for subsequent versions and modifications unless specifically altered. Pages to be inserted and/or
removed are:

Cover, edition notice
3-165, 3-166
6-3, 6-4
7-3, 7-6
Reader's Comment Form

Changes to text and illustrations are indicated by a vertical line at the left of the changes; new or
extensively revised illustrations are denoted by the symbol • at the left of the caption.

Summary of Amendments

Miscellaneous changes.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© I BM Corp. 1973 Printed in U.S.A.

. '

)

)

Technical Newsletter System System/3

Base Puhl. No. LY34-0001-l

This Newsletter No. LN34-0075

Date January 1972

Previous Newsletter Nos. None

IBM System/3 Model 6 System/3 BASIC Logic Manual

©IBM Corp. 1970, 1971

This Technical Newsletter, a part of version 1, modification level 4, of IBM System/3 Model 6 System/3
BASIC, Program Product 5703-XMl, provides replacement pages for the subject publication. These re
placement pages remain in effect for subsequent versions and modifications unless specifically altered.
Pages to be inserted and/or removed are:

cover through iv
1-1 through 1-4
2-1 through 2-4
3-1, 3-2
3-21,3-22
3-27 through 3-30
3-33, 3-34
3-34.1, 3-34.2 (added)
3-40.1, 3-40.2 (added)
3-46.1, 3-46.2 (added)

3-59, 3-60
3-65, 3-66
3-81, 3-82
3-91, 3-92
3-105, 3-106
3-139, 3-140
3-179, 3-180
3-183, 3-184
3-J 84.1, 3-184.2 (added)
3-185 through 3-188

3-203, 3-204
3-215, 3-216
3-222.1, 3-222.2 (added)
3-223, 3-224
4-1 through 4-6
5-3 through 5-8
5-17, 5-18
6-5 through 6-8
7-3 through 7-6
X-1 through X-18

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

• A procedure file has been added to save program statements, data file lines, system and utility commands,
comment lines, and procedure file lines. This procedure file can be executed later by a CALL command.

• A string function has been added for use in LET and IF statements to allow characters in character data
items to be extracted, concatenated, replaced, or compared.

• An IBM 129 Card Data Recorder can now be attached to a System/3 Model 6 to read and punch 80-
column cards.

• Minor text maintenance changes have also been made throughout the manual.

Note. Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Systems Publications, Boca Raton, Florida 33432

©IBM Corp. 1972 PRINTED IN U.S. A.

)

)

Preface

Section 1. Introduction.

Basic Mode of Operation
Desk Calculator (DCALC) Mode of Operation
Minimum Machine Configuration .
Supported Optional Devices
Flowcharting Techniques
Symbolic Label (Program Component Name)

Section 2. Method of Operation

Logical Division of System Programs and Components.
Control
Keyword and Utility
Compiler/Loader
Interpreter
Desk Calculator (DCALC)

Disk Organization " .
Volume Label
Volume Table of Contents .
System Work File
System Program File
System Library File .
Help Text File
PTF File
Work File

Virtual-Memory-Concept
Pseudo Machine Language Concept (Pseudo Object

Program)
Record Format
File Directory 1 (l/O Information Record)

Section 3. Program Organization

Control Programs
System Initialization-IPL
System Nucleus
Error Message Program-#ERRPG.
Program Interruption Processor-#EXMSG
Work File Update/Crusher-#GUFUD
Command Analyzer-#ECMAN
Command Key Processor-#EFKEY
BASIC Statement Syntax Checker-#SFSYN
Data Syntax Checker-#SDSYN ..
Procedure Line Checker-#SPSYN · ·
Conversational I/O Routines-#DPRIN ..
Card Reader I/O Routine-#DREAD ..
CRT I/O Routine-#DSPLY
Procedure File Line Processor-#GRAPR
Maintenance Program Load Trace-#ZTRAC .

Keyword Programs
ALLOCATE Keyword Program-#KALLO ·
CALL Keyword Program-#KCALL ..
CHANGE Keyword Program-#KCHAN
CONDITION Keyword Program-#KCNDI

. DELETE Keyword Program-#KDELE
DISPLAY Keyword Program-#KDISP, #KDOVR .
EDIT Keyword Program-#KEDIT
ENABLE/DISABLE Keyword Program-#KENAB ..
ENTER Keyword Program-#KDNTE
EXTRACT Keyword Program-#KEXTR
GO Keyword Program-#KGbSL · ·
KEYS Keyword Program-#KKEYS
HELP Keyword Program-#KHELP
KEYS Keyword Program-#KKEYS
LIST Keyword Program-#KLIST, #KLLA Y

v

1-1

1-1
1-2
1-2
1-2
1-3
1-3

2-1

2-1
2-1
2-1
2-1
2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8

2-9
2-11
2-11

3-1

3-1
3-1
3-4

3-18
3-20
3-21
3-28
3-30
3-32
3-34
3-34.1
3-35
3-39
3-41
3-40.1
3-44
3-45
3-45
3-46.1
3-47
3-49
3-50
3-53
3-55
3-57
3-59
3-59
3-61
3-64
3-62
3-64
3-66

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-007 5

Contents

LISTCAT Keyword Program-#KCTLO ...
LOGON/OFF Keyword Program-#KLOGO
MERGE Keyword Program-#KMERG ..
MOUNT Keyword Program-#KMOUN
PASSWORD Keyword Program-#KPASW
PROTECT Keyword Program-#KPRTC ..
PULL/POOL Keyword Program-#KPOOL
READ Keyword Program-#KREAD ...
RELABEL Keyword Program-#KRLAB
REMOVE Keyword Program-#KRMOV.
RENAME Keyword Program-#KNAME ...
RENUMBER Keyword Program -#KRNUM .
RESUME Keyword Program-#KRSUM
RUN /STEP /TRACE Keyword Program-#KR UNI
SAVE Keyword Program-#KSAVE
SET Keyword Program-#KSETI, #KSOVR.
SUSPEND Keyword Program-#KSSPN .
SYMBOLS Keyword Program-#KSYMB
WIDTH Keyword Program-#KWIDT .. .
WRITE Keyword Program-#KWRIT .. .

Common Subroutines
System Work File IOCS-DL4ICS .
Disk Logical IOCS-DL2ICS
Line Printer Interface-DLPRNT
Card Punch IOCR-DCDOUT
Work File PUT Subroutine-GPUTIT .
Work File Retrieval Subroutine-GRABIT
Find Specified File Subroutine-SFINDF
Find Volume-ID Subroutine-SVOLID
Search Password Directory Subroutine-SGETDB
Search Filename Directory Subroutine-SRCHFN
Null Directory Entry Subroutine-STORIN ...
Filename Directory Entry Subroutine-STUFID
Search Null Directory Subroutine-SURCHN
T~ack Usage Mask Utility Subroutine-UTKUSE
VTOC Utility Subroutine-UTVTOC
Pack File Library Subroutine-#SPACK

Utility Programs .
ALTERNATE-TRACK Utility Program-#UATRC ..
ASSIGN Utility Program-#UALLO
CONFIGURE Utility Program-#UCNFI
COPY File Utility Overlay-#UCPLI
COPY Volume Utility Program-#UCDIS
EXPAND Utility Program-#UEXLI
INITIALIZE Disk Utility Program-#UINIT.
PACK Utility Program-#UPACK
PTF Utility Program-#UPTFI
VTOC-DELETE Utility Program-#UDELV .. .
VTOC-DISPLA Y Utility Overlay-#UDISV

Maintenance Utilities
Maintenance Utility Monitor-#ZUTMO .
VM Dump Overlay-#ZDUMP
Library Mapping Overlays

Compiler-#BCOMP, #BOYL Y
Compiler Cycle
Organization of Assembly Listings
Compiler Labeling Conventions
Compiler Initialization
Accessing PMC Generators
Resolving Virtual-Memory Addresses
Core Resident Routines
PMC Statement Processors (General Specific~tlo~~): :
Pseudo Instruction Sequences
Compiler Termination

Loader-Second Phase of Compilation-#LOADR
Allocation of Arrays in Virtual Memory-LALLOC ..

3-69
3-71
3-73
3-75
3-76
3-77
3-78.
3-81
3-81
3-83
3-85
3-87
3-89
3-91

.3-92
3-94
3-95
3-97
3-99

3-100
3-101
3-101
3-101
3-103
3-105
3-107
3-109
3-111
3-113
3-114
3-115
3-116
3-117
3-118
3-119
3-121
3-123
3-125
3-125
3-127
3-129
3-130
3-131
3-133
3-134
3-137
3,138
3-141
3-143
3-145
3-145
3-149
3-150
3-153
3-153
3-153
3-154
3-155
3-155
3-157
3-159
3-177
3-181
3-191
3-193
3-193

Contents iii

Licensed Material~Property of IBM

Allocation of Data File Buffers in Virtual Memory-
LDFILE

Initialization of Elements in Virtual Memory-
LVINIT

Resolution or'the Branch Address Table-LRADDR
Sorting the Branch Address Table-LSORTA

Interpreter
Interpreter Cycle
Organization of Assembly Listings
Interpreter Labeling Conventions .
Interpreter Initiator-IMINIT ..
Interpreter Executive-INTERP
Paging Subroutine-1PGMDL ..
Element Stacking Subroutine-IST ACK
Element Unstacking Subroutine-IUSTAK
1/0 Execution Subroutines
Miscellaneous Execution Subroutines .. .
Interpreter Execution Overlay Programs .
Label Trace for ADD Pseudo Instruction .
Label Trace for GET Pseudo Instruction .

Pseudo Instruction Set
Arithmetic Operations ..
Function Call Operations
Input/Output Operations
Logical Operations
Stack and Unstack Operations .
Miscellaneous Operations .
Nonexecutable Operations .

Floating-Point Arithmetic
Desk Calculator-DCALC ...

DCALC Cycle
Organization of Assembly Listings
DCALC Initialization-#VLOAD and VINITI
DCALC ErrorMessages-VERROR
Label Trace for ENTER + Function
Label Trace for SIN Function
Keyboard Physical IOCS-DVPRSC
CRT Physical IOCS-#VCRTI
DCALC Termination-VSAWRT, #VXITI

Section 4. Directory

Directory List
Source Module Labeling Conventions.
System Equates

iv

#TEQUl
#TEQU2 ..

3-194

3-194
3-196
3-197
3-201
3-201
3-201
3-205
3-205
3-206
3-209
3-210
3-210
3-214
3-222
3-223
3-226
3-226
3-227
3-230
3-234
3-239
3-244
3-249
3-261
3-263
3-266
3-269
3-269
3-269
3-272
3-273
3-273
3-273
3-274
3-276
3-276

4-1

4-1
4"7
4-7
4-7

4-11

Section 5. Data Area Formats

Section 6. Diagnostic Aids ...

Maintenance Utility Aid Program-#ZUTMO
Operating Procedure

PTF Command ...
HOR Statement .
PTF Statement
DATA Statement
END Statement .

1/0 Parameter List Save Area
Interpretation of 1/0 Parameter List Area
Recovery of Parameter List Information .
Modification of Nucleus to Save Parameter Lists

Stand-Alone Dump
Stand-Alone Dump Procedure

Patching a Disk Resident System Program
Finding a Library File on Disk
How to Use the FE Map

Identification of Programs in the FE Map ••• , •..•
Address Stop Procedure for Program Loading

Stop Address Selection
Method to Activate Address Stop .

Halt 2345

Section 7. Object Program .

How to Take a Sequential Disk Dump of Virtual
Memory

How to Lay Out Virtual Memory (Standard
Precision)

How to Lay Out Virtual Memory (Long
Precision)

How to Lay Out an Execution-Time Core Dump

Appendix A. System/3 Basic Assembler
Language

Machine Instruction Reference Table .
Machine Instruction Formats

Operation Code ..
Q Code
Control Code
Storage Addresses

Assembler Instruction Reference Table

Index

Licensea Material-Property of IBM

5-1

6-1

6-1
6-1
6-6
6-7
6-8
6-9
6-9

6-10
6-10
6-11
6-11
6-12
6-12
6-14
6-15
6-16
6-16
6-17
6-17
6-17
6-18

7-1

7-1

7-3

7-7
7-7

.A-1

A-1
A-2
A-3
A-3
A-3
A-3
A-3

X-1

c
I

'

!J

Preface

This publication describes the internal logic and specifi
cations of System/3 BASIC, a program product, for the
IBM System/3 Model 6. The manual is designed to
satisfy the documentation requirements of support
personnel responsible for maintenance of System/3
BASIC.

Section 1, "Introduction," contains a general descrip
tion of the modes of operation, functions, and charac
teristics of the programming system and the machine
configuration.

Section 2, "Method of Operation," describes the
functional flow of the program logic and data. Illustra
tions and supporting text trace the functional flow of
the stand-alone computing system from input, through
processing stages, to desired results (output). The usage
of primary data areas is emphasized.

Section 3, "Program Organization," describes how the
programs and routines that comprise System/3 BASIC
are interconnected, and describes the functions of com
ponents. Because of the interactive environment, func
tion level flowcharts are used extensively to describe
complex programs.

Section 4, "Directory," contains a cross-reference
table of all system components, for quick reference to
System/3 basic assembly listings on microfiche. This
section also defines source module labeling conventions
and system equates.

Section 5, "Data Area Formats," contains detailed
layouts of system data areas (communications area,
directory formats, record formats, error-recording
formats, parameter formats, etc.).

Section 6, "Diagnostic Aids," describes the main
tenance utility program, program temporary fix
(PTF) commands, and other useful servicing information.

Section 7, "Object Program," describes the interpreter/
compiler functions, including a method for laying out
the contents of an execution-time disk dump· of virtual
memory, the method for determining the contents of an
execution-time core dump, and pseudo-machine-language
formats.

Appendix A, "System/3 Basic Assembler Language,"
contains mnemonic operation code lists, instruction
format descriptions, and an assembler instruction ref
erence table.

Other publications related to this manual are:

IBM System/3 Disk System Basic Assembler Manual,
SC21-7509

IBM System/ 3 Model 6 Components Reference Manual,
GA34-0001

IBM System/3 Model 6 System/3 BASIC Reference
Manual, GC34-0001

IBM System/3 Model 6 System/3 BASIC Operator's
Guide, GC34-0003

IBM System/3 Model 6 System/3 BASIC Reference
Handbook, GX34-0001

IBM System/3 Model 6 System/3 BASIC Desk
Calculator Reference Card, GX34-0002

Licensed Material-Property of IBM

v

vi

Licensed Material-Property of IBM

BASIC MODE OF OPERATION

)

)

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

Section 1. Introduction

System/3 BASIC is a conversational, stand-alone, programming system oriented toward
mathematical problem solving. It offers two modes of system operation:

• BASIC

• Desk calculator (DCALC)

BASIC mode is programmed with a conversational programming language which is also
called BASIC. The user develops program, data, and procedure files in an interactive
environment; that is, he communicates with the system programs by entering (through
the keyboard or the data recorder) BASIC statements, data-file lines, system commands,
utility commands, and procedure-file lines. BASIC statements form BASIC programs,
data-file lines specify the content of a data file, system and utility commands request
immediate system action (except when entered as lines of a procedure file), and pro
cedure-file lines (composed of BASIC statements, data-file lines, and commands) specify
system actions to be performed at a later time.

A BASIC statement is a single line identified by a line number. Lines may be entered
in any order and are automatically collected into a program file and ordered with respect
to line number. Each statement is syntax checked as it is entered. Syntax is the specifi~d
way in which words and characters are combined in program-statement lines, data-file
lines, and command lines. When errors in syntax are detected, an error message is gener
ated and printed on the system printer.

A BASIC program is completely compiled when execution is specified by a system
command. Line numbers provide a simple program editing facility by allowing the
replacement of previous lines with new or null lines, and the insertion of new lines into
the file. Data files may also be created and modified in the same manner as program files.
The user develops a procedure file by entering lines that begin with a lfue number and are
followed by either a system or utility command, a BASIC statement, a data-file line or
another procedure-file line. Procedure file lines are syntax checked when they are called
for execution, not as they are entered into the work file.

System commands are one keyboard line and are distinguished by lack of a statement
number. They may be intermixed with program or data file lines in any manner. Each
command is a unique keyword and an optional parameter list in a free-form format. Key
word commands have the following system f~nctions:

• File editing.

• Initialization/modification of program execution.

• File library creation and management (source programs and data files may be saved
on disk in either a private or pooled library).

• Disk utility functions.

Programs in the system program file (system program area) analyze the file and com
mand lines, that the user enters, for syntax errors. These programs also perform the oper
ations specified by command lines and the command keys (located on the left side of the
keyboard).

The user has several ways to correct errors he made while entering BASIC statements,
data-file lines, procedure-file lines, system commands, and utility commands. Also, these
same procedures can be used to correct BASIC program errors that the system finds
during program execution.

Introduction 1-1

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

System/3 BASIC provides the user with execution time debugging aids:

• Trace mode.

• Step (one statement at a time) execution mode.

• Display and change program variables during execution.

• Interrupt and suspend execution at any point, perform other system functions, and
later resume execution.

System/3 BASIC also provides the user with several utility functions. These functions
use utility commands and include operations such as system generation and disk initiali
zation, and they assign space on disks for work areas and libraries.

System/3 BASIC provides to the IBM customer engineer a maintenance utility aid pro
gram with ten options for diagnosing and correcting problems in the system. Program tem
porary fix (PTF) commands (used to apply PTF patches), an 1/0 parameter list save area.
and other maintenance features are discussed in Section 6.

DESK CALCULATOR (DCALC) MODE OF OPERATION

DCALC permits the user to add, subtract, multiply, divide, compute powers and roots,
and perform many other mathematical functions without using a programming language.
The numeric keys and the first eight command keys of the keyboard are used with
DCALC. The mathematical functions in the system are requested by entering the name
of the function through the typewriter keyboard.

MINIMUM MACHINE CONFIGURATION

The minimum machine configuration required to operate System/3 BASIC is as follows:

• An IBM 5406 Processing Unit Model B2 (8k main storage) and the first eight
command keys.

• An IBM 5444 Disk Storage Drive Model 1 with one fixed disk and one removable
disk containing a total storage capacity of 2,457 ,600 bytes.

I • An IBM 5213 Printer Model 1 with a 13-inch carriage and 132 print positions or a 2222
Printer Model 1 with a 22-inch carriage and 220 print positions.

SUPPORTED OPTIONAL DEVICES

1-2

Optional IBM devices supported by System/3 BASIC are:

• 5406 Processing Unit Model B3 (12k main storage).

• 5406 Processing Unit Model B4 (16k main storage).

• 5444 Disk Storage Drive Model 2 with one fixed disk and one removable disk
(4,915,200 bytes).

• Two 5444 Disk Storage Drives Model 2 with two fixed disks and two removable
disks (9 ,830,400 bytes).

• One 5444 Disk Storage Drive Model 2 with one fixed disk and one removable disk,
and one 5444 Disk Storage Drive Model 3 with one removable disk (7 ,372,800 bytes).

• 5213 Printer Model 2 (I 3-inch carriage, 132 print positions).

• 5213 Printer Model 3 (13-inch carriage, 132 print positions with bidirectional
printing).

Licensed Material-Property of IBM

I

)

)

)

• 2222 Printer Model I (22-inch carriage, 220 print positions).

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

• 2222 Printer Model 2 (22-inch carriage, 220 print positions with bidirectional
printing).

I • 5496 Data Recorder Model I (with the System/3 Model 6 Attachment).

FLOWCHARTING TECHNIQUES

• 2265 Display Station Model 2 (this requires l 2k main storage and eight additional
command keys).

129 Card Data Recorder (with the Card Input/Output Attachment for the System/3
Model 6).

This PIM (program logic manual) has two flowcharting techniques:

1. Function level-Shows the sequence of major internal objectives of complex
programs (an example is Figure 3-22). Process blocks are keyed to the program
listing with a label, if a label exists at that logical point. Process blocks contain
a list of functions executed to accomplish the major objectives within the logical
flow of the program. The language within the block is understandable at a level
external to the program, so the flowchart serves as an index to the program listing.
No attempt is made to maintain internal linkage between program label and phys
ical sequence of instructions if this would interfere with the most logical presenta
tion of the program. Every attempt has been made to create logical linkages for
major objectives and to display the program on one page or facing pages.

The on-page connector symbol is self-evident (refer to Figure 3-22); the off-page
connector symbol usage is simplified, because these symbols refer only to another
page of the same figure number. Reference (linkage) to other programs is made
using a terminal flowcharting symbol containing the entry label for that program.

2. Conventional-Shows the sequence of major internal objectives of complex sub
routines, IOCS routines, interfaces, error-logging overlays, etc. (an example is
Figure 3-9). A predefined process block indicates a subroutine which is flow
charted elsewhere in this publication. The subroutine label is in the upper left
corner; the flowchart figure number for that subroutine is in the upper right
corner. On-page connectors, off-page connectors, and terminal symbols are used
the same as on the function-level flowcharts.

SYMBOLIC LABEL (PROGRAM COMPONENT NAME)

A symbolic label (usually six characters) is used to identify each major System/3 BASIC
program component. This label appears in the heading of each page in the assembly
listing and on the microfiche. All labels within the same source module are prefixed by
a character that identifies the type of source module. Section 4 contains a listing and a
description of System/3 BASIC components.

Introduction 1-3

Licensed Material-Property of IBM

)

1-4

Licensed Material-Property of IBM

)

)

)

Section 2. Method of Operation

This section describes the functional flow of the program logic and data for System/3
BASIC. Illustrations trace the functional flow from input, through processing stages, to
output, emphasizing the use of primary data areas.

LOGICAL DIVISION OF SYSTEM PROGRAMS AND COMPONENTS

In this manual, System/3 BASIC is logically divided into six major groups of programs:

• Control

• Keyword

• Utility

• Compiler/loader

• Interpreter

• Desk calculator

Figure 2-1 illustrates the primary relationships between these programs and the disk data
files. This figure also illustrates primary 1/0 flow from system input to system output.

Control

This group of programs perform the following primary functions:

• System initialization, or initial program load (IPL).

• Linkage and services, for transient programs, that must be core-resident (system
nucleus) at all times.

• Acceptance and syntax checking of all system input while in conversational mode
of operation.

• Maintenance on the work file (#GUFUD).

• Analysis of system commands and initiation of their execution (#ECMAN).

• Display of messages for errors and for operator communications.

• Program interruptions.

Keyword and Utility

• Each system command is associated with a transient program that performs or
initiates the particular function described by the keyword or utility command.

• .The keyword and utility programs are invoked by the command analyzer when the
corresponding keyword (ALLOCATE, CHANGE, etc.) is entered.

Compiler/Loader

• Compilation of a BASIC language program is invoked by certain system commands.

• The source program in the work file is compiled in a single pass over the source
statements.

Method of Operation 2-1

Licensed Material-Property of IBM

31
°" c::
(1)

t:-> -c; Cll
(")

~ (I)

:::: (1)

"' 3 (I)
p.. >1j

s:: 0

"" :l6 -;:;, (I)

::i. .,
!:!..
Jo -0,
0 .!:::l "O
(I)

::l.
'<
0 _, -c:;
s::

DCALC --------------,
I
I
I
I
I
I
I
I

r ______ J
I
I
I
I
I
I
I

L __ ______ _J

LEGEND

----Program Flow

---- 1/0 Flow

Syntax
Check

Control Programs

Procedure,
BASIC, or
Data

Command

L-----------------------~

#LOADR
Loader

Keyword
Programs

Utility
Programs

t;
(')
(D

::i

"' (D

0.

s::
"'
(D e:
~
0

"Cl
(D
'<
0

'"""'
~
s::

31
~
di
t;-'
!'"""
er-
'<
;G.
(I)

3
'Tl
0
::;;
-;:;;
"' ::I.
N
0 ...,
~

LEGEND

-----Program Flow

----- 1/0 Flow

#INSTD
Interpreter
(standard
precision)

Standard Long

#INLNG
Interpreter
(long
precision)

DISK ORGANIZATION

2-4

• The loader resolves addressing and allocations in virtual memory (disk) that cannot
be resolved during the single compiler pass.

• Output from the compilation is a pseudo-machine-language program (object program)
in virtual memory.

Interpreter

• This program produces the output from a BASIC language program by executing the
pseudo-machine-language program in virtual memory.

• Each pseudo-machine-code (PMC) instruction within the pseudo-machine-language
program is analyzed, one at a time.

• Subroutines perform the function specified by each PMC instruction.

• These subroutines reside in both core and virtual memory.

• A paging subroutine (part of the interpreter) performs a linkage function to load
subroutines, PMC instructions, and data into core from virtual memory.

Desk Calculator (DCALC)

• This program accepts DCALC input from the keyboard, and then pages (transfers in
sections) appropriate subroutines into core from virtual memory tci execute the func
tions for the user.

• This program uses the same concepts as that of the interpreter.

• Error messages, operator communications, and I/O operations are provided by
DCALC.

The first four cylinders on every disk volume are reserved for the volume information
cylinder (cylinder 0) and alternate data tracks (cylinders 1, 2, and 3). The volume infor
mation cylinder contains the volume label and volume table of contents, used for volume
identification, and other pertinent information about the volume (refer to Figures 5-9
and 5-10). A disk volume used for System/3 BASIC is optionally formatted with these
primary disk areas (system files):

• System work file (system work area)

• System program file

• System library file (file library)

• Help text file

• PTF file (program temporary fix)

Refer to Figure 2-2 for an example of system file placement on disk and Figure 5-2 for
the disk volume format. For details on file organization and data formats, refer to the
Table of Contents or the Index for the particular subject you are interested in.

Volume Label

This reserved sector provides volume identification information, disk addresses, and size
of System/3 BASIC system files on the volume. The sector is used by System/3 BASIC
programs to locate these system files. The volume label also points to the location of
the volume table of contents (VTOC). Refer to Figure 5-9 for the format of the volume
label.

Licensed Material-Property of IBM

\

)

System
Work
File

0 3 4 9

System
Library
File

System System Help
Work Program Text
File File File

3 4 9

Volume Information Cylinder
and Alternate Tracks

Figure 2-2. System Files, Example

Volume Table of Contents

.R1

F1

BR1033

The VTOC contains labels for all system files on the volume. Each label contains the
name of the file, and disk extent information necessary to protect the area occupied by
the file from other programming systems. Protection is handled by the track usage mask
in the volume label. The VTOC is maintained by System/3 BASIC but it is not used to
locate System/3 BASIC system files. Refer to Figure 5-10 for the format of the volume
table of contents.

Note: Do not confuse system files with user files in the file library.

System Work File

This system file, also referred to as the system work area, is allocated on cylinders 4
through 9 on both volumes residing on drive 1. The file is accessed by system programs
as a four-track logical file. When accessing the file, relative disk addresses are computed
on the basis of 96 sectors per cylinder instead of 48. The system work area contains
these four areas:

1. Selected system programs (cylinder 4)-Selected system programs are copied here
from the system program file to reduce seek time.

2. Work file (cylinders 5 and 6)-This area is used for working with user program or
data files.

Method of Operation 2-5

Licensed Material-Property of IBM

2-6

3. Virtual memory (cylinders 7 and 8, and more than half of cylinder 9)-This area
has a data length of 64k (256 sectors).

4. Temporary disk work area (last 32 sectors of cylinder 9)-This area provides
programs with disk working storage.

The following selected system programs are copied to cylinder 4:

#ECMAN-Command analyzer
#GUFUD-Work file update/crusher program
#SFSYN-BASIC statement syntax checker
#SDSYN-Data syntax checker
#ERRPG-Error message program

~~;~~ } Execution-time disk 1/0 overlays

#BOVLY-Statement processor overlays

Refer to "System Work Area Equates (@WKAEQ)" in the program listings for disk
addresses and sector counts associated with the system work file.

System Program File

This system file contains all system programs and related components, except those
residing on the volume information cylinder (cylinder 0). All of the programs and com
ponents in this file are at fixed locations, relative to the first sector allocated for the file.
None can be deleted. from, or relocated in, the file. The first component in this file is a
directory containing the relative disk address, sector count, and core load address of all
components in the file, but this directory is not used by the system to locate the com
ponents. It is used for finding addresses of components when PTF commands are issued.
(See Figure 5-29 for the format of a directory entry.) Relative disk addresses, sector
counts and core load addresses of system components are assembled in the programs when
and where they are needed. The starting disk address of this file is located in the volume
label (see Figure 5-9).

System Library File

This system file, also referred to as the file library, contains space for storing user pro
grams and data (see Figure 5-11).

Each grouping of user program statements or data statements stored in this library is
called a user file and has an associated filename. The user files are accessed by the use of
filename directories (Figure 5-14) and a single password directory (Figure 5-13). The
password directory contains one password for each filename directory in the library.

Two reserved passwords are always present in the password directory. These reserved
passwords are* (one-star) and** (two-star). The user of the system will refer to these as
one-star library (or pooled) and two-star library. These two passwords point to a direc
tory of filenames as do the other passwords (see Figures 5-11 and 5-13).

The system library file also contains a null directory (Figure 5-12). This directory has
entries pointing to all unused areas in the file. When the file is packed, there is only one
entry, pointing to one null area at the end of the file. The null directory occupies the
first sector allocated to the system library file. The starting disk address and size of this
file are located in the volume label. Refer to Figure 2-3 for the organization of the system
library file and its directories.

Refer to "Record Format" for the format of user program-generated and keyboard
generated files in the system library file. Program-generated files are considered as one
record without a line number. This single record is written into sequential disk sectors
as it is cr~ated by the program. No file index table (FIT) is generated for program
generated files.

Licensed Material-Property of IBM

Null Directory------------,1-----..

r-+l._*_* ___ j,__* ~-J~P_a_ss_w_o_rd~
) Password Directory

-+-+-1-1 SAMP L§
'--l--====-----1~~ First ** Directory Block

,.....--RFILEA J
'-+--+-=======---;-,~First* Directory Block

r--A:FILEA J r-1. FILEB J
First Filename Directory Block·~------+--

--1------+-,....FILEA (pooled user file)

----FILEB (user file)

(null space)

Second Filename Directory Block

[

OFILEC J

----------Fl LEC (user file)

----t---------:--sAMPLE File

(null space)

Note: Refer to Figures 5-11 through 5-14 for directory formats.

BR1034

Figure 2-3. Organization of System Library File, Example

Help Text File

This system file (refer to Figures 5-21 and 5-22) contains all of the help text accessed by
the HELP keyword program. This file is organized with an index starting in the first
allocated sector. The general organization of this file is the same as that of the work file.
The starting disk address of this file is located in the volume label (Figure 5-9). Refer to
program listings #IlHEL, #I2HEL, etc., for the content of the help text file.

PTF File

This system file, if present, contains program temporary fixes to be applied to. other sys
tem files as they are shipped from the IBM Program Information Department
(PID). These PTF's may be applied by an IBM customer engineer. The starting disk
address and size of this file are located in the volume label (Figure 5-9).

Work File

This is the work file referred to during system operations. It holds the current program
or data file being entered or operated upon by the operator. The work file is logically
addressed forward. All of cylinders 5 and 6, in the system work area, are allocated to the
work file.

Both program-generated files and keyboard-generated data files have the same internal
organization. A file consists of two parts:

!. File index table (FIT)-Used to randomly access the data records using the line
number. This table can be from 1 to 3 sectors in length depending on the size of
the data portion of the work file (see Figure 5-16). The first three sectors of the
work file are always reserved for FIT.

Method of Operation 2-7

Licensed Material-Property of IBM

VI RTUAL·MEMORY CONCEPT

2·8

2. Data area-Contains the data records (lines) in logical order with respect to line
number. This portion of the file can be from 1 to 189 sectors in length.

All sectors of the work file are contiguous, including the index. The.1/0 information
record (file directory 1, Figure 5-17) resides on cylinder 4, for a program file occupying
the work file (see Figure 5-15), but is placed between the FIT and the data area ifthe
file is copied (saved) to the file library.

All of the user program and keyboard-generated data files in the system library file
were at one time saved from the work file. The format of user files in that library is the
same as the format of the work file.

Note: The data portion of the file is organized into disk blocks (sectors). Record or line
refers to a logical data segment as opposed to a physical disk block.

Virtual memory (VM) is a concept that uses disk to logically increase the size of the
object program beyond the core capacity of the system. The VM concept also allows
the core capacity of the system to be increased with no effect on the object program
except for increased throughput of the system. The disk area occupied by virtual
memory is cylinders 7 and 8, and more than half of cylinder 9 in the system work area.
This area is a logical four-track file with a data length of 64k (256 sectors).

Sections of the object program are brought into available core from VM on an as
needed basis. These sections are referred to as pages. Each page is 256 bytes in length.
The available core (core paging area) is divided into pages (Figure 2-4) which contain
machine executable codes or data, as required for the execution of the object program.

Core

Core-Resident
Interpreter Program

Increased
Core Capacity

I
I
I
I

L_ ____ _J

Figure 2-4. Virtual Memory Concept

Disk

Virtual-Memory-Resident
Interpreter Subroutines

Compiler Output (data to the
interpreter program)

BR1035

The larger the core storage (core paging area), the less disk 1/0 activity occurs and the
faster the object program is executed. Speed depends upon the actual size and the pre
cision of the object program in relation to the size of the core paging area. Core config
uration and relative paging area are discussed in detail in "Expanded Core Utilization"
(Section 3). Detailed specifications of virtual memory and references to core paging are
given in Section 7.

Licensed Material-Property of IBM

PSEUDO MACHINE LANGUAGE CONCEPT (PSEUDO OBJECT PROGRAM)

A pseudo machine language (object program) concept speeds the compilation time of a
user program. It reduces the quantity of instruction output by the compiler and elimi
nates the necessity for an assembly pass or passes over the output instructions.

The pseudo instructions that make up the pseudo machine language (object program)
invoke the execution of preassembled machine-language execution subroutines to per
form the functions indicated by the pseudo instructions. This concept (Figure 2-5) is
similar to the emulation of an instruction set foreign to the object machine, or the
execution of machine instructions by hardware microprogramming.

---+--Interpreter
Control Program

-+--~· Execution
Subroutines

Data

User Program Execution

Disk

Work File

VM

VM

User Source Program
(BASIC statements, data)

Pseudo Machine Code (PMC)
(object program)

VM

Data

Subroutines

VM-virtual memory

Figure 2-5. Pseudo Machine Language Concept

Licensed Material-Property of IBM

Interpreter

Core

Compiler/Loader

Compilation

Core Resident
Subroutines

Execute Pseudo Machine Code (PMC)

User Output

BR1036A

Method of Operation 2-9

2-10

The pseudo machine language for System/3 BASIC contains pseudo instructions
(Figure 3-169) to perform (1) arithmetic operations such as exponentiation, square
root, trigonometric functions, logarithms, etc.; (2) array processing operations such as
matrix multiply, inversion, transposition, determinant, etc.; and (3) I/O operations such
as GET, PUT, PRINT, etc. All arithmetic operations are performed in either standard or
long precision floating point arithmetic. Character (EBCDIC) data format is also proc
essed by particular pseudo instructions.

The preassembled machine-language execution subroutines and their control program
are referred to in this manual as the interpreter. The execution subroutines that are
used least often are located in virtual memory (Figure 2-6). The pseudo machine lan
guage object program is generated by the compiler (and loader) and executed by the
interpreter (Figure 2-5). Pseudo machine instructions are referred to in some areas of

I this manual as pseudo machine code (PMC) (refer to Figure 3-169). Detailed specifica
tions of the object program are given in Section 7.

Core
Paging
Area

Core

Interpreter

Core Resident Execution
Subroutines

Pseudo Instructions

VM Resident Execution
Subroutine

Data

Buffer

Figure 2-6. PMC and VM Concepts Combined

Licensed Material-Property of IBM

Virtual Memory

File Library

BR1037

RECORD FORMAT

Data records in either the work file or the file library are variable-length records corres
ponding to one keyboard line. A record consists of one or more segments. A segment is
the portion of a record contained in one disk block. Records are packed contiguously in
the file and span disk block boundaries. A record spanning two disk blocks consists of
two segments. Every segment is preceded by a segment descriptor field (SDF). Only the
first segment contains the line number and statement type code. A program-generated
data file has no line number or segment structure.

Refer to Figure 5-15 for the structure of a sample BASIC program file. A data file
does not contain a file directory 1 record. Note that relative data blocks 04 and 05 are
not in physical sequence. The line numbers (LINE) in the file index table entries are in
ascending line number order allowing the relative data blocks (DB) to be referenced in
logical order.

FILE DIRECTORY 1 (1/0 INFORMATION RECORD)

This directory contains information, specified by ALLOCATE system commands,
defining the data files referenced in the GET and PUT statements of a BASIC language
program. This directory is associated only with a program file. For a program file in the
work file, this directory resides on cylinder 4. When a program file is saved in the file
library, this directory is placed between the FIT and the data blocks of the program file.
Refer to Figure 5-17 for the file directory 1 format.

The first 8 entries of this directory occupy the first page in virtual memory during
execution of the BASIC program. A maximum of 4 additional entries can be placed in
virtual memory, by the program #LOADR, at a variable location.

Method of Operation 2-11

Licensed Material-Property of IBM

2-12

Licensed Material-Property of IBM

CONTROL PROGRAMS

)

)

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

Section 3. Program Organization

This section divides System/3 BASIC into these major groups of program components:

• Control programs

• Keyword programs

• Common subroutines

• Utility programs

~ Maintenance utilities

• Compiler

• Loader

• Interpreter

• Desk calculator

For details on source module labeling conventions and system equates, refer to Section 4.

System/3 BASIC control programs are defined under the following headings:

• System initialization-IPL

• System nucleus

• Error message program-#ERRPG

• Program interruption processor-#EXMSG

e Work file update/crusher-#GUFUD

• Command analyzer-#ECMAN

• Command key processor-#EFKEY

• BASIC statement syntax checker-#SFSYN

• Data syntax checker-#SDSYN

I • Procedure line checker-#SPSYN

• Conversational I/O routines-#DPRIN, DPRINT, DEPRES

I • Procedure file line processor-#GRAPR

• Card reader I/O routine-#DREAD

• Maintenance program load trace-#ZTRAC

System Initialization-IPL (Figure 3-1)

IPL is accomplished by three program components:

• Bootstrap loader-#MLOAD

• Interface routine; part of the system nucleus at IPL time-MOPPET

• Nucleus initialization program residing in the system program file-#MIPPE

Program Organization 3-1

Licensed Material-Property of IBM

3-2

IPL Bootstrap Loader-#MLOAD (Figure 3-1)

• This program is read from cylinder 0, head 0, sector 0 of disk when the program load
switch is operated.

• #MLOAD first relocates itself to high core and then reads the system nucleus into low
core (X'OOOO') from cylinder 0, head 1, sector 0.

• #MLOAD places a one-byte indicator at label $IPLDV, indicating the disk IPL'd
(X'OO'forRl andX'Ol'forFl).

• If no system program file exists on the IPL'd volume, a hard halt occurs.

IPL Interface-MOPPET (Figure 3-1)

• This routine is loaded by #MLOAD as part of the system nucleus.

• The routine reads the volume label sector fro111 the IPL'd disk, calculates the system
program file address, and loads the main nucleus initializatiop program, #MIPPE.

• MOPPET resides immediately following the nucleus at label $ENDNU.

Nucleus Initialization Program-#MIPPE (Figure 3-1)

• This program loads #DPRIN-which consists of the matrix printer 1/0 control
routine, or MP IOCR (DPRINT), and the keyboard IOCR (DEPRES)-at core
address X'0700'. The keyboard input line buffer overlays MOPPET (IPL interface).

• System configuration is checked for validity by calling machine configuration
(MCNFIG). This subroutine tests all devices specified in the configuration· record
for presence on the system.

• The core expansion factor is set in the nucleus communications area.

• The cathode-ray tube (CRT) IOCR is loaded into high core by the MCNFIG sub
routine if the CRT is present in the configuration.

• The correct keyboard table is loaded by MCNFIG into the three keyboard IOCR's.

e Margin widths for the matrix printer are set to the hardware specifications by
MCNFIG.

• The volume labels are read from all mounted disk volumes. IPL is terminated with
hard halt 2345 ifRl does not have a standard System/3 volume label. Refer to
"Halt 2345" in Section 6. All volumes other than Rl are assumed to require
initialization if they do not have a standard volume label.

• The volume-ID table, which is located in the nucleus communications area, is
built for all mounted volumes.

• The work area and bad-line buffer are cleared if they are present.

• Output is switched to the CRT if the matrix printer fails while the operator is
requesting the configure option.

• All scratch file entries left in the VTOC by co-resident disk system management
programs are deleted.

Licensed Material-Property of IBM

)

,\

IPL

#MLOAD

READ SYSTEM NUCLEUS AND 1/0 ROUTINES
INTO LOW CORE

1. Hardware reads #MLOAD from cylinder 0, head 0,
sector 0, into the first 256 bytes of core and
branches to address X'OOOO'.

2. #MLOAD relocates itself to X'IFOO' and branches
to X'IFOO'.

3. Read system nucleus into core at X'OOOO'. A disk
error causes a soft halt.

4. Branch to MOPPET, the IPL interface resident in
the nucleus.

MOPPET

INTERFACE TO MAIN IPL PROGRAM

1. Set console interruption address to $Cl ENT routine
(Figure 3-10).

2. Read volume lable from IPL'd disk using $DISKN
(Figure 3-7).

3. Calculate disk address of system program file.
4. Exit to $RLOAD to load #MIPPE at X'OCOO'

from the system program file.

#MIPPE
Main IPL Program

#MIPPE

SYSTEM CONFIGURATION

1. Issue carriage return to initialize MP to.the left
margin.

2. Read #DPRIN (DPRINT and DEPRES) into core
at X'0700'.

3. Configure system. Call $DISKN (Figure 3-7) to
read configuration record from F1, and call
$SPRNT (Figure 3-9) to print messages to operator.

4. Call DEPRES (Figure 3-30) to enable keyboard input.
5. Wait for CONFIGURE command or program start

key.
6. Test configuration for validity and load #DSPL Y

(CRT IOCR) to high core if CRT is present.

READ ALL VOLUME LABELS

1. Call $DISKN (Figure 3-7) to read in all the volume
labels of all mounted disks. Terminate IPL with a hard
halt if the volume label on R 1 does not have a valid
label identifier (C'VOL' or X'ABCDEF').

2. Move the volume label and library file addresses to
the nucleus communications area.

3. Check that the system work area is present on F 1
and Rl.

6

#MLOAD

MOPPET

Input Line Buffer

#DPRIN

#GU FUD

PROCESS DATE

1. Ask for date using $SPRNT (Figure 3-9).
2. Call DEPRES (Figure 3-30) to enable keyboard

input.
3. Modify instruction at X'OOOO' for a branch to

$PAUSD (FE aid).
4. Move user supplied date to nucleus communica

tions area.
5. Set disk addresses for #GUFUD and #ERRPG in

the nucleus.

Set
Conversational
Mode Indicator
In Nucleus
Communications
Area.

#GUFUD
Figure 3-22
Via $CAR PL

No

#ERRPG
Figure 3-17
Via $CAERK

BR1038A

Figure 3-1. Sy stem Initialization (IPL) Flowchart
Program Organization 3-3

Licensed Material-Property of IBM

3-4

One of the following modes is entered at this point:

I • Conversational mode (#GUFUD, work file update/crusher program) is entered, by
#MIPPE, if the system work area is present on both volumes mounted on drive 1
and is set to the current release level. #GUFUD may be entered via the error pro
gram if an error message is printed (F2 not initialized, etc.).

• Utility mode (#ERRPG, error program) is entered if the system work area is not present.

System Nucleus

The system nucleus is the core-resident portion of System/3 BASIC. It contains a system
communication area, the physical disk IOCR, and various interface routines for other
system functions. Figure 3-2, a core map of the system nucleus, shows the components
and their functions.

DKDISK ($DISKN)
(physical disk IOCR)

NERLOG ($ERLOG)
(error logging call section)

NUCLES
(system communication area)

NSPRNT ($SPRNT)
(interface to system printer IOCR)

NCAERK ($CAERK)
(interface to error program)

NQUIRY ($CIENT, $UNMSK)
(inquiry request routine)

NABORT ($CAIPL, $CARPL, $CABLD)
(abort current operation routine)

NPAUSE ($PAUSD,$RSTR)
(save/restore core)

NB LOAD ($BLOAD, $RLOAD, $LOADR)
(system loader)

Patch Area

BR1039

Figure 3-2. System Nucleus Core Map

Resident Disk Physical /OCS-DKDISK, $D/SKN (Figure 3-7)

• DKDISK is divided into two main sections:

1. Call-for normal I/O execution.
2. ERP-error recovery procedure.

• DKDISK is core resident in the system nucleus and performs the physical disk
operations of read, write, verify, and seek for both drives.

• A special wait function is provided which allows a calling program to be delayed
until the last logical read or write operation for either drive is complete.

• The calling sequence for DKDISK is:

B $DISKN

DC AL2(DPL) DPL is the address of the disk parameter list (Figure 3-3).

• No checks are made for validity of the DPL parameters. The calling program must
ensure that the drive, disk address, etc., are valid.

Licensed Material-Property of IBM

)

• Hardware errors are automatically handled by error recovery procedures in the disk
1/0 control system (IOCS) (Figure 3-4). No error returns are made to the calling
program.

Function

X'OO'-Seek
X'01'- Read

X'02'- Write
X'FF'-Wait

The table below shows the
head, sector, drive, and
volume that are selected
for each value that can be
contained in byte 2.

Head 0
Sector

R1 F1 R2

0 00 01 02
1 04 05 06
2 OB 09 OA
3 oc OD OE
4 10 11 12
5 14 15 16
6 1B 19 1A
7 1C 1D 1E
B 20 21 22
9 24 25 26

10 2B 29 2A
11 2C 2D 2E
12 30 31 32
13 34 35 36
14 3B 39 3A
15 3C 3D 3E
16 40 41 42
17 44 45 46
1B 4B 49 4A
19 4C 4D 4E
20 50 51 52
21 54 55 56
22 5B 59 5A
23 5C 5D 5E

Disk Parameter List (6 bytes)

Disk Address Sector
Count Data Area Address

3 4 5

Cylinder Number

F2

03
07
OB
OF
13
17
1B
1F
23
27
2B
2F
33
37
3B
3F
43
47
4B
4F
53
57
5B
5F

Byte 2

2 3 4 5 7

Sector Number---------'

{

Head Number

Drive ID (off = 1, on = 2) ----~
Volume ID (off= removable, on =fixed)

Head 1

R1 F1 R2

80 81 82
B4 B5 B6
BB B9 BA
BC BD BE
90 91 92
94 95 96
9B 99 9A
9C 9D 9E
AO A1 A2
A4 A5 A6
AB A9 AA
AC AD AE
BO B1 B2
B4 B5 B6
BB B9 BA
BC BD BE
co C1 C2
C4 C5 C6
CB C9 CA
cc CD CE
DO D1 D2
D4 D5 D6
DB D9 DA
DC DD DE

F2

B3
B7
BB
BF
93
97
9B
9F
A3
A7
AB
AF
B3
B7
BB
BF
C3
C7
CB
CF
D3
D7
DB
DF

Notes:

1 . Bytes 3-5 are not
used for a seek
function.

2. Bytes 1-5 are not
used for a wait
function.

BR1041

Figure 3-3. Disk Parameter List (DPL)

Physical disk addresses are required, but translation of defective track addresses to the
assigned alternate track address is performed automatically by the routine. Any initial
seek required to access the specified cylinder is automatically performed by the IOCS.
If a single logical read or write operation crosses a cylinder boundary, the IOCS auto
matically performs the seek to the second cylinder and completes the operation when
the next call to the IOCS is made. Control remains in the IOCS during the succeeding
cylinder operations. A read or write operation automatically crosses track boundaries
on one cylinder without subsequent IOCS calls.

Program Organization 3-5

Licensed Material-Property of IBM

3-6

Sense
Error Recovery Procedure

Byte Bit

Unsafe 2 0 Hard halt; no recovery attempted,
Equipment check 0 3 Retry operation once; then hard halt.
Intervention required 0 1 Hangs on retry SJO until drive becomes ready,

Overrun 1 5 Perform a read-ID to determine if:
No record found 0 5 Seeked to correct operative track-retry as read, • Track condition check 0 6 verify, or write error (below).
Missing address marker 0 2
Data check 0 4 • Seeked to wrong track-recalibrate and retry

operation.

• Accessing a track flagged defective-seek to
alternate arid retry operation.

• Accessing sectors beyond the end of an alternate
track-seek to next sequential primary track and
continue operation.

Retry as read, verify, or write error.

• Write error-retry write seven more times .

• Verify error-rewrite and verify seven more times .

• Read error-16 rereads performed with each seek
and 16 seeks are tried (256 read errors before hard
halt).

Seek check 0 7 Recalibrate and retry seek 15 more ti mes-if seek is
successful, retry as read or write error (above).

End of cylinder 1 2 Seek to next sequential cylinder and continue operation.

Unit check, but none Hard halt; no recovery attempted.
of above

BR1042

Figure 3-4. Error Recovery Procedure (DKDISK)

For example, consider a call specifying a read operation of 30 sectors starting at sector
22, track 0 of cylinder 43, when cylinder I 0 is currently accessed. The IOCS initiates a
seek to cylinder 43, queues the read operation, and returns control to the calling pro
gram. The read of sectors 22 and 23 (0-23 on cylinder 43) is automatically performed
without returning control to the IOCS. A subsequent IOCS call allows the IOCS to per
form the seek and read of the second cylinder.

At the termination of a write function, a verify is automatically performed by
DKDISK.

Error Recovery Procedure (ERP) Section: An ERP section is contained within DKDISK.
If the operation is unsuccessful after a specified number of retries, the routine comes to
a hard halt and an error code is displayed. The system can be restarted only by an IPL.
Figure 3-4 shows the error recovery procedures in DKDISK, Figure 3-5 shows an example
of a switch to an alternate track in DKDISK, and Figure 3-6 shows the disk control field
(DCF) format.

Licensed Material-Property of IBM

)

)

Assigned Alternate Track Operative Primary Track

Sector D ID Sector 1 ID Sector 22 ID Sector 23

DD Data D1 DA D4 Data DD D9 D8 Data DD D9 DC Data

Flag Byte Definition

2

Events

Seek to, and read, requested track.
Unit check, end of cylinder.

Seek to, and read, next track.
Unit check, no record found.
Read ID and check flag.

Seek to, and read, alternate track.

Seek to, and read, next primary
track. Operation complete.

Primary
(cylinders D,4-2D2)

I lor
Operative Defective

X'OO' X'D2'

Defective Primary Track

ID Sector D ID Sector 1

Garbage Garbage D1 DD Garbage

Flag Byte Definition

Operative Primary Track

ID Sector D ID Sector 1

8D Data DD DA 84 Data

Flag Byte Definition

Disk
Address Sector Comment

c H

D9

1D D

1D D

D1 D

1D

s

22

D

D

D

Count

28 Transfer 2 sectors to core.
ERP seeks next cylinder.

26 DKDISK does not know track is defective,
ID of sector Dis invalid.
Alternate assigned by disk initialize.

24 Transfer 24 sectors to core.

2 Transfer last 2 sectors to core.

Alternate
(cylinders 1-3)

l
lor~-~

Operative Defective
X'D1' X'D3'

BR1D43A

Figure 3-5. Switch to Alternate Track (DKDISK), Example

Program Organization 3-7

Licensed Material-Property of IBM

Head 0
Sector (byte 3

0
1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
1B
19
20
21
22
23

value)

00
04
OB
oc
10
14
1B
1C
20
24
2B
2C
30
34
3B
3C
40
44
4B
4C
50
54
5B
5C

$DISKN

DKDISK

3-8

Wait and
test previous
operation
for errors.

Head 1
(byte 2
11alue)

BO
B4
BB
BC
90
94
9B
9C
AO
A4
AB
AC
BO
B4
BB
BC
co
C4
CB
cc
DO
D4
DB
DC

Disk Control Field (4 bytes)

0-Flags 1-Cylinder 2-Head and Sector 3-Number of Sectors-1

0 1 2 3 4 7 0 2 3 4 5 6 23456701234567

Defective Track

Alternate Track

L~-~ ____ _____,J
v

Cylinder Number J
The table at the left shows
the head and sector that
are selected for each value
that can be contained in
byte 2.

{
Head Number

Sector Number -------'

Figure 3-6. Disk Control Field (DCF)

Verify
previous
write; wait;
then test
for errors.

$ER LOG
Figure 3-9

Yes

Start
1/0
operation.

Forward Seek
(6 and 7 must be
zero if not a seek-op)

No

Number of Sectors to be
Transferred Mi nus 1

DKERP1

Sense error
status and
perform
appropriate
ERP.

Return to
Calling
Program

Figure 3-7. Resident Physical Disk IOCS (DKDISK, $DISKN) Flowchart

Licensed Material-Property of IBM

BR1044

Yes

BR1045

1/0 Error Logging Routine-NERLOG, $ERLOG (Figure 3-9)

• NERLOG is used for recording 1/0 errors in the outboard record (OBR) and
updating the statistical data record (SDR). Refer to Figure 3-8.

• The error history log entry ($HISTE) in the nucleus communications region must
be set up by the calling IOCR. Refer to Figure 5-1.

• After setting the proper entry at $HISTE, the calling sequence to store the entry
to disk is:

B $ER LOG Branch if disk error.

B $DISKN Branch if other than disk error.

DC AL2{$WAITF) $WAITF is the address of a disk parameter list containing a wait
function code {Figure 3-3}.

• If the 1/0 error occurred while on the interruption level, $ERPND is set and the
error is logged upon the next entry to DKDISK.

• NERLOG contains two sections:

1. Call section-This is core resident within the system nucleus and used to
modify DKDISK, save five sectors of core, and load the overlay section
into this saved area.

2. Overlay section-This is brought into core at the saved area to update the
OBR and SDR, and generate a hard halt if a system unrecoverable 1/0
error is indicated.

Disk IOCR

NERLOG Call Section

Remainder of Nucleus

X'0700'
' '- (5 sectors)

'-..

"""
" -....._ NERLOG Overlay

........

Error Logging
Work Area
(cylinder 0, head 0, -
sectors 4 to 8
on R1)

Restored Core (5 sectors)
Program Area

Figure 3-8. NERLOG Core Map

System Communication Area-NUCLES (see Figure 5-1)

• NUCLES provides for communication between system programs.

BR1047

• It contains indicators, work areas, and core and disk addresses used by the entire
system (refer to @FXDEQ in system equates).

Program Organization 3-9

Licensed Material-Property of IBM

3-10

Interface to System Printer /OCR-NSPRNT, $SPRNT (Figure 3-9)

• NSPRNT is used to call the device designated as the system printer (CRT or matrix
printer).

• NSPRNT decides which device is to be used and branches to the corresponding
IOCR.

• The calling sequence to print a line on the system printer is:

B $SPRNT

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

The source module consists of one load IAR instruction located in the nucleus. This
instruction loads the address of the IOCR assigned as system printer from the $PRDEV
field in the system communication area. This address is that of DSPLYN for CRT only,
and CRT with matrix printer; or DPRINT for matrix printer. A branch to $SPRNT loads
the IAR, effectively causing a branch to the IOCR. The calling sequence passes the
address of t_he print parameter list (PPL). This list is detailed in Figure 5-23.

Error Program lnterface-NCAERK, $CAERK (Figure 3-9)

• NCAERK is an interface to the error message program (#ERRPG).

• The error message program is loaded to core and executed.

• No control information is transferred to the routine.

Licensed Material-Property of IBM

)

$ER LOG

NERLOG

NOP
DK DISK
$ER LOG
branch.

$DISKN

Save core
where overlay
will go.

3-7

$BLOAD 3-14

Load and
branch to
NERLOG
overlay.

Update
lndlvldual
volume
statistics
(head 0,
sector 3),

Update
SDR
on F1.

NER600

Write history
entry from
COMREG Into
next available
OBR entry
on F1.

Yes

NER750

Begin
NERLOG
overlay.

Hard Halt

Reset
error
pending
Indicator.

$DISKN

Start core
restore.

NER100

$DISKN

Walt for
core restore
complete.

Restore
DK DISK
$ER LOG
branch.

Return to
Calling
Program

$SPRNT

DSPLYN
Figure 3-32

3-7

3-7

Matrix
Printer

Return
to core
resident
section.

DPRINT
Figure 3-29

$CAERK

NCAERK

$BLOAD

Load error
program at
X'OCOO'.

#ER RPG
Figure 3-14

3-14

BR1049

Figure 3-9. Printer and Error Program Interface ($ERLOG, $SPRNT, $CAERK) Flowchart

Program Organization 3-11

Licensed Material-Property of IBM

3-12

Inquiry Request Routine-NOV/RY, $C/ENT, $UNMSK (Figure 3-10)

• This routine aborts the current operation (if the inquiry request is unmasked) and
reloads the work file update/crusher program (#GUFUD).

• An entry point {$UNMSK) is provided for unmasking and aborting if an interruption
occurred while masked.

• If the function is aborted, the program interrupted indicator {$INRPT) is set.

• Entry points:

1. $CIENT-Entry for interruption processing (entered only when on interruption
level).

2. $UNMSK-Entry to unmask inquiry request (IR). To mask IR, it is necessary
to move X'80' (equated to @NOP) to location $CIMSK within the IR routine.

• Exits:

1. IR unmasked-Exit is to $CAIPL.
2. IR masked-Condition is set for suspended IR and return is made to the inter

rupted program.
3. $UNMSK finds no suspended IR-Return is to the calling program.
4. Suspended IR-Exit is to $CAIPL.

• No error procedures are provided.

Abort Current Operation Routine-NA BO RT, $CA/PL, $CARPL, $CABLD
(Figure 3-10)

• This routine aborts the current operation and/or reloads the work file update/crusher
program (#GUFUD).

• If entry occurred during execution (via IR), the program interruption processor pro
gram (#EXMSG) is loaded instead of #GUFUD.

• Entry points:

1. $CAIPL-Entry sets indicators for keyboard entry and no suspended IR and
loads #GUFUD or #EXMSG.

2. $CARPL-Entry sets indicator for no suspended IR and loads #GUFUD or
#EXMSG.

3. $CABLD-Entry loads #GUFUD only; no indicators are modified.

Entry to $CAIPL first resets the input from the keyboard and turns off the no-list indi
cator. $CAIPL then falls to $CARPL which enables IR. The execution indicator is then
tested, and if on (indicating execution in process), #EXMSG is loaded and executed via
$PAUSD. If execution is not in process, $CABLD is branched to, which calls $BLOAD
to load and execute #GUFUD.

Licensed Material-Property of IBM

$UNMSK

$CIENT

NCI ENT

Sense
keyboard
and save

to suspend
console
interruption

Unlock and
enable
keyboard

NUMMSK

Allow
console
interrupts

calling sequence

Yes

'$CAIPL

$CARPL

Yes

Clear line
printer
buffer

Set program
interrupted
flag in
NUCLES

NCAIPL

Set keyboard
input and 1/0
routine not in
core flags in
NUCLES

Reset command
key only flag
in NUCLES

$PAUSD 3-12

Save problem
core in disk
work file

#EX MSG
Figure 3-18

No

No

$CABLD

NCABLD

$BLOAD

Blast load
#GU FUD
at X'OCOO'

#GU FUD
Figure 3-22

'3-14

BR1050A

Figure 3-10. Abort (NABORT, $CAIPL, $CARPL, $CABLD) and Inquiry Request
(INQUIRY, $CIENT, $UNMSK) Flowchart

Program Organization 3-13

Licensed Material-Property of IBM

3-14

Save/Restore Core-NPAUSE, $PA USO, $RSTR (Figure 3-12)

• NPAUSE saves the contents of core in a disk save area when a program is put in an
execution pause condition or the maintenance utility monitor (Figure 3-99) is called.
The save area length is 58 sectors, starting at relative disk address X'0600' in the system
program file. This area is labeled ##CORE.

• The core area saved is from the end of the nucleus (Figure 3-11) to the end of core
or to the start of the CRT IOCS ($DSPLY).

• Upon reentry at the location $RSTR, the saved core is restored from the disk save
area, and the program which was paused is ready to be continued.

• Entry points:

1. $PAUSD-Normal entry to save core.
2. $RSTR-Entry to restore core.

f'.-- __,,
System Nucleus

~

X'0600'
I"''-..... !"-

Save

,.....-..;;..
'-..... '-.....

"-

I""- #DPRIN '-.....
"- "-

Problem Core "- "-
'-..... '~

f'- '-.....
#EX MSG
(program interruption

'-..... processor)
.........

!"" "- Restore Problem Core
#DSPLY

"- '-..(CRT IOCR and buffer)

~
"-...

"-...
........

"-
BR1051

Figure 3-11. Save/Restore Core (NPAUSE) Core Map

Licensed Material-Property of IBM

$RSTR

NRSTR

Modify DPL
for read
from
##CORE.

Halt

R or T

Yes

$PAUSD

NPAUSE

Modify DPL
for write of
problem core
to ##CORE.

CS0020

$DISKN 3-7

Save or
restore
problem
core.

Return to
Call Ing
Program

#GUFUD
Figure 3-10
Via $CAIPL

Yes

CS0100

$RLOAD 3-14

Load
program
Interruption
processor.

#EXMSG
Figure 3-18

BR1052A

Figure 3-12. Save/Restore Core (NPAUSE, $RSTR, $PAUSD) Flowchart

Program Organization 3-15

Licensed Material-Property of IBM

3-16

System Loader-NBLOAD, $BLOAD, $RLOAD, $LOADR (Figure 3-14)

• NBLOAD is used for loading and executing a requested program (Figure 3-13).

• Three types of calling sequences are available to the calling program:

Calling sequence to load and execute a fixed-disk-address program:

B $BLOAD

DC AL2(DPL) DPL is the address of the disk parameter list used to load the
program (Figure 3-3).

Calling sequence to load and execute a relocatable-disk-address program:

B $RLOAD

DC AL2(DPL) DP L is the address of the disk parameter I ist used to load the
program (Figure 3-3).

Calling sequence to load a relocatable-disk-address program and return to the calling
program:

B $LOADR

DC AL2(DPL) DP L is the address of the disk parameter I ist used to load the
program (Figure 3-3).

• The disk address specification in the DPL, when using $RLOAD, is the base disk
address for the program. It is added to the starting address of the system program
file to find programs that are within the file at fixed displacements.

• No check is made to verify that the DPL address is correct.

Nucleus

NB LOAD

1/0 Routines

Load address passed in call ing
sequence. Unpredictable r

I"- Calling Program- ""'-
esults occur
600'. if this address is below X'O

'--... ""'-
""'- "-

"
"-

...... ""'-
ZTRAC I' "-

" (FE program load/trace) "-
""'-' "__::::,,.

I'--'--...

I'-- '--...
.........

'--...

""'- ""'- '--... '-.j Requested Program

""' ""'-
""'-

""'-
""'- '1

BR1054

Figure 3-13. System Loader (NBLOAD) Core Map

Licensed Material-Property of IBM

$RLOAD

$BLOAD

$LOADR

NLOADR

Set switch
for return
to calling
program.

NRLOAD

Set switch
for relocated
load.

Add relocation
factor to disk
address In DP L.

$DISKN

Read In
#ZTRAC at
same load
address.

3-7

#ZTRAC 3-33

Print program
header.

NBLRTN

$DISKN 3-7

Read In
requested
program.

Make an
entry to
FE map.

To Program's
lnltlal Entry

Yes

Return to
Call Ing
Program

BR1055

Figure 3-14. System Loader (NBLOAD, $BLOAD, $RLOAD, $LOADR) Flowchart

Program Organization 3-17

Licensed Material-Property of IBM

3-18

Error Message Program-#ERRPG (Figure 3-17)

• #ERRPG prints all terminal error messages (except those from copy disk) that occur
during BASIC or utility modes of operation. For messages occurring in DCALC mode
of operation, refer to "DCALC Error Messages-VERROR."

• The assembly of #ERRPG contains these major source modules:

1. ERRPGM-Mainline logic, Figure 3-17.
2. DL2ICS-Disk logical IOCS, Figure 3-70.

The error code for all messages except stacked (multiple) is obtained from the system
communications area in the nucleus at label $CAERR (Figure 5-1). Stacked error codes
(Figure 3-15) are located at label $$ERSK. The error codes, when present at these loca
tions, are the message numbers within ##ERMS.

The message texts and table of relative displacements are located in the system pro
gram file. The assembly containing the messages has the name ##ERMS. Error codes
passed to #ERRPG index these tables. The message text is read from disk with a two
sector read. A message can overlap one sector boundary. After the two sectors are read,
the message is located in the buffer using the second byte of the table entry (Figure
3-16). The fourth byte of each message is the length of the message.

#ERRPG prints an up-arrow under the first improper character of input when a syntax
error occurs. On entry, the index register points to this position in the input line buffer.

The bad line is stored in the bad-line buffer on cylinder 4 of the system work area.
Refer to "System Work Area Equates-@WKAEQ" in the program listings for the disk
address of the bad-line buffer.

3-Byte Error Entry

1 2 I 3

Error code Line number

Note: Byte 2 is set to X' AO' when
no line number exists,

BR1056

Figure 3-15. Stacked Error Entry at $$ERSK

2-Byte Error Message Entry

1 2

Relative sector Relative displacement
displacement within sector

BR1057

Figure 3-16. Message Table Entry (#ERRPG)

When a syntax error occurs:

1. An up-arrow is printed under the first invalid character of input.
2. On entry, the index register points to this character in the input line buffer.
3. A full error message is printed if the enter-plus key is pressed.

Licensed Material-Property of IBM

#ER RPG

ERR050

INITIALIZATION

1. Call $LOADR to load 1/0 routines, if not in core.
2. Call DL21CS to read message table index to core.

No

Yes

ERR150

PROCESS SYNTAX ERRORS

1. Call $SPRNT to print card if not already printed.
2. Call $SPRNT to print an up arrow.
3. Call $DISKN to save the bad line.
4. Call $$PRES to enable keyboard if in keyboard

mode.

No

Yes

ERR500

PRINT ERROR MESSAGE

1. Index table using the error code.
2. Call DL21CS to read messages to core.
3. Call $SPRNT to print header.
4. Put in line number if requested.
5. Call $SPRNT to print the m_essage.

Yes

No

#GUFUD
Fig'ure 3-10
Via $CAIPL

Figure 3-17. Error Message Program (#ERRPG) Flowchart

Licensed Material-Property of IBM

BR1058

Program Organization 3-19

3-20

Program Interruption Processor-#EXMSG (Figure 3-18)

• #EXMSG prints a message on a program interruption, identifying the type of inter
ruption, and the line number where the program was interrupted.

• The assembly of #EXMSG contains the major source module (EXMSGS).

#EXMSG is loaded (Figure 3-11) via the $P AUSD routine in the nucleus when one of
the following conditions is present:

1. Console interruption-Printed line number refers to the statement last executed.
2. Pause statement-Printed line number refers to the pause statement being

executed.
3. Step mode-Printed line number refers to the statement last executed.
4. System stop, system reset, system start-Invokes maintenance utility aids.

#EX MSG

EXMSGS

DETERMINE INTERRUPTION SOURCE, PRINT MESSAGES, SET
INDICATORS

1. Enter $LOADR to load input and output routines if not in core.
2. Exit $R LOAD if Maintenance Utility Aid called.
3. Enter $SPRNT to print console interruption, step mode, or p·ause

statement message.
4. Enter C2DEC5 to convert line number.
5. Enter $SPRNT to print line number.
6. Set respective NUCLEUS indicators.

EXM155

WAIT FOR INPUT FROM KEYBOARD

1. Enter $UNMSK to unmask keyboard.
2. Enter $$PRES to enable keyboard input.

No A Yes
Start
Key

EXM170 EXM166

PRIME AND LOAD #GUFUD PRIME AND RESTORE CORE

1. Set on appropriate indicators 1. Set on appropriate indicators in NUCLES. in NUCLES. 2. Enter $CAIPL to reload 2. Enter $RSTR to restore core #GUFUD and load input, out-
from disk. put routines.

#GUFUD
$ASTA Figure 3-22
Figure 3-12 Via $CAIPL

BA1059A
Figure 3-18. Program Interruption Processor (#EXMSG) Flowchart

Licensed Material-Property of IBM

\
I

)

Work File Update/Crusher-#GUFUD (Figure 3-22)

Page ofLY34-0001-1
Revised January 1972
By TNL LN34-0075

• #GUFUD updates the work file in the system work area and maintains the file in
line-number order.

While #GUFUD is waiting for the operator to complete the next line of input, the
crush and reorder portion packs the file by reorganizing the disk blocks that contain
segments of the file. #GUFUD attempts to keep these disk blocks in physical order,
utilizing as much space in each active block as possible by condensing the segments of

I the file. Either the keyboard IOCS (DEPRES), the card reader IOCS (DREADN), or the
predefined procedure line fetch routine (#GRAPR) accepts an input statement or com
mand from the operator and concurrently builds a line in the primary input line buffer.

The assembly of #GUFUD contains these major source modules:

1. GUFCSH-Work file crush and reorder, Figure 3-22.
2. GURDIN-Common disk read subroutine, no flowchart.
3. DL4ICS-Work file IOCS, Figure 3-70.
4. GUFPAK-Pack core buffers subroutine, Figure 3-22.
5. GUFENT-Initialization, Figure 3-22.
6. GCPACK-Pack BASIC program statement subroutine, no flowchart.
7. GUFUPD-Work file update, Figure 3-22.

Figure 3-19 illustrates the usage of core, initially containing initialization and file
update routines, as disk 1/0 buffers. These buffers are referred to as CBI, CB2, CB3,
and CB4. The fifth buffer is used by the subroutine that packs the contents of the first
four buffers.

GU F RCP (lists and messages)
GU FENT
(initialization)

GUCB1
(disk 1/0 buffer-CB1)

ocoo

GUU110
iline insert-_llilrt 1l

GUCB2
-I (disk 1/0 buffer-CB2)

GCPACK GUCB3
(pack BASIC statement) (disk 1/0 buffer-CB3)

(unused) GUCB4
(disk 1/0 buffer-CB4)

GUU122 GUPCWA
(line insert-part 2) (pack work area)

GUFCSH
(work file crush and reorder)

GURDIN
(common disk read subroutine)

DL41CS
(work file logical IOCS)

GUFPAK
(pack core buffers subroutine)

GUPCIT (core index table)

GUFUPD
(work file update)

1COO
GCPBFR
(secondary input buffer)

1000
GUFIT
(file index tabl'l-FIT)
(3 sectors)

1 FFF

Figure 3-19. Work File Update/Crusher Core Map

Program Organization 3-21

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

3-22

The core index table (CIT) contains four 4-byte entries, one associated with each of
the four core buffers. The content of each entry is:

I. Byte I-Relative sector displacement into the work file of the disk block in this
buffer.

2. Bytes 2 and 3-Highest line number in this buffer.
3. Byte 4-Unused or free bytes in this buffer.

Initialization-GU FENT

The initial entry to #GUFUD contains a branch to the initialization routine (GUFENT).
The functions performed by this routine are detailed in Figure 3-22. The area occupied
by GUFENT is used as disk 1/0 buffers by other sections of #GUFUD, after initializa
tion is complete (Figure 3-19).

Three indicators in the system communications area (NUCLES) determine the opera
tion to be performed on the input:

1. $FUIND-A new or replacement line is to be placed in the work file. #GUFUD
expects a seven-byte statement header (Figure 3-21) in the primary input buffer
(X'0600'). Following the header, in the eighth byte of the secondary input
buffer (X'IC00'+7), #GUFUD expects either a syntax-checked BASIC program
statement, a syntax-checked data file line, or a procedure file line.

2. $FDIND-A parameter list of line numbers is to be deleted. #GUFUD expects
the presence of a delete parameter list (Figure 5-26) in the secondary input buffer
(X'lCOO').

3. $FCIND-A single line number is to be deleted. #GUFUD expects the two-byte
binary line number, of the statement to be deleted, to be present in the fifth and
sixth bytes of the primary input buffer (X'0600'+4).

If all three of the preceding indicators are off, only crushing and reorder operations are
performed. Work file update operation is bypassed.

Pack BASIC Program Statements-GCPACK

If a BASIC program statement is being inserted (addition or replacement) in the work
file, the GCPACK subroutine is executed to pack the statement. This packing operation
is performed on the statement after it has been moved to the secondary input buffer.

Repetitions of characters in the statement are packed before the statement is written
to the work file. When a character is repeated more than twice, all but the first character
is replaced by a one-byte count of the additional repetitions of the character. This count
byte can be recognized by the fact that it cannot equal or exceed X'I C' (end-0f-statement
code), the lowest valid functional character. The range of the repetition count byte is
X'02' thru X'IB'. If the repetition count exceeds X'IB', more than one repetition
sequence is generated (Figure 3-20). After the line is packed, the byte count of the
packed' line is stored in the statement header.

The core area occupied by GCP ACK is also used as disk 1/0 buffers after initialization
is complete (Figure 3-I 9).

Work File Update-GUFUPD

This routine adds, replaces, or deletes a single statement (line), or deletes lines specified
by a list of line deletion parameters. The file index table (FIT) in high core is searched,
by line number, to locate the first affected disk block. This disk block is read into CB I
and the next two logically sequential disk blocks are read into CB3 and CB4. The disk
block in CBI is searched for an equal or high line number. (Equal effects a line deletion
or replacement; high effects a line addition.)

Licensed Material-Property of IBM

' ' I

IAI B sl 10 C's I 30 D's I 36 E's lrnsl

E
I I I I I //
c c c c 0 c c c c c 0

2 2 3 9 4 B 4 4 5 B 5 7 c

Repetition Count

SDF* Line No. Type

2 3 4 5 6 7 7-Byte Input Line Header

Length----"

Segmentation Code

X'OO' (not used)------'

Binary Line Number--------'

Statement Type Code------------'

*Segment Descriptor Field (count includes itself and EOS if there is one)

BR1061

Figure 3-20. System Work File (Packed Data)

The four functional operations performed by the work file updater are:

• Single Line Deletion. Adjust the CIT to reflect the additional free space in CBI. Pass
the core address of the first (primary) segment in the line to the pack core buffers
subroutine. The packer physically deletes the line (all segments).

• Line Addition. Line segments are shifted from CBI into CB2 to provide space for
the new line. Each block is maintained in ascending line number order. The new line
may require division into two segments-one in CBI and one in CB2. In this case, the
primary segment is moved to CBI, segments in CB2 are shifted to the right, and the
secondary segment is moved to CB2. After the new segments are moved to the buffers
and the CIT is adjusted to reflect their status, the buffers are packed by the pack core
buffers subroutine.

Note: Part 1 of the line insertion routine (GUUl 10) may be overlayed by data being
moved to CB2 by part 2 of the routine (Figure 3-19).

• Line Replacement. Processed as a single line deletion followed by a line addition.

• Deletion of a Range of Lines. Deletion of a range of lines differs from single line
deletion in these respects: The delete range indicator is set for the pack core buffers
subroutine. Consecutive passes are made through work file update (GUFUPD) for
each range of line numbers in the parameter list. When the parameter list is com
pletely processed, #GUFUD is reloaded to make a second pass through initialization
(GUFENT) and print the ready message.

Program Organization 3-23

Licensed Material-Property of IBM

3-24

Work File Crush and Reorder-GUFCSH

This routine is executed following the completion of a task by work file update and
while the system is waiting for the completion of a statement or command input
operation.

The FIT in high core is searched, always from the beginning, to locate the first active
disk block containing more than eight bytes of free space. If such a block is located, that
block and the next two logically sequential disk blocks are read into CB 1, CB2, and
CB3. After the CIT is updated, the buffers are packed by the pack core buffers sub
routine. The preceding operation is referred to as a single crushing operation.

Successive crushing operations cause free space to be moved to the logical end of the
work file. Any scan of the FIT that does not locate a disk block containing excessive
free space indicates the work file is completely crushed (packed).

Note: Free space in the last logical block of the file is not considered.

When the work file is completely crushed, the reorder section (GUFRDR) is executed
to resequence the active disk blocks into physical order. Physical order means that disk
blocks are in ascending line number order at consecutive, ascending relative disk addresses
within the work file. Logical order means that the disk blocks are chained together so
that they can be accessed in ascending line number order. Chaining is provided by the
FIT and by the linkage code in the first byte of each disk block.

To reorder the file, the FIT in high core is searched, always from the beginning, until
two consecutive entries are found pointing to disk blocks out of ascending order. Four
disk blocks are read into CBI thru CB4. These disk blocks are those referenced by four
consecutive FIT entries, where the two in the center (CB2 and CB3) are the two found
out of sequence on the search. ·

The physical location references in the FIT, for the last three disk blocks read in, are
sorted into ascending order. The physical location reference of the first disk block can
not be changed because it is referenced by a linkage code in a disk block which is not
available at this point. All four disk blocks are written to the physical disk locations
specified by the sorted FIT entries. As each is written, it is linked to the disk location
of the block that follows it. The preceding operation is referred to as a single reorder
operation.

Successive reorder operations cause the work file to be closer to being in physical
order. Any scan of the FIT that does not locate an out-0f-sequence condition in the
file indicates the work file is completely reordered.

Checks for input line complete (GUFSCL) are made before each crushing or reorder
operation. If the statement or command input is complete, the command analyzer
(#ECMAN) is loaded via the system nucleus. If a blank line or card is encountered, input
is reenabled, and crushing/reordering continues. Successive crushing or reorder operations
continue until input is complete or the work file is completely reordered.

Figure 3-21 is a simplified flowchart of the crush and reorder operations.

Pack Core Buffers Subroutine-GUFPAK

The packing subroutine is used by both work file update and work file crush and reorder
to pack the disk blocks in CBI through CB4 and write them to the work file. Packing the
core buffers means moving the free space from the first three buffers to the end of the
fourth buffer by shifting line segments toward the first buffer. The disk blocks in the
buffers are always in ascending line number order. The packing subroutine also updates
entries in the file index table (FIT) to reflect changes made to the disk blocks.

Licensed Material-Property of IBM

)

)

Process line
(syntax check,
perform
function).

No

Start
accepting
a new line.

#EC MAN
Figure 3-24

'Yes

GUFCSH

Perform
work file
update.

Yes

Yes

No

No

Figure 3-21. Work File Update, Crush, and Reorder Operations

Licensed Material-Property of IBM

Perform a
single
crushing
operation.

Perform a
single
reorder
operation.

BR1062

Program Organization 3-25

5

3-26

Two address pointers are used to perform the packing operation. One address references
the start of the first free space in the buffers. The other references the start of the next
line segment following the free space. The second address is incremented past any secon
dary segments of a deleted line, or past deleted lines, when deleting a range. It may
become necessary to read in more disk blocks, in logical line number order, to effect a
deletion. A work area (GUFCWA) is used during the packing operation as an interme
diate holding area as the buffers are being condensed (packed).

Following a single pass through the packing subroutine, CBI, CB2, CB3, and CB4 may
contain line segments (always in ascending line number order). Only the CB's containing
active segments are written back to the work file.

FIT entries may become null (due to line deletions), be activated (line addition; one
entry only), or be modified (changes in line number and/or free space).

#GU FUD

GU FENT

CHECK SYSTEM STATUS AND
INITIALIZE FOR REQUESTED FUNCTION

1. Mask inquiry requests.
2. Call $SPRNT to wait if in keyboard mode.
3. Call $LOA DR to read in 1/0 routines if they're not in core.
4. Call $SPRNT to print 'FUNCTION INTERRUPTED' if appropriate.
5. Call $SPRNT to print READY if appropriate.
6. If in utility mode, or work file not defined, or contains a program-

generated data file, set for no crushing. ------------+--
7. If FIT not in core, call $DISKN to read it in.
8. If a delete list passed, -------------------r----_....J
9. Move primary input buffer to secondary input buffer if work file

to be updated.
10. Check for potential automatic line number overflow; if so, and card

NUM input, give internal error message via $SPRNT. If so, and card
input, set exit to $CAERK to load #ER RPG.

1--.i. .. 11. Call $$PRES to enable input if in key mode.
12. If no update required, call $DISKN to wait for disk operation to complete. _______________________ ,._ ___ .. .-J

13. If a BASIC statement to be inserted, call GCPACK to pack it.

GUFUPD

UPDATE THE WORK FILE

1.
2.
3.
4.
5.
6.

7.

8.
9.

10.

11.
12.
13.

Search the FIT for the specified line number.
Call DL41CS to read the affected data blocks.
Search the data blocks for the specified line number.
Ignore deletes of non-existent line numbers. ---------'"t"-
lf delete of existing line, go initialize packing routine .. ------+----~
If a replacement of line, set pointers to delete it and handle as a
new line.
If a new line, insert it in data block 1 or null data block and
initialize packing routine.
Execute data block packing routine. ------------+----... ..i
If a delete list,
If in card input mode:
a) Unmask inquiry request,
b) Re-mask inquiry request,
c) Call $$PRES to initiate card read,
d)~~~~~~~~~~~~~~~~~~~-+~~~~

If not end of delete list, increment to next line number. -----'""""'
If end of list, exit to $CARPL to load $GUFUD.
Exit to $CAERK to load $ER RPG if errors.

2

BR1063.1

Figure 3-22. Work File Update/Crusher (#GUFUD) Flowchart (Part 1of2)

Licensed Material-Property of IBM

)

GUFCSH

CRUSH AND/OR REORDER THE WORK FILE
UNTIL INPUT COMPLETE

1-----+~ 1. Unmask inquiry requests if key input.
2. Call $$COBS to set input status if card input.
3. If input not complete:

a) Call $DISKN to wait for disk operation to complete,
b) Mask inquiry requests,
c)

4. Exit to $CAERK to load $ER RPG if errors have occurred.
5. If card input and blank line entered,
6. Call $$PRES to enable input if blank line entered and key input
7. If not a blank line entered:

a) If utility mode, load and execute $ECMAN via $RLOAD,
b) If conversational mode, load and execute $ECMAN via $BLOAD. 1------+-- 8. Search active portion of FIT for null spaces.

9. If null spaces found:
a) Cal I D L4 I CS to read in effected data blocks, }
b) Initialize packing routine, ---------+-~
c) Execute packing routine,
d)

10. Search active portion of FIT for data blocks out of physical order.
11. If data blocks out of order:

a) Call DL41CS to read in 4 data blocks,
b) Order the FIT entries data block displacements,
c) Update the data blocks linkage indicators,
d) Call DL41CS to write the data blocks to the work file.

GUFPAK

DATA BLOCK PACKING ROUTINE

1. Primed with from 1 to 4 data blocks to be packed.
2. Save return to calling section.
3. Pack the data blocks by removing the null spaces.
4. If the range delete indicator is on, delete lines within range.
5. Update the file index table.
6. Call DL41CS to write the active data blocks back to the work file.

Return to
Calling Sequence

Figure 3-22. Work File Update/Crusher (#GUFUD) Flowchart (Part 2 of 2)

3R1063.2

Program Organization 3-27

Licensed Material-Property of IBM

Page of LY34-0001-1
Revised January 1972
By TNL LN34-0075

Length Field Name

1 Keyword length

1 Indicators

1 Indicators

3-28

Command Analyzer-#ECMAN (Figure 3-24)

• #ECMAN analyzes BASIC system input and loads the program required to process
the requested function.

• The assembly of #ECMAN contains the major source module, ECMANL.

All input from the keyboard or card reader is analyzed by #ECMAN, except for blank
lines, or input at execution time, to user written BASIC programs. #ECMAN is loaded
by the file update program (#GUFUD) when a completed input record (EOS detected)
exists in the input line buffer. The following actions are taken:

1. Input starting with a keyword causes the corresponding keyword program to be
loaded and executed. #ECMAN scans a table, containing one entry for each key
word, for a match with the input line. The DPL used to load the keyword pro
gram is built from fields in this entry (Figure 3-23).

2. Input starting with a line number causes the appropriate syntax checker program
I (#SFSYN, #SPSYN, or #SDSYN) to be loaded and executed.
3. If the first character of input is a command key, #EFKEY (Figure 3-61) is loaded.
4. Invalid lines, and o!her error conditions, cause the error program (#ERRPG) to be

loaded and executed. ·
5. If DCALC-requested code is on the first text byte of primary input buffer, DCALC

is invoked.

Field Description Length Field Name Field Description

Count of letters in the 2 Relative disk Displacement of the first
keyword= n. n + 7 =length address sector in the keyword pro·
of this entry. A length of gram relative to the start of
zero indicates end of table. the system program file.

X'80'-Work file can be 1 Sector count Count of sectors occupied
program generated. by the keyword program.

X'40'-Work file can be
protected. 1 Load address High-order byte of two-byte

X'20'-Work Hie must not core load address. Low-order

be empty. byte is always X'OO'.

X'10'-Work file must be
defined. n Keyword Actual keyword. This field

X'08' -Non-pause state
only.

is scanned for a match to
the input line buffer.

X'04'-Pause state only.
X'02' -Conversational

mode only.
X'01 '-Reserved.

X'80' -Reserved.
X'40'-Virtual memory

must be intact.
X'20'-Allowed in temporary

utility mode.
X'1 O'-Work file can be

data file.
X'08'-Virtual memory

overlayed.
X'04'-l/O routines

overlayed.
X'02'-Prime buffers with

work file.
X'Ol '-FIT overlayed.

Figure 3-23. Keyword Table Entry (#ECMAN)

Licensed Material-Property of IBM

)

)

)

)

#ECMAN

ECM200

ECM230

FILE LINE

Yes

Yes

#EFKEY
Figure 3-25
Via $RLOAD

No

1. Call C4BIN2 to convert line number to binary.
2. Put binary line number in header.
3. Check error conditions.

No

ECM405

#SP SYN
Figure 3-28.1
Via $BLOAD

ECM410

#SDSYN
Figure 3-28
Via $BLOAD

#ERRPG
Figure 3-17
Via $CAERK

Yes

#GUFUD
Figure 3-22
Via $CABLD

Call $SPRNT
to print
question mark

#GUFUD
Figure 3-22 Via
$CABLD or $CAIP

ECM110

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

CARD INPUT

1. Set EOS after last non-blank.
2. Insert automatic line number if in numeric mode.
3. Call $SPRNT to list card if not in no-list mode.

ECM500

POTENTIAL SYSTEM COMMAND

1. Call $SPRNT to list card' if in no-list mode.
2. Search table for valid keyword.

No

Yes

ECM580

SYSTEM COMMAND

1. Check if command allowed.
2. Call $DISKN to save FIT if

necessary.
3. Call $DISKN to prime buffers

if requested.
4. Set appropriate indicators.
5. Call $UNMSK to allow

interrupts.
6. Set $RLOAD DPL for this

command.

Keyword Program
Via $RLOAD

Figure 3-24, Keyword Table Entry (#ECMAN) Flowchart

Program Organization 3-29

Licensed Material-Property of IBM

3-30

Command Key Processor-#EFKEY (Figure 3-25)

• #EFKEY processes command keys I through I I

• #EFKEY resides in the system program file and is loaded behind the I/O routines in
core by the command analyzer (#ECMAN).

• The command key table (##CKTB) contains commands that are either IBM assigned
or assigned by the KEYS keyword program.

The command key table (##CKTB) has an entry for each of command keys I through
1 I . Commands in the table are either IBM assigned or assigned by the KEYS keyword
program. Figure 5-28 is a list of the IBM assigned command key functions. See Fig
ure 5-27 for the format of the command key table.
If the command length in the table is nonzero, the command text for the specified

key is passed to the command analyzer (#ECMAN) in the input line buffer. If the
command length is zero, the IBM assigned function for command key I, 4, or 7
(whichever key is specified) is processed by routines in #EFKEY.

Licensed Material-Property of IBM

)

)

#EFKEY

READ TABLE

Call $LOA DR to read the
command key table ##CKTB
into core.

EFU850

Command
length= 0

No

Yes

GET COMMAND TEXT

1. Find the command text
in the command key table
##CKTB.

2. Move the command text
to the input line buffer.

EFU990

PRINT THE COMMAND

Call $SPRNT to print the
command on the system
printer.

#ECMAN
Figure 3-24
Via $RLOAD

EFUK07

PROCESS KEY 7

1. Create a default file
name.

2. Move 'EDIT' plus file
name to the input line
buffer.

EFUK01 1
PROCESS KEY 1

Set the #VODKA indicator.

EFUK04

PROCESS KEY 4

Call $SPRNT to print the
input line buffer up to the
last up-arrow or EOS.

#GUFUD
Figure 3·22
Via $CABLD

Figure 3-25. Command Key Processor (#EFKEY) Flowchart

Licensed Material-Property of IBM

Key 7 Command
key number

Key 1

Key 4

BR1066A

Program Organization 3-31

3-32

BASIC Statement Syntax Checker-#SFSYN (Figure 3-27)

• #SFSYN examines every BASIC statement for valid syntax.

• The assembly of #SFSYN contains the source module, SFSYNC.

If a syntax error is detected, #ERRPG is called to print an up-arrow under the first
invalid character of the statement. The index register is loaded with the address of this
character. An error code is also loaded into $CAERR in case the user pressed the enter
plus key, requesting a full text message.

If no error is found, a one-byte type code is placed in the byte immediately preceding
the BASIC statement in the input line buffer.

#SFSYN scans a statement branch table (Figure 3-26) for the address of one of 18
routines used to syntax check statements. The first two nonblank characters after the
line number are used in this scan when a statement keyword is in evidence. For those
exceptions where no keyword exists (IMAGE, non-LET assignments), a direct branch
is taken to the proper syntax checking routine.

The arithmetic expression routine includes a search through an intrinsic function table
that contains 23 entries. Each entry contains the three-byte name of an intrinsic func
tion. The arithmetic expression routine also uses an eight-byte pushdown list to validate
nested subexpressions. Each single-byte entry in the pushdown list indicates the validity
of a comma appearing in the remainder of the subexpression.

4-Byte Statement Branch Table Entry

1 l 2 3 l 4

Keyword prefix Routine address

BR1067

Figure 3-26. Statement Branch Table Entry (#SFSYN)

Licensed Material-Property of IHM

)

)

#SF SYN)
SFS004

Look At First
Two Characters After
Statement Number

Yes
IMAGE

No

SFS006

LET No

Assignment

Yes

1

PROCESS BASIC STATEMENT

1. Scan statement from the leftmost character to the
EOS symbol terminating the statement.

2. Set type code at $$TPCD.
3. Set character pointer (XR) to first invalid character

(except in substring operands).
4. If STR typecode is encountered

r
1

Exit to #BLOAD (if initial) or branch J
directly (if not initial) to load #STROV.

l
PROCESS SUBSTRING OPERANDS

1. Scan operand field from left
parenthesis to right parenthesis
inclusive.

2. If operand field valid, return with SFSERR

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

SEARCH BRANCH TABLE BASED ON FIRST TWO J CHARACTERS

1. PRINT & PRINT USING SFSPRS

2. FOR SFSFOS

3. NEXT SFSNES

4. LET SFSLES
~

5. IF SFSI FS

6. GOTO& GOSUB SFSGOS

7. READ, REM, RESTORE & RETURN SFSRES
~

8. INPUT SFSI NS

9. END SFSENS

10. PAUSE SFSPAS
. ...

11. DIM SFSDIS

12. DATA SFSDAS

13. STOP SFSSTS

14. PUT SFSPUS

15. GET SFSGES

16. DEF SFSDES

17. CLOSE ?FSCLS

1

MAT Yes

Statement
SFSMAT

l Exit to $BLOAD l No To Load #SFOVR

#SFOVR

l9
PROCESS BASIC MAT STATEMENTS

1. Call $BLOAD to load MAT routines.
2. Scan statement from left most character to EOS

terminating statement.
3. Set type code at $$TPCD.
4. Set character pointer (XR) to first invalid

character.

]

]
No~ Statement

Valid

SFSUPD XR pointing to the next character
r Load XR (Error Pointer) to $CAERR J

1
past the operand field. Set $1NDR2 Indicator to $FUIND

3. If operand field invalid, return &$READY
with XR pointing to the first
invalid character.

#GUFUD

8
#ERRPG
Figure 3-17 Figure 3-22
Via $CAERK Via $CABLD

Figure 3-27. BASIC Statement Syntax Checker (#SF SYN) Flowchart

Program Organization 3-33

Licensed Material-Property of IBM

Data Syntax Checker-#SDSVN (Figure 3-28)

• #SDSYN examines data entered when operating under the EDIT DATA command.

• The assembly of #SDSYN contains the source module, SDSYNC.

If a syntax error is detected, #ERRPG is called to print an up-arrow under the first
invalid character of the statement. The index register is loaded with the address of this
character. An error code is loaded into $CAERR in case the user depresses the enter-
plus key, requesting a full text message. ·

If no error is found, each character or numeric constant is converted to internal form
in the secondary input buffer. This buffer is written to the work file by #GUFUD (Fig
ure 3-22). The secondary input buffer contains a header preceding the statement. This
header contains the length of the data and header in the secondary input buffer.

#SDSYN

SDS010

INITIALIZE DATA SYNTAX CHECKER

1. Set primary input buffer pointer to $XRSAV.
2. Test for mandatory blank.
3. Initialize secondary line buffer header.
4. Set routine for long precision if required.
5. Increment past leading blanks.

SDS070

No

SDS080

TEST AND TRANSLATE CHARACTER CONSTANT

1. Initialize character constant field in secondary line
buffer.

2. Increment line count by character length.
3. Test for maximum buffer length.
4. Test constant syntax as each character is moved to

secondary Ii ne buffer.
5. Exit to $CAERK on errors to load #ER RPG.

VALID DELIMITER SEQUENCE SCAN

1. Test for valid delimiter sequence.
2. If at end of line, set valid line indicator and exit to

$CARPL to load file update routine.
3. If valid sequence increment line pointer and recycle

loop until end of line.
4. Exit to $CAERK on errors to load #ER RPG.

#GUFUD
Figure 3-22
Via $CARPL

No

SDS300

TEST AND TRANSLATE ARITHMETIC CONSTANT

1. Initialize loop.
2. Initialize arithmetic constant field in secondary line

buffer.
3. Increment line count by constant length.
4. Test for maximum buffer length.
5. Test syntax of the constant's mantissa as it is

moved to secondary line buffer.
6. Test syntax of the exponent if it exists.
7. Enter C4BIN2 to convert exponent to binary.
8. Adjust exponent and test validity.
9. Exit to $CAERK on errors to load #ER RPG.

SDS600

PACK THE ARITHMETIC CONSTANT

1. If mantissa is zero, set status to positive and
exponent to maximum low.

2. Pack the constant mantissa in place.
3. Insert constant's exponent.
4. If long precision, set long precision indicator

in item.

Valid No

#ERRPG
Figure 3-17
Via $CAERK

Figure 3-28. Data Syntax Checker (#SDSYN) Flowchart

3-34

Licensed Material-Property of IBM

)

Procedure Line Checker-#SPSYN (Figure 3-28.1)

Page of L Y34-0001-l
Added January 1972
By TNL LN34-0075

• #SPSYN arialyzes procedure lines when operating under the EDIT PROCEDURE
command.

• The assembly of #SPSYN contains the major source module, SPSYNC.

If a format error is detected, #ERRPG is called to print an up-arrow under the invalid
character of the statement. The index register is loaded with the address of this character.
An error code is loaded into $CAERR in case the user depresses the enter + key to request
a full text message.

If no error is found, each character is moved to the secondary input buffer. This
buffer is written to the system work file by #GUFUD (Figure 3-22). The secondary
input buffer contains a header preceding the statement. This header contains the length
of the procedure line and header in the secondary input buffer.

#SPSYN

SPSYNC l
INITIALIZATION, CHECK DELIMITERS

1. Point to start of input line buffer.
2. If a mandatory blank is not present, move an error code to

$CA ERR and exit to $CAERK.

SPS020 l
BUILD SECONDARY LINE BUFFER, ADJUST POINTERS

1. Zero header of temporary buffer.
2. Move a character from the input line buffer to temporary

buffer.
3. Update character count in the SDF header.
4. Exit to SPS 100 if EOS character.
5. Update the buffer pointers for the next character.

SPS100 l
SET NUCLEUS INDICATORS

1. Set the valid line indication for #GUFUD.
2. Move the temporary buffer to the secondary line buffer.

l
#GUFUD
Figure 3-22
Via $CABLD

Figure 3-28.1. Procedure Line Checker (#SPSYN) Flowchart

Program Organization 3-34.1

Licensed Material Property of IBM

Page of LY 34-0001-1
Added January 1972
By TNL LN34-0075

3-34.2

This page is intentionally left blank.

Licensed Material-Property of IBM

)

Conversational I /0 Routines-#DPR IN

• This program contains two 1/0 subroutines: DPRINT and DEPRES. Their functions
are described in the following paragraphs.

Matrix Printer IOCR-DPR/NT (Figure 3-29)

• This routine provides six print 1/0 functions.

• If an operation is not in progress when a call is made to this IOCR, the operation is
started and a return is made to the calling program.

• If a previous operation is in progress, the IOCR does not return until that operation
is completed error free and the new operation is started.

• The calling sequence for DPRINT is:

Calling sequence for system printer:

B $SPRNT

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

Calling sequence for a direct call to the matrix printer:

B DPRINT

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

• No checks are made for validity of the PPL.

1/0 Functions-DPRINT

Print: The data to be printed must reside in core and be contiguous. Any length of data
up to 256 characters can be printed by one call. The IOCR starts printing the data at the
current print element position. If the programmed right margin is hit, the print element
is returned to the programmed left margin and the form is advanced to the next line.
Printing is then completed on the next entry to DPRINT. Upon completion of the print
function, the print element is positioned at the next print position after the last character
is printed.

Print and Return Element: This operation is the same as print, except the print element
is positioned at the programmed left margin on the next line following the completion
of print.

Return Element: The print element is positioned at the programmed left margin and the
form is advanced to the next line.

Backspace and Index: This operation moves the print element left 0ne print position
and indexes (advances) the forms one line. If the left margin is hit, no more spacing is
done.

Backspace: This operation is the same as backspace and index except no index is
performed.

Wait and Check for Errors: To allow printer overlap, a special wait function is provided.
The IOCR waits for the previous operation to be completed and then checks for errors.
If the previous operation hit the programmed right margin, a new operation to continue
printing on the next line(s) is started and completed before a return is made.

Program Organization 3-35

Licensed Material-Property of IBM

3-36

DP RI NT

Walt for
Previous Op

DPE150

DP0300

Process
end of
forms.

Update
position
of MP
head.

SIO
Start
requested
function.

Yes

Yes

DPERPE

Sense
device
status.

Halt on
F lrst Error

Set
Indicator
$HADER,
hard error.

Figure 3-29. Matrix Printer !OCR (DPRINT) Flowchart

Licensed Material-Property of IBM

Yes

BR1071

Keyboard /OCR-DEPRES (Figure 3-30)

• DEPRES handles input from the keyboard.

• DEPRES is divided into two sections:

1. Call section-Enables interruptions and unlocks the keyboard in preparation
for line input. It sets the interruption address to the interruption section. When
a key is pressed, the interruption section is entered on the keyboard interruption
level.

2. Interruption section-Saves the system status (BR, XR, PSR, ARR, Pl-IAR)
and handles the data input from the keyboard. Upon completion of the input
line, $KYBSY is set to zero, indicating the line is complete. The keyboard is
then locked (inquiry request is never locked).

• Entry Points. When line input or a command key is desired by the calling program,
the call section of DEPRES is called, unlocking the keyboard and setting the line
input indicator ($KYBSY): B DEPRES. If only a command key or a function key
is desired, $CMDKY is set on by the calling program, indicating to the keyboard
IOCR that only command keys and interruption requests are to be recognized.

• Exits. Exit from the call section is to the calling program; exit from the interruption
section is to the interrupted program.

• Data parity is checked.

Key Functions (DEPRES)

Data Keys: The character is placed in the input line buffer and printed on the system
printer.

Tab Keys: If the current position in the line buffer is pointing within an existing line,
the old character is printed. If it is not, a blank is printed. This positions the carrier one
space to the right. If the key is held down, the typama tic feature is activated and the
spacing operation is repeated until the key is released.

Backspace Key: If the system printer is the matrix printer, and if this was the first back
space for the current line, the carriage is indexed and backspaced one position. Other
wise, the index feature is not executed. If the key is held down, the typamatic feature is
activated and the backspace operation is repeated until the key is released.

Return Key: The carriage is returned on the system printer and $KYBSY is set to zero,
indicating the line is complete. The keyboard is then locked.

Erase Key: ERASE is printed, and the carriage is returned on the system printer, allow
ing the line to be reentered.

Inquiry Request Switch: Depending upon the mask status, the current operation is
aborted. This switch, on the keyboard console, cannot be locked.

Program Start Key: The data is sensed and saved. If it is the start of a line, the auto
line is printed. This key is also used to start execution when the system is in pause mode.

Enter-Minus Key: Printer (if in use) is indexed one line.

Enter-Plus Key: Used to invoke the second-level error message.

Command Keys 1 through 11: If the print element (or CRT cursor) is at the left margin,
the command key indicator is placed in the input line buffer.

Other Command Keys: If the CRT is present, DSPLYN is called to perform the function
requested.

Program Organization 3-37

Licensed Material-Property of IBM

3-38

Keyboard
Interrupt

Sense
keyboard.

DE PRES

Set
mer gin
addresses.

DE0010

Set I nterruptlon
address to
DEINTR
routine.

Unlock
and
enable
keyboard.

Set
keyboard
busy flag
In NUCLES.

DE0020

Return to
Calling
Program

Error Procedures

A data register parity error is retried once. The system halts upon such an error, indi
cating to the user that a parity error has occurred. The system start switch must be
activated to continue. Two successive parity errors cause a system-generated hard halt.
An IPL must be initiated to recover from a hard halt.

Process
parity
error.

$SPRNT 3-9

Print character
on system
printer.

DEU010

Update position
of MP head
and next data
address In buffer.

DE EXIT

Enable
keyboard.

Return to
Calling
Program

DEFOOO

Perform
function.

$$PYCD
In DSPLYN

Figure 3-30. Keyboard IOCR (DEPRES) Flowchart

Licensed Material-Property of IBM

Yes

Move
Indicator
to line
buffer.

BR1072

)

Card Reader 1/0 Routine-#DREAD (Figure 3-31)

• #DREAD provides two functions:

I.
2.

Reads a card into the input line buffer.
Tests to see if the card reader is busy.

• This routine overlays the keyboard routine (DEPRES) in core when the input mode
is cards rather than keyboard.

• Entry points:

I. DREADN-Initiates the reading of a card. This entry is the same as enabling
and unlocking the keyboard when keyboard is desired (refer to "Keyboard
IOCR-DEPRES").

2. CRDBSY-This entry is to test completion of the card read function.

#DREAD is called into core by the work file update/crusher program (#GUFUD), over
laying the keyboard routine (DEPRES), when card input is specified.

The calling program branches to DREADN in #DREAD to read a card in the card
reader. A check is made to see if the card reader is busy. If the card reader is busy, a
branch is made to the card busy routine (CRDBSY). If the card reader is not busy, and
is ready to operate, the reading of a card is started. #DREAD exits to the calling pro
gram while the card is being read. The calling program must then reenter #DREAD at
entry point CRDBSY to test for successful completion of the card read function.

CRDBSY is entered to see if the card reader is busy and if an error is indicated in the
card reader. If it is not busy and no error is indicated, #KYBSY indicator is set to 0,
indicating completion of the card input, and return is made to the calling program. If
the card reader is not busy and an error is indicated, the error pending indicator is set
on, and the CRDBSY routine is reentered to retest for the error indication. A soft halt
results if there is a compare error or a transport jam. The error test is made for a maxi
mum of five times. A hard halt results after the fifth try if an error still exists.

Program Organization 3-39

Licensed Material-Property of IBM

3-40

DREADN

SIO
Read card
Into primary
Input line
buffer.

DR0600

Return to
Call Ing
Program

Yes

No

::!oft Halt

No

CRDBSY

Sense
device
status.

If error ls
pending, build
error h I story
log entry.

Set
Indicator
for error
pending.

Figure 3-31. Card Reader IOCR (#DREAD) Flowchart

Licensed Material-Property of IBM

Yes

No

Yes

DR0600

Return to
Call Ing
Program

Set
Indicator
for keyboard
not busy.

DR0600

Return to
Calling
Program

Set
hard error
Indicator.

$DISKN

Walt call to
log error
and hard
stop,

Hard Halt

3-7

BR1073

)

Procedure File Line Processor-#GRAPR (Figure 3-31.1)

• #GRAPR performs 3 functions:

1. Reads a procedure file line into the input line buffer

2. Simulates a card reader not busy condition

Page ofLY34-0001-1
Added January 1972
By TNL LN34-0075

3. Places READ KEY in the input line buffer after all the lines in the procedure
are processed.

• This routine overlays the keyboard routine (DEPRES) when the input mode is
procedure file rather than keyboard or cards.

• Entry points to #GRAPR are:

1. GRAPRO-Reads one SDF unpacked line. This entry is the same as enabling
and unlocking the keyboard when input is from the keyboard.

2. $$CDBS-Simulates a test for completion of the card read (not busy).

#GRAPR is loaded to main storage by the work file update/crusher (#GUFUD) and
overlays the keyboard routine (DEPRES) when PROCEDURE FILE is specified.

The calling program branches to GRAPRO to read a procedure file line. #GRAPR
extracts sequential procedure text lines unpacked and stripped of SDF fields and puts
them in the input line buffer. The index register (@XR) points to the next binary line
number. #GRAPR returns to the calling program after the procedure line is in the
input line buffer.

$$CDBS is entered to simulate a check for a card not busy condition. The indicator
#KYBSY is reset to zero to indicate a not busy status. #GRAPRthen returns to the
calling routine.

Program Organization 3-40.1

Licensed Material-Property of IBM

Page of L Y34-0001-1
Added January 1972
By TNL LN34-007 5

3-40.2

#GRAPR

GRAP RO

INITIALIZE, PRIME BUFFERS

1. Save and load registers.
2. Set GRANDA to $NEXTB.
3. Set DL2RAD to next sector in temporary SDF

work area.

GRA005

READ NEXT SDF BUFFER

1. Mask interrupts.
2. Read the DB sector into core overlaying FIT.
3. Wait for disk operation to complete.
4. Point the index register to next line number.
5. Set GRASIZ to $DFDET.
6. Set $NEXTL to instruction to point index register to

current procedure line.

GRA300

DETERMINE STATUS OF LINE AND RETURN TEXT

1. If EOF found, move READ KEY to input line
buffer. ------------------t----1

2. Set an indicator for single or multiple segment.
3. Initialize to move text to input line buffer.
4. Move X'7B' {#) to input line buffer.
5. Scan across blanks to line number.
6. Move line number to input line buffer and print.
7. Scan across blanks to text of procedure line.
8. If the line number is disabled, move X'5C' (*)

to the start of the input line buffer.
9. Move the line text to the input l_ine buffer.

GRA220

ADJUST POINTERS FOR NEXT PROCEDURE LINE

1. If the end of buffer is detected, branch to
GRAGET to read the next DB sector.

2. Move displacement within the buffer for the
next line to $NEXTL.

3. Set #NEXTB to GRANDA.
4. Set $DFDET to GRASIZ.
5. Set nucleus INDR for GUFUDI to clear input

line buffer.
6. Restore index register.
7. Exit to GRAF IT subroutine to restore FIT

and unmask interrupts.

Return

$$COBS

SIMULATE CARD READ NOT BUSY STATUS

Set off $KYBSY in $KEYCD.

Return

Figure 3-31.1. Procedure File Line Processor (#GRAPR) Flowchart

Licensed Material-Property of IBM

\
I

)

CRT 1/0 Routine-#DSPLY (Figure 3-32)

• DSPLYN is the IOCR used for displaying output to the CRT.

• It is used in place of (or with) DPRINT. When the CRT is designated as the system
printer, #DSPLY is used. When both the matrix printer and the CRT are designated
as the system printer, DPRINT and #DSPLY are used.

• Calling sequences to #DSPLY are:

Calling sequence for system printer:

B $SPRNT

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

Calling sequence for a direct call to print on the CRT:

B DSPLYN

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

Calling sequence for a direct call to print on both the CRT and matrix printer:

B DSPYMP

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

Calling sequence used to clear the CRT screen:

B DSPCMD

• The address in the calling sequences must be relocated by the value in $EXFTR.

This routine is normally called via the nucleus interface $SPRNT, which decides the
device to be used for output. DSPLYN handles all functions used by DPRINT plus
additional features for the CRT. If these additional functions are used, the calling
program must know that the CRT is being used.

Printer/CRT Functions

• The following functions can be performed on the matrix printer and the CRT:

Print: Data is displayed starting at the current display position and continuing, line by
line, until all characters have been displayed.

Print and Return: This function is the same as print, except that the next position to he
displayed is at the start of the next line.

Return: The next position to be displayed is at the start of the next line.

Tab Left/Tab Left and Index: The CRT cursor (next print position) is moved to the left
(backspaced) one position. No indexing is done. If the cursor reaches the left position of
the statement and another tab left is issued, the cursor remains there.

Tab Right: The cursor is moved right the desired number of positions. If the physical
right margin is encountered, the cursor is moved to the left margin and the displayed
lines are indexed.

Wait: This function tests the CRT for errors.

• The following function is for CRT use only:

Roll Down and Print: The displayed lines are rolled down and the new data is displayed
on the top line. A maximum 64-byte character string can be used with this function.

Program Organization 3-41

Licensed Material-Property of IBM

3-42

DSPLYN

DSDOWN

Sense
device
status.

Set up error
history log
entry and
set error
pending
Indicator.

SID to
turn off
CRT;SIO
to turn on
CRT.

DSD150

Loop
tor
100 ms.

Turn on
hard error
Indicator.

DSPYMP

SIO

Set up
tor exit
to MP
IOCR.

Turn on
CRT; begin
buffer display.

DPRINT 3·29

Matrix
printer
IOCR,

Return to
Calling
Program

DS0250

Move all lines
down one line
position in
display buffer.

Clear top
line to
blanks.

Move
characters
to top line
In display
buffer.

Figure 3-3 2. CRT IOCR (#DSPL Y) Flowchart (Part 1 of 2)

Licensed Material-Property of IBM

Walt

Move
characters
to the display
buffer Incrementing
cursor position.

DSINDX

Index cursor
to next line
If right margin
Is reached.

Index cursor
to start of
next line.

BR1075.1

DS0100

Backspace
cursor 1
buffer
position.

Return to
Calling
Program

DSPCMD

Mask on
command
keys
13 to 16.

Set proper
Indicators
In nucleus
com mu nlcatlons
area.

DSP040

Clear display
buffer to
blanks, a line
at a time.

DSPOSO

Return to
Call Ing
Sequence

BR1075.2

Figure 3-32, CRT IOCR (#DSPL Y) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

Program Organization 3-43

344

Maintenance Program Load Trace-#:2:TRAC (Figure 3-33)

• #ZTRAC is called to print the program header of every program loaded by the system
nucleus (NBLOAD) when the branch in NBLOAD is active.

• To reverse the trace program to the opposite status, enter maintenance utility mode,
key in a T, and press the return key.

#ZTRAC is loaded and executed on each entry to NBLOAD before the requested pro
gram is loaded to core (see Figure 3-33). #ZTRAC is loaded to the same core address as
the requested program.

#ZTRAC reads the first sector of the program being loaded. The first six characters of
this sector are displayed on the matrix printer at the physical left margin.

#ZTRAC

#ZTRAC

READ SECTOR AND PRINT HEADER

1. Calculate 1/0 buffer address.
2. Read first SCTR of transient to 1/0 buffer (DKDISK).
3. Return printer carrier to hardware left margin, print transient header

and return to software left margin.

No

Yes

ZTRERR

ERROR RECOVERY

1. Set up OBR error entry.
2. Retry print operation.
3. If error occurs on retry, set $HRDER on in $101ND.
4. Set $ERPND on in $1NDR2 for error logging transient, NERLOG.

ZTR200

NBLRTN
Figure 3-14
in NBLOAD

Figure 3-33. Maintenance Program Load Trace (#ZTRAC) Flowchart

Licensed Material-Property of IBM

BR1076A

KEYWORD PROGRAMS

• Keyword programs are described in alphabetical sequence.

ALLOCATE Keyword Program-#KALLO (Figure 3-35)

• #KALLO defines data file attributes for the BASIC program in the work file.

• The assembly of #KALLO contains these major source modules:

KALLOC-Mainline logic, Figure 3-35
SVOLID-Search volume-ID table, Figure 3-76
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-78
SFINDF-Find library file, Figure 3-83
SURCHN-Search null directory, Figure 3-81
STUFID-User directory insert, Figure 3-80
DL2ICS-Disk logical IOCS, Figure 3-70

#KALLO will load #SPACK, Figure 3-86, when disk space can be obtained by packing
the file library. #SPACK loads, and returns to, #KALLO.

Functions of #KALLO are:

1. Build a user directory entry to reserve space for NEW, PERMANENT, DISK
files.

2. Update the work file 1/0 record with data file information from the command
parameters. This record is used at execution time by the GET/PUT routines to
define the 1/0 device and disk location, if the device is disk, for data files ref
erenced by the BASIC program.

KALLOC builds an entry for the system work file 1/0 record (Figure 3-34).

Hexadecimal Decimal
Length Description

Displacement Displacement

00 0 1 Device code
01 1 8 GET/PUT name
09 9 2 SCRATCH file size
09 9 6 Disk label
OF 15 8 Password
17 23 8 Filename
1F 31 1 Unused

Note: Each active entry must define a device code and GET/PUT
name. The content and meaning of the other fields depend
upon the device code,

BR1077

Figure 3-34. Entry for 1/0 Record

Program Organization 3-45

Licensed Material-Property of IBM

3-46

#KALLO

KAL500

SYNTAX CHECK THE COMMAND LINE

1. Call $DISKN to read the 1/0 record.
2. Exit to $CAERK to load #ER RPG if errors occur.
3. Call SUFFER to check the file-specification.
4. Call SALPHA to check the 1/0 filename(s).
5. Look up each parameter in keyword tables:

a) Check for duplicate parameters,
b) Check for conflicting parameters.

6. Call C48 I N2 to convert space specified.
7. Call SCSTRG to check file-header.

KAL100

SEARCH 1/0 RECORD AND INSERT ENTRY

1. Search 1/0 record for 1/0 filename(s).
2. Exit to $GAER K if errors.
3. If a permanent disk file specified,

1----_...,_..,.4, Set up new entry in 1/0 record.
5. Call $DISKN to write the 1/0 record.
6. Exit to $CARPL to load #GU FUD.

#GUFUD
Figure 3-22
Via $CARPL

PROCESS PERMANENT DISK FILE

1. Exit to $CAERK if errors.
2. Resolve password and disk-label.
3. If an old file, --------------i.--..1
4. Call SFINDF to search for specified file.
5. If file found exit to $GAER K.

i------~ 6. If no disk-label specified (Two-Star file),
call SFINDF again to find first'/'next' disk.

7. Call DL2-ICS to read the null directory.
8. Call SURCHN to search for null space in file

library.
9. If contiguous space not available:

a) If total space available but fragmented
b) If no disk-label specified, -----------
c) Exit to $CAERK to load #ER RPG.

10. Call STUFID to make new user directory entry.
11. Call DL21CS to write the null directory.
12. Call DL21CS to write an end-of-file sector.

Figure 3-35. ALLOCATE Keyword Program (#KALLO) Flowchart

Licensed Material-Property of IBM

#SPACK
Figure 3-86
Via $RLOAD

BR1078

)

)

CALL Keyword Program-#KCALL (Figure 3-35.1)

• #KCALL calls procedure files from the user library.

r. The assembly of #KCALL contains these major source modules:

KCALLN-Mainline logic, Figure 3-35 .1

GRABIT-Work file input, Figure 3-74

SFINDF-Find library file, Figure 3-75

SVOLID-Search volume-ID table, Figure 3-76

SGETDB-Search password directory, Figure 3-77

SRCHFN-Search user directory, Figure 3-78

The functions of #KCALL are:

1. Syntax check the CALL command

2. Find a saved procedure file in the user library

Page of L Y34-0001-l
Added January 1972
By TNL LN34-0075

3. Copy the procedure file to the temporary procedure save area on disk

4. Initialize indicators in the system nucleus for the call sequence

Program Organization 3-46.1

Licensed Material-Property of IBM

Page of L Y34-0001-1
Added January 1972
By TNL LN34-0075

3-46.2

(IKCALL

KCASYN

SYNTAX CHECKING

1. Exit to SUFFER to syntax check fjlename.
2. Exit to C4BIN2 to convert starting line

number to binary, if specified.

Yes

KCA980

FETCH SAVED FILE INFORMATION

1. Exit to SFINDF to find saved file.
2. Set up OLP and file size for DL21CS use.
3. Initialize GRAB IT to saved file.
4. Exit to GRAB IT to FETCH file start

line number.

Yes

KCA060

COPY FILE TO TEMPORARY SPF WORK AREA

1. Print file name, number of disk units, and
the last modified date file.

2. Exit to DL21CS to write file to temporary
SPF work area.

INITIALIZE NUCLEUS POINTERS

1. Set 3 nucleus indicators to start of
procedure file in temporary SPF area.

2. Set $READY in $1NDR2 to off.
3. Set $10YES in $KEYCD to off.
4. Set $CARDI in $KEYCD to on.
5. Set $CALLI in $DBGUF to on.
6. Set $CLBFR in $1NDR3 to on.
7. Exit to $SPRNT for print,wait function.

#GUFUD
Figure 3-22
Via_$CARPL

Figure 3-35.1. CALL Keyword Program (#KCALL) Flowchart

Licensed Material-Property of IBM

#ER RPG
Figure 3-17
Via $CAERK

)

CHANGE Keyword Program-#KCHAN (Figure 3-36)

• #KCHAN alters a previously entered line without reentering the entire line.

• The assembly of #KCHAN contains these major source modules:

KCHANG-Mainline logic, Figure 3-36
GFINDN-Locate work file disk block, no flowchart

GRABIT-Work file input, Figure 3-74
SDLIST-List data files, no flowchart
DL4ICS-System work file IOCS, Figure 3-70

The CHANGE command is used to alter a previously entered line without retyping the
entire line. If a line number parameter is present, the specified line number from the
work file is changed. If no line number is present, the last line entered containing a
syntax error is changed. The line may be a file line or a system command.

#KCHAN performs the text replacement on the specified line and then prints the
changed line. When the line is printed, the carriage is not returned. At this point, the
system operates as if the user has just entered the line printed by the CHANGE com
mand but has not yet entered the carriage return. The backspace and tabulate keys may
now be used to modify what appears to be the original line. When the operation is ter
minated by a carriage return, the changed line is accepted as a normal keyboard input
line and the appropriate action is taken. If the changed line exceeds the current width,
an automatic carriage return is given. The same procedure is followed if the command
is input from the data recorder.

The optional character string constant parameters define the text changing to be per
formed. In addition, further changes may be performed with the use of the FIRST or
ALL parameter. Basically, the first occurrence in the line of the first character string
constant is replaced by the second character string. If ALL is specified, all occurrences
of the first character string are replaced by the second character string.

Character strings can be of different lengths. The portion of the original line following
the text to be changed is moved to immediately follow the replacement string in the new
line. If the second character string is missing, it is assumed to be a null string; the first
string, and everything following, is eliminated from the line. (This is not the same as
replacing the first string with blanks.) If the first character string parameter is the null
string, ihe second siring is inserted before the first character in the original line.

A line must be present at the disk address equated to #@#BAD (bad-line buffer) if no
line number parameter is present. The line is assumed to be in the active work file if a
line number parameter is present.

Program Organization 3-4 7

Licensed Material-Property of IBM

3-48

#KCHAN

KCH001

SYNTAX CHECK AND ACCUMULATE PARAMETERS

1. Convert line number specified to binary using module C4BIN2.
2. If character string(s) are specified, use SCSTRG to syntax check and

move character strings.
3. Set indicators for specified parameters.
4. Exit to $CAERK (error program) if any syntax errors occur.

Yes

FIND LAST BAD LINE READ LINE SPECIFIED

1. Read sector containing last bad
line using $DISKN.

1. Call GFINDN to locate requested
line.

2. Find EOS in bad line. 2. Call GRAB IT to read line.

No

KCH112

CONVERT DATA

1. Call module SDLIST to convert data items to external
format.

KCH110

CHANGE CONTENT OF LINE

1. Compare character strings and/or make requested changes to line.
2. If changed line exceeds 243 characters, output message via $SPRNT and

exit.
3. Make changes until EOS is encountered.

KCH200

SET UP CHANGED LINE

1. Move changed line to input line buffer ($$1NLN).
2. Print line via $SPRNT with carriage return if:

• Changed line exceeds width,
• Change command was input from data recorder.

3. Print line via $SPRNT and enable user to enter data from keyboard
via $$PRES.

4. Set nucleus indicator to inhibit ready message.

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-36. CHANGE Keyword Program (#KCHAN) Flowchart

Licensed Material-Property of IBM

#GUFUD
Figure 3-22
Via $CARPL

#ECMAN
Figure 3-24
Via $BLOAD

BR1079A

)

CONDITION Keyword Program-#KCNDI (Figure 3-37)

• #KCNDI displays current system status information on the device assigned as system
printer.

• The assembly of #KCNDI contains these major source modules:

KCNDIT-Mainline logic, Figure 3-37
DLPRNT-IOCS for output, Figure 3-71

#KCNDI displays the following current system status information derived from the con
tents of the system communication area (Figure 5-1) and disk areas (Figure 5-2).

1. Whether or not a password is logged-on.
2. Whether or not a disk label is logged-on.
3. Status of the disk-label table.
4. Date.
5. Left margin and width values for the printer.
6. System mode.
7. Name of suspended BASIC program (if any).
8. Status of the system work file.
9. Information about the file in the system work file (name, status, type, number

of lines, number of disk units, etc.).
10. Status of the system configuration record.
11. Information concerning the files currently allocated (device, GET/PUT filename,

etc.) if any exist.

KCN100

#KCNDI

#KCNDI

SYNTAX-CHECK INPUT LINE AND PERFORM INITIALIZATIONS

1. Exit to $CAERK to load #ER RPG (the error program) if a dash
immediately follows the CONDITION keyword.

2. Branch to KCN100 if EOS (preceded by optional blanks) follows the
keyword.

3. Call SCKOUT (entry point at SCKOUT) to syntax-check the specified
output device.

4. Exit to $CAERK if SCKOUT finds a syntax error.
1---+-~ 5. Set indicator in system communication area to ignore the roll

down key.
6. Call SCKOUT (entry point at SCKDEV) to insure the presence and

working-order of the output device specified, and ready the device for
use.

BR1080.1

Figure 3-37. CONDITION Keyword Program (#KCNDI) Flowchart (Part 1of2)

Program Organization 3-49

Licensed Material-Property of IBM

3-50

KCN110

ACCUMULATE AND PRINT SYSTEM STATUS INFORMATION

1. Check the appropriate indicators in the system communication area
(N UC LES) for the fol I owing information:
a) Password and disk label
b) Disk labels on system
c) Current date
d) Left margin and width
e) System mode
f) Workfile status
g) Configuration record

2. Check the suspended program status by reading the suspended program
sector at disk address #$#SSA.

3. Check the workfile allocated information by reading the input/output
record starting at disk address #@#IOS.

4. Call DSVPRI, the DLPRNT interface program, to save or print a line.
5. After all information has been secured and printed, bra(lch to DLPRNT

to wait for the last line (a blank line).

#GUFUD
Figure 3-22
Via $CARPL

BR1080.2A

Figure 3-37. CONDITION Keyword Program (#KCNDI) Flowchart (Part 2 of 2)

DELETE Keyword Program-#KDELE (Figure 3-38)

• Three options that #KDELE can perform are:

I. Delete a line number list from an active file in the work file (passes a delete
parameter list, Figure 5-26, to #GUFUD to do this).

2. Delete a file linked to a specified password.
3. Delete all files, linked to a specified password, that are not pooled or protected.

The password is also deleted if all files linked to it are deleted.

• The assembly of #KDELE contains these major source modules:

KDELET-Mainline logic, Figure 3-38
DL2ICS-Disk logical IOCS, Figure 3-70
STORIN-Null directory insert, Figure 3-79
SFINDF-Find library file, Figure 3-75
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-78
SVOLID-Search volume-ID table, Figure 3-76

As each file is deleted, the disk space occupied is linked into the null directory. #KDELE
loads #SP ACK, Figure 3-86, to pack the file library if the null directory is full. #SPACK
loads, and returns to, #KDELE.

Licensed Material-Property of IBM

#KDE LE

No

Yes

No

CHECK LINE# LIST

1. Enter SLLIST for line-list
syntax check and conversion.

2. Supply list to GU FU DI.
3. Set GUFUDI indicators.

#GUFUD
Figure 3-22
Via $CARPL

#ERRPG
Figure 3-17
Via $CAERK

KDE200

Yes

#ERRPG
Figure 3-17
Via $CAERK

SYNTAX CHECK AND FIND
Fll,.E

1. Enter SUFFER to syntax
check File Specification.

2. Syntax remainder of command
line.

3. Exit to $CAERK for invalid
syntax or specification of ~
file.

4. Enter SFINDF to search for
file.

5. Exit $CAERK if file or
password is not found or if
file is pooled or protected.

KDE245

PROCESS DELETION

1. If blocks are linked, read in
linked block until an unlinked
block is found (DL21CS).

2. Index to last entry in unlinked
block.

3. Overlay "Deleted" entry with
last entry.

4. Relinquish space to null
directory (STORIN) or pack
directory if necessary
(SPACKU).

5. Write back modified user block
(DL21CS).

#GUFUD
Figure 3-22
Via $CARPL

No

SEARCH PASSWORDS AND
GET FIRST USER BLOCK

1. Prime SGETDB to search for
logged on users password.

2. Exit to $CAERK with
hard halt if not found.

3. Read in null directory for
space relinquish (DL21CS).

4. Read in first user block for
file process (DL21CS) and
also linked block.

BR1081.1

Figure 3-38. DELETE Keyword Program (#KDELE) Flowchart (Part 1of2)

Program Organization 3-51

Licensed Material-Property of IBM

3-52

GET ENTRY

Index to an entry.

Yes

PROCESS DELETION

1. Relinquish space to null
directory via STORIN or
pack null directory if
necessary via SPACKU.

2. Print file deletion note via
$SPRNT

No

DELETE PASSWORD

Delete password directory entry
and modify LOGON status and
write directories.

#GUFUD
Figure 3-22
Via $CARPL

KDE600

SAVE ENTRY

Save entry and print NOT
DELETED.

KDE690

SAVE ENTRIES

Save pooled or protected entries.

WRITE DIRECTORIES

II Write null, user, and password
directories.

BR1081.2

Figure 3-38, DELETE Keyword Program (#KDELE) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

)

DISPLAY Keyword Program-#KDISP, #KDOVR (Figure 3-39)

• #KDISP syntax checks the DISPLAY command line, assuring valid syntax for the
DISPLAY overlay #KDOVR.

• #KDOVR displays the current values of program variables during a program execu
tion pause state or following the termination of program execution.

• The assembly of #KDISP contains these major source modules:

KDISPL-Mainline logic, Figure 3-39
SCKOUT-Check output specification, no flowchart

• The assembly of #KDOVR contains these major source modules:

KDOVRL-Mainline logic, Figure 3-39
DL4ICS-System work file IOCS, Figure 3-70
DLPRNT-IOCS for output, Figure 3-71

The DISPLAY command line is syntax checked. When correct syntax is assured, the
overlay initialization is performed. If in pause mode, the virtual-memory pages in the
paging module are returned to virtual memory. The symbol tables are placed in core,
and the overlay #KDOVR is loaded.

#KDOVR converts each specified variable or array element symbol to a virtual address.
The element value at this address is retrieved from virtual memory, converted to display
format, and displayed on the matrix printer, CRT, or system printer. The All parameter
causes each scalar variable to be displayed. Symbol format 'A(*)' causes each element in
array A to be displayed according to current array dimensions. Symbol format 'A$(*)'
causes each element in array A$ to be displayed.

Program Organization 3-53

Licensed Material-Property of IBM

3-54

#KDISP

KD1002

KDISPL SYNTAX CHECKING

1. Syntax check input line.
2. Exit to $CAE R K on errors to load #ER RPG.
3. Go to SCKOUT to set output status device.

KD1110

KDl120

In
Pause
Mode

No

Yes

COMPLETE OVERLAY INITIALIZATION

1. Get symbol and array tables.
2. Get function and array tables.
3. Exit to $R LOAD to load #KDOVR (the display

overlay).

SR LOAD
Figure 3-14

KDl112

PUSH VIRTUAL MEMORY PAGES

1. Set parameter list for paging module.
2. Enter IPGMDL to push virtual memory.

#KDOVR

KDl121

DISPLAY PROCESSING ROUTINE

1. Restore line pointer to first line variable.
2. Set program for long precision if required.
3. If' All' switch is on, display all scalar variables.
4. Determine virtual address of the variable at the

line pointer.
5. Enter DL41CS to get the value of the variable.
6. Move the value to a conversion bucket.
7. Convert the value to print format.
8. Format the output buffer.
9. Enter DLPRNT to print the output buffer.

10. Increment line pointer to next possible variable.
11. Exit to $CAE R K on errors to load #ER RPG.

No

Yes

#GUFUD
Figure 3-22
Via $CARPL

BR1082

Figure 3-39. DISPLAY Keyword Program (#KDISP) Flowchart

Licensed Material-Property of IBM

)

EDIT Keyword Program-#KEDIT (Figure 3-40)

• #KEDIT places a specified file into, or clears, the work file.

• The assembly of #KEDIT contains these major source modules:

KEDITN-Mainline logic, Figure 3-40
SVOLID-Search volume-ID table, Figure 3-76
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-86
SFINDF-Find library file, Figure 3-75
GCLEAR-System work file clear, no flowchart
DL2ICS-Disk logical IOCS, Figure 3-70
DL4ICS-System work file IOCS, Figure 3-70

Functions of #KEDIT are:

1. Move the specified file from the user, one-star, or two-star library file to the work
file. The work file is cleared and #KEDIT exits if only a user filename is specified
and cannot be found.

2. Set the work file status indicators, $1NDR1 in the nucleus communications area,
to reflect the status of the work file.

3. Load, and exit to, the compiler (#BCOMP) if the system command was RUN or
STEP.

4. The data buffer, used to transfer the file, overlays routines in #KEDIT that were
used to find the file.

Program Organization 3-55

Licensed Material-Property of IBM

#KEDIT

KED500

SYNTAX CHECK AND FIND THE FILE

1. Call SUFFER to extract filename from the com-
mand statement located in the primary input buffer.

2. Perform syntax checks on the command statement.
3. Call SFINDF to find the requested file,
4. Exit to $CAERK on errors.
5. Mask inquiry request.

No Yes

KED700 KED600

CHECK FILE FOUND, SET-UP TRANSFER CREATE A NULL WORK FILE

1. Exit to $CAERK to load $ER RPG if errors.
2. Set indicators in nucleus communications region.

1. Call $SPRNT for new-file message.
2. Call GCLEAR to initialize the work file.

3. Call $SPRINT to print copied-to-work-file message.
4. Call DL21CS to start seek to library file.

3. Set indicators in nucleus communications region.

5. Initialize for transfer of library file to work area.
4. Exit to $CAR PL to reload #GUFUD.

6. For EDIT, c.all $SPRNT to print file messages.

3-56

KED100

TRANSFER FILE TO WORK AREA

1. Establish available core for file transfer buffer.
2. Using DL21CS to read library file and DL41CS to

write work file transfer data.
3. If FIT and/or 1/0 record are to be copied, write

to work file using $DISKN.
4. Exit to $CARPL to reload #GU FUD and 1/0

routines if command is EDIT.

Yes

PRIME AND LOAD COMPILER

1. Unmask inquiry requests.
2. Call $DISKN to access first disk block for compiler.
3. Set indicators in nucleus communications region.
4. Exit to $RLOAD to load and execute compiler.

#BCOMP
Figure 3-119
Via $RLOAD

Figure 3-40. EDIT Keyword Program (#KEDIT) Flowchart

Licensed Material-Property of IBM

#GUFUD
Figure 3-22
Via $CAR PL

BR1083A

)

)

ENABLE/DISABLE Keyword Program-#KENAB (Figure 3-41)

• #KENAB modifies the type code of statements in the work file.

• The assembly of #KENAB contains these major source modules:

KENABL-Mainline logic, Figure 3-41
GRABIT-Work file input, Figure 3-74
GFINDN-Locate work file disk block, no flowchart
DL4ICS-System work file IOCS, Figure 3-70

If the DISABLE command is issued, KENABL modifies the type code of each statement
in the line number list so that it is flagged and ignored in future compilations or input
operations.
If the ENABLE command is issued, the type code of each statement in the line number

list is modified so that previously disabled statements are again enabled for compilation
or input. If the line number list is omitted from the ENABLE command, all previously
disabled statements currently in the work area are enabled.

Program Organization 3-57

Licensed Material-Property of IBM

3-58

#KEN AB

SYNTAX CHECK AND CONVERT LINE NUMBERS

1. Exit to $CAERK (to load the error program) if the
keyword was immediately followed by. a dash.

2. Call SLLIST to syntax check and convert the line
number-list, if one is specified.

3. Exit to $CAERK if SLLIST found an error.

No

KEN135

ENABLE OR DISABLE SPECIFIED LINES

1. Move a line number of GFILNO for GFINDN.
2. If this line is followed by EOS, branch to KEN150.
3. If this line is followed by a dash (indicating a line

number range), set range indicator on, set pointer
to reference high limit in range, branch to KEN170
to modify the type code, branch to KEN 155 if
EOS is indicated, else branch to KEN 135.

4. Else, branch to KEN170 to modify the type code
and branch to KEN135 to get the next line
number.

Branch to
KEN170to
Modify the
Last Line

Set GRABIT
Code to
Write-Back
Only

GRABIT

Write back
last line

#GUFUD
Figure 3-22
Via $CARPL

KEN115

ENABLE THE ENTIRE WORK FILE

1. Exit to $CAERK if DISABLE was the specified
keyword.

2. Move rine number X'OOOO' to GFILNO for
GFINDN.

3. Call GFINDN to prime buffers for GRABIT.
4. Set GRAB IT code to skip statements.
5. Set ENABLE bit on in statement type code.

(KEN125)~-· ----------------------+-.....
6. Exit to KEN155 if EOF is indicated. ---..
7. Call GRAB IT to get next source line.
8. Branch to KEN125.

KEN170

KEN170

ROUTINE TO MODIFY TYPE CODE-part I

1. Save return address.
2. Mask against interrupts.
3. Call GFINDN to find the next line number.
4. If this is the line number to modify, branch to

KEN185. (this statement labelled KEN180)---+--
5. If this number is greater than the one specified,

branch to KEN210.
6. Else, branch to GRAB IT to get the next source

line. (GRABIT's code set to skip last statement).
7. Branch to KEN180 to test the new line number.

KEN185

ROUTINE TO MODIFY TYPE CODE-part II

1. Set appropriate indicator on in type code.
2. Go write back line, if a range is not indicated.---+-..
3, If range is indicated, continue processing lines,
4. (label KEN210) If range is not indicated, exit

from loop.
5. If the referenced number is in the range, set on

the appropriate type code indicator and get next
source line,

7. If entire range has been processed turn range
indicator off.

8. Call GRAB IT (with code to write back only) to
write back the modified line.

9. Return to point where called.

Return

BR1084

Figure 3-41. ENABLE/DISABLE Keyword Program (#KENAB) Flowchart

Licensed Material-Property of IBM

)

)

ENTER Keyword Program-#KDNTE (Figure 3-42)

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

• #KDNTE sets the system mode of operation to disk system management program, if
it is available on the system.

• The assembly of #KDNTE contains these major source modules:

KDNTER-Mainline logic, Figure 3-42
SUPDAT-Statistical error recording, no flowchart

If the disk system management program (SCP) is specified, and it shares the same volume
as the current BASIC system program area, the disk system management IPL bootstrap
program is loaded from cylinder 0.

#KDNTE

SYNTAX CHECK INPUT LINE

1. Exit to $CAERK to load 'l'ERRPG (the error progra111) if a dash
immediately follows the keyword.

2. Ex it to $CAE R K if no parameter is specified.
3. Exit to $CAERK if a parameter other than SCP is specified.

Yes

KDN400

SWITCH MODE. TO SCP

1. Read volume label from disk used to I PL system.
2. Exit to $CAER K if disk system management

program is not available on this disk.
3. Read disk system management program nucleus

initialization program from disk into core
location X'1200'.

4. Branch to SUPDAT to update the error log
tables on disk.

5. Set disk system management program as primary
IPL in core-resident nucleus initialization program.

6. Turn off CRT if it is on system.

Exit to disk system
management
program

Figure 3-42. ENTER Keyword Program (#KDNTE) Flowchart

EXTRACT Keyword Program-#KEXTR (Figure 3-43)

• #KEXTR saves user specified line numbers in the work file.

#ERRPG
Figure 3-17
Via $CAERK

• The assembly of #KEXTR contains this major source module:

KEXTRC-Mainline logic, Figure 3-43

#KEXTR retains the line number list in the active work file by deleting all unwanted
line numbers. The line number list is converted to a delete parameter list (refer to Figure
5-26). The actual oeletion of the lines from the work file is performed by #GU FUD,
Figure 3-22.

Program Organization 3-59

Licensed Material-Property of IBM

KEX100

#KEXTR

#KEXTR

SYNTAX-CHECK INPUT LINE AND CONVERT LINE-NUMBER LIST

1. Ex it to $CAE R K to load the error program (#ERR PG) if a dash
immediately follows the keyword, or if no line-number list is specified.
Set the error code in $CAE RR.

2. Call SL LIST to syntax-check the line-number list and to create a line
number table, SLLINE.

3. Exit to $CAERK to load #ERRPG (Figure 3-17) if SLLIST finds an
error condition.

PROCESS THE 'EXTRACT'ION--FORM A 'DELETE' LIST

1. Initialize one pointer (PT1) to the first line number in SLLINE and
another pointer, PT2, to the first available byte in the secondary input
buffer (X'1COO').

2. If the first entry in SLLINE is the range 0 through 9999, exit to
$CARPL to load #GUFUD (Figure 3-22).

Yes
Is

The First
Line Number

Zero

No

KEX118

LOW ORDER SUBROUTINE HIGH ORDER SUBROUTINE

1. If location referenced by PT1 + 1 is a dash, add
3 to PT1.

2. Set the line number referenced by PT1 at the loca-
tion referenced by PT2.

3. Add 1 to the line number at the location refer'
enced by PT2.

1. Move 0 to the location referenced by PT2.
--~~ 2. Save line number referenced by PT1.

3. Subtract 1 from saved line number.
4. If saved line number equals line number referenced

by PT2, go to LOW ORDER subroutine.

4.
~

If PT1 + 1 is referencing an EOS, go to EXIT
routine.

5. If saved line number is less than the line number
referenced by PT2, subtract 2 from PT2 and
enter the LOW ORDER subroutine.

3-60

5. Add 2 to PT1.

KEX500

EXIT ROUTINE

1. If the line number referenced by PT2 is less than
9999, add 3 to PT2.

2. If the line number referenced by PT2 is greater
than 9999, subtract 2 from PT2.

3. Set an EOS in the location referenced by PT2 + 1.
4. Exit to $CAERK if the delete list is larger than one

sector.
5. Set the nui::leus indicator to DELETE on.
6. Set the nucleus indicator to load #GUfUD only.

#GUFUD
Figure 3-22
Via $CARPL

6. Else, set a dash in the location referenced by PT2
+ 1 , add 3 to PT2, and set saved line number in
location referenced by PT2.

7. En_ter the LOW ORDER subroutine.

Figure 3-43. EXTRACT Keyword Program (#KEXTR) Flowchart

Licensed Material-Property of IBM

GO Keyword Program-#KGOSL (Figure 3-44)

• #KGOSL continues or aborts the execution of a BASIC program when the program
is in an execution pause state.

• The assembly of #KGOSL contains this major source module:

KGOSLO-Mainline logic, Figure 3-44

#KGOSL restores core from the execution save area via the restore function of the sys
tem nucleus ($PAUSD). Execution mode indicators are set in the system communication
area as a result of user specified parameters.

#KGOSL

KG0100

SYNTAX CHECK TO DETERMINE TYPE OF GO COMMAND

1. Exit to $CAERK to load #ER RPG if program is not in pause state.
2. Enter SCAN IT to scan across blanks.
3. Exit to $CAERK to load #ER RPG on syntax errors.

KG0120

SET ON RESPECTIVE INDICATORS, RESTORE CORE FROM DISK

1. If TRACE parameter, set on trace indicators in Nucleus if original
mode was trace and exit to $RSTR to restore core from disk. Exit to
$CAE RK to load #E RRPG if original mode is not trace.

2. If ABORT parameter, set on abort indicators in the Nucleus and exit
to $RSTR to restore core from disk.

3. If RUN parameter, set on run indicators in Nucleus and exit to
$RSTR to restore core from disk.

4. If STEP parameter, set on step indicators in Nucleus and exit to
$RSTR to restore core from disk.

5. If no parameters, exit to $RSTR to restore core from disk.
6. If no valid parameter found, exit to #ER RPG via $CAER K to print

error message.

$RSTR
Figure 3-12

BR1087

Figure 3-44. GO Keyword Program (#KGOSL) Flowchart

Program Organization 3-61

Licensed Material-Property of IBM

3-62 .

HELP Keyword Program-#KHELP (Figure 3-45)

• #KHELP displays text from the help text disk file on the matrix printer, CRT, or
system printer.

• Checks release level of help text file against a built-in constant defining the expected
release level.

• The assembly of #KHELP contains these major source modules:

KHELPN-Mainline logic, Figure 3-45
DLPRNT-IOCS for output, Figure 3-71
GRABIT-Work file input, Figure 3-74
DL2ICS-Disk logical IOCS, Figure 3-70

#KHELP searches a table of keywords (refer to Figure 5-21) which contains entries made
up of (1) the length of a keyword, (2) a keyword, and (3) a relative address in the help
text disk file. This address points to the text to be displayed for the corresponding key
word.

When there is no keyword parameter, a predetermined section of text is displayed and
a choice of responses for further information is shown. Input is enabled and the input
character is used to index the relative addresses in the EOF record. All nonterminating
help files are handled in this manner. Help files are displayed until a terminal file is
encountered via #KHELP or until the function is interrupted via an inquiry request.

Refer to Figure 5-21 for the format of help text.

Licensed Material-Property of IBM

)

#KHELP

SYNTAX CHECK AND SET UP OUTPUT DEVICE

1. Check for valid delimiter between command and first parameter.
2. Enter SCSTRG to check for unbalanced quotes and return character

string.
3. Remove imbedded blanks from character string and save packed form.
4. Enter SCKOUT to check for CRT or PRINTER specification.
5. If no keyword was specified, enter SC KO UT at SCKDEV to check

the validity of the output device and set indicators.
6. On errors, exit to $CAERK to load #ER RPG.

Yes

KHE530

#ERRPG
Figure 3-17
Via $CAERK

FIND THE DISK WHICH CONTAINS THE HELP TEXT

1. Read the VOLUME LABEL from disk in the order F1, F2, R1, R2 and
check indicator for HE LP TEXT on disk.

2. After locating HELP TEXT (on disk) get address from VOLUME
LABEL and enter DL21CS to read HELP TEXT keyword table into
buffer KHETAB.

3. If HELP TEXT was not found exit to $CAERK to load #ERRPGM.

KHE600

FIND THE REQUESTED TEXT

1. Read keyword table at head of text into core using DL21CS.
2. Search keyword table for specified keyword.
3. If it is not found exit to $CAERK to load #ER RPG.

BRING REQUESTED TEXT INTO CORE

1. Prime buffers for GRAB IT using DL21CS.
2. Enter GRABIT to retrieve logical records.
3. If a valid keyword was specified, enter SCKOUT at SCKDEV to check

the validity of the output device and set indicators.

Yes

No

PRINT TEXT

1. Print 1 line using DLPRNT.
2. Get next record.

ALLOW MULTIPLE CHOICE
RESPONSE

1. Wait for character input ($$PRES). ----
#GUFUD
Figure 3-22
Via $CAR PL

2. If input character is invalid print
message using $SPRNT and wait for
character input again.

BR1088A

Figure 3-45. HELP Keyword Program (#KHELP) Flowchart

Program Organization 3-63

Licensed Material-Property of IBM

3-64

KEYS Keyword Program-#KKEYS (Figure 3-46)

• #KKEYS lists, assigns, or restores the functions of the command keys.

• The assembly of #KKEYS contains this major source module:

KKEYSP-Mainline logic, Figure 3-46

Depending on the parameters specified, #KKEYS lists the functions currently assigned
to the available command keys, assigns a function to an available co'mmand key, or
restores one or all of the IBM-assigned functions to the available command keys. A
command key is available if it is one of the first 11 command keys and is defined in the
current configuration record.

The format of the command key table (##CKTB) is shown in Figure 5-27. This table
resides in the system program file. A list of the IBM-assigned functions for command
keys 1 through 11 is contained in Figure 5-28.

Licensed Material-Property of IBM

List
all keys

LIST THE COMMAND KEY TABLE

1. Set a pointer to the start of the
command key table.

2. Initialize a counter to the number
of available command keys.

3. Call $SPRNT to print one com
mand key number and its
corresponding command.

4. Decrement the counter by 1;
continue printing until the
counter is 0.

#KKEYS

READ TABLE

Call $LOA DR to read the command key
table (##CKTB) into core.

SYNTAX CHECK LINE

1. Call SCAN IT to bypass blanks.
2. Call C4BI N2 to convert the command key number to

binary if one is specified.
3. Call SCSTRG to analyze the character constant if one

is specified.
4. Exit to $CAERK to load the error program if an invalid

parameter or too many parameters are found, or if one
of the subroutines detects an error.

Restore
single key

Function
requested

Restore
all keys

,.._;_~~~~~~-'--~~~~~~~

RESTORE ALL COMMAND KEYS

1. Set a switch to restore all
command keys.

2. Initialize command key
number to 1.

1
RESTORE SPECIFIED COMMAND KEY

1. Find the command in the internal
table that corresponds to the command
key.

2. Set the command length in the com
mand key table ##C KTB (keys 1, 4,
or 7 are set to 0) from the internal
table.

3. Move the command text from the
internal table to the command key
table.

4. If the switch to restore all command
keys is set, increment the command
key number and repeat this block until
all avai I able command keys are restored
from the internal table.

5. Write the command key table back to
disk via $LOA DR.

J
I

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-46. KEYS Keyword Program (#KKEYS) Flowchart

Licensed Material-Property of IBM

Assign
single key

ASSIGN A FUNCTION TO A
COMMAND KEY

1. Exit to $CAERK to load
the error program if the
character constant exceeds
90 characters or if it con-
tains only blanks.

2. Set the length of the com-
mand in the command key
table.

3. Move the command text to
the table.

4. Write the command key
table back to disk via
$LOA DR.

Program Organization 3-65

Page of LY34-0001-1
Revised January 1972
By TNL LN34-0075

3-66

LIST Keyword Program-#KLIST, #KLLAY (Figure 3-48)

• #KLIST displays any type of file contained in the file library (system library file).

• The assembly of #KLIST contains these major source modules:

KLISTN-Mainline logic, Figure 3-48
GFINDN-Locate work file disk block, no flowchart
GRABIT-Work file input, Figure 3-74
SDLIST-List data file, no flowchart
DLPRNT-IOCS for output, Figure 3-71
DL4ICS-System work file IOCS, Figure 3-70

• The assembly of the overlay #KLLAY contains this major source module:

DCDOUT-Car~ punch IOCR, Figure 3-72

I #KLIST displays BASIC programs, keyboard-generated files, procedure files, or program
generated files on the printer, punch, or CRT.

If the file is listed on the CRT, the user may rollup, rolldown, or popup the file (this
does not apply to program-generated files). The user may also specify line lists for start
ing and ending the LIST function (for CRT, only the initial line reference is used).

A list control block (LC~) (Figure 3-47), 20 bytes in length and containing all infor
mation necessary to control the output, is created from the parameters of the LIST
statement. When the output device is the CRT, a CRT line segment table (Figure 3-47)
is maintained from elements in the LCB. If the work file contains a program-generated
file, logical lines are constructed and sent sequentially to the specified devices until
end of file is encountered. A logical line is device dependent; for example:

Device Line Length

5496 Data recorder 96
Matrix printer
CRT
System printer

(Right margin-left margin)
64
64

The rolldown key (command key 14) is not recognized for program-generated files.
If the wo,rk file contains a BASIC program, the file is sent to t.he specified devices

under control of the line number list. When CRT is specified, only the initial line ref
erence is used. However, the user can rollup, popup, or rolldown the file. Initially, the
first 14 lines are placed on the screen. From this point, the file may be rolled as desired;
interruptions are accepted after each line segment is displayed. If end of file on rollup
or beginning of file on rolldown is encountered, the program waifs for an interruption.
The inquiry request key must be activated to terminate the listed function.

When the work file contains a keyboard-generated file, the data elements are converted
from internal floating point to an optimum external format. Each line is then handled
the same as a BASIC program line. Disabled BASIC statements and lines are shown with
* preceding the line number.

No line number is punched if the NO-NUM parameter is specified, the output specified
is CARD, and the work file contains a keyboarri-generated file.

When the parameter CARD is specified, #KLLA Y is read into the I/O portion of
core. #KLLA Y contains the card punch IOCR (DC DO UT) and overlays the card
reader I/O routine #DREAD.

Hexadecimal Length
Displacement Name

(bytes)
Explanation

00 File condition 1 Status indicator value:
code X'OO'-Go

X'01 '-Line list exhausted
X'02'-Beginning of file
X'03'-End of file
X'04'-No line list

01 Start line 2 Beginning line number of a loop.

03 Increment 2 +1 (X'0001 '),except for rolldown,
then -1 (X'FFFF')

05 Control character 1 X'4F'-Rolldown
X'CO'-Rollup or print

06 File line length 1 Length of current work file line.

07 Buffer address 2 Current address, into line buffer area,
that is used in PPL passed to DLPRNT.

09 CRT mode 1 Rolldown-X'02'
Rollup-X'01'

QA Current line 2 Current line number being analyzed.

QC CRT line segments 1 Count of number of CRT line segments
out displayed from current I ine.

OD Maximum CRT line 1 Count of number of CRT line segments
segments in file line being processed (length/64 +

1).

OE CRT mode change 1 Indicates a change from roll up or popup
to rolldown and the reverse.

OF First line number 2 First line number in work file. Detect
beginning of file when file is in rolldown
mode.

11 Initial call 1 X'01 '-First time
indicator X'OO'-Not first time

12 Stop line 2 Ending line number of a line loop.

CLST-One 5-Byte Entry per CRT Line (70 bytes total)

2 3 4 5 6

CRT Line Segment Entry

Mode Current Line CRT Line Maximum CRT
Se ments Out Line Se ments

0 2 3 4

Mode-From hexadecimal displacement 09 in LCB
Current Line-From hexadecimal displacement DA in LCB
CRT Line Segments Out-From hexadecimal displacement OC in LCB
Max CRT Line Segments-From hexadecimal displacement OD in LCB

Figure 3-4 7. List Control Block (LCB) and CRT Line
Segment Table (CLST)

14

BR2671

Program Organization 3-67

Licensed Material-Property of IBM

3-68

#KLIST

SYNTAX CHECK LINE

1. Syntax check and validate parameters specified using modules
SCAN IT (scan blanks) SLLIST (convert line number list).

2. If errors are found, set indicative error message at $CAE RR and exit to
$CAERK.

3. Determine device specified and set indicator in DLPRNT.

Yes

LOADCARDPUNCHIOCR

Call DL21CS to overlay #DREAD with
the card punch IOCR, DCDOUT (#KLLAY).

Program Generated

KLl380

PROGRAM GENERATED FILE

1. Call SDLIST to read DL41CS, convert the data
items, and output the file via DCDOUT (card
output) or DLPRNT (CRT or Matrix Printer).

2. At end of file, exit to $CARPL to reload #GUFUD.

#GUFUD
Figure 3-22
Via $CAR PL

No

Yes

KLI070

SET CRT INDICATORS

1. Call SCKDEV to set $CMDKY
only and enable keyboard via
$$PRES.

2. Call GFINDN and GRABITto
determine first line in file.

Basic or Keyboard Data File

KLl106

OUTPUT OF DATA OR BASIC FILES

1. Retrieve requested lines via GRAB IT and output
via DLPRNT or DCDOUT.

2. For data files, call SDLIST to convert each line to
external representation.

3. If CRT specified, keep track of which lines are c;>n
the screen so the roll-up, roll-down and pop-up
interrupts can be handled.

4. If no number is specified, suppress line number for
keyboard data files going to card.

5. Indicate line disability with an asterisk in column
one (1).

6. At end of file, exit to $CARPL to reload
#GU FUD, or wait for inquiry request if CRT is
being used.

#GU FUD
Via $CARPL
Or $CRIPL

BR1091A

Figure 3-48. LIST Keyword Program (#KLIST) Flowchart

Licensed Material-Property of IBM

LISTCAT Keyword Program-#KCTLO (Figure 3-49)

• #KCTLO displays user-specified directory information from the file library (system
library file).

• The assembly of #KCTLO contains these major source modules:

KCTLOG-Mainline logic, Figure 3-49
DL2ICS-Disk logical IOCS, Figure 3-70
DLPRNT-IOCS for output, Figure 3-71
SCKOUT-Check output specification, no flowchart
DSVPRI-DLPRNT interface, no flowchart

#KCTLO displays the following directory information on the matrix printer, CRT, or
system printer, if ALL is specified (otherwise, only the filename and file ID are
displayed):

I. Filename-File ID
2. File type
3. Date the file was last modified
4. Count of lines contained in the file
5. Count of sectors the file occupies
6. Precision of the file
7. Pooled status
8. File protection status
9. Open/close status

Program Organization 3~9

Licensed Material-Property of IBM

3-70

#KCTLO

KCT050

SYNTAX CHECK AND ESTABLISH PRINT DEVICE

1. Determine request type (i.e.,*,**, or ALL).
2. Enter SCKOUT to syntax check output device

requested (KCT175).
3. Enter SCKDEV to set indicators for output

device (KCT200).
4. Exit to $CAE R K for errors.
5. Set indicator for 'ALL' (KCT125).

No

Yes

KCT400

SEARCH VOLUME-ID TABLE AND PRINT
FILENAMES

1. Determine which disks have libraries.
2. Print volume-ID (KCT430).
3. Branch to print subroutine (KCT500) to print

filenames and headers.
4. Exit to $CAE RK if no disk libraries.

KCT475

EXIT PROCESSING

1. Turn off command keys and lights.
2. Execute WAIT for print.

#GUFUD
Figure 3-22
Via $CARPL

KCT250

ESTABLISH USER

1. Exit to $CAERK if user not logged on.
2. Prime print routine with user block.
3. Print (KCT500).

KCT500

PRINT FILENAME AND HEADER

1. Read in linked block if any.
2. Print (DLPRNT) "no files" if none.
3. Print filename and header via DSVPR I.

Yes

PRINT STATUS (via DSVPRI)

1. Date last modified.
2. Disk units.
3. Number of lines.
4. File type.
5. Precision
6. Open, pooled, or protected.

Return

Figure 3-49. LISTCAT Keyword Program (#KCTLO) Flowchart

Licensed Material-Property of IBM

BR1092

)

)

LOGON/OFF Keyword Program-#KLOGO (Figure 3-50)

I • #KLOGO is used to define a password and volume (new or old) to be used for
subsequent operations. OFF is used to cancel the current password and volume.

• The assembly of #KLOGO contains these major source modules:

KLOGON-Mainline logic, Figure 3-50
SVOLID-Search volume-ID table, Figure 3-76
SGETDB-Search password directory, Figure 3-77
DL2ICS-Disk logical IOCS, Figure 3-70
SURCHN-Search null directory, Figure 3-81
SUPDAT-Statistical error recording, no flowchart

#KLOGO clears the saved bad line area (used by CHANGE), deletes the file in the sys
tem work area, and updates the statistical data recorder on the logged-on volume. It also
clears the CRT if it is configured.

Program Organization 3-71

Licensed Material-Property of IBM

3-72

#KLOGO

Yes

KL0200

SYNTAX AND CLEAR PRINT DEVICE

1. Syntax check command line.
2. Exit to $CAE R K for errors.

KLOBOO

CLEAR CRT

Clear screen
of CRT

PRIME NUCLEUS

1. Set up $PASWD.
2. Setup$FILIB.
3. Set up $USRDR.
4. Set no work file.

PROCESS BAD LINE

No

1. Move End of Statement Indicator
2. Write to "BAD SYNTAX

LINE" disk save area via
DL21CS.

PROCESS TABLES

Update error
tables via SUPDAT

CLEAR PRINT DEVICE

Eject clean print page if printer
is system print device (only
OFF).

#GUFUD
Figure 3-22
Via $CARPL

KL0300

SYNTAX CHECK; SEARCH PASSWORD
DIRECTORY

1. Syntax command line:
a) Enter SALPHB for password check.
b) Enter SALPH6 for volume-ID if specified.
c) Check for 'NEW' or. 'OLD' if specified and set

indicator.
d) Exit to $CAERK for syntax errors.

#ERRPG
Figure 3-17
Via $CAERK

2. Search password directory:
a) Prime SGETDB for search only.
b) Branch to SGETDB.

No

No

CREATE PASSWORD AND USER ENTRIES

1. Prime disk routine (DL21CS) and read null
directory.

2. Search null directory (SURCHN) for two sector
data block and error exit to $CAERK if not found.

3. Build new password entry and write password and
null directories back to disk via (DL21CS).

4. Create user block and write to disk (DL21CS).

Yes

#ERRPG
Figure 3-17
Via $CAERK

BR1093

Figure 3-50, LOGON/OFF Keyword Program (#KLOGO) Flowchart

Licensed Material-Property of IBM

MERGE Keyword Program-#KMERG (Figure 3-51)

• #KMERG merges statements from a library file with the file in the system work file.

• The assembly of #KMERG contains these major source modules:

KMERGE-Mainline logic, Figure 3-51
GRABIT-Work file input, Figure 3-74
GPUTIT-Work file output, Figure 3-73
SVOLID-Search volume-ID table, Figure 3-76
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-78
SFINDF-Find library file, Figure 3-75
DL2ICS-Disk logical IOCS, Figure 3-70
DL4ICS-System work file IOCS, Figure 3-70

Functions of #KMERG are:

1. Merge statements from a saved library file with the active file in the system work
file.

2. Write the merged file temporarily in virtual memory and build a line number
table in core.

3. Load and exit to #KOVME, Figure 3-61, to renumber the merged file and write
it back to the system work file.

Program Organization 3-73

Licensed Material-Property of IBM

3-74

#KMERG

#KMERG.

SYNTAX CHECKING

1. Call SUFFER to syntax check filename.
2. Collect numeric parameters.
3. Call C4BIN2 to convert numeric parameters to

binary,

Yes

KME180

FETCH SAVED FILE INFORMATION

1. Call SFINDF to find saved file.
2. Check protection and compatibility of files.
3. Set up DPL and file size for DL21CS use.

Yes

KME380

TRANSFER FIRST PORTION OF WORK AREA FILE

1. Call GRABIT to return work area file line.
2. Call GPUTIT to write line to virtual memory.
3. Put line number in table.
4. Repeat until breaking point reached.
5. Save GRABIT and buffers on disk.

KME220

TRANSFER SAVED FILE TO VIRTUAL MEMORY

1. Reinitialize GRABIT to saved file.
2. Call GRAB IT to return file lines.
3. If file line is within range call GPUTIT to write to

virtual memory.
4. Put line number in table, set on bit 1.
5. Repeat until high line number is reached.

KME300

TRANSFER LAST PORTION OF WORK AREA
FILE

1. Restore saved GRAB IT.
2. Call GRAB IT to return work area file line.
3. Set on bit 0 and put line number in table.
4. Call GPUTIT to write file line to virtual memory.
5. Continue until EOF encountered.

#KOVME
Figure 3-61
Via $RLOAD

Figure 3-51. MERGE Keyword Program (#KMERG) Flowchart

Licensed Material-Property of IBM

#ERRPG
Figure 3-17
Via $CAERK

BR1094

)

MOUNT Keyword Program-#KMOUN (Figure 3-52)

• #KMOUN notifies the system that a different volume is mounted on Rl or R2.

• The assembly of #KMOUN contains these major source modules:

KMOUNT-Mainline logic, Figure 3-52
SUTOBA-Switch system mode, no flowchart
MINITL-Read the disk label if the disk has been initialized, no flowchart

#KMOUN reads the volume label to verify that the mounted volume-ID matches the user
specified volume-ID. If the drive is Rl, and if Rl and Fl both contained valid system work
areas before Rl was removed, the volume label of the disk specified in the MOUNT command
must also contain a valid system work area; otherwise, an error message results. The volume
ID table in the nucleus communications area (refer to Figure 5-9) is updated. If any scratch file
entries exist in the VTOC on the pack being mounted, #KMOUN deletes them.

The disk drive must be ready before #KMOUN can read the volume label.

#KMOUN

l
SYNTAX CHECK LINE AND DISK SPECIFICATION

1. Exit to $CAERK (to load #ER RPG, the error program) if MOUNTlis
not followed by a blank.

2. Call SALPHA to check for a syntactically correct volume-ID.
3. Exit to $CAERK if the volume-ID is invalid.
4. If next character is EOS or R 1, set the indicator for R 1.
5. If R2 is specified, set the indicator for R2.
6. If neither EOS, R1, or R2 is found following the volume-ID, exit to

$CAERK.
7. Exit to $CAE R Kif R2 is specified and drive 2 is not present on the

system.

KM0200 l
CHECK VOLUME-ID'S AND WORK AREA INDICATORS

1. If the volume-ID entry ($VOLID in the nucleus) for the specified disk
is non-zero, exit to $CAERK.

2. Branch to MINITL to read the volume !abe! sector of the specified
program.

3. Exit to $CAERK if the volume-ID in the volume label is not identical
to the one specified in the command.

4. If R 1 is the specified disk, set the nucleus indicator for no work area on
R 1, according to the indicator for R 1 work area found in the volume
label.

5. If R 1 is specified, branch to SUTO BA to check the system mode.

KM0375 l
SET NUCLEUS INDICATORS AND EXIT

1. Mask against interrupts.
2. Move the volume-ID to the $VOLi D table in the nucleus communica-

tions area.
3. Move the cylinder byte of the disk address of the file library to the

$VOLID table.
4. If R 1 was specified, and SUTO BA found an error condition, exit to

$CAERK.
5. Set off the indicator which allows MOUNT or INITIALIZE commands

only. ($MOUNT in $1NDR3 in the nucleus.)

l
#GUFUD
Figure 3-22
Via $CARPL

BR1095

Figure 3-52. MOUNT Keyword Program (#KMOUN) Flowchart

Program Organization 3-75

Licensed Material-Property of IBM

3-76

PASSWORD Keyword Program-#KPASW (Figure 3-53)

• #KP ASW changes the current password and the password directory to the password
specified by the PASSWORD command.

• The assembly of #KPASW contains these major source modules:

KPASWD-Mainline logic, Figure 3-53
DL2ICS-Disk logical IOCS, Figure 3-70
SGETDB-Search password directory, Figure 3-77

#KP ASW searches the password directory, checking to see that the new password is not
a duplicate, before updating and writing back the directory. The specified password
replaces the current password entry in the password directory.

#KPASW

KPA010

SYNTAX CHECK INPUT COMMAND

1. Call DL21CS to read password directory.
2. Call SALPHA8 to decode new password.
3. Call SGETDB to find current password.
4. Call SGETDB to find new password.
5. Exit to $CAERK to load error program if errors.

Yes

No

#ERRPG
Figure 3-17
Via $CAERK

KPA140

CHANGE CURRENT PASSWORD

1. Set new password in place of old in password
directory.

2. Change current password in nucleus.
3. Call DL21CS to write password directory back

to disk.
4. Exit to $CARPL to lead #GU FUD.

#GUFUD
Figure 3-22
Via $CAR PL

Figure 3-53. PASSWORD Keyword Program (#KPASW) Flowchart

Licensed Material-Property of IBM

BR1096

PROTECT Keyword Program-#KPRTC (Figure 3-54)

• #KPRTC sets or cancels file protection on user library files or pooled files.

• One-star and two-star data files cannot be protected.

• The assembly of #KPRTC contains these major source modules:

KPRTCT-Mainline logic, Figure 3-54
DL2ICS-Disk logical IOCS, Figure 3-70
SRCHFN-Search user directory, Figure 3-78
SVOLID-Search volume-ID table, Figure 3-76
SGETDB-Search password directory, Figure 3-77
SFINDF-Find library file, Figure 3-55

#KPRTC sets the protect status bit in the user, pooled, or two-star filename directory.
The selection of the status is determined by the user with the ON or OFF parameter,
with ON being the default condition.

If a pooled filename is specified, a current user must be logged on and the filename
must be in his user directory to qualify him as the creating user. If the name is in his
directory, the protection of the entry in the pooled directory is changed (protected or
unprotected).

When a file specification is entered, #KPRTC searches the password directory, and
then the user directory, for the filename. The status bit is set if a match is made. When
a two-star filename is specified, the protect status can only be set ON.

#KPRTC

KPRTCT

SYNTAX CHECK AND FIND SPECIFIED FILE

1. Call SUFFER to decode input line buffer.
2. Call SFINDF to find specified file.
3. Exit to $CAERK if errors. --------+-----..

KPR180

SET SPEC! FIED PROTECT STATUS

1. If** file, PROTECT OFF invalid.
2. If* or** data file, go to $CAE R K for error

program.
3. If *file, insure current user was creator.
4. Set specified status.

KPR220

OUTPUT USER DI RECTORY

1. Call DL21CS to write directory to disk.
2. Exit to $CARPL to reload #GUFUD.

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-54. PROTECT Keyword Program (#KPRTC) Flowchart

Licensed Material-Property of IBM

#ERRPG
Figure 3-17
Via $CAERK

BR1097

Program Organization 3-77

3-78

PULL/POOL Keyword Program-#KPOOL (Figure 3-55)

• #KPOOL adds or removes a specified filename to or from the one-star library
directory.

• The assembly of #KPOOL contains these major source modules:

KPOOLN-Mainline logic, Figure 3-55
SRCHFN-Search user directory, Figure 3-78
SVOLID-Search volume-ID table, Figure 3-76
SGETDB-Search password directory, Figure 3-77
SFINDF-Find library file, Figure 3-75
DL2ICS-Disk logical IOCS, Figure 3-70
STORIN-Null directory insert, no flowchart
STUFID-User directory insert, no flowchart
SURCHN-Search null directory, Figure 3-81

#KPOOL loads #SPACK, Figure 3-86, to pack the file library if the null directory is full.
#SPACK loads, and returns to, #KPOOL.
If the POOL keyword command is issued, KPOOLN inserts the specified user file into

the one-star on the disk containing the user library, thus making it available to all of the
system (i.e., an entry for the file is created in the one-star library and an indicator is set
in the user library, allowing the "pooled" use of the file).
If the PULL keyword command is issued, KPOOLN removes the specified user file

from the one-star library on the disk containing the user library (i.e., the one-star library
entry for the file is deleted and the "pooled" indicator for the file is set off).

Licensed Material-Property of IBM

#KPOOL

KP0150

SYNTAX CHECK LINE AND
SEARCH FOR FILE

1. Call SUFFER to syntax check
the file-specification.

2. Exit to #ER RPG via $CAERK
for error or for a * or **
password.

3. Call SFINDF to search for the
file in the user directory.

4. Exit to #ER RPG via $CAERK
if the file is not found by
SFINDF.

5. Exit to #ER RPG via $CAERK
if the file is pooled on a
pool command.

6. Exit to #ER RPG via $CAE R K
if the file is not pooled on a
pull command.

KP0280

SEARCH THE POOL
DIRECTORY

1. Save the user directory disk
block that contained the
filename.

2. Call SFINDF to search the
pool di rectory.

Pull
Command

Pool

CREATE POOL DIRECTORY
ENTRY

1 . Set up the entry for pool
directory.

2. Store entry in directory via
STUFID.

3. Set pooled indicator in user
directory block.

4. Restore user directory block
to disk via DL21CS. ·

No

Yes

SEARCH FOR END OF POOL
DIRECTORY

Prime SFINDF to search for last
entry by supplying an invalid
filename.

KP0470

MODIFY BLOCK

1. Move last entry over pulled
entry.

2. Decrement count of entries.

Yes

KP0800

STORE NULL BLOCK

1 . Zero forward Ii n k in other
block.

No

2. Store null block via STORIN.

2

No

Yes

KP0650

PROCESS PULL

1. Move last entry over pulled
one.

2. Write back pool directory
disk block (DL21CS).

3

BR1098.1

Figure 3-55. PULL/POOL Keyword Program (#KPOOL) Flowchart (Part 1of2)

Program Organization 3-79

Licensed Material-Property of IBM

3-80

2

No

Yes

KP0900

LOAD #SPACK SUBROUTINE

1. Prime return from #SPACK.
2. Load #SPACK via $RLOAD.
3. Pack the file library.

RESTORE DIRECTORY
BLOCKS

1. Restore null directory.
2. Restore user di rectory disk

block with zero link.

KP0690

PROCESS USER

1. Set pool indicator off.
2. Restore user directory disk

block (DL21CS).

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-55. PULL/POOL Keyword Program (#KPOOL) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

3

BR1098.2

READ Keyword Program-#KREAD (Figuri> 3-56)

Page of L Y34-0u01-1
Revised January 1972
By TNL LN34-0075

• #KREAD changes the system input device to keyboard or card reader.

• The assembly of #KREAD contains this major source module:

KREADN-Mainline logic, Figure 3-56

#KREAD sets input mode indicators in the nucleus communications area (refer to
Figure 5-1) corresponding to parameters of the READ statement. #KREAD exits
to the system nucleus which loads #GUFUD (Figure 3-22) to load the proper 1/0
routines.

#KREAD

SYNTAX CHECK LINE AND SET INTERNAL INDICATORS

1. Exit to $CAERK to load the error program (#ER RPG) if an invalid
delimiter or no parameter is specified.

2. If 'KEY' is found, followed by EOS, set $CALLI off and exit
to $CAIPL to load the 1/0 routines and #GU FUD.-------+-------.

3. Check for parameters 'CARD', 'LIST', 'NOLIST', 'NUM', and
'NONUM' and set internal indicators when one is found.

4. Exit to $CAE R K if a parameter is found that is not the same as one
specified above. (EOS is OK.)

5. Exit to $CAERK if conflicting parameters or duplicate parameters
are found.

6. Upon finding EOS, exit to $CAERK if 'CARD' was not a specified
parameter.

7. Exit to $CAERK if there is not a data recorder on the system.

KRE240

SET NUCLEUS INDICATORS IN $KEYCD

1. Set on card input indicator ($CAR DI) and set $CALLI off.
2. If 'NOLIST' was specified, set on nolist indicator; else, set it off

($NOLST).
3. If 'NUM' was specified, set on number indicator; else, set it off

($DTNMB).
4. Exit to $CARPL to load #GU FUD.·

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-56. READ Keyword Program (#KREAD) Flowchart

RELABEL Keyword Program-#KRLAB (Figure 3-57)

#GU FUD
Figure 3-22
Via $CAIPL

• #KRLAB changes variable names in the system work area program according to user
specified parameters.

• The assembly of #KRLAB contains these major source modules:

KRLABL-Mainline logic, Figure 3-57
GRABIT-Work file input, Figure 3-74
GPUTIT-Work file output, Figure 3-73
DL4ICS-System work file IOCS, Figure 3-70
SY ARAB-Variable scan, no flowchart.

#KRLAB evaluates and determines the validity of the parameters, which must be pairs
of the same class of labels. If an error occurs, the program is terminated prior to any file
alterations. Every statement is scanned for the first entry of a parameter pair. If a match
is found, the second entry of that parameter pair is substituted in its place. The file line
length is altered only when a different length label is substituted. The command is
rejected if a data file is in the work file. #KRVLA is the second phase of the RELABEL
keyword program.

Program Organization 3-81

Licensed Material-Property of IBM

KRV380

KRV390

3-82

#KRLAB

#KRLAB l
SYNTAX CHECK INPUT LINE

1. Exit to $CAE RK to load the error program if a
dash was found immediately following the
RELABEL keyword.

2. Exit to $CAE R K if there is no parameter fol low-
ing the keyword.

3. Go to KR L 100 to create the label table.

KRL080 I
SAVE WORKFILE IN VIRTUAL MEMORY

1. Call DL41CS to read the file from the work area to
core (using maximum available core).

2. Call DL41CS to write the file from core to virtual
memory.

3. Update disk parameter lists for reading from and
writing to disk.

4. Decrement file size by core size.
5. Branch to KRL080 if there is more file to transfer.
6. When all of file is transferred, call $RLOAD to

load the overlay program, #KRVLA.

.I
#KRVLA

#KRVLA l
SEARCH FILE LINE FOR A LABEL

1. Prime GRAB IT buffers with the first two sectors
of virtual memory.

2. Set initial indicator and initial disk address (first
virtual memory sector) for GRABIT.

3. Call G RABIT for the initialization process.
4, Mask against interrupts,
5, Set GRAB IT indicator to return text,
6. Call GRABIT to get a line of the file.
7, Exit to K,RV600 if this is the EOF line.
8, Call SVARAB to find a label in the file line.
9. If SVARAB returns referencing an EOS, call

GPUTIT to write the file line back to disk; then,
branch to KRV380 to get the next line of file,

10. When SVARAB returns pointing to a label,
search the label table for a match.

11. If a match is found, substitute the new label for
the old label and shift the line to the right one
byte if a letter-digit variable is replacing a simple
letter variable. (Set switch if a line is truncated.)

12. If a match is not found, or if a switch of labels
has been made, branch to KRV390.

KRL600

END OF FILE IS ENCOUNTERED

1.
2.

Branch to GPUTIT to put the last line back to disk.
Exit to $CAE RK if at least one line was truncated,
or if the file was truncated· or both.

1
#GUFUD
Figure 3-22
Via $CARPL

#ERRPG
Figure 3-17
Via $CAERK

KRL 100

CREATE LABEL TABLE

1. If @XR is referencing a'@','$',
'#'or alphabetic character
'A'-'Z', move symbol to label
table; else, exit to $CAERK.

2. If @XR+1 is referencing a digit,
move digit to label table;
If @XR+1 is referencing a
'$(*)',set type code for
character array in label table;
lf@XR+1 is referencing a'(*)',
set type code for arithmetic
array; else set type code for
simple arithmetic variable.

3. Exit to $CAERK if the label
was not followed by a valid
delimiter.

4. Exit to $CAERK if EDS
fol lows the first label in a pair.

5. Exit to $CAE RK if a label
pair is found and the type
codes of the two labels are
incompatible.

6. Repeat this block until an
EOS is encountered.

7, When EOS is found following
a valid list of labels, set an
end-of-label-table indicator.

KRL250

SEARCH FILE INDEX TABLE

1. Add expansion factor to core
size for reading and writing
maximum number of sectors
of work file from the work
area to virtual memory.

2. Search all of file index table to
find the maximum size of the
work file.

3. Go to KR LOSO to write the
file to virtual memory.

GPUTIT Error Return

GPU ERR

~ No Yu a Line
Truncated

Set error message
stack.

Figure 3-57. RELABEL Keyword Program (#KRLAB) Flowchart

Licensed Material-Property of IBM

)

)

REMOVE Keyword Program-#KRMOV (Figure 3-59)

• #KRMOV notifies the system that a volume is being removed from RI or R2.

• The assembly of #KRMOV contains these major source modules:

KRMOVE-Mainline logic, Figure 3-59
SUPDAT-Statistical error recording, no flowchart
SUTOBA-Switch system mode, no flowchart

#KRMOV reads the volume label to verify that the volume-ID matches the user specified
volume-ID in the nucleus communications area (refer to Figure 5-1). If the drive is R 1 ,
an indicator is reset for no system work area available. The volume-ID table entry for
Rl or R2 is reset to binary O's (refer to Figure 5-10).

The volume must be ready until #KRMOV is terminated because the individual volume
error statistics must be updated. If Rl is removed and it contains the current system
program file, a hard halt is generated after the appropriate message is printed. An error
also occurs and a warning error message is printed if the user is logged onto the disk he
is removing.

#KRMOV is loaded by #ECMAN (Figure 3-24) at OCOO (see the core map, Figure
3-58).

0100

0600

ocoo

OFOO

·jQOO l

T

System Nucleus

Input Line Buffer

I /0 Routines

#KRMOV

One Sector Disk Buffer
for Volume-ID Sector

l
T

BR1101

Figure 3-58. #KRMOV Core Map

Licensed Material-Property of IBM

Program Organization 3-83

3-84

#KRMOV

SYNTAX CHECK LINE AND SET INDICATORS FOR PARAMETERS

1. Exit to $CAE RK (to load #ER RPG, the error program) if REMOVE
was immediately followed by a dash.

2. Scan across blanks.
3. If EOS or 'R 1' is found, set R 1 indicator on.
4. If 'R2' is found, set R2 indicator on.
5. Exit to $CAE RK if neither R 1, R2, o; EOS is found.
6. Increment past 'R1' or 'R2' and exit to $CAERK if optional blank(s)'

and EOS are not found.

KRM400

PROCESS REMOVE

1. Read volume label of specified disk (via $DISKN).
2. Exit to $CAERK if the volume-ID on the disk (as found in the

volume label) does not match the appropriate $VOLID nucleus entry.
3. Branch to SUPDAT to update the error counters.
4. Mask against interrupts.
5. Clear the cylinder byte of the file library disk address to zero.
6. Clear the $VO LID volume ID to zeros.
7. Set the nucleus indicator to allow only the mount or initial commands

($MOUNT in $1NDR3).
8. If R 1 is being removed, set the 'no work area on R 1' indicator on (in

nucleus, $NWRKR in $1NDR3).
9. If R1 is being removed, SUTO BA is called to check the condition of

the System Work Areas. If SUTO BA detects that work areas were
present on R 1 and F1 before the REMOVE command, the $CMODE
indicator (BASIC mode indicator) is set on to force an error condition,
if a dis!< without a work area is mounted on R 1.

10. If R 1 is being removed and it contains the current system program
file, print appropriate message and come to a hard halt.

11. If the user is not logged-on, exit to #GUFUD via $CAIPL to return to
keyboard mode.

12. If the specified disk does not contain the current file library, exit to
#GUFUD via $CAIPL.

13. Clear the current password and disk specification in nucleus to zeros.
($FILIB-1, $USRDR, and $PASWD).

14. Set warning error message code in $CAERR and exit to $CAERK.

#ERRPG
Figure 3-17
Via $CAERK

Figure 3-59. REMOVE Keyword Program (#KRMOV) Flowchart

Licensed Material-Property of IBM

#GUFUD
Figure 3-22
Via $CAIPL

BR1102

RENAME Keyword Program-#KNAME (Figure 3-60)

• #KNAME assigns a new filename to the work file or to a file in the file library
(pooled and/or user file).

• The assembly of #KNAME contains these major source modules:

KNAMES-Mainline logic, Figure 3-60
DL2ICS-Disk logical IOCS, Figure 3-70
SFINDF-Find library file, Figure 3-75
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-78
SVOLID-Search volume-ID table, Figure 3-76

. #KNAME assigns the user filename to the file specified by the user file specification.
The user directory and the pooled directory are searched to ensure that the new file

name is not a duplicate.
If the name is valid, the entry in the directory is changed by writing back that sector

of the directory.
If the user file specification is not present, the user filename is assigned to the currently

active file in the system work file.

Program Organization 3-85

Licensed Material-Property of IBM

#KNAME

RENAME THE WORK FILE

Change the name of the active file in the work file.

SYNTAX CHECK THE FILE-SPECIFICATION The name is located at label $WFNME.

1. Call SUFFER to syntax check the file-specification.
2. Exit to #ER RPG via $CAE R K if errors are detected.

#GUFUD
Figure 3-22
Via $CARPL

KNA220

SMPSWD Yes

2 ; Blank

No

SEARCH POOL DIRECTORY FOR OLD FILENAME

SYNTAX CHECK BOTH FILENAMES 1. Save the new filename.
2. Call SFINDF to search the* directory for the

1. Call SALPH8 to syntax check the filenames. old filename.
2. Save the new and old filenames. 3. Exit to #ER RPG via $CAE R K if the old name is
3. Syntax check the remainder of the command line. not found.
4. Exit to #ER RPG via $CAERK if errors are detected.

KNA400
KNA280

SEARCH POOL DIRECTORY FOR DUPLICATE OF
SEARCH USER DIRECTORY TO LOCATE OLD NEW FILENAME
FILENAME

1. Save the old filename.
1. Call SFINDF to search the user directory for the 2. Call SFINDF to search the* directory for a dupli-

old filename. cate of the new filename.
2. Exit to #ER RPG via $CAERK if the file or pass- 3. Exit to #ER RPG via $CAERK if a duplicate is

word is not found. found.
3. Set an indicator to cause as search of the *

directory if the file is pooled.

KNA300
MODIFY POOL DIREC10RY

SEARCH USER DIRECTORY FOR DUPLICATE
Change the entry previously located in the * OF NEW FILENAME 1.
directory to the new filename.

1. Save the old filename. 2. Call DL21CS to write back the * directory disk

2. Call SFINDF to search the user directory for a block.
duplicate of the new filename.

3. Exit to #ER RPG via $CAERK if a duplicate is
found.

KNA500

MODIFY USER DIRECTORY

KNA350 1. Change the entry previously located in the user

Is the No
directory to the new filename.

File 2. Call DL21CS to write back the user directory disk
Pooled block.

Yes

#GUFUD
1 Figure 3-22

Via $CARPL

BR1103

Figure 3-60. RENAME Keyword Program (#KNAME) Flowchart

3-86

Licensed Material-Property of IBM

)

RENUMBER Keyword Program-#KRNUM (Figure 3-61 I

• #KRNUM renumbers the statements of the active file in the system work area.

• The assembly of #KRNUM contains these major source modules:

KRNUMB-Mainline logic, Figure 3-61
KROVLY-Mainline logic, Figure 3-61
GRABIT-Work file input, Figure 3-74
GPUTIT-Work file output, Figure 3-73
DL4ICS-System work file IOCS, Figure 3-70

#KOVME is an entry point used only by #KMERG (MERGE keyword program, Figure
3-51). This entry assumes that the file has been written in virtual memory and a line
number table is in core.

The first line of the current file to be renumbered is specified by the second parameter.
The line number assigned to it is the first parameter. All succeeding lines of the work
area file are renumbered, using the third parameter as an increment.
If the file in the work file is a program, all line number references in the program are

changed to reflect the new numbering, with each line number occupying four positions.
(Imbedded blanks in a line number are removed.)

Parameters can be omitted only in descending order. Default values for the three
parameters are 100, 0, and 10.

Program Organization 3-87

Licensed Material-Property of IBM

3-88

#KOVME

#KRNUM

KRN050

COLLECT PARAMETERS

1. Call C4BIN2 to convert parameters to binary.
2. Replace default parameters with those specified.

Yes

No

KRN120

TRANSFER WORK AREA TO VIRTUAL MEMORY

1. Increment buffer size by expansion factor.
2. Search FIT to determine file size.
3. Use DL41CS to transfer work area file to virtual

memory.
4. Call $RLOAD to load overlay #KROVL.

#KROVL

#KROVL

BUILD LINE NUMBER TABLE

1. Use $DISKN to prime GRAB IT buffers.
2. Call GRABIT to return file lines.
3. Put line numbers in table.

#KOVME

RENUMBER FILE TO WORK AREA

1. Use $DISKN to prime GRAB IT buffers.
2. Mask against interrupts.
3. Call GRAB IT to return file lines.
4. Change line number references where applicable.
5. Change line number if applicable.
6. Call GPUTIT to write file line to work area file

and build FIT.

#GUFUDI
Figure 3-22
Via $CARPL

Figure 3-61. RENUMBER Keyword Program (#KRNUM) Flowchart

Licensed Material-Property of IBM

#ERRPG
Figure 3-17
Via $CAERK

BR1104

)

RESUME Keyword Program-#KRSUM (Figure 3-62)

• #KRSUM returns the suspended program to the execution pause state.

• Running of the returned suspended program is aborted if an "open" file is gone or
was modified.

• The suspended program is aborted without running, if the configuration was altered,
to allow the user to reconfigure.

• The assembly of #KRSUM contains these major source modules:

KRSUME-Mainline logic, Figure 3-62
SVOLID-Search volume-ID table, Figure 3-76
SFINDF-Find library file, Figure 3-75
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-78
DL2ICS-Disk logical IOCS, Figure 3-70
DL4ICS-System work file IOCS, Figure 3-70

The RESUME command restores the currently suspended program (if one exists), along
with its associated status information, to the execution pause state so that execution can
resume when the GO command is issued.

The program deletes the suspended program file and sets an indicator for the system,
enabling a user to suspend another program; and prints the name of the program that is
restored to the pause state.

The existence of any of the following conditions results in an error condition when the
RESUME command is issued:

1.
2.
3.
4.
5.

An operand of any sort with the keyword (a syntax error).
Nonexistence of a program in a suspended state.
Nonexistence of a file that the program expects (i.e., was deleted).
Open indicator in a file is not set on when KSSUME goes out to shut it off.
Modified configuration.

Note: In conditions 3 and 4, the suspended program is lost without restoration to a
pause state. All conditions result in an error and an error code is set in $CAERR,
followed by a branch to $CAERK.

Input to RESUME is the suspended program and its associated status information. Out
put is the restoration of the program to the execution pause condition.

Program Organization 3-89

Licensed Material-Property of IBM

#KRSUM

KRS100

SYNTAX & READ STATUS

1. Syntax command line.
2. Read fixed sector via $DISKN.
3. Exit to $CAE R K if:

a) Invalid syntax
b) No suspended program.

KRS200

CHECK CONFIGURATION

Exit to $CA ERK if:
1. $EXFTR not same
2. $DKSIZ not same
3. $CONFG not same
4. $KEYBD not same
5. $CRTAV, $LNPTR, and $DTRDR in $101ND are

not same.

READ VM PAGES 0,1

1. Read file directory 1 and file directory 2 from
virtual memory via $DISKN.

2. Search for open disk files via SFINDF.
3. Set off 'OPEN' indicator.
4. Convert disk addresses to physical disk addresses

and modify D2.
5. Re-write directory block (DL21CS).
6. Destroy suspend status and exit to $CAE R K if:

a) Disk file not 'OPEN',
b) Disk file not found.

KRS600

RESUME PROGRAM

1. Restore $PAUSD registers:
a) $SRTRN
b) $PSDBR
c) $PSDXR

2. Restore $1 N LNO.
3. Restore $XIND1 and $XIND2.

1

KRSOOO

RESUME CORE

1 . Read ##CSAV via D L2 I CS.
2. Write ##CORE via DL21CS.

KRS010

No

KRS020

RESUME VM

1. Read##SAVviaDL21CS.
2. Write #@#VFP(VM) via DL41CS.

KRS060

Yes

KRS090

GUFUDI
Figure 3-22
Via $CARPL

No

Figure 3-62. RESUME Keyword Program (#KRSUM) Flowchart

3-90

Licensed Material-Property of IBM

BR1105A

)

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

RUN/STEP/TRACE Keyword Program-#KRUNI (Figure 3-63)

• #KRlJNI provides linkage to the compiler.

• The assembly of #KR UNI contains this major source module:

KRUNIT-Mainline logic, Figure 3-63

To compile the BASIC program active in the system work file, the compiler (#BCOMP)
is loaded directly. To compile a BASIC program from the file library, #KEDIT (Figure
3-40) is loaded to edit the file into the system work file and then load the compiler.

For TRACE, if a list of BASIC identifiers is present, the list is written to virtual
memory for use by the compiler.

c #KRUNI)

KR UNIT

SYNTAX CHECK TO DETERMINE TYPE OF EXECUTION

1. Set on run indicator in nucleus if RUN execution.
2. Set on step indicator in nucleus if STEP execution.
3. Set on trace indicator in nucleus if TRACE execution.
4. Set on short or long indicators in nucleus if specified.
5. Exit to $CAERK on syntax errors. ------------+-------------------

No
Trace

No

Yes

KRU290

SYNTAX CHECK LIST OF BASIC IDENTIFIERS

1. Set on all indicator in nucleus, if ALL parameter, or no parameters.
2. Set on flow indicator in nucleus if FLOW parameter.
3. Syntax check variable list and exit to $CAERK to print error message

No

PRIME AND LOAD #KEDIT

1. Set on indicators in nucleus.
2. Exit to $RLOAD to load and

execute #KEDIT.

#KEDIT
Figure 3-40
Via $RLOAD

if syntax error. ----------------------1-----~--------------t 4. Enter $DISKN to write list to virtual memory.

KRU145

CHECK WORK FILE STATUS AND LOAD COMPILER

1. Exit to $CAE R K to print error message upon:
a) No work file defined, ------.
bl Work file empty,
c) Data or procedure file in work file._._ ___ -+----------------------

2. Exit to $RLOAD to load and execute compiler.

#BCOMP
Figure 3-119
Via $RLOAD

Figure 3-63. RUN/STEP/TRACE Keyword Program (#KRUNI) Flowchart

#ER RPG
Figure 3-17
V!a $CAERK

Program Organization 3-91

SAVE Keyword Program-#KSAVE (Figure 3-64)

• #KSA VE stores the active file from the system work file to the file ·library (system
library file).

• The assemblies of #KSA VE and #KSVLA contain these major source modules:

KSA VEN-Mainline logic, Figure 3-64
DL2ICS-Disk logical IOCS, Figure 3-70
DL4ICS-System work file IOCS, Figure 3-70
STORIN-Null directory insert, Figure 3-79
STUFID-User directory insert, Figure 3-80
SRCHFN-Search user directory, Figure 3-78
SFINDF-Find library file, Figure 3-75
SGETDB-Search password directory, Figure 3-77
SVOLID-Search volume-ID table, Figure 3-76
SURCHN-Search null directory, Figure 3-81

The new file is stored on the same volume as the old file when the filenames match. The
new file does not necessarily occupy the same physical disk space. The old file physical
disk space may be placed in the null directory. A file is not replaced if it is pooled or
protected.

#KSA VE loads #SPACK (Figure 3-86) when disk space can be obtained by packing
the file library. #SPACK loads, and returns to, #KSAVE.

tic1msed Material--Property of IBM

)

#KSAVE

KSAVEN

SYNTAX CHECK AND FIND SPECIFIED FILE

1. Mask interrupts and set pointer for input buffer.
2. Save disk block count from FIT.
3. Call SUFFER to decode file-specification.
4. Call SCSTG to decode character constant header.
5. Call SF I NDF to locate current password and file.
6. Call $RLOAD to load #KSVLA.
7. Exit to $CAERK if any errors.

KSA007

No

#ERRPG
Figure 3-17
Via $CAERK

CHECK FILE STATUS AND TEST IF** FILE

1. If file name was found and file is pooled or pro
tected, take the error exit.

2. If** file, call SFINDF to find first available space in
the disk searching order.

3. If space not available, call SPACKU to pack the li
brary area.

4. If space found for **file, return it to null directory.
5. Call DL41CS to read in FIT.

KSA030

CALCULATE FILE LENGTH AND BUILD
READ TABLE

1. If program generated data file disk block count is file
size, calculate FIT size and add to disk block count.

2. If BASIC file, add the length of the 1/0 record.
3. Build read table of displacements and number of

contiguous sectors.

1

KSA140

SELECT SPACE TO USE

1. Call SURCHN to look for space to use.
2. If space not found, go to $CAERK, if total null

space not enough.
3. If total null space required, call #SPACK to pack

library area.
4. If file name and new space found, find closest to

start of library.
5. If new space closer, use it and call STORIN to send

old space to null directory.
6. If null directory full, call #SPACK to pack library.
7. If old space is closer, but new file is larger, use new

space.
8. If old space closer, and new file is smaller, call

STORIN to return new space and remainder of old
space to null directory.

KSA210

UPDATE USER DIRECTORY AND START 1/0

1. Update old entry or build new entry for user direc-
tory.

2. Call STUFID to make entry and output the direc-
tory.

3. Set up DPL to output FIT and 1/0 sector, if file is
not a program generated data file.

4. Set FIT entry displacements in physicalflogical order.
5. Call DL21CS to output FIT and 1/0 sectors.

KSA229

COPY FILE FROM WORK AREA TO LIBRARY

1. Pick up entries from read table and ca!I DL41CS to
fill the buffer.

2. Call DL21CS to write the buffer to the library area.
3. On last entry, call DL21CS to empty the buffer.
4. Go to $CAR PL to reload #GUFUD.

#GUFUD
Figure 3-22

'Via $CARPL

BR1107A

Figure 3-64. SA VE Keyword Program (#KSA VE) Flowchart

Program Organization 3-93

Licensed Material-Property of IBM

3-94

SET Keyword Program-#KSETI, #KSOVR (Figure 3-65)

• #KSETI syntax checks the SET command line, assuring valid syntax for the SET
overlay #KSOVR.

• The assembly of #KSETI contains this major module:

KSETIT-Mainline logic, Figure 3-65

• #KSOVR assigns a value to an existing program variable during a program execution
pause state.

• The assembly of #KSOVR contains this major module:

KSOVRL-Mainline logic, Figure 3-65

The SET command line is syntax checked. When correct syntax is assured, initializing
operations are performed to load the overlay #KSOVR.

The specified variable or array element symbol is converted to a virtual address. The
specified constant is converted to a form suitable for storage in virtual memory and then
moved to the virtual memory address associated with the symbol.

#KSETI

KSETIT

SYNTAX CHECKING

1. Set program for long precision if required.
2. Syntax check input line; exit to $CAERK on

errors to load #ER RPG.
3. Get symbol and array tables.
4. Set parameter list for paging module and core

pages.
5. Exit to $R LOAD to load #KSOVR (the set

overlay).

#KSOVR
Via $RLOAD

KSOVRL

SET PHASE TWO, SET EXECUTION

1. Get paging module and core pages.
2. Set program for long precision if required.
3. Determine virtual address of the variable.
4. Convert input constant to internal form.
5. Enter IPGMDL to move constant to the

virtual memory address of the variable.
6. Exit to $CARPL to load #GU FUD.
7. Exit to $CAERK on errors to load #ER RPG.

#GUFUD
Figure 3-22
Via $CARPL

BR1108

Figure 3-65. SET Keyword Program (#KSETI, #KSOVR) Flowchart

Licensed Material-Property of IBM

SUSPEND Keyword Program-#KSSPN (Figure 3-66)

• When the SUSPEND command is issued, the current program in an execution pause
condition is saved for future completion of execution.

• The assembly of #KSSPN contains these major source modules:

KSSPND-Mainline logic, Figure 3-66
SVOLID-Search volume-ID table, Figure 3-76
SFINDF-Find library file, Figure 3-75
SGETDB-Search password directory, Figure 3-77
SRCHFN-Search user directory, Figure 3-78
DL2ICS-Disk logical IOCS, Figure 3-70
DL4ICS-System work file IOCS, Figure 3-70

The SUSPEND command causes the program that is currently in an execution pause
condition (if one exists) to be saved, along with its associated status information, for
future completion of execution. This enables the user to execute other programs, or
certain system functions, without affecting the suspended program. If the RESUME
command is issued and a program is in the suspended state, the program is returned to
an execution pause condition. If two SUSPEND commands are issued in succession, the
first suspended program is replaced by the second suspended program if the optional file
name of the first program is specified in the second command. If any active data files are
modified while the program is in the suspended state, the suspended program is aborted.

The associated status information suspended with the program includes the 64k of
virtual memory that is unique for this program, a six-sector symbol table, register data
for return to the calling point, and other indicators.

Any of the following conditions results in an error when the SUSPEND command is
issued:

1. An operand of any sort, other than the optional filename, with the keyword
(a syntax error).

2. Any program already in a suspended state, if the optional filename is not specified.
3. The nonexistence of a program in an execution pause state.
4. An active disk scratch file for the program.
5. The nonexistence of a file associated with the program for suspension.

Note: This error causes a hard halt after a message is displayed.

Each of the preceding conditions results in an error; and an error code is set in
$CAERR, followed by a branch to the error exit routine at $CAERK.

Input information to SUSPEND is (1) the program in an execution pause state and
(2) its associated status information. Output is the transfer of this program and informa
tion to the suspend save area.

Program Organization 3-95

Licensed Material-Property of IBM

3-96

#KSSPN

KSS100

SYNTAX & READ STATUS

1. Syntax command line.
2. Read fixed status sector via $DISKN.
3. Exit to $CAERK if:

a) Syntax error,
b) Program already suspended.

KSS200

READ VM DIRECTORIES

1. Read directories 1 and 2 from VM.
2. Exit tq.$CAERK if any 'OPEN' scratch files.

I

KSS300

SEARCH ALLOCATED FILES

1. Search for allocated disk files via SFINDF.
2. Exit to $CAERK if no(found (hard halt).
3. Set on open indicator.

KSS400

SET UP SUSPEND SECTOR

1. Save suspended program name.
2. Save $PAUSD registers.
3. Save $1NLNO, $EXFTR, $XIND1, $XIND2,

$DKSIZ, $CONFG, $KEYBD, $CRTAV, $DTRDR,
$LNPTR.

KSS500

PREPARE CORE & VM TRANSFER

1. Compute disk addresses of suspended core
and VM.

2. Get count of core sectors saved
($CSDPL.+@ DCNT).

3. Generate buffer size dynamically.

1

KSSOOO

SUSPEND CORE

1. Read## CORE via DL21CS.
2. ~rite ##CSAV via DL21CS (suspend).

No

'Yes

KSS020

SUSPEND VM

1. Read #@#VFP via DL41CS.
2. Write VM to ##SSAV (suspend).
3. Update displacements.

KSS090

Yes

GUFUDI
Figure 3-22
Via $CARPL

No

Figure 3-66. SUSPEND Keyword Program (#KSSPN) Flowchart

Licensed Material-Property of IBM

BR1109

)

)

SYMBOLS Keyword Program-#KSYMB (Figure 3-67)

• #KSYMB displays all variable names used in the system work area program.

• The assembly of #KSYMB contains these major source modules:

KSYMBL-Mainline logic, Figure 3-67
GRABIT-Work file input, Figure 3-74
DL4ICS-System work file IOCS, Figure 3-70
DLPRNT-IOCS for output, Figure 3-71
SVARAB-Variable scan, no flowchart.

#KSYMB scans the lines of the program in the system work area to locate the variable
names used.

A symbol table is built, using one byte for each possible variable name. If a variable is
referenced in a disabled line, an indicator for this is set in the appropriate symbol table
byte also. When all variables have been scanned, this symbol table is printed with each
symbol occupying a seven-character field of which the last character is always blank. If
the variable was in a disabled line, * is printed in the first character position of the out
put field. Nine variables are printed on one line, giving a print line 63 characters long.
Output can be specified to go to the matrix printer or CRT; otherwise, the system printer
is assumed to be the output device.

Program Organization 3-97

Licensed Material-Property of IBM

#KSYMB

#KSYMB

SYNTAX-CHECK LINE AND PERFORM INITIALIZATION

1. Clear 406-byte symbol table to zeros.
2. Exit to $CAERK to load the error program (#ER RPG) if a dash follows

the SYMBOLS keyword.
3. Branch to SCKOUT to check the specified output device, if one is

specified.
4. Exit to $CAERK if SCKOUT found a syntax error.
5. Exit to $CAERK if an EOS is not found after the output device

specifi ca ti on.
6. Branch to SCKOUT at SCKDEV to check for the presence of the

specified output device and to ready the device for use.
7. Prime GRAB IT buffers with the first two sectors of the work file.
8. Set GRAB IT code to return text.

KSY150

SEARCH THE FILE FOR SYMBOLS

1. Call GRAB IT to retrieve one file line.
2. Branch to KSY800 if this is the EOF line. ------------+--.

--•....,..- 3. Call SVARAB to find a symbol in the line.

r 4. Go to KSY150 if SVARAB returns with an EOS.
5. Set indicator on in symbol table for the symbol that was recognized.

__,_ 6. Repeat loop to find more symbols.

3-98

KSY800

PRINT SYMBOLS REFERENCED

1. Search symbol table for symbols whose indicators
are set, indicating a reference was made to them.

2. Move EBCDIC code for each symbol to a print
buffer.

3. If the symbol was referenced in a disabled line,
precede the symbol with an asterisk in the print
buffer.

4. Branch to KSYPRN to print or save the line.
5. When all of symbol table has been searched, set

switch in KSYPRN to force the print buffer to be
printed, if it contains at least one symbol, and call
KSYPRN.

6. Exit to $CAERK if the work file did not contain
any symbols.

#GU FUD
Figure 3-22
Via $CARPL

KSYPRN

PRINT ROUTINE

1. Save return address.
2. If switch is set to force printing, go to DLPRNT. _...__
3. If output line buffer is not filled, return to point

where called.
4. If output line is filled, branch to DLPRNT to

___ _ print the line on the appropriate output device;
clear the print buffer to blanks.

5. Return to point where called.

Figure 3-67. SYMBOLS Keyword Program (#KSYMB) Flowchart

Licensed Material-Property of IBM

BR1110

WIDTH Keyword Program-#KWIDT (Figure 3-68)

• #KWIDT changes the margin values for the system printer in the nucleus communica
tions area (refer to Figure 5-1).

• The assembly of #KWIDT contains this major source module:

KWIDTH-Mainline logic, Figure 3-68.

#KWIDT

SYNTAX CHECK LINE AND ACCUMULATE PARAMETERS

1. Initialize new left margin to old left margin, in case a new one is not
specified.

2. If WIDTH is immediately followed by a dash, exit to $CAERK to load
#ER RPG, the error program.

3. Exit to $CAERK if the line contains no parameters.
4. Branch to C4BIN2 to convert the width parameter to binary.
5. Exit to $CAE R K if the width was not an integer, if it contained more

than four digits, and if it was not validly delimited (i.e., followed by a
comma, blank(s), or EOS).

6. If EOS does not follow (after optional blanks) the width parameter,
branch to C4BIN2 to convert the left margin to binary.

7. Exit to $CAERK if the left margin was not a number, if it contained
more than four digits, or it was not followed (optional blanks) by EOS.

KWl500

CHECK FOR VALID SPECIFICATION(S)

1. If a left margin value was specified, subtract '1' from it; if negative num-
ber results, exit to $CAERK.

2. If specified width is less than '18', exit to $CAERK.
3. Compute the right margin by adding the left margin to the width.
4. Exit to $CAERK if the right margin exceeds the physical capacity of

the printer (i.e., it is greater than 132 or 220).
5. If the current print position is less than the new left margin,

a) Calculate the difference between the current print position and the
new left margin, in KWI H LD.

b) Set the value of KWI H LD in the count of the print parameter list.
c) Set the right margin in nucleus ($RMRGN) = 220, temporarily.
d) Branch to $$PRNT to print blanks over the new left margin

(i.e., move the print position over).

KW1700

STORE THE NEW MARGINS IN THE NUCLEUS

1. Store the new left margin in the nucleus at $LMRGN.
2. Move a carrier return to position the print head. ($$PRNT)
3. Set the '1/0 routines in core' indicator off.
4. Store the new right margin in the nucleus at $RMRGN.

#GUFUD
Figure 3-22
Via $CARPL

BR1111

Figure 3-68. WIDTH Keyword Program (#KWIDT) Flowchart

Program Organization 3-99

Licensed Material-Property of IBM

3-100

KWR100

PROCESS PRINTER

WRITE Keyword Program-#KWRIT (Figure 3-69)

• #KWRIT changes the device used as system printer to CRT, matrix printer, or both.

• The assembly of #KWRIT contains this major source module:

KWRITE-Mainline logic, Figure 3-69

#KWRIT stores these addresses at $PRDEV in the nucleus:

DPRINT for matrix printer IOCR.
DSPL YN for CRT IOCR.
DSPYMP for matrix printer IOCR and CRT IOCR; this label is an entry point to the
CRTIOCR.

#KWRIT

#KWRIT

SYNTAX CHECK INPUT LINE

1. Enter SCAN IT to skip to parameters.
2. Exit to #ER RPG via $CAERK on syntax error.

Printer CRT or Printer and CRT

KWR200

PROCESS CRT

1. Exit to $CAERK if printer is unuseable due to
previous printer error.

1. Exit to $CAE RK if CRT not available on system.
2. Place the address $$PL YN plus the contents of

$EXFTR at $PR DEV. 2. Place the address $$PRNT at $PR DEV.

No

Yes

KWR150

PROCESS PRINTER WITH CRT

1. Exit to #ER RPG via $CAE R K if printer down due
to previous printer error.

2. Place the address $$PYMP plus the contents of
$EXTFR at $PR DEV.

#GUFUD
Figure 3-22
Via $CARPL BR1112

Figure 3-69. WRITE Keyword Program (#KWRIT) Flowchart

Licensed Material-Property of IBM

COMMON SUBROUTINES

) System Work File IOCS-DL41CS (Figure 3-70)

• DL4ICS converts relative disk addresses to physical disk addresses within the work
file or virtual memory. It calls DKDISK to perform the disk I/O operation.

• The calling sequence for DL41CS is:

B DL41CS

DC AL2(DPL) DPL is the address of the disk parameter list (Figure 3-3). The second
byte of the disk address is a relative sector displacement.

The disk address is specified as a physical cylinder, and a single-byte sector displacement
relative to sector 0 on the specified cylinder. If a multiple-sector operation is required,
DL41CS splits the operation and makes multiple calls to DKDISK if necessary to
properly cross cylinder boundaries.

Disk Logical IOCS-DL21CS (Figure 3-70)

• DL2ICS converts relative disk addresses to physical disk addresses within a two-track
file, and calls DKDISK to perform the disk I/O operation.

• The calling sequence for DL2ICS is:

B DL21CS

DC AL2(DPL) DPL is the address of the disk parameter list (Figure 3-3). The disk
address is a two-byte relative displacement.

The disk address is specified as a two-byte cylinder and sector displacement relative to a
predefined disk address. This predefined disk address (two-byte physical address) must
be stored at label DL2RAD prior to the first call to this IOCS. Files accessed by this
IOCS are logically on one volume; therefore, the disk ID and drive number do not change
from those specified in the predefined starting address.

Program Organization 3-101

Licensed Material-Property of IBM

3-102

DL21CS

DL2002

Save DPL
from calling
sequence.

DL2005

Increment' cylinder
number and subtract
48 from sector dis
placement until it
goes negative; then
add back 48.

DL2008

Shift remaining
sector d isp la cement
left 2 bit positions
for physical disk
address.

Add the starting
address at label
DL2RAD to DPL
address (cylinder
and sector).

DL2100

Increment track
(carries to cylinder)
and subtract 24 from
sector displacement
until It goes negative;
then add back 24.

D L2110

$DISKN 3-7

Pass physical DP L
to DK DISK and
do 1/0,

DL2910

Return to
Calling Program

DL41CS

DL4020

Save DPL
from calling
sequence.

DL4035

Initialize for
removable disk
and track zero.

DL4040

Increment cylinder
and subtract 96 from
sector displacement
until displacement is
less than 96.

DL4050

If remaining sector
displacement is 48
or more, set bit for
fixed disk and sub
tract 48 from sector
displacement.

Add sector count
to remaining sector
displacement.

Operation will hit
end of cylinder so
divide sector count
for 2 I/Os.

DL4600

Move in adjusted
sector displace
ment and count
for second 1/0.

Figure 3-70. Disk IOCS Routines (DL2ICS, DL4ICS) Flowchart

Licensed Material-Property of IBM

Yes

If remaining sector
displacement is 24
or more, set bit for
track 1 and subtract
24 from sector dis
placement.

DL4080

Shift remaining
sector displacement
left 2 bits for physi
cal disk address.

Move previously
computed disk ID
and track to physi
cal disk address.

DL4100

$DISKN 3-7

Pass physical DPL
to DK DISK and
do 1/0.

Return to
Calling Program

BR1115

)
DCR650

Turn off
command
lights.

Reset count
of lines
displayed.

Line Printer lnterface-DLPRNT (Figure 3-71)

• DLPRNT allows device independence when listing lines on the CRT or matrix
printer.

• If the CRT is to be used, the speed of the displayed lines is controlled, and the
roll-stop and popup commands are recognized.

• If the bidirectional printer is used, printing is done in both directions.

• The calling sequence for DLPRNT is:

B DLPRNT

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

To control which device receives the output, a device type code may be placed at the
label DLPTYP. The device type code is the displacement (from DLPRNT) to the routine
for interface to the proper device. DLPTYP is initially set for output on the system
printer. Values at label DLPTYP define the displacement equated to the label and its
associated device:

Label

DLPMPR
DLPCRT
DLPSPT

Device

For output on MP
For output on CRT
For output on system printer

Delay
time
loop.

Loop until
another mode
Is selected.

Delay
time
loop.

Note: Entry to DLPRNT
is on part 2.

No

DCR500

Add 1 to
count of
lines displayed.

BR1117.1
Figure 3-71. Line Printer Interface (DLPRNT) Flowchart (Part 1 of 2)

Program Organization 3-103

Licensed Material-Property of IBM

DCRTIF

DSPLYN

Pass PPL to
CRT IOCR,

3-32

DPRINT 3-29

Exit to MP I OCR
via nucleus system
printer interface.

3-104

DLPRNT

DSPL YN 3-32

Pass PPL to
CRT IOCR.

Set up to print fu II
line and to re-enter
th is routine with
residual.

DPRINT 3-29

Print and index;
no carriage return.

Set up buffer for
another print.

DPRINT 3-29

Carriage return.

Clear buffer to
blanks and move
data to buffer.

DLl300
DLl410

Set up for
right or left
printing.

Figure 3-71. Line Printer Interface (DLPRNT) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

$UNMSK 3-10

Check for
inquiry request.

Return to
Calling Program

BR1117.2

Card Punch IOCR-DCDOUT (Figure 3-72)

• DCDOUT performs punching 1/0 for the data recorder.

Page of LY 34-0001-l
Revised January 1972
By TNL LN34-0075

• When the call is made to this routine, the previous punching operation is checked
for errors before starting the new request.

• The routine then exits, allowing continued processing while the card is being
punched.

• The calling sequence for DCDOUT is:

B DC DO UT

DC AL2(PPL) PPL is the address of the print parameter list (Figure 5-23).

1/0 Routines

Two 1/0 functions are provided by DCDOUT:

I. Punch-96 bytes of data are punched (80, if configured for the 129), starting at the
core address specified in the PPL.

1 Wait and check for errors-This function allows the punching operation to
complete error-free before returning to the calling routine.

Error Recovery Procedures (ERP's)

No error returns are made to the calling program. All ERP's are included within the
IOCR. Not-ready conditions cause a soft halt. Off-line and hopper full/empty conditions
cause the CPU to loop on the TIO until the problem is corrected by the operator. Once
the problem has been corrected, the SIO sent to the device is executed automatically.

Data compare errors are retried once. Incorrect card code is accepted from the sys
tem, but the resulting punched card is bad.

If five compare errors or hopper jams occur in one operation, the system comes to a
hard halt, requiring a re-IPL. Errors are logged on the fixed disk.

Program Organization 3-105

Licensed Material-Property of IBM

3-106

DCDOUT

DC DO UT

Mask
inquiry
requests.

DCD200

Wait for
Previous Op

$DISKN 3-7

Wait call to
log the error.

SIO

$UNMSK 3-10

Unmask
inquiry
requests.

Return to
Calling Program

Set up
error history
log entry.

$DISKN 3-7

Wait call to log
error and hard
stop,

DCD530

Hard Halt

Figure 3-72. Card Punch !OCR (DCDOUT) Flowchart

Licensed Material-Property of IBM

No

First

Soft Halt

SIO
(retry)

Work File PUT Subroutine-GPUTIT (Figure 3-73)

• GPUTIT is a routine used to place single statements in the work file or in a temporary
VM file, in ascending order.

When this routine is first called, it initializes the file index table and places the statement
passed to the routine in a core buffer as the first statement of a new file. Each statement
passed via a subsequent call to GPUTIT is placed in the core buffers, following the pre
vious statement. As a statement is placed in a core buffer, the file index table (refer to
Figure 5-16) is adjusted to reflect the inclusion of that statement unless GPUTIT = 1
(set on).

When a core buffer is filled to capacity, it is written to disk, and file building continues
in the alternate core buffer. When the last statement of the file has been placed in a core
buffer, it is followed by the end-of-file record. The last core buffer is then written to
disk.

GPUTIT

Initialize pointers
and counters for
first PUT.

Pack BASIC pro
gram statements
using GCPACK
subroutine.

No

Refer to GCPACK
in work file update/
crusher program
(#GUFUD).

Set EO F Indicator
and move EOF
record to output
buffer.

BR1120.1

Figure 3-73. Work File PUT Subroutine (GPUTIT) Flowchart (Part 1of2)

Program Organization 3-107

Licensed Material-Property of IBM

3-108

Return to
Calling Routine

GPU220

Increment count
of lines in the
work file.

Complete FIT
entry for full
disk block.

Divide the line into
2 segments; move the
first to the output
buffer.

Set up for move
of second segment
to buffer.

Yes

GPU ERR

$CA ERK
Figure 3-9

GPU240

Move segment to
output buffer and
adjust pointers.

Create a null SDF
at end of disk block
if space remains.

GPU450

DL41CS 3-70

Write fu II disk
block to work
file.

Figure 3-73. Work File PUT Subroutine (GPUTIT) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

Reset pointers
and counter for
next block.

BR1120.2

GRAB IT

Set up DP Ls for
current and next
input buffers.

Initialize pointers
and counters for
current input buffer.

$DISKN 3-7

Wait call for
initial buffer load.

Set up to access
work file with
DL41CS,

No

Work File Retrieval Subroutine-GR AB IT {Figure 3-74)

• GRABIT locates sequential statements in the file specified by the user, and, depending
upon the option chosen, passes back the statement or skips to the next.

After being primed by the calling program, GRABIT reads logically consecutive blocks
of segmented statements, from the file specified by the user, into core. GRABIT returns
with @XR pointing to the binary line number of the next statement.

In addition to @XR, GRABIT parameters can be set to cause the binary line number;
the type code; and the unpacked, non-segmented text of the next statement to be placed
in areas defined by the user. If GRABIT is used to skip through the statements without
unpacking them or changing their length or segmented condition, GRABIT can be
instructed to return the blocks to their original disk address if the specified file is accessed
by DL4ICS.

Set EOF code for
calling routine.

Yes

Set output
parameters.

Update pointers
and counters.

Unpack a segment
from input buffer
to GRTEXT,

Increment po inter
by length of next
segment,

GRA500 3-74

Access next
logical disk block.

Return to
Calling Routine

BR1121.1

Figure 3-74. Work File Retrieval Subroutine (GRABIT) Flowchart (Part 1of2)

Program Organization 3-109

Licensed Material-Property of IBM

GRA500

Fill input
buffers.

Yes

3-74

GRA500

$DISKN 3-7

Wait for completion
of prior read.

No

DL41CS 3-70

Write current buffer
to work file.

Update pointers Return to
and counters. Calling Routine

Return to
Calling R'outlne

3-110

Access method is
sequential with 2
1/0 areas.

Set hard
error
Indicator.

$CAERK
Figure 3-9

DL41CS 3-70

Read next logical
block from work
file.

Return to
Calling Sequence

DL2ICS 3-70

Fill all buffers
from saved file.

Note: Logic represented on this flowchart may
not be present In programs that do not
require those Instructions.

Figure 3-74. Work File Retrieval Subroutine (GRABIT) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

BR1121.2

SFl505

$CAERK
Figure 3-9

Find Specified File Subroutine-SFINDF (Figure 3-75)

• SFINDF is a control subroutine used to locate a specified password and/or filename.

The function of SFINDF depends upon the way the file is specified:

1. If a filename, password, and volume-ID are all explicitly specified, SFINDF issues
calls to SVOLID, SGETDB, and SRCHFN to search the appropriate file library
directories to find the specified file.

2. If the password or volume-ID is not explicitly defined, SFINDF defaults to the
current user specifications, if they exist, for the missing parameters and then
issues the required calls to SGETDB and/or SRCHFN to locate the file.

3. If a one-star(*) or two-star(**) filename is specified, SFINDF either searches
the specified disk if a volume-ID was specified or searches every disk on the
system for the file if a volume-ID was not specified. Parameters may be set to
terminate the search after processing a specified number of disks containing
file libraries.

No

Yes

SFl340

Set disk address
of logged-on library.

SFINDF

Set up to search
all file libraries.

Figure 3-75. Find Specified File Subroutine (SFINDF) Flowchart (Part 1 of 2)

Licensed Material-Property of IBM

SVOLID 3-76

Search volume-
1 D table.

BR1122.1

Program Organization 3-111

3-112

SGETDB 3-77

Search password
directory.

Yes

No

Yes

Password

DL21CS 3-70

Get first filename
directory block.

SFl520

SRCHEN 3-78

Search filename
directory.

Set error code
for not found.

SFl550

Return to
Calling Routine

Yes

BR1122.2

Figure 3-75. Find Specified File Subroutine (SFINDF) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

)

SVOLID

Set up to scan
Volume-ID table
in the system
nucleus.

Save table
entry.

Increment pointer
to next entry.

Find Volume-ID Subroutine-SVOLID (Figure 3-76)

• SVOLID searches the volume-ID table in the nucleus communications area for a
specified volume-ID.

SVOLID scans the volume-ID table for a specified volume. If the volume is not found,
an error code is put in $CAERR and an exit to SVOERR in the using program is taken.
If more than one volume with the same volume-ID is found, the user is requested to
indicate which drive and disk is to be used. If the user is unable to resolve the conflict,
the current system command is rejected. If the system input device is the card reader,
and duplicate volume-ID's have been found, the current system command is rejected.

This routine tests
for duplicates.

$SPRNT 3-9

Ask for drive
clarification.

DEPRES 3-30

Accept
user response.

Return to
Calling Program

Figure 3-76. Find Volume-ID Subroutine (SVOLID) Flowchart

Licensed Material-Property of IBM

None

No

No

No

SV0270

$CAERK
Figure 3-9

BR1123

Program Organization 3-113

3-114

Search Password Directory Subroutine-SGETDB (Figure 3-77)

• SGETDB searches the password directory for a specified password or reads into core
the first directory block of the file-specification password.

SGETDB searches the password directory for a specified password and reads into core
the first directory block associated with that password. If SMlPDS is set, only the entry
address of the password is passed to the caller in SMPEAD. If the directory block is
requested and the password is not found, the error code is placed in $CAERR, SMlPNF
is turned on in SMIND 1, and a normal return is taken. If only the password is requested
and the password is not in the directory, the address for the next entry is passed in
SMPEAD, SMlPNF is turned on, and the return is taken.

Yes

SGETDB

DL21CS 3-70

Read in pass
word directory.

$DISKN 3-7

Wait.

S(OE055

Initialize sea n of
password directory.

Increment pointer
to next entry.

Save disk address
of user directory
from entry.

DL21CS 3-70

Start read of
first user direc
tory block.

SGE900

Return to
Calling Routine

Figure 3-77. Search Password Directory Subroutine (SGETDB) Flowchart

Licensed Material-Property of IBM

BR1124

)

SRCHFN

Initialize
buffer
pointers.

SRC020

$DISKN 3-7

Wait for file
name directory
block.

DL21CS 3-70

Read next block
to alternate
buffer.

SRC030

Initialize for
scan of file
name directory.

No

Search Filename Directory Subroutine-SRCHFN (Figure 3-78)

• SRCHFN searches the filename directories for a specified filename.

SRCHFN searches a filename directory (USER, POOL, or**) for the filename in
SMFNAM. The directory buffers and work areas are assumed to be available in TSMLES.
The calling routine starts the disk operation to read the first directory block.
If the name is found, the address of the left byte of the entry is stored in SMUDEA

and the SMl FNE bit of SMIND 1 is set off. If the name is not found, the address where
the next entry is placed is stored in SMUDEA and the SM 1 FNE bit of SMIND 1 is set on.
In both cases, SMUDBA contains the left byte address of the active block.

Switch
buffers.

Increment pointer
to next entry.

Set
filename
not found.

SRC050

Save addresses
for other routines.

SRC900

Return to
Calling Routine

Yes

SRC040

Save disk address
of file from entry.

BR1125

Figure 3-78. Search Filename Directory Subroutine (SRCHFN) Flowchart

Program Organization 3-115

Licensed Material-Property of IBM

3-116

STORJN

Move new entry
to directory.

Initialize for
search of nu II
directory.

Set error code;
entry cannot
be made,

Null Directory Entry Subroutine-STORIN (Figure 3-79)

• STORIN creates an entry in the null directory.

If the entry cannot be created, an indicator is set to note that the file library should be
packed. If the null space is contiguous to that of any other entries in the directory,
STORIN adjusts that directory entry to include the space.

Yes

Increment pointer
to next entry,

STOR47

Calculate high
address of null
space in last
entry.

Move new entry
to next directory
location.

STOR20

Calculate high
address of null
space in low
entry.

Combine null
space with
low entry,

Insert new
entry,

STOR48

Add null space
to directory
entry.

Figure 3-79. Null Directory Entry Subroutine (STORIN) Flowchart

Licensed Material-Property of IBM

Combine up to 3
contiguous entries.

STOR90

Return to
Calling Routine

BR1126

Filename Directory Entry Subroutine-STUFID (Figure 3-80)

• STUFID inserts one entry in a filename directory. If the directory is full, STUFID
tries to create a new block automatically.

STUFID adds a filename to a filename directory in the file library. If the directory is
full, STUFID searches the null directory for a two-sector space to create a new directory
block. If a space cannot be found, an error indicator is set in $CAERR and an exit to
STUERR is taken. If the space is found, the new block is created. The write operation is
started, to restore the affected directory block.

STUFID

Point to location
of new entry.

Locate end of
active entries in
current block.

STU020

Move nevv entry
to current block.

DL21CS 3-70

Write block back
to file library.

Yes

STU040

SURCHN 3-81

Search nu II directory
for 2-secto r space.

Set Linkage in
last block to
new space.

DL21CS 3-70

Write back last
block to file
library.

STU060

Build new header
and move new entry
to new block.

DL21CS 3-70

Write new block
to file library.

STU900

Return to
Calling Routine

No

$CA ERK
Figure 3-9

BRl 127

Figure 3-80. Filename Directory Insert Subroutine (STUFID) Flowchart

Program Organization 3-117

Licensed Material-Property of IBM

3-118

Search Null Directory Subroutine-SURCHN (Figure 3-81)

• SURCHN searches the null directory for an entry of at least N sectors in size, where
N is specified by the calling routine in SMNSCT.

An attempt is made to find an entry in the directory of at least N sectors in length. If a
directory entry is not large enough, it is added to SMNULT, which is an accumulated
total of all available space for the file library. If the space required cannot be found, the
calling program determines if the file library will be packed, by testing if SMNULT is
equal to or greater than N. If the space is not found, a relative address of zero is returned
in SMNDEA. If space is found, the relative address of the space is returned in SMNDEA.

SUROG2

Indicate no
space available.

No

SURCHN

Search null entries
for enough space
to honor request.

Delete entry by
shifting remaining
entries in null
directory.

SUR024

Update null
directory header.

SUR900

Return to
Calling Routine

No (larger)

SUROA3

Decrement size of null
space by incrementing
starting disk address.

BR1128

Figure 3-81. Search Null Directory Subroutine (SURCHN) Flowchart

Licensed Material-Property of IBM

)

Track Usage Mask Utility Subroutine-UTKUSE (Figure 3-83)

• UTKUSE tests and updates the track usage mask in the volume label (refer to Figure
5-9).

• The calling source module, assembled with UTKUSE, passes parameters via labels
located within UTKUSE (Figure 3-82).

• Entries to UTKUSE are:

UTKINP-Reads in volume label.
UTKPRC-Bypass reading of volume label.

The calling source module can test for space as close to cylinder 10 as possible by moving
UTKFLG to TKSYLN, causing the initial cylinder number to default to 10. The function
code (in this case) moved to UTKTYP would be UTKTBF (Figure 3-82). This subroutine
scans the track usage mask for the first available and consecutive space (TKSCYL).

Method Used to Displace into Track Usage Mask

The cylinder number divided by 4 equals the byte displacement into the track usage
mask. The remainder is used to displace into a table of bit masks:

If Remainder Is Mask Is

0

2
3

Label Length

00000011
00001100
00110000
11000000

Description

TKSYLN 1 Initial cylinder number. If set to UTKLIM (X'FF'), the initial
cylinder defaults to 10.

TKSCYL 1 Number of cylinders.
TKSADR 2 Core address of volume label.
TKSDSK 2 Disk address of volume label.
UTKTYP 1 Function codes:

UTKSBN (X'3A')-Assign space.
UTKSBF (X'3B')-Release space.
UTKTBF (X'39')-Test for space available.
UTKTBN (X'38')-Test for space not available.

BR1129

Figure 3-82. Parameters Passed to UTKUSE Subroutine

Program Organization 3-119

Licensed Material-Property of IBM

3-120

UTKPRC

UTKINP

UTKREP

$DISKN 3-7

Read volume
label.

Calculate dis
placement into
track usage mask.

UTK250

Perform function on
specified cylinders.

Indicate error
condition,

Return to
Calling Routine

BR1130

Figure 3-83. Track Usage Mask Utility Subroutine (UTKUSE) Flowchart

Licensed Material-Property of IBM

)

)

VTOC Utility Subroutine-UTVTOC (Figure 3-85)

• UTVTOC performs maintenance on the VTOC (refer to Figure 5-10) and volume
label (refer to Figure 5-9). In version 1, modification 0, the ending disk address of
the file is the address of the last track used, while in version 1, modification 1, the
ending disk address of the file is the address of the next available track. After success
ful modification of any modification 0 file, UTVOC modifies the ending disk address
of that file.

• The calling source module, assembled with UTVTOC, passes parameters via labels
within UTVTOC (Figure 3-84). An assembly that contains UTVTOC also contains
UTKUSE (Figure 3-83) to test and update the track usage mask in the volume label.

• Entries to UTVTOC are:

UTVDEL-Delete a file.
UTVEXP-Increase file size.
UTVSHK-Decrease file size.
UTVIST-Allocate a new file at specified location.
UTVDFT-Allocate a new file as close to cylinder 10 as possible.
UTVINF-Obtain information about file.

Refer to the functions in the description of the calling source module for functions pro
vided by this subroutine.

Label Length Parameter Name Note

TKSBFI 1 System files indicator Sarne as in volume label, Figure 5-9.
TVSFIL 8. Filename Not required for increasing, decreasing,

or deleting system files.
TVSDSK 2 VTOC disk address Physical disk address of VTOC index:

X'0024'-R1
X'0025'-F1
X'0026'-R2
X'0027'-F2

TKSCYL 1 Number of cylinders Used to increase, decrease, or allocate
a file.

TKCYLN 1 Initial cylinder number Used when allocating a file at a specific
location.

BR1131

Figure 3-84. Parameters Passed to UTVTOC Subroutine

Program Organization 3-121

Licensed Material-Property of IBM

3-122

Entry

Set flags
for function
to perform.

UTV170

Save parameters
and registers.

Mask
console
interrupts.

$DISKN 3-7

Read
VTOC index,

Set bits to
indicate which
volume.

$DISKN 3-7

Read volume
label.

Determine
S/3 BASIC
index tag,

UTV350

Search VTOC
index for tag
or filename.

Read file label
from VTOC.
Adjust address
if necessary.

UTKPRC 3-83

Release
disk space.

$DISKN 3-7

Write updated
VTOC index.

Write the modified
format 1 entry
to disk.

UTV420

Read file label
from VTOC.
Adjust address
if necessary.

Search VTOC index
to insure there is
not a SCP file on the
disk with the same
name.

UTV425

UTKPRC 3-83

Allocate
disk space.

Build the label.

$DISKN 3-7

Write updated
VTOC index.

UTV435

$DISKN 3-7

Write new or updated
file label to VTOC.

Update fields in
volume label.

Figure 3-85. VTOC Utility Subroutine (UTVTOC) Flowchart

Licensed Material-Property of IBM

UTKPRC 3-83

Release
disk space.

UTKPRC 3-83

Test for, and then
assign, disk space,

UTV500

Set output
parameters.

$DISKN 3-7

Write back
volume label,

Return to
Calling Routine

BR1132A

Pack File Library Subroutine-#SPACK (Figure 3-86)

• #SP ACK reorganizes the file library and eliminates imbedded null sectors.

The null directory is referenced to determine where there are null sectors in the file
library. All files and directories are moved up the disk to eliminate imbedded null sectors
until all null sectors are located at the end of the file library. All pointers are updated to
the new location. The sequence of the records in the file library is not changed.

#SPA CK

SP AC KU

PRINT PACKING MESSAGE AND LOAD OVERLAY

1. Call $SPRNT to print packing message.
2. Call $DISKN to read in null directory.
3. Call LOADR to load #SPOVL.

SPA010

BUILD UPDATE TABLE

1. Set sums of .preceding null sectors in each entry.
2. Build additional entry with null total.

SPA030

UPDATE DIRECTORIES

1. Call DL21CS to read in user directory.
2. Go to SPADUP to update user directory.
3. Go to SPAPDT to update password entry.
4. On last password call DL21CS to write directory.
5. Exit to #SPOVL.

#SPOVL

PACK LIBRARY AREA

1. Move active user files toward the front
of the file I ibrary.

Return to
calling program

BR1133.1

Figure 3-86. Pack File Library Subroutine (#SP ACK) Flowchart (Part 1 of 2)

Program Organization 3-123

Licensed Material-Property of IBM

SPADUP

UPDATE USER DIRECTORIES

1. Call SPAPDT to update directory header.
2. Call SPAPDT to update directory entries.
3. On last entry call DL21CS to output directory.

RETURN

SPAPDT

UPDATE DADDR IN ARGUMENT

1. Find.null entry greater than 1'argument.
2. Decrement disk addresses by value in update table.

RETURN

BR1133.2

Figure 3-86. Pack File Library Subroutine (#SPACK) Flowchart (Part 2 of 2)

3-124

Licensed Material-Property of IBM

UTILITY PROGRAMS

ALTERNATE-TRACK Utility Program-#UATRC (Figure 3-87)

• #UATRC tests, assigns, and unassigns alternate data tracks.

• The assembly of #UATRC contains this major source module:

UATRCK-Mainline logic, Figure 3-87

Two alternatives are available in determining the suspected defective track: (I) specify a
physical track, or (2) default to the tracks logged in the suspect track log in the volume
label sector. Either TEST or ASSIGN is valid in this case.

#UATRC performs one of four functions:

1. A suspected operative data track can be unconditionally flagged defective and
assigned an alternate.

2. A suspected operative data track can be tested. The track is flagged defective and
assigned an alternate based on the results of the test.

3. A flagged data track can be unconditionally restored to operative status. The
alternate is unassigned.

4. A flagged data track can be tested. The track is restored to operative status based
on the results of the test. The alternate is unassigned.

Data is transferred if it can be read without an unrecoverable error.

Program Organization 3-125

Licensed Material-Property of IBM

#UATRC

UATOOO

SYNTAX CHECK AND SAVE PARAMETERS

1. Enter SDISKS to get disk specification.
2. Enter SCYLCK to get track specification.
3. Enter C4BIN2 to get retry count.
4. Perform syntax check on other parameters.
5. Exit to #ER RPG via $CAERK on syntax errors.

TEST

UAT100 UAT200

PROCESS UNCONDITIONAL UNASSIGN PROCESS UNCONDITIONAL ASSIGNMENT

1. Write normal ID on track to be retu med to
operative status (reset defective flag).

1. If no track specified, fetch one from suspect track
table. If none, exit to #ER RPG via $CAERK.

2. Transfer data from the alternate to operative track 2. Pick an alternate track from available alternates.
via $DISKN. If none, exit to #ER RPG via $CAERK.

3. Write normal ID on alternate track. 3. Write alternate ID on chosen alternate track.
4. Remove entry from alternate track table. 4. Transfer data from defective track to the alternate
5. Print unassignment messages via $SPRNT. via DKDISK.
6. If data unrecoverable, print error 598 via $SPRNT. 5. Write defective ID on defective track.
7. If data recoverable, print DATA RECOVERED

MSG via $SPRNT.
6. Place assignment entry in alternate track table.
7. Print assignment messages via $SPRNT.

3-126

8. If data unrecoverable, print error 598 via $SPRNT.
9. If data recovered, print DATA RECOVERED

message via $SPRNT.
10. If track address taken from suspect track table,

remove entry from table, and repeat steps 1-10
until all entries processed.

UAT300

TEST SUSPECT TRACKS

1. If no track specified, fetch one from suspect track table, if none, exit
to #ER RPG via $CAERK.

2. Pick an alternate from available alternates, if none, exit to #ER RPG
via $CAERK.

3. Write al.ternate ID on selected alternate.
4. Transfer data to alternate from the suspect track via DKDISK.
5. Perform surface analysis the specified number of times on suspect

track.
6. If defective, write defective ID on suspect, log assignment in alternate

track table, and print assignment messages via $SPRNT.
7. If track found operative, restore data and track I Os involved.
8. If data was lost, print error 598 via $SPRNT.
9. If data was recovered, print DATA RECOVERED message via

$SPRNT.
10. If track address was from suspect track table, repeat steps 1-9 until

all entries have been processed.

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-87. ALTERNATE-TRACK Utility Program (#UATRC) Flowchart

Licensed Material-Property of IBM

BR1134A

)

ASSIGN Utility Program-#UALLO (Figure 3-88)

• #UALLO allocates disk space for a system library file or a system work area.

• The assembly of #UALLO contains these major source modules:

UALLOC-Mainline logic, Figure 3-88
UTVTOC-VTOC subroutine, Figure 3-85
UTKUSE-Track usage mask subroutine, Figure 3-83
DL2ICS-Disk logical IOCS, Figure 3-70

Functions of #UALLO are:

I. Check the track usage mask in the volume label (Figure 5-9) for contiguous space.
2. Reset bits in the track usage mask that correspond to the tracks being allocated.
3. Update other required fields in the volume label.
4. Create an entry in the VTOC index and a label in the VTOC (refer to Figure 5-10).
5. Create the null directory, password directory, and * and * * directories for the files

(refer to Figure 5-11).

Program Organization 3-127

Licensed Material-Property of IBM

UALLOC

#UAL LO

Assign
Library

Yes

No

SYNTAX CHECK PARAMETERS, CONVERT

1. Enter SDISKS to complete specifications.
2. Enter $CAERK to print error messages for syntax

errors.-----------------+--
3. Enter SCAN IT to sc-an across blanks.
4. Enter SCY LCK to convert track specifications.

UAL600

SYNTAX CHECK PARAMETERS

1. Enter $CAERK to print message if invalid
parameters.

2. Enter SCAN IT to scan across blanks.
3. If no disk specifications, set to assign work area for

R1andF1.
4. Enter SDISKS to complete disk specifications. 5. Enter $CAE RK to print error message if library already exists. ______________ ..._ 5. Enter $CAERK if disk specified is not initialized.--+----!

UAL120

CREATE VTOC LIBRARY FILE

1. Enter UTVIST to insert library file in VTOC entries.
2. Enter $CAE R K to print error message if space not

available.----------------+-"'
3. Enter $CAERK to print error message if VTOC full. -+---1

UAL800

CREATE LIBRARY DIRECTORIES

1. Create entries for null, password, pooled, and
**directories.

2. Eriter DL21CS to write directories to disk.

UAL120

CREATE VTOC WORK AREA FILE

1. Enter UTVIST to insert work area file.
2. Enter UTVDEL to delete work area file; if it already

exists.
3. Enter $CAERK to print error message if space is

allocated for another purpose.
4. Enter $CAERK to print a message if VTOC is full.

#ERRPG
Figure 3-17
Via $CAERK

UAL400

PRIME AND LOAD GUFUDI

#ERRPG
Figure 3-17
Via $CAERK

1. Enter $SPRNT to print completion message.
2. Enter $CARPL to reload and execute GU FU DI.

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-88. ASSIGN Utility Program (#VALLO) Flowchart

3-128

Licensed Material-Property of IBM

BR1135B

CONFIGURE Utility Program-#UCNFI (Figure 3-89)

• #UCNFI creates or modifies the configuration record on cylinder 0 (refer to Figure
5-3).

• The assembly of #UCNFI contains this major source module:

UCNFIG-Mainline logic, Figure 3-89

Each device present in the new configuration record is issued a test command before the
record is written on the IPL'd volume. When configuring up to 3D or 4D, any VTOC
entries that exist (on the new packs being configured) for scratch files are deleted from
the VTOC.

#UCNFI

UCNFIG

SYNTAX CHECK PARAMETERS AND SET INDICATORS

1. Enter SCAN IT to scan across blanks.
2. Scan component field and set flag for parameters found in component

field.
3. Enter $CAERK to print error message if invalid keyword type.
4. Enter $CAE R K to print error message if repetition of parameters or

invalid combination of parameters.
5. Enter $CAERK to print error message if invalid parameter.

UCN600

READ CONFIGURATION RECORD AND CHECK COMPONENT FIELD

1. Enter $DISKN to read configuration· record.
2. Update configuration record with entries in component field.
3. Enter $CAERK to print error message if CRT, 8K, 8 command key

conflict.

UCN900

TEST CONFIGURATION RECORD AND MODIFY VOLUME
IDENTIFICATION TABLE ENTRIES

1. Enter MCNFIG to verify hardware and modify configuration indicators
in NUCLEUS.

2. Enter $DISKN to write configuration record to disk.
3. Enter $DISKN to read volume labels and place in volume identification

table if not present.
4. Delete entries in volume identification table if disk configuration no

longer configured.
5. Enter $CARPL to load and execute GU FU DI.

#GUFUD #ERRPG
Figure 3-22 Figure 3-17
Via $CAR PL Via $CAERK

BR 1136

Figure 3-89. CONFIGURE Utility Program (#UCNFI) Flowchart

Program Organization 3-129

Licensed Material-Property of IBM

3-130

COPY File Utility Overlay-#UCPLI (Figure 3-90)

• #UCPLI copies a file defined by a label in the VTOC to another volume, or reposi
tions the file on the same volume.

• #UCPLI is loaded by #UCDIS (Figure 3-91) when the command is either COPY
SYSTEM, COPY-LIBRARY, or COPY-HELPTEXT.

• The assembly of #UCPLI contains these major source modules:

UCPLIB-Mainline logic, Figure 3-90
DL2ICS-Disk logical IOCS, Figure 3-70

If #UCPLI copies the file to another volume, a new label is created in the VTOC and the
volume label is updated. If the file is repositioned on the same volume, the existing label
in the VTOC is deleted, a new label is created, and the volume label is updated. When a
file is repositioned on the same volume, the old area is no longer accessible, except by a
disk dump, even if the disk areas did not overlap.

#UCPLI

UCP100

SYNTAX CHECK AND LOOK FOR FILES ON SPECIFIED DISKS

1. Check if parameter is System Library, or HELPTEXT.
2. Call SDISKS to decode input/output disk specifications.
3. Call UTVINF to look for file on output disk.
4. Call UTVINF to look for file on input disk.
5. Exit to $GAER K if. any errors.

1
#ERRPG

UCP205 Figure 3-17
Via $CAERK

DELETE AND INSERT FILE TO BE COPIED

. Call UTVDE L to delete old file if COPY is to sarne disk . '·
2. Call UTVIST to insert the file in output VTOC.
3. If COPY-SYSTEM or LIBRARY or HELPTEXT on same disk,

update pointers in nucleus.

UCP500

COPY FILE UPDATE PTF LOG

1. Call DL21CS to copy file.
2. If COPY-SYSTEM or LIBRARY or HELPTEXT to new disk,

update PTF log on new disk.
3. If COPY-SYSTEM to another disk, copy IPL sector and Nucleus.
4. If COPY-SYSTEM/HELPTEXT to another disk, copy PTF

log entries.
5, Exit to $CARPL to load #GUFUD.

#GUFUD
Figure 3-22
Via $CARPL

BR1137

Figure 3-90. COPY File Utility Overlay (#UCPLI) Flowchart

Licensed Material-Property of IBM

COPY Volume Utility Program-#UCDIS (Figure 3-91)

• #UCDIS copies the entire contents of a disk volume to another volume.

• The assembly of #UCDIS contains these major source modules:

UCDISK-Mainline logic, Figure 3-91
UTKUSE-Track usage mask subroutine, Figure 3-82

The DISK parameter causes a track-for-track copy of the entire input volume to the
output volume with the exception of the error log statistics and program protection
sectors on cylinder 0 (refer to Figures 5-3 and 5-4). The volume-ID's of both volumes
are verified prior to each copy operation.

The following parameters in the volume label (refer to Figure 5-9) are not copied:

1. Alternate tracks
2. Cylinder count
3. Suspected defective tracks
4. Volume label
5. Owner I/D
6. Track usage mask in its entirety(except in copying the contents of one 200-cylinder

disk to another 200-cylinder disk)

On one disk read or write, 12 sectors are transferred on an 8k system and 24 sectors
are transferred on a 12k or 16k system (12 sectors if 12k and CRT).

Program Organization 3~131

Licensed Material-Property of IBM

3-132

#UCDIS

UCD900

SYNTAX CHECK ALL DISK SPECIFICATIONS

1. Enter $RLOAD to load #UCLIB if LIBRARY, SYSTEM, or HELPTEXT
specified.

2. Enter SDISKS to complete disk specifications.
3. Enter SCAN IT to scan across blanks.
4. Point pointer to beginning of disk specifications after completing all

syntax checking.
5. Enter $CAERK to print error message if syntax errors.----------1----
6. Enter $GAE AK to print error message if drive 2 not on system. -----+----1
7. Enter $CAERK to print error message if missing parameter. ------+----!

COPY DISK PAIRS, VERIFY VOLUME LABELS, AND CHECK VTOC
FILE

1. Enter $DISKN to read volume labels of disk pairs.
2. Enter $CAERK and print message if volume labels invalid and enter a

soft halt.
3. Enter UTKPRC to determine if VTOC files exist on output disk, or if

VTOC files exist on the second 100 cylinders of the input disk when
copying to a 100-cylinder disk, and enter $CAERK to print message
if VTOC files exist.

4. Mask inquiry request.
5. Move alternate track assignments, cylinder count, volume label and

owner identification to write disk. Adjust track usage mask, if
necessary.

6. Determine lesser number of cylinders of disk pair.
7. Enter $DISKN to write volume label to write disk.
8. Enter $DISKN to copy IPL sector, configuration record, and VTOC

tables, to write disk.
9. Enter $DISKN to copy lesser number of cylinders.

10. Point pointer to next disk pair if any left.

No
Last Disk Pair

Yes

Hard Halt

Figure 3-91. COPY Volume Utility Program (#UCDIS) Flowchart

Licensed Material-Property of IBM

#ERRPG
Figure 3-17
Via $CAERK

BR1138A

EXPAND Utility Program-#UEXLI (Figure 3-92)

• #UEXLI changes the disk space allocated to a library file.

• The assembly of #UEXLI contains this major source module:

UEXLIB-Mainline logic, Figure 3-92.

Functions of #UEXLI are:

1. Check the track usage mask in the volume label (refer to Figure 5-9) for available
tracks when enlarging the library.

2. Set or reset bits in the track usage mask to reflect the change.
3. Update other required fields in the volume label; update the VTOC index and file

labels.
4. Update the null directory for the library.

Program Organization 3-133

Licensed Material-Property of IBM

#UEXLI

UEXLIB

SYNTAX CHECK PARAMETERS

1 . Enter $CAE R K to print error message if syntax errors.
2. Enter SDISKS to complete file specifications.
3. Enter SCYLCK to convert number of tracks to number of cylinders.
4. Enter $CAERK and print error message if no library exists.

No
Expansion

Yes

UEX300 UEX250

UPDATE FILE ENTRIES UPDATE FILE ENTRIES

1. Enter $DISKN to read last entry in null directory. 1. Enter UTVEXP to expand library file and adjust
volume label and VTOC entries. 2. Decrease sector count in entry if space available to

contract.
3. Enter $CAERK to print error message if active files

exist.
4. Update cylinder count in directory header.
5. Enter $DISKN to write null directory to disk.
6. Enter UTVSHK to contract library file and adjust

entries in volume label and VTOC entries.

2. Enter $DISKN to print error message if space not
available.

3. Enter $DISKN to read null directory.
4. Update null directory sector count and cylinder

count.
5. Create new entry if no more entries available.
6. Enter $DISKN to write null directory to disk.

PRIME AND LOAD #GUFUD

1. Enter $SPRNT to print completion message.
2. Enter $CARPL to reload and execute #GUFUD.

#GUFUD
Figure 3-22
Via $CAR PL

BR1139

Figure 3-92. EXPAND Utility Program (#UEXLI) Flowchart

3-134

INITIALIZE Disk Utility Program-#UINIT (Figure 3-93)

• #UINIT formats and tests all tracks, including alternate tracks. Data tracks found
defective are flagged and alternate tracks are assigned.

• The assembly of #UINIT contains this major source module:

UINITL-Mainline logic, Figure 3-93

Licensed Material-Property of IBM

~

Functions of #UINIT are:

1. Clear the data field of all sectors to binary O's.
2. Flag the addresses on tracks found defective and assign an alternate (refer to

Figure 3-5)
3. Create the volume label (refer to Figure 5-9)
4. For PRIMARY initialization, write instructions on cylinder 0, head 0, sector 0,

that will cause a hard halt if IPL is a ttemptecl_ on the volume.
5. Change the volume-ID with the CHANGE option.
6. Extend the initialization of an existing pack initialized to 103 cylinders.
7. Write VTOC index initial error logs.
8. For secondary initialization, delete all scratch file entries that may have been left

in the VTOC by the co-resident disk system management programs.
9. Test for a valid system work area. If an invalid system work area is found, an

error message results.

#UINIT

UINOOO

SYNTAX CHECK AND SAVE PARAMETERS

1. Enter SDISKS to get disk-specification.
2. Enter SALPHA to get OWNER ID.
3. Enter C4BIN2 to get testing count.
4. Check other parameters.
5. Exit to $CAERK on syntax errors.

UIN100

CHECK FOR PARAMETER CONFLICTS

1. If any of the following exist, exit to #ER RPG via $CAERK:
a) SECONDARY specified for virgin disk,
b) SECONDARY specified when disk is initialized to machine

configuration,
c) Active files in area to be initialized,
d) Initialization specified beyond machine configuration.

UIN300

PERFORM SURFACE ANALYSIS

1. Set starting cylinder address.
2. Write ID on track the specified number of times, alternating between

data patterns of hex 00 and hex 55.
3. If an error occurs enter U I NE RP
4. Repeat steps 2 and 3 for all tracks to be initialized.

lJ ~
BR1140.1

Figure 3-93. INITIALIZE Disk Utility Program (#UINIT) Flowchart (Part l of 2)

Program Organization 3-135

Licensed Material-Property of IBM

3-136

UINSEK ~
VERIFY CORRECT ID ON ALL TRACKS

1. Read back track ID from all tracks via DKDISK.
2. Check all defective I D's against alternate track table.
3. If incorrect ID is read, repeat block UIN300 once - If second failure,

exit to #ER RPG via $CAERK.

UIN450

FORMAT CYLINDER ZERO

1. If primary initialization, perform the following:
a) Set up initial volume label SCTR with VOLi D and OWNER ID,
b) Place track usage mask, set on all bits beyond initialized area,
c) Initialize VOL-LABEL indicators (including CE cylindentatus),
d) Write initial VTOC index and ·error log.

2. Update alternate track table.
3. Update track usage mask.
4. Write volume label sector via DK DISK.
5. MOUNT disk.
6. Enter SUTOBA to check work areas.

#GU FUD
Figure 3-22
Via $CARPL

UINERP

ASSIGN ALTERNATE TRACKS

1. Retest suspect track ten times; if no failure, return to calling routine.
2. If the track is not on the CE cylinder, select an alternate from available

alternates; if none, exit to #ER RPG via $CAE RK.
3 .. If the track is on the CE cylinder, do not attempt to assign an alternate

to it.
4. Write defective ID on bad track.
5. Write alternate ID on selected alternate.
6. Place assignment entry in alternate track table
7. Print assignment messages via $SPRNT.
8. Return to process next track-----------------+-----.

BR1140.28

Figure 3-93. INITIALIZE Disk Utility Program (#UINIT) Flowchart (Part 2 of2)

Licensed Material-Property of IBM

PACK Utility Program-#UPACK (Figure 3-94)

• #UPACK analyzes the disk specification and loads #SPACK (Figure 3-86) to pack
the library file.

• The assembly of #UPACK contains this major source module:

UPACKU-Mainline logic, Figure 3-94.

#UP ACK

UP AC KU

TEST FOR INITIAL OR SECOND ENTRY

1. Test if DPL in $DPLSV is for UPACKU.

Yes

No

UPACKO UPACK020

SYNTAX CHECK AND LOAD SPACKU PRINT UNITS ALLOCATED AND AVAILABLE

1. Call SDISKS to decode disk specification.
2. Set user library base address.
3. Exit to $CAERK on any errors.----------
4. Call $R LOAD to load and exit t.o SPACKU.

#SPACK
Figure 3-86
Via $RLOAD

#ERRPG
Figure 3-17
Via ~CAERK

1. Call $DISKN to read null directory.
2. Calculate disk units available.
3. Calculate disk units allocated.
4. Call $SPRNT to print message.
5. Exit to $CARPL to load #GUFUD.

#GUFUD
Figure 3-22
Via $CARPL

BR1141

Figure 3-94. PACK Utility Program (#UPACK) Flowchart

Program Organization 3-137

Licensed Material-Property of IBM

3-138

PTF Utility Program-#UPTFI (Figure 3-95)

• #UPTFI applies program temporary fixes to components residing in the system
program file or to the help text file.

• For PTF operating procedures, refer to "PTF Commands" in Section 6.

• The assembly of #UPTFI contains these major source modules:

UPTFIX-Mainline logic, Figure 3-95
DL2ICS-Disk logical IOCS, Figure 3-70

The PTF HDR (header) statement specifies the PTF identification, the disk to which
the PTF is to be applied, and the disk from which the PTF will come, if it is from disk.
Next, the PTF statement specifies the program name or help text component name and
the system or help text release level. Then, one or more DATA statements are entered,
specifying the core address and data of the patch or patches to be made. Multiple PTF's
may be applied by specifying a new PTF statement and DATA statement(s) for the pro
gram or help text component to be fixed.

The components are updated when the PTF END statement is issued. This update con
sists of:

1. Modifying the specified locations within the component(s).
2. Updating the PTF log (refer to Figure 5-2).
3. Deleting the system work area (if there is one) to force the modification of a

program in the system work file.

Licensed Material-Property of IBM

#UPTFI

#UPTFI

Page of L Y34-000 H
Revised January 1972
By TNL LN34-0075

SYNTAX-CHECK INPUT LINE AND PERFORM INITIALIZATIONS

1. Print error message and exit to $CAIPL if 'PTF' is in the procedure.
2. Exit to $CAERK to load #ER RPG (the error program) if anything except

optional blanks and EOS follow the keyword.
3. Read the volume label of the current disk.
4. Exit to $CAER Kif there is no work area assigned on this disk.

UPT115

ENABLE KEYBOARD

1. Point @XR to input line.
2. Set off command keys only

indicator in system com
munication area.

3. Loop until the keyboard is
not busy.

No

Yes

UPT105

Is
Input From

Keyboard

ENABLE CARD INPUT

Yes

1. Point @XR to input line.

No

2. Branch to $$PRES to enable
card input.

3. Branch to $$COBS to test for
card input complete, and loop
until the keyboard busy
i ndi ca tor goes off.

4. Branch to $SPRNT to print
the input line.

No

UPT250

GET NEXT LINE FROM DISK

1. If an internal indicator to read
a sector is set on, read the next
sector of the PTF file by call
ing DL21CS; set off the indica
tor to read; point @XR to the
first column of the buffer to
which the sector is read.

2. If an internal indicator to read
a sector is set off, point @XR
to the second card-image in
the buffer and set the indicator
to read on.

ERROR EXIT

UPT130

HEADER STATEMENT

1. Take error exit if a Header was found before.
2. Syntax-check line for PTF identification, check

sum, disk specification to which PTF will be
applied, arid optional disk specification if PTF
is coming from a disk file.

3. Take error exit if an error exists in any parameter.
4. Take error exit if '.BS' was the first part of the

PTF identification and the disk specified does not
contain a system program file.

5. Take error exit if second disk was specified and the
disk does not contain a PTF file; or if the PTF file
exists but does not contain the specified PTF.

6. Save helptext disk address and system pro
gram file disk address.

1. If input is from disk, print
line in error by calling $SPRNT.

2. Print error message.
3. Restore checksum if the check

sum routine, CSUMCK, was
called for this line.

#GUFUD
Figure 3-22
Via $CAIPL

Yes

Figure 3-95. PTF Utility Program (#UPTFI) Flowchart (Part 1of2)

Program Organization 3-139

Licensed Material-Property of IBM

4

No

UPT470

PTF STATEMENT

1. Take error exit if a PTF statement was found
before or if no HEADER statement has been found.

2. Syntax-check line for component name, release
level, and checksum.

3. Take error exit if an error exits in any parameter.
4. If a help text component was specified, read

the first sector of the help text to get the
release level, set the component starting core
address to X'OOOO' and establish the starting
disk address of _the component specified.

5. If a system program file component is specified,
search the system directory to find the component
entry; save the component's relative disk address
and starting core address.

UPT580

DATA STATEMENT

Yes

No

Take Error
Exit

1. Take error exit if a PTF statement was not found
previously.

2. If this is the first DATA statement, initialize
information for GPUTIT and DL21CS.

No

3. Convert core address to hex and subtract the com
ponent starting core address from it, leaving this
displacement in GPUSMT.

4. Convert patch data to hex and save in GPUSMT.
5. Save length of patch bytes in GPUSMT.
6. Mask a~ainst interrupts.
7. Call GPUTIT to write the DATA to virtual memory.
8. Allow interrupts.

#UPOVL
UPT690

Yes

PERFORM ACTUAL PATCHING TO DISK
END STATEMENT

3-140

Prime GRAB IT buffers with first two sectors of
virtual memory. (Call $DISKN)

2. Make initial call to GRAB IT. -----1-.-3. Call GRAB IT to get one line of patch data.
4. Increment program disk address by one sector,

while subtracting one sector from patch displace
ment address, until displacement address is less
than one sector.

5. Read two sectors of the program to core.
6. Patch program.
7. Write the two sectors of the program back to disk.

'------=I= 8. Branch to UP0760 to get more patch data until an
EOF line is found.

9. Read the PTF log to core, update it, and write it
back to disk.

10. If a work area is present, set a 'VTOC-DE LETE'
command in the input line buffer and call
.#ECMAN.

11. Else, exit to $CAIPL. ------------+.--!

1. Take error exit if at least one
DAT A statement was not
found.

2. Syntax-check line for valid
checksum.

3. Call GPUTIT to write an EOF
line to disk in virtual memory.

4. Call $R LOAD to bring to core
#UPOV L (the overlay program).

#ECMAN

#GUFUD
Figure 3-22
Via $CAIPL

Figure 3-95. PTF Utility Program (#UPTFI) Flowchart (Part 2 of 2)

Licensed Material-Property of IBM

VTOC-DELETE Utility Program-#UDELV (Figure 3-96)

• #UDEL V deletes System/3 BASIC files from a specified volume. If VTOC-DISPLA Y
is specified, the program #UDISV (Figure 3-97) is loaded.

Functions of #UDEL V are:

1. Delete the file label in the VTOC and the VTOC index entry (refer to Figure
5-10).

2. Set bits in the track usage mask in the volume label (refer to Figure 5-9), releasing
the tracks occupied by the file.

3. Update other required fields in the volume label.
4. Update required fields in the nucleus.

Program Organization 3-141

Licensed Material-Property of IBM

#UDELV

#UDELV

SYNTAX CHECK AND DETERMINE SECONDARY KEYWORD

1. Syntax check command.
2. If secondary keyword is DISPLAY, bring in overlay #UDISV via $RLOAD.
3. If secondary keyword is DELETE, check for '-ALL' following it.
4. Syntax check input line.
5. Set on disk-drive bits in physical disk addresses.
6. Exit to #ER RPG on errors via $CAE R K.

ALL Yes
Specified >-----------.

UDE075
No r------------,

I FILES I ENTER ROUTINE TO DELETE ALL FILES

,- - HELPTEXT- - -1
PTF

I LIBRARY I
1. Set internal indicator to delete all files.
2. Process PTF log.
3. Modify IPL sector on specified disk.
4. Set the indicators in the nucleus. I WORKAREA I

L - _SYSTEM_ - - _J
5. Set the indicators for UTVTOC to delete each file

one at a time. (Makes five calls to this routine
with no error checking for file not found.)

3-142

6. Branch to SUTOBA to check for a WORKAREA.

UDE220

DETERMINE AND DELETE SPECIFIED FILE

1. Determine file to be deleted and set indicator for UTVTOC.

#GUFUD
Figure 3-22
Via $CARPL

2. If either SYSTEM or HE LPTEXT was specified, delete corresponding
entries from the PTF log.

3. If SYSTEM was specified, write a halt to the IPL sector of the specified
disk, and if that was the disk IPL'ed from, come to a hard halt via
$CAERK.

4. Set appropriate indicators in the nucleus.
5. Go to UTVTOC to delete the specified file and set up the volume

label, the VTOC index, and the file entry in the VTOC.
6. Exit to $CAE R K if the specified file was not present.
7. Branch to SUTOBA to check for a WORKAREA.

#GUFUD
Figure 3-22
Via $CARPL

Figure 3-96. VTOC-DELETE Utility Program (#UDELV) Flowchart

Licensed Material-Property of IBM

BR1143A

)

)

VTOC-DISPLAY Utility Overlay-#UDISV (Figure 3-97)

• #UDISV displays VTOC label information from a specified volume on the system
printer.

• #UDISV is loaded by #UDELV when the command is VTOC-DISPLAY.

• The assembly of #UDISV contains this major source module:

UDISVT-Mainline logic, Figure 3-97

#UDISV displays the following information:

1. Volume-ID.
2. Owner identification.
3. Alternate track assignments.
4. Filename, starting address, size, and file type for each file in the VTOC.
5. Initialized disk size.
6. Number of unused VTOC file entries.

17. Co-resident disk system management program ftles (starting address, size, and
file type).

Program Organization 3-143

Licensed Material-Property of IBM

#UDISV

UDI050

SYNTAX CHECK INPUT LINE AND DETERMINE DISK-DRIVE
SPECIFIED

1. Syntax check and determine disk-drive specified via SDISKS.
2. Syntax check to end of input line.
3. Set up DPL addresses with disk-drive specification as determined by

SDISKS.
4. Exit to #ER RPG via $CAERK on errors.

UDl200

GET VOLUME LABEL AND PRINT INFORMATION FROM IT

1. After checking for disk initialization, read the volume label from
specified disk via MIN ITL. (Exit to #ERR PG via $CAERK on
errors.)

2. Print via $SPRNT:
a) Disk label,
b) OWNER ID,
c) Initialized disk size.

3. Convert binary defective track specifications to decimal via C2DEC5.
4. Print via $SPRNT the defective and alternate tracks, or a message

indicating that there are none.

UDl400

GET VTOC INDEX AND VTOC AND PRINT INFO ON VTOC FILES

1. Read VTOC index and VTOC from specified disk via $DISKN.
2. Check VTOC index for the presence of VTOC files.
3. Go to the VTOC entry as located by the index and print via $sprnt:

a) Filename of file,
b) Starting address of the file, } Binary to decimal conversion
c) Size of the file, via C2DEC5
di Fiie type - (BASIC or non-BASIC).

4. Print via $SPRNT, the number of VTOC file entries available, as
specified in the VTOC index. (Binary to decimal conversion via
C2DEC5).

5. If there are no VTOC files present, print message indicating that
there are none (using $SPRNT).

#GUFUD
Figure 3-22
Via $CARPL

BR1144A

Figure 3-97. VTOC-DISPLA Y Utility Program (#UDISV) Flowchart

3-144

Licensed Material-Property of IBM

MAINTENANCE UTILITIES

Refer to "Maintenance Utility Aid Program-#ZUTMO" in Section 6 for maintenance
utility aid operating procedures.

Maintenance Utility Monitor-#ZUTMO (Figure 3-99)

• #ZUTMO performs these service aid functions:

CD-Core dump
DD-Disk dump
VM-Virtual memory dump (accomplished by #ZI;:>UMP, Figure 3-101)
CP-Core patch
DP-Disk patch
DC-Disk compare
DW-Disk write (copy sector)
H-Restore core and halt
R-Restore core and return to #GUFUD
T-Reverse the program load trace option
M-Library map and test

• The assembly of #ZUTMO contains these major source modules:

ZUTMON-Monitor and all functions except CP and M, Figure 3-99
DL21CS-Disk logical IOCS, Figure 3-70

#ZUTMO is loaded by doing a system stop, system reset, and a system start, or by
branching to core address 0. A branch to NPAUSD in the system nucleus is made
at location 0 to save core. The CD and CP functions reference the saved core via
the DPL used by NPAUSD. If the high limit of saved core is on a 4k boundary, it
is assumed this address is the end-of-core address. Figure 3-98 is a sample core map
showing #ZUTMO.

Program Organization 3-145

Licensed Material-Property of IBM

System Stop/System Reset/System Start

Problem Core

" "
#ZUTMO

"
" #ZDUMP " " " "' " "' "

#ZUTMO

" "

Restored Problem Core

BR1145

Figure 3-98. Maintenance Utility Core Map, Example

3-146

Licensed Material-Property of IBM

ZUTPOL

7
#ZUTMO

ZUTOSR

SELECT OPTION TO BE
PERFORMED

1. Check line printer status.
2. Save status of printer and system

ZUTPPR

PRINT MESSAGES, SET
PARAMETERS

1 . Set message dependent on
entry.

2. Enter $$PRNT to print
messages.

3. Enter SCAN IT to check input.
4. Pack data.
5. Set address parameters.
6. Exit to function: 3. Enter $$PRNT to print choice,

after issuing a carriage return.
4. Enter SCANIT to check data.

Core dump-------+----------------.

5. Determine function:
Core dump
Disk dump
Core patch
Disk patch
Disk compare
Disk write
Virtual memory dump

Disk dump
Core patch
Disk patch
Disk write
Disk compare

Restore saved core, halt __ ..., _____ _
Change trace switch
Return to system-------!~
Library map and test

#ZLBMA
Figure 3-102
Via #RLOAD

ZUTTFL

TRACE ZUTVMD

1 . Reverse trace switch setting. VIRTUAL MEMORY DUMP

ZUTRET

RETURN

1. Alter address in $PAUSD.
2. Restore printer and system

status.

$RSTR
Figure 3-12

ZUTHLT

HALT

1. Set messages for line numbers.
2. Enter $$PRNT to print request.
3. Enter SCAN IT to check data.
4. Enter C4BIN2 to convert data.
5. Enter DL21CS to read in

ZDUMPV.
6. Enter ZDUMPV to dump

virtual memory.
7. Restore #ZUTMO.

1. Restore printer and system
status.

3

ZUTDPO

DISK PATCH

1. Set indicators for disk patch.
2. Exit to patch disk Ii ke saved

core.

ZUTCPO

CORE/DISK PATCH

1. Enter $$PRNT to request data.
2. Enter $$PRES to get data.
3. Check for valid data.
4. Enter $$PRNT for error and

print '?'.
5. Convert data to hexadecimal.
6. Determine real or saved core.
7. Enter DL21CS to move saved

core/disk data to buffer.
8. Patch core/disk.

BR1146.1B

Figure 3-99. Maintenance Utility Monitor (#ZUTMO) Flowchart (Part 1 of 2)
Program Organization 3-147

Licensed Material-Property of IBM

2

ZUTDDO

DISK DUMP

1. Enter $$PRNT to request sec-
tor count.

2. Enter SCAN IT to check input.
3. Enter C4BIN2 to convert data.
4. Convert disk addresses to hexa

decimal characters.
5. Enter $$PRNT to print head

ings.
6. Enter $DISKN to move sector

to buffer.
7. Exit to perform disk dump

like a dump of saved core.

ZUTCDO

CORE/DISK DUMP

1. Determine real or saved core.
2. Enter $$PRNT to print

headings.
3. Enter DL21CS to move saved

core or disk data to buffer.
4. Convert data to hexadecimal

characters.
5. Interpret hexadecimal

characters.
6. Enter $$PRNT to dump edited

line.
7. Terminate dump at high limit

or end of core.

3

ZUTDWO

DISK WRITE

1. Enter $DISKN to read sector
to be written.

2. Enter $DISKN to write read
sector to specified address.

4

ZUTDCO

DISK COMPARE

1. Enter $$PANT to request sec-
tor count.

2. Enter SCAN IT to check input.
3. Enter C4BIN2 to convert data.
4. Enter $DISKN to get sectors

to be compared.
5. Compare sectors.
6. If sectors are not equal, com

pare byte by byte.
7. Enter $$PANT to print head

ing and data at 1st non-equal
byte.

8. Continue comparison for all
sectors specified.

9. Restore #ZUTMO.

BR1146.2A

Figure 3-99. Maintenance Utility Monitor (#ZUTMO) Flowchart (Part 2 of 2)

3-148

Licensed Material-Property of IBM

)

VM Dump Overlay-#ZDUMP (Figure 3-101)

• #ZDUMP interprets and lists the pseudo machine code in virtual memory.

• The assembly of #ZDUMP contains these major source modules:

ZDUMPV-Mainline logic, Figure 3-101
DL4ICS-System work file IOCS, Figure 3-70

• #ZDUMP is loaded by the maintenance utility monitor (Figure 3-99). The return entry
in #ZUTMO reloads the overlay portion of #ZUTMO after completing the virtual
memory dump (Figure 3-98).

A validity check is made on the pseudo op-codes although it is assumed the pseudo
machine code is correct in virtual memory. Output is on the system printer, one line
for each pseudo machine instruction. Each line contains the virtual-memory address, a
mnemonic op-code and operand, and the actual hexadecimal pseudo instruction. The
statement and image header op-codes also generate the BASIC statement line number in
the output line.

#ZDUMP contains a pseudo op-code branch table (Figure 3-100)~ The actual op-code
indexes the table.

Branch Table Entry (six bytes)

0 1 2 3 4 5

Address Length Mnemonic

j

'--- Pseudo Instruction Length

..___ Address of Routine in #ZDUMP to
Process th is Op-Code

Note: The table contains one entry for each pseudo op-code.

Figure 3-100. #ZDUMP Branch Table

Licensed Material-Property of IBM

BR1147A

Program Organization 3-149

3-150

#ZDUMP

VIRTUAL MEMORY DUMP

1. Set program. for long precision if required.
2. Enter DL41CS to get a virtual memory page.
3. Set line pointer and virtual address pointer.
4. Clear output buffer.
5. Move op-code mnemonic to output buffer.
6. Branch to op-code processing routine.
7. Enter CVBHEX to convert pseudo instruction to

EBCDIC.
8. Move EBCDIC instruction to output buffer.
9. Move instruction virtual address to output buffer.

10. Enter $$PRNT to print the output buffer.
11. Update pointers.
12. Exit to $CAERK on errors to load #ER RPG.

Yes

#ZUTMO
Figure 3-99

No

Figure 3-101. VM Dump Overlay (#ZDUMP) Flowchart

Library Mapping Overlays (Figure 3-102)

BR1148

• These maintenance utility overlays ma.p and test the directories and files in the
File Library.

• There are five overlays in this group:

#ZLBMA-Mainline entry routine. This routine calls one of the option overlays.
#ZUMA-Option 1 overlay. Maps null and password directories.
#ZL2MA-Option 2 overlay. Maps a specified password.
#ZL3MA-Option 3 overlay (part 1). f
#ZLVRL-Option 3 overlay (part 2).

Maps the entire library.

• #ZLBMA is loaded by the maintenance utility monitor (Figure 3-99). Each option
reloads the maintenance utility monitor after completion of the option or if the
option overlay is interrupted.

• All output (maps and error messages) is displayed on the matrix printer.

Licensed Material-Property of IBM

)

#ZL1MA

ZL1MAP

LIBRARY MAP OPTION 1 OVERLAY

1. Enter DL21CS to read the null
directory into core.

2. Enter $$PRNT to print headings.
3. Process and print the entries from

the null directory.
4. Enter DL21CS to read the password

directory into core.
5. Process and print the entries from

the password directory.

#ZUTMO
Figure 3-99

#ZLBMA

ZLBMAP

LI BRA RY MAP ENTRY

1. Enter $$PRNT to print the
option choice message.

2. Enter SCAN IT to check the
message response.

3. Enter $$PRNT to request
the library address.

4. Enter SCAN IT to check the
library address response.

5. Determine option. Load
correct phase from the
program I ibrary.

ZL2MAP

#ZL2MA

LIBRARY MAP OPTION 2 OVERLAY

1. Enter DL21CS to read the null directory. Test
the configured disk size against the library
address.

2. Enter $$PRNT to print headings. Enter $$PRNT
to request a password (PSWD).

3. Enter SCAN IT to check the password response.
4. Enter DL21CS to read the password directory.
5. Scan the password di rectory for a match to the

password response. If not found, print error and
exit to #ZUTMO.

6. Enter DL21CS to read in the first user directory
block (UDB).

7. Process and print the filenames, testing non
program-generated files by scanning them in
line number order. Also test the FIT. Test
program-generated files for valid data and the
presence of an EOF.

8. Repeat steps 6 and 7 for each user directory
block under the requested password.

#ZUTMO
Figure 3-99

BR2672.l

Fi6'1He 3-102. Library Mapping Overlays (Part 1 of 2)

Program Organization 3-151

Licensed Material-Property of lBM

3-152

2

#ZL3MA

ZL3MAP

LIBRARY MAP OPTION 3 OVERLAY

1. Enter DL21CS to read the null directory into core.
2. Enter $$PRNT to print headings.
3. Enter $DISKN to read the volume label from the IPL'd disk volume.
4. Test if the work area is defined. If it is not, test if the work area tracks are unused.

No

ZLB050

NULL AND PASSWORD DIRECTORIES

1. Set indicators in the nucleus communications area to no work area.

Print
error
message

2. Build buffer entries for each null directory entry. If the buffer count equals or exceeds 32,
store 3 sectors of the buffer and continue processing null entries.

3. Enter DL21CS to read the password directory into core. Build buffer entries for user
directory blocks and files. After processing each user directory block, if the buffer count
equals or exceeds 32, store 3 sectors of the buffer and continue processing user directory
entries for this password.

4. Repeat the process for each password.

#ZLVRL

ZLVRL3

SORT ROUTINE

1. Read the first 9 sectors of the buffer area into core and sort the entries by relative address.
2. If the entry count exceeds 96, store the first 3 sectors, shift the next 6 sectors to the front of

the buffer, and read in the next 3 sectors from the buffer area. Repeat the process until all
sectors are sorted by relative address.

3. If the original total count exceeded 96, repeat the sorting technique, decrementing the count
by 64 on each pass.

PRINT MAPPING

1. Enter $$PRNT to print headings and entries for the null and password directories.
2. Enter DL21CS to read 9 sectors of sorted entries into core.
3. Print each entry, testing for gaps and overlaps, and printing messages for errors and coincident

entries. The entries are converted to the printed format, and printed by entering $$PRNT.
4. If the total print count exceeds 96, decrement by 96 and enter DL21CS to read the next 9

sectors of sorted entries into core.
5. Repeat the process until all sorted entries are printed.

#ZUTMO
Figure 3-99

Figure 3-102. Library Mapping Overlays (Part 2 of 2)

Licensed Material-Property of IBM

#ZUTMO
Figure 3-99

BR2672.2

)

COMPILER-#BCOMP, #BOVLY (Figure 3-119)

Compiler input is a sequence of BASIC statements in the work file. Output is a sequence
of pseudo machine code (PMC), constants, and run-time indicators in virtual memory.
Both the work file and virtual memory reside in the system work area on disk.

Refer to Section 7 for:

1. How to take a sequential disk dump of virtual memory.
2. Disk address specifications for the utility dump.
3. Conversion of virtual addresses to disk addresses (Figure 7-1).
4. Virtual memory map (Figure 7-2).
5. How to lay out virtual memory (standard precision).
6. Example of pseudo instruction references to virtual memory (Figure 7-3).
7. How to lay out virtual memory (long precision).
8. How to lay out an execution-time core dump.
9. Fixed core addresses in execution-time core dump (Figure 7-4).

Compiler Cycle

1. Retrieve one BASIC statement from the work file.
2. Use the type code in the statement as a displacement into the statement branch

table.
3. Using the entry in the table, access a PMC generator and branch to it.
4. Generate a sequence of pseudo machine code (PMC), constants, and/or indicators

and write these to virtual memory.
5. Perform steps 1 through 4 until the BASIC statements are depleted.

PMC in virtual memory is in the same sequential order as the BASIC statements in the
work file.

Organization of Assembly Listings

All modules of the compiler are contained in these two assemblies:

1. Core resident routines-#BCOMP
2. PMC generator (statement processor) overlays-#BOVLY

Core Resident Routines-#BCOMP

This assembly contains these executable source modules in this physical order:

BGINIT-Compiler initiator
BHDIST-Compiler distributor
BAGETC-Statement input subroutine
BBPUTC-VM output subroutine
BCFCON-Constant generator subroutine
BDSYMB-Symbol translator subroutine
BECSCN-Character expression PMC subroutine
BFSCAN-Arithmetic expression PMC subroutine
BUSTA-Assignment list PMC subroutine
BMATXR-Matrix reference PMC subroutine
BRATAB-Branch table subroutine
BUZDBN-Convert decimal to binary subroutine
BVDL4T -Disk logical IOCS interface
BPALET-LET (arithmetic simple) statement processor
BNRMRK-REM statement processor

Licensed Material-Property of IBM

Program Organization 3-153

3-154

PMC Generator (Statement Processor) Over/ays-#BOVL Y

This assembly contains these executable source modules in this physical order:

BNDATA-DATA statement
BNFDEF-DEF statement
BPMLET-LET (arithmetic multiple) statement
BPCLET ~LET (character) statement
BXPUTX-PUT statement
BKFORX-FOR statement
BKNEXT-NEXT statement
BXGETX-GET statement
BKARIF-IF (arithmetic) statement
BTPAUS-PAUSE statement
BKCRIF-IF (character) statement
BTSTOP-STOP statement
BKGOTO-GOTO (simple) statement
BKMGTO-GOTO (multiple) statement
BKSUBG-GOSUB statement
BXRSET-RESET statement
BKRTRN-RETURN statement
BXCLOS-CLOSE statement
BPREAD-READ statement
BPXRSR-RESTORE statement
BXINPT -INPUT statement
BNADIM-DIM statement
BXDPRT-PRINT statement
BXUPRT-PRINT USING statement
BNIMAG-Image (:)statement
BMMATA-MAT statement
BMGETX-MAT GET statement
BMINPT-MAT INPUT statement
BMREAD-MAT READ statement
BMPUTX-MAT PUT statement
BMDPRT-MAT PRINT statement
BMUPRT-MAT PRINT USING statement
BTRMNT-Compiler terminator (END statement)

Compiler Labeling Conventions

Because disk-resident statement processors must communicate with the core-resident
compiler, a fixed equate module (BEQU) has been developed to reference core-resident
instructions and areas. In addition, the compiler common module (BZCOMN) contains
an equate section which has been developed to assist in defining the fixed addresses in
BEQU. Essentially, BZCOMN equates reference the same core addresses as BEQU,
except BZCOMN addresses are derived from the assembled code while BEQU addresses
are manually adjusted constants.

Core-resident modules are coded to reference other core-resident modules, using the
following conventions:

• Module Entry Points. Actual entry point label.

• Module Data/Instruction Fields. Equivalent BZCOMN label.

Disk-resident statement processor modules are coded to reference core-resident modules
using the following conventions:

• Module Entry Points. Equivalent BEQU label.

• Module Data/Instruction Fields. Equivalent BEQU label.

Licensed Material-Property of IBM

)

Virtual-memory references are always specified using the appropriate VEQU label.
Program descriptions use the following conventions, with respect to both core-resident

and disk-resident modules, for consistency:

• Module Entry Points. Actual entry point label.

• Module Data/Instruction Fields. Equivalent BEQU label.

For example:

• Actual core-resident entry point label- BCFCON

Referenced from core as- BCFCON
Referenced from statement processor as- B$FCON

• Actual core-resident data field label- BFSBKT

Referenced from core as- BZBCKT
Referenced from statement processor as-B$BCKT

Compiler Initialization

Entry: #BCOMP is loaded, at X'0600', via the nucleus loader function. #BCOMP is
called directly by the RUN/STEP/TRACE keyword program (#KRUNI) or via the
EDIT keyword program (#KEDIT). Figure 3-103 is an example of a core map with an
8k system.

Compiler Initiator: Functions of the compiler initiator (BGINIT) are:

• When long precision is indicated, floating point data length and virtual-memory
addresses are changed in the following core-resident compiler subroutines:

BBPUTC-Virtual memory output subroutine
BCFCON-Constant generator subroutine
BDSYMB-Symbol translator subroutine
BFSCAN-Arithmetic expression PMC subroutine

• As many sectors from #BOVL Y as possible are loaded into expanded core (12k or
16k). (The entire contents of #BOVLY can be loaded into 16k.) Entries in the
processor address table (Figure 3-104) are modified to indicate the overlays resident
in expanded core.

• Set compile-time indicators (data file pointer, primary input buffer clear switch).

• Seek to first cylinder of virtual memory.

BGINIT exits to the compiler distributor (BHDIST) and is overlayed by disk-resident
PMC generators during the compilation. BGINIT is not overlayed if 16k expanded core
is present.

Accessing PMC Generators

The pseudo machine code (PMC) generator required to process a BASIC statement can
be:

1. A PMC generator overlay that is not in core.
2. A PMC generator overlay that is presently in core.
3. A PMC generator that is permanently in core.

Prpgram Organization 3-155

Licensed Material-Property of IBM

Nucleus

..........
"'-Input Buffer

"" #GUFUD'-

........

3-156

"" "
" " #KEDIT

...............

#BCOMP

'- PMC Generators
.......

"l "- :TRMNT ""' '-------
#LOADR

"--~~~...a..~
" #INSTD or

#INLNG

"

Figure 3-103. RUN Program Name Core Map (8k System), Example

VM
Pages

#DPRIN

#GUFUD

BR1149

The compiler distributor (BHDIST) contains a processor address table (Figure 3-104).
The type code of the current BASIC statement indexes this table and the table contains
information necessary to access the PMC generators.

When the required PMC generator is in core, a branch to the generator entry point is
executed. When the required PMC generator is not in core, the appropriate disk sector
is loaded into the transient area initially occupied by BGINIT.

All disk-resident PMC generators reside on the same disk track in the system work
area. The PMC generator assembly (#BOVLY) is constructed so that each generator is
contained within a sector boundary (every X'Ol 00' bytes) where possible. Multiple
generators may occupy the same sector, and a large generator can be segmented into
two sectors (Figure 3-105).

Licensed Material-Property of IBM

Resolving Virtual-Memory Addresses

As sequences of PMC instructions are being generated, situations occur where an instruc
tion references a line number or virtual-memory location that is currently unknown.
When these situations occur, an instruction image with missing operand (X'OOOO') is
generated. That is, a "hole" is temporarily left in virtual memory.

Two tables are maintained by the compiler for resolving these virtual-memory
addresses. Both tables have the same format except for the content of the entries.

1. A statement address table (Figure 3-106) is created by BHDIST to relate state
ment line numbers to the virtual addresses of statement header pseudo instruc
tions (STH/IMH). An entry is made in the table prior to processing each new
statement.

2. A branch address table (Figure 3-107) is created by BRATAB to relate unresolved
operands (holes in virtual memory) to line numbers or virtual-memory locations.

Four types of unresolved virtual addresses can occur in the PMC generators. The
unknown operand references:

1. A line number that has been previously processed.
2. A line number that has not yet been processed.
3. The next sequential statement.
4. Another pseudo instruction that is not associated with a line number.

These situations are discussed individually in the following paragraphs.
When the unknown operand references a line number (STH or IMH pseudo instruction)

that has not yet been encountered or that is already written in VM, the virtual address of
the hole and the line number are passed as parameters to BRAT AB. BRAT AB creates an
entry in the branch address table. Entries in this table are not resolved by the compiler.
This table, along with the completed statement address table, is passed to the loader
(#LOADR) for resolution.

Program Organization 3-157

Licensed Material-Property of IBM

PMC Gen 1

3-158

BHDPAT

Processor Address Table (one entry for each statement type code)

One 3-Byte Entry

1 1 2 3

Entry Address Sector

Notes:

1. "Entry address" is the entry point to the PMC generator (equal to X'0600'
plus the displacement into the sector for disk-resident generator overlays).

2. "Sector" is the sector byte used in the DP L (Figure 5-24) when reading
from the PMC generator track. A value of X'FF' indicates the generator
is core-resident. The sector byte of the sector currently in the transient
area is saved at label BHDDSA in case the same sector is required on
consecutive compiler cycles.

3. The transient area where all overlay sectors are loaded is X'0600' to X'06FF'.

BR1151

Figure 3-104. Processor Address Table

Four Sectors

PMC Gen 2' PMC Gen 3 Part of PMC Gen 4 Rest of PMC Gen 4

.._ ____________ .._ ____ Slack Bytes-----'"-------------'

Notes:

1. PMC generator 1 is contained entirely on one sector. The unused area at the end of the
sector is too small to contain another generator.

2. PMC generators 2 and 3 occupy the same sector.
3. PMC generator 4 is too large for one sector. Since only the first sector is loaded by the

compiler distributor, generators that occupy more than one sector branch to label
BHDST2 in the distributor, causing the distributor to load the next sector.

Figure 3-105. Organization of PMC Generators on Disk

BR1152

When the unknown operand references the next sequential statement (branch-to-next
statement), the next-address switch (B$NXSW) is set in BHDIST and the virtual address
of the hole is saved as a parameter for BRAT AB. BHDIST determines the line number
of the next statement during normal processing and, because the switch is set, calls
BRAT AB to create an entry in the branch address table.

Licensed Material-Property of IBM

2

Statement Address Entry (4 bytes)

2 3 4

Address Line Number

Statement Address Buffer (in core) (64 entries-1 sector)

14

Statement Address Table (on disk) (16 sectors)

Notes:

1. The address field contains the virtual address of the statement header instructions
(STH or IMH) associated with the line number.

2. Entries are always in ascending I ine number order.
3. Vacant entries contain binary O's.
4. The 16-sector disk area can contain 1024 entries but never has more than 990

(the maximum BASIC program size).
5. X'FFFFFFFF' is inserted in the last (64th) entry of the last table sector before

it is written to disk by the compiler terminator (BTRMNT). All preceding
sectors are written by the branch table subroutine (BRA TAB).

Figure 3-106. Statement Address Table

15 16

BR1153

When the unknown operand references another pseudo instruction in the same PMC
sequence (statement instruction group), the virtual address of ihe hole and the virtual
address of the referenced instruction are passed, as parameters to BRAT AB. The virtual
address of the referenced instruction is always determined by the PMC generator on the
same compiler cycle (see Figure 3-108 for example). BRATAB processes the virtual
address the same as when a line number is referenced.

The lowest possible pseudo instruction virtual address is always greater than the highest
possible binary line number. This is how the loader (#LOADR) differentiates between
the two types of entries in the branch address table.

Core Resident Routines

Compiler Distributor-BHDIST

BHDIST passes control to the individual pseudo machine code (PMC) generators. (Refer
to "Accessing PMC Generators.") Since each PMC generator completes processing for a
single statement, BHDIST expects the next source text character to be the beginning of
a new BASIC statement. The statement is scanned for the first nonnumeric character
which should be the statement keyword. BHDIST performs this scan using BAG ETC.
The binary line number is saved for reference by the PMC generators. The statement type
code is saved to index the processor address table (Figure 3-104). BHDIST bypasses
disabled statements; bit 0 of the statement type code is on. A statement-header pseudo
instruction (STH) is generated in virtual memory for each enabled statement. For image
statements, this STH is later modified to be an image statement header (IMH).

Program Organization 3-159

Licensed Material-Property of IBM

2

3-160

Branch Address Entry (4 bytes)

2 3 4

Address Reference

Branch Address Buffer (in core) (64 entries-1 sector)

14

Branch Address Table (on disk) (16 sectors)

Notes:

1. The address field contains the virtual address of an unresolved pseudo instruction
operand (hole).

2. The reference field contains either a line number or the actual virtual address to be
inserted in the hole.

3. Vacant entries contain binary O's.

15

4. The 16-sector disk area can contain 1024 entries. If this limit is exceeded, compilation
is aborted.

16

BR1154

Figure 3-107. Branch Address Table

Each PMC generator, except for the compiler terminator (BTRMNT), returns to
BHDIST to complete the statement processing cycle. Some generators return to BHDIST
via the REM statement processor (BNRMRK).

Statement Input Subroutine-BAGETC

BAG ETC reads blocks of packed, segmented BASIC source text from the system work
file. Core addresses of sequential text characters within these blocks are determined.
These disk blocks are read in a logically sequential order by following the linkage fields
in the work file data blocks (refer to Figure 5-15). The text is always presented in
ascending line number order. The calling routine sets parameters for BAG ETC in order
to access a character position in a text segment.

Input parameters to BAGETC are:

1. B$NUMC-Character skip count. This field contains the relative displace
ment between accessed characters. A value of X'FF' accesses (skips to) the
terminating character (EOS) of the current segment (BASIC statement). A
value of X'Ol' accesses the next consecutive text character. A value of X'OO'
returns the address of the previously accessed character and does not advance
to a new character. This parameter defaults to X'Ol' if it is not explicitly set
prior to entry.

2. B$GBSW-Bypass blanks switch. On (X'OJ ')ignores blanks when advancing to a
new character. Off processes blanks the same as other text characters.

Licensed Material-Property of IBM

Example: The PMC sequence below contains three branch instructions, two
of which require resolution by the loader (#LOADR). The arrow at(Drefers
to the next sequential statement. The arrow atBrefers to another pseudo
instruction not associated with a line number, l"r(e arrow at@refers to a
pseudo instruction whose virtual address is known (since it was previously
established within the same compiler cycle) at the time when the BRA
instruction is generated; no entry in the branch address table is required
in this case.

0100 LET A, B=5 STH 100
.......----- (hole)

0110 BRA 0000

STA VADR of A

STF VADR of &WRK

USF

STA VADR of B 2

STF VADR of &WRK

USF (hole)

BRA 0000

STA VADR of &WRK

STF VADR of 5

USF

BRA VADR

STH 110

BR1155

Figure 3-108. PMC Sequence (Branch Instructions)

Output parameters from BAGETC are:

1. Index register @XR-Character core address. This register contains a pointer to
the selected text character as requested by the calling routine.

2. B$LINE-Line number. This two-byte field contains the binary line number of
the BASIC statement currently being processed.

3. B$TYPE-This one-byte field contains the statement type code from the state
ment currently being processed.

4. B$GPTR-Address of selected character. This two-byte field contains the core
address of the selected text character, and is used as a backup for register @XR.

Virtual Memory Output Subroutine-BBPUTC

BBPUTC puts pseudo machine code strings of 1 to 255 bytes into sequential virtual
memory locations or stores 256-byte blocks of constants into sequentially descending
virtual memory pages. BBPUTC is called to perform one of four functions:

1. Add record-This function code is set by default.
2. Write page-Function code equated to B$PFWP.
3. Add error-Function code equated to B$PFAE.
4. Close-Function code equated to B$PFCL.

Each function is performed by setting parameter B$PFNC with one of these codes. The
add record function is performed by default unless B$PFNC is specifically set to an
alternate code prior to the subroutine call.

Program Organization 3-161

Licensed Material-Property of IBM

3-162

Add Record: Single PMC instructions or sequences are loaded into consecutive locations
in the output buffer. Full buffers are written to sequential, ascending sectors (pages) in
virtual memory. Buffers are padded with at least one EOP pseudo instruction before
they are written (refer to virtual memory map, Figure 7-2). The core address (B$PCAD)
and the length minus I (B$PNBY) of the PMC string are required input parameters for
this function.

Write Page: One full virtual memory page is written to disk from the compiler constant
buffer. This function is used to write data blocks containing generated constants into
sequentially decreasing virtual memory pages beginning with the base constant address
(see BCFCON).

Add Error: This function is used to record compiler-generated errors. At the first execu
tion of this function, virtual address pointers are reset, the compiler error switch
(B$ERSW) is set, and the add-record and write-page functions are disabled. Each add
error function puts a three-byte error entry into virtual memory using the method
described for the add-record function. These error entries are written over PMC
sequences previously generated. The three-byte error entry consists of an error defini
tion code (message number in hexadecimal) followed by the associated BASIC statement
line number. The error code is passed as an input parameter at label B$PERC. The line
number is taken from area B$LINE where it is normally stored.

Close: This function fills the PMC instruction output buffer with EOP pseudo instruc
tions and writes the full buffer to virtual memory as in the add-record function, closing
compile-time PMC generation.

The lowest page number referenced by a write-page function is compared to the page
currently in the PMC instruction output buffer on each execution of BBPUTC. If an
overlap occurs, compilation is aborted.

Constant Generator Subroutine-BCFCON

BCFCON is called to convert a BASIC source statement constant to. internal format,
put it into virtual memory, and return the virtual address of the first byte of the con
stant to the calling routine via label B$BCKT. The type of constant is passed as an input
parameter via label B$CTYP. Three types of constants can be processed:

1. Arithmetic constant-Type code set by default.
2. Character constant-Type code equated to label B$CCON.
3. Character string constant-Type code equated to label B$SCON.

On entry, the index register (@XR) points to the first character of the constant in the
statement input buffer. On exit, this register points to the first non-blank character after
the constant. (Refer to "Statement Input Subroutine-BAGETC.")

Each constant is generated into a 19-byte work area in a form suitable for virtual
memory. Constants are loaded in descending order in the constant output buffer. For
arithmetic or character constants, the constants in the current output buffer are scanned
and duplicates are not created. No check is made for duplicates of character strings. Full
buffers are written to contiguous, descending sectors (pages) in virtual memory (refer to
Figure 7-2).

Arithmetic Constants: These constants are found in algebraic expressions or data lists,
and are converted from EBCDIC to unpacked-decimal, floating-point format in the 19-
byte work area (Figure 3-109). They are converted to packed-decimal, floating-point
format before they are moved to the constant output buffer. For long precision, modifi
cations have been made to the packing and output routines by the compiler initiator
(BGINIT). (Refer to "Floating-Point Arithmetic.")

Licensed Material-Property of IBM

)

Example:

12.34567890123456 (arithmetic decimal value)

Sign (X'Fn' =positive, X'Dn' =negative)

82 F3 F4 F5 F6 F7 F8 F9 FO F1 F2 F3 F4 F5 (unpacked decimal floating point value)

0 1 23 45 (packed decimal floating point-standard precision)

I 2I1 23 45 67 89 01 23 45 82 (packed decimal floating point-long precision)

Refer to "Floating-Point Arithmetic" for format of these fields.

2

Status

0

Trace

3

2

Type

4 5

Status Byte

3 4

BR1156

Figure 3-109. Conversion of an Arithmetic Constant to Unpacked Floating Point and then to
Packed Floating Point

Character Constants: These constants (Figure 3-110) are character strings tailored to fit
18-byte character constant fields, and are associated with character variables or character
array elements. The first character in the input string is a delimiter. The next single
occurrence of this delimiter is the end of the string. Any paired occurrence of the
delimiter character is interpreted as a single character in the string. The source character
string is scanned, checking for delimiters and moving characters to the work area.

Character Field (19 bytes)

6 7 8 9 10 11 12 13 14 15 16 17 18 19

Character Segment (up to 18 EBCDIC characters)

5 6 7

Character Count

..-----10-Character Reference or Constant Associated with Reference

'------ 11-Character Constant Segment (all or part of a character string constant)

BR1157

Figure 3-110. Character Field Format

Character String Constants: These constants (Figure 3-110) are variable length and are
not associated with character variables or character array elements. If the length of a
string exceeds the size of the work area, more than one string segment is constructed
and moved to the output buffer. Delimiters are processed in the same manner as for
character constants.

Program Organization 3-163

Licensed Material-Property of IBM

Arithmetic
(letter)
variables

Arithmetic
(letter-digit)
variables

Arithmetic
array
reference

Character
variable

Character
array
reference

User function
reference

Intrinsic
function
reference

Secondary
(delimiting)
keyword

3-164

Symbol Translator Subroutine-BDSYMB

BDSYMB is called to analyze all symbols encountered in BASIC statements, allocate
space in virtual memory, and return the virtual address of the allocated space (or entry
point of an intrinsic function) via label B$BCKT. The symbol type is analyzed as
belonging to one of the eight categories listed in Figure 3-111. No values are written
in virtual memory by this subroutine.

Allocated Element Returned
and Length Virtual Address Table Table Format

B$SLVT 29, 2-byte virtual addresses assigned to
Packed floating-point symbols$,#,@, A-Z.
value; 5 bytes for
standard, or 9 bytes
for long precision. B$SLDT 290, 2-byte virtual addresses assigned to

($, #, @, A-Z)*(0-9)

Arithmetic array B$SNAT 29, 6-byte entries. First 2 bytes contain
dope vector; virtual address assigned to symbols $,
8 bytes. #, @, A-Z. Last 4 bytes contain specified

array dimensions (two 2-byte values).
Virtual address of

Character variable first byte of element. B$SCVT 29, 2-byte virtual addresses assigned to
field; 19 bytes. symbols$$,#$, @S, A$-Z$.

Character array B$SCAT 29, 4-byte entries. First 2 bytes contain
dope vector; virtual address assigned to symbols $$,
4 bytes. #$, @S, A$-Z$. Last 2 bytes contain

specified array dimension (2-byte value).

User function B$SFNT 29, 4-byte entries. First 2 bytes contain
(subroutine) virtual address assigned to functions
virtual address FN$, FN#, FN@, FNA-FNZ. Last 2 bytes
execution entry contain virtual address of associated DEF
point (2 bytes). statement execution entry point.

None Entry point to VM- BDSIFT 24, 5-byte entries containing a 3-byte
resident intrinsic function name and a 2-byte virtual
funtion subroutine. address.

None Virtual address at BDSKWT Four 2-byte entries containing first
label B$BCKT is not 2 bytes of each secondary keyword
changed. (TH, etc.). An additional check is

made to insure that 'ST' is actually
the beginning of keyword 'STEP'.

BR1158B

Figure 3-111. Symbol Processing in BDSYMB

In the following examples, the characters $, (, and FN are identifiers for the symbol A:

A-Arithmetic (letter) variable
Al -Arithmetic (letter-digit) variable
A$-Character variable
A(-Arithmetic array reference
A$(-Character array reference
FNA-User function
LOG-Intrinsic function
THEN-Delimiting keyword

Licensed Material-Property of IBM

)

Page of L Y34-0001-1
Revised November 15, 197 3
By TNL: LN21-7729

Symbol Tables: The BASIC language has an absolute number of usable symbols. Symbol
tables in BDSYMB contain entries (initially binary O's) for every possible symbol (Figure
3-111). A relative displacement, to the entry corresponding to a symbol, is determined
by scanning the alphabet reference table (BDSART) for equal or low.

The first time a symbol is referenced in a BASIC program, space for the associated
element is allocated in virtual memory. The virtual address of the element is moved to
the corresponding entry in one of the symbol tables, and also returned to the calling
routine. Subsequent references to the same symbol return the virtual address from the
table entry.

Space in virtual memory for elements is assigned using two virtual-memory address
pointers:

B$SFAB-User function addresses and array dope vectors.
B$SVRB-Variable elements (arithmetic and character).

The initial value of B$SF AB is X'OOOO' and is decremented as each user function
address or array dope vector is allocated space. The resulting virtual address references
the first byte of the element (example: X'OOOO' - 8 = X'FFF8').

The initial value of B$SVRB is X'F536' (X'F049' for long precision) and is incre
mented as each variable element is allocated space. This address also points to the first
byte of the variable element.

The virtual-memory area aermeel by the initial values of B$SVRB to B$SFAB accom
modates all possible elements the user can define in a single BASIC program. Any unused
area between these addresses, at the end of compilation, is available to the loader
(#LOADR) for the allocation of small arrays (refer to Figure 7-2).

Intrinsic Functions: The intrinsic function table is scanned for a match to the BASIC
name of the function. The virtual address (fixed entry point) from the table is returned
to the calling routine.

Input parameters to BDSYMB are:

1. Index register (@XR)-Text character pointer. This register contains the core
address of the first character in the identifier of the symbol to be processed.

2. B$MRSW-Matrix reference switch. When this switch is on, references that would
otherwise be interpreted as simple letter variables are interpreted as arithmetic
array references.

3. B$FSSW-Function scan switch. When this switch is on, all arithmetic variable
references are matched against a user-function, dummy-argument identifier.
Matching references are assigned the dummy argument virtual address rather
than that derived from a symbol table.

4. B$FSC1-Function scan identifier (first character). This parameter contains the
first character of the user-function, dummy-argument identifier during a function
scan.

5. B$FSC2-Function scan identifier (second character). This parameter contains the
digit portion of the user-function, dummy-argument identifier, if present, during
a function scan. When none exists, the value at B$FSC2 is X'40' (EBCDIC blank).

6. B$FSVA-Function scan virtual address. This parameter contains the virtual
address of a user-function-dummy-argument assigned during a function scan.

Output parameters from BDSYMB are:

1. Index register (@XR)-Text character pointer. If the symbol is a secondary
keyword or a letter variable immediately followed by a delimiting keyword,
this register points to the second character in the keyword. In all other cases,
the register points to the character following the complete identifier. Blanks
are ignored.

2. B$BCKT-Identifies virtual address bucket. This contains the virtual address of
the leftmost byte of the element associated with the processed identifier.

Program Organization 3-165

Licensed Material-Property of IBM

3-166

3. B$ADSW-Address available switch. This switch is on when a virtual address is
stored in B$BCKT.

4. B$IFSW-lntrinsic function switch. This switch is on when the symbol is an
intrinsic function reference.

5. B$FRSW-Function reference switch. This switch is on when the symbol is
either a user or intrinsic function reference.

6. B$CRSW-Character reference switch. This switch is on if the symbol is either
a character variable or character array reference.

7. B$KWSW-Expression keyword switch. This switch is on when the symbol is a
secondary keyword (alone or following a letter variable).

8. B$HRSW-Matrix reference switch. This switch is on when a matrix-directly
intrinsic function is encountered.

Character Expression PMC Subroutine-BECSCN

BECSCN is called to generate pseudo instructions, in virtual memory, that will stack one
of the following character expressions:

1. Character variable-Generates a stack-character-field (STC) pseudo instruction
(Figure 3-112).

2. Character array element-Generates a stack-character-array-element (SCI) pseudo
instruction preceded by a stack-arithmetic-expression-value (Figure 3-112).

3. Character literal-Generates a stack-character-field (STC) pseudo instruction
(Figure 3-112).

Stack-Character
Expression-Fie[d

-----or

Stack-Character
Field

STC

_l

Stack-Character-
Array-Element

I
Stack-Arithmetic-
Expression-Value

SC1

Figure 3-112. Stack-Character-Expression-Field

(see Figure 3-113)

BR1159

Input Text Pointer: Index register @XR contains the core address of the character
preceding the first character of the character expression unless B$NUMC = 0 or switch
B$CSSW is on. If B$NUMC = 0, the compiler input subroutine (BAGETC) is effectively
disabled and the text pointer references the first character of the character expression.
If switch B$CSSW is on, the arithmetic expression PMC subroutine (BFSCAN) was called
to process the expression, and encountered a $identifier in the expression. When switch
B$CSSW is on, the text pointer references the character following the $ identifier, and
the character reference symbol virtual address is stored in B$BCKT.

Licensed Material-Property of IBM

Arithmetic Expression PMC Subroutine-BFSCAN

BF SCAN is called to generate stack-arithmetic-expression-values, composed of value
stacking and arithmetic pseudo instructions, in virtual memory (Figure 3-113). One
entry to this subroutine generates all pseudo instructions necessary to stack the value
represented by a single arithmetic expression. An arithmetic expression can be a single
symbol, or symbols separated by arithmetic operators (+, - , *, /, t , or * *). The expres
sion can contain signed symbols (unary - or+ sign).

Stack-Arithmetic
Expression-Value

NEG or FN1 or FCI

Stack-Scalar-Value

STF or FNO

Stack-Arithmetic
Expression-Value

l

Stack-Vector-Value

StacK-Arithmetic
Expression-Value

SF1

Stack-Arithmetic
Expression-Value

Stack-Arithmetic
Expression-Value

ADD or SUB or MPY
or DIV or PWR

Stack-Matrix-Va I ue

Stack-Arithmetic
Expression-Value

Stack-Arithmetic -
Expression-Value

SF2

Note: Stack-expression-values can be nested within a stack-expression-value.

BR1160

Figure 3-113. Stack-Arithmetic-Expression-Value

The unary minus (negative) sign and its quantity must normally be enclosed in paren
theses (- B). If, however, the unary operator applies to the leading term of an expression,
parentheses are unnecessary (-A means negative of A, +A means A).

The operands in the expression can be any of the following types:

I. Arithmetic variables.
2. Arithmetic array elements.
3. Arithmetic (numeric) constants.

Program Organization 3-167

Licensed Material-Property of IBM

3-168

4. Arithmetic (internal) constants.
5. Intrinsic functions.
6. User-defined functions.
7. Subexpressions (those enclosed in parentheses).

The following major work areas and tables are used in BFSCAN to process arithmetic
expressions:

1. Compile-time stack (BFSSTK)-This stack operates as a first-in/last-out queue.
It has a maximum capacity of 53 two-byte entries (arithmetic operation pseudo
instructions require two bytes, function pseudo instructions require four bytes,
and array pseudo instructions require six bytes).

2. Operand address bucket (B$BCKT)-The virtual address of the last encountered
operand is saved at this location until it can be output in a pseudo instruction or
placed in the compile-time stack. The available address switch (B$ADSW) indicates
when this location contains a usable address.

3. Current entry (BFSCEN)-This location holds a pseudo op-code and the priority
of the current arithmetic operation while they are being processed.

4. Scan routine branch table (BFSTBL)-This table contains a five-byte entry for
each valid BASIC arithmetic expression character except letters and numbers
(A-Z and 0-9). Each entry contains the EBCDIC character, the address of the
routine within BFSCAN that processes the character, the hexadecimal value of
the pseudo op-code (characters that do not generate a pseudo instruction conta'in
X'OO'), and the hexadecimal value of the priority code. Refer to this table for the
priorities of arithmetic operators.

Priority: Pseudo instructions are generated to conform with the priority of the opera
tions within the arithmetic expression. BFSCAN scans the arithmetic expression, from
left to right, one character at a time. An entry is loaded into the top of the compile
time stack for each operational or function/array pseudo instruction that is generated
(Figure 3-114).

If the priority of the current entry (BFSCEN) changes to a value lower than or equal
to that of the last entry loaded into the stack, the stack popper (BFSl 60) is entered.
This routine unloads an entry from the top of the stack, builds a 'pseudo instruction
from the entry, and deletes the entry from the stack. Entries are unloaded, one at a
time, as long as the priority of each stack entry is higher than or equal to that of the
current entry (BFSCEN).

All entries active in the stack, when the end of the arithmetic expression is reached,
are unloaded by the stack popper. The virtual-memory output subroutine (BBPUTC) is
called to move each generated pseudo instruction to the output buffer and write it into
virtual memory.

Input Text Pointer: Index register @XR contains the core address of the character
preceding the first character of the arithmetic expression except when B$NUMC is set
= 0. With B$NUMC = 0, the register contains the first character of the expression. The
address in the register on output depends on the type of expression processed:

1. Arithmetic expression without a delimiting keyword-The pointer references
the first nonblank character after the expression.

2. Arithmetic expression with a delimiting keyword-The pointer references the
second character of the delimiting keyword.

3. Character variable-The pointer references the character following the $ identifier.
4. Character constant-The pointer references the leading delimiter (quote mark).

Licensed Material-Property of IBM

BFSSTK BFSPTR

Compile-Time Stack (106 bytes)

2-B yte En try 4-Byte Entry

Op Code

1

2 2 3 4

Priority Virtual Address Op Code Priority

6-Byte Entry

1 2 3 J 4 5 6

Attribute CADDR Virtual Address Op Code Priority

Notes:

1. The op code field contains the pseudo instruction operation code.
2. The priority field contains the priority of the current arithmetic operation.
3. The virtual address field is present in the stack for 3-byte function or array

pseudo instructions. This address is determined by the symbol translator
subroutine (BDSYMB).

4. The stack pointer (BFSPTR) contains the location of the next entry to be
stacked, BFSPTR marks the top of the stack; BFSSTK marks the bottom of
the stack.

5. The attribute CADDR field contains the core address of the attribute (array
usage flags) in an array dope vector.

Figure 3-114. Entries in Compile-Time Stack

Converting Arithmetic Expressions to Pseudo Instruction Sequences

The logical rules for conversion are:

1. Perform all conversions from left to right.

BR1161

2. Begin conversions at the innermost subexpression level and then proceed outward.
"Subexpression" refers only to normal parenthetical inner expressions, and does
not include array reference subscript expressions or function reference argument
expressions.

3. Convert all subscript and function argument expressions within the current sub
expression level, treating these as independent expressions.

4. Convert all array and function references within the current subexpression level.
5. Within the current subexpression level, perform all highest-priority operations

first, then the next highest, etc., until all operations have been completed. The
priority of operations is, from high to low: t or **,unary - or + sign, * or /,
- or +.The unary minus (negative of) sign and its quantity must normally be
enclosed in parentheses (- B). If however, the unary operator applies to the leading
term of an expression, parentheses are unnecessary (-A means negative of A,+ A
means A).

6. The resultant pseudo instruction sequence represents an expression value in the
next outer subexpression level. Go to number 3 to resolve the next outer subex
pression until all levels are resolved.

Program Organization 3-169

Licensed Material-Property of IBM

3-170

Example: Convert the following arithmetic expression to a pseudo instruction sequence
(the circled numbers, such as CD, represent expressions developed as the operation
progresses):

A+(A+C(A+1,B)-B)/D(A t B)

Step 1. Using rule 2, there are two subexpression levels. The innermost is
(A+C(A+ l ,B)- B). The next outer subexpression level is A+expression/D(A t B).

Step 2. Using rule 3, array reference subscript A+ 1 is converted first. Use items 1
through 38 in Figure 3-115 (as they apply) for these conversions. A+ 1 is the same form
as item 7 in Figure 3-115. Therefore, it is converted to:

STF 1 stack-expression-value G) STF Al
ADD

Step 3. Using rule 4, array reference C (expression CD ,B) is converted (item 30 in
Figure 3-115) to:

stack-expression-value G)
STF B
SF2 C(

Step 4. Insert the resultant pseudo instructions from step 2 (shown within broken
line) and the sequence is:

js'TF""Al1
:sTF 1 l
l&QP _ _! stack-expression-value @
STF B
SF2 C(

Step 5. Using rule 5, there are two operations in the current subexpression level:
A+expression @ -B. The priority of operations is, from high to low: t or**, unary -
or + sign, * or/, - or +. From left to right (rule 1), convert A+expression @;then
expression Q)- B will resolve this subexpression level. A+expression@ is converted
(item 1 7 in Figure 3-115) to:

STF A
stack-expression-value 0
ADD

Step 6. Insert the resultant pseudo instructions from step 4 (shown within broken line)
and the sequence is:

STF A
lsl'f"A1
isTF 1 :
1ADD : stack-expression-value @
ISTF B I

~££~J
ADD

Licensed Material-Property of IBM
I

Step 7. Expression-Bis converted (item 13 in Figure 3-115) to:

stack-expression-value @
STF B
SUB

Step 8. Insert the resultant pseudo instructions (shown within broken line) from
step 6 and the sequen~e is:
r----,
lsTF A I

isTF Al
ISTF 1 I
:ADD I
I STF B I stack-expression-value ©
1sF2 c(1
I I L.f._p_p _ _J
STF B
SUB

Step 9. Resolution of this subexpression level is complete. The next higher subexpres
sion level is A+expression @ /D(A t B). Using rule 3, array reference subscript At B is
converted (item 11 in Figure 3-115) first:

STF A I .
STF B stack-expression-value @
PWR

Step 10. Using rule 4, array reference Dis converted (item 28 in Figure 3-115) to:

stack-expression-value @
SF1 D(

Step 11. Insert the resultant pseudo instructions (shown within broken line) from
step 9 and the sequence is:

rsTFA 1 I I
ISTF B I
1PWR I l! ___ _J

SF1 D(

stack-expression-value @

Step 12. Using rule 5, there are two operations in this subexpression level:
A+expression@ [step 8] /expression@) (step 11). The priority of the/ is higher
than the+ so convert expression @) /expression @);then A+expression (J) will
resolve this subexpression level. Expression @ /expression @) is converted (item
25 in Figure 3-115) to:

stack-expression-value (1) (step 8)
stack-expression-value ® (step 11)
DIV

Licensed Material-Property of IBM

Program Organization 3-171

3-172

Step 13. Insert the resultant pseudo instructions (shown within broken lines) from
step 8 and step 11, and the sequence is:

jsl-i= Ai
1STF A I
JSTF 1 I
IADD I
ISTF B \

:sF2 C(l
I ADD I stack-expression-value 0
1STF B I
1SUB j
isTF-A I
:sTF B I
IPWR I

l?~1- - J
DIV

Step 14. A+expression is converted (item 17 in Figure 3-115) to:

STF A
stack-expression-value CZ)
ADD

Step 15. Insert the resultant pseudo instruction (shown within broken line) from
step 13 and the sequence is:

STF A
rs"TF"Al
STF A
STF 1

ADD
STF B
SF2 C(

ADD
STF B
SUB
STF A I
STF B I
PWR I

SF1 D(I
t_?~V __ J
ADD

stack-expression-value @

Step 16. Resolution of this subexpression level is complete.

Licensed Material-Property of IBM

Item Subexpression Pseudo Instruction Sequence

1 A STF A

2 +A STF A

3 -A STF A
NEG

4 expression stack-expression-value

5 +expression stack-expression-value

6 -expression stack-expression-value
NEG

7 A+B STF A
STF B
ADD

8 A-B STF A
STF B
SUB

9 A*B STF A
STF B
MPY

10 A/B STF A
STF B
DIV

11 Ats or A**B STF A
STF B
PWR

12 expression+B stack-expression-value
STF B
ADD

13 expression-B stack-expression-value
STF B
SUB

14 expression*B stack-expression-value
STF B
MPY

15 expression/B stack-expression-value
STF B
DIV

16 expression t B or stack-expression-value
expression** B STF B

PWR

17 A+expression STF A
stack-expression-value
ADD

18 A-expression STF A
stack-exp r.essi on-value
SUB

19 A *expression STF A
stack-expression-value
MPY

20 A/expression STF A
stack-expression-value
DIV

21 At expression or STF A
A **expression stack-expression-value

PWR

Figure 3-115. Conversions of Subexpressions to Pseudo
Instruction Sequences (Part 1 of 2)

Licensed Material-Property of IBM

BR1177.1

Program Organization 3-173

3-174

Item Subexpression Pseudo Instruction Sequence

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Notes:

expression+expressi on

expression-expression

expression *expression

expression/expression

expressiont expression or
expressi.on **expression

C(A)

C(expression)

C(A,B)

C(expression,B)

C(A,expression)

C (expression ,expression)

FNC(A)

FNC(expression)

IFN(A)

I FN (expression)

RND

DET(C)

stack-expression-value
stack-expression-value
ADD

stack-expression-value
stack-expression-value

SUB

stack-expressi on-va I ue
stack-{lxpression-val ue

MPV

stack-expression-value
stack-{lxpression-val ue
DIV

stack-expression-value
stack-expression-value
PWR

STF A
SF1 C(

stack-expression-value
SF1 C(

STF A
STF B
SF2 C(

stack-expression-value
STF B
SF2 C(

STF A
stack-expression-value
SF2 C(

stack-expression-value
stack-expressi on-va I ue
SF2 C(

STF A
FCI FNC(

stack-expression-value
FCI FNC(

STF A
FN1 IFN(

stack-expression-value
FN1 IFN(

FNO RND

SDO C(
MF1 DET
STF &WRK

1. A and Bare simple scalar references or constants.
2. I FN may be any intrinsic function requiring a scalar argument.
3. C(is the virtual address of an array dope vector_
4. FNC(is a virtual address pointing to the virtual address of a user-defined

function.
5. IFN(and RND are virtual addresses of intrinsic functions.
6. &WR K is the virtual address of a work area.

BR1177.2

Figure 3-115. Conversions of Subexpressions to Pseudo Instruction Sequences (Part 2 of 2)

Licensed Material-Property of IBM

Assignment List PMC Subroutine-BL/STA

BUSTA generates stack-variable-address PMC sequences (Figure 3-116), for single
variable references in a list, in virtual memory. Typical BASIC statements that can
contain these lists are:

[LET]
READ
INPUT
GET

The lists reference these types of elements:

1. Arithmetic scalar variable
2. Arithmetic vector element
3. Arithmetic matrix element
4. Character variable
5. Character array element

Stack-Arithmetic
Address

Stack-Variable
Address

T

Stack-Character
Address

---------or,..--------- or----

Stack-Scalar
Address

STA

l
Stack-Vector-
Address

Stack-Arithmetic-
Expression-Value

SA1

Stack-Matrix
Address

Stack-Arithmetic
Expression-Value

Stack-Arithmetic
Expression-Value

SA2

Figure 3-116. Stack-Variable-Address

Licensed Material-Property of IBM

Stack-Field-
Address

STA

Stack-Array
Address

Stack-Arithmetic
Expression-Value

SB1

BR1178

Program Organization 3-175

3-176

The symbol translator subroutine (BDSYMB) determines the virtual address to be
appended to each address stacking op code. The arithmetic expression PMC subroutine
determines the pseudo instructions for all array subscript expressions. The pseudo
instructions are written to virtual memory by BBPUTC.

Input Text Pointer: Index register @XR contains the core address of the first character
in the list variable to be processed; following processing, it contains the core address of
the first nonblank character after the variable reference.

B$LTYP-List reference type. This indicator is set to X'Ol' when the list contains
character references, and is set to X'OO' when the list contains arithmetic references.

Matrix Reference PMC Subroutine-BMATXR

BMATXR generates stack-update-matrix-descriptor PMC sequences (Figure 3-117) for
the processing of arithmetic array references appearing in all MAT statements. These
PMC sequences are written to virtual memory. The array reference can be a simple array
name or an array name redimensioned by one or two dimension expressions.

The virtual address of the array name is determined by the symbol translator subrou
tine (BDSYMB); and stack-expression-values for dimension expressions, if present, are
generated by the arithmetic expression subroutine (BFSCAN).

Stack-Matrix-
Descriptor

~

SDO

Stack-Update
Matrix-Descriptor

T
or

Stack-U te-pda
x-De 1-Matri scriptor

Stack- hmetic-Arit
sion Expres -Value

s 01

Figure 3-117. Stack-Update-Matrix-Descriptor

l
Stack-Update-
2-Matrix-Descriptor

1
Stack-Arithmetic-
Expression-Value

Stack-Arithmetic-
Expression-Value

SD2

BR1179

Input Text Pointer: Index register @XR contains the core address of the character
preceding the first character of the array reference on entry. This register contains the
core address of the character that delimits the array reference on exit.

Branch Table Subroutine-BRA TAB

BRATAB resolves virtual addresses for branch pseudo instructions and builds the branch
address table (Figure 3-107). (Refer to "Resolving Virtual Memory Addresses.")

Licensed Material-Property of IBM

Input parameters to BRATAB are:

1. B$BRV A-Contains the virtual address that points to the location of the unresolved
operand.

2. B$BRLN-Contains a line number or actual virtual address referenced by the
pseudo instruction with the unresolved operand.

Disk Four-Track Logical !OCS /nterface-BVDL4T

BVDL4T is called by the statement input subroutine (BAGETC) to read blocks of source
text from the work file and by the virtual memory output subroutine (BBPUTC) to
write pages of PMC to virtual memory. This 1/0 subroutine converts relative disk
addresses to physical disk addresses and calls DKDISK in the system nucleus to perform
the disk 1/0 operation. The calling sequence, disk parameter list (DPL) format, and
functions of BVDL4T are the same as for DL4ICS (system work file IOCS). Refer to
DL41CS (Figure 3-70) and disk parameter list (Figure 3-3).

PMC Statement Processors (General Specifications)

Statements are assumed to be free of syntax errors, since they are checked and assigned
type codes as they are entered into the system work file. Each source BASIC program
statement is scanned, character by character, in the compiler input buffer. This buffer
is managed by the statement input subroutine (BAG ETC). Index register @XR, updated
by all modules of the compiler, generally contains the core address of the current char
acter to be inspected in the input buffer. On entry to a PMC generator overlay, the
index register normally references the first character of the statement keyword. When
returning to the compiler distributor (BHDIST), the index register references the char
acter terminating the processed statement.

Most PMC generator overlays generate a series of pseudo instructions and assign loca
tions for data in virtual memory. Pseudo object code sequences for each BASIC state
ment are stored, as generated, contiguously in a 256-byte output buffer. This buffer is
managed by the virtual-memory output subroutine (BBPUTC).

The pseudo instructions and/or data area assignments for the following group of BASIC
statement syntactical units are generated by core-resident subroutines called by the PMC
generator overlays:

1. Constant; constant generator subroutine (BCFCON).
2. Arithmetic-variable; symbol translator subroutine (BDSYMB).
3. Arithmetic-expression; arithmetic expression PMC subroutine (BFSCAN).
4. List of variable-references (arithmetic or character); assignment list PMC

subroutine (BUSTA).
5. Character-expression; character expression PMC subroutine (BECSCN).
6. Array-dimension-specification; symbol translator subroutine (BDSYMB).
7. Array-reference; matrix reference PMC subroutine (BMATXR).

The core-resident subroutines call other core-resident subroutines to process lesser
elements of the syntactical unit (example: BFSCAN calls BDSYMB to process each
symbol in an arithmetic expression). BASIC statement syntactical units, not in the
preceding list, are generated by the PMC generator overlays (example: branch, com
pare, and unstack instructions). Exceptions to this are the STH and EOP instructions.
The statement header (STH) is generated by the compiler distributor (BHDIST). End
of-page (EOP) instructions are inserted by the virtual-memory output subroutine
(BBPUTC).

Program Organization 3-177

Licensed Material-Property of IBM

3-178

A stack-basic-element (Figure 3-118) can be either a stack-arithmetic-expression-value
or a stack-character-expression-field. Refer to Figures 3-146 and 3-148 for the stack
basic-element syntax used in the PRINT and PUT keyword statements.

Stack-Basic
Element

I

(see Figures 3-146 and 3-146)

1----or----1

Stack-Arithmetic
Expression-Value

(see Figure 3-113)

Figure 3-118. Stack-Basic-Element

Licensed Material-Property of IBM

Stack-Character
Expression-Field

(see Figure 3-112)

BR1180

#BCOMP

BGINIT

INITIALliE BASIC COMPILER

1. Set input buffer clear switch ($CLBF R) on.
2. Initialize data pointer in $1NLNO.
3. Set core-resident routines for long precision

if required.
4. Coreload all possible statement processors and

adjust distributor table if $EXFTR 'I 0.

)!
BHDIST

ACCESS NEXT STATEMENT AND SET UP
PROCESSING

1. Use BAGETC to get statement type code.
Access first character of keyword in work file.

2. Process special conditions: • Truncated statement
• REM or deactivated BHD400

statement
3. Use BBPUTC to ge.nerate STH in virtual memory for PROCESS TRUNCATED STATEMENT CONDITION

current statement.
4. Add statement address table entry for current 1. Use BBPUTC to output error code to virtual memory

statement. in place of pseudo machine code. 5. Select statement processor using current statement
type code.

6. Coreload statement processor if not already in core.
7. Branch to execute selected statement processor.

BNRMRK

BYPASS BASIC STATEMENT TO EOS CHARACTER

lj 1. Use BAGETC to get statement characters from
~A"o.rk file unt!! EOS is found.

Figure 3-119. Compiler (#BCOMP) Flowchart (Part 1 of 2)

Program Organization 3-179

Licensed Material-Property of IBM

Page of LY34-0001-1
Revised January 1972
By TNL LN34-0075

~~OSE
DATA
DEF
DIM
FOR
GET
GOSUB
GOTO (Simple)
GOTO (Multiple)
IF (Arithmetic)

IF (Character)
IF (Character, String)

Image(:)
INPUT
LET (Arithmetic, Simple)
LET (Arithmetic, Multiple)
LET (Character)
LET '(Character, String)

MAT
MAT GET
MAT INPUT
MAT PRINT
MAT PRINT USING
MAT PUT
MAT READ
NEXT
PAUSE
PRINT
PRINT USING
PUT
READ
RESET
RESTORE
RETURN
STOP

BTRMNT
END (or EOF)

TERMINATE COMPILER PMC GENERATION PHASE

1. If any compiler-generated errors in virtual memory,
coreload error codes and exit to $CAERK to load
#ER RPG.

2. If incomplete FOR loop or virtual memory capacity
exceeded, exit to $CAERK to load #ER RPG.

3. Close PMC output to virtual memory.
4. Output residual constants to virtual memory.
5. Output residual branch table entries to disk.
6. Output residual statement table entries to disk.
7. Establish parameters and symbol tables in core

transfer area for use by #LOADR.
8. Exit to $RLOAD to load and execute #LOADR.

#LOADR
Figure 3-161

BX CLOS
BNDATA
BNFDEF
BNADIM
BKFORX

"'7'

BXGETX
BKSUBG -•
BK GOTO

~

BK MG TO
BKARIF
BKCRIF

"'7'

BSTRIF
BNIMAG
BXINPT
BP A LET
BPMLET

~

BPCLET
"'7'

BSTRLT

BMMATE
BMGETX

~

BMINPT
BM DP RT

~

BM UP RT
BMPUTX

"'7' .
BM READ ·~

BKNEXT
BTPAUS .
BX DP RT
BXUPRT

--,.

BXPUTX
BP READ
BXRSET

~

BPXRSR
~

BKRTRN
~

BTSTOP

SCAN BASIC STATEMENT TO EOS CHARACTER

1. Use BAGE;TC to get statement characters from
work file.

2. Use BBPUTC to output generated PMC to
virtual memory.

3. Use BCFCON to generate and output constants
to virtual memory.

4. Use BDSYMB to create variable symbol addresses.
5. Use BECSCN to generate PMC for character

expression.
6. Use BFSCAN to generate PMC for arithmetic

expression.
7. Use BLISTA to generate PMC for assignment list.
8. Use BMATXR to generate PMC for matrix

references.
9. Use BRATAB to add unresolved addresses to

branch table.
10. Use BUZDBN for decimal to binary conversion.
11. Use BVDL4T as logical interface to .disk IOCS.
12. Use BBPUTC to output error codes to virtual

memory rather than PMC when minor compiler
error occurs.

13. Exit to $CAERK to load #ER RPG if virtual
memory or branch table capacity is exceeded.

PMC~pseudo machine code

Figure 3-119. Compiler (#BCOMP) Flowchart (Part 2 of 2)

3-180

Licensed Material-Property of IBM

)

Pseudo Instruction Sequences

Pseudo instruction sequences are detailed in Figures 3-120 through 3-154. These figures
are in alphabetical order by BASIC statement keyword. As illustrated in the figures, a
syntactical unit of PMC (pseudo machine code) is normally generated for each syntactical
unit of the BASIC statement.

Input to BXCLOS
Output from BXCLOS

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

statement-header STH

CLOSE {'filename' } stack-character-field STC
character-variable perform-file-activation ADF

close-file CLS

[{filename' }]
[stack-character-field [STC

... perform-file-activation ADF • character-variable
close-file] ... CLS] ...

Note: When 'filename' has not been defined (cannot be located in compile filename table), no ADF/CLS sequence
is generated for that file reference,

BR1182A

Figure 3-120. CLOSE PMC Syntax

Input to BNDATA
Output from BNDATA

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

DATA constant statement-header STH
branch-next-statement BRA
define-constant-address DCA

[.constant] ... [define-constant-address] ... [DCA] ...

defi ne-data-1 in kage DDL

BR1183

Figure 3-121. DATA PMC Syntax

Input to BNFDEF
Output from BNFDEF

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

DEF user-function statement-header STH
branch-next-statement BRA
branch-return-address BRA

(arithmetic-variable) (packed-fl oat in g-pa rameter-a rea) DWA

~ arithmetic-€xpression stack-arithmetic-expression-value (see Figure 3-113)
branch-a nd-delete-f u ncti on-€ntry BRD

BR1184

Figure 3-122, DEF PMC Syntax

Program Organization 3-181

Licensed Material-Property of IBM

Input to BNADIM
Output from BNADIM

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

DIM array-dimension-specification statement-header STH
array-dope-vectors

[.array-dimension-specification], .. [array-dope-vectors] ...

Notes:

1. No pseudo machine instructions, except a statement-header, are generated for the DIM statement.
2. Refer to Figures 3-156 and 3-157 for descriptions of array dope vectors. Partial array dope vector Images

remain core-resident during compilation and are tagged or filled as the array is referenced during execution
of the BASIC program. Completed dope vectors are stored in virtual memory by #LOADR.

BR1185

Figure 3-123, DIM PMC Syntax

Input to BTRMNT
Output from BTRMNT

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

END [comment] statement-header STH
call-supervisor SVC
define-program-end EOF

Note: End of work file (condition) generates the same sequence.

BR1186

Figure 3-124. END PMC Syntax

Input to BKFORX
Output from BKFORX

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

FOR arithmetic-variable statement-header STH

=arithmetic-expression stack-a ri th meti c-exp ressi on-value (see Figure 3-113)

TO arithmetic-expression stack-arith meti c-e xp ressi on-value (see Figure 3-113)

[STEP arithmetic-expression] stac k-arith riletic-expressi on-value (see Figure 3-113)

i nitialize-for-1 oop FOR
perform-next-step NXT
define-work-area DWA
(unpacked-fl oati n g-param eter-a rea) (see note)

Note: Each unpacked-floating-point-parameter-area is 8 bytes in length for standard precision and 16 bytes in
length for long precision.

BR1187

Figure 3-125. FOR PMC Syntax

3-182

Licensed Material-Property of IBM

Input to BXGETX
Output from BXGETX

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

{'filename' }
statement-header STH

GET
character-variable

stack-character-field STC

perform-f i I e-activati on ADF

,variable reference stack-variable-address (see Figure 3-116)
get-file-element GET

[.variable reference] ... [stac k-vari able-address [(see Figure 3-116)
get-file-element], .. GET]. ..

Figure 3-126. GET PMC Syntax

Input to BKSUBG
Output from BKSUBG

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

GOSUB line-number statement-header STH
stack-return-address .STA
branch-unconditionally BRA

Figure 3-127. GOSUB PMC Syntax

Input to BKMGTO
Output from BKMGTO

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

GOTO line-number statement-header STH
stack-bypass-address STA
stac k-1 ine-address STA

[.I ine-number J ••• [stack-I ine-address] ... [STA] •..

ON arithmetic-expression stack-a ri th met ic-exp ression-val u e (see Figure 3-113)
compute-stacked-address CSA
branch-stacked-address BRS

Figure 3-128, GOTO (Multiple) PMC Syntax

Input to BKGOTO
Output from BKGOTO

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

GOTO line-number statement-header STH
branch-unconditionally BRA

Figure 3-129, GOTO (Simple) PMC Syntax

Program Organization 3-183

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-007 5

3-184

Input to BKARIF
Output from BKAR IF

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

IF arithmetic-expression statement-header STH
stack-a ri th met ic-exp ressi on-value (see Figure 3-113)

relational-operator - stack-arithmetic-expression-value (see Figure 3-113)
arithmetic-expression - compare-stacked-values CMF

I THEN I· GO TO line-number branch-on-condition BRC

Figure 3-130, IF (Arithmetic) PMC Syntax

Input to BKCR IF
Output from BKCRIF

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

IF character-expression statement-header STH
stack-ch a racte r-exp ress ion-field (see Figure 3-112)

relational-operator - stack-character-exp ressi on-field (see Figure 3-112)
character-expression - com pa re-stacked-values CMC

I THEN 1 · GO TO line-number branch-on-condition BRC

Figure 3-131. IF (Character) PMC Syntax

Input to BSTR IF
Output from BSTRIF

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

IF character-expression statement-header STH
stack·character-expre_ssion-field (see Figure 3-112)
[stack-arithmetic-expression-value [STF
stac k·a rith metic-expression-va I ue STF
function-cal 1-no-argu me nt] FNO]

relational-operator <:]" ""'"'h"'"".'""''"~''''' (see Figure 3-112)
[stack-arithmetic-expression-value [STF

character-expression stack-character-expression-value STF
function-cal 1-no-argu ment] FNO]

~ compare-stacked-values CMC

{THEN} . GO TO line-number branch-on-condition BRC

Figure 3-131.1. IF (Character, String) PMC Syntax

Licensed Material-Property of IBM

-

Page of LY34-0001-1
Added January 1972 ·
By TNL LN34-0075

Input to BNIMAG Output from BN IMAG

(BASIC Stateme~t Syntax)
Syntax of PMC Sequences PMC Mnemonics

statement-header IMH
branch-next-statement BRA

[character-string

or
priht-image] ... set-print-image (see note)

branch-stacked-address BRS

Note: Set-print-image is either a set-null-image (PRU) or a sequence of the following form:

stack-cha racter-fi el d (STC)

set-initial-image (PRU)

I [stack-character-field [STC
set-image-field] ... PRU] ...

Figure 3-132. IMAGF (:) l'MC Syntax

Input to BXINPT
Output from BXINPT

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

IN PUT variable-reference statement-header STH
stack-return-address STA
branch-unconditi ona I ly BRA
stack-variable-address (see Figure 3-11 6)

input-data-element GET

[,variable-reference] , .. [stack-variable-address [(see Figure 3-116)

input-data-element], .. GET] ...

branch-next-statement BRA
stac k-e xecu ti on-code STX
[stack-execution-code] ... [STX] ... '

initiate-data-input INI

branch-stacked-address BRS

1:i1o,'lm 3-133. INPUT PMC Syntax

Input to BPMLET
Output from BPM LET

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

[LE Tl arithmetic-reference statement-header STH

branch -unconditionally BRA

stack-a ri th metic-address (see Figure 3-116)

stack-scalar-value STF

unstack-scalar-value USF

[,arithmetic-reference] . , , [stack -a ri th metic-add ress [(see Figure 3-116)

stack-sea lar-val ue STF

unstack-scalar-value] ... USF] ...

=arithmetic-expression branch-to-next -sta tern en t BRA

stack-scalar-address STA

stack-expression-value (see Figure 3-113)

unstack-expression-value USF

branch-unconditionally BRA

Figure 3-134. LET (Arithmetic, Multiple) PMC Syntax

Program Organization 3-184.1

Licensed Material-Property of IBM

Page of LY34-0001-1
Added January 1972
By TNL LN34-0075

3-184.2

Input to BPALET
Output from BP A LET

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

[LET] arithmetic-reference statement-header STH
stack-arithmetic-address (see Figure 3-116)

=arithmetic-expression stack-a r i th m eti c-exp ress ion-value (see Figure 3-113)
unstack-a r i th met i c-e xp ress i on-va I u e USF

Figure 3-135. LET (Arithmetic, Simple) PMC Syntax

Input to BPCLE T
Output from BPCLET

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

[LET] character-reference statement-header STH
stack-character-address (see Figure 3-116)

[.character-reference] ... [stack-character-address] ... [(see Figure 3-116)] ...

=character-expression stac k-character-B xpressi on-ti eld (see Figure 3-112)
u ns tack-ch a racter-e xp ressi on -field use

Figure 3-136. LET (Charnctcr) PMC Synt<.Lx

Input to BSTR LT
(BASIC Statement Syntax)

Output from BSMLET

Syntax of PMC Sequences PMC Mnemonics

l character-reference !
[LET]

string-function

[I character-reference { J .. _
string-function ~

= character-expression

statement-header
branch-unconditionally
stack-character-address
[stack-character-expression-field
stack-a r ith met i c-e xpress i on-va I ue
stack-arithmetic-expression-value]
stack-character-field
[tu nction-cal 1-no-argu ment]
unstack-character-elements

'Stack-character-address ...,
[stack-character-expression-field
stac k-arith meti c-express ion-va I ue
stac k-ar ith metic-e xpression-va I ue]
stack-character-field
[function-cal I-no-argument]

._unstack-character-elements

branch-to-next-statement
stack-character-address
stac k-character-expressi o n~f iel d
[stack-arithmetic-ex pressio n-va I ue
stack-a r ith met ic-expression-va I u e
function-ca I I-no-argument]

unstack-character-elements
branch-unconditionally

Figure 3-136. l. LET (Character, Multiple, String) PMC Syntax

Licensed Material--Property of IBM

STH
BRA
(see Figure 3-116)
[(see Figure 3-112)
STF
STF]
STC
[FNO]

use

'Tsee Figure 3-116)...,
[(see Figure 3-112)
STF
STF]
STC
[FNO]

J:JSC

BRA
STA
(see Figure 3-112)
[STF
STF
FNO]

use
BRA

Input to BMMATA

Page of LY34-0001-l
Revised January 1972
By TNL LN34-0075

MAT matrix-name = I matrix-name I Output from BMMATA

matrix-expression
Syntax of PMC Sequences PMC Mnemonics

MAT Statement Example

MAT C =A+ B statement-header STH
stack-matrix-descriptor SDO
stac k-matri x-descripto r SDO
sta ck-matrix-descriptor SDO
perform-3-matrix-function MF3

MAT C = INV(M) statement-header STH
stack-mat ri x-desc riptor SDO
stack-matrix-descriptor SDO
perf orm-2-ma tri x-f unction MF2

MATC=CON(10) statement-header STH
stack-a rith meti c-e xpress i on-va I u e (see Figure 3-113)
stack-update-1-matrix-descriptor (see Figure 3-117)
perform-1-matrix-function MF1

MAT C = (E1)*M statement-header STH
stack-matri x-desc rip tor SDO
stack-a ri th met ic-e xpressi on-value (see Figure 3-113)
stack-matrix-descriptor SDO
perform-sea lar-matrix-mu \tip ly MSM

Figure 3-137. MAT PMC Syntax

Program Organization 3-185

Licensed Material-Property of IBM

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

3-186

Input to BMGETX
Output from BMGETX

(BASIC Statement Syntax)
Syntax of PMC Sequences

{'filename' }
statement-header

MAT GET stack-character-ti eld
character-variable

perform-tile-activation

,array-reference stack-u pdate-matri x-descri pt or
performi)et-matri x-fu nction

[.array reference] ... [stacl<-update-matri x-descriptor
perform-get-matrix-function] ...

1-'igure 3-138. MAT GET PMC Syntax

Input to BMINPT Output from BMINPT

(BASIC Statement Syntax)
Syntax of PMC Sequences

MAT INPUT array-reference statement-header
stack ·LI pdate-matri x-descr ip tor
perform-in p ut-matri x-f unction

[.array reference] ... [stac l<-u pdate-matr ix-descriptor
perform-input-matrix-function] ...

Figure 3-139. MAT INPUT PMC Syntax

Licensed Material-Property of IBM

PMC Mnemonics

STH
STC
ADF

(see Figure 3-117)
MF1

[(see Figure 3-117)
MF1] ...

PMC Mnemonics

STH
(see Figure 3-117)
MF1

[(see Figure 3-117)
MF1] .. _

)

Page ofLY34-0001-1
Revised January 1972
By TNL LN34-0075

Input to BMDPAT
Output from BMDPRT

(BASIC Statement Syntax)
Syntax of PMC"Sequences PMC Mnemonics

MAT PRINT matrix-name statement-header STH
stack-matrix-descriptor SDO
perform-print-matrix-unformatted MF1

[{'.}matrix-name] .. ·[{'.}] [stack-matrix-descriptor [SDO
perform-print-matrix-unformatted] ... MF1] ...

Figure 3-140. MAT PRINT PMC Syntax

Input to BMUPRT
Output from BM UP RT

(BASIC Statement Syntax)
Synta.x of PMC Sequences PMC Mnemonics

MAT PRINT USING line-number statement-header STH
stack-re tu rri-address STA
branch-set-image BNX

,matrix-name stack-matrix-descriptor SDO
perform-print-matrix-formatted MF1

[.matrix-name] ... [stack-matrix-descriptor [SDO
perform-print-matrix-formatted] ... MF1] ...

release-image PRU

Figure 3-141. MAT PRINT USING PMC Syntax

Program Organization 3-187

Licensed Material-Property of IBM

.
Input to BMPUTX

Output from BMPUTX

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

{'filename' }
statement-header STH

MAT PUT
character-variable

stack-character-field STC
perform-tile-activation ADF

,array reference stack-matrix-descriptor SDO
perform-put-matrix-function MF1

[,array reference] , , . [stack-matrix-de scrip tor [SDO
perform-put-matrix-function] .. , MF1] ...

Figure 3-142, MAT PUT PMC Syntax

Input to BMREAD
Output from BM READ

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

MAT READ array-reference statement-header STH
stack-update-matrix-descriptor (see Figure 3-117)
perform-read-matrix-function MF1

[.array-reference] ... [stack-update-matrix-descriptor [(see Figure 3-117)
perform-read-matrix-function] , , , MF1],,.

Figure 3-143. MAT READ PMC Syntax

Input to BKNEXT
Output from BKNEXT

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

NEXT arithmetic-variable statement~header STH
branch -unconditionally BRA

Figure 3-144, NEXT PMC Syntax

Input to BTPAUS
Output from BTPAUS

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

PAUSE [comment] statement-header STH
halt-execution HLT

Figure 3-145, PAUSE PMC Syntax

3-188

Licensed Material-Property of IBM

Input to BXDPRT
Output from BX DP RT

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

PR I NT [print-references] ... statement-header STH
print-unformatted ... (see note)

Note: Print-unformatted is either a position-carrier (PRS) or a print-position-carrier (PRS) preceded by a stack-
basic-element (Figure 3-118).

BR1208

Figure 3-146. PRINT PMC Syntax

Input to BX UP RT
Output from BXUPRT

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

PRINT USING line-number statement-header STH
stack-return-address STA
branch-set-image BNX

print-image-only PRU (see Note 1)

,scalar-reference print-formatted STC
PRU (see Note 2)

[,scalar-reference] ... [print-formatted] ... [STC
PRU] ...

Notes:

1. This instruction is not generated when at least one scalar-reference is specified.

2. These instructions are generated only when at least one scalar-reference is specified.

BR1209

Figure 3-14 7. PRINT USING PMC Syntax

' Input to BXPUTX
Output from BXPUTX

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

statement-header STH

PUT {'filename' } stack-character-field STC
character-variable

perform-file-activation ADF

,scalar-reference stack-basic-element (see Figure 3-118)
put-file-element PUT

[.scalar-reference] ... [stack-basic-element [(see Figure 3-118)
put-file-element] ... PUT]. ..

BR1210A

Figure 3-148, PUT PMC Syntax

Program Organization 3-189

Licensed Material-Property of IBM

Input to BP READ
Output from BP READ

(BASIC Statement Syntax)
Syntax of PMC Sequences PMC Mnemonics

READ statement-header STH

variable-reference stac k-va ri able-address (see Figure 3-116)
read-data-element GET

[,variable-reference] ... [stack-variable-address [(see Figure 3-116)
read-data-element] ... GET] ••.

BR1211

Figure 3-149. READ PMC Syntax

Input to BNRMRK
Output from BN RM R K

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

REM [comment] statement-header STH

BR1212

Figure 3-150, REM PMC Syntax

Input to BXRSET
Output from BX RSET

(BASIC Statement Syntax) Syntax of PMC Sequences PMC Mnemonics

statement-header STH

RESET {filename' } stack-character-field STC
character-variable perform-fl le-activation ADF

reset-file-pointer RST

[{filename' }]
[stack-character-field [STC

character-variable
... perform-file-activation ADF

reset-file-pointer] ... RST]. ..

Note: When 'filename' has not been defined (cannot be located in compile filename table), no ADF-RST
sequence is generated for that file reference,

BR 1213A

Figure 3-151. RESET PMC Syntax

Input to BPXRSR
Output from BPXRSR

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

RESTORE [comment] statement-header STH
restore-data-pointer RSR

BR1214

Figure 3-152. RESTORE PMC Syntax

3-190

Licensed Material-Property of IBM

Input to BKRTRN
Output from BKRTRN

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

RETURN [comment] statement-header STH
branch-stacked-address BRS

Note: The last executed GOSUB stacked the address operated on by BRS.

BR1215

Figure 3-153. RETURN PMC Syntax

Input to BTSTOP
Output from BTSTOP

(BASIC Statement Syntax)
Syntax of PMC Sequence PMC Mnemonics

STOP [comment] statement-header STH
call-supervisor SVC

BR1216

Figure 3-154. STOP PMC Syntax

Compiler Termination

Compiler Terminator-BTRMNT: The compiler overlay is called by the compiler dis
tributor (BHDIST) when an END statement or a work file end-of-file record is processed.

Functions performed by the compiler terminator are:

1. Generate the PMC sequence for the END statement (Figure 3-124).
2. Write the last page of pseudo instructions to virtual memory by calling BBPUTC

(CLOSE function).
3. Write the last page of constants to virtual memory by calling BBPUTC (WRITE

PAGE function).
4. Write the last statement address table and branch address table buffers to disk.
5. Build the common parameter area (Figure 3-155) in high-core.
6. Load and exit to the loader (#LOADR) if nothing occurred to abort execution

of the BASIC program.

The following error conditions abort execution of the BASIC program and call the
error program (#ERRPG) via $CAERK in the system nucleus:

1. BASIC program errors have been detected by the compiler. Switch B$ERSW is on,
and the errors are recorded beginning in the first pseudo instruction page of virtual
memory. This page and the two pages following are read into core at X'l COO', the
location of the error stack for the error program (#ERRPG). These pages contain
up to 255 stacked error records.

2. The capacity of the branch address table file on disk is exceeded.
3. The FOR loop table contains an unresolved entry (a FOR statement was not

paired with a matching NEXT statement).

Program Organization 3-191

Licensed Material-Property of IBM

Core Address Decimal
of Leftmost Length Loader Input Parameters

Parameter Byte

1AOO 2 Starting virtual address for the allocation of arrays
(equal to the last pseudo instruction page + 1) .

1A02 2 Last virtual address available in the first area for the
allocation of arrays (equal to the last, or lowest, page
constants).

1A04 2 First virtual address available in the second area for the
allocation of arrays (equal to the last page of variables +1).

1A06 2 Ending virtual address for the alloca'ion of arrays (equal
to the last, or lowest, page containing array dope vectors).

1A08 2 Starting virtual address of the internal constants.

1AOA 2 Starting virtual address of the internal variables.

1AOC 58 Arithmetic (letter) variable symbol table (from label
B$SLVT).

1A46 580 Arithmetic (letter-digit) variable symbol table (from
label B$SLDT).

1C8A 58 Character variable symbol table (from label 8$SCVT).

1CC4 58 Arithmetic array symbol table (from label 8$SNA T).

1CFE 58 Character array symbol table (from label 8$SCAT).

1038 58 User function symbol table (from label B$SFNT).

1072 406 Array dope vector images and user function entry
addresses. This area contains al I array descriptors
defined in the program, including dimensions specified
in DIM statements and tags to define the arithmetic
arrays as vector or matrix arrays. This area also includes
virtual address entry points for all functions defined
with a DEF statement.

1 F07 Last address occupied by the loader parameters.

Notes:

1. For clarification of the areas for the allocation of arrays, refer to the
virtual memory map (Figure 7-2).

2. Symbol tables and array dope vectors are generated in the symbol translation
subroutine (BDSYMB). Refer to symbol processing in BDSYMB (Figure 3-111).

BR1217

Figure 3-155. Compiler/Loader Common Parameter Area

3-192

Licensed Material-Property of IBM

)

LOADER-SECOND PHASE OF COMPILATION-#LOADR (Figure 3-161)

#LOADR is called by the compiler terminator (BTRMNT), via $RLOAD in the system
nucleus, upon completion of the first phase of the compilation. The loader performs the
following functions in preparation for execution of the BASIC program:

1. Allocation of arrays in virtual memory
2. Allocation of data file buffers in virtual memory
3. Initialization of elements in virtual memory
4. Resolution of all entries in the branch address table
5. Loading of VM-resident execution subroutines of the specified precision
6. Loading the interpreter to begin execution of the BASIC program

The assembly of #LOADR contains these major source modules:

LALLOC-Allocate arrays
LDFILE-Allocate data file buffers
L VINIT-Initialize elements
LRADDR-Resolve branch address table
LSORTA-Sort branch address table subroutine
DL2ICS-Disk logical IOCS, Figure 3-70
DL4ICS-System work area IOCS, Figure 3-70

The loader references parameters and tables accumulated by the compiler to perform
the functions described in the following paragraphs. The loader does not access any of
the source information in the work file (BASIC statements). The following list of figure
references will aid in determining the input to, and output from, this phase of the compile:

1. Compiler/loader common parameter area, Figure 3-155
2. Virtual memory map, Figure 7-2
3. RUN program name core map, Figure 3-102
4. Arithmetic array dope vector, Figure 3-156
5. Character array dope vector, Figure 3-157
6. Symbol tables in BDSYMB, Figure 3-111
7. Directory-I (work file 1/0 record), Figure 5-17
8. Directory-2, Figure 5-20

Allocation of Arrays in Virtual Memory-LALLOC

LALLOC allocates all arithmetic and character arrays, specified by entries in the respec
tive array symbol tables, into the remaining available pages of virtual memory. Reference
is made to the following parameters in the common parameter area (Figure 3-155):

1. The first four parameters define the two areas available for the allocation of
arrays. These parameters are updated, as arrays are allocated, so that they
always reflect the limits of the remaining available area.

2. The arithmetic array symbol table contains a pointer to an array dope vector
image, also in the common area, for each arithmetic matrix or vector array to
be allocated. The array dope vector defines the type and size of the array.

3. The character array symbol table contains a pointer to an array dope vector
image, also in common area, for each character array to be allocated. The
character array dope vector defines the size of the array.

Default values are used if the array dope vector is flagged as undefined. All fields of the
array dope vectors are completed in the common parameter area and that portion of the
area is written to virtual memory after all arrays are allocated.

The length of each element in the array is:

1. 5 bytes for arithmetic arrays for standard precision
2. 9 bytes for arithmetic arrays for long precision
3. 19 bytes for character arrays

Program Organization 3-193

Licensed Material-Property of IBM

3-194

B$SNAT

One Table Entry

2 3 4 5 6

VADR F D1 D2

Arithmetic Array Dope Vector Image in Common Parameter Area

1 I 2 I 3 l 4 I 5 I 6 l 7 l 8

FJ D1 I D2 I X'OOOO' I X'OOOO'

I
Arithmetic Array Dope Vector as Written in Virtual Memory at VADR

1 I 2 I 3 l 4 I 5 l 6 l 7 l 8

D1 I D2 I Size I Base

Notes:

VADR- The virtual address of the space allocated by virtual memory for the array dope vector assigned to this
symbol. Until the symbol is referenced at compile-time (arithmetic array reference of DIM statement),
this field contains binary O's.

F- Array usage flags (bits O and 1).
00-Array undefined.
10-Vector usage; one dimension; field D1 contains binary O's.

Field D2 contains either a specified or a default single dimension.
11-Matrix usage; two dimensions; both fields D1 and D2 contain a specified or a default dimension.

D1- First Dimension. This field defaults to a value of 10 when dimensions of a matrix array are not defined.
D2- Second Dimension. This field defaults to a value of 10 when dimension(s) of a matrix array are not defined.
Size- Total number of elements in this array. This field defaults, to a value of 10 for vector usage or 100 for

matrix usage, when the dimension(s) of the array are not defined.
Base- Base virtual address for this array. This address is assigned by the loader (#LOADR). The first element in

the array is located at base plus 5 bytes (9 bytes for long precision).

Figure 3-156, Arithmetic Array Dope Vector

Allocation of Data File Buffers in Virtual Memory-LDFI LE

BR1218

LDFILE reads the first sector of file directory 1 into storage and determines if there is
a second sector. If file directory 1 is two sectors long, virtual memory space is allocated
for the second sector. The first four parameters of the common parameter area define
the available pages in virtual memory.

LDFILE must be able to allocate at least one page for each card and disk file refer
enced in the BASIC program or execution of the program is aborted. The buffers are
allocated from the remaining available pages defined by the first four parameters of the
common parameter area. One page is allocated for each card file and the remaining
pages are divided equally among the disk files, if specified, to a maximum of eight pages
for each disk file.

The files are defined in file directory 1 (work file I/O record). The device type code in
each entry in file directory 1 is checked and file directory 2 is created as the buffers are
allocated. File directory 1 and file direct01y 2 are stored in virtual memory.

Initialization of Elements in Virtual Memory-LVINIT

LVINIT scans the following tables in the common parameter area and initializes each item
that is referenced:

I. Arithmetic array symbol table
2. Character array symbol table

Licensed Material-Property of IBM

3. Character variable symbol table
4. Arithmetic (letter) variable symbol table
5. Arithmetic (letter-digit) variable symbol table

B$SCAT

1

Notes:

Character Array Symbol Table (29 four-byte entries,
one assigned to each symbol)

One Table Entry

I 2 3 I 4

VADR Fl D1

Character Array Dope Vector Image
in the Common Parameter Area

1 j 2 3 l
F_I D1 x·oooo·

I
Character Array Dope Vector as
Written in Virtual Memory at V AD R

1 l 2 3 l
D1 Base

4

4

VADR- The virtual address of the space allocated in virtual memory for the
array dope vector assigned to this symbol. Until the symbol is
referenced (character array reference or DIM statement), this field
contains binary O's.

F- Array usage flag (bit O).
D1- Dimension; number of character elements in the array. Only single

dimension references (vector) are valid. This field defaults to a value
of 1 O when the dimension of a character array is not defined.

Base- Base virtual address of the array. This address is assigned by the loader
(#LOADR). The first character element in this array is located at base
pl us 19 bytes.

BR1219

Figure 3-157. Character Array Dope Vector

Trace Mode: A trace reference list (256 bytes) contains an image of the input parameters
from the TRACE keyword statement. This list is passed against each symbol table listed
above. Bits are set in an internal trace table (Figure 3-158) for symbols to be traced, ifthe
symbol is referenced in its corresponding symbol table. The internal trace table is used to
set trace bits (X'80' in the first byte) as the elements to be traced are initialized.

Initializing Elements: All arithmetic elements (including each array element) are initial
ized to a value of o-98(X'OO 00 00 00 IE' in short precision). (Refer to "Floating-Point
Arithmetic" for the format of an arithmetic element in virtual memory.) All character
elements are initialized to blanks (X'40'). (Refer to Figure 3-110 for the format of a
character field in virtual memory.)

Program Organization 3-195

Licensed Material-Property of IBM

3-196

Trace Table (29 two-byte entries assigned to symbols
$, #, @,A-Zin that order) ---------------One Two-Byte Entry

Mask Symbol Type

X'8000' Arithmetic (letter-digit) variable (digit = 0)

X'4000' Arithmetic (letter-digit) variable (digit= 1)

X'2000' Arithmetic (letter-digit) variable (digit= 2)

X'1000' Arithmetic (letter-digit) variable (digit ~ 3)

X'OBOO' Arithmetic (letter-digit) variable (digit= 4)

X'0400' Arithmetic (letter-digit) variable (digit= 5)

X'0200' Arithmetic (letter-digit) variable (digit= 6)

X'0100' Arithmetic (letter-digit) variable (digit= 7)

X'0080' Arithmetic (letter-digit) variable (digit= 8)

X'0040' Arithmetic (letter-digit) variable (digit = 9)

X'0020' Arithmetic (letter) variable

X'0010' Character variable

X'0008' Arithmetic array

X'0004' Arithmetic array element*

X'0002' Character array

X'0001' Character array element*

*Trace reference list is rescanned to determine
individual elements to be traced.

BR1220

Figure 3-158. Trace Table

Resolution of the Branch Address Table-LRADDR

LRADDR resolves all entries in the branch address table (Figure 3-159). (Refer to
"Resolving Virtual Memory Addresses.") Resolution involves passing the branch address
table against the statement address table (Figure 3-159), replacing line numbers in the
branch address table with virtual addresses from the statement address table, and then
updating the unresolved operands in virtual memory as specified in the branch address
table. Both of these tables were written in the system work area on disk by the compiler.

To efficiently replace the line numbers, the branch address table is sorted into ascend
ing line number order (last two bytes of entry) by the sort subroutine (LSORTA). One
sector is processed at a time. The statement address table is created in ascending line
number order; therefore, it need not be sorted. Each line number in the branch address
table is located in the statement address table, and the line number in the branch address
table is replaced with its associated virtual address from the statement address table.

It may be necessary to scan more than one sector of the statement address table to
locate a line number. If the range of line numbers in the statement address table buffer
is higher than the unresolved line number, the scan starts with the first sector of the
statement address table. If the range of line numbers in the buffer is lower, the next
sequential sector is read from disk.

Licensed Material-Property of IBM

After all line numbers in one sector of the branch address table have been replaced, the
updated sector is again sorted (LSORTA), this time to arrange the entries in ascending
virtual-memory-location order (first two bytes of entry). After the sort, the virtual
memory page required by the first entry in the branch address table is read from disk.
This page is updated at the displacements indicated by all entries in that range of virtual
addresses and then written back to virtual memory.

Branch Address Table Entry Statement Address Table Entry

VADA I Line Number

I I I ---I ·---
VADA l Line Number

~-
Updated Branch Address Table Entry

VADA l VADA

BA1221

Figure 3-159. Branch and Statement Address Tables

When all entries on one sector of the branch address table have been processed, the
next sequential sector is read from disk, sorted by line number, updated from the state
ment address table, sorted by virtual-memory location, virtual-memory updated, etc.
This process continues until all entries in the branch address table (16 sectors maximum)
have been resolved.

When the last entry in the table is resolved, the interpreter (#INSTD or #INLNG) is
loaded via $RLOAD in the system nucleus. #INSTD is loaded if execution is to be in
standard precision; #INLNG is loaded to execute the BASIC program in long precision.

Sorting the Branch Address Table-LSORTA

One 256-byte buffer containing four-byte entries is sorted on each call to LSORTA. The
entries are sorted in place, and in ascending order by either the first two or last two bytes
of the entries.

Input parameters to LSORTA are:

1. The core address of the two-byte sort field (register @XR).
2. The core address of the buffer to be sorted (register @BR).
3. The core address of the next to the last two-byte sort field in the buffer (LSBOTM).

The number of entries in a buffer is variable.

The method used by LSORTA is called sifting down and bubbling up (Figure 3-160).
The entries are s·canned, from the top, until two sort fields are found that are not in
ascending order. This is called sifting down. When out-of-sequence entries occur, they
are reversed. The scan of the entries reverses, and entries are swapped until the out-of
sequence entries are in the correct sequence. This is called bubbling up. Sifting down
continues from the point where the out of sequence was detected. Only one full for
ward pass is made over the entries in the buffer. When all entries are in ascending order,
this subroutine returns to LRADDR.

Program Organization 3-197

Licensed Material-Property of IBM

1. 6. 5 4

2. 4

3. 4

4. 4

5. 3

Bubble Up

6. Continue sifting and bubbling until all entries are in sequence.

BR1222

Figure 3-160. Sift and Bubble Sort (Worst Case)

3-198

Licensed Material-Property of IBM

)

#LOADR

LALLOC

VIRTUAL MEMORY ARRAY ALLOCATION

1. Determine virtual memory space available.
2. Allocate arithmetic arrays.
3. Allocate character arrays.
4. Exit to $CAERK on errors to load #ER RPG.
5. Place dope vectors in virtual memory.

LDFILE

FILE BUFFER ALLOCATION

1. Get file directory 1.
2. If file directory 1 has 2 sectors, allocate

one page for the second sector.
3. Initialize file directory 2 to zeros.
4. Calculate remaining virtual memory pages available.
5. Count device types.
6. Allocate one page to each card file.
7. Allocate evenly up to 8 pages for each disk file.
8. Exit to $CAERK on errors to load #ERRPG.
9. Save both file directories in virtual memory.

10. Read trace reference list if in trace mode.

LVINIT

LV104!?

In
Trace
Mode

No

INITIALIZE LVINIT

Yes

1. Set trace list bits off if not in trace mode.
2. Set routine for long precision if required.

LVl320

INITIALIZE ARRAYS (ENTIRE)

1. Initialize arithmetic arrays in region 1.
2. Initialize character arrays in region 1.
3. Initialize arithmetic arrays in region 2.
4. Initialize character arrays in region 2.

LVI015 l
SCAN TRACE REFERENCE LIST

1. Scan trace reference list and set trace bits on in
the internally generated trace list for each variable
encountered,

2. Exit to $CAERK on errors to load #ER RPG.

J

Figure 3-161. Loader (#LOADR) Flowchart (Part 1of2) BR1223.1A

Program Organization 3-199

Licensed Material-Property of IBM

LVI060

INITIALIZE INTERNAL CONSTANTS
AND VARIABLES

1. Initialize internal constants.
2. Initialize internal variables if any.

LVl200

INITIALIZE PROGRAM VARIABLES

1. Initialize character variables.
2. Initialize letter variables.
3. Initialize letter-digit variables.
4. Exit to $CAE R Kon errors to load #ER RPG.

LVl670

REINITIALIZE ARRAY ELEMENTS TO BE TRACED

1. Initialize arithmetic array elements.
2. Initialize character array elements.
3. Exit to $CAERK on errors to load #ER RPG.
4. Write initialized buffers to virtual memory.

LRADDR

BRANCH ADDRESS RESOLUTION

1. Get branch table sector.
2. Get statement table sector.
3. Enter LSORTA to sort branch table sector by line

number.
4. Replace line number in branch table with virtual

address from matching line number entry in
statement table.

LRA200

VIRTUAL MEMORY MODIFICATION

1. Enter LSORTA to sort branch table by the virtual
address.

2. Get desired sector of virtual memory.
3. Move the saved virtual addres5 to the virtual

memory instruction.
4. If all branch table entries processed save symbol

tables on disk.

Yes

#INSTD
Figure 3-164
Vii! $RLOAD

LALOOO

VIRTUAL MEMORY FUNCTION LOAD

1. Set routine for long precision if required.
2. Get virtual memory functions from disk.
3. Initialize virtual memory with the virtual

memory resident functions if required.
4. Exit to $R LOAD to load interpreter.

No

Yes

#INLNG,
Figure 3-164
Via $RLOAD

BR1223.2

Figure 3-161. Loader (#LOADR) Flowchart (Part 2 of 2)

3-200

Licensed Material-Property of IBM

INTERPRETER (Figure 3-164)

Input to the interpreter is an object program composed of pseudo machine instructions.
The interpreter executes these instructions, one at a time, to produce output for the
user.

Interpreter Cycle

1. The pseudo instruction address register (PIAR) points to the op code of the next
pseudo instruction to be executed. If the virtual-memory page that contains that
pseudo instruction is not in core, it is read from virtual memory into the paging
area.

2. The op code is used as a displacement into the PMC execution branch table. The
core address located in the table is used to branch to a core-resident execution
subroutine.

3. The core-resident subroutine may interface to an execution subroutine resident
in virtual memory. The page containing the subroutine is read into the paging
area if it is not already there.

4. The pseudo instruction is executed. Pages containing required data elements are
read into the paging area if they are not already ther·e.

5. The PIAR is incremented by the instruction length to point to the next sequential
pseudo instruction; or, if branching, the branch virtual address is used to set the
PIAR.

6. Steps 1 through 5 are performed until a terminating pseudo instruction is encoun
tered and then a return is made to conversational mode.

Organization of Assembly Listings

All modules of the interpreter are contained in these four assemblies:

1. Standard precision core resident routines-#INSTD
2. Long precision core resident routines-#INLNG
3. Standard precision virtual memory resident execution subroutines-#FMSTD
4. Long precision virtual memory resident execution subroutines-#FMLNG

Interpreter Core Resident Routines-#INSTD, #INLNG

Two interpreter programs reside in the system program file. Either program is loaded
into core for execution at X'0600', immediately following the system nucleus. These
two programs are:

#INSTD-Standard precision interpreter
#INLNG-Long precision interpreter

The assembly of either #INSTD or #INLNG contains the same modules except for
different interpreter execution equates. Each module assembles to the same byte length
regardless of the precision, the differences being reflected in the execution characteristics
of the coding. Each assembly contains the following modules arranged in the order
listed:

@SYSEQ-General system equates
@FXDEQ-Fixed address equates
@cANEQ-Command analyzer equates
@ERMEQ-Error message equates
VEQU-Virtual address equates
$B@EQU-Compiler system equates
IEQU-Interpreter fixed equates
$!@SEQ-Interpreter system equates (The long-precision interpreter contains $I@LEQ
instead of $I@SEQ. This is the only difference in the assembly listings.)

Program Organization 3-201

Licensed Material-Property of IBM

3-202

IMINIT-Initiator (overlayed with the run-time stack and work areas)
FDIAD D /FD ISUB-Floa ting-point add/subtract
FZIMPY-Floating-point multiply
FFIDVD-Floating-point divide
CPUFLT-Convert floating-point element to unpacked-decimal
CUPFLT-Convert floating-point element to packed-decimal
CAFPBS-Convert floating-point element to binary subscript
!STACK-Element stacking subroutine
IUSTAK-Element unstacking subroutine
INTERP-Interpreter executive
ICFLTA-Arithmetic pseudo instruction execution
ICMATF-Matrix function pseudo instruction execution
ICELST-Element stacking pseudo instruction execution
ICARST-Array element stacking pseudo instruction execution
ICTEST-Logical pseudo instruction execution
ICBRAN-Branch pseudo instruction execution
ICLOOP-FOR/NXT pseudo instruction execution
ICVMEX-Interface to pseudo instruction execution subroutines in virtual memory
IPGMDL-Virtual-memory paging subroutine
IZCOMN-Interpreter common equates

Interpreter Virtual-Memory-Resident Execution Subroutines-#FMSTD and #FM LNG

Two interpreter components, containing virtual memory resident execution subroutines,
reside in the system program file. Both components contain the same modules except for
those marked with* on the symbolic label in Figure 3-162; coding varies in those
modules due to precision differences. Each component assembles so that there is no
difference between standard-precision and long-precision subroutine entry points.

Virtual Disk Symbolic Pseudo
Synopsis

Address Address Label Mnemonic

0200 0708 *FKSLGT FN1 LGT intrinsic function (log base 1 0)

0208 0708 *FKSLTW FN1 L TW intrinsic function (log base 2)

0219 0708 *FKSLOG FN1 LOG intrinsic function (log base e)

0470 0710 CENXZD * Convert exponent to zoned decimal

04AD 0710 CCZDFP * Convert zoned decimal to floating point

0500 0714 *FGSEXP FN1 EXP intrinsic function (exponential)

0800 0720 FNBPWR PWR Floating-point exponentiate

0900 0724 FRBSQR FN1 SOR intrinsic function (square root)

OAOO 0728 *FSSCOS FN1 COS intrinsic function (cosine)

OA1A 0728 *FSSIN FN1 SIN intrinsic function (sine)

OC70 0730 CBFPZD * Convert floating point to zoned decimal

OCB2 0730 CDBNZD * Convert binary number to zoned decimal

ODOO 0734 *FWSCOT FN1 COT intrinsic function (cotangent)

0028 0734 *FWSTAN FN1 TAN intrinsic function (tangent)

1100 0744 *FBSATN FN1 ATN intrinsic function (arctangent)

1400 0750 *FCSACS FN1 ACS intrinsic function (arcosine)

1413 0750 *FCSASN FN1 ASN intrinsic function (arcsine)

1500 0754 *FHSHCS i=N1 HCS intrinsic function (hyperbolic cosine)

BR1224.1

Figure 3-162. Contents of Virtual Memory (Interpreter) (Part 1 of 3)

Licensed Material-Property of IBM

Virtual Disk Symbolic P.seudo
Address Address Label Mnemonic Synopsis

1557 0754 *FHSHSN FN1 HSN intrinsic function (hyperbolic sine)

1593 0754 *FHSHTN FN1 HTN intrinsic function (hyperbolic tangent)

1700 075C *FTSSEC FN1 SEC intrinsic function (secant)

1725 075C *FTSCSC FN1 CSC intrinsic function (cosecant)

1761 075C FA BABS FN1 ABS intrinsic function (absolute value)

176C 075C FJBINT FN1 INT intrinsic function (integer value)

17A7 075C FUBSGN FN1 SGN intrinsic function (sign of value)

17CB 075C FPBRAD FN1 RAD intrinsic-function (degrees to radians)

17DA 075C FPBDEG FN1 DEG intrinsic function (radians to degrees)

1800 0780 *FQSRND FNO or RND intrinsic function (random-number
FN1 generator)

1900 0784 IDDVST * Entry for all stack array dope vector pseudo
instructions

191F 0784 IDDSDO SDO Stack array dope vector (no redimensioning)

192A 0784 IDDSD1 SD1 Stack array dope vector (redimension as a
vector array)

1930 0784 IDDSD2 SD2 Stack array dope vector (redimension as a
matrix array)

1AOO 0788 IDFILE * Entry for all 1/0 pseudo instructions

1A40 0788 IDFGET GET Input data element

1A75 0788 IDFPUT PUT Output data element

1A87 0788 IDFINI INI Initiate data input

1A95 0788 IDFADF ADF Activate external data file

1AAB 0788 IDFPRS PRS Print and position carrier

1ABA 0788 IDFPRU PRU Print using image

1ACD 0788 IDFRSR RSR Restore internal data file pointer

1AD6 0788 IDFRST I RST Reset external data file pointer

1ADF 0788 IDFCLS CLS Close external data file

1 BOO 078C IDIFNC FCI User function call (indirect)

1COO 0790 SFADFR ADF Activate external data file

1DOO 0794 SFPUTR PUT Output element to external data file

2100 07A4 SFGETR GET Input element from external data file

2400 07BO SFRCAL CLS Close all external data-files

2406 07BO SFRCLS CLS Close a specified external -data file

2409 07BO SFRSET RST Reset external data pointer

2500 07B4 DFKEYN GET Keyboard physical IOCS (actual 1/0)

25CO 07B4 DEPTBL GET Keyboard character table

2800 07CO DFPRNT PRS or System printer physical IOCS (actual 1/0)
PRU

2AOO 07C8 DFRDIN GET Card reeder physical IOCS (actual 1/0)

2A96 07C8 DFCOUT PUT Card punch physical IOCS (actual 1/0)

2800 07CC FZXINP GET Keyboard input

2800 07CC FZXIP1 INI I nit late data Input from keyboard

2B66 07CC FZXIP2 GET Convert and move to virtual memory, one
keyboard Input data element

BR1224.2

Figure 3-162, Contents of Virtual Memory (Interpreter) (Part 2 of 3)

Program Organization 3-203

l Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

3-204

Virtual Disk Symbolic Pseudo
Address Address Label Mnemonic

Synopsis

3300 070D FZREAD GET Read internal data file

3400 0711 FZSPRT PRS Print and carrier positioning

3800 0721 FZUPRT PRU Print using image

3D00 0735 FZDMIP MF1 Data input to a matrix via the keyboard
(MAT INPUT)

3EOO 0739 FZAMIO * Matrix 1/0 routines

3EOO 0739 FZAMRD MF1 Read internal data file to a matrix (MAT
READ)

3E06 0739 FZAMGT MF1 Get data from external data file to a matrix
(MAT GET)

3EOC 0739 FZAMPT MF1 Put data from a matrix to an external data
file (MAT PUT)

3FOO 073D FZCMPR * Matrix print routines

3FOO 073D FZCMPS MF1 Print (packed) contents of a matrix (MAT
PRINT)

3F06 073D FZCMPL MF1 Print (full) contents of a matrix (MAT
PRINT)

3F13 073D FZCMPU MF1 Print (using image) contents of matrix
(MAT PRINT USING)

4000 0741 FEBMSB MF3 Matrix subtraction (MAT C=A-B)

4007 0741 FEBMAD MF3 Matrix addition (MAT C=A+B)

4100 0745 FM BM PY MF3 Matrix multiplication (MAT C=A *B)

4264 0749 FYBSMM MSM Matrix scalar multiplication (MAT C=(E1)*M)

4300 074D FZBIDN MF1 Matrix identity (MAT C=IDN)

4324 074D FZBCON MF1 ll/latrix unity (MATC=CON)

4328 074D FZBZER MF1 Matrix zero (MAT C=ZE R)

43AO 074D FLBMAS MF2 Matrix assignment (MAT A=B)

4400 0751 FXBTRN MF2 Matrix transposition (MAT C=TRN (M))

4500 0755 FVBINV MF2 Matrix inversion (MAT C=INV (M))

4540 0755 FVBDET MF1 Matrix determinant_(DET (C))

4600 0759 FZLINT * Trace line numbers subroutine

4700 075D FZVART * Trace variables subroutine

4COO 0791 FZZVMP * Virtual-memory push/pull subroutine

4COO 0791 FZZVPS * Virtual~memory push

4C06 0791 FZZVPL * Virtual-memory pull

4D00 0795 DLFPRT * Line printer physical IOCR

5000 07A1 SFADF2 ADF Activate external data file (part 2)

5100 07A5 SUBSTR * Substring routine

BR1224.3B

Figure 3-162. Contems of Virtual Memory (Interpreter) (Part 3 of 3)

Either component is copied to virtual memory by the loader (#LOADR) from the
system program file. Individual pages are read into the paging area of core and executed
under control of the virtual-memory paging subroutine (IPGMDL). Both components
contain subroutines to perform the functions listed in Figure 3-162.

The following list contains explanations of the column entries in Figure 3-162:

1. "Virtual address" is the virtual entry point to perform the function.
2. "Disk address" is the physical disk address of the virtual-memory page containing

the entry point.

Licensed Material-Property of IBM

3. "Symbolic label" is the symbolic name of the entry point in the assembly listings
of either #FMSTD or #FMLNG. An* indicates that coding in the subroutine
varies due to precision differences.

4. "Pseudo mnemonic" is the mnemonic of the pseudo instruction associated with
the execution of that subroutine. An * indicates that multiple pseudo instructions
are associated with the subroutine.

Interpreter Labeling Conventions

Because virtual-memory-resident routines must communicate with the core-resident
interpreter, a fixed equate module (IEQU) is used to reference core-resident instruc
tions and areas. In addition, equate module IZCOMN is used to assist in defining the
fixed addresses in IEQU. Essentially, IZCOMN references the same core addresses as
IEQU, except IZCOMN addresses are derived from the assembled code while IEQU
addresses are manually adjusted constants.

Core-resident modules are coded to reference other core-resident modules using the
following conventions:

• Module entry points-Actual entry point label.

• Module data/instruction fields-Equivalent IZCOMN label.

Virtual-memory modules are coded to reference core-resident modules using the
following conventions:

• Module entry points-Equivalent IEQU label.

• Module data/instruction fields-Equivalent IEQU label.
•

Virtual-memory-resident module entry points are always referenced using the appropriate
VEQU label.

Program descriptions use the following conventions, with respect to both core-resident
and VM-resident modules, for consistency:

• Module entry points-Actual entry point label.

• Module data/instruction fields-Equivalent IEQU label.

For example:

• Actual core-resident entry point label-

Referenced from core as
Referenced from virtual memory as-

• Actual core-resident data field label-

Referenced from core as
Referenced from virtual memory as-

• Actual VM-resident entry point label-

Referenced from core as
Referenced from virtual memory as-

Interpreter lnitiator-IMINIT

INT ERR

INT ERR
I$XERR

INTERC

IZERRC
I$ERRC

FZREAD

V$XSRD
V$XSRD

IMINIT modifies the core-resident interpreter for an expanded core configuration,
initializes the core virtual-memory page region, and sets run-time indicators prior to
entering the interpreter executive (INTERP).

Program Organization 3-205

Licensed Material-Property of IBM

3-206

Expanded Core Utilization

When the system core configuration exceeds 8k and core beyond 8k is available for
increased operational efficiency, IMINIT performs appropriate adjustments to the paging
subroutine (IPGMDL) such that all usable core space is dedicated to expanding the core
page region. The 8k system (Figure 3-163) operates on 10 core pages. When extra core
is available, one of these page areas is used to expand tables in IPGMDL. The remaining
nine-page region, combined with the additional core, is used to contain virtual-memory
pages. The size of the core paging area is:

Core Size Pages

Bk 10
l 2k (with CRT) 18
12k (no CRT) 25
16k (with CRT) 34
16k (no CRT) 41

After core allocation, the core page region is loaded from virtual memory with con
secutive pages beginning with page number 00. The page reference table in IPGMDL is
initialized to define this condition.

Interpreter Executive-INTERP

The primary function of INTERP is to translate a pseudo instruction op code into the
entry point of a core-resident PMC processing routine and then branch to that routine.
INTERP also contains certain housekeeping routines and work areas that are central to
interpreter operations and PMC routines to process the following pseudo machine
instructions:

STH-Statement header
IMH-Image statement header
HLT-Halt execution
EOP-End of page
SVC-Supervisor call

Entry points to INTERP are:

1. INTERP-Begin execution. The first virtual-memory PMC page is locked into core.
The first pseudo instruction in that page is accessed and control is passed to the
appropriate PMC processing routine.

2. INTPAG-Transfer control. The virtual-memory PMC page specified in I$V ADR is
locked into core. The pseudo instruction referenced by 1$V ADR is accessed and
control is passed to the appropriate PMC processing routine.

3. INT AD I -The pseudo instruction address register (I$XIAR) is incremented by one
byte. The next instruction is accessed.

4. INTAD2-1$XIAR is incremented by two bytes and the next instruction is
accessed.

5. INTAD3-1$XIAR is incremented by three bytes and the next instruction is
accessed.

6. INT AD4-I$XIAR is incremented by four bytes and the next instruction is
accessed.

7. INTXEC-The pseudo instruction referenced by 1$XIAR is accessed and control
is passed to the appropriate PMC processing routine.

8. INT ADS-The run-time stack pointer (1$ST AK) is incremented by the value in
parameter 1$STKI. An error condition occurs when 1$ST AK is incremented beyond
the stack data limit.

9. INTERR-The error code in I$ERRC is stored as a parameter to the error program
(#ERRPG), all active external data files are closed, all modified pages in core are
written back to virtual memory, and control is passed to the error program, via
$CAERK in the system nucleus.

Licensed Material-Property of IBM

)

0000

System Nucleus

0600 Run-Time Stack

Core-Resident Interpreter

....,_t----~

/
/

/
/ Execution-Time Overlays

OFOO

/
/

/

Core Paging Area
(10 pages for Bk)

/
/

.........

....... '

/
/

........................... ________ ,

Paging k-------_,,__'- ______ _._ _______
"-L._ _ _:::.A~n~y~V~i~rt~ua~l~M~e~m~o~rry~P!a~ge:.__...J',._ __ ..,I

'-.......
.......

............. "-.. 1FFF "-..
......... ,......._

....................... ' _____________ _...,
"'- Any Virtual Memory Page

Figure 3-163. Interpreter Core Map (8k System)

Input parameters to INTERP are:

Save Area
in System
Work Area

System
Program
File

Virtual
Memory

BR1225

I. 1$XPAG (entry INTPAG)-One byte, for the execution page number. This con
tains the virtual page number of the PMC page to which control is to be
transferred.

2. 1$V ADR (entry INTPAG)-Two bytes, for the paging routine virtual address
parameter. This contains the virtual address of the pseudo instruction to which
control is to be transferred.

3. 1$XIAR (entries INTADl, INTAD2, INTAD3, INTAD4)-Two bytes, for the
pseudo instruction address register. This contains the core address of the op
code byte of the pseudo instruction.

4. 1$XIAR (entry INTXEC)-Contains the core address of the op code byte in
the pseudo instruction to be executed.

Program Organization 3-207

Licensed Material-Property of IBM

3-208

5. I$STKI (entry INTADS)-One byte, for the run-time stack pointer increment.
This contains the value of the increment to be added to I$ST AK.

6. I$ERRC (entry INTERR)-One byte, for the interpreter error code. This contains
the code associated with the error message to be displayed by the system error
program on exit to $CAERK.

Output parameters from INTERP are:

1. I$XIAR (entry INTPAG)-Contains the core address of the op code byte in the
pseudo instruction to which control is transferred.

2. I$XIAR (entries INTADl, INTAD2, INTAD3, INTAD4)-Contains the core
address of the op code byte of the next pseudo instruction to be executed.

3. I$STAK (entry INT ADS)-Two bytes, for the run-time stack pointer. This has
been incremented by the value in parameter I$STKI.

4. $CAERR (INTERR execution)-One byte, for the system error program param
eter. This is set equal to the value in I$ERRC.

5. $INLNO (STH execution)-Two bytes, for the system execution line number. This
is set to contain the binary line number operand in the STH instruction.

6. I$STHA (STH execution)-Two bytes, for the statement header virtual address.
This is set to contain the virtual address of the op code in the currently executed
STH instruction.

7. I$IRSW (IMH execution)-One byte, for the image reference switch. This switch
is set off (code @NOP) during IMH instruction execution.

8. I$IRSW (STH/IMH execution)-One byte, for the image reference switch. This
switch, normally set to code @NOP, is set to code @UCB when the statement
header to be executed must be an IMH rather than an STH.

9. I$RESW (STH execution)-One byte, for the recursion error switch. This is set
to code @NOP when line number recursion is permitted during STH execution;
unless specifically set prior to each STH instruction execution, I$RESW contains
code @UCB which causes an error condition when line number recursion occurs.

10. I$TFSW (STH execution)-One byte, for the trace flow switch. This is set to code
@NOP when TRACE FLOW is specified, and causes line number display when
$TRACE in $XINDI is also on. When TRACE mode processing has not been
specified, I$TFSW is set to code @UCB.

11. $INLNO (STH execution)-Two bytes, for the system execution line number.
This contains the binary line number of the statement just executed, or the value
X'FFFF' when the first STH instruction is to be executed.

12. $XIND2 (INTERR, SVC execution)-One byte, for system execution indicator 2.
Bit $EXCMD is set off, indicating termination of execution mode.

INTERP contains the following interpreter common work areas. Where applicable, the
external label is given along with the internal area name:

1. INTDTI (I$DATI)-Two bytes, for the internal data file base pointer.
2. INTPAR (I$PARM)-Two bytes, for the interpreter common parameter field.
3. INTWKl (I$WRK 1)-Two bytes, for interpreter common work area 1.
4. INTWK2 (I$WRK2)-Two bytes, for interpreter common work area 2.
5. INTDAT (I$DAT A)-Two bytes, for the internal data file pointer.
6. INTPIN (PRINT USING communication area)-Twelve bytes, for interpage

information transfer during PRINT USING operations.
7. INTFAT (user function activity table)-Used as a push-down stack to control the

execution of nested user functions. The first table entry is set equal to X'OOOO' to
indicate the bottom of the stack. Each two-byte entry in the table contains the
virtual address of an active user function.

Licensed Material-Property of IBM

8. INTBAT (PMC execution branch table)-Used to translate pseudo instruction op
codes to PMC execution routine core address entry points. Each two-byte entry
contains the core address entry point of a PMC execution routine defined by the
relative position of the entry in the table. The op code value is used as an index to
this table. This table contains entries for all pseudo instructions except DCA, DDL,
DW A, and EOF.

Paging Subroutine-IPGMDL

The paging module interfaces between core routines (including virtual memory pages
presently in core) and virtual memory. It provides the capability of addressing virtual
memory directly and provides subroutine communication within VM. Several options
give user control over the replacement process.

The paging module has eight entry points which are described as follows:

1. I$CV AD or IPGCV A-Convert address. Keeps all counters, usage value, and other
page information up to date as well as reading and writing VM pages when neces
sary. The basic external function is to provide the caller with a core address (at
label IPGCAD) when called with a virtual address (at label IPGVAD). When return
is made, the page containing the byte referenced by IPGV AD is in core and the
byte address is the value at location IPGCAD.

2. I$MDFY or IPGMOD-Page modify. Performs all the functions of IPGCV A as well
as setting the read-only bit for the referenced page. This bit indicates that the page
must be written back to virtual memory when modifications have been made to it.
If the read-only bit has not been set for a page at replacement time, the paging
subroutine assumes that the core page is still an exact copy of the disk virtual
memory page and a write operation is not performed.

3. I$LOCK or IPGLOK-Page lock. Performs all the functions of IPGCVA as well as
setting the page locked bit for the referenced page. This function is used so that
future references to the page can be made using core addresses. The page uncon
ditionally remains at the same core location until the lock bit is reset.

4. I$UNLK or IPGULK-Page unlock. Performs all the functions of IPGCV A as well
as resetting the page locked bit. This means that the page is subject to being
replaced by future paging operations.

5 I$LDBR or TPGLBR-Convert address and load @BR. Performs all the functions
of IPGCV A as well as setting @BR to point to the first byte of the page in core.
@BR may then be used as the referenced page base register as well as allowing
the calling page to reference any byte of the page by using the proper page
displacement.

6. I$LDXR or IPGLXR-Convert address and load @XR. Performs all the functions
of IPGCV A as well as setting @XR to the converted core address. @XR may then
be used to directly reference the byte referred to by the virtual address.

7. I$CALL or IPGCAL-Call pageable subroutines. Performs all the functions of
IPGLBR as well as locking the referenced page in core and stacking the return
address and base register of the calling page for future return. A branch is made
to the specified address.

8. I$RTRN or IPGRTN-Return from pageable subroutine. Unlocks the returning
page, and then unstacks the next available return address and base register (pre
viously stacked by IPGCAL) and returns to the original calling program .

. There are two major work areas in the paging subroutine. One atea is centrally located
so that location will be within the base register range. The other area consists of tables
and follows the paging subroutine code. The core page area fol!ows the tables beginning
with the next even 256-byte core address. The paging module is arranged in core so that
the 8k version tables end immediately before the first core page (X' I SFF').

Program Organization 3-209

Licensed Material-Property of IBM

' 3-210

The central work area contains:

1. IPGVAD-Virtual address storage location (three bytes). The first byte is always
00, the second byte is the virtual page number, and the third byte is the page
displacement.

2. IPGCAD-Core address storage location (two bytes). The first byte equals the
core page number (IPGCPG), and the second byte equals the page displacement.

3. IPGUVL-Reference counter for setting page usage value (two bytes).

The tables at the end of the paging subroutine code are:

1. IPGUVT-Usage values table; two bytes per entry, indexed from the low end by
(IPGCPG)*2.

2. IPGLRT-Lock, read-only bit table; one byte per entry, indexed from the low
end by PGNO. Only two bits of each entry are used.

3. IPGTBL-Page table; one byte per entry, indexed from the low end by IPGVPG.
If a page is in core, its entry is equal to IPGCPG. If a page is not in core, its entry
equals 00.

4. IPGSTK-Page call stack (four bytes per entry). This stack is used in IPGCAL/
IPGRTN functions to save @BR and return addresses.

Element Stacking Subroutine-ISTACK

IST ACK moves a variable-length data field from virtual memory to the core location
(normally within the run-time stack) referenced by index register @XR. The field is
referenced in virtual memory using paging parameter 1$V ADR, and may extend across
a single virtual page boundary. Field length is specified in a one-byte parameter to the
subroutine, and remains available after subroutine execution. Register @XR is not
modified during execution, but the virtual address in 1$V ADR is subject to modification
when a page boundary condition exists.

Input parameters to ISTACK are:

1. Register @XR-For the destination core location pointer. This contains the core
address of the leftmost byte of the core area into which the data element is to
be moved.

2. 1$V ADR-Two bytes, for the paging routine virtual address parameter. This con
tains the virtual address of the leftmost byte of the data element that is to be
moved.

3. 1$SLNG-One byte, for the data element length code. This contains a value that
is one less than the actual length of the data element. Unless specifically set prior
to subroutine execution, 1$SLNG automatically contains the length code required
to move a packed floating-point decimal value (five bytes for standard precision,
nine bytes for long precision).

Element Unstacking Subroutine-IUSTAK

IUSTAK moves a variable-length data field from the core location (normally within the
run-time stack) referenced by index register @XR to virtual memory. The destination
field is referenced in virtual memory using paging parameter 1$VADR, and may extend
across a single core page boundary. Field length is specified in a one-byte parameter to
the subroutine. Register @XR is returned to the calling program intact, but the virtual
address in 1$V ADR is subject to modification when a page boundary condition exists.

Depending on a subroutine parameter setting, the source data type may be compared
with the data type contained in the destination field (arithmetic or character); incon
sistent data types cause execution to be aborted on an error condition.

Also, depending on the current execution mode of the system, the new value of an
element whose destination field is tagged for tracing is displayed on the system output
device.

Licensed Material-Property of IBM

)

Input parameters to IUSTAK are:

1. Register @XR-For the source core location pointer. This contains the core address
of the leftmost byte of the core area from which the data element is to be moved.

2. 1$V ADR-Two bytes, for the paging routine virtual address parameter. This con
tains the virtual address of the leftmost byte of the destination field in virtual
memory.

3. 1$ULNG-One byte, for the data element length code. This contains a value that
is one less than the actual length of the data element. Unless specifically set prior
to subroutine execution, 1$ULNG automatically contains the length code required
to move a packed floating-point decimal value (five bytes for standard precision,
nine bytes for long precision).

4. 1$DMSW-One byte, for the unstacking routine data matching switch. This con
tains code @NOP when matching is to be performed, or code @UCB when matching
is not required.

5. $XIND1-0ne byte, for system execution indicator-I. This indicator contains a bit
(mask $TRACE) which is set on when TRACE mode execution has been specified.

Output parameters from IUSTAK are:

1. Unstacked data element-(1$ULNG+l) bytes, located with leftmost byte stored
in virtual memory at the address originally specified in I$V ADR.

2. Traced variable-When TRACE mode has been specified and the destination field
has been tagged for variable trace, the unstacked value is displayed, in association
with the BASIC identifier corresponding to the destination field, on the system
output device.

3. 1$ERRC-One byte, for the error condition code. This contains a null code
(I@NERR) when no error condition exists, or an error code specifying the
particular error condition discovered.

Program Organization 3-211

Licensed Material-Property of IBM

#INSTD
#INLNG

IMINIT

INITIALIZE BASIC INTERPRETER

1. Read 10 + $EXFTR pages from disk VM to core
page region starting with virtual page 0.

2. Adjust IPGMDL program and tables for size and con-
tents of core page region.

3. Set data file pointers with value in $1NLNO.
4. Mask inquiry request.
5. Set $VMDEF and $EXCMD indicators on.
6. Set PMC IAR for 1st instruction in 1st PMC page.

INT010

ACCESS VIRTUAL MEMORY PMC EXECUTION
PAGE

1. Read and lock PMC page using IPGMDL.

2

INT040

ADVANCE PMC ADDRESS POINTER

1. Increment PMC IAR by current PMC length.

INTOBO

SET UP PSEUDO MACHINE INSTRUCTION
EXECUTION

1. Select PMC processor using opcode at PMC IAR.
2. Branch to execute selected PMC processor.

STH

Non-Branching PMC

Branching PMC

I CB RAN Branching PMC

EXECUTE BRANCHING PSEUDO INSTRUCTION

1. Set PMC IAR using branch destination virtual
address.

2. Unlock curre'nt PMC page using IPGMDL when desti
nation address outside current page.

EXECUTE NON-BRANCHING PMC

Use IPGMDL to control.all VM paging operations.
Use ISTACK to move VM elements to run-time
stack.
Use IUSTAK to move stacked elements to VM;
display unstacked data if variable trace mode.
Use CPU FLT to unpack arithmetic elements for
functions.
Use CUPFL T to pack arithmetic elements for stor
age.
Use ICFLTA to perform arithmetic in stack.
Use ICMATF to perform matrix operations.
Use ICE LST to store scalar items in stack.
Use ICARST to store array items in stack.
Use ICLOOP to execute for/next operations.
Use ICVMEX to interface to VM resident PMC
execution routines.
Use IDIFNC to execute user-function (FCI) opera
tions.
Use I DDVST to stack array dope vectors.
Use I DF I LE to interface to VM resident input/
output routines.

INTERR

PROCESS A RUN-TIME ERROR·CONDITION

1. Close all active external data files.
2. Write all core VM pages to disk VM.
3. Set execution mode indicator $EXCMD off.
4. Exit to $CAERK to load and execute #ER RPG.

#ERRPG
Figure 3-17
Via $CAERK

BR1226.1A

Figure 3-164. Interpreter (#INSTD, #INLNG) Flowchart (Part 1of2)

3-212

Licensed Material-Property of IBM

4

INTSTH

PROCESS STATEMENT HEADER PSEUDO
INSTRUCTION

1. Execute INTERR if invalid statement line number
recursion occurs.

:2. Call $UNMSK to honor pending inquiry request;
remask inquiry request on return.

3. Call '$PAUSD to execute #EXMSG if step mode.
4. Execute INTSVC if GO ABORT specified.
5. Store new statement line number in $1NLNO.
6. Display $1 N LNO if trace flow mode.

5

I NTH LT

PROCESS HALT PSEUDO INSTRUCTION

1. Call DLFPRT if there is something to print and the
system is in line-printer mode.

2. Call $PAUSD to execute #EXMSG for BASIC
program PAUSE statement.

3. Disable inquiry request/step mode processing during
next STH execution only

2

6

INTEOP

PROCESS END-OF-PAGE PSEUDO INSTRUCTION

1. Unlock current PMC page using IPGMDL.
2. Set PMC IAR for 1st instruction in next PMC page.

7

INTSVC

PROCESS SUPERVISOR CALL PSEUDO
INSTRUCTION

1. Call DLFPRT if there is something to print and the
system is in line-printer mode.

2. Close all active external data files.
3. Write all core VM pages to disk VM.
4. Set execution mode indicator $EXCMD off.
5. Exit to $CAR PL to load and execute #GU FUD.

#GUFUD
Figure 3-22
Via $CAR PL

BR1226.2A

Figure 3-164. Interpreter (#INSTD, #INLNG) Flowchart (Part 2 of 2)

Program Organization 3-213

Licensed Material-Property of IBM

3-214

1/0 Execution Subroutines

Keyboard Physical IOCS-DFKEYN

DFKEYN reads from the keyboard to an input buffer and displays the input on the
system printer, via a call to DFPRNT, through the paging subroutine (IPGMDL). All
actual I/O to the keyboard during user program execution is executed by this sub
routine. All function and command keys, except the enter-plus and program start keys,
are processed. The call to this I/O subroutine includes the passing in @XR of the input
buffer address.

System Printer Physical IOCS-DFPRNT

DFPRNT (Figure 3-165) prints on the matrix printer and performs carrier positioning
operations. All actual I/Oto the matrix printer during user program execution is
executed by this subroutine. Waits for I/Oto complete are executed by DFPRNT after
the SIO, prior to returning to the calling routine (no I/O overlap is possible). The call to
this I/O subroutine includes the address of the printer parameter list (Figure 5-23) in
@XR. This subroutine assumes that the print parameter list is valid.

Line Printer Physical IOCR-DLFPRT (Figure 3-165)

DLFPRT prints bidirectionally on the line printer and performs carrier positioning
operations. All actual 1/0 to the line printer during user program execution is executed
by this subroutine together with DFPRNT. Waits for I/O to complete are executed after
the SIO command and prior to printing another line or returning to the calling routine
(no I/O overlap). The address of the printer parameter list (Figure 5-23) is passed to this
I/O subroutine in @XR. This subroutine assumes that the print parameter list is valid.

Licensed Material-Property of IBM

DLFPRT

l

DFPRNT

Load DLFPRT
page to core

SIO

Load
buffer

Format
line

Start requested
operation

Wait

Process end
of forms

No

Return to
cal Ii ng program

No

Yes

Update
position of
MP head

Yes

Figure 3-165. System Printer Physical IOCS (DFPRNT) and Line Printer
Phvsical IOCS (DLrPRT) rlowchart

Licensed Material-Property of IBM

Load ERP
page to
core

Sense
device
status

Set up
error history
log entry

Halt on
first error

Set indicators
for MP down
and hard
error

Yes

Program Organization 3-215

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

DFRDIN

3-216

Fill
buffer
with
blanks

Wait

Return to
Calling Program

Card Reader Physical IOCS-DFRDIN (Figure 3-166)

I
DFRDIN fills the input buffer (located at the address in register @XR) with blanks, and
then reads the card image (80 bytes for the 129 Card Data Recorder and 96 bytes for
the 5496 Data Recorder) into the buffer with no I/O overlap and no truncation. All
actual I/O for input from the data recorder, during user program execution, is executed
by this subroutine. The call to this I/O subroutine includes the passing in @XR of the
input data buffer address. Error procedures in DFRDIN are the same as those in #DREAD.

Card Punch Physical IOCS-DFCOUT (Figure 3-166)

DFCOUT punches 96 bytes of data from a buffer located at the address in (aXR, with no
I/O overlap. All actual I/O for output to the data recorder, during user program execu
tion, is executed by this subroutine. The call to this I/O subroutine includes the passing
in (wXR of the output data buffer address.

Yes

Set hard
error indicator.

$DISKN 3-7

Walt call to log
error and hard
stop,

Hard Halt

DR2000

Sense device
status.

If error is pending,
build error history
log entry.

Soft Halt

No

DR3000

BR1228.1A

Figure 3-166. Card Reader Punch Physical IOCS (DFRDIN, DFCOUT) Flowchart (Part I of 2)

License'd Material-Property of IBM

No

DFCOUT

SIO

DCD200

Wait

Return to
Calling Routine

Set error
pending
indicator.

Soft Halt

First

DCD500

Sense device
status.

$DISKN 3-7

Wait call to Jog
error.

Hard Halt

No

BR1228.2A

Figure 3-166. Card Reader Punch Physical IOCS (DFRDIN, DFCOUT) Flowchart (Part 2 of 2)

Program Organization 3-217

Licensed Material-Property of IBM

3-218

Activate External Data File-SFADFR

SF ADFR is an execution-time file checker. Prior to any logical or physical I/O operation
on an allocated file, SF ADFR is called to open the file or to verify that the file is already
open. Depending upon the status of the referenced file, SFADFR performs one of two
functions. If the file is already open, the displacement within directory 2 (page X'Ol '),
to the referenced entry, is stored in the directory 2 header for later use by SFGETR,
SFPUTR or SFRSET. If the file had not been previously accessed, it must now be
opened. The directory I (page X'OO') record of allocated information is accessed and the
file is found if it is a disk file. The directory 2 entry is initialized and the entry displace
ment is stored in the header.

Output an Element to an External Data File-SFPUTR

SFPUTR outputs a single arithmetic or character element to a sequential data file. This
data file may be to disk, card, printer, or CRT. The specific action taken by this sub
routine depends upon the device type:

1. For a disk file, the data element is placed in a buffer that is allocated for the
disk file. When the buffer is full, the overlay program #SFLOA transfers the
full buffer to the external data file in the file library. Following each transfer,
an end-of-file record is generated and written to the data file, following the
data. This EOF record is written over by the next transfer of data.

2. For a card output file, the data element is converted and placed in the buffer
that is allocated for the card file. When the buffer is full, DFCOUT is called to
punch the contents of the buffer.

3. For output to the printer or CRT, the data element passed is converted to external
notation and DFPRNT is called to output the data element.

Input an Element from an External Data Fi/e-SFGETR

SFGETR is called to input the next sequential data element from an external data file.
This data file may be on either disk or card. The next sequential data element, arithmetic
or character, is accessed and placed in the run-time stack area. If input is from the card
reader, the data element must be converted to internal notation before it is passed. When
all data elements in the buffers allocated to the file are depleted, a call is made to the
appropriate routine to refill the buffers in virtual memory. Refer to "Label Trace for
GET Pseudo Instruction."

Close or Reset External Data Files-SFRSET

For disk or card output files, SFRSET outputs the last data elements (current contents
of the buffers). For either input or output files, the current usage is set undefined (close
only), the current buffer pointer is set to zero, and the displacement to the next sector
of data within the file library (disk files only) is set to zero.

Keyboard lnput-FZXINP

FZXINP execution causes keyboard data entry to be enabled during program operation.
Entered data is syntax checked with respect to form and type, and valid elements are
converted to internal format and placed in the run-time stack on an individual basis.

FZXINP performs the primary function of supporting the execution ofINPUT state
ments. On a secondary level, the message printing, syntax checking, and data conversion
facilities required for INPUT mode are also used for card file input operations. The first
entry point (FZXIPI) operates in conjunction with stacked data type codes and a count
parameter in !$PARM to allow keyboard data input and data line validity checking. The
second entry point (FZXIP2) operates on the validity-checked data line to convert and
stack sequentially occurring data elements.

Licensed Material-Property of IBM

)

Six alternate entry points are provided for use with MAT INPUT and GET (card)
operations:

• Entry points FZXPQl, FZXPQ2, and FZXPEM print question mark(s) or error
messages on the system print device(s).

• Entry point FZXGCS syntax checks an entire GET (card) input line (into which
comma delimiters have been inserted where they did not originally exist).

• Entry point FZXMIS validity checks a partial or entire array row.

• Entry point FZXCNV converts and stacks individual input line elements after the
line has been syntax or validity checked.

Print and Carrier Positioning-FZSPRT

FZSPRT execution causes data output and/or carrier positioning on the system printer
under control of codes developed from the format specified in a PRINT statement.
FZSPRT performs the following functions depending on the code stored in interpreter
parameter !$PARM:

1. Code X'O l '-Print and no space. The data element at the top of the run-time
stack is converted to output format and printed; if the element is aritlunetic,
the carrier is returned to the start of the next line, before printing, when the
current line cannot contain the formatted value. The carrier is left positioned
at the end of the printed value.

2. Code X'02'-Print and space full zone. The data element at the top of the run
time stack is converted to output format and printed; if the element is arithmetic,
the carrier is returned to the start of the next line, before printing, when the
current line cannot contain the formatted value; if the element is a character
reference, the carrier is returned to the start of the next line, before printing,
when the current line does not contain a full print zone (18 spaces). At the end
of printing, the carrier is spaced to the end of the full print zone.

3. Code X'03'-Print and space packed zone. The data element at the top of the run
time stack is converted to output format and printed; if the element is arithmetic,
the carrier is returned to the start of the next line, before printing, when the
current line cannot contain the formatted value. After an arithmetic element is
printed, the carrier is spaced to the end of the packed print zone; after a
character element is printed, the carrier is left positioned at the end of the
printed element.

4. Code X'04'-Print and return carrier. The data element at the top of the run-
time stack is converted to output format and printed; if the element is arithmetic,
the carrier is returned to the start of the next line, before printing, when the
current line cannot contain the formatted value. After the element is printed, the
carrier is returned to the start of the next line.

5. Code X'OS'-Space full zone. The carrier is spaced 18 characters. If no more than
18 characters remain in the current line, the carrier is returned to the start of the
next line.

6. Code X'06'-Space packed zone. The carrier is spaced three characters. If no more
than three characters remain in the current line, the carrier is returned to the start
of the next line.

7. Code X'07'-Return carrier. The carrier is returned to the start of the next line.
8. Code X'08'-Return carrier on condition. When the current line does not contain

more than 18 characters, the carrier is returned to the start of the next line.

When required, element conversion and output are performed in the run-time stack,
so that the stacked value is not recoverable after printing. Arithmetic element output
format depends on the magnitude and fractional characteristics of the value; character
reference formatting involves truncation of trailing blanks; character constants are
printed as specified in the PRINT statement.

Program Organization 3-219

Licensed Material-Property of IBM

3-220

Either the matrix printer or the CRT (or both) may be used for output, depending on
the current definition of the system printer. CRT output is based on a fixed display
width of 64 characters, while printer line width is based on that assigned through the
WIDTH system command.

Print Using lmage-FZUPRT

FZUPRT execution causes a print image to be established in virtual-memory buffers and
data elements to be output on the system printer under format control of image con
version specifications. FZUPRT performs the following functions depending on the code
stored in interpreter parameter I$PARM:

1. Code X'OO'-Release image. Virtual-memory pages containing the currently
established image are unlocked for replacement during normal paging operations.

2. Code X'Ol '-Null image specification. This code causes a null image indicator to
be set for future PRINT USING operations; no image buffers are established.

3. Code X'02'-Null print list specification. This code causes the currently established
image to be printed, up to the character preceding the first conversion specifica
tion or end of image, and the carrier returned to the start of the next line; a null
image results in a simple carrier return.

4. Code X'03'-Null character constant. This code causes the next available conver
sion specification in the image work buffer to be filled with blanks.

5. Code X'04'-First image segment. This code causes the character constant segment
at the top of the run-time stack to be established as the first image segment in the
image save buffer.

6. Code X'OS'-Secondary image segment. This code causes the character constant
segment at the top of the run-time stack to be added to the existing image segments
in the image save buffer.

7. Code X'06'-Primary data element. A primary data element is defined as a floating
point value, a character element, or the first segment of a multisegment character
constant. This code causes the primary data element at the top of the run-time
stack to be converted and placed in the image work buffer according to the next
available conversion specification.

8. Code X'07'-Secondary data element. A secondary data element is defined as any
segment (except the first) of a multisegment character constant. This code causes
the secondary data element at the top of the run-time stack to be converted and
placed in the image work buffer according to the currently referenced conversion
specification (i.e., added to the current contents of the conversion specification).

Operations involving the "next available" conversion specification imply the following
actions:

1. When no unfilled conversion specification remains in the image work buffer, the
filled image is printed and the carrier is returned to the start of the next line.

2. When an image is to be printed, the carrier is returned to the start of the next line
(before printing occurs) when not already positioned at the start of the current
line.

3. Following step 1, all conversion specifications in the image become available, with
the "next available" specification being the first contained in the image.

In conjunction with the codes, these indicators may be set in 1$P ARM:

I. Mask X'lO'-Terminate print using. This indicator causes the image to be printed,
up to the character preceding the next conversion specification or end of image,
following the activity specified by the control code itself. All image buffers are
released from core VM.

Licensed Material-Property of IBM

2. Mask X'20'-Matrix end of row. This indicator causes the image to be printed, up
to the character preceding the next conversion specification or end of image, fol
lowing the activity specified by the control code itself. Image buffers remain
locked in core VM, and step 3 in the previous paragraph becomes effective.

Either the matrix printer or the CRT (or both) may be used for output, depending on
the current definition of the system printer.

Keyboard Input to a Matrix-FZDMIP

FZDMIP contains the run-time routine which executes matrix operations for an array
referenced in a MAT INPUT statement. FZDMIP performs INPUT operations for each
element of the matrix referenced by the arithmetic array dope vector at the top of the
run-time stack. Elements are entered on a row-by-row basis, each data line consisting of
an entire partial array row. Partial array rows are terminated with a comma preceding
the keyboard carriage return; the end of a row is signified with a carriage return without
a preceding comma.

A single question mark is printed to request entry of the first array row. Thereafter,
two question marks are printed to request data line entry until the array is completely
assigned. Input errors in any single line cause a request (??) for the reentry of the entire
row associated with that line (after an appropriate error message has been printed).
Input is automatically terminated when each array element has been assigned a value.

Inquiry request may be invoked whenever the keyboard has been enabled for input.
This results in reexecution of the STH pseudo instruction associated with the current
MAT INPUT statement.

Matrix 1/0 Routines-FZAMIO

FZAMIO contains the run-time routines which execute matrix operations for an array
referenced in a MAT READ, MAT GET, or MAT PUT statement. FZAMIO performs
operations for each element of the matrix referenced by the arithmetic array dope vector
at the top of the run-time stack:

1. READ-Successive elements from the program DATA file are assigned, beginning
at the DATA file element currently referenced by !$DATA, to elements in the
referenced matrix on a row-by-row basis; I$DAT A is left referencing the first
unused DAT A element.

2. GET-Successive elements from the currently active external input file are assigned,
beginning at the element currently referenced by the file pointer, to elements in
the referenced matrix on a row-by-row basis; the file pointer is left referencing the
first unused file element.

3. PUT-Elements from the referenced matrix are assigned, on a row-by-row basis,
to successive element positions in the currently active external output file beginning
at the element position currently referenced by the file pointer. The file pointer is
left referencing the first unused file element position.

Matrix Print Routines-FZCMPR

FZCMPR contains the run-time routines which execute matrix operations for an array
referenced in a MAT PRINT or MAT PRINT USING statement. FZCMPR performs
PRINT (full zone format), PRINT (packed zone format), or PRINT USING operations
for each element of the matrix referenced by the arithmetic dope vector at the top of
the run-time stack:

I. PRINT (full zone format)-Successive elements from the referenced matrix are
printed, on a row-by-row basis, on the system print device; each element is
printed as specified for full zone output. (Refer to "Print and Carrier Positioning
FZSPRT .")

Program Organization 3-221

Licensed Material-Property of IBM

3-222

2. PRINT (packed zone format)-Successive elements from the referenced matrix
are printed, on a row-by-row basis, on the system print device; each element is
printed as specified for packed zone output. (Refer to "Print and Carrier
Positioning-FZSPRT. ")

3. PRINT USING-Successive elements from the referenced matrix are printed, on a
row-by-row basis, on the system print device; each element utilizes the "next
available" conversion specification in the currently active image. (Refer to "Print
Using Image-FZUPRT.") The printer carrier is positioned, prior to output of the
first array element, such that two blank lines exist between the first matrix row
and the previous printed line. Each matrix row is separated from the previous row
with a blank line, and the carrier is returned following output of the final matrix
row.

Miscellaneous Execution Subroutines

Trace Line Numbers Subroutine-FZLINT

FZLINT is called during the execution of every STH and IMH pseudo instruction when
execution is in trace line number mode. The binary line number at label $INLNO is
converted to a four-digit decimal integer and displayed on the system printer (matrix
printer and/or CRT).

Trace Variables Subroutine-FZVART

FZV ART is called when execution is in trace variables mode and the trace bit is on in a
referenced arithmetic element or character field. Using the virtual address located at label
I$PARM, the compiler symbol tables are searched to locate the variable name (symbol)
assigned to the element or field.

The variable name along with the current value or contents of the element or field is
displayed on the system printer (matrix printer and/or CRT). If the element or field is
within an array, the subscripts of the element or field are also displayed.

The subscripts of the element or field are developed by this subroutine by incrementing
the array's base virtual address by the element or field length until it is equal to the virtual
address of the element or field (1$PARM).

The compiler symbol tables are searched in this order:

I. Arithmetic variable (letter) symbol table (LVT)
2. Character variable symbol table (CVT)
3. Arithmetic variable (letter-digit) symbol table (LDT)
4. Character array symbol table (CAT)
5. Arithmetic array symbol table (NAT)

Virtual Memory Push/Pu/I Subroutine-FZZVMP

• FZZVMP has two entry points: FZZVPS and FZZVPL.

Entry FZZVPS: This entry causes all modified virtual memory pages in core to be
written back to disk. All pages in core referenced with a modify switch in the lock and
read only indicator table (located in the paging subroutine, IPGMDL) are written back
to their respective locations in virtual memory.

Entry FZZVPL: This entry causes all unlocked virtual memory pages in core to be
re-read from disk virtual memory. All pages in core referenced with a lock switch in the
lock and read only indicator table (located in the paging subroutine, IPGMDL) are read
into core at their respective locations.

Both procedures are automatically adjusted to process an expanded table and core
paging area for l 2k or l 6k systems.

Licensed Material-Property of IBM

)

Interpreter Execution Overlay Programs

Matrix lnversion/Determinant-#FISTD and #F!LNG

Page of LY34-0001-l
Added January 1972
By TNL LN34-0075

Two interpreter execution overlays reside in the system program file. Either one overlays
the core-resident interpreter at X'OEOO' to perform matrix inversion or determinant
functions during execution of the BASIC program. #FISTD performs these functions in
standard precision and #FILNG performs them in long precision. These overlays are
called by the virtual-memory-resident execution subroutine, FVBINV/FVBDET (VM
page X'45').

Program Organization 3-222.1

Licensed Material-Property of IBM

Page of LY 34-000l·1
Added January 1972
By TNL LN34-0075

3-222.2

Random Number Generator-FOSRND and FOLRND (Figure 3-166.1)

The random number generator is a routine contained in #FMSTD (#FMLNG). It is
paged into any available page in main storage above the interpreter.

The following algorithm is used to generate the primary sequence of numbers:
Uo=(U2 + U3)modP

where Uo, U2, and U3 are the numbers being calculated now, 2 times ago, and
3 times ago, respectively, and P is the prime number.

A subsequence is then obtained by taking every fourth element of the primary sequence.
This subsequence provides the mantissa of the numerator in the expression:

R=U/P
where R is the output random number. The period for standard precision is
approximately 1015 and the period for long precision is approximately 1029.

The initial values for the variables in Figure 3-166.l are:

Standard precision

p = 6684673
x = 3926991
y = 1442695
z = 8414709

Long precision

p = 820678790827111
x = 109050773266576
y = 797882384626433
z = 832795028878064

Find Disk Data File-#SFF/N (Figure 3-167)

#SFFIN is a program called from the system program file, and overlays part of the core
resident interpreter (#INSTD or #INLNG). The calling routine must save the core-resi
dent interpreter in the system work area prior to loading #SFFIN.

Using file directory 1, #SFFIN locates disk data files when they are first accessed at
program execution time. For a permanent file, #SFFIN searches all disks on the system
for the filename, password, and volume-ID specified. The status of the file is checked and
the necessary information is placed in file directory 2. For a scratch file, the space speci
fied in the ALLOCATE command is sought for in all the null directories on the system
and necessary information is returned in file directory 2.

Before returning to the calling routine, #SFFIN starts 1/0 to begin the restore of the
core-resident interpreter. Refer to the interpreter core map (Figure 3-163).

Licensed Material-Property of IBM

Yes
U = U- P

No

L

FOSRND
or

FOLRND

U = X+Y

X=Y

Y=Z

Yes

Yes

Yes

Initialize
- X, Y, and
z

Initialize
U with
argument.

Initialize
X, Y,
and Z.

Move U
to stack.

Make U
floating
point.

U = U/P

L·-----~

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

Set first
entry
switch on.

Yes Set value
to floating
point zero.

Figure 3-166.1. Random Number Generator (FQSRND, FQLRND) Flowchart

Program Organization 3-223

Licensed Material-Property of IBM

#SFFIN

Yes

SEARCH FOR FILE

1. Load 1/0 routines (LOADR).
2. Prime SFINDF and search for

file.
3. Exit to $CAERK if:

a) File not found,
b) Password not found,
c) Not data file.

SFF200

SET INDICATORS

1. Set indicators for input files
that are:
a) Keyboard-generated files,
b) One-star I ibrary files,
c) Protected or pooled files.

2. Set indicators for input and
output program-generated files
that are not protected or pooled.

Yes

No

Yes

No

SFF520

SEARCH FOR NULL SPACE

1. Search volume-ID table for
disk with library.

2. Call SURCHN to search null
directory for scratch disk files space.

No

SET INDICATORS

Set active scratch file indicators.

MODIFY DATE

Update modification date

CLOSE FILE

1. Close file.
2. Rewrite disk block.

Figure 3-167. Find Disk Data File (#SFFIN) Flowchart

3-224

Licensed Material-Property of IBM

SET UP D2

1. Set precision indicator.
2. Convert to physical disk

addresses.
3. Save file length.

SFADFR

SFL105

Logical JOGS for Disk Data Files-#SFLOA (Figure 3-168)

#SFLOA is a program called from the system program file to overlay the core-resident
interpreter (#INSTD or #INLNG). The calling routine must save the core-resident inter
preter in the system work area prior to loading #SFLOA.

#SFLOA executes multiple sector transfer operations between allocated buffers in
virtual memory and the data file located in the file library. Output is transferred to the
file library; input is transferred to virtual memory. Before returning to the calling routine,
#SFLOA starts 1/0 to begin the restore of the core-resident interpreter. All actual disk
1/0 is performed by branching to $DISKN in the system nucleus. Refer to the interpreter
core map (Figure 3-163).

(___ #_S....,,,FLr---0-A __)

I
INITIALIZATION

1. Set up exit to return to calling location.
2. Set file base disk address in D L2RAD.
3. Set up the DPL to reference the saved file.
4. Set up the virtual memory disk address.

SFPUTR #~A ----------.../.~=l~e~~>----------SFGETR

By

SFL400

TRANSFER DATA BLOCKS FROM
VIRTUAL MEMORY TO FILE LIBRARY

TRANSFER DATA BLOCKS FROM THE
FILE LIBRARY TO VIRTUAL MEMORY

1. If not end-of-file, tack an 'end-of-file' sector
to buffer.

1. Call DL21CS to read data blocks from file library.

2. Search page table for buffer pages.
2. Call DL41CS to write data blocks to virtual

memory.
3. Search page table for buffer pages: a) If not in core, call DL41CS to read it

into #SFLOA buffer.
b) If in core, call SFL700 (see below) to

calculate core page address; move page
to #SF LOA buffer.

if in core, call SFL700 (see belovv) to calculate
core page address; move page from #SF LOA
buffer to VM core page location.

3. Call D L21 CS to write to file library.

SFL700

l
Return to
Calling Sequence
(SFPUTR or SFGETR)

DETERMINE CORE PAGE LOCATION

1. Save return.
2. Calculate physical core address.
3. Clear the page status indicators.
4. Calculate position in core page usage table.
5. Set usage counter to zero.
6. Clear the virtual memory page in core indicator in

the page table.
7. Return to calling location.

Figure 3-168. Logical IOCS for Disk Data Files (#SFLOA) Flowchart

Licensed Material-Property of IBM

BR1230

Program Organization 3-225

3-226

Label Trace for ADD Pseudo Instruction

The following labels trace the execution of the ADD pseudo instruction. This trace
illustrates an instruction executed entirely by core-resident routines.

I. INTXEC-The op code value for the ADD pseudo instruction (X'06') indexes the
op code execution branch address table (INTBAT).

2. INTI 00-Pass control to a core-resident execution subroutine. In this case, the
entry point is ICFADD.

3. ICFADD-Pass control to the core-resident floating point add subroutine
(FDIADD).

4. FDIADD-Perform floating-point addition of the top two run-time stack elements.
IZST AK references the run-time stack.

5. ICF020-Pass control back to the interpreter executive at INTADI.
6. INTAD I -Increment the pseudo instruction address register (INTIAR) by one

byte (length of ADD instruction) in preparation for the next sequential pseudo
instruction.

7. INTXEC-Access the next pseudo op code.

Label Trace for GET Pseudo Instruction

The following labels trace the execution of the GET pseudo instruction. Prior to this
GET, an external data file was activated by an ADF pseudo instruction. This trace
illustrates an instruction that requires paging of subroutines from virtual memory. This
example also includes a save/overlay/restore of the core-resident interpreter. Labels
marked with * are located in the core-resident interpreter. Unmarked labels are located
in virtual-memory-resident execution subroutines.

I. *INTXEC-The op code value for the GET pseudo instruction (X'52') indexes
the op code execution branch address table (INTBAT).

2. *INTIOO-Pass control to a core-resident execution subroutine. In this case, the
entry point is ICVFIO.

3. *ICFVIO-Branch to the paging subroutine. The DC following the branch instruc
tion is the virtual entry point in the required virtual memory page.

4. *IPGCAL-Read and lock page X'IA' into the paging area. This page contains the
execution subroutine IDFILE.

5. IDFILE-Pass control to the routine at label IDFGET.
6. IDFGET-Branch to the paging subroutine. 1$CALL is equated to IPGCAL. The

virtual address operand of the GET pseudo instruction was stored in the DC
following the branch to 1$CALL. In this case, the virtual address operand equals
X'2100'.

7. *IPGCAL-Read and lock page X'21' into the paging area. This page contains the
execution subroutine SFGETR.

8. SFGETR-Check file usage and device type.
9. SFG290-Branch to the paging subroutine (1$CALL).
10. *IPGCAL-Read and lock page X'22' (second page of SFGETR).
11. SFGBS2-Assuming the input buffer is empty, branch to the paging subroutine

(1$CALL).
12. *IPGCAL-Read and lock page X'23' (third page of SFGETR).
13. SFGBS3-Assume the input buffer must be filled.
14. SFG780-Save the core-resident interpreter on cylinder 9 of the system work

area.
15. SFG790-Load #SFLOA at X'OFOO', via $BLOAD in the system nucleus.
16. SFLOAD-This subroutine copies data, in blocks, from the user's external data

file in the file library to the pages in virtual memory assigned as input buffers for
this file. (See Figure 3-168.) The core-resident interpreter is restored to core.

Licensed Material-Property of IBM

\
I

PSEUDO INSTRUCTION SET

17. SFG79S-Wait for 1/0 complete on the interpreter restore operation; then deter-
mine the data file type.

18. SFG900-Branch to the paging subroutine. 1$RTRN is equated to IPGRTN.
19. *IPGRTN-Unlock page X'23' and return to the calling page, X'22'.
20. SFG4SO-Move the data item to the run-time stack.
21. SFG69S-Branch to the paging subroutine (1$RTRN).
22. *IPGRTN-Unlock page X'22' and return to the calling page, X'21 '.
23. SFG29S-Branch to the paging subroutine. 1$UNLK is equated to IPGULK.
24. IPGULK-Unlock directory 2 (page number X'Ol ')and return to the same page,

X'21'.
2S. SFG29S+9-Branch to the paging subroutine (1$RTRN).
26. *IPGRTN-Unlock page X'21' and return to the calling page, X'lA'.
27. IDF120-Establish the virtual address destination and the data element type.
28. IDF140-Branch to the core-resident element unstacking subroutine. 1$USTK is

equated to IUSTAK.
29. *IUSTAK-Branch to the paging subroutine. The destination virtual address in

the run-time stack is referenced by 1$V ADR. The data element, also in the run
time stack, is referenced by @XR.

30. *IPGMOD-Read the page referenced by 1$V ADR into the paging area. Read
only bit is set for the page.

- 31. *IUSOl 2-Move the data element from the run-time stack to the referenced
displacement (second byte of 1$VADR).

32. *IUSl SO-Return to page X'lA'.
33. IDFl SO-Load @XR with the return address in the interpreter executive. 1$XAD3

is equated to INTAD3.
34. IDF990-Branch to the paging subroutine (1$RTRN).
3S. *IPGRTN-Unlock page X'lA' and return to the interpreter executive.
36. *INTAD3-Increment the pseudo instruction address register (INTIAR) by three

bytes (length of the GET instruction) in preparation for the next sequential pseudo
instruction.

37. *INTXEC-Access the next pseudo op code.

Pseudo instructions make up the pseudo machine language and invoke the execution of
preassembled machine language execution subroutines to perform the functions indi
cated by the pseudo instruction name. Figure 3-169 contains a table of the mnemonic
operation codes, in alphabetic order, for all pseudo machine instructions. Figure 3-170
shows the pseudo instruction formats.

Detailed descriptions of the pseudo instructions follow these two figures, which should
be used as references in following the descriptions. The instructions are described in
order as follows:

1. Arithmetic operations
2. Function call operations
3. 1/0 operations
4. Logical operations
S. Stack and unstack operations
6. Miscellaneous operations
7. Nonexecutable operations

Program Organization 3-227

Licensed Material-Property of IBM

Mnemonic Length Operand
Hexadecimal Name

(bytes) Op Code

ADD 1 * 06 Add

ADF 2 xx 58 Activate external data file

BNX 3 VADR 4A Branch and suppress execution

BRA 3 VADR 46 Branch unconditionally

BRC 4 VADR CC 44 Branch on condition

BRO 3 VADR 48 Branch and delete function
entry

BRS 1 * 4C Branch to stacked address

CLS 1 * 5E Close external data file

CMC 1 * 42 Compare character elements

CMF 1 * 40 Compare floating point values

CSA 2 NN 3E Compute stacked address

DCA 3 VADR 6A Define constant address

DDL 3 VADR 6C Define data /in kage

DIV 1 * oc Divide

DWA 2 NN 6E Define work area

EOF 1 * 70 End of program

EOP 1 * 68 End of page

FCI 3 VADR 16 Function ca/I-indirect

FNO 3 VADR 12 Function call-no argument

FN1 3 VADR 14 Functional call-one argument

FOR 3 VADR 4E Initiate FOR loop

GET 3 VADR 52 Input data element

HLT 1 * 04 Halt execution

/MH 3 LINE 66 Image statement header

IN/ 2 NN 56 Initiate keyboard input

MF1 3 VADR 18 Single matrix function call

MF2 3 VADR 1A Double matrix function call

MF3 3 VADR 1C Triple matrix function call

MPY 1 * OA Multiply

MSM 3 VADR 1E Matrix scalar multiply

NEG 1 * 10 Negate

NXT 3 VADR 50 Perform next step

PRS 2 xx 60 Print and space carrier

PRU 2 xx 62 Print using image

PUT 2 xx 54 Output data element

PWR 1 * OE Exponentiate

RSR 1 * 5A Restore internal data file pointer

RST 1 * 5C Reset external data file pointer

SA1 3 VADR 36 Stack vector array element address

SA2 3 VADR 38 Stack matrix array element address

SB1 3 VADR 3A Stack character array element
address

SC1 3 VADR 2A Stack character array field

BR1231.1A
Figure 3-169. Pseudo Instruction Reference List (Part 1 of 2)

3-228

Licensed Material-Property of IBM

Length Hexadecimal
Mnemonic (bytes) Operand Op Code Name

SDO 3 VADR 2E Stack arithmetic array descriptor

SD1 3 VADR 30 Stack arithmetic array descriptor

SD2 3 VADR 32 Stack arithmetic array descriptor

SF1 3 VADR 22 Stack arithmetic vector element

SF2 3 VADR 24 Stack arithmetic matrix element

STA 3 VADR 34 Stack virtual address

STC 3 VADR 28 Stack character field

STF 3 VADR 20 Stack floating point value

STH 3 LINE 64 Statement header

STX 2 xx 3C Stack execution control code

SUB 1 * 08 Subtract

SVC 1 * 02 Supervisor call

USC 2 NN 2C Unstack character element

USF 1 * 26 Unstack floating point element

Notes:

* - no operands
VADR- 2-byte virtual address
XX- 1-byte execution control code
NN- 1-byte binary execution count
LINE- 2-byte binary statement I ine number
CC- 1-byte branch condition code,

BR1231.2A

Figure 3-169. Pseudo Instruction Reference List (Part 2 of 2)

Byte 1 Byte 2 Byte 3 Byte 4

Op Code

2{
Op Code Count

Op Code Code

{ Op Code Virtual Address

Op Code Line Number

4 Op Code Virtual Address Condition

BR1232

Figure 3-170. Pseudo Instruction Formats

Program Organization 3-229

Licensed Material-Property of IBM

3-230

Arithmetic Operations

Add

ADD

I X'06'

0 7

BR1233

The floating-point value at the top stack location (the top of the run-time stack) is added
to the floating-point value at the second stack location. Both values are deleted from the
stack and the sum (in floating-point notation) is placed at the top stack location.

Example:

PMC Sequence

STF VADR of A

STF VADR of B

~ADD

Run-Time Stack

Before y

After y

Top of Stack

x A I B I

1
x A+B I

t
BR1234

Subtract

SUB

I X'OB'

0 7

BR1235

The floating-point value at the top stack location is subtracted from the floating-point
value at the second stack location. Both values are deleted from the stack and the dif
ference (in floating-point notation) is placed at the top stack location.

Example:

PMC Sequence Run-Time Stack

STF VADR of A Before y x A I B

STF VADR of B

~SUB After y x A-B I

Top of Stack t

I

)
BR1236

Licensed Material-Property of IBM

Multiply

MPY

I X'OA'

0 7

BR1237

The floating-point value at the second stack location is multiplied by the floating-point
value at the top stack location. Both values are deleted from the stack and the product
(in floating-point notation) is placed at the top stack location.

Example:

PMC Sequence

STF VADR of A

STF VADR of B

>-MPY

Run-Time Stack

Before y

After y

x A B

x A*B

Top of Stack--------'-----'

BR1238

Divide

DIV

I x·oc·
0 7

BR1239

The floating-point value at t~e second stack location is divided by the floating-point
value at the top stack location. Both values are deleted from the stack and the quotient
(in floating-point notation) is placed at the top stack location.

Example:

PMC Sequence Run-Time Stack

STF VADR of A Before y x A I B I
STF VADR of B

) >-DIV After y x AIB I
Top of Stack t

BR1240

Program Organization 3-231

Licensed Material-Property of IBM

3-232

Exponentiate (Power)

PWR

I X'OE'

0 7

BR1241

The floating-point value at the second stack location is raised to the power specified by
the floating-point value at the top stack location. Both values are deleted from the stack
and the result is placed at the top stack location.

Example:

PMC Sequence

STF VADR of A

STF VADR of B

>-PWR

Negate

NEG

I X'10'

0 7

BR1243

Run-Time Stack

Before y

After y

Top of Stack

x A I B I

1
x At-B I

t
BR1242

The floating-point value at the top stack location is negated. The original value at the top
stack location is deleted and the negated value is placed at the top stack location.

Example:

PMC Sequence

STF VADR of A

>-NEG

Run-Time Stack

Before y

After y

Top of Stack

Licensed Material-Property of IBM

x A

I :
x -A I

BR1244

)

Matrix Scalar Multiply

MSM

I X'1E' VADR

0 70 7

BR1245

The third stack location contains an arithmetic array descriptor that defines the matrix
to contain the product elements. These elements are the result of multiplying the
matrix defined by the arithmetic array descriptor at the first (top) stack location, by
the floating-point value at the second stack location. V ADR is the virtual entry point to
a subroutine in virtual memory that performs the operation. The multiplier value and
both array descriptors are deleted from the stack after the function is executed.

Example:

BASIC Statements

0100MATC=(A)*M

0110 (statement)

Run-Time Stack

PMC Sequence

STH 0100

SDO VAD R of Descriptor for C

STF VADR of A

SDO VADR of Descriptor for M

,._MSM VADR of Subroutine

STH 0110

Before y x I Desc (C) A Desc (M)
I

1
After y x l Top of Stack

Desc-Array Descriptor (array dope vector)

BR1246

Program Organization 3-233

Licensed Material-Property of IBM

3-234

Function Call Operations

Function Call-No Argument

FNO

I X'12'

0 7 0 7 0 7

BR1247

No argument is required for the execution of this pseudo instruction. V ADR is the
virtual entry point to a subroutine in virtual memory that performs the function. The
floating-point value (R), resulting from execution of the function, is placed at the top
stack location. Refer to the intrinsic function virtual address equates in the program
listing "System Equates" (VEQU in #TEQU2). An example of a function performed
by this instruction is the "no argument" form of intrinsic function RND.

Example:

PMC Sequence Run-Time Stack

,.._FNO VADA of Subroutine Before y x I ~

_v_To-p o__._f S-tac-k:-X-=--=-_._I _____ R =:1
_d___,

After

BR 1248

Function Call-One Argument

FN1

I X'14'

0 7 0 7 0 7

BR1249

The floating-point value at the top stack location is used as the argument for the func
tion. V ADR is the virtual entry point to a subroutine in virtual memory that performs
the function. The floating-point value (R), resulting from execution of the function,
replaces the argument (A) at the top stack location. Refer to the intrinsic function
virtual address equates in the program listing "System Equates" (VEQU in #TEQU2).
An example of a function performed by this instruction is computation of the tangent
(TAN) of the argument, the argument being expressed in radians.

Example:

PMC Sequence Run-Time Stack

STF VADA of A Before

,.._FN1 VADA of Subroutine

After

Top of Stack---------~

BR1250

Licensed Material-Property of IBM

)

)

Function Ca/I-Indirect

FCI

I X'16'

0 7 0 7 0 7

BR1251

The floating-point value at the top stack location is used as the argument for the user
function whose linking address is defined at V ADR. The value at the top stack location
is deleted, and control is transferred to the pseudo instruction which begins the user
function execution. Linkage is established such that the function execution sequence
returns control to the pseudo instruction following the FCI.

Prior to user function execution, the user function activity table is searched for an
entry that matches V ADR. When no match occurs, VADR is added to the table. When
a match does occur, or when the table size is exceeded, a terminal error condition is
indicated. A match in the table occurs when user function is referenced within the defini
tion of that same function.

Example Using FCI, BRD, and DWA Pseudo Instrnctions:

BASIC Statements PMC Sequence

0100 DEF FNA(D); ... STH 0100

0110 . . . FNA(B) ...

Run-Time Stack

Before
FCI

y

.----- BRA VADR of 0110 (bypass)

BRA VADR* (return linkage)----....

DWA NN

(argument)

BRD VADR

~---STH 0110
Link

VADR

x

STF

>- FCI

VADR of B (argument) J
VADR of Link Address

I B I
After**
FCI _v __.__I ;-I t

Top of Stack~
*This VADR (return linkage) is established at execution time by the FCI function execution

subroutine.
**"After" refers to the logical stack condition immediately after the FCI instruction execution,

but before the execution of the DEF statement expression.

BR1252

Program Organization 3-235

Licensed Material-Property of IBM

3-236

Single Matrix Function Call

MF1

I X'18'

0 7 0 7 0 7

BR1253

The arithmetic array descriptor at the top stack location references the single matrix
argument for the matrix function to be performed. V ADR is the virtual entry point to
a subroutine in virtual memory that performs the function. The array descriptor is
deleted from the top stack location after the function is executed. Refer to matrix func
tion virtual address equates in the program listing "System Equates" (VEQU in
#IEQU2). An example of a function performed by this instruction is matrix 1/0
operations.

Example:

BASIC Statements PMC Sequence

0100 MAT INPUT A STH 0100

SDO VAD R of Descriptor for A

~MF1 VADR of Subroutine

0110 (statement) STH 0110

Run-Time Stack

Before y x Desc (A)

_v~I g__j
Top of Stack

After

Desc-Array Descriptor (array dope vector)

BR1254

Licensed Material-Property of IBM

)

)

Double Matrix Function Call

MF2

I X'1A'

0 7 0 7 0 7

BR 1255

The arithmetic array descriptors at the second and top stack locations reference the two
matrix arguments for the matrix function to be performed. V ADR is the virtual entry
point to a subroutine in virtual memory that performs the function. Both array descrip
tors are deleted from the stack after the function is executed. Refer to matrix function
virtual address equates in the program listing "System Equates" (VEQU in #fEQU2).
An example of a function performed by this instruction is matrix assignment.

Example:

BASIC Statements

0100MATA~B

0110 (statement)

Run-Time Stack

Before y x

After y x

Top of Stack

PMC Sequence

STH 0100

SDO VADR of Descriptor for A

SDO VADR of Descriptor for B

,..._ MF2 VADR of Subroutine

STH 0110

I Desc (A) Desc (B) I

I I
t

Desc-Array Descriptor (array dope vector)

BR1256

Licensed Material-Property of IBM

Program Organization 3-237

3-238

Triple Matrix Function Call

MF3

I X'1C'

0 7 0 7 0 7

BR1257

The arithmetic array descriptors at the third, second, and top stack locations reference
the three matrix arguments for the matrix function to be performed. V ADR is the virtual
entry point to a subroutine in virtual memory that performs the function. All three array
descriptors are deleted from the stack after the function is executed. Refer to matrix
function virtual address equates in the program listing "System Equates" (VEQU in
#fEQU2). An example of a function performed by this instruction is matrix subtraction.

Example:

BASIC Statements

0100 MAT C = A-B

0110 (statement)

Run-Time Stack

PMC Sequence

STH 0100

SDO VADR of Descriptor for C

SDO VADR of Descriptor for A

SDO VADR of Descriptor for B

,.._ MF3 VADR of Subroutine

STH 0110

Before y x Desc (C) Desc (A) Desc (B)

After y x I
Top of Stack t

Desc-Array Descriptor (array dope vector)

BR1258

' Licensed Material-Property of IBM

I

1

Input/Output Operations

Input Data Element

GET

I X'52'

0 7 0 7 0 7

BR1259

The next sequential data element entered from a file of data elements is stored in virtual
memory at the virtual address at the top stack location. V ADR is the virtual entry point
to a subroutine in virtual memory that performs the input operation. The referenced
virtual address is deleted from the stack.

This pseudo instruction is generated for GET, READ, and INPUT BASIC program
statements. If the GET is to reference an external data file, it must be preceded by an
ADF (activate external data file) pseudo instruction. If the GET is to reference the
internal data file or the system keyboard, it need not be preceded by an ADF instruction.

Example:

PMC Sequence

STA VADR

>-GET VADR of Subroutine

Output Data Element

PUT

I X'54' xx
0 7 0 7

BR1261

Run-Time Stack

Before y I x I VADR I

After _v~I ;-1 f
Top of Stackl__J

BR1260

The data element or field at the top stack location is written in the next sequential loca
tion in the currently active data file. This external data file was activated by the last
executed ADF pseudo instruction. XX defines the type of data (X'02' =arithmetic
element; X'04' =character field). The data element or field is deleted from the top stack
location.

Example:

PMC Sequence

ADF (see ADF)

STF VADR of A$

>-PUT 04

Run-Time Stack

Before y x I A$ I
_v~I g_j

Top of Stack t

After

BR1262

Program Organization 3-239

Licensed Material-Property of IBM

3-240

Initiate Keyboard Input

INI

I X'56' NN I
0 7 0 7

BR1263

This pseudo instruction is generated for the INPUT BASIC statement to initiate an I/O
operation for input from the keyboard. The execution control codes contained in stack
locations 1 (top of the stack) through NN are parameters to the initiate input subroutine
in virtual memory. They are used to verify the data type and number of elements entered
by the user on the keyboard. Each of the referenced execution control codes is deleted
from the stack.

The format of the execution control code, in the STX instructions preceding the INI,
is:

Bit 0 = 0 for arithmetic elements; 1 for character fields.
Bits 1-7 = count of the consecutive elements of the same type.

Example:

BASIC Statement

0100 INPUT A, B, C, A$, 8$, D

PMC Sequence

STX 03 (A, B, C)

STX 82 (A$, 8$)

STX 01 (D)

~IN I 03 (count of preceding STX instructions)

Run-Time Stack

Before y x 03 82 01 I

I After y x I
Top of Stack t

BR1264

Activate External Data File

ADF

I X'58' xx
0 7 0 7

BR1265

The external data file referenced by the character literal in the top of the run-time
stack is activated. The displacement to the file directory 2 entry for the referenced
file is calculated, the file is tested for validity, and prepared for either input or output.
XX: equals X'Ol' when the referenced file is activated for output and equals X'OO' when
the referenced file is activated for input.

Licensed Material-Property of IBM

)

Example:

BASIC Statement

0100 GET 'ABC'. X

Run-Time Stack

Before y

PMC Sequence

STC VADDR of 'ABC'
..,_ADF 00

x I ABC I
After ___,__Y xi t

Top of Stack l_J
BR2674

Restore Internal Data File Pointer

RSR

I X'5A'

0 7

BR1266

The internal data file pointer is restored to reference the first data element or field in
the internal data file. Refer to "Define Constant Address" (DCA) and "Define Data
Linkage" (DDL). These instructions define the data elements and/or fields in the internal
data file. The next GET (to the internal data file) that is executed references the first
data element or field in the internal data file.

The contents of the run-time stack are unaffected by the execution of this pseudo
instruction.

Reset External Data File Pointer

RST

I X'5C'

0 7

BR1267

The external data file pointer, for the currently activated external data file, is reset to
reference the first data element or field in that file. This external data file was activated
by the last executed ADF pseudo instruction. The next GET or PUT (to that external
data file) that is executed references the first data element or field in that external data
file.

The contents of the run-time stack are unaffected by the execution of this pseudo
instruction.

Close External Data File

CLS

I X'5E'

0 7

BR1268

The currently activated external data file is closed. The associated external data file
pointer is reset to reference the first data element or field in that file. Refer to "Reset
External Data File Pointer" (RST). Closing an external data file allows that file to be
activated for input or for output.

The contents of the run-time stack are unaffected by the execution of this pseudo
instruction.

Program Organization 3-241

Licensed Material-Property of IBM

3-242

Print and Space Carrier

PRS

I X'60' xx
0 7 0 7

BR1269

The data element at the top stack location is output on the system printer, or the sys
tem printer carrier is positioned, under control of parameter XX. When XX specifies
data element output, that element is deleted from the top stack location.

The possible XX codes (hexadecimal) and the functions they perform are:

xx Function

01 Print and space suppress
02 Print and space to long zone
03 Print and space to short zone
04 Print and carrier return
05 Space to long zone
06 Space to short zone
07 Carrier return
08 Conditional carrier return

Example:

PMC Sequence Run-Time Stack

STF VADR of A

~PRS XX~ 01-04

Before

After

y

y

x A

x

Top of Stack--~---~

PMC Sequence Run-Time Stack

After

Before __ v __ ~j __ x J

_v~j x~I
Top of Stack~

~PRS XX~ 05-08

BR1270

Licensed Material-Property of IBM

Print Using Image

PRU

I X'62' xx
0 7 0 7

BR1271

The data element at the top stack location is output according to the current image, or
the current image is output, on the system printer under control of parameter XX. When
XX specifies data element output, that element is deleted from the top stack location.

The possible XX codes (hexadecimal) and the functions they perf9rm are:

XX Function

01 Establish null image specification.
04 Establish first image character string segment.
05 Establish secondary image character string segment.
02 Statement contains no data list.
06 Print arithmetic or character expression,including first constant established

for a character string but excluding a null character string(").
07 Print any constant established for a character string except for the first

constant in that string series.
03 Print a null character string(").
12 Same as code 02 except indicates final PRU instruction for this list.
16 Same as code 06 except indicates final PRU instruction for this list.
17 Same as code 07 except indicates final PRU instruction for this list.
13 Same as code 03 except indicates final PRU instruction for this list.

Example:

PMC Sequence

STF VADR of A$

~PRU XX~ 06

PMC Sequence

~PRU XX~ 04

Run-Time Stack

Before y x A$ l After y x I
Top of Stack t I

Run-Time Stack

I x I

_v~' x==il
Top of Stack~

Before y

After

BR1272

Program Organization 3-243

Licensed Material-Property of IBM

3-244

Logical Operations

Compare Floating Point Values

CMF

I X'40' I
0 7

BR1273

The floating-point value at the second stack location is compared algebraically to the
floating-point value at the top stack location. A compare condition code is set specifying
greater than, equal to, or less than. Both of the floating-point values are deleted from the
stack.

Example:

If A= B

PMC Sequence Run-Time Stack

Before y x I A B I STF VADR of A

STF VADR of B

~CMF After y

Top of Stack I x I
t

BR1274

Compare Character Elements

CMC

I X'42'

0 7

BR1275

The character field at the second stack location is compared with the character field at
the top stack location. A compare condition code is set specifying a collating sequence
greater than, equal to, or less than. Both of the character fields are deleted from the
stack. ·

Example:

If A$= B$...

PMC Sequence

STC VADR of A$

STC VADR of B$

~CMC

Run-Time Stack

Before y

After y

Top of Stack

x A$ 8$

x I
t

I

I
BR1276

Licensed Material-Property of IBM

Branch On Condition

BRC

I X'44' cc
0 7 0 7 0 7 0 7

BR1277

Control is transferred to that pseudo instruction which begins at VADR when code CC
agrees with the current compare condition. If the compare condition is not met, control
is passed to the next sequential pseudo instruction .

. The possible CC codes (hexadecimal) and the functions they perform are:

cc Function

82 Branch low
84 Branch equal
88 Branch high
92 Branch not low
94 Branch not equal
98 Branch not high

The BRC pseudo instruction always follows a CMF or CMC pseudo instruction. The
contents of the run-time stack are unaffected by the execution of the BRC pseudo
instruction.

Branch Unconditionally

BRA

I X'46'

0 7 0 7 0 7

BR1278

Control is transferred unconditionally to the pseudo instruction that begins at V ADR.
The contents of the run-time stack are unaffected by the execution of this pseudo

instruction.

Branch and Delete Function Entry

BRD

I X'48'

0 7 0 7 0 7

BR1279

The entry at the top of the user function activity table is deleted, and control is trans
ferred to the pseudo instruction that begins at VADR. Refer to "Function Call-Indirect"
(FCI).

The contents of the run-time stack are unaffected by the execution of this pseudo
instruction.

· Program Organization 3-245

Licensed Material-Property of IBM

3-246

Branch and Suppress Execution

BNX

I X'4A'

0 7 0 7 0 7

BR1280

Control is transferred to the pseudo instruction that begins at V ADR. The first BRA
instruction encountered after the transfer of control is suppressed (not executed).

The contents of the run-time stack are unaffected by the execution of this pseudo
instruction.

Example:

BASIC Statements

0100 PRINT USING 120 ...

0110 ...

0120: (image)

0130 ...

PMC Sequence

STH 0100

STA VADR of 0
,,_BNX VADR of 0120

0
STH 0110

STH 0120

*BRA VADR of 0130

BRS (VADR of® is stacked)

STH 0130~~~~~~~~

*This BRA is deactivated by the BNX instruction.

Branch to Stacked Address

BRS

I X'4C'

0 7 0 7 0

BR1281

7

BR1282

Control is transferred to the pseudo instruction that begins at the virtual address at the
top stack location. The virtual address is deleted from the top stack location.

Example:

PMC Sequence Run-Time Stack

STA VADR Before y x I VADR I

,,_BRS

After ~-:-op-of~S-tac_kx==--:~l~~~l
BR1283

Licensed Material-Property of IBM

Initiate FOR Loop

FOR

I X'4E'

0 7 0 7 0 7

BR1284

This instruction is always paired with a trailing NXT instruction. V ADR is the virtual
address of the loop control variable. The floating-point value at the third stack location
(the loop control initial value) is saved in a control variable work area. The floating-point
values at the second and top stack locations (the final value and increment, respectively)
are stored in a DWA-defined work area following the NXT instruction in the PMC
sequence. The three floating-point values are deleted from the stack and control is trans
ferred to the NXT instruction such that control variable retrieval and incrementation are
bypassed.

The following example illustrates two nested levels of FOR-NEXT BASIC statement
pairs.

Program Organization 3-24 7

Licensed Material-Property of IBM

3-248

Example Using FOR, NXT, and DWA Pseudo Instructions:

BASIC Statements

0100 FOR D ~ C TO B STEP A

0110

(statements)

0170

0180 FOR H ~ G TO F
STEP E

0190

(statements)

0220

0230 NEXT H

0240

(statements)

0280

0290 NEXT D

0300 (statement)

PMC Sequence

STH 0100

STF VADRofC

STF VADRofB

STF VADR of A

,._FOR VADRofD

NXT VADR of Loop D Exit----

DWA 16

(8 bytes; limit B)

(8 bytes; increment A)

STH 0110

STH 0180

STF VADR of G

STF VADR of F

STF VADR of E

FOR VADRofH

NXT VADR of Loop H Exit ---

DWA 16

(8 bytes; limit F)

(8 bytes; increment E)

STH 0190

STH 0230

BRA VADR to Continue Loop H

STH 0240----------~

STH 0290

BRA VAD R to Continue Loop D

STH 0300--------------'

Run-Time Stack (first FOR instruction)

Before y x l c B A l

l After y x I
Top of Stack t

BR1285

Licensed Material-Property of IBM

)

Perform Next Step

NXT

I X'50'

0 7 0 7 0 7

BR1286

This instruction is always paired with a preceding FOR instruction, and always precedes
a DWA instruction that defines a work area containing the final value and increment for
the loop. Refer to "Initiate FOR Loop" (FOR). The loop control variable stored at the
V ADR of the FOR instruction is placed in a control variable work area and modified
using the loop increment. When the working value of the control variable exceeds the
final value, control is transferred to the pseudo instruction that begins at the V ADR of
the NXT instruction (exit). If the working value of the control variable does not exceed
the final value, it is stored at the V ADR of the FOR instruction (loop control variable)
and control is passed to the STH instruction of the next sequential statement.

The contents of the run-time stack are unaffected by the execution of the NXT pseudo
instruction.

Stack and Unstack Operations

Stack Floating Point Value

STF

I X'20'

0 7 0 7 0 7

BR1287

The floating-point value referenced by V ADR is moved from virtual memory to the top
stack location. The length of the element is precision dependent. The actual data element
is moved to the stack.

Example:

PMC Sequence Run-Time Stack

Before y x
~STF VADR of A

After y x A

Top of Stack --------~

BR1288

Program Organization 3-249

Licensed Material-Property of IBM

3-250

Stack Arithmetic Vector Element

SF1

I X'22'

0 7 0 7 0 7

BR1289

The floating-point value at the top stack location is truncated and converted to a binary
indexing value which is used to reference an element in the one-dimensional arithmetic
array. VADR is the virtual address of the descriptor (array dope vector) for this array.
The indexing value at the top stack location is replaced by the floating-point array ele
ment. The length of the element is precision dependent. The actual data element is
moved from the array to the stack.

Example:

PMC Sequence Run-Time Stack

Before y x STF VADR of Index Value

~SF1 VADA of Descriptor for A

l After

Index I

~y X~5 11
Top of~

Desc (A)

Base

Vector Array A

Element Address= Base+ (Index* Element Length)

BR1290

Licensed Material-Property of IBM

)

Stack Arithmetic Matrix Element

SF2

I X'24'

0 7 0 70 7

BR1291

The floating-point values at the second stack location and at the top stack location are
truncated and converted to binary indexing values. Respectively, these two indexing
values define row and column values required to reference a single element in a two
dimensional arithmetic array. V ADR is the virtual address of the descriptor (array dope
vector) for this array. The two indexing values at the top stack location are replaced by
the floating-point array element.

Example:

PMC Sequence

STF VAOR of Row Index

STF VAOR of Column Index

~SF2 VrR of Do~dp<o1fo1 A

Oesc (A)

01 02 Base

Run-Time Stack

Before y x Row

After y x 5

, _ _l _ ,...M_a_t_ri_x_A_r_ra_v-.A ____ -r----+--,,-----,

I
L ____ -+-----+-----t----+---+----~

5

Column I

t 1
Top of Stack

Element Address= Base+ ((Row - 1) * 02 +Column) * Element Length, where 02 is the array
column.dimension and element length is precision dependent.

BR1292

Program Organization 3-251

Licensed Material-Property of IBM

3-252

Unstack Floating Point Element

USF

I X'26'

0 7

BR1293

The floating-point value at the top stack location is stored in virtual memory at the
address contained in the second stack location. The value and the referenced address
are deleted from the stack.

Example:

PMC Sequence

STA VADR of VM Location

STF VADR of A

~USF

Run-Time Stack

Before y

After y

Top of Stack

x I VADR A

x I
t 1

BR1294

Stack Character Field

STC

I X'28'

0 7 0 7 0 7

BR1295

The character field referenced by VADR is moved from virtual memory to the top stack
location. The length of a character field is 19 bytes. The actual content of the field is
moved to the stack.

Example:

PMC Sequence Run-Time Stack

Before y x

~STC VADR of A$

After y x A$

Top of Stack ----.-----'

BR1296

Licensed Material-Property of IBM

)

Stack Character Array Field

SC1

I X'2A'

0 7 0 7 0 7

BR1297

The floating-point value at the top stack1ocation is truncated and converted to a binary
indexing value which is used to reference a field in a character array. V ADR is the virtual
address of the descriptor (array dope vector) for this character array. The indexing value
at the top stack location is deleted and the character array field is moved to the top
stack location. The length of the character array field is 19 bytes. The actual content of
the field is moved to the stack.

Example:

PMC Sequence Run-Time Stack

STF VADR of Index Value Before

~sc1 VADR of Descriptor for A$

y x Index]

After _v~-x~_C--,hara,.__cte~rs I
Topo~

Desc (A$)

Base

r _ J ___ C~ha_r_ac_t_e_r _A_rr,a_y_A_$ ___ ~---+---,.------.---------,
I Characters
L - - - - - --'-------'-------''------~-----'---------'

Element Address= Base+ (Index* 19)

BR1298

Program Organization 3-253

Licensed Material-Property of IBM

3-254

Unstack Character Element

use

I x·2e· NN

0 7 0 7

BR1299

The character field at the top stack location is stored in virtual memory at the virtual
addresses contained in stack locations 2 through NN+ 1. The character field and all of
the referenced addresses are deleted from the stack.

Example:

0100 LET A$, B$, e$ = D$

PMe Sequence Run-Time Stack

STH 0100

STA VADA of A$ Before x
STA VADA of B$

STA VADA of e$

STe VADA of D$
After x

~use o3

Stack Arithmetic Array Descriptor

SDO

I X'2E'

0 7 0 7 0 7

BR1301

VADA A$ I

I
t

VADA B$ I VADA e$ I D$

NN = 03

Top of Stack

BR1300

The arithmetic array descriptor (array dope vector) referenced by V ADR is moved to the
top stack location. Arithmetic array dope vectors are eight bytes in length. The actual
contents of the dope vector are moved to the stack.

Example:

PMe Sequence Run-Time Stack

~SDO VADA of Descriptor
Before --Y ~X~'~
After Y X

Top of Stack

D1 D2 Size Base

BR1302

Licensed Material-Property of IBM

)

)

Stack Arithmetic Array Descriptor (Redimension 1)

SD1

I X'30'

0 7 0 7 0 7

BR1303

The floating-point value at the top stack location is truncated and converted to a binary
array dimension. This new dimension replaces the single dimension (D 1) in the arithmetic
array descriptor (array dope vector) referenced by VADR. The binary array dimension
value is deleted from the stack. The redimensioned arithmetic vector descriptor is moved
to the top stack location. (The descriptor is also redimensioned in virtual memory.)

Arithmetic array dope vectors are eight bytes in length. The actual contents of the
redimensioned dope vector is moved to the stack.

Example:

PMC Sequence

STF VADR of New 01

~SD1 VADR of Descriptor

Desc

Old 01 Old 02

Run-Time Stack

Before y

After Y

Licensed Material-Property of IBM

Top of Stack

j l x 01

x Desc (redimensioned) I

Base

BR1304

Program Organization 3-255

3-256

Stack Arithmetic Array Descriptor (Redimension 2)

S02

I X'32'

0 7 0 7 0 7

BR1305

The floating-point value at the second stack location is truncated and converted to a
binary array row dimension (Dl). The floating-point value at the top stack location is
truncated and converted to a binary array column dimension (D2). These new dimen
sions replace Dl and D2 in the arithmetic array descriptor (array dope vector) referenced
by V ADR. Both binary array dimension values are deleted from the stack. The redimen
sioned arithmetic matrix descriptor is moved to the top stack location. (The descriptor
is also redimensioned in virtual memory.)

Arithmetic array dope vectors are eight bytes in length. The actual contents of the
redimensioned dope vector are moved to the stack.

Example:

PMC Seguence Run-Time Stack

Top of Stack

STF VAOR of New 01 Before Y X 01 02 I
STF VAOR of New 02

~SD2 V AD~~dp<o< Af"' ___ v __ J__ __ x __ .___o_e_sc_(r_ed~i_m_e_ns_io_n_e_d_) __.I

~ ITopofS~oj
Oesc

Old 01 I Old 02 I Size I Base I

~ Size Base

BR1306

Licensed Material-Property of IBM

Stack Virtual Address

STA

I X'34'

0 7 0 7 0 7

BR1307

The virtual address in the second and third bytes (V ADR) is moved to the top stack
location.

Example:

PMC Sequence Run-Time Stack

Before

STA VADR

After

Stack Vector Array Element Address

SA1

I X'36'

0 7 0 70 7

BR1309

y x

y x VADR

Top of Stack---------~

BR1308

The floating-point value at the top stack location is truncated and converted to a binary
indexing value. This indexing value is used to determine the virtual address of a single
element in a one-dimensional arithmetic array. VADR is the virtual address of the
descriptor (array dope vector) for this array. The indexing value at the top stack location
is replaced by the virtual address of the referenced array element.

Example:

PMC Sequence

STF VADR of Index Value

~SA 1 VADR of Array Descriptor

Desc

01 02 I Size

Run-Time Stack

II
___ v __ ~ __ x __ ~ __ A_d~d_r~j~

Before y x Index

After

Top of Stack

Base

J
Base+ (Index* Element Length)~ Addr

BR1310

Program Organization 3-257

Licensed Material-Property of IBM

3-258

Stack Matrix Array Element Address

SA2

I X'38'

0 7 0 7 0 7

BR 1311

The floating-point values at the second stack location and at the top stack location are
truncated and converted to binary indexing values. Respectively, these two indexing
values define row and column values required to determine the virtual address of a single
element in a two-dimensional arithmetic array. V ADR is the virtual address of the
descriptor (array dope vector) for this array. The two indexing values at the top stack
location are replaced by the virtual address of the referenced array element.

Example:

PMC Sequence

STF VADA of Row Value

STF VADA of Column Value

~SA2 VADA of Array Descriptor

~
Desc

D1 D2 Size

Run-Time Stack

Before y x Row l Column

After y x Addr I
t

Base

Element Address= Base+ ((Row-1) * D2 +Column)* Element Length, where D2 is the array
column dimension and element length is precision dependent.

l

1

BR1312

Licensed Material-Property of IBM

) .

Stack Character Array Element Address

SB1

I X'3A'

0 7 0 7 0 7

BR1313

The floating-point value at the top stack location is truncated and converted to a binary
indexing value. This indexing value is used to determine the virtual address of a single
field in a character array. VADR is the virtual address of the descriptor (array dope
vector) for this array. The indexing value at the top stack location is replaced by the
virtual address of the field referenced in the character array.

Example:

PMC Sequence

STF VADR of Index Value

,._SB1 VADR of Array Descriptor

I
Desc

Base

Stack Execution Control Code

STX

I X'3C' xx
0 7 0 7

BR1315

Run-Time Stack

Before

After

y x Index I

__,____v X----'---o------Addr 11
TopofS:j

BR1314

The execution control code in byte 2 (XX) is moved to the top stack location.

Example:

PMC Sequence Run-Time Stack

Before Y

,._STX XX

After y xx

Top of Stack ----___J

BR1316

Program Organization 3-259

Licensed Material-Property of IBM

3-260

Compute Stacked Address

CSA

X'3E' NN

0 7 0 7

BR1317

The floating-point value at the top stack location is truncated and converted to a binary
index value. This index value references a virtual address previously placed in the stack
(i.e., if the index value is I, the (NN+2-I)th stack entry is referenced). If the index value
is in the range 1 through NN, the referenced virtual address is selected. If the index value
is outside the range 1 through NN, the virtual address at stack location NN+2 is selected.
The binary index value, at the top of the stack, and the series of virtual addresses, in
stack locations 2 through NN+2, are deleted from the stack and the selected virtual
address is placed at the top stack location.

Example:

BASIC Statements

0100 GOTO 200,300,400 ON A

0110

0200

0300

0400

Run-Time Stack

Locations-----;~ NN+2

t
Before x 0110

(VADR)

After x VADR

PMC Sequence

STH 0100

STA VADR of 0110

STA VADR of 0200

STA VADR of 0300

STA VADR of 0400

STF VADRofA

CSA 03

*BRS

STH 0110

STH 0200

STH

STH

0300-----1

0400___J

*Branch depends on value of A.

NN+1

t
0200 0300

(VADR) (VADR)

2

t
Top

t
0400 A

(VADR)

Top of Stack--.....L--------------------'

For example, if A= 2, VADR = VADR 0300; if A= 99, VADR = VADR 0110.

BR1318

Licensed Material-Property of IBM

Miscellaneous Operations

Supervisor Call

SVC

I X'02'

0 7

BR1319

This pseudo instruction:

1. Closes all activated external data files (those that were activated by an ADF
instruction, but not closed by a CLS instruction).

2. Writes all modified pages in the core paging area back to virtual memory.
3. Resets the execution mode indicator in the system communication area.
4. Causes the interpreter to pass control to the system control program (#GUFUD),

via $CARPL in the system nucleus.

This pseudo instruction marks the termination of the System/3 BASIC user-program
execution.

Halt Execution

HLT

X'04'

0 7

BR1320

This instruction initiates a program-requested interruption. Execution of the System/3
BASIC program is halted and control is passed to $PAUSD in the system nucleus, placing
the interpreter program in the execution pause state. If the interpreter program is
resumed, execution continues with the next sequential pseudo instruction following the
HLT.

Statement Header

STH

I X'64'

0 7 0 7 0 7

BR1321

With the exception of the image (:) statement, the pseudo instruction sequence for each
translated BASIC statement begins with an STH instruction. The compiler distributor
(BHDIST) generates the STH pseudo instruction in virtual memory, preceding any
pseudo machine code generated specifically for statement execution.

Execution is interrupted if an interrupt condition is in effect or if execution is in
STEP mode. The STH instruction identifies the beginning of a statement and its line
number reference. "Line" contains the binary line number reference.

The STH pseudo instruction performs no logical operation and makes no modifications
to either the run-time stack or the contents of virtual memory. Control is passed to the
next sequential pseudo instruction.

Program Organization 3-261

Licensed Material-Property of IBM

3-262

Image Statement Header(:)

IMH

I X'66'

0 7 0 7 0 7

BR1322

The pseudo instruction sequence, for each translated image(:) statement, begins with
an IMH instruction.

Execution of the IMH pseudo instruction is identical to that of the STH pseudo
instruction with this exception-when the pseudo instruction executed immediately
preceding the IMH instruction is a BNX instruction, the IMH instruction becomes a
no-op.

The IMH instruction performs no logical operation and makes no modifications to
either the run-time stack or the contents of virtual memory. Control is passed to the
next sequential pseudo instruction.

End of Page

EOP

I X'68'

0 7

BR1323

Each pseudo machine code virtual page is terminated with at least one EOP instruction.
EOP execution results in control being passed to the first pseudo instruction that appears
in the next sequential virtual page.

When more than one EOP terminates a page, only the first is executed. (Only the first
is displayed in a maintenance utility dump of virtual memory.) The contents of the run
time stack are not affected by the execution of this instruction.

Example:

PMC Sequence

BR1324

Licensed Material-Property of IBM

Nonexecutable Operations

Define Constant Address

DCA

I X'6A'

0 7 0 7 0 7

BR1325

The single arithmetic element or character field at V ADR is defined as a data element in
the internal data file. The position of the element in the file is directly related to the
position of the DCA instruction with respect to other DCA instructions.

All DCA pseudo instruction sequences are chained together by DDL pseudo instruc
tions to form the internal data file. Refer to "Define Data Linkage" (DDL) for an
example.

All sequences of DCA and DDL pseudo instructions have a BRA (branch unconditional)
preceding them to bypass these nonexecutable instructions.

Program Organization 3-263

Licensed Material-Property of IBM

3-264

Define Data Linkage

DDL

I X'6C'

0 7 0 70 7

BR1326

The DDL pseudo instruction always follows a string of one or more DCA pseudo instruc
tions. V ADR is the virtual address that provides the linkage to the next sequential DCA
instruction in the internal data file chain. A DDL instruction, with a VADR containing
X'OOOO', marks the end of the internal data file.

All sequences of DCA and DDL pseudo instructions have a BRA (branch unconditional)
preceding them to bypass these nonexecutable instructions.

Example Using DCA and DDL Pseudo Instmctions:

Basic Statements PMC Sequence

0100DATA1,2,3 STH 0100

BRA VADR of0110

DCA VADR of 1) Internal Data File Pointer

DCA VADR of2)

DCA VADRof3}

DDL VADA of No•~
0110DATA4,5 STH 0110

[BRA
VADRof0120

DCA VADR of 4?

DCA VADRof5

DDL VADA of ""' DCA l
0120 STH 0120

0200 DATA 6 STH 0200

(last data statement)

[BRA
~~DR of0210_J

DCA VAD::L

DDL 0000 End of Internal Data File

0210 STH 0210

BR1327

Licensed Material-Property of IBM

Define Work Area

DWA

I X'6E' NN

0 7 0 7

BR1328

NN is equal to the number (in binary) of bytes in the work area. The work area initially
contains binary O's.

The DW A pseudo instructions are preceded by either a NXT or a BRA (branch uncon
ditional) instruction. Either of these instructions provides insurance that the DWA can
not be executed.

Example:

PMC Sequence

BRA VADR

~DWA09

oooojoooojoooo!oooo!oo

End of Program

EOF

I X'70'

0 7

BR1330

BR1329

The EOF instruction marks the end of the functional pseudo instructions. This instruc
tion is not executed. This is the last instruction generated for a System/3 BASIC user
program with the exception of EOP pseudo instructions which are padded to the end of
the page. (These EOP instructions are not displayed by the maintenance utility VM dump.)
The EOF pseudo instruction is always preceded by a SVC pseudo instruction. The SVC
ensures that the EOF cannot be executed. This sequence is always generated.

Example:

PMC Sequence

SVC

~EOF

EOP

EOP

EOP

--------------------Page Boundary

BR1331

Licensed Material-Property of IBM

Program Organization 3-265

FLOATING-POINT ARITHMETIC

3-266

Floating-point arithmetic automatically maintains decimal point placements (scaling)
during computations in which the range of values used varies widely or is unpredictable
(Figure 3-171).

The key to floating-point data representation is the separation of the significant digits
of a number from the size (scale) of the number. Thus, the number is expressed as a
fractibn times a power of 10. A floating-point number has two associated sets of values.
One set represents the significant digits of the number and is called the fraction. The
second set specifies the power (exponent) to which 10 is raised and indicates the loca
tion of the decimal point in the number.

These two numbers (the fraction and exponent) are recorded in a single field. Since
each of these two numbers is signed, some method must be employed to express two
signs in the field. A negative fraction is indicated by the presence of a sign bit in the field.
The sign of the exponent is expressed in excess 128 arithmetic; that is, the exponent is
added as a signed number of 128. The resulting number is called the characteristic. Since
the decimal range of the exponent is -98 through 0 to +99, the range of the charac
teristic is 30 to 2271 (X'IE' to X'E3'). (Refer to Figure 3-172 to convert characteristics
to exponents, or the reverse.)

The number is always normalized to provide a fraction with the greatest possible pre
cision. The number is normalized when the decimal point is immediately to the left of
the first significant digit. The exponent is raised or lowered until the decimal point is
positioned. (Example: 1234.56 is normalized to a fraction of 0.123456 with an exponent
of 104 .)

Floating-point data is recorded in either standard (short) or long precision. Standard
precision provides for 7 significant digits and long precision provides for 15. The signifi
cant digits, when represented in packed-decimal format, occupy a five-byte field for
standard precision. The field is extended to nine bytes for long precision. Refer to
Figure 3-173 for the format of these fields. Arithmetic unpacked-decimal format is
shown on Figure 3-174.

Conversion Example: Convert a standard-precision, packed-decimal, floating-point value
011 23 00 ool 7E) to an unnormalized decimal number:

1. Disregarding the first half-byte and the last byte, the packed-decimal, normalized
fraction is 0.1230000.

2. The exponent is developed from the characteristic (last byte):

Characteristic - Base = Exponent

X'7E' = 126 - 128 = -2

3. Bit 3 of the first half-byte indicates that the fraction is negative: -0.1230000.
4. The normalized decimal number in floating-point notation is therefore

-0.1230000x10-2.
5. The unnormalized decimal number is -0.00123.

Licensed Material-Property of IBM

) I

Number Normalized Value Internal Floating-Point

12.345 0.1234500 x 102 0 1 23 45 00 S2

-12.345 -0.1234500 x 102 11 23 45 00 S2

12.345 x 1020 0.1234500 x 1022 0 1 23 45 00 g6

12.345 x 10-20 0.1234500 x 10-1s 0 1 23 45 00 6E

12.345 x 1 og6 0.1234500 x 10gs 01 23 45 00 E2

1.2345 x 1 o_gg 0.1234500 x 10_gs 0 1 23 45 00 1E

0.00005 0.5000000 x 10-4 05 00 00 00 7C

0.5 0.5000000 x 10° 0 5 00 00 00 so

5000 0.5000000 x 104 0 5 00 00 00 S4

0 *0.0000000 x 10-gs 0 0 00 00 00 1E

12.34567Sg012345 0.1234567sgo12345 x 102 2 1 23 45 67 sg 01 23 45 S2

*Special form used to display a standard-precision, packed, floating-point zero.

BR1332A

Figure 3-171. Floating-Point Numbers, Example

X'S5'
J L

0 1 2 3 4 5 6 7 s g A B c D E F

1 Hexadecimal value is outside valid exponent limits. -gs -g7
-

2 -g6 -g5 -g4 -g3 -g2 -g1 -go -sg -ss -S7 -S6 -85 -S4 -S3 -s2 -s1
-

3 -so -7g -7s -77 -16 -75 -74 -73 -72 -71 -10 -6g -6S -67 -66 -65
-

4 -64 -63 -62 -61 -60 -5g -5s -57 -56 -55 -54 -53 -52 -51 -50 -4g
-

5 -4S -47 -46 -45 -44 -43 -42 -41 -40 -3g -3s -37 -36 -35 -34 -33
-

6 -32 -31 -30 -2g -2s -21 -26 -25 -24 -23 -22 -21 -20 -1g -1s -17
-

7 -16 -15 -14 -13 -12 -11 -10 -g -s -7 -6 -5 -4 -3 -2 -1
-

s 0 1: 2 3 ,4 5- 6 7 s g 10 11 12 13 14 15 - _j

g 16 17 1S 1g 20 21 22 23 24 25 26 27 2S 2g 30 31
-

A 32 33 34 35 36 37 3S 3g 40 41 42 43 44 45 46 47
-

B 4S 4g 50 51 52 53 54 55 56 57 5S 5g 60 61 62 63
-

c 64 65 66 67 6S 6g 70 71 72 73 74 75 76 77 7S 7g
-

D so S1 S2 S3 S4 S5 S6 S7 SS sg go g1 g2 g3 g4 g5
-

E g6 g1 gs gg Hexadecimal value exceeds exponent limits.
-

BR1333A

Figure 3-172. Exponent Conversions (Internal Format to Decimal)

Program Organization 3-267

Licensed Material-Property of IBM

3-268

Sta
tus

2

Long-Precision, Packed~Decimal, Floating-Point
EJernent (9 b tes)

3 4 5 6 7

15-Packed-Decimal Digits

8

Short-Precision, Packed-Decimal, Floating-Point
Element (5 bytes)

1 I 2 I 3 l 4 5

9

Charac
teristic

Sta-1 7 Packed-Decimal Digits Charac-
tus teristic

Status Half-Byte

a 1 2 3

Trace Type Precision Sign

~ r- l== a-Positive Fraction

1-Negative Fraction

a-Standard (short) Precision

1-Long Precision

a-Arithmetic Floating-Point Element

1-Character Field (refer to Figure 3-110)

BR1334

Figure 3-173. Arithmetic Packed-Decimal Format

Long-Precision, Unpacked-Decimal, Floating-Point Field (16 bytes)

2 3 4 5 6 7 8 9 1a 11 12 13 14 15 16

15 Unpacked-Decimal Digits (signed)

--- Characteristic

Short-Precision, Unpacked-Decimal,
Floating-Point Field (8 bytes)

2 3 4 5 6 7 8

7 Unpacked-Decimal Digits (signed)

i-----< Characteristic

Note:

1. The zone bits, of the last significant digit, indicate the sign of an unpacked
decimal field; F = positive, D = negative.

2. Refer to "Floating-Point Arithmetic" to determine the exponent from the
characteristic.

Figure 3-174. Arithmetic Unpacked-Decimal Format

Licensed Material-Property of IBM

BR1335

)

DESK CALCULATOR-DCALC (Figure 3-179)

The first phase of DCALC is called by the command analyzer (#ECMAN) after command
key 01 is pressed by the operator. DCALC processes operator commands from the key
board, one command at a time, until the operator transfers control to #GUFUD via
INQUIRY REQUEST (INQ REQ). The concepts of virtual memory and paging are the
same for DCALC as for the interpreter. Many of the subroutines used by DCALC
(including the paging subroutine, IPGMDL) are identical to those used in the interpreter.

DCALC Cycle

1. DCALC accepts input from the keyboard (command keys, function keys, and
data keys).

2. The operator command is interpreted and/or syntax checked.
3. Core-resident and virtual-memory-resident subroutines are called to execute the

operator's command.
4. Steps 1 through 3 are performed until DCALC is terminated (INQ REQ).

Organization of Assembly Listings

All modules of the desk calculator are contained in these six assembly listings:

1. DCALC loader-#VLOAD
2. Core-resident routines-#VODKA
3. Virtual-memory-resident subroutines-#VVMRS
4. Virtual-memory-resident subroutines and procedures-##VUF A
5. CRT physical IOCS-#VCRTI
6. DCALC terminator-#VXITI

Core Resident Routines-#VODKA

#VODKA resides in the system program file and is loaded to core at X'0600' immedi
ately following the system nucleus. #VLOAD copies #VVMRS to virtual memory prior
to loading #VODKA. The assembly listing of #VODKA contains the following modules
arranged in this physical order:

VSV ARA-Save areas and push-down (PM) registers
VOTCON-Convert floating point to output
FDIADD/FDISUB-Floating point add/subtract (long precision)
FZIMPY-Floating point multiply (long precision)
FFIDVD-Floating point divide (long precision)
VODKAL-DCALC monitor (control module)
VODIPT-Alpha input table
VENABL-Return next input character
VENDTB-Data key character table
VOUTPT-Output control routine
VSYNTX-Control computation routine
VCONVT-Convert input to floating point (long precision)
TV AREG-Addressable (AM) registers
DPRINT-Matrix printer physical IOCS (actual 1/0) (refer to "Conversational 1/0

Routines-#DPRIN")
DVPRSC-Keyboard physical IOCS (actual 1/0)
IPGMDL-Paging subroutine (refer to "Paging Subroutine-IPGMDL")
VINITI-DCALC initialization

Program Organization 3-269

Licensed Material-Property of IBM

3-270

Virtual-Memory-Resident Subroutines-#VVMRS and ##VUFA

These components of the desk calculator are copied from the system program file to the
first 72 sectors of virtual memory, by the DCALC loader (#VLOAD). Individual pages
are read into the core paging area and executed under control of the paging subroutine
(IPGMDL). ##VUFA starts at virtual address X'3200'. #VVMRS and ##VUFA contain
subroutines and data areas to perform the functions listed in Figure 3-17 5.

Virtual Disk Symbolic Input
Synopsis

Address Address Label Command

0000 0700 VERROR Error message routine.

0100 0704 VPRINT PRINT Print AM and PM registers.

0180 0704 VPRT8L Core addresses and virtual addresses
for AM and PM registers.

0200 0708 VPR8AA Virtual memory buffers for all AM and
PM registers.

0500 0714 VPOINT POINT Change decimal point location.

0600 0718 VNWDEF PROC Define a new procedure.

0661 0718 VNWCRD CARD Read a procedure from the data
recorder.

068D 0718 VDELET (01) Delete a procedure.

0700 071C VNDPRC END End a procedure.

0800 0720 VREADI CARD Read a procedure from the data
recorder.

0900 0724 VRUNIT (PROG Execute a procedure.
START)

090D 0724 VRUEXC EXEC List a procedure as it is executed.

0920 0724 VRULST LIST List procedure steps without execution.

OAOO 0728 VPLIST List procedure input buffer.

OA8C 0728 VPUNCH PUNCH Punch a procedure on data recorder.

08AO 072C VPU8UF Virtual memory buffer for punch
output.

ocoo 0730 VSFONE SF1 Perform statistical function 1.

OC06 0730 VSFTWO SF2 Perform statistical function 2.

1100 0744 VSFT01 Text messages for SF 1 and SF2.

1200 0748 *FKLLGT LTW Log base 10.

1208 0748 *FKLLTW LGT Log base 2.

1219 0748 *FKLLOG LOG Log base e.

1470 0750 *CENXZD Convert exponent to zoned decimal.

14AD 0750 *CCZDFP Convert zoned decimal to long-precision
floating-point.

1500 0754 *FGLEXP EXP Exponentiate.

1800 0780 *FN8PWR EXP Floating-point exponentiate.

1900 0784 *FR8SQR SQR Square root.

1AOO 0788 *FS8COS cos Cosine.

1A1A 0788 *FS8SIN SIN Sine.

1DOO 0794 *FQLRND RND Random number generator.

1E70 0798 *CBFPZD Convert floating point to zoned decimal.

1E82 0798 *CD8NZD Convert binary number to zoned
decimal.

8R1336.1
Figure 3-175. Contents of Virtual Memory (DCALC) (Part 1of2)

Licensed Material-Property of IBM

)

Virtual Disk Symbolic Input Synopsis
Address Address Label Command

1 FOO 079C *FTLSEC SEC Secant.

1 F25 079C *FTLCSC csc Cosecant.

1 F61 079C *FJBINT INT Integer.

1F9C 079C *FPBRAD RAD Convert degrees to radians.

1FAB 079C *FPBDEG DEG Convert radians to degrees.

1FCB 079C *FABABS ABS Absolute value.

1FD6 079C *FUBSGN SGN Sign.

2000 07AO *FWLCOT COT Cotangent.

2028 07AO *FWLTAN TAN Tangent.

2400 07BO *DFRDIN READ Card reader physical IOCS (actual 1/0).

2496 07BO *DFCOUT PUNCH Card punch physical IOCS (actual 1/0).

2500 07B4 *FHLHCS HCS Hyperbolic cosine.

2557 07B4 *FHLHSN HSN Hyperbolic sine.

2593 07B4 *FHLHTN HTN Hyperbolic tangent.

2700 07BC *FFBLATN ATN Arctangent.

2AOO 07C8 *FCLACS ACS Arccosine.

2A13 07C8 *FCLASN ASN Arcsine.

2BOO 07CC Not used by DCA LC (5 pages).

3000 0701 V@VEXT DCALC terminator (#VXITI).

3200 0709 VSATBL Procedure address table.

3228 0709 VSARCH Returns the virtual address of a

procedure.

3300 070D VSAWRT INQ REQ Write back modified VM pages and
load DCALC terminator (#VX ITI).

3400 0711 VSAPRQ+1 Procedures Q through Z (2 pages per
procedure-20 pages total).

4800 0781 V@VOVL Three sectors of saved core starting at
label FDIADD in #VODKA.

4BOO 078D The remainder of virtual memory is
not used by DCALC.

BR 1336.2

Figure 3-175. Contents of Virtual Memory (DCALC) (Part 2 of 2)

The following list contains explanations of the column entries in Figure 3-17 5:

1. "Virtual Address" is the virtual address entry point to perform the function or
the virtual address of a data area or table.

2. "Disk Address" is the disk address of the virtual memory page containing the

entry point.
3. "Symbolic Label" is the symbolic name of the entry point in the assembly listing

of #VVMRS. An* indicates that the subroutine is identical to a subroutine in
#FMLNG (interpreter), both having the same symbolic name.

4. "Input Command" is the user command associated with the execution of that
subroutine. Parentheses indicate a keyboard function or command key (example:

(PROG START) or (01)).

Program Organization 3-271

Licensed Material-Property of IBM

3-272

DCALC lnitialization-#VLOAD and VINITI

#VLOAD is the first phase of the desk calculator to be loaded into core. This phase
copies #VVMRS, #VXITI, and ##VUFA to virtual memory from the system program
file, and then loads the mainline phase of the desk calculator (#VODKA) to core.
#VODKA overlays #VLOAD. (Refer to Figure 3-176.)

0000

07F7

Core

System Nucleus

' #VLOAD

.......
.......

'

'

........
........

.....

' (saved core)

##ERMS
(error message text)

#VODKA
(DCALC monitor)

VINITI
.......

........

Core Paging Area
........

........
.......

#VCRTI
(CRT physical IOCS)

Figure 3-176. DCALC Core and VM Map (with CRT)

Virtual Memory

BR133B

The first executable instruction in #VODKA is a branch to VINITI. This initialization
routine (VINITI) writes a three-sector area of the core-resident desk calculator to virtual
memory. These three sectors are used for error message text blocks (##ERMS) during
DCALC error message processing (in routine VERROR). After error message processing,
the area is restored from virtual memory. VINITI also loads #VCRTI (CRT physical
IOCS and CRT buffer) to high core, if a CRT device is configured. VINITI initializes the
core paging area to a size of eight pages (starts at X'1800').

Initialization of the desk calculator is complete when VINITI branches to the label
VODONE, in #VODKA.

Licensed Material-Property of IBM

)

DCALC Error Messages-VERROR

VERROR is a pageable subroutine in virtual memory (#VVMRS). This page is called to
display error messages to the operator. VERROR reads the first two sectors of ##ERMS
from the system program file into core, overlaying part of the core-resident desk calcula
tor (#VODKA). These two sectors contain an index to the message text within ##ERMS.
The error code (VERERC) is used as a search argument against the index. The entry that
is located contains the relative disk address of the message text within ##ERMS. The
message text is read from the system program file, overlaying the index.

The message is displayed on the matrix printer by DPRINT. The core area, used as a
buffer for the index and message text blocks, is restored from virtual memory. An image
of the core-resident code normally occupying this area was written to virtual memory
during DCALC initialization.

Label Trace for ENTER+ Function

The following labels trace the execution of the ENTER+ function key. This function
places' the numeric value just entered, into PM I. The numeric value is converted to a
long-precision, unpacked-decimal, floating-point field. This trace illustrates a func
tion executed entirely by core-resident routines.

1. VODONE-This label is the normal return point after the execution of each
function.

2. VOD050-Branch to VENABL and set up return linkage.
3. VENABL-Get a single input character from the keyboard.
4. VEN200-Branch to DVPRSC for keyboard physical 1/0.
5. DVPRSC-Read one input character from the keyboard and perform error checks.
6. VENRET-Return from keyboard IOCS; input was the ENTER+ function key.
7. VOD060-Check type of input character.
8. VODl 10-Character is ENTER+. Branch to VSYNTX to perform syntax check.

Calculation is desired.
9. VODllO+lO-Branch to VODPSH.
10. VODPSH-Push down PM registers 1 through 9.
11. VOD110+14-Jump to VOD840.
12. VOD840-If no error, branch to VOD890.
13. VOD890-Branch to VOUTPT for output.
14. VOD060-Check type of input character.
15. VOU300-Branch to VSPRNT (interface to DPRINT and/or #VCRTI) to tab

(space carrier and/or cursor).
16. VOU300+18-Branch to VOTCON to convert the contents of PMl to printable

format.
17. VOU300+25-Branch to VODPRT (interface to DPRINT and/or #VCRTI) to

print PMl.
18. VOU802-Return to DCALC monitor.
19. VOD900-Return to VODONE to process the next operator input.

Label Trace for SIN Function

The following labels trace the execution of the SIN function. This trace illustrates a
function that requires paging of subroutines from virtual memory. Those labels marked
with an(*) are located in virtual memory subroutines (#VVMRS). Those that are
unmarked are located in the core-resident desk calculator (#VODKA).

1. VODONE-This label is the normal return point after execution of each function.
2. VOD050-Branch to VENABL.
3. VENABL-Get a single input character from the keyboard.

Program Organization 3-273

Licensed Material-Property of IBM

3-274

4. VEN200-Branch to DVPRSC for keyboard physical 1/0.
5. DVPRSC-Read one input character from the keyboard and perform error checks.
6. VENRET-Return from keyboard IOCS; input was the S data key.
7. VEN290-Move the first character into the input buffer at label VSVIPC.
8. VOD060-Check type of input character.
9. VOD300-S is an allowable first input data character.
10. VOD310-Call VENABL to get the second input character. Move it to the input

buffer at label VSVIP2.
11. VOD330-Call VENABL to get the third input character. Move it to the input

buffer at label VSVIP3. Now the input buffer contains SIN.
12. VOD340-Search the alpha input table (VODIPT) for the SIN entry and branch to

the core address in the entry located.
13. VOD600-Save the virtual address of the SIN function subroutine from the alpha

input table. Branch to the paging subroutine (IPGCAL). The parameter following
the branch instruction is the virtual entry point in the required virtual-memory
page (X'lAlA').

14. IPGCAL-Read and lock page X'lF' into the core paging area. This page contains
the execution subroutine FPBRAD.

15. *FPBRAD-Convert the contents of PM I from degrees to radians.
16. *FPB600-Branch to the paging subroutine. 1$RTRN is equated to IPGRTN.
17. IPGRTN-Unlock page X'lF' and return to the DCALC monitor at label

VOD600+18.
18. VOD660-Branch to the paging subroutine (IPGCAL). The parameter following

the branch contains the virtual entry point to the SIN function subroutine. This
address was saved previously at label VOD600.

19. IPGCAL-Read and lock page X'lA' (FSBSIN).
20. *FSBSIN-Compute the sine of the value in PMl and place the result in PMI.

Branch to the paging subroutine (1$RTRN).
21. IPGRTN-Unlock page X'IA' and return to the DCALC monitor at label

VOD680+1.
22. VOD840-If no error, branch to VOD890.
23. VOD890-Branch to VOUTPT for output.
24. VOUTPT-Request is to print PMI.
25. VOU300-Branch to VSPRNT (interface to DPRINT and/or #VCRTI) to tab

(space carrier and/or cursor).
26. VOU300+ 18-Branch to VOTCON to convert the contents of PMI to printable

format.
27. VOU300+25-Branch to VODPRT (interface to DPRINT and/or #VCRTI) to

print PMI.
28. VOU802-Return to DCALC monitor.
29. VOD900-Return to VODONE to process the next operator input.

Keyboard Physical IOCS-DVPRSC (Figure 3-177)

DVPRSC .is called when input of one key (function, command, or data) is to be read
from the keyboard. The keyboard is enabled and this routine waits for a key to be
pressed by the operator.

When the operator presses a key, the data is sensed and then passed to the calling
routine. INQ REQ and hard parity errors return to VENEXT. All other keys return to
VENRET with the sensed data at label VENKEY. If a typamatic key is pressed, DVPRSC
waits until the key is released before branching to VENRET.

The keyboard is locked and enabled on INQ REQ. For all other keys, the keyboard is
unlocked and disabled.

Licensed Material-Property of IBM

DVP180

Set
hard error
Indicator.

VEN EXT
in #VODKA

DVPRSC

Set interrupt
address
to DVPIRP,

Sense
keyboard,

Move sense
date to
#VODKA,

Unlock
and
disable
keyboard,

VENA ET
In #VODKA

1st

Yes

Mask
Inquiry
requests.

$CIEXT
Figure 3-10

Figure 3-177. Keyboard Physical IOCS (DVPRSC) Flowchart

Licensed Material-Property of IBM

No

Set
error
pending
indicator.

Set up
error history
log entry.

Soft Halt

DVP350

If typamatic
keys, continue
to sense keyboard.

BR1339

Program Organization 3-275

3-276

CRT Physical IOCS-#VCRTI

This program handles all output on the CRT. It is loaded to high core only if the CRT is
configured on the system. The CRT output buffer (in the assembly listing of #VCRTI)
contains the initial formatted output for the standard DCALC CRT display.

Changes in the display are moved to the output buffer by #VCRTI. Physical I/O and
error recovery procedures on the CRT are accomplished by this program.

DCALC Termination-VSAWRT, #VXITI

VSAWRT is a pageable subroutine in virtual memory (##VUFA). This page is called when
the operator depresses INQ REQ. VSAWRT writes back all modified pages from the core
paging area to virtual memory (these pages may contain modifications to procedures).
VSAWRT loads, via $BLOAD in the system nucleus, #VXITI and ##VUFA (procedures)
from virtual memory.

#VXITI writes back all procedures (##VUF A) to the system program file before
returning, via $CAIPL in the system nucleus, to BASIC mode of operation. This action
reflects all modifications that the user may have made, to the procedures, on this activa
tion of the desk calculator. (Refer to Figure 3-178.)

Core

0000

System Nucleus

........
0800 '

2000

' '
.......

.......

#VODKA

#VCRTI

#VXITI

##VUFA
(procedures)

* VSAWRT will be one of the
pages in the core paging area.

Figure 3-17 8. DCALC Termination Core Map

Licensed Material-Property of IBM

System Program File

##VUFA

Virtual Memory

BR1340

#VLOAD

VLOADN

LOAD#VODKA

1. Load virtual memory routines ($DISKN).
2. Turn on command lights.
3. Load saved procedures to VM($DISKN).
4. Exit to $RLOAD to load $VODKA.

#VODKA

VINITI

INITIALIZATION (VINITI)

1. Print header (DPRINT).
2. Do one time initialization.
3. Load #VCRTI if applicable ($LOADR).
4. Initialize paging module.

VO DONE

ENABLE INPUT

1. Call VENABL to return input character.

Input
Character

Other
Inquiry l Terminal Invalid VSAWRT
Request

PERFORM FUNCTION r ERROR PROCESS EXIT ROUTINE

1. Call VSYNTX to return if cal- 1. Call VERROR to output error 1. Call IPGMPL to write out
culation desired. message. modified pages.

2. Call routine to perform calcu- 2. Load $VXITl($BLOAD).
lation. _l 3. Call VOUTPT to output result.

] #VXITI

EXIT#VODKA

1. Save procedures on disk
($DISKN).

2. Turn off command lights.
3. Reset CRT screen if applicable.
4. Exit to $CAIPL.

_l
#GUFUD
Figure 3-22
Via $CAIPL

·,
_! BR1337

Figure 3-179. Desk Calculator (#VLOAD, #VODKA, #VXITI) Flowchart

Program Organization 3-277

Licensed Material-Property of IBM

3-278

Licensed Material-Property of IBM

This section contains:

• Directory list

• Source module labeling conventions

• System equates

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

Section 4. Directory

DIRECTORY LIST

Component
Name

##OTRK

##1TRK

##DRTY

#INSTD

I #SPSYN

#BCOMP

#LOADR

#DPRIN

The directory is a listing of all components, for quick reference to System/3 BASIC
assembly listings on microfiche. The names appear in this directory in the order in which
they appear in ##DRTY-system program file directory. This section also contains systeff
equates, and gives the general contents of each equate assembly listing.

The directory list contains the following columns:

• Component Name. The symbolic label used to identify an assembly listing. This name
appears on the microfiche and in the heading of each page in the assembly listing.

• Descriptive Component Name. This name identifies the component in Section 3.

• Synopsis. A brief summary of the main functions performed by a program. For com
ponents other than programs, the synopsis is a brief summary of the contents of the
component.

Descriptive Component Name Synopsis

Cylinder 0, track 0

Cylinder 0, track 1

System program file directory

Core-resident routines (sta.ndard-precision
interpreter)

Procedure line checker

System/3 BASIC language compiler

Loader

Conversational 1/0 routines

Contains the IPL bootstrap loader (MLOADS); initial
information for track 0.

Contains the system nucleus; initial information for
track 1.

Contains a list of all components in System/3 BASIC.
Defines the relative disk address and sector count of the
component, the core load address, and the program ID
number.

Core-resident routines direct the execution of pseudo
machine code (PMC) instructions in standard precision.

Formats procedure lines for insertion into the work
file.

Compiles the source program into PMC instructions and
constants.

Completes the preparation of virtual memory for the
execution of PMC instructions.

Provides actual 1/0 for the matrix printer and keyboard
while in conversational mode.

Directory 4-1

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

4-2

Component
Name

#KGOSL

#KEDIT

#KENAB

#DREAD

#KMOUN

#KRMOV

#KPASW

#KEXTR

#DPS LY

#TSYKT

#KRNUM

#KROVL

#KOVME

#KWRiT

#KREAD

#KWIDT

#KRUNI

#KDNTE

#KMERG

#TDC KT

#KDELE

#KCTLO

#KLIST

#KLOGO

#KSAVE

Descriptive Component Name

GO keyword program

EDIT keyword program

ENABLE/DISABLE keyword program

Card reader 1/0 routine

MOUNT keyword program

REMOVE keyword program

PASSWORD keyword program

EXTRACT keyword program

CRT 1/0 routine

System keyboard tables

RENUMBER keyword program

RENUMBER keyword program overlay

MERGE keyword program overlay

WRITE keyword program

READ keyword program

WIDTH keyword program

RUN/STEP/TRACE keyword program

ENTE F\ keyword program

MERGE keyword program

Desk calculator keyboard tables

DELETE keyword program

LISTCAT keyword program

LIST keyword program

LOGON/OFF keyword program

SAVE keyword program

Synopsis

Continues or aborts a program from a pause state.

Edits a saved ti le to the system work file or prepares the
work file for a new file entry.

Enables or disables statements in the system work file.

Provides actual 1/0 for input from the data recorder while
in conversational mode.

Updates the nucleus communications area when a disk
volume is changed.

Updates the nucleus communications area when a disk
volume is removed.

Changes the current password and the password directory
to a new password.

Saves specified line numbers on the system work file.

Provides actual 1/0 for the CRT -while in conversational
mode.

Keyboard character tables for various foreign languages.

Renumbers statements in the system work file.

See #KRNUM.

Note: This overlay is assembled with #KOVME.

See #KMERG.

Note: This overlay is assembled with #KROVL.

Changes the device assigned as the system printer.

Changes the system input device.

Changes the system printer margin values.

Provides linkage to the System/3 BASIC compiler.

Enters disk system management programs.

Merges statements from a user file to the system work file.

Keyboard tables for various foreign languages.

Deletes statements from the system work file or saved
files and passwords from the library.

Displays information from the library directories.

Displays the contents of the work file.

Defines or cancels a user password.

Stores the contents of the work file in the two-star library
or a user library.

Licensed Material-Property of IBM

Component
Name

#SPA CK

#SPOVL

#KPOOL

#KC HAN

#KSVLA

#KSSPN

#KNAME

#KSYMB

#KPRTC

#KSETI

I #GRAPR

#KALLO

#KR LAB

#KRVLA

#KDISP

#KDOVR

#VCRTI

#EXMSG

##CORE

##ERMS

#KHELP

#MIPPE

#KSOVR

#VXITI

Descriptive Component Name

Pack file library subroutine

Second phase of #SPACK

PULL/POOL keyword program

CHANGE keyword program

SAVE keyword program overlay

SUSPEND keyword program

RENAME keyword program

SYMBOLS keyword program

PROTECT keyword program

SET keyword program

Procedure I ine fetch processor

ALLOCATE keyword program

RELABEL keyword program

RELABEL keyword program overlay

D ISP LAY keyword program

DISPLAY keyword program overlay

CRT physical IOCS for DCALC

Program interruption processor

Save area

Error messages

HELP keyword program

Nucleus initialization program

SET keyword program overlay

DCALC termination

Synopsis

Page of LY 34-000 l-1
Revised January 1972
By TNL LN34-0075

Condenses the file library to place all null areas at end of
the library.

See #SPACK.

Adds or deletes user files to or from the one-star library.

Alters a statement in the system work file or statement
containing the last syntax error.

See #KSAVE.

Saves a program that is currently in an execution pause
state.

Changes the filename of the work file or a user file.

Displays variable names from the system work file.

Sets or cancels user file, or one-star protection. Sets
two-star protection.

Assigns a value to a program variable while in a program

execution pause state.

Locates sequential procedure statements in the temporary
procedure work area.

Reserves space for user data files and defines the data files
to be used during program execution.

Changes variable names in the system work file.

See #KR LAB.

Displays the current values of program variables while in a
program execution pause state or following a program
termination (unless virtual memory is destroyed).

See #KDISP.

Provides DCALC with an interface to the CRT 1/0 routine
in virtual memory.

Displays a message to identify the type of program

interruption.

Disk area used to save core for pause mode.

Contains the message number and text for system error

messages.

Displays help text.

Initializes the system nucleus during the IPL procedure.

See #KSETI.

Provides exit linkage to return to BASIC mode of
operation.

Directory 4-3

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-007 5

Component
Name

##VUFA

#VLOAD

#VODKA

#TVKBT

#VVMRS

#FMSTD

#UEXLI

#UAL LO

#KCNDI

##CSAV

##SSAV

##SAVM

#FISTD

#FILNG

##RSPG

#BOVLY

#SF SYN

#SFOVR

#STROV

##FSPG

#GUFUD

#ER RPG

##BLNB

#ECMAN

4-4

Descriptive Component Name

DCALC subroutines and procedures

DCALC initialization

DCALC core-resident routines

Unused

DCALC VM-resident subroutines

VM-resident execution subroutines

EXPAND utility program

ASSIGN utility program

CONDITION keyword program

Suspended save area

Status save area

Save area

Interpreter execution overlay

Interpreter execution overlay-

Save area

Statement processor overlays

BASIC statement syntax checker

Syntax checker

Thi rd phase of BASIC statement syntax
checker

Save area

Work file update/crusher

Error message program

Bad line buffer

Command analyzer

Synopsis

Contains user procedure save areas and procedure control
subroutines. Resides in virtual memory during DCALC
mode of operation.

Initializes and provides linkage to the desk calculator
monitor.

Controls execution of desk calculator operations.

Contains subroutines that reside in virtual memory during
DCALC mode of operation.

Contains all standard precision execution subroutines that
occupy the fixed area of virtual memory during the
execution of a BASIC program.

Changes the disk space allocated to a user library file.

Allocates disk space for a LIBRARY or system work area.

Displays the current status of the system.

Disk area used to save suspended core.

Disk area used to save the status of a suspended program.

Virtual memory disk save area.

Overlays the core-resident interpreter to perform matrix
inversion or determinant in standard precision.

Overlays the core-resident interpreter to perform matrix
inversion or determinant in long precision.

Start of cylinder 4, R 1 area.

Contains overlays to generate PMC sequences and to terminate
the compiler.

Checks the syntax of all System/3 BASIC language
statements entered into the system.

See #SFSYN.

Checks operands of STR function.

Start of cylinder 4, F 1 area.

Performs maintenance on the system work file and monitors
system input while in conversational mode.

Displays error messages.

Used to store the input line buffer when the line is invalid.
Its purpose is to free the input line buffer for input required
to correct the bad line.

Analyzes system commands and loads the program required
to process that command.

Licensed Material-Property of IBM

Component
Name

#SF LOA

#SDSYN

#SFFIN

#UPACK

#EFKEY

#UCNFI

#UCPLI

#UATRC

#UINIT

#UCDIS

#UDELV

#UDISV

#ZTRAC

#ZDUMP

#ZLOAD

#ZUTMO

#INLNG

I #KCALL

#KRSUM

#UPTFI

#UPOVL

#FM LNG

##CNFI

#KLLAY

#ZLBMA

Descriptive Component Name

Interpreter execution overlay

Data syntax checker

Interpreter execution overlay

PACK utility program·

Command key processor

CONFIGURE utility program

COPY file utility overlay

Alternate track utility program

Initialize disk utility program

COPY volume utility program

VTOC delete utility program

VTOC display utility program

Program load trace overlay

Virtual memory dump overlay

Maintenance utility loader

Maintenance utility monitor

Long precision interpreter

CALL keyword program

RESUME keyword program

PTF utility program

PTF utility program overlay

VM-resident execution subroutines

Configurator record

LIST keyword program overlay

Library map overlay

Synopsis

Page of LY34-0001-1
Revised January 1972
By TNL LN34-0075

Logical IOCS for disk data files. Transfers data items between
saved files in the file library and 1/0 buffers allocated in
virtual memory.

Checks the syntax of all data entered into the system while

in conversational mode.

Find disk data file subroutine. Called to find a disk data file
in the file library or to get space for a SCRATCH data file.

Provides interface to the pack user library subroutine. See
#SPACK.

Processes command keys 01 through 11.

Creates or modifies the configuration record on disk.

Copies the system program, user library, or help text files.

Tests, assigns, and unassigns individual data tracks.

Initializes a disk volume to the standard System/3 format.

Copies the contents of a disk volume to another volume.

Releases disk space by deleting files defined by labels in
the VTOC.

Displays VTOC file label information.

When activated, traces all programs loaded by the system
nucleus.

Displays the pseudo instructions currently in virtual
memory.

Loads the maintenance utility monitor.

Provides maintenance service aid functions.

Core-resident routines. Directs the execution of pseudo
machine code (PMC) instructions in long precision.

Invokes a procedure file in the user library.

Restores a suspended program to the execution pause state.

Applies program temporary fixes to System/3 BASIC
components.

See #UPTFI.

Contain all long-precision execution subroutines that
occupy the fixed area of virtual memory during the
execution of a BASIC program.

Contains indicators for the hardware components with
which BASIC is running.

See #KLIST.

Determines the library map option.

Directory 4-5

Licensed Material-Property of IBM

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

Component Descriptive Component Name

Name

#ZL1MA Library map option 1 overlay

#ZL2MA Library map option 2 overlay

#ZL3MA Library map option 3 overlay

#ZLVRL Library map option 3 overlay

#KKEYS KEYS keyword program

##CKTB Command key table

##INVD Save area

I ##PWRK Procedure work area

#TEOU1 System equates

#TEQU2 System equates

4-6

Synopsis

Processes option 1.

Processes option 2.

Processes option 3 (part 1).

Processes option 3 (part 2).

Lists, assigns, or restores command key functions.

Table of functions assigned to command keys 1 to 11.

The matrix inverse and matrix determinant functions use

this disk area.

This disk work area is used when a procedure file is

invoked.

Assembled as an aid to resolving symbolic references in
microfiche (part 1).

Assembled as an aid to resolving symbolic references in
microfiche (part 2).

Licensed Material-Property of IBM

SOURCE MODULE LABELING CONVENTIONS

SYSTEM EQUATES

All labels within the same source module are prefixed by a character that identifies the
type of source module. The following list associates each character with the type of
source module it identifies:

B-Compiler
C-Conversion subroutines
D-I/O subroutines
E-System control routines
F-Virtual memory routines
G-Work file processing
I-Interpreter
K-Keyword processing
L-Loader
M-Miscellaneous system routines
N-System nucleus
S-Data management or syntax routines
T-Nonexecutable tables
U-Utility processing
V-Desk calculator
Z-Maintenance utilities
@-System equates
$-System equates

The component parts of System/3 BASIC are assembled in the System/3 Basic Assembler
Language. Modules composed of equates (EQU) are used for communication between
the different component parts (assembly listings). These equate modules are referred to
as system equates. These modules are assembled (as needed) with the component parts of
the system. To reduce the size of listings and microfiche, the PRINT OFF, PRINT ON
feature of the assembler is used. The value and references of equated labels that are not
printed can be found in the cross-reference label list in the assembly listing.

All system equate modules have been grouped into two assemblies, #TEQU l and
#fEQU2. All labels not printed at their point of resolution can be located in one of
these listings.

#TEOU1

System and Hardware Equates-@SYSEQ

Note: All labels in this module are prefixed by@.

1. CPU equates: registers, instruction lengths and displacements, branch condition
codes, miscellaneous constants, and masks.

2. Disk parameter list (DPL) and print parameter list (PPL) equates.
3. System work file equates: segment header displacements and masks, and file index

table (FIT) displacements and lengths.

Directory 4-7

Licensed Material-Property of IBM

4-8

System Hardware 1/0 Equates-@HDWEO

Note: All labels in this module are prefixed by@.

1. Disk equates: disk control field (DCF), disk 1/0 instructions, condition codes,

device addresses, track flag byte, nucleus communications area error history log
entries, and sense bytes.

2. Matrix printer equates.
3. Keyboard equates: mask values and command keys.
4. CRT equates.
5. Data recorder equates: read and punch 1/0 instructions, device addresses, error

codes, and PPL function code masks.

Fixed Addresses for System Nucleus-@FXDEO

Note: All labels in this module are prefixed by $.

1. Entries to nucleus interface routines: maintenance utility aids, physical disk I/O,
and error logging.

2. Nucleus communications area equates (Figure 5-1).
3. Entries to nucleus resident routines and their work areas.
4. Equates to develop the nucleus end address.

Common Core Locations Outside Nucleus-@CANEO

Note: All labels in this module are prefixed by $$.

1. Displacements to fields in input line statements (header and text).
2. Entry points, masks, switches, and fields in the keyboard and matrix printer 1/0

routines (#DPRIN: DEPRES and DPRINT).
3. Entry points to the card reader 1/0 routine (#DREAD).
4. Entry points and locations in the CRT 1/0 routine (#DSPL Y).
5. Miscellaneous locations.
6. Keyword program load addresses.

Cylinder Zero Equates-@CYOEQ

Note: All labels in this module are prefixed by#.

1. Volume ID equates.
2. SDR/OBR displacements and lengths.
3. Cylinder 0 disk addresses and sector counts.

System Program Area Equates for Relative Disk Addresses and Sector Counts-@SPFEO

Note: All labels in this module are prefixed by#$, all sector counts are prefixed by
#$@,and all core load addresses are prefixed by#$$.

1. Relative disk addresses, sector count, and core load address of all programs,
error message modules, keyboard tables, etc., contained in the system program
file.

System Work Area Equates for Physical Disk Addresses and Sector Counts-@WKAEQ

Note: All labels in this module are prefixed by #@and all sector counts are prefixed by
#@@.

1. Cylinder 4: selected system programs, bad-line buffer, and I/O record (file
directory 1).

2. Cylinders 5 and 6: file index table (FIT) and work file data area.
3. Cylinders 7, 8, and 9: virtual memory.
4. Cylinder 9: temporary work area, core save area, and compiler and interpreter

tables on disk.

Licensed Material-Property of IBM

File Library Addresses and Tables-@DI REO

Note: All labels in this module are prefixed by##.

1. Labeling method description.
2. Relative disk addresses, displacements, lengths, and masks for the file library

directories.

General Error Message Equates-@ERMEO, @SEREQ

Note: All labels in this module are prefixed by@@.

1. Equates to system message numbers. ##ERMS contains the message numbers and
associated message text.

Volume Label Equates-@VOLEQ

Note: All labels in this module are prefixed by $#f.

1. Displacements to fields in the volume label.
2. Mask values for the files indicator byte.

Volume Table of Contents (VTOC) Equates-@VTCEQ

Note: All labels in this module are prefixed by$@$.

1. Displacements to fields in the VTOC index.
2. Displacements to fields in the VTOC system file labels.

System Configuration Record Equates-@CNFEQ

Note: All labels in this module are prefixed by@#.

1. Component number, displacement factor, and masks for all system 1/0 devices.
2. Displacement factor and masks for disk size, disk drive configuration, and core

size.

Virtual Memory Directory Equates; Directory 1 and Directory 2-@VMDEO

Note: All labels in this module are prefixed by@$.

1. Labeling method description.
2. Displacements, field lengths, and masks for directory 1 and directory 2.

Halt Indicator Equates-@HL TEO

Note: All labels in this module are prefixed by @H.

1. All values used in HPL instructions to display halt codes.

Compiler Fixed Equates-8EOU

Note: All labels in this module are prefixed by B$.

1. Addresses of buffers used for disk 1/0.
2. PMC generator entry points.
3. Core-resident routine entry points and parameter addresses.
4. Tables, subroutine precision areas, and miscellaneous equates.
5. Common compiler switch locations and masks.

Directory 4-9

Licensed Material-Property of IBM

4-10

Compiler System Equates-$B@EQU

Note: All labels in this module are prefixed by B@.

1. B@C-Pseudo instruction op codes.
2. B@L-Pseudo instruction lengths.
3. B@B-Condition code values for the BRC pseudo instruction.
4. B@P-Execution control code values for PRS and PRU pseudo instructions.
5. B@T-BASIC statement type codes.
6. B@L-BASIC statement keyword lengths.
7. B@D-Disk addresses of PMC generators, system work file, virtual memory, state-

ment address table, and branch address table.
8. Special Characters.
9. B@LET-Alphabetic characters.
10. B@DEC-Numeric characters.
11. Miscellaneous equates for constants, masks, lengths, function and array table

elements, etc.
12. Equates for virtual-memory allocation.
13. Length and displacements in the loader parameter area.

Interpreter Fixed Equates-1EQU

Note: All labels in this module are prefixed by 1$.

1. Fixed core region addresses.
2. Core-resident routine entry points and parameter addresses.
3. Indicator masks.

Fixed Addresses in Virtual Memory-VEQU

Note: All labels in this module are prefixed by V$.

1. V$F-lntrinsic functions.
2. V$A-Arithmetic functions.
3. V$M-Matrix assignment functions.
4. V$X-I/O interfaces.
5. V$S-System 1/0 routines.
6. V$C-Conversion routines.
7. V$D-Execution-time diagnostic routines.
8. V$V-Interpreter utility routines.
9. V$K-Keyboard IOCS character tables.
10. Virtual memory subroutine directory containing virtual addresses, disk addresses,

symbolic labels, and functional descriptions of all entry points in virtual memory
execution subroutines.

Desk Calculator Equates-@V@EQU

Note: All labels in this module are prefixed by V@.

1. Miscellaneous equates.
2. Mode indicators.
3. Displacements for the procedure table and input table, and from the first byte of

the register.
4. Masks and lengths.
5. Output indicator masks.
6. Error codes.
7. Keyboard keys.
8. Keyboard data byte masks for selected keys.

Licensed Material-Property of IBM

Long Precision Execution Equates-$/@LEQ

Note: All labels in this module are prefixed by I@.

1. Data element equates.
2. Arithmetic function reference equates.
3. Pseudo instruction and stack element displacements.
4. Core pages and miscellaneous equates.

System Level Equates-@L VLEQ

Note: All labels in this module are prefixed by @.

System level number.

#TEQU2

Standard Precision Execution Equates-$/@SEQ

Note: All labels in this module are prefixed by I@.

1. Data element equates.
2. Arithmetic function reference equates.
3. Pseudo instruction and stack element displacements.
4. Core pages and miscellaneous equates.

Licensed Material-Property of IBM

Directory 4-11

4-12

Licensed Material-Property of IBM

Section 5. Data Area Formats

This section contains detailed information concerning these areas of System/3 BASIC:

• System communication area (NUCLES) (Figure 5-1)

• Disk volume format (Figure 5-2)

• Configuration record (Figure 5-3)

• Error history log (Figure 5-4)

• Individual volume statistics and master SIO table (Figure 5-5)

• Disk statistical data recording (Figure 5-6)

• Nondisk statistical data recording (Figure 5-7)

• Outboard recording (Figure 5-8)

• Volume label (Figure 5-9)

• Volume table of contents (Figure 5-10)

• Directories to system library file (Figure 5-11)

• Null directory (Figure 5-12)

• Password directory (Figure 5-13)

• Filename directory block (Figure 5-14)

• BASIC program file structure (Figure 5-15)

• File index table (Figure 5-16)

• File directory 1 (Figure 5-17)

• Segment descriptor field (Figure 5-18)

• End of file record (Figure 5-19)

• File directory 2 (Figure 5-20)

• System help text file (Figure 5-21)

• Help text record (Figure 5-22)

• Print parameter list (Figure 5-23)

• Disk parameter list (Figure 5-24)

• Disk control field (Figure 5-25)

• Delete parameter list (Figure 5-26)

• Command key table (Figure 5-27)

• IBM-assigned command key functions (Figure 5-28)

• System program file directory - ##-DRTY (Figure 5-29)

Data Area Formats 5-1

Licensed Material-Property of IBM

System
Hex Disp

Dec Field
from Label Mask Description

Equate
$NUCBS

Disp Length

$RMRGN 00 0 1 Right margin value for printer.

$LMRGN 01 1 1 Left margin value for printer.

$PRPOS 02 2 1 Current position of printer head.

$KEYCD 03 3 1 Keyboard indicators:

$TRUNK X'BO' Last line truncated (keyboard input).

$DTNMB X'40' Automatic line numbering (card NUM).

$1NRPT X'20' Program interrupted and aborted.

$KYBSY X'10' Keyboard busy (line not yet complete).

$GUFIR X'OB' #GUFUD interrupted but not aborted.

$NOLST X'04' No listing of card input required.

$10YES X'02' I /0 routines are in core.

$CARDI X'01' Input from data recorder (bit off
indicates keyboard input).

$BRSAV 04 4 2 Base register save area.

$XRSAV 06 6 2 Index register save area.

$TABLN 08 8 4 Automatic line number value (inserted
if tab key is first key depressed).

oc 12 1 X'40' Blank must follow $TAB LN.

$CAERR OD 13 1 Error code for interface to #ER RPG.

$ER RPG OE 14 1 Indicators for special functions of
#ERRPG:

$ER KEY X'BO' Standard error (set by command
analyzer #ECMAN).

$ER1N2 X'50' Level 1 and 2 messages required.

$ERFI L X'40' File line error has occurred.

$ERSFL X'35' File line error occurred in syntax
checkers.

$ERSTK X'30' Process stacked error codes.

$ERR CT OF 15 1 Count of stacked error codes.

$XIND1 10 16 1 Primary execution indicators:

$VMDEF X'BO' Virtual Memory not empty.

$XPREC X'40' Execute in long precision (bit off
means short precision).

$TRVAR X'20'
Trnco '"

1
'"'"') Wh X'04' . variables. en IS on,

$TRALL X'10'
at least one of these

Trace all. must be on.
$TFLOW X'OB' Trace flow.

$TRACE X'04' Execute in trace mode. } Mutually
$STE PT X'02' Execute in step mode.

$RUNIT X'01' Execute in run mode. •
exclusive.

$XIND2 11 17 1 Secondary execution indicators:
X'EO' Unused bits.

$ABORT X'10' Abort execution.

$PSTMT X'OB' Pause caused by PAUSE statement.

$PSTEP X'04' Pause caused by step mode.

$PAUSE X'02' Program in pause state.

$EXCMD X'01' Program in execution.

BR1342.1

Figure 5-1. System Communication Area (NUCLES) (Part lof 4)

5-2

Licensed Material-Property of IBM

)

System
Hex Disp

Dec Field
from Label Mask

Equate
$NU CBS

Disp Length

$101ND 12 18 1

$LNPTR X'80'

$DTRDR X'40'

$HR DER X'20'

$PG MST X'10'

$CMDKY X'08'

$CRTNO X'04'

$CRT AV X'02'

$MP OWN X'01'

$CRTIN 13 19 1
X'FO'

$CRTSP X'08'

$CRTPU X'04'

$.CRTDN X'02'

$CRTUP X'01'

$1NDR1 14 20 1

$BASIC X'80'

$KEY OT X'40'

$PGMDT X'20'

$FITIN X'10'

$WFLOK X'08'

$WSIND X'04'

$PRE SN X'02'

$PROCI X'01'

$1NDR2 15 21 1

$READY X'80'

$FOIND X'40'

$FUIND X'20'

$FCIND X'10'

$DKERR X'08'

$ERPND X'04'

$CM ODE X'02'

$TM PUT X'01'

$1NDR3 16 22 1

$NWRKF X'80'

$NWRKR X'40'

$MOUNT X'20'

$CLBFR X'10'

$NOE NB X'08'

$ERHRD X'04'

$LIST X'02'

$DB LOK X'01'

Page of LY34-0001-l
Revised January 1972
By TNL LN34-0075

Description

1/0 status indicators:
Bidirectional printer option available.
Data recorder present.

Hard error.
Program start key not used for auto-
matic I ine number.
Command keys only (bit off for full

keyboard input).
CRT can be used for system printer.
CRT present.
Matrix printer is not operational.

CRT command indicators:
Unused bits.
Roll stop requested.
Pop requested.
CRT in rolldown mode.
CRT in rollup mode.

System work file status indicators:
Basic program in work file.
Keyboard- or card-generated data file
in work area.
Program-generated data file in work

area.
FIT sectors are in core.
File protected (only ALLOCATE can
modify file).
System work file contains an active
file.
Long precision in use (bit off means
short precision).
Work file procedure indicator.

System indicators:
READY will not be printed.
Line number list is deleted.
Line passed.
Single line number deletion, through
the command analyzer (#ECMAN).
Disk error has occurred (an entry
must be made in the individual volume
statistics).
Error is pending for history log.
Conversational mode (bit off means
utility mode).
In temporary utility mode.

System indicators:
No work area on F 1.
No work area on R 1.
Only MOUNT or INITIALIZE com-
mand is valid after REMOVE
command.
Clear input line buffer.
Keyboard already enabled.
Hard halt from #ERRPG.
Accept rolldown key.
File may be saved to** library.

BR1342.2A

Figure 5-1. System Communication Area (NUCLES) (Part 2 of 4)

Data Area Formats 5-3

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

5-4

System
Hex Disp

Dec Field
from Label Mask Description

Equate
$NU CBS

Disp Length

$DKSIZ 17 23 1 Total disk cylinders on system:
X'EO' Unused bits.

$DK800 x·10· 800 cylinders.

$DK600 X'08' 600 cy I inders.

$DK400 X'04' 400 cylinders.

$DK200 x·o2· 200 cylinders.

$DK100 X'01' Reserved.

$XIND3 18 24 1 Previous contents of $XIND1 (dis-

placement X'1 O') used by loader to
determine such things as the precision

of VM routines.

$Fl LIB 19 25 2 Current file library disk address.

$USRDR 1B 27 2 Displacement to the first user directory
block for the LOGON password.

$CONFG 1D 29 1 Configuration indicators:

$16CKY X'08' 16 command keys present.

$12K X'04' Storage size is 12k.

$16K X'02' Storage size is 16k.

$221MP x·o1· 22·inch matrix printer (bit off means
13-inch).

$BIGCD X'80' 129 Card Data Recorder configured.

X'70' Unused bits.

$LEVEL 1E 30 2 System level number.

$DBGUF 20 32 1 #GUFUD indicators:

$CRUSH X'80' Crush the work file if bit is off.

$REORD X'40' Reorder the work file if bit is off.

$1RKEY X'20' Force return to keyboard mode.

$10PGS X'10' File directory 1 occupies 2 sectors.
If only one sector is used, this bit is

off.

$CALLI X'08' Procedure call indicator.

X'07' Unused bits.

$KEYBD 21 33 1 Number associated with the keyboard
table being used .

$CRPOS 22 34 1 . Current position of the CRT cursor.

$BUFPT 23 35 1 Line printer buffer pointer.

$LPRP3 24 36 1 Line printer indicators.

$LPROS 25 37 1 Line printer print position.

$NEXTB 26 38 1 Relative sector address of next line
in procedure call.

$NEXTL 27 39 1 Displacement within relative sector
for next procedure line.

$DFDET 28 40 1 Internal procedure I ine fetch
indicator.

$LPRIO 2A 42 2 Save area for line printer.

$PTCH1 2B 43 11 Patch area.

BR1342.3B

Figure 5-1 System Communication Area (NUCLES) (Part 3 of4).

Licensed Material-Property of IBM

)
System

Hex Disp
Dec

Equate
from Label

Disp
$NU CBS

$VOLID 36 54

$VOLR1 36 54

3C 60
$VOLF1 3E 62

44 68
$VOLR2 46 7o

4C 76

$VOLF2 4E 78

54 84

$PKERT 56 86
56 86
58 88
5A 90
5C 92
5E 94
60 96
62 98
64 100

$PASWD 66 102

$HISTE 6E 110
GE 110
6F 111
70 112

74 116

$HIST1 75 117

$DATE 7A 120
$EXFTR 78' 123

$WFNME 7C 124
$WFDEF 7C 124

$DPLSV 84 132
$PR DEV 8A 138

$CRT AD 8C 140

$PLST1 8E 142
$PLST2 95 149
$PLST3 9C 156
$C0001 A3 163

Field
Length

Mask

32

6
2

6
2

6
2
6
2

16
2
2
2
2
2
2
2
2

8

10
1
1
4
1

3

3

1

8
1 X'40'

6
2

2

7
7
7
2

Page of LY34-0001-1
Revised January 1972
By TNL LN34-0075

Description

Volume-ID table. If volume is not
mounted, its entire entry is binary
O's. If no file library is present on
the volume, the first byte of the disk

address is X '00'.
Volume-ID for R 1.
File library disk address on R 1.
Volume-ID for F 1.
File library disk address on F1.

Volume-ID for R2.
File library disk address on R2.
Volume-ID for F2.
File library disk address on F2.

Disk volume error rate table.
Total write errors on R 1.
Total read errors on R 1.
Total write errors on F 1.--
Total read errors on F 1.
Total write errors on R2.
Total read errors on R2.
Total write errors on F2.
Total read errors on F2.

Current password.

Error history log entry.
SIO instruction 0 code.
SIO instruction R code.
Sense bytes.
Count.
Last 3 bytes of DCF (Figure 5-25).

I PL date.
Core expansion factor for over 8k.

Work file name.
Indicates the work file is defined.

DPL save area for keyword programs.
Core address of the system printer

IOCR.
Core address of entry to relocate CRT.

Last 1/0 parameter list started.
Second to last parameter list started.
Third to last parameter list started.
Constant of X'0001 '.

Figure 5-1. System Communication Area (NUCLES) (Part 4 of 4)
BR1342.4

Data Area Formats 5-5

Licensed Material-Property of IBM

Fixed Areas and System Files cc HH SS N Notes

'
IPL bootstrap loader (#MLOAD) 00 00 00 1 Present on all volumes.

System configuration record 00 00 01 1 Present on all volumes.*

Volume label 00 00 02 1 Required on all volumes.

Error history log 00 00 03 6 Required on all volumes.

VTOC index 00 00 09 2 Required on all volumes.

VTOC file labels 00 00 11 13 Required on all volumes.

System nucleus .00 01 00 12 Present on all volumes.*

I BM program product protection 00 01 12 3 Present on all volumes.*

Disk system management program IPL 00 01 15 8 Present on all volumes.*

PTF Log 00 01 23 1 Present on all volumes.

Alternate data tracks 01 00 00 Six tracks present on all volumes.
through

03 01 23

System work file 04 00 00 Twelve tracks required on both
through R1 and F1 (24 tracks total).

09 01 23

System program file nn 00 00 x Location defined by user. Must

through be defined on drive 1.

nn 01 23

System library file nn 00 00 n Location and size defined by user.

through
nn 01 23

System help text file nn 00 00 n Location defined by user.

through
nn 01 23

System PTF file xx 00 00 x
through

xx 01 23

Notes:

x-Predefined values.

n-Values that can be defined by the user. These values are defined in the volume label and by
labels in the VTOC.

CC HH SS N-Cylinder, head, sector, and number of sectors.

* -Space reserved but not necessarily used.

Figure 5-2. Disk Volume Format

5-6

Licensed Material-Property of IBM

)

)

Hex Dec Dec Mask
Disp Disp Length (bits on)

00 0 16

10 16 1

X'80'

X'40'

X'3F'

11 17 2

13 19 1

X'04'

X'08'

X'18'

X'09'

X'E2'

14 20 1

X'80'

X'40-'

X'3F'

15 21 1

16 22 1

X'09'

X'05'

X'OA'

X'06'

17 23 1

18 24 1

X'80'

X'40'

X'3F'

19 25 1

X'80'

X'40'

X'3F'

1A 26 1

1B 27 1

1C 28 4

20 32 1

X'80'

X'40'

X'48'

X'37'

21 33 3

Description

Reserved.

Disk:

Supported.

Supported for System/3 BASIC.

Unused.

Unused.

Disk size and configuration:

Page of LY34-0001-1
Revised January 1972
By TNL-LN34-0075

Model 1; 2 volumes of 100 cylinders each.

Model 2; 2 volumes of 200 cylinders each.

Model 2 and 3; 3 volumes of 200 cylinders each
(F1,R1,andF2).

Two Model 2's; 4 volumes of 200 cylinders each
(maximum configuration).

Unused.

Printer:

Supported.

Supported for System/3 BASIC.

Unused.

Unused.

Model indicators:

5213 Model 1 or 2; 132 print positions.

5213 Model 3; 132 print positions, bidirectional.

2222 Model 1; 220 print positions.

2222 Model 2; 220 print positions, bidirectional.

Unused.

Keyboard:

Supported.

Supported for System/3 BASIC.

Unused.

Keyboard options:

16 command keys.

8 command keys.

Unused.

Keyboard character table. Contains a number that
corresponds to the keyboard table selected.

Unused,

Reserved,

Data Recorder

Supported

5496-supported for System/3 BASIC

129-supported for System/3 BASIC

Unused.

Unused.

Figure 5-3. Configuration Record (Part 1 of 2)

Data Area Formats 5-7

Licensed Material-Property of IBM

5-8

Hex Dec Dec Mask
Description

Disp Disp Length (bits on)

24 36 4 Reserved.

28 40 1 2265 Display Station (CRT):

X'80' Supported.

X'40' Supported for System/3 BASIC.

X'3F' Unused.

29 41 3 Unused.

2C 44 16 Reserved.

3C 60 1 Unused.

30 61 1 Core size:

X'01' 8k.

X'02' 12k.

X'04' 16k.

X'F8' Unused.

3E 62 2 Unused.

40 64 192 Reserved.

FF 255 Last byte of configuration record.

Note: Four-byte entries are reserved for each possible System/3 component. This figure illustrates
only those areas used by System/3 BASIC.

Figure 5-3. Configuration Record (Part 2 of 2)

Cylinder 0, Head 0, Sectors 3 through 8

3 4 l 5 J 6 7 I 8

II SOR (F1 only) OBR (F1 only)

tL Master SIO Table (F1 only) c Individual Volume Statistics (all volumes)

Notes:

Refer to Figure 5-5 for individual volume statistics and
master SIO table.

Refer to Figure 5-6 for disk statistical data recording (SOR).

Refer to Figure 5-7 for nondisk statistical data recording (SOR).

Refer to Figure 5-8 for outboard recording (OBR).

Figure 5-4. Error History Log

Licensed Material-Property of IBM

Individual Volume Statistics (present on all volumes)

Hex Dec Dec
Description

Disp Disp Length

00 0 4 Count of total temporary errors (includes missing address markers
and data checks).

04 4 4 Total write SI O's issued to this volume (includes verifies).

08 8 4 Total read and scan SI O's issued to this volume.

Master SIO Table (F1 only)

oc 12 4 Total write SI O's issued to R1.

10 16 4 Total read and scan SI O's issued to R1.

14 20 4 Total write SI O's issued to F1.

18 24 4 Total read and scan SIO's issued to F1.

1C 28 4 Total write SI O's issued to R2.

20 32 4 Total read and scan SI O's issued to R2.

24 36 4 Total write SI O's issued to F2.

28 40 4 Total read and scan SI O's issued to F2.

2C 44 212 Unused to end of sector 3.

BR1346

Figure 5-5. Individual Volume Statistics and Master SIO Table (Cylinder 0, Head 0, Sector 3)

Disk Error Counters (2 bytes each)

Hexadecimal Displacement*

R1 Fl R2 F2 Error Condition

T p T p T p T p

00 10 20 30 40 50 60 70 Overrun

02 12 22 32 42 52 62 72 Data check in ID

04 14 24 34 44 54 64 74 Data check on write

06 16 26 36 46 56 66 76 Data check on read

08 18 28 38 48 58 68 78 No record found

OA 1A 2A 3A 4A 5A 6A 7A Equipment check

oc 1C 2C 3C 4C 5C 6C 7C Missing address marker

OE 1E 2E 3E 4E 5E 6E 7E Seek check

* T -temporary; P-permanent

Notes:

1. Statistical data recording (SOR) is present on Fl only.
2. The remainder of sector 4 and all of sector 5 are not used for error

recording.

BR1347

Figure 5-6. Disk Statistical Data Recording (Cylinder 0, Head 0, Sector 4)

Data Area Formats 5-9

Licensed Material-Property of IBM

Nondisk Error Counters (2 bytes each)

Hex Dec Dec
Disp Disp Length

Error Condition

00 0 2 Keyboard parity check

02 2 6 Unused

08 8 2 CRT parity check

QA 10 6 Unused

10 16 2 Printer horizontal cycle check (temporary)

12 18 2 Printer data check (temporary)

14 20 2 Printer margin check

16 22 2 Printer sync check (temporary)

18 24 2 Printer ROS check (temporary)

1A 26 2 Printer vertica I cycle check

1C 28 2 Printer horizontal cycle check (permanent)

1E 30 2 Printer data check (permanent)

20 32 2 Unused

22 34 2 Printer sync check (permanent)

24 36 2 Printer ROS check (permanent)

26 38 26 Unused

40 64 2 Data recorder not ready

42 66 2 Unused

44 68 2 Data recorder compare error

46 70 186 Unused to end of sector 6

Note: Statistical data recording (SOR) is present on Fl only.

BR1348

Figure 5-7. Nondisk Statistical Data Recording (Cylinder 0, Head 0, Sector 6)

5-10

Licensed Material-Property of IBM

Outboard Recording (2 sectors on F1 only)

Hex Dec Dec
Disp Disp Length

Description

00 0 2 Displacement to the last byte of the previous OB R entry.

02 2 2 Displacement to the last byte of the OBR table

(always X'01 FF').

04 4 4 Unused.

08 8 504 OBR entries (either 8 or 16 bytes in length). ~

_!
Disk OBR Entry (16 bytes)

Hex Dec Dec
Description

Disp Disp Length

00 0 2 Q and R bytes from SI 0 instruction.

02 2 4 Sense bytes.

06 6 1 Retry count for temporary errors (X'OO' indicates a permanent
error).

07 7 2 Disk address from disk control field (DCF).

09 9 1 Number of sectors from DCF.

QA 10 6 Volume-ID from volume label.

l
Nondisk OBR Entry (8 bytes)

Hex Dec Dec
Description

Disp Disp Length

00 0 2 Q and R bytes from SI 0 instruction.

02 2 1 Second sense byte.

03 3 1 First sense byte,

04 4 2 Device dependent information. I-

06 6 2 Unused.

!
Device Dependent Information

(displacement X'04' in nondisk OBR entries)

Device Content

CRT CRT address register.

Printer One-byte command code followed by one-byte count.

Keyboard Undefined.

Data Recorder Undefined.

BR1349A

Figure 5-8. Outboard Recording (Cylinder 0, Head 0, Sectors 7 and 8)

Data Area Formats 5-11

Licensed Material-Property of IBM

Hex 1 Dec Dec
Disp; Disp Length Field Name Field Description

00 0 3 Label identifier Must contain VOL.

03 3 6 Volume-ID Six alphanumeric characters that provide
unique identification for the volume.

09 9 2 VTOC pointer Disk address of the first sector in the
volume table of contents.

08 11 71 Reserved

52 82 10 Owner ID Ten alphanumeric characters optionally
set by the user when the volume is
initialized.

5C 92 1 Volume size Number of cylinders initialized.

5D 93 1 Number of tracks per cylinder.

5E 94 1 Number of sectors per track.

5F 95 2 Number of bytes per sector.

61 97 8 Reserved

69 105 1 CE cylinder status X'FO'-Track 0 on the CE cylinder is
defective.

X'OF'-Track 1 on the CE cylinder is
defective.

X'F F'-Both tracks on the CE cylinder
are defective.

X'OO'-Both tracks on the CE cylinder
are operative.

6A 106 12 Alternate track 0 ne 2-byte entry per alternate track
assignments containing the disk address of the defec-

tive track. The entry contains X'OOOO'
if the alternate is unassigned,

76 118 51 Track usage mask Contains a mask of bits in a one-to-one
correspondence with each track on the
volume." If the bif.is on, the track is
assigned to a system file. If the bit is
off, the track is available. Cylinders 0
through 3 correspond to displacement
A8.

A9 169 46 Reserved

D7 215 1 Work area The system release level of the work
release level area.

D8 216 24 Suspected defective Twelve 2-byte entries for disk addresses
tracks of primary data tracks suspected of being

defective. Unused entries contain
X'FFFF'.

BR1350.18

Figure 5-9. Volume Label (Part 1 of 2)

5-12

Licensed Material-Property of IBM

Hex Dec Dec
Field Name Field Description

Disp Disp Length

FO 240 1 Help VTOC tag Entry in the VTOC index for the system
help text file.

F1 241 2 Help disk address Disk address of the first sector allocated
to the system help text file.

F3 243 1 PTF VTOC tag Entry in the VTOC index for the system
PTF file.

F4 244 1 PTF file size Number of cylinders allocated to the
system PTF file.

F5 245 2 PTF disk address Disk address of the first sector allocated
to the system PTF file.

F7 247 1 Library file size Number of cylinders allocated to the
system library file.

FB 248 1 Library VTOC tag Entry in the VTOC index for the system
library file.

F9 249 1 Work file VTOC tag Entry in the VTOC index for the system
work file.

FA 250 1 Program VTOC tag Entry in the VTOC index for the system
program file.

FB 251 2 Program disk address Disk address of the first sector allocated
to the system program file.

1
FD 253 2 Library disk address Disk address of the first sector allocated

to the system library file.

FF 255 1 System files indicator If the bit is on, the corresponding system
file is allocated on this volume:

X'BO'-System program file.
X'40'-System work file (R1).
X'20'-System work file (F1).
X'1 O'-System library file.
X'OB'-System PTF file.
X'04'-System help text file.
X'03'-Unused bits,

Note: System file disk address in the volume label are all in the form X'nnOO', where nn is the
first allocated cylinder number. Sector and head are always zero and the drive is always
set for Rl.

BR1350A.2A

Figure 5-9. Volume Label (Part 2 of 2)

Data Area Format 5-13

Licensed Material-Property of IBM

Sector Content

9
Index

10

11
VTOC Index (512 bytes)

Hex
Length Content

12 Disp

13
00 6 Unused

06
14

500 50 index tags

1FA 5 Reserved
15 Index Tag (10 bytes).

1FF 1 Total unused
50 File index tags Hex Length Content 16
Labels Disp
(4 per 00 8 System file name 17 sector)

08 1 File label sector address
18

File Label (64 bytes) 09 1 Relative displacement
19

Hex within sector to last
Disp Length Content byte of file label.

20
00 1 File label ID number

21
01 2 Reserved

22
03 8 System file name

23
~ OB 7 Reserved

I 12 1 File type; X'OO' for
all System/3 BASIC files

Note: The last 128
bytes of sector 23 13 12 Reserved
are unused.

1F 2 Starting disk address

21 2 Ending disk addres~

23 29 Reserved

BR1351

Figure 5-10. Volume Table of Contents (VTOC)

5-14

Licensed Material-Property of IBM

Directories to System Library File (first 7 sectors)

Null Password
Directory Directory

0 1 l 2 l 3 l 4

Notes:

1. Refer to Figure 5-12 for null directory format.

2. Refer to Figure 5-13 for password directory format.

3. Refer to Figure 5-14 for filename directory block format.

4. The first two filename directory blocks, immediately
following the password directory, are always the first
**directory block followed by the first* directory
block.

Filename(**)
Directory Block

5 l 6

BR1352

Figure 5-11. Directories to the System Library File .

Null Directory (1 sector)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 1 Entry count Count of active entries in this directory.

01 1 1 Library size Number of cylinders in the file library.

02 2 2 Unused

04 4 252 Null entries Up to 42 six-byte entries. Each entry
is associated with nul I space in the
file library.

_{
Null Directory Entry (six bytes)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 2 Null space address Relative disk address of the null space
associated with this entry.

02 2 2 Size Number of contiguous null sectors.

04 4 2 Unused

~

BR1353

Figure 5-12. Null Directory

Data Area Format 5-15

Licensed Material-Property of IBM

Password Directory (4 sectors)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 1 Entry count Count of active entries in this directory.

01 1 3 Unused

04 4 1020 Password entries Up to 85 twelve-byte entries. '.]
j_

Password Entry (12 bytes)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 8 Password Contains *ljljljljljljlj, **ljljljljljlj, or a
user defined password.

08 8 2 Filename directory Relative disk address of the first filename
address directory block associated with this

password.

QA 10 2 Unused

BR1354

Figure 5-13, Password Directory

I .

5-16

Licensed Material-Property of IBM

)

)

Hex Dec Dec
Disp Disp Length

00 0 2

02 2 2

04 4 1

05 5 7

oc 12 500

Hex Dec Dec
Disp Disp Length

00 0 8

08 8 2

OA 10 2

oc 12 1

OD 13 1

OE 14 2

10 16 3

13 19 25

2C 44 6

Page of LY34-0001-l
Revised January 1972
By TNL LN34-0075

Filename Directory Block (2 sectors)

Field Name Description

Block address Relative disk address of this block.

Forward link Relative disk address of the next block
in this directory. X'OOOO' indicates the
last block.

Entry count Count of active entries in this block.

Unused
'

Filename entries Up to ten 50-byte entries. Each entry
is associated with a user file saved under ,......
a password.

!
Filename Entry (50 bytes)

Field Name Description

Filename The name of a file as defined by the user.

File address Relative disk address of the file.

File length Number of sectors allocated to the file.
Includes FIT.

FIT length Number of sectors allocated to the file
index table (FIT).

Status indicators If the bit is on, the file is:

X'BO'-A BASIC program file.
X'40'-A data file generated from

keyboard or cards.
X'20'-A program-generated data file.
X'1 O'-A pooled file.
X'OB'-A protected file.
X'04'-An open file.
X'02'-A data file in long precision.
X'01 '-A procedure file.

Number of lines Number of statement lines in the file
+, 1 (for the system generated EOF
record).

Date MOY in packed decimal.

File header File identification information specified
by the user.

Unused

Figure 5-14. Filename Directory Block

Data Area Format 5-17

Licensed Material-Property of IBM

DB Line

00 110

01 120

02 140

03 150 File Index Table (Figure 5-16)

05 170

04 190

06 10000

File Directory 1(Figure5-17) I
lsDFI 1101

"I

00 00 SDF 100
Null
SDF

01 00 SDF SDF 1201 l Nulll
SDF

L......+02 00 SDF 130 JsDFl 1401
Null
SDF

03 05 SDF lsDFI150 J Null) Data
SDF Blocks

04 06 SDF 180 JsDFJ 190J I Null I
SDF

05 04 SDF 160 SDF 1701
Null
SDF

06 00 SDF (32) I SDF 200J (32}
SDFI EOFI ~~~I

/ ·~
Sample Data Block Containing EOF (1 sector)

Hex Dec Dec
Field !"Jame Description

Disp Disp Length

00 0 1 Linkage indicator Sector displacement of the next logical
data block (ascending line number order),
relative to the first data sector in the file.
Contains X'OO' when linkage is to next
physical block.

01 1 4 Segment descriptor Refer to Figure 5-18 for format. This
field (SDF) SDF is associated with the second segment

of statement 190 in the preceding example.

05 5 32 Data Second segment of statement 190. Data
length in the example is 32 (X'20').

25 37 4 Segment descriptor Refer to Figure 5-18 for format. This
field (SDF) SDF is associated with statement 200

(not segmented) in the example.

29 41 2 Line number Binary line number. The line number in
the example is 200.

BR1356.1

Figure 5-15. BASIC Program File Structure, Example (Part 1of2)

5-18

Licensed Material-Property of IBM

Hex Dec Dec
Field Name

Disp Disp Length
Description

28 43 1 Statement type code The statement type code is used by the
compiler to classify BASIC program
statements. Bit 0 (X'80') on in this byte
causes program statement to be bypassed
on compilation (disable code). Data state-
ments to be bypassed during input opera-
tions to a BASIC program during
execution.

2C 44 32 Data First and only segment of statement 200.
Only the first segment is prefixed by the
line number and statement type code.

4C 76 4 Segment descriptor Refer to Figure 5-18 for format. This
field (SDF) SDF is associated with the end-of-file

(EOF) record in the example.

50 80 4 EOF record Refer to Figure 5-19 for format. The
hexadecimal value of an EOF record is
always X'2710751C'. The EOF record
need not be followed by a null SDF.

54 84 4 Null segment Refer to Figure 5-18 for format. A null
descriptor field SDF can be one to four bytes in length.
(SDF) X'80' in the first byte identifies a null

SDF.

58 88 168 Null segment All space in a data block that follows a
(free space) null SDF is referred to as a null segment.

Note: The data portion of all BASIC program statements is packed by replacing repetitions
(more than two characters long) with a single character and a repetition count. The
repetition count value cannot exceed X'1 B'. It must be a lower value than the lowest
valid functional character (X '1 C'), E OF code. Refer to "Pack BASIC Program
Statements (GCPACK)" in Section 3.

BR1356.2

Figure 5-15. BASIC Program File Structure, Example (Part 2 of 2)

Data Area Format 5-19

Licensed Material-Property of IBM

File Index Table (up to 3 sectors)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 1 Total data blocks Number of disk blocks (sectors) in the
file that contain statements or data.

01 1 2 Total lines Number of program or data statements
in the file.

03 3 5 Unused

08 8 2 Save area Used only by the work file update/
crusher program (#GUFUD).

OA 10 2 FIT pointer Core address of the first inactive FIT
entry.

oc 12 752 FIT entries Up to 189 four-byte FIT entries. Each
active entry is associated with a block ~
of data in the file.

I
FIT Entry (4 bytes)

Hex Dec Dec
Field Name Description

Disp Disp Length

ob 0 1 Disk address Sector displacement of the data block
associated with this entry, relative to
the first data sector in the file.

01 1 2 Line number Highest statement line number, in
binary, associated with the referenced
data block.

03 3 1 Free space Number of unused bytes in the ref-
erenced data block (length of the null
segment).

BR1357

Figure 5-16. File Index Table (FIT)

5-20 i

Licensed Material-Property of IBM

File Directory 1 (first sector) File Directory 1 (second sec tor)

) Up to Eight 32-Byte Data File Entries Up to Four 32-Byte
Data File Entries

0 J 1] 2] 3] 4] 5 1 6 1 7 8 J 9 l 10] 1

/ ---------------File Directory 1 Data File Entry (32 bytes)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 1 Device code If the bit is on, the device is:

X'BO'-Permanent disk
X'40'-Scratch disk
X'20'-Card
X'10'-Printer
X'OB'-CRT
X'07'-Unused bits.
X'OO' in this byte indicates the entry
is not active.

01 1 8 GET/PUT filename From an ALLOCATE system command.

09 9 6 Volume-ID From the ALLOCATE (permanent disk
only) system command.

09 9 2 Scratch file size Number cif sectors allocated to a scratch
disk file. From the ALLOCATE (scratch
disk only) system command.

OF 15 8 Password From the ALLOCATE (disk) system
command.

17 23 8 Filename Name assigned to the file in the file
library. From the ALLOCATE (disk)
system command.

1 F 31 1 Second sector In the first data file entry, this byte con-
indicator tains the page number of the second

sector of file directory 1 in virtual mem-
ory. When there is no second sector, this
byte contains X'OO', This field is used
only in the first entry.

Note: Only the device code and GET/PUT filename are present for nondisk files.

BR1358A

Figure 5-17. File Directory 1 Format

)

Data Area Format 5-21

Licensed Material-Property of IBM

Segment Descriptor Field (4 bytes)

Hex Dec Dec
Field Name

Disp Disp Length
Description

00 0 1 Null segment indicator X'80' in this byte indicates the remainder
of the data block is unused. The remainder
of this null SDF, if present, contains
binary O's. A null SDF is used to delimit
the active data segments in each data
block.

00 0 2 Segment length Binary byte count of the data segment
that follows this SDF. This count includes
the four bytes of the SDF.

02 2 1 Multisegment If the bit is on, the segment is:
indicator X'OO'-A complete statement.

X'Ol '-The first of a multisegment
statement.

X'02'-The last of a multisegment
statement.

X'03'-Part of a multisegment statement,
but not the first or last.

03 3 1 Unused

BR1359

Figure 5-18. Segment Descriptor Field (SDF)

End of File Record (4 bytes)

Hex Dec Dec Field Name Description
Disp Disp Length

00 0 2 Line number The binary line number generated in an
EOF record is always X'2710'. This value
is equal to 10,000 which forces this record
to always be the last record in the file.
This value exceeds the maximum legal
line number that the user can enter.

02 2 1 Statement type code Contains a value of X'75'. This is the
statement type code for an EO F record.

03 3 1 EOF code Contains a value of X'l C'. This identifies
this record as EOF. The total contents of
an EOF record is always X'2710751 C'.

Note: Only BASIC program files and keyboardijenerated data files have a four-byte EOF record.
Programi}enerated files have only the one-byte EOF code (X'l C') following the last data
element.

BR1360

Figure 5-19. End of File Record (EOF)

5-22

Licensed Material-Property of IBM

File Directory 2 (second page in virtual memory)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 2 Current file During execution of a BASIC program,
displacement this field contains the displacement from

the start of the directory to the entry
associated with an activated data file.
Only one file can be activated (ADF) at
any time. X'OO' indicates that none of
the files is activated.

02 2 1 Scratch file status If this byte is not X'OO', scratch disk files
have been or are currently being used by
the program in execution.

03 3 B Program name Filename of the program currently
in virtual menory.

OB 11 1 Null directory indicator X'FF' in this byte indicates the null
directory is saved. X'OO' indicates it is
not saved.

QC 12 52 Unused

40 64 192 Data file entries Up to twelve 16-byte entries. Each entry
is associated with a GET or PUT filename ~

referenced in the BASIC program.

t:
File Directory 2 Data File Entry (16 bytes)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 1 Device code If the bit is on, the device is:

X'80'-Permanent disk.
X'40'-Scratch disk.
X'20'-Card.
X'1 O'-Printer.
X'08'-CRT.
X'07'-Unused bits.
X'OO' in this byte indicates the entry is
not active. This byte is copied from the
file directory 1 entry associated with
the same GET/PUT filename.

01 1 1 1/0 status If the bit is on, the file is:

X'80'-Defined on an input only file.
X'40'-Defined on an output only file.
X'CO'-Defined on an input/output file.
X'20'-Long precision; bit is off for

standard precision.
X'1 O'-Program-generated data file; bit is

off for keyboard or cardiJenerated
data files.

X'08'-Currently activatP.d for input.
X'04'-Currently activated for output.

X'08' and X'04' cannot both be
on.

X'02'-EOF indicator (output files only).
X'01'-Unused bit.

02 2 1 1/0 area address Virtual memory page number of the first
1/0 buffer allocated to this file. Multiple
buffers al located to the same file are

) contiguous.

BR1361.1A
Figure 5-20. File Directory 2 Format (Part 1 of 2)

Data Area Format 5-23

Licensed Material-Property of IBM

Hex Dec Dec
Field Name Description

Disp Disp Length

03 3 1 1/0 area size Number of contiguous buffers (pages)
allocated to this file.

04 4 2 Current I /0 area The virtual address, within the buffers,
pointer used to GET or PUT the next data

element.

06 6 2 Disk address Physical disk address of the first sector
of data in the file. This address references
the file in the system library file.

08 8 2 Current disk Relative sector displacement of the next
pointer block of data to be read into or written

from the 1/0 area. This displacement is
relative to the preceding physical disk
address.

OA 10 2 Fi le size Total number of sectors in the file con-
taining data.

OC 12 2 SDF count Current count of the number of data
bytes remaining in the current segment
(keyboardiJenerated files) or bytes
remaining in the 1/0 area (program-
generated files).

OE 14 2 Unused

BR1361.2A

Figure 5-20. File Directory 2 Format (Part 2 of 2)

5-24

Licensed Material-Property of IBM

System Help Text File]
Index I Text (Figure 5-22)]

Lsector Boundary

+
Help Text Index (starts on first cylinder boundary)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 2 Level number This value is compared to a level number
constant in the HELP keyword program.
They must be equal to access the help
text.

02 2 4 Unused

06 6 Keyword entries One entry for each word recognized by
the HE LP function. The last entry is i-
followed by a single byte containing
X'F F' to identify the end of the index.

+
Keyword Entry (variable length)

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 1 Keyword length Length (n), in bytes, of the word in this
entry.

01 1 n Keyword EBCDIC character string (no blanks).

01+n 1+n 3 Text displacement Displacement from the start of the sys-
tern help text file (start of index) to the
first byte of first help text record to be
printed for this keyword. (The first 2
bytes are sector displacement; the last
byte is byte displacement.)

BR1362

Figure 5-21. System Help Text File

Data Area Format 5-25

Licensed Material-Property of IBM

Help Text Record

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 4 Segment descriptor Refer to Figure 5-18 for format. Records
field (SDF) are fragmented across sector boundaries.

Each segment of the record is preceded
by a SDF. The system help text file is
organized in a manner similar to that of
the system library file (Figure 5-15).

04 4 2 Print line length Number of characters in the line to be
printed. X'OOOO' causes a blank line to be
printed.

06 6 1 End-of-text X'FF' indicates this record is an end-of-
record indicator text record. This byte contains X'OO' lo--!

for all print lines.

07 7 n Text Length (n) is determined by the SDF.
If the print line length is zero, one
dummy byte is present (X'OO').

Note: The print line length and end-of-text record indicator fields are present only in the first
segment of a multisegment record.

j_
End-of-Text Record

Hex Dec Dec
Field Name Description

Disp Disp Length

00 0 4 SDF Refer to Figure 5-18 for the format
of the SDF.

04 4 2 Number of operator Number of three-byte operator option
options entries in this record. X'OOOO' in this

field indicates no operator options are
present and causes the HE LP function
to terminate.

06 6 1 End-of-text This byte contains X'FF' for all end-
record ind i ca tor of-text records.

07 7 n Operator option Consecutive three-byte entries, con-
entries taining the byte displacements from

the start of the system help text file
(start of index) to the first byte of the
first help text record to be printed after
the multiple-choice response. The first . displacement corresponds to option A,
second to 8, etc. n is equal to the
number-of-operator-options field times
3.

Note: An end-of-text record can also be a multisegment record.

BR1363

Figure 5-22. Help Text Records

5-26

Licensed Material-Property of IBM

Print Parameter List (four bytes)

0 1 2 I 3

Function Data Length Data Area Address

~ Character Count when Printing or Punching

~ X'BO'-Printer Carriage Return

~ X'OO' -Printer Backspace

l
Device Type

Hex
Value Printer Punch CRT

40 Print Insert Print

80 CR Punch Return cursor

co Print and CR Insert and punch Print and return
cursor

10 Backspace Wait Backspace cursor

11 Backspace and Wait Backspace cursor
index

FF Wait Wait Wait

4F Not used Wait Roll down and
print

BR1364

Figure 5-23. Print Parameter List (PPL)

)

Data Area Format 5-27

Licensed Material-Property of IBM

5-28

Function

X'OO'-Seek

X'01'- Read

X'02'- Write

X'FF'-Wait

0

The table below shows the
head, sector, drive, and
volume that are selected
for each value that can be
contained in byte 2.

Head 0
Sector

R1 F1 R2

0 00 01 02
1 04 05 06
2 OB 09 OA
3 oc OD OE
4 10 11 12
5 14 15 16
6 1B 19 1A
7 1C 1D 1E
B 20 21 22
9 24 25 26

10 2B 29 2A
11 2C 2D 2E
12 30 31 32
13 34 35 36
14 38 39 3A
15 3C 3D 3E
16 40 41 42
17 44 45 46
1B 4B 49 4A
19 4C 4D 4E
20 50 51 52
21 54 55 56
22 5B 59 5A
23 5C 5D 5E

Disk Parameter List (6 bytes)

Disk Address Sector
Count

Data Area Address

2 3 4 5

Cylinder Number

F2

03
07
OB
OF
13
17
1B
1F
23
27
2B
2F
33
37
3B
3F
43
47
4B
4F
53
57
5B
5F

Byte 2

7

Sector Number ------' I
Head Number

Drive ID (off = 1, on = 2) ----~

Volume ID (off= removable, on =fixed)

Head 1

R1 F1 R2

BO B1 B2
B4 B5 B6
BB B9 BA
BC BD BE
90 91 92
94 95 96
9B 99 9A
9C 9D 9E
AO A1 A2
A4 A5 A6
AB A9 AA
AC AD AE
BO B1 B2
B4 B5 B6
BB B9 BA
BC BD BE
co C1 C2
C4 C5 C6
CB C9 CA
cc CD CE
DO D1 D2
D4 D5 D6
DB D9 DA
DC DD DE

F2

B3
B7
BB
BF
93
97
9B
9F
A3
A7
AB
AF
B3
B7
BB
BF
C3
C7
CB
CF
D3
D7
DB
DF

Notes:

1. Bytes 3-5 are not
used for a seek
function.

2. Bytes 1-5 are not
used for a wait
function.

BR1365

Figure 5-24. Disk Parameter List (DPL)

Licensed Material-Property of IBM

) .

)

Sector

0
1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
1B
19
20
21
22
23

Head 0
(byte 3
value)

00
04
OB
oc
10
14
1B
1C
20
24
2B
2C
30
34
3B
3C
40
44
4B
4C
50
54
5B
5C

Head 1
(byte 2
value)

BO
B4
BB
BC
90
94
9B
9C
AO
A4
AB
AC
BO
B4
BB
BC
co
C4
CB
cc
DO
D4
DB
DC

Disk Control Field (4 bytes)

0-Flags

0 1

Defective Track

Alternate Track

1-Cylinder

7 0 2 3 4 5 6

L...___~ ___ J
y

Cylinder Number J

2-Head and Sector 3-Number of Sectors-1

2 3 4 5 6 7 0 1 2 3 4 5 6 7

The table at the left shows
the head and sector that
are selected for each value
that can be contained in
byte 2.

{
Head Number

Sector Number ---------1

Figure 5-25. Disk Control Field (DCF)

Forward Seek

(6 and 7 must be
zero if not a seek-op)

Number of Sectors to be
Transferred Minus 1

BR1366

-------- X'1COO'

/ / Undefined ___ ,. / ,.,.

(4 bytes) / / /
L_

1] 2

Single Line

1] 2

Lo Line

1 J 2

Lo Line

3

EOS

3

-

3

-

X'1 C04'-Active Delete Entry

X'1 C09'-Delete Parameter List

Secondary Input Buffer

4 J 5 6

Hi Line EOS

4 J 5 6 7 J B

Hi Line Lo Line

Notes:

1. "Single line" is the 2-byte binary line number of a
single statement to be deleted.

2. "Lo line" is the 2-byte binary lower limit of a range
of line numbers to be deleted.

3. "Hi line" is the 2-byte binary upper limit of a range
of line numbers to be deleted.

4. EOS is a single-byte end-of-statement character.
5. Multiple single line and/or range delete entries may

be present. These entries correspond to the param
eters of a user-supplied DELETE or EXTRACT
system command.

9 10 J 11 12 ·.-
- Hi Line EOS

BR1367

Figure 5-26. Delete Parameter List

Data Area Format 5-29

Licensed Material-Property of IBM

Command Key Table (1024 bytes)

Hex Dec Dec
Disp Disp Length Field Name Description

00 0 11 Command lengths Length of each command assigned to command keys
1 through 11 (one byte of this field is assigned to each
command key). For the I BM-assigned functions of
command keys 1, 4, and 7, the length of the command is
set to X'OO'. The range of legal values is X'OO' through
X'5A'.

OB 11 23 Unused

22 34 990 Command text This area is divided into eleven 90-byte entries, one for
each of the command keys 1 through 11. Each entry
contains the command text assigned to one of the
command keys 1 through 11.

BR2675

Figure 5-27. Command Key Table (##CKTB)

Command
Key IBM-assigned Function

1 Enters desk calculator operations

2 RENUMBER

3 SAVE

4 Used in editing the last line entered

5 LIST

6 CONDITION

7 EDIT generated file name

8 RUN

9 WRITE CRT

10 WRITE CRT, PRINTER

11 WRITE PRINTER

BR2676

Figure 5-28. IBM-assigned Command Key Functions

5-30

Licensed Material-Property of IBM

System Program File Directory Entry (16 bytes)

Hex Dec Dec
Disp Disp Length Field Name Description

00 0 6 Component name The name of the system component (program, table, etc.)
associated with this directory entry.

06 6 2 Disk address Relative disk address of the component in the System
Program File. This relative disk address points to the first
sector occupied by the component.

08 8 2 Load address Starting storage load address for the component.

OA 10 1 Sector count Total number of !contiguous sectors in the System
Program File occupied by the component.

OB 11 1 Program number This is a number assigned sequentially to the entries in
this directory.

oc 12 4 Unused

BR2677

Figure 5-29. System Program File Directory-##DRTY

Data Area Format 5-31

Licensed Material-Property of IBM

5-32

Licensed Material-Property of IBM

Section 6. Diagnostic Aids

MAINTENANCE UTILITY AID PROGRAM-#ZUTMO

Eleven options are provided by the maintenance utility aid program for diagnosing and
correcting problems in System/3 BASIC. Certain operating procedures must be followed
to initiate and successfully complete the specific option to be performed.

Operating Procedure

Performing a system stop, system reset, and system start activates the maintenance utility
aid program (press SYSTEM STOP, set SYSTEM RESET to ON, and then set SYSTEM
START to ON). Before activating this program, consideration should be given to manually
recording certain information that is lost when this program is executed (for example,
recording the JAR and ARR, or recording the last three 1/0 parameter lists from the
system communication area).

This utility program should not be activated twice in succession except to perform
diagnosis or problem correction on the maintenance utility aid program itself. A pro
cessor check may result if the R option is selected during the second successive entry
to this program if the work file is defined. To terminate a selected option before it is
completed, press the inquiry request switch; the maintenance utility aid program is
then reinitialized, and one of the ten options can be selected. Refer to Section 3 for an
internal description of the maintenance utilit~ programs.

CAUTION

It is possible to destroy the work file if the maintenance utility aid program (#ZUTMO)
is activated during crushing or reordering of the work file by the work file update/
crusher program (#GUFUD).

Upon activating the maintenance utility aid program, the following message is printed:

CD, DD, VM, CP, DP, DC, DW, H, R, T, M

and the keyboard is enabled. The operator should type in the letters representing the
desired function and press the carriage return key. The functions available are:

CD-Core dump
DD-Disk dump
VM-Virtual memory dump
CP-Core patch
DP-Disk patch
DC-Disk compare
DW-Disk write
H-Halt
R-Return to operating system
T-Trace ·
M-Library map and test

Upon completion of any of the options except H, R, or T, the option list is printed
again.

CD-Core Dump Option

Entering CD invokes the core dump option. #ZUTMO then requests the dump limits:

ENTER START ADDRESS
ENTER END ADDRESS

Diagnostic Aids 6-1

Licensed Material-Property of IBM

6-2

The reply to each request should be a four-character hexadecimal address followed by a
carriage return. The reply to the first message must have been entered correctly before
the second message is printed. If these four characters indicating the addresses to be
included in the dump are not valid, the message(s) are printed again. Following the entry
of the address, the operator may wish to type in more information that will in some way
identify or describe the dump he is taking. These additional characters may be added
without interfering with the dump and might be instructive in reviewing it.

Once the dump limits have been entered correctly, core is dumped, 32 bytes per line
with an EBCDIC interpretation for each line, beginning at the specified start address
and terminating at the specified end address or when the end of core is reached ..

Two headings are printed at the top of the dump. The first indicates the contents of
the two index registers (BR and XR) and the PSR. The second indicates the columns
for the beginning address of each line, the position of the data in the line, and the inter
pretation field of the line. Any characters in the line that are not printable are represented
in the interpretation as EBCDIC periods.

DD-Disk Dump Option

Entering DD invokes the disk dump option. #ZUTMO then requests the read disk address
and the sector count:

ENTER RD DISK ADDRESS
ENTER SECTOR COUNT

The user should reply to the read disk request with a four-character hexadecimal address,
indicating where he wishes the dump to begin, followed by a carriage return. As in the
core dump, he may add additional comments if he wishes. The message is repeated if
the entry is incorrect. The reply to the sector count message should be the decimal
number of sectors to be dumped followed by a carriage return. When both messages
have been entered successfully, the specified number of sectors, beginning at the read
address indicated, are dumped, 32 bytes per line with an EBCDIC interpretation for
each line. A special first header indicating the sector address is printed preceding the
dump of each sector. The other header is the same as that in the core dump, while the
addresses printed are displacements from the sector address. The dump terminates after
all of the requested sectors have been dumped or after the last physical sector is dumped.

VM-Virtua/ Memory Dump Option

Entering VM invokes the virtual-memory dump option. The program then requests the
first and last line numbers to be included in the dump:

ENTER FIRST LINE #
ENTER LAST LINE #

The user should reply to the request with a one- to four-digit decimal line number, from
the BASIC program he wishes for the beginning of the dump, and a one- to four-digit
decimal line number, indicating where he wishes the dump to end. A carriage return
must follow each reply. If the entered data is incorrect, the message(s) is (are) reprinted.
The following line represents an example of information that is included in the dump:

0190 4F09 STH OOBE 6400BE

where 0190 is the line number being interpreted, 4F09 is the virtual address of the
pseudo code being interpreted (see Figure 7-1), STH is the pseudo code being inter
preted, OOBE is the operand of the pseudo code, and 6400BE is the instruction that
results when an operation code is substituted for the pseudo code to which it corres
ponds. This kind of interpretation is listed for every pseudo code that is necessary to
execute the instruction at a particular line number, beginning with the specified line
number and ending with the last line number requested.

Licensed Material-Property of IBM

)
[

GP-Core Patch Option

Entering CP invokes the core patch option. #ZUTMO then requests the beginning core
address and the patch data to be put there:

ENTER START ADDRESS
ENTER PATCH DATA, USE SP ACE FOR NO CHANGE

The reply to the first request should be a four-character hexadecimal address specifying
where the patch should begin. If the data is not valid, the request is made again. The
reply to the second request should be contiguous, hexadecimal patch data which will be
terminated by a carriage return. If any errors exist in the patch data, a question mark is
printed and all of the data must be reentered. If the data is valid, it replaces the data
previously at the specified address. If no change is desired at the indicated address, a
space should be entered followed by a carriage return. To be certain the patch is correct,
the operator may wish to take a core dump of the area he wishes to patch before entering
the CP option to verify the patch address, and possibly again after the function is com
pleted to verify that the entered data is at that address.

DP-Disk Patch Option

Entering DP invokes the disk patch option. #ZUTMO then requests a displacement from
a specified disk address where the patch should begin and the patch data that should be
placed there:

ENTER WR DISK ADDR
ENTER DISPLACEMENT
ENTER PATCH DATA, USE SPACE FOR NO CHANGE

The reply to the first request should be a four-character hexadecimal disk address fol
lowed by a carriage return. If the data is invalid, the message is reprinted. The reply to
the second message should be the two-digit hexadecimal displacement from the disk
address entered where the patch should begin. Again, if the data is invalid, the request
is repeated. The reply to the third message should be contiguous, hexadecimal patch
data which is terminated by a carriage return. If an error occurs anywhere in the entered
patch data, a question mark is printed and all of the data should be reentered. Upon
successful entry of all replies, the data is placed at the proper displacement from the
spel:ified address. If a space is entered in response to the patch data request, no change
is effected. The operator may wish to verify address and data by using the DD option.

DC-Disk Compare Option

Entering DC invokes the disk compare option. The program then requests the two disk
addresses that are compared and the number of sectors for which the comparison should
continue:

ENTER RD DISK ADDR
ENTER CHK DISK ADDR
ENTER SECTOR COUNT

The reply to the first request should be a four-character hexadecimal disk address of the
first sector to be compared. The message is reprinted if the data is invalid. The second
reply should be a four-character hexadecimal disk address of the sector to be compared
against the first. This message is also reprinted if the entered data is invalid. The entered
sector count should be the decimal number of sectors to be compared. Again, the mes
sage is repeated if the response is invalid. If the data at the specified addresses does not
correspond, a message is printed indicating the two disk addresses, the displacement
from them where the difference occurred, and the data found at each disk address. Only
the first nonequal byte of data is documented for each pair of sectors compared. If no
difference is indicated, it is assumed that the sectors compared equally. The comparison
is continued until all sectors have been compared. An example of the use of this option
would be to determine if a system library has changed. The library in question could be
compared against the one whose contents are known.

Diagnostic Aids 6-3

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised November 15, 1973
By TNL: LN21-7729

6-4

DW-Disk Write Option

CAUTION

The operator should be certain that the address he selects for writing is the sector he
intends to change. If there is a possibility of having to restore the sector that will serve
as the write address, a disk dump should be taken so that the data can be recreated.

Entering DW invokes the disk write option. #ZUTMO then requests the read and write
disk addresses:

ENTER RD DISK ADDR
ENTER WR DISK ADDR

The reply to the first request should be a four-character hexadecimal disk address that is
to be read. If the data is invalid, the message is reprinted. The reply to the second mes
sage should be a four-character hexadecimal disk address where the sector indicated by
the first address should be written. The READ sector is then copied to the sector indi
cated by the WRITE address.

H-Return to System with Halt Option

Entering H invokes the halt option. All of core that was saved other than the system
nucleus area, including any patches made in saved core, is restored and a system hard
halt (halt code= DS) results. At this point, the operator may choose to reenter the
maintenance utility aid program, re-IPL, or manually intervene using the CE console to
set the IAR to cause program execution other than the halt.

R-Retum to System Option

Entering R invokes the return to system option. All saved core, including any patches
made to the saved core, is restored and control is returned to the system. The system
nucleus area is not restored to its previous state; therefore, it may be necessary to re
IPL the system. The system does not resume the RUN command, and is no longer in
a pause state if it was in such a state upon entering the maintenance utility aid program.

Entering Ron a successive activation (repeated entry) of the maintenance utility aid
program may cause unpredictable results (e.g., program check) if the work file is defined.
In this event, the system should be re-IPLed.

T-Trace Option

Entering T reverses (activates/deactivates) the maintenance trace option. When the main
tenance trace option is activated, the names of all programs loaded by the system nucleus
are displayed on the system printer. These names correspond to the names listed in
Section 4.

Note: The programs that are not loaded to core by the nucleus (system nucleus, com
piler overlays, etc.) are not indicated by the trace option.

Upon reversing the trace, core is restored and control is returned to the system (refer
to "R-Return to System Option").

M-Library Mapping Option

Entering M invokes the library mapping option. The following message is displayed:

ENTER OPTION 1, 2, OR 3

The reply to this request can be any one of the three numbers, 1, 2, or 3, followed by a
carriage return. The numbers have these meanings:

1-Map null and password directories
2-Map a specified password
3-Map the entire library

Licensed Material-Property of IBM

)

If the reply is invalid, the message is reprinted.

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

This message is displayed to request the starting disk address of the library:

ENTER LIBRARY ADDRESS

The reply to this request is the four-character hexadecimal physical disk address of the
File Library area (first sector), followed by a carriage return. The physical track address
(requires conversion) of the File Library is obtained by a VTOC display. If the reply to
the preceding message is invalid, the message is reprinted. The following paragraphs
describe the processing for each of the three options.

Option I: This option maps the null and password directories. These items are displayed:

1. Disk address of the null directory
2. Total number of active entries in the null directory
3. Physical disk address of each null area in the library
4. Relative disk address of each null area in the library
5. Length of each null area expressed in sectors
6. Disk address of the password directory
7. Total number of active entries in the password directory
8. Each password with the physical disk address of the first user directory block

associated with it

This option tests the following items:

1. Valid entry count fields in both directories
2. All disk addresses are within the library boundaries
3. Library is within the configured disk size

Option 2: This option traces the user directory blocks and files for a specified password.
The following message is displayed:

ENTER PASSWORD

The reply to this request can be any of the passwords in the password directory. If the
reply is invalid or the password is not in the directory, the message is reprinted. The file
name, disk address, size, status, and header is printed for each fildinked to the specified
password. The status of the file is defined by these numbers:

1-Procedure file
2-Data file in long precision
3-0pen file
4-Protected file
5-Pooled file
6-Program-generated data file
7-Data file generated from keyboard or card input
8-BASIC program file

The defaults for the preceding status indicators are short precision, closed, unprotected,
etc.

I Except for the procedure file, this option tests the following items;

1. Valid FIT
2. All lines of the file are contiguous
3. File extends to the end of the allocated space
4. An EOF is present on program-generated files
5. All elements in a program-generated file are contiguous
6. User directory blocks have no more than 10 entries
7. Any user directory block having a forward link contains 10 entries
8. First user directory block for each password has a zero entry count. All other user ·

directory blocks have a non-zero entry count.
9. All disk addresses are valid and within the library boundaries
10. Library is within the configured disk size

Licensed Material-Property of IBM

Diagnostic Aids 6-5

Page of L Y34-0001-1.
Revised January 1972
By TNL LN34-0075

PTF COMMAND

6-6

If an error is detected by option 2, a message is printed and processing continues when
ever possible. Certain linkages must be valid in the library directories in order to continue
processing; if not a program check may occur. The error is in the last file printed in this
case.

Option 3: This option maps the entire File Library. Entries for each null space, user
directory block, and file are sorted, by ascending disk addresses, and printed. Each entry
contains the filename, password (if applicable), physical and relative disk addresses, size,
and file status (if applicable). File status is defined by these numbers:

I -Procedure file
2-Data file in long precision
3-0pen file
4-Protected file
5-Pooled file
6-Program-generated data file
7-Data file generated from keyboard or card input
8-BASIC program file

The defaults for the preceding status indicators are short precision, closed, unprotected,
etc.

This option tests the following items:

1. User directory blocks have no more than 10 entries
2. Any user directory block having a forward link contains 10 entries
3. The first user directory block for each password has a zero entry count. All other

user directory blocks have a non-zero entry count.
4. Valid entry count fields in the null and password directories.
5. All disk addresses are within the library boundaries
6. The library is within the configured disk size
7. There are no gaps or overlaps in the library
8. Directory entries for pooled files have the same file disk address and length.

The PTF command initiates the program temporary fix (PTF) function. This function is
used to apply PTF patches to a System/3 BASIC system program file or the system help
text file. For PTF purposes, any component residing on cylinder 0 is considered part of
the system program file. (PTF's to the disk system management program in a co-resident
system must be applied using the PTF function in the disk system management program.)
This command may be entered from the keyboard or the data recorder if in read card
mode.

Licensed Material-Property of IBM

)

)

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

Following the PTF command, a PTF is entered using four types of secondary com
mands called PTF statements. If these statements are entered from the keyboard, they
are typed as if they were system commands, with the only exception being that rejection
of the statement returns control to PTF mode rather than to the system. Thus, if an
invalid statement is typed, the statement may be reentered.

Note: If a DATA statement is reentered, tabbing across the input line generally does
not reproduce the checksum value originally entered, but instead leaves four blanks in
its place.

The only way to abort PTF mode following the PTF command entered through the
keyboard is to use inquiry request. This aborts the PTF function being performed and
returns control to the system with any partially entered PTF information being lost.
Inquiry request does not abort the PTF function after a valid PTF END statement has
been entered. A return is made to keyboard mode upon complete processing of the PTF
END statement.

If the PTF command is entered from the data recorder, all subsequent PTF statements
are read from cards automatically, similar to normal system input from the data recorder.

I Columns 88-96 (73-80 if configured for a 129) of each card containing a PTF statement
after the PTF command are ignored; thus each card can contain a sequence number.
Each card is listed as it is read. Any error detected in the PTF function, while in card mode,
causes the entire PTF function to be aborted and a return to be made to the system. If
inquiry request is used while reading cards, this aborts the PTF function being performed,
as long as a valid PTF END statement has not been read yet.

Any line entered in PTF mode, other than the HDR, PTF, DATA, and END statements
described, is rejected and a question mark is printed.

PTF's applied to the system can be listed by dumping the PTF Log (e.g., disk dump).
Each entry in the log is six bytes in length.

Error Conditions

The command is rejected and PTF mode is not entered if any of the foilowing errors
occurs:

1. The system work area has not been allocated on the disk containing the current
system program file. This work area is used as a temporary storage for the PTF
data.

2. Any character, other than blank(s) or a carrier return, is entered following PTF.

HOR Statement

Syntax·

HDR 4 ptfid cf. cksum cf. disk-spec [cf. disk-spec]

This statement defines the start of a PTF and must be the first statement entered fol
lowing the PTF command. The parameters of this command are:

1. ptfid-Six-character PTF identification. For programs in the system program file,
the first three characters are .BS and the last three characters are the PTF sequence
number (in range 000-255). For the help text file the PTF ID is .BH followed by
the three-characterPTF sequence number.

2. cksum-The four-digit checksum for this statement. (It includes the HDR and
ptfid characters but not the checksum and the disk specifications.)

3. disk-spec-The unit containing the system program file or system help text file
to which the PTF is to be applied.

4. [disk-spec] -If this parameter is present, it specifies that the PTF will come from
disk rather than being entered from the keyboard. The specified unit must contain
a System/3 BASIC PTF file (VTOC name is PTF). This file can contain several
PTF's in the form of card images containing HDR, PTF, DATA, and END PTF
statements.

Diagnostic Aids 6-7

Licensed Material-Property of IBM

6-8

The file is searched to find the first PTF whose HDR statement matches this statement
entered from the keyboard. This PTF is then automatically applied and a return is made
to a normal utility mode input condition. The PTF statements applied from disk are not
normally printed. If any error is detected, the card image containing the error is printed,
followed by the error message. A return is then made to the system.

Error Conditions

This statement is rejected if any of the following errors occurs:

1. The optional disk unit parameter is specified and no PTF file is on that disk.
2. The optional disk is specified and a HDR matching the entered one does not exist

in the PTF file.
3. The checksum is incorrect.
4. The first specified disk does not contain a system program file or help text file,

depending on what is being patched.
5. A valid HDR statement has already been accepted.

Examples of correct syntax (the use of commas is optional):

HDR .BSOOO 2244, Rl
HDR, .BH029 A63F, Fl R2

PTF Statement

Syntax

PTF r}. prog-name r}. level r}. cksum

The PTF statement identifies the component in the system or help text to which the
patch data in the following DATA statements is to be applied. It must be the first state
ment following the HDR statement. The parameters of this command are:

1. prog-name-This is the System/3 BASIC six-character program name prefixed
with a period. This identifies the component to be patched.

Note: The help text file consists of more than one program.

2. level-This is a two-digit number specifying the release level of the system program
file or help text file to which the PTF should be applied. The release level can be
located in ##DRTY (first component in the system program file).

3. cksum-The four-digit accumulative checksum for this statement and the preceding
HDR statement.

Error Conditions

The statement is rejected if any of the following errors occurs:

1. The release level of the system program file or help text file on the unit specified
in the HDR statement is not the same as the r_elease level specified in this PTF
statement.

2. The specified program name is not a valid System/3 BASIC component.
3. The checksum is incorrect.
4. A HDR statement has not been entered.
5. Two PTF statements are entered without int~rvening DATA statements.
6. The help text is specified and it is not found on the specified disk.
7. The program name and the PTF identification are incompatible. (For programs

in the system program file, .BS must have been specified in the HDR statement.
If the help text file is specified, .BH must have been entered.)

Examples of correct syntax (the use of commas is optional):

PTF
PTF,

.#KREAD,

.#T3HEL,
00, 57DC
01 A996

Licensed Material-Property of IBM

DAT A Statement

Syntax

DATA 4 cksum 4 hex-addr
4 hex-byte [hex-byte]

This statement specifies the patch data. Any number of DATA statements (subject to
total patch size defined) may be entered. The end of the DATA statements for this PTF
is delimited by another PTF statement, or by the END statement. The parameters of
this command are:

1. cksum-The four-digit cumulative checksum including this statement and all
previous statements in the PTF.

2. hex-addr-This is the absolute core starting location within the specified program
for the data bytes on this statement. This address is not relative to the start of the
program. It is the relative byte displacement plus the starting core address of the
program to be patched. For example, a patch of the third byte of a program
that starts at X'OCOO' would specify X'OC02' as the starting patch
address. Thus, this address corresponds to the addresses shown on the assembler
listings for the program.

3. hex-byte-The hexadecimal bytes (each one represented by two hexadecimal
digits) define the information to be placed in the component. The first data
byte of the DATA statement replaces the contents of the byte located at the
starting address specified for this statement. The second byte is placed at the
starting address plus one, etc.

This command saves the specified code change and its location in the system work
area section of the disk containing the current system. There is no restriction on the
length of an individual DATA statement other than the line width of the input device.
However, for any single component PTF, the total number of DATA statements times
10, plus the number of hexadecimal bytes of code c;hanges, must be less than approxi
mately 36k. A file in the work file section of the work area will be destroyed by this
function. The disk copy of the specified component is not updated until the END state
ment is entered.

Error Conditions

This statement is rejected if any of the following errors occurs:

1. The specified cumulative checksum does not match the accumulated checksum.
2. A HDR or PTF statement has not been previously accepted for this PTF.
3. More data than that which can be contained in 36k is entered.

Examples of correct syntax (the use of commas is optional):

DATA
DATA

Dl58,
59BF

END Statement

Syntax

END 4 cksum

OCOO,
OEFE

F1F2F3F4F5F6
C08704651092

This command is used to signify the end of a PTF. If the HDR, PTF, and DATA state
ments were accepted and the specified checksum matches the accumulated checksum
for this statement and all preceding PTF statements, the copy of the specified com
ponent in the system program file or help text file is updated. The record of installed
PTF's on sector 23, track 1, cylinder 0, of the disk containing the patched component,
is updated after the successful application of the PTF. If the number of PT F's exceeds
that which can be contained in one sector, the record of the oldest installed PTF is lost.

Diagnostic Aids 6-9

Licensed Material-Property of IBM

When a PTF is applied to a disk (volume), the system work area on that disk (volume)
is unassigned. If the updated component is one of the system components that has a
copy in the system work area, any existing work areas are not updated with the PTF.

The ASSIGN-WORKAREA command updates the working copies of the components
when the work area is recreated. The work areas on both RI and Fl contain copies of
system programs and both should be updated with the ASSIGN-WORKAREA utility
command.

When the PTF END statement' is completed, PTF mode is switched to system mode.

Error Conditions

This statement is rejected if any of the following errors occurs:

I. HDR and PTF commands, and at least one DATA command, have not been
previously accepted for this PTF.

2. The accumulated checksum for the PTF does not match the specified checksum.

Examples of correct syntax (the use of commas is optional):

END 2019
END, 5548

The following example might be used as a PTF to the command analyzer system pro
gram (#ECMAN):

PTF
HDR .BSOOI 2A44 Fl
PTF .#ECMAN 00, 33E6
DATA, 3DFS, OEEC, 6F
END EE4D

Assuming R2 contains a PTF file, the following PTF for the help text component
might be entered through the keyboard:

PTF
HDR .BHOOO 22BD Fl, R2

1/0 PARAMETER LIST SAVE AREA

6-10

Contained within the nucleus of the system is a pushdown stack that contains the last
three 1/0 parameter lists that have been handled by the system. This area is near the
upper end of the nucleus and starts at label $PLSTI. On the sample listing shown in
Figure 6-1, the label is NPLSTI and is at address X'044E'. The area has three labels
NPLSTI, NPLST2, and NPLST3. Each label refers to a seven-byte entry in the stack.
NPLSTI is the last 1/0 parameter list to be handled by the system and NPLST2 is the
next to the last, etc.

Interpretation of 1/0 Parameter List Area

All information about these parameter lists is contained in Figures 5-23 and 5-24 with
one exception: the first byte of each seven-byte entry determines the device referenced
by the parameter list:

Hex 00, 01, 02, or 03
HexD7
Hex C3

DPL for disk
PPL for printer
PPL for CRT

Licensed Material-Property of IBM

#ttlTRK NPAUSE - EXMSGS SAVE/RESTORE CORE INTERFACE

ERR LOC OBJECT CODE

04B6

04B6 34 08 0494

04BA 34 01 04F6
04BE C2 01 0489

ADDR STMT SOURCE STATEMENT
2139 ::
2140 :: ROUTINE TO SAVE/RESTORE CORE AND EXEC EXECUTION MESS
2141 ::
2142 ..
2143 ORG $PAUSD

0489 2144 USING $UNMSK,@BR
04B6 2145 NPAUSE EQU ..

2146 ST CIOlOO+@OPl,@ARR
04BA 2147 NPAUSl EQU ..

2148 CSOOlO ST
2149 LA

SET LOCATION CO

ENTRY TO SAVE C
SAVE RETURN ADD
ENTRY FOR EXECU
SAVE BASE REGIS
LOAD BASE REGIS

Replace coding at statement 2148 with this branch: CO 87 OSA4. 'Ihl.s causes a branch
to the patch at address OSA4.

Starting at location OSA4, put in the follCMing 14-byte patch:

Address
OSA4
OSAA
OSAE

Data
OC 14 OSC6 0462
34 01 04F6
CO 87 04BE

This instruction rroves pushdown stack to save area.
This instruction replaces overlaid instruction at 04BA.
This instruction is for branch back to statement 2149.

Data fran pushdown stack for parameter lists is nCM saved in 21-byte area
fran address 05B9 through 05C6.

The follCMing infonnation was required to obtain the second address (X'0462') that
is in the MJVE instruction at address 05A4.

Refer to the listing shown below; the address is the high-order byte of NPISI'3.

#ttlTRK NUCLES - PERMANENT STORAGE AND CONSTANT AREAS

044E
0455
045C

0454 1893 NPLSTl DS
045B 1894 NPLST2 DS
0462 1895 NPLST3 DS

CL(@DPLNG+l)
CL(@DPLNG+l)
CL(@DPLNG+l)

.Figure 6-1. Procedure to Save 1/0 Parameter Lists

Recovery of Parameter List Information

LAST 1/0 PARAM L
2ND TO LAST PARM
3RD TO LAST PARM

BR1368

It is important to note that one of two methods of retrieval must be used to display this
information:

1. Display the parameter list area of the nucleus with the CE console starting at
about address X'044E'.

2. Modify the nucleus with a patch to save the list information prior to calling in
the maintenance utilities. (The fetch of the maintenance utilities ordinarily updates
the list and overlays the information to be displayed.) This patch is useful if several
dumps of the parameter lists are required.

Modification of Nucleus to Save Parameter Lists

1. Find the core save routine (label NPAUSE on listing for ##ITRK at about address
X'04B6').

2. Overlay patch the four-byte instruction that saves the base register (34 01 XRXR)
with an unconditional branch (CO 87 XXXX, where XXXX is the address of a
patch area).

Diagnostic Aids 6-11

Licensed Material-Property of IBM

3. Locate a patch area of 35 bytes; or locate two areas, one with at least 14 bytes
and one with at least 21 bytes. (Try this around address X'05A4' where an area
of more than 35 bytes is available.)

4. In the 14-byte area (or first part of the 35-byte area), enter the following patch:
OC 14 YYYY ZZZZ 34 01 XRXR CO 87 RTRT, where

YYYY Address of the last byte of the patch area where the parameter
lists will be saved.

ZZZZ Address of the last byte of the I/O parameter pushdown stack
(around X'0462').

XRXR Address in last two bytes of instruction that was overlaid in step 2
of this procedure.

RTRT Address of next instruction in NPAUSE.

5. Refer to Figures 6-1 and 6-2 for detailed examples of this procedure.

THIS PROCEDURE WILL PATCH THE NUCLEUS TO SAVE THE LAST THREE I/O PARAMETERS
CD,DD,VM,CP,DP,DC,DW,H,R,T,L CP THIS IS THE OVERLAY IN THE CORE SAVE ROUTTNE
ENTER START ADDRESS 04BA
ENTER PATCH DATA, USE SPACE FOR NO CHANGE
C08705A4

CD,DD,VM,CP,DP,DC,DW,H,R,T,L CP THIS JS THE PATCH TO SAVE THF 1/0 PARAMETERS
ENTER START ADDRESS OSA4
ENTER PATCH DATA, USE SPACE FOR NO CHANGE
OC140SC60462340104F6C08704BE

CD,DD,VM,CP,DP,DC,DW,H,R,T,L R THE NUCLEUS IS PATCHED AND WE WILL RETURN TO RASJC

READY
EDIT LINE
WORK FILE HAS BEEN CLEARED AND NAMED LINE

READY

CD,DD,VM,CP,DP,DC,DW,H,R,T,L CD THE FOLLOWING JS A DUMP OF THE PARAMETER SAVE AREA AND THE PATCH
ENTER START ADDRESS OSAO
ENTER END ADDRESS OSDO

BR=OCOO XR=lDOB PSR=OIOI
ADDR +00 l 2 3 4 5 6 7 8 9 A 8 C D E F +IO I 2 3 4 5 6 7 8 9 A B C D E F ::::::::::u::::u::INTERPRETATJON""""""""""

OSAO
OSCO

14-Byte fatch Area NPLST1 NPLST2:
OC000007 -·o-C-14_0_5_C_6~0-4_6_23-4~0-!~04_F_6_C_08-7~-0-48-E~t-3_F_F_O_l_0~~4-01_2_F ___ 8rD?C005 l~
C3C00517 842F8100 00000000 00000000 00000000 00000000 00000000 00000000

NPLST3/

:: •• , , •• , F ••••. 6 •••• C •••••• P ••.••• ::
•c "

CD,DD,VM,CP,DP,DC,DW,H,R,T,L I

STAND-ALONE DUMP

6-12

BR1369

Figure 6-2. System Printer Output, Example

The possibility exists that the maintenance utilities cannot be loaded. An example would
be if a problem (hardware or software) changed the coding within the nucleus, in an area
that is required for saving core and loading the utilities, making the maintenance utilities
unavailable. To provide information in such a situation, the following program can be
keyed into the system.

This stand-alone dump starts dumping at address 0000 and continues until stopped or
until core is exceeded (Figure 6-3).

Stand-Alone Dump Procedure

1. Prior to entering the program, record (from the CE panel and/or operator panel)
any hardware data that may aid in diagnosing the problem:

IAR
ARR
Status

Licensed Material-Property of IBM

) .

2. Enter the following program by using manual entry via the keyboard, starting at
address 1 FOO. Refer to IBM System/ 3 Model 6 Components Reference Manual,
GA34-0001, "Altering Storage."

Hexadecimal
Data in Hexadecimal Notation

Address

1 FOO 3C 7F 1F 5E C2 01 1 F 70

1F08 C2 02 00 00 68 02 00 00

1F10 68 03 01 00 7A FO 00 7A

1 F18 FO 01 70 FA 00 F2 82 05

1 F20 4E 00 00 1F 68 70 FA 01

1 F28 F2 82 05 4E 00 01 1 F 68

1 F30 02 01 02 E2 02 01 OF 00

1 F38 1 F 64 1 F 65 co 01 1F oc
1F40 31 E4 1 F 61 31 E6 1F 63

1 F48 F3 EO 00 OE 01 1 F 08 1F

1F50 67 C1 E2 1 F 51 3C 40 1 F

1 F58 64 co 87 1 F 00 co 7F 05

1 F60 1 F 70 1F 50 40 01 00 40

1 F68 C7

Note: X '1 F68' is the last byte.

.BR1370

3. Alter IAR to address lFOO and start CPU.
4. Stop CPU when necessary information has been dumped.
5. Write information on the dump to define the core locations (see sample dump

in Figure 6-3).

ADDR. +08 +10 +Ii
0000 D08704B6E7E7E7E7E7E7E7E740C3D6D7EBD9C9C7C8E34DC9

40 F802FD4C000104763C800476D087417BFF1F7D0219F2010C
SO 1E5F001C35580218197BF0193C23009D78021BF290043C24
CO 19F281045E0062375E0026265E00263BD0877ED087533C87

0100 000003010B4C040700000001000200F500AOOOOOFF010974 852
40 1C5C0078265E0078195C007918F3A100 08700D65C01211B740
iO 2520C08700D35800B9265800BC2670022870032A380C03D5 2
CO 4027C01002FE780428C0100304792E27C09001FD780127F210

0100 219C03DC229C000126BA0101F3000198000B26F1A200El00 89
40 E435AD01DADEF20111AD01DFE1F2810A6C011EE57C011FF2871
80 011BE77D011FF2810678801BE010737C001FF287789FOOEA35F
CO 5C041E325C0119375F0062379FOOEB35F20131C08701E09FOOE

0300 25F287123AOC03D51E00043435D0877E 08753D08741C08700
40 OOF1E200384003D2 29003Flf200C08700250394COB7002503
JO OOOOOOOOOOOOOOOOOOF01844C08703890389033002001005070
CO 8400001A0000051EFOF1FOF0402380070000C40110020004000

0400 D3C6Fl400001000000000000000200000000000000030001001
40 000000000000000000000707000000010B4C050700000104011
80 100488C08704750000340804943C870476C0870DB03A2003 3
CO 04895C01710B7402657C87607C0281F2870AC20104897C0181

04F7C 51A051 0012001 00 107D40 C003C80056
057 05 co

BR1371

Figure 6-3. Stand-Alone Dump, Example

Diagnostic Aids 6-13

Licensed Material-Property of IBM

PATCHING A DISK RESIDENT SYSTEM PROGRAM

6-14

Considerations: Two types of patches should be considered:

• Overlay

• Additional coding

Overlay Patch: To make an overlay patch, locate the section of coding to be replaced,
and change that specific area.

Additional Coding: To patch with additional coding, several things must be considered:

• How to exit from original coding?

• Will the base register range be exceeded?

• Where is space available for additional code?

• How can this coding be restored if it is not effective?

• How to return to original coding?

Solutions to Considerations: The considerations can be resolved as follows:

• To exit from the original code, overlay patch at the logical point in original coding
with a branch to the additional code (example: CO 87 XXXX, where XXXX is
address of the patch).

Note: This may require the overlay of more than one instruction.

• If the patch that is branched to is beyond the range of the base register, use long
instructions in the patch, to prevent the need for changing registers (when possible).

• The space for patching with additional coding can be found in four optional areas:

1. Patch area of the module.
2. Overlay a message constant.
3. Overlay a section of the module not being used.
4. Patch area of the nucleus.

Note: You must consider that option 2 will cause incorrect messages and options
3 and 4 will work for only a temporary situation.

• To restore coding with a minimum of effort, the original coding should be placed on
an unused area of disk (use DW option of maintenance utilities).

• To return to original coding requires a branch as follows: CO 87 YYYY, where
YYYY is the return address.

Note: Be sure to include, as the last part of the patch, that portion of the program
that was overlaid by the branch to this patch.

Procedure to Patch a Disk Resident Program: Patch a disk resident program as follows:

1. Determine the disk address of segment(s) of program to be patched. Locate the
directory entry for the program in ##DRTY (first seven sectors of the system
program file). This entry contains the starting disk address and number of sectors
occupied by the program. The relative location of a patch can be determined by
matching machine code between the program's assembly listing[(microfiche) and
a dump of the sectors the program occupies.

2. Write sector(s) to be patched to some unused area of disk. This step should be
taken to provide a simple method of restoring the program to normal.

3. Modify program with disk patch facility.
4. If the patch does not work and/or the program must be returned to normal, copy

back the information saved in step 2 to restore the program.

Licensed Material-Property of IBM

FINDING A LIBRARY FILE ON DISK

Sector Address 0008

Displacement
and Address

Displacement
and Address

Licensed Material-Property of IBM

1. Dump the volume label at disk
address 0008. (Note: The appro
priate disk and drive bits must
be added for files not on R 1;
refer to "Disk Address Specifi
cations for Utility Dump" in
Section 7 .) The cylinder address
of the password directory is
located in OOFD and OOFE.

~

2. Dump the password directory
(5 sectors) using the disk address
obtained in step 1. (Note: Disk
and drive bits must tie added for
files not on R1; refer to "Disk
Address Specifications for Utility
Dump" in Section 7 .) The first
sector is the null directory. In
the next 4 sectors, a 2-byte dis
placement follows each 8-byte
name field. Add the appropriate
displacement to the address of
the password directory. Convert
this address to a physical disk
address by referring to "Disk
Address Specifications for Utility
Dump" in Section 7 to find the
user file directory. Example:

Cylinder address of
password directory

Two-byte displacement

Added

Converted

2000

OC1C

391C

3990

3. Dump the user file directory
using the disk address calculated
in step 2. The 8-byte name field
is followed by a 2-byte displace
ment. Add this displacement to
the disk address found in step 1
and convert to a physical disk
address. Dump the number of
sectors specified in the file length
bytes. The file length is located
in the 2 bytes following the file
displacement (Figure 5-14). A
keyword-generated file has a
1- to 3-sector FIT, a 1-sector
1/0 record if it is a program file,
and data blocks.

Note: If the user file directory
is larger than 2 sectors, a forward
link displacement resides in the
third and fourth bytes of the
block header. If there are no
additional blocks, this field will
contain binary O's.

4. Program files have been character
packed and set up as "segments."
Data items in data files are in
internal format. Keyboard data
files also are "segmented."

BR1372

Diagnostic Aids 6-15

HOW TO USE THE FE MAP

The nucleus contains a six-byte area that identifies the last six program modules that
have been loaded by the system. This area can be found by referring to the listing for
##1 TRK around address X'0584'. The label for the area is NFEMAP and there is also
a system equate of $FEMAP. Each byte in this area identifies a program module that
has been loaded. The byte at the lowest address is the last module loaded. You must
take into consideration that calling in the maintenance utilities makes three entries in

1
the FE map. If you need to know more than the last three modules loaded, you
must display this area using the CE console.

Identification of Programs in the FE Map

Assume that the following hexadecimal data is in the FE map: X'SA 04 2E
01 03 02'. This indicates that the last module loaded was #ZUTMO and that it was pre
ceded by #DPRIN, #EXMSG, #INSTD, #LOADR, and #BCOMP.

Figure 6-4 shows how program numbers can be found in the FE map for #INSTD,
#BCOMP, #DPRIN, and #LOADR. To obtain this information, take a disk dump of the
system program file directory (first seven sectors of the system program file). This pro
vides a list of all program modules and the hexadecimal number for that particular
module.

CD,DD,VM,CP,DP,DC,DW,H,R,T,L , . . DD
ENTER RD DISK ADDR OAOO
ENTER SECTOR COUNT 6
SECTOR ADDR= OAOO

ADDR +00 l 2 3 4 5 6 7
0000 OOOOC6D6 ESD947F0
0020 7BC905E2 E3C4001C
0040 7B0306Cl C4090100
0060 7B02C706 E2030180
0080 7B02CS05 CIC20JC4
OOAO 78020406 f 4050204

RELATIVE SECTOR NU~BER=OOOO

OOCO CI E2E6 0 2 IL...O __,.<l.l,~~~-jiiiljllllm-~ ~~~~~~~-~ '--_Jil;Jl#--......:~.:....;,,lll'

Note: This is a disk dump of the system program file directory.

BR1373

Figure 6-4. Identification of Program Numbers

6-16

Licensed Material-Property of IBM

ADDRESS STOP PROCEDURE FOR PROGRAM LOADING

This procedure can be used to stop the system before or after execution of a specific
program module. This method enables you to ob.tain a core or disk dump at a specific
point, or allow a check of system indicatms at a specific time.

Stop Address Selection

The following three stopping points can be used:

Label of Address *Current
Condition at Time of Stop

in Nucleus Address

1. NB LOAD X'051 E' Last module name printed by trace has executed.

2. NBL067 X'056E' Last module name printed by trace has loaded but
not executed.

3. NLOADR X'0516' Will occur when a module is called to load only. Name not
yet printed by trace; e.g., this happens when 1/0 modules
are called into the low end of core storage.

*The core addresses used are subject to change and are shown here only as an instructional aid.

BR1374

Method to Activate Address Stop

1. Turn on module trace by using the "T" option of the maintenance utilities.
2. Choose the address that you require and set it up with the address switches on

the CE console.
3. Turn on the address compare stop switch. Make sure the roller switch is set for

SAR. Run the program until the proper module name prints. Make observations
or take dumps that you require.

Diagnostic Aids 6-17

Licensed Material-Property of IBM

I HALT 2345

6-18

This halt occurs during IPL if the volume on disk drive Rl is initialized (contains
formatted tracks), but does not have a standard System/3 volume label on cylinder 0,
head 0, sector 2. The following procedure is used to bypass halt 2345:

1. Make sure the user wishes to destroy the data content of the volume mounted on
Rl. The volume label, or any area, can be displayed from Rl using the disk dump
(DD) option of the maintenance utility aid program (#ZUTMO). This program can
be invoked when the halt occurs.

2. If the first 3 bytes of the volume label are not the characters VOL, the volume does
not have a standard System/3 volume label.

3. Invoke the disk patch (DP) option of the maintenance utility aid program.
4. Store X'ABCDEF' as the first 3 bytes of sector 2 on cylinder 0, head 0. The IPL

program accepts this hexadecimal value (Rl only) and does not issue halt 2345.
5. Perform a system IPL after completing the patch. Volumes that are patched in this

manner are assumed to require initialization.

Licensed Material-Property of IBM

)

Section 7. Object Program

This section details a method oflaying out the contents of an execution-time disk dump
of virtual memory. (Note: Taking a complete dump of virtual memory is not a realistic
approach to troubleshooting user-program execution problems.) This section also details
a method for determining the contents of an execution-time core dump. Refer to Figure
7-1 to convert virtual addresses to disk addresses.

HOW TO TAKE A SEQUENTIAL DISK DUMP OF VIRTUAL MEMORY

The disk area occupied by virtual memory is cylinders 7 and 8, and over half of cylinder 9
in the system work area. As this area is a logical four-track file, it is necessary to indi
vidually dump the following six disk areas to get a sequential listing of virtual memory:

1. Starting disk address-0700; sector count-48 (cylinder 7; Rl).
2. Starting disk address-0701; sector count-48 (cylinder 7; Fl).
3. Starting disk address-0800; sector count-48 (cylinder 8; Rl).
4. Starting disk address-0801; sector count-48 (cylinder 8; FI).
5. Starting disk address-0900; sector count-48 (cylinder 9; RI).
6. Starting disk address-0901; sector count-16 (cylinder 9; Fl).

Total 256 pages (64k)

Object Program 7-1

Licensed Material-Property of IBM

Virtual Disk Virtual Disk Virtual Disk Virtual Disk
Memory Addr Memory Addr Memory Addr Memory Addr

OOxx 0700 40xx 0741 BO xx OBAO CO xx 0900
01xx 0704 41xx 0745 81xx 08A4 C1xx 0904
02xx 0708 42xx 0749 82xx OBAS C2xx 0908
03xx 070C 43xx 074D 83xx OBAC C3xx 090C
04xx 0710 44xx 0751 84xx 0880 C4xx 0910
05xx 0714 45xx 0755 85xx 0884 C5xx 0914
06xx 0718 46xx 0759 86xx 0888 C6xx 0918
07xx 071C 47xx 075D 87xx 088C C7xx 091C
OB xx 0720 48xx 0781 88xx OSCO CB xx 0920
09xx 0724 49xx 0785 89xx 08C4 C9xx 0924
OAxx 0728 4Axx 0789 BA xx OBCB CA xx 0928
08xx 072C 48xx 078D 88xx OBCC C8xx 092C
OCxx 0730 4Cxx 0791 BC xx OBDO CC xx 0930
OD xx 0734 4Dxx 0795 8Dxx 08D4 CD xx 0934
OE xx 0738 4Exx 0799 BE xx 08D8 CE xx 0938
OF xx 073C 4Fxx 079D BF xx OBDC CF xx 093C
10xx 0740 50xx 07A1 90xx 0801 DO xx 0940
11 xx 0744 51xx 07A5 91xx 0805 D1xx 0944
12xx 0748 52xx 07A9 92xx 0809 D2xx 0948
13xx 074C 53xx 07AD 93xx OBOD D3xx 094C
14xx 0750 54xx 0781 94xx 0811 D4xx 0950
15xx 0754 55xx 0785 95xx 0815 D5xx 0954
16xx 0758 56xx 0789 96xx 0819 D6xx 0958
17xx 075C 57xx 078D 97xx 0810 D7xx 095C
18xx 0780 58xx 07C1 98xx 0821 DB xx 0980
19xx 0784 59xx 07C5 99xx 0825 D9xx 0984
1Axx 0788 5Axx 07C9 9Axx 0829 DA xx 0988
18xx 078C 58xx 07CD 98xx 0820 D8xx 098C
1Cxx 0790 5Cxx 07D1 9Cxx 0831 DC xx 0990
1Dxx 0794 5Dxx 07D5 9Dxx 0835 DD xx 0994
1Exx 0798 5Exx 07D9 9Exx 0839 DE xx 0998
1Fxx 079C 5Fxx 07DD 9Fxx 083D DFxx 099C
20xx 07AO 60xx 0800 AO xx 0841 EOxx 09AO
21xx 07A4 61xx 0804 A1xx 0845 E1xx 09A4
22xx 07A8 62xx 0808 A2xx 0849 E2xx 09A8
23xx 07AC 63xx OBOC A3xx 084D E3xx 09AC
24xx 0780 64xx 0810 A4xx 0851 E4xx 0980
25xx 0784 65xx 0814 A5xx 0855 E5xx 0984
26xx 0788 66xx 0818 A6xx 0859 E6xx 0988
27xx 078C 67xx 081C A7xx 085D E7xx 098C
28xx 07CO 68xx 0820 AB xx 0881 EB xx 09CO
29xx 07C4 69xx 0824 A9xx 0885 E9xx 09C4
2Axx 07C8 6Axx 0828 AA xx 0889 EA xx 09C8
28xx 07CC 68xx 082C A8xx 088D E8xx 09CC
2Cxx 07DO 6Cxx 0830 AC xx 0891 EC xx 09DO
2Dxx 07D4 6Dxx 0834 ADxx 0895 ED xx 09D4
2Exx 07D8 6Exx 0838 AExx 0899 EE xx 09D8
2Fxx 07DC 6Fxx 083C AF xx 089D EFxx 09DC
30xx 0701 70xx 0840 80xx 08A1 FOxx 0901
31xx 0705 71xx 0844 81xx 08A5 F1xx 0905
32xx 0709 72xx 0848 82xx 08A9 F2xx 0909
33xx 070D 73xx 084C 83xx OBAD F3xx 090D
34xx 0711 74xx 0850 84xx 0881 F4xx 0911
35xx 0715 75xx 0854 85xx 0885 F5xx 0915
36xx 0719 76xx 0858 86xx 0889 F6xx 0919
37xx 0710 77xx 085C 87xx 088D F7xx 0910
38xx 0721 78xx 0881 88xx 08C1 FBxx 0921
39xx 0725 79xx 0884 89xx 08C5 F9xx 0925
3Axx 0729 7Axx 0888 8Axx 08C9 FA xx 0929
38xx 0720 78xx 088C 88xx OBCD F8xx 0920
3Cxx 0731 7Cxx 0890 8Cxx 08D1 FCxx 0931
3Dxx 0735 7Dxx 0894 8Dxx 08D5 FD xx 0935
3Exx 0739 7Exx 0898 8Exx 08D9 FE xx 0939
3Fxx 073D 7Fxx 089C 8Fxx OBDD FF xx 093D

8R1378

Figure 7-1. Conversion of Virtual Addresses to Disk Addresses

7-2

Licensed Material-Property of IBM

Hexadecimal
Sector

00
01
02
03
04
05

) 06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17

Disk Address Specifications for Utility Dump

The following chart provides a means of converting disk address (cylinder, head, sector
ID, and spindle ID) into.a two-byte address format that the programming system requires.
For example, cylinder 5, head 0, sector 2 for Rl (spindle-drive) is disk address X'0508'.

Disk Address

0 1 2 6 7 0

Cy Hod""":'" T_J t
The table below shows the l Head Number~
head, sector, drive, and Sector Number
volume that are selected ----_-_-_-_-_-_-_-_-_ ___ _....
for each value that can be Drive 1 D (off= 1 •on = 2)
contained in byte 2. Volume ID (off= removable, on= fixed) ___ __.....

Head 1
Decimal Head 0 Hexadecimal Decimal
Sector

0
1
2
3
4
5
6
7
s
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

R1 F1 R2 F2 Sector Sector R1 F1 R2 F2

00 01 02 03 1S 24 so S1 S2 S3
04 05 06 07 19 25 S4 S5 S6 S7
OS 09 OA OB 1A 26 S8 89 SA SB
OC OD OE OF 1B 27 SC SD SE SF
10 11 12 13 1C 2S 90 91 92 93
14 15 16 17 10 29 94 95 96 97
1S 19 1A 1B 1E 30 9S 99 9A 9B
1C 10 1E 1F 1F 31 9C 90 9E 9F
20 21 22 23 20 32 AO A1 A2 A3
24 25 26 27 21 33 A4 A5 A6 A7
2S 29 2A 2B 22 34 AS A9 AA AB
2C 20 2E 2F 23 35 AC AD AE AF
30 31 32 33 24 36 BO B1 B2 B3
34 35 36 37
38 39 3A 3B

25 37 B4 B5 B6 B7
26 3S BS B9 BA BB

3C 30 3E 3F 27 39 BC BO BE BF
40 41 42 43 28 40 co C1 C2 C3
44 45 46 47 29 41 C4 C5 C6 C7
4S 49 4A 4B 2A 42 cs C9 CA CB
4C 40 4E 4F 2B 43 cc CD CE CF
50 51 52 53 2C 44 DO 01 02 03
54 55 56 57 20 45 04 05 06 07
5S 59 5A 5B 2E 46 DS 09 DA DB
5C 50 5E 5F 2F 47 DC DD DE OF

How to Lay Out Virtual Memory (Standard Precision)

Documentation required to lay out an execution-time disk Clump of virtual memory is:

1. Execution-time disk dump of virtual memory.

Note: Modifications to pages in core may not be reflected in the disk dump.

2. Maintenance utility core dump (all of core).
3. Maintenance utility dump of virtual memory (pseudo instructions).
4. Listing of the user's System/3 BASIC language program. (A copy of this can be

obtained using the LIST system command.)
5. Assembly listing of #FMSTD.
6. Assembly listings of #TEQUl and #TEQU2 (system equates).

Object Program 7-3

Licensed Material-Property of IBM

Page of LY34-0001-l
Revised November 15, 1973
By TNL: LN21-7729

7-4

The first step in laying out virtual memory is to block out the disk dump into the
major-areas illustrated in Figure 7-2. Lay out the following fixed areas first (these can be
individually formatted by referring to the indicated figure or section in this manual):

1. Disk address 0700 (1 sector; starts at virtual address 0000; contains file
directory 1); refer to Figure 5-17.

2. Disk address 0704 (1 sector; starts at virtual address 0100; contains file directory 2);
refer to Figure 5-20.

3. Disk address 0708 (82 sectors; starts at virtual address 0200; contains fixed execu
tion subroutines); refer to "Virtual Memory Resident Execution Subroutines
#FMSTD and #FMLNG" (Section 3).

4. Disk address 07Bl (2 sectors; starts at virtual address 5400, contains general
purpose buffers).

5. Disk address 07B9 (starts at virtual address 5600, contains pseudo machine
instructions); refer to "VM-Virtual Memory Dump Option" (Section 6). The
last pseudo instruction will always be EOF.

6. Disk address 0911 (starts at virtual address F4FF; contains constants); refer to
"Floating-Faint Arithmetic" (Section 3) for arithmetic constants, and Figure 3-110
for character constants. Constants are generated at descending virtual addresses
as they are encountered in the user's program.

7. Disk address 0915 (X'36' bytes; starts at virtual address F500 to F535; contains
internal constants and internal work area-&CWRK and &WRK); refer to
"Floating-Point Arithmetic" (Section 3) for internal constants. This area is
generated by the loader (#LOADR); refer to "Loader-Second Phase of Compil
ation-#LOADR" (Section 3).

8. Disk address 0915 (starts at virtual address F536; contains variables); refer to
"Floating-Point Arithmetic" (Section 3) for arithmetic variables, and Figure 3-110.
for character variables. Variables are allocated at ascending virtual addresses as

9.
they are encountered in the user's program.
Disk address 093D (starts at virtual address FFFF; contains array dope vectors
and virtual addresses of user function definitions); refer to Figure 3-I56 for
arithmetic array dope vectors, and Figure 3-157 for character array dope vectors.
This area is allocated at descending virtual addresses as array references, user
function references, and user function definitions are encountered in the user's
program. The virtual address operands of the following pseudo instructions
reference (Figure 7-3) this area:

SAI

SA2

SBl

SCI

SFI

SF2

SDO

SDI

SD2

FCI

Licensed Material-Property of IBM

\

)

0000 File Directory 1(page1)***

0100 File Directory 2

0200

Fixed Execution Subroutines (#FMSTD or #FM LNG)

53FF

5400 General Purpose Buffer 1

5500 General Purpose Buffer 2

5600

Pseudo Machine Instructions

*

Region 1 (arrays, buffers)

*

Constants
_.,__ F4FF

F500 ** J F536

Variables

*

Region 2 (arrays, buffers)

* Array Dope Vectors and
User Function VADRs ~

Notes:

*The virtual addresses that define the limits of
region 1 and region 2 are variable.

FFFF

**F500 and all virtual addresses (constants, internal
constants, variables, etc.) developed from it are
precision dependent.

***Page 2 of file directory 1 is allocated

in either region 1 or region 2.

Figure 7-2. Virtual Memory Map

Licensed Material-Property of IBM

Page of L Y34-0001-1
Revised November 15, 1973
By TNL: LN21-7729

Object Program 7-5

Page ofLY34-0001-1
Revised November 15, 1973
By TNL: LN21-7729

7-6

SC1
i

SF1
j_

FCJ
j_

SF.2 :.r
Character Arithmetic Virtual Address Arithmetic
Array Dope Array Dope of User Function Array Dope
Vector (4 bytes) Vector (8 bytes) Definition (2 bytes) Vector (8 bytes)

X'FFEA' X'FFEE' X'FFF6' X'FFF8'

Figure 7-3. Pseudo Instruction Reference to Virtual Memory, Example

The next step in laying out virtual memory is to determine the virtual address limits of
region 1 and region 2 (refer to Figure 7.-2). Both regions start and end on page boundaries.
The limits can be determined by inspecting virtual address operands in the generated
pseudo instructions.

1. The starting virtual address of region 1 is the next ascending page following the last
page of pseudo instructions. (Example: If the last pseudo instruction is generated
at virtual address 5B4E, region 1 starts at 5COO.)

2. The ending virtual address of region 1 is the next descending page preceding the
page containing the last generated constant. The virtual address of the last
generated constant is determined by inspecting STF and STC pseudo instructions.
The virtual addresses in the operands of constant stacking instructions descend
from F500. All constants can be formatted by tracing this descending chain of
virtual addresses in the generated pseudo instructions. (Example: If the virtual
address of the last generated constant is F3F8, region 1 ends at F2FF.)

3. The starting virtual address of region 2 is the next ascending page following the
page containing the last allocated variable. The virtual address of the last allocated
variable is determined by insp((cting STA, STF, and STC pseudo instructions. The
virtual addresses in the operands of variable stacking instructions ascend from
F536. All variable elements can be formatted by tracing this ascending chain of
virtual addresses in the generated pseudo instructions. (Example: If _the virtual
address of the last allocated variable is F620, region 2 starts at F700.)

4. The ending virtual address of region 2 is the next descending page preceding the
page containing the last allocated array dope vector or user function virtual
address. These fields normally occupy only one page; therefore, region 2 normally
ends at virtual address FEFF.

Alternate Method to Lay Out Virtual Memory (Standard Precision): The preceding
virtual addresses are resolved by the compiler and passed to the loader in a common
parameter area (Figure 3-155). This area can be inspected in a core dump taken between
the execution of these two programs (refer to "CD-Core Dump Option" in Section 6).

The arrays can be formatted by inspecting the contents of the array dope vectors.
Allocated buffers can be located by inspecting file directory 2 (page 01).

The virtual address operands of all FCI pseudo instructions should point to a location in
virtual memory containing the virtual address of the corresponding user function defi
nition in the generated pseudo instruction (virtual address of a BRA generated for a DEF
statement). It is now possible to resolve that the virtual address operands of all generated
pseudo instructions reference the correct data element or subroutine entry point.

Licensed Material-Property of IBM

)

)

How to Lay Out Virtual Memory (Long Precision)

Use tlie preceding method oflaying out virtual memory for standard precision, keeping
the following considerations in mind:

1. #FMLNG occupies the area starting at virtual address 0200 instead of #FMSTD.
2. All arithmetic data elements are allocated nine bytes instead of five. This includes

constants, variables, array elements, and internal constants.
3. The virtual address that divides constants from variables is FOOO instead of F500.

All virtual addresses affected by this location.must be adjusted. Also, the size of
the area containing internal const<.lnts is increased to accommodate elements of
greater length. The area containing variables starts immediately after internal
constants and internal work area (virtual address F03F when running in long
precision). (Page FO is located at disk address 0901 in virtual memory.)

HOW TO LAY OUT AN EXECUTION-TIME CORE DUMP

Documentation required to determine the contents of an execution-time core dump is:

1. Maintenance utility core dump taken while the interpreter program is in execution.
(A core dump taken while the interpreter is in an execution pause state does not
contain the complete core-resident interpreter.)

2. Maintenance utility dump of virtual memory (pseudo instructions).
3. Listing of the user's System/3 BASIC language program. (A copy of this can be

obtained by using the LIST system command.)
4. Assembly listings of #INSTD and #FMSTD, or listings of #INLNG and #FMLNG,

depending upon the precision.
5. Assembly listings of #TEQUl and #TEQU2 (system equates).

If the following conditions do not exist in the dump, it is not a valid execution-time
core dump:

1. X'0600' must contain #INS TD or #INLNG.
2. X'0700' must not contain any valid program name (example: #DPRIN).
3. X'OCOO' must not contain any valid program name (example: #GUFUD).
4. X'OEOO' may contain the name of an interpreter execution overlay. The program

name at this address, if present, must be #FlSTD, #FILNG, or #SFFIN.
5. X'OFOO' may contain the name of an interpreter execution overlay. The program

name at this address, if present, must be #SFLOA.

The core dump can be divided into the major areas as illustrated in Figure 3-163
(interpreter core map). The location and size of certain areas in the dump are dependent
upon the core size of the system. Figure 7-4 lists the fixed core addresses to be used in
laying out the core dump (all addresses are in hexadecimal).

Object Program 7-7

Licensed Material-Property of IBM

Address Length Description

0600 7 bytes Program name and ID number

0607 50 bytes Arithmetic function work area

0639 240 bytes Run-time stack (contains variable length entries)

14CA 256 bytes Core page table (nonzero entry indicates page in core)

1600 Start of core paging area (Bk system only)

1FFF 10 pages End of core paging area (Bk system only)

1700 Start of core paging area (12k or 16k system)

2BFF 1 B pages End of core paging area (12k system with CRT)

2FFF 25 pages End of core paging area (12k system without CRT)

3BFF 34 pages End of core paging area (16k system with CRT)

3FFF 41 pages End of core paging area (16k system without CRT)

BR13B1

Figure 7-4. Fixed Core Addresses in Execution-Time Core Dump

7-8

Licensed Material-Property of IBM

Appendix A. System/3 Basic Assembler Language

MACHINE INSTRUCTION REFERENCE TABLE

Standard Mnemonics Extended Mnemonics

Instruction Mnemonic Operation Code Instruction Mnemonic Operation Code

Zero and add zoned decimal ZAZ Move hex character (MVX):

Add zoned decimal AZ Move to zone from zone MZZ

Subtract zoned decimal sz Move to numeric from zone MNZ

Move to zone from numeric MZN

Move hex character MVX Move to numeric from numeric MNN

Move characters MVC Two-address

Compare logical characters CLC format* Branch on condition (BC):

Add logical characters ALC
Subtract logical characters SLC

Insert and test characters ITC

Branch B

Branch high BH

Branch low BL

Edit ED Branch equal BE

Branch not high BNH

Move logical immediate MVI

Compare logical immediate CLI

Set bits on masked SBN

Branch not low BNL

Branch not equal BNE

Branch overflow zoned BOZ

Set bi ts off masked SBF Branch overflow logical BOL

Test bits on masked TBN Branch no overflow zoned BNOZ

Test bits off masked TBF Branch no overflow logical BNOL

Store register ST > One-address
Load register L format*

Add to register A

Branch true BT

Branch false BF

Branch plus BP

Branch on condition BC Branch minus BM

Test I /0 and branch TIO Branch zero BZ

Sense 1/0 SNS Branch not plus BNP

Load 1/0 LIO Branch not minus BNM

Load address LA Branch not zero BNZ

Advance program level APL

Halt program level HPL I Commood
Start 1/0 SIO format*

Jump on condition JC

Jump on condition (JC):
Jump J

Jump high JH

Jump low JL

Jump equal JE

Jump not high JNH

Jump not low JNL

*See "Machine Instruction Formats" in this appendix. Jump not equal JNE

Jump overflow zoned JOZ

Jump overflow logical JOL
BR1382 Jump no overflow zoned JNOZ

Jump no overflow logical JNOL

Jump true JT

Jump false JF

Jump plus JP

Jump minus JM

Jump zero JZ

Jump not plus JNP

Jump not minus JNM

Jump not zero JNZ

BR1383

)

System/3 Basic Assembler Language A-1

Licensed Material-Property of IBM

MACHINE INSTRUCTION FORMATS

@ Two-Address Formats

4 Bytes

OP Leng~h

Code Count

Destination Source
Address Address
Displacement Displacement:

0 7 8 1516 23 24 31

5 Bytes

OP Lengt.h Direct
Destination

Source
Address Code Count

Address Displacement

A-2

0 7 8

OP Length
Code Count

0 7 8

6 Bytes

OP Length
Code Count

0 7 8

®One-Address Formats

3 Bytes

OP
Code

0

--'
-7 8

)

I Immediate Data
I Bit Mask

Q

Code

Register Address
I Branch or Skip Condition
I Data Selection

L_
4 Bytes-- 1

OP Q
Code Code

0 7 8

15 16

Destination
Address
Displacement

15 16 23 24

Direct
Destination
Address

15 16

Address
Displacement

5 1 6

I
3 2 I

I --

31 32

Direct
Source
Address

31 32

I
I
I
I
I
I
I

--,

15 16

Destination Address
Source Address
Branch Address

Direct
Address

31

Licensed Material-Property of IBM

39

39

Direct
Source
Address

47

© Command Format

3 Bytes

OP Q Control
Code Code Code

0 I 7 8 15 16

J L - --..
I Device Address -I
I

and Functional
Specifications I

I Skip Condition I
I

Halt Identifier
I

I I

BR1384

23

)

Operation Code

The first byte of each instruction, the operation code, specifies the addressing modes to
be employed by the instruction in bits 0 through 3, and the operation to be performed
in bits 4 through 7.

Q Code

The second byte of each instruction is the Q code. In two-address formats, the Q code
is always a length count. In other formats, depending upon the operation specified, the
Q code can be:

Length count
Immediate data
Bit mask
Register address
Data selection
Branch or skip condition
Device address and functional specifications

Control Code

The third byte of an instruction in the command format contains additiona I data per
taining to the command to be executed.

Storage Addresses

For instructions in the one-address and two-address formats, the third byte of the instruc
tion and all bytes following are storage address information.

ASSEMBLER INSTRUCTION REFERENCE TABLE

Operation Entry Name Entry Operand Entry

DC Any symbol or blank One operand entry containing: duplication
factor, type, length, constant.

DROP Blank Specified register (1 or 2).

DS Any symbol or blank One operand entry containing: duplication
factor, type, length.

EJECT Blank Blank.

END Blank A relocatable expression.

EQU Any symbol An expression.

ICTL Blank Two decimals in the form of b, e.

ISEQ Blank Blank, or two decimal vaules in the form L, R.

ORG Blank Blank, or an expression (A) optionally followed
by two absolute expressions in the form A, b, c.

PRINT Blank One or two entries from: DATA, NODATA;
ON, OFF.

SPACE Blank Blank, or a decimal value.

START Name A self-defining value, or blank.

TITLE Name or blank A sequence of characters enclosed in apostrophes.

USING Blank A relocatable expre,sion (v) and an index register
(r) in the form v, r.

BR1385

System/3 Basic Asseinbler Language A-3

Licensed Material-Property of IBM

A-4

Licensed Material-Property of IBM

Page of LY34-0001-l
Revised January 1972
By TNL LN34-0075

Index

Where more than one page reference is given, the major reference is first.

BEQU-compiler equate module 3-154
BEQU-compiler fixed equates 4-9
$B@EQU-compiler system equates 4-10
$BLOAD (NBLOAD) 3-16
$CABLD (NABORT) 3-12
$CAERK (NCAERK)-interface to system printer !OCR 3-10
$CAIPL (NABORT) 3-12
$CARPL (NABORT) 3-12
$CIENT, $UNMSK (NQUIRY) 3-12
$CIMSK, usage in $UNMSK 3-12
$DISKN (DKDISK) 3-4
$DPLSV (#UPACK) 3-137
$ERPND, usage in NERLOG 3-9
$EXFTR (#DSPL Y) 3-41
$FCIND (#GUFUD) 3-22
$FDIND (#GUFUD) 3-22
$FUIND (#GUFUD) 3-22
$HISTE, usage in NERLOG 3-9
IEQU-interpreter, fixed equate module 3-205
IEQU-interpreter fixed equates 4-10
$I@LEQ-long precision execution equates 4-11
$!@SEQ-standard precision execution equates 4-11
$INDR1 indicator as used in #KEDIT 3-55
$INRPT, usage in NQUIR Y 3-12
$ISEQU fixed address referencing 3-205
$LOADR (NBLOAD) 3-16
$PAUSD (NPAUSE) 3-14
$PRDEV, usage in NSPRNT 3-10
$RLOAD (NBLOAD) 3-16
$RSTR (NPAUSE) 3-14
$SPRNT (NSPRNT)-interface to system printer IOCR 3-10
$SPRNT-system printer calling sequence 3-41
$UNMSK, $CIENT (NQUIRY) 3-12
YEQU-fixed addresses in virtual memory 4-10
$WAITF, usage in NERLOG 3-9
$$CDBS (#GRAPR) 3-40.1

card input status (#GUFUD) 3-27
$$ERSK-stacked error entry 3-18
$$PRES-enable key input (#GUFUD) 3-26
$$PYCD-CRT branch in DEPRES 3-38
*(one-star), general description 2-6
**(two-star) library, general description 2-6
#BCOMP, #BOYLY-compiler 3-153
#BCOMP--calling sequence and load 3-155
#BCOMP-core resident routines 3-153
#BCOMP-entry point 3-155 '
#BOYL Y-calling sequence and load 3-155
#BOYL Y-PMC generator (statement processor) overlays 3-154
#DPRIN-conversational I/O routines 3-35
#DREAD-card reader 1/0 routine 3-39
#DSPLY-CRT I/O routine 3-41
#ECMAN-command analyzer 3-28
#EFKEY-command key processor 3-30
#ERRPG-error message program 3-18
#ERRPG, usage in NCAERK (error program interface) 3-10
#EXMSG-program interruption processor 3-20
#FILNG-long precision matrix inversion/determinant 3-222.1
#FISTD-standard precision matrix inversion/determinant 3-222.1
#FMLNG-long precision virtual memory resident execution

subroutine 3-201
#FMSTD-standard precision virtual memory resident
execution subroutine 3-201

usage in random number generator 3-222.2
#GRAPR-procedure file line processor 3-40.l
#GUFUD initial entry (GUFENT) 3-22
#GUFUD-work file update/crusher 3-21

#INLNG-long precision interpreter 3-201
#INSTD-standard precision interpreter 3-201
#KALLO-keyword program 3-45
#KCALL-CALL keyword program 3-46.1
#KCNDI-CONDITION keyword program 3-49
#KCTLO-LISTCAT keyword program 3-69
#KDELE-DELETE keyword program 3-50
#KDISP-DISPLA Y keyword program 3-53
#KDNTE-ENTER keyword program 3-59
#KDOYR-DISPLA Y keyword program 3-5 3
#KEDIT-EDIT keyword program 3-55
#KENAB-ENABLE/DISABLE keyword program 3-57
#KEXTR-EXTRACT keyword program 3-59
#KGOSL-GO keyword program 3-61
#KHELP-HELP keyword program 3-62
#KKEYS-KEYS keyword program 3-64
#KLLA Y-card punch IOCR 3-66
#KLIST-LIST keyword program 3-66
#KLOGO-LOGON/OFF keyword program 3-71
#KMERG-MERGE keyword program 3-73
#KMOUN-MOUNT keyword program 3-75
#KNAME-RENAME keyword program 3-85
#KPASW-PASSWORD keyword program 3-76
#KPOOL-PULL/POOL keyword program 3-78
#KPRTC-PROTECT keyword program 3-77
#KREAD-READ keyword program 3-81
#KRLAB-first phase of RELABEL keyword program 3-81
#KRMOY core map 3-83
#KRMOY-REMOYE keyword program 3-83
#KRNUM-RENUMBER keyword program 3-87
#KROYL overlay in RENUMBER keyword program 3-88
#KRSUM-RESUME keyword program 3-89
#KRUNI-RUN/STEP/TRACE keyword program 3-91
#KRYLA-second phase of RELABEL keyword program 3-81
#KSA YE-SA YE keyword program 3-92
#KSETI-SET keyword program 3-94
#KSOYR-SET keyword program 3-94
#KSSPN-SUSPEND keyword program 3-95
#KSYMB-SYMBOLS keyword program 3-97
#KWIDT-WIDTH keyword program 3-99
#KWRIT-WRITE keyword program 3-100
#KYBSY indicator (CRDBSY) 3-39
#LOADR-loader, second phase of compilation 3-193
#MIPPE-nucleus initialization program 3-2
#MIPPE-nucleus initialization program flowchart 3-3
#MLOAD-IPL bootstrap loader 3-2
#SDSYN.'....data syntax checker 3-34
#SFFIN-find disk data file 3-222.2
#SFLOA-logical IOCS for disk data files 3-225
#SFSYN-BASIC statement syntax checker 3-32
#SP ACK-pack file library subroutine 3-123
#SPOYL (#SPACK) 3-123
#SPOYL overlay (#SPACK) 3-123

-I #SPSYN-procedure line checker 3-34.1
#TEQU 1-system equates 4-7
#TEQU2-system equates 4-11
#VALLO-ASSIGN utility program 3-127
#UATRC-ALTERNATE-TRACK utility program 3-125
#UCDIS-COPY volume utility program 3-131
#UCDIS usage in #UCPLI 3-130
#UCNFI-CONFIGURE utility command 3-129
#UCNFI-CONFIGURE utility program 3-129
#UCPLI-COPY file utility overlay 3-130
#UDELY (#UDISY) 3-143
#UDELY-YTOC-DELETE utility program 3-141

Index X-1

Licensed Material-Property of IBM

#UDISV usage in #UDELV 3-143
#UDISV-VTOC-DISPLA Y utility program 3-143
#UEXLl-EXPAND utility program 3-133
#UINIT-INITIALIZE disk utility program 3-134
#UPACK-PACK utility program 3-137
#UPTFl-PTf utility program 3-138
#VCRTI-DCALC CRT physical lOCS 3-276
#VLOAD-first phase of DCALC 3-272
#VLOAD flowchart 3-277
#VODKA-DCALC core resident routines 3-269
#VODKA flowchart 3-277
#VODKA, modules 3-269
#VVMRS-DCALC virtual memory resident subroutines

3-270, 3-272
#VXITl-DCALC terminator (second phase) 3-276
#VXITI flowchart 3-277
#ZDUMP branch table 3-149
#ZDUMP-VM dump overlay 3-149
#ZLBMA-library mapping, mainline entry 3-150
#ZLVRL-library mapping, option 3 overlay, part 2 3-150
#ZUMA-library nrnpping, option 1 overlay 3-150
#ZL2MA-library mapping, option 2 overlay 3-150
#ZL3MA-library mapping, option 3 overlay, part 1 3-150
#ZTRAC-maintenance program load trace 3-44
#ZUTMO-maintenance utility aid program 6-1
#ZUTMO-maintenance utility monitor 3-145
##CKTB-command key table 5-30
##CORE, usage in save/restore core (NPAUSE) 3-14
##DRTY-system program file directory 5-31
##ERMS-DCALC error message text 3-273
##VUFA-DCALC virtual memory resident subroutines 3-270
#@#BAD bad line buffer (#KCHAN) 3-47
@CANEQ-common core locations outside nucleus 4-8
@CNFEQ-system configuration record equates 4-9
@CYOEQ-cylinder zero equates 4-8
@DIREQ-file library addresses and tables 4-9
@ERMEQ-general error message equates 4-9
@FXDEQ-fixed addresses for system nucleus 4-8
@fXDEQ, usage in NUCLES 3-9
@HDWEQ-system hardware 1/0 equates 4-8
@HL TEQ-halt indicator equates 4-9
@LVLEQ-system level equates 4-11
@SEREQ-gencral error 111essage equates 4~9

@SPFEQ-system program area equates for relative disk
addresses and sector counts 4-8

@sYSEQ-system and hardware equates 4-7
@V@EQU-desk calculator equates 4-10
@VMDEQ-virtual memory directory equates (directory I

and 2) 4-9
@VTCEQ-volume table of contents (VTOC) equates 4-9
@WKAEQ-system work area equates for physical disk

addresses and sector counts 4-8
@XR (index register)-character core address 3-161

abbrt current operation routine-NABORT, $CAIPL,
$CARPL, $CABLD 3-12

access next statement and set up processing (compiler) 3-179
accessing PMC generators 3-153
activate address stop, procedure 6-17
activate external data file, (ADF), pseudo instruction 3-239
active external data file-SFADFR 3-218
add, (ADD), pseudo instruction 3-226
add error, compiler, equated to B$PFAE 3-161, 3-162
add record, compiler, set by default 3-161, 3-162
ADD pseudo instruction execution, label trace 3-226
ADD (X'06'), add, pseudo instruction 3-230
additional coding patch of disk resident system program 6-14
address stop procedure for program loading 6-17

X-2

ADF(X'58'), activate eternal data file, pseudo instruction
3-240

algebraic expression constants 3-162
ALL parameter (#KCHAN) 3-47
ALL parameter in #KDOVR 3-53
-ALL parameter in #UD EL V 3-141
-ALL parameter in DELETE (#KDELE) 3-50
allocate disk space (#VALLO) 3-127
ALLOCATE, file directory 1 description 2-11
ALLOCATE keyword program-#KALLO 3-45
allocation

alternate data tracks 2-4
arrays in virtual memory-LALLOC 3-193
copied/saved program file 2-8
core paging 3-206
current data file 2-7
current program file 2-7
data file buffers in virtual memory-LDFILE 3-194
disk working storage for programs 2-6
file directory 1 2-8
file library (system library file) 2-6
help text file 2-7
1/0 information sector 2-8
paging module 3-209
PTF file 2-7
selected system programs 2-5
system file 2-5
system library file 2-6
system program file 2-6
system work area 2-5
system work file 2-5
tern porary disk work area 2-6
user programs and data 2-6
virtual memory 2-6, 2-8
volume information cylinder 2-4
volume label 2-4
VTOC 2-4, 2-5
work file 2-5, 2-7

alphabet reference table (BDSART) 3-165
alternate

data tracks 2-4
method to lay out virtual memory (standard precision) 7-6
track address, IOCS 3-5
track assignment in #UINIT 3-134

ALTERNATE-TRACK utility program-#UATRC 3-125
appendix A, System/3 Basic Assembler Language A-1
arithmetic

array dope vector 3-19 3
array symbol table-B$SNAT 3-194
character output to sequential data file 3-218
constant conversion 3-163
constant, pack (#SDSYN) 3-34
constant processed by BCFCON 3-162
constant, test and translate (#SDSYN) 3-34
expression conversion to pseudo instruction sequences 3-169
expression PMC subroutine-BFSCAN 3-167
operations (see also pseudo instructions) 3-227
operations, general description 2-10
packed-decimal format 3-268
unpacked-decimal format 3-268

array
allocation parameters 3-193
allocation in virtual memory 3-193
arithmetic dope vector 3-194
arithmetic for standard precision 3-19 3
character 3-19 3
element length 3-193
row, validity check (FZXINP) 3-218

assembler instruction reference table A-3

Licensed Material-Property of IBM

)

)

)

assembly listing
contents of #VODKA 3-269
DCALC 3-269
interpreter 3-201
microfiche 4-1

assign alternate tracks (#UINIT) 3-134
ASSIGN usage in #UATRC 3-125, 3-126
ASSIGN utility program-#UALLO 3-127
assignment list PMC subroutine-BUST A 3-175
automatic line number overflow 3-26

B$ADSW-address available switch 3-166
B$BCKT-identifies virtual address bucket 3-165
B$BCKT label us!!ge in BDSYMB 3-164
B$BCKT-operand address bucket 3-168
B$CRSW-character reference switch 3-166
B$FRSW-function reference switch 3-166
B$FSC 1-function scan identifier (first character) 3-165
B$FSC2-function scan identifier (second character) 3-165
B$FSSW-function scan switch 3-165
B$FSVA-function scan virtual address 3-165
B$GBSW-bypass blanks switch 3-160
B$GPTR-address of selected character 3-161
B$HRSW-matrix reference switch 3-166
B$1FSW-intrinsic function switch 3-166
B$KWSW-expression keyword switch 3-166
B$UNE-line number 3-161
B$MRSW-matrix reference switch 3-165
B$NUMC-character skip count 3-160
B$PFNC parameter usage in compiler 3-161
B$SCAT-character array symbol table 3-195
B$SFAB-user function addresses and array dope vectors 3-165
B$SNAT-arithmetic array symbol table 3-194
B$TYPE-statement type code 3-161
backspace (DPRINT) 3-35
backspace and index (DPRINT) 3-35
backspace key (DEPRES) 3-37
BAGETC output parameters 3-161
BAGETC-statement input subroutine 3-160
BASIC

mode of operation 1-1
program file structure format 5-18
programs, general description 1-1
statement, general description 1-1
statement syntax (see syntax, PMC)
statement syntax checker-#SFSYN 3-32

BBPUTC-virtual memory output routine 3-161, 3-168
BCFCON-constant generator subroutine 3-162
BDSYMB-symbol translator subroutine 3-164, 3-176
BECSCN-character expression PMC subroutine 3-166
BFSCAN-arithmetic expression PMC subroutine 3-167
BFSCEN-current entry 3-168
BFSSTK-compile-time stack 3-168
BFSTBL-scan routine branch table 3-168
BGINIT functions 3-155
BGINIT-overlay during compilation 3-155
BHDDSA-sector byte label 3-158
BHDIST-compiler distributor 3-159
BHDPAT-processor address table 3-158
BUSTA-assignment list PMC subroutine 3-175
BMATXR-matrix reference PMC subroutine 3-176
BNX (X'4A'), branch and suppress execution, pseudo
instruction 3-246

BRA (X'46'), branch unconditionally, pseudo instruction 3-245
branch

address buffer (in core) 3-16 0
address entry 3-160
address resolution routine 3-166
address table 3-16 0

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

branch (continued)
address table (on disk) 3-160
address table, general description 3-158
address table sorting 3-19'7
on condition, (BRC), pseudo instruction 3-245
and delete function entry, (BRD), pseudo instruction 3-245
instructions, PMC sequence 3-161
-to-next statement 3-158
pseudo instruction addresses 3-176
to stacked address, (BRS), pseudo instruction 3-246
and statement address table 3-197
and suppress execution, (BNX), pseudo instruction 3-246
table subroutine-BRATAB 3-176
unconditionally, (BRA), pseudo instruction 3-245

BRATAB-branch table subroutine 3-176
BRC (X'44'), branch on condition, pseudo instruction 3-245
BRD (X'48'), branch and delete function entry, pseudo

instruction 3-245
BRS (X'4C'), branch to stacked address, pseudo instruction

3-246
BSSVRB-variable elements (arithmetic and character) 3-165
BTRMNT-compiler terminator overlay 3-191
BVDL4 T-disk four-track logical IOCS interface 3-177
bypass blanks switch-B$GBSW 3-160
BZCOMN-compiler common module 3-154

I CALL keyword program-#KCALL 3-46.1
card

or disk file close or reset (SFRSET) 3-218
NUM input (#GUFUD) 3-26
punch IOCR-DCDOUT 3-105
punch physical IOCS-DFCOUT 3-216
reader 1/0 routine-#DREAD 3-39
reader physical IOCS-DFRDIN 3-216
reader/punch physical IOCS-DFRDIN, DFCOUT flow-

chart 3-216
caution procedure, maintenance utility aid program 6-1
CBl, CB2, CB3, CB4 (#GUFUD) 3-21, 3-26
CD-core dump (#ZUTMO) 3-145
CD-core dump option, operating procedure 6-1
central work area, paging 3-210
CHANGE keyword program-#KCHAN 3-4 7
CHANGE option usage in #UINIT 3-135
character

array dope vector 3-19 5
array symbol table-B$SCAT 3-195
constant processed by BCFCON 3-162
constant, test and translate (#S DS YN) 3-34
expression PMC subroutine-BECSCN 3-166
field format 3-163
segment 3-163
skip count-B$NUMC 3-160
string constant processed by BCFCON 3-163
string delimiter 3-16 3

characteristic, floating-point arithmetic 3-266
check component field (#UCNFI) 3-129
check system status (#GUFUD) 3-26
CIT (core index table)-#GUFUD 3-22
clear CRT screen-DSPCMD 3-41
close, compiler, equated to B$PFCL 3-161, 3-162
close external data file, (CLS), pseudo instruction 3-241
close or reset external data files-SFRSET 3-218
CLOSE, PMC syntax 3-181
CLS (X'5E'), close external data file, pseudo instruction 3-241
CMC (X'42'), compare character elements, pseudo

instruction 3-244
CMF (X'40'), compare floating point values, pseudo

instruction 3-244
codes

core-resident modules 3-205

Index X-3

Licensed Material-Property of IBM

codes (continued)
interpreter print and carrier positioning 3-219
virtual memory modules 3-205

comma delimiters (FZXINP) 3-218
command

analyzer-#ECMAN 3-28
key functions, IBM-assigned 5-30
key processor-#EFKEY 3-30
key table-(##CKTB) 5-30
key 01 3-269
keys, other than 1 through 11 (D EPRES) 3-3 7
keys 1 through 11 (DEPRES) 3-37

common
core locations outside nucleus-@CANEQ 4-8
parameter area, compiler/loader 3-192
subroutines 3-101
work areas, INTERP 3-208

compare character elements, (CME), pseudo instruction 3-244
compare floating point values, (CMF), pseudo

instruction 3-244
compile-time

indicators 3-155
stack-BFSSTK 3-168
stack entries 3-169

compiler

X-4

#BCOMP flowchart 3-179
accessing PMC generators 3-155
add error 3-162
add record 3-162
arithmetic constant 3-162
arithmetic constant conversion 3-163
arithmetic expression PMC subroutine-BFSCAN 3-167
assembly listings 3-15 3
assignment list PMC subroutine-BUSTA 3-175
branch address table 3-160
branch table subroutine-BRAT AB 3-176
character constant 3-16 3
character expression PMC subroutine-BECSCN 3-166
character string constant 3-16 3
close 3-162
common module-BZCOMN 3-154
constant generator subroutine-BCFCON 3-162
constants passed via label B$CTYP 3-162
conventions used, core-resident modules 3-154
conventions used, disk-resident modules 3-154
conversions of subexpressions to pseudo instruction

sequences 3-17 3
converting arithmetic expressions to pseudo instruction

sequences 3-169
core-resident module referencing 3-154
core resident routines 3-153, 3-159
cycle 3-15 3
detailed program description 3-15 3
disk four-track logical IOCS interface- BVOL4 T 3-1 77
disk-resident module referencing 3-154
distributor-BHDIST 3-159
entries in compile-time stack 3-169
equate module-BEQU 3-154
filename table 3-157
filename table, general description 3-155
fixed equates-BEQU 4-9
floating point data length 3-155
initialization 3-155
initiator-BGINIT 3-155
input parameters to BAGETC 3-160
input text pointer 3-160
intrinsic functions 3-165
labeling conventions 3-154
loader common parameter area 3-192
loader programs, general description 2-1

compiler (continued)
loader, second phase of compilation-#LOADR 3-193
long precision subroutines 3-155
matrix reference PMC subroutine-EMA TXR 3-176
organization of assembly listings 3-153
organization of PMC generators on disk 3-158
output parameters from BAGETC 3-161
overlap, abort 3-162
PMC generator (statement processor) overlays-#BOVL Y

3-154
PMC (pseudo machine code) generator 3-155
PMC sequences showing branch instructions 3-161
PMC statement processors, general specifications 3-177
priority of pseudo instructions 3-168
processor address table 3-158
program reference to core-resident and disk-resident
modules 3-155

pseudo instruction sequences (see syntax, PMC)
resolving virtual-memory addresses 3-157
RUN program name core map (SK system), example 3-156
stack-arithmetic-expression-value 3-167
stack-basic-element sequences 3-178
stack-variable-address generation 3-175
statement address table 3-159
statement input subroutine-BAGETC 3-160
symbol processing in BDSYMB 3-164
symbol tables 3-165
symbol translator subroutine-JlDSYMB 3-164
system equates-$B@EQU 4-JO.
tables maintained for resolving VM addresses 3-157
termination 3-191
terminator overlay-BTRMNT 3-191
unresolved operands 3-15 7
virtual memory output subroutine-BBPUTC 3-161
virtual-memory referencing 3-15 5
write page 3-162

compute stacked address, (CSA), pseudo instruction 3-260
CONDITION keyword program-#KCNDI 3-49
configuration (IPL) 3-3
configuration record format 5-7
CONFIGURE utility command-#UCNFI 3-129
CONFIGURE utility program-#UCNFI 3-129
console interruption (#EXMSG) 3-20
constant

arithmetic or character 3-162
generated into 19-byte work area 3-162
generator subroutine-BCFCON 3-162
output buffer 3-162

contents of virtual memory (DCALC) 3-270
contents of virtual memory (interpreter) 3-202
control code, machine instruction A-3
control programs

components 3-1
functions 2-1
system initialization (IPL) 3-1

conventions
core-resident module referencing
interpreter labeling 3-205
source module labeling 4-7

3-205

virtual memory module referencing 3-205
conversational I/O routines-#DPRIN 3-35
conversion

arithmetic constant to unpacked floating point and then to
packed floating point 3-163

arithmetic expressions to pseudo instruction sequences
3-169

disk address into a two-byte format 7-3
specifications, interpreter 3-220
subexpressions to pseudo instruction sequences 3-173
virtual addresses to disk addresses 7-2

copied program file, allocation 2-8

Licensed Material-Property of IBM

)

)

)

)

copy disk pairs 3-94
COPY-DISK, parameters not copied in volume label 3-131
COPY-DISK utility command (#UCDIS) 3-131
COPY file utility overlay-#UCPLI 3-130
COPY-HELPTEXT utility command (#UCPLI) 3-130
COPY-LIBRARY utility command (#UCPLI) 3-1S2
COPY-SYSTEM utility command (#UCPLI) 3-130
COPY volume utility program-#UCDIS 3-131
core

address zero branch (#ZUTMO) 3-145
allocation, expande·d 3-206
configuration, relative paging area 2-S
dump, execution time 7-1
dump, how to lay out at execution-time 7-7
dump option (CD), operating procedure 6-1
dump of a specific program module 6-17
index table (CIT)-#GUFUD 3-22
map

· #KRMOV 3-S3
DCALC (with CRT) 3-272
DCALC termination 3-276
interpreter (SK system) 3-207
maintenance u ti!ity, example 3-146
RUN program name, example (SK system) 3-156
save/restore core (NPAUSE) 3-14
system loader (NBLOAD) 3-16
system nucleus 3-4
work file update/crusher 3-21

page location, determine (#SFLOA) 3-225
paging area

general description 2-S
specifications 3-206

paging, DCALC mode 3-272
patch option (CP), operating procedure 6-3

core-resident
interpreter instruction referencing 3-205
module referencing conventions 3-205
PMC statement processors 3-177
rou tines-#BCOMP 3-15 3
routines, compiler 3-159
routines of DCALC-#VODKA 3-269

CP-core patch (#ZUTMO) 3-145
CP-core patch option, operating procedure 6-3
CRDBSY (#DREAD) 3-39
create

library directories (#UALLO)
VTOC library file (#UALLO)
VTOC work area file 3-12S

cross-reference label list 4-7
CRT

3-12S
3-12S

calling routine (NSPRNT) 3-10
I/O routine-#DSPL Y 3-41
line segment table (CLST) 3-67
output buffer (DCALC) 3-276
physical IOCS (DCALC)-#VCRTI 3-276

crush work file 3-2 7
CSA (X'3E'), compute stacked address, pseudo instruction

3-260
current

data file, allocation 2-7
entry-BFSCEN used in BFSCAN 3-16S
program file, allocation 2-7
segment, terminating character 3-160

cursor control-#DSPL Y 3-42
cylinder

addressing (DL2ICS) 3-101
addressing (DL4ICS) 3-101
zero equates-@CYOEQ 4-S

C2DEC5 usage in #UDISV 3-144
C4BIN2 (#UATRC) 3-126

data
area formats, section 5 5-1
block out of order in #GUFUD 3-27
block packing routine-GUFPAK 3-27
block transfer (#SFLOA) 3-225
elements, convert and stack sequentially occurring 3-2 lS
elements, output on system printer (FZUPRT) 3-220
file

attributes 3-45
buffers in virtual memory 3-194
data portion, record or line 2-S
lines, description 1-1

keys (DEPRES) 3-37
list constants 3-162
portion, work file 2-S
register parity error (DEPRES) 3-3S
syntax checker-#SDSYN 3-34
tracks, alternate assignment 3-125

DATA
PMC syntax 3-1 S l
RECOVERED message (#UATRC) 3-126
statement, PTF command 6-6
usage in PTF utility program 3-l 3S

date processing (IPL) 3-3
DC-disk compare in #ZUTMO 3-145
DC-disk compare option, operating procedure 6-3
DCA (X'6A'), define constant address, pseudo instruction 3-262
DCALC (desk calculator)

core and VM map (with CRT) 3-272
cycle 3-269
equate-@V@EQU 4-10
error rnessages-VERROR 3-273
flowchart 3-277
initialization-#VLOAD and VINlTI 3-272
mode of operation, description 1-2
program, detailed description 3-269
program, general description 2-4
termination core map 3-276
terrnination-VSA WRT, #VXITI 3-276

DCDOUT-card punch IOCR 3-105
DCF (disk control field) format 3-S, 5-29
DD-disk dump in #ZUTMO maintenance utility monitor 3-145
DD-disk dump option, operating procedure . 6-2
DDL (X'6C'), define data linkage, pseudo instruction 3-264
DEEXIT-enable keyboard and exit (DEPRES) 3-3S
DEF, PMC syntax 3-181
default values, array dope vector 3-19 3
defective data track 3-125
defective track addresses, I OCS 3-5
define constant address, (DCA), pseudo instruction 3-263
define data linkage, (DDL), pseudo instruction 3-264
define work area, (DWA), pseudo instruction 3-265
delete and insert file to be copied (#UCPLI) 3-130
delete list passed (#GUFUD) 3-26
delete parameter list format 5-29
DELETE keyword program-#KDELE 3-50
DELETE parameter in #UDELV 3-142
deletion of a range of lines.(GUFUPD) 3-23
delimiter, character string 3-163
delimiter (valid) sequence scan (#SDSYN) 3-34
DEPRES-keyboard IOCR 3-37
desk calculator (DCALC)

#VLOAD, #VODKA, #VXITI flowchart 3-277
detailed description 3-269
equates-@V@EQU 4-10
general description 2-4
mode of operation, description 1-2

destination field, element unstacking 3-210
determine disk drive specified (#UDISV) 3-144
DETEST-test command key (DEPRES) 3-3S

Index X-5

Licensed Material-Property of IBM

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

device-type code (DLPTYP) 3-103
DFCOUT -card punch physical IOCS 3-123
DFKEYN-keyboard physical IOCS 3-214
DFPRNT-system printer physical IOCS 3-214
DFRDIN-card reader physical IOCS 3-215
diagnostic a ids, section 6

address stop procedure for program loading 6-17
finding a library file on disk 6-15
how to use maintenance map 6-16
1/0 parameter list save area 6-10
maintenance utility aid program 6-1
patching a disk resident system program 6-14
PTF command 6-6
stand-aloncdump 6-12

DIM, PMC syntax 3-182
directory

display (LIS TC AT) 3-69
filename, block 5-17
library file format 5-15
list of system components 4-l
null 5-15
password 5-16
source module labeling conventions 4-7
system equates 4-7
1 format, file 5-21
2 format, file 5-23

DISABLE keyword program-#KENAB 3-57
disabled BASIC statements and lines 3-66
disk

address conversion into two-byte address 7-3
address specifications for utility dump 7-3
addresses of virtual memory 7-1
block boundaries, records 2-11
block (sectors), work file 2-8
block, segment 2-11
and card file allocation for arrays 3-194
or card file close or reset (SFRSET) 3-218
compare option (DC), operating procedure 6-3
control field (DCF) format 3-8, 5-28
data file, find (#SFFIN) 3-223
data files logical IOCS-#SFLOA 3-225
dump, execution time 7-1
dump option (DD), operating procedure 6-2
dump sample of system program file directory 6-16
dump of a specific program module 6-17
four-track logical IOCS interface-BVDL4T 3-177
initialization (#UINIT) 3-135
label print, VTOC-DISPLA Y (#UDISV) 3-144
logical IOCS-DL2ICS 3-101
organization, general description 2-4
parameter bit format 5-28
patch (#ZUTMO) 3-147
patch option (DP), operating procedure 6-3
resident PMC generators allocation 3-156
resident system program, patching 6-14
statistical data recording format 5-9
surface analysis 3-135
system management programs 3-59, 5-6
volume format 5-6, 2-4
working storage for programs, allocation 2-6
write option (DW), operating procedure 6-4

DISK files, build a user directory entry for 3-45
DISK parameter in COPY command 3-131
displacement into track usage mask 3-119
display data (information) 3-143
display directory (LISTCA T) 3-69
display error messages in DCALC (VERROR) 3-273
display parameter in VTOC-DELETE (#UDELV) 3-142
display VTOC label information 3-143
DISPLAY keyword program-#KDISP, #KDOVR 3-53
DIV (X'OC'), divide, pseudo instruction 3-231

X-6

divide, (DIV), pseudo instruction 3-231
DKDISK, $DISKN-resident disk physical IOCS

error recovery procedure (ERP) section 3-6
flowchart 3-8
program description 3-4

DLFPRT-line printer physical !OCR 3-214
DLPCRT-label for output on CRT 3-103
DLPMPR-label for output on matrix printer (MP) 3-103
DLPRNT-line printer interface 3-103
DLPSPT-label for output on system printer 3-103
DLPTYP usage in DLPRNT 3-103
DL2ICS-disk logical IOCS 3-101
DL2RAD usage in DL2rCS 3-101
DL4ICS-system work file roes 3-101
double matrix function call, (MF2), pseudo instruction 3-237
DP-disk patch in #ZUTMO 3-145
DP-disk patch option, operating procedure 6-3
DPL (disk parameter list) format 5-28
DPL test (#UPACK) 3-137
DPRINT-matrix printer !OCR 3-35
DPRrNT, usage in NSPRNT 3-10
DREADN (#DREAD) 3-39
DSDOWN-error routine for CRT 3-42
DSPCMD (#DSPL Y) 3-43
DSPCMD-clear CRT screen 3-41
DSPLYN(#DSPLY) 341
DSPLYN-print on CRT (#DSPLY) 3-41
DSPL YN, usage in NSPRNT 3-10
DSPYMP-print on both CRT and matrix printer 3-41, 3-42
dump procedures, finding a library file on disk 6-15
dump, stand-alone 6-12
DVPRSC-DCALC keyboard physical roes 3-274
DVPRSC-DCALC keyboard physical IOCS flowchart 3-275
OW-disk write, copy sector in #ZUTMO 3-145
OW-disk write option, operating procedure 6-4
DWA (X'6A'), define work area, pseudo instruction 3-265

ECMANL (#ECMAN) 3-28
EDIT keyword program-#KEDIT 3-55
element

length in arrays 3-19 3
stacking subroutine-ISTACK 3-210
unstacking subroutine-IUSTAK 3-210

enable
keyboard data entry (FZXINP) 3-218
keyboard (DCALC) 3-276

ENABLE keyword program-#KENAB 3-57
end of

file record format 5-22
forms, process (DPRINT) 3-36
line (#SDSYN) 3-34
page, (EOP), pseudo instruction 3-263
program, (EOF), pseudo instruction 3-266
statement code (#GUFUD) 3-22
statement (EOS) detected (#ECMAN) 3-28

END
PMC syntax 3-182
statement, compiler terminator 3-191
statement, PTF command 6-9

enter-minus key (DEPRES) 3-37
enter-plus key (DEPRES) 3-37
ENTER+ function, label trace of execution 3-273
ENTER keyword program-#KDNTE 3-59
entries

branch address table 3-197
compile-time stack 3-169
FZZVMP 3-222
INTERP 3-206
1/0 record 3-45

Licensed Material-Property of IBM

\

)

entries (continued)
IPGMDL 3-209
maintenance map 6-16

EOF (end of file record) format 5-22
EOF (X'70'), end of program, pseudo instruction 3-265
EOP (end of page) processing 3-206
EOP (X'68'), end of page, pseudo instruction 3-262
EOS detected (#ECMAN) 3-28
EQU, modules composed of equates 4-7
erase key (DEPRES) 3-37
ERP (see error recovery procedure)
error

conditions
allocation of data file buffers 3-194
data types in element unstacking 3-210
DATA statement rejection 6-9
END statement rejection 6-9
HOR statement rejection 6-7
PTF command rejection 6-6
PTF statement rejection 6-7
RESUME 3-89
SUSPEND 3-95
terminate compilation 3-191

exit in #UPTFI 3-139
flowchart, system 1/0 and message interface 3-11
history log entry ($HIST£) 3-9
history log format 5-8
logging work area 3-9
messages

DCALC (VERROR) 3-273
equates, general-@VOLEQ 4-9
program-#ERRPG 3-18

procedures
CRDBSY 3-39
DEPRES 3-38

program interface-NCAERK, $CAERK 3-10
recovery procedure

DCALC CRT 3-276
DCDOUT 3-105
DKDISK 3-6

598 (#UATRC) 3-126
execution

overlay programs, interpreter 3-223
subroutintjs (miscellaneous) 3-222

execution-time
core dump

fixed core addresses 7-8
how to lay out 7-7
procedure 7-1

disk dump of virtual memory 7-1
file checker (SFADFR) 3-218

EXMSGS (#EXMSG) 3-20
EXPAND-LIBRARY utility command (#UEXLI) 3-133
EXPAND utility program-#UEXLI 3-133
expanded core utilization 3-206
exponent conversion (internal format to decimal), table 3-267
exponent (power), floating-point arithmetic 3-266
exponentiate (power), (PWR), arithmetic operation, pseudo

instruction 3-232
extend to 103 cylinders 3-135
extended mnemonic codes A-1
external data file

activation (SFADFR) 3-218
close or reset (S FRSET) 3-218
input on element from (SFGETR) 3-218
output on element (SFPUTR) 3-219

EXTRACT keyword program-#KEXTR 3-59

FCI (X'l6'), function call-indirect, pseudo instruction 3-235
field length

file

element stacking 3-210
element unstacking 3-210

buffer allocation routine 3-199
copy (#UCPLI) 3-130
directory 1, allocation 2-8
directory 1 format 5-21
directory 1 (1/0 information record), general description

2-11
directory 2 format 5-23
index table (FIT)

description 2-7
format 5-20

library
addresses and tables-@DIREQ 4-9
reorganization (#SPA CK) 3-123
(system library file), allocation 2-6

protection, track usage mask 2-5
filename directory

block format 5-17
entry subroutine-STUFID 3-117
general description 2-6
search subroutine (SRCHFN) 3-115

filename, user file 2-6
find

disk data file-#SFFIN 3-222.2
disk data file-#SFFIN flowchart 3-224
specified file subroutine-SFINDF 3-111
volume-ID subroutine-SVOLID 3-113

finding a library file on disk 6-15
first

entry in branch address table 3-196
image segment (code X'04') 3-220

FIRST parameter (#KCHAN) 3-47
FIT (file index table)

format 5-20
general description 2-7
usage in GUFSCH 3-24
usage in GUFPAK 3-24, 3-26
usage in GUFUPD (work file update) 3-22

fixed
addresses for system nucleus-@FXDEQ 4-8
addresses in virtual memory-VEQU 4-10
core addresses in execution-time core dump 7-8
equate module (1EQU) referencing 3-205

floating-point
arithmetic 3-266
numbers, example 3-267

flowcharts
abort current operation routine-NABORT, $CAIPL, $CARPL,

$CABLO 3-13
ALLOCATE keyword program-#KALLO 3-46
ALTERNATE-TRACK utility program-UATRC 3-126
ASSIGN utility program-#UALLO 3-128
BASIC statement syntax checker-#SFSYN 3-33
card punch IOCR-DCDOUT 3-106
card punch physical IOCS (DFCOUT) 3-216
card reader IOCR-#DREAD 3-40
card reader physical IOCS (DFRDIN) 3-216
CHANGE keyword program-#KCHAN 3-48
command key processor-#EFKEY 3-30
compiler-#BCOMP
CONDITION keyword program-#KCNDI 3-49
CONFIGURE utility program-#UCNFI 3-129
COPY file utility overlay (#UCPLI) 3-130

Index X-7

Licensed Material-Property of IBM

Page of Ly34-0001-1
Revised January 1972
By TNL LN34-0075

flowcharts (continued)

X-8

COPY volume utility program-#UCDIS 3-132
CRT IOCR-#DSPL Y 3-42
crush and reorder operations 3-25
data syntax checker-#SDSYN 3-34
DELETE keyword program-#KD2LE 3-51
desk calculator (DCALC)-#VLOAD, #VODKA,

#VXITI 3-277
disk lOCS routines (DL2ICS, DL4ICS) 3-102
EDIT keyword program-#KEDIT 3-53
ENABLE/DISABLE keyword program-#KENAB 3-58
error message program-#ERRPG 3-19
error program interface-NCAERK, $CAERK 3-11
EXPAND utility program-#UEXLI 3-134
EXTRACT (#KEXTR) 3-40
filename directory entry subroutine 3-117
find disk data file-#SFFIN 3-224
find specified file subroutine-SFINDF 3-111
find volume-ID subroutine-SVOLID 3-113
HELP keyword program-#KHELP 3-63
INITIALIZE disk utility program-#UINIT 3-135
inquiry request routine-NQUIRY 3-12
I/O error logging routine-NERLOG, $ERLOG 3-11
IPL bootstrap loader-#MLOAD 3-3
IPL interface-MOPPET 3-3
interpreter-#INSTD, #INLNG 3-212
keyboard IOCR-DEPRES 3-38
keyboard physical IOCS (DCALC)-DVPRSC 3-275
keyword table entry-#ECMAN 3-29
line printer interface-DLPRNT 3-104
LIST keyword program-#KLIST 3-68
LISTCAT keyword program-#KCTLO 3-70
loader-#LOADR 3-199
logical IOCS for disk data files-#SFLOA 3-225
LOGON/OFF keyword program-#KLOGO 3-72
maintenance program load trace-#ZTRAC 3-44
maintenance utility monitor-#ZUTMO 3-147 ·
matrix printer IOCR-DPRINT 3-36
MERGE keyword program (#KMERG)
MOUNT keyword program-#KMOUN
nucleus initialization program-#MIPPE
null directory entry subroutine 3-116

3-74
3-75
3-3

pack file library subroutine-#SPACK 3-123
PACK utility program-#TJPACK 3-137
PASSWORD keyword program-#KPASW 3-76
printer and error program interface-$ERLOG, $SPRNT,

$CAERK 3-11
program interruption processor 3-20
PROTECT keyword program-#KPRTC 3-77
PTF utility program-#UPTFI 3-139
PULL/POOL keyword program-#KPOOL 3-79
READ keyword program-#KREAD 3-81
RELABEL keyword program-#KRLAB 3-82
REMOVE keyword program-#KRMOV 3-84
RENAME keyword program-#KNAME 3-86
RENUMBER keyword program-#KRNUM 3-88
resident disk physical IOCS-DKDISK, $DISKN 3-4
RESUME keyword program-#KRSUM 3-90
RUN/STEP/TRACE keyword program-#KRUNI 3-91
save/restore core-NPAUSE, $RSTR, $PAUSD 3-15
SA VE keyword program 3-93
search filename directory subroutine-SRCHFN 3-115
search null directory subroutine-SURCHN 3-118
search password directory subroutine 3-114
SET keyword program-#KSETI, #KSOVR 3-94
SUSPEND keyword program-#KSSPN 3-96
SYMBOLS keyword program-#KSYMB 3-98
system initialization (IPL) 3-3
system loader-NBLOAD, $BLOAD, $RLOAD, $LOADR

3-17
system printer physical IOCS-DFPRNT 3-214
track usage mask utility subroutine-UTKUSE 3-120

flowcharts (continued)
VM dump overlay-#ZDUMP 3-150
VTOC-DELETE utility program 3-142
VTOC-DISPLAY utility prograrn-#UDISV 3-144
VTOC utility subroutine (UTVTOC) 3-122
WIDTH keyword program-#KWIDT 3-99
work file PUT subrou tine-GPUTIT 3-107
work file update, crush, and reorder 3-25
work file update/crusher-#GUFUD 3-26

flowcharting techniques 1-3
FNO (X' 12'), function call-no argument, pseudo instruction

3-234
FNl (X'l4'), function call-one argument, pseudo instruction

3-234
FOR, PMC syntax 3-182
FOR (X'4E'), initiate FOR loop, pseudo instruction 3-24 7
form a ts

arithmetic packed-decimal 3-268
arithmetic unpacked-decimal 3-268
BASIC program file structure 5-18
character field 3-163
configuration record 5-7
cylinder zero (#UINIT) 3-136
data record, general description 2-11
DCF (disk control field) 3-8
delete parameter list 5-29
directories to system library file 5-15
disk address conversion to two-byte address 7-3
disk control field 5-29
disk parameter list 5-28
disk statistical data recording 5-9
disk volume 5-6
end of file record 5-22
error history log 5-8
file directory 1 5-21
file directory 2 5-23
file index table 5-20
filename directory block 5-1 7
help text records 5-26
individual volume statistics and master SIO table 5-9
internal to decimal 3-267
keyboard-generated data files 2-8
nondisk statistical data recording 5-10
NUCLES (system communication area) 5-2
null directory 5-15
outboard recording 5-11
password directory 5-16
print parameter list 5-27
pseudo instruction 3-229
sector 3-7
segment descriptor field 5-22
system

communication area (NUCLES) 5-2
files, description 2-4
help text file 5-25
library file 5-15

track 3-7
user program data files 2-8
volume label 5-12
volume table of contents (VTOC) 5-14

FQLRND-random number generator 3-222.2
FQSRND-random number generator 3-222.2
fraction, floating-point arithmetic 3-266
function call

indirect (FCI) pseudo instruction 3-235
no argument (FNO) pseudo instruction 3-234
one argument (FNl) pseudo instruction 3-234
operations (see also pseudo instructions) 3-234

FZAMIO-matrix I/O routines 3-221
FZCMPR-matrix print routines 3-221
FZDMIP-keyboard input to a matrix 3-221

Licensed Material-Property of IBM

)

)

FZLINT-trace line numbers subroutine 3-222
FZSPRT-print and carrier positioning 3-219
FZUPRT-print using image 3-220
FZVART-trace variables subroutine 3-222
FZXINP-keyboard input 3-218
FZZVMP-virtual memory push/pull subroutine 3-222

GCPACK-pack BASIC program statements 3-22
general error message equates-@ERMEQ, @SEREQ 4-9
generate

stack-arithmetic-values 3-167
stack-character expressions 3-166
stack-update-matrix descriptor PMC sequences 3-176
stack-variable-address PMC sequences 3-17 5

generator entry point, branch 3-156
generators, PMC 3-155
GET

card entry points (FZXINP) 3-219
matrix operations (FZAMIO) 3-221
PMC syntax 3-183
pseudo instruction execution, label trace 3-226
(X'52'), input data element, pseudo instruction 3-239

GET/PUT usage in compiler 3-155
GO

keyword program-#KGOSL 3-61
usage with RESUME (#KRSUM) 3-89

GOSUB, PMC syntax 3-183
GOTO

multiple, PMC syntax 3-183
simple,'PMC syntax 3-183

GPUERR (#KRLAB) 3-82
GPUTIT

usage in #KRLAB 3-82
work file PUT subroutine 3-107

GRABIT
usage in

#KCALL 3-46.1
#KRLAB 3-82

work file retrieval subroutine 3-109
I GRAPRO (#GRAPR) 3-40.1

GUFCSH-work file crush and reorder 3-24
GUFCWA-work area (GUFPAK) 3-26
GUFENT initialization 3-22
GUFPAK-pack core buffers subroutine 3-24
GUFRDR reorder section (GUFCSH) 3-24
GUFSCL check for input line complete (GUFCSH) 3-24
GUFUPD-work file update 3-22
GUUllO usage in GUFUPD 3-23

H
restore core and halt (#ZUTMO) 3-145
return to system with halt option, operating procedure 6-4

halt
execution, (HLT), pseudo instruction 3-261
indicator equates-@HLTEQ 4-9
option (H), operating procedure 6-4
2345 6-18

hard halt (DEPRES) 3-38
HDR statement, PTF command 6-7
help text file

general description 2-7
PTF's (#UPTFI) 3-138

help text records format 5-26
HELP keyword program-#.KHELP 3-62
HLT (halt execution)

processing 3-206
(X'04'), pseudo instruction 3-261

holes in virtual memory 3-157
how to

lay out
execution-time core dump 7-7
virtual memory (long precision) 7-7

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

virtual memory (standard precision) 7-3
take a sequential disk dump of virtual memory 7-1
use the FE map 6-16
1$PARM parameter 3-219
IBM-assigned command key functions 5-30
identification of programs in FE map 6-16
identification of program numbers 6-16
IF (arithmetic), PMC syntax 3-184
IF (character), PMC syntax 3-184
IF (character, string), #PMC syntax 3-184
image conversion specifications (FZUPRT) 3-220
image printing, interpreter 3-220
image statement exception 3-159
image statement header(:), (IMH), pseudo instruction 3-262
IMAGE(:), PMC syntax 3-184.l
IMH execution in trace line number mode (FZLINT) 3-222
IMH (image statement header) processing 3-206
IMH (X'66'), image statement header, pseudo instruction 3-262
IMINIT-interpreter initiator 3-205
index cursor to next line-DSINDX 3-42
index to error message text (DCALC) 3-273
individual volume statistics and master SIO table format 5-9
INI (X'56'), initiate keyboard input, pseudo instruction 3-240
initialization, compiler 3-155
initialization of elements in virtual memory-L VINIT 3-194
initialize BASIC compiler 3-179
INITIALIZE disk utility program-#UINIT 3-134
initialized disk size, VTOC-DISPLA Y (#UDISV) 3-144
initializing arithmetic elements 3-19 5
initializing array elements 3-195
initiate FOR loop, (FOR), pseudo inst{uction 3-247
initiate keyboard input, (INI), pseudo instruction 3-240
input data element, (GET), pseudo instruction 3-239
input an element from an external data file-SFGETR 3-218
input information to SUSPEND 3-95
input line elements, convert and stack 3-219
input/output operations (see also pseudo instruction) 3-239
input parameters

to BAGETC
to BDSYMB
to BRATAB
to INTERP
to !STACK
to lUSTAK
to LSORTA

3-160
3-165
3-177

3-207
3-210
3-211
3-197

input text pointers
BECSCN 3-166
BFSCAN 3-168
BUSTA 3-176
BMATXR 3-176

INPUT, PMC syntax 3-184.1
INPUT statement execution (FZXINP) 3-218
inquiry request during MAT INPUT statement 3-221
inquiry request routine-NQUIRY, $CIENT, $UNMSK 3-12
inquiry request switch (DEPRES) 3-37
interface to main IPL program (IPL) 3-3
interface to system printer IOCR-NSPRNT, $SPRNT 3-10
internal floating-point 3-267'
INTERP, common work areas 3-208
INTERP entry points 3-206
INTERP-interpreter executive 3-206
interpretation, I/O parameter list area 6-10
interpreter

#INSTD, #INLNG flowchart 3-212
assembly listings 3-201
common work areas (INTERP) 3-208
core map (8k system) 3-207
core resident routines-#INSTD, #INLNG 3-201
cycle 3-201
detailed program description 3-201
execution overlay programs 3-222.1
executive-INTERP 3-206
expanded core utilization 3-206
fixed equates-1EQU 4-10

Index X-9

Licensed Material-Property of IBM

Page of LY 34-0001-1
Revised January 1972
By TNL LN34-0075

interpreter (continued)
general description 2-10
initiator-IMINIT 3-205
labeling conventions 3-205
parameter !$PARM 3-220
program description conventions 3-205
program general description 2-4
virtual-memory module referencing conventions 3-205
virtual memory resident execution subroutines-

#FMSTD and #FMLNG 3-202
interrupt identification (#EXMSG) 3-20
intrinsic functions 3-165
I/O

error logging routine-NERLOG, $ERLOG 3-9
execution subroutines 3-214
functions-DPRINT 3-35
information record (file directory 1) 2-11
information sector, allocation and description 2-8
input from data recorder (DFRDIN) 3-216
to keyboard (DFKEYN) 3-214
to line printer 3-214
to matrix printer 3-214
output to data recorder (DFCOUT) 3-123
parameter list, modification of nucleus to save 6-11, 6-12
parameter list, procedure to display 6-11
parameter list, procedure to save ' 6-11
parameter list, sample listing 6-11
parameter list save area, general description 6-10
routines

card punch IOCR-DCDOUT 3-105
card reader-#DREAD 3-39
conversational-#DPRIN 3-35
CRT-#DSPLY 3-41
error logging-NERLOG, $ERLOG 3-9
keyboard-DEPRES 3-37
line printer interface-DLPRNT 3-103
matrix printer-DPRINT 3-35
printer functions-DPRINT 3-35
resident disk physical-DKDISK, $DISKN 3-4
system printer-NSPRNT, $SPRNT 3-10

IPGMDL entry points 3-209
IPGMDL-paging subroutine 3-209
IPL (initial program load)

bootstrap ioader-#MLOAD 3-2
flowchart 3-3
interface-MOPPET 3-2

!STACK-element stacking subroutine 3-210
!STACK input parameters 3-210
JUSTAK

element unstacking subrnutine 3-210
input parameters 3-211
output parameters 3-211

IZCOMM, interpreter core address referencing 3-205

KALLOC(#KALLO) 3-45
KCALLN (#KCALL) 3-46.l
KCHANG (#KCHAN) 3-4 7
KCNDIT (#KCNDI) 3-49
KCTLOG (#KCTLO) 3-69
KDELET (#KDELE) 3-50
KDISPL (#KDISP) 3-53
KDNTER (#KDNTE) 3-59
KDOVRL (#KDOVR) 3-53
KEDITN (#KEDIT) 3-55
KENABL (#KENAB) 3-57
KEXTRC (#KEXTR) 3-59
key functions (DEPRES) 4-37
key functions, command, IBM-assigned 5-30

X-10

keyboard
display on system printer (DFKEYN) 3-214
enable for data entry (FZXINP) 3-218
enable (DCALC) 3-275
generated data files

format 2-8
general description 2-6
organization 2-7

input-FZXINP 3-218
input to a matrix-FZDMIP 3-221
interrupt (DEPRES) 3-38
IOCR-DEPRES 3-37
physical IOCS-DVPRSC (DCALC) 3-275

KEYS keyword program-#KKEYS 3-64
keyword

commands, description 1-1
entry table (#ECMAN) 3-28
general description 2-1
programs

ALLOCATE (#KALLO) 3-45
CHANGE (#KCHAN) 3-47
CONDITION (#KCNDI) 3-49
DELETE (#KDELE) 3-50
DISABLE (#KENAB) 3-47
DISPLAY (#KDISP, #KDOVR) 3-53
EDIT (#KEDIT) 3-55
ENABLE (#KENAB) 3-57
ENTER (#KDNTE) 3-59
EXTRACT (#KEXTR) 3-59
GO (#KGOSL) 3-61
HELP (#KHELP) 3-62
KEYS (#KKEYS) 3-64
LIST (#KLIST) 3-66
LISTCA T (#KCTLO) 3-69
LOGON/OFF (#KLOGO) 3-71
MERGE (#KMERG) 3-73
MOUNT (#KMOUN) 3-75
PASSWORD (#KPASW) 3-76
PROTECT (#KPRTC) 3-77
PULL/POOL (#KPOOL) 3-78
READ (#KREAD) 3-81
RELABEL (#KRLAB) 3-81
REMOVE (#KRMOV) 3-83
RENAME (#KNAME) 3-85
RENUMBER (#KRNUM, #KROVL) 3-87
RESUME (#KRSUM) 3-89
RUN/STEP/TRACE (#KRUNI) 3-91
SAVE (#KSAVE) 3-92
SET (#KSETI, #KSOVR) 3-94
SUSPEND (#KSSPN) 3-95
SYMBOLS (#KSYMB) 3-96
WIDTH (#KWIDT) 3-99
WRITE (#KWRIT) 3-100

syntax (see syntax, PMC)
KGOSLO (#KGOSL) 3-61
KHELPN (#KHELP) 3-62
KKEYSP (#KKEYS) 3-64
KLISTN (#KLIST) 3-66
KLOGON (#KLOGO) 3-71
KMERGE (#KMERG) 3-73
KMOUNT (#KMOUN) 3-75
KNAMES (#KNAME) 3-85
KPASWD (#KPASW) 3-76
KPOOLN (#KPOOL) 3-78
KPRTCT (#KPRTC) 3-77
KREADN (#KREAD) 3-81
KRLABL (#KRLAB) 3-81
KRMOVE (#KRMOV) 3-83
KRNUMB (#KRNUM) 3-87
KRSUME (#KRSUM) 3-89

Licensed Material-Property of IBM

)

KRUNIT (#KRUNI)
KSA VEN (#KSA VE)
KSOVRL (#KSOVR)
KSSPND (#KSSPN)
KSYMBL (#KSYMB)
KWIDTH (#KWIDT)
KWRITE (#KWRIT)

3-91
3-92
3-94

3-95
3-97
3-99
3-100

label
list, cross-reference 4-7
source module 4-7
trace

ADD pseudo instruction execution 3-226
ENTER+ function (DCALC) 3-273
GET pseudo instruction 3-226
S/N function 3-273

labeling conventions
compiler 3-145
interpreter 3-205

LALLOC-allocation of arrays in virtual memory 3-193
LCB (list control block) 3-66, 3-67
LDFILE-allocation of data file buffers in VM 3-194
LET

PMC syntax
arithmetic, multiple 3-184.1
arithmetic, simple 3-184.2
character 3-184.2
character, multiple, string 3-184.2

library directory creation (#UALLO) 3-128
library file, procedure to find 6-15
library

line

map and test, M
mapping option
mapping overlays

3-145
6-4

3-150

addition (GUFUPD) 3-23
numbers

branch address table 3-197
virtual-memory-location order 3-196

printer interface-DLPRNT 3-103
printer physical IOCR-DCFPRT 3-214
record 2-8
replacement (GUFUPD) 3-23

list control block (LCB) 3-66, 3-67
LIST keyword program-#KLIST 3-66
LISTCAT keyword program-#KCTLO 3-69
load GUFUDI (#UALLO) 3-128
loader

#LOADR flowchart 3-199
second phase of compilation-#LOADR 3-193

lock and read only indicator table 3-222
logical

division of system programs and components 2-1
IOCS for disk data files-#SFLOA 3-225
operations (see also pseudo instructions) 3-244
read or write operation, IOCS 3-5
rules for converting arithmetic expres~ions to pseudo
instruction sequences 3-169

LOGON/OFF keyword program-#KLOGO 3-71
long precision

execution equates-$l@LEQ 4-11
floating-point data 3-266
subroutines 3-155

LRADDR-resolution of the branch address table 3-196
LSORTA-sorting the branch address table 3-197
LVINIT-initialization of elements in virtual memory 3-194

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

M
library map and test (#ZUTMO)
library mapping option 6-4

3-145

machine
configuration, minimum 1-2
instruction formats A-2
instructions reference table A-1
mnemonic operation codes A-1

maintenance
map, how to use 6-16
program laod trace-#ZTRAC 3-44
utilities 3-145
utilities, stand-alone dump 6-12
utility aid (#EXMSG) 3-20
utility aid program-#ZUTMO 6-1
utility aid program, operating procedures

CD-core dump 6-1
CP-core patch 6-3
DC-disk compare 6-3
DD-disk dump 6-2
DP-disk patch 6-3
DW-disk write 6-4
H-halt 6-4
M-library mapping 6-4
R-return to operating system 6-4
T-trace 6-4
VM-virtual memory dump 6-2

utility core map example 3-146
utility monitor-#ZUTMO, detailed program description

3-145
map of virtual memory 7-5
mapping overlays, library 3-15 0
MATGET,PMCsyntax 3-186
MAT GET statement matrix operations (FZAMIO) 3-221
MAT INPUT

entry points (FZXINP) 3-219
PMC syntax 3-186
statement matrix operations (FZDMIP) 3-221

MAT, PMC syntax 3-18~
MAT PRINT, PMC syntax 3-187
MAT PRINT statement matrix operations (FZCMPR) 3-221
MAT PRINT USING, PMC syntax 3-187
MAT PRINT USING statement matrix operations

(FZCMPR) 3-221
MAT PUT, PMC syntax 3-188
MAT PUT statement matrix operations (FZAMIO) 3-221
MAT READ, PMC syntax 3-188
MAT READ statement matrix operations (FZAMIO) 3-221
matrix

end of row (mask X'20') 3-221
inversion/determinant-#FISTD, #FILNG 3-222.1
I/O routines-FZAMIO 3-221
operations for arrays referenced by MAT INPUT 3-221
print routines-FZCMPR 3-221
pririter calling routine (NSPRNT) 3-10
printer 1/0 routine (DFPRNT) 3-214
printer IOCR-DPRINT 3-35
reference PMC subroutine-BMATXR 3-176
scalar multiply, (MSM), pseudo instruction 3-233

MERGE keyword program-#KMERG 3-73
message table entry (#ERRPG) 3-18
method to activate address stop 6-17
method of operation section 2 2-1
MFl (X'18'), single matrix function call, pseudo instruction

3-236

Index X-11

Licensed Material-Property of IBM

MF2 (X' IA'), double matrix function call, pseudo instruction
3-237

MF3 (X'lC'), triple matrix function call, pseudo instruction
3-238

microfiche assembly listing directory 4-1
minimum machine configuration 1-2
miscellaneous execution subroutines 3-222
miscellaneous operations (see also pseudo instructions) 3-261
mnemonic operation codes (machine) A-1
modification of nucleus to save I/O parameter lists 6-11, 6-12
modify volume ID table entries (#UCNFI) 3-129
modules composed of equates 4-7
MOPPET-IPL interface 3-2
MOUNT keyword program-#KMOUN 3-75
MPY (X'OA'), multiply, pseudo instruction 3-231
MSM (X'lE'), matrix scalar multiply, pseudo instruction 3-233
multiple sector transfer operations (#SFLOA) 3-225
multiply, (MPY), pseudo instruction 3-231

NABORT, $CAIPL, $CARPL, $CABLD 3-12
NBLOAD

core map 3-16
system loader 3-16

NBLRTN (NBLOAD) 3-1 7
NBLZTR (NBLOAD) 3-17
NCABLD (NABORT) 3-13
NCAERK, $CAERK-error program interface 3-10
NCAIPL (NABORT) 3-13
NCIENT (NQUIRY) 3-13
NCIEXT (NQUIRY) 3-13
NEG (X'lO'), negate, pseudo instruction 3-232
negate (NEG) pseudo instruction 3-232
negative fraction, floating point arithmetic 3-266
NERLOG, $ERLOG-I/O error logging routine 3-9
NERLOG overlay flowchart 3-11
NEROVR (NERLOG overlay) 3-11
nesting stack-expression-values 3-167
NEW file (#KALLO) 3-45
next address switch (B$NXSW) 3-158
NEXT PMC syntax 3-188
nondisk statistical data recording format 5-10
nonexecu table operations (see also pseudo instructions)
NO-NUM parameter usage in LIST 3-66
normalized decimal number 3-266
NPAUSE-save/restore core 3-14
NQUIRY, $CIENT, $UNMSK-inquiry request routine
NSPRNT, $SPRNT-interface to system printer IOCR
NUCLES-system communication area

description 3-9
format 5-2

nucleus
core map 3~4
initialization program-#MIPPE 3-2
IPL flowchart 3-3

3-263

3-12
3-10

modification to save 1/0 parameter lists 6-11, 6-12
six-byte area identifying last six program modules loaded

null
by system 6-16

character constant (code X'03') 3-220
directory entry subroutine-STORIN 3-116
directory format 5-15
directory search subroutine (SURCHN) 3-123
image specification (code X'Ol') 3-220
print list specification (code X'02') 3-220

NUMMSK (NQUIRY) 3-13
NXT (X'50') perform next step, pseudo instruction 3-249

X-12

object program
detailed format and description (see also compiler and

pseudo instruction) 7-1
introduction 2-9
virtual memory concept 2-8

OBR (outboard recording)
format 5-11
NERLOG recording in 3-9

OFF keyword program-#KLOGO 3-71
one-star (*) library

directory 5-11, 5-15
general description 2-6

operand address bucket-B$BCKT 3-168
operands

arithmetic expression 3-167
unresolved in virtual memory 3-196

operating procedure, maintenance utility aid program 6-1
operation code, machine instruction A-3
optional devices supported 1-2
organization

assembly listings in compiler 3-153
assembly listings (DCALC) 3-269
interpreter assembly listings 3-201
keyboard-generated files 2-7
PMC generators on disk 3-158
program-generated files 2-7

outboard record (OBR)
format 5-11
NERLOG recording of 3-9

output
data element, (PUT), pseudo instruction 3-239
element to external data file-SFPUTR 3-218
parameters from

BAGETC 3-161
BDSYMB 3-165
IUSTAK 3-211

parameters to INTERP 3-208
overflow, automatic line number (#GUFUD) 3-26
overlay

library mapping 3-150
patch of disk resident system program 6-14
sectors transient area 3-15 8
for SET (#KSOVR) 3-94

OWNERID print, VTOC-DISPLAY (#UDISV) 3-144

pack
arithmetic constant (#SDSYN) 3-34
BASIC program statements-GCPACK 3-22
core buffers subroutine-GUFPAK 3-24
file library subroutine-#SPACK 3-123

PACK utility program-#UPACK 3-137
packed

data in system work file 3-23
decimal format, arithmetic 3-268
decimal format, floating-point arithmetic 3-266

packing subroutine (GUFPAK) 3-24
padding EOP instructions, description 3-162
page

boundary, element stacking 3-210
boundary, element unstacking 3-210
reference table (IPGMDL) 3-206

pages, general description 2-8
paging

central work area 3-210
general description 2-8
module (IPGMDL) entry points 3-209

Licensed Material-Property of IBM

)

.J

)

)

)

paging (continued)
subroutine-IPGMDL 3-209
subroutine tables 3-210
subroutine work areas 3-209
subroutines from virtual memory, example 3-226

parameters
allocation of arrays in virtual melllory 3-193
array alloca lion 3-19 3
B$PCAD-PMC string core address 3-162
B$PFNC-function code 3-161
B$PNBY-PMC string length minus 1 3-162
compiler/loader common area 3-192
!$PARM print and carrier positioning 3-219
!$PARM print using image (FZUPRT) 3-220
input to BAGETC 3-160
input to BDSYMB 3-165
input to BRATAB 3-158, 3-159
input constants passed by BCFCON 3-162
input to INTERP 3-207
input to ISTACK 3-210
input to JUSTAK 3-211
output frolll BAGETC 3-161
output from BDSYMB 3-165
output to INTERP 3-208
output from IUSTAK 3-211
passed to UTKUSE subroutine 3-119
passed to UTVTOC subroutine 3-121
sort input to LSORTA 3-197
TRACE keyword statelllent 3-195

parity error (DEPRES) 3-38
password directory

description 2-6
format 5-16

PASSWORD keyword program-#KPASW 3-76
patching

disk resident systelll program 6-14
nucleus to save 1/0 parameter list 6-11, 6-12

pause execution condition 3-14
PAUSE, PMC syntax 3-188
perform

next step, (NXT), pseudo instruction 3-249
surface analysis 3-135

PERMANENT file (#KALLO) 3-45
physical disk addresses, IOCS 3-5
PIAR (pseudo instruction address register) 3-201
PMC (pseudo machine code)

general description 2-10
generator

accessing 3-155, 3-156
address resolution 3-157
organization on disk 3-158
return 3-160
statement processor overlays-#BOVL Y 3-154

instruction set 3-227
reference list 3-228
sequence showing branch instructions 3-161
statement processors, general specifications 3-177
syntax (see syntax, PMC)

pointers for elements in virtual meJllory 3-165
POOL keyword program-#KPOOL 3-78
pooled (one-star) library, general description 2-6
popup usage in LIST 3-66
power (exponentiate)

arithmetic operation, pseudo instruction 3-232
floating-point arithmetic 3-266

PPL (print parameter list) format 5-27
primary data element (code X'06') 3-220
PRIMARY disk initialization (#UINIT) 3-135
prime and load GUFUDI (#VALLO) 3-128
print

both CRT and matrix printer-DSPYMP 3-41

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

print (continued)
and carrier positioning

codes 3C219
FZSPRT 3-219

CRT-DSPLYN 3-41
DPRINT 3-35
function in #DSPL Y 3-41
image in virtual memory (FZUPRT) 3-220
and no space (code X'Ol') 3-219
packing message and load overlay #SPOVL 3-123
parameter list format 5-27
program header (NBLOAD) 3-17
a·nd return

carrier (code X'04') 3-219
element function in DPRINT 3-35
function in #DSPL Y 3-41

and space
carrier (PRS) pseudo instruction 3-242
full zone (code X'02') 3-219
packed zone (code X'03') 3-219

terminal error messages (#ER RPG) 3-18
using image-FZUPRT 3-220
using image (PRU) pseudo instruction 3-243

PRINT
full zone format (FZCMPR) 3-221
packed zone format (FZCMPR) 3-221
PMC syntax 3-189
statement data output (FZSPRT) 3-219

PRINT USING
matrix operations (FZCMPR) 3-221
PMC syntax 3-189

printer
CRT functions (#DSPL Y) 3-41
error (#ZTRAC) 3-44

printer (matrix)
calling routine (NSPRNT) 3-10
IOCR-DPRINT 3-35

printer output, interpreter (FZSPRT) 3-220
priority of pseudo instructions 3-168
procedure

file lines, description 1-1
file line processor-#GRAPR 3-40.1
line checker-#SPSYN 3-34.1

procedure to save 1/0 parameter lists 6-11
process

date (IPL) 3-3
unconditional

ASSIGN 3-126
UNASSIGN 3-126

processor address table
BHDPAT format 3-158
description 3-15 6
description of statements 1-1

program
descriptions, conventions of interpreter 3-205
in FE map 6-16
file

file directory 1 record description 2-11
1/0 information sector description 2-8

flowcharting techniques 1-3
generated files

general description 2-6
organization 2-7

header printing (#ZTRAC) 3-44
interruption processor-#EXMSG 3-20
loading, address stop procedure 6-17
logical devision of system 2-1
major system components

common subroutines, detailed description
common subroutines, general description

.

3-101
1-1, 2-4

Index X-13

Licensed Material-Property of IBM

Page of LY34-0001-l
Revised January 1972
By TNL LN34-0075

program (continued)
major system components (continued)

compiler, detailed description 3-15 3
compiler, general description 2-1
control, detailed description 3-1
control, general description 2-1
desk calculator (DCALC), detailed description 3-269
desk calculator, general description 1-2, 2-4
interpreter, detailed description 3-201
interpreter, general description 2-4
keyword, detailed description 3-45
keyword, general description 2-1
loader, detailed description 3-193
loader, general description 2-1
utility, detailed description 3-125
utility, general description 2-1

minimum machine configuration 1-2
modules, last six loaded by system 6-16
numbers, identification 6-16
organization, section 3 3-1
for stand-alone dump 6-13
start key (DEPRES) 3-37
statements, general description 1-1
supported optional devices 1-2
System/3 BASlC system, description 1-1
temporary fix command (see PTr commands)
temporary fixes utility program (#UPTFI) 3-138

PROTECT keyword program-#KPRTC 3-77
protection, file, track usage mask 2-5
PRS (X'60'), print and space carrier, pseudo instruction 3-242
PRU (X'62') print using index, pseudo instruction 3-243
pseudo instruction

address register (PIAR) 3-201
detailed description

X-14

ADD (X'06'), add 3-230
ADf' (X'58'), activate external data file 3-240
BNX (X'4A'), branch and suppress execution 3-246
BRA (X'46'), branch unconditionally 3-245
BRC (X'44'), branch on condition . 3-245
BRD (X'48'), branch and delete function entry 3-245
BRS (X'4C'), branch to stacked address 3-246
CLS (X'5E'), close external data file 3-241
Clv!C (X'42'), con1pare character ele1nents 3-244
CMr (X'40'), compare floating point values 3-244
CSA (X'3E'), compute stacked address 3-260
DCA (X'6A'), define constant address 3-263
DDL (X'6C'), define data linkage 3-264
DIV (X'OC'), divide 3-231
DWA (X'6E'), define work area 3-265
EOf' (X'70'), end of program 3-265
EOP (X'68'), end of page 3-262
f'CI (X'l6'), function call-indirect 3-235
f'NO (X'l2'), function call-no argument 3-234
FNL (X'l4'), function call-one argument 3-234
FOR (X'4E'), initiate FOR loop 3-247
GET (X'52'), input data element 3-239
HLT (X'04'), halt execution 3-261
lMH (X'66'), image statement header 3-262
INI (X'56'), initiate keyboard input 3-240
MF 1 (X' 18'), single matrix function call 3-2 36
MF2 (X'lA'), double matrix function call 3-237
Mf'3 (X' JC'), triple matrix function call 3-238
MPY (X'OA'), multiply 3-231
MSM (X'lE'), matrix scalar multiply 3-233
NEG (X'lO'), negate 3-232
NXT (X'50'), perform next step 3-249
PRS (X'60), print and space carrier 3-242
PRU (X'62'), print using index 3-243

pseudo instruction (continued)
detailed description (continued)

PUT (X'52'), output data element 3-239
PWR (X'OE'), exponentiate (power) 3-232
RSR (X'5A'), restore internal data file pointer 3-241
RST (X'5C'), reset external data file pointer 3-241
SAl (X'36'), stack vector array element address 3-257
SA2 (X' 38'), stack matrix array element address 3-25 8
SBl (X'3A'), stack character array element address 3-259
SC 1 (X'24'), stack character array field 3-25 3
SDO (X'2E'), stack arithmetic array descriptor 3-254
SDl (X'30'), stack arithmetic array descriptor

(redimension 1) 3-255
SD2 (X'32'), stack arithmetic array descriptor

(redimension 2) 3-256
Sri (X'22'), stack arithmetic vector element 3-250
Sf'2 (X'24'), stack arithmetic matrix element 3-251
STA (X'34'), stack virtual address 3-257
STC (X'28'), stack character field 3-252
STF (X'20'), stack floating point value 3-249
STH (X'64'), statement header 3-261
STX (X'3C'), stack execution control code 3-259
SUB (X'08'), subtract 3-230
SVC (X'02'), supervisor call 3-~61
USC (X'2C'), unstack character element 3-254
USf' (X'26'), unstack floating point element 3-252

formats 3-229
general description 2-10
priority 3-168
reference list 3-228
sequences (see also syntax, PMC) 3-181
set 3-227

pseudo machine code (PMC) interpret (#ZDUMP) 3-149
pseudo machine language concept (pseudo object program) 2-8
PTF command

finding addresses 2-6
operating procedure 6-6
statements

DATA 6-9
END 6-9
HOR 6-7
PTF 6-8

PTF END staten1ent usage in #UPTPI 3-138
PTf' file, general description 2-7
PTF HOR (#UPTFI) 3-138
PTf' operating procedure 6-6
PTF statement, PTr command 6-8
PTF utility program-#UPTrI 3-138
PULL/POOL keyword program-#KPOOL 3-78
PUT, matrix operations (f'ZAMIO) 3-221
PUT, PMC syntax 3-189
PUT subroutine-GPUTIT 3-107
PUT (X'54'), output data element, pseudo instruction
PWR (X'OE'), exponentiate (power), pseudo instruction

Q code, machine instruction A-3
question mark printing

R

usage in FZDMIP 3-221
usage in FZXINP 3-219

3-239
3-232

restore core and return to #GUFUD (#ZUTMO) 3-145
return to system option, operating procedure 6-6

random number generator 3-222.2
read

all volume labels (IPL) 3-3
configuration record (#UCNFI) 3-129

Licensed Material-Property of IBM

)

read (continued)
in requested program (NBLOAD) 3-81
system nucleus and I/O routines into low core (IPL) 3-3

READ
keyword program-#KREAD 3-81
matrix operations (FZAMIO) 3-221
PMC syntax 3-190

record format (data), general description 2-11
records/lines (data area of work file) 2-8
recovery of I/O parameter list information 6-11
RELABEL keyword program-#KRLAB 3-81
relative disk addresses to physical 3-101
release image (code X'OO') 3-220
relocate load (NBLOAD) 3-17
REM, PMC syntax 3-190
REMOVE keyword program-#KRMOV· 3-83
RENAME keyword program-#KNAME 3-85
RENUMBER keyword program-#KRNUM 3-87
reorder work file 3-27
repetition sequence (#GUFUD) 3-22
reset

defective flag (#UATRC) 3-127
external data file pointer, (RST), pseudo instruction 3-241

RESET,PMC syntax 3-190
resident disk physical IOCS-DKDISK, $DISKN 3-4
resolutuion of the branch address table-LRADDR 3-196
resolving virtual-memory addresses 3-157
restore internal data-file pointer, (RSR), pseudo instruction 3-241
RESTORE, PMC syntax 3-190
RESUME keyword program-#KRSUM 3-89
return

carrier (code X'07') 3-219
carrier on condition (code X'OB') 3-219
element (DPRINT) 3-35
key (DEPRES) 3-37
to system with halt option (H), operating procedure 6-6
to system option (R), operating procedure 6-6
usage in #DSPL Y 3-41

RETURN, PMC syntax 3-191
rolldown and print (#DSPL Y, DSPL YN) 3-41
rolldown usage in LIST 3-66
rollup usage in LIST 3-66
RSR (X'5A'), restore internal data file pointer, pseudo

instruction 3-241
RST (X'5C'), reset external data file pointer, pseudo instruction

3-241
RUN program name core map (BK system), example 3-156
RUN as used in #KEDIT 3-55
RUN/STEP/TRACE

keyword program-#KRUNI 3-91
usage in compiler 3-155

save area, I/O parameter list, general description 6-10
save/restore core-NPAUSE, $PAUSD, $RSTR 3-14
SAVE keyword program-#KSAVE 3-92
saved program file, allocation 2-8
SAl (X'36'), stack vector array element address, pseudo

instruction 3-257
SA2 (X'38'), stack matrix array element address, pseudo
instruction 3-258

SBl (X'3A'), stack character array element address, pseudo
instruction 3-25 9

scaling 3-266
scan BASIC statement to EOS character 3-180
scan routine branch table-BFSTBL 3-168
scan trace reference list routine 3-199
SCP (system control program 3-61
scratch file deletion

configure utility program #UCNFI 3-129

Page of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

initialize disk utility program #UINIT 3-134
mount keyword program #KM OUN 3-7 5
nucleus initialization program #MIPPE 3-2

SCSTRG-character string check and move (#KCHAN) 3-48
SCTR-initial volume label (#UINIT) 3-136
SCYLCK (#UATRC) 3-126
SCI (X'24'), stack character array field, pseudo instruction

3-253
SDF (segment descriptor field) 2-11
SDF (segment descriptor field) format 5-21
SDISKS (#UATRC) 3-126
SDISKS usage in #UDISV 3-144
SDR (disk statistical data recording) format 5-9
SDR (nondisk statistical data recording) format 5-10
SDR (statistical data record), NERLOG 3-9
SDSYNC (#SDSYN) 3-34
SDO (X'2E'), stack arithmetic array descriptor, pseudo

instruction 3-254
SDl (X'30'), stack arithmetic array descriptor (redimension 1),
pseudo instruction 3-255

SD2 (X'32'), stack arithmetic descriptor (redimension 2),
pseudo instruction 3-25 6

search filename directory subroutine-SRCHFN 3-115
search null directory subrou tine-SURCHN 3-118
search password directory subroutine-SGETDB 3-114
search for specified line number 3-26
search symbol table in trace 3-222
secondary data element (code X'07') 3-220
secondary image segment (code X'05') 3-220
section

l, introduction 1-1
2, method of operation 2-1
3, program organization 3-1
4, directory 4-1
5, data area formats 5-1
6, diagnostic aids 6-1
7, object program 7-1

sector, format 3-7
sector, ID field 3-7
sector (multiple) transfer operations (#SF LOA) 3-225
sector resolution (allocation) and organization 3-158
segment, data record 2-11
segment descriptor field (SDF) 2-11
segment descriptor field (SDF) format 5-22
selected system programs, allocation 2-5
sequentially occurring data elements 3-218
SET keyword program-#KSETI, #KSOVR 3-94
SFADFR-active external data file 3-218
SFGETR-input an element from an external data file 3-218
SFINDF-find specified file subroutine 3-111

usage in #KCALL 3-46.1
SFPUTR-output an element to an external data file 3-218
SFRSET-close or reset external data files 3-218
SFSYNC (#SFSYN) 3-32
SFl (X'22'), stack arithmetic vector element, pseudo instruction

3-250
SF2 (X'24'), stack arithmetic matrix element, pseudo instruction

3-241
SGETDB-search password directory subroutine 3-114

usage in #KCALL 3-46.1
sift and bubble sort (worst case example) 3-198
sifting down and bubbling up (LSORTA) 3-197
sign bit, floating-point arithmetic 3-266
significant digits, floating-point arithmetic 3-266
SIN function, label trace of execution 3-27 3
single line deletion (GUFUPD) 3-23
single matrix function call, (MFl), pseudo instruction 3-236
single variable references in a list 3-17 5
SMFNAM (SRCHFN) 3-115
SMINDI (SRCHFN) 3-115

Index X-15

Licensed Material-Property of IBM

Part of L Y34-0001-1
Revised January 1972
By TNL LN34-0075

SMNDEA (SURCHN) 3-118
SMNSCT (SURCHN) 3-118
SMNULT (SURCHN) 3-118
SMUDBA (SRCHFN) 3-115
SMUDEA (SRCHFN) 3-115
SMlFNE (SRCHFN) 3-115
sorting the branch address table-LSORTA 3-197
source module labeling conventions 4-7
space full zone (code X'05) 3-219
space packed zone (code X'06') 3-219
SPADUP (#SPACK) 3-124
SPAPDT (#SPACK) 3-124
SPSYNC (#SPSYN) 3-34.1
SRCHFN-search filename directory subroutine 3-115

usage in (#KCALL) 3-46.1
STA (X'34'), stack virtual address, pseudo instruction 3-257
stack arithmetic array descriptor (redimension 1), (SD 1),

pseudo instruction 3-255
stack arithmetic array descriptor (redimension 2), (SD2),

pseudo instruction 3-25 6
stack arithmetic array descriptor (SDO) pseudo instruction 3-254
stack-arithmetic-expression-value 3-167
stack arithmetic matrix element (SF2) pseudo instruction 3-251
stack arithmetic vector element (SFl) pseudo instruction 3-250
stack-basic-element 3-178
stack character array element address, (SBl), pseudo instruction

3-259
stack character array field (SCI) pseudo instruction 3-25 3
stack-character-expression field 3-166
stack character field (STC) pseudo instruction 3-25 2
stack execution control code, (STX), pseudo instruction 3-259
stack floating point value, (STF), pseudo instruction 3-249
stack matrix array element address, (SA2), pseudo instruction

3-258
stack popper-BFS160 3-168
stack-update-matrix-descriptor PMC sequences 3-176
stack and unstack operations (see also pseudo instructions) 3-249
stack-variable-address sequences 3-175
stack vector array element address, (SAl), pseudo instruction

3-257
stack virtual address, (ST A), pseudo instruction 3-25 7
stacked data type codes, entry point (FZXINP) 3-218
stacked error entry at $$ERSK 3-18
stand-alone dump, example 6-13
stand-alone dump program 6-13
stand-alone dump, usage and procedure 6-12
standard precision execution equates-$I@SEQ 4-11
standard precision, floating-point data 3-266
statement address table 3-159, 3-197
statement address table, general description 3-157
statement branch table entry (#SF SYN) 3-32
statement header, (STH), pseudo instruction 3-261
statement input subroutine-BAGETC 3-160
statement line numbers relation to virtual addresses 3-157
statements, PTF 6-7
statistical data record (SDR), NERLOG 3-9
STC (X'28'), stack character field, pseudo instruction 3-252
step mode (#EXMSG) 3-20
STEP keyword program-#KRUNI 3-91
STEP as used in #KEDIT 3-55
STF (X'20'), stack floating point value, pseudo instruction 3-249
STH execution in trace line number mode (F2LINT) 3-222
STH (statement header) processing 3-206
STH (X'64'), statement header, pseudo instruction 3-261
stop address selection 6-17
STOP, PMC syntax 3-191
storage addresses, machine instruction A-3
storage allocations (see allocation)
STORIN-null directory entry subroutine 3-116
STUFID-filename directory entry subroutine 3-117

X-16

STX (X'3C'), stack execution control code, pseudo instruction
3-259

SUB (X'08'), subtract, pseudo instruction 3-230
subtract, (SUB), pseudo instruction 3-230
supervisor call, (SVC), pseudo instruction 3-261
supported optional devices 1-2
SURCHN-search null directory subroutine 3-118
SUSPEND keyword program-#KSSPN 3-93
SVC (supervisor call) processing 3-206
SVC (X'02'), supervisor call, pseudo instruction 3-261
SVOLID-find volume-JD subroutine 3-113

usage in (#KCALL) 3-46. l
switch to alternate track (DKDISK) example 3-6, 3-7
symbol processing in BDSYMB 3-164
symbol table search in trace 3-222
symbol tables, BASIC language 3-165
symbol translator subroutine-BDSYMB 3-164, 3-176
symbol types 3-164
SYMBOLS keyword program-#KSYMB 3-97
syntactical units of BASIC statements 3-177
syntax

BASIC statement keyword (see syntax, PMC)
checker for DISPLAY 3-53
checker for SET 3-94
DAT A statement, PTF command 6-9
END statement, PTF command 6-9
HDR statement, PTF command 6-7
keyword statement (see syntax, PMC)
PTF command statements 6-7
PTF statement, PTF command 6-8

syntax check GET (card) input line (FZXINP) 3-218
syntax, PMC (pseudo machine code)

CLOSE 3-181
DATA 3-181
DEF 3-181
DIM 3-182
END 3-182
FOR 3-182
GET 3-183
GOSUB 3-183
GOTO (multiple) 3-183
GOTO (simple) 3-183
IF (arithmetic) 3-184
IF (character) 3-184
IMAGE(:) 3-184
INPUT 3-185
LET 3-185
LET (arithmetic, simple) 3-185
LET (character) 3-186
MAT 3-186
MAT GET 3-186
MATINPUT 3-187
MATPRINT 3-187
MAT PUT 3-188
MAT READ 3-188
NEXT 3-188
PAUSE 3-188
PRINT 3-189
PRINT USING 3-189
PUT 3-189
READ 3-190
REM 3-190
RESET 3-190
RESTORE 3-190
RETURN 3-191
STOP 3-191

system
commands, description 1-1
communication area-NUCLES 3-9

Licensed Material-Property of IBM

)

system (continued)
communication area (NUCLES) format 5-2
components directory 4-1
components and programs, logical division 2-1
configuration (IPL) 3-3
configuration record equates-@CNFEQ 4-9
control program (SCP) 3-59
equates-#TEQUl 4-7
equates-#TEQU2 4-11
file example (Figure 2-2) 2-5
files, format 2-4
flow 2-2, 2-3
and hardware equates-@SYSEQ 4-7
hardware I/O equates-@HDWEQ 4-8
help text file format 5-25
indicator checking at a specific time 6-17
initialization-IPL, components 3-1
initialization (IPL) flowchart 3-3
library file, allocation 2-6
library file example (Figure 2-3) 2-7
library file, format (Figure 5-11)
loader-NBLOAD, $BLOAD, $RLOAD, $LOADR 3-16
loader (NBLOAD) core map 3-16
nucleus 3-4
nucleus core map (Figure 3-2) 3-4
printer calling routine-$SPRNT 3-41
printer IOCR interface-NSPRNT, $SPRNT 3-10
printer IOCR (NSPRNT, $SPRNT) 3-10
printer output, example of nucleus patch 6-12
printer output format (FZUPRT) 3-220
printer physical IOCS-DFPRNT 3-214
program area equates for relative disk addresses and

sector counts-@SPFEQ 4-8
program, disk resident, patching 6-14
program file 2-6
pro gram file directory

sample of disk dump 6-16
table-##DRTY 5-31

program file PTF's (#UPTFI) 3-138
programs, logical division 2-1
status check (#GUFUD) 3-26
stop procedure for core or disk dump 6-17
stop/system reset/system start (#ZUTMO) 3-145
work area, general description 2-5
work area equates for physical disk addresses and sector

cqunts-@WKAEQ 4-8
work area (system work file), general description 2-5
work file IOCS-DL4ICS 3-101
work file (packed data example) 3-23
work file (system work area), general description 2-5

System/3 Basic Assembler Language, Appendix A A-1
System/3 BASIC, description 1-1, 1-2
System/3 BASIC, program components 3-1

T

tab

reverse the program load trace option (#ZUTMO) 3-145
trace option, operating procedure 6-4

keys (DEPRES) 3-37
left/tab left and index (#DSPL Y) 3-41
right (#DSPL Y) 3-41

tables
##CKTB-command key 5-30
##DRTY-program file directory 5-31
#BCOMP-core resident routines 3-153
#BOVLY-PMC generator (statement processor overlays)

3-154
#ZDUMP branch 3-149

tables (continued)
arithmetic array symbol table 3-194
assembler instruction reference A-3
BASIC program file structure 5-18
branch address 3-160
branch and statement address 3-197
character array symbol 3-195
compiler filename 3-15 7
compiler/loader common parameter area 3-192
configuration record 5-7
contents of virtual memory (interpreter) 3-202
conversion of virtual addresses to disk addresses 7-2
CRT line segment table (CLST) 3-67
delete parameter list 5-29
directories to system libraray file 5-15
disk

control field 5-29
parameter list 5-28
statistical data recording 5-9
volume format 5-6

DPL (disk parameter list) 3-5
end of file record 5-22
end of paging subroutine 3-210
entries for 1/0 record 3-45
error history log 5-8
error recovery procedure (DKDISK) 3-6

. example of floating-point numbers 3-267
exponent conversion (internal format to decimal) 3-267
file

directory 1 5-21
directory 2 5-23
index table 5-20
library addresses and tables-@DIREQ 4-9

filename directory block 5-17
help text records 5-26
individual volume statistics and master SIO 5-9
initialization of elements in virtual memory 3-194
1/0 parameter list, device ID 6-10
keyword entry (#EDMAN) 3-28
list control block (LCB) 3-67
lock and read only indicator 3-222
message entry (#ER RPG) 3-18
nondisk statistical data recording 5-10
null directory 5-15
outboard recording 5-11
parameters passed to

UTKUSE subroutine 3-119
UTVTOC subroutine 3-121

password directory 5-16
print parameter list 5-27
processor address-BHDPAT 3-158
pseudo instruction reference 3-228
segment descriptor field 5-22
source module labeling conventions 4-7
statement

address 3-159
branch (#SFSYN) 3-32

symbol types in BDSYMB 3-164
system

communication area (NUCLES) 5-2
help text file 5-25

System/3 BASIC components directory 4-1
trace 3-196
volume label 5-12
volume table of contents 5-14

temporary disk work area allocation 2-6
terminate

compiler PMC generation phase 3-180
print using (mask X'lO') 3-220

Index X-17

Licensed Material-Property of IBM

Part of LY34-0001-1
Revised January 1972
By TNL LN34-0075

terminating
character (EOS) of current segment 3-160
pseudo instruction 3-201

termination, DCALC 3-276
test

configuration record (#UCNFI) 3-129
suspect tracks 3-126

test and translate
arithmetic constant (#SDSYN) 3-34
character constant (#SDSYN) 3-34

TEST usage in #UATRC 3-126
text character pointer

input parameter to BDSYMB 3-165
output parameter from BDSYMB 3-165

TKSCYL (UTKUSE) 3-119
TKSYLN (UTKUSE) 3-119
trace

bit 3-222
FE program load 3-44
line numbers subroutine-FZLINT 3-222
mode, element unstacking 3-210
mode reference list (input parameters) 3-195
option (T), operating procedure 6-8
table 3-196
variables subrou tine-FZV ART 3-222

TRACE keyword program-#KRUNI 3-91
tracing labels during execution of

ENTER+ function 3-273
SIN function 3-2 7 3

track
format 3-7
initialization (#UNIT) 3-135
usage mask

displacement 3-119
general description 2-5
utility program-UTKUSE 3-119
utility program-#UCDIS 3-131, 3-132

triple matrix function call (MF3) pseudo instruction 3-238
TSMLES (SRCHFN) 3-115
two-byte physical disk address 3-101
two-star (**) library

directory 5-11, 5-15
general description 2-6

type code, _current BASIC statement 3-156

UALLOC (#VALLO) 3-127
UATRCK (#UATRC) 3-125
UCDISK (#UC DIS) 3-131
UCNFIG (#UCNFI) 3-129
UCPLIB (#UCPLI) 3-130
UDISVT (#UDISV) 3-143
UEXLIB (#UEXLI) 3-133, 3-134
UINERP-assign alternate tracks (#UINIT) 3-136
UINITL (#UINIT) 3-134
UINSEK-verify correct ID on all tracks (#UINIT) 3-136
UNASSIGN (#UATRC) 3-126
unnormalized decimal number 3-266
unpacked-decimal format, arithmetic 3-268
unresolved

operands (holes) 3-157
virtual addresses in PMC generators 3-157

unstack
character element, (USC), pseudo instruction 3-254
floating point element, (USF), pseudo instruction z252

UPACKO-syntax check and load SPACKU (#UPACK) 3-137
UPACKU-test for initial or second entry (#UPACK) 3-137
update

DADDR argument (#SPACK) 3-123
user directories (#SPACK) 3-123
work file (#GUFUD) 3-26

X-18

UPTFIX (#UPTI'I) 3-138
USC (X'2C'), unstack character element, pseudo instruction

3-254
user

file (filename), general description 2-6
program data file format 2-8
programs and data, storage allocation 2-6

USF (X'26'), unstack floating point element, pseudo instruction
3-252

utility
aid program maintenance-#ZUTMO 6-1
command, general description 1-1
dump, disk address specifications 7-3
programs

general description of 2-1
detailed descriptions of 3-125

UTKFLG (UTKUSE) 3-119
UTKINP (UTKUSE) 3-119
UTKPRC (UTKUSE) 3-119
UTKTBF (UTKUSE) 3-119
UTKTYP (UTKUSE) 3-119
UTKUSE

track usage mask utility program 3-119
usagein#UCDIS 3-131
usage in UTVTOC 3-121

UTVDEL usage in UTVTOC 3-121
UTVDFT usage in UTVTOC 3-121
UTVEXP usage in UTVTOC 3-121
UTVINF usage in UTVTOC 3-121
UTVIST

insert work area file (#VALLO) 3-128
usage in UTVTOC 3-121

UTVSI!K (UTVTOC) 3-121
UTVTOC

VTOC utility subroutine 3-121
parameters passed to 3-121

valid delimiter sequence scan (#SDSYN) 3-34
validity check array row (FZXINP) 3-219
VERROR-DCALC error messages 3-273
VINITI-DCALC initialization routine 3-272
virtual addresses

converted to disk addresses 7-2
unresolved 3-157

virtual memory
address resolution 3-15 7
allocation 2-6
allocation of arrays 3-19 3
allocation of data file buffers 3-194
array allocation 3-193
array allocation routine 3-199
concept 2-8
contents (DCALC) 3-270
contents (interpreter) 3-202
conversion of virtual addresses to disk addresses 7-2
and core-resident interpreter referencing 3-205
directory equates (directory 1 and 2)-@VMDEQ 4-9
disk area (location) 7-1
dump #ZUTMO 3-147
dump option, operating procedure 6-2
dump overlay-#ZDUMP 3-149
fixed addresses-VEQU 4-18
function load routine 3-200
holes 3-157
how to lay out (long precision) 7-7
how to lay out (standard precision) 7-3
initialization of elements 3-194
location order, line numbers 3-196
map 7-5

Licensed Mater al-cProperty of IBM

virtual memory (continued)
map, DCALC (with CRT) 3-272
method to Jay out contents of execution-time disk

dump 7-1
modification routine 3-200
output subroutine-BBPUTC 3-161, 3-168
paging subroutine-IPGMDL 3-204
push/pull subroutine-FZZVMP 3-222
resident execution subroutines 3-202
resident subroutines (DCALC)-#VVMRS, ##VUFA 3-270
seek to first cylinder 3-155
unresolved operands 3-196

VM (see virtual memory)
VOL-LABEL indicators (#UINIT) 3-136
volume

ID table entry modification (#UCNFI) 3-129
information cylinder (cylinder 0) 2-4
label 2-4
label format 5-12
label, general description 2-4
label, track usage mask 3-119
table of contents (VTOC)

wait

DELETE utility program-#UDELV 3-141
DISPLAY utility overlay-#UDISV 3-143
equates-@VTCEQ 4-9
format 5-14
general description 2-4, 2-5
index call in VTOC-DISPLA Y (#UDISV) 3-144
library file creation (#UALLO) 3-128
scratch file deletion configure utility #UCNFI 3-129
scratch file deletion initialize disk utility #UINIT 3-134
scratch file deletion mount keyword #KMOUN 3-75
scratch file deletion nucleus initialization #MIPPE 3-2
utility subroutine-UTVOC 3-121
work area file creation (#UALLO) 3-128

#DSPLY 3-41
and check for errors (DPRINT) 3-35
for 1/0 to complete (DFPRNT) 3-214

WIDTH
keyword program-#KWIDT 3-99
usage in FZSPRT 3-220

work areas, paging subroutine (IPGMDL) 3-209 ·
work file

allocation 2-5
crush and reorder-GUFCSH 3-24
data area 2-8
end-of-file record 3-191
FIT 2-7
PUT subroutine-GPUTIT 3-107
retrieval subroutine-GRABIT 3-109
system operations 2-7
update/crusher-#GUFUD 3-21
update-GUFUPD 3-22

write page, compiler, equated to B$PFWP 3-161, 3-162
write-page function, exceptions 3-162
WRITE keyword program-#KWRIT 3-100

ZDUMPV (#ZDUMP) 3-149
ZUTCDO core/disk dump (#ZUTMO) 3-148
ZUTCPO core/disk patch (#ZUTMO) 3-147
ZUTDCO disk compare (#ZUTMO) 3-148
ZUTDDO disk dump (#ZUTMO) 3-148
ZUTDPO disk patch (#ZUTMO) 3-147
ZUTDWO disk write (#ZUTMO) 3-148
ZUTHLT halt (#ZUTMO) 3-147
ZUTMON (#ZUTMO) 3-145
ZUTOSR select option to be performed (#ZUTMO) 3-147
ZUTPPR print messages, set parameters (#ZUTMO) 3-147
ZUTRET return (#ZUTMO) 3-147
ZUTTFL trace (#ZUTMO) 3-147
ZUTVMD virtual memory dump (#ZUTMO) 3-147

598 error (#UATRC) 3-126
2345 halt 6-18

Index X-19

Licensed Material-Property of IBM

X-20 Index

Licensed Material-Property of IBM

L Y34-0001-1

lntematlonal Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plalns, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(lnternatlonal)

Licensed Material-Property of IBM

OJ
5:

) . Cf)

-< en
...+
Cl)

3 -.. w
OJ
:t:>
Cf)

(")

en
'fJ
O'l
01

"'O ..,
:J
...+
Cl)
a.
:J

c
Cn
?>
r
-< w
f"
0
0
0

' ~

)

IBM System/3 Model 6
System/3 BASIC Logic Manual

READER'S COMMENT FORM

LY34-0001-l

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. Comments and suggestions become the property
of IBM.

Yes No

• Does this publication meet your needs? 0 0
• Did you find the material:

Easy to read and understand? 0 0
Organized for convenient use? 0 0
Complete? 0 0
Well illustrated? 0 0
Written for your technical level? 0 0

• What is your occupation?

• How do you use this publication?
As an introduction to the subject? 0 As an instructor in a class? 0
For advanced knowle.dge of the subject? 0 As a student in a class? 0
For information about operating procedures? 0 As a reference manual? 0

Other
• Please give specific page and line references with your comments when appropriate.

If you ~ish a reply, be sure to include your name and address.

COMMENTS:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Licensed Material-Property of IBM

LY34-0001-1

YOUR COMMENTS, PLEASE ...

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sug
gestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WI LL BE PAID BY . . .

I BM Corporation

General Systems Division

Boca Raton, Florida 33432

Attention: Systems Publications, Department 707

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Licensed Material-Property of IBM

Fold

FIRST CLASS

PERMIT NO. 110

BOCA RATON, FLA

3343'.j!

Fold

(')
c:
..+

)>
0
:::i

"' r :;·
co

OJ
s:
(/)

< en
(1)

3 -w
OJ
)>
(/)

(")

(/)

'fJ
en
~

""C
::J
(1)
a.
::J

c
Cn
~
r
-< w
f"
0
0
0

)

)

IBM System/3 Model 6
System/3 BASIC Logic Manual

READER'S COMMENT FORM

LY34-000I-1

e Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. Comments and suggestions become the property
of IBM.

Yes No

• Does this publication meet your needs? D D
• Did you find the material:

Easy to read and understand? D D
Organized for convenient use? D D
Complete? D D
Well illustrated? D D
Written for your technical level? D D

• W.hat is your occupation?

• How do you use this publication?
As an introduction to the subject? D As an instructor in a class? D
For advanced knowle,dge of the subject? D As a student in a class? D
For information about operating procedures? D As a reference manual? D

Other
e Please give specific page and line references with your comments when appropriate.

If you ~ish a reply, be sure to include your name and address.

COMMENTS:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Licensed Material-Property of IBM

L Y34-0001-1

YOUR COMMENTS, PLEASE . ..

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sug
gestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

I BM Corporation

General Systems Division

Boca Raton, Florida 33432

Attention: Systems Publications, Department 707

Fold

FIRST CLASS

PERMIT NO. 110

BOCA RATON, FLA

3343i

--~-----------
Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(lntematlonal)

Licensed Material-Property of IBM

Fold

()
c: ...
)>

0
:I co
c
:I

"'

OJ
$:
(/)
<
!!l.
Cl)

3 -w
OJ
l>
(/)

r
-< w
f'
0
0
0 _.
' _.

	LY34-0001-1_System3_Model6_BASIC_LogicManual
	LY34-000BASIC_part_1
	LY34-000BASIC_part_2
	LY34-000BASIC_part_3
	LY34-000BASIC_part_4

