
•••• • ••• •••• • •••• ~
·······~·········· ········-········· ••••••••••••••••••• _,
•••• • •••
•••• • ••• •••• • ••• OOCOOOOOOOOOOOOeOO

··~··············· •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••• •••••• • ••••• •••• • ••• "•••• •••• • ••• •••••••••••••••••• •••••••••••••••••• ••••••••••••••••• •••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••• •••••••••••
-~··z::::::: .. •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • •• t.r. ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• • ••••• •••••••••• • •••• oeoeeeoo •••• •••••• • ••• •••• ••••• ••••••• •••• • ••••••• •••• • •••••• •••••••••••••• •••••••••••• •••••••••••• •••••••••••••• •••• • •••••• •••• • ••••••• 0000000
00000

0000
0000

0000 •••••
00000 0000000

00000• eoooooooo
ooo•••• •0000000000
oooeooo •000000000•
ooo• •••o eooo
ooo• ooo• ••oo
ooo• 0000 eoo•
•••••000000• 000000
000000000000 000000

ooeoooooo• ••ooo
0•000000 0000

000000
eooooo
000000
ooo•••
•••o•o

0000 0000
0000 ••••
oooooooeoeoooeoooo
000000000000000000
ooooooooeeoooooooo
000000•00000000000
ooeo 0000
0000 0000

000000
000000
000000
000000

•••• 0000
0000 oeoo
ooooooeooooeoooooo
•ooooooooooooeoooo
0000000000000•0•0•
ooooeeoeoooeoooooo
0000 0000 o••o
0000 0000 0000
o••o 0000 oeoo
oo•ooo 0000 ••oooo

"·000000 oooeoo
ooooeo ••••oo
000000 000000

0000 eooo
0000 oo•o
ooooeoeooooooeo•o•
oooeoo••••••oooooo
000000000000000000
000000000000000000

000000000•
0•000000000

oooooeoooo•
oooooeooeoo

00000000000
oooooeooooo

0000000000
0000000000000••000
000000000000000000
••••••ooeoooooo•o•
000000000000000000
•••• 0000 •o•• ••••

•••• oo••••
00000 000000

oooeoo 0$000•
0000000 000000
0000000 oeoo 0000
oeeo 00000 eoeo
eooo 000000 0000
0000 oooooeooooo

.00000••0•00000000•0
00000000000 000000 oo•••••••• ••••• •••••••• • ••• •••••••

IBM System/a·
Model 6
Operation Control Language and
Disk Utility Programs
Reference Manual

Program Number 5703-SC1

GC21-7516-2

PREFACE

This publication is intended for use by program
mers who are doing either of the following:

1.

2.

Writing Operation Control ,Language (OCL)
statements needed to run programs in the

system.

Writing utility control statements necessary
to run disk utility programs supplied by the

system.

Third Edition (September 1971)

Prerequisite Publications
IBM System/3 Model 6 Introduction, GA21-9122

Other Publications Referenced in This Manual
I BM System/3 Model 6 Operator's Guide,
GC21-7501

•

I BM System/3 Disk Sort Reference Manual,
SC21-7522

I BM System/3 Model 6 Conversatiorfa Utility
Programs Reference Manual, SC21-7528

IBM System/3 Model 6 Utility Program for
IBM 1255 Magnetic Character Reader Reference
Manual, SC21-7527

IBM System/3 Model 6 RPG II Reference
Manual, SC21-7517

This is a major revision of, and obsoletes, GC21-7516-1 and Technical Newsletter GN21-7575.
Changes are indicated by a vertical line to the left of the change.

This edition applies to version 5, modification 0 of the IBM System/3 Model 6 and to all subse
quent versions and modifications until otherwise indicated in new editions or Technical News
letters. Changes are continually made to the specifications herein; before using this publication
in connection with the operation of I BM Systems, consult the latest I BM System/3 Newsletter
Order Number GN20-2228 for the editions that are applicable and current.

Requests for copies for IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications, Depart
ment 425, Rochester, Minnesota 55901.

©copyright International Business Machines Corporation 1971

MACHINE REQUIREMENTS

Conversational OCL and all utility programs except
Library Maintenance can be done using the minimum
configuration of System/3 Model 6.

The minimum configuration is as follows:

• I BM 5406 Processing Unit, Model B2 -
including keyboard

• I BM 5444 Disk Storage Drive

• I BM 5213 Printer

OCL statements from cards and Library Maintenance
functions involving cards require an additional unit:
IBM 5496 Data Recorder, Model 1 with System/3
Model 6 On-Line Feature.

CONTENTS

MACHINE REQUIREMENTS.

HOW TO USE THIS MANUAL

PART I. OPERATION CONTROL LANGUAGE

HOW TO USE PART I .

SUMMARY OF CONVERSATIONAL OCL .
The Job Cycle

The Four OCL Cycles .
BUILD and CALL Cycles

System-Operator Interaction During Keyword Prompting

End-of-Statement Keys .
Program Start (PROG START) or Enter Plus
(ENTER+) •

Enter Minus (ENTER-)
Statement Numbers in an OCL Cycle .
Comments
Inquiry Interrupt

Restrictions During Inquiry
Keyword Sequence for OCL Load Cycle .
Keyword-Response Summary (Load Cycle)
Keyword Sequence for OCL Build Cycle .
Keyword-Response Summary (Build Cycle)
Keyword Sequence for OCL Call Cycle .
Keyword-Response Summary (Call Cycle)

KEYWORD DESCRIPTIONS .
BUILD NAME .

Duplicate Procedure Names
Deleting a Source Library Procedure

BUI LDC NAME.
CALL NAME
COMPILE OBJECT •
SOURCE.

In a LOAD Cycle
In a BUILD Cycle

UNIT; Source Unit .
DATE (System Date)

Overriding the System Date
Format of the DATE Statement

FILE NAME.
FILE NAME for Customer Programs .
FILE NAME for $RPG, $DSORT, $COPY, $MICA,
and $KDE

System-Operator Interaction During Prompting of
File Keywords

Multiple Files
UNIT; File Unit .
PACK.
LABEL
RECORDS (and TRACKS)

Responding to TRACKS
Responding to RECORDS .

LOCATION .
RETAIN •

ii

File Creation •
Changing File Designation of Existing File
Deleting Files

. 1

I

3

5

7
7

9
9

11

13

13
13
13
13
14
14
15
16
26
27
41
42

45
45
45
45
45
45
46
46
46
46
46
47
47
47
48
48

48

49
50
50
50
50
50
51
51
51
51
51
52
52

DATE (File Date)
Restriction During File Creation

HALT

LOAD NAME
For Customer Programs
For System Programs

MODIFY.
MODI FY; Changing a Previous OCL Statement
MODI FY; Deleting a Previous OCL Statement
MODIFY; Entering Comments
MODIFY; Cancelling Job.
MODI FY; Entering Forms
MODIFY; Including Control Statements •

NOHALT.

READY
RUN .
SWITCH

Indicator Settings
IPL Considerations
Duration of SWITCH Setting
Operator-System Interaction for SWITCH Statement
(LOAD Cycle) .

Operator-System Interaction for SWITCH Statement
(BUILD Cycle., .

Operator-System Interaction for SWITCH Statement
(CALL Cycle)

SAMPLE JOBS •
Sample Job 1. Initialize Disk

Explanation .
Sample Job 2. Compile an RPG Source Program

Explanation .
Sample Job 3. Process Customer Program"INVUPD".

Explanation .
Sample Job 4. Copy File Disk to Disk

Explanation .
Sample Job 5. Multi-File BUILD

Explanation .
Sample Job 6. Multi-File CALL

Explanation .

PART II. DISK UTILITY PROGRAMS .

HOW TO USE PART II
Writing Utility Control Statements
Writing OCL Statements
Capital Letters, Numbers, and Special Characters

INTRODUCTION
General Program Operation
Library Maintenance Program .
Control Statements .

DISK INITIALIZATION PROGRAM
Control Statement Summary for $1NIT
Parameter Summary
Parameter Descriptions

TYPE Parameter (UIN)
UNIT Parameter (UIN)

52
52
52
53
53
53
54
56
57
58
59
60
62
63
64
64
64
64
64
64

65

66

67

69
70
71
72
73
74
75
76
77
78
80
81
82

83

85
85
85
85

87
87
88
88

91
92
93
94
94
94

VERIFY Parameter (UIN)
ERASE Parameter (UIN)
CAP Parameter
PACK Parameter (VOL)
ID (Identification) Parameter (VOL)

OCL Considerations
Example •

Primary Initialization of Two Disks
Messages for Disk Initialization

ALTERNATE TRACK ASSIGNMENT PROGRAM
Control Statement Summary for $ALT
Parameter Summary
Parameter Descriptions

PACK Parameter
UNIT Parameter
VERIFY Parameter
ASSIGN Parameter.
UNASSIGN Parameter.

OCL Considerations
Example •

Conditional Assignment
Messages for Alternate Truck Assignment

ALTERNATE TRACK REBUILD PROGRAM
Control Statement Summary for $BUILD
Parameter and Substitue Data Summary •
Parameter and Substitue Data Descriptions

PACK Parameter
UN IT Parameter
TRACK Parameter
LENGTH Parameter
DISP (Displacement) Parameter
Substitute Data .

OCL Considerations
Example •

Correcting Characters on an Alternate Track.

FILE AND VOLUME LABEL DISPLAY PROGRAM
Control Statement Summary for $LABEL
Parameter Summary
Parameter Descriptions.

UNIT Parameter
LABEL Parameter

OCL Considerations
Example .

Printing VTOC Information for Two Files

FILE DELETE PROGRAM .
Control Statement Summary for $DE LET
Parameter Summary
Parameter Descriptions

PACK Parameter
UN IT Parameter
LABEL Parameter
DA TE Parameter
DATA Parameter (Remove Only)

95
95
95
96
96
97
98
98
99

101
102
103
104
104
104
104
105
105
106
107
107
108

109
109
110
111
111
111
111
111
111
111
112
113
113

115
115
116
116
116
116
119
120
120

121
122
124
126
126
126
126
126
126

OC L Considerations 127
Example 128

Deleting One of Several Files Having the Same
Name 128

Removing One File 129

DISK COPY/DUMP PROGRAM
Control Statement Summary for $COPY
Parameter Summary
Parameter Descriptions

FROM and TO Parameters (COPVPACK)
OUTPUT Parameter (COPVFILE) •
DELETE Parameter (COPVFILE)
REORG (Reorganize) Parameter (COPVFI LE)
WORK Parameter (COPVFILE) .
SELECT KEV and PKV Parameters (SELECT) •
SELECT RECORD Parameters (SELECT) •

Copying Multi-Volume Files .
Maintaining Proper Volume Sequence Numbers
Maintaining Correct Relative Record Numbers •
Direct File Attributes •
Copying Multi-Volume Index Files •

OCL Considerations
Examples.

Copying an Entire Disk
Copying a File From One Disk to Another •
Printing Part of a File

LIBRARY MAINTENANCE PROGRAM
Library Description
Organization of This Section.

ALLOCATE.
Uses •
Control Statement Summary.
Parameter Summary
Parameter Descriptions.

COPY.
Uses •
Control Statement Summary: Reader-To-Disk
Control Statement Summary: Disk-To-Printer
Control Statement Summary: Disk-To-Card •
Control Statement Summary: Disk-To-Printer and

Card.
Parameter Summary
Parameter Descriptions

DELETE .
Uses .
Control Statement Summary
Parameter Summary

RENAME
Use
Control Statement Summary
Parameter Summary

OCL Considerations
ALLOCATE Examples .

Creating Both Source and Object Libraries on a Disk
Changing the Size of a Source Library
Deleting the Object Library from a Disk .

COPY Examples .
Copying Minimum System from One Disk to Another
Printing Library Directories
Replacing a Library Entry: Replacement Coming from
Another Disk

131
132
134
136
136
136
137
137
137
138
138
139
139
139
139
139
140
143
143
144
146

147
147
148

149
149
149
150
151
156
156
158
160
161

162
163
166

176
176
177
178
179
179
179
180
181
182
182
183
184
185
185
186

187

Contents iii

DELETE Examples . 188
Deleting a Temporary Entry from a Library . 188
Deleting All Temporary Entries With Names That Begin
With Certain Characters . 189
Deleting All Permanent Library Entries of One Type 190

RENAME Example . 191
Renaming a Set of Source Statements in a Source
Library 191

APPENDIX A: ADVANCED TOPICS FOR OCL 193
Multi-Volume Files. 193

File Statements for Multi-Volume Files 193
OCL Considerations 194
List Requirements . 194

OCL Considerations for M.ilti-Volume Files 196
Coding Multi-Volume File Statements 198
Changing Multi-Volume File Statements with Modify

Keyword 198
Sample Job 7. Updating M.ilti-Volume Master File . 198

Explanation . 199
Sample Job 8. Creating a Multi-Volume Indexed File • 199

Explanation • 200
Sample Job 9. Maintaining a Multi-Volume Indexed File

with Packed Keys. 201
Including Sort Source or Utility Control Statements in a
Procedure • 202

Sample Job 10. Including Utility Control Statements in
a Procedure 202

Increasing File Size of the RPG Procedure • 203
Entering RPG 11 Source St~tements from the Keyboard

at Compile Time . 203
Chained Procedures • 204
Sample Job 11. Chained -P-rocedure 209

APPENDIX B: RECORDS - TRACKS CONVERSION 212
For Sequential or Direct Files . 212
For Indexed Files 212

APPENDIX C: DISK ORGANIZATION 213
Volume Table of Contents (VTOC) 213
Source Library 213
Object Library 213
Files . 213

iv

APPENDIX D: OCL FOR THE 22" PRINTER (IBM
2222 PRINTER)

Using the FORMS Statement with the 22" Printer
Log Device
MODIFY - Entering the Keyword FORMS .

APPENDIX E: OCL FOR THE IBM 2265-2 DISPLAY
READY - Entering LOG .
MODIFY - Entering LOG .

APPENDIX F: OPERATOR'S OCL GUIDE

APPENDIX G: CARD OCL FOR MODEL 6
Assigning Data Recorder As System Input Device
Returning Control to Keyboard
Card Format of OCL Statements
General Coding Rules .
Statement Order

Coding Multi-Volume File Parameters

APPENDIX H: OCL ERROR MESSAGES

APPENDIX I: CO-RESIDENT SYSTEMS

APPENDIX J: IBM SYSTEM/3STANDARD CHARACTER

214
214
214
215

216
217
218

219

220
220
220
220
223
223

224

225

231

~T . 2~

GLOSSARY 233

INDEX 235

I
HOW TO USE THIS MANUAL

I
This publication contains two parts. Part I describes Operation Control Language (OCL)

statements. Part 11 describes disk utility programs.

Part I

Refer to Part I if you want to know:

1. What an OCL statement is.

2. How to enter the OCL statements required to run your jobs.

Part II

Refer to Part 11 if you want to know:

1. What disk utility programs are supplied with the system.

2. The function of each disk utility program.

3. The Operation Control Language (OCL) statements and utility control
statements necessary to request each disk utility program.

How to Use This Manual

2

PART I.
OPERATION CONTROL LANGUAGE

Part I'. Operation Control Language 3

4

Part I of this manual is designed to help you fill
out the OCL guide sheets your operator will use
in response to the OCL prompting for each job.
You can either design an operator's OCL guide
sheet for your installation or use the pre-printed
form that is available (see Appendix F: Operator's
OCL Guide).

This part contains a main section and several
appendixes. The main section contains three
different levels of information to program the
primary OCL cycles: LOAD, BUILD, and CALL.

Here is how to use each level of information:

e Use the KEYWORD SEQUENCES for an
overall understanding of the OCL cycle.

• Use the KEYWORD-RESPONSE SUMMARIES
for a quick recall of all the possible entries
for each OCL statement.

• Use the KEYWORD DESCRIPTIONS when
you need a detailed explanation of a particular
keyword.

Keyword Sequences shows the order c;>f the OCL
keywords for a cycle and
indicates which keywords
require responses.

Keyword-Response lists keywords and possible
Summaries responses for the three OCL

cycles. In the Responses
column:

• Words or letters in all
capital letters (FORMS,
BUILD, R 1) represent
actual entries.

• Words or letters not in
all capital letters (mmddyy,
Disk Name) represent
information you must
supply.

• gives detailed information
Keyword Descriptions

about each keyword.

HOW TO USE PART I

The appendixes contain information on program
ming OCL for complex jobs and special features
or devices.

A. Use Appendix A: Advanced Topics for
OCL for information on:

B.

C.

• Multi-volume files.

• Including sort source or utility control
statements in a procedure.

• Increasing file size of the RPG procedure.

• Entering RPG 11 source statements from
the keyboard.

• Chained procedures. The BUI LDC
cycle is explained using the three levels
of information used in the main OCL
section.

Use Appendix 8: Records-Tracks Con
version for information on how to convert
number of records to number of tracks.

Use Appendix C: Disk Organization for
information on how the disk packs are
organized.

D. Use Appendix D: OCL for the 22"
Printer for information on using the
optional 22 inch printer.

E. Use Appendix E: OCL for the IBM 2265-2
Display for information on using the
2265-2 Display unit for OCL statements.

G. Use Appendix G: Card OCL for Model 6
for information using the online data re
corder to enter OCL statements on cards.

H. Use Appendix H: OCL Error Messages
for detailed explanation of error messages
printed during OCL prompting.

I. Use Appendix I: Co-Resident Systems
for information on using System/3 BASIC.

How to Use Part I 5

6

Every job run on the Model 6 requires a set of
Operation Control Language (OCL) statements to
give the system information about the job to be
run (such as what program to use, what files to
use, what job date to use, etc.). An OCL statement
consists of a keyword and a response.

The OCL for Model 6 is called conversational OCL
because it is really a conversation between the
system and the operator. The system prints a
keyword and waits for the operator to respond.

SUMMARY OF CONVERSATIONAL OCL

THE JOB CYCLE
The system will prompt READY when it is ready
to run jobs. (For information on preparing the
system to run jobs, see the I BM System/3 Model
6 Operator's Guide, GC21-7501.) The response
to READY tells the system what type of cycle
you want to run.

Summary of Conversational OCL 7

Job Cycle

181 System prompts READY

To halt
To change
input device

after l
each job

Operator
types
READER

Operator
types
HALT

See Appendix G:
Card OCL for
Model 6

To change

logrce

Operator
types
LOG

See READY
Entering LOG
in Appendix E

System prompts READY

I

8

To execute
a job

Operator
types
LOAD

Operator
supplies
OCL
statements

Operator
types
CALL

To build a
procedure

Operator
types
BUILD

To continue
from job to
job without
halting

Operator
types
BUI LDC

Operator
types
NOHALT

.-1 ~~!:.::~:nts ~ ~;~~=·
procedure OCL

System loads and
executes program

statements

System puts
statements in
procedure

THE FOUR OCL CYCLES
There are four OCL cycles: LOAD, BUILD, CALL,
and BUI LDC. The cycle you use depends on the
type of job you're going to run.

Type of Job OCL Cycle Result

For jobs you want to
LOAD

Provides the OCL statements
run only a few times necessary to run the job

·For jobs you will BUILD Puts the OCL statements

run frequently for a job into a source library
procedure*

CALL Calls the procedure* from
the source library

BUI LDC** Chains procedures*

* A set of OCL statements in a source library is called a procedure.

** See Chained Procedure in Appendix A.

BUILD and CALL Cycles
Using the BUILD and CALL cycles for jobs you
run frequently saves operator time. Once the
OCL statements for a job. are put in a source
library (with a BUILD cycle), you can request
them (with a CALL cycle) anytime you want to
run the job. Since the CALL cycle normally
prompts only four keywords, the operator time
involved is minimal.

Delayed Responses in the BUI LO Cycle
Responding to a keyword by typing a question
mark is referred to as a delayed response. De
layed responses are valid only in the BUILD
cycle and only after keywords that contain a

delayed response in the keyword-response
chart (see Keyword-Response Summary
(Build Cycle) in Appendix A). A delayed

response to any of these BU I LD keywords
will do the following:

• Cause the system to reprompt the keyword
during the CALL cycle.

• Force the operator to respond to the keyword
when it is reprompted during the CALL cycle.
(The system won't continue the CALL
prompting cycle until the operator types a
valid response.)

Summary of Conversational OCL 9

Printer

Halt Code Display Keyboard

Keyboard

Program Start Key Single Quote Field Erase Key Enter - Key
(For Multi-Volume Files)

BGG 04QBCIJITUIIJI ~ 1rnrnbJrnrrIJ1 ~ 11BKS'1·1'.-E-RA-SE

G8GEJ PROG 0000~000G0rn~000
6EJ[JE] START 0000~000~0 :]LJ~0~ ..---ENT-ER

GGGDI SHIFT 100~~000 ~ IT] ~ ~0G +

10

I 0 I~
Comma
(To Delete a Previous
OCL Statement)

Question Mark
(For Delayed
Response)

Asterisk Enter+ Key
(For Comment)

SYSTEM-OPERATOR INTERACTION DURING
KEYWORD PROMPTING

The system analyzes the operator's response to each
keyword. If the response contains a formatting
error (such as invalid characters or duplicate pro
cedure names), the system prints an error message
and reprompts the keyword. Appendix H lists
the error messages and a description of what
caused the error. If the operator does not know
the correct response, entering/* as a response to
any prompt will cancel the job and cause READY
to be prompted.

Summary of Conversational OCL 11

System-Operator Interaction During Keyword Prompting

12

.-"I System prompts keyword

~.:~. ~~::!~:~ator's OCL guide
show a response to the keyword

! l
YES NO

J
Operator types
in response

Operator presses end-of-statement
key to indicate end of statement

l
• ~~=:t;:;~nse contain

l j
YES NO

J
.-- :;,~~::.~~ng~

or code
r"I ;\::~I~:~~::~

l
Operator looks up
error message or code
and possible options in

operators manual

Operator uses one
of the options

END-OF-STATEMENT KEYS
The operator must respond to each keyword that
the system prompts. The operator responds to a
keyword by typing the required information (if
the keyword applies to the job) and by pressing
an end-of-statement key. The end-of-st9temem
key can be either PROG START or ENTER -
The Keyword-Response Summary charts in
Appendix A explain the effect of end-of-statement
keys on the prompting sequence.

Program Start (PROG ST ART} or Enter Plus
(ENTER+}

Pressing the PROG START or ENTER+ key
tells the system that the response is complete
and to prompt the next keyword.

Enter Minus (ENTER-}
Pressing the ENTER- key to end a response causes
different processing depending on what keyword
was prompted and what type of OCL cycle is
being run.

Pressing ENTER- After LOAD NAME or UNIT
in a LOAD Cycle: If the ENTER- key is used
as an end-of-response to the LOAD NAME or
UNIT prompts in a LOAD cycle, the remaining
keywords in the cycle will be bypassed and
MODI FY prompted.

Pressing ENTER- After LOAD NAME or UNIT in a
in a BUILD Cycle: If the ENTER- key is used as
an end-of-response to the LOAD NAME or UNIT
prompts in a BUILD cycle, the system will prompt
COMPILE OBJECT, SOURCE, or UNIT.

Pressing ENTER- After FILE NAME: If the
ENTER- key is used as an end-of response to
the Fl LE NAME prompt, the system prompts
KEY LENGTH and HI KEY for multi-volume
indexed files (see Multi-Volume Files in
Appendix A).

Pressing ENTER- in the File Keywords: If the
operator responds to Fl LE NAME, he must also
respond to the next two file keywords: UN IT and
PACK. He can, however, bypass any or all of the
rest of the file keywords. To bypass a single key
word he presses the PROG START key as a
response. To bypass all of the remaining file
keywords he presses the ENTER- key either as
an end-of-response or as a response. Pressing the
ENTER- key causes the system to prompt FILE
NAME for the next file.

STATEMENT NUMBERS IN AN OCL CYCLE
Statement numbers are assigned by the system to
statements in an OCL cycle. These statement
numbers are used by the operator when using
MODI FY to reference previous OCL statements.

Each OCL statement, except READY and
MODIFY, is assigned a three digit number. The
first number in a BUI LO or CALL cycle is 000,
and in a LOAD cycle 010.

The statement number is incremented by 10 for
each major keyword (DATE, SWITCH, COM-
Pl LE OBJECT, Fl LE NAME, etc.), and by one
for each minor keyword (UNIT, PACK, LABEL,
RECORDS, etc.).

When the INCLUDE keyword is used to add
utility control statements or sort source state
ments to a procedure, these included statements
are assigned two-digit statement numbers. These
statement numbers start with 00 and are incre
mented by one for each included statement.

The sample OCL jobs show the statement numbers
assigned under various OCL cycles.

COMMENTS

Comments can be entered after any response on
the same line if at least one space is left between
the response and the comment (see Modify:
Entering Comments under MODIFY in Part I
to add comments during MODIFY time).

Summary of Conversational OCL 13

INQUIRY INTERRUPT

14

Certain programs can be interrupted while they

are being processed. A request for interruption
is called an inquiry request (made by depression
of the inquiry key on the keyboard). Programs
are usually interrupted to permit another pro

gram to run. Control is then given back to the

first program.

The instructions given the compiler at compile
time determine the inquiry type of a program.

The three types of programs include:

1.

2.

3.

A program that cannot be interrupted

(does not recognize an inquiry request).

A program that can be interrupted (does

recognize an inquiry request). This is a
8-type inquiry program.

An inquiry program that can only be
executed when an inquiry request is
made. This is an I-type program.

Usually I-type programs are read in only when a
program is interrupted. In this case the inquiry
program will not recognize an inquiry request.
However, if an inquiry program is loaded in the
normal manner (not because of a program inter
rupt), it can only be executed when an inquiry

request is made. While this program is running,
it will not recognize an inquiry request.

The inquiry interrupt involves these three steps:

1.

2.

3.

When the program recognizes an inquiry

request, a Roll-Out routine moves the
interrupted program from main storage

to disk.

The program for which the interrupt was

requested must be loaded normally. The
interrupting program may be any type.
This interrupting program cannot be

interrupted.

After the interrupting program is executed,
the interrupted program moves back into
main storage using a Roll-In routine. The
interrupted program begins execution at
the point of interruption and terminates
in a normal manner.

The I BM System/3 Model 6 RPG 11 Reference
Manual, SC21-7517, describes coding necessary
to define inquirable programs.

Restrictions During Inquiry
Inquiry always causes the conversational OCL

scheduler to be used, even if the interrupted
program was running under the card scheduler.
The OCL statements cannot be read from cards
during inquiry.

The Log device cannot be changed during inquiry.

Keyword Sequence for OCL Load Cycle

SWITCH

No - Does operator respond
with a file name?

I

Summary of Conversational OCL 15

Keyword-Response Summary (Load Cycle)

KEYWORDS

READY

LOAD NAME

or

RESPONSES

LOAD

PROG START
T

PROGRAM NAME
(Not Compiler)

PROG START

or

ENTER-

COMPILER
PROGRAM NAME

PROG START

T

16 Keyword-Response Summary (Load Cycle)

CONSI DE RATIONS

None

System prompts LOAD NAME

Name of program to be run

System prompts DA TE after
UNIT

System prompts MODIFY after
UNIT

Name of compiler to be run ($RPG for
RPG 11 Compiler)

System prompts COMPILE
OBJECT after UNIT

l

]

I KEYWORDS RESPONSES CONSIDERATIONS

R1 ,R2,F1, or F2 Location of the disk whose object library]

or

c contains the program to be run. ~ \;---r---

---~~-._~~~~-- v~"""iE.- ,.EJ;i.~ f
PROG ST ART System prompts next keyword

(see LOAD NAME in this chart)

ENTER- System prompts MODI FY if
not compiler

COMPILE OBJECT

R1,R2,F1, or F2
~ --l..---a

I

Your system has more than one object library
and you don't want to put the compiled pro
gram in the object library which contains the
compiler.

l
or

PROG START System prompts SOURCE

No Response

PROG START

I

System will put the compiled program
in the object library which contains
the compiler. Prompt SOURCE

Summary of Conversational OCL 17

KEYWORDS

I SOURCE

UNIT

RESPONSES

Name of Source
Program

PROG START

R1 ,R2,F1, or F2

L

CONSIDERATIONS

Name assigned to RPG II source program when
the KSE or Library Maintenance Utility Pro-
gram put it in a source library G)

System prompts UNIT

Location of the disk whose source library
contains the RPG 11 source program

PROG START System prompts DATE

I DATE

mmddyy or
ddmmyy

PROG START

No Response

PROG START

l

Required when job date is not the same as
the system date. (Responses must follow
format established during sysgen.)

System prompts SWITCH

Either no date is required for the job
-or-

you're going to use the system date.
System prompts SWITCH.

<D For information about the KSE Program see the IBM System/3 Model 6 Conversational Utility
Programs Reference Manual, SC21-7528.

For information about the Library Maintenance Program see Part 11 of this manual.

18 Keyword-Response Summary (Load Cycle)

KEYWORDS

SWITCH
(XXXXXXXX)

~

r

I FILE NAME

or

RESPONSES CONSIDERATIONS

8-position setting
(combination of

Required to change external indicators in RPG 1 's,O's, and X's)
programs. Three choices for each position:

1 =turn indicator on
0 = turn indicator off
X = leave indicator as is

PROG START System prompts Fl LE NAME

No Response

PROG START
Job does not use external indicators
or you want to use the current

File name of file
used by program

l

PROG START

or

ENTER~

No Response

PROG START

setting. System prompts Fl LE NAME

Columns 7-14 of RPG File Description
Specifications, or predefined file name for
system programs

System prompts UN IT

System prompts KEY LENGTH
(see Multi-Volume Files in
Appendix A)

Either your job uses no files at all
-or-

you have already described all the
files the job uses. You want the
system to prompt MODI FY

Summary of Conversational OCL 19

KEYWORDS RESPONSES

I UNIT

R1 ,R2,F1, or F2

PROG START

I PACK

.L

7
Disk Name

PROG START

or

ENTER-

20 Keyword-Response Summary (Load Cycle)

CONSIDERATIONS

During a file creation run -
location of disk where you want
to write the file.

During other runs - location of disk which
contains the file to be processed

System prompts PACK

During a file creation run - the name which
identifies the disk on which you want to
write the file.

During other runs - name which identifies
the disk on which the file is located

System prompts LABEL

System prompts Fl LE NAME for
next file

KEYWORDS RESPONSES

VTOC Filename

PROG START

or or

ENTER-

No Response

PROG START

L

RECORDS
(j)

1-999999

PROG START

or or

ENTER-

No Response

PROG START

CONSIDERATIONS

Required when VTOC Filename is different
than response to Fl LE NAME

System prompts RECORDS

System prompts FILE NAME for
next file

You don't want to respond to this
keyword; you want the system to
prompt RECORDS

Number of records in the file

System prompts LOCATION

System prompts Fl LE NAME for
next file

You don't want to respond to this
keyword; you want system to
prompt TRACKS

G) At file creation time, either the number of records or the number of tracks must be specified .
.----~------~--_.,..,..;::;;-

'---·... ---
Summary of Conversational OCL 21

KEYWORDS RESPONSES

1-398

PROG START

ENTER-

No Response

l PROG START

1

LOCATION

./ 8-405
/''--~~~~~-1..--~

CONSIDERATIONS

N1,1mber of tracks the file will occupy

System prompts LOCATION

System prompts Fl LE NAME for
next file

You don't want to respond to this
keyword; you want system to
prompt LOCATION

Use during file creation runs if you want
to specify a beginning track location for
the file

r1'--P_R_o_G_s_T_A_R_T _ _.. System prompts RETAIN

or

lj
ENTER-

T

No Response

PROG START

l

System prompts Fl LE NAME for
next file

You don't want to respond to this
keyword; you want system to
prompt RETAIN

(j) At file creation time, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

22 Keyword-Response Summary (Load Cycle)

KEYWORDS RESPONSES CONSIDERATIONS

RETAIN

~ P,T,S,orA

1

P - permanent
T - temporary
S - scratch

or

I DATE

/

or

A - activate scratch

r--1---P_R_o_G_s_T_A_RT~-
or

System prompts DATE

l__
ENTER-

No Response

System prompts FILE NAME for
next file

PROG START If file is being created, file
designation will be T. System
prompts DATE. l

mmddyy or
ddmmyy

PROG START

No Response

PROG START

l

Required when job uses a file whose name
and label are the same as those of another
file on the same disk. (Response must
follow format established during sysgen.)

System prompts FILE NAME for
next file

You don't have to respond to this
keyword; you want system to
prompt FI LE NAME, for next file

Summary of Conversational OCL 23

KEYWORDS

MODIFY
{Operator can use
one, all, or a
combination of
the responses.)

RESPONSES

LOG

PROG START
T

CANCEL

PROG START

FORMS

T

PROG START
T

Asterisk {*)

Followed by comments

PROG START

CONSIDERATIONS

Used only if CRT display or 22" printer on
system (see Appendixes D and E)

System prompts
LOG DEVICE

Cancel job

System prompts READY or
displays end-of-job halt

Change lines per page printed output
for system programs

System prompts FORMS DEVICE

Enter comment.

System waits for next
MODI FY response

Statement number
and comma To delete statement

[

PROG START

24 Keyword-Response Summary (Load Cycle)

System waits for next
MODI FY response

]

I KEYWORDS RESPONSES CONSIDERATIONS

Statement number To correct statement
l

PROG START System waits for correct statement

l

RUN
Tells system -
a. The LOAD cycle is complete

l b. Run the job

PROG START System runs job

Summary of Conversational OCL 25

Keyword Sequence for OCL Build Cycle

26

Prompted only if response to
LOAD NAME or UNIT ended
with ENTER- key.

Keyword-Response Summary (Build Cycle)

KEYWORDS

READY

I
1111111~111111111111111
BUILD NAME

RESPONSES CONSIDERATIONS

BUILD None

PROG START System prompts BUILD NAME

[. J Maximum of six alphameric characters.
Procedure Name

------------ Must begin with alphabetic characters.

Must not be DIR, SYSTEM, or ALL

PROG START System prompts UNIT

l
I

R1 R2 F1 F2 I Location of the disk where you want to
' , 'or

put procedure. (Procedure is placed in
"--------.....---' the source library of the disk operator

specifies.)

PROG START System prompts LOAD NAME

Summary of Conversational OCL 27

I KEYWORDS

I LOAD NAME

or

IUNIT

or

I RESPONSES CONSIDERATIONS

Program Name Name of program to be run

PROG START System prompts DATE after UNIT

Compiler Name

ENTER-

l

R1,R2,F1, or F2

Name of compiler to be run ($RPG for
RPG 11 compiler).

System prompts UNIT then
COMPILE OBJECT, SOURCE, UNIT

Location of disk whose object library
._ ________ contains program

System prompts DA TE

ENTER- System prompts COMPILE OBJECT

? (Delayed Response) Forces operator to respond to unit during
CALL cycle

System prompts DA TE

ENTER- System prompts COMPILE OBJECT

28 Keyword-Response Sur:nmary (Build Cycle)

KEYWORDS

COMPILE
OBJECT

or

or

or

RESPONSES

R1 ,R2,F1, or F2

CONSIDERATIONS

Your system has more than one object
library and you don't want to put the
compiled program in the object library
which contains the compiler

PROG START System prompts SOURCE

No Response

PROG START

? (Delayed Response)

System will put the compiled
program in the object library which
contains the Compiler. System
prompts SOURCE

You will tell the system where to put the
compiled program during the CALL cycle.

PROG START System prompts SOURCE

Name of Source
Program Name assigned to source program when

the KSE or Library Maintenance Utility
Program put it in a source library

PROG START System prompts UNIT

? (Delayed Response) You will supply the name of the source
program during the CALL cycle.

PROG START System prompts UNIT

J

Summar~,Pf Conversational OCL 29

KEYWORDS

I~

\
ar

DATE

or

or

RESPONSES

R1,R2,F1,or F2

l

CONSIDERATIONS

Location of the disk whose source library
contains the RPG source program

PROG START System prompts DA TE

? (Delayed Response) You will supply the location of the source
program during the CALL cycle

PROG START System prompts DA TE

mmddyy or ddmmyy To put a job date in the procedure
(Response must follow format established
during system.)

PROG START System prompts SWITCH

? (Delayed Response) Forces operator to supply DATE
during CALL cycle

PROG START

No Response

PROG START

System prompts SWITCH

If no date is necessary for job
or system date is acceptable. DATE
will not be part of rocedure

30 Keyword-Response Summary (Build Cycle)

KEYWORDS

SWITCH

~

or

or

RESPONSES CONSIDERATIONS

8-position setting
(combination of Required to change external indicators in

1 's, O's, and X's) programs. Three choices for each position:

1 = turn indicator on
0 = turn indicator off
X =leave indicator as is

PROG START
System prompts FILE NAME

? (Delayed Response) Forces operator to respond to SWITCH
during CALL cycle

PROG START

No Response

PROG START

l

System prompts FILE NAME

Job does not require external
indicators. SWITCH will not be
part of procedure

Summary of Conversational OCL 31

KEYWORDS

FILE NAME

or

RESPONSES

File name of file
used by program l

CONSIDERATIONS

Columns 7-14 of RPG File Description
Specifications, or predefined filename
for system programs

~i--P_R_~_G_s_T_A_R_T___.
or

System prompts UN IT

ENTER-

? (Delayed Response)

System prompts KEY LENGTH
(see Multi-Volume Files in
Appendix A).

Forces operator to respond to Fl LE NAME
during CALL cycle

PROG START System prompts UNIT

~ No Response

I PROG START I

32 Keyword-Response Summary (Build Cycle)

Either your job uses no files at all
-or- you have already described all
the files the job uses. You want
the system to prompt MODIFY

KEYWORDS

/

0 r

PACK

or

RESPONSES CONSIDERATIONS

R1,R2,F1, or F2 During a file creation run -
location of disk where you want to
write the file.

During other runs :_
location of disk which contains the
file to be processed.

PROG START System prompts PACK

? (Delayed Response) Forces operator to respond to UNIT
during CALL cycle

Disk Name

PROG START System prompts PACK

During a file creation run -
the name which identifies the disk on
which you want to write the file.

During other runs -
name which identifies the disk on
which the file is located.

PROG START System prompts LABEL

ENTER- System prompts FILE NAME
for next file

? (Delayed Response) Forces operator to respond to PACK
during CALL cycle

PROG START System prompts LABEL

ENTER- System prompts FILE NAME

Summary of Conversational OCL 33

KEYWORDS

1111111111111~111111111111111
LABEL

or

or

RESPONSES

VTOC Filename

CONSIDERATl.ONS

Required when VTOC Filename is different
than response to Fl LE NAME

PROG START

or

ENTER-

? (Delayed Response)

System prompts RECOR OS

System prompts FILE NAME
for next file

Forces operator to respond to LABEL
during CALL cycle

PROG START System prompts RECOR OS

or

l 1 ENTER-l..________, System prompts FILE NAME

"'-. No Response

PROG START

l

•
34 Keyword·Response Summary (Build Cycle)

You don't want to respond to this
keyword, you want the system to
prompt RECORDS

KEYWORDS

.lllli!!!!llllllllllllllllllli

RECORDS

/

or

RESPONSES CONSIDERATIONS

1-999999 Number of records in the file.

L

(PROG START

-.-
or

ENTER-

? (Delayed Response)

System prompts LOCATION

System prompts FILE NAME for
next file

Forces operator to respond to RECORDS
during CALL cycle

PROG START System prompts LOCATION

or or

ENTER-

No Response

PROG START

l

System prompts FILE NAME

You don't want to .respond to this
keyword; you want system to
prompt TRACKS

When a file is created, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

Summary of Conversational OCL 35

KEYWORDS RESPONSES CONSIDERATIONS

TRACKS

~
1-398

(
or or

Number of tracks the file will occupy

L

PROG START System prompts LOCATION

ENTER- System prompts FILE NAME for
next file

? (Delayed Response) Forces operator to respond to TRACKS
during CALL cycle

PROG START

or or

ENTER-

No Response

PROG START

l

System prompts LOCATION

System prompts FILE NAME

You don't want to respond to
this keyword; you want to prompt
LOCATION

When a file is created, either the number of records or the number of tracks must be specified.
If operator entered number of RECORDS, TRACKS will not be prompted.

36 Keyword-Response Summary (Build Cycle)

KEYWORDS

LOCATION

or

or

8-405

RESPONSES CONSIDERATIONS

,.g. Pi 't.B-S tA ./ r'Y 6'~

~&e'--

Use during file creation runs if you want to
specify a beginning track location for the
file

PROG START System prompts RETAIN

ENTER-

1

System prompts FILE NAME for
next file

? (Delayed Response) Forces operator to respond to LOCATION
during CALL cycle

~----P_R_o_G_s_T_A_RT __

or

""I ENTER-l'------.--____.

System prompts RETAIN

System prompts FILE NAME

~ No Response

PROG START

l

You don't want to respond to this
keyword; you want system to
prompt RETAIN

Summary of Conversational OCL 37

KEYWORDS

RETAIN

~

or

or

RESPONSES CONSIDERATIONS

P,T,S,orA p - permanent
T - temporary
s - scratch
A - activate scratch

PROG START ~----- System prom ts DA TE p

or

~ ENTER-

T

? (Delayed Response)

System prompts FILE NAME for
next file

Forces operator to respond to RETAIN
during CALL cycle

System prompts DATE ~ PROGSTART

or '--~~~~~~~~~~~~~~~~~---

·~ ENTER-

No Response

PROG START

1

System prompts FILE NAME.

If file is being c~eated, file
designation will be T. System
prompts DATE

38 Keyword-Response Summary (Build Cycle)

KEYWORDS

/

or

or

MODIFY
(Operator can use
one, all, or a
combination of
the responses.)

RESPONSES

mmddyy or ddmmyy

PROG START

? (Delayed Response)

PROG START

No Response

PROG START

"
Required when job uses a file whose name
and label are the same as those of another
file on the same disk. (Response must
follow format established during system.)

System prompts FILE NAME for
next file

Forces operator to respond to DATE during
CALL cycle

System prompts FILE NAME

You don't have to respond to this
keyword; you want system to prompt
Fl LE NAME for next file

LOG Used only if CRT display or 22" printer on
system (see Appendixes D and E)

l

PROG START

L

CANCEL

PROG START

Cancel job

System prompts
LOG DEVICE

System prompts READY or
displays end-of-job halt.

Summary of Conversational OCL 39

KEYWORDS RESPONSES

FORMS

L

PROG START

Asterisk (*) Followed
by Comments

L

PROG START

L

Statement number
and comma

l

PROG START

L

Statement number

L

PROG START

l

CONSI DE RA Tl ONS

Change lines per page printed
output for system programs

System prompts FORMS DEVICE

Enter comment

System waits for next MOD I FY
response

To delete statement

System waits for next MODI FY
response

To correct statement

System waits for correct statement

INCLUDE Add system program control statements
to a procedure

I

J

PROG START System prints 'ENTER INCLUDED
STATEMENTS' and a 2-digit statement
no

RUN Tells system
a. The BUILD cycle is complete.

1 b. Run the job

PROG START System runs job

40 Keyword-Response Summary {Build Cycle)

Keyword Sequence for QC L Call Cycle

Summary of Conversational OCL 41

t·

Keyword-Response Summary (Call Cycle)

KEYWORDS

READY

CALL NAME

I

RESPONSES CONSmERATIONS

CALL
None

PROG START
System prompts CALL NAME

, .. .--}j ~ j Ajv&,Jfjfi;(.
r~ VfV.P ~,¢~ v

Procedure Name J--._....__Pr-o-ce_d_u-re-n-am_e _fr_om-t-he_s_o_ur_c_e ____ ---T

library directory

PROG START

R1,R2,F1,or F2

PROG START

-or-
RPG (the I BM-supplied RPG II
~ompile procedure)

System prompts UNIT

Location of the disk whose source library
contains the procedure

Print procedure

42 Keyword-Response Summary (Call Cycle)

KEYWORDS RESPONSES CONSIDERATIONS

PROCEDURE DISPLAYED ON SYSTEM PRINTER CD

I
MODIFY
(Operator can use
one, all, or a
combination of
the responses.)

Q) A.

LOG

PROG START

CANCEL

I PROG START

FORMS

PROG START

Asterisk (*)
Followed by
Comment

PROG START

Used only if CRT or 22" printer on system
(see Appendixes D and E)

Cancel job

System prompts
LOG DEVICE

System prompts READY or
displays end-of.job halt.

Change lines per page of printed output for
system programs

System prompts FORMS DEVICE

Enter comment

System waits for next MODI FY
response

Procedures with INCLUDE Statements
When a procedure contains SORT source statements or utility control statements, the display
part of the CALL cycle is more complex. See Considerations During a CALL Cycle, under
MODIFY; Including Control Statements in Part I.

B. Procedures with Delayed Responses
The procedure is displayed statement by statement. When the system reaches a statement
which contains a delayed response, it will display the statement keyword and wait for the
operator's response.

Summary of Conversational OCL 43

KEYWORDS

[

RESPONSES CONSIDERATIONS

Statement number
and comma

To delete statement in displayed
procedure

PROG START

Statement number
and corrected
statement

PROG START

RUN

PROG START

System waits for next MODI FY
response.

To correct statement in displayed
procedure

System waits for correct
statement

Tells system -
a. The CALL cycle is complete.
b. Run the job

System runs job

44 Keyword-Response Summary (Call Cycle)

BUILD NAME
When the system prompts BUI LO NAME, the
operator responds with a name for the procedure
that will be put in a source library at the end of
the sequence. (The operator's response to UN IT
determines what source library the procedure
will be put in.) At the end of the BUI LO cycle,
the system enters the procedure in the source
library and puts the procedure name in the

- source library directory as a permanent entry.
Restrictions on naming a procedure are:

1. Name must not contain more than six alpha
numeric characters. Blanks, commas, quotes
(apostrophes), and periods are not allowed.

2.

3.

First character must be alphabetic (A-Z or
#,@,$).

Name must not be DIR, SYSTEM, or ALL
(these names are reserved for system use).

Duplicate Procedure Names
If the operator's response to BUI LO NAME
duplicates the name of a procedure already
in the source library directory, the sys~m
prints a message and reprompts BUI LO
NAME.

The operator can:

1. Proceed - by typing a different name
or the same name and a different unit.

2. Proceed - by typing the same name and
unit again. The new procedure will then
overlay the old procedure in the source
library.

3. End the job - see description of error
message options in IBM System/3 Model 6
Operator's Guide, GC21-7501.

KEYWORD DESCRIPTIONS

Deleting a Source Library Procedure
The system gives a P (permanent) designation to
all procedures entered into a source library during
a BUI LO cycle. Therefore, the only way to
delete a procedure from a source library is to run
the Library Maintenance Utility Program. (For
information about the Library Maintenance
Utility Program see Part 11 of this manual.)

BUI LDC NAME
Refer to Chained Procedures in Appendix A.

CALL NAME
The response to CALL NAME is the name of the
procedure you want to run. This can be either:

• The name of a procedure entered in a source
library after a BUI LO or BUI LDC cycle. (The
operator's response to the keyword BUI LO
NAME, or BUI LDC NAME determines the
name of the procedure.)

• RPG (the I BM-supplied RPG 11 Compile
Procedure).

If the operator does not know the procedure
name, he can get a printout of the source library
directory by running the Library Maintenance
Utility Program. (See Part 11 of this manual for
more information about this program.)

Keyword Descriptions 45

COMPILE OBJECT
The keyword COMPILE OBJECT requires a
response (R 1, R 2, F 1, or F 2) if the system
has more than one object library and you do
not want to put the compiled RPG 11 program
in the same object library where the RPG 11
Compiler resides.

If the operator does not respond to COMPILE
OBJECT, but merely presses the PROG START
key, the system places the compiled RPG II
program in the object library where the RPG
Compiler resides.

F 1 refers to the fixed disk on drive one.
R 1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

SOURCE

In a LOAD Cycle
SOURCE is prompted only when the response
to LOAD NAME is the name of a compiler
(such as $RPG). The response to SOURCE
is the name of the source program you want
to compile. (This name must be the one you
used when you put the program in a source
library during a KSE or Library Maintenance
Program run.@

©For information about the KSE Program see the
I BM System/3 Model 6 Conversational Utility
Programs Reference Manual, SC21-7528. For
information about the Library Maintenance
Program see PART II of this manual.

46

In a BUILD Cycle
There are two possible responses to SOURCE
during a BUILD cycle: the name of a source
program you want to compile or a delayed
response. Each response has a special
significance to the system.

Response Tells System

Name of You're building a procedure that

Source will compile a particular source
Program program. (The program must be

You Want in a source library.) The program
to Compile name you supply must be the one

you used when you put the
program in a source library during
a KSE or Library Maintenance
Program run. ©

Delayed You're building a general RPG II
Response compile procedure. You will
(?) supply the necessary source program

information (name and location of
the source program and where you
want to put the compiled program)
during the CALL cycle.

UNIT; SOURCE UNIT
Possible responses to the keyword UNIT are F 1,
Rl, F2, and R2.

F 1 refers to the fixed disk on drive one.
R 1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

DATE (SYSTEM DATE)
This DATE keyword lets the operator change
the system date for a particular job. (The system
date is used in headings on program I istings, in
headings on printed output, and in labels for
new files.)

The system date is established at IPL time. This
date is used for every job unless the operator over
rides it.

Overriding the System Date
The operator can override the system date for
any single job by typing in a new date when
the system prompts the keyword DATE. The
new system date is used only for the one job.
When that job is finished, the system date
automatically reverts to its I PL setting.

Format of the DA TE Stateme,nt
Although the operator can override the system
date, he cannot change the date format. The
system date format is established during sysgen
as either:

• mmddyy (month/day/year) - For U.S.
installations

• ddmmyy (day/month/year) - For World
Trade installations

The three elements (month/day/year) can be
separated by any non-numeric symbol (except
a comma, quotation mark, or blank) or run
together without any separation.

In a system using the mmddyy format, for
example, all of the following would be valid
ways of typing May 12, 1971:

• 05/12/71

• 05-12-71

• 051271

• 5/12/71

Keyword Descriptions 47

FILE NAME

For Each File l,lsed in a Job, The
Operator Must Supply This Type
of Information:

1. Name of File

2A. Location of disk where you want
to write the file
(For a file creation run)

-or-
28. Location of disk which contains

the file to be processed
(For all other runs)

3A. Name which identifies the disk on
which you want to write the file
(For a file creation run)

-or-
38. Name which identifies the disk on

which the file is located
(For all other runs)

FILE NAME for Customer Programs
For a file used in an RPG 11 compiled customer
program, the operator's response to FILE NAME
is the name in columns 7-14 of the RPG II File
Description Specifications.

Fl LE NAME for $RPG, $DSORT, $COPY,
$MICR, and $KDE

48

. For $RPG's predefined file names see IBM
System/3 Model 6 Rli'G 11 Reference Manual,
SC21-7517.

By Responding to With:
the Keyword:

FILE NAME • FILENAME from the

UNIT

PACK

file specification
at compile time.

• Predefined filename
(for $RPG, $KDE, $DSORT,
$COPY).

• R 1 or F1
(For systems with one disk drive)

-or-

• R1, F1, R2, or F2
(For systems with two disk
drives)

Name assigned to disk by Disk
Initialization Utility Program

For $DSORT see IBM System/3 Disk Sort
Re~tJrence Manual, SC21-7522.

For $COPY see Part 11 of this manual.

For $MICA see IBM System/3 Model 6 Utility
Program for the I BM 1255 Magnetic Character
Reader Reference Manual, SC21-7527 .

For $KDE see IBM System/3 Model 6
Conversational Utility Programs Reference
Manual, SC21-7528.

~ystem-Operator Interaction During Prompting of File Keywords

System prompts
FILE NAME

l
Question:
Does this job
use a file?

+
YES

Operator responds
to Fl LE NAME,
UNIT, and PACK

.-1 ~::~:~~;::~d
.:~=~~,::

.... =:::::,::· .. • information

No-.·---··~

YES----·

necessary?
l

YES

l
Operator responds

to nrt file keyword

Question:
Is this the last
file keyword
(DATE)?

l
YES

i. .
System prompts
FILE NAME

i .
Question:
Does the job use
another file? r

T
Operator presses

the rNTER - key

System bypasses rest
of the file keywords

Operator presses

PR01START

System bypasses

file kero•d•

System prompts
MODIFY

NO

Keyword Descriptions 49

Multiple Files
A job often involves several files. When this is the
case, the operator must respond to several series
of file keywords. The first time the system
prompts the file keywords, the operator responds
with information about one file. After the opera
tor responds to DATE, the system will again
prompt Fl LE NAME. This time the operator
responds with the name of the second file.

When he has responded to the file keywords for
all the files that will be used in the job, the opera
tor should respond to Fl LE NAME by pressing
PROG ST ART. The system then bypasses the
rest of the file keywords and prompts MODI FY.

A maximum of 15 file statements can be used for
each job.

UNIT; FILE UNIT
Possible responses to the keyword UNIT are F 1,
R1, F2, and R2.

F1 refers to the fixed disk on drive one.
R 1 refers to the removable disk on drive one.
F2 refers to the fixed disk on drive two.
R2 refers to the removable disk on drive two.

PACK

50

Whenever a job involves a disk file you must tell
the system the name of the disk where the file is
(or will be) located, so the system can make sure
that disk is mounted before the job is begun. To
tell the system the name of the disk the file is on,
the operator responds to the keyword PACK with
the name assigned to the disk during its initiali
zation. (The Disk Initialization section of Part 11
of this manual explains the procedure for naming
a new disk.)

Although most installations keep a record of the
names and contents of each of their disk packs, the
operator can always get the name of any disk by
running the File and Volume Label Display Utility
Program. The disk name is part of the output of
this program.

LABEL
When a file is created, the system enters a file name
in the VTOC. The keyword LABEL refers to this
VTOC file name. Unless the operator responds to
LABEL, the na~e entered in the VTOC is the
same as the operator's response to FILE NAME.

LABEL requires a response:

1.

2.

At file creation time, if you want the
VTOC file name to be different from the
operator's response to Fl LE NAME. (For
example, if the RPG 11 file name is A but
the disk already has an A file, a response
to LABEL would be required, and the
response would have to be something
other than A.)

During a program run, if you are using a
file whose VTOC file name is different from
the operator's response to Fl LE NAME.

RECORDS (AND TRACKS)
When a file is created, the operator must tell the
system how much disk space to allocate for the
file. He does this by responding to one of the
two space keywords: TRACKS and RECORDS.
(If the operator responds to RECORDS,
TRACKS will not be prompted.)

The following chart shows the possible responses
to these keywords and how the system interprets
the responses.

Operator
Keyword Response Tells System

TRACKS 1-398 Number of disk tracks
needed for the file

RECORDS 1-999999 Number of records
in the file

Responding to TRACKS
The response to TRACKS is the number of disk
tracks the records in a file will occupy. (Appendix
B reviews how to convert the number of records in
a sequential, direct, or indexed file into the num
ber of tracks that would be required to contain
the file records on a disk.)

Responding to RECORDS
If the operator does not want to convert r~cord
numbers into track requirements himself, the
system will do it for him. The system determines
the track requirements for a file when the opera
tor responds to RECORDS.

LOCATION
LOCATION requires a response during file
creation if you want to control the placement
of files on the disk. LOCATION is required
when creating several versions of the same
file. It can also be used to reference one of
several files having the same name.

The response to LOCATION is the track where
you want the file to begin. Possible responses
are 8 through 405. (Tracks 0 through 7 are
reserved for system use.)

If the operator does not respond to the keyword
LOCATION when a new file is created, the system
places the file in whatever available area it fits best.

RETAIN
The keyword RETAIN applies to file designation.
Files can be designated: P (permanent), T (tempo
rary), or S (scratch).

The operator responds to RETAIN either:

1. At file creation_, to give a designation to the
file being created.

2. When accessing a file, to change the designa
tion of a file from T to Sor from S to T.

File Creation
A file designation (along with the file name, length,
and other related information) is placed in the
VTOC when a file is created. The operator controls
file designation by his response to RETAIN. (If
the operator does not respond to RETAIN, the
system gives the file a T designation.)

Permanent Files
Because permanent files ar.e protected against
inadvertent overlaying or altering, give a P designa
tion to all the files you want to keep.

Temporary Files
Give a T designation to a file if you plan to use it
several times within a couple of days and will not
need it after that.

Scratch Files

Give an S designation to any file you plan to use
only once. When a scratch (S) file is created, it is not
entered in the Volume Table of Contents (VTOC).
After the job that created the file is run, the file is
lost. The way that an S retain type can appear in the
VTOC is to change a T entry to an S by using
RETAIN-Sin the file statement, or change a Tor P
entry to S by using a $DELET SCRATCH statement.

The file designation dictates how much freedom
you have in overlaying or changing a file. The
following chart summarizes how each file designa
tion restricts your freedom to overlay or change

a file.

File Designations

p

T

s

l

Restrictions

The only way to change a
permanent file is to delete it by
running the File Delete Utility
program.

The only way to overlay a
temporary file is to load a new
file over it. To do this, the
operator's responses to all the
file keywords must duplicate
those of the present T file.

The system will overlay a
scratch fi I e if the disk pack is
full and/or file space is needed.

Keyword Descriptions 51

Changing File Designation of Existing File
When the system prompts RETAIN, the operator
can:

• Accept the current file designation. (By
pressing PROG START)

• Change a temporary file to a scratch file (by
typing an S). The VTOC will contain an Sentry
for the file.

• Change a scratch file listed in the VTOC to a
temporary file by typing an A.

Deleting Files
The operator can delete any file by running the
File Delete Utility Program, which changes the
file designation in the VTOC to S. This effectively
deletes the entire file, because the system will
overlay the file area as soon as more file space is
needed. When the file area is overlayed, the file
name is erased from the VTOC.

DATE (FILE DATE)

52

This keyword (prompted after the keyword
RETAIN) refers to the system date in effect when
a file was created.

The systern date is established at IPL. This date
is used for every job unless the operator over
rides it.

DATE requires a response only if the job being run
uses a file whose name and label are duplicated by
another file on the same disk. In this case, the
operator responds to DATE by typing in the system
date in effect when the file he wants to use was
created. With this date, the system can distinguish
one file from others on the same disk with the
same VTOC file name and label.

If neither the date nor the location is given, the
file having the latest date is the one automatically
referenced.

If the operator ~oes not know what the system
date was when the file was created, he can get a
printout of the creation dates for all files on a
disk by running the File and Volume Label Dis
play Utility Program. (Detailed information on
this program is available in Part 11 of this
manual.)

Restriction During File Creation
A response to DATE tells the system that this
file already exists. If DATE is entered during
a file creation run a Fl LE NOT FOUND error
occurs.

HALT
The operator can respond to the keyword READY
with HALT. The system will then halt at the end
of each job. HALT need only be entered to cancel
the effect of a NOHALT statement.

LOAD NAME

For Customer Programs
The response to LOAD NAME is the name of the
customer's RPG II program.

For System Programs
The response to LOAD NAME is the name of the
specific system program you want to run.

Name Program

$ALT Alternate Track Assignment

$BUILD Alternate Track Rebuild

$COPY Disk Copy/Dump

$1NIT Disk Initialization

$LABEL File and Volume Label Display

$DELET File Delete

$MAINT Library Maintenance

$KSE Keyboard Source Entry

$KDE Keyboard Data Entry

$DIU Da~a Interchange

$MICR 1255 Magnetic Character
Reader Utility

$RPG RPG 11 Compiler

$DSORT Disk Sort

More Information
About the Program
In

Part 11 of this manual

I BM System/3 Model 6
Conversational Utilities Reference Manual,
SC21-7528

IBM System/3 Model 6 Utility Program for
1255 Magnetic Character Reader
Reference Manual, SC21-7527

IBM System/3 Model 6 RPG II
Reference Manual, SC21-7517

IBM System/3
Disk Sort Reference Manual, SC21-7522

Keyword Descriptions 53

MODIFY

.-1 System prompts MODIFY

• Dl you want to corre1 a statement?

NO YES

oJerator types 3
digit statement
number and
corrected statement.

'
• DI you want to delete j statement?

NO YES

J
Operator types 3
digit statement
number and
co

1
mma (,) .

• D(you want to enter al comment?

NO YES

l Q Operator types
I\/ asterisk (*)

and comment.

I

• ~,t~:~~;nt to enter al FORMS

54

NO YES

Q o!erator types
I\/ FORMS and new

lines per page
setting.

• DI you want to can'fl jobl

NO YES

Q Jperator types

I\/ CANCEL

.-1 ~~~e::;:ses

Do you want to run the job?

I I
NO YES

Q oterator types
I\/ RUN

.--~}~tern runs

.-l!!~:;;rompts
• Isl this a BUILD eyer

YES NO -----.......

• ~~t~~~~:~::~~:~~:: ~~~ce
Program or for one of the
utility programs in the procedure?
I

YES NO
..L

T Operator types INCLUDE

System prints 2-digit statement number

5:J Operator types statement

11 System prints next statement number

• ~~t:~~~;nt to include another

I
NO YES

Operator types RUN

.-- System prompts MODIFY

• ~~e ~~~l~da;; :~a;:~:~~~r delete any of

l I
NO YES

Q OpJator types 2 digit
I\/ statement number and

comma (to delete)
or the new
statement (to correct)

• DI you want to canjl the job?

NO YES

Q Ope!ator types
I\/ CANCEL

.-- ~~~l:;;:ses entire

.--~Y:J;:rompts
Operator types
RUN

1-1 :;;~:~u~~:i:~e
included statements
in the source
library

1-1 ~ls:;;rompts

Keyword Descriptions 55

MODI FY; Changing a Previous OCL Statement

56

YES-·

System prompts
MODIFY

Enter here if you've
already used a
MODI FY option
in the job

Operator types three-digit
number of OCL statement
(or two-digit number of
included statement) to be

chanrd and PROG START

System tabs to
position 35 (position
0 after INCLUDE)

and raits for response

Operator types

newrsponse

Question:
More statements
to change?

l
NO

Qujion:
Does operator
want to use another
MODI FY option?

J l
YES NO

l
Operator
types RUN

See keyword description
of the other MODIFY
option

MODI FY; Deleting a Previous OCL Statement

System prompts
MODIFY

Operator types
three-digit number

ENTER here if you've
already used a
MODI FY Option
in the job

--------- of OCL statement

YES------

Deleting Multiple Keywords

to be deleted

l . Q Operator types
J\./ comma and PROG

STAR[key

• :~~:::::i•ments

l
NO

l Question: 1 ~~i~iy,:;~~~~·r I
YES NO

I
See keyword
description of
the other
MODIFY
option

I Q Operator types

I\/ RUN .

When the OCL statement number for FILE NAME
is deleted, all keywords for that file will be deleted
from the cycle. For example, the LABEL or DA TE

keywords could be deleted from a file keyword
statement without deleting the other keywords for
that file. However, if FILE NAME is deleted, that
entire file would be deleted from the cycle.

Keyword Descriptions 57

MODI FY; Entering Comments

System prompts
MODIFY

Operator types:
1. An asterisk (*)

2. A comment

Enter here if you've
already used a
MODI FY option
in the job

1.

~~~~~:::;:nt I 

58 

YES 

l 
See keyword description 
of the other MODIFY 
option 

NO 

~perator types 
RUN 

Points to Remember When Entering Comments 
• The usual purpose of a comment is to remind 

the operator of something he must do (mount 
a new disk pack, for example) or to document 
a problem during a program run. 

• After the operator types a comment, it is 
immediately displayed on the system printer. 

• Comments typed during a BUILD cycle be
come a permanent part of the procedure. They 
are entered into the Source Library along with 
QC L statements. 

• Comments typed during a LOAD or CALL 
cycle do not become a permanent part of 
the job; their only purpose is to help document 
the program run. 



MODI FY; Cancelling Job 

System prompts MOD I FY 

op••ro• types cANcEL 

Operator presses 

PROr START 

(System gets ready 
to run another job) 

l 
Question: 
ls HALT in effect 

i i 
NO YES 

.1 :d:~j~:~~l~5 
I Q Operator presses 1V! PROG START 

.-a ~ Q Syster prompts READY 

J\/ Operator types 

. ~----1--! ------ii 
LOAD BU I LO CALL 

Effect of Entering CANCEL During a LOAD Cycle 

The entire LOAD cycle will be overlaid by the next. 
OCL cycle. 

Effect of Entering CANCEL During a BUI LO Cycle 

The entire BUI LO cycle will be overlaid by the 
next OCL cycle. (If a duplicate procedure is 
being built, and CANCEL entered, the origi~al 
procedure remains in the source library. Except: 
if CANCEL is entered after INCLUDE, neither 
procedure will be in the library.) 

Effect of Entering CANCEL During CALL Cycle 
The entire CALL cycle will be overlaid by the next 
OCL cycle. The original procedure will be un
changed. 

Keyword Descriptions 59 



MODI FY; Entering Forms 

Enter here if you've 
already used a 
MODI FY option 
in the job 

~ Operator types FORMS 

.-. Systel prompts FORMS DEVICE 
•:i# ~:::'.:::::::: l -""?.'JV'O «-...... 

Operator presses 
PROG START (P/S) 
or types PRIMARY 

~l m.® ~~W* System prompts LIN ES 
m~ ~~~"*~ I 

l l 
Operator types ~ Operator presses 
new lines per PROG START 
page setting (for current lines I ~er page setting) 

~ Questil: Does i :;=~;r:~~~~~ usel 

YES NO 

S.l keyword Q lOperator types 
description J\/ RUN Q) 
of the other 
MODIFY 
option 

©Whenever the keyword FORMS is entered in an OCL sequence a system halt occurs after RUN in case the operator needs to change 
the paper in the printer. The system remains idle until the operator enters zero and presses the PROG START key. 

60 



Purpose of FORMS 
Standard outputs for Model 6 printers is 66 lines 
per page. At IPL time, 66 lines per page is estab
lished as the forms length unless a different value 
was specified during system generation. 

To change the lines per page of printed output 
for RPG II programs, you code line counter 
specifications. To change the lines per page of 
printed output for system programs (utilities, 
SORT, and the RPG Compiler), you type the 
keyword FORMS and an appropriate response. 

If line counter specifications and an OCL FORMS 
statement are both used in one job, and if the 
specified lengths are different, the system will 
accept the RPG 11 line counter specifications and 
ignore the OCL FORMS statement. 

The new lines per page setting (from either an OCL 
FORMS statement or an RPG II line counter speci
fication) remains effective until another OCL FORM$ 
statement or RPG 11 line counter specification is read. 

FORMS can be entered during the MODI FY phase 
of any OCL cycle. (The system never prompts 
FORMS.) 

Whenever the operator types FORMS during an 
OCL cycle, a system halt follows RUN in case 
the operator needs to chan~e the paper in the 
printer. Job processing does not resume until the 
operator enters a zero (option 0) and presses the 
PROG START key. 

For additional operating information, including 
line counter considerations, related to the key
word FORMS, see the IBM System/3 Mode/6 
Operator's Guide, GC21-7501 

Keyword Descriptions 61 



MODI FY; Including Contol Statements 

.. ::d~~lL:::::::::::::::::: Enter he re if ··=={\~.~.f.i.~_:.~.'..\:l:.~:·.~.'::_;::.; .. ::.;_···'.:'.:'.,:.:, .. ·.' ... =:·.;:.::;: .. t:\··.:.'._(.;.~_\}l:::~ • ~~.u~v: ~~~~~y 
Question: Do you want to change or delete 
an included statement? 

I 
0 t 

"·t· option in the job NO 
pera or ypes 

INCLUDE I YES 

@ 
l 

... ~ .. ::·::::.:::;., .. 
• ·.$:·:· .. :·:·: .. , .. Q . 
~ uest•r= 

~~~:~;,~:;~~~\~,;;digit 

Do you want to cancel job? I
YES NO

........... -:·:·:::::: INCLUDE statement

I
Operator types a
statement

statements

·~Que.ton: lsthere
"==:=====·'::·'" another new statement

1
to be included in the
procedure?

YES NO
I

Operator types RUN and
presses PROG ST ART ~

.-a r!~:~::~::::e~~!::
1

62

~ Operatlr types RUN

.-1 :~:d;:~~h
~ Operator lpes CANCEL

.-1 ~~~:~J ...
included statements in
the source library

---~~';:Jompts
,#~ ~

·~~:::~~?Do you want to correct an included

- I
NO YES

.... ::·:::~.;-. l Q 0 t 2 d. .
·=:::{@\t\\\C:::;;;t~~\\\\l;:=:· Question: Do you want J\f st::;:;~tt~:~b~r igit

~ ~~.~:~:~:;eluded I ___ ,System •

1

taces to next line

YES NO

I Q Operator enters corrected
J\f statement

Operator types J
2-digit statement

numbr and comma

Purpose of INCLUDE
The keyword INCLUDE lets you add system
program control statements to a procedure.
INCLUDE tells the system that the next entry
will be a set of control statements for one of
the system programs. (As used here, control
statements refer to both the control statements
for the utility programs and the sequence

specifications for the SORT program.) A maximum
of 25 control statements can be included in each
procedure.

Restrictions After INCLUDE
After including statements in a procedure, the
procedure cannot be changed. MODI FY is
prompted to allow changing included statements.
If CANCEL is used after INCLUDE in a pro
cedure that overlaid a duplicate procedure,
neither the original nor the new procedure
will be in the source library.

Considerations During a CALL Cycle
When the operator uses the CALL cycle to get
the procedure out of the source library, the
system displays the procedure in two separate
steps: first the OCL statements, then the
INCLUDE statements. The following shows
details of the two display steps:

1.

2.

3.

4.

5.

6.

7.

8.

System displays OCL
statements for the
job.

System prompts
MODIFY (to give
operator a chance to
correct any of the
OCL statements).

Operator, after he has
made any necessary
corrections, types
RUN.

System displays heading: \

System prints the INCLUDE
statements.

System prompts
MODI FY (to give
operator a chance to
correct any of the
INCLUDE statements).

Operator, after he has
made any necessary
corrections, types
RUN.

Model 6 runs the job.

NOHALT

statements

statements

Normally the system halts when a job ends. The
operator can respond to the keyword READY with
NOHAL T. The system will then prompt READY for
the next job when each job ends. The NOHALT will
remain in effect until a HALT statement is entered
or an IPL occurs.

Keyword Descriptions 63

READY
When the system is ready to begin the OCL
sequence for a new job, it prompts READY.

The operator responds by typing the name of one
of the four OCL cycles: LOAD, BUI LO, BUI LDC,
or CALL. The system then prompts the other key
words in the sequence.

(OCL cycles for the Model 6 are described in the
Summary of Conversational OCL at the front
of this manual.)

RUN

64

RUN is the last entry in any OCL cycle. The
operator types RUN when he is satisfied that the
OCL cycle is complete and correct. The table
shows what happens when the operator typ~s
RUN during any of the three OCL cycles.

Sequence Effect

LOAD
Job is run.

CALL CD
BUILD Q) The OC L statements are

CD

put in a source library.

If INCLUDE statements are part of
the procedure the BUI LO and CALL
cycles require two RUN entries. (See
Considerations During a CALL Cycle
under MODIFY - Including CorJ(rol
Statements in Part I.)

After the operator types RUN, the system
processes the job and end-of-job occurs.

The system then prompts READY for the
next job.

SWITCH
The OCL SWITCH statement allows changing the
eight external indicators used by RPG 11 programs.

(External indicators are discussed in the IBM
System/3 Model 6 RPG 11 Reference Manual;
SC21-7517.)

The operator-system interaction involved with the
SWITCH statement is different for each OCL cycle
as shown in the following charts.

Indicator Settings
The indicator setting has eight positions, corres
ponding to the eight external indicators.

The three possible entries for each position are:

• 1 - sets corresponding indicator on.

• 0 - sets the corresponding indicator off.

• X - leaves the corresponding indicator un
changed.

For example, if the operator keys in XXXX10XX:

• Indicator five will be set on.

• Indicator six will be set off.

• Indicators one, two, three, four, seven, and
eight will be unchanged.

IPL Considerations
All eight external indicators are set off at IPL.
The only way to set an indicator on is by re
sponding to the keyword SWITCH with a new
eight-position response containing a 1 in the
appropriate position.

Duration of SWITCH Setting
When an OCL SWITCH statement sets an
indicator on, the indicator remains on until
another SWITCH statement sets it off or the
next I PL occurs.

Operator-System Interaction For SWITCH
Statement (LOAD Cycle)

' Operator types
new 8-position
setting

System displays
SWITCH and
current indicator

setting I

System prompts
FILE NAME

J
Operator presses
PROG START (to
accept current
setting)

Keyword Descriptions 65

Operator-System Interaction For SWITCH Statement (BUILD Cycle)

66

l
Operator types
8-position indicator
setting

Operator presses
PROG START

System prompts SWITCH
and current indicator
setting

t
Operator types
delayed response (?)

Operator presses
PROG START

I
System prompts
FILE NAME

i
Operator presses
PROG START (If
program will not
use external indica
tors, or if current
setting is the one
you want).

l
(A SWITCH state-
ment wi 11 not be
part of the source
library procedure.)

I

Operator-System Interaction for SWITCH Statement (CALL Cycle)

i
Pressing
PROG START

,- _l ___ _
1 During CALL cycle
I

1
I

I__

(SWITCH will not
be part of the
CALL cycle.)

During the BUILD cycle, the operator
responded to the keyword SWITCH by

t l
Typing 8-position
indicator setting

-,
During CALL cycle During CALL cycle

l
Operator types
new 8-position
setting

I
System displays
SWITCH and
current indicator

setT

CALL cycle continues

l
Operator presses
PROG START (To
accept current
setting)

(The keyword SWITCH
and the 8-position
indicator setting
are entered in the
source I ibrary and
displayed with the
other OCL statements
during the CALL.
cycle.)

______ _J

Keyword Descriptions 67

68

This section presents a sequence of six typical jobs:

1. Initialize a disk.

2. Compile an RPG 11 source program.

3. Run the compiled program.

4. Copy a file from one disk to another.

5. Build a procedure to run a multi-file job.

6. Call and modify the procedure built in job 5.

Each sample job is organized into three sections:

1. An introductory summary explaining the job.

2. The OCL statements (and - where applicable - the utility control statements) for
the job.

3. Explanatory notes on individual statements in the job.

The examples shown are actual computer printouts. End-of-statement keys used are
shown in parenthesis to indicate actual operator response. These are shown for example
only and will not be printed on normal OCL printouts.

Any response without end-of-statement key indicated is printed by the system without
operator intervention.

SAMPLE JOBS

Sample Jobs 69

SAMPLE JOB 1. INITIALIZE DISK
We're going to use the Disk Initialization Program (located on the fixed disk on
drive one) to initialize the removable disk on drive one. We want to:

• Initialize the entire disk pack;

• Do surface analysis only once.

The name of the new disk will be 12345.

Here are the OCL and utility control statements for the job.

l~EADY- LOAD < P/B)
**
010 LOAD NAME- $!NIT CP/S)
011 UNIT- F1 <ENTER->
**
MODIFY

HUN (P/S)
ENTER 'II ' CONTROL STATEMENT

~/ UIN UNIT-R1YTYPE-PRIMARY <PIS)
ENTER 'II ' CONTROL STATEMENT

// VOL PAa<-12345 (P/S)
ENTER 'II ' CONTROL STATEMENT

// END (P/S)

70

Explanation

• 010 LOAD NAME

• 011 UNIT- Fl

• II UIN UNIT

• II VOL PACK-
12345

o II END

- $1NIT
$1NIT is the system name for the Disk Initialization Program.

The Disk Initialization Program is located on the fixed disk on drive one.
Pressing ENTER- instead of PROG START to end response causes DATE,
SWITCH, and File keywords to be bypassed.

R1, TYPE-PRIMARY

1. Tells the .system to initialize the removable disk on drive one.

2. Because no other parameters are entered in the UIN statement, the
program will:

o Initialize the entire pack.

o Read and verify the test data on the pack one time.

- $1NIT will enter the disk name 12345 in the VTOC. Whenever a file from this
disk is used in a job, the operator must type 12345 when the system prompts
PACK.

End of control statements.

Sample Jobs 71

SAMPLE JOB 2. COMPILE AN RPG SOURCE PROGRAM
We're going to use the IBM-supplied procedure RPGB (located in the source library
on the fixed disk on drive one) to compile a source program INVUPD (an inventory
update) located on R 1. The RPG 11 Compiler (the program to compile RPG 11
source programs) is also located on R 1. We want to put the compiled program
in the object library on R 1. Here are the OCL statements for the job.

l~EADY
()()() CALL
001

NAME-·
UNIT-·

CAL.I... <P/S)
1=~PGB (P/B)
Fl <P/B)

**
010 LOAD NAME-$RPG
011 UNIT-R1
020 COMPILE OBJECT-Fi
021
022
030 FILE
031
032
033
034
040 FILE
041
042
043
044

SOUl~CE

UNIT-Hl.
NAME-$l.JORK
UNIT-Fl
PACl'\-F:l.F1Fl.

ri:;~ACKS-20

RETAIN-S
NAME-$SOURCE
UNIT-Fl.
PACK-F l.Fl.F1

TRACKS-20
RETAIN-S

INVUPD (P/G)

**
MODIFY

:020' (P/S) Rl. (P/S)

~UN (P/8)

72

Explanation

• 000 CALL NAME _; RPGB
Tells the system you want to use the IBM supplied Compile Procedure
(RPGB).

• 010 LOAD NAME $RPG

• 01lUNIT

• 020 COMPILE

Tells the system you want to use the RPG 11 Compiler (the program to
compile RPG 11 source programs).

- R1
The RPG 11 Compiler is located on R 1.

OBJECT - F1

• 021 SOURCE

• 022 UNIT

• 020 MODIFY

The object program will be put in the object library of the disk on F1.

- INVUPD
The SOURCE statement in the RPGB procedure requires a delayed response.
When the system reaches the SOURCE statement in the display.sequence, it
prompts SOURCE and waits for the operator's response.

R1
The response tells the system that the progr~m to be compiled
(INVUPD) is located on R1.

R1

1. System prompts MODIFY.

2. Operator types 020, telling system he wants to change that statement.
(He does not want the system to put the compiled program on F1 .)

3. System tabs to position 37 and waits for response.

4. Operator types new response-R1. The system will put the
compiled program on R 1.

)

Sample Jobs 73

SAMPLE JOB 3. PROCESS CUSTOMER PROGRAM "INVUPD"

We're going to run the customer program INVUPD, compiled in SAMPLE JOB 2
and located on the removable disk on drive one. The job uses one file, I NV,
located on R2. The name of the disk which contains the file INV is 123456.
Here are the OCL statements for the job.

l ... CU~D (P./S)
**
0 :l 0 LC:U%D Nf.%ME -.. IN'·JUPD (P./G)
011 UNIT- Rl (P./S)
020 DATE <12/08/70) (P./S)
030 SWITCH (00000000) (~IS)

040 FI LE Nf.-lME-· IN'·.J (P./ED
041 UNIT- R2 (~IS)

042 PACI\·-· :I. 2:·5.<·i~=.=.i<::. (P./S)
04:3 LABEL-·· <ENTEH····)
050 FILE NAME- (P./S)
**
MODIFY

Hl..li'·1 (P./B)

74

Explanation

• 020 DATE

• 030SWITCH

• 043 LABEL

• 050 Fl LE NAME

- (12/08/70)
We'll use the current system date for the job.

- (00000000) - (P/S)
The program doesn't use external indicators so the operator doesn't care
about the switch setting and responds by pressing the PROG START key.

- Press the ENTER- ke_y
Responding to LABEL by pressing the ENTER- key tells the system
to bypass the rest of the file keywords and prompt FILE NAME.

- (P/S)
Responding to FILE NAME by pressing PROG START causes the
system to bypass the rest of the file keywords and prompt MOD I FY.

Sample Jobs 75

SAMPLE JOB 4. COPY FILE DISK TO DISK
We're going to copy an employee master file from R 1 to R2. The second file will
serve as a back-up in case the original file is damaged in some way, such as a track
becoming defective or a portion of the file being overlayed. When the master file
was created the programmer:

1. Responded to Fl LE NAME with EMASTFI L.

2. Responded to PACK with VOL06.

3. Responded to LABEL with EMPMAST.

4. Responded to TRACKS with 15.

These responses caused the system to put the name EMPMAST in the VTOC on
VOL06.

Here are the OCL and utility control statements we will use to copy the master
file from R 1 to R 2.

F~Et=~DY···· l ... Dr:YO (P./!:~)

**
0 :L () l ... Dt~'1D
0 :L l

Nr~~ME· ...
UNIT .. ··

020 DATE <12/08/70)
030 SWITCH (00000000)
040 FILE NAME-
041 UNIT-
042
04~5

0~50 FILE
o~::i :L
0~52

o~::i3

o~::i4
o~:-;~:=j

0~)6

o~::.7
060 FILE

p,:)c1<-·
l ... tlBEI

Nf..lME-··
UNIT-..
Pf.~CK

1...f.:lBEI
1:~ECDHDS····

THACKB-·
l...t'.lCf.:lTION .. ··

HETAIN· .. ·
Nf.lME-·

~;;c::DPY (P./!:;;)
F:J. (P/E)
(P/E;)

COPY:IJ·.J (P./~::;)

1:;::1. (P/B)
'JOl...06 (P,lB)
1::J-iPM(i~:rr (ENTER···)
CDPYD (P/!::;)

'·JDl ... O~? < P/!;:;)
EMPMr:·i!Tf2 (P/!::;)
<P/S)
:I. ~=5 (P/~::;)

P (ENTEH .. ··)
(P/E;)

**
MODIFY

4:;.:uN ·(P/S)·
ENTER '// ' CONTROL STATEMENT

~/ COPYFILE oun~ur-DISK (P/S)
ENTER 'II ' CONTROL STATEMENT

// END (P/S)·

76

Explanation

• 010 LOAD NAME

• 011 UNIT

e 020 DATE

• 030SWITCH

• 040 Fl LE NAME

• 043 LABEL

• 050 FILE NAME

• 053 LABEL

• 055 TRACKS

- $COPY
$COPY is the system name for the Disk Copy/Dump Program.

- F1
The Copy Disk Program is on F1.

(12/08/70)
We'll use the current system date for the job.

(00000000)
This program doesn't use external indicators •. so operator doesn't care
about the.switch setting and responds by pressing PROG START.

COPY IN
COPYI N is the predefined file name you must use for the input file
whenever you use Disk Copy/Dump Program.

- EMPMAST
EMPMAST is the VTOC file name for the COPYIN file. You must
supply this name so the system knows which file to use for COPYIN.
Pressing the ENTER- key causes the system to bypass the rest of the
file keywords and prompt Fl LE NAME.

- COPYO
COPYO is the predefined file name you must use for the output file
whenever you use the Disk Copy/Dump Program.

- EMPMAST2
The system enters EMPMAST2 in the VTOC on VOL07. EMPMAST2
is the name by which the system will identify the back-up file.

15
Because we are creating a new file we must respond to one of the space
keywords (TRACKS and RECORDS). We specify 15 tracks because
that's what we specified for the original file.

• 057 RETAIN - P
The back-up file is to be permanent to protect it against inadvertent
overlaying. Pressing the ENTER- key causes the system to bypass the
rest of the file keywords and prompt Fl LE NAME.

• COPYFI LE OUTPUT DISK
The COPYFI LE statement tells the program to copy the designated file
from R 1 to R2.

Sample Jobs 77

SAMPLE JOB 5. MUL Tl-FILE BUILD

Each day the customer runs a daily transaction job which creates a daily transaction
file. Each day's file has a different name and date. We are going to build a
procedure to use these daily files to create a weekly transaction file (WKL YTR).
The weekly transaction program is located in the object library of fixed disk 1.

F<EADY-
000 BUILD
001.

NAME
UNI T-

BUILD (P/S)
IJJTt=~ < P/S)
H2 < P/~:n

**
010 LOAD NAME- WKYRUN <P/S)
01.1 UNIT- F1 (P/S)
020 DATE <PIS)
030 SWITCH <00000000) (P/S)
040 FILE NAME- MONTt=~ MONDr~YS FILE <P/S)
041 UNIT- Fl CP/S)
042 PACK- PACK08 CP/S)
043 LABEL- CP/S)
044 RECORDS- CP/S)
045
046
047
04B
o:;o FILE
051.
052
053
054
055
056
057
058
060 FILE
061.
062
063
064
065
066
06"7
068

78

T 1:;~ r~ CI·{ S-·
l..OCAT I ON-·

RETAIN-·
DATE-·
NAME
UNI T
PACl\-

1...ABEL
RECOFWS

TRACKS
LOCATION-

RETAIN-·
DATE
NAME
UNIT
PACK-·

LABEL
RECORDS

Tf:;:ACl\S
LOCATIDN

RET~\IN

DATE-

(P/S)
\P/S)
? (P/~:n
Tl.JET!:;~ TUESDAYS FILE (Pl~:>)

·Fl ·<PIS)
Pr~Cl\OB (P /S)
\P/S)
(P/S)
<PIS)
CP/S)
<P/S)
? (P/S)
1...JEDTF~ l·JEDNESDAYS FILE (P/S)
Fl (P/B)
Pr~Cl\08 (P/S)
CP/S)
(P/B)
(P/S)
<·P/S)

? CP/B)

O?O FILE
0?1
072
073
074
075
076
077
078
080 FILE
081
082
083
084
085
086
087
088
090 FILE
09:1.
092
09~·5

094

8?i
:1.00 FILE

NAME
UNI T
PACK·-·

·LABEL
RECClRDS

TRACKS
LOCAT I ON-

RETAIN
DATE-:
NAME
UNIT
PACK-

LABEL
RECORDS

TRACKS
LOCATION-

RETAIN
DATE
NAME-
UNIT-·
PACl'\-

LABEL
F~ECCJRDS

L.OCAT I ON-·
F!ETAIN-

NAME-·

THUTI:~
F:I. (P/B)
.p,~CKOB < P /S >
<P/S)
(P/S)

<P/S)
(F'/S)
<P/S)
? CP/S)
FHITI:;:
F:I. (F'/S)
PACK08 (P/S)
(.P/S)
CP/S)
(F'/S)
(P/S)
<P/S)
? (P/S)
Wl'\LYTI:~ (P/S)
1:~l (F'/S)
j::•ACl'\04 (P/S >
<PIS>
~500 < P/S >
<PIS>
P < ENTEF;!-·· >
<P/S)

THURSDAYS FILE CP/S)

FRIDAYS FILE <PIS>

**
MODIFY

HUN (P./B)

Sample Jobs 79

Explanation

• 000 BUI LO NAME

• 001 UNIT

• 020 DATE

• 030 SWITCH

• 040 Fl LE NAME

• 048 DATE

• 090 Fl LE NAME

• 094 RECORDS

• 096 RETAIN

- WTR
The procedure name in the source library is WTR.

- R2
The procedure is located on unit R2.

- (P/S)
The date statement is not part of the procedure.

- (00000000) - (P/S)
The external indicators are not used by the program.

- MONTR MONDAYS Fl LE
The file name for each day is different. The comment (MONDAYS
Fl LE) will become part of the procedure.

? (P/S)
The date each file was created is supplied at CALL time, when the job
is run.

- WKLYTR (P/S)
The output file is called WKL YTR and put on PACK04 on unit R 1.

- 500 (P/S)
Our output file contains up to 500 records.

- P (ENTER-)
We w~nt to make this a permanent file. The ENTER.- key caused
DATE to be skipped and FILE NAME prompted.

• 100 Fl LE NAME (P/S)
We are finished with file statements, prompt MODIFY.

• RUN - Put the procedure in the source library.

80

SAMPLE JOB 6. MUL Tl-FILE CALL

We are going to run the procedure we built in sample job 5. However,
this week Thursday was a holiday so there are only four input files.
We can still use the same procedure if we delete an input file at
MODI FY time.

l~EADY-

000 CALL
00:1.

NAME-··
UNIT-

CALL <P/S)
WT1:~ ·< P /s >
1:;!2 .. (P/S)

***~
010 LOAD NAME-WKYRUN
011 UNIT-F1
020 FILE NAME-MONTR
021 UNIT-Fi
022 PACK-PACKOB
02:->
030 FILE
03 l.
032
033
040 FILE
04:1.
042
043
050 FILE
05l.
052
O~i3

060 FILE
061
062
01.>~3

070 FILE
071
0?2
073
074

DATE
NAME-TUETR
UNIT-Fl.
PACK-PACK08
DATE
NAME-WEDTF~

UNIT-Fl.
PACl"\-PACK08
DATE
NAME-THUTR
UNIT-Fl.
PACK-F'ACl\08
DATE-·
NAME-Ft=;: I TR
UNIT-Fl
PA CK -PACK()~:~
DATE
N~lME-vJKI... YTF;~

UN I T-F~ :I.
P.-~CK-·Pf:°iCl"\04

i:~E co1:;~ n s-~:; oo
F~Elf:)IN·-P

A/~:;;·11. < P/S)

4/6/71. \F'/S)

A/7 ;·71 < P/S)

-4/B/71 (P/S)

4/9/7:1. (F'/S)

**
MODIFY

0!50? <P/S)

* THURSDAYS FILE DELETED BECAUSE OF HOLIDAY, NO RUN THAT DAY CP/S)

l~UN \P/S)

Sample Jobs 81

Explanation

e 023 DATE

• 033 DATE

e 043 DATE

• 053 DATE

e 063 DATE

• MODIFY 050

• RUN

82

- 4/5/71

- 4/6/71

- 4/7/71

- 4/8/71

- 4/9/71
We must supply the date for each day's input file because we gave a
delayed response(?) at BUI LO time. Thursday's date is entered
even though we will de~ete the file later. A date should be entered to
continue the cycle.

- We delete the entire file for Thursday and enter a comment to explain why.

- Start the job.

PART II.
DISK UTILITY PROGRAMS

Part IL Disk Utility Programs 83 ·

84

To use utility programs, you must write utility
control statements and operation control
language (OCL) statements. In this manual,
therefore, the information for every program is
divided into five sections:

• Control statement summary

• Parameter summary

• Parameter descriptions

• OCL considerations

• Examples.

The first three sections are to guide you in writing
utility control statements. The OCL section is to
guide you in writing OCL statements. The ex
amples will help you in both.

Writing Utility Control Statements
You may write utility control statements. on
whatever paper or preprinted forms you like. In
writing the statements, use the manual in the
following way:

1. Look at the CONTROL STATEMENT
SUMMARY to determine which control
statements and parameters apply to the
program use you are interested in. (The
program uses are stated in the text pre
ceding the control statement summary.)

2.

3.

4.

If you need information about the contents
or meanings of particular parameters, look
at the PARAMETER SUMMARY.

If you need more detailed information
about parameters, read the PARAMETER
DESCRIPTIONS following the parameter
summary.

If you need examples of specific jobs, look
at the EXAMPLE section. All examples
show the OCL and utility control statements
needed to load and run the utility programs
for specific jobs. The statements are shown
in the form they are printed on the system
printer.

HOW TO' USE PART II

Writing OCL Statements
To write OCL statements to run a utility program,
look at the OCL CONSIDERATIONS section for
that program. There you will find a list of the re
quired keywords and responses for LOAD and
BUI LO sequences. (Keywords no~ listed can be
bypassed.) Should you need more general infor
mation about OCL, or more specific information
about the keywords , see Part I of this manual.

Capital Letters, Numbers, and Special Characters
Capitalized words and letters, numbers, and
.special characters have special meanings in OCL
and utility control statement descriptions in this
manual.

Utility Control Statements
In utility control statements, capitalized words
and letters must be written as they appear in the
statement description. Sometimes numbers
appear with the capitalized information. These
numbers must also be written as shown.

Words or letters that are not capitalized mean you
must use a value that applies to the job you are
doing. The values you can use are listed in the
parameter summaries for the control statements.

Braces ({ }) sometimes appear in parameters
shown in control statement summaries and param
eter summaries. They are not part of the param
eters. They simply indicate that you must choose
one of several values to complete the parameter.
For example, R ET Al N {~}means you can use
either RETAIN-Tor RETAIN-P.

OCL Statements
In OCL statements, keywords are capitalized.
Responses that are shown in capital letters must
be written as shown. If numbers or special charac
ters are included with the capital letters, they
must be written as part of the response. For
example, $1NIT is the name of the Disk Initiali
zation program and must be written exactly as
shown. Responses that are not capitalized mean
you must use the value that applies to the job you
are doing.

How to Use Part 11 85

86

The disk system management programs include
the following utility programs:

• Disk Initialization

• Alternate Track Assignment

• Alternate Track Rebuild

• File and Volume Label Display

• File Delete

• Disk Copy/Dump

• Library Maintenance

These programs, resi"ding on disk, do a variety of
necessary jobs: from preparing disks for use to
adding new or changed programs to the system.

General Program Operation
The utility programs require control statements
describing the jobs you want done. They read
these statements from the system input device,
or from procedures stored in a source library on
disk. The system input device is normally the
keyboard, but the operator can specify another
device by his response to the OCL keyword
READER during initial program loading (IPL).

The following diagrams outline the general way
the utility programs operate. Assume that the
programs are reading control statements from the
keyboard.

INTRODUCTIQN

Al I Programs
Except Library Maintenance

Operator keys OC L
sequence to load and

run rrams

Utility Program prints:
ENTER'//' CONTROL--,
STATEMENT I

Operator keys control
statement for utility
program

QUESTION: Last NO
Control Statement
II END

l
YES

J
Program ends

I

Program reprompts
until// END is
entered

Introduction 87

Library Maintenance Program

88

Operator keys OC L
sequence to load and
run program

I
Program prints:
ENTER I II I CONTROL

STATEMENT

Operator keys the
control statement
for a particular
program use

I
Prograln does the
requested job

Program prints:
ENTER I II I CONTROL

STATEMENT

I
QUESTION: More
Library Maintenance
Jobs

Jo

I
Operator keys: II END

I
Program ends

YES

Control Statements
Every control statement is made up of an identifier
and parameters. The identifier is a word that iden
tifies the control statement. It is always the first
word of the statement (following II blank in posi
tions 1-3). Parameters are information you are
supplying to the program. Every parameter con
sists of a keyword, which identifies the parameter,
followed by the information you are supplying.

Coding Rules
The rules for writing control statements are as
follows:

1. //blank. All control statements must have
11 blank in positions ·1-3.

2.

3.

4.

Statement Identifier. Begin it in position
4 or after of the statement. Do not use
blanks within the identifier.

Blanks. Use one or more blanks between
the identifier and the first parameter. Do
not use them anywhere else in the statement.

Statement parameters. Parameters can be in
any order. Use a comma to separate one
parameter from another. Use a hyphen (-)
within each parameter to separate the
keyword from the information you
supply. Do not use blanks within or
between parameters.

5. Statement parameters containing a list of
data after the keyword. Use apostrophes (')
to enclose the items in the list. Use a
comma to separate one item from another.
For example: UNIT-'R 1,R2' (R 1 and R2
are the items in the list).

6. Statement length. Control statements must
not exceed 96 characters.

The following example shows a control statement.
The statement ide,ntifier is COPY. The parameter
keywords are FROM, LIBRARY, NAME, and TO.
The information you supply is F1, 0, SYSTEM,
and R1.

II COPY FROM-F1,LIBRARY-O,
NAME-SYSTEM,TO-R 1

End Control Statement
The END statement is a special control statement
that indicates the end of control statements. It
consists of the letters// END in positions 1-6 and
must always be the last control statement for the
programs.

lntrOductlon •

90

The Disk Initialization program ($IN IT) pre
pares disks for use. It does this by:

• Writing track and sector addresses on the disk.

• Checking for defective tracks, a process called
surface analysis.

• Assigning alternate tracks to any defective
tracks found.

o Writing a name on each disk to identify the
disk.

• . Formatting cylinder 0 (zero).

The process is called initialization. The program can
can initialize up to three disks during .the same
program run.

DISK INITIALIZATION PROGRAM

All disks must be initialized before use. Disks
that have been initialized need not be re
initialized unless you want to erase their con
tents and rename them.

There are three types of initialization: primary,
secondary, and clear. Primary is used to initialize
the entire disk. Secondary is used only when the
disk capacity of your system is increased and
you have programs and data on your disks that
you want to keep. Clear is used to unconditionally
initialize a disk regardless of the presence of any
files or libraries. Therefore, the use of this param
eter is not recommended. The control statements
you supply for the Disk Initialization Program
depend on the type of initialization and the
number of disks you are initializing.

Disk Initialization Program 91

CONTROL STATEMENT SUMMARY for $1NIT

-Use- - Control Statements -

RI 1
-~ Q).

II UI N TYPE-PRIMARY ,UNIT- { .:;::~:. } VER I FY -nu~~er,CAP- { ~~tN Primary New Disks
Initialization

II VOL PACK-name,ID-characters ©
l

//-t; VliJ ~ l II END

Disks already in
use (reinitialize)

- ----

II UIN TYPE-PRIMARY,UNIT- {code }
'codes' ,VERI FY-number,ERASE- {NO } {HALF} YES ,CAP- FULL

II VOL PACK-name,ID-characters

II END

Q)
Secondary Disks already //UIN TYPE-SECONDARY,UNIT- { .:;::~:s'} . VERIFY-number
I nhialization in use

//END
T

L

Q)©
Clear II UIN TYPE-CLEAR,UNIT- {.co~e , } {HALF}
Initialization

Disks already co es VERIFY-number,CAP FULL

in use
II VOL PACK-name,ID-characters ©

L II END
i:

Q) Control statements are required in the order they are listed: UIN, VOL, END or UIN, END. The TYPE-PRIMARY,
VER I FY, and ERASE parameters are optional.

· @ For primary or clear initialization, one VOL statement is required for each disk listed in the UNIT parameter of
the UIN statement. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT
parameter. The PACK parameter in the second VOL statement applies to the second disk listed in the UNIT
parameter, and so on.

©VOL statements are not required for secondary initialization because the disks are already named.

© If the TYPE parameter CLEAR is selected, ERASE-YES is assumed.

·@ CAP-FULL should not be used on a half capacity system.

92

©

PARAMETER SUMMARY

UIN (.. ~.-~.Put Definition) Statement

1111
TYPE-PRIMARY

I
TYPE-SECONDARY

TYPE-CLEAR

I
UNIT-code

I
UNIT-'code,code'

I
UN IT-'code,code,code'

I
VERIFY-number

I
ERASE-YES

I
ERASE-NO

I
CAP-HALF

I
CAP-FULL

I

Primary initialization. Initialize the disks to the capacity of the drives on which
they are mounted. Tracks already initialized are reinitialized_.

Secondary initialization. Applies only to disks that were initialized on drives of less
capacity than the drives you.are now using. It means initialize the uninitialized
portions of the disks to the capacity of the drives onwhich the disks are mounted.
Tracks already initialized are not disturbed.

Clear initialization. Initialize the disks to the capacity of the drives
on which they are mounted. Tracks already initialized are re
initialized. Active files and library checking is bypassed and any
data on the tracks is destroyed.
Error logging areas on.F1 are saved.

Disk location (one disk).

Disk location (two disks).

Disk location (three disks).

Possible codes are
R1,F1,R2,F2.

Do surface analysis the number of times indicated (number can be 1-255).
VERIFY-1 is assumed if you omit the parameter.

Retest defective tracks.

[po not retest defective tracks.

Initialize a disk to half
capacity even if on a full
capacity drive.

Initialize a disk to full
capacity.

Primary initialization
only. ERASE-NO is
assumed if you omit
the parameter.

The CAP keyword forces
ERASE-YES. Pack is
initialized to the capacity
of the drive if this keyword
is omitted.

•.

Disk Initialization Program 93

VOL (Volume) Statement

I
PACK-name

I
ID-characters

I

Disk name. Can contain any of the standard System/3 characters except

apostrophes (') and leading or embedded blanks. Its length must not exceed
six characters.

Additional identification. Can contain any of the standard System/3 characters·.
except apostrophes(') and leading or embedded blanks. Its length must not
exceed ten characters. If you omit this parameter·, no additional identification

is written on the disk.

PARAMETER DESCRIPTIONS Secondary Initialization

TYPE Parameter (UIN)
The TYPE parameter indicates the type of
initialization you want the program to do:
primary, secondary, or clear. The type of

initialization and the capacity of the disk
drives on which the disks are mounted

determine which disk tracks will be

initialized. If this parameter is omitted,
primary is assumed.

Disk Drive Capacity
Disk Drives of different data-storage capacities

are available for System/3 Model 6. All drives
use the same type of disks. The only difference
is the number of tracks the drives can use: the

larger the drive capacity, the more tracks the
drive can use. However, you must initialize
the disk tracks before using them.

Primary I nitlaHzatlon

94

Primary initialization applies to new disks, or
disks you have used but want to initialize again.
The program initializes all tracks corresponding
to the capacity of the drives on which the disks
are mounted. Tracks that were previously
initialized are initialized again. Any data on the

tracks is destroyed.

You can use primary initialization on a disk as
often as you want. However, the program will
not initialize disks containing libraries, tempo
rary data files, or permanent data files. You

must delete data files with the File Delete
Program and libraries with the allocate function

of the Library Maintenance Program.

Secondary initialization applies to disks that

were initialized on drives of less capacity than
drives you are now using. When you increase

the capacity of your drives, more tracks on
your disks become available for use. You must
initialize the additional tracks. Use secondary
initialization if you do not want information
destroyed on tracks already in use. The pro
gram initializes the additional tracks only.
Tracks already in use are not disturbed.

The program will not do secondary initialization
on new disks or disks that have already been
initialized to the capacity of the drives on which

they are mounted.

Clear Initialization

Clear initialization applies to new disks but only
to those which cannot be used because of in
valid pack labels or some other unrecoverable
disk error. All tracks corresponding to the

capacity of the drives on which the disks are
mounted are initialized. Tracks that were pre
viously initialized are reinitialized.

Warning: All libraries, temporary data files, or

permanent data files are completely wiped out.

UNIT Parameter (UIN)
The UNIT parameter (UNIT-code) tells the

location of the disks you want to initialize.
The program can initialize up to three disks
during one program run.

The form of the UN IT parameter depends on
the number of disks you are initializing:

1. For one disk, use UNIT-code

2. For two disks, use UNIT-'code,code'

3. For three disks, use UN IT-'code,code,code'

The codes indicate the locations of the disks:

Code

R1
F1
R2
F2

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.
Fixed disk on drive 2.

For primary and clear initialization, the order
of codes must correspond to the order of VOL
control statements. If, for example, you had
used the parameter UN IT-'R 1,R2', the first

VOL statement applies to the removable disk
on drive 1 and the second VOL statement to
the removable disk on drive 2. (No VOL
statements are required for secondary initiali
zation. The disk is already named.)

VERIFY Parameter (UIN)
The VER I FY parameter (VER I FY-number)
concerns surface analysis. It enables you to
indicate the number of times you want the
program to do surface analysis before judging
whether or not tracks are defective. The
number can be from 1-255. If this parameter
is omitted, VER I FY-1 is assumed.

Surface Analysis
Surface analysis is a procedure for testing the
condition of tracks. It consists of writing test
data on tracks, then reading the data to ensure
it was recorded properly.

In judging whether or not tracks are defective,
the program does surface analysis the number of
times you specify in the VER I FY parameter.

If you omit the parameter, surface analysis is
done once. Tracks that cause reading or writing
errors any time during surface analysis are con
sidered defective, but can be assigned alternates.

If the program finds more than six defective
tracks, it considers the disk unusable and stops
initializing the disk. Only six alternate tracks are
available. (If you specified ERASE-NO, try to
reinitialize with ERASE-YES.)

If either track 0 or 1 is defective, the program
considers the disk unusable and stops initializing

it. Tracks 0 and 1 are used only by the system
and cannot have alternates assigned to them.

ERASE Parameter (UIN)
The ERASE parameter concerns alternate track
assignment. It applies only to disks that have
already been initialized and used, but you are
reinitializing using primary initialization.

The condition of tracks on such disks has been
tested at least once before (during the previous
initialization) and tracks that were found to be
defective during surface analysis were assigned
alternates. The ERASE parameter, therefore,
enables you to indicate whether you want the
program to (1) retest the tracks to which alter
nate tracks are already assigned or (2) leave the
alternate tracks assigned without retesting the
tracks.

The parameter ERASE-YES means to retest. If
you tell the program to retest, it erases any existing
alternate track assignments, and tests all tracks as
though the disk were new.

The parameter ERASE-NO means not to retest. If
you tell the program not to retest, it tests only
those tracks to which no alternate tracks are
assigned. Alternate tracks previously assigned
remain assigned.

CAP Parameter
The CAP parameter determines the size of the pack
when it is initialized. The CAP-HALF parameter
means to initialize the pack to half capacity even if
it is on a full capacity drive. The CAP-FU LL param
eter means to initialize the pack to full capacity. The
use of the CAP keyword forces ERASE-YES.

Defective tracks are not retested if the ERASE
parameter is omitted.

Disk Initialization Program 95

Alternate Track Assignment
Alternate track assignment is the process of
assigning an alternate track to a defective track.
If the Disk Initialization program finds a defective
track during surface analysis, it assigns an alternate
track to the defective track. The alternate is, in
effect, a substitute for the defective track. Any
time a program attempts to use the defective
track, it will automatically use the alternate in
stead. Each disk has six alternate tracks
(tracks 2-7).

If tracks become defective after a disk is initialized,
another program (Alternate Track Assignment) is
used to assign alternate tracks. Disks need not be
reinitialized to assign alternate tracks.

PACK Parameter (VOL)

96

The PACK parameter (PACK-name) applies to
primary and clear initialization only. During
primary and clear initialization, the Disk
Initialization program writes a name on each
disk. It uses the name you supply in the cor
responding PACK parameter. (One VOL con
trol statement containing a PACK parameter
is required for each disk.)

The name can be any combination of standard
System/3 characters except apostrophes (')and
leading or embedded blanks (see Appendix J).
Its length must not exceed six characters. The
following are valid disk names: 0, F0001, 012,
A1B9, ABC.

In general, disk names are used for checking pur
poses. Before a program uses a disk, the disk name
is compared with a name you supply (either in
OCL statements or control statements required
by the program). If the names do not match, a
message to the operator is printed. In this way,
programs cannot use the wrong disks without the
operator knowing about it.

ID (Identification) Parameter (VOL)
The ID parameter (ID-characters) applies to
primary and clear initialization only. It en
ables you to include up to ten characters, in
addition to the disk name, to further identify
a disk. The information is strictly for your use.
(It is not used for checking purposes by the
system.) If you use the File arid Volume Label
Display program to print the disk name, it will
also print the additional identification for you.

The additional identification can be any com
bination of standard System/3 characters except
apostrophes (') and leading or embedded blanks.
However, the maximum number is ten.

OCL CONSIDERATIONS

[LOAD Sequence I
J

Keywords Responses Considerations

READY LOAD -----

LOAD NAME $1NIT Name of Disk Initialization program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Initialization program.

MODIFY RUN -----i Only the key- t You end every
words I isted here response by pressing
are required. You PROG START.
can bypass the rest.

[BU I LO Sequence l
1

Keywords Responses Considerations

READY BUILD -----

BUILD NAME Procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1, or F2 Location of disk containing source library.

LOAD NAME $1NIT Name of Disk Initialization program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Initialization program.

MODIFY • INCLUDE Response when including control statements in
utility control statements procedure.
RUN

• RUN Response when not including control statements
in procedure.

I
Only the key- t You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

Disk Initialization Program 97

EXAMPLE

Primary Initialization of Two Disks

READY - .:!/f~i:g:.:\.

************ ******** ***** \if' ~it
010 LOAD NAME ft $INI)lf:,
011 UNIT ~tl~{;\~j)\itit
020 DATE (XX/XX/XX)

030 SWITCH (00000000)

040 FILE NAME

MODIFY

i~ii~~>

ENTER '//' CONTROL STATEMENT

II UIN UNIT-'F2,R2' ,TYPE-PRIMARY

ENTER '//' CONTROL STATEMENT
II VOL PACK-2222

ENTER '//' CONTROL STATEMENT
II VOL PACK-PAYROL,ID-010270

ENTER '//' CONTROL STATEMENT
II END

Explanation:

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY even
though the two words do not appear
on the same line.

Message printed by"Disk Initialization program.

Control statement supplied by operator.

Sequence repeats until operator enters
END statement.

--eDiSk-rilitialization program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The two disks on drive 2 are being initialized (UNIT-'F2,R2' in UIN statement).

• The fixed disk (F2) will be given the name 2222 (PACK-2222 in first VOL statement).

• The removable disk (R2) will be given the name PAYROL (PACK-PAYROL in second VOL statement).

Additional identifying information, 010270, will be written on the removable disk (ID-010270).

98

MESSAGES FOR DISK INITIALIZATION

Message

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTERNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABEL ERROR;
RE-INITIALIZING PACK

Meaning

This message is printed when initialization of a disk is complete. XX indicates
the unit (R1, R2, F1, or F2) on which the initialization is complete.

This message is printed when initialization of a disk must be terminated for
one of the following reasons:

1. Cylinder zero is defective.

2. More than six tracks are defective.

3. Possible disk hardware error exists.

4. The program attempted to initialize the disk ten times without
success.

After this message is printed, halt A 13 will occur. XX indicates the unit
(R 1, R2, F1, or F2) on which the initialization is terminated.

These two messages are printed when a primary track is defective and an
alternate track is assigned to it.

XXX indicat'es the tracks involved.

This message is printed when the Disk Initialization program determines that
the disk has not been initialized properly. The program will again attempt to
initialize the disk correctly with ERASE-YES forced. The maximum
number of times that the program will attempt to initialize a disk is ten.
After that number of times, halt A 13 occurs.

Disk Initialization Program 99

100

©

The Alternate Track Assignment program
($ALT) assigns alternate tracks to disk tracks
that become defective after they are initialized.
An alternate track is a track that can be assigned
to replace another track. When the program
assigns an alternate, it transfers the contents of
the defective track to the alternate. Every 'disk

Program Use

Conditional assignment.
Program tests the condition of a track and
assigns an alternate to it if it is defective.
(This is the normal use.)

Unconditional assignment.©
Program assumes the track is defective and
assigns an alternate to it without testing its
condition.

Cancel prior assignment.©
Program cancels alternate-track assignment
to free the alternate for use with another
track.

ALTERNATE TRACK ASSIGNMENT PROGRAM

has six alternate tracks. An alternate track can
replace any track except tracks 0 and 1 or
another alternate track.

The program has three uses. The control state
ments you must supply depend on the program
use.

Situation

Anytime a disk track causes reading or writing errors during a
job, the system prints a message requesting that you run the
Alternate Track Assignment program. You would normally
use the program to do conditional assignment.

You have used the Alternate Track Assignment program to do
conditional assignment. The test on the track indicated that
the track was not defective (an alternate, therefore, was not
assigned). But the track still causes reading or writing errors,
and you want to assign an alternate to it.

A defective track was found, but all alternates are in use.
You want to free an alternate so you can recover the data
from the defective track. Before freeing the alternate, how-
ever, you would normally copy (to another disk) the file or
library entry that uses the alternate. This saves the data that
is already on the alternate. Run the File and Volume Label
Display Program to determine which tracks are assigned
alternates.

Conditional assignment is forced each time after an unconditional request.

Alternate Track Assignment Program 101

I CONTROL STATEMENT SUMMARY FOR $ALT

- Use - Control· Statements - Q)

Conditional Assignment II ALT PACK-name,UNIT-code,VERI FY-number ©

'"-----------------~1--..,.//END

Unconditional Assignment II ALT PACK-name,UNIT-code,ASSIGN-

.._-----------------..1~-'//END
~ track } fi' , k , . ,VERIFY-number'-!.

trac s

Cancel Prior Assignment ~ track } · . IS" VI ALT PACK-name,UNIT-code,UNASSIGN- , k, ,VERIFY-numbe~
trac s

------------------1...--llEND

102

© For each use, the program requires the statements in the order they are listed: ALT, END.

© Optional parameter.

© Optional parameter; applies to the automatic conditional assignment.

PARAMETER SUMMARY

ALT (Alternate) Statement

PA,ame

UN,ode

VE.Y-number

I
ASSIGN-track

ASS,·'track,track, ... '

I
UNASSIGN-track

I
UN:~~~ IG N-'track,track, ... '

I

Name of the disk.

Location of the disk. Possible codes are R 1, F 1,
R2, F2.

In testing the condition of a track, do surface
analysis the number of times indicated (number
can be 1-255). If VER~FY parameter is omitted,
do surface analysis once.

Assign an alternate
(unconditionally) to
one track.

Assign one alternate
unconditionally to
each track
(maximum is six).

Cancel one alternate
track assignment. CD

Cancel two or more
alternate-track
assignments
(maximum is six). Q)

Use track numbers
(8-405) to
identify tracks.
Tracks 0-7 are
used by the system
and cannot be
assigned alternates.

Use track numbers
(8-405) to which
alternates are
assigned.

CD Before cancelling an assignment, the program tests the condition of the track to which th_e alternate is
assigned. The assignment is cancelled if the test indicates that the track is not defective. If the test
indicates that the track is defective, the program does not cancel the assignment unless the operator tells
it to do so.

Alternate Track Assignment Program 103

.PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the
program the name of the disk containing the
defective tracks. This is the name written on
the disk by the Disk Initialization program.

The Alternate Track Assignment program com
pares the name in the PACK parameter with the
name on the disk to ensure they match. In this
way, the program ensures that it is using the
right disk.

UN IT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk containing defective tracks.
Codes for the possible locations are as follows:

Code Location

R 1 Removable disk on drive 1.
F 1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

VERIFY Parameter
The VERIFY parameter (VERIFY-number)
enables you to indicate the number of times
you want the program to do surface analysis
before judging whether or not the track is
defective. The number can be from 1-255.
If you omit the parameter, the program does
surface analysis once.

Conditional Assignment
Conditional Assignment consists of testing the
condition of a track (surface analysis) and, if the
track is defective, assigning an alternate track to
replace it. It is the normal use of the Alternate
Track Assignment program.

Situation: Conditional assignment applies to tracks
that cause reading or writing errors during a
job. Anytim-ea t-rad(causes such errors, the
system does the following:

104

1. Stops the program currently in operation.

2. Writes the track address in a special area
on the disk.

When you use the Alternate Track Assignment
program to do conditional assignment, the program
locates the tracks by using the addresses in the
special are'a on disk. All disks, fixed and removable,
have such an area. The program will do con
ditional assignment for all tracks identified in the
area (one at a time), as long as there are alternate
tracks available for assignment.

Surface Analysis: Surface analysis is a procedure the
program uses to test the conc;fition of tracks. It
consists of writing test data on a track, then
reading the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track
Assignment program transfers any data from the
track to an alternate track. This is the alternate
that will be assigned if the track proves to be
defective.

In judging whether or not the track is defective, the
program does surface analysis the number of times
you specify in the VER I FY parameter. If you omit
the parameter, the program does surface analysis
once. If the track causes reading or writing errors
any time during surface analysis, the program con
siders the track defective.

Assignment of Alternate Tracks: If a track proves to be
defective, the program assigns an alternate track.
The alternate becomes, in effect, a substitute for
the defective track. Any time a program at
tempts to use the defective track, it automatically
uses the alternate instead.

There are six alternate tracks. The program will
not do conditional assignment if all six are alre~dy
in use.

Incorrect Data: If a track is defective, some of the data
transferred to the alternate track could oe in
correct. Therefore, when reading data from the
defective track, the program prints all track
sectors containing data that caused reading errors.
Characters that have no print symbol are
printed as two-digit hexadecimal numbers. The
following is an example:

ABCDE GH123 45 ...
B A
6 5

Appendix J lists the characters in the standard
character set and their corresponding hexadecimal
numbers.

To correct errors on the alternate track, use the
Alternate Track Rebuild program.

ASSIGN Parameter
The ASSIGN parameter (ASSIGN-track) applies
to unconditional assignment. It tells the pro
gram which tracks you want alternates assigned
to.

You can assign alternates to any tracks except 0-7.
Tracks 0-7 are for system use only.

The form of the ASSIGN parameter depends on
the number of tracks you want to specify. For
one track, use ASSIGN-track; for two tracks, use
ASSIGN-'track,track'; and so on. You can specify
up to six tracks.

Use the track numbers (8-405) to identify the
tracks. For example, the parameter ASSIGN-'50,
301,353' causes the program to assign alternate
tracks to tracks 50, 301, and 353.

Unconditional Assignment
Unconditional assignment applies to tracks that
occasionally cause read or wri.te errors. Such tracks
might not cause errors when tested by the Alternate
Track Assignment program during conditional
assignment: If they don't, the program will not
assign alternate tracks to them. If you still want
to assign alternates to these tracks, use unconditional
assignment. In doing unconditional assignment,
the program assigns alternates without first testing
the condition of the tracks suspected of being
defective.

UNASSIGN Parameter
The UNASSIGN parameter (UNASSIGN-track)
applies to cancelling alternate track assignments.
It identifies tracks for which you want the pro
gram to cancel assignments.

You can cancel up to six assignments. The form
of the UNASSIGN parameter depends on the
number of assignments you want to cancel. For
one assignment, use UNASSIGN-track; for two
assignments, use UNASSI GN-'track,track'; and
so on.

Use the track numbers (8-405) to identify the
tracks. For example, the parameter UNASSIGN
'50,301,352' causes the program to cancel
alternate-track assignments for tracks 50, 301,
and 352.

Cancel Prior Assignment
Cancelling an alternate-track assignment consists
of transferring the data from an alternate track
back to the original track (the track to which the
alternate is assigned), therefore freeing the
alternate from being the substitute for the original
track.

Before transferring data back to the original track,
the Alternate Track Assignment program tests the
condition of the original track. If the test indicates
that the track is defective, the program stops.
Through the restart procedure you choose, you can
tell the program to do one of three things:

1. Leave the assignment as it is. If there are
other tracks for which you are cancelling
assignments, the program continues with
those. Otherwise it ends.

2. Cancel the assignment and transfer the data
back to the original track regardless of the
condition of the original track.

3. Test the track again.

Cancelling assignments is not often done. It applies
to cases where a defective track is found, but all
six alternates are in use. To recover the data from
the defective track, you might want to cancel an
alternate-track assignment to free the alternate
track. Normally this involves copying, to another
disk, a file or library entry that uses an alternate
track, then freeing the alternate for use with the
defective track you found. Run the File and
Volume Label Display Program to determine
what tracks are assigned altnerates.

Alternate Track Assignment Program 105

OCL CONSIDERATIONS

LOAD Sequence

Keywords Responses Considerations

READY LOAD -----

LOAD NAME $ALT Name of Alternate Track Assignment program.

UNIT R1, R2, F1, or F2 Location of disk containing Alternate Track Assignment
program.

MODIFY RUN -----i Only the key- t You end every
words I isted here response by pressing
are required. You PROG START.
can bypass the rest.

BU IL D Sequence

Keywords Responses Considerations

READY BUILD -----

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1, or F2 Location of disk containing source library.

LOAD NAME $ALT Name of Alternate Track Assignment program.

UNIT R1, R2, .F1, or F2 Location of disk containing Alternate Track Assignment
program.

MODIFY • INCLUDE Response when including control statements
utility control statements in procedure.

----1 ------- RUN

• RUN Response when not including control statements
in procedure. i Only the key- i You end every

words listed here response by pressing
are required. You PROG START.
can bypass the rest.

106

EXAMPLE

Conditional Assignment

Situation

Assume that during a job the system printed a message telling the operator it found a defective track on the removable
disk on drive 1. (The name of the disk is Bl LLNG.) Before doing more jobs, the operator wants to use the Alternate
Track Assignment program to check the condition of the track and assign an alternate to the track if it is defective.

Statements

READY

011 UNIT

020 DATE

030 SWITCH (00000000)

040 FILE NAME

MODIFY

\ff~>
ENTER 'II' CONTROL STATEMENT

II ALT PACK-BILLING,UNIT-Rl

ENTER 'II' CONTROL STATEMENT
II END

Explanation

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by Alternate Track
Assignment program.

Control statement supplied by operator.

System reprompts. END statement
terminates sequence.

• Alternate Track Assignment program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• The name of the disk (Bl LLNG) and its location (removable disk on drive 1) are indicated by the PACK and UNIT
parameters in the ALT statement.

• Because we omitted the VERIFY parameter from the ALT statement, the program does surface analysis once when
it tests the condition of the track.

Alternate Track Assignment Program 107

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message Meaning

ALTERNATE TRACK ASSIGNED This message is printed when an alternate track has been assigned
to a defective track and the data has been transferred to the
alternate track.

PRIMARY TRACK HAS BEEN This message is printed when it is determined that ~ primary track
TESTED OK is not defective.

PRIMARY TRACK STILL This message is printed when the Alternate Track Assignment
DEFECTIVE program determines that the track is still defective.

DATA TRANSFERRED BACK TO This message is printed when the data is transferred back to the
PRIMARY TRACK primary track.

SECTOR WITH DATA ERROR This message is printed when the Alternate Track Assignment
program found an error when transferring data. The sector that
has the error is printed out.

PRIMARY TRACK xxx ALTERNATE This message is printed after ALTERNATE TRACK ASSIGNED and
TRACK yyy, UNIT-zz DATA TRANSFERRED BACK TO PRIMARY TRACK. xxx is the

primary track number, yyy is the alternate track number, and zz is the
unit involved.

108

The Alternate Track Rebuild program ($BUI LO)
enables you to correct data that could not be
transferred correctly to an alternate track. Many
alternate tracks can be corrected during a pro
gram run. You must supply the control state
ments and data used to correct the errors.

In writing control statements for this program,
you will need the information in the listing

I CONTROL STATEMENT SUMMARY FOR $BUILD

ALTERNATE TRACK REBUILD PROGRAM

printed by the Alternate Track Assignment pro
gram when it assigned the alternate track. The list
ing tells you the name of the disk and numbers of
the track and sectors suspected of containing
incorrect data. It also includes the data from
these sectors, which you can use to locate in
correct data.

II REBUI LO PACK-name,UNIT-code,TRACK-location,LENGTH-num Jer,DISP-position CD
Substitute data

//END

CD At least one REBUILD statement is needed for every sector you correct. If the characters you
replace in a sector occupy consecutive positions, you need only one R EBUI LO statement for that
sector. Otherwise, you need one statement for every group of characters that do not occupy
consecutive positions. For example, to replace characters 1-12, 75-78, and 232-235 in a sector,
you would need three REBUILD statements.

The data you want to substitute must follow the REBUI LO statements to which it applies.
The order of statements and data in the preceding example would be:

REBUI LO statement
data

REBUILD statement
data

REBUI LO statement
data

END

for positions 1-12

for positions 75-78

for positions 232-235

Alternate Track Rebuild Program 109

PARAMETER AND SUBSTITUTE DATA SUMMARY

REBUILD Statement

I
PACK-name

I
UNIT-code

II
TRACK-location

LENGTH-number

I
DI SP-position

llllllllllllllllll

Substitute Data

Name of the disk.

Location of the disk. Possible codes are R 1, F 1,
R2, F2.

Number of track and sector containing incorrect data.
Number is printed by Alternate Track Assignment program.
Track number must be three digits. Sector number must
be two digits. For example:

TRACK-01109 means track 11, sector 9.

Number of characters being replaced. Number can be
2-256 and must be a multiple of 2 (2, 4, 6, etc.)

Position of the first character being replaced in the sector.
Position can be 1-255.

Ke,,h character in he_xadecimal form. Follow every second character, except the last, with a comma.
EXAMPLE: The numbers 123456 would be keyed as F1 F2, F3F4, F5F6.

110

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the
program the name of the disk that contains the
alternate track being corrected. This name is
the one written on the disk by the Disk
Initialization program.

The Alternate Track Rebuild program compares
the name in the PACK parameter with the name
on the disk to ensure they match. In this way,
the program ensures that the program is using
the right disk.

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk that contains the alternate
track being corrected. Codes for the possible
locations are as follows:

Code

R1
F1
R2

Location

Removable disk on drive 1.
Fixed disk on drive 1.
Removable disk on drive 2.

F2 Fixed disk on drive 2.

TRACK Parameter
The TRACK parameter (TRACK-location)
identifies the track and sector that contains
the data being corrected. The defective track,
not the alternate track, is the one you refer to.
Referencing the defective track is the same as
referencing the alternate track.

Use the track and sector numbers in the TRACK
parameter. The possible track numbers are 008-405.
Always use three digits. The possible sector num
bers are 00-23. Always use two digits. The track
number must precede the sector number. For
example, the parameter TRACK-11019 means
track 110, sector 19.

Track and sector numbers are printed by the
Alternate Track Assignment program when it
prints data from sectors that contain incorrect
data.

LENGTH Parameter
The LENGTH parameter (LENGTH-number)
tells the program how many characters you are
replacing in the sector. You must replace charac
ters in multiples of 2 (2, 4, 6, and so on). The
maximum is 256, which is the capacity of a sector.

Length applies to characters that occupy con
secutive positions in the sector. If the characters
you want to replace do not occupy consecutive
positions, you must either replace more characters
or use more than one R EBUI LO statement. For
example, to replace characters 10-11 and 24-25 in
a sector, you can do either of the following:

1. Use one REBUILD statement to replace
characters 10-25 (LENGTH-16).

2. Use two REBUILD statements to replace
characters 10-11 (LENGTH-2) and 24-25
(LENGTH-2).

DISP (Displacement) Parameter
The DISP parameter (DI SP-position) indicates the
position of the first character being replaced in the
sector. The position of the first character in the
sector is 1; the position of the second character
is 2; and so on. The maximum position is 255.

Beginning at the position you indicate, the Alternate
Track Rebuild program replaces the number of char
acters you indicate in the LENGTH parameter.

Substitute Data
After each REBUI LO statement, you must key the
substitute characters that apply to that statement.

The characters must be in hexadecimal form.
Appendix J shows the hexadecimal forms of the
characters in the standard character set.

Include a comma after every second character.
For example, the data F 1 F2,F3F4,F5F6 represents
123456. F 1 is the hexadecimal form of 1; F2 is
the hexadecimal form of 2; and so on.

Key only the number of characters you indicated
in the LENGTH parameter in the REBUI LO
statement.

Alternate Track Rebuild Program 111

OCL CONSIDERATIONS

LOAD Sequence

Keywords

READY

LOAD NAME

UNIT

MODIFY

Only the key-t words listed here
are required. You
can bypass the rest.

BUILD Sequence

Keywords

READY

BUILD NAME

UNIT

LOAD NAME

UNIT

MODIFY

t Only the key-
words I isted here
are required. You
can bypass the rest.

*$BUILD does not allow
utility control statements
in the procedure.

112

Responses Considerations

LOAD -----

$BUILD Name of Alternate Track Rebuild program.

R1, R2, F1, or F2 Location of disk containing Alternate Track Rebuild
program.

RUN -----t You end every
response by pressing
PROG START.

Responses Considerations

BUILD -----

procedure name Name by which procedure will be identified in source
library.

R1, R2, F1 or F2 Location of disk containing source library.

$BUILD Name of Alternate Track Rebuild program.

R1, R2, F1 or F2 Location of disk containing Alternate Track Rebuild
program.

RUN* Response when not including control statements
in procedure.

t You end every
response by pressing
PROG START.

EXAMPLE

Correcting Characters on an Alternate Track

Situation

Assume that the Alternate Track Assignment P,rogram printec;I the following information:

PACK-Rl

TRACK AND SECTOR BAD-05020

ABCDEF GHl 34567890 .•.
B A
6 5

(Assume the entire contents of the sector
was printed.)

It means that errors were detected in sector 20 of track 50 on the removable disk on drive 1. (Assume the name of the
disk is Bl LLNG.)

In checking the characters printed by the program, you found that the seventh and eleventh characters in the sector are
incorrect and you want the operator to run the Alternate Track Rebuild program to correct them.

Alternate Track Rebuild Program 113

Statements

READY

010

011

020

030

040

LOAD NAME

UNIT

DATE (XX/XX/XX) -

SWITCH (00000000)

FILE NAME

MODIFY

?ft~!::t

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

II

ENTER ' / / ' CONTROL STATEMENT ~~f")l$:,:;: .. /..... ~=~~i~~ ~~~ng::~~y Alternate Track

REBUILD PACK-BILLING,UNIT-Rl ,TRACK-05020 ,LENGTH-6 ,DISP-7 ~\
Control

ENTER HEX DATA STATEMENT
C6C7,C8Fl,F2F3

I I :~~ER I I I I CONTROL STATEMENT~

Explanation

Message printed by Alternate Track
Rebuild program.

Message printed by Alternate Track
Rebuild program.

• Alternate Track Rebuild program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

operator

• The name of the removable disk (Bl LLNG) and its location (drive 1) are indicated in the PACK and UNIT parameters
in the REBUILD statement.

• The sector containing the incorrect characters is sector 20 of the alternate track assigned to track 50 (TRACK-05020).
The seventh character in the sector is the first character being replaced (DISP-7).

• The severith through twelfth characters in sector 20 are being replaced (LENGTH-6). We included the twelfth character
because the number of characters being replaced must be a multiple of 2. By also replacing the characters between the
incorrect ones, we needed only one REBUILD statement.

• The substitute characters follow the REBUILD statement. They are F (C6), G (C7), H (C8), 1 (F1), 2 (F2), and 3 (F3).

114.

FILE AND VOLUME LABEL DISPLAY PROGRAM

The File and Volume Label Display program
($LABEL) has two uses:

1.

2.

Print the entire Volume Table of Contents
(VTOC) from a disk.

Print the VTOC information for certain
data files.

In both cases, the program also prints the name
of the disk.

I CONTROL STATEMENT SUMMARY FOR $LABEL

The printed VTOC information is a readable, up
to-date record of the contents of the disk. There
can be any number of reasons why you might
need the information. Some of the more common
ones are as follows:

1.

2.

Before reinitializing a disk, you might want
to check its contents to ensure that it
contains no libraries, permanent data files,
or temporary data files.

You want to find out what disk areas are
available for libraries or new files.

3. You want specific file information, such
as the file name, designation (permanent,
temporary, scratch), or the space reserved
for the file.

The control statements you supply for the program
depend on the program use.

- Uses - - Control Statements - CD

Print entire VTOC

Print only file
information from
VTOC

l

l

II DISPLAY UNIT-code, LABEL-VTOC

II END

{
filename } © II DISPLAY UNIT-code, LABEL~ 'f'I ,

1 enames

II END

CD For each use, the program requires the statements in the order they are listed: DISPLAY,END.

© More than one DISPLAY statement may be used before the END statement. However, the total
number of filenames on all the DISPLAY statements cannot exceed 20, where VTOC is
considered as one name.

File and Volume Label Display Program 115

PARAMETER SUMMARY

DI SPLAY Statement

I
UNIT-code

I
LABEL-VTOC

ll
LABEL-filename

l..A,L-'filename,filename, .•• '

PARAMETER DESCRIPTIONS

UNIT Parameter

Location of the disk. Possible codes are R1, F1,
R2, F2.

Print entire contents of VTOC.

Print VTOC information for one file.

,Print VTOC information for more than one file. You may list as
many filenames as the statement will hold. The control statement
length is restricted to 96 characters. Maximum is 20 filenames on
al I DI SPLAY statements.

LABEL Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk containing the VTOC informa
tion being printed. Codes for the possible locations
are as follows:

The LABEL parameter indicates the information
you wanted printed: the entire contents of the
VTOC or only the information for certain files.
The VTOC is an area on disk that contains infor
mation about the contents of the disk .. Every disk,
fixed and removable, contains a VTOC. Code Location

R 1 Removable disk on drive 1.
F1 Fixed disk on drive 1.
R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

116

Entire Contents of VTOC
The parameter LABEL-VTOC means to print the
entire contents of the VTOC. The meaning of the
information the program prints is given in the fol
lowing chart. Headings that are listed are the ones
printed by the program to identify the information.

If the program needs more than one page to list the
file information, it prints the headings for the file
information at the top of each new page.

Meaning of VTOC Information

- Heading -

PACK-name

ID--cters
I

NUMBER OF ALTERNATE TRACKS
AVAILABLE-number

TRACKS WITH ALTERNATE
ASSIGNED

DEF"iVE AL TERNA TE TRACKS

l!l!l!l!l!l!l!l!ll
DEVICE CAPACITY-number

I
LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

I
PACK-name
UNIT-code

LOCATION

TRACKS

DA ~i!j~!x/xx/xx

I ::~:::::

- Meaning -

I Name of the disk.

Additional disk identification (if any).

Number of alternate tracks available for assignment.

Tracks that have an alternate assigned to them.

Numbers of the alternate tracks that are defective.

Disk drive capacity (number of tracks).

Boundary of libraries on the disk. (If the disk contains no libraries,
these headings are not printed.)

I Track on which library begins.

I Track on which library ends.

If disk contains both source
and object library START
refers to beginning of source
I ibrary and END refers to end
of object library.

Object library only. Track on which extension to library ends. When
object library is full, temporary entries can be placed in space following
end of library, provided that space is available.

I Available disk areas.

I First track in available area.

I Number of tracks available.

Name of the disk.
Location of disk containing VTOC information

I Current system date.

I Name that identifies file in VTOC.

Date given the file when file was placed on disk.

File and Volume Label Display Program 117

- Heading - - Meaning -

PACK-name
UNIT-code (continued)

KEEP TYPE

FILE TYPE

REC LEN

KEY LEN

KEY LOC

NEXT AVAIL
RECORD

NEXT AVAIL
KEY

INDEX
START END

DATA
START END

VOL
SEQ

File designation:
P=permanent.
T=temporary.
S=scratch.

File type:
!=Indexed.
C=Consecutive.

D=Direct.
B=BASIC.

Number of characters in each record in file.

Indexed files only. Number of characters in each record key.

Indexed files only. Position in record occupied by last cliaracter
of record key.

Beginning location of next available record in file. Location is track,
sector, and position within sector. EXAMPLE: 09918006=track 99,
sector 18, position 6. Q)

Indexed files only. Beginning location of next available key in index
portion of file. Location is track, sector, and position within sector.
EXAMPLE: 09010006=track 90, sector 10, position 6. Q)

Indexed files only. Tracks on which index starts (START) and ends (END).

Disk area reserved for the file. START is the first track of the area. END
is the last track. For indexed files, this refers to the data portion of the file.

VOL SEQ applies to multi-volume files only. It indicates the order ofthis
disk as it relates to the other disks containing the remaining portions of the
file.

Q)lf the first byte of the next available record occurs in the next track after the end track of DATA START END
then this field will contain****

(!)If the first byte of the next available key occurs in the next track after the end track of INDEX START END,
then the field will contain****

File Information Only The program prints the file information for each of
the files you list. This is the information described

for the headings PACK name and Fl LE LABEL in
the preceding chart, Meaning of VTOC Information.

118

The parameter LABEL-filename or LABEL
'filenames' means to print certain file information
from the VTOC. For one file, use LABEL-filename;
for two files, use LABEL-'filename,filename'; and
so on. (Use the names that identify the files in the
VTOC.) You can list as many filenames as the
statement will hold. The statement length, how

ever, is restricted to 96.characters. Maximum is

20 filenames on all DISPLAY statements.

If the program needs more than one page to list
the file information, it prints headings for the file
information at the top of each new page.

OCL CONSIDERATIONS

I LOAD Sequence~
Keywords Responses Considerations

READY LOAD -----

LOAD NAME $LABEL Name of File and Volume Label Display program.

UNIT R1, R2, F1, or F2 Location of disk containing File and Volume Label
Display program.

MODIFY RUN -----i Only the key· t You end every
words listed here response by pressing
are required. You PROG START.
can bypass the rest.

[BUILD Sequence 1
Keywords Responses Considerations

READY BUILD -----

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1, or F2 Location of disk containing source library.

LOAD NAME $LABEL Name of File and Volume Label Display program.

UNIT R1, R2, F1, or F2 Location of disk containing File and Volume Label
Display program.

MODIFY • INCLUDE Response when including control statements
utility .control statements in procedure.
RUN

• RUN Response when not including control statements
in procedure. i Only the key- t You end every

words listed here response by pressing
are required. You PROG START.
can bypass the rest.

File and Volume Label Display Program 119

EXAMPLE

010 LOAD NAME

011 UNIT

020 DATE (XX/XX/XX)

030 SWITCH (00000000)

040 FILE NAME

MODIFY

:il~~~J~~

ENTER '//' CONTROL STATEMENT

II DISPLAY UNIT-Rl,LABEL-'BILLING,INVOl'

ENTER '//' CONTROL STATEMENT
II DISPLAY UNIT-F2,LABEL-VTOC

ENTER '//' CONTROL STATEMENT
II END

Explanation:

OCL LOAD Sequence

~~]Wllmi=~~=~--····

~

Circled areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.
If you press ENTER- after
responding to UNIT, the DATE,
SWITCH, and FILENAME
keywords are not prompted.

RUN is the response to MODIFY
even though the two words are
not on the same line.

Message printed by File and
Volume Label Display program.

Control statement supplied by
operator.

Sequence repeats until operator
enters END statement.

e The File and Volume Label Display program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The files for which information is printed are named BILLING and INV01 (LABEL-'BILLING,INV01' in first
DISPLAY statement). They are located on the removable disk on drive 1 (UNIT-R1).

• Information from the entire VTOC on F2 is printed.

120

The File Delete program ($DELET) has three uses:

e Remove all files from a disk.

• Remove only the files you name.

• Scratch file references in the Volume Table
of Contents (VTOC).

Deleting files frees the space they occupy for
use by new files.

FILE DELETE PROGRAM

The program may be used on temporary, scratch,
and permanent files. To delete permanent files,
you must use the File Delete program. You
can scratch temporary files by using the File
Delete program or by changing the file designation
from temporary to scratch (using the OCL key
word RETAIN) when you use the file.

The control statements you supply for the
program depend on the program use.

File Delete Program 121

I CONTROL STATEMENT SUMMARY FOR $DEL ET

122

-USE-

Scratch all files
in the VTOC.

Scratch only the
files named in
the VTOC

Remove all files
from the disk.

Remove only the
files named from
the disk.

l

l

'

- CONTROL STATEMENTS Q) _

II SCRATCH PACK-name, UNIT-code, LABEL-VTOC

II END

II SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date Q)

II END

{
filename } II SCRATCH PACK-name, UNIT-code, LABEL- 'filenames'

II END

II REMOVE PACK-name, UNIT-code, LABEL-VTOC,

DATA- {~~4
II END

II REMOVE PACK-name, UNIT-code, LABEL-filename,

DATE-date, DATA-{~~s} @
II END

ffilename } II REMOVE PACK-name, UNIT-CODE, LABEL- L'filenames' ,

DATA- {~~s}
II END

CD For each use, the program requires the statements in the order they are listed: SCRATCH, END or
REMOVE, END.

The SCRATCH statement does not erase files from the disk. It changes their designation to scratch (S) in
the Volume Table of Contents (VTOC). By doing this, the program makes the areas that contain the
files available for other files. A halt will occur if an attempt is made to create a new multi-volume file
that will have the same label on disk as an existing single volume file, or if an attempt is made to create
a single volume file bearing the same label as an existing multi-volume file. The halt will occur even
though the retain on the existing file is scratch. If a REMOVE statement is used, files are erased from
the disk. No file is physically scratched or removed from the VTOC until end of job has occurred.

@ Use this form of the SCRATCH or REMO VE statement when two or more files have the same name and
you want to delete one of them. At least one SCRATCH or REMOVE statement is required by the
program. When deleting files, you can list as many filenames as the statement will hold. The statement
length, however, cannot exceed 96 characters. If you want to delete more files than you can specify
in one SCRATCH or REMOVE statement, use additional statements. The END statement must follow
the last SCRATCH or REMOVE statement.

File Delete Program 123

PARAMETER SUMMARY

Scratch Statement

I
PACK-name

r1
UNIT-code

I

124

LABEL-VTOC

LA--tilename

I
LABE L-'filename,filename, ... '

I
DATE-date

Name of the disk.

Location of the disk. Possible c;odes are R 1, F 1,
R2, F2.

Scratch all filesfrom VTOC. IJt ..

Scratch only the files
named from VTOC.
(You may list as many
filenames as you want.)

Use names that identify
files in VTOC. These are
the names that you gave the
files when you placed them
on disk.

Date of the file being deleted. If two more more files have the same
name you list in the LABEL parameter, they will all be deleted unless
you use a DATE parameter to indicate a particular file.

Date must be a six-digit number. EXAMPLE: DATE-062070 means
June 20, 1970.

Remove Statement

PAlame

I
UNIT-code

I
LABEL-VTOC

LA, ·filename

I
LABE L-'filename,filename, ... '

I
DATE-date

DATA { } II YES

Name of the disk.

Location of the disk. Possible codes are R 1, F 1,
R2, F2.

Delete all files from the disk. hh.

Delete only the files
named. (You may
list as many filenames
as you want.)

Use names that identify
files in VTOC. These are
the names that you gave the
files when you placed them
on disk.

Date of the file being deleted. If two more files have the same
name you list in the LABEL parameter, they will all be deleted unless
you use a DATE parameter to indicate a particular file.

Date must be a six-digit number. EXAMPLE: DATE-062070 means
June 20, 1970.

Removes the data for the referenced files
from the disk.

File Delete Program 125

PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the
program the name of the disk that contains the
files being deleted. The name you supply in
this parameter is the one written on the disk
by the Disk Initialization prograni.

The File Delete program compares the name
in the PACK parameter with the name on t~e disk
to ensure they match. In this way, the program
ensures that it is using the right disk.

UN IT Parameter
The UNIT parameter (UNIT-code) tells the
program the location of the disk containing
the files ?eing deleted. Codes for the possible
locations are as follows:

Code

R1
F1

Location

Removable disk on drive 1.
Fixed disk on drive 1.

R2 Removable disk on drive 2.
F2 Fixed disk on drive 2.

LABEL Parameter

126

The LABEL parameter identifies the files you
want to delete from the disk. Its form depends
on the files you are deleting:

Form

LABEL-VTOC

LABEL-filename

Files Deleted

All of them.

Only the file that is named.
The name can apply to more
than one file. If it does, all
of those files are deleted
unless you use a DATE
parameter to identify a
particular one.

LABEL-'filename, Only the files that are
filename, .. .' named. A name can apply

to more than one file. If
it does, all of those files
are deleted. (You can
list as many filenames as
the statement can hold;
the statement length,
however, is restricted
to 96 characters. Ad-

Deleting Files

ditional REMO VE or
scratch statements may
be used for additional
filenames. The maxi
mum number of files
that can be deleted in
one run is 52.)

The File Delete program does not erase files from
the disk unless DATA-YES is specified on a REMOVE
statement. It changes their designation to scratch (S).
By doing this, the program makes the areas that con
tain the files available for other files.

DA TE Parameter
The DATE parame.ter (DATE-date) applies to
two or more files that have the same name. It
tells the program the date of the one you want to
delete.

Every file on disk has a date, which is given to the
file at the time it is created. When two or more
files have the same name, the dates are used to
tell one file from another.

The date is a six-digit number: two digits for day,
two for month, and two for year. Day, month,
and year can be in one of two orders: (1) month,
day, year and (2) day, month, year. For example
061870 and 180670 both mean June 18, 1970.

In the DATE parameter, be sure to specifX day,
month, and year in the same order as when you
placed the file on disk.

DATA Parameter (Remove Only)
The DATA parameter lets you delete the files
specified directly from the disk as well as from

the VTOC.

If YES is coded in this parameter then the file
specified will be removed from the disk and any
reference to it in the VTOC will be removed. In
addition, a message will be printed on the Syslog
device for each file removed from the disk in this
format:

'DATA REMOVED FOR Fl LE XXXXXX
DATE 000000'

If NO is coded in this parameter, then the file
specified will not be removed from the disk.
However, any reference to it in the VTOC will
be removed .. If this parameter is not used,
DATA-NO is assumed.

OCL CONSIDERATIONS

[LOAD Sequence l
J

Keywords Responses Considerations

READY LOAD -----

LOAD NAME $DELET Name of File Delete program.

UNIT R1, R2, F1, or F2 Location of disk containing File Delete program.

MODIFY RUN -----

Only the key- t You end every r words listed here response by pressing
are required. You PROG START.
can bypass the rest.

BU IL D Sequence

Keywords Responses Considerations

READY BUILD -----

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1, or F2 Location of disk containing source library.

LOAD NAME $DELET Name of File Delete program.

UNIT R1, R2, F1, or F2 Location of disk containing File Delete program.

MODIFY • INCLUDE Response when including control statements in
utility control statements procedure.

R~N

• RUN Response when not including control statements
in procedure. r Only the key- t You end every

words I isted here response by pressing
are required. You PROG START.
can bypass the rest.

File Delete Program 127

EXAMPLE

Deleting One of Several Files Having the Same Name

Situation

Assume that three files on a removable disk have the same name: INV01. The dates of these files are 6/16/70,
8/18/70, and 11 /15/70. You want to delete the 6/16/70 version.

Statements

READY -!rJ?EbJ:B;~{;~%1~,
************************* ~ ~~

010 LOAD NAME ·t~ $DELETW

011 UNIT ~ '.1\~kff;;;·
020

030

040

DATE (XX/XX/XX) -

SWITCH (00000000) -

FILE NAME

MODIFY

f i;~~~:;;(i!:
ENTER '//' CONTROL STATEMENT

OCL Load Sequence

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

Message printed by File Delete program.

II
Control statement

SCRATCH PACK-00001,LABEL-INVOl, UNIT-Rl ,DATE-061670~\\\\\\\\\\\l~tm::::::::::.:·:·· supplied by
operator.

ENTER '//' CONTROL STATEMENT
II END

Explanation

Sequence repeats until operator
enters END statement.

• File Delete program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

• Because two other files have the name INV01, the date (061670) is needed to complete the identification
of the file you want to delete (LABEL-INV01 and DATE-061670).

• The removable disk containing the file to be deleted is on drive 1 (UN IT-R 1).

128

Removing One File

Situation

You want to remove a file named INV02 from the pack mounted on R1.

Statements

READY -_,f f':b~ik\\
·-:: ·---~~

************************* ~& ~~

010 LOAD NAME - ~fu $ DELE'IJ/.

011 UNIT - ii;:kii(;{il
020 DATE (XX/XX/XX) -

030 SWITCH (00000000) -

040 FILE NAME

MODIFY

/~~U=="\ ..
:=:::~·::·:::::~~:./

OCL Load Sequence

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

Message printed by File Delete program.

·:........ Control statement supplied
// REMOVE PACK-00001,LABEL-INV02, UNIT-Rl ,DATA-YES !ilJJJ::::=:'···· by operator.

'DATA REMOVED FOR FILE xxxxxx DATE 000000' jjj~m~~lilfJ:~::::::::':·:·:···· Printed by File Delete.

ENTER '//' CONTROL STATEMENT 1!!!!!!!!i!iii!!!!!)1@H:::::::====·'····

II END

Sequence repeats until operator
enters END statement.

Explanation
• File Delete program is loaded from the fixed disk on drive 1 (UNIT·F1 in OCL sequence).

• Disk that contains the file being removed is named 00001 (PACK-00001 in REMOVE statement).

• The removable disk containing the file to be removed is on drive 1 (UNIT-R1).

• DATA-YES indicates that the file data as well as the file VTOC reference is to be removed.

File Delete Program 129

130

DISK COPY/DUMP PROGRAM

The Disk Copy/Dump program ($COPY) has three
general uses. The control statements you must
supply depend on the program use.

Program Uses

Copy entire contents of one
disk to another.

Copy a data file from one disk
to another, or from one area to
another on same disk.

Print all or part of a data file.

Common Reasons

Provide a reserve disk in case something
happens to the original disk. Important
disks, such as those containing your
libraries and permanent data files, are
normally the ones you would copy.

Any of the following:

• Provide a reserve file in case something
happens to the original file.

• Move a file to a larger disk area.

• Reorganize the data portion of an
indexed file. (Data in the copy of the
file is reorganized; the original file is
unchanged.)

• Delete r~cords·from a file. (Records
are omitted from the copy of the file;
the original file remains unchanged.)

Provide a printed copy .of the records in a
file, perhaps for use in checking the records
for errors.

Your responses to file keywords in the OCL sequence used to load the program describe
the disk file being copied or printed. If you are copying the file to disk, the file being
created must also be described in the 9cL sequence.

Disk Copy/Dump Program 131

CONTROL STATEMENT SUMMARY FOR $COPY

- Control Statements @ -

B_I RI
r:}C)(-v;. Copy an Entire Disk II COPYPACK FROM-code, TO-code

l II END.

Copy a Data File ©
© t°I© ~NO I llCOPYFILE OUTPUT-DISK,DELETE-'position,character', REORG- , WORK-

or or . YES YES
OUTPTX OMIT

II END

Copy and Print ©
a Data File © ©. l NO I //COPYFI LE OUTPUT-BOTH,DELETE-'position,character', REORG-YES, WORK-

l
Copy a Data File,
But Print Only a
Part of the File

or or YES
OUTPTX OMIT

II END

©
// COPYFI LE OUTPUT-BOTH,DELETE-'position,character'~REORG-YES>DWORK- j NO l

or or l YES~ to...----------.,...• OUTPTX OMIT

132

Print an Entire
Data File

1

II SELECT KEY,FROM-'key'©

-or- ©
II SELECT KEY,FROM-'key',TO-'key'

4

II SELECT~;~Y,FROM-'key'(!)
-or- r.i'\

II SELECT PKY,FROM-'key',TO-'key'0
-or-

// SELECT RECORD,FROM-number
-or-

// SELECT RECORD,FROM-number,TO-number

II END

II· COPYFILE OUTPUT-PRINT
or

OUTPTX

II END

@

©
Q)

- Uses -

Print Only a
Part of a
Data File

- Control Statements -

II COPYFILEOUTPUT-PRINT
or

OUTPTX

II SELECT KEY,FROM-'key'©

-or- ©
II SELECT KEY,FROM-'key',TO-'key'

4

II SELECT-~~Y,FROM-'key' Q)
-or- Q)

II SELECT PKY,FROM-'key',TO-'key'
-or-

// SELECT RECORD,FROM-number
-or-

// SELECT RECORD,FROM-number,TO-number

II END

The program uses include the possible combinations of copying and printing files.

One
of fa\:
these. \V

For each use, the program requires the control statements in the order they are listed: COPYPACK,END;
COPYFILE,END; and COPYFILE,SELECT,END.

Needed only if you want to delete a certain type of record.

Applies only to indexed files.

Applies only if you are copying the file from one removable disk to another using the same disk drive
(drive 1).

Identifies the portion you want to print.

Indexed files with packed keys.

Disk Copy/Dump Program 133

PARAMETER SUMMARY

COPYPACK Statement

I
FROM-code

COPYFILE Statement

134

!!!l!!!ll!l!ll!lll

OUTPUT-DISK
-or

OUTPTX-DISK

I
OUTPUT-PRINT

-or
OUTPTX-PR I NT

OUTPUT-BOTH
-or

OUTPTX-BOTH

I
DELETE-'position, character'

-or
OMIT-'position, character'

I
REORG-NO

I
REORG-YES

I

Location of disk to be copied. Possible codes are R 1, F 1,
R2, F2.

Location of disk to contain the copy. Possible codes.are R 1,
F1, R2, F2.

Copy the file from one disk to another, or from one area to
another on the same disk.

Print the entire file or only part of the file.

Copy the file from one disk to another, or from one area to
another on the same disk. ..Also print the entire file or only
part of it. CD

These parameters are optional. All records with-the specified
character in the specified record position are deleted. DELETE causes
deleted records to be printed. Character can be any of the System/3
characters except blank, comma, or apostrophe. Position can be any
position in the record (the first position is 1, second 2, and so on).
The maximum position is 999.

Indexed files only. Copy records in the same way as they are
organized in the original file (the file from which the records are
copied). REORG-NO is assumed if you omit the REORG keyword.

Indexed files only. Reorganize the records so that the records in
the data portion of the file are in the same order as their keys are
listed in the index. When OUTPUT-BOTH is used, REORG-YES
is required.

COPYFILE Statement (continued)

I
WORK-NO

I
WORK-YES

I
SELECT Statement

I
KEY,FROM-'key'

-or
PKY,FROM-'key'

I
KEY,FROM-'key',TO-'key'

-or
PKY,FROM-'key',TO-'key'

I
RECORD, FROM-number

It
RECORD,FROM-number,TO-number

It

May be used in all cases except when copying a file from one
removable disk to another on drive 1. It means: do not use
a work area on the fixed disk on drive 1. WORK-NO is
assumed if you omit the WORK keyword.

Required for copying a file from one removable disk
on drive 1 to another removable disk on that drive. It
means: use a work area on the fixed disk on drive 1.

WORK-NO is assumed if you omit the WORK
keyword.

Indexed files only. Print only the part of the file from
the record key that is specified in the FROM parameter
to the end of the file.

Indexed files only. Print only the part of the file between
the two record keys that are specified in the FROM and TO
parameters (including the records indicated by the parameters).
To print only one record, make the FROM and TO record
keys the same.

Print only the part of the file from the relative record
number specified in the FROM parameter to the end of
the file.

Print only the part of the file between the relative record
numbers indicated by the parameters (including the records
indicated by the parameter). To print only one record,
make the FROM and TO record numbers the same.

Q) In his responses to OCL keywords (Fl LE NAME, etc.), the operator indicates which file is to be copied or
printed. For files being copied, his responses also indicate whether the file is being copied from one disk to
another or from one location to another on the same disk.

Disk Copy/Dump Program 135

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK)
The COPYPACK statement is used to copy the
contents of one disk to another. It has.two
parameters: FROM and TO. They tell the
program the locations of the two disks on the
disk units,

The FROM parameter (FROM-code) indicates
the location of the disk you are copying. The
TO parameter (TO-code) indicates the location
of the disk that is to contain the copy.

Codes for the possible locations are as follows:

Code Location

R 1 Removable disk on drive 1.
F 1 Fixed disk on drive 1.
R2
F2

Removable disk on drive 2.
Fixed disk on drive 2.

Copying Entire Disk

136

When copying a disk, the Disk Copy/Dump
program transfers the contents of the disk
to another disk. The contents of the two
disks will be the same, except for the disk
names and alternate track information, which
may be different.

The disk you are copying can contain libraries
or data files or both. The disk that is to contain
the copy must not have libraries, temporary data
files, or permanent data files.

The program can copy the contents of one re
movable disk to another using one disk drive.
The drive, however, must be drive 1. To do
this, the program uses a.vailable space on the fixed
disk on drive 1. It fills the available space with
information from the disk you are copying. Then
it prints a message telling the operator to mount
the other removable disk (the one to contain the
copy) on drive 1. After transferring the informa
tion from the fixed disk to the removable disk,
the program prints another message telling the
operator to remount the disk you are copying.
The program repeats this procedure until all
information has been transferred.

Until the contents of the disk are completely
copied on the new disk, three addressing portions
of the new disk are changed to prevent accidental
usage of a partially filled disk. Therefore, if the
copying process is stopped before it is completed,
the pack is unusable. You can restart the copying
process by reloading the copy program or you can
restore the disk by reinitializing.

After a successful copy the copy program prints a
message:

COPYPACKISCOMPLETE

OUTPUT Parameter (COPY Fl LE)
The OUTPUT parameter is used when copying and
printing data files. It indicates whether you want
the program to copy, print, or copy and print a
file.

The parameter OUTPUT-DISK means to copy the
file; OUTPUT-PRINT means to print the file; and
OUTPUT-BOTH means to copy and print the file.

OUTPTX can be used instead of OUTPUT to
display the printed output with its hexadecimal
values.

Copying Files
The Disk Copy/Dump program can copy a file
from one disk to another or from one area to
another on the .same disk.

Your responses to the OCL keywords prompted
for the Disk Copy/Dump program indicate (1) the
name and location of the file being copied and

(2) the name and location of the copy being
created. See OCL Considerations in this section.

The program can copy a file from one removable
disk to another using one disk drive. The drive,
however, must be drive 1. (See WORK Parameter
in this section for more information.)

In copying a file, the program can omit records.
(See DELETE Parameter in this section for
more information.)

In copying an indexed file, the program can
reorganize records in the data portion such that

they are in the same order as their keys are listed
in the index. (See REORG Parameter in this
section for more information.)

Printing Files
The program can print all or part of the data file.
To print only part, the program needs a SELECT
control statement. (See SELECT KEY and PKY
Parameters and SELECT RECORD Par;Jmeters
in this section:) If you do not use a SELECT
statement, the entire file is printed.

If you use SELECT or:REORG, records from
indexed files are printed in the order their keys
appear in the index portion of the file; otherwise,
they are printed as they appear in the file. For
each record, the program prints the rec~rd key
followed by the contents of the record.

Records from sequential and direct files are
printed in the order they appear in the file.
For each record, the program prints the relative
record number followed by the contents of
the record.

The program uses as many lines as it needs to
print the contents of a record. If OUTPUT- is
specified, only printable characters are printed.
If OUTPTX- is specified, all characters are
printed with their 2-digit hexadecimal value.
Appendix J lists the hexadecimal values for
characters in the standard character set.

The following is an example of the way the program
prints a 20-character record when OUTPUT-is speci
fied.

ABCDE GHIJ12345

If OUTPTX- is specified, the same record would
be printed:

ABCDE GHIJ12345
CCCCCBCCCDF FFFF44444
12345678 911234500000

After printing the last record, the program triple
spaces and prints the following message:

(number) RECORDS PRINTED

DELETE Parameter (COPY Fl LE)
In copying a data file, the Disk Copy/Dump pro
gram can omit records of one type. The DELETE
parameter identifies the type of records. Use of
the DELETE parameter is optional. If you do not
use it, no records are deleted.

The form of the parameter is DELETE-'position,
character'. Character is the character, except
apostrophes, blanks, and commas, that identifies
the records. Position is the position of the
character in the records (maximum 999). For
example, with the parameter DELETE-'100,
X' all records with an X in position 100 are
deleted.

Deleted records are always printed. If you are
both copying and printing a data file, deleted
records are printed with the other records that
are printed. The deleted records are preceded
by the word DELETED.

The OMIT keyword can be used instead of
DELETE. The deleted records are not printed

if OM IT is used.

REO~G (Reorganize) Parameter (COPYFILE)
In copying an indexed file, the program can
reorganize the file, such that the records in the
data portion are in the same order as their keys
in the file index. The R EORG parameter tells
the program whether or not to reorganize the

file.

REORG-YES means to reorganize. REORG
NO means not to reorganize. REQRG-NO is
assumed if you omit the keyword.

If you tell the program to reorganize the file,
the reorganization applies to the copy of the
file rather than the original file. The original
file is not affected.

Reorganization (REORG-YES) is required any
time you are both copying and printing an
indexed file (OUTPUT-BOTH).

WORK Parameter (COPY Fl LE)
The WORK parameter applies to copying a
data file from one removable disk to another
using the same disk drive (drive 1). It tells
the program whether or not to use a work
area on the fixed disk on drive 1.

The parameter WORK-YES means to use a work
area. WORK-NO means not to use a work area.

Work Area
If you have only one disk drive, a common use
of the Disk Copy/Dump program might be to
copy a file from one removable disk to another.
To do this, the program must use a work area
on the fixed disk. The output file must be a

new file.

Disk Copy/Dump Program 137

In copying the file, the program fills the work
area with records from the file you are copying.
Then it prints a message telling the operator to
mount the other removable disk (the one to
contain the copy) on drive 1. After transferring
the records from the work area to the re
movable disk, the program prints another
message telling the operator to remount the
disk containing the file you are copying. The
program repeats this procedure until all records
have been transferred.

If you have two disk drives, you can also use the
same drive to copy a file from one removable disk
to another. The drive, however, must be drive 1.

You can copy a file from one area to another on
the same disk. If you do, and the disk is a remov
able disk that you plan to mount on drive 1, use
the WORK-NO parameter (WORK-NO is
assumed if the WORK keyword is not used). This
keeps the program from using a work area on the
fixed disk when it transfers the file from one
area to the other.

SELECT KEY and PKY Parameters (SELECT)
The SELECT KEY and SELECT PKY param
eters apply to printing part of an indexed file.
The parameters are FROM and TO.

138

The FROM parameter (F ROM-'key') gives the
key of the first record to be printed. The TO
parameter (TO-'key') gives the key of the last
record to be printed. The record keys between
those two in the file index identify the remaining
records to be printed. If you want to print only

one record, use the same record key in both the
FROM and TO parameters.

For example, the parameters FROM-'000100' and
T0-'000199' mean that records identified by keys
000100 through 000199 are to be printed.

If the file index does not contain the key you
indicate in a FROM parameter, the program uses
the next higher key in the index.

You can omit the TO parameter. If you do, the
program assumes that the last key in the index is
the TO key.

With the SELECT KEY parameter (but not PKY)
you can use less characters in the FR OM or TO
parameter than are contained in the actual keys.
If you do, the program ignores the remaining char
acters in the key. The number of characters used
in the FROM and TO parameters need not be the
same.

For example, assume that the following are consecu
tive record keys in an index: 99999, A 1000, A 1119,
A1275, A1900, A1995, and A2075. The parameters
FROM-'A1' and TO-'A199' refer to record keys
A 1000 through A 1995.

If none of the keys in the file index begin with the
characters you indicate in a FROM parameter, the
program uses the key beginning with the next
higher characters.

For example, assume that four consecutive record
keys in an index begin with these characters:
A 1,A2,A8, and B 1. The parameters FROM-'A3'
and TO-'A9' would refer to the key beginning with
the character A8.

SELECT RECORD Parameters (SELECT)
The SELECT RECORD parameters can apply to
any file, but are normally used for sequential and
direct files. These parameters use relative record
numbers to identify the records to be printed.

Relative record numbers identify a record's location
with respect to other records in the file. The
relative record number of the first record is 1, the
number of the second record is 2, and so o~.

The SELECT RECORD parameters are FROM
and TO. The FROM parameter (FROM-number)
gives the relative record number of the first record
to be printed. The TO parameter (TO-number)
gives the number of the last record to be printed.
Records between those two records in the file are
also printed. If you want to print only one record,
use the same record number in the FROM and TO
parameters.

For example, the parameters F ROM-1 and T0-30
mean that the first thirty records (1-30) in the file
will be printed.

You can omit the TO parameter. If you do, the
program assumes that the. number of the last
record in the file is the TO number.

COPYING MUL Tl-VOLUME Fl LES
When copying multi-volume files the first volume
of the input file has to be online when the job is
initiated. The output file must be a new file. If
neither condition is satisfied a halt occurs.

Maintaining Proper Volume Sequence Numbers
To maintain proper volume sequence numbers when
copying a multi-volume file, you must either copy
all the volumes of the file in one run or copy only
one volume for each run of $COPY. For example,
if you copy a 3-volume file one volume at a
time: volume 1 in the first run, volume 2 in the
second run, and volume 3 in the third run; the
volumes will retain their original sequence numbers
in the output file. Or if you copy all the volumes
(1, 2, and 3) in the same run, the volume sequence
numbers in the new file will be same as in the
original file. However, if you copy only volumes
2 and 3 in one run, their volume sequence num-
bers will be changed to 1 and 2 in the output file.

Maintaining Correct Relative Record Numbers
To maintain correct relative record numbers
when copying one volume of a multi-volume
direct file, the size of the output volume must
be the same as the size of the input volume. (If
you want to increase the size of a file, you must
copy the entire file.) If, for example, you copy
the first volume of a 2-volume file and increase
the number of records c;m that volume, you are
also increasing relative record numbers of all
the records on the next volume. Therefore,
output and input volume extents must be equal
if you are copying only one volume of a multi
volume direct file.

Note: You can not use the copy program to
copy a single volume file to a multi-yolume file.
End of extents will probably occur after the first
volume of output. If the output file is a new
file, the copy program will not create it as a
multi-volume file.

Direct File Attributes
If you copy a whole multi-volume direct file
in one run, the output file will be given con
secutive attributes in the Volume Table of
Contents (VTOC). However, this does not
affect file processing. A file with either con
secutive or direct attributes can be accessed
by a consecutive or direct access method.
If only one volume is copied, the direct
attribute will be maintained.

Copying Multi-Volume Index Files
If you want to copy a multi-volume indexed file,
REORG-YES must be given. Since an unordered
multi-volume indexed load is not permitted, a
REORG-NO will cause a halt if an out-of-sequence
record is found. If you would prefer not to re
organize the file, each volume of the file must be
copied as a single volume file. When copying each
volume separately, it can be either ordered or un
ordered. When copying one volume of a multi
volume indexed file, either REORG-YES or
REORG-NO may be specified. HIKEY parameter(s)
of the output file must be the same as the highest
key(s) of each input volume.

Disk Copy/Dump Program 139

OCL CONSIDERATIONS

LOAD Sequence for Copying an Entire Disk l
J

Keywords Responses Considerations

READY LOAD -----

LOAD NAME $COPY Name of Disk Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Copy/Dump program.

MODIFY RUN -----

Only the key- t You end every t words listed here response by pressing
are required. You PROG START.
can bypass the rest.

r BUILD Sequence for Copying an Entire Disk 1
J

Keywords Responses Considerations

READY BUILD -----

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1, or F2 Location of disk containing source library.

LOAD NAME $COPY Name of Disk Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Copy/Dump program.

MODIFY e;~NCLUDE Response when including control statements
utility control statements in procedure.
RUN

Response when not including control statements
• RUN in procedure. t Only the key- t You end every

words listed here response by pressing
are required. You PROG START.
can bypass the rest.

140

LOAD Sequence for Copying or Printing Files

Keywords Responses Considerations

READY LOAD -----

LOAD NAME $COPY Name of Disk Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Copy/Dump program.

FILE NAME COPYIN Name Disk Copy/Dump program uses to refer to file
to be copied (input file).

UNIT R1, R2, F1,or F2 Location of disk containing file to be copied.

PACK disk name Name of disk containing file to be copied.

LABEL file name Name by which file to be copied is identified on disk.

FILE NAME • COPVO Name Disk Copy/Dump program uses to refer to output
file being created.

• Press PROG ST ART If you are only printing records from a file, press PROG
START instead of typing COPYO. The next keyword
prompted will be MODIFY.

UNIT R1, R2, F1, or F2 Location of disk on which output file is to be created.

PACK disk name Name of disk on which output file is to be identified on
disk.

LABEL file name Name by which output file is to be identified on disk.

RECORDS or TRACKS number Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

RETAIN T,P,orS Designation (temporary, permanent, or scratch) of
output file.

MODIFY RUN -----i Only the key- t You end every
words listed here response by pressing
are required. You PROG START.

. can bypass the rest.

Disk Copy/Dump Program 141

BUILD Sequence for Copying or Printing Files

Keywords Responses Considerations

READY BUILD -----

BUILD NAME procedure name Name by which procedure will be identified in source
library.

UNIT R1, R2, F1, or F2 Location of disk containing source library.

LOAD NAME $COPY Name of Disk Copy/Dump program.

UNIT R1, R2, F1, or F2 Location of disk containing Disk Copy/Dump program.

FILE NAME COPY IN Name Disk Copy/Dump program uses to refer to file to
be copied (input file).

UNIT R1, F1, R2, or F2 Location of disk containing file to be copied.

PACK disk name Name of disk containing file to be copied.

LABEL file name Name by which file to be copied is identified on disk.

FILE NAME • COPYO Name Disk Copy/Dump program uses to refer to output
file being created.

• Press PROG ST ART If you are only printing records from a file, press PROG
START instead of typing COPYO. The next keyword
prompted will be MODIFY.

UNIT R1, R2, F1, or F2 Location of disk on which output file is to be created.

PACK disk name Name of disk on which output file is to be created.

LABEL file name Name by which output file is to be identified on disk.

RECORDS or TRACKS number Size of output file expressed either as number of records
(RECORDS) or number of disk tracks (TRACKS).

RETAIN T, P, or S Designation (temporary, permanent, or scratch) of
output file.

MODIFY • INCLUDE Response when including control statements
utility control statements in procedure.

·RUN

Response when not including control statements

• RUN in procedure. I Only the key- t You end every
words listed here are response by pressing
required. You can PROG START.
bypass the rest.

142

EXAMPLES

Copying an Entire Disk

READY

010

011

020

030

040

LOAD NAME

UNIT

DATE (XX/XX/XX)

SWITCH (00000000) -

FILE NAME

MODIFY

:\\~~t,t

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed. If you
press ENTER- after responding to
UNIT, the DATE, SWITCH, and FILE
NAME keywords are not prompted.

RUN is the response to MODI FY
even though the two words do not
appear on the same line.

ENTER '/ / 1 CONTROL STATEMENT ff!f!f!!!i!!i!i!i!!!!!i!Ji!if:Hi:=:=:======·;··· Message printed by Disk Copy/Dump program.

// COPYPACK FROM-F2 ,TO-R2)JjJffffiff!f!!f!i!i!ii/miK=~=======·=·=··· Control statement supplied by operator.

ENTER '/ / 1 CONTROL STATEMENT f~!J!!!i!i!!i!i!f!!!i~Jii!Hi:i:!:=:=~====······· System reprompts. END statement
/ / END terminates sequence.

COPYPACK IS COMPLETE ~!!!J!ifJ!J!J!JJ!J!I@Ui:i:i::::::=~=="······ Message printed by Disk Copy/Dump program
to indicate successful copy.

Explanation

• The Disk Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• The contents of the fixed disk on drive 2 (FROM-F2 in COPYPACK statement) is copied onto the removable disk
on drive (TO-R2).

Disk Copy/Dump Program 143

Copying a File From One Disk to Another

READY - f:)l~£Kf$~i~;
************************* ~ i

010 LOAD NAME -II$COP~1
011 UNIT - ····Fl

~·\~;·.~~~~~~::~:~!{
020 DATE

030 SWITCH

040 FILE NAME

041 UNIT

042 PACK

043 LABEL

050 FILE NAME

051 UNIT

052 PACK

053 LABEL

054 RECORDS

055 TRACKS

056 LOCATION

057 RETAIN

MODIFY

~1.if:Thi~f i:

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

~-:·.,.. M . .
ENTER 'I I' CONTROL STATEMENT ~m@!@~lf~~t~i=::~~- essage printed by Disk Copy/ Dump

. ~@W~=========·=·o) program.

II COPYFILE OUTPUT-DISK

II END

144

tJ~l~~j~)!~MW=·- Control stat.ement supplied by operator.

~~Mt:::~;;. System reprompts. END statement
llJft!}~:====··· terminates sequence.

Explanation

• Disk Copy/Dump program is loaded from fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• Input file (OCL sequence):
1. Name that identifies file on disk is MASTER (LABEL-MASTER).
2. Disk that contains the file is the fixed disk on drive 1 (UN IT-F1). Its name is A 1 (PACK-A 1).

• Output file (OCL sequence):
1. Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).
2. Disk that is to contain the file is the removable disk on drive 1 (UN IT-R 1). Its name is B2 (PACK-B2).
3. The file is to be permanent (RETAIN-P).
4. The length of the file is 50 tracks (TRACKS-50).

• The COPYF I LE statement tells the program to create the output file using all the data from the input file.
The output file is a copy of the input file.

Disk Copy/Dump Program 145

Printing Part of a File

READY i:~~~~::~·\~}~
************ ********* ~~ "'%\

: ~: LOAD :: ~i~~:;:i:::j~I~
020 DATE

030 SWITCH

040 NAME COPYIN~:::

::cm ~ Input file.

FILE

041 UNIT

042 PACK

043 LABEL

050 FILE NAME

ENTER 'II' CONTROL STATEMENT

II COPYFILE OUTPUT-PRINT
:·

OCL LOAD Sequence.

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
even though the two words do not
appear on the same line.

Message printed by Disk Copy /Dump
program.

Control statement supplied by operator.

II

II

ENTER I I I I CONTROL STATEMENT llt:::::::
~~~~~T 1 ~~;', c~:~~~~ A~:;~~~~ 'BAKER" ~ ~~q~e5~::e:~~:'.s until operator enters 

Explanation 

• Disk Copy/Dump program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence). 

• Input file (OCL sequence): 
1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP). 
2. Disk that contains the file is the removable disk on drive 1 (UN IT-R1 ). Its name is B2 (PACK-82). · 

• The file is being printed (COPYFI LE statement). 

• The file is an indexed file. The part being printed is identified by the record keys from ADAMS to BAKER in 
the index (SELECT statement). 

146 



The Library Maintenance program ($MAI NT) has 
four functions: 

Function 

Allocate 

Copy 

Delete 

Rename 

Meaning 

Create (reserve space for), delete, 
reorganize, and change the sizes of 
libraries. 

Place entries in, and display the 
contents of, libraries. 

Delete library entries. 

Change the names of library 
4 entries. 

The control statements you must supply depend 
on the function you are using. 

Library Description 
The source library is an area on disk for storing 
procedures and source statements. Procedures 
are groups of OCL statements used to load pro
grams. The statements can be followed by input 
data for the programs. (Procedures for utility 
programs can, for example, contain utility con
trol staterrients.) Source statements are sets of 
data, the most common of which are RPG 11 
source programs and Disk Sort sequence specifi
cations. 

The object library is an area on disk for storing 
object programs and routines. Object programs 
are programs and subroutines in such a form that 
they can be loaded for execution. (They are some
times called executable object programs.) Routines 
are programs and subroutines that need further 
translation before being loaded for execution. 
(They are sometimes called nonexecutable object 
programs.) 

LIBRARY MAINTENANCE PROGRAM 

Location of Libraries on Disk 
Libraries can be located anywhere on disk. How
ever, the location of a source library with respect 
to an object library is always the same: 

I 

User Area Source Library Object Library : User Area 

I 
Track O Upper Boundary 

The boundaries of a source library are fixed. They 
can be changed only by the allocate function of the 
Library Maintenance program. The upper boundary 
of an object library, however, can be moved as ad
ditional space is needed when entries are placed in 
the library. This happens only if space is available 
following the library and if the entries being placed 
beyond the normal boundary are not permanent 
entries. 

Organization of Library Entries 
Entries are stored in the object library serially; 
that is, a twenty-sector program occupies twenty 
consecutive sectors. Temporary entries follow all 
permanent entries in the object library. This occurs 
because a permanent entry causes all temporary 
entries to be deleted. The permanent entry is then 
loaded into the first available space large enough to 
hold it. This is usually the space following the last 
permanent entry in the library. 

If necessary, the upper boundary is changed to 
allow more space for temporary entries. But when 
a permanent entry is placed in the library, all tem
porary entries are deleted and the upper boundary 
returns to its original location. Permanent entries 
cannot exceed the original upper boundary. 

Library Maintenance Program 147 



Gaps can occur in the object library when a perma
nent entry is deleted and replaced with a permanent 
entry using fewer sectors. The Library Mainte
nance program scans the library to see what sectors 
are available. The entry is then placed into the gap 
that has the fewest sectors over and above the 
number required by the new entry. If the entry 
is the same size, no sectors are lost. 

If the number of unusable sectors becomes ex
cessive, the library should be reorganized. In 
reorganizing entries, the Library Maintenance 
program shifts entries so that gaps do not appear 
between them. This makes more sectors available 
for use. 

The source library differs from the object libr;iry 
in that entries within the source library need not 
be stored in consecutive sectors. An entry can be 
stored in many widely separated sectors with each 
sector pointing to the sector that contains the next 
part of the entry. When an entry is placed in the 
source library, it is placed in as many sectors as 
required regardless of where the sectors are lo
cated within the library. 

The boundary of the source library cannot be 
expanded; therefore, an entry must fit within the 
available library space. To provide as much space 
as possible within the prescribed limits of the 
source library, the system compresses entries. That 
is, blanks and duplicate characters are removed 
from entries. Later," if the entries are printed or 
punched, the blanks and duplicate characters are 
reinserted. 

Library Directories 

148 

The program creates a separate directory for each 
library. Every library entry has a corresponding 
entry in its library directory. The directory 
entry contains such information as the name and 
location of the library entry. The program also 
creates a system directory, which contains infor
mation about the size and available space in libraries 
and their directories. 

Organization of This Section 
The four functions are described separately. Every 
description contains the following: 

1. List of specific uses. 

2. Control statement summary indicating 
the form of the control statement needed 
for each use. 

3. - Parameter summary explaining the contents 
and meanings of control-statement param
eters. 

4. Parameter descriptions explaining, in 
detail, the contents and meanings of the 
parameters. Because delete and rename 

5. 

are not complex functions, those functions 
do not need this type of description. The 
parameter summaries are sufficient. 

Examples that include OCL statements, 
utility control statements, and explanations 
of their use. 

OCL considerations for the program precede the 
examples. 



·ALLOCATE 

Uses 

• Create (reserve space for) libraries. 

• Change the sizes of libraries. 

• Delete libraries. 

• Reorganize libraries. 

I CONTROL STATEMENT SUMMARY 

{
number'\_ {number} {NO} II ALLOCATE TO~code,SOURCE- R J' OBJECT- R , SYSTEM- YES , WORK-code 

Source 
Library 

Object 
Library 

- Use - Parameters Needed· -

You can indicate 
a source-library 
use, an object-

.. WORK parameter needed 
TO-code, SOURCE-number, WORK-code -:::flf~l~only if the disk contains 

··=·==:::{Jan object library that you 

TO-code, SOURCE-number, WORK-code'. are not deleting. 

TO-code, SOURCE-0 

TO-code, SOURCE-A, WORK-code 

TO-code, OBJECT-number, SYSTEM-{~~S} 
TO-code, OBJECT-number, WORK-code 

TO-code, OBJECT-0 

TO-code, OBJECT-A, WORK-code IJ e, L1t .. :nz ~ A- t. L 
IG'ti1/J · 

library use, or uses 
involving both 
libraries (for example, 
deleting the source 
library and changing 
the size of the 

If you are indicating uses for both 
libraries, use only one TO parameter. 
(The libraries must be on the same 
disk.) Also, use only one WORK 
parameter if both uses require a 
WORK parameter. 

object library). 

Library Maintenance Program 149 



I 
I 

ALLOCATE PARAMETER SUMMARY 

lllllllllllllll! 
TO-code 

I 
SOURCE-0 

SI CE-number 

OBJECT-number 

OBJECT-R 

I 
SYSTEM-NO 

I 
SYSTEM-YES 

I 

150 

Location of disk you are using. Possible codes are R 1, F 1, R2, and F2. 

Delete the source library. 

If disk does not contain a source library, program creates one. 
Num.ber indicates the number of tracks you want to assign. 

If disk already contains a source library, program changes its size 
and reorganizes it. (This includes deleting temporary entries.) 
Number indicates the total number of tracks you want in source library. 

Reorganize the source library. Program deletes temporary entries 
while reorganizing the library. 

Delete the object library. 

If disk does not contain an object library, program creates one. Number 
indicates the number of tracks you want to assign. 

If disk already contains an object library, program changes its size and 
reorganizes it. (This includes deleting temporary entries.) Number indi
cates the total number of tracks you want in object library. 

Reorganize the object library. Program deletes temporary entries while reor
ganizing the library. 

Assign one track to object library directory. Object library directory 
will not be large enough to contain system program entries. 

Assign three tracks to object library directory. Object library directory 
will be large enough to contain system program entries. 

Location of disk containing space the program can use as a work area. 
Possible codes are R 1, F 1, R 2, or F2. 



Parameter· Descriptions 

TO Parameter 
The TO parameter (TO-code) indicates the location 
of the disk that contains, or will contain, the 
library. If the program use involves both libraries, 

the libraries must be on the same disk. 

Codes for the possible locations are as follows: 

Code Location 

R1 
F1 

Removable disk on drive 1. 
Fixed disk on drive 1. 

R2 Removable disk on drive 2. 
F2 Fixed disk on drive 2. 

SOURCE Parameter 

The SOURCE parameter identifies source-library 

uses: 

Parameter 

SOURCE-number 
(number is not 
zero) 

SOURCE-a 

SOURCE-R 

Use 

If the disk contains no 
source library, parameter 
means create a source 
library. Number is the 
number of tracks you 

·want to assign to the 
library. 

If the disk contains a 
source library, param
eter means change the 

library size. Number 

is the number of tracks 
you want to assign to 

the I ibrary. 

Delete source library. 

Reorganize source library. 

Disk Considerations for Creating a Source Library 
(SOURCE-number) 

Number of Source Libraries Allowed: One per disk. 
If the disk already contains a source library, 
the SOURCE-number parameter causes the 
program to change the library size to the num

ber of tracks indicated in the parameter. 

Source Library Size: The minimum size is one track. 
The max.imum is the number of tracks in the 

available disk area. 

Regardless of the number of tracks you specify, 
the first two sectors of the first track are assigned 
to the library directory. Additional sectors are 

used as needed for the directory. 

Placement of Source Library (Disk With an Object 
Library): Source library must immediately precede 

the object library. Therefore, a disk area large 
enough for the source library must immediately 
precede or follow the object library. 

If the available disk area follows the object 
library, the program moves the object library 
to make room for the source library as the 

following illustration shows. To do this, it 
needs a work area (see WORK Parameter in 
this section). 

Disk Space Before Source Library: 

Object Library Available Space Customer 
(30 tracks) ( 15 tracks) Files 

I 0-11-8-37-1-38-52--1 
Tracks . 

Disk Space After Source Library: 

Source Object Library Available Customer°' 
Lib. (30 tracks) Space Files 

I (5 tracks) (10 tracks) 
\ 

I 0-1 I 8-12 r-13-42 • 1 • 43-52-j 
Tracks 

Library Maintenance Program 151 



Placement of Source Library (Disk Without an 
Object Library): Program assigns the source library 

to the first available disk area large enough 
for the library. 

Disk Considerations for Changing the Size of a Source 
Library (SOURCE-number) 

Making the Source Library Larger: If the disk contains 
an object library, space must be available im
mediately following the object library. The 
program moves the object library to make 
tracks available at the end of the source library, 
as the following illustration shows. The starting 
location of the source library remains the same. 

If the disk doesn't contain an object library, 
space must be available immediately following 
the source library. 

Disk Before Tracks Are Added to Source Library: 

Source Object Available Customer-, 
Library Library Space Files I 
(10 tracks) (30 tracks) (15 tracks) 

}. 

I 0-1 I 8-17 l-18-47~ 48-62 I 
Tracks 

Disk After Five Tracks Are Added to Source Library: 

Source Object Available Customer\ 
Library Library Space Files 
(15 tracks) (30 tracks) (10 tracks) 

0-1 I 8-22 J-23-52 -I 53-6 2 
Tracks 

Making the Source Library Smaller: If the disk contains 
an object library, the program moves the end 
location of the source library to make the library 
smaller. The starting location remains the same. 
The program then moves the object library so that 
no gap appears between the two libraries. Space, 
therefore, becomes available following the object 
library, not preceding it, as the following illustra
tion shows: 

152 

Disk Before Source-Library Size Was Decreased: 

Source Object 
Library Library 
(15 tracks) (30 tracks.) 

10-1 ~8-22~'"""'1 •i---23-52---•MI 
Tracks 

Customer~ 
Files 

Disk After Five Tracks Were Taken From Source Library: 

Source 
Library 
(10 tracks) 

10-1 I 8-17 

Object Available 
Library Space 
(30 tracks) (5 tracks) 

,.._18-47~ 48-52 
Tracks 

Files 
Custom~~ 

If the disk doesn't contain an object library, the 
program moves the end location of the source 
library to make the source library smaller. The 
starting location remains the same. 

Reorganizing the Source Library: Any time the program 
changes the library size, it also reorganizes the 
library (see Disk Considerations for Reorganizing 
a Source Library in this section). To do this, it 
needs a work area (see WORK Parameter in this 
section). 

Disk Considerations for Deleting a Source Library 
(SOURCE-0) 

The program makes the disk area occupied 
by the source lib~ary available for other 
use. 

Disk Before Source Library Deleted 

Source 
Library 
(15 tracks) 

0-1 l-8-22 ·I· 

Object Library 
(30 tracks) 

23-52-1 

Customer 
Files 

Disk After Source Library Deleted 

Object Library 
(30 tracks) 

Tracks 

Available Customer 
Space Files 
(15 tracks) 

38-52-1 



Disk Considerations for Reorganizing a Source Library 

(SOURCE-R) 

Reason for Reorganizing the Library: Areas from which 
source library entries are deleted are completely 
reused for new entries. If an entry exceeds the 
space ·in such an area, the program puts as much 
of the entry as will fit in the area and continues 
the entry in the next available area. In this way, 
the program efficiently uses library space. This 
can, however, decrease the speed at which those 
entries can be read from the library. Therefore, 
if you frequently add and delete source library 
entries, you should reorganize your source library 
periodically. 

Reorganizing the Library: The program relocates entries 
so that no entry is started in one area and continued 
in another. All temporary entries are deleted. 

Work Area: The program needs a work area (see WORK 
Parameter). 

OBJECT Parameter 

The OBJECT parameter identifies object-library 
uses: 

Parameter Use 

OBJECT-number If the disk doesn't contain 
(number not an object library, this 
zero) parameter means create 

an object library. Num-
ber is the number of 
tracks you want to 
assign to the library. 

If the disk contains an 
object library, this 
parameter means change 
the library size. Number 
is the number of tracks 
you want to assign to 
the library. 

OBJECT-0 Delete object library. 

OBJECT-A Reorganize object library. 

Disk Considerations for Creating an Object Library 
(OBJECT-number) 

Number of Object Libraries Allowed: One per disk. 
If the disk already contains one, the OBJECT
number parameter causes the program to change 
the library size to the number of tracks indicated 
in the parameter. 

Object Library Size: Minimum size is 30 tracks if the 
object library will contain a minimum system; 
otherwise, the minimum is three tracks. (A 
minimum system is made up of those system . 
programs necessary to load and run programs; 
it does not include those programs that generate 
and maintain a system.) However, if inquiry, the 
Data Recorder, or the CRT (2265-2) are included 
in the system, 32 tracks are needed for the system 
object library. 

Maximum size is the number of tracks in the 
available area. 

Library directory: The first three tracks in the 
library are reserved for the library directory if the 
library will contain system programs. Otherwise, 
only the first track is reserved .. 

Scheduler work area: If the library will contain 
system programs, the disk area to contain the 
library must be large enough to also contain a 
work area for the Scheduler program (one of 
the system programs). The work area space is 
not included in the number you specify in the 
OBJECT parameter. It is calculated and assigned 
by the Library Maintenance program. The 
amount of additional space needed depends on 
the capacity' of your system and whether your 
programming system contains the Inquiry feature: 

Scheduler Work Area Size 

Capacity No Inquiry Inquiry 

SK bytes 2 tracks 5 tracks 
12K bytes 2 tracks 6 tracks 
16K bytes 2 tracks 7 tracks 

Placement of Object Library (Disk With a Source 
Library): Space for the object library must be 

available immediately following the source 
library. 

Library Maintenance Program 153 



Placement of Object Library (Disk Without a Source 
Library): Program assigns the object library to the 

first available disk area large enough for the 
library. 

Disk Considerations for Changing the Size of an Object 
Library (OBJECT-number) 

Making the Library Larger: The number of tracks you 
want to add must be available immediately 
following the object library. The program 
assigns the additional tracks to the library. 
(The starting location of the library remains 
unchanged.) 

Making the Library Smaller: The program moves the 
end location of the object library to decrease 
the library size. Tracks, therefore, become 
available following the library. 

Reorganizing the Library: Any time the program 
changes the library size, it also reorganizes 
the library (see Disk Considerations for 
Reorganizing an Object Library in this 
section). To do this, it needs a work area 
(see WORK Parameter in this section). 

Disk Considerations for Deleting an Object Library 
(OBJECT-0) 

Deleting the Library: The program makes the disk 
area occupied by the object library available 
for other use. 

Restriction: The Library Maintenance program will 
not delete either of the following object 
libraries: 

154 

1. The library from which the Library 
Maintenance program was loaded. 

2. The library containing the system 
programs that are controlling pro
gram loading. 

Disk Considerations for Reorganizing an Object 
Library (OBJECT-A) 

Reason for Reorganizing the Library: Gaps can 
occur between object-library entries when you 
add and delete entries. By reorganizing the 
library, you might salvage enough space for 
additional entries without increasing the size 
of the library. 

Reorganizing the Library: Entries are relocated so 
that no gaps appear between them. All 
temporary entries are deleted. 

Work Area: The program needs a work area (see 
WORK Parameter in this section). 

WORK Parameter 
The WORK parameter (WORK-code) indicates the 
location of the disk that contains a work area. 
Library entries are temporarily stored in the work 
area while the program moves and reorganizes 
libraries. 

Codes for the possible disk locations are as follows: 

Code 

Rl 

Fl 

R2 

F2 

Location 

Removable disk on drive 1. 

Fixed disk on drive 1. 

Removable disk on drive 2. 

Fixed disk on drive 2. 



Disk Considerations for Work Area 

Size of the Work Area: The work area must be 
large enough to hold the entire source library, 
object library, or both libraries depending on 
the program use: 

Use© 

Create a source 
library (disk con
tains an object 
library). 

Change source 
library size (disk 
contains an ob
ject library). 

Change source 
library size (disk 
doesn't contain 
an object 
library). 

Reorganize 
source library 
(disk contains 
an object library). 

Reorganize 
source library 
(disk doesn't con
tain an object 
library). 

Change object 
library size. 

Reorganize 
object library. 

Contents of Work Area 

Object library. 

Source library and object 
library. 

Source library. 

Source library and object 
library. 

Source I ibrary. 

Object library. 

Object library. 

Location of Work Area on Disk: The program uses 
the first available disk area large enough to hold 
the library, or libraries. 

©u you are combining uses, such as changing the 
sizes of both libraries, the work area must be large 
enough to hold the contents of both libraries. 

Location of Disk Containing the Work Area: The work 
area can be on either disk on either drive. How
ever, it cannot be the same disk as the one you 
specified in the TO parameter. The only require
ment is that the disk must have an available area 
large enough for the work area. If your system 
has two disk drives, the program works faster if 
the disk containing the libraries is on a different 
drive than the disk containing the work area. 

SYSTEM Parameter 
The SYSTEM parameter applies to creating object 
libraries. It tells the progra.m whether or not you 
intend to include system programs in the library. 

Include System Programs 
SYSTEM-YES means you intend to include system 
programs. It causes the Library Maintenance pro
gram to do the following: 

1. 

2. 

Assign three tracks (instead of one) to the 
library directory. 

Assign space for a scheduler work area. 

The directory will be large enough for all system 
programs: those necessary for program loading 
and running (minimum system), and those neces
sary for generating and maintaining a system. 

Space for the Scheduler work area is assigned 
immediately preceding the object library. If the 
disk contains a source library, the work area will 
appear between the source and object libraries. 
For information about the size of the work area, 
see Disk Considerations for Creating an Object 
Library in this section. 

Do Not Include System Programs 
SYSTEM-NO means you do not intend to include 
system programs in the library. The Library Main
tenance program does not assign space for the 
Scheduler work area, and it assigns one track 
(instead of three) to the library directory. 
SYSTEM-NO is assumed if you omit the SYSTEM 
parameter. 

Library Maintenance Program 155 



COPY 

Uses 

Reader-to-Disk Q) 

Disk-to-Disk 

Disk-to-Printer 

Disk-to-Card 

156 

Add or replace a library entry. 

Copy one library entry. 

Copy library entries that have names beginning with certain 
characters. © 

Copy all library entries. © 

Copy minimum system. © 

Copy an I BM program. 

Print one library entry. 

Print library entries that have names beginning with certain 
characters. © 
Print all library entries of a certain type.© 

Print directory entries for library entries of a certain type. © 

Print entries from all directories including system directory. 

Print system directory only. 

Punch one library entry. 

Punch library entries that have names beginning with certain 

cha_racters. © 
Punch all library en~ries of a certain type. © 



CD 

© 

© 

Disk-to-Printer 
and Card 

Print and punch one library entry. 

Print and punch library entries that have names beginning 
with certain characters. CD 
Print and punch all library entries of a certain type.© 

The reader is the system input device. The system input device can be either the keyboard or a 
card reader. 

You can specify the following types of entries: source statements, procedures, object programs, 
routines, or all of these types. 

Minimum system consists of the system programs necessary to load and run programs. It does not 
include the system programs necessary to generate and maintain the system. 

You can specify one of the following types of entries: source statements, procedures, object 
programs, or routines. 

Library Maintenance Program · 157 



Control Statement Summary: Reader-To-Disk 

Add or Replace a Library Entry (Reader is Keyboard) CD 

II COPY FROM-READER, LIB RARY,{ ~} ,NAM E-name,TO-code,R ET A IN-{~ } 

Library Entry 

II CEND 

Add or Replace a Library Entry (Reader is Card Reader) @ 

II COPY FROM-READER,LIBRARY-{ ~} ,NAME-name,TO-code,RETAIN-{ ~ } 

Library Entry 

II CEND 

CD II COPY statement, library entry, and II CEND statement are all read from the keyboard. 

0 II COPY statement, library entry, and II CEND statement are all read from cards. 

Control Statement Summary: Disk-To-Disk 

J 
Copy One Library Entry 

II COPY FROM-code,LIBRARY-{ ~ } ,NAME-name,TO·code,RETAIN- { ~} ,NEWNAME-name Q) 

158 



Copy Library Entries That Have Names Beginning With Certain Characters 

\ ~ l {TJ© (!) //COPY FROM-code,LIBRARY- ~ ,NAME-characters.ALL,TO-code,RETAIN- P ,NEWNAME-characters 
ALL R · 

Copy All Library Entries 

//COPY FROM-code,LIBRARY{ A~L \ .NAME-ALL,TO-code,RETAIN- { ~ }(!) 
I 

Copy Minimum System 

II COPY FROM-code,LIBRARY-0,NAME-SYSTEM,TO-code 

Copy an I BM Program 

II COPY FROM-code,LIBRARY-0,NAME-$cc.ALL,TO-code,RETAIN-{ i} 

CD NEWNAME parameter is needed in either of the following cases: 

1. If you want the copy to have a different name than the original entry. 

2. If you want to replace an entry on the TO disk with an entry from the FROM disk, but 
the entries have different names. 

If you use Tor Pin the RETAIN parameter, the TO library entries will have the Tor P 
retain type. If you use R, the TO library entries will have the same retain type that they 
had in the FROM library. 

Use the NEWNAM E parameter only if you want the names of the copies to begin with different 
characters than the names of the original entries. The number of characters must equal the 
number of characters in the NAME. parameter. 

Library Maintenance Program 159 



Control Statement .Summary: Disk-To-Printer 

Print One Library Entry 

160 

//COPY FROM-code,LIBRARY-{ ~ } ,NAME-name.TO-PRINT 

Print Library Entries That Have Names Beginning With Certain Characters 

!!COPY FROM-code,LIBRARY- ~ ~ j .NAME-characters.ALL,TO-PRINT t ALL 

Print All Library Entries of a Certain Type 

//COPY FROM-code,LIBRARY-{ ~ } ,NAME-ALL.TO-PRINT 

Print Directory Entries for Library Entries of a Certain Type 

//COPY FROM-code,LIBRARY-{ ~ } .. NAME-DIR,TO-PRINT 

Print Entries From All Directories Including System Directory 

II COPY FROM-code,LIBRARY-ALL,NAME-DIR,TO-PRINT 

Print System Directory Only 

//COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR,TO-PRINT 



CQntrol Statement Summary: Disk-To-Card 

Punch One Library Entry 

//COPY FROM-code,LIBRARY-{ i} ,NAME-name.TO-PUNCH 

Punch Library Entries That Have Names Beginning With Certain Characters 

//COPY FROM-code,LIBRARY5 ~ l ,NAME-characters.ALL,TO-PUNCH 

~LL 

Punch All Library Entries of a Certain Type 

//COPY FROM-code.LIBRARY-{ i} ,NAME-ALL,TO-PUNCH 

Library Maintenance Program 161 



Control Statement Summary: Disk to Printer and Card 

Print and Punch One Library Entry· 

//COPY FROM-code,LIBRARY-{ ~} ,NAME-name,TO-PRTPCH 

Print and Punch Library Entries That Have Names Beginning With Certain Characters 

//COPY FROM-code,LIBRARY5 ~ l ,NAME-characters.ALL,TO-PRTPCH 

1ALL 

Print and Punch All Library Entries of a Certain Type 

//COPY FROM-code,LIBRARY-{ ~} ,NAME-ALL,TO-PRTPCH 

162 



Parameter Summary 

FROM-READER 

I 
FROM-code 

LIBRARY-ALL 

I 
LIBRARY-SYSTEM 

illllllll!l!llllll 

{ 
name } 
characters.A LL 
ALL 

NAME-

Entry to be placed in library is to be read from system input device 
which can be a keyboard or card reader. 

Location of disk containing library entries being copied, printed, or 
punched. Possible location codes are: 

Code Meaning 

R1 Removable disk on drive 1. 

F 1 Fixed disk on drive 1. 

R2 Removable disk on drive 2. 

F2 Fixed disk on drive 2. 

Type of library entries involved in copy use. Possible codes are: 

Code Meaning 

S Source statements (source library). 

P OCL procedures (source library). 

0 Object programs (object library). 

R Routines (object library). 

All types of entries (S, P, 0, and R) from both libraries are involved 
in copy use. 

Only system directory entries are being printed. 

Specific library entries, of the type indicated in LIBRARY 
parameter, involved in copy use. Possible information is: 

Information 

name 

characters.AL[[) 

AL[D 

Meaning 

Name of the library entry involved. 

Only those entries beginning with the indicated 
characters (you can use up to five characters). 

All entries (of the type indicated in LIBRARY 
parameter). 

Q) On a disk-to-disk copy, check that sufficient space has been allocated on the 'TO' disk. 

Library Maintenance Program 163 



NAME-SYSTEM 

NAME-DIR 

I 
NAME-$cc.ALL 

164 

Only system programs that make up the minimum system are involved 
in the copy use. 

Directory entries for all library entries of the type indicated in the 
LIBRARY parameter are involved in the copy use. If the LIBRARY 
parameter is LIBRARY-ALL, system directory entrie~ are also printed. 

The I BM program with the name beginning with the indicated characters 
($cc) is involved in the copy use. For example, $MA.ALL means the 
Library Maintenance program ($MAINT). 

Adding Entry to Library. RETAIN gives designation of entry: 

Code Meaning 

T Temporary. 

P or R Permanent. 

Replacing Existing Library Entry. R ET Al N gives designation of 
TO entry and tells program whether to halt before replacing entry: 

Code 

T 

p 

R 

Meaning 

Temporary designation. Halt before replacing 
entry. 

Permanent designation. Halt before replacing 
entry. 

Use same designation as existing entry. Do not 
halt before replacing entry. 

Printing or Punching Entries. RETAIN parameter is ignored: 



TO-PRINT 

ll 
TO-PUNCH 

II 
TO-PRTPCH· 

II 
NEWNAME-name 

I 
N EWNAME-characters 

I 

Location of disk that is to contain the copies of the entries: 

Code Meaning 

R 1 Removable disk on drive 1. 

F1 Fixed disk on drive 1. 

R2 Removable disk on drive 2. 

F2 Fixed disk on drive 2. 

Entries are being printed. 

Entries are being punched. 

Entries are being printed and punched. 

Name you want used on the TO disk to identify the entries being put on 
that disk. If you omit this parameter, the program uses the NAME 
parameter in naming the entries. 

Beginning characters you want to use in names identifying entries being 
put on TO disk. You must use the same number of characters as in the 
NAME parameter (NAME-characters.ALL). If you omit this parameter, 
the program uses the NAME parameter in naming the entries. 

Library Maintenance Program 165 



I Parameter Descriptions 

FROM and TO Parameters 
The FROM parameter identifies the device from 
which the program will copy library or directory 
entries. The TO parameter identifies the destina
tion of these entries. Together, the parameters 
define the copy function being done: 

Parameters 

Reader-to-disk FROM-READER 
TO-code 

Disk-to-disk FROM-code 
TO-code 

Disk-to-printer FROM-code 
TO-PRINT 

Disk-to-cards FROM-code 
TO-PUNCH 

Disk-to-printer FROM-code 
and cards TO-PRTPCH 

The codes indicating the possible disk locations 
are as follows: 

Disk Code Meaning 

R 1 Removable disk on drive 1. 
F 1 Fixed disk on drive 1. 
R2 
F2 

Removable disk on drive 2. 
Fixed disk on drive 2. 

Reader-to-Disk Considerations 

Input: The program reads one library entry. It can 
be any one of the following types: 

1. Source statements. 

2. Procedure. 

3. Object program. 

4. Routine. 

166 

Output: Blanks are removed from source statements · 
before they are put in the source library. 

Procedures are put in the source library in the form 
in which the program reads them. The program 
does not check them for errors. 

Object programs and routines are placed in the 
object I ibrary after being compressed. 

System Input Device: The entry is read from the 
system input device, which is normally the 
keyboard. The operator can, however, change 
the system input device to a card reader during 
initial program loading (I PL) using the OCL 
READER statement. 

Replacing Existing Entries: The program can replace 
an existing library entry with the entry you are 
putting in the library. 

The program can halt before replacing an existing 
entry. Whether or not it does depends on the 
RETAIN parameter you use. See RETAIN Param
eter in this section for more information. 

Disk-to-Disk Considerations 

Input: The program can copy one or more library 
entries from one disk to another. The types 
of entries can be: 

1. Source statements. 

2. Procedures. 

3. Object programs. 

4. Routines. 

5. All of the preceding types. 

6. Minimum system. 

See LIBRARY Parameter in this section. 



Output: The entires, regardless of their type, are 
copied from one disk to the other without 
change. 

Disks: The disk from which the entries are copied 
and the disk to which the entries are copied 
must be different disks. 

If you are copying a mirJimum system, the 
disk you indicate in the TO parameter must not 
already contain the minimum system. 

Replacing Existing Entries: The program can replace 
existing library entries with the entries you are 
putting in the library. (See NAME Parameter 
and NEWNAME Parameter in this section.) 

The program can halt before replacing an existing 
entry. Whether or not it does depends on the 
RETAIN pa.rameter. See RETAIN Parameter in 
this section for more information. 

Disk-to-Printer Considerations 

Types of Entries That Can Be Printed: The program 
can print one or more library entries. They can 
be any of the following types: 

1. Source statements. 

2. Procedures. 

3. Object programs. 

4. Routines. 

5. All of the preceding types (limited to entries 
having the same name and entries beginning 
with the same characters). 

The program can print the following types of 
directory entries. 

1. Source statements. 

2. Procedures. 

3. Object programs. 

4. Routines. 

5. System directory. 

6. All types. 

The program will print out sorted names only if 
three tracks are left available as a work area. 

Printout of Library Entries: Blanks and duplicate 
characters are reinserted into source statements 
to make them readable. 

Procedures, object programs, and routines are 
printed as they exist in the library.· 

Printout of Directory Entries: The following three 
illustrations show the three types of directory 
printouts. 

Library Maintenance Program 167 



168 

Source Library Directory 

I PRINTOUT I 

SOURCE DI RECTORY FROM XX VOL. ID XXXXXX 

TYPE 
x 

NAME 
xxxxxx 

I EXPLANATION I 
Heading 

TYPE 

NAME 

ADDRESS 
(FIRST and LAST) 

ATTA (Attribute) 

NO. OF SECTORS 

ADDRESS 
FIRST LAST 
TTT -SS TTT -SS 

Meaning 

S=source statements 
p;;procedure 

ATTR 
x 

Name of library entry (up to six characters) 

NO.OF 
SECTORS 
xxx 

Addresses of first and last sectors that contain the library entry. Addresses are 
expressed by track and sector numbers. EXAMPLE: 008-03 means track 8, 
sector 3. 

T=temporary 
P=permanent 

Total number of sectors used for the library entry. 



Object Library Directory 
r---1 

._ ______________________ ...... 

I PRINTOUT I 
OBJ EC~ LI BRA RY FROM xx© VOL. ID xx xx xx© 

TYPE© 
A L 

NAME 
xxxxxx 

' EXPLANATION I 
Heading 

TYPE 

NAME 

DISK ADDRESS 

CYL/SEC 

TXTSEC 

LINK ADDRESS 

RLD DISP 

ENTRY POINT 

CORE SECTORS 

DISK (S£YL/© TXT 
ADDRESS SEC SEC 
TTT /SS CC/SS XXX 

Meaning 

A ~ 
L ~ 

P=permanent 
T=temporary 
O=object 
R:::routine 

LINK 
ADDA 
xx xx 

RLD 
DISP 
xx 

Name of library entry (up to six characters) 

ENTRY 
POINT 
xx xx 

CORE 
SEC 
xxx 

ATTA 
xx xx 

LEVEL 
xxx 

Address where library entry begins on disk. EXAMPLE: 015/10 means track 15, sector 10 
(in decimal). 

Address where library entry begins on disk (in hexadecimal). 

TOTAL 
SEC 
xxxxx 

Object programs only. It indicates the number of sectors used for text portion of library entry. 
Object library entries are made up of two parts: text and RLD. Text is the program or routine. 
RLD is information used in loading the program or routine for execution. 

Object programs only. Assigned core address of this library entry. 

Object programs only. It indicates the position in which R LD information begins in the last text 
sector. If the last text sector contains no RLD information, the RLD displacement is 0, 
indicating the information is in the next sector. 

Object programs only. Main storage address where program execution begins (includes relocations). 

Core size, given in sectors, required to run the program. 

Q) Disk where the directory was printed from. 

© Volume ID from the disk. 

© A=Attribute,L=Library. 

© T=Track,S=Sector,C=Cylinder 

Library Maintenance Program 169 



ATTRIBUTES 

LEVEL 

TOTAL SECTORS 

170 

Byte 1: 

Bit 0=1-permanent 
Bit 0=0-temporary 

Bit 1=1-inquiry 

Bit 2=1-inquiry evoking 

Bit 3=1-must run dedicated 

Bit 4=1-requires source information 

Bit 5=1-deferred mounting allowed 

Bit 6=1-PTF applied 

Bit 7=1-No AUTOLINK requested 

Byte 2: 

Bit 0=1-Sysin required for execution 
Bits 1-7-reserved 

Release level 

Total number of disk sectors occupied by the library entry 



System Directory Printout 
r--1 

I SYSTEM DIRECTORY FROM XX VOL. ID XXXXXX I 
I SOURCE LIBRARY I 

Source Directory Location TIT.SS 
Next Available Library Sector TIT.SS 
End of Library TIT.SS 
Number of Directory Sectors xxx 
Number of Permanent Library Sectors xxx 
Number of Active Library Sectors xxx 
Number of Available Library Sectors xxx 
Allocated Size of Library yyy 

I OBJECT LIBRARY I 
Object Directory Location TIT.SS 
End of Directory TIT.SS 
Start of Library TIT.SS 
Allocated End of Library TIT.SS 
Extended End of Library TIT.SS 
Number of Available Permanent Directory Entries xxx 
Number of Available Temporary Directory Entries xxx 
First Temporary Directory Entry TTT.SS-DDD 
Next Available Temporary Directory Entry TIT.SS-DOD 
Next Available Library Sector for Permanents TIT.SS 
Next Available Library Sector for Temporaries TTT.SS 
Number of Available Library Sectors for Permanents xxx 
Number of Available Library Sectors for Temporaries xxx 
Number of Active Library Sectors xxx 
Number of Active 0. Permanent Library Sectors xxx 
Number of Active R. Permanent Library Sectors xxx 
Allocated Size of Library yyy 
Roll-in/Roll-out Location ITT.SS 
Roll-in/Roll-out Size yyy 
SWA Location ITT.SS 
SWASize yyy 
Start of Libraries TIT-SS 
End of Libraries TIT.SS 

ITT .SS-DOD means track, sector; and displacement. Displacement is the number of 
characters from the beginning of the sector. XXX = number of sectors. YYY = number 
of tracks. 

Library Maintenance Program 171 



Disk-to-Card Considerations 

Type of Entries That Can Be Punched 
The program can punch one or more of the follow
ing types of entries into cards: 

1. 
2. 
3. 
4. 
5. 

Source statements. 
Procedures. 
Object programs. 

Routines. 
All types limited to those beginning 
with the same characters. 

Form of Library Entries in Cards 

Blanks and duplicate characters are reinserted into 
source statements to make the statements readable. 

Procedures, object programs, and routines are 
punched as they appear in the library. 

COPY Statement 

A card containing a partially completed COPY 
statement(/ I COPY FROM-READER) is punched 
preceding each library entry. It identifies the be
ginning of the entry. If you copy the entry from 
cards to disk (reader-to-disk), be sure to complete 
the COPY statement. 

CEND Statement 
A card containing a CEND control statement 
(//CEND) is punched immediately after each 
entry. You need it for copying the entry from 
cards to disk at a later time. 

Disk-to-Printer-and-Card Considerations 

172 

The considerations·for disk-to-printer-and-card 
are the same as disk-to-printer and disk-to-card 
with this exception: you cannot ·print and punch 
directory entries. 

LIBRARY Parameter 
The LIBRARY parameter identifies the type of 
library or directory entries involved in the copy 
use. Codes for the possible types are as follows: 

Code 

s 

p 

0 

R 

All 

SYSTEM 

Meaning 

Source statements (source 
library). 

OCL procedures (source library). 

Object programs (object library). 

Routines (object library). 

All types from both libraries 
(S, P, 0, and R). 

System directory entries. 

Types of Library Entries 

Source Library: Source statements can be any com
bination of valid System/3 characters. Examples 
of source statements are RPG source programs and 
sequence specifications for the Disk Sort program. 

Procedures are sets of OCL statements. Procedures 
for utility programs can include control statements 
following the OCL statements. 

Object Library: Object programs are programs and sub
routines in such a form that they can be loaded 
for execution. They are sometimes called 
executable programs. 

Routines are programs and subroutines that need 
further translation before being loaded for exe
cution. They are sometimes called nonexecutable 
object programs. 



Types of Directory Entries 

Source and Object Library Directories: The source and 
object libraries have separate library directories. 
Every library entry has a corresponding entry in 
its library directory. The directory entry contains 
such information as the name and location of the 
library entry. See Disk-to-Printer Considerations 
in this section. 

The Library Maintenance program makes entries 
in the directories when it puts entries in. the 
libraries. 

System Directory: Every disk that contains libraries 
contains a system directory. The system directory 
contains information about the sizes of and 
available space in libraries and their directories. 
See Disk-to-Printer Considerations in this section. 

The Library Maintenance program creates and 
maintains the system directory. 

NAME Parameter 
The NAME parameter identifies specific entries, 
of the type indicated in the LI BRARYparameter, 
involved in the copy use. The information 
possible in the NAME parameter is as follows: 

Information 

name 

character.ALL 

ALL 

SYSTEM 

Meaning 

Name of the library entry to 
be copied. 

Only those entries beginning 
with the indicated characters. 
(You can use up to five 
characters.) 

All entries (of the type 
indicated in LIBRARY 
parameter). 

Only system programs that 
make up the minimum 
system. 

DIR 

$cc.ALL 

Naming Entries 

Directory entries for all 
library entries of the type 
indicated in LIBRARY 
parameter. 

I BM program with the name 
beginning with the in
dicated three characters 
($cc). For example: 
$MA.ALL refers to Library 

Maintenance program 
(SMAINT). 

Characters to Use: Use any combination of System/3 

characters except blanks and periods (.). (Appendix 
J I ists the characters.) The names of all I BM 
programs begin with a dollar sign ($). Therefore, 
to avoid possible duplication, do not use a dollar 
sign as the first character in the names you use 
for your entries. 

Length of Name: The name can be from one to six 
characters long. 

Restricted Names: Do not use the names ALL, DIR, 
and SYSTEM. They have special meanings in 
the NAME parameter. 

Using Names 

NAME-name: For reader-to-disk uses, the entry you 
put in the library will be identified by the name 
you give in the NAME parameter. 

For disk-to-disk uses, the name you give in the 
NAME parameter identifies the entry being copied 
(the one on the FROM disk). It will also identify 
the copy (the one on the TO disk) unless you use 
a NEWNAME parameter. See NEWNAME Param
eter in this section. 

Library Maintenance Program 173 



NAME-characters.ALL: The NAME parameter identifies 
the entries being copied from the FROM disk. The 
names of the copies and original entries will be the 
same unless you use a NEWNAME parameter 
(NEWNAME-characters.ALL). See NEWNAME 
Parameter in this section. 

NAME-ALL (Disk-to-Disk): The names by which the 
entries are identified on the FROM disk will 
also be used on the TO disk to identify the 
entries. 

NAME-SYSTEM. The NAME parameter indicates that 
the minimum system is being copied. The mini
mum system is made up of system programs 
necessary to load and run programs. System 
programs necessary to generate and maintain 
the system are not included. 

NAME-$cc.ALL: The NAME parameter indicates 
that an I BM program is being copied. The 
names of all I BM programs begin with dollar 
sign ($) and are unique within the first three 
characters. 

RETAIN Parameter 

174 

The RETAIN parameter supplies the RE-
T Al N code. for the TO disk. It also indi
cates whether you want the program to 
halt before replacing existing entries in 
the library. When printing and/or punch-
ing library entries, the RETAIN parameter 
is not needed. If the RETAIN parameter 
is not supplied when copying disk-to-disk 
or reader-to-disk, RETAIN-Tis assumed; 
except when the parameters LIBRARY-ALL 
and NAME-ALL or LIBRARY-0 and NAME
SYSTEM are used, R ETAI N-P is assumed. 

Codes for the parameter are as follows: 

Code Meaning 

T Only temporary entries. Halt before 
replacing entries. 

p 

R 

Only permaneht entries. Halt before 
replacing entries. 

Both permanent and temporary entries. 
Do not halt before replacing entries. 

If you omit the parameter, RETAIN-Tis assumed. 

Temporary Entries: Temporary entries are entries you 
don't intend to keep in your libraries. They are 
normally used only .once or a few times over a 
short period. 

In the object library, temporary entries are placed 
together following the permanent entries. Any 
time a permanent entry is added to the library, 
all temporary entries are deleted. Temporary 
entries are deleted when you replace one per
manent entry with another. 

In the source library, temporary and permanent 
entries can be in any order. One entry is placed 
after another regardless of their designat~ons. 
Temporary entries, therefore, are not deleted 
every time you add a permanent entry. 

You can use temporary entries as often as you like 
until they are deleted. 



Permanent Entries: Permanent entries are entries you 
intend to keep in your libraries. They are nor
mally entries you use often or at regular intervals 
(once a week, once a month, and so on). 

The program will not delete permanent entries 
unless you use the delete function of Library 
Maintenance to delete them, or the allocate 
function to delete the entire library. 

Using the R ET Al N Parameter 

If you use RETAIN-Tor RETAIN-P, the designation 
of the entries you are putting in the library is taken 
from the RETAIN parameter. There is one restriction: 
a temporary entry cannot replace a permanent entry. 

R ET Al N-R is normally used to bypass program 
halts when you are replacing several existing 
entries, perhaps with updated versions. If you 
use R ETAI N-R and the library does not contain 
an entry corresponding to the entry you are 
putting in the library (same type and same name), 
the program adds the new entry to the library 
and gives it a permanent designation. 

NEWNAME Parameter 
The NEWNAME parameter applies to disk-to-disk 
copy uses only. With it, you can give the copies 
different names than the original entries. The 
information you can supply in the parameter is as 
follows: 

Information 

name 

characters.ALL 

Meaning 

Name you want to use for 
the copy, or copies. 

Beginning characters 
you want to use in names 
identifying the copies. 

Considerations for Using NEWNAME Parameter 

Copy Does Not Replace an Existing Entry: You can 
omit the NEWNAME parameter. If you do, 
the name used for the copy will be taken from 
the NAME parameter. (The copy will have the 
same name as the original entry.) 

If you use a NEWNAME parameter, follow these 
rules to construct the name: 

1. You can use any System/3 characters 
except blanks, commas, quotes (apos
trophes), and periods. (Appendix J 
lists the characters.) However, the names 
of all I BM programs begin with a dollar 
sign ($). Therefore, to avoid possible 
duplication, do not use a dollar sign as 
the first character in the names you use 
for your entries. 

2. You can use up to six characters, but 
do not use the names ALL, DIR, and 
SYSTEM. They have special meanings 
in the NAME parameter. 

Copy Replaces an Existing Entry: If the entry you 
are copying (the entry on the disk you identify 
in the FROM parameter) has the same name as 
the entry you are replacing (the entry on the 
disk you identify in the TO parameter), you 
can omit the NEWNAME parameter. If the 
names are not the same, you must use a 
NEWNAME parameter to give the name of 
the entry you are replacing. 

Library Maintenance Program 175 



DELETE· 

Uses 

176 

• Delete an entry from a library. 

• Delete temporary or permanent library entries that have names beginning with certain characters. (You can 
specify the following types of entries: source statements, procedures, object programs, routines, or all of 
these types.) 

• Delete all temporary or permanent library entries of a certain type. (You can specify the following types 
of entries: source statements, procedures, object programs, or routines.) 



Control Statement Summary 

Delete Library Entry 

II DELETE FROM-code,LIBRARY-{ ~},NAME-name.RETAIN- { ~} 

Delete Temporary or Permanent Entries With Names Beginning With Certain Characters 

//DELETE FROM-code,LIBRARY5 ~ j .NAME-characters.ALL,RETAIN-{ ~ } 
lALL 

Delete All Temporary or Permanent Entries of a Certain Type 

! I DELETE © FROM-code ©,LI BR ARY- { ~} ,NAME-AL L,RET Al N- {;} 

©For LIBRARY-0, RETAIN-Tall temporary entries will be deleted from the object library (O and R). New temporary 
entries cannot replace deleted temporary entries unless all old temporary entries are deleted. RETAIN-T, NAME-ALL, 
and LIBRARY-0 can be used to delete all temporary entries. 

© LIBRARY-0, NAME-ALL, RETAIN-P cannot be used if the unit specified in the FROM parameter is the same disk 
on the LOAD statement or the system pack. 

Library Maintenance Program 177 



Parameter Summary 

FROM-code 

LIBRARY- p 

LIBRARY-ALL 

178 

Location of disk that contains library entries you are deleting. Possible 
codes are: 

Code Meaning 

R 1 Removable disk on drive 1. 

F 1 Fixed disk on drive 1. 

R2 Removable disk on drive 2. 

F2 Fixed disk on drive 2. 

Type of entries being deleted. Possible codes are: 

Code Meaning 

S Source statements (source library). 

P Procedures (source library). 

0 Object programs (object library). 

R Routines (object library). 

All types of entries (S, P, 0, and R) are being deleted. 

Particular entries, of type indicated in LIB RARY parameter, being 
deleted. These entries are further identified by the RETAIN parameter. 
Possible codes are: 

Code Meaning 

name Name of the library entry, or entries, being deleted. 

characters. ALL Entries that have names beginning with the indicated 
characters. You can use up to five characters. 

EXAMPLE: NAME-I NV.ALL refers to the entries having 
names that begin with I NV. 

ALL All entries (of the type indicated in LIBRARY parameter). 
NAME-ALL cannot be used with LIBRARY-ALL. 

Designation of entries being deleted: T stands for temporary, and 
P for permanent. 



RENAME 

Use 

Change the name of a library entry. 

Control Statement Summary 

II RENAME FROM-code,LIBRARY-{ ~} ,NAME-name,NEWNAME-name 

Library Maintenance Program 179 



Parameter Summary 

FROM-code 

LIBRARY- } 

NAME-name 

I 
NEWNAME-name 

180 

Location of disk that contains the entry you are renaming. 
Possible codes are: 

Code Meaning 

R 1 Removable disk on drive 1. 

F 1 Fixed disk on drive 1. 

R2 Removable disk on drive 2. 

F2 Fixed disk on drive 2. 

Type of library entry you are renaming. Possible codes are: 

Code Meaning 

S Source statements (source library). 

P Procedures (source library). 

0 Object programs (object library). 

R Routines (object library). 

Current name of the entry you are renaming. This is the name that 
identifies the entry in the library directory. 

New name you want to give the entry. Follow these rules to construct 
the name: 

1. You can use any System/3 characters except blanks, commas, 
quotes (apostrophes), and periods (Appendix J lists the char
acters). However, the names of all IBM programs begin with a 
dollar sign ($). Therefore, to avoid possible duplication, do 
not use a dollar sign as the first character in the names you 
use for your entries. 

2. You can use up to six characters, but do not use the names 
ALL, DIR, and SYSTEM. They have special meanings in the 
NAME parameter. 



OCL CONSIDERATIONS 

l LOAD Sequence J 
Keywords Responses Considerations 

READY LOAD -----

LOAD NAME $MAINT Name of Library Maintenance program. 

UNIT R1, R2, F1, or F2 Location of disk containing Library Maintenance program. 

MODIFY RUN -----t Only the key- t You end every 
· words listed here response by pressing 
are required. You PROG START. 
can bypass the rest. 

l BUILD SEQUENCE 1 
I 

Keywords Responses Considerations 

READY BUILD -----

BUILD NAME procedure name Name by which procedure will be identified in source 
library. 

UNIT R1, R2, F1, or F2 Location of disk containing source library. 

LOAD NAME $MAINT Name of Library Maintenance program. 

UNIT R1, R2, F1, or F2 Location of disk containing Library Maintenance program. 

MODIFY • INCLUDE Response when including control statements in 
utility control procedure. 
statements 
RUN 

Response when not including control statements 
• RUN in procedure. t Only the key- i You end every 

words listed here response by pressing 
are required. You PROG START. 
can bypass the rest. 

Library Maintenance Program 181 



ALLOCATE EXAMPLES 

Creating Both Source and Object Libraries on a Disk 

READY 

010 LOAD NAME 

011 UNIT 

020 DATE 

030 SWITCH 

040 FILE NAME 

******************** 

ENTER 'II' CONTROL STATEMENT 

OCL LOAD Sequence 

Circled areas are operator responses. 

Keywords for which no responses 
are shown are the ones bypassed. 

RUN is the response to MODI FY 
even though the two words do not 
appear on the same line. 

Message print-.d by Library Maintenance 
program. !\\\~: 

I I ALLOCATE TO-Rl, SOURCE-12 ,OBJECT-45, SYSTEM-YES \\\\:. 
Control statement supplied 
by operator. 

ENTER 'II' CONTROL STATEMENT 

II END 

Explanation 

Program creates libraries, then asks for another 
control statement. 

END statement, supplied by operator, ends 
the program. 

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence). 

• Libraries are being created on the removable disk on drive 1 (TO-R 1 in ALLOCATE statement). 

• Source library space is twelve tracks long (SOURCE-12). 

• Object library space is 45 tracks long (OBJECT-45)~ The object library will contain system programs (SYSTEM-YES). 
Thus, the disk area will also include space for the Scheduler work area. 

182 



Changing the Size of a Source Library 

READY 

******************** 

010 LOAD NAME 

011 UNIT 

020 DATE 

030 SWITCH 

040 FILE NAME 

******************** 

MODIFY 

:\);;;\ 
ENTER 'II' CONTRO~ STATEMENT 

II ALLOCATE TO-Rl,SOURCE-15,WORK-Fl 

ENTER 'II' CONTROL STATEMENT 

II END 

Explanation 

OCL LOAD Sequence. 

Circled areas are operator responses. 

Keywords for which no responses 
are shown are the ones bypassed. 

RUN is the response to MODI FY 
even though the two words do 
not appear on the same line. 

Message printed by Library Maintenance 
program. 

Control statement supplied by operator. 

Program changes size of library, then asks 
for another control statement. 

END statement, supplied by operator, ends 
the program. 

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence). 

• Source library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement). 

• Size of the source library is being changed to 15 tl·acks (SOU RCE-15). 

• Any time the program changes the size of a library, it reorganizes the library. To do this, it needs a work area. 
This area is on the fixed disk on drive 1 (WORK-F1). 

Library Maintenance Program 183 



Deleting the Object Library From a Disk 

READY 

010 LOAD NAME 

011 UNIT 

020 DATE 

030 SWITCH 

040 FILE NAME 

************************* 

MODIFY 

~~~~;\\i~· 
ENTER 'II' CONTROL STATEMENT

II ALLOCATE TO-Rl,OBJECT-0

ENTER 'II' CONTROL STATEMENT

II END

Explanation

OCL LOAD Sequence.

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODIFY
.even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

Control statement supplied by operator.

Program deletes library, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-Fl in OCL sequence).

• Object library is located on the removable disk on drive 1 (TO-R1 in ALLOCATE statement).

• OBJECT-0 parameter tells the program to delete the object library. If a Scheduler work area precedes the object
library, the program also deletes the work area.

184

COPY EXAMPLES

Copying Minimum System from One Disk to Another

READY

010 LOAD NAME

011 UNIT

020 DATE

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for vyhich no responses are
shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do not

O 3 O SWITCH appear on the same line.

040 FILE NAME

MODIFY

.!;tt~~jf jj\
ENTER I I I I CONTROL STATEMENT ~ Message printed by Library Maintenance

program.

I II COPY FROM-Fl,LIBRARY-0,NAME-SYSTEM,TO-Rl l) Control statement supplied
by the operator.

ENTER I I I I CONTROL STATEMENT ,

II END

Explanation

Program copies programs, then asks
for another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• System programs are in the object library on the fixed disk on drive 1 (LIBRARY-0 and FROM-F1 in COPY
statement).

• The NAME parameter (NAME-SYSTEM) tells the program to copy the system programs.

• The disk that is to contain the copy is the removable disk on drive 1 (TO-R1).

Library Maintenance Program 185

Printing Library Directories

READY - ;\{f [~~~:::\:
* ff ~1. :~~~

::: LOAD :: ~![;;::;:JJi
020 DATE

030 SWITCH

040 FILE NAME

MODIFY

:\{,!~~!
ENTER 'II' CONTROL STATEMENT

OCL LOAD Sequence

Circled areas are operator responses.

Keywords for which no responses
are shown are the ones bypassed ..

RUN is the response to MODIFY
even though the two words do
not appear on the same line.

Message printed by Library Maintenance
program.

II COPY FROM~Rl,LIBRARY-ALL,NAME-DIR,TO-PRINT Control statement supplied
by the operator.

ENTER 'II' CONTROL STATEMENT

II END

Explanation

Program prints directories, then asks for
another control statement.

END statement, supplied by operator, ends
the program.

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

• All library directories and the system directory on the removable disk on drive 1 are printed (COPY statement):
1. FROM identifies the disk containing the directories.
2. LIBRARY indicates which directories are to be printed.
3. NAME and TO indicates that the program is to be printing directories.

186

Replacing a Library Entry: Replacement Coming From Another Disk

Situation

Assume that you have two versions of an object program:

1. New version on the removable disk on drive 1.
2. Old version on the fixed disk on drive 1.

Both versions have the same name (ACCT) and designation (permanent). You want to replace the old version with
the new version.

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

ENTER 'II' CONTROL STATEMENT
\\lli·

OCL LOAD Sequence.

Circled areas are operator responses.

Keywords for which no responses are
shown are the ones bypassed.

RUN is the response to MODI FY
even though the two words do
not appear on the same I ine.

Message printed by Library Maintenance
program.

II COPY FROM-Rl,LIBRARY-0,NAME-ACCT,TO-Fl,RETAIN-R fifi::::. Control statement supplied
jf===· by operator. .

ENTER 'II' CONTROL STATEMENT

II END
Explanation

ti::::::., Program replaces I ibrary entry, then asks for s;. another control statement.

END statement, supplied by operator, ends the
program.

o Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence).

o LIBRARY-0, NAME-ACCT, and FROM-R 1 in the COPY statement tell the program to read the object program
named ACCT from the removable disk on drive 1.

e TO-F 1 tells the program to copy the object program to the fixed disk on drive 1. There is no NEWNAM E parameter
in the COPY statement. Therefore, the name the program will have on the fixed disk is ACCT (NAME-ACCT).
Since the old version of the program already exists on the fixed disk under that name, the old version is replaced.

o The Library Maintenance program normally halts before replacing a library entry. The RETAIN-R parameter,
however, tells the program to omit that halt.

Library Maintenance Program 187

DELETE EXAMPLES

Deleting a Temporary-Entry From a Library

READY

010 LOAD NAME

011 UNIT

020 DATE

030 SWITCH

040 FILE NAME

MODIFY

~~~;,~~~~MY 
·:::,.EY~fTER I I I I CONTROL STATEMENT 

OCL LOAD Sequence. 

Circled areas are operator responses. 

Keywords for which no responses are 
shown are the ones bypassed. 

RUN is the response to MODIFY 
even though the two words do 
not appear on the same line. 

Message printed by Library Maintenance 
program. 

11 DELETE FROM-Rl ,LIBRARY-S ,NAME-PAYROL ,11~:: Control statement supplied by operator. 

ENTER 'II' CONTROL STATEMENT 

II END 

Explanation 

Program deletes library entry, then asks 
for another control statement. 

END statement, supplied by operator, ends 
the program. 

• Library Maintenance program is loaded from the fixed disk on drive 1 (UN IT-F 1 in OCL sequence). 

• The program deletes a set of source statements (LldRARY-S in DELETE statement) named PAYROL 
(NAME-PAYROL) from the removable disk on drive 1 (FROM-R1 ). 

• The absence of a RETAIN parameter implies that the entry designation is temporary. 
If the designation were permanent, RETAIN-P would have been required. 

188 



Deleting All Temporary Entries With Names That Begin With Certain Characters 

READY - 'i~f t8~\ii)i'.;:, 
* * * * * * * * * * * * * * * * * * * * * * * * * } ·:::~;~ 

:~: LOAD ~~ ~'~;~::~};. 
020 DATE 

030 SWITCH 

040 FILE NAME 

************************* 
MODIFY 

:f{;~~}:: 
··:~~{";=.:.:.:··::·:·:=·· 

ENTER 'II' CONTROL STATEMENT 

OCL LOAD Sequence. 

Circled areas are operator responses. 

Keywords for which no responses are 
shown are the ones bypassed. 

RUN is the response to MODIFY 
even though the two words do 
not appear on the same line. 

Message printed by Library Maintenance 
program. 

/I DELETE FROM-Rl ,LIBRARY-ALL ,NAME-INV .ALL tjji:, Control statement supplied by operator. 

ENTER 'II' CONTROL STATEMENT 

II END 

Explanation 

Program deletes entries, then asks 
for another control statement. 

END statement, supplied by operator, 
ends the program. 

o Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence). 

• The entries being deleted are on the removable disk on drive 1 (FROM-R 1 in DELETE statement). 

• The program deletes all entries from both source and object libraries (LIBRARY-ALL) that have names beginning 
with the characters INV (NAME-INV.ALL). 

• The absence of a RETAIN parameter implies that temporary entries are being deleted. 

Library Maintenance Program 189 



Deleting All Permanent Library Entries of One Type 

READY 

************************* 

010 LOAD NAME 

-11'.r~:i:;;;)~{}i.: 
- {W $MAINT I~~ 

011 UNIT t;~;~:.:ff '\\\Y!l 

020 DATE 

030 SWITCH 

040 FILE NAME 

************************* 

MODIFY 

:([~~~~;; 
ENTER 'II' CONTROL STATEMENT t 

1;;, OCL LOAD Sequence. 

Circled areas are operator responses. 

Keywords for which no responses are 
shown are the ones bypassed. 

·RUN is the response to MODI FY 
even though the two words do 
not appear on the same line. 

, 
Message printed by Library Maintenance 
program. . 

11 DELETE FROM-Rl ,LIBRARY-P ,NAME-ALL, RETAIN-P \).Control statement supplied by operator. 
:= 

ENTER I I I I CONTROL STATEMENT ~!~: 

II END 

Explanation 

Program deletes entries, then asks for another 
control statement. 

END statement, supplied by operator, ends 
the program. 

• Library Maintenance program is loaded from the fixed disk on drive 1 (UNIT-F1 in OCL sequence). 

• The entries being deleted are on the removable disk on drive 1 (FROM-R1 in DELETE statement). 

• All permanent procedures are being deleted from the source library (LIBRARY-P,NAME-ALL RETAIN-P). 

190 



RENAME EXAMPLE 

Renaming a Set of Source Statements in a Source Library 

READY - .(f~ti6~~\:\. 
******* ***** ******** * **** m}: %~; 

:~: LOAD ::: j~i,;_~;i::;JJ~ 
030 SWITCH 

040 FILE NAME 

************************* 
MODIFY 

;(11.2::¥~ 
ENTER 'II' CONTROL STATEMENT 

OCL LOAD Sequence. 

Circled areas are operator responses. 

Keywords for which no responses are 
shown are the ones bypassed. 

RUN if the response to MODI FY 
even though the two words do 
not appear on the same line. 

Message printed by Library Maintenance 
program. 

II RENAME FROM-Rl,LIBRARY-S,NAME-ACCT,NEWNAME-ACCTl > Control statement supplied 
by operator. 

ENTER I I I I CONTROL STATEMENT Iii~' 

II END ~ 

Explanation 

Program renames entry, then asks for 
another control statement. 

END statement, supplied by operator, ends 
the program. 

• Library Maintenance program is loaded from the fixed disk on drive 1 (UN IT-F 1 in OCL sequence). 

e The removable disk on drive 1 contains the entry being renamed (FROM-R1 in RENAME statement). 

o The entry is a set of source statements in the source library (LIBRARY-S). Its name is ACCT (NAME-ACCT). 

• The entry name is being changed to ACCT1 (NEWNAME-ACCT1). 

Library Maintenance Program 191 



192 



MULTI-VOLUME FILES 

File Statements for Multi-Volume Files 
If a file is too large for one disk, you can con
tinue it on one or more subsequent disks. Such 
files are called multi-volume files. (A volume is 
one disk.) Multi-volume files can be online 
or offline. A file is online if all volumes are 
mounted when the job begins. The UNIT and 
PACK parameters are equal. An offline file 
has fewer UNIT parameters (shares same unit). 

Creation 
The ways that you can create a multi-volume 
file depend on the type of file you are creating. 
For a consecutive and indexed file, the records 
are stored 'in consecutive locations on disk, in 
the order that they are read. One disk is filled 
at a time. 

For consecutive files, each volume must be 
filled before the next volume is loaded. For 
indexed files, each volume need not be filled. 
Each indexed volume is loaded until a keyfield 
is reached that is higher than the HI KEY for that 
volume, then the next volume is loaded. Indexed 
files must be loaded in keyfield sequence. A halt 
occurs if a volume is filled and there is not a 
record with a keyfield equal to the HI KEY for 
that volume. For example, suppose the HI KEY 
for a volume is 199. You load a record with the 
keyfield 195. It is less than the HI KEY, so it is 
loaded on the volume. Next, you load a record 
with the keyfield 200. Record 200 would be 
loaded on the next volume, and a halt would 
occur. The reason for the halt is that you did 
not load a keyfield record equal to 199 before 
you jumped to a new volume. This halt can be 
ignored. You can load the next volume and at some 
future time insert a keyfield record equal to the 
HI KEY. To insert a record after the loading se
quence has passed, a random add must be done. 

Indexed and consecutive files may be either 
online or offline. 

APPENDIX A: ADVANCED TOPICS FOR OCL 

If using removable disks when creating consecutive 
or indexed files you can mount a disk, wait until 
the system indicates it is filled. Then, mount the 
next disk. If you have two drives, you can mount 
the two disks, wait until the first one is filled, then 
replace it with the third while your program fills 
the second disk. In either case, you cannot use 
more than 52 disks per job. 

Space can be allocated on all volumes of a multi· 
volume file if the volumes are online at the time 
of the allocation. Space can also be allocated for 
an offline file, other than the initial volume, but 
the packs must be empty packs or space (TRACKS 
and LOCATION) known to be available. You can 
use both fixed and removable disks with any on-
1 ine multi-volume file. 

Direct files must be online. Direct files are created 
in a non-consecutive manner. When creating sucl1 
files, you are required to mount all the disks on 
your disk unit at the same time. The maximum 
number of disks you could use, therefore, is two 
if you have only one drive, or three or four if 
you have two drives. 

Processing 
The ways in which you can process multi-volume 
files depend on the method your program uses 
to get records from the file. If records are read 
from a consecutive or indexed file, you, can mount 
a disk, wait until all of the records have been read 
from the disk, then mount the next disk. If you 
have two drives, you can mount two disks,·wait 
until all of the records have been read from the 
first disk, then replace that disk with the third 
while your program reads from the second disk. 
When you are processing files offline the disks must 
be removable. When online, any combination of 
fixed and removable disks is acceptable, but all 
must be mounted and must remain mounted. 

Appendix A: Advanced Topics for OCL 193 



OCL Considerations 
Multi-volume files, like other disk files, must be 
described in Fl LE statements. However, because 
a multi-volume file involves more than one disk, 
some Fl LE keywords require a list of data or 
codes to describe all of the disks containing the 
files. This section explains the considerations 
for using these lists. Each list must begin and 
end with apostrophes. 

List Requirements 

194 

The PACK parameter requires a list. The UNIT 
parameter may require a list while LOCATION, 
TRACKS, HI KEY, and RECORDS require a 
list if they are stated. The considerations for 
using the lists in these parameters are included 
in the keyword discussions following. 

KEY LENGTH: This keyword will be prompted 
if the response to FI LE NAME indicated a multi
volume file (see Enter Minus under End-of-State
ment Keys in Part I). If this is an indexed file, 
you must respond to KEY LENGTH with a two
digit number 01 through 29. If this is not an 
indexed file pressing the PROG START key will 
skip the HI KEY keyword. 

HI KEY: This keyword must be answered for 
indexed files. The highest keyfield for each 
volume must be entered. All characters except 
commas are allowed as keys. The length of each 
HI KEY must equal the response to KEY LENGTH 
and a HI KEY must be entered for each volume. If 
a HI KEY with fewer characters is entered, blanks 
will be put into the remaining positions. If an 
apostrophe is used as part of a HI KEY, it must be 
entered as two apostrophes or it will be decoded 
at the end of HI KEY list and an error will occur. 
When using only one volume of an indexed multi
volume file, the H IKEY must be entered with 
beginning and ending apostrophes. 

The keys in an indexed file can be packed numeric 
characters. To indicate that a file has packed keys, 
the operator responds to KEY LENGTH with nn,P 
where nn is 01-08. Only numeric characters (0-9) 
are allowed in packed HI KEYS. When responding 
to HI KEY, the number of characters entered per 
key is equal to 2nn-1. If the KEY LENGTH 
response is 07, the HI KEYS would be 13 characters 
long. 

UNIT: The keyword UNIT must be followed by a 
code or codes indicating where the disks that con
tain the file will be located on the disk unit. No 
UNIT parameter may be repeated. The codes are 
as follows: 

Code Meaning 

R 1 Removable disk on drive one. 
F 1 Fixed disk on drive one. 
R2 Removable disk on drive two. 
F2 Fixed disk on drive two. 

The order of codes in the UNIT parameter must 
correspond to the order of names in the PACK 
13arameter. 

When you are creating or processing a consecutive 
or indexed file, you can use the same drive for more 
than one of the disks; however, the units must then 
all be removable units. If they are, you must not 
repeat the code for the drive in the UNIT param
eter. When the number of codes in the UNIT 
parameter is less than the number of names in 
the PACK parameter, the system uses the codes 
alternately. 

If F 1 or F2 is specified, the file must be on line 
multi-volume. 

PACK: The names of the disks that contain, or 
will contain, the multi-volume file must follow 
the keyword PACK. (PACK names must be 
unique for proper functioning.) 

When a multi-volume file is created, the system 
writes a sequence number on the disks to in
dicate the order of the disks. The disks are 
numbered in the order in which you list their 
names in the PACK parameter. 

When a multi-volume file is processed, the system 
provides two checks to ensure that the disks are used 
in the proper order. 

1. 

2. 

It checks to ensure that the disks are used 
in the order that their names are listed in 
the PACK parameter. 

It checks the sequence numbers of the disks 
used to ensure that they are consecutive and 
in ascending order (01, 02, and so on). 



The system stops when it detects a disk that is 
out of sequence. The operator can do one of 

three things: 

1. 

2. 

3. 

Mount the proper disk and restart the 
system. 

Restart the system and process the disk 
that is mounted if the sequence is 
ascending (for consecutive input and 
update). 

End the program. 

• Consecutive input or update sequence numbers are 
ignored if the file was not created as multi-voll!me. 
If the file is multi-volume and the sequence is 
ascending but not consecutive, a diagnostic halt 
is given which allows the proceed option. 

TRACKS or RECORDS: The keyword TRACKS 
or RECORDS must be followed by numbers that 
indicate the amount of space needed on each of 
the disks that will contain the multi-volume file. 
TRACKS or RECORDS must be specified. Any 
multi-volume file load requires a TRACKS or 
RECORDS keyword whether the file previously 
existed or not. The order of these numbers must 
correspond to the order of the names in the PACK 
parameter. 

LOCATION: The keyword LOCATION must be 
followed by the numbers of the tracks on which 
the file is to begin on each of the disks you use 
for the file. The order of the numbers must 
correspond to the order of the names in the 
PACK parameter. If you omit the LOCATION 
parameter, the system chooses the beginning 
track on each of the disks. If LOCATION is 
specified for one disk, it must be specified for 
all disks. If the multi-volume file exists, 
LOCATION must be given and must be identical 
to the LOCATION parameter specified when the 
file was created. 

R ET Al N: R ET Al N-S must not be specified un
less the file is online multi-volume. If RETAIN
S is used for online multi-volume, it cannot be 
changed to RETAIN-T unless also done online. 

Advanced Topics for OCL 195 



OCL CONSIDERATIONS FOR MUL Tl-VOLUME FILES 

KEYWORDS SEQUENTIAL Fl LES 

Indexed 

10 disks per file statement, 
52 disks per job. 

Consecutive 

DIRECT FILES 

Single Drive-2 disks 
Two Drives-4 disks ~~~:~:f Disks " 

1--~~-~-----~------~---+--------~---~ 

Requirements la> ~! ~;s~~::n a;;~i :~~i~:s files 
Location No restriction 

i--=-~-s~-~-~~-ti_o_n_s --~,+---:-t-~-i;~-s:-:~-;-~t-~-~-~:-tt-i~-1:"-~-:~-~-~-'.a-in_p_ro_g_r-am-s,----+--~-i!-~g-:~-aa~-:-:-l:k-~s-£-~-:t;--~f~-:-:.-t:_:_h_e_r -t 

• Remaining disks must be used only for files. 

UNIT ._ ____ _ 

PACK 

Operating 
Considerations 

Relation to 

KEY LENGTH 

HIKEY 

196 

the one file. 

Single Drive 
Disks must be mounted one at a time 

Two Drives 
Disks must be mounted in sequence 
specified in UN IT statement. 

One entry in the UNIT statement can 
correspond to more than one disk name in 
the PACK statement. 

When processing a file {or a subset of a file) 
the disk nam.es must be in the same sequence 
as they were at file creation time. 

All disks must be on-line 
during processing. 

A one-to-one correspondence 
is required between the 
entries in the UN IT statement 
and the disk names in the 
PACK statement. 

Length must be less 
than 30 (01-08 if 
packed keys). 

Not used: pressing PROG START will also bypass 
HI KEY prompt. 

HIKEY responses 
must correspond 
one-for-one with the 
disk names in the 
PACK statement. 



KEYWORDS 

TRACK 
-or

RECORDS 

LOCATION 

• 
• 

SEQUENTIAL Fl LES DIRECT FILES 

At file creation time: 
• Number of tracks (or records) must be specified for each disk. 
• Number in TRACKS (or RECORDS) statement must correspond 

one-for-one with the disk names in the PACK statement. 

During subsequent runs: 
TRACKS (or RECORDS) statement can be included in the OCL sequence. 
(For greater detail see keyword descriptions of TRACKS/RECORDS.) 

• If specified: 
Addresses must correspond, one-for-one with disk names in 
PACK statement 

• If not specified: 
System will allocate space on each disk. 

Advanced Topics for OCL 197 



CODING MUL Tl-VOLUME FILE STATEMENTS SAMPLE JOB 7. UPDATING MUL Tl
VOLUME MASTER FILE 1. The operator must begin and end each 

statement with an apostrophe. 

2. The system displays information about 
each volume on a separate line. 

3. The system assigns one statement number 
to the entire file statement. 

CHANGING MUL Tl-VOLUME FILE STATE
MENTS WITH MODI FY KEYWORD 

Every Monday the XYZ Novelty Company pre
pares customer invoices, updates their customer 
master file, and updates their inventory file. 
Because the company has a huge customer file 
they've had to put the file on two disks: custo
mer names beginning with A-Lon one disk and 
the remaining customer names on a second disk. 
When he created this multi-volume master file, 
XYZ's programmer assigned the following 
identifying information: 

When using MODI FY keyword to change a multi
volume file statement (other than HI KEY), the 
entire response to the keyword must be re
enteted on one line, separated by commas, with 
beginning and ending apostrophes. 

1. A-L customer names: 

2. 

FILE NAME - CMASTER 
PACK -VOL01 

M-Z customer names: 
Example Fl LE NAME - CMASTER 

PACK -VOL02 

198 

041 

UNIT Statement is 

UNIT- 'F1 
- R1 
- R2 
- F2' 

To change at MODI FY time 

Should be 

UNIT -'F1 
-R1 
-F2 
-R2' 

MODIFY 
041 - 'F1,R1,F2,R2' 
RUN 

HEf.:,DY···· 

Because the company often needs information on 
individual customers, the programmer designed 
the customer master file as a direct file. The 
program to update the customer master file is 
CMUPDA. Here are the OCL statements for the 
job. 

l ... Dt=~D < P/B) 

**************************************************************** 
OH> LOr=H• Nf'~ME···· CMUPDr:·~ (P./fl) 
0:1.1 UNIT-·· F:I. (P./E;) 
020 D/!)TE 
03() Bl.JITCH 
04() FILE 
041 

()42 

04:3 
() ~=.=; () FILE 

<:I. 2./0B/70) 
( ()()()()0000) 

Nf.)ME-
UNIT-·· 

Pf:) ct-::-·· 

Lf.~BEL-.. 
Nf.~ME--

< P/~:>) 
(P./B) 
CMt=~STE1:;: ( P/·~;;) 
~· F :I. ( P./~:;;) 

1:;: :I. }' ( P ./~:;;) 
~· '·JDl...O:L ( P./~:>) 
'JDl...02}' (i::'/B) 
<ENTEH··-) 
<P.IB) 

**************************************************************** 
i'·iDDIFY 



Explanation 
• 041 UNIT 

o 042 PACK 

- 'F1 
R1' 
The single quotation marks 
tell the system the file 
CMASTER is a multi-volume 
file. F 1, R 1 tells the system 
the file is split between the 
fixed and removable disks 
on drive one. 

'VOL01 
VOL02' 
The single quotation marks 
tell the system the file is on 
more than one disk pack. 
VOL01, VOL02 tells the 
system the name of the 
disk packs containing the 
file. Pressing the ENTER
key causes the system to 
bypass the rest of the file 
keywords and prompt 
FILE NAME. 

o 050 Fl LE NAME - Pressing the PROG START 
key causes the system to 
bypass all the file keywords 
and prompt MODIFY. 

SAMPLE JOB 8. CREATING A MUL Tl-VOLUME 
INDEXED FILE 

We are creating an inventory file. The file is very 
large and requires five packs. It is an indexed 
file with a 15 position keyfield; the keyfield 
consists of part number and warehouse location. 
The file is divided among the five volumes as 
follows: 

Volume 101 Keyfields 000-000-000W 1 81 
175-200-233W182 

102 175-200-233W183 
380-456-280W3R6 

103 380-456-287W783 
629-384-300W3F 6 

104 629-384-301W786 
949-475-849W8F8 

105 949-476-836W4F8 
999-999-999W9F9 

to 

to 

to 

to 

to 

The processing starts with 101 on unit R 1 and 102 
on unit R2. After processing 101, the p_rogram proc
esses 1.02 allowing the operator to remove 101 and 
mount 103 on unit R1. Likewise, 104 replaces 
102 and 105 replaces 103. 

Advanced Topics for OCL 199 



I 

HEADY- LOAD ( P/S ). 
**************************************************************** 
010 LOAD NAME- CRTINV CP/S) 
011 UNIT- Fl <PIS> 
020 DATE ( 1.2/31./23 > -<PIS> 
030 SWITCH ( 00000000 > ,( P /S > 
040 FILE NAME- ·INVMSTR <ENTER-> 

KEY LENGTH- .15 <PIS> 
04A 
04B 
04C 
04[1 
04E 
041 

042 

043 
044 
045 

046 

047 
050 FILE 

HIKEY- ·'175-200-233W1B2 <PIS> 
HIKEY- 380-456-280W3R6 (P/S) 
HIKEY- 629-384-300W3F6 CP/S) 
HIKEY- 949~475-849W8F8 (P/S) 
HIKEY- 999-999-999W9F9' CP/S) 

UNIT- 'R1 CP/S) 

LABEL.
RECORDS

TRACl'\S-

LOCATION-

RETAIN
NAME-

1~2 ~· < P/S) 
'VOL.IO:!. <PIS> 
VOl...I02 CP/B) 
VDl...I0:3 C PIS) 
IJClLI04 <PIS) 
VCll ... I0~7.i ~· C P/S) 
CP/S) 

,( P/S > 
·' 100 (PIS) 
·1.93 ( P/S) 
·:1.50 <PIS) 
·:1.93 <PIS> 
HO' <PIS). 
'87 <PIS> 
8 <PIS> 
49 <PIS> 
8 CP/S) 
8" <PIS>· 
P <ENTEi:\:·- )· 
:(PIS> 

**************************************************************** 
MODIFY 

HUN (P/fl) 

Explanation 
• KEY LENGTH: 

200 

All characters except commas 
are allowed as part of the 
HIKEY. If apostrophes are 
used as part of the key, two 
apostrophes must be entered 
for each one in the key. 
The number of characters 
entered for HI KEV s must 
equal KEY LENGTH. 

No statement number is 
assigned KEY LENGTH. 
This keyword cannot be 
changed at MODI FY 
time. 

• 045 TRACKS The file need not occupy 
046 LOCATION the entire volume if the 

number of tracks and the 
starting location are given. 
You must be sure these 
areas are available be
cause the system cannot 
check offline packs. 



SAMPLE JOB 9. MAINTAINING A MUL Tl
VOLUME INDEXED FILE WITH PACKED 
KEYS 

We are· maintaining a multi-volume indexed file. 
The file occupies four volumes. The keyfield is 
15 characters long in packed format. The key
field takes eight bytes in the record. The file is 
divided as follows: 

Volume P01 Keyfields 000 000 000 000 000 
through 

P02 

P03 

P04 

000 025 000 000 000 
000 025 000 000 001 
through 
000 050 000 000 000 
000 050 000 000 001 
through 
000 075 000 000 000 
000 075 000 000 001 
through 
000 100 000 000 000 

The OCL required to use this file is as follows: 

**************************************************************** 
010 LOAD NAME- PAYROL <PIS) 
0 :I. :i. UN I T ···· F :i. <. P / ~:> ) 
020 DtlTE 
0'.30 ~31..~J ITCH 
()1}0 FI LE 

OAD 
04 :I. 

O!::;o FI l ... E 

(()()()0000()) 
Nf.:'rME···· 

KEY LENGTH···· 
HI KEY···· 
Hil{EY···· 
HI\{EY ···· 
HI KEY"·· 

UNIT···· 

Pf.:"rCK···· 

i ... l~BEL.· ... 
Nf.:·,ME" .. 

( P/~:>) 
( P/!::)) 
Pl:·,YF~:.OL.L. < ENTEF: ····) 

'000025000000000 <PIS) 
000050000000000 <PIS) 
000075000000000 (f'/S) 
OOO:i.00000000000~' (F'/S) 
~· E'. :t ( F-' / !:":) ) 

'\.)01...PO:t <.P/S) 
\.)[)L.P02 <PIS) 
\.)OL.F··o:::> <. P /~;3) 
\)Di...P0-'1 ~· ( P /Fi) 
t1CCDNT <. ENTEF'. ····) 
( F·/!::')) 

***************************************************************~ 
MODIFY 

F'.UN ( F·'/S) 

Advanced Topics for OCL 201 



INCLUDING SORT SOURCE OR UTILITY 
CONTROL STATEMENTS IN A PROCEDURE 

The INCLUDE option can be used during MODIFY 
time of a BUILD cycle to include sort source or 
utility control statements in a procedure. This is 
useful if the control statements are long or com

plex and the job is run frequently. A maximum of 
25 control statements can be included in each pro
cedure. 

During the BUILD cycle, the INCLUDE option 
must be the last MODI FY option used. After 
the included statements are keyed in, the RUN 
entry then puts tl:'ie procedure and included state
ments in the source library. 

The CALL cycle will be different if the called 
procedure has included statements. After the 

OCL statements are printed, MODI FY will be 
prompted to allow changes to the OCL state
ments. After the o·perator types RUN, the 
system will print INCLUDED STATEMENTS and 
then list the statements. MODI FY will now be 
prompted again, to allow changes to be made to 
the included statements. The operator types 
RUN to run the job. 

For an example of Including Sort Source Statements 
in a procedure see the IBM System/3 Disk Sort 

Reference Manual, SC21-7522. 

An example of including Utility Control statements 
in a procedure follows. 

SAMPLE JOB 10. INCLUDING UTILITY CONTROL STATEMENTS IN 
A PROCEDURE 

Sample job 1 showed an OCL LOAD cycle for initializing the removable disk on 
drive one. This sample job shows how to do the same job using BUILD and CALL 
cycles and including the Utility Control Statements in the procedure .. 

HEADY-
000 BUILD 
001 

NAME
UNIT-

BUILD (F'/S) 
INITl~I (P/S) 
Fl. (P/S) 

**************************************************************** 
010 LOAD NAME- $INIT CP/S) 
01.1 UNIT- Fl. <PIS> 
020 DATE. 
030 SWITCH COOOOOOOO> 
040 FILE NAME-

;( P/S) 
<PIS> 
CP/G) 

******************************~********************************* 
MODIFY 

:INCLUDE CP/B) 

**************************************************************** 
ENTER UTILITY CONTROL STATEMENTS 
()() 

// UIN UNIT-R19TYPE-PRIMARY (P/S) 
():I. 

// VOL PACK-12345 CP/S) 
02 

// END CP/S) 
0:5 

'l~l.JN < P /S > 
**************************************************************** 
MODIFY 

202 



READY-
000 CALL 
00:1. 

NAME
UNIT-

CALL (P/S) 
INITl~I < P/S) 
Fl (P/S) 

**************************************************************** 
Ol.O LOAD 
() 1.:1. 

NAME-$INIT 
UNIT-Fl 

**************************************************************** 
MODIFY 

**************************************************************** 
INCLUDED STATEMENTS 
00 II UIN UNIT-R1,TYPE-PRIMARY 
01 II VOL PACK-12345 
02 // END 
**************************************************************** 
MODIFY 

l~UN (P/S) 

INCREASING FILE SIZE OF THE RPG 
PROCEDURE 

The I BM-supplied compile procedure can only 
compile RPG 11 programs with less than 400 
statements. To compile larger programs·, the 
file statements must be modified to increase 
their size above 10 tracks (see Modify; Chang
ing a Previous OCL Statement in Part I). Using 
the MODI FY option will only increase the file 
size for one compile. The RPG II procedure 
will not be changed in the source library. To 
change the procedure in the source library 
you must either build a new procedure (see 
BUILD NAME in Part I) or use the KSE 
utility program. 

ENTERING RPG II SOURCE STATEMENTS 
FROM THE KEYBOARD AT COMPILE TIME 

The I BM-supplied compile procedure requires 
that the RPG 11 source statements be in the 
source library of a disk. By using the Keyboard 
Source Entry Utility ($KSE), source statements 
can be format checked and syntax checked as 
they are put on disk. 

The source statements can, however, be entered 
from the keyboard at compile time. These 
statements are read by the compiler and 
checked for format errors. If any errors are 
found they cannot be corrected and the compile 
will not be successful. The compile job must 
be rerun and all source statements keyed in 
again. 

Advanced Topics for OCL 203 



To key in source statements from the keyboard, 
the I BM-supplied compile procedure RPG is 
used. This procedure does not prompt COM-
Pl LE OBJECT, SOURCE, or UNIT. 

CHAINED PROCEDURES 

204 

A finished job usually requires that more than 
one program be run. Several customer programs 
with utility programs between them may be 
required to complete the finished report. This 
sequence of programs can be put in chained 
procedures. 

By chaining procedures, several benefits can 
be realized, including: 

• Programs are always run in the·correct 
sequence. 

• Operator intervention and, therefore, 
chance of operator error, is decreased. 

• File space can be saved. Files used to 
pass data from job to job can be scratched 
after the last program. 

• Files are less likely to be destroyed by 
running non-related programs between 
programs of a job. 

To chain procedures, the operator first builds a 
master procedure to chain together other pro
cedures. This is done by responding to READY 
with BUI LDC. The system will then repetitively 
prompt CALL NAME and UNIT, allowing the 
operator to respond with the name and unit of 
the procedures that are to be chained. When all 
procedure names have been entered, the operator 
responds to CALL NAME or UNIT with the ENTER 
MINUS (ENTER-) key. The system then allows the 
the operator to MODIFY the entries. When RUN is 
entered, the master procedure is put in the source 
library as a permanent entry. 

Master procedures can call other master procedures 
up to 9 levels. The original master procedure called 
(level 1) can call another master procedure(level 2), 
which can call another master procedure (level 3), 

etc., on up to 9 levels. Care must be taken to avoid 
calling a master procedure that was already called 
earlier in the chain or an endless loop will result. A 
master procedure can contain only CALL and UNIT 
statements. 

Delayed responses are not allowed in a BU I LDC cycle. 
However, the called procedures can con.tain delayed 
responses. 

To run the chained procedures, the operator 
initiates a CALL cycle and responds to CALL 
NAME with the name of the master procedure. 
Each procedure is then called by the master 
procedure and run. 

When running chained procedures, the operator 
is never prompted MODI FY to make changes. 

If HALT is specified, the system will not halt until 
the last job of a chain is complete. 

READY 

BUI LDC NAME 

UNIT 

CALL NAME 

UNIT 

QUESTION? 
Enter- key used after 
CALL NAME or UNIT? 

• I 
YES NO 

l 
MODIFY 



__ K_E_vw_o_R_os _ __,, 
~ESPONSES CONSIDERATIONS 

READY 

BUILDCNAME 

I u~;; 

BUI LDC 

None 

PROG START 

System prompts BUI LDC NAME. J 
T 

MASTER 
Procedure Name Maximum of six alphanumeric characters. 

Must begin with alphabetic characters. 
(A-Z or#,@,$) 

Must not be DIR, SYSTEM, or ALL. 

Commas, blanks, quotes (apostrophes), 
and periods are not allowed. 

PROG START 

I 
System prompts UNIT. 

r R1,R2,F1,or F2 r Location of the disk where you want 
...._ ________ _. to put procedure. (Procedure is 

placed in the source library of the disk 
which the operator specifies.) 

PROG START 
System prompts CALL NAME. 

] 

Advanced Topics for OCL 205 



KEYWORDS 

CALL NAME 

UNIT 

206 

RESPONSES CONSIDE~ATIONS 

Name of 
Procedure Name of a procedure in the source 

library. The procedure can be an IBM-
supplied procedure (RPGB) or a proce-
dure created by a BU I LO or BU I LDC 
cycle. 

~ PROG START I ( I...__ _______ _. System prompts UNIT. 

\ 
ENTER-

l 

System prompts UNIT then 
MODIFY. 

R1,R2,F1,orF2 J Location of the disk whose source 

or 

1 library contains the procedure. 

PROG START 

ENTER-

System prompts CALL NAME (or 
MODI FY if ENTER - used after 
CALL NAME). 

System prompts MODIFY. 



KEYWORDS 

-lllii~lll!!llllllllll 
MODIFY 
(Operator can use 
one, all, or a 
combination of 
the responses.) 

RESPONSES 

LOG 

l 

CONSI DE RATIONS 

Used only if CRT display or 22" printer 
is on system (see Appendixes D and E). 

PROG START System prompts LOG DEVICE. 

CANCEL Cancel job. 

PROG START System prompts REA DY or 
displays end-of-job halt. 

FORMS 

I 
Change lines per page printed output 
for system programs. 

PROG START 

Asterisk (*) 
Followed by 
comments 

System prompts FORMS DEVICE. 

Enter comment. 

PROG START System waits for next MODI FY 
response. 

Statement number 
and comma 

T 
To delete statement. 

PROG START System waits for next MODI FY 
response. 

1 

l 

Advanced Topics for OCL 207 



KEYWORDS 

208 

RESPONSES CONSIDERATIONS 

Statement number , 
To correct statement. 

PROG START System waits for correct 
statement. 

RUN Tells system-

T 
a. The cycle is complete. 
b. Run the job. 

PROG START System runs job. 



SAMPLE JOB 11. CHAINED PROCEDURE 
We're going to use the BUI LDC cycle to chain 
two procedures created with the BU I LO cycle. 
First, we use the BUI LO cycle to build pro
cedures to use the Conversatronal Utilities 
($KSE and $KDE). 

After the chained procedure is built, the 
CALL cycle is used to run the chained pro
cedures. 

HEADY-
000 BUILD 
001 

NAME
UNIT-

BUILD ( P/~;;) 
l'\SE <PIS) 
F:I. <PIS> 

**************************************************************** 
010 LOAD NAME- SKSE <PIS> 
011 UNIT- F:I. <PIS> 
020 DATE 
030 SWITCH (00000000) 
040 FILE NAME-

<PIS) 
<PIS) 
(P/S) 

**************************************************************** 
MODIFY 

HUN <PIS> 

l=\:EADY·-
000 BUILD 
001 

NAME-· 
UNIT-· 

BUILD <P/S) 
1-::I)E <P/!:l) 
Fl (P/S) 

**************************************************************** 
0:1.0 LOAD NAME- $KDE <PIS> 
011 UNIT- Fl CP/S) 
020 DATE 
030 SWITCH <00000000) 
040 FILE NAME-
041 UNIT-
042 PACK-
043 LABEL-
044 
045 
046 
047 
050 FILE 

RECORDS
LOCAT I ON

RETAIN
DATE
NAME-

(p/f)) 
<Pl~:;> 

!'\DEFILE <PIS> 
Fl <Pl!:>> 
FlF:l.Fl ( P/!:; > 
DRIV2 <PIS> 
4 < P/S) 
CP/S) 
T (P/S) 
CP/S) 
<PIS) 

**************************************************************** 
MODIFY 

1:;:uN <PIS> 

Advanced Topics for OCL 209 



READY-
000 BUILDC 
001 

NAME
UN IT-

BUILDC CP/S) 
MASTER CP/S) 
Fl CP/S) 

*****************************~********************************** 
010 CALL NAME- KSE CP/S) 
011 UNIT- Fl <PIS> 
020 CALL NAME- KDE (P/S) 
021 UNIT- Fl CENTER-> 
**************************************************************** 
MODIFY 

RUN <PIS> 

READY-
000 CALL 
001 
000 CALL 
001 

NAME-
UN IT
NAME-KSE 
UNIT-Fl 

CALL CP/S) 
MASTER CP/S) 
Fl CP/S) 

**************************************************************** 
010 LOAD NAME-$KSE 
011 UNIT-Fl 
**************************************************************** 

FORMAT DESCRIPTION ? YES CP/S) 

FORMAT TYPE - KDE <PIS> 

NEW SOURCE MODULE ? YES CP/S) 

SOURCE MODULE NAME - KDEFOR CP/S) 

SOURCE MODULE UNIT - Fl (P/S) 

06672 NEW STATEMENTS MAY BE ADDED TO SOURCE ENTRY 

00000 H01 096 CP/S) 

00010 A005 CP/S) 

00020 A091 <PIS> 

00030 Ho2 <COMMAND KEY 06 PRESSED> 

END OF JOB ? YE~ CP/S) 

KSE END OF JOB 

210 



000 CALL 
001 

NAME-KDE 
UNIT-Fl. 

**************************************************************** 
Ol.O LOAD NAME-$KDE 
011 UNIT-Fl 
020 FILE NAME-KDEFILE 
021. UNIT-Fl. 
022 PACK-Fl.Fl.Fl 
023 LABEL-DRIV2 
024 RECORDS-4 
025 RETAIN-T 
**************************************************************** 
FOf~MAT NAME -· KDEFOF~ < P /!:>) 

FOF~MAT UNIT - F:I. < P/!:>) 

DISPLAY FORMATS ? 

1-101096 

A005 

A09l. 

NEW KDE FILE ? YES (P/S) 

KEY FIELD START - NO (P/S) 

SELECT FORMAT NUMBER - Ol. (P/S) 
·:If * 
00000 THIS rs AN EXAMPLE OF CHAIN PROCEDURE ON THE MODEL 6 (P/S) 

OOOl.O KSE WAS l~E FIRST JOB EXECUTED AND KDE WAS THE SECOND AND LAST JOB CP/S) 

00020 THE CHAIN WAS INITIAlED BY CALLING MASlER, W~ICH WAS BUILT IN A BUILDC CYCLE CP/S) 

00030 CC~MMAND KEY 06.PRESSED> 

********************************************************************************************** 

BATCH ACCUMULATORS ()0 0 :I. 02 0:5 ()4 
() () () () 0 
O:':i 06 07 08 ()9 
() () () () () 

FINAL ACCUMULATDRS 00 () 1 02 03 ()4 

0 () () () () 

05 06 07 08 09 
0 () () () () 

**********************************************************************************************' 

END OF JOB ? YES CP/S) 

1'\DE END OF JOB 

Advanced Topics for OCL 211 



APPENDIX B: RECORDS - TRACKS CONVERSION 

·For Sequential or Direct Files 
To determine how many tracks will be required 
for a sequential or direct file: 

1. 

2. 

Number of records x record length= 
total number of characters. 

. CD 
Total number of characters..;.. 6144 = 
number of tracks. (Round result up to 
nearest whole number.) 

For Indexed Files 
To determine how many tracks will be required 
for an indexed file: 

Step 1. (Tracks Required for Data) 

A. Number of records x record 
length = total number of charac· 
ters. 

B. Total number of characters..;.6144 
=number of tracks. (Round result 
up to nearest whole number.) 

212 Appendix 8: Records - Tracks Conversion 

Step 2. (Tracks Required for Index) 

A. Key Field length+ 3 = index entry 
length. 

B. 

c. 

D. 

2560: index entry length= num
ber of entries per sector. (Round 
result down to nearest whole num
ber.) 

Number of records+number of 
entries per sector= number of sec
tors. (Round result up to nearest 
whole number.) 

© Number of sectors + 24 = 
number of tracks. (Round result 
up to nearest whole number.) 

Step 3. (Total Track Requirement) 
Result of step 1 + result of step 2 = 
total number of tracks required for 
the indexed file. 

CD Number of characters in a track. 

© Number of characters in a sector. 

© Number of sectors per track. 



APPENDIX C:· DISK ORGANIZATION 

Disk Area Contents 

VTOC* Detailed information about each file on disk 

Source Library Source Library Directory 
RPG 11 Source Programs 
Sort Specifications 
Procedures 
KSE Input (Format Descriptions or Source Statements) 

Object Library Object Library Directory 
Compiled Programs 
System Programs 

Files User files 
System files 

*Volume Table of Contents 

Volume Table of Contents (VTOC) 
The VTOC contains detailed information about 
each file on the disk. Much of this information is 
for system use only and is of no interest to the 
programmer. The VTOC file information signifi
cant to the programmer is: 

1. 

2. 

3. 

4. 

5. 

Name. 

Starting track location and number of 
tracks. 

Designation (Permanent, Temporary, or 
Scratch). 

Organization (Sequential, Direct, or 
Indexed). 

Creation date. 

Source Library 
Procedures, RPG 11 source programs, and KSE input 
always reside in a source library. The source library 
directory contains the name and address (track and 
sector) of each procedure, RPG II source program, 
and set of KSE input in the library. 

Object· Library 

Files 

Compiled programs and system programs always 
reside in an object library. The object library 
directory contains the name and address (track 
and sector) of each program in the library. 

Identifying information about every file on a disk 
is contained in the disk VTOC. 

A disk is limited to 50 files because the VTOC has 
space for identifying only that many files. 

Appendix C: Disk Organization 213 



APPENDIX D: OCL FOR THE 22" PRINTER {IBM 2222 PRINTER) 

The optional 22" printer provides the MODEL 6 
system with the ability to print on two forms. Each 
form has its own forms tractor. The left tractor 
is called PR I MARY and the right tractor is 
SECONDARY. 

Using the FORMS Statement with the 22" 
Printer 

The lines per page setting of the PRIMARY 
and SECONDARY tractors can be different. 
(For example, the PRIMARY tractor could 
print 25 lines per page, while SECONDARY 

214 Appendix D: OCL for the 22" Printer (I BM 2222 Printer) 

prints the standard 66 lines per page.) Separate 
settings are specified by entering different 
FORMS statements for each tractor during 
the MODI FY phase. 

Log Device 
The log device is used to print OCL statements 
and messages. The PRIMARY tractor will be 
the log device at IPL time when the 2222 Printer 
is used. The secondary tractor can be assigned 
as the logging device by entering LOG at either 
READY or MODIFY time. If the secondary 
tractor is the logging device, logged data begins 
in print position 110. (See READY-Entering 
LOG and MOD/FY-Entering LOG in Appendix 
E.) 



MODI FY - Entering the Keyword FORMS 

.--1 System prompts MODIFY 

(~~- ~~~~~~::~tf ::·ve 
":~~ in the job 

op••·r· types Fo RMs 

~ ::~t~r:~:s FORMS DEVICE 

V! I i-------i 
PRIMARY SECONDARY 

I I 

l 
System prompts LIN ES 

i 
Operator types 
new lines per 
page setting 

I 

I 

i 

i 
Operator presses 
PROG START 
(for current lines 
per page) 

I 

.·:·:::.... Question· Does 

r~~~:~;· ~~ti ~~use l 
yr 
See keyword 
description 
of the other 
MODIFY 
option 

T Q Operator types 

/\./ RUN © 

© Whenever the keyvvord FORMS is entered in an OCL sequence a system halt occurs after RUN in case the operator needs 
to change the paper in the printer. The system remains idle until the operator presses the PROG START key. 

OCL for the 22" Printer (IBM 2222 Printer) 215 



APPENDIX E: OCL FOR THE IBM 2265-2DISPLAV 

The I BM 2265-2 display unit can be used as the 
system logging device. The logging device dis
plays conversational OCL statements, utility 
control statements, job comments, and error 
messages and codes. The log device can also be 
used for normal output from the job being run. 

When the 2265-2 (CRT) is used as the logging 
device, an additional 1 K of core storage is needed 
for the system, thus reducing the core available 
for the user program. This extra core is not needed 
if the user program specifies the CRT as an output 
device. 

The operator can assign either the CRT display or 
the printer as the logging device. If the operator 
changes the logging device the change remains in 
effect until either: 

• The operator specifically overrides the 
change with another LOG statement. 

• The next IPL procedure. 

216 Appendix E: OCL for the I BM 2265-2 Display 



READY - Entering LOG 

..,., System prompts READY 

5::J Operator types LOG 

.-.- ~~~·~:~~~:ts 

I 5::J Operator types: 

l I 
CRT SECONDARY 

.-.- ~:::;::s~~~~c~.RT l 
System assigns 
secondary 
tractor as 
logging device . 

.-.I System prompts READY 

OCL for the I BM 2265-2 Display 217 



MODI FY-Entering LOG 

218 

I 
CRT 

l 

System prompts MODIFY 

~ Operator types LOG 

System prompts 
LOG DEVICE 

I 
Operator types: 

SECOJDARY 

Enter here if you've already 
used a MODIFY option in the 
job 

PRIMARY 

System assigns CRT System l.ssigns 
secondary 
tractor as 
logging device. 

.-I ~~~:7 ::~~;g~:;i::'.:. as logging device 

l 
Yes 

Question: 
Does operator want to 

use another MODIFY l 
option? 

No 

sL keyword description 
of the other MODI FY 

Q Jperator types 
I\/ RUN 

option 



The operator's OCL guide will be available for 
you to use to tell your operator how to respond 
to the OCL prompting for a job. The CALL 
cycle is not included on the guide because 
the OCL prompting for that cycle is so 
short. 

IBlfl 
Job--------

•Mt w,.ass~ * *HWl8 '"¢ 

APPENDIX F: OPERATOR'S OCL GUIDE 
EM-

International Business Machines Corporation 

System/3 Model 6 

ti' ¥*'. 

GX21-9126· 
Printed in U.S.A. 

Date ________________ _ OPERATION CONTROL LANGUAGE (OCL) GUIDE 

Programmer ______________ _ 

Keywords Responses Considerations 

t-r=-r'-t"--t--r--t-"-1--;--;--;i--i--1--t-+=-+-+-+-+-+-+B-+U-+l-+L-+D-+--+-+--+--O~-Pr_oc_ed_u_re_N_a_m_e ____________ _ 
=-F1,R1, F2orR2 

R E A Dy 
0 0 0 B UI L D h!_ A ~E 

!!_ N 0 1 T 
0 AD I I:!_ A ~E 

~ N T 
0 D AT 
0 3 0 s WI T CH 
0 4 F I L N AIME 

u NI T 
p A~ K 

0 4 L A B E 
4 R E C 0 R 
4 T R~ c K 
4 6 0 c A T 

0 4 R EI:!_ A I 
4 D A IT E 
5 F I L E N AM 

u NI T 
p AC K 
L AB E 

4 E C 0 R 
5 T RA c K 

0 c A T 
0 5 R E T Al 
0 5 D AT E 
M 0 D I F y 

D S 

0 N 
N 

D S 
s 
I 0 N 
N 

Columns 75-80 of RPG Control Card or System Program Name 

F1, R1, F2 or R2 

mmddyy or ddmmyy 

1-0n, 0-0ff, X-No Change 

~
Other Possible Entry J 
Lines 020-058) 

7 for Delayed Respanse 

Columns 7-14 of RPG File Description Specifications or Predefined Filename 

F1, R1, F2 or R2 

Disk Name (Assigned by Disk Initialization Program) 

VTOC File Name (if different than response to FILE NAME) 

1-999999 (Maximum Number of Records in File) 

1-398 (Maximum Number of Tracks for this File) 

8-405 Location of First Track of File 

S-Scratch, T-Temparary, P-Permanent 

mmddyy or ddmmyy 

Columns 7-14 of RPG File Description Specifications or Predefined File Name 

F1, R1, F2 or R2 

Disk Name (Assigned by Disk Initialization Programl 

VTOC File Name (if different than response to FILE NAME) 

1-999999 (Maximum Number of Records in File) 

1-398 (Maximum Number of Tracks for this File) 

8-405 Location of First Track of File 

S.Scratch. T-Temporarv. P-Permanent 

mmddyy or ddmmyy 

MODIFY OPTIONS 

1. Enter RUN 
2. Enter CANCEL 
3. Correct Statement 

Enter Statement number 
Retype or delete (,) response 

4. Create new Statement 
INCLUDE, LOG, FORMS, •(For Comments) 

Appendix F: Operator's OCL Guide 219 



APPENDIX G: CARD OCL FOR MODEL 6 
w 

The I BM 5496 Data Recorder, Model 1, with 
System/3 Model 6 On-Line Fe.ature provides 
card input/output capability for System/3 
Model 6. The data recorder is selected as system 
input device during OCL prompting. Control 
is returned to the keyboard by entering a 
READER statement in the data recorder or 
by performing another program load procedure. 

ASSIGNING DATA RECORDER AS SYSTEM 
INPUT DEVICE 

System Prompts Operator Enters 

At IPL time DATE -
READER -

Between jobs READY -
READER -

current date 
DATA96 

READER 
DATA96 

Following the DATA96 response, all OCL must be 
entered in card form from the data recorder. 

At the time the data recorder is selected as system 
input device the following switch settings must be: 

Operator Console - DATA RCRDR switch 
to ON LINE 

Data Recorder AUTO REL switch to 
ON, all others OFF. 

220 Appendix G: Card OCL for Model 6 

RETURNING CONTROL TO l<EVBOARD 
The keyboard is reassigned as system input 
device by doing either of the following: 

• Enter a/& statement followed by a II 
READER KEY statement from the Data 
Recorder. These statements must be 
placed after a // RUN statement and 
before a II LOAD or II CALL statement. 

• Perform a program load from the operator 
console. 

CARD FORMAT OF OCL STATEMENTS 
The following OCL statements can be loaded 
from the data recorder. The parameters of 
the statements that are prompted in con
versational mode are described elsewhere in 
this book. The statements that are allowed 
with card input are described in the notes 
following this list. 

In statement formats, special characters such as 
II, and words written in capital letters, are infor
mation that must be used exactly as shown. 
Words written in small letters, such as code, 
program-name, and unit, represent information 
that you must supply. 



CD 

© 

© 

© 

© 

© 

(!) 

© 

Application 

Program Nam~ Number 

OCL STATEMENTS 

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 E 

IV L ~D lf_r 019_ rel Im-ma hnleJ L:lJU hl ~ 

1/[Lj L~ AD * 
~ ~A L~ pr be. I~ ~t" ~- ha me i. u lnh t 

I// RUN 

Ill R~: ~D !EJRJ IKE~1 

lllLJ lS w II CIH ~x ~~ 'IC'.i)t. l>Cl)t 

l&'1 CD MP IL E bB IJE Cl] -u n' t1, ISJO ~R ~E ~Pl - loj e_J_ u~ I tr lrlll~ -lul 

ILIL l=O IRM lSI Dt i',./ l ~E .. 10 Rl Ml~ JC!IY L1 l\IE 5- nu ~b ~r 
l7l7 FQJ RM ~ lQE Vl c.IEJ -l<; Et1 ON DlA l~lY LI NE lS- lnlJ mb ler 

VIL L~ G ~,N 
llV ('I, r:; br:F '-1 

k11 L "I ~'Rill vv LO ~ ~E IARti \ h1 
ILV '"'G' IS1£ ~I"' ~'-' lAIR!Y NQ w !Ell wE N~ ME -lf t\ ~In le. ah1 \JN \1 -u nll JJ ID ti 1r,k' '"" n lahl~ w ~A ~JS L- f I I1c lnlal ~ RE "l'ir RIO [SH [}jl ltnh IPIH tT It' iii rlk' s-b_ JI tnlhl ~ t-11 "11..1 w I"' 1'1A: rn b~ -ft ~k tnb R rer hl -

J# 

~~ J_D ~trJ EJ- kll~ t~ JV t-a h~u le~ All clo 

w ~o HA IL T 

vv ~A LI 

0L Pl~ v~E 
[if 
~~ 
0*1 

Card OCL for Model 6 221 



Q) An asterisk indicates that the object program will be loaded 
from the data recorder. Program-name and unit parameters 
must not be included. The cards that contain the program 
must follow the RUN statement for the program and must 
be followed by I* to indicate the end of the object deck. 

@OBJECT-unit must be the first parameter on the state
ment. 

(!)The DEVICE parameter is optional. The LINES param
eter must be present. 

©The log device must be on when the system is in 
conversational mode. 

©LABEL, RECORDS or TRACKS, LOCATION, RETAIN, 
and DATE parameters are optional. NAME-filename 
must be the first parameter on the statement. 

@During card input, the system halts each time a I* 
(end-of-job) or I& statement is read. The NO HALT 
statement allows the system to start the next job without 
a halt. The HALT statement is used to cancel a NO HALT 
condition. If the HALT and NOHALT statements are 
placed in a procedure they are not displayed when the 
procedure is prompted. 

Q)A PAUSE statement entered from the data recorder 
causes the system to stop until the operator restarts it. 
PAUSE statements are usually preceded by comments 
(*) instructing the operator to perform some function 
on the system. If PAUSE statements and comments 
are placed in a procedure the comments are displayed 
during prompting but the system does not stop. 

©I* indicates end-of-job. I& is used as a delimiter and 
indicates that a new job is starting. If a 3 option 
(immediate cancel) was taken at a halt in the preceding 
job the system looks for the next LOAD or CALL 
statement in the job stream. The I& statement changes 
this mode and tells the system to read the next 11 card 
regardless of what it is. In this manner a II READER 
KEY statement would be recognized, returning control 
to the keyboard. 

222 



GENERAL CODING RULES 
The rules for coding the OCL statements in cards 
are as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

II in positions 1 and 2. 

One or more blanks between the II and the 
word that forms the statement identifier 
(LOAD, RUN, CALL, etc.). 

One or more blanks between the statement 
identifier and the first parameter. 

If you need more than one parameter, use 
a comma to separate them. No blanks 
are allowed in or between parameters. 
Anything following the first blank is 
considered a comment. 

If you are writing keyword parameters 
(XXX-xxx), place the keyword first and 
use a hyphen to separate the keyword 
from the code or data. 

If the parameter is not a keyword param
eter, write the parameters in the order 
in which they are shown. Keyword 
parameters can be in any order except 
in the following cases: 

II COMPILE 

II Fl LE 

OBJECT-unit must be 
the first parameter. 

NAME-filename must 
be the first parameter. 

All OCL statements except Fl LB must not 
exceed 96 characters. Because of the large 
number of parameters possible in a Fl LE 
statement, you can continue the Fl LE 
statement on additional cards. The rules 
are: 

• Place a comma after the last parameter 
in every card but the last. The comma 
followed by a blank indicates the 
statement is continued. 

8. 

• Begin each new card with II in positions 
1 and 2. 

• Leave one or more blanks between the 11 
and the first parameter. 

Comments can be placed after the parameters 
on any OCL statement (except HI KEY param
eters. See Coding Multi-Volume File Param
eters in this appendix). Leave one or more 
blanks after the last parameter and then list 
the comment. Complete lines of comments 
are entered with the * comment statement. 
Place an * in column 1 and start the comments 
in column 2. 

STATEMENT ORDER 
I& should be the first statement of a 

job. 

II LOAD 

II CALL 

II RUN 

statement must precede RUN state
ment in job stream. If LOAD*, the 
cards that contain the program must 
follow the RUN statement and be 
followed by a/* statement. 

statement must precede RUN 
statement in job stream. 

statement must be last statement 
within the set of statements re
quired to run a program. 

II READER statement must precede a LOAD 
or CALL statement and follow 

II SWITCH 

a RUN statement. 

statement must follow a LOAD 
or CALL statement and must 
precede a RUN statement. 

II COMPILE statement must follow a LOAD 
or CALL statement and must 
precede a RUN statement. 

II FORMS can appear anywhere in the job 
stream. 

Card OCL for Model 6 223 



II LOG 

II FILE 

II HALT 

statement must follow a LOAD 
or CALL statement and precede 
a RUN statement. 

statements must follow a LOAD 
or CALL statement and precede 
a RUN statement. 

can appear anywhere in the job 
stream. 

II NOHAL T can appear anywhere in the job 
stream. 

II PAUSE can appear anywhere in the job 
stream. 

*comments can appear anywhere in the job 
stream. 

/* (end-of
job) 

follows a program deck or data 
file entered from the Data 
Recorder. 

CODING MUL Tl-VOLUME FILE PARAMETERS 
When coding card OCL file statements for multi
volume files these rules must be followed: 

224 

1. Each pqrameter that requires multiple 
entries must begin and end with a single 
quote (') and have the entries separated 
by commas. 

2. 

3. 

4. 

5. 

The HI KEY parameter must contain 
HI KEYs separated by commas. When 
continuation cards are needed for HI KEY 
parameters, comments are not allowed on 
the cards, and the data must start in column 
four of the continuation card. 

An apostrophe within a HI KEY must be 
entered as a double apostrophe or it will 
be decoded as end of HI KEYs, and an 
error will occur. 

When using only one volume of an indexed 
multi-volume file, the HIKEY parameter must 
be included with beginning and ending apos
trophes. The other file parameters must not 
have apostrophes. 

To indicate packed keys, HIKEY-P'xxxx, xxxx, 
xxxx,' must be coded. All characters in packed 
HI KEYs must be numeric and all packed 
HI KEYs must be the same length. 

Key length is not a parameter for indexed files when 
OCL statements are entered on cards. Sample job 2 
under Multi-Volume Files in Appendix A would have 
the following four OCL file statements if OCL were 
on cards: 

II FILE NAME-INVMSTR,UNIT-'R1,R2', 
PACK-'VO LI 02, VO LI 03, VO Ll03, VO LI 04 

II VOLi 05',HI KEY-'175-200-233W182, 
380-456-280W3R6.629-384-300W3F6 

II 949-475-849W8F8,999-999-999W9F9', 
TRACKS-'100, 193, 150, 193,80' 

II LOCATION-'87,8,49,8,8',RETAIN-P 



These messages will be given if errors are made 
during conversational OCL. Most messages are 
self-explanatory and will not need further 
reference, however, if the operator is in doubt 
as to the meaning of a message references are 
given. 

APPENDIX H: OCL ERROR MESSAGES 

Appendix H: OCL Error Messages 225 



Number Message Meaning 

00 NO PROGRAM NAME GIVEN Response to LOAD NAME was blank. 

01 NO UNIT GIVEN Response to UN IT was blank. 

02 INVALID PROGRAM NAME 
SPECIFIED Response to LOAD NAME was invalid. See LOAD 

NAME in Part I. 

03 INVALID UNIT SPECIFIED Response to UNIT was invalid. SeeVNIT in Part I. 

04 PROGRAM NOT FOUND ON The program specified by response to LOAD NAME 
SPECIFIED UNIT was not found in the object library of the unit specified 

by response to UNIT. 

05 NO PROCEDURE NAME GIVEN Response to CALL NAME or BUILD NAME was blank. 

06 SOURCE NOT FOUND ON The source module specified by response to SOURCE 
SPECIFIED UNIT was not found in source library of unit specified by UNIT. 

07 INVALID PROCEDURE NAME Response to BUILD NAME or CALL NAME was 
invalid. See BUILD NAME in Part I. 

08 MULTI-VOLUME FILE RESPONSES The number of responses to file keywords PACK, HIKEY, 
NOT IN 1-1 RATIO LOCATION, TRACKS or RECORDS were not equal. 

09 PROCEDURE NOT FOUND ON Procedure specified by response to CALL NAME was not 
SPECIFIED UNIT found in source library of unit specified by UNIT. 

10 INVALID SWITCH SETTINGS Response to SWITCH was other than eight positions 
of X, 1, or 0. See SWITCH in Part I. 

11 NO SOURCE NAME GIVEN Response to SOURCE was blank. See SOURCE in 
Part I. 

226 



Number Message Meaning 

12 INVALID SOURCE NAME Response to SOURCE was invalid. See SOURCE in 
SPECIFIED Part I. 

13 INVALID DATE SPECIFIED Response to DATE in file keywords was invalid. See 
DATE (File Date) in Part I. 

14 TOO MANY RESPONSES TO A Only 10 volumes are allowed in each Multi-Volume 
MU L Tl-VOLUME Fl LE KEYWORD File. See Mu/ti-Volume Files in Appendix A. 

15 NO Fl LE NAME GIVEN Procedure contains file keywords but not FILE NAME 
response. 

16 NO PACK GIVEN Procedure contains file keywords but not PACK response. 

17 INVALID FILE NAME SPECIFIED Response to FILE NAME invalid. See FILE NAME in 
Part I. 

18 INVALID LABEL SPECIFIED Response to LABEL is invalid. See LABEL in Part I. 

19 INVALID PACK SPECIFIED Response to PACK is invalid. See PACK in Part I. 

20 INVALID RETAIN Response to RETAIN other than P, T, Sor A. See 
DESIGNATION SPECIFIED RETAIN in Part I. 

21 INVALID TRACKS SPECIFIED See RECORDS (and TRACKS) in Part I. 

22 MAXIMUM FILE STATEMENTS More than 15 file statements entered. 
ENTERED 

OC L Error Messages 227 



Number Message Meaning 

23 BOTH TRACKS AND RECORDS Responses to both TRACKS and RECORDS have 
SPECIFIED been given. See RECORDS (and TRACKS) in Part I. 

24 INVALID RECORDS SPECIFIED See RECORDS (and TRACKS) in Part I. 

25 INVALID LOCATION SPECIFIED Response to LOCATION must be 8 through 405. 

26 DEVICE NOT SUPPORTED CRT or READER referenced and not ·on system. 

27 INVALID DEVICE Response to DEVICE or READER invalid. See 
Modify-Entering FORMS in Part I. 

28 INVALID NUMBER OF LINES Response to LINES not between 12 and 112. 

29 INVALID REQUEST Response to MODI FY is invalid. 

30 INVALID STATEMENT NUMBER Invalid statement number entered as response to modify. 

31 TOO MANY UTILITY CONTROL 
STATEMENTS IN PROCEDURE-JOB 
CANCELLED 

32 RUN OUT OF SPACE IN 
SCHEDULER WORK AREA 

33 RESPONSE REQUIRED-DELAYED 
RESPONSE IN CALLED 
PROCEDURE 

34 TOO MANY MUL Tl-VOLUME Number of units specified exceeds number of packs 
FILE UNITS SPECIFIED specified. 

228 



Number Message Meaning 

35 DELAYED RESPONSE(?) NOT 
ALLOWED 

36 JOB CANCELLED You entered/* or job was cancelled because of errors. 

37 MULTI-VOLUME NOT VALID Multi-response to this keyword is not allowed. 
THIS STATEMENT 

38 ENTER MINUS(-) NOT ALLOWED ENTER- is allowed only during a BUILD cycle for 
some keywords. 

39 ERRORS IN PROCEDURE - JOB 
CANCELLED 

40 ERRORS IN OCL STATEMENT 

41 ERRORS IN RESPONSE 

42 DUPLICATE PROCEDURE NAME Response to BUILD NAME is already in source 
IN LIBRARY library of unit specified. See BUILD NAME in 

Part I. 

43 DUPLICATE PROCEDURE New procedure being entered will overlay old procedure 
DELETED with same name. 

44 INVALID KEYWORD Keyword found in procedure is invalid or response to 
READY is invalid. 

45 TOO MANY UTILITY CONTROL Only 40 utility control statements may be entered. 
STATEMENTS ENTERED 

46 PERMANENT DISK ERROR 

47 RUN OUT OF SPACE IN PROCEDURE 
LIBRARY - JOB CANCELLED 

OCL Error Messages 229 



Number Message Meaning 

48 I NV ALI D SYSTEM DATE See DA TE (System Date) in Part I. 
SPECIFIED 

49 DUPLICATE KEYWORD A procedure contains a duplicate keyword. 

50 RESPONSE REQUIRED You must respond to this keyword. PROG START 
is not allowed. 

51 TOO MANY PACKS, HI KEYS, Number of HI KEYS plus number of packs exceeds 52. 
OR BOTH SPECIFIED Job cancelled. 

52 DUPLICATE MUL Tl-VOLUME See Multi-Volume Files in Appendix A. 
FILE UNIT SPECIFIED 

53 INVALID RESPONSE DURING Cannot change log device or change to card OCL. 
INQUIRY 

54 INVALID HIKEY SPECIFIED HI KEY entered is longer than KEY LENGTH 
specified or quotes not entered when copying single 
volume of multi-volume file. 

55 INVALID HIKEY LENGTH Response to KEY LENGTH is greater than 29 or is 00. 
SPECIFIED 

.. 

56 HI KEYS OUT OF SEQUENCE HI KEYS must be in ascending sequence. 

230 



I BM System/3 Model 6 users who have co-resident 
systems (both disk system management and 
System/3 BASIC) can transfer control from disk 
system management to System/3 BASIC by 
responding to READY with ENTER BASIC. 

APPENDIX I: CO-RESIDENT SYSTEMS 

Appendix I: Co-Resident Systems 231 



APPENDIX J: IBM SVSTEM/3.STANDARD CHARACTER SET 

Character 
Hexadecimal 
Equivalent 

Blank 40 

¢ 4A 

4B 

< 4C 

( 4D 

+ 4E 

I 4F 

& so 

1' SA 

$ SB 

. SC 

) SD 

: SE 

---, SF 

- (minus) 60 

I 61 

6B 

% 6C 

- (underscore) 60 

> 6E 

? 6F 

: 7A 

# 7B 

@ 7C 

(Apostrophe) 70 

232 Appendix J: I BM System/3 Standard Character Set 

7E 

=F 7F 

A C1 

B C2 

c C3 

D t4 

E cs 

F C6 

G C7 

H cs 

I C9 

} DO 

J D1 

K D2 

L D3 

M D4 

N DS 

0 D6 

p D7 

Q DS 

R 09 

s E2 

T E3 

u E4 

v ES 

r--

w E6 

x E7 

y ES 

z E9 

0 FO 

1 F1 

2 F2 

3 F3 

4 F4 

s FS 

6 F6 

7 F7 

s FS 

9 F9 



Mn• & 5 9!**' 

GLOSSARY 
1-·1· t .YP. S ·MP*'· f · 0 E-· ·1 

Capsule definitions of some common computer terms used in this manual. 

CPU 

end-of-job-halt 

IPL 

KDE 

KSE 

object library 

object library directory 

OCL 

overlay 

procedure 

sector 

source library 

source library directory 

source statements 

sysgen 

system printer 

track 

VTOC 

(Central Processing Unit) Nucleus of the Model 6 hardware. 

system halt at the end of every job to give the operator time for any necessary 
housekeeping chores before beginning the next job. 

(Initial Program Load) The process by which the operator loads into core storage 
the program that controls the operation of the system. 

Keyboard Data Entry Utility Program 

Keyboard Source Entry Utility Program 

contains compiled programs and system programs. 

contains name and address (track and sector) of each object program in the 
library. 

(Operation Control Language) An OCL statement consists of a keyword and a 
response. 

to erase data on disk by writing new data over it. 

sequence of OCL statements in a source library. 

section of a disk track. Each track is divided into 24 sectors. 

contains procedures, RPG source programs, and KSE input. 

contains name and address (track and sector) of each source program in the 
library. 

program instructions that have not been compiled (translated) into machine 
language. 

(system generation) Process required to get a system ready to run after installation. 

displays OCL statements, utility control statements, job comments, and error 
codes. (The system printer can also display the normal output of the job being 
run.) 

Each disk is divided into concentric circles called tracks. 

(Volume Table of Contents) That part of a disk which contains detailed information 
about every file on the disk. 

Glossary 233 



234 



$ALT (Alternate Track Assignment) 
(see also alternate track assignment program) 
as response to LOAD NAME in OCL cycle 53 

$BUILD (Alternate Track Rebuild) 
(see also alternate track rebuild program) 
as response to LOAD NAME in OCL cycle 53 

$COPY (Disk Copy/Dump) 
(see also disk copy/dump program) 
as response to LOAD NAME in OCL cycle 53 
in OCL sample job #4 76 

$DE LET (File Delete) 
(see also file delete program) 
as response to LOAD NAME in OCL cycle 53 

$DIU (Data Interchange Utility) 
as response to LOAD NAME in OCL cycle 53 

$DSORT (Disk Sort) 
as response to LOAD NAME in OCL cycle 53 

$1NIT (Disk Initialization) 
(see also disk initialization program) 
as response to LOAD NAME in OCL cycle 53 
in OCL sample job # 1 70 

$KDE (Keyboard Data Entry) 
as response to LOAD NAME in OCL cycle 53 

$KSE (Keyboard Source Entry) 
as response to LOAD NAME in OCL cycle 53 

$LABEL (File and Volume Label Display) 
(see also file and volume label display program) 
as response to LOAD NAME in OCL cycle 53 

$MAI NT (Library Maintenance) 
(see also library maintenance program) 
as response to LOAD NAME in OCL cycle 53 

$RPG (RPG Compiler) 
as response to LOAD NAME in OCL cycle 53 

* (see comments) 
/& (card OCL) 223 
/* 

card OCL 223 
conversational OCL 11 

II blank 88 
II ALLOCATE 137 

(see also allocate, library maintenance) 
II ALT 102 

(see also alternate track assignment program) 
II CEND 158 

(see also copy, library maintenance) 
II COPY 158-162 

(see also copy, library maintenance) 
II COPYPACK 132 

(see also disk copy/dump program) 
II COPYF I LE 132 

(see also disk copy/dump program) 
II DELETE 177 

(see also delete, library maintenanc;e) 
II DISPLAY 115 

(see also file and volume display program) 
II END 

(see END control statement) 
II REBUILD 109 

(see also alternate track rebuild program) 

II RENAME 179 
(see also rename, library maintenance) 

II REMOVE 122 
(see also file delete program) 

II SCRATCH 122 
(see also file delete program) 

II SELECT KEY 132 
(see also disk copy/dump program) 

II UIN 92 
(see also disk initialization program) 
in OCL sample job # 1 70 

II VOL 92 
(see also disk initialization program) 
in OCL sample job# 1 70 

7 (see delayed response) 

allocate, library maintenance 
control statement summary 149 
examples 182 
parameter descriptions 151 
parameter summary 150 
uses 149 

ALT control statement 102 
(see also alternate track assignment program) 

alternate track assignment 
conditional assignment 104 
unconditional assignment 105 
cancel prior assignment 105 

alternate track assignment program 101 
control statement summary 102 
example 107 
OCL considerations 106 
parameter descriptions 104 
parameter summary 103 
program name 106 
program uses 101 

alternate tracks 
alternate track assignment 104 
disk initialization 96 
incorrect data on 105 

alternate track rebuild program 109 
control statement summary 109 
example 113 
OCL considerations 112 
parameter descriptions 111 
parameter summary 110 
program name 112 
program uses 109 
substitute data description 111 
substitute data summary 110 

apostrophes in control statements 88, 193, 195 
asterisk 

(see comments) 
ASSIGN parameter 105 

blanks in control statements 88 
BUILD NAME 

in BUILD Keyword-Response Summary 27 
its position in the BU I LD cycle 26 
keyword description 45 

Index 

Index 235 



BUILD cycle 
when to use 9 

BUI LDC NAME 
keyword description 205 

BU I LDC cycle 
when to use 204 

CALL NAME 
in the CALL Keyword-Response Summary 42 
its position in the CALL cycle 41 
keyword description 45 

CALL cycle 
when to use 9 

CANCEL 
as response to MODI FY in BUILD cycle 39 
as response to MODI FY in CALL cycle 43 
as response to MODI FY in LOAD cycle 24 
effect of entering during BUILD cycle 59 
effect of entering during CALL cycle 59 
effect of entering during LOAD cycle 59 
entering the keyword during MODI FY 59 

cancelling alternate-track assignments 105 
cancelling job 

see MODIFY considerations in BUILD Keyword-Response 
Summary 39 

see MODI FY considerations in CALL Keyword-Response 
Summary 43 

see MODI FY considerations in LOAD Keyword-Response 
Summary 24 

card OCL input 220-224 
CEND control statement 

reader-to-disk copy 158 
disk-to-card copy 158 

central processing unit (CPU) 
definition 233 

chained procedures 204 
changing a previous OCL statement 

during the MODI FY phase 56 
changing file designation 52 
changing object library size 

control statement 150 
disk considerations 154 

changing printed output for system programs 
see FORMS under MODI FY considerations in BUILD cycle 39 
see FORMS under MODI FY considerations in CALL cycle 43 
see FORMS under MODI FY considerations in LOAD cycle 24 

changing size of source library 
control statement 150 
disk considerations 152 

changing status of system printer 
see LOG under MODI FY considerations in BUILD Keyword
Response Summary 39 

see LOG under MODI FY considerations in LOAD Keyword
Response Summary 24 

see MODI FY considerations in CALL Keyword-Response 
Summary 43 

character set, standard 232 
clear initialization 94 
coding rules, control statements 

use of apostrophes 88 
use of blanks 88 
use of commas 88 
use of hyphens 88 
statement length 88 

236 

commas in control statements 
disk utilities 88 
OCL 

deleting statement 57 
in HIKEY 199 

comments 
entering comments during the MODI FY phase 58 

. COMPILE OBJECT 
in BUILD Keyword-Response Summary 29 
in LOAD Keyword-Response Summary 17 
its position in the BUILD. cycle 26 
its position in the LOAD cycle 15 
keyword description 46 

compiled RPG program 
location of determined by OBJECT statement 46 

compiling large RPG source programs 203 
compiling RPG source programs 

recommended method of 72 
conditional assignment of alternate tracks 104 
control statement summaries 

alternate track assignment 102 
alternate track rebuild 109 
disk copy/dump 132 
disk initialization 92 
file and volume label display 115 
file delete 121 
library maintenance 

allocate 150 
copy 156 
delete 177 
rename 179 

control statements 
alternate track assignment 

ALT statement 102 
alternate track rebuild 

REBUILD statement 109 
coding rules 88 
definition of disk/copy dump 88 

COPYFILE statement 132 
COPYPACK statement 132 
SELECT statement 132 

disk initialization 
UIN statement 92 
VOL statement 92 

file and volume label display 
DISPLAY statement 115 

file delete 
REMOVE statement 122 
SCRATCH statement 122 

library maintenance 
ALLOCATE statement 137 
COPY statement 158-162 
DELETE statement 177 
RENAME statement 179 

conversational OCL 
definition and how it works 7 

copy, library maintenance 
control statement summaries 158-162 
examples 185 
parameter descriptions 166 
parameter summary 163 
uses 156 

COPYFI LE control statement 132 
copying disk from one removable disk to another on drive 1 136 
copying entire disk 136 
copying files 136 



copying library entries 
reader-to-disk 166 
disk-to-disk 168 

COPYPACK statement 132 
correcting OCL statements 56 
CPU (Central Processing Unit) 

definition 233 
requirements for conversational ii 

creating object library 
control statement 149 
disk considerations 153 

creating source library 
control statement 149 
disk considerations 151 

customer program name 
as response to keyword LOAD NAME in OCL cycle 53 

DAT A parameter 126 
DATA96 

as response to keyword READER 22 
Data Interchange Utility ($DI U) 

as response to LOAD NAME in OCL cycle 53 
data recorder 

used to code OCL statements on cards 220 
DATE (file date) 

in BUILD Keyword-Response Summary 39 
in LOAD Keyword-Response Summary 23 
keyword description of 52 
position in BUILD sequence 26 
position in LOAD sequence 15 
restrictions during file cr~ation runs 52 

DA TE parameter 
file delete program 126 

DA TE statement, format of 
definition 47 
general restrictions 47 

DA TE (system date) 
in BUILD Keyword-Response Summary 31 
in LOAD Keyword-Response Summary 18 
keyword description 47 
position in BU I LD sequence 26 
position in LOAD sequence 15 

defective tracks 
address on disk 104 
definition (see surface analysis) 
retesting of 95 

delayed response 
definition of, restrictions, effect on system 9 

delayed responses in procedure 
see footnote 1 B of CALL Keyword-Response Summary 

delete, library maintenance 
control statement summary 177 
examples 188 
parameter summary 178 
uses 176 

DELETE parameter 177 
deleting a previous OCL statement 

during the MODI FY phase 57 
deleting files 126 
deleting library entries 176 
deleting object library 

control statement 150 
disk considerations 154 

deleting procedures 
general discussion 45 

deleting records from a file 137 

deleting source library 
control statement 150 
disk considerations 152 

designation of library entry 174 
direct files 

deleting records from 137 
OCL consideration for multi-volume files 196 
printing part of 138 
records-tracks conversion for 212 

disk copy/dump program 
control statement summary 132 
examples 143 
considerc:itloi:t~! 9_CL _ 1_40 
copying entire disk 136 
copying or printing files 136-137 
parameter descriptions 136 · 
parameter summary 134 
program name 140 
program uses 131 

disk drive 
capacity 94 
requirements for conversational OCL ii 

disk files 213 
disk initialization program 91 

control statement summary 92 
example 98 
OCL considerations 97 
parameter descriptions 94 
parameter summary 93 
program name 97 
program uses 91 

disk name 
characters allowed in 96 
length of 95 
response to PACK in OCL cycle 50 
uses 

alternate track assignment 104 
alternate track rebuild 111 
disk initialization 96 
file delete 126 

disk organization 213 
disk-to-card copy 

considerations 172 
control statements 161 

disk-to-disk copy 
considerations 168 
control statements 158 

disk to printer and card copy 
considerations 172 
control statements 162 

disk-to-printer copy 
considerations 167 
control statements 160 

DISP (displacement) parameter 111 
DISPLAY control statement 115 
duplicate procedure names 

general discussion 45 
operator's options following 45 

END control statement 89 
end-of-job halt 

definition 233 
ENTER - Key 

purpose of, when to use 13 
use in bypassing non-required file keywords 13 
uses of 13 

Index 237 



ENTER+ Key 
its function and its relationship to the PROG START 13 
key 
purpose of, when to use 13 
uses of 13 

entering comments 
during the MODI FY phase 58 

error code 
(see error messages) 

error code options 2 
error messages 225 
errors in OCL statements 

how to correct using MODI FY statement 56 
examples 

alternate track assignment 
conditional assignment 107 

alternate track rebuild 
correcting characters on alternate track 113 

disk copy/dump 
copying entire disk 143 
copying a file 144 
printing part of a file 148 

disk initialization 
primary initialization 98 

file and volume label display 
printing VTOC information for two files 120 

file delete 
deleting one of several files having same name 128 

library maintenance 
changing source library size 183 
copying minimum system 185 
creating libraries 182 
deleting object library 184 
deleting permanent entries of one type 190 
deleting temporary entry 188 
deleting temporary entries with names beginning with 
certain characters 189 
printing library directories 186 
renaming source statements 191 
replacing library entry 187 

OCL 
chained procedures 209 
compile RPG 11 source 72 
copy disk 76 
include utility control statements in procedure 202 
initialize a disk 70 
multi-file CALL 81 
multi-file BUILD 78 
multi-volume indexed file creation 199 
multi-volume indexed file update 198 
process customer program 74 

external indicators 
at IPL 64 
considerations when responding to SWITCH in BUILD cycle 66 
considerations when responding to SWITCH in LOAD cycle 65 
current setting displayed in SWITCH statement 64 
using the SWITCH statement to change 64 

file and volume label display program 
control statement summary 115 
example 120 
OCL considerations 119 
parameter descriptions 117 
parameter summary 116 
program name 119 
program uses 115 

238 

file date 
keyword description 52 
restriction during file creation run 52 

file dates 126 
file delete program 

control statement summary 122 
examples 128-129 
OCL considerations 127 
parameter descriptions 126 
parameter summary 124 
program name 127 
program uses 121 

file designation 
how to change 52 
response to RETAIN in OCL cycle 51 

file keywords 
system-operator interaction during prompting of 49 

FILE NAME 
for $DSORT, $COPY, $MICR, $RPG, and $KDE 48 
for RPG Programs 
in BUILD Keyword-Response Summary 32 
in LOAD Keyword-Response Summary 19 
its position in the BU I LD sequence 26 
its position in the LOAD sequence 15 
keyword description 48 

file names 
file delete 126 
disk copy/dump 136 

files, direct 
records-tracks conversion for 212 

files, indexed 
records-tracks conversion for 212 

files, multi-volume 
OCL considerations for 194, 224 

files, sequential 
records-tracks conversion for 212 

FORMS 
entering the keyword during the MODI FY phase 60 

FROM parameter 
disk copy-dump 

copying entire disk 136 
copying or printing files 136 

library maintenance 166 

glossary 233 

HALT 
in card OCL 221, 224 
in conversational OCL 52 

halt, end-of-job 
definition 233 

HIKEY (see multi-volume files) 
how to use this manual 1 
hyphens in control statements 88 

I BM System/3 standard character set 232 
IBM-Supplied RPG Compile Procedure (RPG) 

as response to CALL NAME in CALL sequence 45 
increasing size of 203 
in sample job #2 72 

ID (identification) parameter 96 
INCLUDE 

during a CALL cycle 63 

entering during the MODIFYphase 62 
including control statements in a procedure 202 



response to MODIFY in BUILD sequence 40 
restrictions following keyword 63 
sample job 202 
special considerations involving INCLUDE statements 63 

indexed files 
multi-volume 

file statements for 198-224 
QC L considerations for 196 
OCL sample jobs for 198-199 

printing part of 149 
record-tracks conversion for 212 
reorganizing 137 

initial program load (IPL) 
definition 223 
establishing system date at 46 

incorrect data on alternate tracks 105 
initialization 

clear initialization 94 
general definition 91 
primary initialization 94 
secondary initialization 94 

KEY LENGTH (see multi-volume files) 
keyword 7 
keyword descriptions 

for each keyword 45-67 
what they are and how to use them 5 

keyword flowcharts 
what they are and how to use them 5 

keyword prompting 
how it's done 7 

keyword-response summary 
for the BUILD sequence 27 
for the CALL sequence 42 
for the LOAD sequence 16 

keyword-response summaries 
what they are and how to use them 5 

LABEL parameter 
File and volume label display 116 
File delete 126 
OCL 

in BUILD Keyword-Response Summary 34 
in LOAD Keyword-Response Summary 21 
its position in the BUILD sequence 26 
keyword description 50 
position in LOAD sequence 15 
when response is required 50 

large RPG programs, compiling 203 
LENGTH parameter 111 
length on control statements 88 
library directories 

definitions 147 
directory printouts 173 
object library directory size 153 
source library directory size 151 

library entries 
choosing designation 174 
copying entries 

considerations 166-175 
control statements 158-162 

deleting entries 177 
naming entries 173 
organization in libraries 147 
renaming entries 179 
types 147, 172 

library maintenance program 
control statement summaries 

allocate 150 
copy 158-162 
delete 177 
rename 179 

examples 
allocate 183 
copy 185 
delete 188 
rename 191 

library description 147 
OCL considerations 182 
parameter descriptions 

allocate 151 
copy 166 

parameter summaries 
allocate 
copy 163 
delete 179 
rename 180 

program name 181 
program uses 

allocate 149 
copy 156 
delete 176 
rename 179 

library, object 
definition of 233 

LIBRARY parameter 172 
library, source 

definition 233 
line counter specifications 

(see FORMS) 
LOAD NAME 

in BUILD Keyword-Response Summary 27 
in LOAD Keyword-Response Summary 16 
its position in BU I LD sequence 26 
its position in LOAD sequence 15 
keyword description 53 

LOAD sequence 
when to use 9 

LOCATION 
considerations for multi-volume files 196 
in the BUILD Keyword-Response Summary 37 
in the LOAD Keyword-Response Summary 22 
its position in BUILD sequence 25 
its position in LOAD sequence 15 
keyword description 51 

location of libraries on disk 
source with respect to object 147 
placement of source library 151 
placement of object library 153 

LOG 
22" printer as log device 214 
CRT as log device 216 
entering during MODIFY 218 
entering during READY 217 

machine requirements ii 
Model 6 disk organization 213 
Model 6 job cycle 7 

MODIFY 
changing a previous OCL statement 56 
deleting a previous OCL statement 57 
entering CANCEL 59 

Index 239 



MODIFY (continued) 
entering comments 58 
entering FORMS 60, 215 
entering INCLUDE 63 

restrictions on 63 
entering LOG 218 
in BUI LO Keyword-Response Summary 39 
in CALL Keyword-Response Summary 43 
in LOAD Keyword-Response Summary 24 
its position in the BUI LO cycle 26 
its position in the CALL cycle 41 
its position in the LOAD cycle 15 
keyword description of MODI FY options 54 
statement numbers 13 

multiple files 50 
multi-volume files 193 

coding for 198 
OCL considerations for 196 
sample jobs 198-199 

name of source program 
as response to COMPILE SOURCE in OCL BUILD cycle 46 
as response to COMPILE SOURCE in OCL LOAD cycle 46 

NAME parameter 173 
naming library entries 173 

characters to use 173 
length of name 173 
restricted names 173 

NEWNAME parameter 174 
NOHALT 

in card OCL 221, 224 
in conversational OCL 63 

object library 
changing size 

control statement 149 
disk considerations 154 

creating 
control statement 149 
disk considerations 153 

definition 147 
deleting 

control statement 149 
disk considerations 154 

reorganizing 
control statement 149 
disk considerations 154 

object library directory 
definitions 148, 172 
printout 167 
size 153 

OBJECT parameter 153 
. object programs, definitions of 147, 172 
OCL 

definition 7, 233 
OCL considerations 

alternate track assignment 106 
alternate track rebuild 112 
disk copy/dump 140 
disk initialization 97 
file and volume label display 119 
file delete 127 
library maintenance 181 
multi-volume files 196 

OCL cycle 7-9 
OCL guide 

sample form 219 

240 

operation control language (OCL) 
definition of 7, 233 

operator's OCL guide 
sample form 219 

organization of library entries 147 
OUTPUT parameter 136 
OUTPTX parameter 136 
overlay 

definition 233 
overriding system date 47 

P (permanent) file designation 
importance in deleting a procedure from a source library 45 

P (permanent) files 
restrictions 51 
when to assign a P (permanent) designation to a file 51 

PACK parameter 
alternate track assignment 104 
alternate track rebuild 111 
disk initialization 96 
file delete 126 
OCL 50 
considerations for multi-volume files 194 
in BUILD Keyword-Response Summary 34 
in LOAD Keyword-Response Summary 21 
its position in BUILD sequence 26 
its position in LOAD sequence 15 
keyword description 50 

parameter 88 
parameter descriptions 

alternate track assignment 104 
alternate track rebuild 111 
disk copy/dump 136 
disk initialization 94 
file and volume label display 116 
file delete 126 
library maintenance 

allocate 151 
copy 166 

parameter summaries 
alternate track assignment 103 
alternate track rebuild 110 
disk copy/dump 134 
disk initialization 93 
file and volume label display 116 
file delete 124 
library maintenance 

allocate 150 
copy 163 
delete 178 
rename 180 

permanent (P) files 
restrictions 51 
when to assign a P (permanent) designation to a file 51 

predefined filenames 
for $DSORT, $COPY, $MICR, $RPG, and $KDE programs 48 

primary initialization 94 
primary tractor 

in entering LOG during the MODIFY phase 214 
lines per page setting for 214 
print positions of 214 

printing entire VTOC 116 
printing file information from VTOC 116 
printing files 137 
permanent library entries 174 
printing library direct~ries 166-173 
printing libr~ry entries 166-173 



printing part of an indexed file 138 
printing part of direct file 138 
printing part of sequential file · 138 
procedure 

definition of 147, 172, 233 
deleting 45 

procedure name 
as response to CALL NAME in CALL cycle 45 
response to BUILD NAME in BUILD cycle 45 
restrictions on 45 

PROG START key 
uses of 13 
(see also keyword-response summary) 
when to use it 13 

program names 
alternate track assignment ($ALT) 106 
alternate track rebuild ($BUILD) 112 
disk copy/dump ($COPY) 140 
disk initialization ($1NIT) 97 
file and volume label display ($LABEL) 119 
file delete ($DELET) 127 
library maintenance ($MAINT) 181 

program operation 87 
all programs except library maintenance 87 
library maintenance 88 

prompting 
how it's done 7 

punching library entries 172 

question mark key 
purpose 9 

reader-to-disk copy 
considerations 168 
control statements 158 

READY 
in BUILD Keyword-Response Summary 27 
in CALL Keyword-Response Summary 42 
in LOAD Keyword-Response Summary 16 
its position in the BUILD sequence 26 
its position in the CALL sequence 41 
its position in the LOAD sequence 15 
its position in the Model 6 job cycle 7 
keyword description 64 

REBUILD 110 

RECORDS 
considerations for multi-volume files 196 
in BUILD Keyword-Response Summary 35 
in LOAD Keyword-Response Summary 21 
its position in the BUILD sequence 26 
its position in the LOAD sequence 15 
keyword description 50 

records-track conversion 212 
relative record number 138 
REMOVE statement 122 
rename, library maintenance 

control statement summary 179 
example 191 
parameter summary 180 
use 179 

renaming library entries 179 
REORG (reorganize) parameter 137 
reorganizing indexed files 137 
reorganizing object library 

control statement 149 
disk considerations 154 

reorganizing source library 
control statement 149 
disk considerations 153 

replacing library entries 
reader-to-disk copy 166 
disk-to-disk copy 168 
RETAIN parameter 174 
NEWNAME parameter 175 

RETAIN parameter 
library maintenance program 174 
OCL 

in BUILD Keyword-Response Summary 38 
in LOAD Keyword-Response Summary 23 
its position in BU I LD sequence 26 
its position in LOAD sequence 15 
key description 51 

RPG Compiler ($RPG) 
as response to LOAD NAME in OCL cycle 53 

RPG File Description Specifications 
source of RPG Filename in OCL cycle 48 

RPG filename 
response to FILE NAME in OCL cycle 48 

RPG programs 
compiling 72 
compiling large RPG programs 203 
recommended method of compiling 72 

RPG source programs 
compiling 72 
compiling large RPG source programs 203 
recommended method of compiling 72 

RUN 
keyword description 64 
response to MODI FY in BUILD sequence 39 
response to MODI FY in CALL sequence 43 
response to MODI FY in LOAD sequence 24 

routines, definitions of 147, 172 

S (scratch) files 
. restrictions 52 
when to apply an S (scratch) designation to a file 51 
(see examples) 

schedu lar work area 153 
SCRATCH control statement 122 
scratch (S) files 

restrictions 52 
when to apply an S (scratch) designation to a file 51 

secondary initialization 94 
secondary tractor (of 22" printer) 

entering LOG for 214 
lines per page setting for 214 

sector ···· 

definition 233 
SELECT control statement 132 
SELECT KEY parameters 138 
SELECT PKY parameters 138 
SELECT RECORD parameters 138 
sequential files 

deleting records from 137 
printing part of 138 
records-tracks conversion for 212 

sequential multi-volume files 
OCL considerations for 196 

setting external indicators 64 
single quotation mark key 

(see multi-volume file) 
SORT source statements in a procedure 

(see footnote 1A in CALL Keyword-Response Summary) 

Index 241 



SOURCE 
in BUILD Keyword-Response Summary 29, 46 
in the LOAD Keyword-Response Summary 18, 46 
Its position in the BU I LD sequence 26 
its position in the LOAD sequence 15 
keyword description 46 

source library 
changing size 

control statement 149 
disk considerations 152 

contents 213 
creating 

control statement 149 
disk considerations 151 

definition 147, 233 
deleting 

control statement 149 
disk considerations 152 

its relationship to the BUILD and CALL sequences 9 
putting procedures in 45 
reorganizing 

control statement 149 
disk consideration 153 

source library directory 
definitions 148, 172, 233 
printout 167, 186 
putting procedure names in 45 
size 151 

SOURCE parameter 151 
source statements 

as input to the RPG Compiler 203 
definition 147, 172, 233 

source unit 47 
special characters 

their uses and location 85 
standard character set 232 
statement numbers 13 

in modify 54 
status of system printer 

consideration when responding to MODI FY with a LOG 
statement 214 

substitute data 111 
surface analysis 

alternate track assignment 104 
disk initialization 95 

SWITCH 
in BUILD cycle 66 
in CALL cycle 67 
in LOAD cycle 65 
its position in BU I LD sequence 26 
its position in LOAD sequence 15 
keyword description 64 

SWITCH Statement 
during a BUILD cycle 66 
during a CALL cycle 67 
during a LOAD cycle 65 

sysgen 
definition 233 

system date 
keyword description 47 
overriding 47 
responding to in the BU I LD sequence 30 
responding to in the LOAD sequence 18 

system director 
definition 148 
printout 166 

242 

system input device 
general use 87 
use in library maintenance 166 

system-operator interaction during keyword prompting 11 
SYSTEM parameter 155 
system printer 

definition 233 
(see also FORMS and LOG) 

system program name 
as response to keyword LOAD NAME in OCL cycle 53 

system programs - changing printed output for 
(see FORMS under MODI FY) 

system programs, including in object library 155 

T (temporary) Files 
restrictions 52 
when to assign a T (temporary) designation to a file 51 

temporary (T) files 
restrictions 52 
when to assign a T (temporary) designation to a file 51 

temporary library entries 174 
testing condition of disk tracks (see surface analysis) 
TO parameter 

disk copy/dump 
copying entire disk 136 
copying or printing files 136-137 

library maintenance 
allocate 151 
copy 166 

TRACK parameter 111 
TRACKS 

conside-rations for multi-volume files 196 
definition 233 
in BUILD Keyword-Response Summary 35 
in LOAD Keyword-Response Summary 21 
its position in the BU I LD sequence 26 
its position in the LOAD sequence 15 
keyword description 50-51 

tracks-records conversion 212 
TYPE parameter 94 
types of library-directories 172 
types of library entries 172 

UI N control statement 92 
UNASSIGN parameter 105 
unconditional assignment of alternate tracks 105 
UNIT parameter 

alternate track assignment 104 
alternate track rebuild 111 
disk initialization 94 
file and volume label display 116 
file delete 126 
OCL 

BUILD unit 26 
Fl LE unit 50 
keyword description 34 
LOAD unit 15 
multi-volume files 196 
SOURCE unit 47 

utility control statements in procedure 
(see BUILD cycle) 

VERIFY parameter 
alternate track assignment 104 
disk initialization 95 

VOL control statement 92 



VTOC (volume table of contents) 
contents 213 
definition 116, 233 
its relationship to LABEL 50 
printing entire VTOC 116 
printing file information only 116 

VTOC file name 
as response to keyword LABEL in OCL cycle 50 
how to distinguish two files with the same VTOC file name 
and label 52 

work area 
disk copy/dump 137 
library maintenance 

allocate function 154-155 
schedular 153 

WORK parameter 
disk copy/dump 137 
library maintenance 154 

1255 Magnetic Character Reader Utility ($MICR) 
in response to LOAD NAME in OCL cycle 53 

13 inch printer 
requirements for conversational OCL ii 

Index 243 





/ 



GC21-7516-2 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(lntematlonal) 

41 :;· 
..+ 
CD 
0. 
:;· 
c 
en 
~ 



I BM System/3 
Model 6 

READER'S COMMENT FORM 

Operation Control Language and 
Disk Utility Programs 
Reference Manual 

YOUR COMMENTS, PLEASE ... 

GC21-7516-2 

Your comments concerning this publication will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC21-7516-2 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY •.• 

I BM Corporation 
General Systems Division 
Development Laboratory 
Rochester, Minnesota 55901 

Attention: Programming Publications, Dept. 425 

Fold 

International Business Machines Corporation 
Data Processing Division . 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) . . 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 

~.- (International) 

r: s 
):i 

0 , •. _ . ::::J 

i' IC 
( r 
} ~· 
L_ ___ J 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

-- .J 

I 
~. ___ I 

I 

I 
I 
I 
I 
I 
I 
I ,. 

I 
I r---.... _____ -

,; I - - -
Fold···----~-

I 


