
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••• •••••• • ••••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ... 1::::::: ••
•••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• •••••• •••••••••• • •••• •••••••• • ••• •••••• • ••• •••• ••••• ••••••• •••• • ••••••• •••• • •••••• •••••••••••••• •••••••••••• •••••••••••• •••••••••••••• •••• • •••••• •••• • ••••••• ••••••• ••••• •••• ••••
•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• •••••• • ••••• •••••• •••••• •••••• •••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • ••• •••••• •••••• •••••• ••••••

•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••• •••• • ••••• •••••• • ••••• •••••• • ••••• •••••• • •••••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• •••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • ••••• ••••• • ••••• •••••• • ••••• ••••••• • ••••• ••••••• •••• • ••• •••• ••••• • ••• •••• •••••• • ••• •••• • •••••••••• ••••••••••••••••••• ••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• ••••••

IBM System/3
Model 6
Operation Control Language and
Disk Utility Programs
Reference Manual

Program Number 5703-SC1

GC21-7516-3

Preface

This publication is intended for use by programmers who
are doing either of the following:

1.

2.

Writing Operation Control Language (OCL) state
ments needed to run programs in the system.

Writing utility control statements necessary to run
disk utility programs supplied by the system.

Note: In this publication there are some references to sup
port of 24K and 32K bytes of main storage. A System/3
Model 6 with these main storage sizes is available only as an
RPO. Your I BM Marketing Representative can provide
information about this.

Prerequisite Publications

IBM System/3 Model 6 Introduction, GA21-9122

IBM System/3 Model 6 System Programmer's Guide,
GC21-7530

Other Publications Referenced in This Manual

IBM System/3 Model 6 Operator's Guide, GC21-7501

IBM System/3 Disk Sort Reference Manual, SC21-7522

Fourth Edition (March 1973)

IBM System/3 Model 6 Conversational Utility Programs
Reference Manual, SC21-7528

IBM System/3 Model 6 Utility Program for IBM 1255 Mag
netic Character Reader Reference Manual, SC21-7527

IBM System/3 Model 6 RPG II Reference Manual,
SC21-7517

Machine Requirements

Conversational OCL and all utility programs except Library
Maintenance can be done using the minimum configuration
of System/3 Model 6.

The minimum configuration is as follows:

• IBM 5406 Processing Unit, Model B2 (SK bytes) -
including keyboard

• IBM 5444 Disk Storage Drive

• IBM 5213 Printer

OCL statements from cards and Library Maintenance func
tions involving cards require an additional unit: I BM 5496
Data Recorder, Model 1 with System/3 Model 6 Attach
ment Feature or 129 Card Data Recorder with Card Input/
Output Attachment Feature.

This is a major revision of, and obsoletes, GC21-7516-2 and Technical Newsletters GN21-7622
and GN21-7646.
This manual has been completely revised and should be reviewed in its entirety.

This edition applies to version 08, modification 00 of the IBM System/3 Model 6 and to all
subsequent versions and modifications until otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the specifications herein; before using this
publication in connection with the operation of I BM Systems, consult the latest IBM System/3
Newsletter Order Number GN20-2228 for the editions that are applicable and current.

Requests for copies for I BM publications should be made to your I BM representative or to the

IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to I BM Corporation, Publications, Department 245,
Rochester, Minnesota 55901. '

, © Copyright International Business Machines Corporation 1971, 1973

Contents

PART I. OPERATION CONTROL LANGUAGE Retain Keyword 36
Date Keyword 37

INTRODUCTION TO OCL 2 HALT Keyword . 37
How to Use Part I 2 LOAD NAME Keyword 38
Operator's OCL Guide . 2 For Customer Programs 38

For System Programs 38
CONVERSATIONAL OCL 4 MODIFY Keyword . 39
The Job Cycle 4 System-Operator Interaction During Modification 39

The LOAD Cycle 6 Changing a Previous OCL Statement 41
The BUILD Cycle 6 Deleting a Previous OCL Statement 41
The BUILDC"Cycle 6 Entering Comment_s 42
The CALL Cycle 7 Cancelling Job 42

System-Operator Interaction During Keyword Prompting 7 Changing Forms Length 43
Keyboard 8 Including Control Statements 44
End-of-Statement Keys 9 NOHALT 45
Statement Numbers in an OCL Cycle 9 READY 45
Comments 10 RUN 45
Keyword Sequence for OCL Load Cycle . 10 SWITCH 46
Keyword-Response Summary (Load Cycle) 11 Indicator Settings 46
Keyword Sequence for OCL Build Cycle 16 IPL Considerations 46
Keyword-Response Summary (Build Cycle) 17 Duration of SWITCH Settings . 46
Keyword Sequence for OCL BUI LDC Cycle 24 Operator-System Interaction for SWITCH
Keyword-Response Summary (BUI LDC Cycle) 24 Statement (LOAD Cycle) 46
Keyword Sequence for OCL Call Cycle 26 Operator-System Interaction for SWITCH
Keyword-Response Summary (Call Cycle) 26 Statement (BUI LO Cycle) 47

Operator-System lnterac,ion for SWITCH
CARD OCL FOR MODEL 6 28 Statement (CALL Cycle) 47
Assigning Data Recorder as System Input Device 28

IBM 129 Programming Consideration 28 USING OCL. 48
Returning Control to Keyboard 28 Multi-Volume Files 48
Control Statements in Procedures 28 File Statements for Multi-Volume Files 48
Card Format of OC L Statements 29 OCL Considerations 48
OCL Statements 29 List Requirements 49
General Coding Rules 30 File Statement Summary 51
Statement Order 30 Coding Multi-Volume File Statements 52
Coding Multi-Volume File Parameters 31 Changing Multi-Volume File Statements with

MODIFY Keyword 52
KEYWORD DESCRIPTIONS . 32 Including Sort Source or Utility Control Statements
BUILD NAME 32 in a Procedure . 52

Duplicate Procedure Names 32 Increasing File Size of the RPG Procedure 52
Deleting a Source Library Procedure 32 Processing Large Indexed Disk Files 53

BUI LDC NAME . 32 Entering RPG 11 Source Statements From the
CALL NAME 32 Keyboard at Compile Time 53
COMPILE Keyword 33 Inquiry Interrupt 53

Compile Object Keyword 33 Restrictions During Inquiry 54
Source Keyword 33 Chained Procedures . 54
Unit Keyword 33 OCL for the IBM 2222 Printer 55

DATE Keyword . 33 Using the FORMS Statement 55
Overriding the System Date 34 Log Device 55
Format of the DA TE Statement 34 MODI FY - Entering the Keyword FORMS 55

Fl LE Keywords . 34 OCL for the I BM 2265-2 Display 56
System-Operator Interaction During Prompting of READY - Entering LOG 56

File Keywords 34 MODIFY - Entering LOG . 56
Unit Keyword 35 OC L Error Messages 57
Pack Keyword 35 Co-Resident Systems 59
Label Keyword 35
Records and Tracks Keyword 36 SAMPLE JOBS 60
Location Keyword 36 Sample Job 1. Initialize Disk 61

iii

Sample Job 2. Compile an RPG Source Program 62 Control Statement Summary 93
Sample Job 3. Process Customer Program "I NVUPD" 63 Parameter Summary: ALT (Alternate) Statement 93
Sample Job 4. Copy File Disk to Disk 64 Parameter Descriptions . 94
Sample Job 5. Multi-File Build 66 PACK Parameter 94
Sample Job 6. Multi-File Call . 68 UNIT Parameter 94
Sample Job 7. Update Multi-Volume Master File 69 VER I FY Parameter . 94
Sample Job 8. Create a Multi-Volume Indexed File 70 ASSIGN Parameter . 94
Sample Job 9. Maintain a Multi-Volume Indexed File UNASSIGN Parameter 94

With Packed Keys . 72 OCL Considerations 95
Sample Job 10. Include Utility Control Statements in LOAD Sequence 95

a Procedure 73 BUI LO Sequence 95
Sample Job 11. Chain Procedures 74 Example . 96

Conditional Assignment 96
PART 11. DISK UTILITY PROGRAMS 77 Messages for Alternate Track Assignment 97

INTRODUCTION TO DISK UTILITY PROGRAMS 78 ALTERNATE TRACK REBUILD PROGRAM ($BUILD). 98
General Program Operation 78 Functions 98

All Programs Except Library Maintenance 78 Locating Incorrect Data 98
Library Maintenance Program 79 Replacing Incorrect Data 98

Using Disk Utilities . 79 Options 98
Control Statements . 79 Control Statement Summary 98

Writing OCL Statements 80 Parameter and Substitute Data Summary 98
Utility Control Statements 80 Number of Characters 99
OCL Statements 80 Number of Tracks 99

Parameter and Substitute Data Descriptions . 99
DISK INITIALIZATION PROGRAM ($1NIT) 81 PACK Parameter 99
Functions 81 UN IT Parameter 99

Naming a Disk 81 TRACK Parameter 99
Writing Track and Sector Addresses 81 LENGTH Parameter 99
Checking for Defective Tracks (Surface Analysis) 81 DISP (Displacement) Parameter 99
Assigning Alternate Tracks 81 Substitute Data . 99

Options 82 OCL Considerations 100
Type of Initialization 82 LOAD Sequence 100
Number of Disks 83 BUILD Sequence 100
Erasing Alternate Track Assignments . 83 Example . 101
Additional Disk Identification 83 Correcting Characters on an Alternate Track 1Q1
Surface Analysis Option 83

Control Statements . 83 FILE AND VOLUME LABEL DISPLAY PROGRAM
Control Statement Summary 84 ($LABEL) 103
Parameter Summary 85 Functions 103

Parameter Descriptions . 86 Print VTOC Information 103
TYPE Parameter (UIN) 86 Print Headings 103
UNIT Parameter (UIN) . 86 Options 103
VERIFY Parameter (UIN) 86 Entire Contents of VTOC 103
ERASE Parameter (UIN) 86 File Information Only 103
CAP Parameter 86 Number of File Names . 103
PACK Parameter (VOL) 87 Control Statements . 104
ID (Identification) Parameter (VOL) 87 Control Statement Summary 104

OC L Considerati~ns 88 Parameter Summary (Display Statement) 104
LOAD Sequence 88 Parameter Descriptions . 104
BUILD Sequence 88 UN IT Parameter 104

Example . 89 LABEL Parameter 104
Primary Initialization of Two Disks 89 OCL Considerations 107

Messages for Disk Initialization 90 LOAD Sequence 107
BUILD Sequence 107

ALTERNATE TRACK ASSIGNMENT PROGRAM ($ALT) 91 Example . 108
Functions 91 Printing VOTC Information for Two Files 108

Writing Track Addresses 91
Checking for Defective Tracks 91 FILE DELETE PROGRAM ($DELET) 109
Printing Sectors Containing Incorrect Data 91 Functions 109
Assigning an Alternate Track 91 VTOC File Reference 109

Options 92 Erase File Information 109
Type of Assignment 92 Options 109
Number of Alternate Tracks 93 Deleting a File 109
Surface Analysis 93 Number of Files . 109

Control Statements . 93 Number of File Names 110

iv

Control Statements . 110 Library Maintenance Allocate Restrictions 133
Control Statement Summary 110 Allocate Control Statement Summary 134
Parameter Summary 111 Allocate Parameter Summary 135

Parameter Descriptions . 111 Parameter Descriptions . 136
Pack Parameter 111 TO Parameter 136
Unit Parameter 111 SOURCE and OBJECT Parameters 136
Label Parameter . 111 DIRSIZE Parameters 136
Date Parameter 112 SYSTEM Parameter 136
Data Parameter (REMOVE Statement Only) 112 WORK Parameter 137

QC L Considerations 113 Compress in Place (OBJECT-[R NUMBER]) 137
LOAD.Sequence 113 Using the Allocate Function 137
BUILD Sequence 113 Copy 140

Example 114 COPY Control Statement Summary: Reader-to-Library 141
Deleting One of Several Files Having the Same Name 114 COPY Control Statement Summary: File-to-Library 141
Removing One File . 115 COPY Control Statement Summary:

Library-to-Library . 142
DISK COPY/DUMP PROGRAM ($COPY) 116 COPY Control Statement Summary: Library-to-Printer
Functions 116 and/or Card 143

Disk or File Location 116 Copy Parameters 144
Using a Work Area 116 Using the Copy Function 146
Printing a Portion of a File . 116 Source Library Directory 149
Record Keys and Relative Record Numbers . 116 Object Library Directory 150

Options 116 System Directory Printout . 152
Copying and Printing 116 Delete 153
Deleting Records 118 Control Statement Summary 153
Reorganizing a File . 118 Delete Parameters 154

Copying Multi-Volume Files 118 Modify 155
Maintaining Proper Volume Sequence Numbers 118 Uses 155
Maintaining Correct Relative Record Numbers 118 Control Statement Summary 156
Direct File Attributes 119 Modify Parameter 157
Copying Multi-Volume Index Files 119 Remove, Replace, Insert Parameters 158

Control Statements . 119 Rename 158
Control Statement Summary 120 Control Statement Summary 158
Parameter Summary 121 Rename Parameters . 158

Parameter Descriptions. 122 OCL Considerations 159
FROM and TO Parameters (COPYPACK Statement) 122 LOAD Sequence 159
OUTPUT Parameter (COPYFI LE Statement) 122 BUILD Sequence 159
DELETE Parameter (COPY Fl LE Statement) 122 Allocate Examples 160
REORG (Reorganize) Parameter (COPYFI LE Creating Both Source and Object Libraries on a Disk 160

Statement) . 122 Changing the Size of a Source Library 161
WORK Parameter (COPYFILE Statement) 122 Deleting the Object Library from a Disk . 162
SELECT KEY and PKY Parameters (SELECT Copy Examples . 163

Statement) . 123 Copying Minimum System From One Disk to Another 163
SELECT RECORD Parameters (SELECT Statement) 123 Printing Library Directories 164

QC L Considerations 124 Replacing a Library Entry: Replacement Coming
LOAD Sequence for Copying an Entire Disk 124 From Another Disk 165
BUILD Sequence for Copying an Entire Disk 124 Disk File-to-Library 166
LOAD Sequence for Copying or Printing Files 125 Delete Examples 167
BUILD Sequence for Copying or Printing Files 126 Deleting a Temporary Entry From a Library 167

Examples. 127 Deleting All Temporary Entries With Names That
Copying an Entire Disk . 127 Begin With Certain Characters 168
Copying a File From One Disk to Another 128 Deleting All Permanent Library Entries of One Type 169
Printing Part of a File 130 Modify Examples 170

Replacing Statements in a Procedure . 170
LIBRARY MAINTENANCE PROGRAM ($MAINT) 131 Removing Source Statements From a Module 171

Library Description . 131 Inserting a Statement in a Source Module 172
Organization of This Section 132 Rename Example 173

Allocate 132 Renaming a Set of Source Statements in a Source
Creating Libraries 132 Library 173

v

APPENDIX A: IBM SYSTEM/3 STANDARD Object Library 176
CHARACTER SET 174 Files 176

APPENDIX B: RECORDS - TRACKS CONVERSION 175
For Sequential or Direct Files . 175 GLOSSARY . 177
For Indexed Files 175

INDEX 178
APPENDIX C: DISK ORGANIZATION 176

Volume Table of Contents (VTOC) 176
Source Library 176

vi

This publication contains two parts. Part I describes
Operation Control Language (OCL) statements. Part 11
describes disk utility programs.

Part I

Refer to Part I if you want to know:

1.

2.

What an OCL statement is.

How to enter the OCL statements required to run
your jobs.

How to Use This Manual

Part II

Refer to Part 11 if you want to know:

1.

2.

3.

What disk utility programs are supplied with the
system.

The function of each disk utility program.

The Operation Control Language (OCL) statements
and utility control statements necessary to request
each disk utility program.

vii

PART I
OPERATION CONTROL LANGUAGE

Operation Control Language

Introduction to OCL

Before the I BM System/3 Model 6 can run a program, it
must know what you want it to do and where to find the
information it will need to do the job. You supply the
what and where information in a series of OCL (operation
control language) statements. The system can't run any of
your programs unless each one is accompanied by a series
of OCL statements. A series of OCL statements is called
an OCL cycle. There are four OCL cycles: LOAD, BUILD,
BUI LDC, and CALL.

Part I of this manual is designed to help you select an OCL
cycle and fill out the OCL guide sheets your operator will
use in response to the OCL prompting for each job. You
can either design an operator's OCL guide sheet for your
installation or use the pre-printed form that is available
(see Operator's OCL Guide).

HOW TO USE PART I

The Conversational OCL section of this manual contains
information on responding to OCL prompting. There are
three levels of information for the four OCL cycles.

2

Here is how to use each level:

• Use the KEYWORD SEQUENCES for an overall under
standing of the OCL cycle. The sequences show the
order of the OCL keywords for a cycle and indicate
which keywords require responses.

• Use the KEYWORD-RESPONSE SUMMAR I ES for a
quick recall of all possible entries fo~ each OCL state
ment. In the responses column of the summary charts:

Words or letters in all capi~al letters (FORMS,
BUILD, R 1) represent actual entries.

Words or letters not in all capital letters (mmddyy,
Disk Name) represent information you must supply.

• Use the KEYWORD DESCRIPTIONS when you need a
detailed explanation of a particular keyword.

The section titled Using OCL contains information on pro
gramming OCL for complex jobs and special features or
devices.

OPERATOR'S OCL GUIDE

The operator's OCL guide is available for you to use to tell
your operator how to respond to the OCL prompting for a
job. The CALL cycle is not included on the guide because

the OCL prompting for that cycle is so short.

IB"'
Job

For information on filling out the OCL guide, see IBM
System/3 Model 6 System Programmer's Guide,
GC21-7530.

International Business Machines Corporation

System/3 Model 6

GX21-912&
Printed in U.S.A.

Date
OPERATION CONTROL LANGUAGE (OCL) GUIDE

Programmer

Keywords Responses Considerations

R E A Dy

0 0 0 B U I L D t-!_ A I'! E
0 0 1 !d_ N T

t-!_ A I'! E

~~~~~~~su~1L~o~o~1~~;;?blAllolllffi~E=== 
1 1 

:::::;:;:: Procedure Name 

Fl, RI, F2 or R2 

1 0 L 0 AD 
1 1 ~ N T 
2 0 D A T 

0 3 0 s WI T c H 

0 4 0 F I L E N A~ E 

0 4 u NI T 
0 4 p A le K 

0 4 3 L AB E 
0 4 4 R E C 0 R 
0 4 5 T R~ C K 

0 4 6 oc A T 
0 4 R E T Al 
0 4 D AT E 

5 0 F I L E N AM 
0 5 1 u NI T 
0 5 2 p AC K 

0 5 3 L AB E 
E C 0 R 

T RA c K 

0 c A T 
R E T Al 

0 5 D AT E 

M 0 D I F y 

D S 
s 
I 0 N 
N 

D S 

I 0 N 

N 

l 

Columns 75-80 of RPG Control Card or System Program Name 

Fl, R1, F2 or R2 

mmddyy or ddmmyy 

1-0n, O.Off, X-No Change 

~
iOther Possible Entry .1 
Lines 020-058) 

7 for Delayed Response 

Columns 7·14 of RPG File Description Specifications or Predefined Filename 

Fl, R1, F2 or R2 

Disk Name (Assigned by Disk Initialization Program) 

VTOC File Name (if different than response to FILE NAME) 

1·999999 (Maximum Number of Records in File) 

1-398 (Maximum Number of Tracks for this File) 

8-405 Location of First Track of File 

S-Scratch, T-Temporary, P-Permanent 

mmddyy or ddmmyy 

Columns 7-14 of RPG File Description Specifications or Predefined File Name 

Fl, R1, F2 or R2 

Disk Name (Assigned by Disk Initialization Program) 

VTOC File Name (if different than response to FILE NAME) 

1·999999 (Maximum Number of Records in File) 

1-398 (Maximum Number of Tracks for this File) 

8-405 Location of First Track of File 

S.Scratch. T-Temporary, P-Permanent 

mmddyy or ddmmyy 

MODIFY OPTIONS 

1. Enter RUN 
2. Enter CANCEL 
3. Correct Statement 

Enter Statement number 
Retype or delete I.I response 

4. Create new Statement 
INCLUDE, LOG, FORMS, *(For Comments) 

Introduction to OCL 3 



Conversational OCL 

Every job run on the Model 6 requires a set of Operation 
Control Language (OCL) statements to give the system in
formation about the job to be run (such as what program 
to use, what files to use, what job date to use, etc.). An 
OCL statement consists of a keyword and a response. 

The OCL for the Model 6 is called conversational OCL be
cause a question and answer procedure is used. The sys
tem prints the question called a keyword, and the operator 
supplies the answer called a response. The keyword tells 
the operator the type of information required by the sys
tem. For example, the keyword FILE NAME indicates 
that the name of one file used in the program must be 
supplied. By printing a keyword, the system is prompting 
the operator for a response. 

The operator responds to each keyword that applies to the 
job by typing in the relevant information. (When the sys
tem prompts Fl LE NAME, for example, the operator types 
the name of one file that the job uses.) If the system 
prompts a keyword that doesn't apply to the job, the 
operator bypasses the response. 

THE JOB CYCLE 

The system will prompt READY when it is ready to run 
jobs. (For information on preparing the system to run jobs, 
see the IBM System/3 Model 6 Operator's Guide, GC21-
7501.) The response to READY tells the system what type 
of OCL cycle you want to run. 

4 

There are four OCL cycles: LOAD, BUILD, BUI LDC, and 
CALL. Of the four cycles, only the LOAD cycle is inde
pendent; that is, you can run a job by responding just to 
the keywords in that cycle. The other three cycles are inter
related; to run a job you must use two or more of them. 

The OCL cycle you choose to use should be based on fre
quency of program use and whether the program will be 
run alone or with a group of programs. 

For infrequent jobs use: 

LOAD This provides the OCL statements needed to 
run the job. 

For frequent jobs use one of these: 

BUILD This puts the OCL statements for a job into a 
source library procedure. 

BUI LDC This chains the procedures. 

CALL This calls a procedure from the source library. 

Note: A set of OCL statements in a source library is called 
a procedure. 



YOU WANT 
TO DO THIS 

Continue from 
job to job with
out halting 

I 
Operator 
types 

NOHALT 

Continues 
from job to 
job without 
halting 

Halt after 
each job 

I 
Operator 
types 

HALT 

. Halts 
after 
each 
job 

Change input 
device 

j 
Operator 
types 

READER 

(See index 
entry card 
OCL) 

Changes 
Input 
Device 

Change log · 
device 

j 
Operator 
types 

LOG 

(See index 
entry LOG) 

Changes 
Log 
Device 

System Prompts READY 

Execute 
job 

I 
Operator 
types 

LOAD 
and supplies 
OCL state
ments 

OR 

Operator 
types 

CALL and 
system reads 
OCL state
ments from 
procedure 

! 
System loads 
and executes 
program 

Build a 
procedure 

j 
Operator 
types 

BUILD 
and supplies 
OCL 

OR 

Operator 
types 
BUI LDC and 
supplies OCL 

System puts 
statements in 
procedure 

Conversational OCL 5 



The LOAD Cycle 

When you use a LOAD cycle, you're telling the system: 

1. Here are the OCL statements for my progralJl. 

2. 

3. 

Go to the disk drive I specify and find the program I 
want to run. 

Load the program into the processing unit. 

4. Run my program. 

The LOAD cycle OCL statements are not saved. If you 
want to run the same job again, your operator must respond 
to all the keywords in the LOAD cycle again. It's best to 
use the LOAD cycle for jobs you run infrequently because 
this cycle has many keywords and takes quite a while for 
responses. 

The BUILD Cycle 

When you use a BUILD cycle, you're telling the system: 

1. Here are the LOAD cycle OCL statements for job 
xx xx. 

2. Store the LOAD cycle statements on disk so that they 
can be used whenever I want to run the program. 

3. Do not run the program now. 

Once the set of OCL statements is written on a disk, the 
set of statements is referred to as a procedure. The process 
of writing the statements on the disk is referred to as build
ing a procedure. You use the BUILD cycle to build a 
procedure. 

6 

Although the BU I LD cycle is the longest of all the OCL 
cycles in terms of operator time required, it doesn't run a 
job. Its function is to save the OCL statements for a job 
by writing them on one of the disks. The advantage of the 
BUILD cycle is that on"ce the OCL statements are stored on 
the disk, the program can be run using them rather than by 

keying all the required statements. 

Delayed Responses in the BUILD Cycle 

Responding to a keyword by typing a question mark is re
ferred to as a delayed response. Delayed responses are valid 
only in the BU I LD cycle and only after keywords that con
tain a delayed response in the keyword-response chart (see 
Keyword-Response Summary- Build Cycle). A delayed 
response to any of these BU I LD keywords will do the 
following: 

• Cause the system to reprompt the keyword during the 
CALL cycle. 

• Force the operator to respond to the keyword when it is 
reprompted during the CALL cycle. (The system won't 
continue the CALL prompting cycle until the operator 
types a valid response.) 

Control Statements in Procedures 

OCL statements that control the entering of other OCL 
statements are not valid in procedures. These statements, 
HALT, NOHAL T, and LOG, are ignored when read from 
procedures during the CALL cycle and are not put into a 
procedure during a BU I LD cycle. 



The BUI LDC Cycle 

When you use a BUI LDC cycle, you're telling the system: 

1. 

2. 

I want to prepare a procedure to run a series of jobs 
which are always executed one after the other with 
no interruption. 

The OCL statements for each job in the group are 
in procedures stored on disk. 

3. Here are the names and disk drive locations of the 
procedures for each job in the group. 

4. Build a chained procedure, establishing a sequence in 
which the individual procedures are run. 

A chained procedure is a list of the procedures for each job 
in a group, in the order you want to run them. The list 
contains: 

1. The name of the procedure for each job. 

2. The disk drive on which the procedure is located. 

The process of writing the list on a disk is referred to as 
building a chained procedure. BU I LDC stands for bu i Id 
chained. 

The CALL Cycle 

CALL is the shortest OCL cycle, having only four keywords. 
When you use a CALL cycle, you're telling the system: 

1. Locate, on disk, the procedure I built for job xxxx. 

2. Use it to run job xxxx. 

The CALL cycle is always linked to a BUILD or a BUI LDC 
cycle. 

SYSTEM-OPERATOR INTERACTION DURING 
KEYWORD PROMPTING 

The system analyzes the operator's response to each key
word. If the response contains a formatting error (such as 
invalid characters or duplicate procedure names), the sys

tem prints an error message and reprompts the keyword. If 
the operator does not know the correct response, entering 
/* as a response to any prompt will cancel the job and cause 
READY to be prompted. 

rstem prompts keyword 

Does operator's OCL guide 

SJOW a response to the krword 

YES NO 

i 
Operator types 
in response 

Operator presses end-of-statement 

ry to indicate end of statement 

1oes response contain errrs 

YES NO 

i i 
System prints System prompts 
error message 
or code 

i 
Operator looks up 
error message or code 
and possible options in 
operator's manual 

i 
Operator uses one 
of the options 

next keyword in 
the cycle 

Conversational OCL 7 



Keyboard 

Command Key Lights 

These lights tell the operator 

which command keys have 

Command Keys 

System Status Lights 

1/0 attention lights indicate those 

devices that need operator attention. 

The halt code and field/operation 

Alphameric Keyboard 

Program Start Key Single Quote Field Erase Key 

System Control Switches 

These switches start and control 

10-Key 
Numeric 
Keyboard 

54046 

Enter - Key 

\ \ (For Multi-Volum"iles) ~ 

GBGG•~rnrnrnrnrnrnwrnrno~• 
6GG8·· 0000~D08G0W 000 
680EJ i 0000~000~00 ~0~ 

ERASE • 
GGGGMfi"'000G000W0 ~ 1"'''000 

Command Keys 

8 

----==~I :::::::::;:===~+:::::=::::;;;;;;;;;;::::::=::::: I~ l 
Alphameric and Special Character Keys Numeric Keys 

Question Mark 

(For Delayed 
Response) • 

Enter+ Key 

The shaded keys 
are function keys 



End-Of-Statement Keys 

The operator must respond to each keyword that the sys
tem prompts. The operator responds to a keyword by 
typing the required information (if the keyword applies to 
the job) and by pressing an end-of-statement key. The end
of-statement key can be either PROG START or ENTER -
The Keyword-Response Sum-mary charts in Appendix A 
explain the effect of end-of-statement keys on the prompt
ing sequence. 

Program Start (PROG START) or Enter Plus (ENTER+) 

Pressing the PROG START or ENTER+ key tells the sys
tem that the response is complete and to prompt the next 
keyword. 

Enter Minus (ENTER-) 

Pressing the ENTER- key to end a response causes differ
ent processing depending on what keyword was prompted 
and what type of OCL cycle is being run. 

Pressing ENTER- after LOAD NAME or UNIT in a LOAD 
Cycle: If the ENTER- key is used as an end-of-response 
to the LOAD NAME or UNIT prompts in a LOAD cycle, 
the remaining keywords in the cycle will be bypassed and 
MODI FY prompted. 

Pressing ENTER- after LOAD NAME or UNIT in a BUILD 
Cycle: If the ENTER- key is used as an end-of-response 
to the LOAD NAME or UNIT prompts in a BUILD cycle, 
the system will prompt COMPILE OBJECT, SOURCE, or 
UNIT. 

Pressing ENTER- after FILE NAME: If the ENTER- key 
is used as an edd-of-response to the FI LE NAME prompt, 
the system prompts KEY LENGTH and HI KEY for multi
volume indexed files (see Multi-Volume Files in Appendix 
A). 

Pressing ENTER- after CALL NAME or UNIT in a CALL 
Cycle: If the ENTER- key is used as an end-of-response 
to the CALL NAME or UNIT prompts in a CALL cycle, 
the OCL and any included control statements in the called 
procedure are not displayed. However, OCL statements 
with delayed responses are displayed and the system waits 
for a response. MODI FY is not prompted after either the 
OCL statements or the included control statements. 

Pressing ENTER- in the File Keywords: If the operator 
responds to FI LE NAME, he must also respond to the next 
two file keywords: UNIT and PACK. He can, however, 
bypass any or all of the rest of the file keywords. To by
pass a single keyword he presses the PROG START key as 
a response. To bypass all of the remaining file keywords 
he presses the ENTER- key either as an end-of-response 
or as a response. Pressing the ENTER- key causes the sys
tem to prompt Fl LE NAME for the next file. 

Statement Numbers in an OCL Cycle 

Statement numbers are assigned by the system to state
ments in an OCL cycle. These statement numbers are used 
by the operator when using MODI FY to reference previous 
OCL statements. 

Each OCL statement, except READY and MODIFY, is as
signed a three digit number. The first number in a BUILD 
or CALL cycle is 000, and in a LOAD cycle 010. 

The statement number is incremented by 10 for each major 
keyword (DATE, SWITCH, COMPILE OBJECT, FILE 
NAME, etc.), and by one for each minor keyword (UNIT, 
PACK, LABEL, RECORDS, etc.). 

When the INCLUDE keyword is used to add utility control 
statements or sort source statements to a procedure, these 
included statements are assigned two-digit statement num
bers. These statement numbers start with 00 and are incre
mented by one for each included statement. 

The sample OCL jobs show the statement numbers assigned 
under various OCL cycles. 

Conversational OCL 9 



Comments 

Comments can be entered after any response on the ·Same 
line if at least one space is left between the response and 
the comment (see Modify: Entering Comments under 
MODIFY in Part I to add comments during MODI FY time). 

Keyword Sequence for OCL Load Cycle 

READY 

i 
Keywords that must 

LOAD NAME be answered in every 
LOAD cycle. 

UNIT 

COMPILE OBJECT 

i 
Keywords that are 
prompted only if 

SOURCE response to LOAD 
NAME was name of 

UNIT compiler. 

DATE 

SWITCH 

FILE NAME 

No~ Does operator respond 

10 

with a file name? Keywords that must 
Yes be answered for 

UNIT 

PACK 

LABEL 

RECORDS 

TRACKS 

LOCATION 

RETAIN 

DATE 

MODIFY 

every file used in job. 

This keyword must be 
answered in every 
LOAD cycle. 



Keyword-Response Summary (Load Cycle) 

I Keyword Response 

READY LOAD 

Press PROG START 

LOAD NAME 

I 
Program Name 
(Not Compiler) 

Press PROG START 
OR OR 

L Press ENTER-

Compiler Program Name 

Pres~ PROG START 

UNIT R 1, R2, F 1, or F2 

Press PROG START 

OR 

Press ENTER-

COMPILE OBJECT 

I 
Rl, R2, Fl, or F2 

OR 

L Press PROG START 

No Response 

Press PROG START 

SOURCE Name of Source Program 

Press PROG START 

Consideration 

None 

System prompts LOAD NAME 

Name of program to be run 

System prompts DATE after UN IT 

System prompts MODIFY after UNIT 

Name of compiler to be run ($RPG for RPG 11 Compiler) 

System prompts COMPILE OBJECT after UN IT 

Location of the disk whose object library contains the 
program to be run. 

System prompts next keyword (see LOAD NAME in this 
chart) 

System prompts MODIFY if not compiler 

Your system has more than on~ object library and you 
don't want to put the compiled program in the object 
library which contains the compiler. 

System prompts SC 'JRCE 

System will put the compiled program in the object library 
which contains the compiler. Prompt SOURCE 

Name assigned to RPG 11 source program when the KSE or 
Library Maintenance Utility Program put it in a source 
library 

System prompts UNIT 

For information about the KSE Program see the IBM System/3 Model 6 Conversational Utility Programs Reference Manual, SC21-7528. 

For information about the Library Maintenance Program see Part 11 of this manual. 

Conversational OCL 11 



Keyword-Respp~se Summary (Load Cycle) (Continued) 

I Keyword 

UNIT 

DATE 

SWITCH 
(XXXXXXXX) 

FILE NAME 

12 

Response 

R1, R2, F1, or F2 

Press PROG START 

I mmddyy or ddmmyy 

OR L Press PROG START 

No Response 

Press PROG START 

8-position setting I (combination of 1's, O's, 

1 

and X's) 

OR L Press PROG START 

No Response 

Press PROG ST ART 

File name of file used I by program 

I Press PROG START 
OR OR L Press ENTER-

No Response 

Press PROG START 

Consideration 

Location of the disk whose source library contains the 
RPG 11 source program 

System prompts DATE 

Required when job date is not the same as the system 
date. (Responses must follow format established during 
system.) 

System prompts SWITCH 

Either no date is required for the job 
OR 

you're going to use the system date. 
System prompts SWITCH. 

Required to change external indicators in RPG programs. 
Three choices for each position: 

1 turn indicator on 
0 turn indicator off 
X leave indicator as is 

System prompts Fl LE NAME 

Job does not use external indicators or you want to use the 
current setting. System prompts Fl LE NAME 

Columns 7-14 of RPG File Description Specifications, or 
predefined file name for system programs 

System prompts UN IT 

System prompts KEY LENGTH (see Multi-Volume Files 
in Appendix A) 

Either your job uses no files at all 
OR 

you have already described all the files the job uses. You 
want the system to prompt MODIFY 



Keyw~rd-Response Summary (Load Cycle) (Continued) 

I Keyword Response 

UNIT Rl, R2, Fl, or F2 

Press PROG START 

PACK Disk Name 

Press PROG ST ART 
OR 

Press ENTER-

LABEL 

I 
VTOC Filename 

Press PROG START OR OR 
Press ENTER-

No Response 

Press PROG ST ART 

RECORDS 0 
I 

1-999999 

Press PROG START 
OR OR 

L Press ENTER-

No Response 

Press PROG START 

Consideration 

During a file creation run - location of disk where you 
want to write the file. 
During other runs - location of disk which contains the 
file to be processed. 

System prompts PACK. 

During a file creation run - the name which identifies 
the disk on which you want to write the file. 
During other runs - name which identifies the disk on 
which the file is located. 

System prompts LABEL. 

System prompts FILE NAME for next file. 

Required when VTOC Filename is different than response 
to FILE NAME. 

System prompts RECORDS 

System prompts Fl LE NAME for next file. 

You don't want to respond to this keyword; you want the 
system to prompt RECORDS 

Number of records in the file. 

System prompts LOCATION. 

System prompts FILE NAME for next file. 

You don't want to respond to this keyword; you want 
system to prompt TRACKS. 

0 At file creation time, either the number of records or the number of tracks must be specified. 

Conversational OCL 13 



Keyword-Response Summary (Load Cycle) (Continued) 

I Keyword 

TRACKS 0 

I 
OR 

L 

LOCATION 

I 
OR 

L 

RETAIN 

I 
OR 

l 

Response 

1-398 

Press PROG START 
OR 

Press ENTER-

No Response .. 

Press PROG START 

8-405 

Press PROG START 
OR 

Press ENTER-

No Response 

Press PROG START 

P,T,S,orA 

Press PROG START 
OR 

Press ENTER-

No Response 

Press PROG ST ART 

Considerations 

Number of tracks the file will occupy. 

System prompts LOCATION. 

System prompts FI LE NAME for next file. 

You don't want to respond to this keyword; you want 
system to prompt LOCATION. 

Use during file creation runs if you want to specify a begin
ning track location for the file. 

System prompts RETAIN. 

System prompts FILE NAME for next file. 

You don't want to respond to this keyword; you want 
system to prompt RETAIN. 

P - permanent -
T - temporary 
S - scratch 
A - activate scratch 

System prompts DATE. 

System prompts Fl LE NAME for next file. 

If file is being created, file designation will be T. System 
prompts DATE. 

0 At file creation time, either the 'number of records or the number of tracks must be specified. 
If operator entered number of RECORDS, TRACKS will not be prompted. 

14 



~<eyword-Response Summary (Load Cycle) (Continued) 

I Keyword 

DATE 

MODIFY 
(Operator can 
use one, all, or a 
combination of 
the responses.) 

Response 

I mmddyy or ddmmyy 

OR 
Press PROG START 

- No Response 

Press PROG ST ART 

LOG 

Press PROG ST ART 

CANCEL 

Press PROG ST ART 

FORMS 

Press PROG ST ART 

Asterisk (*) 

Followed by comments 

Press PROG ST ART 

Statement number and comma 

Press PROG START 

Statement number 

Press PROG START 

RUN 

Press PROG START 

Considerations 

Required when job uses a file whose name and label are 
the same as those of another file on the same disk. 
(Response must follow format established during sysgen.) 

System prompts FI LE NAME for next file. 

You don't have to respond to this keyword; you want 
system to prompt Fl LE NAME, for next file. 

Used only if CRT display or 22" printer on system (see 
Appendixes D and E). 

System prompts LOG DEVICE. 

Cancel job. 

System prompts READY or displays end-of-job halt. 

Change lines per page printed output for system programs. 

System prompts FORMS DEVICE. 

Enter comment. 

System waits for next MODI FY response. 

To delete statement 

System waits for next MODI FY response. 

To correct statement (LOAD NAME cannot be changed). 

System waits for correct statement. 

Tells system -
a. The LOAD cycle is complete. 
b. Run the job. 

System runs job 

Conversational OCL 15 



Keyword Sequence for OCL Build Cycle 

READY 

BUILD NAME 

UNIT 

LOAD NAME 

UNIT 

COMPILE OBJECT 

SOURCE 

UNIT 

DATE 

SWITCH 

FILE NAME 

No~ Does operator respond 
with a file name? 

Yes 

UNIT 

PACK 

LABEL 

RECORDS 

TRACKS 

LOCATION 

RETAIN 

DATE 

MODIFY 

16 

Keywords that must 
be answered in every 
BU I LO cycle. 

Prompted only if response to 
LOAD NAME or UNIT ended 
with ENTER- key. 

Keywords that must 
be answered for 
every file used in job. 

This keyword must be 
answered in every 
LOAD cycle. 



Keyword-Response Summary (Build Cycle) 

I Keyword 

READY 

BUILD NAME 

UNIT 

LOAD NAME 

UNIT 

Response 

BUILD 

Press PROG ST ART 

Procedure Name 

Press PROG ST ART 

R1, R2, F1, or F2 

Press PROG START 

I Program Name 

OR Press PROG START 

L Compiler Name 

I 
OR 

L 

Press ENTER-

R1, R2, F1, or F2 

Press PROG START 
OR 

Press ENTER-

? (Delayed Response) 

Press PROG START 
OR 

Press ENTER-

Considerations 

None 

System prompts BUILD NAME 

Maximum of six alphameric characters. 
Must begin with alphabetic characters. 
Must not be DIR, SYSTEM, or ALL 

System prompts UNIT. 

Location of the disk where you want to put procedure. 
(Procedure is placed in the source library of the disk 
operator specifies.) 

System prompts LOAD NAME 

Name of program to be run. 

System prompts DATE after UNIT. 

Name of compiler to be run ($RPG for RPG 11 compiler). 

System prompts UNIT then COMPILE OBJECT, SOURCE, 
UNIT 

Location of disk whose object library contains program 

System prompts DATE 

System prompts COMPILE OBJECT 

Forces operator to respond to unit during CALL cycle. 

System prompts DATE. 

System prompts COMPILE OBJECT 

Conversational OCL 17 



Keyword-Response Summary (Build Cycle) (Continued) 

I Keyword 

COMPILE 
OBJECT 

SOURCE 

UNIT 

18 

Response 

I Rl, R2, Fl, or F2 

OR 

L Press PROG ST ART 

No Response r Press PROG START 

L ? (Delayed Response) 

Press PROG ST ART 

I Name of Source Program 

OR L Press PROG START 

? (Delayed Response) 

Press PROG ST ART 

I Rl, R2, Fl, or F2 

OR 

L 
Press PROG START 

? (Delayed Response) 

Press PROG START 

Considerations 

Your system has more than one object library and you 
don't want to put the compiled program in the object 
library which contains the compiler. 

System prompts SOURCE. 

System will put the compiled program in the object library 
which contains the compiler. System prompts SOURCE. 

You will tell the system where to put the compiled program 
during the CALL cycle. 

System prompts SOURCE. 

Name assigned to source program when the KSE or 
Library Maintenance Utility Program put it in a source 
library. 

System prompts UNIT. 

You will supply the name of the source program during 
the CALL cycle. 

System prompts UNIT. 

Location of the disk whose source library contains the 
RPG source program 

System prompts DATE. 

You will supply the location of the source program during 
the CALL cycle. 

System prompts DATE. 



Keyword-Response Summary (Build Cycle) (Continued) 

I Keyword 

DATE 

SWITCH 

FILE NAME 

Response 

1 
mmddyy or ddmmyy 

OR L Press PROG START 

I ? (Delayed Response) 

OR Press PROG START 

L No Response 

Press PROG ST ART 

1
8-position setting 
(combination of 1 's, 
O's, and X's) 

OR L Press PROG START 

1 
? (Delayed Response) 

OR Press PROG START 

L No Response 

Press P ROG ST ART 

I 
File name of file used 
by program 

Press PROG ST ART 
OR OR 

L 
1 

? (Delayed Response} 

Press ENTER-

OR L Press PROG START 

No Response 

Press PROG START 

Considerations 

To put a job date in the procedure. (Response must 
follow format established during system.) 

System prompts SWITCH. 

Forces operator to supply DATE during CALL cycle. 

System prompts SWITCH. 

If no date is necessary for job or system date is acceptable. 
DATE wi II not be part of procedure. 

Required to change external indicators in programs. 
Three choices for each position: 

1 = turn indicator on 
0 =turn indicator off 
X = leave indicator as is 

System prompts Fl LE NAME. 

,Forces operator to respond to SWITCH during CALL cycle 

System prompts FILE NAME 

Job does not require external indicators. SWITCH will 
not be part of procedure. 

Columns 7-14 of RPG File Description Specifications, or 
predefined filename for system programs. 

System prompts UNIT. 

System prompts KEY LENGTH (see Multi- Volume Files 
in Appendix A). 

Forces operator to respond to FILE NAME during CALL 
cycle. 

System prompts UNIT 

Either your job uses no files at all 
OR 

you have already described all the files the job uses. You 
want the system to prompt MODIFY 

Conversational OCL 19 



Keyword-Response Summary (Build Cycle) (Continued) 

I Keyword 

UNIT 

PACK 

LABEL 

20 

Response 

I Rl, R2, Fl, or F2 

OR L Press PROG ST ART 

? (Delayed Response) 

Press PROG START 

I Disk Name 

OR Press PROG START 

L 
OR 

Press ENTER-

? (Delayed Response) 

Press PROG START 
OR 

Press ENTER-

I VTOC Filename 

I Press PROG START 
OR OR L Press ENTER-

! ? (Delayed Response) 

I Press PROG ST ART 
OR OR L Press ENTER-

No Response 

Press PROG ST ART 

Considerations 

During a file creation run - location of disk where you 
want to write the file. 
During other runs - location of disk which contains the 
file to be processed. 

System prompts PACK. 

Forces operator to respond to UNIT during CALL cycle. 

System prompts PACK. 

During a file creation run - the name which identifies the 
disk on which you want to write the file. 
During other runs - name which identifies the disk on 
which the file is located. 

System prompts LABEL. 

System prompts FILE NAME for next file. 

Forces operator to respond to PACK during CALL cycle. 

System prompts LABEL. 

System prompts FILE NAME. 

Required when VTOC Filename is different than response 
to FILE NAME. 

System prompts RECORDS. 

System prompts FILE NAME for next file. 

Forces operator to respond to LABEL during CALL cycle. 

System prompts RECORDS. 

System prompts FILE NAME. 

You don't want to respond to this keyword, you want the 
system to prompt RECORDS. 



Keyword-Response S1;1~mary (Build Cycle) (Continued) 

I Keyword Response 

RECORDS 0 
'· 1-999999 

I Press PROG START 
OR OR 

L 
1 

? (Delayed Response) 

I Press PROG START 

Press ENTER-

OR OR L Press ENTER-

No Response 

Press PROG START 

TRACKS 0 11-398 

I Press PROG START 
OR OR L Press ENTER~ 

1 
? (Delayed Response) 

JR Press PROG ST ART 
OR L Press ENTER-

No Response 

Press PROG ST ART 

Considerations 

Number of records in the file. 

System prompts. LOCA Tl ON. 

System prompts Fl LE NAME for next file. 

Forces operator to respond to RECORDS during CALL 
cycle. 

System prompts LOCATION. 

System prompts FILE NAME. 

You don't want to respond to this keyword; you want 
system to prompt TRACKS. 

Number of tracks the file will occupy. 

System prompts LOCATION. 

System prompts Fl LE NAME for next file. 

Forces operator to respond to TRACKS during CALL 
cycle. 

System prompts LOCATION. 

System prompts Fl LE NAME. 

You don't want to respond to this keyword; you want to 
prompt LOCATION. 

0 When a file is created, either the number of records or the number of tracks must be specified. 
If operator entered number of RECORDS, TRACKS will not be prompted. 

Conversational OCL 21 



Keyword-Response Summary (Build Cycle) (Continued) 

Keyword 

LOCATION 

RETAIN 

22 

Response 

18-405 
OR Press PROG START 

OR 
Press ENTER-I ? (Delayed Response) 

OR Press PROG START 
OR 

Press ENTER-

- No Response 

Press PROG START 

IP,T,S,orA 

OR Press PROG START 
OR 

Press ENTER-

OR Press PROG START 
OR 

L Press ENTER-

No Response 

Press PROG ST ART 

Considerations 

Use during file creation runs if you want to specify a 
1 beginning track location for the file. 

System prompts RETAIN. 

System prompts Fl LE NAME for next file. 

Forces operator to respond to LOCATION during CALL 
cycle. 

System prompts RETAIN. 

System prompts FI LE NAME. 

You don't want to respond to this keyword; you want 
system to prompt RETAIN. 

p - permanent 
T - temporary 
s - scratch 
A - activate scratch 

System prompts DATE. 

System prompts Fl LE NAME for next file. 

Forces operator to respond to RETAIN during CALL 
cycle. 

System prompts DATE. 

System prompts Fl LE NAME. 

If file is being created, file designation will be T. System 
prompts DATE. 



Keyword-Response Summary (Build Cycle) (Continued) 

I Keyword 

DATE 

MODIFY 
(Operator can use 
one, all, or a com
bination of the 
responses.) 

I 
OR 

L ,-
OR 

L 

Response 

mmddyy or ddmmyy 

Press PROG START 

? (Delayed Response) 

Press PROG ST ART 

No Response 

Press PROG START 

LOG 

Press PROG START 

CANCEL 

Press PROG ST ART 

FORMS 

Press PROG ST ART 

Asterisk ( *) Followed 
by Comments 

Press PROG START 

Statement number and comma 

Press PROG START 

Statement number 

Press PROG START 

INCLUDE 

Press PROG START 

RUN 

Press PROG START 

Considerations 

Required when job uses a file whose name and label are 
the same as those of another file on the same disk. 
(Response must follow format established during system.) 

System prompts FI LE NAME for next file. 

Forces operator to respond to DATE during CALL cycle. 

System prompts FI LE NAME. 

You don't have to respond to this keyword; you want 
system to prompt Fl LE NAME for next file. 

Used only if CRT display or 22" printer on system (see 
Appendixes D and E). 

System prompts LOG DEVICE. 

Cancel job. 

System prompts READY or displays end-of-job halt. 

Change lines per page printed output for system programs. 

System prompts FORMS DEVICE. 

Enter comment. 

System waits for next MODI FY response. 

To delete statement. 

System waits for next MODI FY response. 

To correct statement. 

System waits for correct statement. 

Add system program control statements to a procedure. 

System prints 'ENTER INCLUDED STATEMENTS' and 
a 2-digit statement number. 

Tells system 
a. The BUI LO cycle is complete. 
b. Run the job. 

System runs the job. 

Conversational OCL 23 



Keyword Sequence for OCL BUI LDC Cycle 

READY 
f 

BUI LDC NAMEI 

f 
UNIT 

CALL NAME 
t 

UNIT 

t 
Enter- key used after 
CALL NAME or UNIT? 

t t 
yts No..__ _ __, 

MODIFY 

Keyword-Response Summary (BUI LDC Cycle) 

I Keyword Response 

READY BUI LDC 

Press PROG START 

BUI LDC NAME Master Procedure Name 

Press PROG START 

UNIT R1, R2, F1, or F2 

Press PROG START 

24 

Considerations 

None 

System prompts BUI LDC NAME. 

Maximum of six alphanumeric characters. 
Must begin with alphabetic characters. (A-Z or#,@,$) 
Must not be DIR, SYSTEM, or ALL. 
Commas, blanks, quotes (apostrophes), and periods are 
not a I lowed. 

System prompts UN IT. 

Location of the disk where you want to put procedure. 
(Procedure is placed in the source library of the disk 
which the operator specifies.) 

System prompts CALL NAME. 



Keyword-Response Summary (BUI LDC Cycle) (Continued) 

Keyword 

CALL NAME 

UNIT 

MODIFY 
(Operator can use 
one, all, or a com
bination of the 
responses.) 

Response 

Name of Procedure 

Press PROG START 
OR 

Press ENTER-

R1, R2, Fl, or F2 

Press PROG START 

OR 

Press ENTER-

LOG 

Press PROG START 

CANCEL 

Press PROG START 

FORMS 

Press PROG ST ART 

Asterisk ( *) Followed 
by Comments 

Press PROG ST ART 

Statement number and comma 

Press PROG START 

Statement number 

Press PROG START 

RUN 

Press PROG START 

Considerations 

Name of a procedure in the source library. The procedure 
can be an IBM-supplied procedure (RPGB) or a procedure 
created by a BUILD or BUI LDC cycle. 

System prompts UN IT. 

System prompts UNIT then MODIFY. 

Location of the disk whose source library contains the 
procedure. 

System prompts CALL NAME (or MODIFY if ENTER
used after CALL NAME). 

System prompts MODIFY. 

Used only if CRT display or 22" printer is on system (see 
Appendixes D and E). 

System prompts LOG DEVICE. 

Cancel job. 

System prompts READY or displays end-of-job halt. 

Change lines per page printed output for system programs. 

System prompts FORMS DEVICE. 

Enter comment. 

System waits for next MODI FY response. 

To delete statement. 

System waits for next MODI FY response. 

To correct statement. 

System waits for correct statement. 

Tells system -
a. The cycle is complete. 
b. Run the job. 

System runs job. 

Conversational OC L 25 



Keyword Sequence for OCL Call Cycle 

READY 

CALL NAME 

UNIT 

MODIFY 

Keywords that must be answered 
in every CALL cycle. 

Keyword-Response Summary (Call Cycle) 

Keyword 

READY 

CALL NAME 

UNIT 

26 

Response 

CALL 

Press PROG ST ART 

Procedure Name 

Press PROG ST ART 
OR 

Press ENTER-

R1, R2, Fl, or F2 

Press PROG START 
OR 

Press ENTER-

Considerations 

None 

System prompts CALL NAME. 

Procedure name from the source library directory 

OR 
RPG (the IBM-supplied RPG II compile procedure) 

System prompts UNIT. 

System prompts UNIT, then runs the job. Does not dis
play the procedure exc~pt for statements with delayed 
responses. Does not prompt MODIFY. 

Location of the disk whose source library contains the 
procedure. 

Print procedure. 

System runs the job. Does not prompt procedure except 
for statements with delayed responses. Does not prompt 
MODIFY. 



Keyword-Response Summary (Call Cycle) (Continued) 

Keyword Response Considerations 

PROCEDURE DISPLAYED ON SYSTEM PRINTER 0 
(unless ENTER- key wa·s pressed after CALL NAME or UNIT prompts) 

MODIFY 
(Operator can use 
one, all, or a 
combination of 
the responses.) 

LOG 

Press PROG START 

CANCEL 

Press PROG START 

FORMS 

Press PROG ST ART 

Asterisk (*) Followed 
by Comment 

Press PROG START 

Statement number and comma 

Press PROG START 

Statement number and 
corrected statement 

Press PROG ST ART 

RUN 

Press PROG START 

0 A. Procedures with INCLUDE Statements 

Used only if CRT or 22" printer on system 
(see Appendixes D and E). 

System prompts LOG DEVICE. 

Cancel job. 

System prompts READY or displays end-of-job halt. 

Change lines per page of printed output for system programs. 

System prompts FORMS DEVICE. 

Enter comment. 

System waits for next MODIFY response. 

To delete statement in displayed procedure 

System waits for next MODI FY response 

To correct statement in displayed procedure (LOAD 
NAME cannot be changed). 

System waits for correct statement. 

Tells system -
a. The CALL cycle is complete. 
b. Run the job. 

System runs job. 

When a procedure contains SORT source statements or utility control statements, the display part of the CALL 
cycle is more complex. See Considerations During a CALL Cycle, under MODIFY; Including Control Statements 
in Part I. 

8. Procedures with Delayed Responses 
The procedure is displayed statements by statement (unless the ENTER- key was pressed after responding to the 
CALL NAME or UNIT keywords). When the system reaches a statement which contains a delayed response, it 
will display the statement keyword and wait for the operator's response. 

Conversational OCL 27 



Card QC L For Model 6 

The I BM 5496 Data Recorder, Model 1, with System/3 
Model 6 Attachment Feature or the I BM 129 Card Data 
Recorder with card input/output attachment feature pro
vides card input/output capability for System/3 Model 6. 
The data recorder is selected as system input device during 
OCL prompting. Control is returned to the keyboard by 
entering a READER statement in the data recorder or by 
performing another program load procedure. 

ASSIGNING DATA RECORDER AS SYSTEM INPUT 
DEVICE 

At IPL time 

Between jobs 

System Prompts 

DATE
READER -

READY
READER -

Operator Enters 

current date 
DATA96 

READER 
DATA96 

Following the DATA96 response, all OCL must be entered 
in card form from the data recorder. 

At the time the data recorder is selected as system input 
device the following switch settings must be: 

Operator Console DATA RCRDR switch 
to ON LINE 

5496 Data Recorder - 1. Power switch ON 

129 Data Recorder 

28 

2. AUTO REL switch ON 
3. Print switch ON or OFF 
4. All other switches OFF 

1. Power switch ON 
2. PROGRAM MODE dial set to 

DATA READ 
3. PUNCH-DIR PUNCH-VERIFY 

switch set to PUNCH 
4. Print switch ON or OFF 
5. REC ADV/CARD FEED switch 

set to AUTO 

IBM 129 Programming Considerations 

The user should be aware of the following considerations 
when programming applications for the IBM 129: 

1. 

2. 

3. 

System support for the 5496 also supports the 129. 

Unique diagnostics for the 129 are not provided. 

Object programs cannot be read or punched on the 
129 (whereas the 5496 provides this function). 
Therefore, the system function LOAD* is not 
supported for the 129. 

4. The OCL command READER-DATA96 is used for 
either the 5496 or the 129. 

RETURNING CONTROL TO KEYBOARD 

The keyboard is reassigned as system input device by doing 
either of the following: 

• Enter a/& statement followed by a II READER KEY 
statement from the Data Recorder. These statements 
must be placed after a II RUN statement and before a 
II LOAD or II CALL statement. 

• Perform a program load from the operator console. 

CONTROL STATEMENTS IN PROCEDURES 

OCL statements that control the entering of other OCL 
statements are invalid in procedures. These statements, 
HALT, NOHAL T, LOG, READER; and PAUSE, are 
ignored when read from procedures during a CALL cycle 
and are not put in a procedure during a BUILD cycle. 



CARD FORMAT OF OCL STATEMENTS 

The following OCL statementsican be loaded from the data 
recorder. The parameters of the statements that are prompt
ed in conversational mode are described elsewhere in this 
book. The statements that are allowed with card input are 
described in the notes following this list. 

In statement formats, special characters such as 11, and 
words written in capital letters are information that must 
be used exactly as shown. Words written in small letters, 
such as code, program-name, and unit, represent informa
tion that you must supply. 

OCL STATEMENTS 

11 LOAD Program-Name, Unit 

II LOAD* 

Explanation: An asterisk indicates that the object program 
will be loaded from the data recorder. Program-name unit 
parameters must not be included. The cards that contain 
the program must follow the RUN statement for the pro
gram and must be followed by/* to indicate the end of 
the object deck. 

II CALL Procedure-Name, Unit 

II RUN 

II READER KEY 

II SWITCH 

Explanation: The log device must be on when the system 
is in conversational mode. 

II Fl LE NAME-filename, UNIT-unit, PACK-name, 
II LABEL-filename, RECORDS-number, TRACKS-number, 
II LOCATION-track number, RETAIN-code, DATE-date 

Explanation: LABEL, RECORDS or TRACKS, LOCA
TION, RETAIN, and DATA parameters are optional. 
NAME-filename must be the first parameter on the 
statement. 

II NOHALT 
II HALT 

Explanation: During card input, the system halts each time 
a/* (end-of-job) or I& statement is read. The NOHAL T 
statement allows the system to start the next job without a 
halt. The HALT statement is used to cancel a NO-HALT 
condition. If the HALT and NOHAL T statements are 
placed in a procedure they are not displayed when the pro
cedure is prompted. 

II PAUSE 

Explanation: A PAUSE statement entered from the data 
recorder causes the system to stop until the operator re
starts it. PUASE statements are usually preceded by com
ments (*) instructing the operator to perform some func
tion on the system. If PAUSE statements and comments 
are placed in a procedure the comments are displayed 
during prompting but the system does not stop. 

II COMPILE OBJECT-unit, SOURCE-name, UNIT-unit * 

I& 
Explanation: OBJECT-unit must be the first parameter on 
the statement. /* 

II FORMS DEVICE-PRIMARY LINES-number 
II FORMS DEVICE-SECONDARY LINES-number 

Explanation: The DEVICE parameter is optional. The 
LIN ES parameter must be present. 

II LOG ON 
II LOG OFF 
II LOG CRT 
II LOG PRIMARY 
II LOG SECONDARY 

Explanation: /* indicates end-of-job. I& is used as a delim
iter and indicates that a new job is starting. If a 3 option 
(immediate cancel) was taken at a halt in the preceding job, 
the system looks for the next LOAD or CALL statement in 
the job stream. The I& statement changes this mode and 
tells the system to read the next II card regardless of what 
it is. In this manner a II READER KEY statement would 
be recognized, returning control to the keyboard. 

Card OCL for Model 6 29 



GENERAL CODING RULES 

The rules for coding the OCL statements in cards are as 

follows: 

1. 11 in positions 1 and 2. 

2. 

3. 

4. 

5. 

6. 

7. 

One or more blanks between the II and the word that 

forms the statement identifier (LOAD,.RUN, CALL, 
etc.). 

One or more blanks between the sta1:ement identifier 

and the first parameter. 

If you need more than one parameter, use a comma 

to separate them. No blanks are allowed in or 

between parameters. Anything following the first 

blank is considered a comment. 

If you are writing keyword parameters (XXX-xxx), 

place the keyword first and use a hyphen to separate 

the keyword from the code or data. 

If the parameter is not a keyword parameter, write 

the parameters in the order in which they are shown. 

Keyword parameters can be in any order except in 

the following cases: 

II COMPILE 

II Fl LE 

OBJECT-unit must be the first 

parameter. 

NAME-filename must be the 

first parameter. 

All OCL statements except Fl LE must not exceed 

96 characters. Because of the large number of param
eters possible in a Fl LE statement, you can continue 

the Fl LE statement on additional cards. The rules 

are: 

• Place a comma after the last parameter in every 

card but the last: The comma followed by a 
blank indicates the statement is continued. 

• Begin each new card with II in positions 1 and 2. 

• Leave one or more blanks between the 11 and the 

first parameter. 

8. Comments can be placed after the parameters on any 

OCL statement (except HI KEY parameters. See 

Coding Multi-Volume File Parameters in this appen

dix). Leave one or more blanks after the last param

eter and then list the comment. Complete lines of 

comments are entered with the *comment statement. 

30 

Place an * in column 1 and start the comments in 

column 2. 

STATEMENT ORDER 

I& 

II LOAD 

II CALL 

should be the first statement of a job. 

statement must precede RUN statement in 
job stream. If LOAD*, the cards that 

contain the program must follow the RUN 

statement and be followed by a /* statement. 

statement must precede RUN statement in 

job stream. 

II RUN statement must be last statement within the 

set of statements required to run a program. 

II READER statement must precede a LOAD or CALL 

statement and follow a RUN statement. 

II SWITCH statement must follow a LOAD or CALL 
statement and must precede a RUN statement. 

II COMPILE statement must follow a LOAD or CALL 

statement and must precede a RUN statement. 

II FORMS 

II LOG 

II Fl LE 

II HALT 

II NOHALT 

II PAUSE 

*comments 

/* (end-of
job) 

can appear anywhere in the job stream. 

statement must follow a LOAD or CALL 

statement and precede a RUN statement. 

statements must follow a LOAD or CALL 

statement and precede a RUN statement. 

can appear anywhere in the job stream. 

can appear anywhere in the job stream. 

can appear anywhere in the job stream: 

can appear anywhere in the job stream. 

follows a program deck or data file entered 

from the Data Recorder. 



CODING MULTI-VOLUME FILE PARAMETERS 

When coding card OCL file statements for multi-volume 
files these rules must be followed: 

1. Each parameter that requires multiple entries must be
gin and end with a single quote (') and have the 
entries separated by commas. 

2. The HI KEY parameter must contain HI KEY s separated 
by commas. When continuation cards are needed for 
HIKEY parameters, comments are not allowed on the 
cards, and the data must start in column four of the 
continuation card. 

3. An apostrophe within a HI KEY must be entered as 
a double apostrophe or it will be decoded as end of 
HI KEYs, and an error will occur. 

4. When using only one volume of an indexed multi
volume file, the HI KEY parameter must be included 
with beginning and ending apostrophes. The other 
file parameters must not have apostrophes. 

5. To indicate packed keys, HI KEY-P'xxxx, xxxx, 
xxxx,' must be coded. All characters in packed 
HI KEYs must be numeric and all packed HI KEYs 
must be the same length. 

Key length is not a parameter for indexed files when OCL 
statements are entered on cards. Sample job 2 under 
Multi-Volume Files in Appendix A would have the follow
ing four OCL file statements if OCL were on cards: 

II FILE NAME-INVMSTR,UNIT-'R1,R2', 
PACK-'VOLI02,VOLI03,VOLI03,VOLI04, 

II VOLI05',HI KEY-'175-200-233W182, 
380-456-280W3 R 6 ,629-384-300W3 F 6, 

11 949-4 75-849W8F8,999-999-999W9 F9', 
TRACKS-'100, 193, 150, 193,80', 

II LOCATION-'87,8,49,8,8',RETAIN-P 

Card OCL for Model 6 31 



Keyword Descriptions 

I BUILD NAME 

When the system prompts BUILD NAME, the operator 
responds with a name for the procedure that will be put in 
a source library at the end of the sequence. (The operator's 
response to UN IT determines what source library the pro
cedure will be put in.) At the end of the BUILD cycle, the 
system enters the procedure in the source library and puts 
the procedure name in the source library directory as a 
permanent entry. Restrictions on naming a procedure are: 

1. 

2. 

Name must not contain more than six alphanumeric 
characters. Blanks, commas, quotes (apostrophes), 
and periods are not allowed. 

First character must be alphabetic (A-Z or#,@, $). 

3. Name must not be DIR, SYSTEM, or ALL (these 
names are reserved for system use). 

Duplicate Procedure Names 

If the operator's response to BUILD NAME duplicates the 
name of a procedure already in the source library directory, 
the system prints a message and reprompts BUILD NAME. 

The operator can: 

1. Proceed - by typing a different name or the same 
name and a different unit. 

2. Proceed - by typing the same name and unit again. 
The new procedure will then overlay the old proce
dure in the source library. 

3. End the job - see description of error message op
tions in IBM System/3 Model 6 Operator's Guide, 
GC21-7501. 

Deleting a Source Library Procedure 

The system gives a P (permanent) designation to all proce
dures entered into a source library during a BUILD cycle. 
Therefore, the only way to delete a procedure from a 
source library is to run the Library Maintenance Utility 
Program. (For information about the Library Maintenance 
Utility Program see Part 11 of this manual.) 

32 

I BUI LDC NAME 

The response to BU I LDC NAME is the name of a master 
procedure you want to build. The rules and restrictions 
are the same as for the keyword BUI LO. 

I CALL NAME 

The response to CALL NAME is the name of the procedure 
you want to run. This can be either: 

• The name of a procedure entered in a source library after 
a BUILD or BUI LDC cycle. (The operator's response to 
the keyword BUILD NAME, or BUI LDC NAME deter
mines the name of the procedure.) 

• RPG (the IBM-supplied RPG 11 Compile Procedure). 

If the operator does not know the procedure name, he can 
get a printout of the source library directory by running the 
Library Maintenance Utility Program. (See Part 11 of this 
manual for more information about this program.) 

The operator can call a procedure without displaying all its 
OCL statements by pressing the ENTER- key after respond
ing to CALL NAME or UNIT. The procedure is loaded and 
run. The only statements displayed are those with delayed 
responses. The system does not prompt MOD I FY after 
either the OCL statements or the included control 
statements. 



I COMPILE KEYWOR OS 

COMPILE OBJECT Keyword 

The keyword COMPILE OBJECT requires a response (R 1, 
R2, F1, or F2) if the system has more than one object 
library and you do not want to put the compiled program 
in the same object library where the compiler resides. 

If the operator does not respond to COMPILE OBJECT, 
but merely presses the PROG START key, the system 
places the compiled program in the object library where 
the compiler resides. 

F 1 refers to the fixed disk on drive one. 
R 1 refers to the removable disk on drive one. 
F2 refers to the fixed disk on drive two. 
R2 refers to the removable disk on drive two. 

SOURCE Keyword 

In a LOAD Cycle 

SOURCE is prompted only when the response to LOAD 
NAME is the name of a compiler (such as $RPG). The re
sponse to SOURCE is the name of the source program you 
want to compile. (This name must be the one you used 
when you put the program in a source library during a KSE 
or Library Maintenance Program run.) 

For information about the KSE Program see the IBM 
System/3 Model 6 Conversational Utility Programs Refer
ence Manual, SC21-7528. For information about the 
Library Maintenance Program see Part 11 of this manual.) 

In a BUILD Cycle 

There are two possible responses to SOURCE during a 
BUI LO cycle: the name of a source program you want to 
compile or a delayed response (a question mark). Each 
response has a special significance to the system. 

Response 

Name of 
Source 
Program 
You Want 
to Compile 

? 
(Delayed 
Response) 

UNIT Keyword 

Tells System 

You're building a procedure that will 
compile a particular source program. (The 
program must be in a source library.) The 
program name you supply must be the 
one you used when you put the program 
in a source library during a KSE or Li-1 
brary Maintenance Program run. 

You're building a general compile proce
dure. You will supply the necessary 
source program information (name and 
location of the source program and where 
you want to put the compiled program) 
during the CALL cycle. 

The response to UNIT gives the location of the disk whose 
source library contains the source program being compiled. 
Possible responses are F 1, R 1; F2, and R 2. 

F 1 refers to the fixed disk on drive one. 
R 1 refers to the removable disk on drive one. 
F2 refers to the fixed disk on drive two. 
R2 refers to the removable disk on drive two. 

DATE 

This DATE keyword lets the operator change the system 
date for a particular job. (The system date is used in head
ings on program listings, in headings on printed output, and 
in labels for new files.) 

The system date is established at IPL time. This date is 
used for every job unless the operator overrides it. 

Keyword Descriptions 33 



DATE (continued) 

Overriding the System Date 

The operator can override the system date for any single job 
by typing in a new date when the system prompts the key
word DATE. The new system date is used only for the one 
job. When that job is finished, the system date automatical
ly reverts to its IPL setting. 

Format of the DA TE Statement 

Although the operator can override the system date, he 
cannot change the date format. The system date format is 
established during sysgen as either: 

• mmddyy (month/day/year) -- For U.S. installations 

• ddmmyy (day/month/year) - For World Trade 
installations. 

The three elements (month/day/year) can be separated by 
any non-numeric symbol (except a comma, quotation mark, 
or blank) or run together without any separation. 

In a system using the mmddyy format, for example, all of 
the following would be valid ways of typing May 12, 1971: 

• 05/12/71 

• 05-12-71 

• 051271 

• 5/12/71 

34 

I Fl LE KEYWORDS 

System-Operator Interaction During Prompting of File 
Keywords 

System prompts 
FILE NAME 

th .. b 
Doest 1s JO ---NO--------. 
use a file? 

t 
YES ..-----....t 

Operator responds 
to FILE NAME, 
UNIT, and PACK 

.------t 
System prompts 
next file keyword 

t 
More file 
information---NO~ 

necessary? _ t t Operator presses 
YES the ENTER-

t 
Operator responds 
to next file 
keyword 

t 
Is this the last 

NO~file keyword 
(DATE)? 

t 
YES 

key ! 
System bypasses 
rest of the file 
keywords 

·~-----System prompts 
FILE NAME 

t 
YES-+ Does the job use ~NO ~ I 

another file? .j. 
Operator presses 
PROG START 

t 
System bypasses 
file keywords 

SysteJ prompts 
MODIFY 



I Fl LE KEYWORDS (continued) 

For every file used in a job, you must respond to the fol
lowing keywords: 

Keyword Response 

FILE NAME FILENAME from the file specification at 
compile time 

UNIT 

PACK 

OR 
Predetermined filename (for $RPG, $KDE, 
$DSO RT, $COPY). 

R 1 or F 1 (Location of disk where you want 
to write a file during file creation run on 
system with one disk drive.) 

OR 
R1, F1, R2 or F2 (Location of disks which 
contain a file to be processed during other 
than a file creation run on systems with two 
disk drives. 

Name assigned to a disk by the disks initiali
zation program. This name can be one 
which identifies a disk on which you want 
to write a file during a file creation run or a 
name that identifies a disk on which a file is 
located. 

File Name for Customer Programs 

For a file used in an RPG 11 compiled customer program, 
the operator's response to FI LE NAME is the name in col
umns 7-14 of the RPG II File Description Specifications. 

File Name for $RPG, $DSORT, $COPY, $MICR, and $KDE 

For $RPG's predefined file names see IBM System/3 Model 
6 RPG II Reference Manual, SC21-7517. 

For $DSORT see IBM System/3 Disk Sort Reference Manual, 
SC21-7522. 

For $COPY see Part 11 of this manual. 

For $MICR see IBM System/3 Model 6 Utility Program for 
the I BM 1255 Magnetic Character Reader Reference Man
ual, SC21-7527. 

For $KDE see IBM System/3 Model 6 Conversational Util
ity Programs Reference Manual, SC21-7528. 

Multiple Files 

A job often involves several files. When this is the case, the 
operator must respond to several series of file keywords. 
The first time the system prompts the file keywords, the 
operator responds with information about one file. After 
the operator responds to DATE, the system will again 
prompt Fl LE NAME. This time the operator responds with 
the name of the second file. 

When he has responded to the file keywords for all the files 
that will be used in the job, the operator should respond to 
Fl LE NAME by pressing PROG START. The system then 
bypasses the rest of the file keywords and prompts 
MODIFY. 

A maximum of 15 file statements can be used for each job. 

UN IT Keyword 

Possible responses to the keyword UNIT are F1, R1, F2 
and R2 

F 1 refers to the fixed disk on drive one .. 
R 1 refers to the removable disk on drive one. 
F2 refers to the fixed disk on drive two. 
R2 refers to the removable disk on drive two. 

PACK Keyword 

Whenever a job involves a disk file you must tell the system 
the name of the disk where the file is (or will be) located, 
so the system can make sure that disk is mounted before 
the job is begun. To tell the system the name of the disk 

the file is on, the operator responds to the keyword PACK 
with the name assigned to the disk during its initialization. 
(The Disk Initialization section of Part II of this manual 
explains the procedure for naming a new disk.) 

Although most installations keep a record of the names and 
contents of each of their disk packs, the operator can al
ways get the name of any disk by running the File and Vol
ume Label Display Utility Program. The disk name is part 
of the output of this program. 

LABEL Keyword 

When a file is created, the system enters a file name in the 
VTOC. The keyword LABEL refers to this VTOC file 
name. Unless the operator responds to LABEL, the name 
entered in the VTOC is the same as the operator's response 
to FILE NAME. 

Keyword Descriptions 35 



Fl LE KEYWORDS (continued) 

LABEL requires a response: 

1. 

2. 

At file creation time, if you want the VTOC file 
name to be different from the operator's response to 
Fl LE NAME. (For example, if the RPG II file name 
is A but the disk already has an A file, a respon,se to 
LABEL would be required, and the response would 
have to be something other than A.) 

During a program run, if you are using a file whose 
VTOC file name is different from the operator's re
sponse to Fl LE NAME. 

RECORDS and TRACKS Keywords 

When a file is created, the operator must tell the system 
how much disk space to allocate for the file. He does this 
by responding to either TRACKS or RECORDS. (If the 
operator responds to RECORDS, TRACKS will not be 
prompted.) 

The following chart shows the possible responses to these 
keywords and how the system interprets the responses. 

Operator 
Keyword Response Tells System 

TRACKS 1-398 Number of disk tracks 
needed for the file 

RECORDS 1-999999 Number of records in the 
file 

Responding to TRACKS 

The response to TRACKS is the number of disk tracks the 
records in a file will occupy. (Appendix B reviews how to 
convert the number of records in a sequential, direct, or 
indexed file into the number of tracks that would be re
quired to contain the file records on a disk.) 

Responding to RECORDS 

If the operator does not want to convert record numbers 
into track requirements himself, the system will do it for 
him. The system determines the track requirements for a 
file when the operator responds to RECORDS. 

36 

LOCATION Keyword 

LOCATION requires a response during file creation if you 
want to control the placement of files on the disk. LOCA
TION is required when creating several versions of the same 
file of the same size (LOCATION is not required if the file 
size is different). LOCATION is also required when loading 

an offline multi-volume file to packs that contain other 
files. It can also be used to reference one of several files 
having the same name. 

The response to LOCATION is the track where you want 
the file to begin. Possible responses are 8 through 405. 
(Tracks 0 through 7 are reserved for system use.) 

If the operator does not respond to the keyword LOCA
TION when a new file is created, the system places the file 
in whatever available area it fits best. 

RETAIN Keyword 

The keyword RETAIN applies to file designation. Files 
can be designated: P (permanent), T (temporary), or S 
(scratch). 

The operator responds to RETAIN either: 

1. At file creation, to give a designation to the file 
being created. 

2. When accessing a file, to change the designation of a 
file from T to Sor from S to T. 

File Creation 

A file designation (along with the file name, length, and 
other related information) is placed in the VTOC when a. 
file is created. The operator controls file designation by 
his response to RETAIN. (If the operator does not re
spond to RETAIN, the system gives the file a T designation.) 

Permanent Files: Because permanent files are protected 
against inadvertent overlaying or altering, give a P designa
tion to all the files you want to keep. The only way to 
change a permanent file is to delete it by running the File 
Delete Utility program. 



FILE KEYWORDS (continued) 

Temporary Files: Give a T designation to a file if you plan 
to use it several times within a couple of days and will not 
need it after that. The only way to overlay a temporary 
file is to load a new file over it. To do this, the operator's 
responses to all the file keywords must duplicate those of 
the present T file. 

Scratch Files: Give an S designation to any file you plan to 
use only once. When a scratch (S) file is created, it is not 
entered in the Volume Table of Contents (VTOC). After 
the job that created the file is run, the file is lost. The way 
that an S retain type can appear in the VTOC is to change 
a T entry to an S by' using R ETAI N-S in the file statement, 
or change a Tor P eritry to S by using a $DELET SCRATCH 
statement. The system will overlay a scratch file if the disk 
pack is full and/or file space is needed by a new file or a 
system program. 

Changing File Designation of Existing File 

When the system prompts RETAIN, the operator can: 

• Accept the current file designation. (By pressing 
PROG START). 

o Change a temporary file to a scratch file (by typing an 
S). The VTOC will contain an Sentry for the file. 

• Change a scratch flle listed in the VTOC to a temporary 
file by typing an A. 

Deleting Files 

The operator can delete any file by running the File Delete 
Utility Program, which changes the file designation in the 
VTOC to S. This effectively deletes the entire file, because 
the system will overlay the file area as soon as more file 
space is needed. When the file area is overlaid, the file 
name is erased from the VTOC. 

DA TE Keyword 

This keyword (prompted after the keyword RETAIN) 
refers to the system date in effect when a file was created. 
The system date is established at IPL. This date is used for 
every job unless the operator overrides it. 

DATE requires a response only if the job being run uses a 
file whose name and label are duplicated by another file on 
the same disk. In this case, the operator responds to DATE 
by typing in the system date in effect when the file he wants 
to use was created. With this date, the system can distinguish 
one file from others on the same disk with the same VTOC 
file name and label. 

If neither the date nor the location is given, the file having 
the latest date is the one automatically referenced. 

If the operator does not know what the system date was 
when the file was created, he can get a printout of the 
creation dates for all files on a disk by running the File and 
Volume Label Display Utility Program. (Detailed informa
tion on this program is available in Part II of this manual.) 

Restriction During File Creation 

A response to DATE tells the system that this file already 
exists. If DATE is entered during a file creation run a 
Fl LE NOT FOUND error occurs. 

HALT 

The operator can respond to the keyword R E,ADY with 
HALT. The system will then halt at the end of each job. 
HALT need only be entered to cancel the effect of a 
NOHAL T statement. 

Keyword Descriptions 37 



LOAD NAME 

For Customer Programs 

The response to LOAD NAME is the name of the customer's 
RPG 11 program. 

For System Programs 

The response to LOAD NAME is the name of the specific 
system program you want to run. 

Name Program 

$ALT Alternate Track Assignment 

$BUILD Alternate Track Rebuild 

$COPY Disk Copy/Dump 

$FORT FORTRAN Compiler 

$1NIT Disk Initialization 

$LABEL File and Volume Label Display 

$DELET File Delete 

$MAINT Library Maintenance 

$KSE Keyboard Source Entry 

$KDE Keyboard Data Entry 

$DIU Data Interchange 

$MICR 1255 Magnetic Character 
Reader Utility 

$RPG RPG 11 Compiler 

$DSORT Disk Sort 

38 



MODIFY 

System-Operator Interaction During Modification 

System prompts MODIFY 

1-----
Do you want to correct a statement? 

f t 
NO YES 

t 
Operator types 3 

digit statement 
number and 
corrected statement. 
I 

Do you want to delete a statement? 

t t 
NO YES 

' Operator types 3 
digit statement 
number and 
comma (,). 

Do you want to enter a comment? 

I t 
NO YES 

t 
Operator types 
asterisk ( *) 

and comment. 

-'----·~ 
Do you want to·enter a FORMS 
statement? 

t 
NO 

~ 
+ 

YES 

t 
Operator types 
FORMS and new 
lines per page 
setting. 

' . Do you want to cancel JOb? 

t t 
NO YES 

f 
Op~rator types 
CANCEL 

i 
System erases 

Of L cycle 

System prompts 
READY 

Do you want to run the job? ' . NO YES 

l 
Operator types 
RUN 

+ 
System runs 
job 

t 
System prompts 

READY 

Is this a BUILD cycle? 

t l 
YES NO--------i~ 

' Do you want to include source 
statements for the Disk Sort 
Program or for one of the 
utility programs in the procedure? t -
YES NO~--------

,._t, 

' 
Keyword Descriptions 39 



I MODI FY (continued) 

• ,., 
Qprator types INCLUDE 

Sysrm prints 2-digit statement number 

Qprator types statement 

Sysf m prints next statement number 

Do you want to include another 

starment? 

NO YES 

l 
a pr a tor types Ru N 

System prompts MODI FY 

l 
G 

40 

Q 
~~~~~~~~~
Do you want to change or delete any of

tr included statementr

NO YES

i
Operator types 2-digit

statement number and
comma (to delete) or

the new statement
(to correct)

Df you want to cancelthe job?

NO YES

Operator types

RUN

!
System puts the
procedure with

included statements

in the source

Tary

System prompts

READY

i
Operator types

CANCEL

i
System erases entire Orl cycle

System prompts

READY

I MODI FY (continued)

Changing a Previous OCL Statement

System prompts

MODIFY

used a
FY option

Operator types three-digit
number of OCL statement
(or two-digit number of
included statement) to be

changer and PROG START

System tabs to
position 35 (position
0 after INCLUDE)

and war for response

Operator types
new response

!
YES ------More statements

to change?

t
NO

i
Does operator
want to use another

tODIFY option? i
YES NO

i
Operator
types RUN

See keyword description
of the other MODI FY
option

Deleting a Previous OCL Statement

System prompts

MODIFY

..---.-.....;~Operator types
three-digit number
of OCL statement
to be deleted

!
Operator types
comma and PROG

STAR1 key

YES-4---- More statements
to delete?

t
NO

i
Does operator

Enter here if you've
already used a
MODI FY Option
in the job

I want to use anotherl t MODIFY option?

YES NO

l !
See keyword
description of
the other
MODIFY
option

Deleting Multiple Keywords

Operator types
RUN

When the OCL statement number for FILE NAME is
deleted, all keywords for that file will be deleted from the
cycle. For example, the LABEL or DATE keywords could
be deleted from a file keyword statement without deleting
the other keywords for that file. However, if FILE NAME
is deleted, that entire file would be deleted from the cycle.

Keyword Descriptions 41

MODIFY (continued)

Entering Comments

System prompts

MODIFY

Operator types:
1. An asterisk (*)

2. A comment

1
Does operator want

Enter here if you've

already used a

MODIFY option
in the job

to use another ---------. I MODIFYoption? l
YES

t
See keyword description
of the other MODI FY

option

NO

t
Operator types

RUN

Points to Remember When Entering Comments

• The usual purpose of a comment is to remind the oper
ator of something he must do (mount a new disk pack,

for example) or to document a problem during a pro

gram run.

• After the operator types a comment, it is immediately

displayed on the system printer.

• Comments typed during a BUILD cycle become a per
manent part of the procedure. They are entered into

the Source Library along with OCL statements.

• Comments typed during a LOAD or CALL cycle do not
become a permanent part of the job; their only purpose
is to help document the program run.

42

Cancelling Job

System prompts MODIFY

Operator types CANCEL

i
(System gets ready

to run another job)

i

Enter here if you've

already used a

MODI FY option
in the job

Is HALT in effect -----------1-YES

t t
NO System displays

end-of-job halt

t
Operator presses

t~~~~~~~PROGSTART

System prompts READY for
next job

Effect of Entering CANCEL During a LOAD Cycle

The entire LOAD cycle will be overlaid by the next OCL

cycle.

Effect of Entering CANCEL During a BUILD Cycle

The entire BUI LO cycle will be overlaid by the next OCL
cycle. (If a duplicate procedure is being built, and CAN
CEL entered, the original procedure remains in the source

library. Except: if CANCEL is entered after INCLUDE,
neither procedure will be in the library.)

Effect of Entering CANCEL During a CALL Cycle

The entire CALL cycle will be overlaid by the next OCL
cycle. The original procedure will be unchanged.

MODI FY (continued)

Changing Forms Length

System prompts MOD I FY

Enter here if you'v~
already used a
MODI FY option
in the job

Operator types FORMS

. t
System pr1mpts FORMS DEVICE

Operator presses
PROG START (P/S)

or types Pl MARY

System prompts LINES

i
Operator types
new lines per
page setting

I

I

l
Does operator want to
use another MOD I FY
option? I

t
YES

l
See keyword
description
of the other
MODIFY
option

i
Operator presse!>
PROG START
(for current lines
per page setting)

I

l
NO

!
Operator types
RUN (When the
keyword FOR MS is
entered in an OCL
sequence, a system halt
occurs after RUN in case
the operator needs to
change paper in the
printer. The system re
mains idle until the oper
ator enters zero and
presses PROG START.)

Purpose of FORMS

Standard output for Model 6 printers is 66 lines per page.
At IPL time,.66 lines per page is established as the forms
length unless a different value was specified during system
generation.

To change the lines per page of printed output for RPG 11
programs, you code line counter specifications. To change
the lines per page of printed output for system programs
(utilities, SORT, and the RPG Compiler), you type the
keyword FORMS and an appropriate response.

If line counter specifications and an OCL FORMS state
ment are both used in one job, and if the specified lengths
are different, the system will accept the RPG 11 line count
er specifications and ignore the OCL FORMS statement.

The new lines per page setting (from either an OCL FORMS
statement or an RPG 11 line counter specification) remains
effective until another OCL FORMS statement or RPG 11
line counter specification is read.

FORMS can be entered during the MODIFY phase of any
OCL cycle. (The system never prompts FORMS.)

Whenever the operator types FORMS during an OCL cycle,
a system halt follows RUN in case the operator needs to
change the paper in the printer. Job processing does not
resume until the operator enters a zero (option 0) and
presses the PROG START key.

For additional operating information, including line counter
considerations, related to the keyword FORMS, see the
IBM System/3 Model 6 Operator's Guide, GC21-7501.

Keyword Descriptions 43

I MODI FY (continued)

Including Control Statements

44

System prompts

MODIFY

Operator types

INCLUDE

i
System displays a 2-digit

number for the first

INCLUDE statement

i
Operator types a

statement

!
System displays the
next statement
number for the

INCLUDE
statements

!
YES...,. ls there another

new statement to
be included in the

procedure?

i
NO

i

Enter here if
you've already

used a MODIFY

option in the job

Operator types RUN and

pressei PROG START

System prompts MODIFY
(allows operator to change

included statements)

,k
0

~--------------..
Do you want to change or delete

an iTluded statement? ------i
NO YES

1 J;
Dot" want to cancel job?-----.

NO YES

t t
opertor types RUN operror types cANcEL

System writes System erases
procedure with procedure

included statements in l
the source library

System prompts

READY

e
t .

Do you want to correct an included

statement?

t
Nr

Do you want to
delete included

stater ent? i
YES NO

!
Operator types

2-digit statement
number and comma

System prompts
READY

l
YES

t
Operator types 2-digit

statement number

Systel spaces to next line

l
Operator enters corrected

statement

MODI FY (continued)

Purpose of INCLUDE

The keyword INCLUDE lets you add system program con
trol statements to a procedure. INCLUDE tells the system
that the next entry will be a set of control statements for
one of the system programs. (As used here, control state
ments refer to both the control statements for the utility
programs and the sequence specifications for the SORT
program.) A maximum of 25 control statements can be
included in each procedure.

Restrictions After INCLUDE

After including statements in a procedure, the procedure
cannot be changed. MODI FY is prompted to allow chang
ing included statements. If CANCEL is used after INCLUDE
in a procedure that overlaid a duplicate procedure, neither
the original nor the new procedure will be in the source
library.

Considerations During a CALL Cycle

When the operator uses the CALL cycle to get the proce
dure out of the source library, the system displays the pro
cedure in two separate steps: first the OCL statements,
then the INCLUDE statements. The following shows de
tails of the two display steps:

1. System displays OCL statements for the job.

2.

• System prompts MOD I FY (to give operator a
chance to correct any of the OCL statements).

• Operator, after he has made any necessary correc
tions, types RUN.

System displays heading: INCLUDED STATE
MENTS, then displays the INCLUDE statements.

• System prompts MODIFY (to give operator a
chance to correct any of the INCLUDE
statements).

• Operator, after he has made any necessary cor
rections, types RUN.

• Model 6 runs the job.

If the operator presses the ENTER- key after responding
to CALL NAME or UNIT, all steps except the last are
omitted. The job is run without displaying the statements
or prompting MODIFY. Statements with delayed re
sponses are still displayed, to allow the operator to enter
the response.

NOHALT

Normally the system halts when a job ends. The operator
can respond to the keyword READY with NOHALT. The

system will then prompt READY for the next job when
each job ends. The NOHAL Twill remain in effect until a
HALT statement is entered or an IPL occurs.

READY

When the system is ready to begin the OCL sequence for a
new job, it prompts READY.

The operator responds by typing the name of one of the
four OCL cycles: LOAD, BUILD, BUI LDC, or CALL.
The system then prompts the other keywords in the
sequence.

(OCL cycles for the Model 6 are described in the Summary
of Conversational OCL at the front of this manual.)

RUN

RUN is the last entry in any OCL cycle. The operator types
RUN when he is satisfied that the OCL cycle is complete
and correct. The following table shows what happens when
the operator types RUN during any of the three OCL
cycles:

Sequence

LOAD

CALL

BUILD

Result

Job is run.

Job is run.

The OCL statements are put in a source
library.

If INCLUDE statements are part of the procedure the
BUILD and CALL cycles require two RUN entries. (See
Considerations During a CALL Cycle under MODIFY -
Including Control Statements in Part I.)

Keyword Descriptions 45

I RUN (continued)

After the operator types RUN, the system processes the
job and end-of-job occurs. The system then prompts
READY for the next job.

I SWITCH

The OCL SWITCH statement allows changing the eight
external indicators used by RPG 11 programs.

(External indicators are discussed in the IBM System/3
Model 6 RPG II Reference Manual; SC21-7517.)

The operator-system interaction involved with the SWITCH

statement is different for each OCL cycle as shown 'in the
following charts.

Indicator Settings

The indicator setting has eight positions, corresponding to
the eight external indicators.

The three possible entries for each position are:

1 - sets corresponding indicator on.

0 - sets the corresponding indicator off.

X - leaves the corresponding indicator unchanged.

For example, if the operator keys in XXXX10XX:

46

Indicator five will be set on.

Indicator six will be set off.

Indicators one, two, three, four, seven, and eight will be

unchanged.

IPL Considerations

All eight external indicators are set off at I PL. The only
way to set an indicator on is by responding to the keyword
SWITCH with a new eight-position response containing a 1
in the appropriate position.

Duration of SWITCH Setting

When an OCL SWITCH statement sets an indicator on, the
indicator remains on until another SWITCH statement sets

it off or the next IPL occurs.

Operator-System Interaction for SWITCH Statement
(LOAD Cycle)

r
Operator types
new 8-position
setting

I

System displays

SWITCH and
current indicator
setting

I

l
System prompts
FILE NAME

1
Operator presses
PROG START (to
accept current
setting)

I

Operator-System Interaction For SWITCH Statement {BUILD Cycle)

Operalor types

8-position indicator

settinl

Operator presses

PROG START

I

System prompts SWITCH
and current indicator
setting

Operatt types ?
{delayed response)

Operator presses

PROG START

I
System prompts

FILE NAME

Operator-System Interaction for SWITCH Statement {CALL Cycle)

OperatJr presses

PROG START (if pro

gram wil I not use
external indicators, or
if current setting is the
one you want).

+ (A SWITCH statement

will not be part of the

source library
procedure.)

I

t

During the BUILD cycle, the operator

responded to tr keyword SWITCH by

~
Pressing

PROG START

I
During CALL cycle

(SWITCH will not
be part of the
CALL cycle.)

t
Operator types

new 8-position
setting

Typing a?

(delayed response)

I
During CALL cycle

i
System displays

SWITCH and
current indica'tor
setting .,

CALL cycle continues

t
0 perator presses

PROG START (To

accept current
setting)

Typing 8-position

indicator setting

I
During CALL cycle

(The keyword SWITCH
and the 8-position
indicator setting are en
tered in the source library
and displayed with the

other OCL statements
during the CALL
cycle.)

Keyword Descriptions 47

Using OCL

MUL Tl-VOLUME Fl LES

File Statements for Multi-Volume Files

If-a file is too large for one disk, you can continue it on one
or more subsequent disks. Such files are called multi
volume files. (A volume is one disk.) Multi-volume files
can be online or offline. A file is online if all volumes are
mounted when the job begins. The UNIT and PACK
parameters are equal. An offline file has fewer UNIT
parameters (shares same unit).

Creation

The ways that you can create a multi-volume file depend
on the type of file you are creating. For a consecutive and
indexed file, the records are stored in consectuive locations
on disk, in the order that they are read. One disk is filled
at a time.

For consecutive files, each volume must be filled before the
next volume is loaded. For indexed files, each vol.ume need
not be filled. Each indexed volume is loaded until a key
field is reached that is higher than the HI KEY for that
volume, then the next volume is loaded. Indexed files must
be loaded in keyfield sequence. A halt occurs if a volume
is filled and there is not a record with a keyfield equal to
the HI KEY for that volume. For example, suppose the
HIKEY for a volume is 199. You load a record with the
keyfield 195. It is less than the HI KEY, so it is loaded
on the volume. Next, you load a record with the keyfield
200. Record 200 would be loaded on the next volume, and
a halt would occur. The reason for the halt is that you did
not load a keyfield record equal to 199 before you jumped
to a new volume. This halt can be ignored. You can load
the next volume and at some future time insert a keyfield
record equal to the HI KEY. To insert a record after the
loading sequence has passed, a random add must be done.

Indexed and consecutive files may be either online or
offline.

If using removable disks when creating consecutive or in
dexed files you can mount a disk, wait until the system
indicates it is filled. Then, mount the next disk. If you
have two drives, you can mount the two disks, wait until
the first one is filled, then replace it with the third while
your program fills the second disk. In either case, you
cannot use more than 40 disks per job.

48

Space can be allocated on all volumes of a multi-volume
file if the volumes are on line at the time of the allocation.
Space can also be allocated for an offline file, other than
the initial volume, but the packs must be empty packs or
space (TRACKS and LOCATION) known to be available.
You can use both fixed and removable disks with any on
line multi-volume file.

Space on a volume of a multi-volume file is reserved after
one or more records are placed in that volume.

Direct files must be online. Direct files are created in a
non-consecutive manner. When creating such files, you
are required to mount all the disks on your disk unit at the
same time. The maximum number of disks you could use,
therefore, is two if you have only one drive, or three or
four if you have two drives.

Processing

The ways in which you can process multi-volume files
depend on the method your program uses to get records
from the file. If records are read from a consecutive or
indexed file, you can mount a disk, wait until all of the
records have been read from the disk, then mount the
next disk. If you have two drives, you can mount two
disks, wait until all of the records have been read from the
first disk, then replace that disk with the third while your
program reads from the second disk. When you are
processing files offline the disks must be removable. When
online, any combination of fixed and removable disks is
acceptable, but all must be mounted and must remain
mounted.

OCL Considerations

Multi-volume files, like other disk files, must be described
in Fl LE statements. However, because a multi-volume
file involves more than one disk, some Fl LE keywords
require a list of data or codes to describe all of the disks
containing the files. This section explains the considerations
for using these lists. Each list must begin and end with
apostrophes.

List Requirements

The PACK parameter requires a list. The UNIT parameter
may require a list while LOCATION, TRACKS, HIKEY,
and RECORDS require a list if they are stated. The
considerations for using the lists in these parameters are
included in the keyword discussions following.

KEY LENGTH: This keyword will be prompted if the
response to Fl LE NAME indicated a multi-volume file
{see Enter Minus under End-of-Statement Keys in Part I).
If this is an indexed file, you must respond to KEY
LENGTH with a two-digit number 01 through 29. If this
is not an indexed file pressing the PROG START key will
skip the HI KEY keyword.

HIKEY: This keyword must be answered for indexed files.
The highest keyfield for each volume must be entered. All
characters except commas are allowed as keys. The length
of each HI KEY must equal the response to KEY LENGTH
and a HI KEY must be .entered for each volume. If a
HIKEY with fewer characters is entered, blanks will be put
into the remaining positions. If an apostrophe is used as part
of a HI KEY, it must be entered as two apostrophes or it
will be decoded at the end of HI KEY list and an error will
occur. When using only one volume of an indexed multi
volume file, the HI KEY must be entered with beginning
and ending apostrophes.

The keys in an indexed file can be packed numeric
characters. To indicate that a file has packed keys, the
operator responds to KEY LENGTH with nn,P where
nn is 01-08. Only numeric characters (0-9) are allowed in
packed HI KEYS. When responding to HIKEY, the
number of characters entered per key is equal to 2nn-1.
If the KEY LENGTH response is 07, the HI KEYS would
be 13 characters long.

UNIT: The keyword UNIT must be followed by a code or
codes indicating where the disks that contain the file will
be located on the disk unit. No UN IT parameter may be
repeated. The codes are as follows:

Code

R1
F1
R2

Meaning

Removable disk on drive one.
Fixed disk on drive one.
Removable disk on drive two.

F2 Fixed disk on drive two.

The order of codes in the UN IT parameter must corres
pond to the order of names in the PACK parameter.

When you are creating or processing a consecutive or in
dexed file, you can use the same drive for more than one
of the disks; however, the units must then all be removable
units. If they are, you must not repeat the code for the
drive in the UNIT parameter. When the number of codes
in the UNIT parameter is less than the number of names in
the PACK parameter, the system uses the codes alternately.

If F1 or F2 is specified, the file must be online multi-volume.

PACK: The names of the disks that contain, or will contain,
the multi-volume file must follow the keyword PACK.
{PACK names must be unique for proper functioning.)

When a multi-volume file is created, the system writes a
sequence number on the disks to indicate the order of
the disks. The disks are numbered in the order in which
you list their names in the PACK parameter.

When a multi-volume f~le is processed, the system provides
two checks to ensure that the disks are used in the proper
order:

1.

2.

It checks to ensure that the disks are used in the
order that their names are listed in the PACK
parameter.

It checks the sequence numbers of the disks used to
ensure that they are consecutive and in ascending
order (01, 02, and so on).

The system stops when it detects a disk that is out of
sequence. The operator can do one of three things:

1.

2.

3.

Mount the proper disk and restart the system.

Restart the system and process the disk that is
mounted if the sequence is ascending (for consecu
tive input and update).

End the program.

Consecutive input or update sequence numbers are ignored
if the file was not created as multi-volume. If the file is
multi-volume and the sequence is ascending but not
consecutive, a diagnostic halt is given which allows the
proceed option.

Using OCL 49

TRACKS or RECORDS: The keyword TRACKS or
RECORDS must be followed by numbers that indicate
the amount of space needed on each of the disks tt)at will
contain the multi-volume file. TRACKS or RECORDS
must be specified. Any multi-volume file load requires a
TRACKS or RECORDS keyword whether the file
previously existed or not. The order of these numbers
must correspond to the order of the names in the PACK
parameter.

LOCATION: The keyword LOCATION must be followed
by the numbers of the tracks on which the file is to begin
on each of the disks you use for the file. The order of
the numbers must correspond to the order of the names
in the PACK parameter. If you omit the LOCATION
parameter, the system chooses the beginning track on each
of the disks. If LOCATION is specified for one disk, it
must be specified for all disks. If the multi-volume file
exists, LOCATION must be given and must be identical
to the LOCATION parameter specified when the file was
created.

RETAIN: RETAIN-S must not be specified unless the file
is online multi-volume. If RETAIN-Sis used for online
multi-volume, it cannot be changed to R ETAI N-T unless
also done online.

50

File Statement Summary

KEYWORDS

UNIT

PACK

Maximum
Number of Disks

Location
Requirements

Restrictions
on Disk

Operating

Considerations

Relation to

KEV LENGTH

HIKEY

TRACK
or

RECORDS

LOCATION

SEQUENTIAL Fl LES

10 disks per file statement, 40 disks per job (number of
HI KEYS plus number of packs cannot exceed 40)

R 1 or R2 for offline files
No restriction for online files

At file creation time only:
• First disk can also contain programs, procedures,

other files.

• Remaining disks must be used only for the one file.

Single Drive - Disks must be mounted one at a time.
Two Drives - Disks must be mounted in sequence
specified in UNIT statement.

One entry in the UN IT statement can correspond to
more than one disk name in the PACK statement.

When processing a file (or a subset of a file) the disk

names must be in the same sequence as they were at

file creation time.

DIRECT FILES

Single Drive-2 disks
Two Drives-4 disks

No restriction

All the disks used for the file
can also contain programs,
procedures, other files.

All disks must be on-line

during processing.

A one-to-one correspondence is
required between the entries in

the UN IT statement and the disk

names in the PACK statement.

Length must be less than 30
(01-08 if packed keys).

HI KEV responses must corre
spond one-for-one with the disk

names in the PACK statement.

Used only for Indexed-Sequential Files.

For Consecutive-Sequential and Direct
files, pressing PROG START will also
bypass HI KEY prompt.

At file creation time:
• Number of tracks (or records) must be specified for each disk.
• Number in TRACKS (or RECORDS) statement must correspond one-for-one with the

disk names in the PACK statement.

During subsequent runs: TRACKS (or RECORDS) statement can be included in the OCL
sequence. (For greater detail see keyword descriptions of TRACKS/RECORDS.)

• If specified:
Addresses must correspond, one-for-one with disk names in PACK statement.

• If not specified:
System will allocate space on each disk.

Using OCL 51

Coding Multi-Volume File Statements

1. The operator must begin and end each statement with
an apostrophe.

2. The system displays information about each volume
on a separate line.

3. The system assigns one statement number to the entire
file statement.

Changing Multi-Volume File Statements with MODI FY
Keyword

When using MODI FY keyword to change a multi-volume
file statement (other than HI KEY), the entire response to
the keyword must be re-entered on one line, separated by
-commas, with beginning and ending apostrophes.

Example

041

UNIT Statement is

UNIT- 'Fl
- Rl
-R2
- F2'

To change at MODIFY time

MODIFY
041
RUN

52

- 'F 1,R 1,F2,R2'

Should be

UNIT- 'Fl
- Rl
- F2
- R2'

INCLUDING SORT SOURCE OR UTILITY CONTROL
STATEMENTS IN A PROCEDURE

The INCLUDE option can be used during MODIFY time
of a BUILD cycle to include sort source or utility control
statements in a procedure. This is useful if the control
statements are long or complex and the job is run fre
quently. A maximum of 25 control statements can be
included in each procedure.

During the BU I LD cycle, the INCLUDE option must be
the last MODI FY option used. After the included state
ments are keyed in, the RUN entry then puts the procedure
and included statements in the source library.

The CALL cycle will be different if the called procedure
has included statements. After the OCL statements are
printed, MODI FY will be prompted to allow changes to
the OCL statements. After the operator types-RUN, the
system will print INCLUDED STATEMENTS and then
list the statements. MODIFY will now be prompted
again, to allow changes to be made to the included state
ments. The operator types RUN to run the job.

For an example of Including Sort Source Statements in a
procedure see the IBM System/3 Disk Sort Reference
Manual, SC21-7522.

An example of including Utility Control statements in a
procedure is shown in sample job 10 (see Sample Jobs at
end of this part).

INCREASING FILE SIZE OF THE RPG PROCEDURE

The IBM-supplied compile procedure can only compile
RPG 11 programs with less than 400 statements. To
compile larger programs, the file statements must be
modified to increase their size above 10 tracks (see
Modify; Changing a Previous OCL Statement in Part I).
Using the MODI FY option will only increase the file size
for one compile. The RPG II procedure will not be
changed in the source library. To change the procedure in
the source library you must either build a new procedure
(see BUILD NAME in Part 1), use the Library Mainten~·nce
Modify function, or use the KSE utility program.

PROCESSING LARGE INDEXED DISK FILES

When additions are made to a' large indexed file, the
amount of time needed to sort the kAys of the index at end
of-job may become excessive. This sort time can be reduced
by using a work file.

The work file is used to merge the added keys into the
index and must be large enough to contain all of the keys
added to the file. If the program adds records to more
than one indexed file, the work file must be large enough
to contain all the keys added to the file having the greatest
number of additions.

The work file must be named $1NDEX44 and should be
located as close as possible to the index being sorted. To
compute the number of tracks required for the work file,
use the following formula:

(

256 \
number of adds 7 keylength+3}7 24 =tracks

After dividing 256 by keylength+3, the remainder should
be dropped. After the other divisions, round the quotient
to the next higher whole number.

If the work file is not large enough to contain all the index
keys, the keys are sorted in the normal manner without

. using a work file. If possible, the work file should be
located on a different disk drive than the indexed file
whose keys are being sorted. If this is not possible, the
work file should be as close as possible to the beginning
of the file whose keys are being sorted. This minimizes
the disk seek time.

The work file can be used with multivolume files. However,
it cannot be located on a pack that contains one of the
offline volumes of a multivolume file. The pack containing
the work file must remain online while running the job.

The work file must be RETAIN-S. If RETAIN-Tor
RETAIN-Pis specified, the system will default to
RETAIN-S.

For small indexed files (10 tracks or less) where the sort
time is negligible, the use of the work file will not improve
performance and should not be used.

To use this performance option, no change is needed to
your source program. Also, programs need not be re
compiled to use this option. Only the additional OCL
FI LE statement is needed to use this option.

ENTERING RPG II SOURCE STATEMENTS FROM THE
KEYBOARD AT COMPILE TIME

The IBM-supplied compile procedure requires that the
RGP 11 source statements be in the source library of a disk.
By using the Keyboard Source Entry Utility ($KSE), source
statements can be format checked as they are put on disk.

The source statements can, however, be entered from the
keyboard at compile time. These statements are read by
the compiler and checked for format errors. If any errors
arefound they cannot be corrected and the compile will
not be successful. The compile job must be rerun and all
source statements keyed in again.

To key in source statements from the keyboard, the
IBM-supplied compile procedure RPG is used. This pro
cedure does not prompt COMPILE OBJECT, SOURCE,
or UNIT.

Inquiry Interrupt

Certain programs can be interrupted while they are being
processed. A request for interruption is called an inquiry
request (made by depression of the inquiry key on the
keyboard). Programs are usually interrupted to, permit
another program to run. Control is then given back to
the first program .

The instructions given the compiler at compile time
determine the inquiry type of a program.

The three types of programs include:

1.

2.

3.

A program that cannot be interrupted (does not
recognize an inquiry request).

A program that can be interrupted (does recognize
an inquiry request). This is a B-type inquiry program.

An inquiry program that can only be executed when
an inquiry request is made. This is an I-type program.

Usually I-type programs are read in only when a program is
interrupted. In this case the inquiry program will not
recognize an inquiry request. However, if an inquiry
program is loaded in the normal manner (not because of a
program interrupt), it can only be executed when an inquiry
request is made. While this program is running, it will not
recognize an inquiry request.

Using OCL 53

The inquiry interrupt involves these three steps:

1. When the program recognizes an inquiry request, a
Roll-Out routine moves the interrupted program
from main storage to disk.

2. The progra~ for which the interrupt was requested
must be loaded normally. The interrupting program
may be any type. This interrupting program cannot
be interrupted.

3. After the interrupting program is executed, the
interrupted program moves back into main storage
using a Roll-In routine. The interrupted program
begins execution at the point of interruption and
terminates in a normal manner.

The IBM System/3 Model 6 RPG II Reference Manual,
SC21-7517, describes coding necessary to define
inquirable programs.

Restrictions During Inquiry

Inquiry always causes the conversational OCL scheduler to
be used, even if the interrupted program was running
under the card scheduler. The OCL statements cannot be
read from cards during inquiry.

The Log device cannot be changed during inquiry.

CHAINED PROCEDURES

A finished job usually requires that more than one program
be run. Several customer programs with utility programs
between them may be required to complete the finished
report. This sequence of programs can be put in chained
procedures.

By chaining procedures, several benefits can be realized,
including:

• Programs are always run in the correct sequence.

• Operator intervention and, therefore, chance of
operator error, is decreased.

• File space can be saved. Files used to pass data from
job to job can be scratched after the last program.

• Files are less likely to be destroyed by running non
related programs between programs of a job.

54

To chain procedures, the operator first builds a master
procedure to chain together other procedures. This is
done by responding to READY with BU I LDC. The system
will then repetitively prompt CALL NAME and UNIT,
allowing the operator to respond with the name and unit of
the procedures that are to be chained. When all procedure
names have been entered, the operator responds to CALL
NAME or UNIT with the ENTER MINUS (ENTER-) key.
The system then allows the operator to MODI FY the
entries. When RUN is entered, the master procedure is put
in the source library as a permanent entry.

Master procedures can call other master procedures up to
9 levels. The original master procedure called (level 1) can
call another master procedure (level 2), which can call
another master procedure (level 3), etc., on up to 9 levels.
Care must be taken to avoid calling a master procedure
that was already called earlier in the chain or an endless
loop will result. A master procedure can contain only
CALL and UNIT statements.

Delayed responses are not allowed in a BUI LDC cycle.
However, the called procedures can contain delayed
responses.

To run the chained procedures, the operator initiates a
CALL cycle and responds to CALL NAME with the name
of the master procedure. Each procedure is then called by
the master procedure and run.

When running chained procedures, the operator is never
prompted MODI FY to make changes.

If the operator presses the ENTER-key after responding
to CALL NAME or UNIT, only the CALL NAME and
UN IT statements of each chained procedure will be dis
played. All other OCL statements (except those with
delayed responses) and included control statements are
not displayed.

If HALT is specified, the system will not halt until the last
job of a chain is complete.

OCL FOR THE IBM 2222 PRINTER

The IBM 2222 printer provides the MODEL 6 system with
the ability to print on two forms. Each form has its own
forms tractor. The left tractor is called PRIMARY and the
right tractor is SECONDARY.

Using the FORMS Statement

The lines per page setting of the PRIMARY and
SECONDARY tractors can be different. (For example,
the PRIMARY tractor could print 25 lines per page, while
SECONDARY prints the standard 66 lines per page.)
Separate settings are specified by entering different FORMS
statements for each tractor during the MODI FY phase.

Log Device

The log device is used to print OCL statements and error
messages and codes. The PRIMARY tractor will be the
log device at IPL time when the 2222 Printer is used. The
secondary tractor can be a·ssigned as the logging device by
entering LOG at either READY or MODI FY time. If the
secondary tractor is the logging device, logged data begins
in print position 110. (See READY-Entering LOG and
MODIFY-Entering LOG).

If the log device is used for normal program output, the
error messages and codes are not printed.

MODI FY - Entering the Keyword FORMS

System prompts MOD I FY

Operator types FORMS

t
System prompts FORMS
DEVICE

t
Operator types

I
t

PRIMARY
I

t
System prompts LINES

I
t

Enter here if you've
already used a
MODIFY option in
the job

t
SECONDARY

I

Operator types
t

0 perator presses
new lines per
page setting

I
t .

PROG START
(for current lines
per page)

I

Does operator want to
use another MODIFY

+.-----option?

YES

' See keyword
description
of the other
MODIFY
option

t
NO

t
Operator types RUN
(When the keyword FOR MS
is entered in an OCL se
quence, a system halt oc
curs after RUN in case
the operator needs to
change paper in the print
er. The system remains
idle until the operator
presses PROG START)

Using OCL 55

OCL FOR THE IBM 2265-2 DISPLAY

The IBM 2265-2 display unit can be used as the system log
ging device. The logging device displays conversational OCL
statements, utility control statements, job comments, and
error messages and codes. The log device can also be used
for normal output from the job being run. Error messages

and codes are not displayed if the 2265-2 is used for normal
job output.

When the 2265-2 (CRT) is used as the logging device, an ad
ditional 1 K of core storage is needed for the system, thus

reducing the core available for the user program. This extra
core is not needed if the user program specifies the CRT as
an output device.

The operator can assign either the CRT display or the print
er as the logging device. If the operator changes the logging

device the change remains in effect until either:

• The operator specifically overrides the change with

another LOG statement.

• The next ! PL procedure.

READY - Entering LOG

t
CRT

t
System assigns
CRT as logging

device.

I

56

System prompts READY

t
Operator types LOG

t
System prompts

LOG DEVICE

t
Operator types:

i
SECONDARY

t
System assigns
secondary tractor

as logging device.

t
PRIMARY

t .
System assigns
primary tractor

as logging device.

I t
System prompts READY

Note: The CPU usage meter will continue to run during
halts (other than end-of-job halt in halt mode) when the

CRT is used as the logging device or when it is used by the
customer program. To stop the usage meter, the system
START /STOP switch should be moved to the STOP position.
This will blank the CRT display, but the halt will continue
to be displayed in the halt code indicator lights on the sys
tem console. When halt ABCD12345 occurs (end-of-job
in HALT mode), the CRT is blanked and the usage meter
is stopped.

MODI FY - Entering LOG

System prompts MODIFY

t
CRT

t
System assigns
CRT as logging

device
I

Operator types LOG

t
System prompts

LOG DEVICE

t
oper•tr types:

SECONDARY

I
System assigns
secondary tractor
as logging device.

i
Does operator want to
use another MODI FY

Enter here if
you've already

used a MODI FY
option in the job

t
PRIMARY

t
System assigns
primary tractor
as logging device.

I

Yrs-option? --------1~ 1°
See keyword description Operator types

of the other MODI FY RUN

option

jocL ERROR MESSAGES

Message

MESSAGE #00 - NO PROGRAM NAME GIVEN

MESSAGE #01 - NO UNIT GIVEN

MESSAGE #02 - INVALID PROGRAM NAME SPECIFIED

MESSAGE #03 - INVALID UNIT SPECIFIED

MESSAGE #04 - PROGRAM NOT FOUND ON
SPECIFIED UNIT

MESSAGE #05 - NO PROCEDURE NAME GIVEN

MESSAGE #06 -SOURCE NOT FOUND ON SPECIFIED
UNIT

MESSAGE #07 - INVALID PROCEDURE NAME

MESSAGE #08 - MUL Tl VOLUME Fl LE RESPONSES
NOT IN 1-1 RATIO

MESSAGE #09 - PROCEDURE NOT FOUND ON
SPECIFIED UNIT

MESSAGE #10 - INVALID SWITCH SETTINGS

MESSAGE #11 - NO SOURCE NAME GIVEN

MESSAGE #12 - INVALID SOURCE NAME SPECIFIED

MESSAGE #13 - INVALID DATE SPECIFIED

MESSAGE #14 -TOO MANY RESPONSES TO A
MULTIVOLUME FILE KEYWORD

MESSAGE #15 - NO FILE NAME GIVEN

MESSAGE #16 - NO PACK GIVEN

MESSAGE #17 - INVALID FILE NAME SPECIFIED

MESSAGE #18 - INVALID LABEL SPECIFIED

MESSAGE #19 - INVALID PACK SPECIFIED

Explanation

Response to LOAD NAME was blank.

Response to UN IT was blank.

Response to LOAD NAME was invalid.

Response to UN IT was invalid.

The program indicated by your response to LOAD NAME
was not found in the object library of the unit specified.

Response to CALL NAME or BUILD NAME was blank.

The source module specified by your response to SOURCE
was not found in the source library of the unit specified.

Response to BUILD NAME or CALL NAME was invalid.

The number of responses to file keywords PACK, HI KEY,
LOCATION, TRACKS, or RECORDS were not equal.

Procedure specified by response to CALL NAME was not
found in source library of the unit specified.

Response to SWITCH was other than eight positions of X,
1, or 0.

Response to SOURCE was blank.

Response to SOURCE was invalid.

Response to DATE in file keywords was invalid.

Only ten volumes are allowed in each multivolume file.

Procedure contains file keywords but no FILE NAME
response.

Procedure contains file keywords but no PACK response.

Response to FILE NAME was invalid.

Response to LABEL was invalid.

Response to PACK was invalid.

Using OCL 57

I Message

MESSAGE #20 - INVALID RETAIN DESIGNATION
SPECIFIED

MESSAGE #21 - INVALID TRACKS SPECIFIED

MESSAGE #22 - MAXIMUM FILE STATEMENTS
ENTERED

MESSAGE #23 - BOTH TRACKS AND RECORDS
SPECIFIED

MESSAGE #24 - INVALID RECORDS SPECIFIED

MESSAGE #25 - INVALID LOCATION SPECIFIED

MESSAGE #26 - DEVICE NOT SUPPORTED

MESSAGE #27 - INVALID DEVICE

MESSAGE #28 - INVALID NUMBER OF LINES

MESSAGE #29 - INVALID REQUEST

MESSAGE #30 - INVALID STATEMENT NUMBER

MESSAGE #31 - TOO MANY UTILITY CONTROL
STATEMENTS IN PROCEDURE-JOB
CANCELED

MESSAGE #32 - RUN OUT OF SPACE IN THE
SCHEDULER WORK AREA

MESSAGE #33 - RESPONSE REQUIRED-DELAYED
RESPONSE IN CALLED PROCEDURE

MESSAGE #34 -TOO MANY MULTIVOLUME FILE
UNITS SPECIFIED

MESSAGE #35 - DELAYED RESPONSE(?) NOT
ALLOWED

MESSAGE #36 - JOB CANCELED

MESSAGE #37 - MULTIVOLUME FILE NOT VALID
THIS STATEMENT

MESSAGE #38 - ENTER MINUS(-) NOT ALLOWED

58

Explanation

Response to RETAIN other than P, T, S, or A.

No more than 15 FI LE statements can be specified in a job.

Procedure contains responses to both TRACKS and
RECORDS.

Response to LOCATION must be 8 through 405.

CRT or data recorder was specified but is not on the system.

Response to DEVICE or READER invalid.

Response to LIN ES not between 12 and 112.

Response to MODIFY was invalid.

Invalid statement number entered as response to modify.

Number of units specified exceeds number of packs
specified.

/* was entered or job was canceled because of errors.

Multiple responses not allowed for this keyword.

The ENTER- key is only allowed for certain keywords in
the BU I LO cycle.

I Message

MESSAGE #39 - ERRORS IN PROCEDURE-JOB
CANCELED

MESSAGE #40 - ERRORS IN OCL STATEMENT

MESSAGE #41 - ERRORS IN RESPONSE

MESSAGE #42 - DUPLICATE PROCEDURE NAME
IN LIBRARY

MESSAGE #43 - DUPLICATE PROCEDURE DELETED

MESSAGE #44 - INVALID KEYWORD

MESSAGE #45 - TOO MANY UTILITY CONTROL
STATEMENTS ENTERED

MESSAGE #46- PERMANENT DISK ERROR

MESSAGE #47 - RUN OUT OF SPACE IN PROCEDURE
LIBRARY-JOB CANCELED

MESSAGE #48 - INVALID SYSTEM DATE SPECIFIED

MESSAGE #49 - DUPLICATE KEYWORD

MESSAGE #50 - RESPONSE REQUIRED

MESSAGE #51 -TOO MANY PACKS, HI KEYS, OR
BOTH SPECIF I ED

MESSAGE #52 - DUPLICATE MUL TIVOLUME Fl LE
UNIT SPECIFIED

MESSAGE #53 - INVALID RESPONSE DURING
INQUIRY

MESSAGE #54 - INVALID HIKEY SPECIFIED

MESSAGE #55 - INVALID HIKEY LENGTH SPECIFIED

MESSAGE #56 - HI KEYS OUT OF SEQUENCE

CO-RESIDENT SYSTEMS

I BM System/3 Model 6 users who have co-resident systems
(both disk system management and System/3 BASIC) can

Explanation

Response to BUILD NAME is already in source library of
unit specified.

New procedure being entered will overlay old procedure
with same name.

Keyword found in procedure is invalid, or response to
READY is invalid.

Only 25 utility control statements may be entered.

A procedure contains a duplicate keyword.

You must respond to this keyword; PROG START as the
only response is not allowed.

The total number of PACK and HI KEY keywords cannot

exceed 52.

Cannot change logging device or change to card OCL.

Response (number) to HI KEY exceeds response (number)
to KEY LENGTH

Response to KEY LENGTH is greater than 29, or is 00.

Responses to HI KEY must be in ascending sequence.

transfer control from disk system management to System/3
BASIC by responding to READY with ENTER BASIC.

Using OCL 59

Sample Jobs

This section presents a typical sequence of jobs:

• Initialize a disk.

• Compile an RPG II source program.

• Run the compiled program.

• Copy a file from one disk to another.

• Build a procedure to run a multi-file job.

• Call and modify the procedure built in job 5.

• Update a multi-volume master file.

• Create a multi-volume indexed file.

• Maintain a multi-volume indexed file with packed keys.

• Include utility control statements in a procedure.

• Chain procedures.

60

Each sample job is orgainzed into three sections:

1.

2.

3.

An introductory summary explaining the job.

The OCL statements (and-where applicable-the
utility control statements) for the job.

Explanatory notes on individual statements in the
job.

The examples shown are actual computer printouts. End
of-statement keys used are shown in parenthesis to indicate
actual operator response. These are shown for example only
and will not be printed on normal OCL printouts.

Any response without end-of-statement key indicated is
printed by the system without operator intervention.

SAMPLE JOB 1. INITIALIZE DISK

We're going to use the Disk Initialization Program (located on the fixed disk on drive one) to initialize the removable disk on
drive one. We want to:

• Initialize the entire disk pack.

• Do surface analysis only once.

The name of the new disk will be 12345.

Here are the OCL and utility control statements for the job.

l=<EADY- 1...Dr=u:i (P/S)

*************~**
0:1.0 LOAD
OU.

Nr~·1ME

UNIT-
~i}INIT (P/S)
F:I. (ENTER-)

**
MOD IF'(

.HUN (P/S)
ENTER r;; v CC~TROL STATEMENT

// UIN UNIT--i=O. !' TYPE·-Pl:;~IMr:~F-'.'((P/S)
ENTER 'II v CONTROL STATEMENT

/I VOL Pr~Cl'\--:1. 234!5 (P/S)
ENTER r;; ' CONTROi... STATEMENT

// END (P/S)

Explanation

• 010 LOAD NAME

• 011UNIT-F1

• II UIN UNIT

• II VOL PACK-
12345

• II END

$1NIT
$1NIT is the system name for the Disk Initialization Program.

The Disk Initialization Program is located on the fixed disk on drive one. Pressing ENTER
instead of PROG START to end response causes DATE, SWITCH, and File keywords to be
bypassed.

R1, TYPE-PRIMARY

1. Tells the system to initialize the removable disk on drive one.

2. Because no other parameters are entered in the UIN statement, the program will:

• Initialize the entire pack.

• Read and verify the test data on the pack one time.

$1NIT will enter the disk name 12345 in the VTOC. Whenever a file from this disk is used

in a job, the operator must type 12345 when the system prompts PACK.

Sample Jobs 61

SAMPLE JOB 2. COMPILE AN RPG SOURCE PROGRAM

We're going to use the IBM-supplied procedure RPGB (located in the source library on the fixed disk on drive one) to
compile a source program I NVUPD (an inventory update) located on R1. The RPG 11 Compiler (the program to compile
RPG II source programs) is also located on R 1. We want to put the compiled program in the object library on R 1. Here are
the OCL statements for the job.

Explanation

• 000 CALL NAME RPGB
Tells ttu? system you want to use the IBM-supplied Compile Procedure (RPGB).

• 010 LOAD NAME $RPG

• 011 UNIT

Tells the system you want to use the RPG II Compiler (the program to compile RPG II
source programs).

R1

• 020 COMPILE OBJECT

The RPG II Compiler is located on R 1.

F1

• 021 SOURCE

• 022 UNIT

• 020 MODIFY

1:;:EADY
OOO CALL
OOl.

Nt-1ME·-··
UNIT-·

The object program will be put in the object library of the disk on F1.

INVUPD
The SOURCE statement in the RPGB procedure requires a delayed response. When the
system reaches the SOURCE statement in the display sequence, it prompts SOURCE and
waits for the operator's response.

R1
The response tells the system that the program to be compiled (I NVUPD) is located on R 1.

R1

1. System prompts MODIFY.

2. Operator types 020, telling system he wants to change that statement. (He does not
want the system to put the compiled program on F1 .)

3. System tabs to position 37 and waits for response.

4. Operator types new response - R 1. The system will put the compiled program on R 1.

C(;L.L. (P/S)
r;:pun (P/S)
Fl (P/S)

Ol.O LOAD
Ol.1
020 COMPILE
021
022
030 FILE
031.
032
033
034
040 FILE
041
042
043
044

N1~ME-·~;;r;:F'G

UNIT-F:l
OBJECT-Fl
sou1:;;cc

LINIT-1:;:1
NAME-~;l_.JCH-\'.K

UNIT-Fl
PACl'\--Fl.Fl.Fl.

TRACKS-20
RETAIN-S

NAME-$SOURCE
UNIT-Fl
PACK-Fl.Fl.Fl.

TRACKS-20

IN'v'UF'I:I (P/S)

MODIFY

020 (P/S)

f'UN (P/S)

62

ru (P/S)

SAMPLE JOB 3. PROCESS CUSTOMER PROGRAM"INVUPD"

We're going to run the customer program INVUPD, compiled in SAMPLE JOB 2 and located on the removable disk on
drive one. The job uses one file, INV, located on R2. The name of the disk which contains the file INV is 123456. Here
are the OCL statements for the job.

i:~i;:.,:~DY···· i...0(~:0 (P/S)

**
010 LD{'ID
0:1.:i.

Nr:~ME····

UNIT····
I N1.)UP:O (P/S)
R 1. (P/S)

020 Df.~TE (:l 2/0B/".70)
030 SWITCH (00000000)

(P/S)
(P/S)

040 FILE NAME- I ;···.JU (P/S)
F;:2 (P/S) 04:i. LJNIT-

042 PACK- :i. 234~=.=.i{, (P/S)
(ENTER-) 043 LABEL-

o~:jO FILE (P/S)

**
MODIFY

1:~l..IN (P/S)

Explanation

• 020 DATE

• 030 SWITCH

• 043 LABEL

• 050 Fl LE NAME

- (12/08/70)
We'll use the current system date for the job.

- (00000000) - (P/S)
The program doesn't use external indicators so the operator does'n't care about the switch
setting and responds by pressing the PROG START key.

Press the ENTER- key
Responding to LABEL by pressing the ENTER- key tells the system to bypass the rest of
the file keywords and prompt Fl LE NAME.

(P/S)

Responding to Fl LE NAME by pressing PROG START causes the system to bypass the
rest of the file keywords and prompt MODI FY.

Sample Jobs 63

SAMPLE JOB 4. COPY Fl LE DISK TO DISK

We're going to copy an employee master file from R 1 to R2. The second file will serve as a back-up in case the original file
is damaged in some way, such as track becoming defective or a portion of the file being overlaid. When the master file was
created the programmer:

1. Responded to FILE NAME with EMASTFIL.

2. Responded to PACK with VOL06.

3. Responded to LABEL with EMPMAST.

4. Responded to TRACKS with 15.

These responses caused the system to put the name EMPMAST in the VTOC on VOL06.

Here are the OCL and utility control statements we will use to copy the master file from R1 to R2.

l...Di:YO (P/S)

**
O :l 0 I ... Di~~. D
0:1.:l.
020 :Of.~1TE

030 ShlITCH
040 Fii ... E
04:1.

()4:3
o:=.=;o FI l...E
O:'.'.i :I.
() ~:_:_i :::.::

0~=54

o:=.=.i~=s

o::=.i6

Of.:.O Fii ... E

MODIFY

HUN (P/S)

Nr=~ME····

UNIT····
(:I. 2/0B./70)
(_()()()()()()()())

NtlME ····
UNIT····
P{~1CI< ····

i ... {:lBEL····
MflME-··
UNIT····
p,::)[:j-{•U•

i ... f.:lBEI...····
1:;!EC01:;!DB .. ··

THf.:lCI<~::;····

l...DC{:lT I ON····
i:~ETf1IN····

Nf:lME····

ENTER '// ' CONTROL STATEMENT
// COPYFILE OUTPUT-DISK (~S)

ENTER 'II ' CONTROL STATEMENT
I/ END (P/S)

64

·:;:.COPY (P/S)
F :I. (P/S)
(P/S)

(P/S)
COP\'Ii···.J (P/S)
i:;~:I. (P/S)
1·)01...06 (P/S)

[:i""'iPMt.~:rr (~NTER-)

COP\'D (P/S)
1:;:2 (P/S)
1)01 ... 0)' (P/S)

EdPi''l(i~:ri2 (P/S)
(P/S)

:I. ~=5 (P/S)
(P/S)

F' (ENTER-)

Explanation

• 010 LOAD NAME

• 011 UNIT

• 020 DATE

• 030 SWITCH

• 040 Fl LE NAME

• 043 LABEL

• 050 Fl LE NAME

• 053 LABEL

• 055 TRACKS

• 057 RETAIN

$COPY
$COPY is the system name for the Disk Copy/Dump Program.

F1
The Copy Disk Program is on F1.

(12/08/70)
We'll use the current system date for the job.

(00000000)
This program doesn't use external indicators, so operator doesn't care about the switch
setting and responds by pressing PROG START.

COPY IN
COPYI N is the predefined file name you must use for the input file whenever you use
Disk Copy /Dump Program.

EM PM AST
EMPMAST is the VTOC file name for the OCPYIN file. You must supply this name so
the system knows which file to use for COPYIN. Pressing the ENTER- key causes the
system to bypass the rest of the file keywords and prompt Fl LE NAME.

CO PYO
COPYO is the predefined file name you must use for the output file whenever you use
the Disk Copy/Dump Program.

EMPMAST2
The system enters EMPMAST2 in the VTOC on VOL07. EMPMAST2 is the name by
which the system will identify the back-up file.

15
Because we are creating a new file we must respond to one of the space keywords
(TRACKS and RECORDS). We specify 15 tracks because that's what we specified for
the original file.

p

The back-up file is to be permanent to protect it against inadvertent overlaying. Pressing
the ENTER- key causes the system to bypass the rest of the file keywords and prompt
FILE NAME.

• COPYFI LE OUTPUT DISK
The COPY Fl LE statement tells the program to copy the designated file from R 1 to R2.

Sample Jobs 65

SAMPLE JOB 5. MU L Tl-Fl LE BUILD

Each day the customer runs a daily transaction job which creates a daily transaction file. Each day's file has a different
name and date. We are going to build a procedure to use these daily files to create a weekly transaction file (WKL YTR).
The weekly transaction program is located in the object library of fixed disk 1.

()() l

:.__.i .. < : .. .-: Di:·~: ·r E
>.) :::=:; •.:) E; l..\J I TC H
040 FILE

'·.) •. ;.;

o:.:.:,;o FI 1...E

<) ~.5 :·:')
() ~=54 , ...
•.) ~-.-.. :::.•

() :_:_:_;{)

() /i ~.::.;
0(>(;
. ••• .• •••1
' .. } i::> ,/

070 Fil ... E
O"l:t.
072
07:~

0·74

075
076
077
078
080 FILE
081
082
083
084

66

j\!f'.:1i''i[·"·
UHIT

i ... !t1hE
l..fr!I T

.· ·· ·•. ··. ,•• ••. ·· .. ••,.
i •. \ .. } ~-.}· " .• } :. .• _.' i t •• i ~ ~ ' .. } }

Nt1i.'iE
l..fr! IT
Ft1C::!<

L.t1hEI...
F:ECGF~:Ob· .. .

T F'. ti CI<::::;
!...UCf·:TICJN

F~'. E T t-1 I i\!
D(1TE
i\!(1(''i[.. ..
Ui .. !IT· .. .
i::"i~·1Ci<

i...(:·:BEI... .. ··
i:;~ECCF;~ :0 b

TF:t1Ci<b· .. .
L. Ci C t, T I Ci i\!

Di::, TE
i\!i~1i"·iE
Ui-...!IT

i . (1 E: t::: !..
F~:E CC h: :0 b .. :.

Thi:~,ci<::;:;
LCJCt·1TICi\!· .. .

F[T{·, IN
:0{·1TE· .. .
NAME-·
UNIT·
Pt-1C1-;.:

L1~BEL

RECORDS
TRACKS

UJCAT I ON-·
RETAIN-·

DATE
NAME-·
UNIT-
PACK-

LABEL
l=<ECmrns-

bUIL..:U (P/S)
l..· .. !Th'. (P/S) .
F'.2 (P/S)

l..0.,ii"<'lF:Ui· ... ! (P/S)
I ••• (P/S)
(P/S)
11 :!. J. :i. /X><

F .!. (P/S)

(P/S)
(P/S)
(P/S)
(P/S)
(P/S)
'? (P/S)
TUETF:
1::· .i. (P/S)

(P/S)
(P/S)
(P/S)
(P/S)
(P/S)
') (P/S)
i,...JE:OTF:
Fl (P/S)

(P/S)
(P/S)
(P/S)
(P/S)
(P/S)
: (P/S)
THUTI:~

F :I. (F' /~'.))

(P/S)

F'f~1Cl<OB (P /S)
(P/S)
(P/S)

(P/S)
(P/S)
(P/S)
? (P/S)
FHITF~
F :I. (P/S)
Pr~CKOB (P/S)
(P/S)
(P/S)

Tl··IUF~flDr~ YS FI LE (P/S)

Fl:;~ I Dr-·ws FI LE (P/S)

085 TRACKS- (P/S)
086 LOCATION- (P/S)
087 1:;:ETAIN- (P/S)
088 DATE- ? (P/S)
09() FILE NAME- t.Jl<L. YT!=;! (P/S)
091. UNIT-· 1:~ :I. (P/S)
092 PACI'\- Pc~Cl\:04 (P/S)
09:3 LABEL- (P/S)

094 f~ECCJRDB- ~=:;oo (P/S)

8~i l...OCAT I ON-· (P/S)
r.;~ETAIN- f°' (ENTER-) ..

:1.00 FILE NAME-· (P/S)
**
MODIFY

HUN (P/S)

Explanation

o 000 BUI LO NAME

• 001 UNIT

• 020 DATE

• 030 SWITCH
(00000000)

• 040 Fl LE NAME

• 048 DATE

• 090 Fl LE NAME

• 094 RECORDS

• 096 RETAIN

• 100 Fl LE NAME

• RUN

- WTR
The procedure name in the source library is WTR.

- R2
The procedure is located on unit R2.

- (P/S)
The date statement is not part of the procedure.

- 11111XXX(P/S)
The first five external indicators are used to tell the program which input files are to be
used (Monday - Friday).

- MONTR MONDAYS FILE
The file name for each day is different. The comment (MONDAYS Fl LE) will become
part of the procedure.

- ? (P/S)
The date each file was created is supplied at CALL time, when the job is run.

- WKL YTR (P/S)
The output file is called WKL YTR and put on PACK04 on unit R 1.

- 500 (P/S)
Our output file contains up to 500 records.

- P (ENTER-)
We want to make this a permanent file. The ENTER- key caused DATE to be skipped and
Fl LE NAME prompted.

(P/S)
We are finished with file statements, prompt MODI FY.

- Put the procedure in the source library.

Sample Jobs 67

SAMPLE JOB 6. MUL Tl-Fl LE CALL

We are going to run the procedure we built in sample job 5. However, this week Thursday was a holiday so there are only
four input files. We can still use the same procedure if we delete an input file at MODI FY time.
r;:Et:1DY .. ··
000 Ctil...I_
001

N?~1i"-'iE····

UNIT .. ··

CC::ii ... i... (P/S)
l·lfl:;: (P/S)
Fl (P/S)

**
():I. 0 l...Cit~D
Ol l
~);;~o f.)l·JI TCH
o:?;o FILE
o::!i :I.
0~:;2

o:::;:.·:;
()4 () FILE
() <'.i :L
04;_~

()<~:.''.)

O!'.'iO FILE
O!::i :I.
() ~::; ::.~

()!::;:::;
•)c.'i•:) FILE
•)6:1.
Ob:::.~

ot.i:::;
0·70 FILE
O'? :I.
0"/2
o-;;·:~;

•.:;•UC FILE
\)0 J.
()B::.~

\)B::;;

H (.1 ME 1,o.J I< Yi:;~ !.Ji·~
Ui\!IT·· .. F:I.

····:ll:l.:L1XX)(
Nr'.11"iE· .. ·l·'iClh!TF;:
Ui\!IT .. ··F:L
Ft1Ch: PACl<OB
Dt1TE .. ··
M l-~1 i·'i E TUE Ti:;:
Ui\!IT·· .. F:I.
F' {1Ct< F'(.1Cl\:OD
Dt1TE· .. ·
N i'.:i ME lJ E-D Tr;:
Ui\!IT····F:I.
P1:'1CI"< p (.1Cl<OB
Dt1TE .. ··
l .. !t1ME ····TH UTF;:
l.JHIT F:I.
P (.1Ct< r:: (1C l<O El
Di~1TE· .. .
Nt1hE Fl;: I Tl:;:
UNIT F:I.
F' {1CI< P t1C I< 0 0
DtiTE
t'! (.:, h E t·J I< i.. YT r;:
Ui··!IT .. ··F~:I.
F t1Ch: ·-· F' i'.1C l<O •l

F'.EC \:ir<Db .. ··!::; (} •:)

.:'.;/~::;// .i. (P/S)

4/ 6// :I. (P/S)

-::;/ l,.Fl:i. (P/S)

''.i/O/'/ :I. (P/S)

·'<·/?/? :i. (P/S)

084 RETAIM-P
**
i"'iCiDIFY

o:;.~o (P/Sl

060 r (P/S)

W.Ji'~ (P/S))

Explanation

• 633 DATE

• 043 DATE

• 053 DATE

• 063 DATE

• 073 DATE

e MODIFY 020

• MODIFY 060

• RUN

68

:I. :i. :!. ·):I. XXX (P/S)

4/5/71

4/6/71

4/7/71

4/8/71

4/9/71
We must supply the date for each day's input file because we gave a delayed response (?) at
BUILD time. Thursday's date is entered even though we will delete the file later. A date
should be entered to continue the cycle.

We set off switch four to indicate Thursday's file is missing.

We delete the entire file for Thursday and enter a comment to explain why.

Start the job.

SAMPLE JOB 7. UPDATE MUL Tl-VOLUME MASTER Fl LE

Every Monday the XYZ Novelty Company prepares customer invoices, updates their customer master file, and updates
their inventory file. Because the company has a huge customer file they've had to put the file on two disks: customer
names beginning with A-Lon one disk and the remaining customer names on a second disk. When he created this
multi-volume master file, XYZ's programmer assigned the. following identifying information:

1. A-L customer names:
FILE NAME - CMASTER
PACK -VOL01

2. M-Z customer names:
FILE NAME - CMASTER

PACK- VOL02

Because the company often needs information on individual customers, the programmer designed the customer master file
as a direct file. The program to update the customer master file is CMUPDA. Here are the OCL statements for the job.

HFf.)DY···· l ... Ot:YCI (P/S)

OJO L.Df'.:\fl N/~i·IF ... C::i .. ·H.iP:ctr::1 (P/S)
F J (P/S) 011 UNIT-

020 DATE (12/08/70) (P/S)
03() ,faliJITC.H .; 00000000) (P/S)
040 FILE NAME- Ci°'"l(i::nTJ;: (P/S)

;'F:i. (P/S) 1 04:L Ul--iIT·· ..
r;::i. !' (P/S)I

042 r:.t-1Li<···· !'
1
· -

1Cil n i (P/S)\
1-.Ji:·,i_··_.:;::::::·!.: (P/S).

043 L.t1DFI... ···· (ENTER-)
(P/S) 050 FILE NAME-

i'"ICH:I I FY

i:;:UN (P/S)

Explanation

• 041 UNIT

o 042 PACK

• 050 Fl LE NAME

'F1
R1'
The single quotation marks tell the system the file CMASTER is a multi-volume file. F 1, R 1
tells the system the file is split between the fixed and removable disks on drive one.

'VOL01
VOL02'
The single quotation mark_s tell the system the file is on more than one disk pack. VOL01,
VOL02 tells the system the name of the disk packs containing the file. Pressing the

ENTER- key causes the system to bypass the rest of the file keywords and prompt

FILE NAME.

Pressing the PROG START key causes the system to bypass all the file keywords and

prompt MODIFY.

Sample Jobs 69

SAMPLE JOB 8. CREATE A MULTI-VOLUME INDEXED FILE

We are creating an inventory file. The file is very large and requires five packs. It is an indexed file with a 15 position
keyfield; the keyfield consists of part number and warehouse location. The file is divided among the five volumes as follows:

Volume 101 Keyfields 000-000-ooow 1 B 1 to 175-200-233W182
102 175-200-233W183 to 380-456-280W3R6
103 380-456-287W783 to 629-384-300W3F6
104 629-384-301W78 6 to 949-475-849W8F8
105 949-4 7 6-836W4 F8 to 999-999-999W9F9

The processing starts with 101 on unit R1and102 on unit R2. After processing 101, the program processes 102 allowing
the operator to remove 101 and mount 103 on unit R1. Likewise, 104 replaces 102 and 105 replaces 103.

l:;~EADY- l...Or~D (P/S)

~*******
0:1.0 LOAD NAME-- Cl=i:TIN'·) (P/S)

OU. UNIT- F:I. (P/S)
020 DATE (:I. 2/3 l /2:5) (P/S)
030 Sl.J ITCH (00000000) (P/S)
040 FILE NAME- :u-.p . .)M~::;TF;~ (ENTER-)

04A
04B
04C
04D
04E
04:1.

042

043
044
04~;

046

047
050 FILE

KEY LENGTH- :1.5 (~S)
HI l·<EY-· v :I. /~S-··200·-·2:.?.;31_,._1 :I. B2 (P/S}

HI l<EY ··- ::~;no····4~S6····2001 J::~::F'.6 (P/S)
HI l<EY-· ~.":.29····:3B4····:::~;0011::::;F;::·:· (P/S)
H Il·<EY-· ?49····4"./"'~.=.i····B4?1 IBFB (P/S)
H Il<E'{-· ???····<t<??····???kl?F9 ~· (P/S}

UN IT·-·

LABEi...-
F~ECORDS-

TRACl'\S-

LOCATION-

RETAIN-
NAME-

~· F;~ :I. (P/S}
P2 ~· (P/S}

~· '.)01 ... I 0 :I. (P/S)

'·....'UL I 02 (P/S)
'..)01... Io::::; (P/S)

'·..JDl...I04 (P/S}
1...JDl...IO~:S ~· (P/S)

(P/S)
(P/S)
v :l.00 (P/S}
:I. 9:3 (P/S}

:t.50 (P/S)

:1.9:5 (P/S)
Bo~· (P/S)

"'B"l (P/S}

a (P/S)
49 (P/S)
p
··' (P/S)
pv _, (P/S)
p (ENTER-)

(P/S)

**
MODIFY

1:~1 .. .fl' .. ! (P/S)

70

Explanation

• KEY LENGTH:

• 045 TRACKS
046 LOCATION

All characters except commas are allowed as part of the HIKEY. If apostrophes are used as
part of the key, two apostrophes must be entered for each one in the key. The number of
characters entered for HI KEYs must equal KEY LENGTH.

No statement number is assigned KEY LENGTH. This keyword cannot be changed at
MODI FY time.

The file need not occupy the entire volume if the number of tracks and the starting
location are given. You must be sure these areas are available because the system cannot
check offline packs.

Sample Jobs 71

SAMPLE JOB 9. MAINTAIN A MUL Tl-VOLUME INDEXED Fl LE WITH PACKED KEYS

We are maintaining a multi-volume indexed file. The file occupies four volumes. The keyfield is 15 characters long in
packed format. The keyfield takes eight bytes in the record. The file is divided as follows:

Volume P01
P02
P03
P04

Keyfields 000 000 000 000 000 through 000 025 000 000 000
000 025 000 000 001 through 000 050 000 000 000
000 050 000 000 001 through 000 075 000 000 000'
000 075 000 000 001 through 000 100 000 000 000

The OCL required to use this file is as follows:

PEt:T.iY···· L.()(:·,D (P/S)

***~
() :i. 0 i...f)(iT.!
0:1.:i.
o;;::o Dtl TE
o::~;o :::>J..~j ITCH
OAO FILE

OAT.!
OAC
OAD
OA:i.

O~.::;o FI i...E

HtiME .. ··
UNIT

000()()()()()}
NtrME

i{EY LENGTH····
HI KEY····
Hii·<EY
Hih:Ey
Hil·<E.'l····

UMIT····

Pt: Ci<

i ... t1BEL. ····
NtrME····

f'l:·:YF:OL. (P/S)
Fl (P/S)
(P/S)
(P/S)

F-'l=':Yr:~nL.L. (ENTER-)
Of:'! ~· P (P/S)
:.· 0000:,;::~::;()()0oooooo (P/s)
()()()()~::;()()()()()()()()()() (P/S)

()0007:50()()000000 (P/S)
000 :i. ()()0()()0000()() ~' (P/S)
~, F'. l (P/S)

p:,;:~ ~· (P/S)
~, l.)CJi...PO :i. (P/S)

\)C.li...F'O~;~ (P/S)
\.)Cli...PO::'.~ (P/S)
l.)0i ... f'0 .. :} ~, (P/S)

t:CC;CiNT (ENTER-)
(P/S)

***~
HOI!T.F:Y

F'.UN (P/S)

72

SAMPLE JOB 10. INCLUDE UTILITY CONTROL STATEMENTS IN A PROCEDURE

Sample job 1 showed an OCL LOAD cycle for initializing the removable disk on drive one. This sample job shows how to
do the same job using BUILD and CALL cycles and including the Utility Control Statements in the procedure.

F~EADY-

000 BUILD
OOl

NAME
UNIT-

BUILD (P/S)
INITPI (P/S)
F:I. (P/S)

**
() l () LOAD NAME-·· ~;;INIT (P/S)
Oll. UNIT-- Fl (P/S)
020 DATE (P/S)
030 SIJJITCH (00000000) (P/S)
040 FILE NAME-· (P/S)

**
MODIFY

I NCU.JDE (P/S)

**
ENTER UTILITY CONTROL STATEMENTS
00

// UII·· .. ! UNIT····F;~:I. !' TYPE····F'F;~Ii it·1PY (P/S)
0:1.

.// 1...JIJI... p,:~1CI<···· :I. ::?:::=:;4!:.=j (P/S)
02

/./ END (P/S)
03

HUN (P/S)

**
MODIFY
i:;~EADY-

000 CALL
001.

Ni~ME

UNI T····

Cc:~il ... I... (P/S)
IN I TF;~ I (P/S)
F:I. (P/S)

**
0:1.0 LDr~1D

0:1.:1.
Nr-'=1ME ····~;:.IN IT
UN I T··-F :I.

**
MODIFY

i:;~UN (P/S)

**
I NCl...UDED ~3T f-1 TEr .. iENTS
0 0 / / U I N UN I T ···· F~ :I. ! .. TYPE···· F' F~ I M t1 r;~ y·
0:1. // VOi... F'ACK-:1.2345
02 // END

**
i .. ··iODIFY

PUN (P/S)

Sample Jobs 73

SAMPLE JOB 11. CHAIN PROCEDURES

We're going to use the BUI LDC cycle to chain two procedures created with the BUI LO cycle. First, we use the BUI LO
cycle to build procedures to use the Conversational Utilities ($KSE and $KDE).

After the chained procedure is built, the CALL cycle is used to run the chained procedures ..

l':EADY-
000 BUILD
00].

NAME-·
UNIT-

Bl.111...D (P/S)
K~>E (P/S)
F:I. (P/S) -

**
<>l.O LOAD NAME-· $KSF (P/S)
OU. UNIT-· Fl _(P/S)
020 DATE (P/S)
030 SWITCH COOOOOOOO> (P~)
040 FILE NAME- (P/S)
**
MODIFY

l=<UN (P/S)

l'EADY-
000 BUll...D
001

NAME····
UNIT-·

BUTI .. [I (P/S)
l<DE (P/S)
F:t. (P/S)

•***
<H 0 1...0AD NAME-.. ·=:d<DL (P/S)
0:1.1 UNIT-·· Fl (P/S)
020 DATE (P/S)
o~rn SW I TC::H (()()()()()()()()) (P/S)
040 FILE NAME- l'\I)EFlL.E (P/S)
041. UNIT-· Fl (P/S)
042 PACK- FlFlFl (P/S)
043 LABEi...- mn•n (P/S)
044 RECORDS- 4 (P/S)
045 LOCATION- (P/S)
046 RETAIN- T (P/S)
047 DATE- (P/S)
050 FILE NAME- (P/S)
**
MODIFY

HUN (P/S)

READY-
000 BUILDC
001

NAME
UNIT-

BUIL.DC (P/S)
MASTER (P/S)
F:I. (P/S)

**
0:1.0 CALL NAME- 1-\~!E (P/S)
011 UNIT- F:I. (P/S)
020 CALI... NAME- KDE (P/SL
021 UNIT-· Fl (ENTER-)
**
MODIFY

HUN (P/S)

r~EADY-··
000 CAL.I...
001
000 CALL
001

NAME-·
UNIT-·
NAME-·KSE
UNIT--Fl

Ct1l...I... (P/S)
Mr~ffTT:l~ (P/S)
Fl (P/S)

**
010 LOAD NAME-SKSE
011 UNIT-Fl

**

FORMAT DESCRIPTION ? YES (P/S)

FORMAT TYPE - l'\DE (P/S)

74

NEW SOURCE MODULE ?

SOURCE MODULE NAME -

SOURCE MODULE UNIT -

YES (P/S)

KDEFcm (P/S)

Fl. (P/S)

06672 NEW STATEMENTS MAY BE ADDED TO SOURCE ENTRY

00000

00010

00020

00030

END OF JOB

KSE END

000 CALL
001

OF

HOl

AOO~.'j

AO?l

1-1()2

?

~JOB

(P/S)

(l>/S)

NAME·-KDE
UNIT-Fl

09t.) (P/S)

<DJMMAND KEY 06 PRESSED>

YES (P/S)

**
OlO LOAD
() l.1
020 FILE
021.
022
<n:3
024
02~:;

NAME-$KDE
UNIT-Fl
NAME-KDE:F'IL.E
UNIT-Fl
PACK-FlFlF:I.

LABEL-DR IV?
F~ECORDS-4

RETAIN-T
**

FOF\MAT NAME ·-·

FOF~MAT UNIT ·-·

DISPLAY FORMATS ?

1-101096

AOO:':'i

A09l

NEW KDE FILE ?

KEY FIELD START -

SELECT FORMAT NUMBER -
·if *

l<DEFOF'. (P/S)

Fl (P/S)

'rT:S (P/S)

YES (P/S)

NO (P/S)

Ol (P/S)

00000 THIS IS AN EXAM~_E OF CHAIN PROCEDURE ON THE MODEL. 6 <PIS>

OOOlO KSE WAS THE FIRST JOB EXECUTED AND KDE WAS THE SECOND AND LAST JOB (P/S)

00020 THE aiAIN WAS INITIATED BY CALJ_ING MASTER, WHICH WAS BUILT IN A BUILDC CYCLE CP/S)

00030 <COMMAND KEY 06 PRESSED>

**

BATCH ACCLJMULATCJRB 00 o:I. 02 O~:S 04
() 0 () () 0
o~:; ()6 07 on ()';'

() 0 () () ()

FINAL ACCUMULATORS 00 () l 02 o:~ 04
0 () () 0 ()

05 06 07 on O'l
() () () () ()

**

END OF JOB ? YEf:i (P/S)

l·\DE END OF JOB

Sample Jobs 75

PART II
DISK UTILITY PROGRAMS

Disk Utility Programs 77

Introduction to Disk Utility Programs

Every method of data processing requires a certain amount
of maintenance work to keep it in good running order.
For example, you must make back-up copies of important
files, and remove out-of-date files. The Disk Utility prog
rams are a collection of maintenance programs to serve
your data-processing system. The Disk Utility programs
are:

Disk Initialization
Alternate Track Assignment
Alternate Track Rebµild
File and Volume Label Display
File Delete
Disk/Copy Dump
Library Maintenance

You might use one of the preceding utility programs to:

o Prepare disks for use.

o Replace defective tracks.

• Replace incorrect data on a track.

• Print VTOC (volume table of contents) information.

• Delete files from a disk.

• Copy or print files.

• Maintain system libraries.

GENERAL PROGRAM OPERATION

The utility programs require control statements describing
the jobs you want done. They read these statements from
the system input device, or from procedures stored in a
source library on disk. The system input device is normally
the keyboard, but the operator can specify another device
by his response to the OCL keyword READER during
initial program loading (IPL).

The following diagrams outline the general way the utility
programs operate. Assume that the programs are reading
control statements from the keyboard.

78

All Programs Except Library Maintenance

Operator keys OCL
sequence to load and
run programs

I
Utility Program prints:
ENTER'//' CONTROL -11(1-----

1 STATEMENT

J

Program reprompts
until // END is

· entered

Operator keys control
statement for utility
program

Last Control ~NO ------1
Statement
II END?

i
YES

!
Program ends

Library Maintenance Program

Operator keys OCL
sequence to load and
run program

J
Program prints:
ENTER '//'CONTROL
STATEMENT

Operator keys the
control statement
for a particular
program use

J
Program does the
requested job

J
Program prints:
ENTER'//' CONTROL
STATEMENT

t
!'llore Library----------YES
Maintenance Jobs?

t
NO

J
Operator keys: // END

J
Program ends

USING DISK UTILITIES

To use utility programs, you must write utility control
statements and operation control language (OCL) state
ments. In this manual, therefore, the information for
every program is divided into five sections:

• Control statement summary

• Parameter summary

• Parameter descriptions

• OCL considerations

• Examples

The first three sections are to guide you in writing utility
control statements. The OCL section is to guide you in
writing OCL statements. The examples will help you in
both.

Control Statements

Every control statement is made up of an identifier and
parameters. The identifier is a word that identifies the
control statement. It is always the first word of the state
ment (following// blank in positions 1-3). Parameters are
information you are supplying to the program. Every
parameter consists of a keyword, which identifies the
parameter, followed by the information you are supplying.

You may write utility control statements on whatever paper
or preprinted forms you like. In writing the statements, use
the manual in the following way:

1. Look at the CONTROL STATEMENT SUMMARY
to determine which control statements and parameters
apply to the program use you are interested in. (The
program uses are stated in the text preceding the
control statement summary.)

2. If you need information about the contents or
meanings of particular parameters, look at the
PARAMETER SUMMARY.

3. If you need more detailed information about param
eters, read the PARAMETER DESCRIPTIONS
following the parameter summary.

4. If you need examples of specific jobs, look at the
EXAMPLE section. All examples show the OCL
and utility control statements needed to load and
run the utility programs for specific jobs. The
statements are shown in the form they are printed
on the system printer.

Introduction to Disk Utility Programs 79

Coding Rules

The rules for writing control statements are as follows:

1.

2.

3.

4.

5.

//blank. All control statements must have II blank
in positions 1-3.

Statement Identifier. Begin in it position 4 or after
of the statement. Do not use blanks within the
identifier.

Blanks. Use one or more blanks between the identi
fier and the first parameter. Do not use them any
where else in the statement.

Statement parameters. Parameters can be in any
order. Use a comma to separate one parameter from
another. Use a hyphen (-) within each parameter to
separate the keyword from the information you
supply. Do not use blanks within or between
parameters.

Statement parameters containing a list of data after
the keyword. Use apostrophes (') to enclose the
items in the list. Use a comma to separate one item
from another. For example: UNIT-'R1,R2' (R1 and
R2 are the items in the list).

6. Statement length. Control statements must not ex

ceed 96 characters.

The following example shows a control statement. The
statement identifier is COPY. The parameter keywords are
FROM, LIBRARY, NAME, and TO. The information you
supply is F1, 0, SYSTEM, and R1.

II COPY FROM-F1,LIBRARY-0,NAME-SYSTEM,TO-R1

End-Control Statement

The END statement is a special control statement that
indicates the end of control statements. It consists of the
letters II END in positions 1-6 and must always be the last
control statement for the programs.

80

WRITING OCL STATEMENTS

To write OCL statements to run a utility program, look at
the OCL CONSIDERATIONS section for that program.
There you will find a list of the required keywords and
responses for LOAD and BUILD sequences. (Keywords
not listed can be bypassed.) Should you need more general
information about OCL, or more specific information about
the keywords, see Part I of this manual.

Note: Capitalized words and letters, numbers, and special
characters have special meanings in OCL and utility control
statement descriptions in this manual.

Utility Control Statements

In utility control statements, capitalized words and letters
must be written as they appear in the statement description.
Sometimes numbers appear with the capitalized informa
tion. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use
a value that applies to the job you are doing. The values
you can use are listed in the parameter summaries for the
control statements.

Braces ({ }) sometimes appear in parameters shown in
control statement summaries and parameter sumamries.
They are not part of the parameters. They simply indicate
that you must choose one of several values to complete the

parameter. For example, RETAIN~;~ means you can use

either RETAIN-Tor RETAIN-P.

OCL Statements

In OCL statements, keywords are capitalized. Responses
that are shown in capital letters must be written as shown.
If numbers or special characters are included with the
capital letters, they must be written as part of the response.
For example, $1NIT is the name of the Disk Initialization
program and must be written exactly as shown. Responses
that are not capitalized mean you must use the value that
applies to the job you are doing.

Disks that are being used for the first time must be pre
pared for use. This process is called initialization. You
can also use a disk that has been used before by reinitializing
that disk (any data on the disk is destroyed). You use the
Disk Initialization program to perform initialization.

FUNCTIONS

Initializing a disk involves:

• Naming the disk.

• Writing track and sector addresses on the disk.

• Checking for defective tracks._

• Assigning alternate tracks to any defective tracks.

Naming a Disk

You must name every disk you intend to use. The
operator uses this name to ensure that the correct disks are
being used for a job. He supplies the disk name in either
OCL statements or program control statements. The
system checks this name against the name stored as
identification on the disk pack. If the names don't match,
a halt occurs and a message is printed to the operator. The
operator may then change disks. All this must happen
before a Model 6 program can use a disk.

Writing Track and Sector Addresses

A disk contains 200 or 400 tracks, each of which is divided
into 24 sectors. An area at the beginning of every track
and sector is set aside for an address. These addresses are
necessary for locating data.

Disk Initialization Program ($1NIT)

Track and sector addresses are not written on disks when
the disks are manufactured. You must do this before you
use the disks. The Disk Initialization program does it for
you.

Checking for Defective Tracks (Surface Analysis)

The Disk Initialization program checks the condition of
tracks. It does this by writing data on the tracks, then
reading and checking the data to ensure it was recorded
properly. If the check shows that the data is incorrect,
the track on which the data was written is considered
defective. This process is called surface analysis.

Assigning Alternate Tracks

If a defective track is found during surface analysis, an
alternate track is assigned to it. The sole purpose of the
alternate track is to act as a substitute for the defective
track. Model 6 programs attempting to use the defective
track will automatically use the alternate instead.

If either track 0 or 1 is defective, the program considers the
disk unusable and stops initializing it. Tracks 0 and 1 are
used only by the system and cannot have alternates
assigned to them.

Every disk has six alternate tracks. Therefore, a maximum
of six defective tracks may be assigned alternates on a disk.
If there are more, the disk is considered unusable.

If tracks become defective after a disk is initialized, another
program (Alternate Track Assignment) is used to assign
alternate tracks. Disks need not be reinitialized to assign
alternate tracks.

Disk Initialization Program ($1NIT) 81

OPTIONS

The Disk Initialization program allows you the following
options:

o You may choose one of three types of initialization:
primary, secondary, or clear.

o You may initialize up to three disks during the same
program run.

o During primary initialization, you may decide whether

to erase alternate track assignments already on the disk
or leave them assigned.

o You may use up to ten characters, in addition to the disk

name, to further identify a disk.

o You may specify the number of times you want the
program to do surface analysis.

You specify the options you want in control statements

(see Control Statements in this chapter).

Type of Initialization

The program offers three types of initialization: primary,
secondary, and clear. The type you choose determines the

portion of the disk that will be initialized. The portions of
a disk that can be initialized depend on the data-storage
capacity of your disk drive.

Disk drives of differing storage capacities are available for
your system. All drives use the same type of disks. The

only difference is the number of tracks the drives can use.

The larger the drive capacity, the more tracks the drive .can
use.

If you increase the capacity of your disk drives, more tracks

on your disks become available for use. These additional
tracks must be initialized before being used. The three

types o.f initialization allow you the following options
according to type.

o Primary or clear-initializing all tracks corresponding to

the new capacity, including any that were previously
initialized.

o Secondary-initializing only the additional tracks made
available by the increased capacity.

82

Primary Initialization

Primary initialization applies to new disks, or disks you
have used but want to initialize again. The program ini
tialized all tracks corresponding to the capacity of the
drives on which the disks are mounted. Tracks that were
previously initialized are initialized again. Any data on the

tracks is destroyed.

You can use primary initialization on a disk as often as you

want. However, the program will not initialize disks con

taining libraries, temporary data files, or permanent data
files. You must delete data files with the File Delete Pro
gram and libraries with the allocate function of the Library

Maintenance Program.

Secondary Initialization

Secondary initialization applies to disks that were initialized

on drives of less capacity than drives you are now using.
When you increase the capacity of your drives, more tracks
on your disks become available for use. You must initialize

the additional tracks. Use secondary initialization if you do
not want information destroyed on tracks already in use.
The program initializes the additional tracks only. Tracks

already in use are not disturbed.

The program will not do secondary initialization on new
disks or disks that have already been initialized to the
capacity of the drives on which they are mounted.

Clear Initialization

Clear initialization applies to new disks but only to those
which cannot be used because of invalid pack labels or
some other unrecoverable disk error. All tracks correspond

ing to the capacity of the drives on which the disks are
mounted are initialized. Tracks that were previously ini

tialized are reinitialized.

Warning: All libraries, temporary data files, or permanent

data files are completely wiped out.

Number of Disks

The Disk Initialization program can initialize a maximum
of three disks during one program run. The type of ini
tialization you specify for a program run applies to all
disks being initialized during that run. The disks, however,
must be mounted at the same time. You can't, for example,
initialize more than one removable disk on a given drive
during the same program run.

Erasing Alternate Track Assignments

You can use primary or clear initialization to reinitialize
disks that have been used. However, alternate track assign
ments could exist on such disks. The Disk Initialization
program, therefore, gives you the option of:

• Erasing existing alternate track assignments and check
ing the condition of all tracks.

• Leaving existing alternate track assignments and check
ing only those tracks to which alternates are not assigned.

The option you choose applies to all disks being initialized
during the program run.

Additional Disk Identification

When .vou name a disk during primary or clear initialization,
you can use up to ten characters, in addition to the disk
name, to further identify the disk. The additional identifi
cation is strictly for your use. It is not used by the check
ing programs to ensure that the right disks are being used.

If you use the File and Volume Label Display program to
print VTOC (volume table of contents) information from a
disk, the additional identification is printed with the disk
name.

Surface Analysis Option

You can tell the Disk Initialization program to perform
surface .analysis from 1 to 255 times before judging whe
ther or not tracks are defective. A track must successfully
complete every check before being judged usable. If incor
rect data is detected during surface analysis, the track on
which the data was written is judged defective and an
alternate is assigned to it.

The number of times you specify surface analysis to be
performed applies to all disks being initialized during the
program run. The time required for initialization is increas
ed if you request surface analysis to be performed more
than once.

CONTROL STATEMENTS

You must supply the following control statements to spe
cify the program options you want:

1.

2.

3.

VIN statement-indicates the type of initialization,
the number of disks being initialized, the number of
times you want surface analysis performed, and whe
ther or not you want previous alternate track assign
ments erased. One UIN statement is required per
program run.

VOL statement-indicates the name you assign to the
disk, plus any additional identification you want to
give the disk. The VOL statement applies to primary
and clear initialization only. One is required for
every disk you initialize.

END statement-indicates the end of control state
ments.

Disk Initialization Program ($1NIT) 83

Control Statement Summary

Type of Initialization Control Statements Q
Primary f):

New Disks

Disk already in
use (reinitialize)

1

jcode t jHALFt
II UIN TYPE-PRIMARY,UNIT- 1,codes'\ ,VERIFY-number,CAP-1 FULL\

II VOL PACK-name,I D-characters

II END

1

jcode t j NO l jHALFt
II UIN TYPE-PRIMARY,UNIT-

1
,codes'\ ,VERIFY-number,ERASE-

1
YES\ ,CAP-1FULL\

II VOL PACK-name, ID-characters

II END

Secondary 8:

84

Disk already in
use {

5code l II UIN TYPE-SECONDARY,UNIT- 1 ,codes'~ ,VERIFY-number

II END

II UIN TYPE-CLEAR,UNIT-
1

,coded ,VERIFY-number,CAP-
1
FULL~

Clear l
j code t j HALF l

II VOL PACK-name.ID-characters

0
e

II END

Control statements are required in the order they are listed: UIN, VOL, END or UIN, E.ND.

For primary initialization, one VOL statement is required for each disk listed in the UNIT parameter.pf the UIN statement.
The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT parameter. The PACK parameter
in the second VOL statement applies to the second disk listed in the UNIT parameter, and so on.

e VOL statements are not required for secondary initialization because the disks are already named.

Parameter Summary

I UIN (Input Definition) Statement

TYPE-PRIMARY

TYPE-SECONDARY

TYPE-CLEAR

UNIT-code

UN I T-'code,code'

UN I T-'code,code,code'

VERIFY-number

ERASE-YES

ERASE-NO

CAP-HALF

CAP-FULL

I VOL (Volume) Statement

PACK-name

ID-characters

Primary initialization. Initialize the disks to the capacity of the drives on which th~y

are mounted. Tracks already initialized are re-initialized. The program will not
initialize disks containing libraries, temporary data files, or permanent data files.

Secondary initialization. Applies only to disks that were initialized on drives of
less capacity than the drives you are now are using. It means initialize the uninitial
ized portions of the disks to the capacity of the drives on which the disks are
mounted. Tracks already initialized are not distrubed.

Clear initailization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re-initialized. Active files and library
checking is bypassed and any data on the tracks is destroyed. Error logging areas
on F1 are saved.

Disk location (one disk).

Disk location (two disks).

Disk location (three disks).

Possible
codes:
R1, F1,
R2, F2

Do surface analysis the number of times indicated (number can be 1-255). VERIFY-1
is assumed if you omit the parameter.

Retest defective tracks.

Do not retest defective tracks.

Initialize a disk to half capacity
even if on a full capacity drive.

Initialize a disk to full capacity.

Primary initialization only. ERASE-NO is
assumed if you omit the parameter.

The CAP Keyword forces ERASE-YES. Pack
is initialized to capacity of the drive if this
keyword is omitted.

Disk name. Can contain any of the standard System/3 characters except apqstrophes,
leading or embedded blanks, and embedded commas. Its length must not exceed six
characters.

Additional identification. Can contain any of the standard System/3 characters
except apostrophes, leading or embedded blanks, and embedded commas. Its length
must not exceed ten characters. If you omit this parameter no additional identifica
tion is written on the disk.

Disk Initialization Program ($1NIT) 85

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)

The TYPE parameter indicates the type of initialization you
want the program to do: primary, secondary, or clear. The
type of initialization and the capacity of the disk drives on
which the disks are mounted determine which disk tracks
will be initialized. If this parameter is omitted, primary is
assumed.

UNIT Parameter (UIN)

The UNIT parameter (UNIT-code) tells the location of the
disks you want to initialize. The program can initialize up
to three disks during one program run.

The form of the UNIT parameter depends on the number of
disks you are initializing:

1. For one disk, use UN IT-code

2. For two disks, use UN IT-'code,code'

3. For three disks, use UNIT-'code,code,code'

The codes indicate the locations of the disks:

Code

R1
F1
R2
F2

Location·

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

For primary and clear initialization, the order of codes
must correspond to the order of VOL control statements.
If, for example, you had used the parameter UN IT-'R 1,R2',
the first VOL statement applies to the removable disk on
drive 1 and the second VOL statement to the removable
disk on drive 2. (No VOL statements are required for
secondary initialization. The disk is already named.)

VERIFY Parameter (UIN)

The VERIFY parameter (VERIFY-number) concerns sur
face analysis. It enables you to indicate the number of
times you want the program to do surface analysis before
judging whether or not tracks are defective. The number
can be from 1-255. If this parameter is omitted, VERIFY-1
is assumed.

86

ERASE Parameter (UIN)

The ERASE parameter concerns alternate track assignment.
It applies only to disks that have already been initialized
and used, but you are reinitializing using primary initializa
tion.

The condition of tracks on such disks has been tested at
least once before (during the previous initialization) and
tracks that were found to be defective during surface analy
sis were assigned alternates. The ERASE parameter, there
fore, enables you to indicate whether you want the program
to (1) retest the tracks to which alternate tracks are already
assigned or (2) leave the alternate tracks assigned without
retesting the tracks.

The parameter ERASE-YES means to retest. If you tell
the program to retest, it erases any existing alternate track
assignments, and tests all tracks as though the disk were
new.

The parameter ERASE-NO means not to retest. If you
tell the program not to retest, it tests only those tracks to
which no alternate tracks are assigned. Alternate tracks
previously assigned remain assigned.

CAP Parameter

The CAP parameter determines the size of the pack when it
is initialized. The CAP-HALF parameter means to initialize

the pack to half capacity even if it is on a full capacity drive.
The CAP-FU LL parameter means to initialize the pack to
full capacity. CAP-FU LL should not be used on a half
capacity system. The use of the CAP keyword forces
ERASE-YES.

Disk Drive Capacity

Disk Drives of different data-storage capacities are available
for System/3 Model 6. All drives use the same type of
disks. The only difference is the number of tracks the
drives can use: the larger the drive capacity, the more
tracks the drive can use. However, you must initialize the
disk tracks before using them.

PACK Parameter (VOL)

The PACK parameter (PACK-name) applies to primary and
clear initialization only. During primary and clear initializa
tion, the Disk Initialization program writes a name on 'each
disk. It uses the name you supply in the corresponding
PACK parameter. (One VOL control statement containing
a PACK parameter is required for each disk.)

The name can be any combination of standard System/3
characters except apostrophes (') and leadi.ng or embedded
blanks (see Appendix J). Its length must not exceed six
characters. The following are valid disk names: 0, F0001,
012, A 1 B9, ABC.

In general, disk names are used for checking purposes.
Before a program uses a disk, the disk name is compared
with a name you supply (either in OCL statements or con
trol statements required by the program). If the names do
not match, a message to the operator is printed. In this
way, programs cannot use the wrong disks without the
operator knowing about it.

ID (Identification) Parameter (VOL)

·The ID parameter (ID-characters) applies to primary and
clear initialization only. It enables you to include up to
ten characters, in addition to the disk name, to further
identify a disk. The information is strictly for your use.
(It is not used for checking purposes by the system.) If you
use the File and Volume Label Display program to print

the disk name, it will also print the additional identification
for you.

The additional identification can be any combination of
standard System/3 characters except apostrophes (') and
leading or embedded blanks. However, the maximum num
ber is ten.

Disk Initialization Program ($1NIT) 87

OCL CONSIDERATIONS

LOAD Sequence

Keywords 0 Responses e Considerations

READY LOAD None

LOAD NAME $1NIT Name of Disk Initialization program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Initialization program.

MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence

Keywords 0
READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses. G
BUILD

Procedure name

R1, R2, F1, or F2

$1NIT

R1, R2, F1, or F2

INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Disk Initialization program.

Location of disk containing Disk Initialization program.

Response when including control statements in
procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

88

EXAMPLE

Primary Initialization of Two Disks

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

II UIN UNIT-'F2,R2' ,TYPE-PRIMARY }

ENTER '//' CONTROL STATEMENT
II VOL PACK-2222

ENTER '//' CONTROL STATEMENT
II VOL PACK-PAYROL,ID-010270

ENTER '//' CONTROL STATEMENT
II END

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY even
though the two words do not appear
on the same line.

Message printed by Disk Initialization program.

Control statement supplied by operator.

Sequence repeats until operator enters
END statement.

• Disk Initialization program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The two disks on drive 2 are being initialized (UN IT-'F2, R2' in UI N statement.

• The fixed disk (F2) will be given the name 2222 (PACK-2222 in first VOL statement).

• The removable disk (R2) will be given the name PAYROL (PACK-PA YROL in second VOL statement). Additional
identifying information, 010270, will be written on the removable disk (I D-010270).

Disk Initialization Program ($1 NIT) 89

MESSAGES FOR DISK INITIALIZATION

I Message

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTERNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABLE ERROR;
RE-INITIALIZING PACK

90

Meaning

This message is printed when initialization of a disk is complete. XX indicates the
unit (R 1, R2, F 1, or F2) on which the initialization is complete.

This message is printed when initialization of a disk must be terminated for one of
the following reasons:

1. Cylinder zero is defective.

2. More than six tracks are defective.

3. Possible disk hardware error exists.

4. The program attempted to initialize the disk ten times without success.

After this message is printed, halt A 13 will occur. XX indicates the unit (R 1,
R2, F1, or F2) on which the initialization is terminated.

These two messages are printed when a primary track is defective and an alternate
track is assigned to it.

XXX indicates the tracks involved.

This message is printed when the Disk Initialization program determines that the
disk has not been initialized properly. The prowam will again attempt to initialize
the disk correctly with ERASE-YES forced. The maximum number of times that
the program will attempt to initialize a disk is ten. After that number of times,
halt A 13 occurs.

Sometimes a disk track causes a reading or writing error

during a job and an alternate track must be assigned to re
place the defective track. The process of assigning an

alternate track is performed by the Alternate Track Assign

ment program.

FUNCTIONS

The process of assigning an alternate track consists of:

o Writing track addresses on disk.

o Checking for defective tracks.

o Printing all track sectors that contain incorrect data.

o Assigning an alternate track.

Writing Track Addresses

Any time a track causes reading or writing errors during a
job, the system stops the program currently in operation

and writes the track address in a special area on the disk.

All disks contain such an area. The program can then

locate a track by using the addresses stored in this area.
As long as there are alternate tracks available for use,

assignment can be done for all the tracks identified in this

area.

Checking For Defective Tracks

The Alternate Track Assignment program uses a procedure

cal led surface analysis to test the condition of tracks.

Surface analysis consists of writing test data on a track,

then reading the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track Assign

ment program transfers any data from the track to an

alternate track. This is the alternate that will be assigned

if the track proves to be defective.

Alternate Track Assignment Program ($ALT)

In judging whether or not the track is defective, the prog

ram does surface analysis the number of times you specify

in the VERIFY parameter. If you omit the parameter, the
program does surface analysis once. If the track ·causes

reading or writing errors any time during surface analysis,

the program considers the track defective.

Printing Sectors Containing Incorrect Data

If a track is defective, some of the data transferred to the

alternate track could be incorrect. Therefore, when reading

data from the defective track, the program logs all track

sectors containing data that caused reading errors. For a

hard-copy printout, the printer must be assigned as the

logging device. Characters that have no print symbol are

printed as two-digit hexadecimal numbers. The following

is an example:

ABCDE GH123 45 ...

B A
6 5

Appendix A lists the characters in the standard character

set and their corresponding hexadecimal numbers.

To correct errors on the alternate track, use the Alternate
Track Rebuild program.

Assigning An Alternate Track

An alternate track is assigned if a track is defective. When

the program assigns an alternate, it transfers the contents

of the defective track to the alternate. The alternate track

is then automatically used any time the program attempts

to use the defective track.

There are six alternate tracks. The program will not do

condit!onal assignment if all six are already in use.

Alternate Track Assignment Program ($ALT) 91

OPTIONS

The Alternate Track Assignment program gives you the
following options:

• You may choose one of three types of assignment
conditional, unconditonal, or cancel prior.

• You may use up to six alternate tracks on every disk.

• You may specify the number of times you want the
program to do surface analysis.

You specify the options you want in control statements
(see Control Statements in this chapter).

Type of Assignment

The program offers three types of assignment: conditional,
unconditional, and cancel prior. The three types of
assignment allow you the following options according
to type.

• Conditional-testing the condition of a track and
assigning an alternate if it is defective.

• Unconditional-assuming a track is defective and
assigning an alternate.

• Cancel prior-canceling an alternate track assignemnt.

Conditional Assignment

Conditional Assignment consists of testing the condition of
a track (surface analysis) and, if the track is defective,
assigning an alternate track to replace it. It is the normal
use of the Alternate Track Assignment program.

Situation: Conditional assignment applies to tracks that
cause reading or writing errors during a job. Anytime a
track causes such errors, the system does the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the disk.

92

When you use the Alternate Track Assignment program to
do conditional assignment, the program locates the tracks
by using the addresses in the special area on disk. All disks,
fixed and removable, have such an area. The program will
do conditional assignment for all tracks identified in the
area (one at a time), as long as there are alternate tracks
available for assignment.

Unconditional Assignment

You have used the Alternate Track Assignment program
to do conditional assignment. The test on the track
indicated that the track was not defective (an alternate~
therefore, was not assigned). But the track still causes
reading or writing errors, and you want to assign an
alternate to it. For this reason you should assign an
alternate track using unconditional assignment. Alternate
tracks are assigned without first testing the condition of
the tracks suspected of being defective. (A conditional
assignment is forced after an unconditional request to
check any other tracks that previously caused errors.)

Cancel Prior Assignment

Cancel prior assignment is used when a defective track was
found, but all alternates are in use. You want to free an
alternate so you can recover the data from the defective
track. Canceling an assignment involves transferring the
data from an alternate track back to the track to which
the alternate was assigned. Prior to transferring the data
back to the original track, the Alternate Track Assignment
program tests the condition of the original track. If the
track is found defective, the program stops and one of
three options is taken:

• You leave the assignment as it is but continue checking
other assignments (if there are any), or the program ends.

• You cancel the assignment regardless of the condition of
the original track. Before freeing the alternate, however,
you would normally copy (to another disk) the file or
library entry that uses the alternate. This saves the data
that is already on the alternate.

• You test the track again.

You must run the File and Volume Label Display program
to determine to what tracks alternates are assigned.

Ci

Number of Alternate Tracks CONTROL STATEMENTS

There are six tracks on every disk that can be used as
alternates. These tracks, in addition to tracks 0 and 1,
can't be replaced; that is, they can't have an alternate
assigned to them.

You must supply the following control statements to
specify the program options you want:

1. ALT statement-indicates the name and unit of the
disk containing the defective track, the number of
times you want surface analysis done, and the

Surface Analysis tracks to which you want to assign alternates or

You can tell the program to do surface analysis from 1 to
255 times before judging whether or not tracks are
defective. A track is judged usable only after successfully
completing ~very check. If at any time during surface
analysis incorrect data is found, the track on which the
data was written is judged defective, and an alternate is
assigned to it.

2.

for which you wish to cancel assignment of an
alternate track. There can be only 6 ALT statements
per job.

END statement-indicates the end of control
statements.

For each use, the program requires the statements in the
order they are listed: ALT, END.

Control Statemen_t Summary

Use

Conditional Assignment

Unconditional Assignment

Cancle Prior Assignment

Control Statements

II ALT PACK-name, UNIT-code.VERIFY-number
II END

~ track ~ II ALT PACK-name,UNIT-code,ASSIGN- , k • ,VERIFY-riumber
II END trac s

~ track ~ II ALT PACK-name,UNIT-code,UNASSIGN- , k, ,VERIFY-number
trac s

II END

Parameter Summary: ALT (Alternate) Statement

Par~meter

PACK-name

UNIT-code

VERIFY-number

ASSIGN-track

ASS I G N-'track,track, .. .'

UNASSIGN-track

UNASSIGN-'track,track, .. .'

Meaning

Name of the disk.

Location of the disk. Possible codes are R1, F1, R2, F2, D1, D2.

In testing the condition of a track, do surface analysis the number of times indicated
(number can be 1-255). If VERIFY parameter is omitted, do surface analysis once.

Assign an alternate (unconditionally) to one track.

Assign one alternate (unconditionally) to each
track (maximum is six).

Cancel one alternate track assignment.

Cancel· two or more alternate track assignments
(maximum is six).

Use track numbers 8-405 to
identify tracks. Tracks 0-7
are used by the system and
cannot be assigned alternates.

Use track numbers 8-405 to
which alternates are assigned.

Alternate Track Assignment Program ($AL Tl 93

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk containing the defective tracks. This is
the name written on the disk by the Disk Initialization
program.

The Alternate Track Assignment program compares the
name in the PACK parameter with the name on the disk
to ensure they match. In this way, the program ensures
that it is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk containing defective tracks. Codes for the possible
locations are as follows:

Code

R1
F1
R2
F2

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

VERIFY Parameter

The VERIFY parameter (VERIFY-number) enables you to
indicate the number of times you want the program to do
surface analysis before judging whether or not the track is
defective. The number can be from 1-255. If you omit
the parameter, the program does surface analysis once.

94

ASSIGN Parameter

The ASSIGN parameter (ASSIGN-track) applies to uncon
ditional assignment. It tells the program which tracks you
want alternates assigned to.

You can assign alternates to any tracks except 0-7.
Tracks 0-7 are for system use only.

The form of the ASSIGN parameter depends on the num
ber of tracks you want to specify. For one track, use
ASSIGN-track; for two tracks, use ASSIGN-'track,track';
and so on. You can specify up to six tracks.

Use the track numbers (8-405) to identify the tracks. For
example, the parameter ASSIGN-'50, 301,353' causes the
program to assign alternate tracks to tracks 50, 301, and
353.

UNASSIGN Parameter

The UNASSIGN parameter (UNASSIGN-track) appliesto
cancelling alternate track assignments. It identifies tracks
for which you want the program to cancel assignments.

You can cancel up to six assignments. The form of the
UNASSIGN parameter depends on the number of assign
ments you want to cancel. For one assignment, use
UNASSIGN-track; for two assignments, use UNASSIGN
'track,track'; and so on.

Use the track numbers (8-405) to identify the tracks. For
example, the parameter UNASSIGN-'50,301,352' causes
the program to cancel alternate-track assignments for
tracks 50, 301, and 352.

OCL CONSIDERATIONS

LOAD Sequence

KeywordsQ

READY

LOAD NAME

UNIT

MODIFY

Responses f)

LOAD

$ALT

R1, R2, F1, or F2

RUN

Considerations

None

Name of Alternate Track Assignment program.

Location of disk containing Alternate Track Assignment
program.

None

0 Only the keywords listed here are required. You can bypass the rest.

f.) You end every response by pressing PROG START.

BUILD Sequence

KeywordsO Responses&

READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1, or F2

LOAD NAME $ALT

UNIT R1, R2, F1, or F2

MODIFY r---:INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Alternate Track Assignment program.

Location of disk containing Alternate Track Assignment
program.

Response when including control statements in procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

Alternate Track Assignment Program ($ALT) 95

EXAMPLE

Conditional Assignment

Situation

Assume that during a job the system printed a message telling the operator it found a defective track on the removable disk
on drive 1. (The name of the disk is Bl LLNG.) Before doing more jobs, the operator wants to use the Alternate Track
Assignment program to check the condition of the track and assign an alternate to the track if it is defective.

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX)

030 SWITCH (00000000)

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

II ALT PACK-BILLNG,UNIT-Rl

ENTER '//' CONTROL STATEMENT
II END

Explanation

}

}

}

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by Alternate Track
Assignment program.

Control statement supplied by operator.

System reprompts. END statement
terminates sequence.

• Alternate Track Assignment program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The name of the disk (Bl LLNG) and its location (removable disk on drive 1) are indicated by the PACK and UN IT
parameters in the ALT statement.

• Because we omitted the VERIFY parameter from the ALT statement, the program does surface analysis once when it
tests the condition of the track.

96

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

I Message

ALTERNATE TRACK
ASSIGNED

PRIMARY TRACK HAS
BEEN TESTED OK

PRIMARY TRACK STILL
DEFECTIVE

DATA TRANSFERRED
BACK TO PRIMARY
TRACK

**SECTOR WITH DATA
ERROR**

PRIMARY TRACK xxx
ALTERNATE TRACK yyy,
UNIT-zz

Meaning

This message is printed when an alternate track has been assigned to a defective
track and the data has been transferred to the alternate track.

This message is printed when it is determined that a primary track is not defective.

This message is printed when the Alternate Track Assignment program determines
that the track is still defective.

This message is printed when the data is transferred back to the primary track.

I·

This message is printed when the Alternate Track Assignment program found an error
when transferring data. The sector that has the error is printed out.

This message is printed after ALTERNATE TRACK ASSIGNED and DATA
TRANSFERRED BACK TO PRIMARY TRACK. xxx is the primary track number,
yyy is the alternate track number, and zz is the unit involved.

Alternate Track Assignment Program ($ALT) 97

Alternate Track Rebuild Program ($BUILD)

An alternate track assigned by the Alternate Track Assign
ment program may contain some incorrect data. In order
to correct this data, you must use the Alternate Track
Rebuild program.

FUNCTIONS

The process of correcting data consists of:

• Locating incorrect data.

• Replacing incorrect data.

Locating Incorrect Data

The Alternate Track Assignment program prints a listing of
all track sectors that may contain incorrect data. You will
find, on the listing, the name of the disk, the track and
sector numbers of the area suspected of containing incorrect
data, and the data from these sectors.

I Control Statement Summary

Control Statement

II REBUI LO PACK-name,UNIT-code,TRACK-location,LENGTH
number,DISP-position

' Substitute Data
j

II END

98

To replace characters 1-12 and 75-78 of a sector, you can
use either of the following:

1. Use one REBUI LO statement to replace all the
characters with a LENGTH parameter of 78.

2. Use one REBUI LO statement for every set of
positions you correct.

The data you want to substitute must follow the REBUI LO
statements to which it applies. The order of the state
ments and data in the preceding example would be:

II REBUI LO statement
data
II END

II REBUI LO statement
data
II REBUI LO statement
data
II END

for positions 1-78

for positions 1-12

for positions 75-78

Replacing Incorrect Data

The Alternate Track Rebuild program will replace the num
ber of characters you indicate in the positions you indicate.
You must key the new characters in hexadecimal form.
These characters are called substitute data.

OPTIONS

The Alternate Track Rebuild program gives you the
following options:

• You may correct as many characters as you wish on one
track.

• You may correct data on more than one track.

You specify the options you want in control statements
(see Control Statements in this chapter).

Parameter and Substitute Data Summary

REBUILD Statement Meaning

PACK-name

UNIT-code

TRACK-location

LENGTH-number

DI SP-position

(
Substitute Data

I

Name of the disk.

Location of the disk. Possible codes
are R1, F1, R2, F2.

Number of track and sector contain
ing incorrect data. Number is printed
by Alternate Track Assignment prog
ram. Track number must be three
digits; sector number must be two
digits. (TRACK-01109 means track
11 sector 0).

Number of characters being replaced.
Number can be 2-256 and must be a
multiple of 2 (2, 4, 6, etc.).

Position of the first character being
replaced in the sector. Position can
be 1-255.

Code each character in hexadecimal form. Follow every second
character, except the last, with a comma. EXAMPLE: The
numbers 123456 would be coded as F1 F2,F3F4,F5F6. (Appen
dix A lists the hexadecimal codes for System/3 characters.)

Number of Characters

You may replace from 2 to 256 characters on .one track in
one run. You can do this by replacing all the characters
(including correct data) or just groups of incorrect data.

Number of Tracks

The Alternate Track Assignment program prints the track
and sector numbers for those areas that contain incorrect
data. You can correct one or more of these tracks in one
program run. The possible tracks you can correct are 8
through 405 and the sectors are 0 through 23. Tracks 0
through 7 can't be corrected.

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the program the
name of the disk that contains the alternate track being
corrected. This name is the one written on the disk by the
Disk Initialization program.

The Alternate Track Rebuild program compares the name
in the PACK parameter with the name on the disk to
ensure they match. In this way, the program ensures that
the program is using the right disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk that contains the alternate track being corrected.
Codes for the possible locations are as follows:

Code

R1
F1
R2

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.

F2 Fixed disk on drive 2.

TRACK Parameter

The TRACK parameter (TRACK-location) identifies the
track and sector that contains the data being corrected. The
defective track, not the alternate track, is the one you refer
to. Referencing the defective track is the same as
referencing the alternate track.

Use the track and sector numbers in the TRACK parameter.
The possible track numbers are 008-405. Always use three
digits. The possible sector numbers are 00-23. Always use
two digits. The track number must precede the sector num
ber. For example, the parameter TRACK-11019 means
track 110, sector 19.

Track and sector numbers are printed by the Alternate Track
Assignment program when it prints data from sectors that

contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells the pro
gram how many characters you are replacing in the sector.
You must replace characters in multiples of 2 (2, 4, 6, and
so on). The maximum is 256, which is the capacity of a
sector.

Length applies to characters that occupy consecutive posi
tions in the sector. If the characters you want to replace
do not occupy consecutive positions, you must either

replace more characters or use more than one REBUILD
statement. For example, to replace characters 10-11 and
24-25 in a sector, you can do either of the following:

1.

2.

Use one ~EBU I LD statement to replace characters
10-25 (LENGTH-16).

Use two REBUILD statements to replace characters
10-11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the position
of the first character being replaced in the sector. The posi
tion of the first character in the sector is 1; the position of
the second character is 2; and so on. The maximum posi
tion is 255.

Beginning at the position you indicate, the Alternate Track
Rebuild program replaces the number of characters you
indicate in the LENGTH parameter.

Substitute Data

After each REBUILD statement, you must key the substi
tute characters that apply to that statement. The characters
must be in hexadecimal form. Appendix J shows the hexa
decimal forms of the characters in the standard character
set.

Include a comma after every second character. For
example, the data F1 F2,F3F4,F5F6 represents 123456.
F1 is the hexadecimal form of 1; F2 is the hexadecimal
form of. 2; and so on.

Key only the number of characters you indicated in the
LENGTH parameter in the REBUILD statement.

Alternate Track Rebuild Program ($BUILD) 99

OCL CONSIDERATIONS

LOAD Sequence

KeywordsO

READY

LOAD NAME

UNIT

MODIFY

Responses f)

LOAD

$BUILD

R1, R2, F1, or F2

RUN

Considerations

None

Name of Alternate Track Rebuild program.

Location of disk containing Alternate Track Rebuild
program.

None

0
e

Only the keywords listed here are required. You can bypass the rest.

You end every response by pressing PROG START.

BUI LO Sequence

Keywords 0 Responses e ·
READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1 or F2

LOAD NAME $BUILD

UNIT R1, R2, F1, or F2

MODIFY RUN*

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Alternate Track Rebuild program.

Location of disk containing Alternate Track Rebuild
program.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

*BUILD does not allow utility control statements in the procedure.

100

EXAMPLE

Correcting Characters on an Alternate Track

Situation

Assume that the Alternate Track Assignment program
printed the following information:

PACK-Rl

TRACK AND SECTOR BAD-05020

ABC DEF GHl 3 4 5 6 7 8 9 0 ••• } (Assume the entire contents of the sector
B A was printed.)
6 5

It means that errors were detected in sector 20 of track 50
on the removable disk on drive 1. (Assume the name of
the disk is Bl LLNG.)

In checking the characters printed by the program, you
found that the seventh and eleventh characters in the
sector are incorrect and you want the operator to run the
Alternate Track Rebuild program to correct them.

Alternate Track Rebuild Program ($BUI LO) 101

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX)

030 SWITCH (00000000)

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT }

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not

appear on the same line.

Message printed by Alternate Track
Rebuild program.

II REBUILD PACK-BILLNG ,UNIT-Rl,TRACK-05020,LENGTH-6,DISP-7
Control
statements

and substitute
data supplied
by the

operator

ENTER HEX DATA STATEMENT }
C6C7,C8Fl,F2F3

ENTER '/ /' CONTROL STATEMENT }
II END

Explanation

Message printed by Alternate Track

Re~uild program.

Message printed by Alternate Track
Rebuild program.

• Alternate Track Rebuild program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The name of the removable disk (Bl LLNG) and its location (drive 1) are indicated in the PACK and UNIT parameters in
the R EBU I LO statement.

• The sector containing the incorrect characters is sector 20 of the alternate track assigned to track 50 (TRACK-05020).
The seventh character in the sector is the first character being replaced (DISP-7).

• The seventh through twelfth characters in sector 20 are being replaced (LENGTH-6). We included the twelfth character
because the number of characters being replaced must be a multiple of 2. By also replacing the characters between the

incorrect ones, we needed only one REBUI LO statement.

• The substitute characters follow the REBUILD statement. They are F (C6), G (C7), H (CB), 1 (F1), 2 (F2), and 3 (F3).

102

You may need to obtain specific information about a file;
find space available for libraries or new files; or check the
contents of a disk for libraries, temporary data files, or
permanent data files. In order to do any of these, you need
information contained in the volume table-of contents
(VTOC). To obtain this information you must use the File
and Volume Label Display program.

FUNCTIONS

This program allows you to:

• Print VTOC information.

• Print headings for file information.

Print VTOC Information

The VTOC is an area on disk that contains information
about the contents of the disk. Every disk contains a
VTOC. The File and Volume Label Display program allows
you to print this information.

The printed VTOC information is a readable, up-to-date
record of the contents of the disk. There can be any num
ber of reasons why you might need the information. Some
of the more common ones are as follows:

1. Before re-initializing a disk, you might want to check
its contents to ensure that it contains no libraries,
permanent data files, or temporary data files.

2. You want to find out what disk areas are available for
libraries or new files.

3. You want specific file information, such as the file
name, designation (permanent, temporary, scratch),
or the space reserved for the file.

Print Headings

If the file information you requested from the VTOC over
flows onto another page, the program prints the headings
for the information at the top of the next page. It will do
this for each succeeding new page.

File and Volume Label Display Program ($LABEL)

OPTIONS

The File and Volume Label Display program gives you the
following options:

1. Print the entire Volume Table of Contents (VTOC)
from a disk.

2. Print only the VTOC information for certain data
files. You may specify up to 20 file names in one
run.

In both cases, the program also prints the name of the disk.

Entire Contents of VTOC

There are many reasons why you may want to print the
entire VTOC. You may want to check which tracks are
assigned alternates or how many alternate tracks are still
available for use. You may also want to check the boun
daries of libraries or check for permanent or temporary
data files.

File Information Only

You may request information for specific files. You may
want this information to find out file names, file designa
tions, or disk areas reserved for files. You may also use it
to determine the relationship. of multivolume files.

Number of File Names

When you specify a file name, you must use the name that
identifies the file in the VTOC. You are allowed to specify
up to 20 file names in one program run.

File and Volume Label Display Program ($LABEL) 103

CONTROL STATEMENTS

You must supply the following control statements to speci
fy the program options you want:

1. DISPLAY statement - indicates whether you want
the entire VTOC or specific file information from the
VTOC. It also indicates the unit of the disk contain
ing VTOC information.

2. END statement - indicates the end of control statements.

Control Statement Summary

Uses

Print entire
VTOC:

Print only file
information
from VTOC:

Control Statement 0

II DISPLAY UNIT-code,LABEL-VTOC
II END

~ filename ~A II DISPLAY UNIT-code,LABEL- 'f"I • v
II END 1 enames

0 For each use, the program requires the statements in the
order they are listed: DISPLAY, END.

f) The number of filenames you list for a program run may
not exceed 20. (VTOC is considered as one filename.)

Parameter Summary (Display Statement)

Parameter

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-'filename,filename, .. .'

104

Meaning

Location of the disk contain
ing the VTOC information
being printed. Possible codes
are R1, Fl, R2, F2, D1, D2.

Print entire contents of VTOC.

Print VTOC information for
one file.

Print VTOC information for
more than one file. The
number of filenames you list
for a program run may not
exceed 20. (VTOC is consi
dered as one filename.)

PARAMETER DESCRIPTIONS

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the location of
the disk containing the VTOC information being printed.
Codes for the possible locations are as follows:

Code Location

Rl Removable disk on drive 1.
Fl Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 "Fixed disk on drive 2.

LABEL Parameter

The LABEL parameter indicates the information you
wanted printed: the entire contents of the VTOC or only
the information for certain files. The VTOC is an area on
disk that contains information about the contents of the
disk. Every disk, fixed and removable, contains a VTOC.

The meaning of the VTOC information is as follows:

I Heading

PACK-name

ID-characters

NUMBER OF ALTERNATE TRACKS
AVAi LAB LE-number

TRACKS WITH ALTERNATE ASSIGNED

DEFECTIVE ALTERNATE TRACKS

DEVICE CAPACITY-number

LIB RARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

PACK-name

UNIT-code

DATE-xx/xx/xx

FILE NAME

FILE DATE

KEEP TYPE

FILE TYPE

Meaning

Name of the disk.

Additional disk identification (if any).

Number of alternate tracks available for .assignment.

Numbers of primary tracks that have been assigned an alternate.

Numbers of the alternate tracks that are defective.

Disk drive capacity (number of tracks).

Boundary of libraries on the disk. (If the disk contains no libraries, these
headings are not printed.)

Track on which library begins. }

Track on which library ends.

If the disk contains both source and
object I ibrary, ST ART refers to begin
ning of source library and END refers
to end of object library.

Object library only. Track on which extension to library ends. When
object library is full, temporary entries can be placed in space following
end of library, provided that space is available.

Available disk areas.

First track in available area.

Number of tracks available.

Name of the disk.

Location of the disk containing the VTOC information.

Current system date.

Name that identifies file in VTOC.

Date given the file when file was placed on disk.

File designation:
P permanent
T temporary
S scratch

File type:
I indexed
C consecutive
D direct
B basic file

File and Volume Label Display Program ($LABEL) 105

I Heading

106

REC LEN

KEY LEN

KEY LOC

NEXT AVAIL RECORD

NEXT AVAIL KEY

INDEX
START END

DATA
START END

VOL
SEQ

Meaning

Number of characters in each record in file.

indexed files only. Number of characters in each record key.

Indexed files only. Position in record occupied by last character of
record key.

Beginning location of next available record in file. Location is track, sector,
and position within sector.

EXAMPLE: 099/18/006 =track 99, sector 18, position 6. If the first byte of
the next available record occurs in the next track after the end track of
DATA START END then this field will contain****

Indexed files only. Beginning location of next available record key in index
portion of file. Location is track, sector, and position within sector.
EXAMPLE: 090/10/006 =track 90, sector 10, position 6. If the first byte of
the next available key occurs in the next track after the end track of INDEX
START END, then this field will contain****

Indexed files only. Tracks on which index starts (START) and ends (END).

Disk area reserved for the file. START is the first track of the area. END
is the last track. For indexed files, this refers to the data portion of the file.

VOL SEQ applies to multivolume files only. It indicates the order of this
disk as it relates to the other disks containing the remaining portion of the file.

OCL CONSIDERATIONS

LOAD Sequence

KeywordsO

READY

LOAD NAME

UNIT

MODIFY

Responses e
LOAD

$LABEL

R 1, R2, F 1, or F2

RUN

Considerations

None

Name of File and Volume Label Display program.

Location of disk containing File and Volume Label
Display program.

None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BUILD Sequence

KeywordsQ

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses e
BUILD

procedure name

R1, R2, F1, or F2

$LABEL

R1, R2, F1, or F2

INCLUDE I utility control statements
OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of File and Volume Label Display program.

Location of disk containing File and Volume Label
Display program.

Response when including control statements in
procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

File and Volume Label Display Program ($LABEL) 107

EXAMPLE

Printing VTOC Information for Two Files

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

II DISPLAY UNIT-Rl,LABEL-'BILLNG,INVOl'

ENTER '//' CONTROL STATEMENT
II DISPLAY UNIT-F2,LABEL-VTOC

ENTER '//' CONTROL STATEMENT
II END

Explanation

~
~

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.
If you press ENTER- after
responding to UNIT, the DATE,
SWITCH, and FILENAME
keywords are not prompted. ·

RUN is the response to MODI FY
even though the two words are
not on the same line.

Message printed by File and
Volume Label Display program.

Control statement supplied by
operator.

l
Sequence repeats until operator
enters END statement.

• The File and Volume Label Display program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The files for which information is printed are named BILLNG and INV01 (LABEL-'BILLNG,INV01' in first DISPLAY
statement). They are located on the removable disk on drive 1 (UNIT-R1).

• Information from the entire VTOC on F2 is printed.

108

You may find that you no longer need the information in a
file. You can free the space in a file for use by new files by
using the File Delete program.

The program may be used on temporary, scratch and
permanent files. To delete permanent files, you must use
the File Delete program. You can scratch temporary files
by using the File Delete program or by changing the file
designation from temporary to scratch (using the OCL
keyword RETAIN) when you use the file.

FUNCTIONS

This program allows you to:

• Eliminate file references in the VTOC.

• Erase information in a file.

VTOC File References

The File Delete program allows you to remove the VTOC
references to a file by removing the reference (SCRATCH
statement). However, the file reference is not physically
removed from the VTOC until normal end of job has
occurred.

Erase File Information

You may erase a file from the disk as well as removing the
file reference in the VTOC (REMOVE statement). This
involves erasing the information contained in the file. Its
space is then made available for any new files.

OPTIONS

The File Delete program gives you the following options:

• You may choose to delete files in one of two ways:
remove or scratch.

• You may delete some or all files from a disk.

• You may specify up to 52 file names in one job.

File Delete Program ($DELET)

You specify the options you want in control statements
(see Control Statemems in this chapter).

Deleting a File

If you wish to delete a permanent file, you must use the
File Delete program. If you delete a temporary file, you
may use either the File Delete program or change the file
designation when you use the file. You may either remove
or scratch a file. No file is physically scratched or removed
from the VTOC until end of job has occurred.

Removing a File

When you remove a file from a disk (REMOVE statement),
you are removing the file reference from the VTOC. You
may also erase the file from the disk, leaving its area avail
able for use by other files.

Scratching a File

The File Delete program allows you to scratch a file if you
find you may need to reference it later. The SCRATCH
statement does not erase files from the disk. It changes
their designation to scratch (S) in the Volume Table of
Contents (VTOC). By doing this, the program makes the
areas that contain the files available for other files or for
system programs. You can use the file until a permanent
file is created in its place.

A halt will occur if an attempt is made to create a new mul
tivolume file that will have the same label on disk as an
existing single volume file, or an attempt is made to create
a single volume file bearing the same label as an existing
multivolume file. The halt will occur even though the exist
ing file is a scratch file.

Number of Files

You may remove some or all files on a disk. If a file name
applies to more than one file, all the files with that name
are deleted. You can keep this from happening by identify
ing the files with both name and date.

File Delete Program ($DELET) 109

Number of File Names

You may specify as many file names as the control state
ment will allow. If you specify more, you must use more
than one statement. However, you are only allowed to
specify 52 file names in one job.

CONTROL STATEMENTS

1. REMOVE statement-indicates the name and unit of
the disk, what files are to be removed, and whether
or not you are erasing the data for the file.

2. SCRATCH statement-indicates the name and unit of
the disk and what files you wish to scratch.

3. END statement-indicates the end of control state
ments.

Control Statement Summary

I Use Control Statements 0
Scratch all
files in the
VTOC:

II SCRATCH PACK-name, UNIT-code, LABEL-VTOC
II END

Scratch only II SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date e
one file in
the VTOC:

Scratch
multiple
files in the
VTOC:

Remove all
files from
disk:

Remove
only the
files named
from disk:

j filename l
II SCRATCH PACK-name, UNIT-code, LABEL- 1 'filenames'f

II REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA- l ~rO l
YES)

II REMOVE PACK-name, UNIT-code, LABEL- ~ ~i~ename , l DATE-date, DATA- or
II END l NO !

1 filenames ~ YES

II END

0 For each us~. the program requires the statements in the order they are listed: SCRATCH, END, or
REMOVE, END.

110

Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them.

Parameter Summary

I Parameter

PACK-name

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-'filename,filename, ...

DATE-date

DATA- J ~r0 l
I YES~

Meaning

Name of the disk.

Location of the disk. Possib!e codes are R1, F1, R2, F2, D1, D2.

Scratch or remove all files from the VTOC.

file named in the VTOC. Use names that identify files in
Scratch or remove only thel

VTOC. (These are the names
Scratch or remove only you gave the files when you
the files named in the placed them on disk.)
VTOC.

Date of the file being deleted. Date must be a 6-digit number.
EXAMPLE: DATE-062070 means June 20, 1970.

Delete files from VTOC and/or disk.

PARAMETER DESCRIPTIONS Label Parameter

Pack Parameter
The LABEL parameter identifies the files you want to

delete from the disk. Its form depends on the files you are

deleting:
The PACK parameter (PACK-name) tells the program the

name of the disk that contains the files being deleted. The
name you supply in this parameter is the one written on

the disk by the Disk Initialization program.

The File Delete program compares the name in the PACK
parameter with the name on the disk to ensure they match.

In this way, the program ensures that it is using the right
disk.

Unit Parameter

The UNIT parameter (UNIT-code) tells the program the

location of the disk containing the files being deleted.
Codes for the possible locations are as follows:

Code

R1
Fl

R2
F2

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.

Fixed disk on drive 2.

Form

LABEL-VTOC

LABEL-filename

LABEL-'filename,

filename, .. .'

Files Deleted

All of them.

Only the file that is named. The
name can apply to more than one
file. If it does, all of those files are
deleted unless you use a DATE par
ameter to identify a particular one.

Only the files that are named. A
name can apply to more than one

file. If it does, all of those files are
deleted. (You can I ist as many file
names as the statement can hold;

the statement length, however, is

restricted to 96 characters. Addi

tional REMOVE or SCRATCH

statements may be used for addi
tional filenames. The maximum

number of files that can be deleted

in one run is 52.)

File Delete Program ($DELET) 111

Date Parameter

The DATE parameter (DATE-date) applies to two or more
files that have the same name. It tells the program the date
of the one you want to delete.

Every file on disk has a date, which is given to the file at
the time it is created. When two or more files have the same
name, the dates are used to tell one file from another.

The date is a six-digit number: two digits for day, two for
month, and two for year. Day, month, and year can be in
one of two orders: (1) month, day, year and (2) day, month,
year. For example 061870 and 180670 both mean June
18, 1970.

In the DATE parameter, be sure to specify day, month, and
year in the same order as when you placed the file on disk.

112

Data Parameter (REMOVE Statement Only)

The DATA parameter lets you delete the files specified dir·
ectly from the disk as well as from the VTOC.

If YES is coded in this parameter then the file specified will
be removed from the disk and any reference to it in the
VTOC will be removed. In addition, a message will be
printed on the system logging device for each file removed
from the disk in this format:

'DATA REMOVED FOR FILE XXXXXX
DA TE 000000'

DATA-YES should be used only if file security is required.
The time needed to remove the data is much greater than
the time needed to remove the VTOC entry.

If NO is coded in this parameter, then the file specified will
not be removed from the disk. However, any reference to
it in the VTOC will be removed. If this parameter is not
used, DATA-NO is assumed.

OCL CONSI DE RATIONS

LOAD Sequence

Keywords 0 Responses e Considerations

READY LOAD None

LOAD NAME $DELET Name of File Delete program.

UNIT R1, R2, F1, or F2 Location of disk containing File Delete program.

MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

BU I LO Sequence

Keywords 0
READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

Responses G
BUILD

procedure name

R1, R2, F1, or F2

$DELET

R1, R2, F1, or F2

INCLUDE I utility control statements
OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of File Delete program.

Location of disk containing File Delete program.

Response when including control statements in
procedure.

Response when not including control statements
in procedure.

0 Only the keywords listed here are required. You can bypass the rest.

e You end every response by pressing PROG START.

File Delete Program ($DELET) 113

EXAMPLE

Deleting One of Several Files Having The Same Name

Situation

Assume that three files on a removable disk have the same name: INV01. The dates of these files are 6/16/70, 8/18/70, and
11/15/70. You want to delete the 6/16/70 version.

Statements

READY

010 LOAD NAME $DELET

011 UNIT

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT

OCL Load Sequence

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you

press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by File Delete program.

Control statement

// SCRATCH PACK-00001,LABEL-INVOl ,UNIT-Rl ,DATE-061670 f supplied by

ENTER '//' CONTROL STATEMENT
II END

Explanation

Sequence repeats until operator
enters END statement.

• File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

operator.

o Because two other files have the name I NV01, the date (061670) is needed to complete the identification of the file
you want to delete (LABEL-INV01 and DATE-061670).

• The removable disk containing the file to be deleted is on drive 1 (UN IT-R 1).

114

Removing One File

Situation

You want to remove a file named I NV02 from the pack mounted on R 1.

Statements

READY LOAD

010 LOAD NAME $DELET

011 UNIT Fl

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT ~

OCL Load Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by File Delete program.

}
Control statement supplied II REMOVE PACK-00001,LABEL-INV02,UNIT-Rl,DATA-YES
by operator.

'DATA REMOVED FOR FILE xxxxxx DATE 000000' f Printed by File Delete.

ENTER '//' CONTROL STATEMENT
II END

Explantion

Sequence repeats until operator
enters END statement.

• File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Disk that contains the file being removed is named 00001 (PACK-00001 in REMOVE statement).

• The removable disk containing the file to be removed is on drive 1 (UN IT-R 1).

• DATA-YES indicates that the file data as well as the file VTOC reference is to be removed.

File Delete Program ($DELET) 115

Disk Copy/Dump Program ($COPY)

You may need to check records in a file for errors. In or
der to do this you need to print a copy of the file. It is
important to provide a reserve disk or file for disks con
taining libraries or permanent data files in case something
happens to the original disk or file. You can copy the
disk or file using the Disk Copy/Dump program.

FUNCTIONS

Copying a disk or file involves:

• Identifying disk or file locations.

• Using a work area.

Printing a file involves:

• Identifying the portion to be printed.

• Printing record key or relative record numbers.

Disk or File Location

In order to copy a disk or file, you must specify the unit on
which the disk or file is located and the unit to which it is
to be copied. You can copy from one disk to another or
from one area to another on the same disk (the latter ap
plies to only part of a disk or file).

Using a Work Area

When you are copying a disk or file to another disk but
have only one disk drive, you must use available space on
the fixed disk on drive one. The disk you copy from must
be a removable disk. The information from the disk you
are copying is transferred to the available space on the fixed
disk where it remains until another removable disk is mount
ed. This is the removable disk to which the information is
copied.

If you are copying a file from one area on a removable disk
to another area on the same disk you needn't use a work
area on the fixed disk.

116

Printing a Portion of a File

You can print all or part of a file.

Record Keys and Relative Record Numbers

For indexed files the Disk Copy/Dump program will print
each record key (used to access the record) followed by the
contents of the record. The records are printed either in
the order their keys appear in the index portion of the file
or as they appear in the file itself. For sequential and di
rect files, a record is printed with its relative record number
(used to access the record) preceding the record. The re- \
cords are printed in the order they appear in the file.

OPTIONS

The Disk Copy/Dump program allows you the following
options:

• You may copy an entire disk or a file.

• You may print part or all of a file.

• You may delete records from a file.

• You may reorganize a file.

You specify the options you want in control statements
(see Control Statements in this chapter).

Copying and Printing

You may specify any of the following copy or print com
binations:

• Copy an entire disk.

• Copy a data file.

• Copy and print a data file.

• Copy a data file, but print only part of the file.

• Print an entire data file.

• Print only a part of a data file.

On a Model 6 with 8K of main storage, a halt may occur if
all options on a COPY Fl LE are specified for files with large
records (256-bytes). This halt (A234) occurs because not
enough main storage is available. To avoid this halt, con
sider the following changes to the COPYFI LE statement:

1. Specify OUTPUT-DISK instead of OUTPUT-BOTH.

2. Specify REORG-NO instead of REORG-YES.

3. Specify OMIT- instead of DELETE-.•

Copying Entire Disk

When copying a disk, the Disk Copy/Dump program trans
fers the contents of the disk to another disk. The contents
of the two disks .will be the same, except for the disk names
and alternate track information, which may be different.

The disk you are copying can contain libraries or data files
or both. The disk that is to contain the copy must not have
libraries, temporary data files, or permanent,data files.

The program can copy the contents of one removable disk
to another using one disk drive. The drive, however, must
be drive 1. To do this, the program uses available space on
the fixed disk on drive 1. It fills the available space with
information from the disk you are copying. Then it prints
a message telling the operator to mount the other remov
able disk (the one to contain the copy) on drive 1. After
transferring the information from the fixed disk to the
removable disk, the program prints another message telling
the operator to remount the disk you are copying. The
program repeats this procedure until all information has
been transferred.

Until the contents of the disk are completely copied on the
new disk, three addressing portions of the new disk are
changed to prevent accidental usage of a partially filled disk.
Therefore, if the copying process is stopped before it is com
pleted, the pack is unusable. You can restart the copying
process by reloading the copy program or you can restore
the disk by reinitializing.

After a successful copy the copy program prints a message:

COPYPACK IS COMPLETE

Copying Files

The Disk Copy/Dump program can copy a file from one
disk to another or from one area to another on the same
disk.

Your responses to the OCL keywords prompted for the
Disk Copy/Dump program indicate (1) the name and loca
tion of the file being copied and (2) the name and location
of the copy being created. See OCL Considerations in this
section.

The program can copy a file from one removable disk to
another using one disk drive. The drive, however, must be
drive 1. (See WORK Parameter in this section for more
information.)

In copying a file, the program can omit records. (See
DELETE Parameter in this section for more information.)

In copying an indexed file, the program can reorganize
records in the data portion such that they are in the same
order as their keys are listed in the index. (See REORG
Parameter in this section for more information.)

Printing Files

The program can print all or part of the data file. To print
only part, the program needs a SELECT control statement.
(See SELECT KEY and PKY Parameters and SELECT
RECORD Parameters in this section.) If you do not use a
SELECT statement, the entire file is printed.

If you use SELECT or REORG, records from indexed files
are printed in the order their keys appear in the index por
tion of the file; otherwise, they are printed as they appear
in the file. For each record, the program prints the record
key followed by the contents of the record.

Records from sequential and direct files are printed in the
order they appear in the file. For each record, the program
prints the relative record number followed by the contents
of the record.

The program uses as many lines as it needs to print the
contents of a record. If OUTPUT- is specified, only print
able characters are printed. If OUTPTX- is specified, all
characters are printed with their 2-digi13hexadecimal value.
Appendix J lists the hexadecimal values for characters in
the standard character set.

Disk Copy/Dump Program ($COPY) 117

The following is an example of the way the program prints
a 20-character record when OUTPUT- is specified.

ABCDE GHI J 12345

If OUTPTX- is specified, the same record would be printed:

ABC DE GH I J 12345
CCCCCBCCCDFFFFF44444
1234567891 1234500000

After printing the last record, the printer triple spaces and
prints the following message:

(number) RECORDS PRINTED

Deleting Records

If you wish to delete records from a file while copying or
printing, you must indicate the type of record you wish
to omit. To do this, you must specify the identifying
character (any of the standard System/3 character set ex
cept commas, apostrophes, and blanks) and the position of
the character in the records (maximum position 999). The
records that are deleted are printed. When the records of a
fite are being printed, the deleted records are indicated.

Reorganizing a File

When you are copying an indexed file you can reorganize it.
The records in the data portion are put in the same order as
their index keys leaving the original of the file you are copy
ing unaffected. If you are both copying and printing an
indexed file, you must specify reorganization.

COPYING MUL Tl-VOLUME FILES

When copying multi-volume files the first volume of the
input file has to be online when the job is initiated. The
output file must be a new file. If neither condition is sat
isfied a halt occurs.

118

Maintaining Proper Volume Sequence Numbers

To maintain proper volume sequence numbers when copy
ing a multi-volume file, you must either copy all the vol
umes of the file in one run or copy only one volume for
each run of $COPY. For example, if you copy a 3-volume
file one volume at a time: folume 1 in the first run, volume
2 in the second run, and volume 3 in the third run; the
volumes will retain their original sequence numbers in the
output file. Or if you copy all the volumes (1, 2, and 3) in
the same run, the volume sequence numbers in the new file
will be same as in the original file. However, if you copy
only volumes 2 and 3 in one run, their volume sequence
numbers will be changed to 1 and 2 in the output file.

$COPY will insure that all volumes of a multivolume file
have the same date in the following manner. If only one
volume of a multivolume file is copied for each run of
$COPY, the new file will assume the same date as the input
file. If all volumes, or as in the example above, volumes 2
and 3 of a 3-volume file, are copied in a single run, the new
file will assume the current system date.

Maintaining Correct Relative Record Numbers

To m·aintain correct relative record numbers when copying
one. volume of a multi-volume direct file, the size of the
output volume must be the same size of the input volume.
(If you want to increase the size of a file, you must copy
the entire file.) If, for example, you copy the first volume
of a 2-volume file and increase the number of records on
that volume, you are also increasing relative record numbers
of all the records on the next volume. Therefore, output
and input volume extents must be equal if you are copying
only one volume of a multi-volume direct file.

Note: You can not use the copy program to copy a single
volume file to a multi-volume file. End of extents will
probably occur after the first volume of output. If the
output file is a new file, the copy program will not create
it as a multi-volume file.

Direct File Attributes

If you copy a whole multi-volume direct file in one run, the
output file will be given consecutive attributes in the Vol
ume Table of Contents (VTOC). However, this does not
affect file processing. A file with either consecutive or dir
ect attrubutes can be accessed by a consecutive or direct
access method. If only one volume is copied, the direct
attribute will be maintained.

Copying Multi-Volume Index Files

If you want to copy a multi-volume indexed file, REORG
YES must be given. Since an unordered multi-volume in
dexed load is not permitted, a REORG-NO will cause a
halt if an out-of-sequence record is found. If you would
prefer not to reorganize the file, each volume of the file
must be copied as a single volume file. When copying each
volume separately, it can be either ordered or unordered.
When copying one volume of a multi-volume indexed file,
either REORG-YES or REORG-NO may be specified.
HI KEY parameter(s) of the output file must be the same
as the highest key(s) of each input volume.

CONTROL STATEMENTS

You must supply the following control statements to spe
cify the program options you want:

1.

2.

4.

COPYPACK statement-indicates that an entire disk
is to be copied. It contains the unit of the disk to be
copied and the disk to which the copying is being
done.

COPYFILE statement-indicates that all or part of a
data file is being copied or printed or both, whether
the file is to be reorganized, and whether any records
are to be deleted. It also allows you to specify if you
want a work area.

SELECT KEY statement-indicates, according to
record keys, which part of an indexed file you want

printed.

SELECT RECORD statement-indicates, according to
relative record numbers, which part of a file you want

printed.

5. END statement-indicates the end of control state

ments.

Disk Copy/Dump Program ($COPY) 119

Control Statement Summary

Uses 0

Copy an Entire Disk:

Copy a Data File:

Copy and Print
a Data Fiie:

Copy a Data File,
But Print Only a
Part of the File:

Print an Entire Data
File:

Print Only a Part
of a Data File:

Control Statements e

l // COPYPACK FROM-code, TO-code

II END

l

OUTPTX·1 lDELETE·1 e lNO 10 lNO 10

J
II COPY Fl LE ·or· DISK, ·or· 'position,character', REORG· ·or· , WORK· -or·

OUTPUT· OMIT· YES YES
II END

J
OUTPTX·1 l DELETE I e 0 l NO I A

l

//COPY Fl LE ·or- BOTH, ·or· 'position,character', REORG-YES, WORK· ·or· V
OUTPUT· OMIT· YES

II END

l

OUTPTX·1 J DELETE·i e 0 l NO IA
// COPYFILE ·or· BOTH, ·or· 'positlon,character', REORG·YES, WORK· ·or· V

OUTPUT· OMIT· YES
II SELECT KEY,FROM-'key' 0

·Or·

II SELECT KEY,FROM·'key',TO·'key' 0
·Or·

II SELECT RECORD.FROM-number
·Or·

II SELECT RECORD,FROM-number,TO-number

II SELECT PKY,FROM·'key' 8
·Or·

II SELECT PKY,FROM-'key',TO-'key' 8
II END

l
// COPYF I LE l ou:~~X- l PR li~T

OUTPUT-~
II END

II COPYFILE -or- PRINT
OUTPTX·1

OUTPUT-
// SELECT KEY,FROM-'key' 0

-or·
II SELECT KEY,FROM-'key',TO·'key' 0

-or-
// SELECT RECORD,FROM·number

-or-
// SELECT RECORD,FROM-number,TO-number

II SELECT PKY,FROM-'key' 8
-or-

// SELECT PKY,FROM-'key',TO-'key' 8
II END

One of these Q

One of these Q

0
e

The program uses include the possible combinations of copying and printing files.

120

e
0
0

G
0

For each use, the program requires the control statements in the order they are listed: COPYPACK, END; COPYFILE, END; and
COPY Fl LE,SELECT,END.

Needed only if you want to delete a certain type of record. DELETE cannot be used with direct files.

Applies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

WORK-YES applies if you are copying the file from one removable disk to another using the same disk drive (drive one). WORK-NO
applies if you are copying the file from one area to another on the removable disk on drive one.

Identifies the portion you want to print.

Index files with packed keys.

Parameter Summary

COPYPACK Statement Parameters

FROM-code

TO-code

COPY Fl LE Statement Parameters

OUTPUT-DISK

OUTPUT-PRINT

OUTPUT-BOTH

l DISK (
OUTPTX- PR I NT

BOTH

DEL ETE-'positio n,character'
-or-

OM I T-'position,character'

REORG-NO f)

REORG-YES e
WORK-NO e
WORK-YES e

I SELECT Statement Parameters

{
KEY} FROM-'k ' PKY ' ey

{ ~~~ }.FROM-'key',TO-'key'

RECORD.FROM-number

RECORD.FROM-number,
TO-number

Meaning

Location of disk to be copied. Possible codes are R1, F1, R2, F2, D1, D2.

Location of disk to contain the copy. Possible codes are R1, F1, R2, F2, D1, D2.

Copy the file from one disk to another, or from one area to another on the same disk. 0
Print the entire file or only part of the file. 0
Copy the file from one disk to another, or from one area to another on the same disk. G
Also print the entire file or only part of it.

Printed output will be displayed in hexadecimal values.

These parameters are optional. It means that all records with the specified character in the specified
record position are deleted. DELETE causes deleted records to be printed. OMIT causes deleted
records not be printed. Position can be any position in the record (the first position is 1, second 2,
and so on). The maximum position is 9999.

Indexed files only. Copy records in the same way as they are organized in the original file (the file
from which the records are copied).

Indexed files only. Re-organize the records so that the records in the data portion of the file are in
the same order as their keys are listed in the index.

Required for copying a file from one area to another on a removable disk on drive one (R 1 or D1).
It means: do not use a work area.

Required for copying a file from one removable disk on drive one to another removable disk on that
drive. It means: use a work area on the fixed disk on drive one or on the removable disk on drive
one if the file being copied is on the 5445. R 1 must have a minimum of 198 contiguous unused tracks.

Meaning

Indexed files only. Print only the part of the file from the record key that is specified in the FROM
parameter to the end of the file.

Indexed files only. Print only the part of the file between the two record keys that are specified in
the FROM and TO parameters (including the records indicated by the parameters). To print only
one record, make the FROM and TO record keys the same.

Print only the part of the file from the relative record number specified in the FROM parameter to
the end of the file.

Print only the part of the file between the relative record numbers indicated by the parameters
(including the records indicated by the parameter). To print only one record, the FROM and TO
record keys should be the same.

0 In the OCL load sequence, the operator indicates which file is to be copied or printed. For files being copied, he must also indicate
whether the file is being copied from one disk to another or from one location to another on the same disk.

e REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES is required.

e WORK-NO is assumed if you omit the WORK parameter.

Disk Copy/Dump Program ($COPY) 121

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK Statement)

The COPYPACK statement is used to copy the contents
of one disk to another. It has two parameters: FROM
and TO. They tell the program the locations of the two
disks on the disk units.

The FROM parameter (FROM-code) indicates the location
of the disk you are copying. The TO parameter (TO-code)
indicates the location of the disk that is to contain the
copy.

Codes for the possible locations are as follows:

Code

R1
F1
R2
F2

Location

Removable disk on dtive 1.
Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

OUTPUT Parameter (COPY Fl LE Statement)

The OUTPUT parameter is used when copying and printing
data files. It indicates whether you want the program to
copy, print, or copy and print a file.

The parameter OUTPUT-DISK means to copy the file;
OUTPUT-PRINT means to print the file; and OUTPUT
BOTH means to copy and print the file.

OUTPTX can be used instead of OUTPUT to display the
printed output with its hexadecimal values.

DELETE Parameter (COPY Fl LE Statement)

In copying a data file, the Disk Copy/Dump program can
omit records of one type. The DELETE parameter identifies
the type of records. Use of the DELETE parameter is
optional. If you do not use it, no records are deleted.

The form of the parameter is DELETE-'position,
character'. Position is the position of the character in the
record. It can be any position in the record (the first posi·
tion is 1, the second 2, and so on) up to the !Tiaximum
position of 9999. Character is the character, except for
apostrophes, blanks, or commas, that identifies the record.
For example, with the parameter DELETE-'100,R', all
records with an R in position 100 are deleted. By specifying

122

the hexadecimal code for the character, any character
(including apostrophes, blanks, commas, and packed
data) can be used to identify the record to be deleted. For
example, with the parameter DELETE-'100,X40', all
records with a blank (hexadecimal 40) in position 100
are deleted.

Deleted records are always printed. If you are both copying
and printing a data file, deleted records are printed with
the other records that are printed. The deleted records are
preceded by the word DELETED.

The OMIT keyword can be used instead of DELETE.
The deleted records are not printed if OM IT is used.

REORG (Reorganize) Parameter (COPYFILE Statement)

In copying an indexed file, the program can reorganize the
file, such that the records in the data portion are in the
same order as their keys in the file index. The REORG
parameter tells the program whether or not to reorganize
the file.

REORG-YES means to reorganize. REORG-NO means
not to reorganize. REORG-NO is assumed if you omit the
keyword.

If you tell the program to reorganize the file, the reorgani·
zation applies to the copy of the file rather than the origi
nal file. The original file is not affected.

Reorganization (REORG-YES) is required any time you
are both copying and printing an indexed file (OUTPUT
BOTH).

WORK Parameter (COPY Fl LE Statement)

The WORK parameter applies to copying a data file from
one removable disk to another using the same disk drive
(drive 1). It tells the program whether or not to use a
work area on the fixed disk on drive 1.

The parameter WORK-YES means to use a work area.
WORK-NO means not to use a work area.

Work Area

If you have only one disk drive, a common use of the
Disk Copy/Dump program might be to copy a file from
one removable disk to another. To do this, the program
must use a work area on the fixed disk. The output file
must be a new file.

In copying the file, the program fills the work area with
records from the file you are copying. Then it prints a
message telling the operator to mount the other removable
disk (the one to contain the copy) on drive 1. After trans
ferring the records from the work area to the removable
disk, the program prints another message telling the
operator to remount the disk containing the file you are
copying. The program repeats this procedure until all
records have been transferred.

If you have two disk drives, you can also use the same
drive to copy a file from one removable disk to another.
The drive, however, must be drive 1.

You can copy a file from one area to another on the same
disk. If you do, and the disk is a removable disk that you
plan to mount on drive 1, use the WORK-NO parameter
(WORK-NO is assumed if the WORK keyword is not used).
This keeps the program from using a work area on the
fixed disk when it transfers the file from one area to the
other.

When using WORK-YES, the input and output files must
have different labels, locations, or pack names. It is a good
practice to have different pack names on all packs in an in
stallation.

SELECT KEY and PKY Parameters (SELECT Statement)

The SELECT KEY and SELECT PKY parameters apply to
printing part of an indexed file. The parameters are FROM
and TO.

The FROM parameter (FROM-'key') gives the key of the
first record to be printed. The TO parameter (TO-'key')
gives the key of the last record to be printed. The record
key between those two in the file index identify the re
maining records to be printed. If you want to print only
one record, use the same record key in both the FROM
and TO parameters

For example, the parameters FROM-'000100' and
T0-'000199' mean that records identified by keys
000100 through 000199 are to be printed.

If the file index does not contain the key you indicate in
a FROM parameter, the program uses the next higher key
in the index.

You can omit the TO parameter. If you do, the program
assumes that the last key in the index is the TO key.

With the SELECT KEY parameter (but not PKY) you can
use less characters in the FROM or TO parameter than are
contained in the actual keys. If you do, the program
ignores the remaining characters in the key. The number
of characters used in the FROM and TO parameters need
not be the same.

For example, assume that the following are consecutive
record keys in an index: 99999, A 1000, A 1119, A 1275,
A 1900, A 1995, and A2075. The parameters FROM-' A 1'
and TO-' A 199' refer to record keys A 1000 th rough A 1995.

If none of the keys in the file index begin with the charac
ters you indicate in a FROM parameter, the program uses
the key beginning with the next higher characters.

For example, assume that four consecutive record keys in
an index begin with these characters: A 1,A2,A8, and B 1.
The parameters FROM-'A3' and TO-'A9' would refer to
the key beginning with the character A8.

SELECT RECORD Parameters (SELECT Statement)

The SELECT RECORD parameters can apply to any file,
but are normally used for sequential and direct files. These
parameters use relative record numbers to identify the
records to be printed.

Relative record numbers identify a record's location with
respect to other records in the file. The relative record
number of the first record is 1, the number of the second
record is 2, and so on.

The SELECT RECORD parameters are FROM and TO. The
FROM parameter (FROM-number) gives the relative
record number of the first record to be printed. The TO
parameter (TO-number) gives the number of the last record
to be printed. Records between those two records in the
file are also printed. If you want to print only one record,
use the same record number in the FROM and TO param
eters.

For example, the parameters FROM-1 and T0-30 mean
that the first thirty records (1-30) in the file will be printed.

You can omit the TO parameter. If you do, the program
assumes that the number of the last record in the file is the

TO number.

Disk Copy/Dump Program ($COPY) 123

OCL CONSIDERATIONS

LOAD Sequence for Copying an Entire Disk

Keywords 0 Responses& Considerations

READY LOAD None

LOAD NAME $COPY Name of Disk Copy /Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Copy/Dump program.

MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

0 You end ever¥ response by pressing PROG START.

BUILD Sequence for Copying an Entire Disk

Keywords 0 Responses 0

READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1, or F2

LOAD NAME $COPY

UNIT R1, R2, F1, or F2

MODIFY I INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Disk Copy/Dump program.

Location of disk containing Disk Copy/Dump program.

Response when including control statements in
procedure.

Response when not including control statements in
procedure

0 Only the keywords listed here are required. You can bypass the rest.

0 You end every response by pressing PROG START.

124

LOAD Sequence for Copying or Printing Files

Keywords 0 Responses e
READY LOAD

LOAD NAME $COPY

UNIT R1, R2, F1, or F2

FILE NAME COPYIN

UNIT R1, R2, F1, or F2

PACK disk name

LABEL file name

FILE NAME ICOPYO

OR

L Press PROG START

UNIT R1, R2, F1, or F2

PACK disk name

LABEL file name

RECORDS or TRACKS number

RETAIN T,P,orS

MODIFY RUN

Considerations

None

Name of Disk Copy/Dump program.

Location of disk containing Disk Copy/Dump program.

Name Disk Copy/Dump program uses to refer to file
to be copied (input file).

Location of disk containing file to be copied.

Name of disk containing file to be copied.

Name by which file to be copied is identified on disk.

Name Disk Copy/Dump program uses to refer to output
file being created.

If you are only printing records from a file, press PROG
START instead of typing COPYO. The next keyword
prompted will be MODIFY.

Location of disk on which output file is to be created.

Name of disk on which output file is to be identified on

disk.

Name by which output file is to be identified on disk.

Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

Designation (temporary, permanent, or scratch) of
output file.

None

0 Only the keywords listed here are required. You can bypass the rest.

0 You end every response by pressing PROG START.

Disk Copy/Dump Program ($COPY) 125

BUI LO Sequence for Copying or Printing Files

KeywordsQ Responses e
READY BUILD

BUILD NAME procedure name

UNIT R1, R2, F1, or F2

LOAD NAME $COPY

UNIT R1, R2, F1, or F2

FILE NAME COPYIN

UNIT R1, F1, R2, or F2

PACK disk name

LABEL file name

FILE NAME ICOPYO

OR

LPress PROG START

UNIT R1,R2,F1,orF2

PACK disk name

LABEL file name

RECORDS or TRACKS number

RETAIN T, P, or S

MODIFY I INCLUDE
I utility control statements

OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Disk Copy/Dump program.

Location of disk containing Disk Copy/Dump program.

Name Disk Copy/Dump program uses to refer to file to
be copied (input file).

Location of disk containing file to be copied.

Name of disk containing file to be copied.

Name by which file to be copied is identified on disk.

Name Disk Copy/Dump program uses to refer to output
file being created.

If you are only printing records from a file, press PROG
START instead of typing COPYO. The next keyword
prompted will be MODIFY.

Location of disk on which output file is to be created.

Name of disk on which output file is to be created.

Name by which output file is to be identified on disk.

Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

Designation (temporary, permanent, or scratch) of output
file.

Response when including control statements in
procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

0 You end every response by pressing PROG START.

126

EXAMPLES

Copying an Entire Disk

Statements

READY LOAD

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

ENTER '//' CONTROL STATEMENT }

// COPYPACK FROM-F2,TO-R2 }

ENTER '//' CONTROL STATEMENT
II END

COPYPACK IS COMPLETE

Explanation

}

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are

shown are the ones bypassed. If you
press ENTER- after responding to

UNIT, the DATE, SWITCH, and Fl LE

NAME keywords are not prompted.

RUN is the response to MODIFY

even though the two words do not
appear on the same line.

Message printed by Disk Copy/Dump program.

Control statement supplied by operator.

System reprompts. END statement

terminates sequence.

Message printed by Disk Copy/Dump program

to indicate successful copy.

• The Disk Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The contents of the fixed disk on drive 2 (FROM-F2 in COPYPACK statement) is copied onto the removable disk on

drive (TO-R2).

Disk Copy/Dump Program ($COPY) 127

Copying a File From One Disk to Another

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

042 PACK

043 LABEL

050 FILE NAME

051 UNIT

052 PACK

053 LABEL

054 RECORDS

055 TRACKS 50

056 LOCATION

057 RETAIN

MODIFY

ENTER 'II' CONTROL STATEMENT}

II COPYFILE OUTPUT-DISK

II END

128

}
}

File to be
copied
(input file)

File being
created
(output file)

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shovvn am the ones bypassed.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by Disk Copy/ Dump
program.

Control statement supplied by operator.

System reprompts. END statement
terminates sequence.

Explanation

• Disk Copy/Dump program is loaded from fixed di'sk on drive 1 (UNIT-F1 in OCL sequence).

• Input file (OCL sequence):

1. Name that identifies file on disk is MASTER (LABEL-MASTER).

2. Disk that contains the file is the fixed disk on drive 1 (UN IT-F1). Its name is A 1 (PACK-A 1).

• Output file (OCL sequence):

1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).

2. Disk that is to contain the file is the removable disk on drive 1 (UN IT-R 1). Its name is B2 (PACK-B2).

3. The file is to be permanent (RETAIN-P).

4. The length of the file is 50 tracks (TRACK-50).

• The COPY Fl LE statement tells the program to create the output file using all the data from the input file. The output
file is a copy of the input file.

Disk Copy/Dump Program ($COPY) 129

Printing Part of a File

Statement

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

COPY IN

Rl
Input file.

042 PACK B2

043 LABEL BACKUP

050 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

II COPYFILE OUTPUT-PRINT

ENTER 'II' CONTROL STATEMENT
11 SELECT KEY' FROM- I ADAMS I ,TO- I BAKER'

ENTER 'II' CONTROL STATEMENT
II END

Explanation

}

}

l

OCL LOAD Seauence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

J
Message printed by Disk Copy/Dump
program.

Control statement supplied by operator.

Sequence repeats until operator enters
END statement.

• Disk Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Input file (OCL sequence):

1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).

2. Disk that contains the file is the removable disk on drive 1 (UNIT-R1). Its name is B2 (PACK-B2).

• The file is being printed (COPY Fl LE statement).

• The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in the index
(SELECT statement).

130

Your programs. are stored on disk in an area called a library.
You can update or add new entries in this library. In order
to do so, you must use the Library Maintenance program.

The Library Maintenance program ($MAI NT) has five func
tions:

Function

Allocate

Meaning

Create (reserve space for), delete, reorganize,
and change the sizes of I ibraries.

Copy Place entries in, and display the contents of,
libraries.

Delete Delete library entries.

Modify Modify source library entries.

Rename Change the names of library entries.

The control statements you must supply depend on the
function you are using.

Library Description

Source Library

The source library is an area on disk for storing procedures
and source statements. Procedures are groups of OCL
statements used to load programs. The statements can be
followed by input data for the programs. (Procedures for
utility programs can, for example, contain utility control
statements.) Source statements are sets of data, the most
common of which are RPG 11 source programs and Disk
Sort sequence specifications.

Object Library

The object library is an area on disk for storing object pro
grams and routines. Object programs are programs and sub
routines in such a form that they can be loaded for execu
tion. (They are sometimes called load modules.) Routines
are programs and subroutines that need to be link-edited
into object programs before they can be loaded for execu
tion. (They are sometimes called object modules.)

Library Maintenance Program ($MAINT)

Location of Libraries on Disk

Libraries can be located anywhere on disk. However, the
location of a source library with respect to an object library
is always the same:

I

User Area Source Library Object Library : User Area

I
Track 0 Upper Boundary

The boundaries of a source library are fixed. They can be
changed only by the allocate function of the Library Main
tenance program. The upper boundary of an object library,
however, can be moved as additional space is needed when
entries are placed in the library. This happens only if space
is available following the library and if the entries being
placed beyond the normal boundary are not permanent
entries.

Organization of Library Entries

Entries are stored in the object library serially; that is, a
20-sector program occupies 20 consecutive sectors. Tem
porary entries follow all permanent entries in the object
library.

If necessary, the upper boundary is changed to allow more
space for temporary entries. The upper boundary of the
library is extended to the end of the pack or to the first
temporary or permanent file, allowing the maximum
amount of space for the temporary library entry. At the
successful completion of the copy, the upper boundary is
returned to its original position or to the end of the last
temporary entry. If the copy was not completed successful
ly, the upper boundary may remain extended. When a per
manent entry is placed in the library or the library is reorg
anized, all temporary entries are deleted and the upper
bounda_ry returns to its original location. Permanent entries
cannot exceed the original upper boundary.

Library Maintenance Program ($MAI NT) 131

Gaps can occur in the object library when an entry is delet
ed. The associated directory•entries will point to these gaps.
When the Library Maintenance program places a new entry
in the library, it searches the directory for a gap that has
the same number of sectors, or the fewest number of sectors
over the number required by the new entry. If the entry is
smaller than the gap, the last part of the gap will not be
pointed to by a directory entry. Since this gap has no dir
ectory entry, it will not be used until the library is reorgan
ized.

If the number of unusable sectors become excessive, the
library should be reorganized. In reorganizing entries, the
Library Maintenance program deletes temporary entries and
shifts permanent entries so that gaps do not appear between
them. This makes more sectors available for use.

The source library {lifters from the object library in that
entries within the source library need not be stored in con
secutive sectors. An entry can be stored in many widely
separated sectors with each sector pointing to the sector
that contains the next part of the entry. When an entry is
placed in the source library, it is placed in as many sectors
as required regardless of where the sectors are located within
the library.

The boundary of the source library cannot be expanded;
therefore, an entry must fit within the available library
space. To provide as much space as possible within the
prescribed limits of the source library, the system compres
ses entries. That is, blanks and duplicate characters are
removed from entries. Later, if the entries are printed or
punched, the blanks and duplicate characters are reinserted.
When the size of the source library is changed or the source
library is reorganized, all temporary entries are deleted.

library Directories

The program creates a separate directory for each library.
Every library entry has a corresponding entry in its library
directory. The directory entry contains such information
as the name and location of the library entry. The program
also creates a system directory, which contains information
about the size and available space in libraries and their dir
ectories.

132

Organization of This Section

The five functions are described separately. Every descrip
tion contains the following:

1.

2.

3.

4.

5.

List of specific uses.

Control statement summary indicating the form of
the control statement needed for each use.

Parameter descriptions explaining, in detail, the con
tents and meanings of the parameters.

Function descriptions explaining the details of each
function.

Examples that include OCL statements, utility control
statements, and explanations of their use.

OCL considerations for the program precede the examples.

ALLOCATE

The allocate function of the Library Maintenance program
allows you to:

• Create libraries.

• Change the size of libraries.

• Delete libraries.

• Reorganize libraries.

Creating Libraries

Creating a library involves:

• Assigning a library to a disk.

• Assigning space for the library directory.

• Using a work area.

Assigning a Library to a Disk: You are allowed one source
and one object library per disk. The libraries can be located
anywhere on the disk where space is made available as long
as the source library precedes the object library. You
needn't have both libraries for a disk.

Assigning Space for the Library Directory: The Library
Maintenance program creates a separate directory for each
library. A directoiy for a source or object library contains
information concerning each library entry. This informa
tion includes the name and location of the library entry.
For a source library, the first two sectors of the first track
are assigned to the directory. For an object library which
includes system programs, the first three tracks are assigned
to the directory. If system programs are not included, only
the first track is assigned to the directory. The directory
size is overridden by the DI RSIZE parameter if used (see
DIR SIZE).

Another type of directory, the system directory, is also
created by this program. The system directory contains
information concerning the libraries and their directories.
This information includes the size of and available space
in the libraries and their directories. The system directory
is contained in the volume label on any disk pack.

Library Maintenance Allocate Restrictions

This program has restrictions and operating conditions that
the user must be aware of when maintaining libraries.

Allocation of Disk Space

The Library Maintenance program allocates disk space for
each of the following functions:

• Allocate a library

• Increase the size of a library

• Reorganize a library

• Dynamically extend an object library to copy temporary
entries to the library

• Sort a directory before it is printed

The space allocated by the program is the first contiguous
space large enough for the function to be performed. The
Library Maintenance program will use as much space as is
available to the end of the pack or to the first temporary
or permanent data file, removing all scratch files in this
area. If within a single load of the program, there are
functions performed which require more than four disk
areas to be allocated, a halt will occur. The Library Main
tenance program must be reloaded to continue.

Removing Temporary Entries

When a library is reorganized, its size is changed, or it is
moved, all temporary entries in that library are deleted.
This applies to both the source and object libraries.

Library Restrictions

The Allocate function cannot reference the libraries on the
pack from which the Library Maintenance Program or the
system was loaded. For example, if the system was loaded
(I PL) from F1 and the Library Maintenance Program was
loaded from R1, the source or object libraries on F1 and
R1 cannot be referenced on an ALLOCATE statement.

Moving the Object Library

When allocating or reallocating the source library on a pack
that contains an object library, the object library is reorgan
ized and all temporary entries are deleted.

Library Maintenance Program ($MAINT) 133

Allocate Control Statement Summary

{
number} {number} {NO } II ALLOCATE TO-code.SOURCE R ,OBJECT- R ,SYSTEM- YES ,DIRSIZE-number,WORK-code

Source
Library

Object
Library

UseO

l
Create:

Change Size:

Delete:

Reorganize:

) :~~::~Size•
~ Delete•

Reorganize:

Parameter Needed e
TO-code,SOURCE-number,WORK-code e
TO-code,SOURCE-number,WORK-code

TO-code,SOURCE-0

TO-code,SOURC E-R,WOR K-code

TO-code,OBJECT-number,SYSTEM- { ~~S}

TO-code,OBJECT-number,WORK-code 0
TO-code,OBJECT-0

TO-code,OBJECT-R,WORK-codeO

0 You can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source library
and changing the size of the object library).

e If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be on the same disk.) Also, use only one
WORK parameter if both uses require a WORK parameter.

e The WORK parameter is needed only if the disk contains an object library that you are not deleting.

0 The WORK parameter is needed only if other functions are also being performed.

134

Allocate Parameter Summary

Parameter

TO-code

SOURCE-number (no source library on disk)

SOURCE-number (source library already on disk)

SOURCE-R

OBJECT-number (no object library on disk)

OBJECT-number (object library already on disk)

OBJECT-R

DIRSIZE-number

SYSTEM-NO

SYSTEM-YES

WORK-code

Meaning

Location of disk you are using. Possible code-s are R1, F1, R2, and F2

Create a source library. Number indicates the number of tracks you want to assign.

Delete or change the size of the source library. Use depends on number:

Number Use

0 Delete

Any number but zero Change size

Reorganize the source library.

Create an object library. Number indicates the number of tracks you want to assign.

Delete or change the size of the object library. Use depends on number:

Number Use

0 Delete

Any number but zero Change size

Reorganize the object library.

Number of tracks you want for the directory when creating, reallocating, or
reorganizing the object library.

Do not create a scheduler work area. This will be a program pack.

Create a scheduler work area. This will be a system pack.

Location of disk containing space the program can use as a work area. Possible codes
are R1, F1, R2, or F2.

Library Maintenance Program ($MAI NT) 135

PARAMETER DESCRIPTIONS

TO Parameter

The TO parameter (TO-code) indicates the location of the
disk that contains, or will contain, the library. If the pro
gram use involves both libraries, the libraries must be on the
same disk. The TO parameter cannot be the same unit from
which the Library Maintenance program or the system was
loaded.

Codes for the possible locations are as follows:

Code Location

R1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

SOURCE and OBJECT Parameters

The SOURCE and OBJECT parameters identify library
uses:

Parameter

SOURCE-number
OBJECT-number
(number is not
zero)

SOURCE-0 }
OBJECT-0

SOURCE-R}
OBJECT-R

136

Use

If the disk contains no library, this
parameter means create a library.
Number is the number of tracks
you want to assign to the library.

If the disk contains a I ibrary, this
parameter means change the I ibrary
size. Number is the number of
tracks you want to assign to the
library.

Delete the library.

Reorganize the library.

DI RSIZE Parameter

The DI RSIZE parameter.allows the user to specify the size
of the object library directory. The number of tracks spe
cified (1-9) overrides the SYSTEM parameter in determin
ing directory size. Each track can contain 288 directory
entries. One entry is needed for the directory, so the formu
la for the number of entries in a directory is (t x 288)-1,
where tis the number of tracks. If the DI RSIZE parameter
is omitted, the SYSTEM parameter determines the direc
tory size.

SYSTEM Parameter

The SYSTEM parameter applies when creating, changing
the size of, and reorganizing object libraries. It tells the
program whether you intend to include system programs
in the library. If system programs are to be included, a
scheduler work area must be assigned, and the directory
must be large enough for all those system programs neces
sary for program loading and running (minimum system),
and those necessary for generating and maintaining a sys
tem.

Space for the scheduler work area is assigned immediately
preceding the object library. If the disk contains a source
library, the work area is between the source and object
libraries. For information about the size of the scheduler
work area, see Creating an Object Library under Using the
Allocate Function.

The following charts show the results of coding the SYS
TEM parameter for different allocate uses.

Creating an Object Library

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Created Three Tracks

SYSTEM-NO Not Created One Track

not coded Not Created One Track

* The directory size is overridden if the DI RSI ZE parame
ter is used.

Changing the Size of or Reorganizing an Object Library
That Contains System Programs

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Retained not changed

SYSTEM-NO Removed not changed

not coded Retained not changed

*The directory size is overridden if the DI RSIZE parameter
is coded.

Changing the Size of or Reorganizing an Object Library
That Does Not Contain System Programs

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Created not changed

SYSTEM-NO Not Created not changed

not coded Not Created not changed

*The directory size is overridden if the DI RSIZE parameter
is coded.

WORK Parameter

The WORK parameter (WORK-code) indicates the location
of the disk that contains a work area. Library entries are
temporarily stored in the work area while the program
moves and reorganizes libraries.

Codes for the possible disk locations are as follows:

Code Location

R1 Removable disk on drive 1.
F1
R2
F2

Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

When the WORK parameter is coded on an ALLOCATE
statement, an additional allocation of disk space may result.
(See index entry Allocation of Disk Space.}

Size of the Work Area: The work area must be large enough
to hold the permanent entries of the source library, object
library, or both libraries depending on the program use. If
you are combining uses, such as changing the sizes of both
libraries, the work area must be large enough to hold the
contents of both libraries.

Use

Create a source library (disk
contains an object library).

Change source library size
(disk contains an object
library).

Change source library size
(disk doesn't contain an
object library).

Reorganize source library.

Change object library size.

Reorganize object library.

Contents of Work Area

Object library.

Source library and ob
ject library.

Source library.

Source library.

Object library (if not
compress in place see
Compress in Place}.

Object library (if not
compress in place).

Compress in Place (OBJECT-{Nu:ber })

If the object library is being reorganized or the size of the
object library is being changed and no other functions are
being performed, the object library is compressed in place.
This means that the library is reorganized with all gaps
removed and all temporary entries are deleted without
using a work area. The WORK parameter is ignored if it is
supplies.

A work area is needed if a source library function is being
performed, the directory size (DI RSIZE parameter) chan
ged, or the pack type (SYSTEM parameter) changed in con
juaction with an object library function.

Compress in place allows the user with a single-spindle or
half capacity system to reorganize the object I ibrary.

Library Maintenance Program ($MAINT) 137

Location of Work Area on Disk: The program uses the
first available disk area large enough to hold the I ibrary, or
libraries.

Location of Disk Containing the Work Area: The work
area can be on either disk on either drive. However, it can
not be the same disk as the one you specified in the TO
parameter. The only requirement is that the disk must have
an available area large enough for the work area. If your
system has two disk drives, the program works faster if the
disk containing the libraries is on a different drive than the
disk containing the work area.

Using the Allocate Function

Creating a Source library (SOURCE-number)

Source Library Size

• Minimum: One track

• Maximum: Number of tracks in the available area

• Regardless of the number of tracks you specify, the first
two sectors of the first track are assigned to the library
directory. Additional sectors are used as needed for the
directory.

Placement of Source Library (Disk With an Object Library)

• The source library must immediately precede the object
library. A disk area large enough for the source library
must follow the object library because the program
moves the object library to make room for the source
library. To do this, the program needs a work area.
(See WORK Parameter.) The object library is reorgan
ized and all temporary entries are deleted.

• If you allocate a source library after deleting it, the
program automatically moves the object library to make
room for the source library. The starting location of
the source library is the previous starting location of the
object library.

Placement of the Source Library (Disk Without an Object
Library): The program assigns the source library to the
first available disk area large enough for the I ibrary. If you
allocate a source library after deleting it, the source library
is assigned the same way.

138

Disk Space Before Source Library:

Object Library Available Space
(30 tracks) (15 tracks)

I 0-1i--8-31-l-38-52-1
Tracks

Disk Space After Source Library:

Customer
Files

Source Object Library Available Customer)
Lib. (30 tracks) Space Files (
(5 tracks) (10 tracJ<s)

~

I 0-1 I 8-12 t-13-42 • 1 • 43-52-1
Tracks

Changing the Size of a Source Library

Any time the program changes the source library size, it
reorganizes both the source and object libraries and deletes
all temporary entries. (See Reorganizing a Source library.)
To do this, it needs a work area. (See WORK Parameter.)

Making the Source Library Larger

• If the disk contains an object library, space must be
available immediately following the object library. The
program moves the object library to make tracks avail
able at the end of the source library.

• If the disk does not contain an object library, space
must be available immediately following the source
library.

Oisk Before Tracks Are Added to Source Library:

Source Object Available Customer
Library Library Space Files
(10 tracks) (30 tracks) (15 tracks)

(). 7 8-17 ~18-47 48-62
Tracks

Disk After Five Tracks Are Added to Source Library:

Source
Library
(15 tracks)

I 0-1 I 8-22

Object Available
Library Space
(30 tracks) (10 tracks)

l-23-52~ 53-62
Tracks

Customer\
Files

Making the Source library Smaller

• If the disk contains an object library, the program
moves the end location of the source library to make
the library smaller. The object library is moved and
space becomes available following the object library.

• If the disk does not contain an object library, the
program moves the end location of the source I ibrary to
make the source library smaller.

Disk Before Source-Library Size Was Decreased:

Source Object Customer l
Library Library Files
(15 tracks) (30 tracks)

10-1 l-8-22-1-23-52
Tracks

Disk After Five Tracks Were Taken From Source Library:

Source
Library
(10 tracks)

10-1 I 8-17

Object Available
Library Space
(30 tracks) (5 tracks)

1---18-4.?-J 48-52
Tracks

Deleting a Source Library (SOURCE-0)

Files
Customer z

The program makes the disk area occupied by the source
library available for other use {disk files).

Disk Before Source Library Deleted

Source Object Library
Library (30 tracks)
(15 tracks)

I 0-7 ~8-22-•-1. -23-52-1

Disk After Source Library Deleted

Available
Space
(15 tracks)

Object Library
(30 tracks)

I 0-1 1-8-22-1-23-52-j

Tracks

Files
Customer l

Customer
Files

Reorganizing a Source Library (SOURCE-R)

Reason for Reorganizing the Library: Areas from which
source library entries are deleted are completely reused for
new entries. If an entry exceeds the space in such an area,
the program puts as much of the entry as will fit in the area
and continues the entry in the next available area. In this
way, the program efficiently uses library space. This can,
however, decrease the speed at which those entries can be
read from the library. Therefore, if you frequently add
and delete source I ibrary entries, you should reorganize
your source library periodically.

Reorganizing the Library: The program relocates entries
so that no entry is started in one area and continued in
another. All temporary entries are deleted. The program
needs a work area. {See WORK Parameter.)

Creating an Object Library (OBJECT-number)

Object Library Size

• Minimum: Three tracks, including the directory tracks.

• Maximum: Number of tracks in available area.

• Library Directory: The first three tracks in the library
are reserved for the library directory if the library is to
contain system programs; otherwise, only the first track
is used. If the DI RSIZE parameter is entered, the
directory size specified is used.

• Scheduler Work Area: If the library is to contain system
programs, the space available on the pack must be large
enough to contain a work area for the Scheduler program

{one of the system programs). The work space is not in
cluded in the number you specify in the OBJECT param
eter; the space is calculaied and assigned by the Library
Maintenance program. The amount of space needed de
pends on whether the. inquiry capability is generated in
the supervisor. All systems require two tracks, the inquiry
feature requires additional tracks for a Roll-in/Roll-out area.
The number of tracks needed depends on the main storage
size of the system.

Library Maintenance Program ($MAI NT) 139

Main Storage Size Roll-in/Roll-out Tracks

8K 4

12K 4

16K 5

24K 6

32K 8

Placement of Object Library (Disk With a Source Library):
Space for the object library must be available immediately
following the source library.

Placement of Object. Library (Disk Without a Source
Library): The program assigns the object library to the
first available disk area that is large enough.

Changing the Size of an Object (OBJECT-number)

Making the Library Larger: The number of tracks you
want to add must be available im.mediately following the
object library. The program assigns the additional tracks
to the library. (The starting location of the library remains

unchanged.)

Making the Library Smaller: The program moves the end
location of the object library to decrease the library size.
Tracks, therefore, become available following the library.

Reorganizing the Library: Any time the program changes
the library size, it also reorganizes the library and deletes
all temporary entries. (See Reorganizing an Object Library.)
If other functions are also being performed, the program
needs a work area. (See WORK Parameter.)

Deleting an Object Library (OBJECT-OJ

The program makes the disk area occupied by the object
library (and the scheduler work area if this was a system
pack) available for other lJSe.

140

Reorganizing an Object Library (OBJECT-R)

Gaps can occur between object library entries when you
add and delete entries. By reorganizing the library, these
gaps are removed. When the library is reorganized, all
temporary entries are deleted. If other functions are also
being performed, the program needs a work area. (See
WORK Parameter.)

COPY

The copy function of the Library Maintenance program

allows you to copy:

Reader-to-Library: Add or replace a I ibrary entry. The

reader is the system input device, which is either the
keyboard or a card reader.

File-to-Library: Add or replace one or more library entries.
A disk file is the input. Each entry in the file must have a
II COPY statement and a II CEND statement. The file is
opened and accessed consecutively.

Library-to-Library

• Copy one library entry (or those entries with the same
name from all libraries).

• Copy library entries that have names beginning with

certain characters.

• Copy all library entries.

• Copy minimum system.

Library-to-Printer

• Print one library entry (or those entries with the same
name from all libraries).

• Print library entries that have names beginning with
certain characters.

• Print all library entries of a certain type.

• Print directory entries for library entries of a certain
type.

• Print entries from all directories including the system·

directory.

• Print system directory only.

Library-to-Card

• Punch one library entry (or those entries with the same
name from all libraries).

• Punch library entries that have names beginning with
certain characters.

• Punch all library entries of a certain type.

library-to-Printer And Card

• Print and punch one library entry (or those entries with
the same name from all libraries).

• Print and punch library entries that have names beginning
with certain characters.

• Print and punch all temporary or permanent library
entries of a certain type.

Copying a library entry involves:

• Identifying the location of an entry.

• Identifying an entry.

• Removing and reinserting blanks and duplicate
characters.

Identifying the Location of an Entry. An entry may be
read from either the system input device (keyboard or
card reader) or from disk. It can be copied to disk, printer,
or cards.

Identifying an Entry. Entries are identified by their type
and name. Entries that can be copied include source
library, object library, and system directory entries. A
name identifies specific entries within the library or
directory. You can also further identify an entry by
designating whether it is temporary or permanent. This
allows the program to make a check before replacing an
entry.

Removing and Reinserting Blanks and Duplicate Characters.

Source statements and procedures are placed in the source
library. Before source statements or procedures are put in
the source library, blanks and duplicate characters are
removed to save space. When the source statements or
procedures are used blanks and duplicate characters are
reinserted. Procedures are left unchanged when placed in
the source library.

COPY Control Statement Summary: Reader-To-Library

Add or Replace a Library Entry

II COPY FROM-READER.LIBRARY-{~ }NAME-name,

TO-code.RETAIN-{~}
Library Entry:

II CEND l Must always follow the source or object
entry being placed into the source or
object I ibrary.

COPY Control Statement Summary: File-To-Library

Add or Replace One or More Library Entries

II COPY FROM-DISK,FI LE-filename,RECL-{:~~,

TO-code,RETAIN- ~ ~ f

Example of data in disk file:

II COPY FROM-READER,LIBRARY-0,RETAIN-P,

NAME-DECK01 0

load module

II CEND

II COPY LI BRARY-S,NAME-DECK02 0

source module

II CEND

Oonly the LIBRARY and NAME parameters are required.
Other parameters are ignored.

Library Maintenance Program ($MAI NT) 141

COPY Control Statement Summary: Library-To-Library

142

Copy One Library Entry (or Entries with the Same Name from All Libraries)

II COPY FROM-code, LIBRARY· 1 lLL} ,NAME-name,TO-code,R ETAI N·{ ~ }.NEWNAME·name 0

Copy Library Entries that Have Names Beginning with Certain Characters

II COPY FROM-code,LIBRARYJ ~ }.NAME-characters.ALL,TO-code,RETAIN- { ~ }.NEWNAME-characters 0
tALL

Copy All Library Entries

II COPY FROM-code, LIBRARY J ~ } ,NAME-A LL, TO-code,R ET Al N-{ ~}
tALL

Copy Minimum System

II COPY FROM-code,LIBRARY-0,NAME-SYSTEM,TO-code

0 NEWNAME parameter is needed in any of the following cases:

1. If you want the copy to have a different name than the original entry.
2. If you want to replace an entry on the TO disk with an entry from the

FROM disk, but the entries have different names.
3. If you want the names of the copies to begin with different characters

than the names of the original entries, the same number of characters
must be in the NEWNAME parameter as in the NAME parameter.

4. If the FROM and TO packs are the same pack.
Note: NEWNAME cannot be DIR, ALL, or SYSTEM.

COPY Control Statement Summary: Library-To-Printer And/or Card

Print And/or Punch One Library Entry (or Entries with the Same Name from All Libraries)

~ s I P PUNCH
II COPY FROM-code, LIBRARY- 0 ,NAME-name,TO-{PRINT l

R PRTPCH)
ALL

Print And/or Punch Temporary and Permanent Library Entries that Have Names Beginning with Certain Characters

ls l p PUNCH

II COPY FROM-code,LIBRARY- 0 ,NAME-characters.ALL,TO-{PRINT }
R PRTPCH

ALL

Print And/or Punch All Temporary and Permanent Library Entries of a Certain Type

l~l {PUNCH 1 II COPY FROM-code,LIBRARY- O ,NAME-ALL, TO- PRINT

R PRTPCH

Print Directory Entries for Library Entries of a Certain Type

// COPY FROM-code, LIBRARY -l ~ l ,NAM E-01 R, TO-PR I NT

Print Entries from All Directories Including System Directory

II COPY FROM-code,LIBRARY-ALL,NAME-DIR,TO-PRINT

Print System Directory Entries Only

II COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT

Print Directory Entries, Omitting Selected Entries

f
s l { P name

fl COPY FROM-code.LIBRARY- ~ ,NAME-DIR,TO-PRINT,OMIT- characters.ALL }

ALL

Library Maintenance Program ($MAI NT) 143

Copy Parameters

Parameter

FROM-READER

FROM-code

FROM-DISK

Fl LE-filename

RECL-{~~f

LIBRARY-m

LIBRARY-ALL

LIBRARY-SYSTEM

lname !
NAME- characters.ALL

ALL

144

Meaning

Entry to be placed in library is to be read from system input device, which can be
a keyboard or card reader.

Location of disk containing library entries being copied, printed, or punched. Possible
location codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

The entry or entries to be placed into a library or libraries reside in a disk file. The
disk file must be described by an OCL Fl LE statement.

For a file-to-library copy, this parameter is needed to identify the file on disk. The
filename must match the filename on the OCL Fl LE statement.

For a file-to-library copy, this parameter gives the size of the disk records. Only 80
or 96 column card image records (unblocked) are allowed. If this parameter is
omitted, 96 is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

s Sourc~ statements (source library)

p OCL procedure (source library)

0 Object programs (object library)

R Routines (object library)

All types of entries (S, P, 0, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM pack, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning

name Name of the library entry involved.

characters.ALL Only those entries beginning with the indicated characters. The
name of the copies and original entries will be the same unless
you use a NEWNAME parameter (NEWNAME-characters). (You
can use up to five characters.)

ALL All entries. (The type indicated in LIBRARY parameter. To copy
a system which you can IPL, specify LIBRARY-ALL and
NAME-ALL.)

Parameter

NAME-SYSTEM

NAME-DIR

NAME-$cc.ALL

RETAIN-m

TO-code

TO-PRINT

TO-PUNCH

TO-PRTPCH

NEWNAME-name

NEWNAM E-characters

OMIT-name

OMIT-characters.ALL

Meaning

Only system programs that make up the minimum system are involved in the copy
use. The minimucn system is made up of system programs necessary to load and
run programs. System programs necessary to generate and maintain the system are
not included.

Directory entries for all library entries of the type indicated in the LIBRARY parameter
are involved in the copy use. If the LIBRARY parameter is LIBRARY-ALL, system
directory entries are also printed.

The IBM program with the name beginning with the indicated characters ($cc) is
involved in the copy use. For example, $MA.ALL means the Library Maintenance
program ($MAINT).

Adding Entry to Library. R ET Al N gives designation of the TO entry:

Code Meaning

T Temporary

P or R Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry and
tells program whether to halt before replacing entry:

Code Meaning

T Temporary design<;1tion. Halt before replacing entry.

p Permanent designation. Halt before replacing entry.

R Permanent designation. Do not halt before replacing entry.

Printing or Punching Entries. The RETAIN parameter is ignored.

Location of disk that is to contain the copies of the entries:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Entries are being printed.

Entries are being punched.

Entries are being printed and punched.

Name you want used on the TO disk to identify the entries being put on that disk.
If you omit this parameter, the program uses 1:he NAME parameter in naming the
entries.

Beginning characters you want to use in names identifying entries being put on TO
disk. You must use the same number of characters as in the NAME parameter
(NAME-characters.ALL). If you omit this parameter, the program uses the NAME
parameter in naming the entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning characters.

Library Maintenance Program ($MAINT) 145

Using the Copy Function

Library Directories

Source and Object Library Directories

o The source and object libraries have separate ·library
directories. Every library entry has a corresponding
entry in its library directory. The directory entry con
tains such information as the name and location of the
library entry. (See Printout of Directory Entries.)

o The Library Maintenance program makes entries in the
directories when it puts entries in the libraries.

System Directory

o Every disk that contains libraries contains a system
directory. The system directory contains information
about the sizes of and available space in libraries and
their directories. (See Printout of Directory Entries.)

e The Library Maintenance program creates and maintains
the system directory.

Naming Library Entries

Characters to Use: Use any combination of System/3
characters except blanks, commas, quotes, and periods.
(Appendix A lists the charaGters.) The names of all IBM
programs begin with a dollar sign ($). Therefore, to avoid
possible duplication, do not use a dollar sign as the first
character in the names you use for your entries. The first
character must be alphabetic.

Length of Name: The name can be from one to six
characters long.

Restricted Names: Do not use the names ALL, DIR, and
SYSTEM. They have special meanings in the NAME and
NEWNAM E parameters.

146

Entries with the Same Name: For each of the two physical
libraries, source and object, there are two types of entries.
The source library has type P and type Sentries. The
object library has type 0 and type R entries. Entries of the
same type cannot have the same name, but entries of
different types may. For example, two procedures in
source library cannot have the same name, but a procedure
and a set of source statements can.

Retain Types

Temporary Entries

• Temporary entries are entries you do not intend to keep
in your libraries. They are normally used only once or a
few times over a short period.

• In the object I ibrary, temporary entries are placed to
gether following the permanent entries. Any time a
permanent entry is added to the library, all temporary
entries are deleted. Temporary entries are also deleted
when you replace one permanent entry with another.

• In the source library, temporary and permanent entries
can be in any order. One entry is placed after another
regardless of their designations. Temporary entries,
therefore, are not automatically deleted every time you
add a permanent entry. However, when the source
library is reallocated or reorganized, only permanent
entries will remain.

• You can use temporary entries as often as you like until
they are deleted.

• A temporary entry cannot replace a permanent entry.

Permanent Entries

• Permanent entries are entries you intend to keep in your
libraries. They are normally entries you use often or at
regular intervals (once a week, once a month, and so on).

• The program will not delete permanent entries unless
you use the delete function of Library Maintenance
to delete them, or the allocate function to delete the
entire library.

Reader-to-Library

Input: The program reads one library entry. It can be any
one of the following types:

1. Source statements

2. Procedure

3. Object program

4. Routine

The entry is read from the system input device, which is

normally the keyboard. The operator can, however,
change the system input device by using the OCL
READER statement.

The header card on an object deck (H in column 1) con
tains the date the deck was punched. This date is in columns
58-63 and is in the format of the system date, either
mmddyy or ddmmyy.

Output

• Blanks and duplicate characters are removed from source
statements and procedures before they are put in the
source library. The program does not check them for
errors.

• Object programs and routines are placed in the object
library.

Adding Entries: The program can add a new entry to a
library. The name of the entry is taken from the NAME
parameter. See Naming Library Entries for val id names.
The RETAIN parameter specifies whether the entry will
be temporary or permanent. If the RETAIN parameter is
omitted, RETAIN-Tis assumed (see Retain Types).

Replacing Existing Entries

• The program can replace an existing library entry with
the entry you are putting in the library. The RETAIN
parameter specifies the new retain type. If the RETAIN
parameter is omitted, RETAIN-Tis assumed. A tempo
rary entry cannot replace a permanent entry.

• The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter you
use. (See RETAIN parameter.)

• Before the new entry is added, the duplicate entry is
deleted. Additional library space is not needed unless
the new entry is larger than the old one.

File-to-Library

Input: The disk file can contain one or more library entries.
The entries must be in the format put out by the library-to
card function or by the linkage editor. The// COPY state
ment at the beginning of each entry contains the name of
the entry and the type of library (S, P, 0, R). A// CEND
statement must follow each entry in the file.

The disk file must be a consecutive file and be defined by
a Fl LE statement in the OCL for the Library Maintenance
program.

Output: The output from the file-to-library function is
the same as for the reader-to-library function except that
temporary entries are not allowed.

Library Maintenance Program ($MAINT) 147

Library-to-Library

Input: The program can copy one or more library entries
from one disk to another. The types of entries can be:

1. Source statements

2. Procedures.

3. Object programs

4. Routines

5. All the preceding types

6. Minimum sys.tern

The NAME and LIBRARY parameters specify which entries
to copy.

Output

• The entries, regardless of their type, are copied from one
disk to the other vvithcut ch~ngc. Hovvcvcr, if tJll
library entries are copied (LIBRARY-ALL.NAME-ALL),
the object library is reorganized, and temporary entries
become permanent entries in both the source and object
libraries.

• Entries can be copied and renamed on the same disk by
using the NEWNAME parameter. (See NEWNAME
parameter and Naming Library Entries.)

• If you are copying a minimum system or all of the types,
(LIBRARY-ALL,NAME-ALL), the object library on
the disk you specify in the TO parameter must not
contain any entries, or deleted entries. When
LI BRARY-ALL,NAME-ALL is specified and the FROM
disk is a system disk, then the TO disk will be a system
disk.

• The R ET Al N parameter specifies whether the entries
will be temporary or permanent. If the RETAIN param
eter is omitted. RETAIN-Tis assumed. When the
parameters LIBRARY-ALL and NAME-ALL or
LIBRARY-0 and NAME-SYSTEM are used, RETAIN-P
is assumed and RETAIN-Tis invalid.

148

Adding Entries

• You can omit the NEWNAME parameter. If you do, the
name used for the copy is taken from the NAME param
eter. (The copy will have the same name as the original
entry.)

• If NAME-ALL is specified, the names by which the
entries are identified on the FROM disk are also used
on the TO disk to identify the entries.

Replacing Existing Entries

• The program can replace existing entries with the entries
you are putting in the library. If the entry you are
copying (the entry on the disk you identify in the
FROM parameter) has the same name as the entry you
are replacing (the entry on the disk you identify in the
TO parameter), you must omit the NEWNAME param
eter because the NEWNAME parameter cannot be the
same as the NAME parameter. If the names are not the
same, you must use the NEWNAME parameter to give
the name of the entry being replaced.

• The program can halt before replacing an existing entry.
Whether it does depends on the RETAIN parameter
(see RETAIN Parameter).

•A temporary entry cannot replace a permanent entry.

Library-to-Printer and/or Card

Types of Entries that Can Be Printed or Punched

• The program can print or punch one or more library
entries. They can be any one of the following types:

1. Source statements

2. Procedures

3. Object programs

4.

5.

Routines

All of the preceding types (limited to entries
having the same name and entries beginning with
the same characters).

• The program can print (but not punch) the following

types of directory entries:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. System directory

6. All of the preceding types

The program will sort directory names before printing

them only if there is available work space on the FROM

pack. This causes an allocation of disk space that counts

toward the total of four allowable allocations. (See
Index Entry Allocation of Disk Space.)

Source Library Directory

Printout

SOURCE DIRECTORY FROM XX VOL ID XXXXXX MM/DD/YY

TYPE
x

Explanation

I Heading

NAME
xxxxxx

ADDRESS
FIRST@
TTT-SS

LAST@
TTT-SS

Meaning

ATTRI
x

Printed or Punched Library Entries

• Blanks and duplicate characters are re-inserted into source

statements and procedures to make them readable.

• Object programs and routines are printed and punched
as they exist in the library.

Printout of Directory Entries

• Source library directory

• Object iibrary directory

• System directory

#SECTORS
xx xx

TYPE S=source statements

P=procedure

NAME

ADDRESS
(Fl RST and LAST)

ATTR I (Attribute)

#SECTORS

Name of library entry (up to six characters)

Addresses of first and last secotrs that contain the library entry. Addresses

are expressed by track and sector numbers. EXAMPLE: 008-03 means

track 8, sector 3.

T=temporary
P=permanent

Total number of sectors used for the Ii brary entry.

Library Maintenance Program ($MAINT) 149

Object Library Directory

Printout

OBJECT LIBRARY FROM XX

DISK
TYPE
AL

NAME ADD
XXXXXX TTT/SS

Explanation

I Heading

TYPE

NAME

DISK ADD

CYL/SEC

TXT-CAT

LINK ADDR

RLD DISP

ENTRY PNT

CORE SEC

150

VOL. ID XXXXXX

CYL/
SEC
CC/SS

TXT
CAT
xxx

Meaning

MM/DD/YY

LINK RLD
ADDR DISP
xxxx xx

ENTRY
PNT
xx xx

A { P=permanent
T=temporary

Attribute

L { O=object
R=routine

Library

Name of library entry (up to six characters)

CORE
SEC
xxx

ATTR
xx xx

TOT
LEVEL SEC
xxx xx xx

Address where library entry begins on disk. EXAMPLE: 015/10 means
track 15, sector 10 (in decimal). T =track, S =sector.

Address where library entry begins on disk (in hexadecimal). C =cylinder,
S =sector.

For object programs, this number indicates the number of sectors used for
the text portion of the I ibrary entry. Object programs consist of two parts:
text and R LD. Text is the program or routine instructions. R LD is
information used in loading the program for execution.

For routines, this number is the category of the routine. This number is used
by the Overlay Linkage Editor for determining overlays.

Object programs only. Assigned hexadecimal core address of this library
entry.

Object programs only. It indicates the hexadecimal position in which R LD
information begins in the last text sector. If the last text sector contains no
R LD information, the R LD displacement is 0, indicating the information
starts in the next sector.

Object programs only. Main storage address (hexadecimal) where program
execution begins before relocations.

Core size given in sectors, required to run the program.

I Heading

ATTR

LEVEL

TOT SEC

Meaning

Byte 1:

Bit O= 1-Permanent entry
Bit 0=0-Temporary entry

Bit 1=1-lnquiry. This program requires that the Inquiry key be pressed

to start processing.

Bit 2=1-lnquiry invoking. This program runs in program level 1 and

can be rolled out to allow an Inquiry program to run.

Bit 3 Reserved

Bit 4=1-Source required. This program requires the allocation of the

$WORK and $SOURCE files. $SOURCE must be filled either

from the system input device or a source I ibrary.

Bit 5=1-Deferred mount. This program accepts mounting of packs

during its execution.

Bit 6=1-PTF applied. A program temporary fix (PTF) has been applied

to this program.

Bit 7=1-0verlay object program

Byte 2:

Bit 0=1-System Input dedication. The system input device must be

dedicated to this program. The device is released at end of job.

Bit 1 Reserved

Bit 2=1-Direct source read. This program can have a COMPILE state
ment and a no-source-required attribute (byte 1, bit 4=0).

The program will access the source itself.

Bit 3-4 Reserved

Bit 5=1-Program common. This program requires that a new load

address be calculated at load time to place it in main storage

beyond its own program common region.

Bits6-7 Reserved

Release level of system programs. For user programs this can be assigned

in the Overlay Linkage Editor

Total number of disk sectors occupied by the library entry

Library Maintenance Program ($MAI NT) 151

System Directory Printout

System Directory from XX Vol. ID XXXXXX 00/MM!YY

Source Library

Source Directory Location

Next Available Library Sector

End of Library

Number of Directory Sectors

Number of Permanent Library Sectors

Number of Active Library Sectors

Number of Available Library Sectors

Allocated Size of Library

Object Library

Object Directory Location
Allocated Size of Directory

Start of Library
Allocated End of Library

Extended End of Library

Number of Available Permanent Directory Entries

Number of Availzble Temporary Directory Entries

First Temporary Directory Entry

Next Available Temporary Directory Entry

Next Available Library Sector for Permanents

Next Available Library Sector for Temporaries

Number of Available Library Sectors for Permanents&

Number of Available Library Sectors for Temporaries
Number of Active Library Sectors

Number of Active Object Permanent Library Sectors

Number of Active Routine Permanent Library Sectors

Allocated Size of Library

Roll-in/Roll-out Location

Roll-in/Roll-out Size

Scheduler Work Area Location

Scheduler Work Area Size

Start of Libraries
End of Libraries

0
TTT-SS

TTT-SS

TTT-SS

xxx
xxx
xxx
xxx
yyy

TTT-SS
yyy
TTT-SS
TTT-SS

TTT-SS

xxx
xxx
TTT-SS-DDD
TTT-SS-DDD

TTT-SS

TTT-SS

xxx
xxx
xxx
xxx
xxx
yyy
TTT-SS
yyy
TTT-SS
yyy
TTT-SS
TTT-SS

0 TTT-SS-DDD means track, sector, and displacement. Displacement is the number of characters from the beginning

of the sector. XXX = number of sectors. YYY = number of tracks.

0 'Number of Available Library Sectors for Permanents' reflects the space available from the last permanent library entry
to the allocated end of the library. Gaps and temporary library entries are not reflected in this figure. The actual

number of sectors available for permanent entries may be calculated by subtracting 'Number of Active Object

Permanent Library Sectors' from the total number of sectors in the library. If the result is larger than 'Number of

Available Library Sectors for Permanents', the library should be reorganized using the ALLOCATE function to
remove gaps and temporary object I ibrary entries.

152

DELETE

Uses

• Delete a temporary or permanent entry from a library
(or entries with the same name from all libraries).

• Delete temporary or permanent entries that have names
beginning with certain characters.

• Delete all temporary or permanent entries of a certain
type.

Control Statement Summary

Restrictions

The following restrictions apply to the delete function:

• System modules cannot be deleted from the active
system pack (the pack the system was loaded from
during IPL).

• When all temporary entries are deleted from the object
library using LIBRARY-0,NAME-ALL,RETAIN-T, the
temporary routines (LIBRARY-A) are also deleted.

• The RETAIN parameter must match the attribute of the
entry in the library otherwise the entry is considered not
found: RETAIN-Tis assumed if the RETAIN parameter
is omitted.

• Library Maintenance modules cannot be deleted from
the active program pack.

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

JI DELETE FROM-code, LI BRA RY j ~ l ,NAM E-name,R ET Al N- {; }

lALL

Delete Temporary or Permanent Entries With Names Beginning With Certain Characters

II DELETE FROM-code, LIBRARY- ~ ~ l ,NAME-characters.ALL,RETAIN- {;}

lALL

Delete All Temporary or Permanent Entries of a Certain Type

/' s \

II DELETE FROM-code,LIBRARY-: ~ (.NAME-ALL,RETAIN-{;}

R;

Library Maintenance Program ($MAINT) 153

Delete Parameters

Parameter

FROM·{m

LIBRARY-!~ l
ALL

lname ~
NAME- characters.ALL

ALL

154

Meaning

Location of disk that contains library entries you are deleting. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of entries being deleted. Possible codes are:

Code Meaning

s Source statements (source library)

p Procedures (source library)

0 Object programs (object library)

R Routines (object library)

ALL All types of entries (S, P, 0, and R) are being deleted.

Particular entries, of type indicated in LI BRA RY parameter, being deleted. These
entries are further identified by the RETAIN parameter. Possible codes are:

Code Meaning

name Name of the library entry, or entries, being deleted.

character.ALL Entries that have names beginning with the indicated characters.

ALL

You can use up to five characters. EXAMPLE: NAME-I NV.ALL
refers to the ~ntries having names that begin with I NV.

All entries (of .the type indicated in LI BRA RY parameter).
NAME-ALL c!lnnot be used with LIBRARY-ALL.

Designation of entries being deleted:

Code Meaning

T Temporary

p Permanent

MODIFY

Uses

The Modify function is intended primarily for maintenance
of source statements and procedures by using card input.
The Modify function can be used to:

• Reserialize a source library entry.

• List the statements in a source library entry.

• Remove statements from a source library entry.

• Replace source library statements.

• Insert statements into a source I ibrary entry.

Restrictions

• At least three control statements must be entered to
modify the source library. A II MODI FY statement is
needed to describe the library entry. A II REMOVE,
II REPLACE, or II INSERT statement describes the
type of modification. A II CEND statement indicates
the end of the control statements.

• The sequence numbers specified by the FROM-seqno,
TO-seqno, and AFTER-seqno parameters on the
II REMOVE, II REPLACE, and II INSERT statements
must be valid numbers and exist in the source library
entry. T.here are no default values for these parameters.
The number of digits entered must be the same as the
number of positions specified by the SEQFLD
parameter.

• All statements in a source library entry must have
ascending sequence numbers in the positions specified
by the SEQF LO parameter.

• Multiple operations (REMO VE, REPLACE, INSERT)
may be performed within the same MODIFY run if they
are done in an ascending sequential order. That is, the
FROM sequence number in a REMOVE or REPLACE
statement must be greater than the last sequence num
ber in the preceding statement. The AFTER sequence
number of an INSERT statement must be equal to or
greater than the last sequence number of the preceding
statement. Consecutive INSERT statements must not ·
have the same sequence number.

• When modification is complete, the directory entry
is written back with a permanent attribute.

• The control statements following the 11 MOD I FY state
ment are read from the system input device, which can
be the keyboard or card reader.

• Sequence numbers are a physical part of the source
record and must be placed where they will not conflict
with other data in the record. In a procedure the
sequence numbers should be placed near the end of the
record beyond the OCL and utility control statement's
keywords and parameters.

Invalid responses may result for OCL procedures with
delayed responses, because the procedure is called, the
sequence number may be recognized as the response.

The sequence numbers should be placed in source state
ments where they will not overlay data. For example,
data could be destroyed if sequence numbers were
placed in RPG 11 source statements that contained
compile-time tables. If the statement contains table
data in positions 1-85, the sequence numbers for the
source module should begin after positions 85 (86-96).

Library Maintenance Program ($MAI NT) 155

Control Statement Summary

Initiate Modification

II MODI FY NAME-name,FROM-code,LI BRA RY- {
S} {YES } {YES} p ,WORK-code,RESER- ~~Ly ,LIST- NO ,

SEQFLD-xxyy,INCR-number

Control Statements Following II MODI FY

Delete all statements between and including the FROM and TO sequence numbers.

II REMOVE FROM-seqno,TO-seqno

Replace all statements between and including the FROM and TO sequence numbers with the statements supplied.

II REPLACE FROM-seqno,TO-seqno

1-n statements to replace those removed

Insert the supplied statements after the statement indicated by the AFTER parameter.

//INSERT AFTER-seqno

1-n statements to be inserted

156

Modify Parameter

I Parameter

NAME-name

FROM-code

LIBRARY-{~}

WORK-code

{

YES }
RESER- NO

ONLY

LIST-{~~S}

SEOFLD-xxyy

I NCR-number

Meaning

Current name of the entry you are modifying. This is the name that identifies the
entry in the library directory.

Location of the disk that contains the entry you are modifying. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are modifying. Possible codes are:

Code Meaning

s Source statements (source library)

p Procedures (source I ibrary)

Location of the disk containing space the program can use as a work area. Possible
codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Specifies whether reserialization should be done when the entry is placed back in the
source library. Possible information is:

Information

YES

NO

ONLY

Meaning

Reserialization is done.

Reserialization is not done. NO is assumed if the RESER parameter
is omitted.

Reserialize only; no other maintenance is done. When this is coded,
no REMOVE, REPLACE, or INSERT statements can be entered. A
II CEND statement is not needed.

Specifies whether the source library entry should be listed when the MODI FY run is
complete. NO is assumed if the LIST parameter is omitted.

The starting and ending positions of the field that contains the sequence number. The
sequence number can be up to eight digits long. The starting position is entered first
(xx) and then the ending position (yy). If this parameter is not entered, 9296 is
assumed.

Increment value for sequence field if reserialization (RESER-YES or RESER-ONLY) is
specified. The value can be up to five digits. If this parameter is not entered, a value
of 10 is assumed.

Library Maintenance Program ($MAI NT) 157

Remove, Replace, Insert Parameters

I Parameter Meaning

FROM-seq no The sequence number of the first
statement to be used in the
operation.

TO-seq no The sequence number of the last
statement to be used in the
operation.

AFTER-seq no The sequence number of the state
ment after which the new state
ments are to be added.

RENAME

Uses

• Change the name of a library entry.

• Change the names of library entries that have names
beginning with certain characters.

Restrictions

• System modules should not be renamed on the active
system pack. (The pack the system was loaded from
during IPL.)

• Library Maintenance modules should not be renamed
on the active program pack.

Control Statement Summary

158

Change the Name of a Library Entry or Entries with
the Same Name in All Libraries

II RENAME FROM-code,LIBRARY-{~}
NAME-name,NEWNAME-name 0

R

Change the Name of Library Entries that have Names

Beginning with Certain Characters

II RENAME FROM-code,LIBRARY-{n
NAME-characters.ALL, of
NEWNAME-characters R

Rename Parameters

Parameter

FROM-code

l\IAiviE-name

NAME-characters.ALL

NEWNAME-name

NEWNAM E-characters

Meaning

Location of disk that contains the entry
you are renaming. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are renaming.
Possible codes are:

Code Meaning

s Source statements (source
library)

P Procedures (source library)

0 Object programs (object library)

R Routines (object library)

Current narm1 of th~ e11Lry you are re
naming. This is the name that identifies
the entry in the library directory.

Only those entries beginning with the
indicat('d characters. (You can use up
to five characters.)

New name you want to give the entry.
Follow these rules to construct the name:

1.

2.

You can use any System/3 charac
ters except blanks, commas, quotes,
and periods. (Appendix A lists the
characters.) However, the names
of all I BM programs begin with a
dollar sign ($). Therefore, to avoid
possible duplication, do not use a
dollar sign as the first character in
the names you use for your entries.
The first character must be alpha
betic.

You can use up to six characters,
but you cannot use the names ALL,
DIR and SYSTEM. They have
special meanings in the NAME
parameter.

Beginning characters you want to use in
names identifying the copies. (You can
use up to five characters.

OCL CONSIDERATIONS

LOAD Sequence

Keywords 0 Responses& Considerations

READY LOAD None

LOAD NAME $MAINT Name of Library Maintenance program.

UNIT R1, R2, F1, or F2 Location of disk containing Library Maintenance program.

MODIFY RUN None

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

BUI LO Sequence

KeywordsQ

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

ResponsesQ

BUILD

procedure name

R1, R2, F1, or F2

$MAINT

R1, R2, F1, or F2

INCLUDE I utility control statements
OR RUN

LRUN

Considerations

None

Name by which procedure will be identified in source
library.

Location of disk containing source library.

Name of Library Maintenance program.

Location of disk containing Library Maintenance program.

Response when including control statements in procedure.

Response when not including control statements in
procedure.

0 Only the keywords listed here are required. You can bypass the rest.

f) You end every response by pressing PROG START.

Library Maintenance Program ($MAI NT) 159

ALLOCATE EXAMPLES

Creating Both Source and Object Libraries on a Disk

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

I
}

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by Library Maintenance
program.

II ALLOCATE TO-Rl,SOURCE-12,0BJECT-45,SYSTEM-YES}
Control statement supplied
by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

}

}

Program creates libraries, then asks for another

control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 {UNIT-F1 in OCL sequence).

• Libraries are being created on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

• Source library space is twelve tracks long (SOU RCE-12).

• Object library space is 45 tracks long (OBJECT-45). The object library will contain system programs (SYSTEM-YES).
Thus, the disk area will also include space for the Scheduler work area.

160

Changing the Size of a Source Library

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT f

II ALLOCATE TO-Rl,SOURCE-15,WORK-Fl ~

ENTER 'II' CONTROL STATEMENT ~

II END

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

Control statement supplied by operator.

Program changes size of library, then asks
for another control statement.

End statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence)._

• Source library is located on the removable disk on drive 1 (TO-R 1 in ALLOCATE statement).

• Size of the source library is being changed to 15 tracks (SOURCE-15).

• Any time the program changes the size of a library, it reorganizes the library. To do this, it needs a work area. This area
is on the fixed disk on drive 1 (WORK-F1).

Library Maintenance Program ($MAI NT) 161

Deleting the Object Library From a Disk

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT ~

II ALLOCATE TO-Rl,OBJECT-0 ~

ENTER 'II' CONTROL STATEMENT ~

II END ~

Explanation

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

Control statement supplied by operator.

Program deletes I ibrary, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive (UNIT-Fl in OCL sequence).

• Object library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

• OBJECT-0 parameter tells the program to delete the object library. If a Scheduler work area precedes the object library~
it is also deleted.

162

COPY EXAMPLES

Copying Minimum System from One Disk to Another

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM-Fl,LIBRARY-0,NAME-SYSTEM,TO-Rl
Control statement supplied
by the operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program copies programs, then asks
for another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive (UNIT-F1 in OCL sequence).

• System programs are in the object library on the fixed disk on drive 1 (LIBRARY-0 and FROM-F1 in COPY statement).

• The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

• The disk that is to contain the copy is the removable disk on drive 1 (TO-R 1).

Library Maintenance Program ($MAI NT) 163

Printing Library Directories

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT
I

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM-Rl,LIBRARY-ALL,NAME-DIR,TO-PRINT Control statement supplied
by the operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program prints directories, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• All library directories and the system directory on the removable disk on drive 1 are printed (COPY statement):

1. FROM identifies the disk containing the directories.

2. LIBRARY indicates which directories are to be printed.

3. NAME and TO indicates that the program is to be printing directories.

164

Replacing a Library Entry: Replacement Coming From Another Disk

Situation

Assume that you have two versions of an object program:

1. New version on the removable disk on drive 1.

2. Old version on the fixed disk on drive 1.

Both versions have the same name (ACT) ~nd designation (permanent). You want to replace the old version with the new
version.

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

'II' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM-Rl,LIBRARY-0,NAME-ACCT,TO-Fl,RETAIN-R .Control statement supplied
by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program replaces I ibrary entry, then asks for
another control statement.

END statement, supplied by operator, ends the
program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• LIBRARY-0, NAME-ACCT, and FROM-R1 in the COPY statement tell the program to read the object program named
ACCT from the removable disk on drive 1.

• TO-F1 tells the program to copy the object program to the fixed disk on drive 1. There is no NEWNAME parameter in
the COPY statement. Therefore, the name the program will have on the fixed disk is ACCT (NAME-ACCT). Since the
old version of the program already exists on the fixed disk under that name, the old version is replaced.

• The Library Maintenance program normally halts before replacing a library entry. The RETAIN-R parameter, however,
tells the program to omit that halt.

Library Maintenance Program ($MAINT) 165

Disk File-To-Library

Statements

READY

010
011
020
030
040
041
042
043
050

LOAD NAME
UNI T-

DATE (XX/XX/XX)
SWITCH (00000000)
FILE NAME-

UNIT
PACK

LABEL-
FILE NAME-

$MAI NT
Fl

OCL LOAD Sequence.

Boxed areas are operator
responses.

Keywords for which no re
sponses are shown are the
ones bypassed.

RUN is the response to
MODI FY even though the
two words do not appear
on the same line

MODIFY

R'//' CONTROL STATEMENT Message printed by Library

Maintenance program.

II COPY FROM-DISK,TO-Fl,RETAIN-P,FILE-BSCAFILE Control statement supplied
by operator.

XX COPY LIBRARY-P,NAME-PAYREC
XX COPY LIBRARY-0,NAME-PAYREC
XX END

ENTER 'II' CONTROL STATEMENT

II END

Explanation

1
)

Control statements from disk
file.

Program copies programs, then
asks for another control state
ment.

END statement, supplied by
operator, ends the program.

• The OCL for a File-to-Library copy must contain a Fl LE statement for the disk file.

• The filename on the II COPY statement (FILE-BSCAFILE) matches the filename on the OCL FILE statement
(NAME-BSCAFI LE).

• The II COPY statement does not contain a RECL parameter, so a record length of 96 is assumed.

• All source and object decks in the disk file must have a II COPY statement as the first card image. These II statements
(including the 11 END statement) are printed with XX replacing the// to indicate they were read from disk rather than
from the system input device.

• The II END statement read from the file (printed XX END), causes the next statement to be read from the system input
device. A II END statement must still be read from the system input device to indicate the end of the Library
Maintenance control statements.

166

DELETE EXAMPLES

Deleting a Temporary Entry From a Library

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT•

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

11 DELETE FROM-Rl ,LIBRARY-S ,NAME-PAYROL Control statement supplied by operator.

ENTER 'I I' CONTROL STATEMENT Program deletes library entry, then asks
for another control statement.

I/ END END statement, supplied by operator, ends
the program.

Explanation

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The program deletes a set of source statements (LIBRARY-Sin DELETE statement) named PAYROL (NAME-PAYROL)
from the removable disk on drive 1 (F ROM-R 1).

• The absence of a R ET Al N parameter imp I ies that the entry designation is temporary. If the designation were permanent,
RETAIN-P would have been required.

Library Maintenance Program ($MAI NT) 167

Deleting All Temporary Entries With Names That Begin With Certain Characters

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER !//! CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do
not appear on the same I ine.

Message printed by Library Maintenance
program.

I I DELETE FROM-Rl / LIBRARY-ALL / NAME-INV. ALL f Control statement supplied by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program deletes entries, then asks
for another control statement.

END statement, supplied by operator,
ends the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The entries being deleted are on the removable disk on drive 1 (FROM-F1 in DELETE statement).

• The program deletes all entries from both source and object libraries (LIBRARY-ALL) that have names beginning with
the characters INV (NAME-I NV.ALL).

• The absence of a RETAIN parameter implies that temporary entries are being deleted.

168

Deleting All Permanent Library Entries of One Type

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do
not appear -on the same line.

Message printed by Library Maintenance
program.

I/ DELETE FROM-Rl ,LIBRARY-P ,NAME-ALL, RETAIN-P } Control statement supplied by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program deletes entries, then asks for another
contro'I statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The entries being deleted are on the removal be disk on drive 1 (F ROM-R 1 in DELETE statement).

• All permanent procedures are being deleted from the source library (LIBRARY-P,NAME-ALL RETAIN-P).

Library Maintenance Program ($MAI NT) 169

MODI FY EXAMPLES

Replacing Statements in a Procedure

Statements

010
011
020
030
040

LOAD NAME
UN IT-

DATE (XX/XX/XX)
SWITCH (00000000)
FILE NAME-

~t~$MA I NTt\~
\\E.J! .. s···

'II' CONTROL STATEMENT

II MODIFY NAME-PROC01,FROM-R2,LIBRARY-P,WORK-R1,RESER-NO,LIST-YES
II REPLACE FROM-00101,T0-00102
II FILE NAME-INV,PACK-VOL2,UNIT-R1,RECORDS-300,RETAIN-P
II FILE NAME-WORK,PACK-VOL2,UN1T-R1
II CEND

II LOAD BUILD,F1
II FILE NAME-INV,PACK-VOL2,UNIT-R1,RECORDS-300,RETAIN-P
II FILE NAME-WORK,PACK-VOL2,UNIT-R1
II RUN

ENTER 1 // 1 CONTROL STATEMENT
II END

Explanation

• The procedure named PROC01 on disk drive R2 is being modified.

• The work space will be on R 1.

• The sequence numbers are in default positions 92-96.

• Statements with sequence number 00101-00102 are being replaced.

• The module is not reserialized.

• The module is listed.

170

OCL LOAD Sequence.

'Boxed areas are operator
responses.

Keywords for which no re
sponses are shown are the
ones bypassed.

RUN is the response to
MODI FY even though the
two words do not appear on
the same line.

Message printed by Library
Maintenance program.

00101)

00102 \

00100
00101
00102
00103

'

Control statement supplied by
operator.

Program lists procedure, then
asks for another control state
ment.

END statement, supplied by
operator, ends the program

Removing Source Statements From a Module

Statements

Removing Source Statements From a Module.

DATE (XX/XX/XX)
SWITCH (00000000)
FILE NAME-

**
MODIFY

ER'//' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are shown are the ones
bypassed.

RUN is the response to MODI FY even though the two
words do not appear on the same line.

Message printed by Library Maintenance program.

II MODIFY NAME-INPUT1,FROM-R1,LIBRARY-S,WORK-R1,RESER-YES, }
II LIST-NO,SEQFLD-0105,INCR-1 ·
/ / REMOVE FR OM-0012 4, T 0-0 015 6 Control statements supplied by the operator.

II CEND

ENTER '//' CONTROL STATEMENT

11 END

Explanation

Program removes statements, then asks for another
control statement.

END statement, supplied by operator, ends the program.

• The source module named INPUT1 on disk drive Rl is being modified.

• The work space will be on R 1.

• The sequence numbers are in positions 1-5 of the statements.

• Sequence numbers 00124-00156 are being deleted from the module.

• The module is reserialized with increments of one.

• The module is not listed.

Library Maintenance Program ($MAINT) 171

Inserting a Statement in a Source Module

Statements

READY-

010
Oll
020
030
040

LOAD NAME
UN IT-

DATE (XX/XX/XX)
SWITCH (00000000)
FILE NAME-

OCL LOAD Sequence.

Boxed areas are operator
responses.

Keywords for which no re
sponses are shown are the ones
bypassed.

RUN is the response to MODI FY
even though the two words do
not appear on the same I ine.

ER 1 // 1 CONTROL STATEMENT ~ MessageprintedbylibraryMaintenanceprogram.

I I MODI FY FROM-Fl, WORK-Fl, NAME-COST, LIB~ARY-S, ! Control
I I R ES ER - YES , S E Q F LD- 8 0 8 4 , LI S T - YES statements

11 INSERT AFTER-00070 supplied by

00080 I 3 8 DATE the operator.
II CEND

~
)

Source module listed with new-entry

s
ENTER '//' CONTROL STATEMENT Program inserts statements, then asks for another control

statement.

II END END statement, supplied by operator, ends the program.

Explanation

• The source module COST on fixed disk drive one is being modified.

• The work space is on F 1.

• The sequence. numbers are in positions 80-84 of the statements.

• A statement is being inserted after statement number 00070.

• The module is reserialized with the default increment value of 10.

• The module is listed.

172

RENAME EXAMPLE

Renaming a Set of Source Statements in a Source Library

Statements

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence.

Boxed areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY

even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

II RENAME FROM-Rl,LIBRARY-S,NAME-ACCT~NEWNAME-ACCTl f
Control statement supplied
by operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program renames entry, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The removable disk on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement).

• The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT).

o The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

Library Maintenance Program ($MAI NT) 173

Appendix A: IBM System/3 Standard Character Set

174

Character

Blank

~

<
(

+

I
&

t
$

)

:

-,

- (minus)

I

%

Hexadecimal
Equivalent

40

4A

48

4C

40

4E

4F

50

5A

58

5C

50

5E

5F

60

61

68

6C

- (underscore) 60

> 6E

? 6F

: 7A

78

@ 7C

(Apostrophe) 70

7E w E6

* 7F x E7

A C1 y EB

8 C2 z E9

c C3 0 FO

D C4 1 F1

E C5 2 F2

F C6 3 F3

G C7 4 F4

H CB 5 F5

I C9 6 F6

} DO 7 F7

J 01 B FB

K 02 9 F9

L 03

M 04

N 05

0 06

p 07

Q DB

R 09

s E2

T E3

u E4

v E5

Appendix B: Records - Tracks Conversion

For Sequential or Direct Files

To determine how many tracks will be required for a
sequential or direct file:

1.

2.

Number of records x record length = total number
of characters.

Total number of characters-:- 6144 (number of
characters in a track) =number of tracks. (Round
result up to nearest whole number.)

For Indexed Files

To determine how many tracks will be required for an
indexed file:

Step 1. (Tracks Required for Data)

A. Number of records x record length= total
number of characters.

8. Total number of characters-:- 6144 =number
of tracks. (Round result up to nearest whole
number.)

Step 2. (Tracks Required for Index)

A. Key Field length + 3 = index entry length.

B. 256 (number of characters in a sector)-:
index entry length = number of entries per
sector. (Round result down to nearest
whole number.)

c.

D.

Number of records-:- number of entries per
sector= number of sectors. (Round result
up to nearest whole number.)

Number of sectors-:- 24 (number of sectors
per track) = number of tracks. (Round re
sult up to nearest whole number.)

Step 3. (Total Track Requirement)

Result of step 1 +result of step 2 =total number
of tracks required for the indexed file.

Appendix B: Records - Tracks Conversion 175

Appendix C: Disk Organization

Disk Area Contents

VTOC* Detailed information about each file on disk

Source Library Source Library Directory
RPG 11 Source Programs
Sort Specifications
Procedures
KSE Input (Format Descriptions or Source Statements)

Object Library

Files

Object Library Directory
Compiled Programs
System Programs

User files
System files

*Volume Table of Contents

Volume Table of Contents (VTOC)

The VTOC contains detailed information about each file
on the disk. Much of this information is for system use
only and is of no interest to the programmer. The VTOC
file information significant to the programmer is:

1. Name.

2. Starting track location and number of tracks.

3. Designation (Permanent, Temporary, or Scratch).

4. Organization (Sequential, Direct, or Indexed).

5. Creation date.

176

Source Library

Procedures, RPG 11 source programs, and KSE input always
reside in a source library. The source library directory con
tains the name and address (track and sector) of each
procedure, RPG 11 source program, and set of KSE input
in the library.

Object Library

Compiled programs and system programs always reside in an
object library. The object library directory contains the
name and address (track and sector) of each program in the
library.

Files

Identifying information about every file on a disk is con
tained in the disk VTOC.

A disk is limited to 50 files because the VTOC has space
for identifying only that many files.

Capsule definitions of sorrie common computer terms used
in this manual.

CPU

end-of-job-halt

IPL

KDE

KSE

object library

object library
directory

OCL

overlay

(Central Processing Unit) Nucleus
of the Model 6 hardware.

system halt at the end of every job
to give the operator time for any
necessary housekeeping chores
before beginning the next job.

(Initial Program Load) The process
by which the operator loads into
core storage the program that con
trols the operation of the system.

Keyboard Data Entry Utility Pro
gram

Keyboard Source Entry Utility
Program

contains compiled programs, system
programs, and routines.

contains name and address (track
and sector) of each object program
in the object library.

(Operation Control Language) An
OCL statement consists of a keyword
and a response.

to erase data on disk by writing new
data over it.

procedure

sector

source library

source library
directory

source statements

sysgen

system printer

track

VTOC

Glossary

sequence of OCL statements in a
source library.

section of a disk track. Each track
is divided into 24 sectors.

contains procedures, RPG source
programs, and KSE input.

contains name and address (track
and sector) of each source program
and procedure in the source library.

program instructions that have not
been compiled (translated) into
machine language.

(system generation) Process required
to get a system ready to run after
installation.

displays OCL statements, utility
control statements, job comments,
and error codes. (The system
printer can also display the normal
output of the job being run.)

Each disk is divided into concentric
circles called tracks.

(Volume Table of Contents) That
part of a disk which contains de
tailed information about every file
on the disk.

Glossary 177

$ALT (Alternate Track Assignment)
(see also alternate track assignment program)
as response to LOAD NAME in OCL cycle 38

$BUI LO (Alternate Track Rebuild)
(see also alternate track rebuild program)

as response to LOAD NAME in OCL cycle 38
$COPY (Disk Copy/Dump)

(see also disk copy/dump program)
as.response to LOAD NAME in OCL cycle 38
in OCL sample job #4 64

$DELET (File Delete)
(see also file delete program)
as response to LOAD NAME in OCL cycle 38

$01 U (Data Interchange Utility)
as response to LOAD NAME in OCL cycle 38

$DSORT (Disk Sort)
as response to LOAD NAME in OCL ~ycle 38

$1NIT (Disk Initialization)
(see also disk initialization program)
as response to LOAD NAME in OCL cycle 38
in OCL sample job #I 61

$KDE (Keyboard Data Entry)
as response to LOAD NAME in OCL cycle 38

$KSE (Keyboard Source Entry)
as response to LOAD NAME in OCL cycle 38

$LABEL (File and Volume Label Display)
(see also file and volume label display program)
as response to LOAD NAME in OCL cycle 38

$MAI NT (Library Maintenance)
(see also library maintenance program)
as response to LOAD NAME in OCL cycle 38

$RPG (RPG Compiler)
as response to LOAD NAME in OCL cycle 38

*(see comments)
I& (card OCL) 29

/*
card OCL 29
conversational QC L 7

II blank 80
II ALLOCATE 134

(see also allocate, library maintenance)
II ALT 93

(see also alternate track assignment program)
II CEND 140

(see also copy, library maintenance)
II COPY 140- 143

(see also copy, I ibrary maintenance)
II COPYPAC K 120

(see also disk copy/dump program)
II COPYFILE 120

(see also disk copy/dump program)
II DELETE 110

(see also delete, library maintenance)
II DISPLAY 104

(see also file and volume display program)
II END

(see END control statement)
II REBUILD 98

(see also alternate track rebuild program)

II RENAME 158
(see also rename, library maintenance)

II REMOVE 110
(see also file delete program)

//SCRATCH 110
(see also file delete program)

II SELECT KEY 120
(see also disk copy/dump program)

II UIN 84
(see also disk initialization program)
in OCL sample job #I 61

II VOL 84
(see also disk initialization program)
in OCL sample job #I · 61

? (see delayed response)

adding source library entries ($MAINT) 155
AFTER parameter 157
allocate: library maintenance

control statement summary 134
examples 160
parameter summary 135
uses 132

ALT control statement 93
(see also alternate track assignment program)

alternate track assignment program 91
control statement summary 93
example 96
OCL considerations 95
parameter descriptions 94
parameter summary 93
program name 95
program uses 91

alternate tracks
alternate track assignment 94
disk initialization 81
incorrect data on 95

alternate track rebuild program 98
control statement summary 98
example 101
OCLconsiderations 100
parameter descriptions 99,
parameter summary 98
program name 100
program uses 98
substitute data description 99
substitute data summary 98

apostrophes in control statements 48, 79
asterisk

(see comments)
ASSIGN parameter 95

blanks in control statements 48
BUILD NAME

in BUILD Keyword-Response Summary 24
its position in the BUI LO cycle 24
keyword description 32

Index

Index 179

BUILD cycle
when to use 6

BUI LDC NAME
keyword description 32

BUI LDC cycle
when to use 6

CALL NAME
in the CALL Keyword-Response Summary 26
its position in the CALL cycle 26
keyword description 32

CALL cycle
when to use 7

CANCEL
as response to MODI FY in BUI LO cycle 23
as response to MODI FY in CALL cycle 27
as response to MODI FY in LOAD cycle 15
entering the keyword during MODI FY 42

cancelling alternate-track assignments 94
cancelling job

(see CANCEL)
card OCL input 28 - 31
Cataloged procedures

(see procedures)
CEND control statement

reader-to-library copy 141

library-to-card copy 143
central processing unit (CPU)

definition 1 77
chained procedures 54
changing a previous OCL statement

during the iviODI FY phase 41
changing file designation 37
changing object library size

disk considerations 139- 140
SYSTEM parameter 136
WORK parameter 137

changing printed output for system programs
(see FORMS)

changing size of source library
control statement 134
disk considerations 138 - 139
work parameter 137

changing status of system printer
(see LOG)

character set, standard 174
clear initialization 82
coding rules, control statements 80
commas in control statements

disk utilities 80
OCL

deleting statement 41
in HIKEY 49

comments
entering comments during the MODI FY phase 42
on response Ii ne 1 0

COMPILE OBJECT
in BUILD Keyword-Response Summary 17
in LOAD Keyword-Response Summary 11
its position in the B,UI LD cycle 16
its position in the LOAD cycle 14
keyword description 33

compiled RPG program
location of determined by OBJECT statement 33

compiling large RPG source programs 52
compiling RPG source programs,

recommended method of 62

180

conditional assignment of alternate tracks 92
control statements

alternate track assignment
ALT statement 93

alternate track rebuild
REBUILD statement 98

coding rules 80
definition of disk/copy dump

COPYFILE statement 119
COPY PACK statement 119
SELECT statement 119

disk initialization
UI N statement 83
VOL statement 83

file and volume label display
DISPLAY statement 104

file delete
REMOVE statement 11 O
SCRATCH statement 110

library maintenance
ALLOCATE statement 134
COPY statement 141 - 143
DELETE statement 153
INSERT statement 156
MODI FY statement 156
REMOVE statement 156
RENAME statement 158
REPLACE statement 156

conversational OCL
definition and how it works 4

copy, library maintenance
control statement summaries 1'11 - 143
examples 163
parameter summary 144
uses 140

COPY FI LE control statement 119
copying disk from one removable disk to another on drive 1
copying entire disk 122
copying files 122
copying library entries

reader-to-library 141 - 163
library-to-library 142

COPYPAC K statement 119
correcting QC L statements 41
CPU (Central Processing Unit)

definition 177
creating object library 139

control statement 134
SYSTEM parameter 135
WORK parameter 135

creating source library 138
control statement 134
WORK parameter 135

customer program name
as response to keyword LOAD NAME in OCL cycle 38

DATA96
as response to keyword READER 28

Data Interchange Utility ($DIU)
as response to LOAD NAME in OCL cycle 38

DATA parameter ($DELET) 112
data recorder

used to code OCL statements on cards 28

122

DATE (file date)
in BUI LO Keyword-Response Summary 23
in LOAD Keyword-Response.Summary 15
keyword description of 37
position in BUI LO sequence 16
position in LOAD sequence 10
restrictions during file creation runs 37

DA TE parameter
file delete program 112

DA TE statement, format of
definition 34
general restrictions 44

DA TE (system date)
in BUI LO Keyword-Response Summary 19
in LOAD Keyword-Response Summary 12
keyword description 44
position in BUI LO sequence 16
position in LOAD sequence 10

defective tracks
address on disk 94
definition (see surface a11alysis)
retesting of 86

delayed response
definition of, restrictions, effect on system 6

delayed responses in procedure 27
delete, library maintenance

control statement summary 153
examples 166
param~ter summary 153
uses 153

DELETE control statement 153
DELETE parameter ($COPY) 122
deleting a previous OCL statement

during. the MODI FY phase 41
deleting files 109
deleting library entri~s 153
deleting object library

control statement 134
disk considerations 139

deleting procedures 32
deleting records from a file 122
deleting source library

control statement 134 .
disk considerations 138

designation of library entry 146
direct files

deleting records from 122
OCL consideration for multi-volume files 48
printing part of 123, 130
records-tracks conversion for 175

DI RSIZE parameter 136
disk copy/dump program

control statements 119
examples 127
considerations, OCL 124
copying entire disk 124, 127, 116
copying or printing files 116, 119, 124 - 126
parameter descriptions 122
parameter summary 121
program name 124
program uses 116

disk drive
capacity 81

disk files 176
disk initialization program 81

control statements 83
example
OCL considerations 88

parameter descriptions 86
parameter summary 85
program name 88
program uses 81

disk name
characters allowed in 87
length of 86
response to PACK in OCL cycle 35
uses

alternate track assignment 94
alternate track rebuild 99
disk initialization 87
file delete 111

disk organization 176
DISP (displacement) parameter 99
DISPLAY control statement 104
duplicate procedure names

general discussion 32
operator's options following 32

END control statement 79
end-of-job halt

definition 177
response to READY 5

ENTER - Key
bypassing proced~re printout 9, 27, 32
purpose of, when to use 139

ENTER+ Key
relationship to the PROG START key 9
purpose of, when to use 9
uses of 9

entering comments
during the MODI FY phase 42
on response Ii ne 10

error code
(see error messages)

error messages 57
errors in OCL statements

how to correct using MODI FY statement 41
examples

alternate track assignment
conditional assignment 96

alternate track rebuild
.correcting characters on alternate track 101

disk copy/dump
copying entire disk 127
copying a file 128
printing part of a file 130

disk initialization
primary initialization 89

file and volume label display
printing VTOC information for two files 108

file delete
deleting one of several files having same name 114
removing one file 115

library maintenance
changing source library size 161
copy file-to-library 166
copying minimum system 163
creating libraries 160
deleting object library 162
deleting permanent entries of one type 169
deleting temporary entry 160
deleting temporary entries with names beginning with

certain characters 168
insert source library statements 172
printing library directories 164
removing source library statements 171

Index 181

library maintenance (continued)

renaming source statements 173
replacing library entry 165
replacing procedure statements 170

OCL
chained procedures 74
compile RPG 11 source 62
copy disk 64
include utility control statements in procedure 73
initialize a disk 61
multi-file BUILD 66
multi-file CALL 68
multi-volume indexed file creation 70
multi-volume indexed file update 69
pro..cess customer program 63

external indicators
at IPL 46
considerations when responding to SWITCH in BUILD cycle 47
considerations when responding to SWITCH in LOAD cycle 46
current setting displayed in SWITCH statement 46
using the SWITCH statement to change 46

file and volume label display program
control statements 104
example 108
OCL considerations 107
parameter descriptions 104
program name 107
program uses 103

file date
keyword description 37
restriction during file creation run 37

file dates 112
file delete program

control statements 11 0
examples 114 - 115
OCL considerations 113
parameter descriptions 111
program name 113
program uses 109

file designation
how to change 37•

response to RETAIN in OCL cycle 36
file keywords

system-operator interaction during prompting of 34
FILE NAME

for $DSORT, $COPY, $MICR, $RPG, and $KDE 35
for RPG Programs 35
in BUI LO Keyword-Response Summary 17
in LOAD Keyword-Response Summary 11
its position in the BUILD sequence 16
its position in the LOAD sequence 10
keyword description 35

file names
file delete 111
disk copy/dump 122

file-to-library copy function of Library Maintenance program 141
files, direct

records-tracks conversion for 175
files, indexed

records-tracks conversion for 175

files, multi-volume 48 - 52
files, sequential

records-tracks conversion for 175

182

FORMS
entering the keyword during the MODIFY phase 43

FROM parameter
disk copy-dump 122
library maintenance 144

glossary 177

HALT
in card OCL 29, 30
in conversational OCL 5, 37

halt, end-of-job
definition 177

HI KEY (see multi-volume files)
hyphens in control statements 80

I BM System/3 standard character set 174
IBM-Supplied RPG Compile Procedure (RPG)

as response to CALL NAME in CALL sequence 26
increasing size of 52
in sample job #2. 62

ID (identification) parameter 87

INCLUDE
during a CALL cycle 45
entering during the MODI FY phase 39, 44
including control statements in a procedure 52
response to MODI FY in BUILD sequence 23
restrictions following keyword 45

sample job 73
special considerations involving INCLUDE statements 45

I NCR parameter of MODI FY statement 157
indexed files

multi-volume
file statements for 48
OCL considerations for 48
OCL sample jobs for 69 - 70

printing part of 130
record-tracks conversion for 175
reorganizing 118

initial program load (IPL)
definition 177
establishing system date at 34

initialization
clear initialization 82
general definition 81
primary initialization 82
secondary initialization 82

INSERT statement ($MAI NT)
control statement 156
functions 155
parameters 158

inserting source library entries ($MAI NT) 155

KEY LENGTH (see multi-volume files)
keyword descriptions, OCL

for each keyword 32 - 47
what they are and how to use them 2

keyword flowcharts
what they are and how to use them 2

keyword prompting 7
keyword-response summary

BUILDsequence 27
CALL sequence 42
LOAD sequence 16
what they are and how to use them 2

keyword sequences 2

LABEL param~ter
File ~nd volume label display 104
File delete 111
OCL
in BUI LO Keyword-Response Summary 20
in LOAD Keyword-Response Summary 13
its posi,tion in the BUILD sequence 16
keyword description 35
position in LOAD sequence 10
when response is required 35

large RPG programs, compiling 52
LENGTH parameter 99
length on control statements 80
library boundary changes 131
library directories

definitions 131
directory printouts 149 - 152
object library directory size 136, 137
source I ibrary directory size 136, 138

library entries
choosing designation
copying entries

146

considerations 146 - 148
control statements 141 - 143

deleting entries 153
naming entries 146
organization in libraries 131
renaming entries 158
types 131

library maintenance program
control statement summaries

allocate 134
copy 141 - 143
delete 153
modify 156
rename 158

examples
allocate 160
copy 163
delete 167
modify 170
rename 173

library description
OCL considerations
parameter summaries

allocate 135
copy 144
delete 154
modify 157
rename 158

program name 159
program uses

al I ocate 132
copy 140
delete 153
rename 158

I ibrary, object

131
159

changing upper boundary 131
definition 177

LIBRARY parameter 144
library, source

(see source library)
library to library copy

considerations 148
control statements 142

library to printer and card copy
considerations 148
control statements 143

line counter specifications
(see FORMS)

LIST parameter of MODI FY statement 156
listing source library statements ($MAI NT) 155
LOAD NAME

in BUI LO Keyword-Response Summary 17
in LOAD Keyword-Response Summary 11
its position in BUI LO sequence 16
its position in LOAD sequence 10
keyword description 38

LOAD sequence
when to use 4

LOCATION
considerations for multi-volume files 48
in the BUI LO Keyword-Response Summary 22
in the LOAD Keyword-Response Summary 14
its position in BUILD sequence 16
its position in L:-OAD sequence 10
keyword description 36

location of libraries on disk
131 source with respect to object

placement of source library 138 - 139
placement of object library 138 -139

LOG
22" printer as log device 55
CRT as log device 56
entering during MODI FY 56
entering during READY 56

Model 6 disk organization 176
Model 6 job cycle 4
MODI FY (OCL)

changing a previous OCL statement 41
deleting a previous OCL statement 41
entering CANCEL 42
entering comments 42
entering FORMS 43, 55
entering I NC LU DE 44
entering LOG 55,56
in BUI LO Keyword-Response Summary
in CALL Keyword-Response Summary
in LOAD Keyword-Response Summary
its position in the BUILD cycle 16
its position in the CALL cycle 26
its position in the LOAD cycle 10

23
26
15

keyword description of MODI FY options 39
not prompted after CALL NAME 32
statement numbers 9

MODI FY statement ($MAI NT)
control statement summary 156
functions 155
parameters 157

multiple files 35
multi-volume files 48

coding for 52
OCL considerations for 48
sample jobs 69 - 72

name of source program
as response to COMPILE SOURCE

NAME parameter ($MAI NT) 144
naming library entries 146

characters to use 146
length of name 146
restricted names 146

NEWNAME parameter 145
NOHALT

in card OCL 29 - 30
in conversational OCL 5, 45

33

Index 183

184

object library
changing size

control statement
disk considerations
SYSTEM parameter
WORK parameters

creating
control statement

134
137
136

137

134
disk considerations 136
SYSTEM parameter 136
WORK parameter 137

definition 131
deleting

control statement 134
disk considerations 136

reorganizing
control statement 134
disk considerations 136

object library directory
definitions 131
printout 150
size 136

OBJECT parameter 136
object programs, definitions of
OCL

definition 4; 177
OCL considerations

131

alternate track assignment 95
alternate track rebuild 100
disk copy/dump 124
disk initialization 88
file and volume label display 107
file delete 113
library maintenance 158
multi-volume files 48

OCL cycle 4 - 7
OCL guide

sample form 2
OMIT parameter ($COPY)
operation control language (OCU

definition of 4, 177
operator's OCL guide

sample form 2
organization of library entries 131
OUTPUT parameter 122
OUTPTX parameter 122
overlay

definition 177
overriding system date 34

P (permanent) file designation
importance in deleting a procedure from a source library 32

P (permanent) files
restrictions 36
when to assign a P (permanent) designation to a file 36

PACK parameter
alternate track assignment 94
alternate track rebuild 99
disk initialization 87
file delete 111
OCL 35
considerations for multi-volume files 49
in BUILD Keyword-Response Summary 20
in LOAD Keyword-Response Summary 13
its position in BUILD sequence 16
its position in LOAD sequence 10
keyword description 35

parameter 80
parameter descriptions

alternate track assignment 94
alternate track rebuild 99
disk copy/dump 122
disk initialization 86
file and volume label display 104
file delete 111
library maintenance

allocate 135
copy 144
delete 154
modify 157
rename 158

permanent (P) files
restrictions 36
when to assign a P (permanent) designation to a file

predefined filenames 55
primary initialization 82
primary tractor

in entering LOG during the MODI FY phase 43, 56
lines per page setting for 43, 56
print positions of 43, 56

printing entire VTOC 103
printing file information from VTOC 103
printing files 116
permanent library entries 131
printing library directories 143 - 152
printing library entries 143
printing part of an indexed file 123
printing part of direct file 123
printing part of sequential file 123
procedure

definition of 4, 131, 155, 177
deleting 32
inserting statements 155
modifying 155
listing 155
removing statements 155
replacing statements 155

procedure name
as response to CALL NAME in CALL cycle 26
response to BUILD NAME in BUILD cycle 17
restrictions on 32

PROG START key
uses of 9
(see also keyword-response summary)
when to use it 9

program names
alternate track assignment ($ALT) 95
alternate track rebuild ($BUILD 100
disk copy/dump ($COPY) 124
disk initialization (INIT) 88
file and volume label display ($LABEL) 107
file delete ($DELET) 113
library maintenance ($MAI NT) 158

program operation 78
all program except library maintenance 78
library maintenance 80

prompting
how it's done 4

punching library entries 143

question mark key
purpose 6

36

rea~er to library copy
considerations 14 7
control statements 141

READY
in BUILD Keyword-Response Summary 17
in CALL Keyword-Response Summary 26
in LOAD Keyword-Response Summary 11
its position in the BUILD sequence 16
its position in the CALL sequence 26
its position in the LOAD sequence 10
its position in the Model 6 job cycle 7
keyword description 38

REBUILD 98
RECORDS

considerations for multi-volume files 48
in BUILD Keyword-Response Summary 21
in LOAD Keyword-Response Summary 13
its position in the BUILD sequence 16
its position in the LOAD sequence 10
keyword description 36

records-track conversion 175
relative record number 123
REMOVE statement ($DELET) 110
REMOVE statement ($MAI NT)

control statement summary 156
functions 155
parameters 158

removing source library statements ($MAINT) 155
RENAME, library maintenance

control statement summary 158
example 173
use 158

renaming I ibrary entries 158
REORG (reorganize) parameter 122
reorganizing object I ibrary

control statement 135
disk considerations 137

reorganizing source library
control statement 135
disk considerations 137

REPLACE statement ($MAINT)
control statement summary 156
functions 155
parameters 158

replacing library entries
library to library copy 140
reader to library copy 140
RETAIN parameter 144
NEWNAME parameter 144

replacing source library entries ($MAI NT) 155
RESER parameter of MODI FY statement 158
reserializing a source library entry ($MAI NT) 155
RETAIN parameter

library maintenance program 144
OCL

in BUILD Keyword-Response Summary 22
in LOAD Keyword-Response Summary 14
its position in BUILD sequence 16
its position in LOAD sequence 1 O
key description 36

RPG Compiler ($RPG)
as response to LOAD NAME in OCL cycle 38

RPG File Description Specifications
source of RPG Filename in OCL cycle

RPG filename
response to Fl LE NAME in OCL cycle

34

34

RPG programs
compiling 62

compiling large RPG programs 52
recommended method of compiling 62

RPG source programs
compiling 62
compiling large RPG source programs 52
recommended method of compiling 62

RUN
keyword description
response to MODI FY in sequence 23
response to MODI FY in CALL sequence 26
response to MODI FY in LOAD sequence 15

routines, definitions of 131

S (scratch) files
restrictions 37
when to apply an S (scratch) designation to a file 37
(see examples)

scheduler work area 136
SCRATCH control statement 11 0
scratch (S) files

restrictions 37
when to apply an S (scratch) designation to a file 37

secondary initialization 82
secondary tractor (of 22" printer)

entering LOG for 55
lines per page setting for 55

sector
definition 177

SELECT control statement 120
SELECT KEY parameters 123
SELECT PKY parameters 123
SELECT RECORD parameters 123
SEQFLD parameter of MODIFY statement 157
sequence numbers in MODI FY function 155
sequential files

deleting records from 118, 122
printing part of 116, 123
records-tracks conversion for 175

sequential multi-volume files
OCL considerations for 48

setting external indicators 46
single quotation mark key

(see multi-volume file)
SORT source statements in a procedure 27
SOURCE

in BUILD Keyword-Response Summary 17
in the LOAD Keyword-Response Summary 11
its position in the BUILD sequence 16
its position in the LOAD sequence 14
keyword description 33

source library
adding entries 155
changing size

· Gontrol statement 135
disk consideration 139
WORK parameter 137

contents 1 76
creating

control statement 135
disk considerations
WORK parameter

definition 131, 177

138
137

Index 185

source library (continued)

deleting
control statement 135
disk considerations · 138

inserting entries 155
listing entries 155
putting procedures in 32
relationship to the BUI LO and CALL sequences 4
removing entries 155
reorganizing

control statement 135
disk considerations 138

replacing entries 155
reserializing entries 155

source library directory
definition 132, 155, 177
printout 149, 164
putting procedure names in 32
size 136

SOURCE parameter 136
source statements

as input to the RPG Compiler 52
definition 131, 177

source unit 33
special characters

their uses and location 80
standard character set 174
statement numbers 9

in modify 39
status of system printer

consideration when responding to MODI FY with a LOG
statement 55

substitute data 98
surface analysis

alternate track assignment 93
disk initialization 83

SWITCH
in BUI LO cycle 19
in LOAD cycle 12
its position in BUI LO sequence 16
its position in LOAD sequence 1 O
keyword description 46

sys gen
definition 177

system date
keyword description 33
overriding 34
responding to in the BU I LO sequence 19
responding to in the LOAD sequence 12

system directory
definition 132
printout 152

system input device
general use 78
use in library maintenance 144

system-operator interaction during keyword prompting 7
SYSTEM parameter 136
system printer

definition 177
(see also FORMS and LOG)

system program name
as response to keyword LOAD NAME in OCL cycle 38

system program - changing printed output for
(see FORMS under MODI FY)

system programs, including in object library 136

186

T (temporary) Files
restrictions 37
when to assign a T (temporary) designation to a file 36

temporary library entries 146
testing condition of disk tracks (see surface analysis)
TO parameter

disk copy/dump 122
library maintenance

allocate 136
copy 145

TRACK parameter ($BUI LO) 99
TRACKS

considerations for multi-volume files 48
definition 177
in BUI LO Keyword-Response Summary 21
in LOAD Keyword-Response Summary 14
its position in the BUI LO sequence 16
its position in tbe LOAD sequence 10
keyword description 36

tracks-records conversion 175
TYPE parameter 86
types of library directories 146
types of library entries 146

UI N control statement 84
UN ASSIGN parameter 94
unconditional assignment of alternate tracks 94
UNIT parameter

alternate track assignment 94
alternate track rebuild 99
disk initialization· 86
file and volume label display 104
filedelete 111
OCL

BUI LO unit 32
Fl LE unit 35
LOAD unit 38
multi-volume files 48, 52
SOURCE unit 33

utility control statements
coding 80
in procedure
(see INCLUDE)

VERIFY parameter
alternate track assignment 94
disk initialization 86

VOL control statement 84
VTOC (volume table of contents)

contents 176
definition 104, ·177
its relationship to LABEL 35
printing entire VTOC 103
printing file information only 103

VTOC file name
as response to keyword LABEL in OCL cycle 35
how to distinguish two files with the same VTOC file name

and label 37

work area
disk copy/dump 116
library maintenance 137

WORK parameter
disk copy/dump 116
library maintenance 137

1255 Magnetic Character Reader Utility ($MICR)
in response to LOAD NAME in OCL cycle 38

READER'S COMMENT FORM

I BM System/3 Model 6
Operation Control Language and
Disk Utility Programs
Reference Manual

YOUR COMMENTS, PLEASE ...

GC21-7516-3

Your comments assist us in improving the usefulness of our publications;.they are an important
part of the input used in preparing updates to the publi_cations. All comments and suggestions
become the property of I BM.

Please do not use this form for technical questions about the system or for requests for additiona.1
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the I BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you .wish a reply.

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC21-7516-3

Fold Fold

Fold

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

I BM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

Fold

(")

s

o;
s:
en
~
(I)

3 w

~
~
(I)

a.
5·
c
en
~

C)
(")

~
.:..i
~
O')

w

GC21-7516-3

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

co
:s::
en
~
CD

3 w

