Chapter 1. Reference Data

Chapter 2. Console and Maintenance Facilities

Chapter 3. Preventive Maintenance

Chapter 4. Checks, Adjustments, and Removals

Chapter 5. Power and Cooling

Chapter 6. Locations
5

Preface

This manual, SY31-0244, contains maintenance information for the IBM 5410 Processing Unit. It should be used in conjunction with the maintenance manuals for the System/3 input/output devices to fully maintain the system.

The IBM 5410 Processing Unit Theory of Operation, SY31-0207, gives the instructional material.

Fourth Edition (January 1971)

This is a major revision of, and obsoletes, SY31-0244-1.
Some illustrations in this manual have a code number in the lower corner. This is a publishing control number and is not related to the subject matter.

Significant changes or additions to the specifications contained in this publication are continually being made. When using this publication in connection with the operation of IBM equipment, check the latest FE Publication System Sequence Listing for revisions or contact the local IBM branch office.

A Reader's Comments Form is at the back of this publication. If the form is gone, address your comments to IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
CHAPTER 1. REFERENCE DATA 1-1
CHAPTER 2. CONSOLE AND MAINTENANCE FACILITIES 2-1
SECTION 1. BASIC UNIT 2-1
2.1 System Control Panel $2-1$
2.1.1 Operator Controls 2-1
2.1.2 CE Controls 2-3
2.1.3 Console Display 2-7
2.2 Environmental Recording 2-8
2.3 Machine Checks 2-8
2.3.1 Processor Checks 2-8
2.3.2 Unit Check 2-8
2.4 Process Error Indications 2-9
2.5 LSR Display 2-10
2.6 Voltage Levels 2-11
2.7 Error Recovery Procedures 2-11
2.8 MFCU Feed Checks 2-20
2.9 Special Tools 2-22
2.9.1 CE Diagnostic Probe 2-22
2.9.2 Jumper Wires 2-24
2.9.3 Single Pin Extenders 2-24
2.9.4 MST-1 Card Extender 2-24
SECTION 2. FEATURES 2-25
2.10 Dual Program Control Panel 2-25
2.11 File Control Panel 2-25
2.12 BSCA Indicator Panel 2-26
CHAPTER 3. PREVENTIVE MAINTENANCE 3-1
SECTION 1. BASIC UNIT 3-1
3.1 Scheduled Maintenance 3-1
3.2 I/O Device Maintenance 3-1
SECTION 2. FEATURES 3-1
CHAPTER 4. CHECKS, ADJUSTMENTS, AND
REMOVALS 4-1
SECTION 1. BASIC UNIT 4-1
4.1 Fault Location 4-3
4.1.1 Circuit Failures 4-3
4.1.2 Array Failures 4-3
4.1.3 Intermittent or Random Failures 4-8
4.2 XYZ Drive Voltage (-30V) Reoptimization (AllSystems)4-9
4.3 Strobe Setting Reoptimization (8K-16K-32K Single BSM) 4-9
4.4 Strobe Setting Reoptimization (24K-32K-32K Dual BSM) 4-9
4.5 Strobe Setting Reoptimization (64K Dual BSM; RPQ S40048) 4-10
CHAPTER 5. POWER AND COOLING 5-1
SECTION 1. BASIC UNIT 5-1
5.1 Input Power Requirements 5-1
5.2 Power Supply Outputs 5-1
5.2.1 Checks and Adjustments 5-1
5.2.2 Power Supply Unloading Procedures 5-2
5.3 Power Sequencing 5-4
5.4 Adjustments of the - 4 Volt Power Supply 5-4
5.4.1 Overcurrent Adjustment 5-4
5.4.2 Voltage Adjustment 5-4
5.4.3 Overvoltage Adjustment 5-4
5.4.4 Undervoltage Adjustment 5-6
5.5 Adjustment of the +6 Volt Power Supply 5-6
5.5.1 Voltage Adjustment 5-6
5.5.2 Overvoltage-Overcurrent Adjustment 5-6
5.5.3 Undervoltage Adjustment 5-6
5.6 Adjustment of the -30 Volt Power Supply 5-7
5.7 Power Check Lamp 5-7
5.8 24 Volt Control Voltage 5-7
SECTION 2. FEATURES 5-8
5.9-4 Volt Add-On Regulator 5-8
5.10 B Gate -4 Volt Logic Supply \# 2 5-8
5.10.1 Overcurrent Adjustment $5-8$
5.10.2 Voltage Adjustment 5-8
5.10.3 Overvoltage Adjustment 5-8
5.11 B Gate -4 Volt Logic Supply \#3 5-9
5.11.1 Overcurrent Adjustment 5-9
5.11.2 Voltage Adjustment 5-9
5.11.3 Overvoltage Adjustment 5-9
CHAPTER 6. LOCATIONS 6-1
APPENDIX A. SPECIAL CIRCUITS . Appendix A
APPENDIX B. WORLD TRADE Appendix B
INDEX X-1

A	Ampere	LCRR	Length Count Recall Register
AAR	Operand 2 Address Register	LIO	Load Input/Output
ac	Alternating Current	Lo	Low
Addr	Address	LPDAR	Line Printer Data Address Register
adj	Adjust	LPIAR	Line Printer Image Address Register
ALD	Automated Logic Diagram	LSR	Local Store Register
ALU	Arithmetic and Logic Unit	MAP	Maintenance Analysis Procedures
APL	Advance Program Level	MES	Miscellaneous Equipment Specification
Arith	Arithmetic	MFCU	Multi-Function Card Unit
ARR	Address Recall Register	MLC	Machine Level Control
ASCII	American Standard Code for Information	Mnem	Mnemonic
	Interchange	MPCAR	MFCU Punch Data Address Register
Asynchronous	Without regular time relationships; unexpected	MPTAR	MFCU Print Data Address Register
	or unpredictable with respect to the execution	MRDAR	MFCU Read Data Address Register
	of a program instruction.	MST	Monolithic System Technology
BAR	Operand 1 Address Register	mV	Millivolt
BCD	Binary Coded Decimal	ns	Nanosecond
Bit	Binary digit; smallest unit of information	OC	Overcurrent
BM	Bill of Material	Op	Operation; Operand
BSCA	Binary Synchronous Communications Adapter	OV	Overvoltage
BSM	Basic Storage Module	P	Parity
Byte	Eight bits of information plus parity bit	PAIR	Product Analysis Incident Reprot
CB	Circuit Breaker	PCB	Printer Control Board
CE	Customer Engineer	PEB	Printer Electronic Board
Channel	A hardware device that connects the CPU and	PG	Parity Generation
	main storage with the I/O control units	POT	Potentiometer
cm	Centimeter	P/S	
Cond	Condition	PSR	Program Status Register
CPU	Processing Unit	PSS	Print Subscan
CRR	Condition Recall Register	PTR	Printer
Ctrl	Control	Rd	Read
DAR	Data Address Register	REA	Request for Engineering Action
DBI	Data Bus In	Reg	Register
DBO	Data Bus Out	RPQ	Request Price Quotation
DFCR	Data File Control Address Register	SAR	Storage Address Register
DFDR	Data File Data Address Register	SIO	Start Input/Output
Disp	Display	SLD	Solid Logic Dense
DRR	Data Recall Register	SLT	Solid Logic Technology
EBCDIC	Extended Binary Coded Decimal Interchange	SMS	Standard Modular System
	Code	SS	Single Shot
EC	Engineering Change	Sync	Synchronize
ECA	Engineering Change Announcement	Sys	System
FBM	Field Bill of Material	S/Z	Sense-Inhibit
FE	Field Engineering	TIO	Test Input/Output and Branch
FEALD	Field Engineering Automated Logic Diagram	TP	Test Point
hex	Hexadecimal	UV	Under voltage
Hi	High	V	Volts
IAR	Instruction Address Register	Vac	Volts Alternating Current
Instr	Instruction	Vdc	Volts Direct Current
Interrupt	An asynchronous occurrence which causes the	wr	write
	central processor to cease its normal execution	XR	Index Register
	of instructions and barnch out to a new instruc-	XRD	X-Read
	tion stream. Interrupts are caused by several	XWR	X-Write
	different and unrelated situations.	YRD	Y-Read
I/O	Input/Output	YWR	Y-Write
IPL	Initial Program Load	Z	Inhibit
K	Kilo, Thousand	$=$	Equals
LCR	Length Count Register	\geq	Greater than
		$<$	Less Than

Safety

PERSONAL SAFETY

Be sure to read and follow the safety suggestions in Form 229-1264, a pocket-sized card issued to all IBM Customer Engineers.

Remember:

- Loose clothing can become entangled in moving parts of the machine.
- Drive belts, because of their internal cable construction, can cause serious injury. DO NOT crank a machine by pulling on the drive belts.
- Heat sinks are at an electrical potential. DO NOT short heat sinks to each other or to the machine side frame.
- Always unplug machine power and wait ONE FULL MINUTE before attempting repairs or adjustments in the power supply area.
- Voltages developed in the resonant circuit of regulating power supplies are apt to be much greater than the line voltages.
- Follow the specific safety precautions that accompany many of the adjustment procedures in this manual.

Be aware that the 5424 motor and/or clutches can operate unexpectedly. Conditions that could cause this are:

- Program commands.
- Loss of a dc voltage to a machine, gate, board or chassis, card, or pin.
- Removing or inserting a card or cable.
- Probing and accidentally shorting a pin.

EQUIPMENT SAFETY

Electrical

Always replace blown fuses with fuses of the same type and rating. Using fuses of a different type or higher rating could result in component damage.

Remove power from the machine before replacing MST cards, magnets, or solenoids. Failure to do this could result in damage to a card being replaced or to other cards in the net.

Mechanical

Do not operate the machine under power with units disassembled, removed, or maladjusted. Keep tools, etc. clear of the mechanism when the machine is operating under power.

Caution

Do not use IBM cleaning fluid on plastic parts.

This section contains charts, listings, and diagrams giving general information for diagnosing system failures.

Refer to the IBM Field Engineering Maintenance Diagrams, 5410 Central Processing Unit, Form SY31-0202 (FEMD) for flowcharts, simplified diagrams, timing charts, etc. The FEMD is to be used for instructional and for recall purposes.

For diagnostic techniques, refer to the maintenance analysis procedures (MAP) chart user's guide. The MAP charts help CEs to isolate machine troubles without the use of an oscilloscope. Figure $1-1$ shows the format of the 96 -column card used with the System/3. Figures $1-2$ through $1-8$ show the instruction sets and the instruction format used in this system. Figures 1-9 through 1-17 show the sense bytes of the 5410 . Figures $1-18$ through $1-30$ show other diagnostic aids for troubleshooting the 5410 CPU .

Figure 1-1. 96-Column Card Format

Figure 1-2. Instructions

Legend
OP BITS 0, 1, 2, 3
Y One address instruction (can be indexed by bits 0 and 1)

Z One address instruction (can be indexed by bits 2 and 3)
F Command instruction 53184

Op	Mnem	Op	0	R	X_{1}	H_{1}	L_{1}	x_{2}	H_{2}	L_{2}	A	B
04	ZAZ	x	x			${ }^{x}$	x		\times	x	x	x
06	$A Z$	X	x			x	x		x	x	x	x
07	SZ	x	x			${ }^{x}$	x		x	x	x	x
08	MVX	x	x			x	x		x	\times	x	x
OA	ED	x	x			x	x		x	x	x	\times
OB	ITC	x	x			x	x		x	\times	x	\times
OC	MVC	x	\times			\times	\times		x	x	x	x
OD	CLC	\times	x			x	x		x	x	x	x
OE	ALC	x	x			x	x		x	\times	x	x
OF	SLC	x	x			x	x		x	x	x	x
14	ZAZ	x	x			x	x	x			x	x
16	$A Z$	x	\times			\times	\times	x			\times	x
17	SZ	x	x			x	\times	x			x	x
18	MVX	x	x			x	\times	x			x	\times
1 A	ED	x	x			\times	\times	x			\times	x
1 B	ITC	\mathbf{x}	x			\times	\mathbf{x}	x			x	x
1C	MVC	x	x			x	x	x			x	x
1 D	CLC	x	\mathbf{x}			\times	\times	\times			x	x
1 E	ALC	x	x			\times	\times	x			x	x
$1 F$	SLC	x	x			\times	x	x			x	x
24	ZAZ	\times	x			x	x	x			x	x
26	$A Z$	x	x			x	x	x			x	x
27	SZ	x	x			\times	x	x			\times	x
28	MVX	x	x			\times	x	x			x	x
2A	ED	x	x			x	x	x			x	x
2 B	ITC	\times	x			\times	x	x			\times	x
2 C	MVC	x	\mathbf{x}			x	x	x			x	x
2D	CLC	\mathbf{x}	\mathbf{x}			x	x	x			x	x
2E	ALC	\mathbf{x}	\mathbf{x}			\times	x	x			x	x
2F	SLC	x	x			\times	x	x			x	x
30	SNS	x	x			x	x					x
31	LIO	x	x			x	x					x
34	ST	\times	x			x	x					x
35	L	\times	\times			\mathbf{x}	x					\times
36	A	x	x			x	x					x
38	TBN	x	x			x	x					x
39	TBF	x	\times			\times	x					x
3A	SBN	\times	\times			x	x					\times
3 B	SBF	\times	\times			x	x					x
$3 \mathrm{3C}$	MVI	x	x			x	x					x
3D	CLI	x	x				x					x
44	ZAZ	x	x		x				x	x	x	x
46	AZ	\mathbf{x}	x		\times				x	x	x	\times
47	SZ	x	x		x				x	x	x	x
48	MVX	x	x		x				x	x	x	x
4A	ED	x	\times		\times				x	x	x	x
4B	ITC	x	x		x				x	x	x	\times
4C	MVC	x	x		x				x	x	x	x
4D	CLC	x	x		\times				x	x	x	x
4E	ALC	\mathbf{x}	x		x				\times	\times	\mathbf{x}	x
4F	SLC	\times	x		\times				x	x	x	x
54	ZAZ	x	x		x			x			x	x
56	AZ	x	x		\times			\mathbf{x}			x	x
57	SZ	x	x		x			x			x	x
58	MVX	\mathbf{x}	x		x			x			x	x
5A	ED	x	x		x			\times			\times	\times
58	ITC	x	x		x			x			x	x
5C	MVC	\mathbf{x}	x		x			x			x	x
5D	CLC	x	x		x			\times			x	x
5 E	ALC	\mathbf{x}	x		x			\times			x	x
5 F	SLC	\mathbf{x}	x		x			x			x	x
64	ZAZ	x	x		x			x			x	x
66	$A Z$	x	x		x			x			x	\mathbf{x}
67	SZ	\mathbf{x}	\mathbf{x}		x			\times			x	x
68	MVX	x	\mathbf{x}		x			\mathbf{x}			\mathbf{x}	x
6A	ED	x	x		x			\mathbf{x}			x	x
6B	ITC	\mathbf{x}	x		x			\times			\mathbf{x}	\times
6 C	MVC	\mathbf{x}	\mathbf{x}		x			\mathbf{x}			\mathbf{x}	x
6 D	CLC	\mathbf{x}	x		\mathbf{x}			\mathbf{x}			\mathbf{x}	x
6E	ALC	x	x		\times			\mathbf{x}			\mathbf{x}	x
6 F	SLC	\mathbf{x}	x		x			\mathbf{x}			\mathbf{x}	x

Op	Mnem	Op	Q	R	X_{1}	H_{1}	L_{1}	X_{2}	H_{2}	L_{2}	A	B
70	SNS	x	\times		x							x
71	LIO	x	x		x							x
74	ST	x	\times		\times							x
75	L	\times	\times		x							x
76	A	x	\times		x							\times
78	TBN	\times	\times		x							x
79	TBF	\times	\times		x							\times
7A	SBN	x	\times		\times							\times
78	SBF	x	\times		\times							\times
7 C	MVI	\times	\times		\times							x
7 D	CLI	x	\times		\times							x
84	ZAZ	\times	x		x				x	x	x	x
86	AZ	x	x		\times				x	x	x	\times
87	SZ	x	x		x				x	x	x	\times
88	MVX	x	\times		\times				x	x	x	x
8A	ED	\times	\times		\times				x	x	x	\times
8B	ITC	x	x		x				x	x	x	x
8C	MVC	\times	x		\times				x	x	x	x
8D	CLC	x	x		x				x	x	x	\times
8 EE	ALC	x	x		x				x	x	x	\times
8F	SLC	x	x		x				x	x	x	x
94	ZAZ	x	x		x			x			x	\times
96	$A Z$	\times	\times		\times			x			x	\times
97	$S Z$	x	\times		x			x			x	x
98	MVX	x	\times		x			x			\times	\times
9 9	ED	\times	\times		x			x			\times	x
9 B	ITC	x	x		x			x			\times	x
9 C	MVC	\times	\times		x			x			x	x
9 D	CLC	\mathbf{x}	\times		\times			x			x	\times
9 E	ALC	x	x		x			x			x	\times
9F	SLC	x	x		x			x			\times	x
A4	ZAZ	\times	x		x			x			x	\times
A6	$A Z$	\times	x		x			x			\times	\times
A7	SZ	x	\times		x			x			\times	\times
A8	MVX	\times	x		\times			x			\times	\times
AA	ED	\times	\times		\times			x			\times	x
AB	ITC	x	x		\times			x			x	\times
AC	MVC	x	\times		\times			x			x	\times
AD	CLC	x	x		x			x			\times	\times
AE	ALC	x	\times		\times			x			x	\times
AF	SLC	x	x		x			x			x	\times
B0	SNS	x	x		x							\times
B1	LIO	\times	x		\times							\times
B4	ST	\mathbf{x}	x		x							x
B5	L	\mathbf{x}	x		x							x
B6	A	\mathbf{x}	x		x							x
B8	TBM	\mathbf{x}	x		x							x
B9	TBF	x	x		x							x
BA	SBN	\mathbf{x}	\times		x							x
BB	SBF	x	x		x							${ }^{x}$
BC	MVI	\mathbf{x}	\times		x							x
BD	CLI	x	x		\mathbf{x}							x
C0	BC	x	x			x	x					
C1	TIO	\mathbf{x}	x			x	x					
C2	LA	x	\mathbf{x}			x	\mathbf{x}					
D0	BC	x	\times		x							
D1	TIO	\mathbf{x}	\mathbf{x}		x							
D2	LA	x	x		x							
E0	BC	\mathbf{x}	x		\mathbf{x}							
E1	TIO	\mathbf{x}	\times		\mathbf{x}							
E2	LA	x	\times		x							
F0	HPL	x	x	\times								
F1	APL	x	\mathbf{x}	x								
F2	JC	\times	x	\times								
F3	SIO	\mathbf{x}	x	-								

Figure 1-4. CPU Instruction and Machine Cycles

TEST I/O AND BRANCH (TIO)

Op Code	Q Code			Control Code16		Direct addressing - Operand $1=2$ bytes
	$$	$\begin{array}{\|c} M \\ 12 \\ \hline \end{array}$	1			
C1						
D1						Indexed by XR-1 - Operand 1 = 1 byte
E1						Indexed by XR-2-Operand 1 = 1 byte
$\begin{aligned} & 5424 \\ & \text { MFCU } \end{aligned}$	1111					Device address MFCU (F)
		0				Primary
		1				Secondary
			000			Feed not ready or error
			001			Read feed busy (condition 1)
			010			Punch data busy (condition 2)
			011			Condition 1 or 2
			100			Print data busy (condition 4)
			101			Condition 1 or 4
			110			Condition 2 or 4
			111			Condition 1, 2 or 4
				xxxx	$\mathbf{x x x x}$	Branch to address if condition met. Op codes D1 and E1 are indexed.
5203 Printer	1110					Device address printer (E)
		0				Left carriage
		1				Right carriage
			000			Not ready
			001			Invalid
			010			Print buffer busy
			011			Invalid
			100			Carriage busy
			101			Invalid
			110			Printer busy
			111			Invalid
				x $x \times x$	x x x ${ }^{\text {a }}$	Branch to address if condition met. Op codes D1 and E1 are indexed.
5471 and 5475	0001					Device address keyboard (1)
						Test I/O is invalid and will result in invalid Q byte processor check.
5444 Disk	1010					Device address disk drive 1 (A)
	1011					Device address disk drive 2 (B)
		0				Removable disk
		1				Fixed disk
			000			Not ready or error*
			010			Busy - Data transfer in process
			100			Scan found
			*			*Condition may vary depending on disk drive selected. Refer to status byte.
				$\mathbf{x} \times \mathbf{x} \mathbf{x}$	x \times x \times	Branch to address if condition is met.
DPF	0000					Device address DPF (0)
	-	0				Must be zero
			0xx			Program level 1
			1xx			Program level 2
			x00			Cancel program level Tests setting of Load program level from DPF switch MFCU.
			$\times 01$			
			$\times 10$			Load from console I/O
			*	xxxx	Xxxx	Branch to address if condition is met. Op codes D1 and E1 are indexed.

Note: All other \mathbf{N} codes are invalid.
Figure 1-5. (Part 1 of 2) Test I/O and Branch (TIO) Instruction

Figure 1-5. (Part 2 of 2) Test I/O and Branch (TIO) Instruction

Op Code	Q Code			Operand 1	Direct addressing - Operand $1=2$ bytes									
	$$	$\underset{10}{M}$	$\left\lvert\, \begin{gathered} N \\ 13 \end{gathered}\right.$											
31														
71				Indexed by XR-1 - Operand 1 $=1$ byte										
B1				Indexed by XR-2 - Operand 1 = 1 byte										
5203 Printer	1110				Device address line printer (E)									
		0			M-bit is not used - a zero is preferred.									
			000		Load form length. One byte for each carriage.									
			100		Select line printer image address register									
			110		Select line printer data address register									
					Note: All other N codes invalid.									
$\begin{aligned} & 5424 \\ & \text { MFCU } \end{aligned}$	1111				Device address MFCU (F)									
		0			Normal mode									
		1			Diagnostic mode									
			100		MFCU print address register									
			101		MFCU read address register									
			110		MFCU punch address register									
					Note: All other N codes invalid									
5444 Disk	1010				Device address disk drive 1 (A)									
					Device address disk drive 2 (B)									
		0			M-bit not used									
			011		Diagnostic CE									
			100		DFDR									
			110		DFCR									
					Note: All other N codes invalid.									
5475 Keyboard	0001				Device address keyboard (1)									
		0	000		M and N must be zero.									
		$\begin{array}{ll} \frac{1}{2 / \frac{8}{3 / 9} / 10} \\ \frac{5}{7} & \frac{/ 12}{14}^{413} \end{array}$												
					1 1	2	$3{ }_{3}{ }^{4}$			Prog 1 7 10		$9{ }^{10} 10$	$12 \int_{13} 14$	Prog 2 ID
					Indicator 1						Indicator 2			

Figure 1-6. (Part 1 of 2) Load I/O (LIO) Instruction

Figure 1-6. (Part 2 of 2) Load I/O (LIO) Instruction

START I/O (SIO) INSTRUCTION

Figure 1-7. (Part 1 of 3) Start I/O (SIO) Instruction

Op Code	Q Code			Control Code			
	$8{ }^{\text {DA }} 11$	M 12	$\begin{gathered} \mathrm{N} \\ 13 \\ \hline \end{gathered}$				
F3							
5444 Disk	1010					Device address disk drive 1 (A)	
	1011					Device address disk drive 2 (B)	
		0				Removable disk	
		1				Fixed disk	
			000	0000	0000	Control Seek	
			001	0000	0000	Read - Data	
			001	0000	0001	Read -Identifier	
			001	0000	0010	Read Diagnostic	
			001	0000	0011	Read - Verify	
			010	0000	0000	Write - Data	
			010	0000	0001	Write - Identifier	
			011	0000	0000	Scan-Equal	
			011	0000	0001	Scan-Low or equal	
			011	0000	0010	Scan - High or equal	
						Notes: - Bits 16-21 are not used by the attachment. - All other N codes invalid.	
SIOC	0011					Device address SIOC (3)	
		0				M-bit is not used - zero is preferred.	
			000	0000	0001	Reset interrupt request	These control codes may also be used with N codes 001 or 010 below.
			000	0000	0010	Enable interrupt ability	
			000	0000	0100	Reset interrupt ability	
			000	0000	1000	Remove SIOC from busy state	
			000	0001	0000	Set interrupt request	
			001	0000	0000	Read 1/O device	
			010	0000	0000	Write I/O device	
			011			1/0 Control 1	
				$\begin{array}{llll}1 \\ 1 & \\ & 1 \\ & 1 \\ & 1\end{array}$	$\begin{gathered} 1 \\ { }^{1} \\ \\ \\ \\ \quad 1 \\ \hline \end{gathered}$	1/O Select 8 I/O Select 7 I/O Select 6 1/O Select 5 I/O Select 4 1/O Select 3 1/O Select 2 I/O Select 1	
			100			I/O Control 2	
				$\begin{array}{lll}1 \\ 1 \\ & 1 \\ & 1 \\ & 1\end{array}$	$\stackrel{1}{1}_{1_{1}}{ }_{1}$	1/O Select 14 I/O Select 13 I/O Select 12 1/O Select 11 I/O Select 10 I/O Select 9 I/O Unit 2 Select 1/O Unit 1 Select	All other N codes invalid
DPF	0000	0	000				
					$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & \quad 1 \\ & \hline \end{aligned}$	Not used Enable dual programming mode Disable dual programming mode Enable interrupt level 0 (system control panel interrupt) key Disable interrupt level 0 Reset interrupt request 0 All other N codes invalid	
1442	0101					Device address - 1442 RPO (5)	
		0				Must be zero	
			000			Feed	
			001			Read translate mode	
			010			Punch and feed	
			011			Read C1 mode	
			100			Punch - No feed	
				xxxx	x001	Note: All other N codes invalid. Select stacker 2. x indicates "don't care" bits. Any control code combination other than 001 is is invalid and will result in the card going to stacker 1.	

Figure 1-7. (Part 2 of 3) Start I/O (SIO) Instruction

Op Code	O Code			Control Code		
	$$	$\begin{gathered} \mathrm{M} \\ 12 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline N \\ 13 \\ \hline 15 \\ \hline \end{array}$			
F3						
BSCA	1000					Device address BSCA (8)
		0				Must be zero
			000			Control
			001			Receive
			010			Transmit and receive
			011			Receive initial
			100			Auto call
			101			Invalid
			110			Loop test
			111			Invalid
				$\begin{gathered} 1 \times \times x \\ 0 \times \times x \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{gathered}$	x x $\begin{aligned} & x \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	If a 1 , bits $1,2,3$, and 4 of control code are effective. If a 0 , bits 1, 2, 3, and 4 of control code are disregarded. Enable BSCA Disable BSCA Enable test mode Disable test mode Enable step mode Disable step mode Spare (no effect) Start two second timeout Cancel two second timeout Enable interrupt Disable interrupt Reset interrupt request No action
						Note: The control code is effective with every " N " code function except that the start two second timeout must be used only with the control function (" N " $=000$).
5471 Printer Keyboard	0001					Device address - printer keyboard - (1)
		0				Select keyboard
			000			Must be zero - All other N codes invalid
				$\begin{gathered} \hline 00 \times x \\ 1 \\ 0 \\ 1 \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \times x x \\ \\ \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \hline \end{gathered}$	Must be zero. Zero indicates unused position. Turn on request pending indicator Turn off request pending indicator Turn on proceed indicator Turn off proceed indicator Enable request key interrupts Disable request key interrupts Enable data key interrupts Disable data key interrupts Reset request or data key interrupts
		1				Select printer
			000			Must be zero - All other N codes invalid
				$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & { }^{1}{ }_{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & { }^{1} 1 \\ & \\ & \\ & 1 \end{aligned}$	Start print Don't print Start carrier return (and index) Don't carrier return Force a printer feedback switch response Force a printer long function switch response Not used - Must be zero Enable printer interrupt Disable printer interrupt Degate printer magnets Reset printer interrupt

Figure 1-7. (Part 3 of 3) Start I/O (SIO) Instruction

SENSE INSTRUCTION FORMATS

Note: For explanation of Sense Bytes (2), check individual I/O sections.
(N code 0 is keyboard sense.)

Figure 1-8. Sense I/O (SNS) Instruction Format

5410 CPU SENSE

Note: All other N codes invalid

Figure 1-9. 5410 Sense Bytes

5203 PRINTER SENSE

Figure 1-10. 5203 Printer Sense Bytes

5424 MFCU SENSE

Figure 1-11. 5424 MFCU Sense Bytes

5444 FILE SENSE

[^0]5475 KEYBOARD SENSE

Figure 1-13. 5475 Keyboard Sense Bytes

SIOC SENSE

Figure 1-14. SIOC Sense Bytes

5471 CONSOLE I/O SENSE

* Note: All other \mathbf{N} codes invalid.

Figure 1-15. 5471 Console I/O Sense Bytes

BSCA SENSE

Figure 1-16. BSCA Sense Bytes

1442 SENSE

* Note: All other N codes are invalid.

Figure 1-17. 1442 Sense Bytes

I/O CHANNEL CONDITION

Figure 1-18. I/O Channel Condition A or B Instruction Response

To find the decimal number, locate the Hex number and its decimal equivalent for each position. Add these to obtain the decimal number. To find the Hex number, locate the next lower decimal number and its Hex equivalent. Each difference is used to obtain the next Hex number until the entire number is developed.

BYTE				BYTE				BYte			
0123		4567		0123		4567		0123		4567	
HEX	DEC										
0	0	0	0	0	0	0	0	0	0	00	0
1	1,048,576	1	65,536	1	4,096	1	256	1	16	1	1
2	2,097,152	2	131,072	2	8,192	2	512	2	32	2	2
3	3,145,728	3	196,608	3	12,288	3	768	3	48	3	3
4	4,194,304	4	262,144	4	16,384	4	1.024	4	64	4	4
5	5,242,880	5	327,680	5	20,480	5	1,280	5	80	5	5
6	6,291,456	6	393,216	6	24,576	6	1,536	6	96	6	6
7	7,340,032	7	458,752	7	28.672	7	1,792	7	112	7	7
8	8,388,608	8	524,288	8	32,768	8	2,048	8	128	8	8
9	9,437,184	9	589,824	9	36,864	9	2,304	9	144	9	9
A	10,485,760	A	655,360	A	40,960	A	2,560	A	160	A	10
B	11,534,336	B	720.896	B	45,056	B	2,816	B	176	B	11
C	12,582,912	C	786,432	C	49,152	C	3,072	C	192	C	12
D	13,631,488	D	851,968	D	53,248	D	3,328	D	208	D	13
E	14,680,064	E	917,504	E	57,344	E	3,584	E	224	E	14
F	15,728,640	F	983,040	F	61,440	F	3,840	F	240	F	15
6			5		4						

Figure 1-20. Hexadecimal and Decimal Conversion

	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
1	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	10
2	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	10	11
3	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF	10	11	12
4	05	06	07	08	09	OA	OB	OC	OD	OE	OF	10	11	12	13
5	06	07	08	09	OA	OB	OC	OD	OE	OF	10	11	12	13	14
6	07	08	09	OA	OB	OC	OD	OE	OF	10	11	12	13	14	15
7	08	09	OA	OB	OC	OD	OE	OF	10	11	12	13	14	15	16
8	09	OA	OB	OC	OD	OE	OF	10	11	12	13	14	15	16	17
9	OA	OB	OC	OD	OE	OF	10	11	12	13	14	15	16	17	18
A	OB	OC	OD	OE	OF	10	11	12	13	14	15	16	17	18	19
B	OC	OD	OE	OF	10	11	12	13	14	15	16	17	18	19	1A
C	OD	OE	OF	10	11	12	13	14	15	16	17	18	19	1A	18
D	OE	OF	10	11	12	13	14	15	16	17	18	19	1A	1B	1c
E	OF	10	11	12	13	14	15	16	17	18	19	1 A	1B	1 C	1D
F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	10	1E

Figure 1-21. Hexadecimal Addition

Figure 1-22. CPU Basic Timing

BASE SYSTEM

HIGH	LOW	LSR Acronym
Program level 1 instruction address register		P1-IAR
Program level 1 address recall register		P1-ARR
Operand 2 address register		AAR
Spare		
Program level 1 index register 1		P1-XR1
Length count recall register	Condition recall register	P1-PSR
Operand 1 address register		BAR
MFCU print data address register		MPTAR
Program level 1 index register 2		P1.XR2
Line printer data address register		LPDAR
Line printer image address register		LPIAR
MFCU punch data address register		MPCAR
MFCU read address register		MRDAR
Length count registers	Data recall register	LCR DRR
Interrupt level 1 instruction address register		IAR.1
Interrupt level 1 address recall register		ARR. 1

FEATURE 1

HIGH LOW	LSR Acronym
Program level 2, instruction address register	P2-IAR
Program level 2, address recall register	P2-ARR
Bi-sync comm adapter address register	BSCAR
Serial 1/O channel address register	SIAR
Program level 2 status register	P2-PSR
Interrupt level 4, instruction address register	IAR-4
Interrupt level 4, address recall register	ARR-4
Disk file control address register	DFCR
Program level 2 index register 2	P2-XR2
Spare	Spare
Interrupt level 2, instruction address register	IAR-2
Interrupt level 2, address recall register	ARR-2
Disk file data address register	DFDR
Program level 2, index register 1	P2-XR1
Interrupt level 0, instruction address register	IAR-0
Interrupt level 0, address recall register	ARR-0

Figure 1-23. Local Storage Registers

1/0*

* Can be performed between any of the 11 above cycles.

Figure 1-25. CPU Cycle Pattern

* Sign Configurations:		
Binary	Hexadecimal	Function
1010	A	Alternate Plus
1011	B	ASCII-8 Minus
1100	C	Alternate Plus
1101	E	Standard Minus
1110	F	Alternate Plus
1111		Standard Plus

Figure 1-26. Decimal Data Storage and Sign Control

A. Fixed Length Areas

* Line printer data area should be in the same 256 byte area as the sync area.
\square

Figure 1-27. 1/O Storage Requirements

$\square 1=55$

$$
=\quad 03
$$

$$
1=3 F
$$

$$
\begin{aligned}
& 1={ }^{6}= \\
& \square
\end{aligned}
$$

$$
1-!=\cdot
$$

$$
1=3 \mathrm{c}
$$

$$
\underline{I}_{1}=\text { so }
$$

$$
1=38
$$

$$
\begin{aligned}
& \frac{1}{1}=70 \\
& 1=07
\end{aligned}
$$

$$
\begin{aligned}
& I=68 \\
& I=3 E
\end{aligned}
$$

$$
\frac{\square}{\square-1}=\pi
$$

$$
11=68
$$

1

LOGIC PAGE PREFIXES

Prefix-FEALD	Circuits
AI	Card socket listing
AV	AlU
CR	Use meter control
FG	MFCU box
GC	Printer keyboard controls
GK	Keyboard service
KA	25 MHz oscillator
KB	Display and check
KC	Clock controls
KD	Cycle controls
KE	Channel in
KG	Register controls
KL	Base LSR controls
KM	Interrupt 1 to 4
KY	ALU controls
MA	Base LSR and SAR Iow
MC	Data bus out-bank 2
MD	In phase terminated TLD's
MO	Socket listing
MM	Main storage
PA	CE mode and toggle switches
PB	Drum indicators
PC	Display selector drum
RA	A and B registers
RN	Op and Q registers
WA	Cable page
WB	Channel 1 out exit lines
WS	CPU to storage lines
YB	Printer box
YE	Voltage service
A1	Socket listing
FB	MFCU controls
FC	DBO and command control (MFCU)
FD	DBI and MFCU data registers
FE	Power drivers
WM	MFCU box
WP	Channel and attachment interface (printer)
WN	Channel and attachment interface (MFCU)
FP	Printer controls

Figure 1-29. FEALD Page Prefixes

Dec		Card Code	Mnem	$\frac{\text { IPL* }}{\text { T1T3 T2T3 }}$		EBCDIC	Symbol	$\begin{aligned} & \mathrm{Dec} \\ & \mathrm{Val} \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \mathrm{Hex} \\ \mathrm{Val} \end{array}\right\|$	Card Code DCBA8421 1	Mnem	IPL*		EBCDIC	Symbol	
	Va	DCBA8421				T1T3						T2T3				
000	00	DC		4	1		00000000		048	30	DC A	SNS	0 @	03	00110000	
001	01	DCBA 1		A @	A 3	00000001		049	31	DC	LIO	1 @	13	00110001		
002	02	DCBA 2		B @	B 3	00000010		050	32	$D C \quad 2$		2 @	23	00110010		
003	03	DCBA 21		C @		00000011		051	33	DC 21		3 @	33	00110011		
004	04	DCBA 4	ZAZ	D @	D 3	00000100		052	34	DC	ST		43	00110100		
005	05	DCBA 41		E @	E 3	00000101		053	35	OC 41	L	5 @	53	00110101		
006	06	DCBA 42	AZ	F @	F 3	00000110		054	36	DC 42	A	6 @	63	00110110		
007	07	DCBA 421	sz	G @	G 3	00000111		055	37	DC 421		7 @	73	00110111		
008	08	DCBA8	MVX	H @	H 3	00001000		056	38	DC 8	TBN	8 @	83	00111000		
009	09	dcba8 1		1 @	13	00001001		057	39	DC 81	TBF	9 @	93	00111001		
010	OA	CBA8 2	ED	c 4	¢ 1	00001010		058	3 A	C 82	SBN	4	: 1	00111010		
011	OB	CBA8 21	ITC			00001011		059	3B	C 821	SBF	\# 4	\# 1	00111011		
012	OC	CBA84	MVC	< 4	<1	00001100		060	3 C	C 84	MVI	@ 4	@ 1	00111100		
013	OD	CBA84 1	CLC	14	11	00001101		061	3 D	C 841	CLI	- 4	- 1	00111101		
014	OE	CBA842	ALC	+ 4	+1	00001110		062	3 E	C 842		$=4$	$=1$	00111110		
015	OF	CBA8421	SLC	14	11	00001111		063	3F	C 8421		" 4	" 1	0011111		
016	10	C A8 2		\& 4	\& 1	00010000		064	40	None				01000000	Space	
017	11	DCB 1		」 @	J 3	00010001		065	41	D BA 1		A 8	A 2	01000001		
018	12	DCB 2		K @	K 3	00010010		066	42	D BA 2		B 8	B 2	01000010		
019	13	DCB 21		L @	L 3	00010011		067	43	D BA 21		C 8	C 2	01000011		
020	14	DCB 4	ZAZ	M @	M 3	00010100		068	44	D BA 4	ZAZ	D 8	D 2	01000100		
021	15	DCB 41		N @	N 3	00010101		069	45	D BA 41		E 8	E 2	01000101		
022	16	DCB 42	AZ	O @	O 3	00010110		070	46	D BA 42	AZ	F 8	F 2	01000110		
023	17	DCB 421	Sz	P @	P 3	00010111		071	47	D BA 421	sz	G 8	G 2	01000111		
024	18	DCB 8	MVX	O @	O 3	00011000		072	48	D BA8	MVX	H 8	H 2	01001000		
025	19	DCB 81		R @	R 3	00011001		073	49	D BA8 1		18	12	01001001		
026	1 A	CB 82	ED	14	! 1	00011010		074	4A	BA8 2	ED	¢	¢	01001010	ξ	
027	1 B	CB 821	ITC	\$ 4	\$ 1	00011011		075	48	BA8 21	ITC			01001011		
028	1 C	CB 84	MVC	* 4	* 1	00011100		076	4 C	BA84	MVC	<	$<$	01001100	$<$	
029	1 D	CB 841	CLC) 4	$) 1$	00011101		077	4D	BA84 1	CLC	1	1	01001101	1	
030	1 E	CB 842	ALC	; 4	; 1	00011110		078	4 E	BA842	ALC	+	+	01001110	+	
031	$1 F$	CB 8421	SLC	74	71	00011111		079	4 F	BA8421	SLC	1	1	01001111	1	
032	20	CB		-4	-1	00100000		080	50	A8 2		\&	\&	01010000		
033	21	C A 1		14	11	00100001		081	51	D B 1		J 8	J 2	01010001		
034	22	DC A 2		S @	S 3	00100010		082	52	D B 2		K 8.	K 2	01010010		
035	23	DC A 21		T @	T 3	00100011		083	53	D B 21		L 8	L 2	01010011		
036	24	DC A 4	ZAZ	U @	U 3	00100100		084	54	D B 4	ZAZ	M 8	M 2	01010100		
037	25	DC A 41		V @	$\vee 3$	00100101		085	55	D B 4 4 1		N 8	N 2	01010101		
038	26	DC A 42	AZ	w @	W3	00100110		086	56	D B 42	AZ	08	O2	01010110		
039	27	DC A 421	Sz	X @	$\times 3$	00100111		087	57	D B 421	Sz	P 8	P 2	01010111		
040	28	DC A8	MVX	Y @	Y 3	00101000			58	D B 8	MVX	08	O 2	01011000		
041	29	DC A8 1		Z @	Z 3	00101001		089	59	D B 8 1 1		R 8	R 2	01011001		
042	2A	DCBA	ED	\} @	\} 3	00101010		090	5 A	B 82	ED		$!$	01011010	$!$	
043	2 B	C A8 21	ITC	4	. 1	00101011		091	5 B	B 821	ITC	\$	\$	01011011	\$	
044	2 C	C A84	MVC	\% 4	\% 1	00101100		092	5 C		MVC	*	*	01011.100	*	
045	2 D	C A84 1	CLC	- 4	-1	00101101		093	5 D	B 841	CLC))	01011101	1	
046	2 E	C A842	ALC	>4	>1	00101110		094	5 E	B 842	ALC	;	.	01011110		
047	$2 F$	C A8421	SLC	? 4	? 1	00101111		095	5F	B 8421	SLC	7	\neg	01011111	\neg	

* If both tier 1 and tier 2 columns are being used, the tier 3 punches are added together as shown in the table at the end of this chart.
Figure 1-30. (Part 1 of 3) Code Conversion Chart

Dec Val	$\left\|\begin{array}{l} \mathrm{Hex} \\ \mathrm{Val} \end{array}\right\|$	Card Code DCBA8421	Mnem	IPL*		EBCDIC	Symbol
				T1T3	T2T3		
096	60	B		-	-	01100000	-
097	61	A 1		/	1	01100001	1
098	62	D A 2		S 8	S 2	01100010	
099	63	D A 21		T 8	T 2	01100011	
100	64	D A 4	ZAZ	$\cup 8$	$\cup 2$	01100100	
101	65	D A 41		$\vee 8$	$\vee 2$	01100101	
102	66	D A 42	AZ	W 8	W 2	01100110	
103	67	D A 421	SZ	$\times 8$	$\times 2$	01100111	
104	68	D A8	MVX	Y 8	$Y 2$	01101000	
105	69	D A8 1		Z 8	Z 2	01101001	
106	6 A	D BA8 2	ED	\} 8	\} 2	01101010	
107	6B	A8 21	ITC			01101011	,
108	6C	A84	MVC	\%	\%	01101100	\%
109	6D	A84 1	CLC	-	-	01101101	
11 C	6E	A842	ALC	$>$	$>$	01101110	$>$
111	6F	A8421	SLC	?	?	01101111	?
112	70	D A	SNS	08	02	01110000	
113	71	D 1	LIO	18	12	01110001	
114	72	D 2		28	22	01110 C 10	
115	73	D 21		38	32	01110011	
116	74	D 4	ST	48	42	01110100	
117	75	D 41	L	58	52	01110101	
118	76	D 42	A	68	62	01110110	
119	77	D 421		78	72	01110111	
120	78	D 8	TBN	88	82	01111000	
121	79	D 81	TBF	98	92	01111001	
122	7A	82	SBN	:		01111010	
123	7 B	821	SBF	\#	\pm	01111011	\#
124	7C	84	MVI	@	@	01111100	@
125	7D	841	CLI			01111101	
126	7 E	842		$=$	$=$	01111110	$=$
127	7F	8421		"	"	01111111	
128	80	DC		@	3	10000000	
129	81	CBA 1		A 4	A 1	10000001	
130	82	CBA 2		B 4	B 1	10000010	
131	83	CBA 21		C 4	C 1	10000011	
132	84	CBA 4	ZAZ	D 4	D 1	10000100	
133	85	CBA 41		E 4	E 1	10000101	
134	86	CBA 42	AZ	F 4	F 1	10000110	
135	87	CBA 421	SZ	G 4	G 1	10000111	
136	88	CBA8	MVX	H 4	H 1	10001000	
137	89	CBA8 1		14	11	10001001	
138	8A	DCBA8 2	ED	c @	c 3	10001010	
139	8B	DCBA8 21	ITC	@	3	10001011	
140	8C	DCBA84	MVC	< @	<3	10001100	
141	8D	DCBA84 1	CLC	1 @	13	10001101	
142	8 E	DCBA842	ALC	+ @	$+3$	¡0001110	
143	8F	DCBA8421	SLC	1 @	13	10001111	

$\begin{aligned} & \text { Dec } \\ & \mathrm{Val} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{Hex} \\ \mathrm{Val} \end{array}\right\|$	Card Code DCBA8421	Mnem	IPL*		EBCDIC	Symbol
				T1T3	T2T3		
144	90	CBA		\} 4	\} 1	10010000	
145	91	CB 1		J 4	J 1	10010001	
146	92	CB 2		K 4	K 1	10010010	
147	93	CB 21		L 4	L 1	10010011	
148	94	CB	ZAZ	M 4	M 1	10010100	
149	95	CB 41		N 4	N 1	10010101	
150	96	CB 42	AZ	04	01	10010110	
151	97	CB 421	SZ	P 4	P 1	10010111	
152	98	CB 8	mVX	04	Q 1	10011000	
153	99	CB 81		14	11	10011001	
154	9A	DCB 82	ED	@	! 3	10011010	
155	9B	DCB 821	ITC	\$ @	\$ 3	10011011	
156	9 C	DCB 84	MVC	- @	3	10011100	
157	90	DCB 841	CLC	1 @	13	10011101	
158	9 E	DCB 842	ALC	: @	3	10011110	
159	9 F	DCB 8421	SLC	@	3	10011111	
160	AO	DCB		- @	-3	10100000	
161	A1	DC A 1		1 @	13	10100001	
162	A2	C A 2		S 4	S 1	10100010	
163	A3	C A 21		T 4	T 1	10100011	
164	A4	C A 4	ZAZ	U 4	$\cup 1$	10100100	
165	A5	C A 41		V 4	$\vee 1$	10100101	
166	A6	C A 42	AZ	W 4	W 1	10100110	
167	A7	C A 421	SZ	$\times 4$	$\times 1$	10100111	
168	A8	C A8	MVX	Y 4	Y 1	10101000	
169	A9	C A8 1		Z 4	Z 1	10101001	
170	AA	DC A8 2	ED	\& @	\& 3	10101010	
171	$A B$	DC A8 21	ITC		3	10101011	
172	AC	DC A84	MVC	\% @	\% 3	10101100	
173	AD	DC A84 1	Cl.C	@	3	10101101	
174	AE	DC A842	ALC	>@	>3	10101110	
175	AF	DC A8421	SLC	? @	$? 3$	10101111	
176	B0	C A	SNS	04	01	10110000	
177	B1	C 1	LIO	14	11	10110001	
178	B2	C 2		24	21	10110010	
179	B3	C $\quad 21$		34	31	10110011	
180	B4	C 4	ST	44	41	10110100	
181	B5	C 41	L	54	51	10110101	
182	B6	C 42	A	64	61	10110110	
183	B7	C 421		74	71	10110111	
184	B8	C 8	TBN	84	81	10111000	
185	B9	C 81	TBF	94	91	10111001	
186	BA	DC 82	SBN	@	: 3	10111010	
187	BB	DC 821	SBF	\# @	\# 3	10111011	
188	BC	DC 84	MVI	@ @	@ 3	10111100	
189	BD	DC 841	CLI	- @	- 3	10111101	
190	BE	DC 842		= @	$=3$	10111110	
191	BF	DC 8421		. @	- 3	10111111	

* If both tier 1 and tier 2 columns are being used, the tier 3 punches are added together as shown in the table at the end of this chart.

Figure 1-30. (Part 2 of 3) Code Conversion Chart

$\begin{aligned} & \text { Oec } \\ & \text { Val } \end{aligned}$	Hex Val	Card Code DCBA8421	Mnem	IPL*		EBCDIC	Symbol
				T1T3	T2T3		
192	CO	D	BC	8	2	11000000	
193	C1	BA 1	TIO	A	A	11000001	A
194	C2	BA 2	LA	B	B	11000010	B
195	C3	BA 21		C	C	11000011	C
196	C4	BA 4		D	D	11000100	D
197	C5	BA 41		E	E	11000101	E
198	C6	BA 42		F	F	11000110	F
199	C7	BA 421		G	G	11000111	G
200	C8	BA8		H	H	11001000	H
201	C9	BA8 1				11001001	1
202	CA	D BA8 2		¢ 8	¢ 2	11001010	
203	CB	D BA8 21		. 8	. 2	11001011	
204	CC	D BA84		<8	<2	11001100	
205	CD	D BA84 1		18	12	11001101	
206	CE	D BA842		$+8$	+ 2	11001110	
207	CF	D BA8421		18	12	11001111	
208	D0	BA	BC	\}	\}	11010000	\}
209	D1	B 1	TIO	J	J	11010001	J
210	D2	B 2	LA	K	K	11010010	K
211	D3	B 21		L	L	11010011	L
212	D4	B 4		M	M	11010100	M
213	D5	B 41		N	N	11010101	N
214	D6	B 42		O	0	11010110	0
215	D7	B 421		P	P	11010111	P
216	08	B 8		Q	O	11011000	Q
217	D9	$\begin{array}{llll}\text { B } & 8 & 1\end{array}$		R	R	11011001	R
218	DA	D $\mathrm{B} \quad 882$		18	12	11011010	
219	DB	D \quad B 8821		\$ 8	\$ 2	11011011	
220	DC	D \quad B 84		* 8	- 2	11011100	
221	DD	$\begin{array}{lllll}\text { D } & \text { B } & 84 & 1\end{array}$		18	12	11011101	
222	DE	D B 8842		$\therefore 8$	$\bigcirc 2$	11011110	
223	DF	D \quad B 8421		78	72	11011111	

Dec Val	HexVal	Card Code DCBA8421		Mnem	1PL*		EBCDIC	Symbol	
				T1T3 T2T3					
224	EO	D	B		BC	8	2	11100000	
225	E1	D	A 1	TIO	8	- 2	11100001		
226	E 2		A 2	LA	S	S	11100010	S	
227	E3		A 21		T	T	11100011	T	
228	E4		A 4		U	\cup	11100100	U	
229	E5		A 41		v	V	11100101	V	
230	E6		A 42		W	W	11100110	W	
231	E7		A 421		\times	\times	11100111	x	
232	E8		A8		Y	Y	11101000	Y	
233	E9		A8 1		2.	z	11101001	z	
234	EA	D	A8 2		\& 8	\& 2	11101010		
235	EB		A8 21		- 8	- 2	11101011		
236	EC	D	A84		\% 8	$\% 2$	11101100		
237	ED	D	A84 1		-8	- 2	11101101		
238	EE	D	A842		>8	>2	11101110		
239	EF	D	A8421		$? 8$? 2	11101111		
240	F0		A	HPL	0	0	11110000	0	
241	F1		1	APL	1	1	11110001	1	
242	F2		2	JC	2	2	11110010	2	
243	F3		21	SIO	3	3	11110011	3	
244	F4		4		4	4	11110100	4	
245	F5		41		5	5	11110101	5	
246	F6		42		6	6	11110110	6	
247	F7		421		7	7	11110111	7	
248	F8				8	8	11111000	8	
249	F9		81		9	9	11111001	9	
250	FA	D	82		: 8	: 2	11111010		
251	FB	D	821		\# 8	\# 2	11111011		
252	FC	D	84		@ 8	@ 2	11111100		
253	FD	D	841		1 8	- 2	11111101		
254	FE	D	842		$=8$	$=2$	11111110		
255	FF	D	8421		" 8	" 2	11111111		

* If both tier 1 and tier 2 columns are being used, the tier 3 punches are added together as shown in the table at the end of this chart.

Figure 1-30. (Part 3 of 3) Code Conversion Chart

Section 1. Basic Unit

2.1 SYSTEM CONTROL PANEL

System controls are divided into three sections: operator controls, customer engineering (CE) controls, and console display. The operator section contains controls for normal programmed system operation. The CE controls serve as diagnostic aids in locating hardware and programming malfunctions. The console display shows the operator and the CE the contents of the various registers in the CPU and the status of the major CPU controls.

Manual branching can be performed through the console switches, but first the CPU must be ready to start a new operation. The system control panel (Figure 2-1) contains the switches and lights required to operate and control the system.

* See Section 2. "Features"

Figure 2-1. System Control Panel

2.1.1 Operator Controls

2.1.1.1 Emergency Power-Off Switch (EPO)

Pulling this switch (Figure 2-2) turns off all power beyond the power-entry terminal on every unit that is part of the system or any unit connected to the system. The switch latches out and when it is in this position, the power on/off switch is ineffective.

Figure 2-2. Emergency Power-Off Pull Switch

2.1.1.2 Usage Meter

The customer usage meter records system operating time. Recorded time starts when you press the start key or the load key and ends when the job is completed.

However, when operating in one of the step modes, the meter runs for 400 us. each time the start key is pressed.

Time is not recorded if one of the following conditions exists:

- Manual or programmed halt stops processing unit. (However, time is recorded when I/O operations are being performed during a programmed halt.)
- A processor check occurs.
- Power is lost.
- The CE key switch is turned off for system servicing.

2.1.1.3 Message Display Unit

This two-position message display unit (Figure 2-3) keeps a running display of the halt identifier portion of a halt instruction.

2.1.1.4 Processor Check Light

This light (Figure 2-3) is turned on when:

- An invalid op code, an invalid address, or a parity error is detected in the CPU.
- The device address (including the \mathbf{M} field) and the \mathbf{N} field of an I/O instruction is not recognized.
- The I/O device recognizes a parity error on data bus out at the I / O attachment.
- The immediate I/O error stop is on and an I/O error occurs.

This light is turned off when a system reset occurs or when the CE check-reset key is activated.

The processor stops on any of the above errors, and I/O data may be lost. The console display (2.1.3) shows the error. Following a processor check, use the program load procedure for a normal restart.

2.1.1.5 I/O Attention Light

The I/O attention light (Figure 2-3) comes on when an addressed I/O device requires normal operator intervention. Normal operator intervention includes:

- Printer-Forms out, cover interlock.
- MFCU-Hopper empty, stacker full, chin box full, cover interlock.

The light goes off when the operator has intervened and returned the device to the ready state. I/O attention does not stop normal CPU processing. However, start I/O or load I/O instructions are not accepted.

2.1.1.6 Power On/Off Switch

This switch (Figure 2-3) initiates the power on/off sequence of the system. As part of the power on/off sequence, a system reset is performed so that no I/O operations take place until they are specifically directed. The contents of main storage are not guaranteed after power on/off sequence.

Note: A power check occurs if the power on/off switch is turned on before a normal system power off sequence is completed.

2.1.1.7 Program Load Key

This key (Figure 2-3) is used for initial program loading. As part of the program load sequence, a system reset is performed. Pressing the program load key allows the first record from the I/O device (normally the MFCU primary hopper) to be read and stored in main storage, beginning at location 0000 . When the key is released, the CPU executes the instruction sequence starting at location 0000 .

The console I/O attention light comes on when the program load key is activated if the I/O device is in a not ready state. To complete the program load function, the device must be readied.

2.1.1.8 Stop Key/Light

Pressing this key (Figure 2-3) stops the processor at the end of the operation being performed. I/O transfers are completed without losing information. The stop light comes on to indicate processor stop. The processor may be restarted without loss of information by pressing the start key.

2.1.1.9 Start Key

Pressing the start key (Figure 2-3) takes the processor out of its stopped state, turns off the stop light, and allows the processor to continue. In the CE mode of operation the start key is also used to start the processor clock and then sequentially advance it.

2.1.1.10 Power Check Light

This light comes on when a machine power supply malfunctions or when a thermal condition exists. This light also comes on during a power up sequence and remains on until the sequence is completed.

For additional information refer to section 5.8.

2.1.1.11 Thermal Light

The thermal light and the power check light (Figure 2-4) come on when overheating occurs in the CPU mainframe. Turning off the power On/Off switch turns off the power check light. The thermal light remains on until the thermal condition is removed. Then the normal power on sequence can be performed.

2.1.1.12 Lamp Switch

This switch turns on all system lights so that you can check for burned out lights.

2.1.2 CE Controls

2.1.2.1 Address/Data Switches

These four switches (Figure 2-4) set up addresses or data. An address (16 bits) is loaded into the storage address register (SAR).

Data can now be entered into main storage- 8 bits when operating in test mode or 16 bits via a program.

Once a program level has been halted, the halt must be reset before an instruction can be properly executed in a specific program level. The halt can be reset by pressing the system reset key or the start key. (On machines with the dual program feature, press the halt reset key to reset the halt condition.)

2.1.2.2 CE Key Switch

This switch (Figure 2-5), when in the CE position, stops the usage meter from recording processor time while the CE services the equipment.

If this switch is turned off while the CPU is running, a processor check can occur.

$\longdiv { 5 3 2 9 3 }$

2.1.2.3 CE Mode Selector

This rotary switch selects one of three processor operating modes: the normal process mode, the step mode, or the test mode. Process is the mode for normal programmed system operation.

In the step mode, the rotary switch setting controls the manner in which the processor executes the stored program. There are three positions in the step mode.

Note: If this switch is changed while the system is running, a processor check can occur.

Instruction Step: In the instruction step, each start key depression and release causes one complete instruction to be executed. The I-phase is performed while the key is pressed and the E-phase, if any, when the key is released.

Note: Any SIO instruction which causes the clock to run as described under Clock Step also causes the next sequential instruction to be executed without start key operation.

Machine Cycle Step: In the machine cycle step, each start key depression and release advances the instruction through one machine cycle. Pressing this key causes data in storage to be accessed, modified as required, and the results displayed in the arithmetic logical unit (ALU) indicators of the console display. Upon release of the key, depending on the operation being performed, either the old data or the new result is written back into storage.

Cock Step: In the clock step, pressing the start key causes the clock to advance through and odd-numbered clock. Releasing the key causes the clock to advance through an even-numbered one.

The integrity of I/O data transfers is preserved by allowing the clock to run from the I-phase end of every executable start I / O instruction to the time the device is finished transferring data. The start key is not functional while this I/O transfer is taking place.

In systems without dual program feature, the halt identifier lights do not turn on in any step mode.

There are also three positions of the switch under test mode: alter SAR, alter storage, and display storage.

Figure 2-5. CE Control Panel

In the alter SAR position, the address setup in the address/ data switches is transferred into SAR by the start key and the current IAR-instruction address register (P1, P2, or interrupt level). If the start key is held down, alter SAR has the ability of displaying in the A register the data that has been set in the data switches.

In the alter storage position, pressing the start key transfers data (previously set up in the rightmost two address/data switches) into the A register. Releasing the key causes this data to be placed in the storage location specified by SAR and into the Q register.

In the display storage position, pressing the start key transfers the contents of the storage location specified by SAR into the B register. When the key is released, these contents are rewritten into storage and transferred into the Q register.

2. 1.2.4 LSR Display Selector

This rotary switch selects the local store register (LSR) to be displayed in position 2 of the display switch. The LSRs that can be displayed are: instruction address register (IAR), address recall register (ARR), index register 1 (XR1), and index register 2 (XR2). The selected LSR is displayed whenever the CPU is not in CPU or I/O cycles. When this switch is in the normal position, as it should be when the system is in operation, the CPU controls the selection and display of LSRs.

Refer to section 2.5 for the procedure to display other LSRs.

2.1.2.5 System Reset Key

When this pushbutton is pressed, it resets all I/O and CPU registers, controls, and status registers, including the program status register (PSR). System reset also resets the current IAR (P1 or P2 IAR) and the MFCU read address register to zero. System reset is operable only when the CE mode selector is set to the process mode.

2.1.2.6 Check Reset Key

This pushbutton resets the processor and I/O check conditions. Check reset removes the current error conditions and allows the processor to resume its operation after the start key is pressed. It also resets the system power-check function and allows a 'power on' retry.

2.1.2.7 Storage Test Switch

This two position switch allows storage to be altered or displayed according to the position selected. In the step position, each time the start key is pressed, a storage location is accessed. In the run position, when the start key is pressed, core storage is exercised by accessing either the same location repetitively or all of core sequentially.

2.1.2.8 Address Increment Switch

This switch allows address incrementing when in the CE test modes of alter or display storage. With the switch on, the contents of SAR are incremented by 1 after each storage access. When the switch is off, SAR is not incremented.

2.1.2.9 Address Compare Switch

This switch allows a compare of the address/data switch setting and the register display when the register display is turned to SAR. When the address compare switch is in the run position, the address switch setting is compared to SAR through the register display, but no processor stop is initiated when a match occurs. The matched signal is provided as a sync point.

When the switch is in the stop position, a match of the address switches and the register display causes a processor stop at the completion of the storage read/write cycle. The processor is restarted by pressing the start key. I/O data transfers take place without loss of information. The contents of the SAR do not necessarily match the setting of the address switches when the processor stops.

2.1.2.10 I/O Overlap Switch

This switch modifies control of the system so that I/O operations can be executed in either an overlap or a non-overlap mode. With the switch turned to the normal position of on, I/O operations are executed in an overlap mode. When the switch is turned off, I/O operation is completed before the next sequential instruction is executed:

2.1.2.11 I/O Check Switch

This switch, when set to stop, forces the processor to an immediate stop on an I/O error. The console display is frozen to indicate the processor status at the time the error stop occurred. For normal operation, this switch is set to run.

To restart after an I/O error, press check reset and then the start key.

2.1.2.12 Parity Switch

This switch, normally set to stop, forces the processor to an immediate stop whenever a parity error is detected. The restart procedure after a parity stop is to press check reset and then the start key. With the parity switch set to run, only the errors I/O LSR, INV ADR, INV OP, CHAN DBO, and INV Q will stop the processor; for all other errors, the processor will continue to run.

2.1.2.13 Address Compare Light

This light comes on when the address set in the address/data switches matches the SAR. For this to occur, the register display must be positioned to SAR. The system will not stop when the data matches unless the address compare switch is on.

2.1.2.14 I/O Check Light

This light is turned on when certain I/O errors (i.e., read check, punch check, hammer check) are detected by an addressed I/O device. It is turned off with a system reset, the check reset key, or at the discretion of the I/O device.

2.1.2.15 P1 and P2 Toggles

These two switches enable the CE to control selection of program level 1 or 2 to manually select the dual program mode of operation.

With P1 on and P2 off, the system operates in program level 1.

With P2 on and P1 off, the system operates in program level 2.

With both P 1 and P 2 off, the system is automatically enabled for the dual program mode of operation, with program level 1 being considered as the primary level.

For normal system operation, both P1 and P2 must be ON.
Note: An interrupt level 0 request is not accepted if either (but not both) P 1 or P 2 is turned off.

2.1.2.16 File (Disk) Write Switch

When this toggle switch is off, write operations cannot be performed on disk storage.

2.1.2.17 BSCA Local Test Switch

This toggle switch sets the high speed data-set into local test mode and causes data to be wrapped around through the data-set with a start I / O loop test instruction.

2.1.3 Console Display

The console displays are separated into two groups: a register display unit and a controls display section.

2.1.3.1 Register Display Unit

The register display unit (Figure 2-4) consists of a row of twenty lights and eight legend strips mounted on an eightposition, roller-type, switch. At any one time, only one of the eight strips is visible through a cutout in the console above the row of lights. The legend strip and the corresponding register(s) displayed by the row of lights are selected by the eight-position switch.

2.1.3.2 Controls Display Section

1. Machine Cycles-Twelve indicator lamps represent the twelve mutually exclusive machine cycles. They identify the processor cycle just completed in all modes except the CE clock step mode, in which case, they indicate the cycle in progress.
2. Clock-Ten indicator lamps represent clocks 0 through 9 which can be stepped through in the CE clock step mode. In the normal process mode, a machine cycle consists of clocks 0 through 8 inclusive. Clock 9 is used with the CE step and test modes.
3. Interrupt-A single lamp indicator is used to monitor whether any interrupt level is being serviced.

2.2 ENVIRONMENTAL RECORDING

Errors detected during an RPG object program run will be stored in the communications area starting at core location /0180/. Forty-two bytes have been reserved for this, broken into two sections of 10 and 32 bytes. The 6-byte section is used to record 5203 hammer echo checks. Each of the 6 bytes will contain the filing print position. (Refer to Table 3 in the 5203 map charts.) In case more than six errors have occured, only the last six will be shown. The 32-byte section is made up of eight 4-byte sections showing the last eight errors to occur. Each 4-byte section will contain the Q, R, and 2 sense bytes of data about the failing instruction. These 42 bytes of information along with the date will be punched out into a card during a system installation run. This card will be merged with the system initialization program deck and will be the card just preceding the end card. This data will be the error data accumulated since the last system initialization run.

Refer to error recording analysis program (ERAP) documentation for specific details.

The card format for the data punched out is as follows:

Column 1	'W'
Columns 2-65	Error history table in hexadecimal. Eight sections of four bytes each con- taining the ' Q^{\prime} ' 'R', and two sense bytes.
Columns 66-77	Six bytes of 5203 hammer echo check data.
Columns 78-93	Reserved

2.3 MACHINE CHECKS

2.3.1 Processor Checks

If any of the following processor checks are detected, the system comes to an immediate stop and I/O data transfers are terminated:

1. Invalid Address: Indicates storage address register is addressing a location outside available core size.
2. Operation Check: Indicates that operation register contains an unassigned operation code.
3. Parity Check: Indicates that incorrect parity has been detected at one or more of the data or addressing check points in the CPU. (I/O data transfers are subject to these checks.) Restart: Initial program load procedure. Point of restart is a program/operator function.
4. Invalid Q Code: Indicates that no I/O device recognized the I / O instruction because either the device addressed is not attached (or not assigned) or because the N field of the Q code for that I / O instruction is invalid. Restart: As in párity check.

2.3.2 Unit Check

Unit check handling of testable indicates is controlled by programs. Restart procedures are conveyed to the operator by programmed halt operations, halt identifiers displayed on the console, and recovery/restart procedure listings.

2.4 PROCESS ERROR INDICATIONS

Processor checks are displayed and indicate the following:

1. I/O $L S R$-Selection of an LSR by an I/O device was not performed properly.
2. $\quad L S R$ F1-Parity is incorrect on the output of the LSR Feature 1.
3. LSR F2-Parity is incorrect on the output of the LSR Feature 2.
4. $L S R$ HI-Parity is incorrect on the output of the LSR high.
5. $L S R L O$-Parity is incorrect on the output of the LSR low.
6. SAR HI-Parity is incorrect in the storage address register high.
7. $S A R L O$-Parity is incorrect in the storage address register low.
8. INV ADDR-The SAR contains an invalid address.
9. $S D R-$ Parity in the storage data register is incorrect.
10. $C A R$-The carry out of the ALU is incorrect.
11. DBI-Parity is incorrect in the data bus in register.
12. A / B-Parity is incorrect in the A register or the B register.
13. $A L U$-Parity is incorrect in the ALU register.
14. CPU DBO-Parity is incorrect on the CPU end of the data bus out to the I/O devices.
15. $O P / Q$-Parity is incorrect in the op register or the \mathbf{Q} register.
16. INV OP-Invalid op code in the op register.
17. CHAN DBO-Parity is incorrect on the I/O device end of the data bus out from the CPU.
18. INV Q-An invalid Q byte is present in an I / O instruction.

To determine which check comes first, compare the check lights to the clock time. Providing the proper clock is used, the leftmost check light that matches the clock time is the one that caused the processor check. Refer to Figure 2-6 for position 8 or the rotary register display unit.

EVEN FOR LSR

EVEN	NOT 0			CLOCK 1		1	$\begin{aligned} & 4 \text { or } \\ & 6 \end{aligned}$	EVEN NOT 0	$\left\lvert\, \begin{aligned} & 00 D \\ & 1357 \end{aligned}\right.$	EVEN NOT 0	$\left\|\begin{array}{l} \text { ODD } \\ \text { NOT } 9 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { NOT } \\ & 789 \end{aligned}\right.$	8			
$\begin{aligned} & \text { LSR } \end{aligned}$	$\begin{aligned} & \text { LSR } \\ & \text { F1 } \end{aligned}$	$\begin{aligned} & \text { LSR } \\ & \hline \text { F2 } \end{aligned}$	$\begin{aligned} & \text { LSR } \\ & \text { HI } \end{aligned}$	$\begin{aligned} & \text { SAR } \\ & \text { HI } \end{aligned}$	$\begin{aligned} & \text { SAR } \\ & \text { LO } \end{aligned}$	$\begin{aligned} & \text { INV } \\ & \text { ADR } \end{aligned}$	SDR	CAR	DBi	A/B	ALU	$\begin{aligned} & \text { CPU } \\ & \text { DBO } \end{aligned}$	OP/Q	$\begin{aligned} & \text { INV } \\ & \text { OP } \end{aligned}$	$\begin{aligned} & \text { CHAN } \\ & \text { DBO } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { INV } \\ 0 \end{gathered}\right.$

Figure 2-6. Register Display Unit-Position 8

2.5 LSR DISPLAY

To display LSR's other than IAR, ARR, XR1, and XR2, the following procedure should be used:

1. Turn the LSR display rotary switch off.
2. Turn the register display switch to position 2.
3. Tie up the desired LSR (Figure 2-7) to -0.75 volts
(Figure 2-8).

Figure 2-7. LSR Display

Bias
1668

NOTE: DO NOT TIE DOWN any MST net. UNUSED INPUTS can be tied down to ensure a down level.

1. You can tie up any MST signal line.
2. In most cases a floating line will appear as a down level.
3. Be aware of stubs when you float lines.
4. Be aware of opening terminators.
5. Be careful not to tie up SLD nets with MST tieup voltages.

Refer to label on side of logic gates A and B for MST tieup points.

Figure 2-8. MST Tie Up Data

2.6 VOLTAGE LEVELS

Figure 2-9 gives acceptable voltage levels for monolithic system technology (MST) -1 and solid logic dense (SLD) 700 technology.

SLD-700 Voltage Levels

Figure 2-9. Voltage Levels

ERROR RECOVERY PROCEDURE UNIT PRINTER								
Condition Requiring 1/O Attention	Pr	$\begin{array}{\|l\|} \hline \text { ST } \\ \hline B \\ Y \\ \hline T \\ \hline \end{array}$	$\begin{gathered} \mathrm{US} \\ \hline \mathrm{~B} \\ \mathrm{I} \\ \mathrm{~T} \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { Att } \\ & \text { Lite } \end{aligned}$	$\begin{aligned} & H \\ & A \\ & L \\ & T \\ & \text { ID } \end{aligned}$	DESCRIPTION	OPERATOR RECOVERY PROCEDURE	PROGRAM ACTION
Incrementer Failure Check (PTR Ck Lite)	3	2	3	Off	P6	Incrementer failure check caused by the incrementing hammer unit failing to move. P6, P8 are hardware limited to set only the first bit in error.	1) Press printer start key. 2) Press CPU start key.* Note: This results in printing the remaining information on the line with no loss of data.	Re-execute the last printer SIO instruction.
Sync Check (PTR Ck Lite)	1	1	0 1	Off	P5	A maximum of two printed lines may be in error. Error is hardware limited to first error. 1) Chain sync check caused by loss of attachment sync with the chain. 2) Incrementer sync check caused by loss of attachment sync with the incrementing hammer unit or failing roller clutch.	1) Press printer start key. 2) Press CPU start key to continue without recovering errors.	Continue processing. Since the data printed in error is no longer evailable, no recovery of of thet data is possible.
Print Check (PTR Ck Lite)	4	2	5 6	Off	P8	A maximum of one character may be in error. P6, P8 are hardware limited to set only the first bit in error. 1) Hammer echo check caused by improper hammer driver response during print time. 2) Any hammer on check caused by a hammer turning on when not in print time.	1) If the carriage has moved from the last line of printing and that line is incomplete, manually reposition the forms to the last line of printing using the carriage restore key and the carriage space key. If no manual intervention is made and the last line is not complete, the remainder of that line is printed in the stopped location. 2) Press printer start key. 3) Press CPU start key* to continue without recovering error.	Re-execute the last printer SIO instruction. Since the character printed in error is no longer available, no recovery of that character is possible.
Thermal Check (PTR Ck Lite)	6	1	2	Off	P7	Thermal check caused by overheating in the print hammer unit area.	1) Press printer start key. 2) Press CPU start key.*	Continue processing.
Forms Jam (PTR Ck Lite)	9	2	2	Off	P3	Forms jam in the print line.	1) Clear the forms jam. 2) Manually reposition next good form to line 1 using the carriage restore key. Note: Printing continues on the new form. Any missing printed information is recovered only by an IPL procedure. 3) Press printer start key. 4) Press CPU start key.*	1) Store carriage line counter with an SNS instruction before executing the P3 halt. 2) After start key is pressed the program issues an SIO skip to the proper line and continues printing.

* If the dual program feature is installed, press the halt reset key.

Figure 2-10. (Part 1 of 2) Error Recovery Procedures (Printer)

ERROR RECOVERY PROCEDURE UNIT PRINTER								
Condition Requiring 1/O Attention	$\begin{aligned} & P \\ & R \\ & 1 \\ & 0 \\ & R \end{aligned}$	ST B Y T	$\begin{gathered} \mathrm{US} \\ \hline \mathrm{~B} \\ 1 \\ \mathrm{~T} \end{gathered}$	1/0 Att Lite	$\begin{aligned} & H \\ & A \\ & L \\ & T \\ & I D \end{aligned}$	DESCRIPTION	OPERATOR RECOVERY PROCEDURE	PROGRAM ACTION
Carriage Check (PTR Ck Lite)	7 8	2	0 1	Off	P1	Error is hardware limited to first error. 1) Carriage sync check caused by loss of attachment sync with the forms or carriage runaway detection. 2) Carriage space check caused by skipping or spacing farther than the instruction called for.	1) Manually reposition forms to the last line of printing using the carriage restore kev and and the carriage space key. Note if this is followed, no print or carriage information is lost. 2) Press printer start key. 3) Press CPU start key.*	Re-execute the carriage control portion of the last SIO instruction.
Unprint- able Character	10	1	6	Off	PC	There was one or more unprintable characters in the last line printed.	1) Press printer start key 2) Press CPU start key.	Continue processing.
Chain Check	11	1	5	Off	$\begin{aligned} & \text { PE } \\ & \text { PF } \end{aligned}$	The chain is not compatible with the image in core. 48 character set chain is mounted. UCS chain is mounted.	A) If incorrect chain 1) Install correct chain 2) Press printer start key 3) Press CPU start key. ${ }^{\text {. }}$ B) If incorrect image: 1) Re-IPL. using correct image for chain.	A) Continue processing B) IPL .
Forms Check (Forms Lite)	12		-	On	Off	Less than 14 inches of forms remain.	When end of forms and line ${ }^{1}$ is sensed, the FORMS light will come on No additional lines can be printed. At this point it is necessary to: 1) Replace forms. 2) Press printer Start key.	Condition is not program identifiable. Continue processing.
Interlock Check (Interlock Lite)	12	-	-	On	Off	1) Cover interlock is open. 2) Chute interlock is open.	1) Correct interlock condition a) Close the cover. b) Close the chute. 2) Press printer start key.	Condition is not program identifiable. Continue processing.

- If the dual program feature is installed, press the halt reset key.

Figure 2-10. (Part 2 of 2) Error Recovery Procedures (Printer)

ERROR RECOVERY PROCEDURE UNIT MFCU								
Condition Requiring 1/O Attention	$\begin{aligned} & \mathbf{P} \\ & \mathbf{R} \\ & \mathbf{1} \\ & \mathbf{O} \\ & \mathbf{R} \end{aligned}$	ST B Y T	$\begin{gathered} \text { US } \\ \hline \mathbf{B} \\ 1 \\ T \end{gathered}$	$\left\{\begin{array}{l} 1 / 0 \\ \text { Att } \\ \text { Lite } \end{array}\right.$	H A L T ID	DESCRIPTION	OPERATOR RECOVERY PROCEDURE	PROGRAM ACTION
Feed Check	1	1	6	Off	FO or F1	Feed check indicates one or more cards are mispositioned or jammed in the feed path.	1. Open MFCU top covers. 2. Check halt ID for FO or F1 and perform step a or b. a. If FO, remove card from primary (upper) wait station and place card under cards in the primary hopper. b. If F1, remove card from secondary (lower) wait station and place card under cards in the secondary hopper. 3. Press CPU start key.* The display in the message display unit will change from FO to F1 to two numbers. 4. Hemove remaining cards from MFCU transport. Begin at hopper and work toward print station. Keep the cards face down and in correct sequence by placing card nearest the hopper, on top. Note: If MFCU indicator $7,8,10$, or 12 is on, replace the card that is between the punch station and the corner station with a blank card if a blank card was used; use a prepunched card if a prepunched card was used. 5. Check message display unit. The left digit indicates the number of cards that must be placed back in the secondary hopper (if halt ID is FO) or primary hopper (if halt ID is F1). If the number of cards you now have in your hand equals this displayed number, go to step 7.	The program determines the number of cards that should be in the machine by determining how many busy conditions have not been cleared within the program and adding one for each feed in use. All commands not complete are reissued. The restart procedure involves dummy operations to reposition the cards as they should have been at the time of the feed check. The program then reissues commands to complete the operations.

*If the dual program feature is installed, press the halt reset key.
Figure 2-11. (Part 1 of 6) Error Recovery Procedures (MFCU)

*If the dual program feature is installed, press the halt reset key.
Figure 2-11. (Part 2 of 6) Error Recovery Procedures (MFCU)

ERROR RECOVERY PROCEDURE UNIT MFCU							
Condition Requiring 1/0 Attention	$\begin{aligned} & P \\ & R \\ & 1 \\ & 0 \\ & R \end{aligned}$		1/0 Att Lite	$\begin{aligned} & H \\ & A \\ & L \\ & T \\ & 10 \end{aligned}$	DESCRIPTION	OPERATOR RECOVERY PROCEDURE	PROGRAM ACTION
Punch Check	2	$1 \quad 1$	Off	F4 01 02 03 04	Punch check means that extra or missing punches are in the card in the stacker indicated by the second halt. Second Halt Stacker 1 Stacker 2 Stacker 3 Stacker 4	1. Observe the back-lit panel on the MFCU to determine which hopper fed the last card. 2. Check to determine if blank cards or prepunched cards are being punched. If blank cards are used, remove the last card in the indicated stacker and do Action 7. If prepunched cards are used, proceed with Actions 3-8. IIf in doubt, assume prepunched cards are being used.) 3. Press CPU start key* to obtain stacker for error card. 4. Mark the last card in the indicated stacker. 5. Press stop on the MFCU. 6. NPRO the feed from which the last card was fed. Place in that hopper a blank card, followed by the card run out, followed by the remaining cards in that hopper. 7. Press start on the MFCU. 8. Press CPU start key.* 9. Upon completion of the job or removal of the cards from the stacker, do the following: a. Manually punch the information from the marked card into the card immediately following it, checking for extra punches which may have resulted from the punch check. b. Discard the marked card and replace the remaining card at its proper place in the deck. c. Mark the card and make a note to the programmer to check the card.	The restart procedure is reissue the last command except that if read was specified, the read portion of the command will not be re-executed. This way, a blank card is fed in from the correct hopper, the information is punched, printing is done if specified, and the card is stacked in the proper stacker. Since processing may have taken place in the read buffer, the read portion is not reexecuted.

[^1]Figure 2-11. (Part 3 of 6) Error Recovery Procedures (MFCU)

ERROR RECOVERY PROCEDURE UNIT MFCU								
Condition Requiring 1/0 Attention		STATUS		$\left\{\begin{array}{l} 1 / 0 \\ \text { Att } \\ \text { Lite } \end{array}\right.$	$\begin{aligned} & H \\ & A \\ & L \\ & T \\ & I D \end{aligned}$	DESCRIPTION	OPERATOR RECOVERY PROCEDURE	PROGRAM ACTION
		$\begin{aligned} & B \\ & Y \\ & Y \\ & T \\ & E \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{I} \\ & \mathbf{T} \end{aligned}$					
Punch Invalid	2	1	2	Off	F5 01 02 03 04	A character which is not one of 64 valid characters has been specified to the MFCU punch. The character less the C \& D punches was punched. Punch checking was not performed on the remainder of the card. The error card is in the stacker indicated by the second halt. Second Halt Stacker 1 Stacker 2 Stacker 3 Stacker 4	1. Press CPU start key* to obtain stacker for error card. 2. Mark the last card in the indicated stacker as being invalid. 3. To continue job, press CPU start key or correct program or data and re-IPL.	If continuation of the job is desired, the program may proceed as indicated. The operaation is not re-executed.
Print Check	2	1	3	Off	F6	Data Check: caused by an error in the synchronization between the attachment and the print wheels.	To continue job, press CPU start key.*	The program will proceed as indicated. The operation is not re-executed.
	2	1	4	Off	FC or F6	Clutch Check: caused by an error in the synchronization between the attachment and the print stepper clutch.		
Print Data Check Full Function Error Recovery Procedure	2	1	3	Off	FA 01 02 03 04 FO 01 02 03 04	Caused by an error in the synchronication between the attachment and the print wheels. Second Halt Stacker 1 Stacker 2 Stacker 3 Stacker 4 Third Halt Fourth Halt Stacker 1 Stacker 2 Stacker 3 Stacker 4	For a full function error recovery procedure, proceed as follows: 1. Press MFCU stop key. 2. Press CPU start key* to display stacker containing error card. 3. Remove card from stacker indicated by second halt display. Call this card one. 4. Press CPU start key.* 5. If I/O attention lights, go to step 7. 6. If halt indicator FO lights, press CPU start key* to obtain stacker for the second card. Fourth Halt: a. If both cards are from the same stacker, place the second card removed under the first card. b. If a different stacker is indicated, place the second card on top of the first card.	When the print data check is detected, determine how many print buffers were not released. Display the stacker containing the latest card and halt. After pressing start kev, display a halt if two buffers were busy. Then print-feed one or two cards and halt at FO. Then return to normal processing.

*If the dual program feature is installed, press the hait reset key.
Figure 2-11. (Part 4 of 6) Error Recovery Procedures (MFCU)

ERROR RECOVERY PROCEDURE UNIT MFCU								
Condition Requiring 1/0 Attention	P Status			1/0 Att Lite	HA$\mathbf{L}$$\mathbf{T}$ID	DESCRIPTION	OPERATOR RECOVERY PROCEDURE	
	$\begin{aligned} & \mathbf{R} \\ & 1 \\ & \mathbf{0} \\ & \mathbf{R} \end{aligned}$	$\begin{array}{\|l\|} \hline B \\ Y \\ \mathbf{T} \\ \mathbf{E} \end{array}$	$\begin{aligned} & \hline \mathbf{B} \\ & \mathbf{I} \\ & \mathbf{T} \end{aligned}$					PROGRAM ACTION
Full Function Error Recovery Procedure (cont.)							7. NPRO the primary feed. 8. Place the cards run-out on top of a number of blank cards equal to the number of cards removed in steps 1-6. If the primary feed was not being used, add one extra card. 9. Press MFCU start key. 10. After halt indicator FO lights, NPRO the primary feed if it was not in use. Remove one or two cards from stacker as previously shown by halt indicator and manually correct any printing errors on cards removed in steps 1-8. 11. Place corrected cards in correct stacker. 12. Press CPU start key.*	
Read Check	3	1	0	Off	F3	Caused by: 1. Off punched card. 2. Damaged card. 3. MFCU feed problem. 4. Cards in hopper backwards or upside down.	1. Observe the back-lit panel on the MFCU to determine from which hopper the last card was fed. 2. Press stop on the MFCU. 3. NPRO the feed from which the last card was fed and replace the card run out in that hopper followed by the remaining cards in the hopper. 4. Press start on the MFCU. 5. Press CPU start key.*	The restart procedure repeats reading of the card which caused the read check. The hopper information is retrieved from the last command. A read check does not affect execution of the punch, print, or stacker select portion of the command. Therefore, that portion of the command is not re-issued.
Hopper Check	3	2	3	Off	F2	A card was not picked from the hopper.	1. Observe the back-lit panel on the MFCU to determine the hopper from which the last feed was attempted. 2. Straighten or, if necessary, reproduce the damaged card(s) in the hopper from which the feed was attempted. 3. Press start on the MFCU. 4. Press CPU start key.*	The restart procedure attempts to feed the card from the hopper, in which the hopper check occurred, into the wait station. If a read was specified in the last command, the card will be read. The hopper check does not affect execution of the punch, print, or stacker select portion of the command. Therefore, that portion of the command is not re-issued.

"If the dual program feature is installed, press the halt reset key.
Figure 2-11. (Part 5 of 6) Error Recovery Procedures (MFCU)

*if the dual program feature is installed, press the halt reset key.

Figure 2-11. (Fart 6 of 6) Error Recovery Procedures (MFCU)

2.8 MFCU FEED CHECKS

Figure 2-12 shows the possible MFCU feed checks and the cause of each one for troubleshooting.

	During Which Operation Check Is Given					Under Which Solar Cell Condition Check Is Given					
	Every Operation	Punch Operation	Non-Punch Operation	Print Operation	Non-Print Operation	Covered Late	Uncovered Late	Uncovered Early	Never Dark	Dark Without Feed Cycle	
Hopper Check	x								Hopper Cell		Card never covered cell.
Feed Check 1	x					Hopper Cell					Card covered cell late.
Feed Check 2	x					Read Cells					Card late getting to read station.
Feed Check 3										Read Cells	Card jammed in read station.
Feed Check 4	x						Read Cells				Card too long in read station.
Feed Check 5	x									Prepunch	Card left wait station without punch registration pressure roll.
Feed Check 6			x			Prepunch					Card late to prepunch cell.
Feed Check 7		x				Prepunch					Card late to prepunch cell in punch operation.
Feed Check 8		x						Prepunch			Card out of registration in punch operation.
Feed Check 9			x				Prepunch				Card too long in punch station.
Feed Check 10		x					Prepunch				Card out of registration in punch operation.
Feed Check 11			\times			Corner					Card late to corner nonpunch operation.
Feed Check 12		x				Corner					Card late to corner punch operation.
Feed Check 13	x							Corner			Card left corner without kicker.
Feed Check 14					x		Corner				Card left corner late non-print operation.
Feed Check 15				x			Corner				Card left corner late print operation.
Feed Check 16					x	Postprint					Card too long in print station.
Feed Check 17				x		Postprint					Card early or late leaving print station.
Feed Check 18							Postprint				Card too slow to stacker transport.
Feed Check 19			Stacker					Jam			
Feed Check 20		Gear em	tter check or	fire CB check							

2.9 SPECIAL TOOLS

The following special tools used in troubleshooting System/3 are either included in the System/3 shipping group or are available from the branch office. See the Integrated Maintenance Package User's Guide (part 2589902) for detailed descriptions of the tools.

2.9.1 CE Diagnostic Probe

The CE diagnostic probe (Figure 2-13, part 817971) acts as a free-running oscilloscope which replaces scope usage for most System $/ 3$ service calls. The probe can measure SLT 100/700 and MST-1 signal levels. The probe also has two MST-1 gates for gated operation. Consult the Integrated Maintenance Package User's Guide (part 2589902) for
specific levels that trigger the probe. An assembled view of the probe is given in Figure 2-13, insert A. The lamps (part 454612) and probe tips (part 453163), shown in the disassembled view of the probe (Figure 2-13, insert B), are field replaceable.

Note: The probe may give a wrong indication because of electrical noise. For example, electrical noise can be caused by:

- The probe power cord close to the CPU memory mag. netic field.
- The switching of flourescent lights.
- Electric drills.
- Electrostatic discharge.

2.9.2 Jumper Wires

Six jumper wires (Figure 2-14) are included in each 5410 shipping group; two 6 " wires (part 829117), two 12 " wires (part 2588263) and two 18 " wires (part 829118). These jumpers are provided for use with the MAP charts and diagnostic programs.

2.9.3 Single Pin Extenders

The single pin extender (Figure 2-15, part 2594238) is used to extend board pins when using the CE meter to measure voltage levels. The use of these pins elminates shorting to adjacent pins when using the meter leads.

2.9.4 MST-1 Card Extender

The MST-1 card extenders (Figure 2-16) allow the CE to extend a card above the tops of adjacent cards on a board. This makes the module pins on the back of the card more accessible for probing with a scope of the diagnostic probe. These card extenders are stocked at the branch office.

Figure 2-14. Jumper Wires

Figure 2-15. Single Pin Extenders

Figure 2-16. MST-1 Card Extender

Section 2. Features

2.10 DUAL PROGRAM CONTROL PANEL

The dual program controls (Figure 2-17) consist of:

2.10.1.1 Message Display Units

A message display unit is provided for each program level. These units operate in the same manner as the message display unit in the system controls.

2.10.1.2 Process Lights

These lights indicate which program level is functioning at any time. If an interrupt is being serviced, this indicator shows which index registers and program status register are in use.

2.10.1.3 Halt Reset Keys

These keys are used to take a program level out of the programmed halt state. Pressing either of these keys clears the corresponding message display unit and allows the corresponding program to continue its normal operation.

2.10.1.4 Interrupt Key/Light

Pressing this key when it is illuminated causes the program in operation at that time to halt its normal operation and enter the interrupt-handling subroutine for interrupt level 0. Normal programmed operation will be resumed after the interrupt routine signals completion of interrupt servicing with a start I / O instruction to reset interrupt request 0 .

The interrupt key is lighted only when the system is in dual programming mode and interrupt level 0 is enabled. Selection of whether the system is to be used in the dedicated or the dual programming mode is accomplished via the start I / O instruction. The start I / O instruction is also used to enable or disable the use of interrupt level 0 .

2.10.1.5 Dual Program Control Switch

This rotary switch is normally used in conjunction with the console interrupt key. The status of this switch is sampled by the test-I/O-and-branch instruction.

2.11 FILE CONTROL PANEL

The file controls (Figure 2-18) consist of:

2.11.1.1 Program Load Selector Switch

This switch is used to select the unit from which program loading is to be done. The fixed disk and removable disk positions refer to drive 1 only.

2.11.1.2 Start/Stop Switches

These switches (one per drive) turn the disk drive power on or off when system power is on. With the switch in the off position, the removable disk can be replaced.

Figure 2-17. Dual Programming Control Panel

Figure 2-18. Disk Control Panel.

2.11.1.3 Ready Lights

These lights (one for each drive) light when the disk drive is ready for use. If operation of the drive is attempted before this light turns on, the I/O attention light on the control panel will light.

2.11.1.4 Open Lights

These lights (one for each drive) indicate that the associated drive drawer can be opened for changing the removable disk. This light turns on when the start/stop switch is turned to the stop position, the read/write head has been retracted, and the disk has come to a stop.

2.12 BSCA INDICATOR PANEL

The BSCA Indicator panel (Figure 2-19) consists of:

2.12.1.1 BSCA Attention Light

The following table shows the conditions indicated by this light.

Instruction

Any receive or transmit and receive or (on non-switched and multipoint networks only) receive initial.

Auto call or receive initial on switched network.

Any SIO except control SIO.

None.

Condition Indicated
Data set is not ready.

Auto call unit power is off or data line in being used.

Either (1) the BSCA is disabled or (2) the external test switch is on and BSCA is not in test mode.

Data set is not ready.

2.12.1.2 Unit Check Light

This light turns on when any bit in status byte 2 is on. Also, when an SNS transition or SNS stop register instruction is executed, it is possible for an LSR, S register, or DBI register parity check to occur, resulting in a unit check condition with the unit check light on. Under such a condition, the status byte 2 bits may all be zero.

The unit check indicator signifies that the BSCA program should enter an error recovery procedure.

2.12.1.3 Data Terminal Ready Light

This light indicates that the BSCA is enabled and that the data terminal is ready for use.

2.12.1.4 Data Set Ready Light

The DT SET READY light indicates that the data set ready line from the data set is on and that the data set is ready for use.

2.12.1.5 Clear To Send Light

This light indicates that the clear to send line from the data set is on and that the adapter may now transmit.

\square BSCA		
BSCA	DT TERM	DT SET
ATTN	READY	READY
	TEST	EXT
	MODE	TEST SW
TSM	CLEAR	TSM
MODE	TO SEND	TRIGGER
RECEIVE	CHAR	RECEIVE
MODE	PHASE	TRIGGER
RECEIVE INITIAL	Busy	UNIT CHECK
CONTROL mode	DATA MODE	DIGIT PRESENT
ACU PWR OFF	CALL REQUEST	DT LINE IN USE
1200 BPS		
RATE SELECT		

Note: Rate select switch is for machines used outside the United States.

Figure 2-19. BSCA Control Panel

2.12.1.6 Receive Trigger Light

This light indicates the status of the receive trigger. The light is on when the trigger is at a binary 0 state.

2.12.1.7 Transmit Trigger Light

The TSM TRIGGER light indicates the status of the transmit trigger. The light is on when the trigger is at a binary 0 state.

2.12.1.8 Receive Mode Light

This light indicates that the adapter has been instructed to perform a receive operation.

2.12.1.9 Transmit Mode Light

The TSM MODE light indicates that the adapter has been instructed to perform a transmit operation.

2.12.1.10 Receive Initial Light

This light is turned on by an SIO receive initial instruction. It is turned off at the end of the receive initial operation.

2.12.1.11 Busy Light

This light indicates that the communication adapter is executing a receive initial, transmit and receive, auto call, receive or loop test instruction.

2.12.1.12 Character Phase Light

The CHAR PHASE light indicates that the adapter has established character synchronism with the transmitting station. The light is turned off at the end of receive operations and whenever character synchronism is lost.

2.12.1.13 Data Mode Light

This light is turned on by the decoding of an SOH or STX during a transmit or a receive operation. It is turned off at the end of the transmit or receive operation.

2.12.1.14 Control Mode Light

This indicator is used only on systems that have the station select feature installed. The light is turned on by an EOT sequence during a transmit, receive, or receive initial monitor operation when the station select feature is installed. It is turned off by the decoding of an SOH or STX.

2.12.1.15 Digit Present Light

This light indicates that a digit has been obtained from storage for the auto call unit when the auto call feature has been installed.

2.12.1.16 Auto Call Unit Power Off Light

The ACU PWR OFF light indicates that the auto call unit (special feature) power is off.

2.12.1.17 Call Request Light

On systems with the auto call feature installed, this light indicates that the communication adapter has received an SIO auto call instruction and is performing an auto call operation.

2.12.1.18 Data Line In Use Light

On systems with the auto call unit installed, the DT LINE IN USE light indicates that the data line occupied line from the auto call unit is on.

2.12.1.19 Test Mode Light

This light indicates that the program has placed the adapter in a test mode of operation.

2.12.1.20 External Test Switch Light

The EXT TEST SW light indicates that the switch at the data set end of the medium speed data set cable is in the test position. For high speed data sets, this indicator is
active when the local test switch on the CE panel is in the on position.

2.12.1.21 Rate Select Switch

This switch, which is present only on systems installed outside the U.S.A. that have the rate selection feature as well, controls the rate of transmission and reception of data.

2.12.1.22 BSCA Step Key

The BSCA STEP key, which is effective only when the communication adapter is in step mode, causes the communication adapter to advance one bit-time for each key depression.

2.12.1.23 Local Test Switch

This toggle switch sets the high speed data set into local test mode and causes data to be wrapped around through the data set with a start I/O loop test instruction in test mode.

Section 1. Basic Unit

3.1 SCHEDULED MAINTENANCE

Perform the following maintenance every three months:

1. Check filters visually and replace as necessary.
2. Check cooling fans for proper operation.

Caution

Do not use IBM cleaning fluid on plastic parts.

3.2 I/O DEVICE MAINTENANCE

Scheduled maintenance for I / O devices is included in the maintenance manual for each device.

Section 2. Features

Not applicable.

Section 1. Basic Unit

The only adjustments and repairs possible in the CPU are to the power supplies (see Chapter 5), and the bridge basic storage module (BSM). If $8 \mathrm{~K}, 12 \mathrm{~K}$, or 16 K of storage is installed in the CPU, it is in an 8 K or 16 K BSM at location $01 \mathrm{~A}-\mathrm{B} 4$. If 24 K or 32 K of storage is installed in the CPU, three types of BSMs can be used. For early systems, 24 K of storage uses an 8 K BSM and a 16 K BSM chained together. For later systems, a 32 K BSM is used for both 24 K and 32 K of storage. A 48 K storage system uses a 32 K BSM and a 16 K BSM chained together; 64 K storage (RPQ S40048) uses two 32K BSMs. When two BSMs are chained (dual BSMs), they are at locations 01A-B4 and 01 A-A4 in the CPU. When one 32 K BSM is used, it is at location 01 A-B4.

Storage Capacity	BSM Sizes Required		
	8K	16K	32K
8K	1		
12K		1	
16K		1	
24K			1
32K			1
48K			1
64K			2

For reliable storage operation, the BSM diagnostics should run two minutes without errors when the $\mathbf{- 3 0}$ volt XYZ
drive voltage is biased 1.2 volts in either direction from its initial setting. If BSM operation is unreliable, either a fault exists, XYZ drive voltage $(-30 \mathrm{~V})$ reoptimization is required, or strobe setting and -30 V reoptimization is required.

Proper settings for the -30 V power supply and the strobe settings for each BSM are recorded on a decal located on the XYZ current limiting resistor cover (Figures 4-1, 4-2, and 4-2B).

Note: The memory thermistor automatically changes the -30 V power supply to compensate for temperature changes. For each degree F temperature change there is a 75 mV change to the 30 V power supply.

The only repairs possible on the BSM are card replacement, voltage and strobe adjustments, and repair of minor (visible) shorts or open circuits. Major array failures (shorted diodes, internal opens, etc.) necessitate BSM replacement.

Most problems fall into two categories of component failures:

1. Circuit failures (card, loose connector, etc.)
2. Array failures (shorted lines, open line, diode, etc.)

Intermittent or random failures are ireated separately.

Figure 4-1. 8K Basic Storage Module (Probe Side)

Figure 4-2. 16K Basic Storage Module (Probe Side)

Figure 4-2B. 32K Basic Storage Module (Probe Side)

Figure 4-1A. 8K Basic Storage Module (Card Side)

Figure 4-2A. 16K Basic Storage Module (Card Side)

Figure 4-2C. 32K Basic Storage Module (Card Side)

4.1 FAULT LOCATION

If a failing pattern is not already evident, try manually storing and displaying or scanning storage to establish a pattern. If this fails, run storage diagnostics.

4.1.1 Circuit Failures

All BSM problems should be approached as if there has been a circuit failure. Circuit failures (card, connector, etc.) can be broken into distinct patterns. For example:

- Single bit-all addresses
- Single bit-one block of addresses
- Multiple bits-all addresses
- Multiple bits-one block of addresses

The 'all addresses' failure could be caused by the drive current source card or the control driver card (Figure 4-3). The 'block of addresses' failure could be caused by a defective gate driver card. For example, if SAR bits 7, 8, and 9 are always active in the failing address, the chart in Figure $4-3$ indicates the failure could be the Y-lo gate driver.

Single-bit or multiple-bit failures can be caused by a sense/ inhibit card which also contains the SDR latch for that bit.

Card location:

Note: Bits 9-17 are $0-8$ when SAR bit 2 is active. Bits 8 and 17 are the Pbit.

Bits	8K BSM	16K BSM
$0,1,2$	XXJ4	XXJ4
$3,4,5$	XXH4	XXH4
$6,7,8$	XXG4	XXG4
$9,10,11$	-	XXF4
$12,13,14$	-	XXE4
$15,16,17$	-	XXD4
Bits		
0,1	32K BSM	
2,3	XXK4	
4,5	XXJ4	
6,7	XXH4	
8,9	XXG4	
10,11	XXF4	
12,13		
14,15	XXD4	
16,17	XXC4	

Multiple-bit failures at all addresses can also be caused by the strobe driver card. (For card location, see ALD page SR224.)

Using bridge MAP charts (trouble analysis flowcharts) allows repair of most of the failures by swapping or replacing cards. Use the CE pocket meter and diagnostic probe for help in locating and repairing the trouble.

4.1.2 Array Failures

If the array fails, replacement is necessary unless the failure can be traced to cabling defects, visual defects, or an open diode. Trouble caused by open diodes can be replaced by patching a new diode across the open one. Shorted diodes require replacing the array.

4.1.2.1 Single Bit, Multiple Address Failures

A sense/inhibit (S / Z) problem usually shows up as an extra or missing bit throughout an 8 K block of storage (each S / Z line passes through 8,192 cores). If the S / Z card is not at fault, check the wiring to the Z load resistor. (Refer to SR071-076 and to SR264 for locations.) Check that -30 volts appears on pin 2 of the affected resistor.

Check also for a broken S / Z wire between the array and the back panel pins on the sense amplifier. (See Figure 4-2D for the numbering of the pins on a core plane.) A complete S / Z winding resistance should measure approximately 14.0 ohms. If the open or shorted S / Z winding is within the core plane,

- Figure 4-2D. Numbering of Core Plane Pins

Figure 4-3. X or Y Drive System

4.1.2.2 Multiple Bits, Multiple Address Failures

If this type of failure cannot be corrected by card swapping or replacement, an array fault probably exists. If the failure is related to a combination of more than one address pattern, suspect a short between drive lines.
4.1.2.2.1 Continuity Check of $X Y$ Drive Lines: The charts on SR174 and SR184 (8K or 16K BSM) or SR234 and (32 K BSM) describe all X - and Y -drive lines and contain all the points (terminals) for performing a continuity check. The following example and section 4.1.2.2.2 refer to an 8 K or 16 K BSM, which uses Figure 4-4 and the charts
found on SR174 and 184. (For a 32K BSM, use charts found on SR234 and 244.)

Example: This example is for the failing X-address of 000110 in an 8 K or 16 K BSM. X-read current is shown from left to right through the array X -winding. X -write current is shown from right to left through the same array X -winding.
(In the following discussion, column numbers refer to the chart on SR174.) Starting from the X-read lo gate, D2G10 (column 13) current flows: To terminal 56 on the top diode board (column 12), through a diode in diode pack 25 on the top diode board (column 11), to pin 161 on top diode
board (column 9), through the X -winding to pin 12 on the top diode board (column 7), through a diode in diode pack 32 on the top diode board (column 6), to terminal 4 on the top diode board (column 3) to the X-read hi gate, E2B12 (column 2).

Likewise, it can be seen that X-write current flows from the X -write hi gate, S2D11 (column 4), in the reverse direction through the X -winding, to the X -write lo gate, D2J09 (column 15).
4.1.2.2.2 Locating an Open Diode: Because of the complex connections of the isolation diodes, a continuity check is difficult. To locate an open diode, use the method described next. The cards named are for the same failing X -address (000110) discussed in Section 4.1.2.2.1. Refer also to Figure 4.5.

1. Turn off power.
2. Remove \mathbf{X} gate cards D2 and E2.
3. Probe the points shown with the ohmmeter; be sure to observe the polarity of the meter as indicated by the + or - . Expected meter readings are infinity (∞) or some resistance (R, unpredictable because of circuit variations and the meter in use).

An open or shorted drive line may also be verified by scoping the current source resistors. See Figure 4-16 for the waveform of the Y-read current source with either an open drive line or two drive lines shorted together (see SR264). If either is correct, an open diode is likely. Make a continuity check to determine which of the two diodes in the line is open.

If an open diode exists, the charts of SR174 and SR184 will indicate the polarity of the diode to be replaced. See the bottom of Figure $4-4$ for diode locations with respect to the charts.
4.1.2.2.3 Replacing an Open Diode: An individual diode cannot be removed since it is part of a module containing 16 diodes. Replacement consists of soldering an individual GY diode (part 2414891) over the defective one. (A shorted diode calls for replacement of the BSM.)

When replacing a diode, use thermal set compound (part 814007) as a heat sink. Wrap one end of a yellow wire to the wrap terminal on the diode board and solder the other end to the diode. Solder the remaining end of the diode to the solderable pin on the edge of the diode board. After diode replacement, check for reliable BSM operation.
4.1.2.2.4 Exposing Bottom Diode Board: If an open Ydrive line exists and the fault cannot be located on the top diode board, remove the BSM to expose the bottom diode board.

1. Disconnect all cables to the BSM.
2. Remove all the cards.
3. Remove the BSM (weight: approximately 18 pounds $-8,172$ grams) and lay the unit on a table with the card side down, pin side up.
4. Loosen the four nuts which hold the array onto the board. It is now connected by only the drive and sense-inhibit cables.

Note: It is now possible to raise the board separately leaving the array resting on the table and expose the bottom diode board, or you may continue.
5. Turn the unit over. Support the array since it is connected only by wiring.
6. Pull the array out vertically and turn it over so that the top side is down and lying on the card sockets. The bottom diode board is now completely exposed.
4.1.2.2.5 BSM Replacement: Most systems supply -30 volts to the BSM with a single 'mini-bus' connector. (See SR264 for distribution points.) Earlier systems supplied -30 V with jumpers on the board. This includes the associated D08 ground pins.

When replacing a BSM it is necessary to save the jumpers for use on the new BSM if your system does not use the 'mini-bus' connector.

For dual BSM systems some wiring changes to the new BSM may be required. Refer to the SR2XX pages in the BSM logic manual for card plug charts and wiring add/delete lists. Note that the new BSM is shipped without a byte control card and without the terminator cards. These cards must be removed from the old BSM and used with the new one. Any reference in these SR2XX pages to "1st BSM" means location 01A-B4 and "2nd BSM" means location 01A-A4.

Example: Locating an open diode associated with the failing X-address of 000110 (SAR Bits 10 through 15)

IMPORTANT: Remove X-Gate Cards D2 and E2

Figure 4-5. Example-Locating an Open Diode (8 K or 16 K BSM)

4.1.2.3 Poor Solder Connections and Welds

If a problem appears to be an open diode or an internal open within the array, a complete resistance check should be made. Any poor solder connections or welds should be resoldered.

Alșo check for an open land pattern in the X-return card (for an X-drive line). If there is an open land pattern, use a piece of \#30 wire to repair the break.

See the 5410 Service Aid on resoldering the connections.

4.1.2.4 Shorts Between Drive Lines

Shorts between X- or Y-drive lines usually show up as dropping one or more bits of two addresses. In almost all cases, analysis of the failing addresses shows that two adjacent X or Y-drive lines are the problem. Once the two lines have been located, make a resistance check of the lines, moving from one end of the array to the other. Because of the resistance of the windings, less resistance is seen as you get closer to the short.

In almost all cases, the short is either some foreign material between two adjacent pins or two pins touching. A visual check with a strong light may show the short. However, if foreign material is causing the short, it may not be visible. Try passing a piece of paper between the pins at the area of the short.

4.1.2.5 Defective Cores

A defective core position usually shows up as dropping a single bit in a single address. This type of problem can be caused by the individual core losing its magnetic properties because it is cracked, chipped, or broken.

Vary the -30 V drive voltage and the strobe setting to see if the rate of failure changes. If you are unable to obtain a reliable operating position, BSM replacement is necessary. See Sections 4.2 and 4.3 for drive voltage and strobe reoptimization.

4.1.3 Intermittent or Random Failures

If a failure pattern cannot be determined, check the following for possible failures causes:

1. Using an oscilloscope, probe the:
a. XY drive voltage pulses on the XY read and write current source resistors and compare them to those in Figures 4-7, 4-8, 4-9, and 4-10.

Note: Probe pins 1 and 3, which are common. No pulse will be observed on resistor pin 2 , since it is ground.
b. Z drive voltage pulses on the Z (inhibit) current limiting resistors and compare them to those shown in Figure 4-11.

Note: No pulse is observed on resistor pin 2 since it is the -30 V power supply connection. Note also that the magnitude of the pulses may vary slightly if the XYZ drive voltage setting is not at -30 V . (XYZ drive voltage supply is a temperature correcting supply.)
c. Control driver (Figure 4-12).
d. Strobe driver (Figure 4-13).

Note: If the strobe driver card is replaced, strobe jumpers must be put in the new strobe driver card.
2. Check for improper setting of the $-30 \mathrm{~V},+6 \mathrm{~V},-4 \mathrm{~V}$, -14 V , and/or +3 V . (Use a Weston* 901 meter or equivalent when adjusting these voltages.)

Note: The +3 V supply should be adjusted with reference to +6 V . This results in a negative reading (Section 5.2.1).
3. Check the voltage connectors to the large circuit board (SR264).
4. Check if back panel resistor assemblies (not XYZ resistors) are misplugged (SR264).
5. Check for loose interface cables or terminator cards (SR201, 224, 228, 229).
6. Check for improper MST-1 levels at the interface.

[^2]
4.2 XYZ DRIVE VOLTAGE (-30V) REOPTIMIZATION (ALL SYSTEMS)

Reverify drive voltage marginal limits whenever replacing S / Z, timing, driver source, or strobe driver cards.

To reoptimize the drive voltage:

1. Loop storage diagnostics \# 97. (Use the proper switch settings for the storage size of the system.)
2. Determine the lower drive voltage (-30 V) limit by slowly decreasing the drive voltage reading until an error occurs. Record the last operating voltage as the lower limit. If system reset and start does not start the diagnostic, set the drive voltage close to normal and reload the diagnostic. Determine the upper limit by slowly increasing the voltage reading until an error occurs (do not exceed a more negative voltage than -35 V). Record the last operating voltage (or -35 V) at the upper limit.

Note: The BSM should run error free for a minimum of 30 seconds at the last operating point.
3. Set the XYZ drive voltage (-30 volts) to the optimum drive voltage which is the average of the upper and the lower BSM limits.
4. If the difference between the upper and lower limits is less than 2.4 V , strobe reoptimization may be necessary.

Note: When reoptimizing the drive voltage or strobe setting, a thermometer (part 5392366 or any standard thermometer) placed at the base of the array should read between 68 degrees and 86 degrees F. The voltage may be reoptimized outside of this range, but a check at the normal temperature should be made as soon as possible.

4.3 STROBE SETTING REOPTIMIZATION (8K-16K-32K SINGLE BSM)

To reoptimize the strobe setting:

1. Loop storage diagnostics \#97. (Use the proper switch settings for the storage size of the system.)
2. Refer to the decal on the $X Y Z$ current limiting resistor cover (Figures 4-1, 4-2, 4-2B). Use the present strobe setting, and determine the upper and lower XYZ drive voltage limit, which is explained by 4.2, step 2. Record these limits as Figure $4-6$ point A and B show. Repeat 4.2 step 2 for strobe setting 10 , 20 , and 30 nanoseconds before and after the present strobe setting. Strobe settings are made on the strobe driver card (SR254).

Note: These test settings may be wirewrapped on the strobe card but the final setting must be made with the jumpers (part 5159491) because the card pins are not 'squared off' as they must be for reliable wirewrap connections.

Plot the XYZ drive voltage limits as Figure 4-7 shows. Set final strobe timing midway between points where the XYZ driver voltage limits start to drop off.
3. Set the optimum drive voltage (-30 V) which is the average of the upper and lower BSM limits at the selected strobe setting (Figure 4-6).
4. BSivi access time is measured when Rd Call/Write Call becomes active in the BSM until all sense data latches are active. (Measure access time while writing all ones into the BSM.) Access time must be 445 nanoseconds or less. If necessary, reset the strobe setting to obtain 445 nanoseconds or less. The minimum 2.4 V spread for XYZ voltage must still be met at the new setting.

Note: If the strobe driver card is replaced, strobe jumpers must be put in the new strobe driver card.

4.4 STROBE SETTING REOPTIMIZATION (24-32K-48K DUAL BSM)

1. Optimize low-address BSM (1st BSM at location 01AB4) as described in 4.3, with the switches set to test only the lower (01 A-B4) BSM. (This BSM is either 16 K or 32 K depending on the total system memory size.)
2. Optimize high-address BSM (2nd BSM at location 01AA4) as described in 4.3 using the program 97 option which tests only the high BSM.

Figure 4-6. Optimization-Strobe and XYZ Drive Voltage

4.5 STROBE SETTING REOPTIMIZATION (64K DUAL BSM; RPQ S40048)

1. Optimize the low-address BSM (at location 01A-A4) as described in Section 4.3 with the program switches set to test 32 K storage addresses.
2. Jumper 01A-B3B2M08 to 01A-B3B2G03. This forces '2nd BSM select' to the active level.
3. Optimize the high-address BSM (at location 01A-A4) as described in Section 4.3 with the program switches set to test 32 K storage addresses.
4. Remove the jumper added in step 2.

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	$\mathbf{O O}^{\prime}$
Storage Test	Run
Address Increment	On

RESET
and
RD CALL WR GALL

1 Memory Cycle

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	$\mathbf{0 0}$
Storage Test	Run
Address Increment	On

Figure 4-7. BSM Waveforms

Sync:
Time Bene:
Sync Pin: Signol Neme:

Channel 1
Vertical Gain: 1 V/cm
Signal Pin:
Signal Name
BAA2B02 (8K-16K-32K ESM) Rd Call Wr Call

Cheonel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: BAN2GO5 (8x-18K ESAM) B4K2G05 (32K Esin)
Signal Neme: X Rd Current Source Registor

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'OO' $^{\prime}$
Storage Test	Run
Address Increment	On

```
READ TIME
    and
X RD CURRENT SOURCE RESISTOR
```

Sync:	Plus External
Time Base:	200ns/cm
Sync Pin:	B4A1D11
Signal Name:	Reset
Channel 1	
Vertical Gain:	1 V/cm
Signal Pin:	B4J2J13 (8K-16K BSM)
	B4K2J13 (32K BSM)
Signat Name:	Read Time
Channel 2	
Vertical Gain:	10 V/cm
Signal Pin:	B4J2G05 (8K-16K BSM)
	B4K2G05 (32K BSM)
Signal Name:	X Rd Current Source Resistor

READ TIME

and

X WRITE CURRENT SOURCE RESISTOR

Sync:
Time Base:
Sync Pin:
Signal Name:

Channel 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin:
B4J2J13 (8K-16K BSM)
B4K2J13 (32K BSM)
Signal Name: Read Time
Channed 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4J2J10 (8K-16K BSM)
B4K2J10 (32K BSM)
Signal Name: X Write Current Source Resistor

Figure 4-8. BSM Waveforms

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	O^{\prime}
Storage Test	Run
Address Increment	On

```
RESET
    and
RD CALL WR CALL
```

Sync: Time Base: Sync Pin: Signal Name:

Channel 1
Vertical Gain: 1 V/cm
Signal Pin: B4B3G03 (8K-18K BSM) B482G03 (32K Bsm)
Signal Name:
Reset

Channel 2
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4A2B02 (8K-16K-32K EsM)
Signal Nerne: Rd Call Wr Call

RD CALL WR CALL
and
X RD CURAENT SOURCE RESISTOA

Sync:	Pus External
Time Baxe:	200na/cm
Sync Pin:	B4A1D11
Signal Name:	Reset
Chammel 1	
Vertical Gain:	1 V/cm
Signal Pin:	B4A2B02 (8K-16K-32K Bsm)
Signal Name:	Rd Call Wr Coll
Channel 2	
Vertical Gain:	$10 \mathrm{~V} / \mathrm{cm}$
Signal Pin:	842G06 (8K-16K EsM)
	B4K2605 (32K BEM)
Signal Neme:	X Rd Current Souree Resistor

Figure 4-7. BSM Waveforms

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	${ }^{\prime} 00^{\prime}$
Storage Test	Run
Address Increment	On

write time
Y WRITE CURRENT SOURCE RESISTOR

Sync:	Plus External
Time Base:	$200 \mathrm{~ns} / \mathrm{cm}$
Sync Pin:	B4A1D11
Signal Name:	Reset
Channel 1	
Vertical Gain:	$1 \mathrm{~V} / \mathrm{cm}$
Signal Pin:	B4J2B03 (8K-16K BSM)
	B4K2B03 (32K BSM)
Signal Name:	Write Time
Channel 2	
Vertical Gain:	$10 \mathrm{~V} / \mathrm{cm}$
Signal Pin:	84J2D07 (8K-16K BSM)
	B4K2D07 (32K BSM)
Signal Name:	Y Write Current Source Resistor

RD CALL WR CALL
 and
 WRITE TIME

Sync:	Plus External
Time Base:	200ns/cm
Sync Pin:	B4A1D11
Signal Name:	Reset
Channel 1	
Vertical Gain:	1 V/cm
Signal Pin:	B4A2B02 (8K-16K-32K BSM)
Signal Name:	Rd Call Wr Call
Channel 2	
Vertical Gain:	1 V/cm
Signal Pin:	B4J2B03 (8K-16K BSM)
	B4K2B03 (32K BSM)
Signal Name:	Write Time

[^3]Figure 4-10. BSM Waveforms

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'O0'
Storage Test	Run
Address Increment	On

RD CALL WR CALL
and
Z LOAD BIT 0

Sync:
Time Base: $\quad 200 \mathrm{~ns} / \mathrm{cm}$
Sync Pin: B4A1D11
Signal Name: Reset

Channel 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4A2B02 (8K-16K-32K BSM)
Signal Name: Rd Call Wr Call

Channel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: \quad B4J4G 10 (8K-16K BSM) B4K4J07 (32K BSM)
Signal Name: \quad Z Load Bit 0

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

INHIBIT BYTE 1
INHIBIT A BITS 0-5
INHIBIT B BITS $0-5$
and
Z LOAD BIT 0

Sync: Plus External
Time Base: 200ns/cm
Sync Pin: B4A1D11
Signal Name: Reset

Channel 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4J4J04
Signal Name: \quad Inhibit Byte 1$\}$ 8K-16K BSM
Signal Pin: B4K4J04
Signal Name: Inhibit A Bits 0-5 32K BSM
Signal Pin:
Signal Name: Inhibit B Bits 0-5
Channel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4J4G10 (8K-16K BSM)
B4K4J07 (32K BSM)
Signal Name: \quad Z Load Bit 0

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	${ }^{\prime} 0^{\prime}$
Storage Test	Run
Address Increment	On

* Ground

Figure 4-12. BSM Waveforms

RD CONTROL
and
X RD LO GATE CTRL

Sync:
Time Base:
Sync Pin:
Signal Name:

Plus External
200ns/cm
B4A1D11
Reset

Channel 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin:
B4B2B03 (8K-16K BSM) B4C2B03 (32K BSM)
Signal Name: Rd Control
Channel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4B2D10 (8K-16K BSM) B4C2D10 (32K BSM)
Signal Name: \quad R Rd Lo Gate Ctrl

WR CTRL

and
X WR LO GATE CTRL

Sync: Plus External
Time Base: $\quad 200 \mathrm{~ns} / \mathrm{cm}$
Sync Pin: B4A1D11
Signal Name: Reset

Channed 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4B2B04 (8K-16K BSM) B4C2B04 (32K BSM)
Signal Name: Wr Ctrl

Channel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4B2D06 (8K-16K BSM)
B4C2D06 (32K BSM)
Signal Name: X Wr Lo Gate Ctrl

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	${ }^{\prime} 00^{\prime}$
Storage Test	Run
Address Increment	On

RD CALL WR CALL
 and
 STROBE BITS 0-8

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'FF'
Storage Test	Run
Address Increment	On

Sync:	Plus External
Time Base:	200 ns/cm
Sync Pin:	B4A1D11
Signal Name:	Reset
Channel 1	
Vertical Gain:	1 V/cm
Signal Pin:	B4A2B02 (8K-16K-32K BSM)
Signal Name:	Rd Call Wr Call
Channel 2	
Vertical Gain:	1 V/cm
Signal Pin:	B4J4B05 (8K-16K BSM)
	B4K4D10 (32K BSM)
Signal Name:	Sense Bit 0

[^4]Figure 4-13. BSM Waveforms

By TNL: SN31-0307

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'FF'
Storage Test	Run
Address Increment	On

CORE OUTPUT WRITING ‘ 1 ’ IN ALL BIT POSITIONS

This is a 'three exposure' picture. 'Rd Call Wr Call', and 'Strobe' are shown only for time reference points.

Sync:	Plus External
Time Base:	$200 \mathrm{~ns} / \mathrm{cm}$
Sync Pin:	B4A1D11
Signal Name:	Reset

Note: Core output measured with a Tektronix * 453 scope as follows:
Channel 1 and 2 set for $100 \mathrm{mV} / \mathrm{cm}$
'Mode' switch set to 'Add'
Channel 2 'Invert' switch pull on
Channel 1 signal pin - B4J4B02 (8K-16K BSM)
B4K4B02 (32K BSM)
Channel 2 signal pin - B4J4D02 (8K-16K BSM)
B4K4D02 (32K BSM)

Figure 4-14. BSM Waveforms
*Trademark of Tektronix, Incorporated

These are 'Three' exposure pictures. 'Rd Call Wr Call' and 'Strobe' are included for horizontal references.

Switch Name	Setting
CE Mode Selector	Alte Storage
Data	'O0'
Storage Test	Run
Address Increment	On

CORE OUTPUT WRITING ' 0 ' IN ALL BIT POSITIONS

Sync:	Plus External
Time Base:	$200 \mathrm{~ns} / \mathrm{cm}$
Sync Pin:	84A1D11
Signal Name:	Reset

$\left\{\begin{array}{l}\text { Rd Call Wr Call } \\ 1 \mathrm{~V} / \mathrm{cm}(8 \mathrm{~K}-16 \mathrm{~K}-32 \mathrm{~K} \text { BSM) }\end{array}\right.$
$\begin{cases}\text { Strobe Bits } 0-8 & \text { B4J4B07 (8K-16K BSM) } \\ 10 \mathrm{~V} / \mathrm{cm} & \text { B4C3D10 (32K BSM) }\end{cases}$
\}. Core output writing ' 0 ' in all bit
f positions. See Note on Figure 4-14.

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	${ }^{\prime} 80^{\prime}$
Storage Test	Run
Address Increment	On

CORE OUTPUT WRITING ' 1 ' IN THIS BIT POSITION AND 'O' IN ALL OTHER BIT POSITIONS

Sync:	Plus External
Time Base:	$200 \mathrm{~ns} / \mathrm{cm}$
Sync Pin:	B4A1D11
Signal Name:	Reset

(Rd Call Wr Call B4A2B02 (8K-16K-32K BSM)
f $1 \mathrm{~V} / \mathrm{cm}$

Strobe Bits 0-8 B4J4B07 (8K-16K BSM)
\} $10 \mathrm{~V} / \mathrm{cm} \quad$ B4C3D 10 (32K BSM)
Core output writing ' 1 ' in this bit
position and ' 0 ' in all other bit
positions. See Note on Figure 4-14.

Figure 4-15. BSM Waveforms

By TNL: SN31-0307

Switch Name	Setting
CE Mode Selector	Alter Storage
Storage Test	Run
Address Increment	Off

OPEN DRIVE LINE

Figure 4-16. BSM Waveforms

Section 1. Basic Unit

Danger
After the emergency power switch is opened, power is available at K1, K3, and K9 input terminals and at transformer (T1) terminals. If the redesigned power control box is installed (printed circuit relay panel), power is not applied to the input terminals of K9 after an emergency power off.

Replacements of power supply components generally follow the replacement philosophy of the system; that is, replacement is limited to voltage regulator cards, fuses, and relays. However, in some cases it will be necessary to replace the series regulator and the filter capacitors.

5.1 INPUT POWER REQUIREMENTS

The input power requirements for System/3 are 3-phase power at 30A. Domestic and World Trade input voltage requirements are:

1. 60 Hertz- $200 \mathrm{Vac}, 208 \mathrm{Vac}$, and $230 \mathrm{Vac}(\pm 10 \%)$.
2. 50 Hertz-200 Vac, $220 \mathrm{Vac}, 235 \mathrm{Vac}, 380 \mathrm{Vac}$, and $408 \mathrm{Vac}(\pm 10 \%)$.
3. Procedures for converting 208 Vac input to 230 Vac input can be found in 5410 Logic, page YA100.

5.2 POWER SUPPLY OUTPUTS

Figure 5-1 shows the power supply outputs, the location of each supply, and the primary use of each supply. The system supplies $-30 \mathrm{~V},+6 \mathrm{~V}$, and -4 V . The +6 V and -30 V generate (respectively) an internal BSM +3 V and -14 V . (The -30 V is a temperature compensated drive voltage for use in the BSM.)

A basic system supplies

Supply	Amperes	Where Used	Location
-4 V	70 A	Logic Voltage	CPU
+6 V	15 A	Logic Voltage	CPU
-30 V	9.5 A	Storage	CPU
+24 V	25 A	MFCU	MFCU
+60 V	11 A	Printer, MFCU	Printer
+24 V	5 A	Control Voltage	CPU
+3 V		Storage*	CPU
-14 V		Storage*	CPU
7.25 Vac	$* *$	Indicator Lamps	CPU
41 Vac		Use Meter***	CPU

* +6 V supply voltage dropped to +3 V in storage module. -30 V supply voltage dropped to -14 V in storage module. (See Figure 5-2 for card locations.)
** 25A in early design machines, 16A in redesigned power control box only.
*** Applies to redesigned power control box only.
B FEATURE SUPPLIES

Supply	Where Used	Location
-12 V	BSCA	CPU
$-3 V$	1442	CPU
$+3 V$	1442	CPU
$+6 V^{*}$	Special Features	CPU

*Replaces 15A logic voltage supply when installed.
Figure 5-1. Power Supply Outputs

5.2.1 Checks and Adjustments

All voltage measurements should be made in a normal environment (temperature between 68 degrees and 86 degrees F) with a recently calibrated Weston 901 meter or its equivalent.

BSM +3 Volt and - 14 Volt Supplies

Determine the CPU storage capacity and storage configuration before checking or adjusting the +3 V or the -14 V power supply (Figure 5-2).

The $+3 V$ supply used by BSM is adjusted by connecting the meter leads to the test points (Figure 5-2). Then adjust potentiometer on the upper half of the BSM power supply card. The +3 V is set by referencing it to the +6 V supply (meter reading will be +3 V).

The - 14 V supply used by BSM is adjusted by connecting the meter leads to the test points (Figure 5-2). Then adjust the potentiometer on the lower half of the BSM power supply card.

See paragraphs 5.5 and 5.6 for the adjustment of the -4 V and +6 V supplies. See paragraph 4.2 for the adjustment of the -30 V supply.

5.2.2 Power Supply Unloading Procedures

Figure 5-3 represents each power supply regulator in System/3. Each terminal shown serves the same function on all the regulators in the system. The only difference is the applied input voltage (E1 to E2) and the resulting output voltages (E3 to E4).

Terminal point E8 receives an error output signal which causes the system to power down immediately. An over-
current, overvoltage, or undervoltage condition generates the signal. Removal of terminal E8 wires prevents the system from detecting a power supply failure. To prevent possible component damage, avoid removing any wires from E8.

Terminal point E12 serves as the start connection to a regulator. In the unloading procedures that follow the removal of wires from terminal E12 prevents start up for a particular regulator.

Figure 5-3. Power Supply Regulator

BSM Sizes Required		Installed CPU Storage Capacity and Configuration							Test Points			
8K BSM		8K	12K	16K	24K	32K	48K	64K	+3	olts	-14	olts
									. Minus	Plus	Minus	Plus
		X			x				01A-B4C4J03	01A-B4C4B11	01A-B4C4J11	01A-B4C4G08
16K BSM	1 st BSM 2nd BSM		X	x		x	x		01A-B4C4J03	01A-B4C4B11	01A-B4C4J11	01A-B4C4G08
					x	x	and		01A-A4C4J03	01A-A4C4J03	01A-A4C4J11	01A-A4C4G08
32K BSM					x	X	x	2	01A-B4A4J03	01A-B4A4B11	01A-B4A4J11	01A-B4A4G08

- Figure 5-2. BSM +3 V and -14V Storage Capacity and Supply Test Points

Caution

Never turn on power with the -4 V regulator unloaded unless the correct jumpers are installed. Otherwise, component damage to the 5424 or 5203 may result if +6 V is applied to the attachment board of these devices (A-B1 and A-A3 boards) without -4 V .

> Danger
> When the -4 V regulator is unloaded the bulk supply may go into oscillations. This may cause the resonant capacitor in the bulk supply to explode. Limit power on time with the regulator unloaded to 30 seconds, keep the bulk supply cover on, and wear safety glasses.

To unload the $-4 V$ regulator on the basic machine:

1. Turn off power.
2. Remove ac connectors J2 and J3 from base of CPU.
3. Remove all cables from E3 and E13.
4. Install jumper from E3 to E13.
5. Turn on power and make power checks.

To unload the -4 V regulator when the -4 V add-on regulator is installed:

1. Turn off power.
2. Remove ac connectors J 2 and J 3 from base of CPU.
3. Remove all cables from E3, E4, E12, E13, and E14.
4. Remove all cables from E 2 of -4 V add-on regulator.
5. Install jumpers:

E4 to E14
E3 to E13 (on both regulators)
E12 to E14
6. Turn on power and make power checks.

Because the above procedure prevents the +6 V and the -30 V supplies from sequencing up, the power check light is on.

5.2.2.2 +6 Volt Regulator Unloading

Caution

Never turn on power with the +6 V regulator cables removed unless the correct jumpers are installed. Otherwise, damage to the CPU BSM results if the BSM receives -30 V without +6 V .

To unload the +6 V regulator:

1. Turn off power.
2. Remove ac connectors J2 and J3 from base of CPU.
3. Remove E4, E12, E14, and TB1-3 (-4V UV 'ax drive' line).
4. Install jumpers:

E4 to E14
E12 to E14
5. Turn on power and make power checks.

Because the above procedure prevents the -30 V supply from sequencing up, the power check light is on.

5.2.2.3 - 30 Volt Regulator Unloading

To unload the -30 V regulator:

1. Turn off power.
2. Remove ac connectors J2 and J3 from base of CPU.
3. Remove all cables from E3.
4. Remove cables from terminal position 8 on A gate lower laminar bus (adjacent to A-B4).
5. Install jumper from E3 to E13.
6. Turn on power and make power checks.

Because the above procedure prevents the +60 V supply from sequencing up, the power check light is on.

5.3 POWER SEOUENCING

The +24 V control voltage controls power sequencing. The power supplies sequence up:

1. -4 V basic logic voltage. (If installed, the -4 V add-on regulator and the -4 V logic supplies \#2 [Feature] and \#3 [Feature] also come on at the same time.)
2. +6 V logic voltage
3. -30 V storage supply voltage
4. $+24 \mathrm{~V}(5424)$ and +60 V (5203) supplies

Refer to diagrams 6.005 and 6.010 (for early design power control); diagrams 6-015 and 6-020 (for the redesigned power control) in IBM 5410 Processing Unit Diagrams, SY31-0202, for power-on sequencing.

5.4 ADJUSTMENT OF THE -4 VOLT POWER SUPPLY

Caution

Check the overcurrent adjustment whenever replacing a -4 V regulator card.

5.4.1 Overcurrent Adjustment

5.4.1.1 For Regulator Card Part 5808959 (See Figure 5-4 for Identification)

1. Connect the meter across the 4 V load between brass plate \# $2(-4 \mathrm{~V}$) and brass plate \#1 (ground) behind the CPU console.
2. Set the voltage adjustment potentiometer (Figure $5-4$) to -4.6 V . Do not go beyond this. Turn the overcurrent potentiometer counter clockwise until the machine powers down. (If you cannot reach -4.6 V before the regulator trips, turn the overcurrent adjustment clockwise until you can just reach -4.6V before the regulator trips.)
3. When the overcurrent adjustment trips, the machine will power down.
4. Turn the voltage adjustment potentiometer down until the machine can be powered up. The overcurrent adjustment is now correct.
5. Adjust the voltage adjustment potentiometer (5.4.2).

5.4.1.2 For Regulator Card Part 5860519 (See Figure 5-4 for (dentification)

No adjustment for overcurrent protection is necessary.

5.4.2 Voltage Adjustment

1. Connect meter between brass plate \#2 (-4V) and brass plate \#1 (ground) behind the CPU console.
2. Set voltage for -4.15 V .
3. Connect meter across A-A3C2B06 (-4V) and A-A3C2D08 (ground). This voltage should fall between -3.85 V and -4.15 V .
4. Connect the meter across PEBTB 2-7 (ground) and PEBTB $2-8(-4 \mathrm{~V})$ on the printer electronics gate. This voltage should measure between -4.15 V and -3.85 V .
5. If voltage measured in either step 3 or step 4 is out of tolerance, readjust the -4 V supply.

5.4.3 Overvoltage Adjustment

There is no field adjustment for overvoltage. It is set and sealed at the time of manufacture. Replace -4 V regulator card if overvoltage condition fails to trip regulator. (Be sure to check the overcurrent adjustment.)

End View of $+\mathbf{6 V}$ Regulator Card

End View of -4V Regulator Card (Part 5860519)

End View of -30V Regulator Card
*These potentiometers are not on the redesigned power supplies.

Figure 5-4. Regulator Card

5.4.4 Undervoltage Adjustment

There is no field adjustment for undervoltage detection. It is set and sealed at the time of manufacture.

Note: A 4V supply undervoltage condition (less than -3.5 V) results in a +6 V supply failure indication (TP13 $=$ +24 V , Figure 5-5).

5.5 ADJUSTMENT OF THE +6 VOLT POWER SUPPLY

5.5.1 Voltage Adjustment

1. Connect meter between brass plate \#3(+6 V terminal) and brass plate \# 1 (ground terminal) behind the CPU console.
2. Set voltage adjustment potentiometer (Figure 5-4) for +6 V .

Note: This adjustment has no plus or minus tolerance. Set as close to +6 V as possible.

5.5.2 Overvoltage-Overcurrent Adjustment

There are no field adjustments for overcurrent or overvoltage in this power supply. They are set and sealed at the time of manufacture. Replace +6 V regulator card if overcurrent or overvoltage conditions fail to trip the regulator.

5.5.3 Undervoitage Adjustment

There is no field adjustment for undervoltage detection. It is set and sealed at the time of manufacture.

Note: A +6 V supply undervoltage condition (5.28 Vdc) results in a +30 V supply failure indication (TP14 $=+24 \mathrm{~V}$, Figure 5-5).

Test Point	Relay \#	Type of Failure	Supply Checked
(-) ${ }^{\text {TP }}$	-	-	+24V Ground
(- ${ }^{\text {TP }}$	K5	Sequence	-4 V Basic logic supply (includes add-on)
(- ${ }^{\text {TP }}$	K17	Sequence	-4V Logic supply \#2 Feature (B gate)
(0) ${ }^{\text {TP }}$	K19	Sequence	-4V Logic supply \#3 Feature (B gate)
(-) ${ }^{\text {TP }}$	K6	Sequence	+6V Basic
(-) ${ }^{\text {TP }}$	K8	Sequence	-30V Basic
(-) 7	K10	Sequence	+24V Basic (located in MFCU)
(-) ${ }^{\text {8P }}$	K11	Sequence	+60 V Basic (located in 5203 Printer)
(-) ${ }^{\text {TP }}$	K30	Sequence	Feature P/S
(-TP 10	K18	OV/OC	-4V Logic supply \#3 Feature (B gate)
(- $\begin{aligned} & 11\end{aligned}$	K16	OV/OC	-4V Logic supply \#2 Feature (B gate)
(- $\begin{aligned} & \text { TP } \\ & 12\end{aligned}$	K13	OV/OC	-4V Basic logic supply (includes add-on)
TP		OV/OC	+6V Basic
(O) 13		uv	-4V Basic
TP		OV/OC	-30V Basic
(O) 14		UV	+6V Basic

Read 24Vdc at TP2-9 when indicated voltage is missing.

Read 24Vdc at TP10-14 when indicated fault condition occurs. (24 Vdc is present in TP2 also.)

Note: 24Vdc is normally at TP2 when CB-1 is on and the power on/off switch is off.

Figure 5-5. Power Supply Test Points

5.6 ADJUSTMENT OF THE -30 VOLT POWER SUPPLY

See paragraph 4.2 for adjustment of the 30 V power supply.

5.7 POWER CHECK LAMP

The power check lamp comes on during power on sequence and goes off when the power on sequence is completed. It also comes on when an overtemperature condition occurs or whenever any power trouble is present. (See Figure 5-6 for power check/thermal light characteristcs.) A power on reset occurs every time the power check lamp comes on. The power check lamp stays off if the 24 Vdc output of the control transformer/rectifier pack (T/R Pac) is missing. (Refer to Figure 5-5 for test points (TPs) for the power system.)

The machine powers down in any of the conditions detected in TP10-14. Twenty-four volts will be readable in

TP10-14 until a check reset switch is pressed. Loss of either the -4 V or +6 V while the machine is running powers down the system and 24 V will be present at TP10-14 (Figure 5-5). Loss of -30 V or +24 V while the machine is running will not cause power down but the poweon reset will stop operations of the machine.

If the power on sequence is not completed, the power check lamp will remain on and the TPs from TP2 to TP9 will indicate where the sequence stopped.

5.8 24 VOLT CONTROL VOLTAGE

If the 24 volt control supply is questionable when experiencing power on problems, a quick service check for this 24 V supply can be made by pressing the lamp test switch while power is off and observing the thermal check and power check lights. If they light, the 24 V supply is present.

FAULT	POWER ON/ OFF SWITCH	INDICATORS		ACTION
		POWER CHECK	THERMAL	
Internal Power Supply Malfunction	On	On	Off	1. Turn power off. 2. Correct problem. 3. Press check reset. 4. Turn power on.
Thermal Condition	On	On	On	1. Turn power off. 2. Power check indicator goes off. 3. Thermal light stays on until condition is removed.
Customer Power Source Loss	On	On	On	1. Turn power off. 2. All indicators turn off. 3. Turn power on and continue operation.
Emergency Power Off (EPO) Activated	On	Off	Off	1. Turn power off. 2. Correct problem. 3. Restore EPO interlock. 4. Turn power on.

Figure 5-6. Power Check/Thermal Check Indications

Section 2. Features

5.9-4 VOLT ADD-ON REGULATOR

-4 Volt Regulator, Overcurrent and Overvoltage

When installing features or feature prerequisites on the A gate, the overcurrent on the -4 V regulator must be adjusted to a minimum of 15 percent over nominal load.

Caution

Check the overcurrent adjustment whenever replacing a 4 V regulator card.

To adjust:

1. Increase the overcurrent adjustment until the system can be powered up.
2. Adjust overcurrent for the -4 V power supply (5.4.1).
3. Adjust voltage for the -4 V power supply (5.4.2).

5.10 B-GATE -4 VOLT LOGIC SUPPLY \#2

5.10.1 Overcurrent Adjustment

5.10.1.1 For Regulator Card Part 5808959 (See Figure 5-4 for (dentification)

Caution

Check the overcurrent adjustment whenever replacing a 4 V regulator card.

1. Note: The top screw on the upper laminar bus is position 10.

Connect the meter across the -4 V load between position 6 and ground (position 7) on B-gate upper laminar bus.
2. Set the voltage adjustment potentiometer (Figure $5-4$) to -4.6 V . Do not go beyond this.
3. Turn the overcurrent potentiometer (Figure 5-4) counterclockwise until the regulator trips to cause a power down. If you cannot reach -4.6 V before the regulator trips, turn the overcurrent adjustment clockwise until you can just reach -4.6 V before the regulator trips.
4. Turn the voltage adjustment potentiometer down until the machine can be powered up. Now the overcurrent adjustment is set.
5. Adjust the voltage adjustment potentiometer (5.10.2).

5.10.1.2 For Regulator Card Part 5860519 (See Figure 5-4 for (dentification)

No adjustment for overcurrent protection is necessary.

5.10.2 Voltage Adjustment

1. Note: The top screw on the upper laminar bus is position 10.

Connect the meter across the -4 V load between position 6 and ground (position 7) on B-gate upper laminar bus.
2. Set the voltage adjustment potentiometer (Figure $5-4$) to -4.05 V .

5.10.3 Overvoltage Adjustment

There is no field adjustment for overvoltage. It is set and sealed at the time of manufacture. Replace regulator card if overvoltage condition fails to trip regulator. (Be sure to check the overcurrent adjustment.)

5.11 B-GATE - 4 VOLT LOGIC SUPPLY \#3

5.11.1 Overcurrent Adjustment

5.11.1.1 For Regulator Card Part 5808959 (See Figure

 5-4 for Identification)
Caution

Check the overcurrent adjustment whenever replacing a -4 V regulator card.

1. Connect the meter across the -4 V load between position 6 and ground (position 7) on B-gate lower laminar bus.
2. Set the voltage adjustment potentiometer (Figure $5-4)$ to -4.6 V . Do not go beyond this.
3. Turn the overcurrent potentiometer (Figure 5-4) counterclockwise until the regulator trips to cause a power down. If you cannot reach 4.6 V before the regulator trips, turn the overcurrent adjustment clockwise until you can just reach 4.6 V before the regulator trips.
4. Turn the voltage adjustment potentiometer down until the machine can be powered up. Now the overcurrent adjustment is set.
5. Adjust the voltage adjustment potentiometer (5.11.2).
5.11.1.2 For Regulator Card Part 5860519 (See Figure 5-4 for Identification)

No adjustment for overcurrent protection is necessary.

5.11.2 Voltage Adjustment

1. Connect the meter across the -4 V load between position 6 and ground (position 7) on B-gate upper laminar bus.
2. Set the voltage adjustment potentiometer (Figure 5-4) to -4.05 V .

5.11.3 Overvoltage Adjustment

There is no field adjustment for overvoltage. It is set and sealed at the time of manufacture. Replace regulator card if overvoltage condition fails to trip regulator. (Be sure to check the overcurrent adjustment.)

$$
\mid
$$

Chapter 6. Locations

This chapter shows System/3 component locations in the following figures:

- Figure 6-1-Shows access panels.
- Figure 6-2-Shows CPU gate locations.
- Figure 6-3-Shows power supplies in the CPU for the early design power control.
- Figure 6-4-Shows power supplies for the redesigned power control.
- Figure 6-5-Shows the number 1 logic and memory bulk supply for both the early design and the redesigned power control.
- Figure 6-6-Shows the keys, switches, and indicator locations on the CE control panel.

ACESS PANEL	
Area	Panel
CPU, memory and attachment	A
MFCU-mechanical electrical	$\begin{aligned} & D \\ & E, F \end{aligned}$
Printer-mechanical PCB electrical PEB electrical	$\begin{aligned} & \text { G } \\ & H \\ & \text { I } \end{aligned}$
$\begin{aligned} & \text { Power Supplies } \\ & \\ & \\ & \\ & +60 \mathrm{Vdc} \\ & -4 \mathrm{Vdc} \quad+6 \mathrm{Vdc} \\ & +6 \mathrm{~V} \text { Expansion } \end{aligned}$	H A or B J
Memory BSCA +24 Vdc Med Speed - 12 Vdc	$\begin{aligned} & \hline A \text { or } B \\ & E \\ & J \end{aligned}$
Console	C
Cables	F
Power Control Board	J, A
Documents	K

Figure 6-1. Access Panels on the System/3

Page of SY31-0244-2
Revised December 1,1971
By TNL: SN31-0307

Front View With Gates Open

Figure 6-2. CPU Gate Locations (Boards)

Figure 6-3. CPU Power Supplies (Early Design)

* Replaced with a +6V 40A regulator when the +6 V expansion supply is installed.
** Replaced with a $\mathbf{\pm 1 2 \mathrm { V }}$ supply when the MLTA is installed.
*** Finger guard (7369722) replaces filter when the bulk power supply is installed.
- Figure 6-4. CPU Power Supplies (Redesign Power Control)

B Redesigned Bulk Supply

Figure 6-5. Number 1 Logic and Memory Bulk Supply

Figure 6-6. CE Control Panel

There are no special circuits in the 5410 CPU .

Appendix B. World Trade

The input power requirements for World Trade machines are as follows:

50 Hertz-200, 220, 235, 380, and 408Vac.

Add-On Regulator, 4 Volt 5-8	Data Terminal Ready Light 2-26
Address Compare Light 2.7	Digit Present Light 2-27
Address Compare Switch 2-6	External Test Switch Light 2-28
Address Increment Switch 2-6	Rate Select Switch 2-28
Address Switches, Sense Bytes 1-12	Receive Initial Light 2-27
Address/Data Switches 2-3	Receive Mode Light 2-27
Addressing Scheme 1-3	Receive Trigger Light 2-27
Adjustment of the +6 Volt Power Supply 5-6	Test Mode Light 2-28
Adjustment of the -30 Volt Power Supply 5-7	Transmit Mode Light 2-27
Adjustment of the -4 Volt Power Supply 5-4	Transmit Trigger Light 2-27
Array Failures	Unit Check Light 2-26
Intermittent or Random Failures 4-8	BSCA Local Test Switch 2-7, 2-28
Multiple Address Failures 4-4	BSCA Sense Bytes 1-16
Single Bit, Multiple Address Failures 4-3	BSCA Step Key 2-28
Storage 4-3	BSM + 3 Volt and -14 Volt Supplies 5-2
Auto Call Unit Power Off Light, BSCA 2-27	BSM Replacement 4-5
	BSM Waveforms 4-11-4-20
B-Gate - 4 Volt Logic Supply \# 2 - 5 -8	Busy Light, BSCA 2-27
Basic Storage Module 4-2	
Bottom Diode Board, Exposing 4-5	Call Request Light, BSCA 2-28
BSCA Panel 2-26	Card Format 1-1
Attention Light 2-26	CE
Auto Call Unit Power Off Light 2-27	Control Panel 6-5
Busy Light 2-27	Controls 2-3
Call Request Light 2-28	Diagnostic Probe 2-22
Character Phase Light 2-27	Key Switch 2-3
Clear to Send Light 2-26	Mode Selector 2-5
Control Mode Light 2-27	Character Phase Light, BSCA ${ }^{\text {A }}$ 2-27
Data Line in Use Light 2-28	Check Reset Key 2-6
Data Mode Light 2-27	Clear to Send Light, BSCA 2-26
Data Set Ready Light 2-26	Code Conversion Chart 1-31

Condition Register Settings 1-22
Console 2-1
Display 2-7
I/O Sense Bytes (5471) 1-18
Control
Display Section 2-7
Mode Light, BSCA $2-27$
Panel 2-1
Voltage, 24 Volt 5-7
Core Plane Pin Numbering 4-3
Cores Defective 4-8
CPU Displays 2-4
CPU Sense Bytes (5410) 1-12
Cycle Pattern, CPU 1-4, 1-27

Data Flow 1-26
Data Line in Use Light, BSCA 2-28
Data Mode Light, BSCA 2-27
$\begin{array}{ll}\text { Data Set Ready Light, BSCA } & 2-26 \\ \text { Data Terminal Ready Light, BSCA } & 2-26\end{array}$
Defective Cores 4-8
Digit Present Light, BSCA 2-27
Diode Board, Exposing Bottom 4-5
Diodes, Storage 4-4
Disk Write Switch 2-7
Displays, CPU 2-4
Drive Line Shorts 4-8
Drive Line Lines, XY 4-4
Dual BSM Strobe Setting Reoptimization
24K-32K-48K $\quad 4-10$
64K 4-10
Dual Program Control Feature
Halt Reset Keys 2-25
Interrupt Key/Light 2-25

Message Display Units 2-25
Process Lights 2-25
Dual Program Control Panel (Feature) 2-25
Dual Program Control Switch 2-25

Emergency Power-Off Switch (EPO) 2-1
Error Recovery Procedures 2-11
Exposing Bottom Diode Board 4-5
External Test Switch Light, BSCA 2-28

Failures, Storage
Array 4-3
Circuit 4-3
Intermittent 4-7
Random 4-7
Fault Location, Storage 4-3
FEALD Pages 1-30
File Control Panel 2-25
Open Lights 2-26
Program Load Selector Switch 2-25
Ready Lights 2-26
Start/Stop Switches 2-25
File (Disk) Write Switch 2-7
File Sense Bytes (5444) 1-15

Halt Identifiers 1-39
Halt Reset Keys, Dual Program Control Feature 2-25
Hexadecimal and Decimal Conversion 1-23

I/O Attention Light 2-2
I/O Check Light 2-7
I/O Check Switch 2-6
I/O Condition A or B Instruction Response 1-21
I/O Device Maintenance 3-1

Open Diode 4-4

 Locating 4-5

 Replacing 4-5
 Open Lights, File Control 2-26
Operator Controls 2-1

Parity Switch 2-7

Poor Solder Connections and Welds 4-8
Power Check Light (Lamp) 2-3, 5-7
Power Check/Thermal Indications 5-5

Power On/Off Switch 2-2

Power Sequencing 5-4

Power Supplies 5-1
Power Supplies, BSM +3 Volt and -14 Volt 5-2
Power Supply Regulator 5 -2
Power Supply Test Points 5-6
Power Supply Unloading Procedures 5-2
Preventive Maintenance 3-1
Print Sense Bytes (5203) 1-13
Process Error Indications 2-9
Process Lights, Dual Program Control Feature 2-25
Processor Check Light 2-2
Processor Checks 2-8
Program Load Key 2-2
Program Load Selector Switch, File Control 2-25
P1 and P2 Toggles (Dual Program Control Feature) 2-7

Page of SY31-0244-2
Revised December 1, 1971
By TNL: SN31-0307

Random or Intermittent Array Failures 4-8
Rate Select Switch, BSCA 2-28

Ready Lights, File Control 2-26
Receive Initial Light, BSCA 2-27
Receive Mode Light, BSCA 2-27
Receive Trigger Light, BSCA 2-27
Reference Data 1-1.

Register Display Unit 2-7
Regulator Unloading, +6 Volt Regulator 5-3
Regulator Unloading, - 30 Volt Regulator 5-3
Regulator Unloading, -4 Volt Regulator 5-3
Reoptimization
Strobe Setting (8K-16K-32K Single BSM) 4-9

Strobe Setting (24K-32K-48K Dual BSM) 4-10

Strobe Setting (64K Dual BSM) 4-10
XYZ Drive Voltage (-30V on All Systems) 4-9
Replacing an Open Diode 4-5

Scheduled Maintenance 3-1

Sense Bytes

BSCA 1-19

Console I/O (5471) 1-18
CPU (5410) 1-12

File (5444) $1-15$

Keyboard (5475) 1-16

MFCU (5424) 1-14

Printer (5203) 1-13

SIOC 1-17
$1442 \quad 1-20$

Shorts Between Drive Lines 4-8	
Single BSM Strobe Setting Reoptimization (8K-16K-32K)	4-9
SIOC Sense Bytes 1-17	
Solder Connections and Welds, Poor 4-8	
Special Tools	
CE Diagnostic Probe 2-22	
Jumper Wires 2-22	
MST-1 Card Extender 2-22	
Single Pin Extender 2-22	
Start Key 2-3	
Start/Stop Switches, File Control $2-25$	
Step Key, BSCA 2-28	
Stop Key/Light 2-2	
Storage Module 4-2	
Storage Requirements, I/O 1-20	
Storage Test Switch 2-6	
Strobe Setting Reoptimization 4-9, 4-10	
8K-16K-32K Single BSM 4-9	
24K-32K-48K Dual BSM 4-10	
64K Dual BSM 4-10	
System Control Panel 2-1	
System Reset Key 2-6	
Test Mode Light, BSCA 2-28	
Test Points, Power Supply 5-6	
Thermal Light 2-3	
Timings, Basic Cycle 1-24	
Transmit Mode Light, BSCA \quad 2-27	
Transmit Trigger Light, BSCA 2-27	

Single BSM Strobe Setting Reoptimization (8K-16K-32K) 4-9
SIOC Sense Bytes $1-17$
Solder Connections and Welds, Poor 4-8

Special Tools

CE Diagnostic Probe 2-22
Jumper Wires 2-22
MST-1 Card Extender 2-22
Single Pin Extender 2-22
Start Key 2-3

Start/Stop Switches, File Control 2-25
Step Key, BSCA 2-28
Stop Key/Light 2-2

Storage Module 4-2
Storage Requirements, I/O 1-20
Storage Test Switch 2-6

Strobe Setting Reoptimization 4-9, 4-10

8K-16K-32K Single BSM 4-9
24K-32K-48K Dual BSM 4-10
64K Dual BSM 4-10
System Control Panel 2-1
System Reset Key 2-6

```
Unit Check 2-8
Unit Check Light, BSCA 2-26
Usage Meter 2-2
Voltage Levels 2-11
Welds and Solder Connections, Poor 4-8
X-Drive Lines, Storage 4-4
XY Drive Lines 4-4
XYZ Drive Voltage (-30V) Reoptimization (All Systems) 4-9
-4 Volt Add-On Regulator 5-8
4 Volt Logic Supply ##, B-Gate 5-8
-4 Volt Power Supply Adjustment 5-4
-4 Volt Regulator Unloading 5-3
+6 Volt Power Supply Adjustment 5-6
+6 Volt Regulator Unloading 5-3
8K-16K-32K Single BSM Strobe Setting Reoptimization 4-9
24 Volt Control Voltage 5-7
24K-32K-48K Dual BSM Strobe Setting Reoptimization 4-10
-30 Volt Power Supply Adjustment 5-7
-30 Volt Regulator Unloading 5-3
1442 Sense Bytes 1-19
5475 Keyboard Sense Bytes 1-16
```


READER'S COMMENT FORM

IBM Maintenance Library
5410 Processing Unit
Maintenance Manual

- Your comments, accompanied by answers to the following questions, help us produce better publications for your use. If your answer to a question is "No" or requires qualification, please explain in the space provided below. Comments and suggestions become the property of IBM.
- Does this publication meet your needs?
- Did you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

- What is your occupation?
- How do you use this publication?

As an introduction to the subject?
For advanced knowledge of the subject?

Yes	No
\square	\square

$\square \quad$ As an instructor in a class?
As a reference manual?

Other

- Please give specific page and line references with your comments when appropriate. If you wish a reply, be sure to include your name and address.

COMMENTS:

- Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

YOUR COMMENTS, PLEASE. . .

Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM.

Fold
Fold

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

System/3
Base Publication No. SY31-0244-2

This Newsletter No. SN31-0307

Date: December 1,1971

Previous Newsletter No. SN31-0327

IBM Field Engineering
 Maintenance Manual
 IBM System/3
 5410 Processing Unit

(c) 1BM Corporation 1969, 1970, 1971

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted and/or removed are:

Front Cover	$5-1$ through $5-4$
Title Page and Preface	$6-1$ through $6-4$
i and ii	X-1 through X-6
$2-3$ through $2-6$	Reader's Comment Form
$3-1$ and 3-2	and Business Reply
$4-1$ through $4-10$	Back Cover
$4-17$ through $4-20$	

A change is indicated by a vertical line to the left of the change. An illustration that changed extensively or an added illustration is denoted by the symbol \bullet to the left of the caption.

Summary of Amendments

This TNL adds 48 K and 64 K information. It also adds information on the +6 V expansion power supply.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

[^0]: Figure 1-12. 5444 File Sense Bytes

[^1]: *If the dual program feature is installed, press the halt reset key.

[^2]: *Trademark of Weston, Inc.

[^3]: * Ground

[^4]: * Ground

