DOOO
DO OO

DO &

©000

IBM System/3

Model 10 Disk System
Control Programming
Reference Manual

Program Number 5702—SC1

GC21-7512-6

L ——
PREFACE
R

This manual provides the new programmer with the information he needs to run
programs on the IBM System/3 Model 10 Disk System and to use the system utility
programs for doing jobs such as preparing disks for use or updating system libraries.
This information is divided into two parts:

e Part | - operation control language (OCL) statements needed to run programs in
the Disk System.

® Part Il - system utility programs and utility control statements needed to run them.
Programming support for the 5445 Disk, 3410/3411 Magnetic Tape Subsystem,
Overlay Linkage Editor and Checkpoint/Restart features is not included on the
distribution disk cartridge unless ordered by the user.

Note: In this publication there are some references to support of 64K bytes of main
storage. A System/3 Model 10 with a 64K processing unit is available only as an
RPQ. Your IBM Marketing Representative can provide information about this.

Related Publications

Publications that are related (not prerequisites) to this one are:

® /BM System/3 Disk System Introduction, GC21-7510

1BM System/3 Disk System RPG Il Reference Manual, SC21-7504

1BM System/3 Model 10 Disk System Operator’s Guide, GC21-7508

1BM System/3 Disk System Halt Guide, GC21-7540

1BM System/3 Disk System RPG Il and System Additional Topics

Programmer’s Guide, GC21-7511

I1BM System/3 Disk Concepts and Planning Guide, GC21-7571

® /|BM System/3 Subset American National Standard COBOL Compiler and Library
Programmer’s Guide, SC28-6459

® /BM System/3 Disk FORTRAN IV Reference Manual, SC28-6874

Seventh Edition (September 1973)

This is a major revision of and obsoletes GC21-7512-5, and Technical Newsletter GN21-7676.
A new disk utility ($DCOPY) has been added. It allows the user to copy or dump the entire
contents of a disk onto tape or tape onto disk. (This program is distributed with the magnetic
tape feature of the SCP).

All references to consecutive organized disk files have been changed to sequential. The FILE
AND VOLUME LABEL DISPLAY PROGRAM ($LABEL) prints an S for sequential disk files,
when displaying VTOC. Other minor changes are indicated by a vertical line at the left of
the change.

This edition applies to version 09, modification level 00 of the IBM System/3 Model 10 Disk
System and to all subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the specifications herein;
before using this publication in connection with the operation of IBM Systems, consult the

latest IBM System/3 Newsletter, Order Number GN20-2228 for the editions that are applicable
and current.

Requests for copies of |BM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this piblication. If the form has been

removed, comments may be addressed to IBM Corporation, Publications, Department 245,
Rochester, Minnesota 55901.

©Copyright International Business Machines. Corporation 1969, 1970, 1971, 1972, 1973

HOW TO USE THIS MANUAL

PART I. OCL STATEMENTS.

INTRODUCTION TO OCL STATEMENTS . . .

What isOCL? . . . e e e e .
OCL and the Job Stream Coe e
OrganizationofPart!
CODINGRULES
Types of Information
Statement ldentifiers
Parameters v e .
General Coding Rules . . e e e e e
Statements Beginning with // e e e e
Statements Beginning with Other Than // . .
Continuation.+ . .« .
Comments+ « « « & .+ .

STATEMENT DESCRIPTIONS
DATE Statement
LOAD Statement
RUN Statement .
SWITCH Statement .
COMPILE Statement
IMAGE Statement
FORMS Statement .
LOG Statement .
READER Statement
PUNCH Statement .
NOHALT Statement
HALT Statement
*(Comment) Statements
PAUSE Statement
/& Statement
/* Statement . .
DISK FILE Statement .
TAPE FILE Statement .
BSCA Statement
CALL Statement
PARTITION Statement
LOCKOUT Statement .
Procedures

Example .

Nested Procedures

USING OCL . .
Compiling an RPG]I Program .
Creating a Disk F|Ie
Loading and Running Programs
IBM Programs
Object Programs Using Card Frles
Object Programs Using One Disk File
Object Programs Using More Than One Disk Flle
Object Programs Using One Disk File and External
Indicators R .
Processing Large Indexed Disk Fales
Multivolume Files
OCL Considerations

iii

-

LR A A

VYNNI O O

16
17
20
21
22
24
27
28
29
30
31
31
31
32
32
32
33

43
50
51
52
52
53
54
55

59
60
60
61
61
61
61
62

62

63

CONTENTS

File Statement Parameter Considerations for Multivolume
Disk Files
Multivolume Tape F||es .
File Statement Parameter Consnderatlons for Multlvolume
Tape Files .
Split Cylinder Files .
Restrictions for Using Split Cyllnder Flles
Creating the First Split Cylinder File in a Group
Creating Other Split Cylinder Files
Accessing Existing Split Cylinder Files
Loading to Existing Split Cylinder Files .
Scratch Split Cylinder Files
Automatic Disk File Allocation .
Compiling a Source Program and Stormg itinan Object
Library . .
Sample Statements .
Loading Programs in a DPF EnVIronment
OCL Considerations For Loading Programs in a DPF
Environment . P
DPF Considerations for 12K Systems
Sample Job Streams .
Restarting a Checkpointed Program
Programming Considerations
Restart Procedure
OCL Considerations for Using Checkpomt/Restart
Statement Examples
Example .

PART Il. SYSTEM UTILITY PROGRAMS .

INTRODUCTION TO SYSTEM UTILITY PROGRAMS
To Write Utility Control Statements .
Control Statements . .
Special Meaning of Capital Letters, Numbers and Specual
Characters

TAPE INITIALIZATION PROGRAM—S$TINIT
OCL Considerations ’
Messages for Tape Inltlallzatnon

Printout of Volume Label .

TAPE ERROR SUMMARY PROGRAM—$TVES
Error Logging Format
OCL Considerations

DISK INITIALIZATION PROGRAM—$INIT

Parameter Descriptions .
TYPE Parameter (UIN) .
UNIT Parameter (UIN) . . .
VERIFY Parameter (UIN) .
ERASE Parameter (UIN)
CAP Parameter (UIN)
PACK Parameter (VOL) .
ID (ldentification) Parameter (VOL) .
NAME 360 Parameter (VOL) .
OCL Considerations
Examples .
Primary Imtrahzatron of Two Dlsks
Messages For Disk Initialization

. 100
. 100
. 100
. 101
. 101
. 101
. 102
. 102
. 102
. . 102
T, 102
. 102
. 103

73
74
74

74
77
77
79
79
79
79
80
80

83

85
85
86

87

89
91
91
92

95
95
96

97

ALTERNATE TRACK ASSIGNMENT PROGRAM
—$ALT .
Parameter Descriptions .

PACK Parameter

UNIT Parameter .

VERIFY Parameter .

ASSIGN Parameter .

UNASSIGN Parameter .
OCL Considerations
Examples

Conditional Assrgnment .
Messages for Alternate Track Asslgnment

ALTERNATE TRACK REBUILD PROGRAM
$BUILD .
Parameter and Substitute Data Descriptions .
PACK Parameter
UNIT Parameter .
TRACK Parameter .
LENGTH Parameter
DISP (Displacement) Parameter
Substitute Data .
OCL Considerations
Examples
Correcting Characters on an Alternate Track

FILE AND VOLUME LABEL DISPLAY PROGRAM
—$LABEL .
Parameter Descriptions .
UNIT Parameter .
LABEL Parameter
OCL Considerations
Examples
Printing VTOC Informatlon for Two F |Ies

FILE DELETE PROGRAM—$DELET
Parameter Descriptions .

PACK Parameter

UNIT Parameter .

LABEL Parameter

DATE Parameter

DATA Parameter (Remove OnIy)
OCL Considerations
Examples

Deleting One of Several Frles Havmg the Same Name

DISK COPY/DUMP PROGRAM—$COPY
Parameter Descriptions . .
FROM and TO Parameters (COPYPACK)
OUTPUT Parameter (COPYFILE)
DELETE Parameter (COPYFILE) .
REORG (Re-organize) Parameter (COPYFILE) .
WORK Parameter (COPYFILE)
SELECT KEY and SELECT PKY Parameters
(SELECT)

SELECT RECORD Parameters (SELECT)
Copying Multivolume Files .

Maintaining Proper Volume Sequenoe Numbers

Maintaining Correct Relative Record Numbers .

Direct File Attributes .

Copying Multivolume Indexed Frles .
OCL Considerations
Examples

. 105
. 107
. 107
. 107
. 107
. 108
. 108
. 109
. 109
. 109
. 110

1
. 112
. 12
. 112
.12

112

. 112

113
113
113
113

115

. 116
. 116
. 116
. 119
. 120
. 120

121
123
123
123
123
124
124
125
125
125

127
131
131
131
132
132
133

133

134
134
134
134
134
134
135
137

DUMP/RESTORE PROGRAM — $DCOPY .
Parameter Descriptions .
From and To Parameters (COPY PACK)
PACK Parameter (COPY PACK)
OCL Considerations
File Statement When Copylng from DlSk to Tape
(Dump) .
File Statement When Copymg from Tape to D|sk
(Restore) .
Examples

LIBRARY MAINTENANCE PROGRAM—$MAINT
Library Description .
Location of Libraries on Dtsk
Organization of Library Entries
Organization of this Section
Allocate Function
Library Maintenance Allocate Restrrctlons
TO Parameter
SOURCE and OBJECT Parameters
DIRSIZE Parameter
SYSTEM Parameter
WORK Parameter
Using the Allocate Functlon
Copy Function
Using the Copy Functlon
Delete Function .
Modify Function
Rename Function
OCL Considerations
Examples

IBM SYSTEM/3 56445 DATA INTERCHANGE
UTILITY PROGRAM—$VTOC
Parameter Descriptions .
PACK Parameter
UNIT Parameter .
OCL Considerations

APPENDIX A. IBM SYSTEM/3 STANDARD
CHARACTER SET

APPENDIX B. CONVERSION
Records To Tracks Conversion
Determining the Number of Sequentlal or Drrect
File Tracks .
Determining the Number of Indexed F|Ie Tracks

- Cylinder/Track to Track Number Conversion

Track Number to Cylinder/Track Conversion

APPENDIX C. SYSTEM/360-SYSTEM/370 DISK FILE

COMPATIBILITY .
System/3 to System/360-System/ 370
System/360-System/370 to System/3

INDEX

139
140
140
141
141

141

141
144

. 147
. 147
. 147
. 148
. 149
. 150
. 151
. 152
. 152
. 152
. 152
. 153
. 154
. 157
. 164
. 169

171
174
175
175

- 183
. 185
. 185
. 185
. 185

- 187

. 189
. 189

. 189
. 189

190
190

191

.19

191

193

S

HOW TO USE THIS MANUAL
L

This publication contains two parts. Part | describes operation control language
(OCL) statements. Part |l describes system utility programs.

Part |
Refer to Part | if you want to know:

1. What an OCL statement is.
2. What each OCL statement is used for (function).

3. Where each OCL statement is placed in relation to others and when it is needed
(placement).

4. How each statement must be coded (format).

5. What each statement must contain (contents).

Part 11
Refer to Part Il if you want to know:

1. What system utility programs are supplied with the system.
2. The function of each utility program.

3. The operation control language (OCL) statements and utility control statements
necessary to request each utility program.

How to Use This Manual iii

OCL STATEMENTS

PART I

1.
2
€
©
§
8
(7}
-l
[
(o]

T
INTRODUCTION TO OCL STATEMENTS
S

WHAT IS OCL?

Operation control language (OCL) is your means of communicating with the IBM
System/3 Model 10 Disk System. You must write a set of OCL statements for each
program you want to run. Based on the information supplied by the OCL state-
ments, the Disk System will load and execute your Disk System programs or
perform system utility functions.

You can supply OCL statements in two ways: (1) punch the statements into
cards, which are then read by the Disk System; (2) use the printer-keyboard to
key the statements directly to the Disk System.

After the Disk System reads a set of OCL statements for a program, it runs the
program. When the program ends, the Disk System reads the set of statements
for the next program, then runs that program. This procedure is repeated until
all OCL statements have been read and the corresponding programs have been run.

The running of your programs is controlled by system control programs. System con-
trol programs must be in core storage before your jobs can be run. These programs

are located on disk and are brought into storage by a procedure called initial program
load (IPL). IPL is performed by the operator when the system is turned on. For more
information on IPL, see the /IBM System/3 Disk System Operator’s Guide, GC21-7508.

The DATE statement is part of the |PL process and must be the first statement pro-

vided for your program. (See DATE Statement in Statement Descriptions for more
information.)

Introduction to OCL Statements 3

OCL and the Job Stream
The OCL statements you supply form the basis of the job stream. If your program
" requires the use of data from the system input device (the device used to read OCL
statements) your program and that data must follow the corresponding OCL. The job
stream, therefore, can contain programs and program data as well as OCL statements.
Figure 1 is an example of a card input job stream,

You can also store sets of OCL statements for your programs outside of the job stream
in a source library on disk. These sets are called procedures. You can instruct the
system to merge procedures into the job stream. The ability to store sets of frequent-
ly used OCL statements on disk makes it possible to avoid recoding the statements
every time they are used. (See Procedures under Statement Descriptions for more in-
formation.)

ORGANIZATION OF PART |
Part | is divided into:

1. Coding Rules defines the general contents of the OCL statements and explains the
rules for writing the statements.

2. Statement Descriptions explains the functions, format, and contents of each OCL
statement, and the places in the job stream the statement may be used.

3. Statement Examples presents and explains a job stream containing most of the OCL
statements,

Program

/ Second Program

OCL Statements for
Second Program

/ Data for First Program

oCcL
/ First Program

OCL Statements for First Program

——— DATE Statement

Figure 1. Job Stream

—
CODING RULES
———

TYPES OF INFORMATION
Operation control language (OCL) statements contain, at most, two types of inform-
ation: a statement identifier and parameters. A statement identifier is information
that tells one statement from another. A parameter is additional information supplied
with the statement identifier. Figure 2 shows the general form of OCL statements.

ldentifier Parameter 1, Parameter 2, ..., Parameter n

Figure 2. General Form of OCL Statements

Statement ldentifiers
Every OCL statement needs a statement identifier. The identifiers are as follows:

DATE IMAGE NOHALT FILE

LOAD FORMS HALT BSCA

RUN LOG * (asterisk) CALL
SWITCH READER PAUSE PARTITION
COMPILE PUNCH /& LOCKOUT

LOAD is an example of a statement identifier.

16 20 24 28 32

2 2 =
FTTTrrriTd

Parameters v
Some statements need parameters. Others do not. (See Statement Descriptions for
an explanation of the statements which need parameters.) Parameters can be
either codes or data. A code is a word or group of characters that has a certain
meaning. Data is information such as the names, locations, and lengths of files on
disk. (See Statement Descriptions for data and code restrictions on parameters.)
In the following example, PROG2 is the name of an RPG [l object program, and F1
is a code that stands for the fixed disk on drive one. PROG2 is a data parameter
and F1 is a code parameter.

1 4 8 12 6 20 24 28 32

/T TLIolAlD] PR GR 1T

Coding Rules 5

Some statements require certain words in parameters to tell one parameter from
another. The words are called keywords. Parameters containing keywords are
called keyword parameters. In Figure 3, NAME-MASTER, PACK-VOL1, and
UNIT-R1 are keyword parameters. NAME, PACK, and UNIT are keywords.
MASTER and VOL1 are data parameters. R1 is a code parameter. There should
always be a hyphen between the keyword and the code or data parameter.

Figure 3. Keyword Parameters

GENERAL CODING RULES

In Part 1 of this book, the numbers that appear above statement formats and
examples indicate the card columns or line positions occupied by the statements.
In statement formats, special characters, such as //, and words written in capital
letters are information that must be used exactly as shown. Words written in
small letters, such as code, program-name, and unit, represent information that
you must supply.

Statements Beginning with //
The rules for coding the statements are as follows (the term position refers to
either card column or line position):

® Place the // in positions 1 and 2.

® |eave one or more blanks between the // and the word that forms the statement
identifier (LOAD, RUN, CALL, etc.).

® | eave one or more blanks between the end of the statement identifier and the
first parameter.

® |f you need more than one parameter, use a comma to separate them. No blanks
are allowed within or between parameters. (For the exception to this rule, see the
description for the HIKEY parameter under Multivolume Files.) Anything
following the first blank is considered a comment (see Comments).

® If you are writing keyword parameters, place the keyword first and use a
hyphen to separate the keyword from the code or data parameter.

® If the parameter is not a keyword parameter, write the parameters in the order
in which they are discussed in this manual.

Figure 4 illustrates the coding rules. The statement identifiers are LOAD and
FILE. The parameters are PROG1, R1, NAME-MASTER, UNIT-R1, and PACK-

VOL1. The last three parameters are keyword parameters.

IS
©
s
&

20 24 28 32 36 40 44

4

FLE ¥ E-MASTER, LI T-R1, IFCK oL
| T

{ | L]

Figure 4. lllustration of General Coding Rules

Statements Beginning with Other Than //
* and /& statements do not require // preceding them when coded. (See Statement
Descriptions for * and /& statements.)

Continuation
All OCL statements except FILE must not exceed 96 characters, including blanks
and comments. Because of the large number of parameters possible in a FILE
statement, you can use two or more cards or lines for those statements. Each card
or line you use must not exceed 96 characters. (Data for the IMAGE statement
requires continuation for the cards or lines containing the chain image characters,
but the data follows different continuation rules. See IMAGE Statement under
Statement Descriptions for more information.)

The continuation rules are as follows:

® Place a comma after the last parameter in every card or line except the last.
The comma, followed by a blank, tells the system that the statement is con-
tinued in the next card or line.

® Begin each new card or line with a // in positions 1 and 2.

® [eave one or more blanks between the // and the first parameter in the card or
line. (See HIKEY Parameter under Multivolume Files for exception to this rule.)

Figure 5 illustrates the continuation rules,

-
»
©

12 16 20 24 28 32

el- A
L lalBlelL]- (8]t |||t |nle],

A{tzr— Palelk-vblL1
i

/ Fli|Lig]

=X

D [
>
-
;"
~
N
9
[\
0

e

Figure 5. lllustration of Continuation Rules

Coding Rules 7

Comments
You can include comments in the following places in your statements:

® Following the // in statements beginning with //. Begin the comment in position 3,
immediately following the //. You can use up to eight characters without blanks.
Leave one or more blanks between the comment and the word forming the state-
ment identifier. Figure 6 contains such a comment. The word BILLING is the
comment.

® After the last parameter. Leave one or more blanks between the last parameter
and your comment. The comment can be any combination of characters. If the
statement is continued in subsequent cards or lines, you can place comments after
the last parameter in any of the cards or lines.

® After statements without parameters. Leave one or more blanks between the
statement identifier and your comment. Examples of statements without
parameters are: /&, // PAUSE, and // RUN.

In addition to writing comments within your OCL statements, you can include whole
cards or lines of comments. The OCL comment statement is provided for that
purpose. (See * (Comment) Statements under Statement Descriptions for more
information.)

©
-
N

16 20 24 28 32 36 40 44

/By MG | FLE N 1p3, IT-} , PIACIK-MAL]
| I I I

Figure 6. Comment Following //

L
STATEMENT DESCRIPTIONS
R

Each OCL statement is described separately in this section. The following informa-
tion is given for each statement:

1. The function of the statement.

2. The placement of the statement in regard to other statements and the circum-
stances under which the statement is needed.

3. The format of the statement.

4. The contents of the statement, explaining the parameters that can be used in the
statement.

Figure 7 gives the function, placement, and restrictions on use for each OCL
statement.

Figure 8 describes the contents of the OCL statements. It is meant for reference
only. If you are not familiar with an entry, or you do not know when to use or
omit it, refer to the proper statement in the remainder of this section.

When using Figure 8, remember that words written in small letters such as filename
or value require a choice on your part, depending on the functions you want the
statement to perform. Refer to Figure 8 to see which parameters are available.
Those parameters that are capitalized must be coded along with the data or code
parameter,

Statement Descriptions 9

PLACEMENT
STATEMENT FUNCTION STATEMENT APPEARS STATEMENT APPEARS RESTRICTIONS ON USE
IN JOB STREAM IN A PROCEDURE

/| DATE Supplies the system with | Must follow LOAD or CALL | Must follow the LOAD Must be supplied during the
a date, this date is given | Statement and precede the statement and precede the Initial Program Load. The
to disk files being created.| RUN statement except at RUN statement (if RUN is effect of the statement is

IPL time, when it must used). for that job only.
precede the first LOAD
or CALL statement.

// LOAD * Indicates that the object | Must precede the Must be the first LOAD * cannot be used in
program will be loaded RUN statement // statement. program level 2.
from the system input
device following the
RUN statement.

// LOAD Identifies the program Must precede the Must be the first
to be run and in- RUN statement. // statement.
dicates the disk that
contains the object
library from which it is
to be loaded.

// RUN Indicates the end of the | Must be the last OCL May be the last Required in the job stream
OCL statements for a statement. statement. for each program which is
program and tells system to be run.
to run the program.

// SWITCH Used to set one or more | Must follow LOAD or CALL| Must follow the LOAD
external indicators on statement and precede the statement and precede the
or off or leave the in- RUN statement. RUN statement (if RUN is
dicator as it is. used).

/! COMPILE Tells the system where Must follow LOAD or CALL| Must follow the LOAD
the source program to statement and precede the statement and precede the
be compiled is located RUN statement. RUN statement (if RUN is
and where to place the used).
object program.

// IMAGE Tells the system to re- Anywhere among the Must precede the Required if the printer chain
place the chain-image OCL statements. RUN statement (if has been changed.
area with characters RUN is used).
indicated in the fol-
lowing data cards or
characters keyed in
or read from source
library.

// FORMS Instructs the system to | Anywhere among the Must precede the‘
change the number of OCL statements. RUN statement (if
lines printed per page. RUN is used).

// LOG Instructs system to Anywhere among the Must precede the RUN Device cannot be
start or stop printing OCL statements. statement (if RUN is specified in program
OCL statements and used). level 2.
codes and indicates the
device to be used to
print them.

// READER Changes the system input| Must precede LOAD or Must precede the In a procedure, the input
device used to read OCL | CALL statement or follow | LOAD statement (if device is not changed until
statements. the RUN statement and LOAD is used). the procedure is completely

precede the next LOAD executed.
or CALL statement

Figure 7 (Part 1 of 2). Table of OCL Statements

10

PLACEMENT

gram level to allow
fast job initiation in
the program level in
which the LOCKOUT
card was read.

OCL statements.

statement (if RUN is used).

STATEMENT FUNCTION STATEMENT APPEARS STATEMENT APPEARS RESTRICTIONS ON USE
IN JOB STREAM IN A PROCEDURE
—_— |

// PUNCH Enables you to change Anywhere among the Must precede the RUN
the system punch device.| OCL statements. statement.

// NOHALT Instructs system to Anywhere among the Must precede the RUN Ignored in program level 2.
continue without OCL statements. statement (if RUN is
stopping when a used).
program ends.

/l HALT Instructs system to halt | Anywhere among the Must precede the RUN Ignored in program level 2.
when program ends; OCL statements. statement (if RUN is
cancels the effect of used).
the NOHALT
statement.

*(Comment) Used to explain the job Anywhere. Anywhere.
or give the operator
instructions; does not
affect the program in
operation.

// PAUSE Tells the program to stop| Anywhere among the Must precede the
in order to give the OCL statements. RUN statement (if
operator time to per- RUN is used).
form a function.

Operator must restart
program.

/& Provides OCL security Recommended as the first Not allowed in a Can be used in the job stream
from previous job. statement of a job. procedure. only.

// FILE Supplies information Must follow LOAD or CALL | Must follow the LOAD Required for every new file
about the file to the statement and precede the statement and precede the created and existing files being

~ system. RUN statement. RUN statement (if RUN used.
is used).

/| BSCA Changes the BSCA line Must follow LOAD or Must follow the LOAD
number. CALL statement and statement and precede

precede the RUN state- the RUN statement (if
ment. RUN is used).

// CALL Identifies procedure to Must precede the Indicates chained Can be no more than nine
be merged into job RUN statement. procedures. levels of nested chained
stream and the disk procedures.
containing the source
library from which to
read the procedure.

// PARTITION Guarantees a minimum Anywhere, among the Must precede the RUN Cannot be submitted in
size to level 2 for a OCL statements. statement (if RUN is program level 2 or when
program in that level. used). program level 2 is processing.

// LOCKOUT Disables the other pro- Anywhere among the Must precede the RUN Ignored on a non-DPF system.

Figure 7 (Part 2 of 2). Table of OCL Statements

Statement Descriptions 11

STATEMENT PARAMETER CODE MEANING OF CODE
// DATE date mmddyy or System date or date within a set of statements
ddmmyy
// LOAD asterisk * Program is to be loaded from the system input device
program name name Name of program that is to be loaded from disk
unit Obiject library resides upon:
R1 Removable disk on drive one
R2 Removable disk on drive two
F1 Fixed disk on drive one
F2 Fixed disk on drive two
// RUN none
// SWITCH indicator-settings Refer to SW/TCH
Statement under
Statement Descriptions
1
// COMPILE SOURCE SOURCE-name Name of source program
UNIT UNIT-R1 Where disk that contains the source library is
R2 located (the meanings of the unit codes are the
F1 same as for LOAD)
F2
OBJECT OBJECT-R1 Where to place the object program (the meanings
R2 of the unit codes are the same as for LOAD)
F1
F2
// IMAGE format HEX To indicate characters from cards are in hexadecimal
form
CHAR To indicate characters from cards are in EBCDIC form
MEM To indicate characters are from the source library
number -value Number of new characters
name name Identifies the characters in the library
unit R1 Where the disk that contains the library is located
R2 (the meanings of the unit codes are the same as for
E1 LOAD)
F2
// FORMS DEVICE DEVICE-name Indicates which printer is used
LINES LINES-value Indicates number of lines to be printed per page
// LOG code CONSOLE Use printer-keyboard as logging device
PRINTER Use printer as logging device
OFF Stop printing
ON Start printing
// READER system input device CONSOLE Printer-keyboard
MFCU2 Secondary hopper of MFCU
MFCU1 Primary hopper of MFCU
1442 Card Read/Punch
// PUNCH system punch device MFCU2 Secondary hopper of MFCU
MFCU1 Primary hopper of MFCU
1442 Card Read/Punch

Figure 8 (Part 1 of 4). Table of Parameters

12

or
SPLIT-tracks

STATEMENT PARAMETER CODE MEANING OF CODE
// NOHALT none
/l HALT none
* (Comment) none
// PAUSE none
/& none
/I FILE NAME NAME-filename Name the program uses to refer to the file
(Disk
Files) UNIT UNIT-R1 Where the 5444 disk that contains or will contain the
R2 file is located (the meanings of the unit codes are the
F1 same as for LOAD)
F2
D1 Where the 5445 disk that contains or will contain
D2 the file is located.
PACK PACK-name Name of disk that contains or will contain the file
LABEL LABEL-filename Name by which your file is identified on disk
RECORDS or RECORDS-number of Amount of space needed on a disk for a file
TRACKS TRACKS-number
LOCATION LOCATION-track Number of track on which file begins or is to begin
number (5444 disk only)
LOCATION-cylinder Cylinder number on which file begins or is to begin.
number Track assumed zero (5445 disk only).
LOCATION-cylinder Cylinder number, track number on which file begins
number/track number or is to begin (5445 disk only).
LOCATION-filename Filename of a split cylinder file that is the first split
cylinder file in a group, or is an already existing split
cylinder file. (5445 disk only). For further discus-
sion see Split Cylinder Files.
RETAIN RETAIN-T Temporary file
S Scratch file
P Permanent file
A Reactivate scratch file
DATE DATE-mmddyy Tells the system the date the file was created
ddmmyy
HIKEY HIKEY-‘highest List of highest key fields
key fields allowed’ allowed on each pack
SPLIT SPLIT-tracks/cylinders The number of tracks per cylinder needed for the

split cylinder file; the number of cylinders needed
for a group of split cylinder files (5445 disk only).
For further discussion see Split Cylinder Files.

Figure 8 (Part 2 of 4). Table of Parameters

Statement Descriptions

13

STATEMENT PARAMETER CODE MEANING OF CODE
// FILE NAME NAME-filename Name the program uses to refer to the file.
(Tape File) UNIT UNIT-T1 Where the tape that contains or will contain the
T2 file is mounted.
T3
T4
REEL REEL-name Name of the tape that contains or will contain the
file.
-NL The tape is not labeled.
-NS The tape contains non-standard labels.
LABEL LABEL-filename Name by which your file is identified on tape.
or
LABEL-character
string’
DATE DATE-mmddyy Tells the system the date the file was created.
ddmmyy
RETAIN RETAIN-nnn The number of days a file should be retained before
it expires.
BLKL BLKL-block length The number of bytes in a physical block of tape.
RECL RECL-record length The number of bytes in a logical record.
RECFM RECFM-F Fixed length, unblocked records.
-V Variable length, unblocked records.
-D Variable length, unblocked, D-type ASCI! records.
-FB Fixed length, blocked records.
-VB Variable length, blocked records.
-DB Variable length, blocked, D-type ASCI| records.
END END-LEAVE The tape remains in its present position after the
file is processed.
-UNLOAD The tape is rewound and unloaded after processing.
-REWIND The tape is rewound after processing.
DENSITY DENSITY-200 The tape will be written at 200 bpi (bits per inch)
density.
-656 The tape will be written at 556 bpi density.
-800 The tape will be written at 800 bpi density.
-1600

The tape will be written at 1600 bpi density.

Figure 8 (Part 3 of 4). Table of Parameters

14

STATEMENT PARAMETER CODE MEANING OF CODE
ASCII ASCII-YES An ASCII file is being processed.
-NO An EBCDIC file is being processed.
DEFER DEFER-YES The tape volume will be mounted later.
-NO The tape is presently mounted.
CONVERT CONVERT-ON Data read from or written to a seven track tape file
will be converted.
-OFF Data read from or written to a seven track tape file
will not be converted.
TRANSLATE TRANSLATE-ON Data read from or written to a seven track tape file
will be translated.
-OFF Data read from or written to a seven track tape file
will not be translated.
PARITY PARITY-EVEN The seven track tape file will be read or written in
even parity.
-ODD The seven track tape file will be read or writtenin
odd parity.
// BSCA LINE LINE-1 Change all BSCA DTF line codes to the line number
2 specified.
// CALL procedure name name Name that identifies the procedure in the source
library
unit R1 Where the disk containing the procedure is located
R2 (the meanings of the unit codes are the same as for
F1 LOAD)
F2
// PARTITION size value Minimum size of program level 2 in decimal bytes
// LOCKOUT none

Figure 8 (Part 4 of 4)

. Table of Parameters

Statement Descriptions

15

DATE STATEMENT

Function

Placement

Format

Contents

Example

16

The DATE statement gives the Disk System a date, called the system date. The
system date is referred to by RPG Il field names UDATE, UMONTH, UDAY,
and UYEAR. The preceding field names can also be used when referring to the
date given to the disk files when they were created.

A DATE statement within the set of statements for a program changes the
system date, but only for that program. When the program ends, the date
supplied in the DATE statement at IPL time is again used. There can only be
one DATE statement per job.

A DATE statement is always required during Initial Program Load (IPL). Itis
the only OCL statement required by the system at that time.

A DATE statement can also appear within any of the sets of statements for your
programs. The DATE statement must follow the LOAD or CALL statement
and precede the RUN statement.

// DATE date

The system date can be in either of two forms: month-day-year (mmddyy) or
day-month-year (ddmmyy). You must specify the form at System Generation
time. (See /BM System/3 Disk System Operator’s Guide, GC21-7508, for more
information on System Generation.) The date you specify must be in that form.

The date can be written with or without punctuation. For example, July 25, 1970,
could be specified in any one of the following ways:

07-25-70

25-07-70

072570

250770

Month, day, and year must each be 2-digit numbers but lead zeros in month and
day may be omitted when punctuation is used (7-25-70 or 25-7-70). In the
punctuated form, any characters except commas, quotes, numbers and blanks
can be used as punctuation.)

LOAD STATEMENT

Function

Placement

Format

Contents

The LOAD statement identifies the program to be run and indicates whether the
program will be loaded from the system input device or disk.

One LOAD statement is required within each of the sets of statements for your
programs. If the set of statements appears on the job stream, the only requirement
for the LOAD statement is that it must precede the RUN statement. In procedures,
the LOAD statement must precede the RUN statement. (For more information about
procedures, see Procedures in this section)

The LOAD statement has two formats. The first format is used for object pro-
grams loaded from the system input device and cannot be used in a procedure.
The second format is used for programs loaded from disk.

// LOAD *
// LOAD program-name,unit

Asterisk: An asterisk indicates that the object program will be loaded from the

system input device. Program-name and unit parameters must not be included.

The cards or lines that contain the program must follow the RUN statement for

the program and must be followed by /* or /& to signify the end of the program.
LOAD™ cannot be used in programming level 2 or in procedures (see Using OCL,
Loading Programs in a DPF Environment, for more information on dual programming).

Program-name: The program-name parameter is the name used on disk to identify
the program. Commas, apostrophes, periods, and blanks may not be used in the
program name.

The names you must use for your programs depend on the way the programs were
placed on disk. One way includes a compiler option. You can specify that your
program be placed on disk immediately after it is compiled. The name you supply
to the compiler is the name used to identify the program.

Another way to place your program on disk is by using the Library Maintenance
program. |If you used that program, the program-name you supplied in the Library
Maintenance control statements is the name used to identify your program. (For
more information, see Library Maintenance in Part |} of this book.)

Statement Descriptions 17

LOAD STATEMENT (continued)

The Disk System programs are identified by the following names:

Program Name
Alternate Track Assignment SALT
Alternate Track Rebuild $BUILD
Assembler $ASSEM
cOBOL $CBLOO
Data Recording $DREC
Data Verifying $DVER
Disk Copy/Dump $COPY
Disk Initialization SINIT
Disk Sort $DSORT
Dump Restore $DCOPY
File and Volume Label Display $LABEL
File Delete $DELET
FORTRAN $FORT
Library Maintenance SMAINT
List $CLIST
Macro Processor $SMPXDV
MFCU Sort/Collate $CSORT
Overlay Linkage Editor $OLINK
Reproduce and Interpret $REPRO
Remote Job Entry $SRJIE
Restart $$SRSTR
RPG I Auto-Report $AUTO
RPG Il Compiler $RPG

Tape Initialization $TINIT

LOAD STATEMENT (continued)

Example

Tape Sort $TSORT
Tape Error Summary Program $TVES
5445 Data Interchange $VTOC
1255 Utility $MICR
1270/1255 Utility™ $MOCR
80-96 Conversion $CNVRT

*Not valid within the United States.

Unit: The unit parameter is a code. It indicates where the disk that contains
the program is located. The codes are as follows:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

The unit parameter is required because your programs can be on any of the
disks on your disk unit. The disk area containing your object program is called
an object library. You can create an object library on any of the disks on your
disk unit by using the Library Maintenance program. (See Library Maintenance
in Part |1 of this manual.)

In the following sample LOAD statement, $RPG is the name that identifies the
RPG Il Compiler.

/| LIOA RIPiG), \FIL

Ll

F1 is the code indicating the fixed disk on drive one, where the compiler would
be located in this case.

Statement Descriptions 19

RUN STATEMENT

20

Function

Placement

Format

Contents

The RUN statement indicates the end of the OCL statements for a program.
After the system reads the RUN statement, it runs the program.

A RUN statement is needed for each of the programs you want the system to run.
In the job stream, it must be the last statement within each of the sets of OCL
statements for your programs. It can also be the last OCL statement in a pro-
cedure. (For more information about procedures, see Procedures in this section.)

// RUN

None. (Comments may be entered starting in column 8.)

SWITCH STATEMENT

Function

Placement

Format

Contents

Example

The purpose of the SWITCH statement is to set one or more RPG |l external
indicators on or off. The indicators are always off after the operator uses the
IPL procedure to start the system. If a SWITCH statement is used to set an
indicator on, the indicator remains on until another SWITCH statement sets it
off, or until the operator again uses the IPL procedure to start the system. There
can be only one SWITCH statement per job.

The SWITCH statement can appear within any of the sets of statements for your
programs. The only requirements for the SWITCH statement are that it must
follow the LOAD or CALL statement and precede the RUN statement.

// SWITCH indicator-settings

Indicator-settings: The indicator-settings parameter is a code that consists of
eight characters, one for each of the eight external indicators (U1-U8). The first,
or leftmost, character gives the setting of indicator U1; the second character
gives the setting of U2; and so on.

The code must always contain eight characters. For each indicator, one of the
following characters must be used:

Character Meaning

0 Set the indicator off

1 Set the indicator on

X Leave the indicator as it is

The code 1X0110XX would cause the following results:

Indicator Result
U1 Seton
U2 Unaffected
U3 Set off
U4 Set on
Us Set on
U6 Set off
u7 Unaffected

us Unaffected

Statement Descriptions

21

COMPILE STATEMENT

Function

Placement

Format

Contents

The COMPILE statement tells the system two things: (1) where the source pro-
gram to be compiled is located if it is coming from a disk source library; (2) where
the object program is to be placed. (An object program is a source program which
has been compiled or translated into machine language.)

The COMPILE statement must be within the set of OCL statements that apply
to the compilation. The COMPILE statement must follow the LOAD or CALL
statement and precede the RUN statement.

// COMPILE parameters

All the parameters are keyword parameters (keywords are in capital letters). The
keywords are: SOURCE, UNIT, and OBJECT.

SOURCE: The SOURCE parameter tells the system the name of the source pro-
gram. The keyword SOURCE must be followed by the name of the source pro-
gram on disk. The name is the name by which the source program is identified

on disk in the source library. (For more information concerning the source library
see CALL Statement in this section.)

The only way you can place source programs in a source library is by using the
Library Maintenance program. The program name you supply in Library Main-
tenance control statements is the name used to identify the source program in
the library. (For more information, see Library Maintenance in Part |1 of this
manual.)

If the SOURCE parameter is not used, the source program is assumed to be in the
job stream following the RUN statement.

The SOURCE parameter must always be accompanied by the UNIT parameter.

UNIT: The UNIT parameter is used only when the SOURCE parameter is used.

The UNIT parameter is a code indicating where the disk that contains the source
library is located. The codes are as follows:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

COMPILE STATEMENT (continued)

OBJECT: The OBJECT parameter tells the system where to place the object pro-
gram. The OBJECT parameter may be specified without using the SOURCE and
UNIT parameters. The codes which are used to indicate the disk unit on which
the object program is to be placed are R1, F2, R2, or F2.

Note: If the OBJECT parameter is omitted, it is assumed that the object program
is to be placed on the same disk as the compiler.

Example The following sample COMPILE statement tells the system that the source program
with the name PROG3 is located on the fixed disk on drive one (F1).

1 4 8 12 16 20 24 28 32 36 44 48

40
/1 IcloMPl el TSlouldcle-IPldole3, JulNi T4, Jolasiec-Idz |

i —

The parameter, OBJECT-R1, tells the system to place the object program on the
removable disk on drive one.

Statement Descriptions

23

IMAGE STATEMENT

Function

Placement

Format

Contents

24

To operate correctly, the printer requires characters matching those on the

printer chain to be in a special area of core storage called the chain-image area.
When you replace the printer chain with one having different characters, you must
also change the contents of the chain-image area.

The IMAGE statement instructs the system to replace the contents of the chain-
image area with the characters indicated by the statement. The characters can be
entered from the system input device, or contained in a source library on disk.
The effect of the IMAGE statement is temporary and the system chain image is
returned to the chain-image area when IPL occurs.

The IMAGE statement can appear anywhere among the OCL statements. Ina
procedure, it must precede the RUN statement.

// IMAGE parameters

The IMAGE statement tells the system either of two things: (1) the new chain
characters are to be read from the system input device; or (2) the new chain
characters are to be read from the source library.

The IMAGE parameters are:

- format-HEX, CHAR, or MEM

— number-value

- name-name

— unit-code

(Coding only HEX, CHAR, or MEM is preferable for format but HEXADECIMAL,
CHARACTER, or MEMBER can be coded.)

Characters From the System Input Device

If you wish to indicate that the new chain characters are to be read from the
system input device, use the following parameters:

Format: Use the word CHAR to indicate that the characters are in EBCDIC form.
Use the word HEX to indicate that the characters are in hexadecimal form.
Number: The number parameter must be used with HEX and CHAR. It must be
a value which is equal to the number of columns or line positions in the data cards
or the data keyed in following the IMAGE statement that contains the new charac-

ters. This number must not exceed 240 when the characters are hexadecimal, 120
when characters are EBCDIC. The name and unit parameters must not be coded.

IMAGE STATEMENT (continued)

Following are the rules for punching or keying the new characters:
1. The characters must begin in column or line position 1.

2. Consecutive'card columns or line positions must be used; however, only
the first 80 columns or line positions of the card or line can be used. Hexa-
decimal requires an even number of columns or line positions, two per
character.

3. To continue the characters on another card or line begin the characters
in column or line position 1.

Characters From the Source Library on Disk

To indicate that new chain characters are to be read from the source library on
disk, the format parameter must specify the word MEM.

The following parameters must also be included:

Name: The name parameter identifies the source member containing the charac-
ters in the library. The only way you can place the characters in a source library
is by using the Library Maintenance program. The name you supply in Library
Maintenance control statements is the name used to identify the characters in
the source library.

Unit: The unit parameter must be used with the name parameter. |t is used to
tell the system where the disk containing the source library is located on the disk
unit. The codes which are used are:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

Statement Descriptions

25

IMAGE STATEMENT (continued)

26

Example

The IMAGE statement in example A tells the system that the new characters are
on data cards or keyed in. The format parameter indicates that new characters
are in hexadecimal form; the number parameter indicates that there are 120
columns or line positions containing the new characters.

In example B, the new characters, on data cards or keyed in, are in EBCDIC. The
number parameter indicates that there are 48 columns or line positions contain-
ing the new characters.

Example C tells the system that the new characters are to be read from the
source library on disk. The format parameter indicates that the new chain
characters are in the source library. The name parameter indicates that the
characters were named CHAIN in the source library. The unit parameter indi-
cates that the source library containing them is on the removable disk on drive
one (R1). Examples of the member specified in example C are the data por-
tions of examples A and B. The member itself requires a // IMAGE card with
the characters either in hexadecimal or EBCDIC. The number of columns or
line positions containing the characters must also be specified.

(See Library Maintenance in Part |l for restrictions on the name used in coding
MEM.)

24

N
o3
(3]

2 36 a4 52

o1

6 60

]
9l

ISIN[N|-
~

|
e 3D
€| A7

G [

CigiC

1
4Ds
ik

-
H
[eo}

20 44 52 56 60

NN
N
()

[GY

N
~
[+7)

28 32 36 44 48 52 60

FORMS STATEMENT

Function

Placement

Format

Contents

Example

The FORMS statement enables you to change the number of lines that the print-

er will print per page. The printer automatically assumes the number of lines

per page specified at system generation time unless a FORMS statement is used

or a user program specifies some other number. This number of lines is effective
until another FORMS statement is used or a user program specifies another number.

The FORMS statement can be placed anywhere among the OCL statements.
In a procedure it must precede the RUN statement.

// FORMS parameters

All of the parameters are keyword parameters (keywords are in capital letters).
The parameters are as follows:

5203
— DEVICE-< 5203L

5203R
- LINES-value

DEVICE: The keyword for this parameter is DEVICE. It must be followed by
the name of the printing device. For an IBM 1403 Printer or a single carriage IBM
5203 Printer, either 5203 or 5203L is a valid device name. For a dual carriage
IBM 5203 Printer, either 5203 or 5203L. specifies the left carriage and 5203R
specifies the right carriage. You may omit the DEVICE parameter entirely.

LINES: The LINES parameter is used to indicate the number of lines per page.
The maximum number of lines that can be specified per page is 112. The LINES
parameter remains in effect until either an IPL is performed or another FORMS
statement for the same device is read. If a line counter specification is used in an
RPG 1l program, it remains in effect only for the duration of the program.

In the following FORMS statement, the system is using the left carriage of the
5203 Printer. The statement tells the system that the forms length is 88 lines
per page.

1 4 8 12 16 20 24 28 32 36 40 44 48

//| FIORMS| DIEV|! 5210131L|,|Ll/ ME1S|-|8

Statement Descriptions 27

LOG STATEMENT

Function

Placement

Format

Contents

OCL statements and message codes are printed on the printer-keyboard. If your
system has no printer-keyboard, the statements and codes are printed on the
printer. The device used to print OCL statements and message codes is called
the logging device. 1f you want to change the logging device, or specify whether
or not the statements and codes are to be printed, you must use a LOG statement.
The LOG statement tells the system to do one of four things:

- Use the printer as the logging device

- Use the printer-keyboard as the logging device

- Stop printing OCL statements and message codes

- Start printing OCL statements and message codes

You can use the LOG statement within any of the sets of OCL statements for
your programs. In a procedure it must precede the RUN statement.

// LOG code

Four codes can be used as parameters. The codes are as follows:

Code A Meaning

CONSOLE Use printer-keyboard as logging
device

PRINTER Use printer as logging device

OFF Stop printing

ON Start printing

Only one code can be used in one LOG statement. The starting of the logging
device is implied when coding CONSOLE or PRINTER.

When the system reads a LOG statement that contains the OFF code, it stops
printing OCL statements and message codes. The only way you can instruct the
system to start printing them again is by using a LOG statement that contains the
ON, PRINTER, or CONSOLE code. When ON is specified printing resumes on
the last logging device specified. However, the system will suspend logging during
the time that the log device (excluding the 5471) is allocated to a program in
either program level. Logging resumes when the program using the log device
goes to end of job.

READER STATEMENT

Function

Placement

Format

Contents

The device used to read OCL statements is called the system input device. The

system assumes that the system input device is the primary hopper of the MFCU.

You must use a READER statement if you want to use the printer-keyboard,
secondary hopper of the MFCU, or the 1442 Card Read/ Punch as the system
input device.

The READER statement must not come between the LOAD or CALL statement
and a RUN statement. The READER statement must precede the initial LOAD
or CALL statement or follow the RUN statement, preceding the next LOAD or
CALL statement. If you use the READER statement in a procedure, the system
input device is not changed until the procedure is completely executed. If you
use the READER statement to change the system input device, the device you
specify is used to read source programs, control statements, or OCL statements.
Changing the system input device affects the placement of source programs and
control statements as well as OCL statements.

You must place the READER statement in the current system input device.

// READER code

The codes are:

Code Meaning

CONSOLE Printer-keyboard

MFCU2 Secondary Hopper of the
MFCU

MFCU1 Primary Hopper of the MFCU

1442 Card Read/Punch

Statement Descriptions

29

PUNCH STATEMENT

Function

Placement

Format

Contents

The PUNCH statement enables you to change the system punch device.

The PUNCH statement can be plaged anywhere among the OCL statements.
In a procedure it must precede the RUN statement.

// PUNCH code

Three codes can be used as parameters. They are:

Code v Meaning

MFCU1 Primary Hopper of the MFCU

MFCU2 Secondary Hopper of the
MFCU

1442 : : Card Read/Punch

NOHALT STATEMENT

Function Normally the system halts when a program ends. The NOHALT statement tells
the system to continue by reading the next set of OCL statements without stop-
ping, when a program ends. The effect of this statement lasts until the system
reads a HALT statement or an IPL occurs. The effect of the NOHALT statement
is ignored temporarily when an abnormal job halt occurs. The system reverts to
the NOHALT mode after a response.

Placement A NOHALT statement can be placed anywhere among the OCL statements. Ina
procedure it must precede the RUN statement. The NOHALT statement is ignored
if loaded in program level 2.

Format // NOHALT

Contents None (Comments may be entered starting in column 11.)

HALT STATEMENT

Function The HALT statement tells the system to halt when a program ends. The operator
can restart the system when he is ready, and the system continues reading the
next OCL statements.

The HALT statement is needed only if you want to cancel the effect of a NOHALT
statement.

Placement A HALT statement can be placed anywhere among the OCL statements. In a
procedure it must precede the RUN statement. The HALT statement is ignored
if loaded in program level 2.

Format // HALT

Contents None (Comments may be entered starting in column 9.)

*(COMMENT) STATEMENTS

Function Comment statements are commonly used either to explain the jobs or to give the
operator instructions. Operator instructions are usually given in connection with
a PAUSE statement. Comment statements are printed along with the other OCL
statements. They have no other effect on the system.

Placement You can include, in OCL statements, special statements that contain only com-
ments. Comment statements must contain an asterisk (*) in column 1. They can
be placed anywhere among the OCL statements in either a job stream or a pro-
cedure.

Format *comment

Contents The comment can be any combination of words and characters. The only require-

ment is that an asterisk (*) be in column 1.

Statement Descriptions

31

PAUSE STATEMENT

Function The PAUSE $tatement causes a halt. It usually is used to give the operator time
to prepare for the next program. He might, for example, have to place removable
disks on the disk umm or insert special forms into the printer. Comment state-
ments that gtve tha opgrator instructions usually precede PAUSE statements.
When the ‘quratg,ﬁ ady, he can restart the system. The system continues
reading the OCL sta@ements that follow the PAUSE statement.

Placement PAUSE statqments ca e blaced anywhere among the OCL statements. In a pro-
cedUFe n g QAD statement and precede the RUN statement.

Format // PAUSE

Contents None (Cemme e entered starting in column 10.)

/& STATEMENT

Function :
set, a /& sta §ignals the system that a new set of OCL statements is coming.
It prevents tements from being read as a part of the preceding set of
statemen Any attempt to read more data from that device will be block
ed.

Placement /& stateme h{)" éq‘u&ed Itis recommended, however, that you use them
as the fi en in each of the sets of OCL statements for your programs.
They are. procedure

Format /&

Contents None (Cqémm@nt: ay be entered starting in column 4.)

/* STATEMENT

32

Function

Placement

Format

Contents

/* statements are not true OCL statements, but are used to indicate the end of a
data file rga in.from a card reader or console.

Al* state
deck.

'be the last card of an input data file or program

/*

None (Comments may be entered starting in column 4.)

DISK FILE STATEMENT

Function The FILE statement supplies the system with information about disk files. The
system uses this information to read records from and write records on disk.

Placement You must supply a FILE statement for each of the new disk files that your programs
create, and for each of the existing disk files that your programs use. The FILE state-
ment must follow the LOAD or CALL statement and precede the RUN statement.

Format // FILE parameters

Contents All of the parameters are keyword parameters. The parameters are as follows
(keywords are in capital letters):

NAME-filename (in program)
— UNIT-code
- PACK-name
- LABEL-filename (on disk)
- RECORDS-number or TRACKS -number
" track number (5444 disk only)
— LOCATION- cylinder number

cylinder number/track number 5445 only
filename

- RETAIN-code
- DATE-date

— HIKEY-highest allowed key fields (on pack)

tracks/cylinder
SPLIT- or 5445 Only
tracks

The NAME, PACK, and UNIT parameters are always required. The others are re-
quired only under certain conditions.

NAME: The NAME parameter is always needed. It tells the system the name that
your program uses to refer to the file. The NAME parameter must be placed on
the first card or line if two or more cards or lines are used for the FILE statement.
(See General Coding Rules for rules on continuation.)

For some of the programs, you must use specific names for certain files.

Statement Descriptions 33

DISK FILE STATEMENT (continued)

Program File Name

Disk Copy/Dump Input COPYIN
Output COPYO

Disk Sort Input INPUT
Work WORK (OPTIONAL)
Output OuUTPUT

Assembler Input $SOURCE
Work $WORK
Output $WORK 2 (optional)

COBOL Input $SOURCE These files

Compiler Work SWORK must be on
Work $WORKX a 5444

FORTRAN |nput $SOURCE disk device.

Compiler Work $WORK

RPG 1 Input $SOURCE

Compiler Work $WORK

1255 Utility Output F1255

1270 Utility Output F7055

RPG Il Auto Input $SOURCE

Report Work $WORK

Macro Processor Output $SOURCE

Overlay Linkage Input $SOURCE

Editor Work SWORK

Any program Work $INDEX44 (For 5444 file)

using large or

indexed files $INDEX45 (For 5445 file)

DISK FILE STATEMENT (continued)

The keyword for the parameter is NAME. 1t must be followed by the filename
used by the program. The name can be any combination of characters except
commas, quotes, or blanks. The first character must be alphabetic. The number
of characters must not exceed 8. The following example shows how the NAME
parameter for a file named FILEA would be coded.

44 48

UNIT: The UNIT parameter is always needed. It tells the system the disk that
contains or will contain the file. The keyword for this parameter is UNIT. It
must be followed by a code that indicates the unit. The codes are as follows:

R1 Removable disk on 5444 drive one
F1 Fixed disk on 5444 drive one
R2 Removable disk on 5444 drive two
F2 Fixed disk on 5444 drive two
D1 Removable disk on 5445 drive one
D2 Removable disk on 5445 drive two

The previous example shows how the UNIT parameter for a file located on the
removable disk on 5444 drive one would be coded.

Statement Descriptions 35

DISK FILE STATEMENT (continued)

36

PACK: The PACK parameter is always needed for disk files. It tells the system
the name of the disk that contains or will contain the file. The system checks this
name to ensure that the proper disk is being used. (For information about how a
disk is given a name, see Disk Initialization in Part Il of this manual).

The keyword for this parameter is PACK. It must be followed by the name of the
disk. The example under NAME shows how the PACK parameter for a file on a
disk named VOL1 would be coded.

LABEL: The LABEL parameter tells the system the name by which your file
is identified on disk.

If the file is being created, the name you supply in the LABEL parameter is used
to identify the file on disk. If you omit the LABEL parameter from a disk FILE
statement, the name from the NAME parameter is used.

If the file is an existing disk file, you must supply a LABEL parameter when the
name your program uses to refer to the file differs from the name by which the
file is identified on disk.

Several versions of a file can be created on the same disk and be given the same
name. |f the TRACKS or RECORDS parameter you are using in creating a file
is the same as the TRACKS or RECORDS specified for an existing file you must
specify LOCATION. You can reference each of these files by its name and date,
or by its name and location on disk. Both date and location must be unique for

each version. (See Examples 2 and 4 and File Processing Considerations.)

" The keyword for the parameter is LABEL. It must be followed by the name of
the file on disk. The name can be any combination of characters except commas,
quotes, or blanks. The first character must be alphabetic. The number of char-
acters must not exceed 8. The LABEL parameter for a file named PAYROLL is
coded in the following example.

1 4 8 12 16 . 20 i R 40 44 48 52 56

TRACKS or RECORDS: The TRACKS or RECORDS parameter is needed for
files that are being created. The parameter tells the system the amount of space
needed on disk for the file.

If you use the TRACKS keyword, you specify the number of disk tracks needed
for the file.

If you use the RECORDS keyword, you specify the approximate number of
records for the file. The total space allocated will be rounded up to full tracks
allowing adequate space to accomodate at least the number of records indicated.

Either of these two keywords, TRACKS or RECORDS, can appear in the FILE
statement, but not both. The keyword must be followed by a number indicating
the amount of space needed.

DISK FILE STATEMENT (continued)

“miist Be within the range 1-398 if you are using
f-you are using half capacity 5444 disk packs, the
-198. If you are using 5445 disk packs, the
980, The following example shows how the

If TRACKS is used; the'

full capacity 5444 disk p
number must be within t
number must be in the ra#

TRACKS parameter for. 5 uiring 20 tracks is coded.
1 4 8 : B 4 28 32
[[, JuN\ -

~

IIIII"",&I,"I‘IIIII'II I
If RECORDS is used, the fiumber can be up to six digits long. The RECORDS
parameter for a file contammg 250 records is coded as follows:

1 4 8 12, . 18 ‘ 20 24 28 32 36

/1] FITLTE INAME-FiAdda], 1111.P K-MolL
RERRRRERRR] | BEA BER

LOCATION: The LOCATION parameter is not required. It can, however, be
used for files that are being created. LOCATION is required when creating
several versions of a file or when loading an offline multivolume file to packs
which contain other files. (See Example 4.) It can also be used in referencing
one of several files housing th‘a s&me name and same size. LOCATION is not
required if sizes differ. :

For files that are being creﬁiw, éi;éﬁieter tells the system the number of the
track on which the file is to begin. } If it'is omitted, the track is chosen for you.

, fﬁépémmeter tells the system the number of
m_,’tﬁié case, the system uses the track number

For files that are being refi
the track on which the fula)
to tell one file from another

The keyword for this parameter is LQCATION For the 5444 disk the
LOCATION format is:

LI

LOCATION-track numbeér .
R (number must be between
 [half-capacity disk) or
8405 (full-capacnty disk). Tracks
0—7 éra reserved for the system.

For the 5445 disk the LOCATION format is: Slash is needed to separate
L S cylinder number and track
LOCATION-cylinder numbér/track number number (when both are
BRI S specified

s Track number must be between 0-19.
T rack number O is assumed if track
"urnber is not specified.

Cylinder num
between 1-
is resérved ﬁir

Split cylinder file suppert en the S445d45k allows for an additional
LOCATION parameter: o

LOCATION-file name

For a discussion on how

‘parameter is used when
specifying split cylind ;

it Cylinder Files.

Statement Descriptions 37

DISK FILE STATEMENT (continued) ; J

RETAIN: The RETAIN parameter is used to classify files according to their use:
scratch, temporary, or permanent.

A scratch file is normally used only once in a program and not retrieved after
the program has ended. A scratch file cannot be used as an input file unless
RETAIN-A is specified, however, a scratch file can be retrieved if a previous pro-
gram has defined it as a permanent or temporary file and then redefined it as a
scratch file. To change a permanent file to a scratch file you must use a utility
program. A temporary file can become a scratch file by using a utility program
or by using a RETAIN-S parameter. A RETAIN-A parameter is needed to change
a scratch file to a temporary file. A scratch file cannot become a permanent file
unless it becomes a temporary file first. A temporary file can be changed to a
permanent file only if the file name is changed and copied as a permanent file.
The system will overlay a scratch file if the disk pack is full and/or file space

is needed by a new file or by a system program.

A temporary file is usually used more than once. The area containing a temporary
file can be only given to another file under one of the following conditions:

1. A FILE statement containing the RETAIN-S parameter is supplied for the
temporary file. This converts the temporary file to a scratch file.

2. Another file with the same LABEL name is loaded into the exact area
occupied by the temporary file but this only changes the data. Space and
location parameters are required.

3. - The File Delete program is used to delete the file.

The area containing a permanent file cannot be used for any other file until the
File Delete program has deleted the permanent file.

A disk file is classified as scratch, temporary, or permanent when it is created.

If the RETAIN parameter is omitted from the FILE statement when the file is
created, the file is assumed to be a temporary file. The RETAIN parameter may
be omitted when accessing an existing file; however, RETAIN-A must be coded
to reactivate a scratch file which changes to a temporary file.

The keyword for the parameter is RETAIN. It must be followed by a code that
indicates the classifications of the file. The codes are:

Code Meaning

S Scratch file

T Temporary file

P Permanent file

A Reactivate scratch file

The RETAIN parameter for a permanent file is coded as follows:

-
»

8 12

16

20

24

28

32

[NAME|-

v

clki

ED

LN

. [TRIAKK

l

DISK FILE STATEMENT (continued)

DATE: The DATE parameter tells the system the date of a file. It is used to
ensure that the proper version of the file is referenced.

When a file is created on disk, its LABEL name and creation date are written on
the disk as identification. The system date is the date used. (The system date
is explained under DATE Statement.) More than one file on a disk can be given
the same name. The creation dates of these files must, however, be different.
To reference such a file, you can use its name and date (see Example 4), or its
name and location on disk. If neither the date nor the location is given, the file
having the latest date is the one automatically referenced. '

The keyword for this parameter is DATE. 1t must be followed by a 6-digit
number representing the date (two more spaces are allowed for punctuation
delimiters).

The date can be coded in one of two forms: month-day-year (mmddyy) or
day-month-year (ddinmyy). You must specify the form when the system is
generated. The date you specify in the DATE parameter must be in that form.
The date can be coded with or without punctuation. For example, July 31, 1971,
might be coded in any one of the following ways:

073171
310771
07/31/71
31/07/71

Month, day, and year must each be 2-digit numbers but lead zeros in month and
day may be omitted wheén punctuation is used (7-31-71 or 31-7-71). A blank,
comma, number, or quote cannot be used to punctuate the date.

To illustrate this parameter, assume that two versions of a file are written on the
same disk. In the next example are the NAME, LABEL, and DATE parameters
for two versions of a file on the same disk, one written on April 5, 1971, the
other on August 3, 1971. Both files have the same label: F0001.

HIKEY: The HIKEY parameter must be used when you define a multivolume
indexed file. The highest keyfield for each pack must be entered. For further
information and an example of HIKEY see Multivolume Files under Using OCL.

SPLIT: The SPLIT parameter is used when creating and maintaining split
cylinder files on a 5445 disk. For further information on SPLIT see
Split Cylinder Files.

Statement Descriptions 39

DISK FILE STATEMENT (continued)

Examples The following are examples of FILE statements. In each example, the file is
described first, then the corresponding FILE statement is shown.

Example 1: Suppose that each week you create a disk file that contains the
records for the transactions you had made that week. Assume the following
facts about that file:

- The name your program uses to refer to the file is TRANS, which is also
the name you want to use to identify the file on disk.

— You are placing the file on a removable disk named VOLO03.

— You intend to mount the disk on drive one.

- You want to save the file for use at the end of the month.

— The file contains 225 records.

- You are letting the system choose the disk area that will contain the file.

The following example shows how the FILE statement for the preceding file is
coded when using a 5444 disk.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

ArlLE] INaMel-ITIRANS], [Plalelk-violL 3, ‘FT- , EF N-I7], [RlElelolripls]-[ol2

I | |
The FILE statement when using a 5445 disk would be:

<
ES)
>

1 7N§m§ 5 6] 7 Bo;e;?:“?? 12{13]14 15 16 17 18 1920 21 zzoggr;:dZS 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Egerggr::
/7] [Az]C|e] Ivalmel-[TIr]alns], [Plalc]k[-]violL @3] lulmz]-IDl1] [Rle|rlalriM-IT] . [RlElclokiols|-[2]2]4]
" » !
) | x
Example 2: Suppose you had created, on the same disk (VOLO03), four versions
of the transaction file described in the preceding example—one for each of the
weeks in February, 1970. Assume the following:
— You had created the files on the following days: 2/6/70, 2/13/70,
2/20/70, and 2/27/70 (these were the system dates used for each of the
files).
— You want to reference the third file (the one created 2/20/70).
- You intend to mount the disk on drive one.
The file statement you would need is:
1 4 8 12 16 20 24 32 36 40 4 52 56 60

18
7

N

. 28
[ILE el [rRlalnls]. blAlTlE- LFJ/M' P z-voL}gs.u I
I

DISK FILE STATEMENT (continued)

Example 3: Suppose at the end of the month you combine the files referred
to in Example 2, for use in preparing your monthly bills. Further assume the
following:

Your program uses the name TRANS to refer to the file, but you want to
use the name BILLING to identify the file on disk.

You are expressing the amount of disk space as the number of tracks re-
quired to contain the file (assume the number is 15), and you want the
file to begin on track 8.

You are placing the file on a removable disk named VOLO1.

You intend to mount the disk on drive one.

The foltowing example shows the FILE statement you would use for this file.

1 4 8 12 16 20 24 28 32 3
A1 L] E-[TIR AL, [LlalglelL -8l iL e, |
N[t [Tl-IRl1], [Plalclk]-IviolLd o],
TiRlAlciKis|-[1(5], [cloiclalr¢|on]-¢],
RIE[TIA! N|-[T]

Example 4: Suppose you want to create two versions of two files on disk and
later to access one version of each file. Further assume the following:

The names your program uses to refer to the files are AA and BB, which
are also the names you want to use to identify the files on disk.

File AA is being placed on a fixed disk on drive two named FIXED2,
File BB is being placed on a removable disk named REM5.

You intend to mount the disk on drive two.

One version of each file is created on 5/11/70 and 5/12/70.

Disk space and location for the files are:

File Version Tracks Location

AA 5/11/70 10 200
5/12/70 10 210

BB 5/11/70 20 200
5/12/70 20 220

You want to access file AA, version 5/11/70 and file BB, version 5/12/70.

Statement Descriptions

41

DISK FILE STATEMENT (continued)

42

The following OCL statements are needed to create the above versions of files
AA and BB and to access a version of each file.

File Processing Considerations

¥ CRIEATE]S] MRSl lowis| bIF i lils| A wivip 8
DATE @5/)11
?C Uﬁ‘ THIF] 1%
= T | 2,
TIRACKS-|1l2 |LIOCATI ION-2198 |RETA 1IN-
v/l A fsgﬁ llir= F 5,
RPCIK:) T ON-
// Rf”“ i
Tﬂl THER VERS1AN (OF FILES N
Lio GOET, R
/\/ DAT] 1
A/ FIILE INAME-AAL UNITI-F2, [PACK-IF LIMED2,|
/\/ CKS-11 OCAT | ON-
Al]ﬂeﬁgtﬂdﬁmrz‘ K)
/|/ TRACKS -2, OICAT) ION~
/
e |ACCE FILIE| MERSI onsl OF [ABOVIE [FiIILE'S
o N
Fil -Ad, UNIITI-FiZ, PACK-FL N
/| ulls 8
FlIILIE NAMEFRB, UNITI-R2Z,|PACK-REMS,
Tl DATE-@25/11 7ﬁ
Vit

LOCATION and space (TRACKS or RECORDS) must be specified when
you are reloading an existing temporary file.

If you are referencing a file by the DATE parameter and space is given, the
space must be equal to the space given when that file was created.

If you are accessing a file by the LOCATION parameter and space is given,
the space must be equal to the space given when that file was created.

You can create several versions of a file with a program by changing the
locations of the files and using different system dates.

You can create different versions of a file without LOCATION if the space
parameters as well as the system dates are different.

The system assumes that a new file is being created if space is given without
LOCATION or DATE and the given filename was found but its space does
not match.

The DATE parameter is only allowed for accessing existing files.

Whenever a load is performed to an existing file, the system date replaces
the previous date for that file.

If a RETAIN parameter is not specified when reloading an existing file,
the existing file classification is retained.

When a scratch file is created, it is not entered in the Volume Table of
Contents (VTOC). After the job that created the file is run, the file is lost.
The way that an S retain type can appear in the VTOC is tochangea T
entry to an S by using RETAIN-S in the FILE statement, or to changea T
or P entry to S by using a $DELET SCRATCH statement.

TAPE FILE STATEMENT

Function

Placement

Format

Contents

The FILE statement supplies the system with information about tape files. The system
uses this information to read records from and write records to tape.

You must supply a FILE statement for each new tape file that your program creates,
and for each existing tape file that your program uses. The FILE statement must
follow the LOAD or CALL statement and precede the RUN statement.

// FILE parameters
All parameters are keyword parameters. The parameters are as follows (keywords

are in capital letters):
- NAME-filename (in program)

- UNIT-code
name
— REEL- NL
NS

— LABEL- filename (on tape)
‘character string’

— DATE-date.

- RETAIN-code

- BLKL-block length

- RECL-record length

- RECFM-code {record format)

- END-position of tape after processing

1600
800
- DENSITY- 656
200
YES
- ASCII- ;No
YES
— DEFER- % NO
OFF
— CONVERT- §0N
OFF
— TRANSLATE- %ON
ODD
— PARITY- %EVEN

Statement Descriptions

43

TAPE FILE STATEMENT (continued)

The NAME and UNIT parameters are always required. The others are required only
under certain conditions.

NAME: The NAME parameter is required. It tells the system the name that your
program uses to refer to the file. The NAME parameter must be placed on the first
card or line if two or more cards or lines are used for the FILE statement. (See
General Coding Rules for rules on continuation.)

For the Tape Sort program, you must use specific names for files.

File Name
Input INPUT
Output OUTPUT :
Work WOl;K1
WORK2
WORK3

WORK4 (optional)

For the Dump/Restore program, you must use the name BACKUP in the name '
parameter. The keyword for the parameter is NAME. 1t must be followed by
the filename used by the program. The first character of the NAME must be
alphabetic. The remaining characters can be any combination of characters
except commas, apostrophes, or blanks. The number of characters cannot
exceed 8. The following example shows how the NAME parameter for a file
named FICAOUT would be coded:

OCL STATEMENTS
14 8 12 16 20 24 28 32 36 40 44

FII g{gHe—qup 7], RIEEL] P;!:u -TF

LI 1 | 1 I

UNIT: The UNIT parameter is required. It tells the system the tape unit that
contains or will contain the file. The keyword for this parameter is UNIT. It must
be followed by a code that indicates the unit. The codes are as follows:

T Tape unit one

T2 Tape unit two

T3 Tape unit three

T4 Tape unit four

The previous example shows how the UNIT parameter would be coded for a file
that resides on tape unit two.

a4

TAPE FILE STATEMENT (continued)

REEL: The REEL parameter is required for tape input files and optional for
output files. It identifies the tape that contains or will contain the file. The
system uses this parameter to ensure that the correct tape is being used. (For
information about how a tape is initialized and identified, see Tape /nitialization
in Part || of this manual.)

The REEL parameter can be coded as follows:

REEL-nnnnnn This format is used for labeled tape volumes. The volume is
identified by coding a maximum of six characters, excluding
commas, apostrophes, and blanks. NS and NL have special
meanings and may not be used as the name of the reel.

REEL-NL This coding indicates a tape file without a label. The first
record of an unlabeled tape must not be an 80-byte record
beginning with VOL1.

REEL-NS This coding indicates an input tape file with a non-standard
label. These labels do not adhere to the IBM Tape Label
Standard. The first record of a non-standard labeled tape must
not be an 80-byte record with VOL1 as the first four characters.
REEL-NS is invalid for output files.

If the REEL parameter is not specified for an output file, the system assumes the
output tape contains standard labels. |f REEL-NS or REEL-NL is used, the LABEL,
DATE, and RETAIN parameters may not be entered.

Note: User labels are file labels that follow standard header and trailer label conventions
(ANSI or IBM). They are a variation of standard labels with a partially fixed format.
These labels are sometimes provided by other systems. User labels are not checked by
System/3 tape data management and may not be written as part of the label group.

The example under NAME shows how the REEL parameter would be coded for a file
on a tape named TAPE1.

LABEL: The LABEL parameter tells the system the name (label) of the tape file as
it exists in the header label.

For file creation, the name you supply in the LABEL parameter is used in the header
label. If you omit the LABEL parameter, the name from the NAME parameter is used
unless REEL-NS or REEL-NL is also specified. Up to eight characters may be supplied
in the LABEL parameter.

For existing files, you must supply the label parameter if the name in the tape label is
different from the name your program uses to refer to the file (the NAME parameter).
If the header label contains a name longer than eight characters, only the first eight
characters are recognized by the system for comparison.

The LABEL parameter may not be used with the parameters REEL-NS or REEL-NL.
The LABEL parameter can be coded as follows:

LABEL-name The name entry must begin with an alphabetic
character and the remaining characters must not be

commas, apostrophes, or blanks.

Statement Descriptions 45

TAPE FILE STATEMENT (continued)

46

LABEL-‘character string’ A label may also be identified using special characters.
The character string must be enclosed in apostrophes,
may not contain commas, and is restricted to eight
characters in length. If an apostrophe is used as a
character, it must be coded as two apostrophes.

DATE: The DATE parameter tells the system the creation date of an input file.
It is used to ensure that the proper version of the file is used. The date specified
is compared against the creation date contained in the file label. No comparison
is done when DATE is not specified.

For output files, the system date is always used as the creation date. If the DATE
parameter is specified for an output file, the system compares the specified date
with the creation date of the file already on the tape. |f no file exists on the tape,
or a file with a different label exists, or the dates do not agree, the system halts.

The date may be coded in one of two formats: month-day-year (mmddyy), or
day-month-year (ddmmyy). The format must match the format of the system
date chosen at system generation time.

The DATE parameter may not be specified with REEL-NS or REEL-NL.

RETAIN: The RETAIN parameter specifies the number of days a file should be
retained before it expires. This number may be from O to 999. After the number of
days has elapsed, the file expires and the system allows the file to be written over.

If the RETAIN parameter is omitted, a value of zero is assumed. A value of 999
indicates a non-expiring permanent tape file.

If an attempt is made to write over an unexpired file, the system halts, allowing

the operator to cancel the job or continue. A tape containing a permanent tape file
must be reinitialized before it can be used for output. The RETAIN parameter may
not be used with REEL-NS or REEL-NL.

BLKL: The BLKL (block length) parameter specifies the number of bytes in a
physical block on tape. The block length can be from 18 bytes to 32,767 bytes.
The maximum length is limited to the main storage not occupied by the program
and supervisor. The block length must be an integral multiple of the record length
for fixed (F) and fixed blocked (FB) files (see RECFM parameter). If an ASCII
file is being used, any existing block prefixes must be included in the block length.

RECL: The RECL (record length) parameter specifies the number of bytes in a
logical record. The maximum record length is 32,767 bytes. The minimum record
length permitted for F and FB type files is 18 bytes (see RECFM parameter).

The record length for V, VB, D, and DB type files must include the four-byte
record descriptor,

TAPE FILE STATEMENT (continued)

RECFM: The RECFM (record format) parameter identifies the format of the input
or output file records. The parameter entries are:

F — Fixed length, unblocked records. Logical and physical records are the same
size.
\% — Variable length, unblocked records. Each physical record contains one

logical record; the logical record can vary in length.

D — Variable length, unblocked records in the D-type ASCII format.

FB — Fixed length, blocked records. All records are of equal length and all blocks
are of equal length. Each physical record contains more than one logical
record.

VB — Variable length, blocked records. Each physical record contains logical

records of various lengths.
DB — Variable length, blocked records in the D-type ASCII format.

END: The END parameter specifies the position of the tape after the file has been
processed. The options are as follows:

LEAVE — The tape remains in the position it was in after the last record was
read or written.

REWIND — The tape is rewound to the load point.
UNLOAD — The tape is rewound and unloaded for removal from the tape drive.

If the END parameter is omitted, REWIND is assumed.

DENSITY: The DENSITY parameter is used to specify the number of BPI (bits per

inch) at which files are to be written or read. The parameter must specify the density

at which the tape was initialized. See $TINIT (Tape Initialization Program) description in
this manual. For nine track tapes this parameter affects only the density of non-labeled
output files. When standard labeled or non-standard labeled tapes are used, the tape
hardware will automatically determine the density at which the tape was initialized.
When a tape is initialized to 1600 bpi with standard labels, any file that is written on

that tape will be in 1600 bpi, regardless of the parameter specified for DENSITY.

No error halts will occur if an incorrect nine track density is specified. The parameter
entries are:

1600 — The file is to be written at 1600 bits per inch (valid for all nine track
tape units).

800 — The file is to be written or read at 800 bits per inch (valid for nine track
dual density tape units or for all seven track tape units).

556 — The file is to be written or read at 556 bits per inch (valid for all seven
track tape units).

Statement Descriptions 47

48

200 - The file is to be written or read at 200 bits per inch (valid for all seven
track tape units).

If the DENSITY parameter is omitted, 1600 bits per inch is assumed on nine
track tape units, and 800 bits per inch is assumed on seven track tape units.

ASC/I: The ASCII parameter (ASCIHI-YES or ASCII-NO) is used to indicate to the
system when an ASCI| file is being used. If ASCII files are being used, ASCII-YES
must be coded. ASCII-YES is invalid for files on seven track tape units. If this
parameter is omitted or coded ASCII-NO, an EBCDIC file is assumed.

DEFER: The DEFER parameter (DEFER-YES or DEFER-NO) tells the system
whether the file will be mounted on a tape drive when the file is allocated and
opened. If the tape volume is not online, DEFER-YES must be coded. If the
parameter is omitted, DEFER-NO is assumed.

Note: For RPG Il object programs, this option should only be used for files
that use the same drive as a table file. All other files are allocated and opened at
the beginning of the program.

Other programs (such as COBOL object programs) which do not allocate and
open all files at the same time, or which do so conditionally by program logic,
should not use the DEFER-YES option.

CONVERT: The CONVERT parameter tells the system whether the data converter
will be turned on or off. This parameter is valid only for seven track tape files.
CONVERT-ON causes seven track data to be processed in eight bit binary form.
The convertor writes three main storage characters as four tape characters, and
converts the opposite way when reading. CONVERT-ON must be specified when
processing variable length records on seven track tape files. Specifying both
CONVERT-ON and TRANSLATE-ON is invalid. If this parameter is omitted,
CONVERT-OFF is assumed.

TRANSLATE: The TRANSLATE parameter tells the system whether the data
translator will be turned on or off. This parameter is valid only for seven track
tape files. TRANSLATE-ON causes seven track data to be processed in six bit
BCD form. The translator writes eight bit EBCDIC main storage characters as
six bit BCD tape characters and translates the opposite way when reading.
Specifying both TRANSLATE-ON and CONVERT-ON is invalid. If this param-
eter is omitted, TRANSLATE-OFF is assumed.

Note: 1f CONVERT-OFF and TRANSLATE-OFF are specified, only the six low
order bits of the main storage character are written on the tape. When reading
with CONVERT-OFF and TRANSLATE-OFF the two high order bits of the
main storage characters are set to zeros.

PARITY: The PARITY parameter is used to specify the parity at which tape
characters will be processed. This parameter is valid only for seven track tape files.
Data conversion (CONVERT-ON) is invalid with even parity (PARITY-EVEN).

If this parameter is omitted, PARITY-ODD is assumed.

Note: The following are the valid combinations for TRANSLATE, CONVERT,

and PARITY parameters.
— PARITY-ODD, TRANSLATE-OFF, CONVERT-OFF
— PARITY-ODD, TRANSLATE-ON
— PARITY-ODD, CONVERT-ON
— PARITY-EVEN, TRANSLATE-OFF, CONVERT-OFF
— PARITY-EVEN, TRANSLATE-ON

SEVEN TRACK CONSIDERATIONS

1. CONVERT, TRANSLATE, PARITY, and/or DENSITY must be specified

for an input file if other than the default parameters were specified for

output when the file was built, otherwise, tape runaway or data check occurs.

2. If an output file has REEL-NL on the file card, the reel must have been

initialized with REEL-NL by the $TINIT (Tape Initialize) program, other-

wise, tape runaway or data check occurs.

3. If an output file has REEL-NL on the file card and there is a file existing
on the tape, tape runaway or data check will occur if TRANSLATE,
CONVERT, PARITY, and/or DENSITY parameters for the new file do

not match the characteristics of the old file. The tape should be reinitialized

using $TINIT with REEL-NL if this occurs.

Statement Descriptions

49

BSCA STATEMENT

50

Function

Placement

Format

Contents

The BSCA statement allows you to change all BSCA line specifications in your
program. This allows the use of either BSCA line without recompiling the program.
If the BSCA statement is not entered, the line specifications in the program are not
changed.

The BSCA statement must follow the LOAD or CALL statement and precede the
RUN statement.

// BSCA parameter

The parameter is a keyword parameter. The parameter is LINE-code. The codes are
as follows:

Code Meaning
1 Change all BSCA line specifications to BSCA line one.

2 Change all BSCA line specifications to BSCA line two.

CALL STATEMENT

Function

Placement

Format

Contents

Example

CALL statements are needed only when you want to merge procedures into the
job stream.

To understand the funtion of the CALL statement, you must understand the
relationship between the job stream and procedures. The job stream contains
the OCL statements that control the system. The system reads it either from
cards or the printer-keyboard. Procedures are sets of OCL statements in a source
library on disk. They have no effect on the system until they are merged into
the job stream.

You can modify the procedure identified by a CALL statement, by providing
other OCL statements (procedure override statements, see Changing Procedure
Parameters) after the CALL statement. These statements temporarily modify the
procedure. The last statement of the CALL sequence must be a RUN statement.
The RUN statement is required, however, whether or not you supply other OCL
statements. (Procedures are further explained in Procedures.)

CALL statements can be used in the job stream or in a procedure. They are, in
effect, replaced by the procedures they identify. The last statement of the CALL
sequence must be a RUN statement.

// CALL procedure-name,unit

Procedure-name: The procedure-name is the name that identifies the procedure
in the source library. You supply the procedure-name in the Library Mainten-
ance control statements when you use the program to place the procedure in the
library. (See Library Maintenance in Part |1 of this manual for restrictions on
procedure-name.)

Unit: The unit parameter is a code. The code indicates where the disk that con-
tains the procedure is located on the disk unit. The codes are as follows:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

There is no CALL statement example here. The following section, Procedures,
contains CALL statement examples.

Statement Descriptions

51

PARTITION STATEMENT

52

Function The PARTITION statement is used only in DPF systems and guarantees a minimum
size to program level two for a program in that level.

Placement The PARTITION statement can be placed anywhere among the OCL statements
preceding the RUN statement.

Format // PARTITION size

Content Size: The size parameter specifies the number of bytes of storage needed for
program level two. (See Loading Programs in a DPF Environment.)

LOCKOUT STATEMENT

Function The LOCKOUT statement is used only in DPF systems.
It is used to suspend the other program level to allow fast job initiation in the
program level in which it is entered. Job initiation is slowed if both program
levels use the system transient area and/or disk drive one. The other program
level remains suspended until job initiation is complete.
Note: This statement should not be used when the active program level is using
time dependent devices such as BSCA and serial 1/0 channel.

Placement The LOCKOQUT statement can be placed anywhere among the OCL statements,
but must precede the RUN statement.

Format // LOCKOUT

Content None (Comments may be entered starting in column 12.)

PROCEDURES
Procedures are sets of OCL statements in a source
library on disk. Procedures can be put into the
source library by using the Library Maintenance
program. (See Part Il of this manual, Library
Maintenance, Copy Function, Reader-to-Disk.)

Procedures must contain one and only one, LOAD state-

ment. All other OCL statements except /& are allowed
in pracedures. The CALL statement is allowed only in
nested procedures (see Nested Procedures). Object pro-
grams loaded from cards (LOAD*) are not allowed

in procedures. The object programs are loaded

from the system input device. However, LOAD*
statements are allowed in procedures.

A maximum of 25 utility control statements can
be included in procedures for the utility programs.
The utility statements must follow the OCL state-
ments in the procedure. (See Library Maintenance,
Part Il of this manual.) A RUN statement must be
the last OCL statement in the procedure to separ-
ate the OCL statements from the utility control
statements. The RUN statement in the job stream,
rather than the one in the procedure, causes the
system to run the program.

An example of a procedure is shown in Figure 9.
This procedure will be referred to in all of the
following examples. Assume that the name of the
procedure is PROC1. The procedure-name is the
name that identifies the procedure in the source
library. Further assume that the procedure is
contained on the fixed disk on drive one (F1).

Normal Procedure Call
To merge the procedure (unchanged) into the job
stream, the statements in Figure 10 would be used
in the job stream.

L7

Figure 10. Normal Call for Procedure

Changing Procedure Parameters

You can change any of the parameters in any of the
statements in the procedure for one job, by placing
procedure override statements between the CALL
and RUN statements. Procedure override statements
modify the procedure for one job only. For example,
assume you wanted to make the following changes

to procedure PROC1 (see Figure 9):

® In the first FILE statement (NAME-DALTOT),
change the RECORDS parameter from RECORDS-
1500 to RECORDS-1750.

® Change the parameter in the SWITCH statement
from XXX01XX0 to XXX10XX1.

Figure 11 shows the statements needed in the job
stream to call and modify PROC1. Note that the
NAME parameter is also supplied in the FILE state-
ment. This is necessary to identify the FILE state-
ment to which the change applies.

1 4 8 12 16 20 24 28 32
AL PRIl JAL l

/| Fli|Llel WalMe-DlalLiriolr [elcloiRlols|-[117l9a

/1 st friefa] IXxIxLidix]x |1

/ RIUA] '

Figure 11. Call for Procedure: Changing Parameters

Delete a Procedure Parameter
Besides changing a parameter you can delete a para-
meter in a procedure statement entirely if itis a
keyword parameter. To delete a parameter in any
of the statements you must code the keyword and
the hyphen and follow them immediately with a

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/v Loﬂﬂ NlomoN , |- 2 1] l | L]
/[1 el El-DlAlLTlolr|, Wl: IT]-le]2] |PalclK-Ivioligie] |REC|dRds]-Lslald | Rifr|Al /In}-P

|eli lle] | il ccroT,LnasL-r'rnL:uql -IRl1l, [Plalclk- Vil 2], plalTiE- Al 1l/idal/|7

SiwiLTIciH| XIXIXIBL1IXIX] s

RUW

Figure 9. Procedure Example

Statement Descriptions 53

comma. The statement in Figure 12 deletes the
RETAIN parameter completely.

/ ac e [T
+INAME

HILE [RETAIN-, Natd
i

I

Figure 12. Deleting a Procedure Parameter

Adding a Statement
You can add statements to the procedure by plac-
ing the statements you are adding between the
CALL and RUN statements. For example, assume
that you wanted to add a NOHALT statement to
the procedure. Figure 13 shows the statements
needed in the job stream.

cllL L] PRlocla], A1

OHALL i

Figure 13. Call for Procedure: Adding a Statement

Add Missing Parameter
You can omit any of the parameters from all OCL
statements in a procedure. If you do, you must
supply the missing parameters between the CALL
and RUN statements. For example, assume that
the procedure contained the LOAD statement
shown in Figure 14. The statements in Figure 15
would be needed in the job stream to run the
ENDMON program. Note that the entire LOAD
statement did not have to be supplied. Only the
missing parameter was included.

-

<+

Figure 14. LOAD Statement Missing a Parameter

LIL cl1].IFIL

=9

NN

2 -0
SO

ap EW\DIMO

Figure 15.

Call for Procedure Supplying a Missing Parameter

Example

Procedure override statements are printed on the
logging device along with the statements in the
job stream. Assume that the statements in Figure
16 are used in the job stream. The statements
from the procedumre would be merged with the
preceding statements and printed as shown in
Figure 17.

Statements preceded by XX represent the pro-
cedure statements as they appear in the source
library. The CALL and RUN statements and

any statements which are intended as overrides to
procedure statements or additions to the procedures
begin with //.

8 16 20 24 28 32

12
RioC

~

~ |

F | [
aiLl7iolT], [RlE(C|olRlDiS |- |1 [7lslg]

A

A

L
LIE
-

XXX b

NN

JE=[O]

/

ES)

[~
[~
(=)

Figure 16. Call for Procedure Example

// CALL
XX LOAD
XX FILE
// FILE
XX FILE
XX SWITCH XXX01XXO
// SWITCH XXX10XX1
// NOHALT

XX RUN

// RUN

PROC1,sF1
ENDMON,yR2

NAME-DALTOTsUNIT-F2,PACK-VOLO4yRECORDS-1500,RETAIN-P
NAME-DALTOT,RECORDS-1750
NAME-ACCTOT,y LABEL-TOTALyUNIT-R1,PACK-VOLO2,DATE-01/04/71

Figure 17. Printout of Sample Case

54

Nested Procedures
Some procedures are done in the same order every
time a job is performed. Nesting procedures is a
convenient way to link the procedures together
and requires you to call only the first procedure.
Each procedure will call the next procedure until
the job has been completed.

By nesting procedures together several benefits can
be realized.

® Programs are always run in the correct sequence.

® Operator intervention (and chance of operator
error) is decreased.

® File space can be saved. Files used to pass data
from job to job can be scratched after the last
program.

® Files are less likely to be destroyed by running
nonrelated programs between programs of a job.

Here is an example of how nested procedures might
be used. Suppose you want to back up a fixed disk
pack containing files which will be used in the
future. The OCL statements and utility control
statements to copy one disk pack (F2) to another
disk (R2) would look like this if nested procedures
were not used:

By using nested procedures thesé control statements
could be stored on disk and the job could be per-
formed by calling only one procedure. Figure 18
shows the three procedures needed to perform the
copy job described. There is only one CALL state-
ment necessary in the job stream from the system
input service.

This CALL statement links the job stream to a
master procedure (CPYF22) which is used to call

the procedure necessary to perform the job.

CPY F22 contains three CALL statements that call
the three procedures necessary to copy F2 to R2.
Notice that CPYF22 contains only CALL statements.
Any procedure within nested procedures can consist
entirely of CALL statements and does not need a
RUN statement to indicate the end of the procedure.
Nested procedures allow you to have an unrestricted
number of CALL statements in a procedure. There-
fore CPYF22 could have more then three CALL
statements if you felt it necessary.to add any pro-
cedures.

/1/1 | [LlolaD] | 1$Mlali N[, JF]L

/\/| | Ry

/| | ALiLlolcAlTE] [TIol-IR2), |SI0URICIE-B),|0\BT EIC|TI-

/I/l | EWD

/// | lLlolAD | |$DELET], IFIL

/I/1 | RUN B
/I/L | IReMolViE] | WINu[T1-R 2], [PAICK- X XX XXX, IlaiBlec]-viTlolc i
/|/| | END

/I/| | LolalDl | [$ICloPY! [FiL

/l/| | RUN

/\/| | IClolPlY|RAlC FIROM-IF12], [Tlo|- 1R 2

/171 | |EM

Statement Descriptions 55

System Input Device

Level 1

/I CALL CPYF22,F1

/I RUN

CPYF22

Level 2

\ /! CALL DEALIB,F1

\ /l CALL DEALF1,F1

\ | // CALL CYF2R2,F1

Figure 18. Nested Procedures

Figure 19 is an inventory application of nested
procedures. A company issues daily reports on
goods bought and sold by calling the DAY pro-
cedure. By nesting procedures together a daily
report and a weekly report can be written by

calling the WEEK procedure. Once a month

// CALL MONTH is used to write out daily, weekly,
“and monthly reports. Finally, monthly, weekly,
daily, and yearly reports are written once a year by

/I CALL YEAR

Year
// CALL MONTH]
// CALL END1 AN
\\\
NI
\

7

DEALIB

/l LOAD $MAINT,F1
// RUN

// ALLOCATE

// END

N\ DEALF1

// LOAD $DELET, F1
/!l RUN

/! REMOVE

/! END

\M [cYF2R2

\ |// LOAD $copY,F1

\ |// RUN

\| /7 copvpack...
/I END

calling the YEAR procedure which nests all of the

other procedures together.

No more than nine levels of CALL procedures can
be nested together. Levels of procedures are deter-
mined by the number of CALL statements away
from the system input device a procedure is
located. For instance, in Figure 19 when // CALL
YEAR is given in the system input device, the

/7/(//

Figure 19. Inventory Example

// CALL MONTH /l CALL WEEK /f CALL DAY
Month
// CALL WEEK 7| week
// CALL MONSUM | '\\ /l CALL DAY]| Day
N\
END1 \ \\\ /] CALL WEKSUM | "X Daily
\ \ v O\ | Report
Year End \ MONSUM NN
Report . \\ \ \
\ | Monthly \ WEKSUM
Report \
\ Weekly
\ Report

YEAR procedure would be one level away from
the system input device. MONTH and END1 pro-
cedures are two levels away from the system input
device when // CALL YEAR is given.

By using nested procedures, fewer control state-
ments are needed in the job stream from the
system input device. However, certain rules must
be followed to make nested procedures work:

1. No more than nine levels of procedures are
permitted.

2. Each procedure may have an unrestricted num-
ber of CALL statements to the next level of
procedures,

3. Only utility control statements can follow a
RUN statement.

4. Procedure additions or overrides supplied between
the CALL and RUN statements in the job
stream are merged between the first LOAD and
RUN statements encountered in the procedures
(see Example of Nesting Procedures).

5. Any OCL statements permitted before the RUN
statement in the job stream are also permitted
anywhere before the RUN statement in a pro-
cedure (see Example of Nesting Procedures).

Example of Nesting Procedures

Suppose you want to decrease operator intervention
by using the NOHALT statement. In Figure 18 the
NOHALT statement could be placed between the
CALL and RUN statements in the system input
device. [n this case it would be read as an additional
OCL statement for the DEALIB procedure,
However, it could be placed anywhere in the master
procedure, CPYF22, or anywhere before the RUN
statement in the DEALIB, DEALF1, or CYF2R2
procedures. The rule would still be followed no mat-
ter what procedure contained the additional OCL
statement.

Statement Descriptions 57

58

This section is designed to aid you in your use of OCL
manual involving the use of OCL are:

Compiling an RPG |l program
Processing a card file

Creating and processing a disk file
Processing two disk files

Processing large indexed disk files

Processing a disk file that uses external indicators
Creating and processing multivolume files
Creating and processing split cylinder files
Automatic file allocation

Storing programs and procedures into libraries
Checkpoint/restart

Dual programming feature

Statement examples

. The topics described in this

For a more complete explanation of the statements, their parameters, and coding
rules refer to Statement Descriptions and Coding Rules in Part | of this manual.

USING OCL
——

Using OCL

59

COMPILING AN RPG It PROGRAM
After your RPG |l program is written and recorded
in cards, it must be compiled. To compile an RPG
Il program, two OCL statements are required,
CALL and RUN.

SOURCE
DECK

/I CALL RPG, F1

In the preceding example the first statement, // CALL
RPG,F1, tells the system to get the procedure that
loads the RPG li Compiler from the fixed disk. The
second statement // RUN, tells the system to run the
compiler program. The source deck may follow the
RUN statement or be called from disk using a
COMPILE statement.

CREATING A DISK FILE

To create a sequential, direct, or indexed disk
file you must tell the system the size of the
file and the use of the file. To state the file
size (using the FILE statement), two keywords
are available: TRACKS and RECORDS. You
may use one or the other, but not both.

If you use RECORDS, the system calculates the
disk space required and converts it to tracks for
you. If you use the TRACKS parameter, there is
no need for the system to perform these calcula-
tions.

A file is classified as scratch, temporary, or perma-
nent when it is created. You use the RETAIN para-
meter of the FILE statement to tell the system how
to classify the use of a file. If you omit the
RETAIN parameter, the file is assumed to be a
temporary file.

For example, you want to create a master file of
names and addresses. You would code the following:

=]
=
(10
-

ey
=]
>
o
T
=
=
ES
C"
g

ACIK|-ViolL|1

+*
-
=

60

(This master file is classified as permanent.)

LOADING AND RUNNING PROGRAMS

IBM Programs
Many IBM programs require only two OCL state-
ments, LOAD and RUN.

The following examples show the OCL cards needed
to load and run two IBM programs. (The Disk
Initialization and File Delete programs are discussed
in Part Il of this manual.)

// RUN)

/I LOAD SINIT, F1)

The Disk Initialization program
is loaded and run.

// RUN

// LOAD $DELET, F1

The File Delete program is
loaded and run.

Object Programs Using Card Files

LOAD and RUN are the only two OCL statements
needed to load and run RPG Il programs that use
no disk files. To run a certain job, the object pro-
gram must be loaded into storage. To load an ob-
ject program that is on cards (object deck), an *
must follow the word LOAD. (The * tells the sys-
tem that an object deck follows the RUN state-
ment.)

For example, only these two statements are re-
quired for a program that prints data from a
transaction card file.

Object Programs Using One Disk File

To load and run an object program that uses a
disk file, another OCL statement is required:
FILE. Three items of information must follow
the word FILE:

® The name of the file.

® The name of the disk pack the file is on.

® The location of the disk pack.

For example, you want to load and run an object
program using a disk file named SEQDISK. The

file resides on removable disk pack named VOL1.
You would code the following:

Using OCL 61

Object Programs Using More Than One Disk

File

One FILE statement is required for each disk file
used by a program. To load and run an object
program that uses two disk files, two FILE state-
ments are required.

In the following example, two disk files are used:
an input file (INDISK) and an output file (OUT -
DISK).

68

72

X
EX

\
([
()
=
=
[
[]
[«)
<
ﬂ
©
(S~
[2]
=
N
)
>
o
[]
=<
S
~p=
~
e
=
|~
1
B
~
X
o
S
A
S)
(72
]
=
~
XY
el
=
131
\‘
1S
~
2
{
A~

SNIND INI=
SIS N

The first FILE statement contains information
needed to access the data in that file. The second
FILE statement contains information needed to
create an output file.

Object Programs Using One Disk File and
External Indicators

-

The SWITCH statement is used to set external in-
dicators (U1-U8 on RPG |l specifications sheets)
on or off. External indicators are used to regulate
when certain functions are performed.

In the following example,you are running a program
using one disk file (INVMSTR), an inventory master
file.

»H
o

12 16 20 24 28 32 36 40 44 48 52 56 60

64

68

72

L0 a

1\LIE| WAMEI-/ MVMSITIK, PACIKI-IVIOLIZ], UM ITI- 1R

!
e

62

In order for the program to perform certain func-
tions, such as updating and output, the first exter-
nal indicator (U1) must be turned on. In the
SWITCH statement the eight characters correspond
to the eight external indicators. In this program only
one external indicator (U1) is used.

Processing Large Indexed Disk Files

When additions are made to a large indexed file, the
amount of time needed to sort the keys of the index
at end-of-job time may be excessive. This sort time

can be reduced by using a work file.

The work file is used to merge the added keys into
the index, and must be large enough to contain all
of the keys added to the file. If the program adds
records to more than one indexed file, the work
file must be large enough to contain all the keys for
the file with the greatest number of additions. The
work file should be located as close as possible to
the index being sorted.

If the indexed file is on a 5444 disk, the work file
must be named $INDEX44 and be located on a 5444
disk. If the indexed file is on a 5445 disk, the work
file must be named $SINDEX45 and be located on a
5445 disk. To determine the number of tracks re-
quired for the work file, use the following formulas:

256
number of adds + (key length+3) + 24 = tracks for
5444 disk
256
number of adds + (key length+4) + 20 = tracks for
5445 disk

After dividing 256 by keylength+x, the remainder
should be dropped. After the other divisions, round
the quotient to the next highest whole number.

If the work file is not large enough to contain all the
index keys, the keys are sorted in the normal manner
without using the work file. If possible, the work
file should be located on a different disk drive from
the indexed file whose keys are being sorted. If this
is not possible, the work file should be as close as
possible to the beginning of the file whose keys are
being sorted. This minimizes the disk seek time.

The work file can be used with multivolume files.
However, it cannot be located on a pack that contains
one of the offline volumes of a multivolume file. The
pack containing the work file must remain online

while the job is run. The work file must be RETAIN-S.

If RETAIN-T or RETAIN-P is specified, the system
forces it to RETAIN-S.

For small indexed files of 10 tracks or less where the
sort time is negliglible, a work file will not improve
performance and should not be used.

To use this performance option, no change is needed
to your source program. Also, programs need not be
recompiled to use this option; only the additional
OCL FILE statement is needed.

MULTIVOLUME FILES

File Statements for Multivolume Files

If a file is too large for one disk, you can con-
tinue it on one or more subsequent disks. Such
files are called multivolume files. (A volume is
one disk.) Multivolume files can be online or
offline. A file is online if all volumes are
mounted when the job begins. The UNIT and
PACK parameters are equal. An offline file has
fewer UNIT parameters (shares same unit).

Creation

The ways that you can create a multivolume
file depend on the type of file you are creating.
For a sequential and indexed file, the records
are stored in consecutive locations on disk, in
the order that they are read. One disk is filled
ata time.

For sequential files, each volume must be

filled before the next volume is loaded. For
indexed files, each volume need not be filled.
Each indexed volume is loaded until a key field
is reached that is higher than the HIKEY for that
volume, then the next volume is loaded. Indexed
files must be loaded in key field sequence. A halt
occurs if a volume is filled and there is not a
record with a key field equal to the HIKEY for
that volume. For example, suppose the HIKEY
for a volume is 199. You load a record with the
key field 195. It is less than the HIKEY, so it is
loaded on the volume. Next, you load a record
with the key field 200. Record 200 would be
loaded on the next volume, and a halt would
occur. The reason for the halt is that you did
not load a key field record equal to 199 before
you jumped to a new volume. This halt can be
ignored. You can load the next volume and at
some future time insert a key field record equal
to the HIKEY. To insert a record after the load-
ing sequence has passed, a random add must be
done.

Using OCL 63

Indexed and sequential files may be either
online or offline.

If using removable disks when creating sequential
or indexed files you can mount a disk, wait until
the system indicates it is filled, then, mount the
next disk. |f you have two drives, you can mount
the two disks, wait until the first one is filled, then
replace it with the third while your program fills
the second disk. In either case, you cannot use
more than 40 disks per job.

Space can be allocated on all volumes of a multi-
volume file if the volumes are online at the time
of the allocation. Space can also be allocated for
an offline file, other than the initial volume, but
the packs must be empty packs or space (TRACKS
and LOCATION) known to be available. You can
use both fixed and removable disks with any on-
line multivolume file. Space for a volume of a
multivolume file will be reserved after one or

more records are placed in that volume.

Direct files must be online. Direct files are created

in a non-consecutive manner. When creating such
files, you are required to mount all the disks on

your disk unit at the same time. The maximum
number of 5444 disks you could use, therefore, is two
if you have only one drive, or three or four if

you have two drives. The maximum number of 5445
disks is one if you have one drive, or two if you have
two drives.

Processing

The ways in which you can process multivolume
files depend on the method your program uses

to get records from the file. |f records are read
from a sequential or indexed file, you can mount
a disk, wait until all of the records have been read
from the disk, then mount the next disk. If you
have two drives, you can mount two disks, wait
until all of the records have been read from the
first disk, then replace that disk with the third
while your program reads from the second disk.
When you are processing files offline the disks must
be removable. When online, any combination of
fixed and removable disks is acceptable, but all
must be mounted and must remain mounted.

4 8 12 16 2 s 36,
: 22

OCL Considerations

When a file consists of more than one volume, the
FILE statement parameters require different coding.

Multivolume Disk Files

The FILE statement for multivolume disk files re-
quires that you define and code-additional parameters
for these keywords: PACK, UNIT, TRACKS,
RECORDS, and LOCATION.

These additional parameters are necessary for two
reasons:

1. When processing disk files contained on more than
a single volume, the system requires information
about each volume in order to perform all the
protection and checking functions necessary.

2. Additional information is needed to determine
and check the sequence in which the volumes
are processed and when they are to be mounted
on the disk drives.

The rules for coding a list of data or codes after a
keyword are as follows:

1. The list must be enclosed by apostrophes.

2. The items in the list must be separated by com-
mas. No blanks are allowed within or between
items.

Figure 20 shows an example of lists in parameters.
The file is online.

The PACK parameter requires a list. The UNIT par-
ameter may require a list while LOCATION,
TRACKS, HIKEY, and RECORDS require a list

if they are stated. The considerations for using the
lists in these parameters are included in the para-
meter discussions following. The functions of the
parameters are explained under Disk FILE Statement.
(Parameters not mentioned here are used as explained
under Disk F/LE Statement.)

| RN 1

Figure 20. FILE Statement for a Disk Multivolume File

rrrrTt

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES

PACK

UNIT

The names of the disks that contain or will contain the multivolume file must
follow the keyword PACK. (PACK names must be unique for proper function-
ing.)

When a multivolume file is created, the system writes a sequence number on the
disks to indicate the order of the disks. The disks are numbered in the order in
which you list their names in the PACK parameter.

When a multivolume file is processed the system provides two checks to ensure
that the disks are used in the proper order.

1. it checks to ensure that the disks are used in the order that their names
are listed in the PACK parameter.

2. It checks the sequence numbers of the disks used to ensure they are con-
secutive and in ascending order (01, 02, and so on).

The system stops when it detects a disk that is out of sequence. The operator
can do one of three things:

1. Mount the proper disk and restart the system.

2. Restart the system and process the disk that is mounted if the sequence
is ascending (for consecutive input and update).

3. End the program.

Consecutive input or update sequence numbers are ignored if the file was not
created as multivolume. If the file is multivolume created and the sequence
is ascending but not consecutive, a diagnostic halt is given which allows the
proceed option.

The following is an example of the PACK parameter for an offline multivolume
file that is contained on three disks, named VOL1, VOL2, and VOLS3.

1 a 8 12 16 20 24 28 32 36 40,

I

The keyword UNIT must be followed by a code or codes indicating the location
on the disk unit that contains or will contain the file. No UNIT parameter may
be repeated. The codes are as follows:

Codes Meaning

R1 Removable disk on 5444 drive one
F1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two
F2 Fixed disk on 5444 drive two

D1 Removable disk on 5445 drive one
D2 Removable disk on 5445 drive two

Using OCL 65

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES (continued)

®

TRACKS or RECORDS

The order of codes in the UNIT parameter must correspond to the order of
names in the PACK parameter.

A multivolume file must not have one volume on a 5444 disk drive and another volume
on a 5445 disk drive. All volumes of a file must be on the same type of disk drive.

When you are creating or processing a sequential or indexed file, you can use

the same drive for more than one of the disks, however, the disks must then all

be removable disks. 1f you do, you must not repeat the code for the drive in the
UNIT parameter. When the number of codes in the UNIT parameter is less than
the number of names in the PACK parameter, the system uses the codes alternately.

For the 5445 the UNIT parameter can have a maximum of two unit codes.
When two unit codes are given, the volumes must be mounted alternately in
the order indicated by the unit codes. If all the volumes are to be mounted
on the same drive, you specify only one unit code.

If any fixed unit, F1 or F2, is specified, the file must be online multivolume.

Assume that your program processes an offline file consecutively. Further
assume the following:

- The disks containing the file are named VOL1, VOL2, and VOL3, respectively.

— You intend to mount VOL1 and VOL3 on 5444 drive one, and VOL2
on 5444 drive two.

In the following examples, line A shows the PACK and UNIT parameters for the
file. If all three disks were used on 5444 drive one, the UNIT parameter in line B
would have been used.

4 8 16

12
Fli |Lle] IMaMd-MVIEl

A keyword, TRACKS or RECORDS, must be followed by numbers that indicate
the amount of space needed on each of the disks that will contain the multivol-
ume file. TRACKS or RECORDS must be specified. Any multivolume file

load requires a TRACKS or RECORDS parameter whether the file previously
existed or not. The order of these numbers must correspond to the order of the
names in the PACK parameter. For example, assume the following:

— Your program is creating a sequential (offline) file on three disks:
VOL1, VOL2, and VOL3.

- The first 50 records are to be placed on VOL1, the next 500 on VOL2,
and the last 200 on VOL3.

The PACK and RECORDS parameters for the file are:

P

66

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES (continued)

LOCATION The keyword LOCATION must be followed by the numbers of the tracks on
which the file is to begin on each of the disks you use for the file. The order
of the numbers must correspond to the order of the names in the PACK para-
meter. For example, assume the following:

- The disks containing the file are: VOL1, VOL2, and VOL3.

— The tracks on which the file is to begin on each disk are: track 198 in
VOL1, track10 in VOL2, and track 8 in VOL3.

The PACK and LOCATION parameters for the file are shown in the following
example. If you omit the LOCATION parameter, the system chooses the be-
ginning track on each of the disks. If LOCATION is specified for one disk, it
must be specified for all disks. If the multivolume file exists, LOCATION must
be given for all disks and must be identical to the LOCATION parameters spec-
ified when the file was created.

36 40 44 48 52 56 60 64 68 72

SININSINE-
SNISINDS

RETAIN RETAIN-S must not be specified unless the file is online multivolume. If
RETAIN-S is used for online multivolume, it cannot be changed to RETAIN-T
unless also done online.

HIKEY The HIKEY parameter is used only for multivolume indexed files. HIKEY
limits the highest keyfield that can be put on each pack of a multivolume file.
The following example contains an example of a HIKEY parameter list using
the file used in example A under Unit. In this case the three volumes contain
lists of names. The highest keyfield allowed on the first volume is JONES. This
means that all the records beginning with A and including JONES will be pro-
cessed on this volume. Since HIKEY parameters must be in ascending order,
the next volume should contain all of the records with names following JONES
and including NICHOL. The last volume will contain all the records with names
that come after NICHOL.

Using OCL 67

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME DISK FILES (continued)

OCL considerations for the HIKEY parameter are:

1. All characters except commas are valid.

2. Thelist of HIKEY parameters must begin and end with an apostrophe
even if only one parameter is specified. A single apostrophe in a key field

must be written as a double apostrophe in the HIKEY parameter.

3. For each PACK parameter specified, there must be a corresponding
HIKEY keyfield parameter for that pack.

4, The HIKEY fields must be equal in length and must be specified in
ascending order.

5. The maximum length of a HIKEY field is 29 characters.

6. The HIKEY fields must be the same length as the keys on file.

7. Continuation of HIKEY sublists must begin in column 4 of the continuation
card, following the // blank.

8. Comments must not follow the last comma on a file statement where the last

parameter is an incomplete HIKEY sublist.

Packed HIKEY: The packed HIKEY parameter has all the OCL considerations
for HIKEY including the following restrictions:

1. The first character following the HIKEY keyword and dash (HIKEY-) must
be a P to indicate packed HIKEY.

2. All characters in the packed HIKEY must be zoned numerics (0-9).
3. The number of digits in each packed key must be the same.

4, The number of zoned numeric characters per packed HIKEY must not ex-
ceed 15, since the maximum packed key field length is 8.

The following example shows a packed HIKEY parameter. In the example the
key field length of MVFILE is 2. The HIKEYs are X'085F’, X'092F’, and
X'108F’ for VOL1, VOL2, and VOL3 respectively. The first two packed keys
required a leading zero to make the lengths consistent.

NS -
SIS

Multivolume Tape Files

The FILE statement for processing multivolume tape
files requires that you define and code the UNIT and
REEL parameters differently than you would for
single volume files. There are two reasons for this:

1. When processing tape files contained on more than
a single volume, the system requires information
about each volume in order to perform all the
checking and protection functions necessary.

2. Additional information is needed to determine
and check the sequence in which the volumes are
processed and when they are to be mounted on the
tape drives.

When an end of volume condition is reached on a
multivolume file, that volume will rewind to load
point and unload. The message ‘EOV Tn’ will be
printed if LOG ison (wheren =1, 2, 3or 4). If the
drive that is to contain the next volume (whether
the same drive or another drive), is not in a ready
condition, the system will come to 1/0 attention.
Processing continues when the drive which is to con-
tain the next volume is made ready. If you are using
alternating drives, and the next volume is mounted
and the drive is ready when end of volume is
reached, the message is printed and processing con-
tinues without stopping.

For multivolume tape files, the UNIT and REEL
parameters of the FILE statement may require a list
of codes. When coding a list of codes, the following
rules must be followed:

1. The list must be enclosed by apostrophes.

2. The jtems in the list must be separated by commas.
3. Nine and seven track units cannot be intermixed.
The considerations for coding multivolume parameters
are included in the following parameter discussions.
The functions of the parameters are explained under

Tape File Statement. Parameters not mentioned
here are used as explained under Tape File Statement.

Using OCL 69

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME TAPE FILES

REEL The names of the tapes that contain or will contain the multivolume file must
follow the keyword REEL (40 names maximum). If the input tapes are not
labeled or contain non-standard tape labels, the REEL parameter must be
coded REEL-'NL,n" or REEL-'NS,n’, where n is the number of volumes in the
file (99 volumes maximum). For output files, the n in REEL-NL,n’ is ignored.

UNIT The keyword unit must be followed by a code or codes indicating the location of the
tape unit that contains or will contain the file. No UNIT parameter may be repeated.
The order of codes in the UNIT parameter must correspond to the order of names
in the REEL parameter. When the number of codes in the UNIT parameter is less
than the number of codes in the REEL parameter, the units are used alternately.

In the following examples, line A shows a tape multivolume file consisting of three
reels. The volumes must be mounted as follows:

INVREEL1 on tape unit T1
INVREELZ2 on tape unit T2

INVREEL3 on tape unit T3

C3

@ =&
~
~
”
'\
m
=
T
=
=
Y
A
20
m
m
[l
[
q
=
(%)
~N|
<
=
-*
T
~
=
b.5)

~+

Line B shows a three-volume file with non-standard tape labels. The volumes must
be mounted as follows:

First volume on tape unit T1
Second volume on tape unit T2
Third volume on tape unit T1

Line C shows a three-volume file with unlabeled reels. The volumes must be mounted
in sequence on tape unit T1.

70

SPLIT CYLINDER FILES

To use split cylinder file support, two parameters
(SPLIT and LOCATION) are specified on the FILE
statement. The SPLIT parameter specifies the size of
each split cylinder file. It can also be used to specify
the size of the group of split cylinder files you want '
on disk. The LOCATION parameter determines
where on the 5445 disk each split cylinder file can be
found. For further discussion of split cylinder file
concepts, see /BM System/3 Disk Concepts and
Planning Guide, GC21-7571.

Restrictions for Using Split Cylinder Files

1. Split cylinder files can only be direct or sequential
files and cannot be multivolume files

2. Split cylinder files can only be used with the 5445
disk and not the 5444 disk.

3. TRACKS or RECORDS parameters must not be
specified.

4. Labels must be unique. Therefore, the DATE
parameter is used only to further qualify the split
cylinder file. The file date is always the current
system date for the job.

5. When processing the file, the block length

cannot be longer than the space available on
one cylinder of a split cylinder file.

Must be unique name.

Creating the First Split Cylinder File in a Group

The SPLIT parameter is required when creating the
first split cylinder file in a group of split cylinder
files. The LOCATION parameter is optional.

The SPLIT parameter entries are:
SPLIT-tracks per cylinder/number of cylinders

The tracks per cyiinder entry specifies the amount of
space needed on each cylinder for the first split
cylinder file. The cylinders entry shows the number
of cylinders needed for the whole group of split
cylinder files to be specified.

The LOCATION parameter is optional since the
system.will find a starting location for the split file
group. However, if you want to specify a particular
cylinder, you may.

The LOCATION entries are:

LOCATION-cylinder number/track number
The split cylinder file group must always start at
track 0. Since O will always be the entry for track,
you can omit it from the LOCATION parameter and

use:

LOCATION-cylinder number

File Statement Example: First Split Cylinder File in a

File is temporary file.

Group

4 tracks per cylinder are needed
to contain this file; 3 cylinders
are needed to contain the series
of files.

Y/

| et rrrrrt

T II\)IIHHHIH
This file will reside on

volume 1, drive 1.

First file is to begin on
cylinder 5, track O.
LOCATION is optional
(see Coding Notes).

Using OCL 7

Coding Notes:

1. On the SPLIT parameter, tracks per cylinder,
must be 1-19 and the number of cylinders speci-
fied must be 1-199,

2. On the LOCATION parameter, the cylinder num-
ber must be 1-199 and the track number, if
specified, must be 0.

3. LOCATION-5 could be the location entry in this
example since track 0, the required track entry,
need not be specified. The LOCATION parameter
itself is optional.

Creating Other Split Cylinder Files

To create the rest of the split cylinder files in a group
both the SPLIT and LOCATION parameters are
required. The SPLIT parameter must be in the
format:

SPLIT-tracks per cylinder

This entry, tracks per cylinder, indicates the number
of tracks needed on each cylinder for the file
specified.

The LOCATION parameter must be the filename of
either the first split cylinder file in the group or any
other split cylinder file in the group that was created
in a previous job.

LOCATION-filename

File Statement Example: Other Split Cylinder Files

Must be unique name.

Coding Notes:

1. On the SPLIT parameter, tracks per cylinder must
be 1-19.

2. On the LOCATION parameter, the filename must
be the name of a temporary or permanent split
cylinder file in the same group.

Accessing Existing Split Cylinder Files

To access existing split cylinder files, the SPLIT and
LOCATION parameters are not required. Their use
would only be needed to further qualify the file
being accessed.

Loading to Existing Split Cylinder Files

To load to existing split cylinder files, the SPLIT
parameter is required and the LOCATION may be
required or optional. The SPLIT parameter specified
for loading must agree with the SPLIT parameter of
the existing split cylinder file. If the format of the
SPLIT parameter is tracks per cylinder/cylinders, the
LOCATION parameter is required and must match
the cylinder number/track number of the existing
split cylinder file. If the format of the SPLIT para-
meter is tracks per cylinder, the LOCATION para-
meter is optional.

Scratch Split Cylinder Files

Split cylinder files may be created as temporary or
permanent files and in subsequent jobs made scratch
files. However, the scratch files remain on the 5445
disk only until the area is needed for the allocation
of a new file. Then, the scratch split cylinder file is
deleted. If you have scratched split cylinder files
and you want to make sure they are not deleted, you
may reactivate them to temporary files by using a
RETAIN-A on the FILE statement.

4 tracks per cylinder are needed for this
file. 4 tracks per cylinder on 3 cylinders
(specified on first split cylinder file) means
that File B has 12 tracks allocated to it.

72

rrrTryrTrrrrrrrrTd

This file will reside
on volume 1, drive 1.

File is a temporary file.

Filename of a split
cylinder file already
specified.

AUTOMATIC DISK FILE ALLOCATION

You can allocate disk space for a file by determining
the size of the file and the location of an available
number of tracks that can contain that file. (If you
have planned the location of your files, you know
where files are located and the tracks that are
available for further allocation. The Disk File
Layout Chart, GX21-9108, is available to docu-
ment your file locations.) After you have deter-
mined where to place your file, you can code the
LOCATION parameter of the FILE statement to
tell disk system management on which track the
file is to begin. Figure 21, part A, is a sample

FILE statement containing a LOCATION para-
meter to tell disk system management that

FILEA is to be located on disk VOL1 beginning

on track 10.

If, as in Figure 21, part B, no LOCATION para-
meter is coded, FILEA is located on the disk pack
automatically for you. The process used by disk
system management to allocate file space for you
is known as automatic file allocation.

COMPILING A SOURCE PROGRAM AND
STORING IT IN AN OBJECT LIBRARY

®

The COMPILE OCL statement tells disk system
management to:

1. Compile a source program from a source
library and store the object program in an ob-
ject library, or

2. Compile a source program from cards and store
the object in an object library.

// COMPILE SOURCE—name,UNIT—

The format of the COMPILE statement looks like
this:

R1 S R1
F1

ho (+ OBJECT— ;‘2 }
F2 F2
The SOURCE keyword parameter is used if the
source program is located in a source library. You
must supply the same name given to the source
program when it was stored in the library by the
Library Maintenance program. The UNIT para-
meter must be used with the SOURCE parameter
to identify the disk location of the source program
to be compiled.

If the SOURCE keyword parameter is not used,
the source program is assumed to be on cards
following the RUN statement in the job stream.

The OBJECT keyword parameter tells the system
where the disk which will contain the object
program is located. If the source program is on
cards, the OBJECT keyword parameter is the only
parameter which can be specified. If the OBJECT
keyword parameter is omitted in either case, the
object program is placed on the same disk pack as
the compiler.

For example, for RPG Il programs, the name assigned
to the object program in the object library is the name
you assigned in the Program ldentification (columns
75-80) in the RPG Il Control Card. If you did not

assign a name in these columns, RPGOBJ is assumed.

1 4 8 I]12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
! I
/1 17 iciel WaME -l cleldl, Placik-Iviold 41, uis [r-1R 2] [TIR Alcikis|~ 12 Ilolclar s lolal - 141
/| Flricle WAMEL-Fl ILEAL AsleK-Ivioll 4], wini [n-IR 4L, TIRAICKIS -
I

Figure 21. File Statement and Use of the LOCATION Parameter

Using OCL 73

Sample Statements

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Weld KPaE, 1AL
A

NSNS

NSNS HN

r
%OW/ £ ISlouvrCle-ISALIES), W1 |T]-iF2|, I0BJEICITI- -2
UN

1

This sample job stream tells the system that the
source program named SALES is located.on a
fixed disk on drive one (F1). The OBJECT-R1
keyword parameter tells the system to place the
object program on a removable disk on drive one
(R1).

mimid |
~
X[~ [
DM
m [(m[Q [®
[+

1
W s (S m

T~ |~ [|~ <
IR EIES RN

DMip[Or~

slojurlc|el |ple|cik])

This sample job stream compiles a source program LOADING PROGRAMS IN A DPF ENVIRON-
on cards and stores it in an object library on R1. MENT

If the OBJECT parameter was not coded, the pro-

gram would be compiled and placed into the A program can be loaded into either program level

same object library as the compiler (F1). first. You tell the supervisor which system input
device contains the job streams for the programs
by selecting the device on the Dual Program Control
Switch. (Refer to the /BM System/3 Disk System
Operator’s Guide, GC21-7508 for further operating
procedures.) When preparing your job streams,
you should be aware of the following OCL consider-
ations:

OCL CONSIDERATIONS FOR LOADING PROGRAMS IN A DPF ENVIRONMENT

74

DATE statement The DATE statement you use as an IPL statement to set the system date must be
supplied with the first program loaded in one program level. The DATE statement
must precede the set of statements for the first program. In the device associated
with the other program level, a DATE statement must not precede the sets of
statements for the programs being run in that level.

A DATE statement that temporarily changes the system date can be used within
the set of OCL statements for programs in either program level. This DATE
statement applies only to the program for which it is used.

LOG statement LOG statements can be placed anywhere among the statements in either job
stream. There are, however, certain restrictions on their use.

- Only LOG statements for program level 1 can tell the system to use a dif-
ferent logging device. Only ON or OFF can be specified in program level 2.
The device used for level 1 is also used for level 2.

OCL CONSIDERATIONS FOR LOADING PROGRAMS IN A DPF ENVIRONMENT (continued)

NOHALT statement

HALT statement

IMAGE statement

FORMS statement

LOAD statement

LOCKOUT statement

PARTITION statement

- LOG must be on for both program levels before logging can occur. If a
LOG statement for either program level stops the logging function, logging
is stopped for both levels. The program level that turned the logging device
off must turn it back on before logging can resume. If both levels specify
OFF, then both program levels must turn the logging device back on before
logging can resume,

- When the printer is the logging device, OCL statements and message codes
are not printed if the program in either level uses the printer as an output

device.

The following example shows sample LOG statements in a job stream:

~

™
™~

S
S

bVl

SISITISIoTY

Note: The first LOG statement indicates that the printer is used as the logging
device while program PROG1 is being run. OCL statements and error messages
are not printed for program PROG2 because of the second LOG statement. The
third LOG statement causes the logging device to be used again.

The NOHALT statement is ignored for program level 2. The program in this
level always stops after each job.

The HALT statement is ignored by program level 2.

The IMAGE statement is invalid and the job cannot be run, if the other level has
the printer allocated to it.

The FORMS statement is invalid and the job cannot be run, if the other level has
the printer allocated to it.

The LOAD”™ statement cannot be used in program level 2.

The LOCKOUT statement is used only on a DPF system. It is used to suspend the
other program level to allow faster job initiation in the program level in which it is
entered.

The PARTITION statement is used only on a DPF system. It is used to guarantee
a minimum size to level 2 for a subsequent program in that level.

Using OCL

75

OCL CONSIDERATIONS FOR LOADING PROGRAMS IN A DPF ENVIRONMENT (continued)

Supervisor

Supervisor

Program Level 1

Program Level 1

76

the program in level 2 comes to

Unused Area Unused Area

T T T Storage needed for]
* Program Level 2 Progra!'n Level 2 +
! {a minimum of 5K bytes ta rminimum of 5K bytes |
| for systems with 16K bytes or of storage is reserved) :
{ more of main storage. 1
Without a PARTITION Statement ’ With a PARTITION Statement
If level 1 is not using the storage and a if a PARTITION statement is used, the
program is loaded into level 2, it is assigned assigned storage can only be used by the
the number of bytes requested by program program in level 2, It is reserved. Even
attributes or a minimum of 5K bytes for systems when the program in fevel 2 comes to
with 16K bytes or more of main storage. When end of job that storage is reserved for

end of job, the future programs in level 2.

storage for level 2 is no longer reserved and

level 1 can use it.

If you do not use a PARTITION statement and, therefore, do not indicate the
minimum size of program level 2, the system automatically assigns, during
execution, the storage needed to level 2 or a minimum of 5K bytes for systems
with 16K bytes or more of main storage. You cannot submit a PARTITION
statement in program level 2 or when program level 2 is processing. Ina
procedure the PARTITION statement must follow the LOAD statement and
precede the RUN statement.

The format of the PARTITION statement is:
// PARTITION size

You must state the minimum number of bytes of storage you want to save for
program level 2. The number must be equal to or greater than 5120. The
amount of storage you specify is rounded to the next highest 256 byte increment
by the supervisor, if it is not a multiple of 256.

DPF Considerations for 12K Systems

All programs require 5K bytes of storage for initia-
tion and termination even though a program may
occupy less than 5K. System programs use this
storage for performing system functions just prior
to loading the user’s object program (initiation) and
again immediately following the end of object pro-
gram execution (termination).

This 5K requirement also affects DPF. For inde-
pendent initiation and termination of a program on a
DPF system, at least 5K bytes of storage must be avail-
able for each program level, regardless of the size of
the program to be executed. If a program needs less
than 5K while another program requires the remain-
ing storage which is 5K or larger, the smaller pro-
gram must be initiated first so that the storage re-
quired by the system for initiation will be available.
The system can then use all the storage not re-

quired by the smaller program for the larger program.
However, the smaller program must wait for termin-
ation of the larger program, so that 5K is available
for the smaller program’s termination.

In a 12K DPF system only limited independent
initiation and termination is allowed. With a 4K
minimum size requirement for the supervisor only
8K is available for user programs. Independent pro-
gram initiation and termination for each program

is possible if each program being run occupies 3K
or less of storage. The remaining 2K of storage is
used alternately by either program to satisfy the

5K system requirement. If one program needs more
than 3K, the smaller program must be initiated first
and can have a maximum executing size of 3K. The
larger program is then initiated and can occupy the
remaining storage. The larger program level must
be terminated before the smaller program level.

Sample Job Streams

Suppose you had four jobs to be run requiring the
1/0 shown in Figure 22, Jobs 1 and 2 and Jobs

3 and 4 can be run together, because they do not
require the same 1/0 devices. If Job 2 finishes
before Job 1, you could run Job 4 because Jobs 1
and 4 do not require the same devices. If, on the
other hand, Job 1 finishes first, Job 3 could not
be run with Job 2, because both jobs require the
printer for output.

Figure 23 shows the job streams required to load
the four jobs. Assume the system has the mini-
mum system configuration plus the 5471 Printer-
Keyboard and dual drives. The Dual Program
Switch indicates from which device OCL statements
are read. MFCU refers to hopper 1. At system
generation time P-KB was assigned to the 5471
Printer-keyboard.

JoB1 Jos3

An inquiry A stock status report

program that: that:
Program o Reads printer- o Reads disk.
Level 1 keyboard.

e Prints,
o Reads disk.
e Writes printer-
keyboard.

JOB2 JoB4

An inventory A detail punching

updating program job that:

that:
Program o Reads cards. e Reads cards.
Level 2

o Reads disk. e Punches cards.

o Updates disk.

® Prints,

Figure 22. Job Scheduling for DPF

Using OCL

77

92

32

]
[2Y
WS
[— <
K
Lu) Q
[) E
— C S
IM ~ & =
1 ~
£ g Re=e 3
- = rtw.ll
] M W > o T
1] -~ Yy
| 62| = [5) ~ I
m = Iﬂ Nil.r 3
L] | =] Y
Z) ¥ ﬂlmm 7] .mlu 1= <
o | i FIIE)]) W
IS 7] 3 FSENL L 3 ad o T
1] J < = E 3|
SR 5 L 3 SEE
ol
[.M waga = | = I
] (73 W] \ X MW
Q9 > Q = =y =S
["AKY) W Qe ~ u walol Y w ()
() L LA W) T.” W)
4
P k400 1 "o K] 3 =
S S o] W [< “ Q)
[~] I [M T¥aly
>) = S| S 0T +of 3
er.c TS [2) T) = 3
= Gl = = o~ Y L] S TFM = 3]
5] [WERILT Q w W)
S S.W = ES o = S
[3] EEEEI) =
RIS e g I AL z MM% R
= [) = CYEE S Q =)]
.ucﬂ_ [V, Y] p= Lm [¥) ' LT..L ~
%) Q
m.k. |l Ml-@ Y ’O o
= RSN ”.m MdT 1M m | b= L=
[y SN O TS, < [T <o Tu
oS [l 3 A MPO L[~ | | MY »
<) L) By & jar T <] v LYENC I ala %
[01O 3K L i 9 W ~ wo v L
lplm‘ W alxu T<w GAN - .w_ = a T
P S S PSESEES T N A S SlsTGron
] Q) o~
[= LSESE RS =SS oYX L) o] m‘mw_ -
~ ”vl e E wy =
2 e SRS ee] < sa TsN
KA
A [~ IESES) ={acw! < qrﬂ. W Q 1 1 —
(] QW Q] S ~S Tl X Y Y < ~ Q] 1
SP_ ///Tb Droes N N “ 2 SINNN - /4_
FAES SRNERRNINE E3 SN £ IS E 3| ENASEIAS

Figure 23. Sample Job Stream

78

RESTARTING A CHECKPOINTED PROGRAM

Checkpoint is a means of recording the status of a
problem program at desired intervals. Restart is a
means of resuming the execution of the program
from the last checkpoint rather than from the begin-
ning, if processing is terminated for any reason (with
the exception of a controlled cancel) before the
normal end of job. For example, a power failure may
occur and cause an interruption.

Programming Considerations

e Checkpoint/Restart enables the user to restart a
checkpointed program from the last checkpoint
taken provided no intervening program executions
have taken place.

e Sufficient disk space is allocated by Library
Maintenance on a checkpoint system pack (5444)
at System Generation or Library Maintenance
time to allow one active checkpoint. On a system
with Checkpoint and Inquiry, the disk space will
be used by both functions. The checkpoint pro-
gram cannot be an inquiry evoking program since
the disk space is used by both facilities.

e Checkpoint requests are accepted only in program
level 1. Checkpointed programs must be restarted
in program level 1. If program level 2 is used to
execute a checkpointed program, the checkpoint
requests are ignored.

Restart Procedure

To restart the interrupted job at the last checkpoint,
submit the following OCL statements:

// LOAD $$RSTR, unit
// RUN

The unit in this example is a pack with module
$$RSTR. If an IPL occurs it must be from the pack
with the active checkpoint.

If an intervening program is run, an IPL must occur
and be from a pack other than the pack that contains
the active checkpoint. Programs executed under con-
trol of the new IPL system must not access disk vol-
umes used in the active checkpointed program or
modify the object library where the checkpointed
program resides.

Other OCL statements that may be required are the
PARTITION and LOG statements.

OCL CONSIDERATIONS FOR USING CHECKPOINT/RESTART

PARTITION statement

LOG statement

A PARTITION statement may be required at restart to guarantee

the required minimum level 2 size. See Loading Programs in a
DPF Environment for further information on the PARTITION

statement.

— A halt will occur if restart is attempted without sufficient
space in program level 1. An immediate cancel is taken.

— Checkpoints can only be taken in program level 1. To
restart a checkpointed program, program level 1 must be
used. If level 2 is used to execute a checkpointed program,
the checkpoint requests are ignored.

— Restart requires 5K of storage, therefore level 2 must be
such that level 1 has 5K.

A LOG statement may be required at restart to reestablish the

logging device. See LOG Statement under Statement Descrip-
tions and Loading Programs in a DPF Environment for further
information on the LOG statement.

Using OCL 79

STATEMENT EXAMPLES

This section shows an example that illustrates
some of the uses of the OCL statements. The
example consists of a series of jobs. The jobs in-

volve three files: customer, inventory, and transac-

tion. The customer file contains such information
as customer names and addresses, total amounts
of charges over a period, and total amounts of
payments over the same period. The inventory
file contains such information as item numbers
and descriptions, prices of the items, and the
numbers of items in stock. The transaction file
contains such information as orders for items, re-
fund orders for items returned, and customer
payments. The transaction file is used to update
the inventory and customer files.

Example

The OCL statements for the jobs are shown in
Figure 24. Sets of statements in the figure are
numbered. The explanations corresponding to
those numbers are given in the following section.

Explanation

® ®

1. The DATE statement supplies the system date,

10/20/71. It must be read by the system before

the first LOAD or CALL statement after initial
program load.

2. Two programs are being compiled: one that

transfers the customer file from cards to disk;
and one that transfers the inventory file from
cards to disk. The OCL statements for the

RPG Il Compiler are in a procedure called RPG.
A CALL statement, therefore, is used to instruct
the system to read the procedure each time the
compiler is to be run. The procedure is located
on the fixed disk on drive one.

The RPG |1 source programs following each set
of CALL and RUN statements are input to the
compiler. Like all input, each source program
must be followed by a /* card. However, to

be safe, /& statements were used before each
LOAD and CALL statement in case the /* cards
had not been placed after the source programs.

. In the next two jobs, the object programs just

compiled will be run. The comment and PAUSE
statements are to remind the operator to place
the object- program cards after the correspond-
ing sets of OCL statements.

. The system stops, temporarily, after each of the

preceding compilations, giving the operator
time to ensure that the compilations were
successful. However, there is no need for the
system to stop after the next few jobs. A
NOHALT statement, therefore, is given at
this point.

{ 7 19/%8/
/i€
[/ CAILe [RPGIFL
/I/] Rid 1]
| Slovic! 06 ([TIRANISIFIERS| Cluis] € ol D/ IskD
7€
/| ICHILIL)
/1 i
duRClE f’lkdIEﬂA (TIRANSIFERS] 1 WViE LE [Tl Diilsk)
%_ lesgﬁf ColMPIILED Plao RIAMS] /W7ol W STIATEMEN K| AF(TER |77 Ruw
/7 PAVSE]
1]
{ {777 MoHALIT

Figure 24 (Part 1 of 4). OCL Statement Example

80

5. The two object programs previously compiled
are being run to transfer the customer and in-
ventory files, respectively, to disk.

In each case, a disk file is being created. Both
files are permanent. The name that will iden-
tify the customer file on disk is CUST; the
inventory-file name is INV. The date for both
files will be 10/20/71.

The cards containing the records to be trans-
ferred to disk are being read from the same
device as the OCL statements. In each case, the
cards must immediately follow the program
that reads them. If the programs had been
loaded from disk, the cards would have fol-
lowed the RUN statement in each case.

[| |
/\/ LoAD b i ||
/17 FlIILE INAMEL-IClusiT» -vomz,WwPT-Fi,rfcanDS~l ﬁyRETAI =[P
/7 |
JieiclT IPRIoGIRANM_[(TIRANSIFER'S| ICluislriomelc [Flsiciel To| Dli|sk)
/
| DATA 10AlRDls| [(ClulsiToMeR [F11Lid)
'*1
® | |z
71/ 1oAD % RN
/171 Fl7/1CE WAME- 1INV, PlAlck- IV olL 2], UINTT- R, REECORIDS- 2[5, RETAI IN-P
¥ | MoluiNr [ViolL|2 oW lé/ VIE| £
/17 PlAvSlg i
7/l RuN,
018JElCl7| PIRIOGIKAM ((TIRANSIFERS| [TNVIENTORY Fl/ILE [T10] Di1iSK))
/1%
| DATA ICARRDIs| [([TINVENTORY| F/ L&)
/I*! ;
) | !
/€ g
/i7 CALL RP, A 5
71/ RUN
SOU@ICE PROGRAIW (TRANSIFERS! TRASACT oMl FiILE Tol D Si)
ERT COMPILIED PIROGRAM [/INTo WEXT] ocL| STATEMENT DECK IAFTER [/17| RUM
/17 PAUSE
| |
Figure 24 (Part 2 of 4). OCL Statement Example
/¢ 11
71/l LlaAlp
/1 ;lLé € - TIRANS, PACIK-|YlolL2], iK1 -RI,RgrA:N—T)R@FoRD 7151, 1 TILION -1 2160
717 Rl]
OIBTE i oﬁghn ([TIRANSIFERS| TRANSAICIT IOIN] [FiiLle [Tlel [Div|six)
/
ATA ICARDS! [(TIRAWSIACIT|ID LE)
/
il LIT]
/¢
|/ Ll0AD #DSOIRT,IFIL
/17 FlIILE INAME-{ NPT IL|ABEIL-TRANS] PlACK-IVOIL 2, 0N [T-Rd], - 7158, O%IJ_MF;@H
il FILE qﬁgjgg_&w Ké{?r'-'z’ 17H-R f LR | .
7/ FlilC El~oUTiPUT) [LABEL-TRANS|PACKI-VIOlL[2, N [T RIT. RELC -7 ATl -2
SR ARD :
SloRiT| [SIPIEIC]FlilciATI [ofN_ICIARDIS
i |
|

Figure 24 (Part 3 of 4). OCL Statement Example

Using OCL 81

6. A program that transfers a transaction file,
TRANS, from cards to disk is being compiled.
Because the resulting object-program cards are
to be placed with the next set of OCL state-
ments, comment and PAUSE statements are '
used to remind the operator.

7. The transaction file is first transferred from

cards to disk, and then sorted on disk by the
Disk Sort program. A HALT statement pre-
cedes the sort job so that the system will stop
after the sort job. This gives the operator a
chance to check any diagnostic messages to en-
sure that the sort was successful. The HALT
statement remains in effect for the remaining
jobs.

The INPUT and OUTPUT files are the same.
The transaction file is read, sorted, and then
written back on the same area of disk.

The sort specification cards following the
RUN statement are input to the Disk Sort
program. Like all input, the last card must be
a/* card.

. The program that updates the inventory file

with information from the transaction file is
compiled. Comment and PAUSE statements
again remind the operator to include the ob-
ject-program cards with the next set of OCL
statements.

. The program just compiled is run to update

the inventory file. This program can also print
the transaction-file records. The printed out-
put file, however, is conditioned by external
indicator U1. Because the SWITCH state-

ment sets U1 on, the transaction records will

be printed. If the SWITCH statement had not
been used, the indicator would have remained
off and the records would not have been printed
(external indicators are all initialized off at

IPL time).

48 52 56 60 64 68 72 76 80 84

<
2
o]
N
g
X
=]
(S
Y
©
>
g
tn)
(2]
=
=l
=
E

et
SSE

o
.g._
[
‘_...
~
| |
=y

ST
S

SIS Q)

ST

——

SSSSS
SISISSIS
hal

Figure 24 (Part 4 of 4). OCL Statement Example

82

PART Il. SYSTEM UTILITY PROGRAMS
R

System Utility Programs 83

84

INTRODUCTION TO SYSTEM UTILITY PROGRAMS

The Disk System includes a group of disk resident utility programs. These pro-
grams do a variety of jobs, from preparing disks and tapes for use to maintaining
the system libraries. The utility programs are:

® Tape Initialization

® Tape Error Summary Program
® Disk Initialization
® Alternate Track Assignment

® Alternate Track Rebuild

® File and Volume Label Display

® File Delete

® Disk Copy/Dump

® Dump/Restore
e Library Maintenance

e 5445 Data Interchange Utility

The information for every program is divided into five sections:
® Control statement summary
® Parameter summary

® Parameter descriptions

OCL (operation control language) considerations

® Examples

TO WRITEUTILITY CONTROL STATEMENTS
To write utility control statements (see Control Statements), use the sections in the
following way:

1. Look at the Control Statement Summary to determine which control statements
and parameters apply to the program uses you are interested in. (The program
uses are stated in the text preceding the Control/ Statement Summary.)

2. If you need information about the contents or meanings of particular parameters,
look at the Parameter Summary.

3. If you need more detailed information about parameters, read the Parameter
Descriptions following the Parameter Summary.

4. If you need examples of specific jobs, look at the Example section. All examples
show the OCL statements and utility programs for specific jobs.

5. To find information concerning the use of the utility programs, refer to
OCL Considerations for the necessary OCL statements.

System Utility Programs 85

Control Statements ‘
All of the programs require utility control statements, which you must supply.
These statements give the program information concerning the output you want
the program to produce or the way in which you want the program to perform
its function. The programs read these statements from the system input device.
They must be the first input read by the programs.

Every control statement is made up of an identifier and parameters. The identifier
is a word that identifies the control statement. It is always the first word of the
statement. Parameters are information you are supplying to the program. Every
parameter consists of a keyword, which identifies the parameter, followed by the
information you are supplying.

Coding Rules
The rules for constructing control statements are as follows:

1. Statement identifier. // followed by a blank should precede the statement identi-
fier. Do not use blanks within the identifier.

2. Blanks. Use one or more blanks between the identifier and the first parameter.
Do not use them anywhere else in the statement.

3. Statement parameters. Parameters can be in any order. Use a comma to separate
one parameter from another. Use a hyphen (-) within each parameter to separate
the keyword from the information you supply. Do not use blanks within or be-
tween parameters.

4. Statement parameters containing a list of data after the keyword. Use apostrophes
(‘) to enclose the items in the list. Use a comma to separate one item from another.
For example: UNIT-'R1,R2’ (R1 and R2 are the items in the list).

b. Statement length. All control statements except Library Maintenance state-
ments must not exceed 96 characters. The following Library Maintenance
statements can be continued on another statement. (See Continuation under
Coding Rules in Part | of this manual.)

// ALLOCATE

// COPY (except for file-to-library)

// DELETE

// MODIFY (not REMOVE, REPLACE, or INSERT statements)
// RENAME

The following is an example of a control statement:
// COPY FROM-F1,LIBRARY -O,NAME-SYSTEM, TO-R1

The statement identifier is COPY. The parameter keywords are FROM, LIBRARY,
NAME, and TO. The information you supply is F1, O, SYSTEM, and R1.

End Control Statement
The END statement is a special control statement that indicates the end of control
statements. |t consists of // END starting in position 1 and must always be the last
control statement for the programs.

86

SPECIAL MEANING OF CAPITAL LETTERS, NUMBERS, AND SPECIAL
CHARACTERS
Capitalized words and letters, numbers, and special characters have special meanings
in OCL and utility control statement descriptions.

In utility control statements, capitalized words and letters must be written as they
appear in the statement description. Sometimes numbers appear with the capitalized
information. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use a value that applies to
the job you are doing. The values that can be used are listed in the parameter sum-
maries for the control statements.

Braces ({ }) sometimes appear in parameters shown in control statement sum-
maries and parameter summaries. They are not part of the parameters. They simply
indicate that you must choose one of several values to complete the parameter. For
example, RETAIN- 3P$ means you can use either RETAIN-T or RETAIN-P.

Introduction to System Utility Programs 87

88

TAPE INITIALIZATION PROGRAM—-$TINIT
.

The Tape Initialization Program prepares tapes for use. It writes IBM standard
volume labels on tape in order for tape data management to perform IBM standard
label processing. The program is available on either card or disk.

The Tape Initialization Program performs these functions at your request:

® CHECK labeled tapes for a volume label and an unexpired file before writing
a new volume label.

® CLEAR labeled or unlabeled tapes by bypassing CHECK and unconditionally
initializing the tape.

® DISPLAY the volume and header labels.
All tapes must be initialized before use. Tapes that have been initialized need not
be reinitialized unless you want to write a new volume label or use a tape that

contains a permanent file for output. This program can either initialize (CLEAR
or CHECK) or DISPLAY one tape per unit during the same program run.

Tape Initialization Program—$TINIT 89

CONTROL STATEMENT SUMMARY

Use

Check for an expired
file and a label, then

write a new label.

Write volume label

without checking
for old label.

Display volume
label.

Control Statement

T
T2
T3
T4

NL
XXXXXX

// VOL UNIT- ,REEL- ;

% TYPE-CHECK,ASCII- ;YEsg ,

NO

1600
800
6 |
200

DENSITY- ; AD-yy...yy

/{ END

NL

// VOL UNIT- ,REEL- ;
XXXXXX

§ ,TYPE-CLEAR,ASCII- ;YES; ,

NO

1600
800
556 % AD-yy...yy

200

DENSITY- ;

/I END

.
T; ‘ 800
/IVOLUNIT- < 5 0 TYPEDISPLAY,DENSITY { 556

// END

Notes: 1. If density is not specified, the default for seven track tape units is 800 bpi, the default for nine track tape units is

1600 bpi.

2. The DENSITY parameter on display volume label is valid only for seven track tape units.

bpi (if dual density feature is installed), and 1600 bpi.

3. Valid density for seven track tape units is 200, 5656, and 800 bpi. Valid density for nine track tape units is 800

PARAMETERS

TYPE-CHECK Check to see if the file has expired, then write a new label. Do not use this on blank tapes because
the program attempts to read a blank tape causing tape runaway.

TYPE-CLEAR Write a new volume label without checking for an expired file.

TYPE-DISPLAY

UNIT-code

REEL-NL

REEL-xxxxxx

ASCII-YES

ASCII-NO

Print the contents of the volume label and the header labels.

Specifies which tape drive contains the tape to be initialized. Possible codes are: T1, T2, T3,
and T4. A separate VOL statement is needed for each tape unit that contains a tape to be
initialized.

Specifies that an unlabeled tape is to be generated.

Specifies the volume serial number that the Tape Initialization program writes on tape. Must be
alphabetic A-Z, @, #, $, or numeric 0-9.

The tape is written in ASCII code. This is invalid for seven track tape.

The tape is written in EBCDIC code. If the ASCII parameter is omitted, NO is assumed.

90

PARAMETERS (continued)

DENSITY-200

DENSITY-556

DENSITY-800

DENSITY-1600

ID-XXXXXXXXXX

The tape is written at a density of 200 bits per inch. The file written on this tape unit must be
written at this density.

The tape is written at a density of 556 bits per inch. The file written on this tape unit must be
written at this density.

The tape is written at a density of 800 bits per inch. The file written on this tape must be
written at this density.

The tape is written at a density of 1600 bits per inch. The file written on this tape must be
written at this density.

Provides an additional identification field. This field is not processed by the system. A maximum
of ten characters can be used if ASCII-NO is specified. |f ASCII-YES is specified, 14 characters
can be used. This is an optional parameter.

OCL CONSIDERATIONS

The following OCL statements are needed to load
the Tape Initialization program.

// LOAD $TINIT,CODE

// RUN

The code you supply depends on the location of the
disk containing the Tape Initialization program. The

codes are as follows:

Code Meaning

R1 Removable disk on 5444 drive
one.

F1 Fixed disk on 5444 drive one.

R2 Removable disk on 5444 drive
two.

F2 Fixed disk on 5444 drive two.

MESSAGES FOR TAPE INITIALIZATION

Message

Meaning

INITIALIZATION ON
xx COMPLETE

This message is printed when initialization of a tape is complete.
xx indicates the unit (T1, T2, T3, or T4) on which the
initialization is complete.

Tape Initialization Program—$TINIT

91

PRINTOUT OF VOLUME LABEL
The following sample jobs shows the format of data
printed by the Tape Initialization Program from a
nine track tape unit and from a seven track tape
unit.

// LUAD STINIT,F1
/7 HALY
// RUN
// VOL UNIT-T1,TYPE-DISPLAY
// VUL UNIT-T2,TYPE-DISPLAY
// END
*%% DISPLAY ON UNIT Tl k%x
LABEL SERTAL OWNER CUDE
voLl T1T1T1
LABEL FILE ‘DENTIFIER FILE SERIAL VOL SEQ NO CREATE DATE EXPIRE DATE
HDR FILEL TLIT1T1 0001 72251 72251
LABEL REC FORM BLK LENG REC LENDG RECURDING TECH PRTR CNTRL BiLK ATTR
HDR2 F 00018 c00o18 E
%% DISPLAY ON UNIT Tgo k&kx
LABEL SERTAL OWNER CUDE
VoLl 127272
LABEL FILE LUENTIFLER FILE SERIAL VOL SEQ NO CREATE DATE EXPIRE DATE
HOR L FILE2 T27272 0001 72251 72251
LABEL REC FORM BLK LENG ReC LENG RECORDING TECH FRTR CNTRL BLK ATTR
HDR2 F 00180 0018 T 3
/7 LOAD STINIT,F1
// RUN
// VOL UNIT-T1,TYPE-DISPLAY
/7 VOL UNIT-T2,TYPE-DISPLAY
// VOL UNIT-T3,TYPE-DISPLAY
// VOL UNIT-T4,TYPE-DISPLAY
/7 END
%% DISPLAY ON UNIT T1 k%%
LABEL SERTAL OWNER CODE
voL1 XRAYO03
LABEL FILE IDENTIFIER FILE SERTAL VOL SEQC ND CREATE DAYE EXPIRE DATE
HDR1 TAPEOUT XRAYO3 0001 72082 99999
LABEL REC FORM BLK LENG REC LENG RECORDING TECH PRYR CNTRL BLK ATTR
HDR2 F 01260 00084 B
%% DISPLAY ON UNIT T2 #%x
LABEL SERIAL OWNER CODE
vOoL1 USER14
LABEL FILE IOENYTIFIER FILE SERIAL VOL SEQ NO CREATE DATE EXPIRE DATE
HDR1 TAPOUT USER14 0001 72067 72087
LABEL REC FORM BLK LENG REC LENG RECORDING TECH PRTR CNTRL BLK ATTR
HDR2 F 00080 00080

92

®%% DISPLAY ON UNIT T3 **=*

LABEL SERIAL OWNER CODE
voLl XRAYO4
LABEL FILE IDENTIFIER FILE SERIAL VOL SEQ NO CREATE DATE
HDR1 TAPEOUT XRAYO04 0001 72083
LABEL REC FORM BLK LENG REC LENG RECORDING TECH PRTR CNTRL BLK ATTR
HDR2 F 01260 00084 8
*%% DISPLAY ON UNIT T4 *%%
LABEL SERIAL OWNER CODE
vOoL1 TEST4 ASCIT TAPE LABEL

EXPIRE DATE
99999

MEANING OF VOLUME LABEL INFORMATION

Display of Volume Label
Heading

LABEL

SERIAL

OWNER CODE

Display of Header 1 Label
Heading

LABEL

FILE IDENTIFIER

FILE SERIAL

VOL SEQ NO

Meaning
VOL1 indicates this is a volume label.
The volume serial number (from the REEL parameter).

Additional identification (from the ID parameter).

Meaning
HDR1 indicates this is a header 1 label.

The filename of the file on tape. This is the name from the LABEL parameter of the OCL FILE
statement when the file was created.

The serial number of the tape volume. This is the same as the SERIAL field in the volume label.

The sequence number of this volume in a multivolume file.

Tape Initialization Program—$TINIT

93

- MEANING OF VOLUME LABEL INFORMATION (continued)

Heading

CREATE DATE

EXPIRE DATE

Display of Header 2 Label
Heading
LABEL

REC FORM

BLK LENG
REC LENG

RECORDING TECH

PRTR CNTRL

BLK ATTR

Display of Header 1 Label (continued)

Meaning

The date this file was created. This is a Julian date. The format is yyddd where yy is the last two
digits of the year and ddd is the day in the year. Example: 72094 = the 94th day of 1972, or
March 3, 1972.

The date this file expires. This Julian date is the creation date plus the number of days specified
by the RETAIN parameter on the OCL FILE statement.

Meaning
HDR?2 indicates this is a header 2 label.

The record format of this file. (From the RECFM parameter on the OCL FILE statement when this
file was created.) The formats are:

F — Fixed length

V — Variable length

U — Undefined length

Block length. (From the BLKL parameter on the OCL FILE statement when this file was created.)

Record length. (From the RECL parameter on the OCL FILE statement when this file was created.)

T — Odd parity with translation
C — Odd parity with conversion
E — Even parity without translation
ET — Even parity with translation

blank — Odd parity without translation or conversion

Printer control character. This field will be blank on tapes created on System/3. For tapes
created on other systems, the characters are:

A — ASCII control characters
M — Machine control characters
blank — No control characters

Block attributes:

B — Blocked records
S — Spanned records
R — Blocked and spanned records
blank ~ — Neither blocked nor spanned

Note: Spanned records cannot be created on System/3.

94

e ————————————
TAPE ERROR SUMMARY PROGRAM—S$TVES

The IBM System/3 Disk System keeps track of errors that occur on the tape drives.
This error information is stored in the Customer Engineer tracks on 5444 fixed

drive one. You should run the Tape Error Summary Program periodically to provide
a summary, by volume and by unit, of temporary read and write errors.

There are no control statements necessary for this program. After being loaded
from the program or system pack, the Tape Error Summary Program reads the data
from the disk and sorts it by volume and unit. When all the data is read or the
available main storage is filled, the error data is printed. If no tape errors are
recorded, the message THERE ARE NO VALID TAPE ERRORS LOGGED is
printed.

ERROR LOGGING FORMAT

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY VOLUME DATE 03/27/72

O o0 60 ® ©

VOLUME SIO TEMP TEMP WRITE
SERIAL COUNT READ WRITE SKIP

TL 06512 0000 0028 0028

TAPEL 00016 0000 000L 0001
TAPE3 00021 0000 000% 0001

SUMMARY MAGNETIC TAPE ERROR STATISTICS BY TAPE UNIT DATE 03/27/72

@ O O 6 ©

TAPE SIO TEMP TEMP WRITE DIAG
UNIT COUNT READ WRITE SKIP TRACK
TL 06528 0000 0029 0029 0000
T4 00021 0000 0001 0001 0000

@ For unlabeled tapes and the first volume of a multivolume file that has more than two volumes per unit,
,,,,,, is printed as the volume serial. For tapes with non-standard labels, ****** is printed as the volume

e The number of tape operations performed. (SIO means Start 1/0.)

0 Temporary read errors.
o Temporary write errors.

o Write skips caused by temporary write errors.

o Diagnostic track errors. This is used by I1BM Customer Engineers.

Tape Error Summary Program—$TVES 95

OCL CONSIDERATIONS
"~ The following OCL statements are needed to load
the Tape Error Summary Program.

// LOAD $TVES,code
// RUN

The code is the disk unit that contains the program
(F1, R1, F2, or R2).

96

DISK INITIALIZATION PROGRAM—S$INIT

All disks must be initialized before use, Disks that have been initialized need not
be re-initialized unless you want to erase their contents and rename them.

The Disk Initialization program prepares disks for use. 1t does this by:

® Writing track and sector addresses on the disk.

Checking for defective tracks, a process called surface analysis.

Assigning alternate tracks to any defective tracks found.

Writing a name on each disk to identify the disk.

Formatting the volume table of contents.

The process is called initialization. The program can initialize up to five disks
during the same program run.

There are three types of initialization: primary, secondary, and clear. Primary is
used to initialize any disk to disk drive capacity. Secondary is used only when
using the 5444 disk and only when the drive capacity of your system is increased
and you have programs and data on your disks that you want to keep. Clear is
used to unconditionally initialize a disk.

CAUTION

Clear will destroy any files or libraries that
were previously on disk.

The control statements you supply for the Disk Initialization program depend
on the type of initialization and the number of disks you are initializing.

Disk Initialization Program—$INIT 97

CONTROL STATEMENT SUMMARY

Type of Initjalization

Primary @:

New Disks

Disk already in
use (reinitialize)

Secondary @:

Disk already in
use

CIear@:

Control Statements @

1 HALF
1 uin TyPe-PRIMARY () UNIT-J 0% L VERIFY-number cAP-
| ‘codes’ FULL

// VOL PACK-name,|D-characters, NAME 360-characters
// END

) HALF
// UIN TYPE-PRIMARY ,UNIT- l ,zzg:s, } NERlFYﬂUMbeY,ERASE‘{ NO 1 ,CAP- { }
// VOL PACK-name,lD-characters, NAME360-characters

/I END

// UIN TYPE-SECONDARY,UNIT-I,COde ,1 VERIFY-number
1 codesf

// END

§ code | HALF
/] UIN TYPE-CLEAR,UNIT-J %% & VERIFY-number,CAP-
| ‘codes FULL

// VOL PACK-name,lD-characters, NAME 360-characters @

/l END

(D) Control statements are required in the order they are listed: UIN, VOL, END or UIN, END.

For primary initialization, one VOL statement is required for each disk listed in the UNIT parameter of the
UIN statement. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT
parameter. The PACK parameter in the second VOL statement applies to the second disk listed in the UNIT

parameter, and so on.

(@) 1 the TYPE parameter is omitted, TYPE-PRIMARY is assumed.

@ VOL statements are not required for secondary initialization because the disks are already named.

@ If the TYPE parameter CLEAR is selected, ERASE-YES is assumed.

CAP-FULL should not be used on a half capacity system and can only be used on the 5444 disk.

@ NAME 360 can be used only for the 5445 disk.

98

PARAMETER SUMMARY

UIN (Input Definition) Statement

TYPE-PRIMARY

TYPE-SECONDARY

TYPE-CLEAR

UNIT-code
UNIT-code,code’

UNIT-code,code,code’

UNIT-'code,code,code,code’

UNIT-'code,code,code,code,
code’

VERIFY-number

ERASE-YES

ERASE-NO

CAP-HALF @

CAP-FULL @

VOL (Volume) Statement

PACK-name

ID-characters

NAME360-characters

Primary initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re-initialized. The program will not
initialize disks containing libraries, temporary data files, or permanent data files.

Secondary initialization (5444 disk only). Applies only to disks that were
initialized on drives of less capacity than the drives you are now using. |t means
initialize the uninitialized portions of the disks to the capacity of the drives on
which the disks are mounted. Tracks already initialized are not disturbed.

Clear initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re-initialized. Active files and library
checking is bypassed and.any data on the tracks is destroyed.

Disk location (one disk). =1 Possible
codes:

Disk location (two disks). R1, F1,
R2, F2

Disk location (three disks). D1, D2

Disk location (four disks).

Disk location (five disks).

Do surface analysis the number of times indicated (number can be 1-255). VERIFY-1
is assumed if you omit the parameter.

Retest defective tracks. Primary initialization only. ERASE-NO is
assumed if you omit the parameter.

Do not retest defective tracks.

Initialize a disk to half capacity even if on a full capacity drive (5444 disk only).

Initialize a disk to full capacity (5444 disk only).

Disk name. Can contain any of the standard System/3 characters except apostrophes,
leading or embedded blanks, and embedded commas Its length must not exceed
six characters.

Additional identification. Can contain any of the standard System/3 charagters
except apostrophes, leading or embedded blanks, and embedded commas@. Its
fength must not exceed ten characters. |f you omit this parameter no additional
identification is written on the disk.

Additional identification for 5445 disk. The name will be placed in the
System/360 format 1 DSCB. Can contain any of the standard System/3
characters except apostrophes, leading or embedded blanks, and embedded
commas . Its length must not exceed 44 characters, If you omit this
parameter the program defaults to SYSTEM/3.DATA.

@The CAP keyword forces ERASE-YES. Pack is initialized to capacity of the drive if this keyword is omitted.

(@) This is due to their delimiter function.

Disk Initialization Program—$INIT

929

PARAMETER DESCRIPTIONS Clear Initialization

Clear initialization applies to new disks or disks previously

TYPE Parameter (UIN) used that require reinitialization due to invalid pack labels
The TYPE parameter indicates the type of initializa- or some other unrecoverable disk error. All tracks corres-
tion you want the program to do: primary, secon- ponding to the capacity of the drives on which the disks
dary, or clear. The type of initialization and the ca- are mounted are initialized. Tracks that were previously
pacity of the disk drives on which the disks are initialized are re-initialized.
mounted determine which disk tracks will be
initialized.

Warning: All libraries, temporary data files, or

Disk Drive Capacity permanent data files are completely erased.

Disk drives of different data-storage capacities are

available for the System/3 Model 10 Disk System. UNIT Parameter (UIN)

The difference is the number of tracks the drives can The UNIT parameter (UNIT-code) tells the location
use: the larger the drive capacity, the more tracks of the disks you want to initialize. The program
the drive can use. However, you must initialize the can initialize up to five disks during one program
disk tracks before using them. run.

The form of the UNIT parameter depends on the

. T number of disks you are initializing:
Primary Initialization

Primary initialization applies to new disks, or disks 1. For one disk, use UNiT-code.

you have used but want to initialize again. The pro-)) ,

gram initializes all tracks corresponding to the 2. For two disks, use UNIT-'code,code’.

capacity of the drives on which the disks are 3. For three disks, use UNIT-'code,code,code’.
mounted. Tracks that were previously initialized

are initialized again. Any data on the tracks is 4. For four disks, use UNIT-‘code,code,code,code’.
destroyed. 5. For five disks, use UNIT-‘code,code,code,code,

Note: A 5445 disk with an invalid System/3 label must code’.

be initialized using the clear initialization. The codes indicate the locations of the disks:

You can use primary initialization on a disk as often Code Meaning

as you want. However, the program will not

initialize disks containing libraries, temporary R1 Removable disk on

data files, or permanent data files. You must de- 5444 drive one

|et'e the files using File Pelete ar.wd the Ilbranes 1 Fixed disk on 5444

using the allocate function of Library Maintenance. .

drive one

Secondary Initialization (5444 Disk Only) R2 Removable disk on

Secondary initialization applies to disks that were 5444 drive two

initialized on drives of less capacity than the drives))

you are now using. When you increase the capacity F2 F|?<ed disk on 5444

of your drives, more tracks on your disks be- drive two

corrfe.avallable foruse. You must'nr.n‘tua'hze-the D1 Removable disk on

additional tracks. Use secondary initialization .

X . . 5445 drive one

if you do not want information destroyed on

tracks already in use. The program initializes the D2 Removable disk on

additional tracks only. Tracks already in use are 5445 drive two

not disturbed.

The program will not do secondary initialization
on new disks or disks that have already been
initialized to the capacity of the drives on which
they are mounted.

100

For primary initialization, the order of codes must
correspond to the order of VOL control state-
ments. If, for example, you had used the parameter
UNIT-‘R1,R2’, the first VOL statement applies

to the removable disk on drive one and the second
VOL statement to the removable disk on drive

two. (No VOL statements are required for second-
ary initialization. The disk is already named.)

You cannot initialize the pack from which you
loaded the Disk Initialization program or the
system pack.

VERIFY Parameter (UIN)

The VERIFY parameter (VERIFY-number) con-
cerns surface analysis. It enables you to indicate
the number of times you want the program to do
surface analysis before judging whether or not
tracks are defective. The number can be from

1 to 255. The greater the number specified in the
VERIFY parameter the longer it takes to initialize
the disk.

On a 5444, the time for initializing using VERIFY-1
is approximately two and one-half minutes. Each
additional verify takes two minutes and ten seconds.
On the 5445, the time for initializing using VERIFY-1
is approximately 15 minutes. Each additional verify
on the 5445 takes seven minutes.

Surface Analysis

Surface analysis is a procedure for testing the con-
dition of tracks. It consists of writing test data
on tracks, then reading the data to ensure it was
recorded properly.

In judging whether or not tracks are defective,

the program does surface analysis the number of
times you specify in the VERIFY parameter. if

you omit the VERIFY parameter, surface analysis

is done once. Tracks that cause reading or

writing errors any time during surface analysis

are considered defective. Defective tracks can be
assigned alternates. The 5444 has six alternate
tracks available; the 5445 has 60. If the program
finds more than 6 or 60 defective tracks respectively,
it considers the disk unusable and stops initializing it.

The program also considers the disk unusable if either
track O or 1 is defective. Tracks O and 1 are used only
by the system and cannot have alternates assigned to
them. For the 5445 the program also considers the
disk unusable if any tracks in cylinder O are defective.

Alternate Track Assignment

Alternate track assignment is the process of assigning
an alternate track to a defective track. If the Disk
Initialization program finds a defective track

during surface analysis, it assigns an alternate track
to the defective track. The alternate is, in effect,

a substitute for the defective track. Any time a
program attempts to use the defective track, it

will automatically use the alternate instead. Each
5444 disk has six alternate tracks (tracks 2-7). Each
5445 disk has 60 alternate tracks (tracks 4000-4059).

If tracks become defective after a disk is initialized,
another program (see Alternate Track Assignment
Program) is used to assign alternate tracks. Disks
need not be re-initialized to assign alternate tracks.

ERASE Parameter (UIN)

The ERASE parameter concerns alternate track
assignment. It applies only to disks that have
already been initialized and used, but which you
are re-initializing using primary initialization.

The condition of tracks on such disks has been
tested at least once before (during the previous
initialization) and tracks that were found to be
defective during surface analysis were assigned
alternates. The ERASE parameter, therefore,
enables you to indicate whether you want the
program to (1) retest the tracks to which alternate
tracks are already assigned, or (2) leave the alter-
nate tracks assigned without retesting the tracks.

The parameter ERASE-YES means to retest, If
you tell the program to retest, it erases any
existing alternate track assignments, and tests
all tracks as though the disk were new.

The parameter ERASE-NO means not to retest.
If you tell the program not to retest, it tests only
those tracks to which no alternate tracks are as-
signed. Alternate tracks previously assigned re-
main assigned.

Defective tracks are not retested if the ERASE
parameter is omitted.

CAP Parameter (UIN)

The CAP parameter (5444 disk only) determines pack
size when the pack is initialized. The CAP-HALF
parameter means to initialize the pack to half capacity
(100 cylinders; 200 tracks) even if it is on a full capa-
city drive. The CAP-FULL parameter means to ini-
tialize the pack to full capacity (200 cylinders; 400
tracks). The use of the CAP keyword forces ERASE-
YES.

Disk Initialization Program—S$INIT 101

PACK Parameter (VOL)

The PACK parameter (PACK-name) applies to
primary and clear initializations only. During initiali-
zation, the Disk Initialization program writes a

name on each disk. It uses the name you supply

in the corresponding PACK parameter. (One VOL
control statement containing a PACK parameter

is required for each disk.)

The name can be any combination of standard
System/3 characters except apostrophes, leading
or embedded blanks, and embedded commas (due
to their delimiter function). (See Appendix A for
a list of standard System/3 characters.) Its length
must not exceed six characters. The following are
valid disk names: 0,F0001, 012, A1B9, ABC.

In general, disk names are used for checking pur-
poses. Before a program uses a disk, the disk
name is compared with a name you supply
(either in OCL statements or control statements
required by the program). If the names do not
match, the program halts and prints a message.

In this way, programs cannot use the wrong disks
without the operator knowing about it.

ID (ldentification) Parameter (VOL)

The ID parameter (ID-characters) applies to primary
and clear initializations only. It enables you to
include a maximum of ten characters, in addition to
the disk name, to further identify a disk. The char-
acters can be any combination of standard System/3
characters (Appendix A) except apostrophes,
leading or embedded blanks, and embedded com-
mas (due to their delimiter function). The informa-
tion is strictly for your use. (It is not used for
checking purposes by the system.) If you use

the File and Volume Label Display program to
print the disk name, it will also print the addition-
al identification for you.

NAME360 Parameter (VOL)

102

The NAME360 parameter (NAME360-name) is used
to specify a filename for data interchange with
System/360-System/370. System/360-System/370
can use data on a System/3 disk pack by treating the
pack like a file. System/3 gives a default filename of
SYSTEM/3.DATA. The NAME360 parameter can be
used if you would like to code a filename of your
own.

NAME360 can contain any of the standard System/3
characters except apostrophes, blanks and commas.
Its length must not exceed 44 characters.

OCL CONSIDERATIONS

The following OCL statements are needed to load
the Disk Initialization program.

// LOAD $INIT, code
// RUN

The code you supply depends on the location of
the disk containing the Disk Initialization program.
The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Primary Initialization of Two Disks

Figures 25 and 26 are examples of the OCL state-
ments and utility control statements needed for
the primary initialization of two disks.

1 4 8 12 16 20 24 28 32
/1€ I

/1/ [LiolAD| 13 N [l [FY

/1/] RIU

Explanation:

® Disk Initialization program is loaded from the fixed disk on

drive one .

Figure 25. OCL Load Sequence for Disk Initialization

1 4 12 16 20 24 28 32 3
/71 WlVIN] uiNp fTl-[¢ fEf2]s RI2]], vlele]- (PRI MA]

/1 NolL] [Plalckl-Rl2lalal | |

/ /| NloiL| PINcK]- [PinvIRioL]: [V[Dl [olLid2 (76|

/L ENDLLL LTI L
Explanation:

® The two disks on drive two are being initialized (UNIT-'F2,R2’
in UIN statement).

® The fixed disk (F2) will be given the name 2222 (PACK-2222
in first VOL statement).

® The removable disk (R2) will be given the name PAYROL
(PACK-PAYROL in second VOL statement). Additional
identifying information, 010270, will be written on the removable
disk (1D-010270).

Figure 26. Utility Control Statements for Primary Initialization
of Two Disks

MESSAGES FOR DISK INITIALIZATION

Message Meaning
INITIALIZATION This message is printed when initialization of a disk is
ON XX COMPLETE complete. XX indicates the unit (R1, R2, F1, F2, D1,

or D2} on which the initialization is complete.

INITIALIZATION ON XX This message is printed when initialization of a disk
TERMINATED must be terminated for one of the following reasons:
1. Cylinder zero is defective.

2. More than 6 5444 tracks or 60 5445 tracks
are defective.

3. Possible disk hardware error exists.

4. The program attempted to initialize the disk
ten times without success.

After this message is printed, halt 33 will occur. XX
indicates the unit (R1, R2, F1, F2, D1, or D2) on
which the initialization is terminated.

**ALTERNATE TRACKS These two messages are printed when a primary track
ASSIGNED** is defective and an alternate track is assigned to it.
PRIMARY TRACK XXX XXX indicates the tracks involved.

ALTERNATE TRACK XXX

UNRECOVERABLE ERROR; This message is printed when the Disk Initialization
RE-INITIALIZING PACK program determines that the disk has not been
initialized properly. The program will again attempt

to initialize the disk correctly with ERASE-YES forced.
The maximum number of times that the program will
attempt to initialize a disk is ten. After that number of
times, halt 33 occurs.

Disk Initialization Program—$INIT 103

104

8 S S T TS SRR
ALTERNATE TRACK ASSIGNMENT PROGRAM—S$ALT
e

The Alternate Track Assignment program assigns alternate tracks to disk tracks that
become defective after they are initialized. An alternate track is a track that can be
assigned to replace another track. When the program assigns an alternate, it transfers
the contents of the defective track to the alternate. The 5444 has 6 alternate tracks,
the 5445 has 60. An alternate track can replace any track except 0 and 1 on the 5444

or 0-19 of cylinder 0 on the 5445.

The program has three uses. The control statements you must supply depend on

the program use.

The program uses and the situations to which they apply are as follows:

Program Use

Conditional assignment.
Program tests the condition
of a track and assigns an
alternate to it if it is defec-
tive. (This is the normal
use.)

Unconditional Assignment @
Program assumes the track

is defective and assigns

an alternate to it without
testing its condition.

Cancel prior assignment. @
Program cancels an

alternate track assignment
to free the alternate for

use with another track.

Situation

Any time a disk track causes reading or writing
errors during a job, the system halts with a code
indicating that a disk error has occurred. You
would now run the Alternate Track Assignment
program to do conditional assignment.

You have used the Alternate Track Assignment
program to do conditional assignment. The

test on the track indicated that the track was not
defective (an alternate, therefore, was not
assigned). But the track still causes reading or
writing errors, and you want to assign an
alternate to it.

A defective track was found, but all alternates
are in use. You want to free an alternate so you
can recover the data from the defective track.
Before freeing the alternate, however, you would
normally copy (to another disk) the file or
library entry that uses the alternate. This saves
the data that is already on the alternate.

@ Whenever you request an unconditional assignment or cancel prior assignment, any
pending suspected defective tracks are checked (conditional assignment).

Alternate Track Assignment Program—$ALT

105

CONTROL STATEMENT SUMMARY

Use

Conditional Assignment
// END

Unconditional Assignment
// END

Cancel Prior Assignment
// END

Control Statements @

// ALT@ PACK-name,UNIT-code, VERIFY-number
// ALT@PACK-name,UNIT-code,ASSIGN-

/! ALT@ PACK-name,UNIT-code,UNASSIGN-

gltrack 2 ,VERIFY~number@

tracks’

track
“tracks’

% ,VERIFY-number@

@ There can be only 6 ALT statements per job,

(See Program Use and Situation.)

@ For each use, the program requires the statements in the order they are listed: ALT, END.

®The VERIFY parameter applies to the automatic conditional assignment that follows the unconditional request.

PARAMETER SUMMARY: ALT (ALTERNATE) STATEMENT

PACK-name Name of the disk.

UNIT-code

VERIFY-number

Assign an alter-
nate (uncon-
ditionally) to
one track.

ASSIGN-track

ASSIGN-'track,track,...’ Assign one alter-
nate {(uncon-
ditionally) to
each track
(maximum

is six).
UNASSIGN-track Cancel one
alternate track
assignment.
UNASSIGN-‘track,track,...” Cancel two or
more alternate
track assign-
ments (maximum

is six).
—

Location of the disk. Possible
codes are R1, F1, R2, F2, D1, D2.

In testing the condition of a track,
do surface analysis the number of
times indicated (number can be
1-255). If VERIFY parameter is
omitted, do surface analysis once.

Use track num-
bers 8-205 or
8-405 (for 5444)
20-3999 (for
5445) to identify
tracks. Tracks
0-1 for the 5444
or 0-19 for the
5445 are used by
the system and
cannot be assign-
ed alternates.

Use track num-
bers 8-405 (for
5444), or
20-3999 (for
5445) to which
alternates are
assigned.

@ Before canceling an assignment, the program tests the con-
dition of the track to which the alternate is assigned. The
assignment is canceled if the test indicates that the track is
not defective. If the test indicates that the track is defective,
the program does not cancel the assignment unless the operator
tells it to do so.

106

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the pro-
gram the name of the disk containing the defective
tracks. This is the name written on the disk by the
Disk Initialization program. (See Disk Initialization
Program.)

The Alternate Track Assignment program com-
pares the name in the PACK parameter with the
name on the disk to ensure they match. In this
way, the program ensures that it is using the right
disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the
location of the disk containing defective tracks.
Codes for the possible locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

VERIFY Parameter

The VERIFY parameter (VERIFY-number) con-
cerns conditional assignment. (See Program Use
and Situation for unconditional and cancel prior
assignments.) It enables you to indicate the num-
ber of times you want the program to do surface
analysis before judging whether or not the track
is defective. The number can be from 1-2565, If
you omit the parameter, the program does surface
analysis once.

Conditional Assignment

Conditional assignment consists of testing the
condition of a track (surface analysis) and, if

the track is defective, assigning an alternate track
to replace it. It is the normal use of the Alternate
Track Assignment program.

Situation. Conditional assignment applies to tracks that

cause reading or writing errors during a job. Any
time a track causes such errors, the system does
the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the
disk.

3. The system then halts with a halt code indicat-
ing a permanent disk 1/0 error. You can then
run the Alternate Track Assignment program.

When you use the Alternate Track Assignment pro-
gram to do conditional assignment, the program
locates the tracks by using the addresses in the
special area on disk. All disks, fixed and remova-
ble, have such an area. The program will do
conditional assignment for all tracks identified

in the area (one at a time), as long as there are
alternate tracks available for assignment.

Surface Analysis. Surface analysis is a procedure the pro-

gram uses to test the condition of tracks. It con-
sists of writing test data on a track, then reading
the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track
Assignment program transfers any data from the
track to an alternate track. This is the alternate
that will be assigned if the track proves to be
defective.

In judging whether or not the track is defective, the
program does surface analysis the number of times

you specify in the VERIFY parameter. If you omit
the parameter, the program does surface analysis
once. If the track causes reading or writing errors
any time during surface analysis, the program con-
siders the track defective.

Assignment of Alternate Tracks. If a track proves to be

defective, the program assigns an alternate track.
The alternate becomes, in effect, a substitute for
the defective track. Any time a program attempts
to use the defective track, it automatically uses
the alternate instead.

The 5444 has 6 alternate tracks; the 5445 disk has

60. The program will not do conditional assign-
ment if all alternate tracks are in use.

Alternate Track Assignment Program—$ALT 107

Incorrect Data. If a track is defective, some of the data

transferred to the alternate track could be incorrect.
Therefore, when reading data from the defective
track, the program prints all track sectors con-
taining data that caused reading errors. Characters
that have no print symbol are printed as 2-digit
hexadecimal numbers.

The following is an example:

ABCDE GH123 56...
B A
6 4
Appendix A lists the characters in the standard
character set and their corresponding hexadecimal
numbers.

To correct errors on the alternate track, use the Al-
ternate Track Rebuild program.

ASSIGN Parameter

The ASSIGN parameter (ASSIGN-track) applies to
unconditional assignment. It tells the program which
tracks you want alternates assigned to.

For 5444, you can assign alternates to any tracks
except 0-7, which are for system use only. For
5445 you can assign alternates to any tracks
except 0-19 or 4000-4059; for system use only.

The form of the ASSIGN parameter depends on the
number of tracks you want to specify. For one
track, use ASSIGN-track; for two tracks, use
ASSIGN-‘track,track’; and so on. You can specify
up to six tracks.

Use the track numbers 8-405 (for 5444) or 20-3999
(for 5445) to identify the tracks. For example, the

parameter ASSIGN-'60,301,353' causes the program
to assign alternate tracks to tracks 50, 301, and 353.

Unconditional Assignment

108

Unconditional assignment applies to tracks that
occasionally cause read or write errors. Such
tracks might not cause errors when tested by the
Alternate Track Assignment program during con-
ditional assignment. If they don‘t, the program
will not assign alternate tracks to them. If you
still want to assign alternates to these tracks, use
unconditional assignment. In doing unconditional
assignment, the program assigns alternates without
first testing the condition of the tracks suspected
of being defective.

UNASSIGN Parameter

The UNASSIGN parameter (UNASSIGN-track)
applies to cancelling alternate track assignments.

It identifies tracks for which you want the program
to cancel assignments.

You can cancel up to six assignments. The form of
the UNASSIGN parameter depends on the number
of assignments you want to cancel. For one assign-
ment, use UNASSIGN-track; for two assignments,
use UNASSIGN-‘track, track’; and so on.

Use the track numbers 8-405 (for 5444) or 20-3999
(for 5445) to identify the tracks. For example, the
parameter UNASSIGN-'50,301,352’ causes the
program to cancel alternate-track assignments for
tracks 50, 301, and 352.

Cancel Prior Assignment

Cancelling an alternate track assignment consists
of transferring the data from an alternate track
back to the original track (the track to which the
alternate is assigned), therefore, freeing the alter-
nate from being the substitute for the original
track.

Before transferring data back to the original track,
the Alternate Track Assignment program tests the
condition of the original track. If the test indicates
that the track is defective, the program stops.
Through the restart procedure you choose, you can
tell the program to do one of four things (see .

1BM System/3 Disk System Halt Guide, GC21-7540):

1. Cancel the assignment and transfer the data back
to the original track regardiess of the condition
of the original track.

2. Test the track again.

3. Leave the assignment as it is. |f there are other
tracks for which you are cancelling assignments,
the program continues with those. Otherwise,
it ends.

4. Cancel the job.

Cancelling assignments is not often done. It ap-
plies to cases where a defective track is found, but
all six alternates are in use. To recover the data
from the defective track, you might want to
cancel an alternate track assignment to free the
alternate track. Normally this involves copying,
to another disk, a file or library entry that uses an
alternate track, then freeing the alternate for use
with the defective track you found.

OCL CONSIDERATIONS Situation

The following OCL statements are needed to load The sytem cancels a job if a defective track is found
the Alternate Track Assignment program. on the removable disk on drive one. (The name of
the disk is BILLNG.) Before doing more jobs, the
/I LOAD $ALT code operator wants to use the Alternate Track Assign-
// RUN ment program to check the condition of the track

and assign an alternate to the track if it is defective.
The code you supply depends on the location of

the disk containing the Alternate Track Assign-

ment program. The codes are as follows: 1 4 8 12 16 20 24 28 32 3
Code Meaning /\/] L[olAD| [$ALIT], [FIA
/|/| [RUN
R1 Removable disk on
drive one
F1 Fixed disk on drive Explanation:
one ® Alternate Track Assignment program is loaded from the fixed
disk on drive one.
R2 Removable disk on
drive two Figure 27. OCL Load Sequence for Alternate Track Assignment
F2 Fixed disk on drive
two
1 4 8 12 16 20 24 28 32 3
AlLT] [PIAlclk]-{B]1 IL[LiNl6]y U] TI-R]
EXAMPLES /|/] E
I

Conditional Assignment
Figures 27 and 28 are examples of the OCL state-
ments and utility control statements needed for a
conditional assignment as described in the following

Explanation:

A : ® The name of the disk (BILLNG) and its location {removable
situation. : disk on drive one) are indicated by the PACK and UNIT
parameters in the ALT statement.

® Because we omitted the VERIFY parameter from the ALT
statement, the program does surface analysis once when it tests
the condition of the tracks.

Figure 28. Utility Control Statements for a Conditional
Assignment

Alternate Track Assignment Program—$ALT 109

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

110

Message

Meaning

ALTERNATE TRACK ASSIGNED

PRIMARY TRACK HAS BEEN TESTED
oK

PRIMARY TRACK STILL DEFECTIVE
DATA TRANSFERRED BACK TO
PRIMARY TRACK

SECTOR WITH DATA ERROR

RECORD WITH DATA ERROR

PRIMARY TRACK xxx ALTERNATE
TRACK yyy, UNIT-zz

This message is printed when an alternate track has been
assigned to a defective track and the data has been trans-
ferred to the alternate track.

This message is printed when it is determined that a
primary track is not defective.

This message is printed when the Alternate Track Assignment
program determines that the track is still defective.

This message is printed when the data is transferred back to
the primary track.

This message is printed when the Alternate Track Assignment
program found an error when transferring data. The sector
that has the error is printed out.

This message is printed when the Alternate Track Assignment
program found an error when transferring data. The record
that has the error is printed out.

This message is printed after ALTERNATE TRACK
ASSIGNED and DATA TRANSFERRED BACK TO PRIMARY
TRACK. xxx is the primary track number, yyy is the alternate
track number, and zz is the unit involved.

S
ALTERNATE TRACK REBUILD PROGRAM-$BUILD
S

The Alternate Track Rebuild program enables you to correct data that could not be
transferred correctly to an alternate track. One or more alternate tracks can be
corrected during a program run. You must supply the control statements and data

used to correct the errors.

In writing control statements for this program, you will need the information printed
by the Alternate Track Assignment program when it assigned the alternate track.
The printed information tells you the name of the disk and numbers of the track

and sectors suspected of containing incorrect data. It also includes the data from
these sectors, which you can use to lecate incorrect data. On the 5445, fixed

record refers to a physical 256-byte record, similar to the sector on the 5444,

CONTROL STATEMENT SUMMARY@

PARAMETER AND SUBSTITUTE DATA SUMMARY

// REBUILD PACK-name,UNIT-code, TRACK-location, LENGTH-
number,DISP-position

Substitute data

// END

@To replace characters 1-12 and 75-78 of a sector, you can use
either of the following:

1. Use one REBUILD statement to replace all the characters
with a LENGTH parameter of 78.

2. Use one REBUILD statement for every set of positions’
you correct.

The data you want to substitute must follow the REBUILD
statements to which it applies. The order of the statements
and data in the preceding example would be:

// REBUILD statement
data for positions 1-78
// END

// REBUILD statement
data

// REBUILD statement
data

// END

for positions 1-12

for positions 75-78

REBUILD Statement
PACK-name

UNIT-code

TRACK-location

LENGTH-number
DISP-position

Substitute Data

ters.)

Name of the disk.

Location of the disk. Possible codes are
R1, F1, R2, F2, D1, D2.

5444 Disk Unit—Number of track and
sector containing incorrect data.
Number is printed by Alternate Track
Assignment program. Track number
must be three digits; sector number
must be two digits. (TRACK-01109
means track 11 sector 9).

5445 Disk Unit—Number of track and
fixed record containing incorrect
data. Number is printed by Alternate
Track Assignment program. Track
number must be four digits; fixed
Record number must be two digits.
(TRACK-011109 means track 111,
fixed record 9).

Number of characters being replaced.
Number can be 2-256 and must be a
multiple of 2 (2, 4, 6, etc.).

Position of the first character being re-
placed in the sector. Position can be
1-255.

Code each character in hexadecimal form. Follow every secondw
character, except the last, with acomma. EXAMPLE: The
numbers 123456 would be coded as F1F2,F3F4,F5F6.
(Appendix A lists the hexadecimal codes for System/3 charac-

Alternate Track Rebuild Program—$BUILD 11

PARAMETER AND SUBSTITUTE DATA
DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the pro-
gram the name of the disk that contains the alter-
nate track being corrected. This name is the one
written on the disk by the Disk Initialization
program.

The Alternate Track Rebuild program compares the
name in the PACK parameter with the name on the
disk to see if they match. In this way, the pro-
gram ensures that the program is using the right
disk.

UNIT Parameter

The UNIT parameter (UNIT-code) indicates the
location of the disk that contains the alternate
track being corrected. Codes for the possible
locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

TRACK Parameter

112

The TRACK parameter (TRACK-location) identifies
the track and sector that contains the data being
corrected. The defective track, not the alternate
track, is the one you refer to. Referencing the
defective track is the same as referencing the alter-
nate track.

For the 5444 disk, the possible track numbers are
008-405. Always use three digits. The possible
sector numbers are 00-23. Always use two digits.
The track number must precede the sector number.
For example, the parameter TRACK-11019 means
track 110, sector 19.

For the 5445 disk, the possible track numbers are
0020-3999. Always use four digits. The possible
fixed record numbers are 01-20. Always use two
digits. The track number must precede the fixed
record number. For example, the parameter
TRACK-111019 means track 1110, record 19.

Track and sector numbers are printed by the Alter-
nate Track Assignment program when it prints data
from sectors that contain incorrect data.

LENGTH Parameter

The LENGTH parameter (LENGTH-number) tells
the program how many characters you are replacing
in the sector or fixed record. You must replace
characters in multiples of 2 (2, 4, 6, and so on). The
maximum is 256, which is the capacity of a sector
or fixed record.

Length applies to characters that occupy consecu-
tive positions in the sector or fixed record. If the
characters you want to replace do not occupy con-
secutive positions, you must either replace all inter-
vening characters or use more than one REBUILD
statement. For example, to replace characters 10-11
and 24-25 in a sector or fixed record, you can do
either of the following:

1. Use one REBUILD statement to replace charac-
ters 10-25 (LENGTH-16).

2. Use two REBUILD statements to replace charac-
ters 10-11 (LENGTH-2) and 24-25 (LENGTH-2).

DISP (Displacement) Parameter

The DISP parameter (DISP-position) indicates the
position of the first character being replaced in the
sector or fixed record. The position of the first
character is 1; the position of the second character
is 2, and so on. The maximum position you can
specify is 255.

Beginning at the position you indicate, the Alternate
Track Rebuild program replaces the number of char-
acters you indicate in the LENGTH parameter.

Substitute Data EXAMPLES
After each REBUILD statement, you must code the

substitute characters that apply to that statement. Correcting Characters on an Alternate Track
The characters must be in hexadecimal form. Ap- Figures 29 and 30 are examples of the OCL and
pendix A shows the hexadecimal codes for the utility control statements needed for correcting
System/3 character set. characters on an alternate track.

Include a comma after every second character.

For example, the data F1F2,F3F4,F5F6 represents
123456. F1 is the hexadecimal form of 1; F2 is
the hexadecimal form of 2; and so on.

Code only the number of characters you indicated
in the LENGTH parameter in the REBUILD state-
ment.

¢
/| [Llojap] {$(Bluli Lip|» [FIL
/| RUN

<<I<]=

Note: \f the LENGTH parameter of the REBUILD
statement exceeds 38, at least two substitute data
cards are required. Each substitute data card, except

Explanation:

® Alternate Track Rebuild program is loaded from the fixed disk

the last one, must be completely filled with data and on drive one.
must have a comma in column 95 and a blank in
column 96. If the 1442 is the only input device Figure 29. OCL Load Sequence for Alternate Track Rebuild

it is possible to have only one substitute data card.

OCL CONSIDERATIONS
The following OCL statements are needed to load
the Alternate Track Rebuild program.

/! LOAD $BUILD, code
// RUN

The code you supply depends on the location of
the disk containing the Alternate Track Rebuild
program. The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

Alternate Track Rebuild Program—$BUILD 113

1 4q 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/1 REBUNUD] PRIcIK- 8] el [ush F-IRu RN - [gl2lgleldl, [eN leirl-1a], o[IsIPl-[1/2]d]

CT71C8l|COIF|1

71/ END

Explanation:

® The name of the removable disk (BILLNG) and its location (drive one) are indicated in the PACK and UNIT
parameters in the REBUILD statement.

® The sector containing the incorrect characters is sector 0 of the alternate track assigned to track 20 (TRACK-02000).
The character in position 120 is the first character being replaced (DISP-120).

® The characters in positions 120 through 123 in sector O are beirg replaced (LENGTH-4).

® The substitute characters follow the REBUILD statement. They are G (C7), H (C8), 1(C9), and 1 (F1),

Figure 30. Utility Control Statements for Correcting Characters on an Alternate Track

Situation

Assume that the Alternate Track Assignment pro-
gram printed the following information:

*%SECTOR WITH DATA ERROR**

TRACK
02000

leceeoeelOcoceeeee2000acceee30ceeresestOaccecece50ccnneseebOecoceceeTOecoceeee80cccsasB88
Z ABCDEFGHI JKLMNOPQR STUVWXYZ 0123456789

FFFFFF903B524677 DC CCCccceD DDDDDDEE EEEEEE FFFFFFO00000

FEDCBAFBEDFEF705 FO ABCDEFO ABCDEFO1 ABCDEF ABCDEF000000

00000000000000000000000000000020001000083000
000000000000000000000000000000024888C2100100

000C
005A

l55202A

It means that errors were detected in sector 0 of
track 20. (Assume the name of the disk is BILLNG.}

In checking the characters printed by the program,
you found that the characters in positions-120-123
in the sector are incorrect and you want the oper-
ator to run the Alternate Track Rebuild program
to correct them.

114

FILE AND VOLUME LABEL DISPLAY PROGRAM—-SLABEL
-]

The File and Volume Label Display program has two uses:

1. Print the entire Volume Table of Contents (VTOC) from a disk.

2. Print only the VTOC information for certain data files.

In both cases, the program also prints the name of the disk.

The printed VTOC information is a readable, up-to-date record of the contents of
the disk. There can be any number of reasons why you might need the information.

Some of the more common ones are as follows:

1. Before re-initializing a disk, you might want to check its contents to ensure that
it contains no libraries, permanent data files, or temporary data files.

2. You want to find out what disk areas are available for libraries or new files.

3. You want specific file information, such as the file name, designation (permanent,
temporary, scratch), or the space reserved for the file.

The control statements you supply for the program depend on the program use.

CONTROL STATEMENT SUMMARY PARAMETER SUMMARY (DISPLAY STATEMENT)
Uses Control Statement® UNIT-code Location of the disk containing
the VTOC information being
Printentire // DISPLAY UNIT-code, LABEL-VTOC printed. Possible codes are R1,
VTOC // END F1,R2, F2,D1, D2.
Printonly file // DISPLAY UNIT-code, LABEL- 3}5'6""“"“* z @ | | LABELVTOC Print entire contents of VTOC.
) N filenames’
information // END .
from VTOC LABEL-filename Pri ntf.:/TOC information for
one file.
@ LABEL-'filename,filename,... Print VTOC information for
For each use, the program requires the statements in the more than one file.
order they are listed: DISPLAY, END.
@ The number of filenames you list for a program run may not @) .
exceed 20. (VTOC is considered as one filename.) :::e::: r;ger(f/zfggn;r:zmzzrtzt:: Z;r?epfricl)g:\::r‘:; ‘;" mav et

File and Volume Label Display Program—$LABEL 115

PARAMETER DESCRIPTIONS

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk containing the VTOC informa-
tion being printed. Codes for the possible locations
are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

PACK-111111 TO-ANUDERSUN

NOe UF ALTERNATE TRACKS AVALILABLE-Z
TRACKS WiITH ALTERNATE ASSIGNED~3u29200
VEFECTIVE ALTERNATE TRACKS=3,45

vEViLt CAPACITY=-400

LABEL Parameter
The LABEL parameter indicates the information
you want printed: the entire contents of the VTOC
or only the information for certain files. The VTOC
is an area on disk that contains information about
the contents of the disk. Every disk, fixed and re-
movable, contains a VTOC.

Entire Contents of VTOC
The parameter LABEL-VTOC means to print the
entire contents of the VTOC. The meaning of the
information the program prints is given in the
following chart. Headings that are listed are the
ones printed by the program to identify the informa-
tion. Figures 31 and 32 are examples of VTOC
printouts.

If the program needs more than one page to list
the file information it prints the headings for the
file information at the top of each new page.

LIBRARY EXTENT—= START ENU EXTENUED &nD
008 o217 027
AVAILABLE SPACE ON PACK
LUCATIUON TRACKS
c28 367
399 0ol
401 gol
PACK-111111l UNLT=R1 UATE 11711770
FILE FILE KEEP FILE REC KEY KcY
NAME DATE TYPe TYPE LEN LEN LUC
Cost 09/21/71 T S Uies
MASTER 03/14/71 4 S 0128
EMPLOYEE 12/07/70 P 1 0128 05 0005
UPDATE R rs ey e S S | 1 ul28 05 0005
PARTS 08/09/71 T v ul2s
SERIAL 08/167/71 T S 0128
ADDRESS 09/21/771 T S uo8v
B8ACKUP 09729771 S N oLzs

Figure 31. VTOC Printout Example

116

NEXT AVAIL NEXT AVAIL INDEX DATA VoL
RELORD KeY START EnU START eNU Stw
405/ 117129 405 40 00
4047117129 404 404 00
LR L 402/7CL/1e9 40¢ 40< 403 403 02
396/11/7129 385/CC/185 395 395 396 396 00
K 400 400 01
398/ 11/149 398 398 00
397/06/065 397 397 0C
399/11/1¢9 399 399 00

|55201A

PACK-uULlULD1

tu-

NUe UF ALTERNATc TRACKS AVALLABLE-6UL

AVALLABLE SPACE UN PaCK

LUCATIUN TRACKS

0UL/u0 3941
199700 0u0e e e
PACK-Ululul UniT-ul UATc 09/29/171 o
FlLe Flie KebP Flie Rel KeY KeY NEXI AvVAlL NeXT avAIL INUEX ~ UVATA
NAME DATE TYPE TYPEt Ltn LEw Lo RECURD KEY START ENU START END
COST 09/21/7L ¥ D Oltes T 7199710 199719
MASTER U3/14/71 P U Uude Rk o . 499/uB 199709
EMPLUYEE L2/07/70 P I 005U 05 0006 1997037017101 1997027007019 199/0c 199/02 199/03 199/01
PARTS 08709471 T U 02v0 SxkEk o o L98/18 198719
ADLRE SS 09/21/7L T S uwo3u 196/16/0G1/7061 198/16 198717
SERIAL 08/46/71 T S 0luv 190/04/04/201 o 19B/UL 198715
UPOATE U9/14/71 5 1 0200 03 00u7 199/0i/G2/ 14> 199/00/01/015 199/00 199700 199701 199/u1

Figure 32. VTOC Printout Example of 5445 Disk

File and Volume Label Display Program—$LABEL

vuL
SEQ

00
0o
ou
00
0L
00
Qu

117

MEANING OF VTOC INFORMATION

Heading
PACK-name
|D-characters

NUMBER OF ALTERNATE TRACKS
AVAILABLE-number

TRACKS WITH ALTERNATE ASSIGNED

DEFECTIVE ALTERNATE TRACKS

DEVICE CAPACITY-number

LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK
LOCATION
TRACKS

PACK-name

UNIT-code

DATE-xx/xx/xx
FILE NAME

FILE DATE

KEEP TYPE

FILE TYPE

REC LEN
KEY LEN

KEY LOC

Meaning
Name of the disk.
Additional disk identification (if any).

Number of alternate tracks available for assignment.

Numbers of primary tracks that have been assigned an alternate.

Numbers of the alternate tracks that are defective.

Disk drive capacity (number of tracks) - 5444 disk only.

Boundary of libraries on the disk. (If the 5444 disk contains no libraries,
these headings are not printed.)
Track on which library begins. | if 5444 disk contains both source and
object library, START refers to begin-
ning of source library and END refers
to end of object library.

Track on which library ends.

Obiject library only {5444 disk only). Track on which extension to library
ends. When object library is full, temporary entries can be placed in space
following end of library, provided that space is available.

Available disk areas.

First track in available area (6444). First cylinder/track in available area (5445).

Number of tracks available.
Name of the disk.
Location of the disk containing the VTOC information.

Program level date

Name that identifies file in VTOC.
Date given the file when file was placed on disk.

File designation:
P = permanent
T = temporary
S = scratch

File type:
I = indexed
S = sequential
D = direct
SS = split cylinder, sequential
SD = split cylinder, direct
B = basic file

Number of characters in each record in file.

Indexed files only. Number of characters in each record key.

Indexed files only. Position in record occupied by last character of record
key.

118

Heading Meaning

NEXT AVAIL RECORD

050/02/12/006 = cylinder 50, track 2, fixed record 12,

position 6.@

Indexed files only. Beginning focation of next available record key in index
portion of file. For 5444 disk, location is track, sector, and position within
sector. For 5445 disk, location is cylinder, track, fixed record, and position

NEXT AVAIL KEY

within record.

EXAMPLE: 090/10/006

052/03/10/006 = cylinder 52, track 3, fixed record 10,
position 6. @

INDEX Indexed files only. For 5444 disk, tracks on which index starts (START) and
START END ends (END). For 5445 disk, cylinder/track on which index starts (START)

and ends (END).

DATA Disk area reserved for the file. START is the first 5444 track or 5445 cylinder/
START END track of the area. END is the last 5444 track or 5445 cylinder/track. For
indexed files, this refers to the data portion of the file.

VoL VOL SEQ applies to multivolume files only. It indicates the order of this disk
SEQ as it relates to the other disks containing the remaining portion of the file.

Beginning location of next available record in file. For 5444 disk, location is
track, sector, and position within sector. For 5445 disk, location is cylinder,
track, fixed record, and position within record.

EXAMPLE: 099/18/006 = track 99, sector 18, position 6.

= track 90, sector 10, position 6.®

@ If the first byte of the next available record occurs in the next track after the end track of DATA START END then this

field will contain ****,

If the first byte of the next available key occurs in the next track after the end track of INDEX START END,

then this field will contain ****,

File Information Only

The parameter LABEL-filename or LABEL-‘file-
names’ means to print certain file information

from the VTOC. For one file, use LABEL-filename;
for two files, use LABEL-‘filename,filename’; and so
on. (Use the names that identify the files in the
VTOC.) You can list 20 filenames for a program
run. The statement length, however, is restricted

to 96 characters.

The program prints the file information for each
of the files you list. This is the information des-
cribed for the headings PACK name and FILE

LABEL in the chart, Meaning of VTOC Information.

If the program needs more than one page to list the
file information, it prints headings for the file
information at the top of each new page.

OCL CONSIDERATIONS

The following OCL statements are used to load the
the File and Volume Label Display program.

// LOAD $LABEL,code
// RUN

The code you supply depends on the location of
the disk containing the utility program. The codes
are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

File and Volume Label Display Program—$LABEL 119

EXAMPLES

Printing VTOC Information for Two Files
Figures 33 and 34 are examples of the OCL state-
ments and utility control statements needed to
print VTOC information for two files.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 68 72
AL LT
/1/] [LloAD] BILINBEIL]: [FL
/l/| [RIUN
Explanation:
® The File and Volume Label Display program is loaded from the
fixed disk on drive one.:
Figure 33. OCL Load Sequence for File and Volume Label Display
8 12 16 20 24 28 32 36 40 44 48 52 56 60 68 72

[
(o
-4
= |
<
[y

<]=
NSNS

4
QIBPL N[[UIN Ti-[RIL], LIABEILI-* 1B
D

Explanation:

® The files for which information is printed are named BILLNG
and INVO1 (LABEL-'BILLNG,INVO1’ in DISPLAY statement).
They are located on the removable disk on drive one (UNIT-R1).

Figure 34. Utility Control Statements for Printing VTOC information for Two Files

120

L
FILE DELETE PROGRAM—$DELET
SR

The File Delete program has 1liree uses:
® Remove all files from a disk.
® Remove only the files you name.

® Scratch file references in the Volume Vable of Contents (VTOC). Deleting files
frees the space they occupy for use by new files.

The program may be used on temporary, scratch and permanent files. To delete per-
manent files, you must use the File Delete program. You can scratch temporary files
by using the File Delete program or by changing the file designation from temporary to
scratch (using the OCL keyword RETAIN) when you use the file.

The control statements you supply for the File Delete program depend on the function
to be performed.

The SCRATCH statement does not erase files from the disk. |t changes their designa-
tion to scratch (S) in the Volume Table of Contents (VTOC). By doing this, the prog-
ram makes the areas that contain the files available for other files or for system prog-
rams. A halt will occur if an attempt is made to create a new multivolume file that
will have the same label on disk as an existing single volume file, or an attempt is made
to create a single volume file bearing the same label as an existing multivolume file.
The halt will occur even though the existing file is a scratch file. 1f a REMOVE state-
ment is used, files are erased from the VTOC. The REMOVE statement can also be
used to erase files from the disk. No file it physically scratched or removed from the
VTOC until end of job has occurred.

File Delete Program—$DELET 121

122

CONTROL STATEMENT SUMMARY

Use Control Statements

Scratch all // SCRATCH PACK-name, UNIT-code, LABEL-VTOC
filesin the //END
VTOC.

Scratch only // SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date @
one file in
the VTOC.

Scratch // SCRATCH PACK-name, UNIT-code, LABEL- 3
multiple

files in
the VTOC

filename i
‘filenames’

NO
Remove all // REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA-. or
files from YES

disk @
/I END g NO

Remove // REMOVE PACK-name, UNIT-code, LABEL- 3 filename % DATE-date, DATA- < or
filenames
only the YES

files named
from disk

/I END

@ For each use, the program requires the statements in the order they are listed: SCRATCH, END, or
REMOVE, END.

@ Use this form of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them.

PARAMETER SUMMARY

PACK-name

UNIT-code

LABEL-VTOC

LABEL-filename

LABEL-‘filename,filename,...

DATE-date

oara- {or |

YES

Name of the disk.

Location of the disk. Possible
codes are R1, F1, R2, F2, D1, D2.

Scratch or remove all files
from the VTOC.

Scratch or remove
only the file

Use
named in the VTOC. names
. that

identify
Scratch or remove files in
only the files vTOC

named in the
vToc. ®

Date of the file being deleted.
Date must be a 6-digit number.
EXAMPLE: DATE-062070
means June 20, 1970.

Delete files from VTOC
and/or disk

@These are the names you gave the files when you placed them

on disk.

PARAMETER DESCRIPTIONS

PACK Parameter

The PACK parameter (PACK-name) tells the pro-
gram the name of the disk that contains the files
being deleted. The name you supply in this para-
meter is the one written on the disk by the Disk
Initialization program.

The File Delete program compares the name in the
PACK parameter with the name on the disk to en-
sure they match. In this way, the program ensures
that it is using the right disk.

UNIT Parameter
The UNIT parameter (UNIT-code) tells the pro-
gram the location of the disk containing the files
being deleted. Codes for the possible locations
are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on

5445 drive two

LABEL Parameter
The LABEL parameter identifies the files you want
to delete from the disk. lts form depends on the
files you are deleting:

Form Files Deleted

LABEL-VTOC All of them.

LABEL-filename Only the file that is
named. The name can
apply to more than one
file. If it does, all of
those files are deleted
unless you use a DATE
parameter to identify a
particular one.

File Delete Program—$DELET 123

Form Files Deleted
LABEL-‘filename,filename,...’ -

Only the files that

are named. A name
can apply to more
than one file. Ifit
does, all of those files
are deleted. You can
list as many filenames
as the statement can
hold; the statement
length, however, is
restricted to 96 char-
acters. Additional
REMOVE or
SCRATCH statements
may be used for ad-
ditional filenames.
The maximum num-
ber of files that can be

deleted in one run is 40.

DATE Parameter

124

The DATE parameter can only be used with
LABEL-filename. The DATE parameter (DATE-
date) applies to two or more files that have the
same name. |t tells the program the date of the
one you want to delete.

Every file on disk has a date, which is given to the
file at the time it is created. When two or more
files have the same name, the dates are used to
tell one file from another.

If the pack has more than one file with the name you
list in the LABEL parameter, they will all be deleted
unless you use the DATE keyword and parameter to
indicate a particular file. If the DATE keyword is
used, only one filename can be given in the LABEL
parameter for that control statement.

The date is a 6-digit number: two digits for day,
two for month, and two for year. Day, month,
and year can be in one of two orders: (1) month,
day, year, and (2) day, month, year. For example,
061870 and 180670 both mean June 18, 1970.

In the DATE parameter, be sure to specify day,
month, and year in the same order as they were
specified when you placed the file on disk.

DATA Parameter

The DATA parameter lets you remove the files
specified directly from the disk as well as from
the VTOC.

If YES is coded in this parameter, the file specified
will be removed from the disk and any reference to
itin the VTOC will be removed. In addition, a
message will be printed on the system log device for
each file removed from the disk in this format:

'‘DATA REMOVED FOR FILE XXXXXX
DATE 000000’

DATA-YES should only be used if file security is
required. The time needed to remove the data is
much greater than the time needed to remove the
VTOC entry.

If NO is coded in this parameter, the file specified
will not be removed from the disk. However, any
reference to it in the VTOC will be removed. If

this parameter is not used, DATA-NO is assumed.

OCL CONSIDERATIONS EXAMPLES
The following OCL statements are needed to load

the File Delete program: Deleting One of Several Files Having the Same
Name
// LOAD $DELET code Figures 35, 36, and 37 are examples of the OCL
// RUN statements and utility control statements needed
to delete one of several files having the same name
The code you supply depends on the location of the as desctibed in the following situation.
disk containing the utility program. The codes
are as follows: Situation
. Assume that three files on a removable disk have
Code Meaning the same name: INVO1. The dates of these files
) are 6/16/70, 8/18/70, and 11/15/70. You want to
R1 Removable disk on delete the version dated 6/16/70.
drive one
F1 Fixed disk on drive
one
R2 Removable disk on
drive two
F2 Fixed disk on drive
two
1 4 8 12 16 20 24 28 32 36 40 a4 48 52 56 60 64 68 72
€111 |
//| [LoiAlp] #DEILIETT], [F
/\/| RU
Explanatioh:

® File Delete program is loaded from the fixed disk on drive one.

Figure 35. OCL Load Sequence for File Delete

1 4 8 12 6 20 24 28 32 36 40 44 48 52 56 60 64 68 72
7/ SlcIRArH PPl —m; LIAIBEL - [t INNoJA], lu lT-l](l,DlAT‘E-Hbl 1]
Explanation:

® Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

® Because two other files have the name INVO1, the date (061670) is needed to complete the identification
of the file you want to delete (LABEL-INVO1 and DATE-061670).

® The removable disk containing the file to be deleted is on drive one (UNIT-R1).
Figure 36. Utility Control Statements to Delete One Version of a File

File Delete Program—$DELET 125

12 16 20 24 28 32 36 40 44 48 52

72

8
/1 RIEMOVIE] PRk []-1glalgigla] , [JATBJE[L]- T ivvIolal. Juinj: Fr]-TRIa, [olalT]E[-Jefelzle

Explanation:

® A REMOVE statement is used instead of a SCRATCH statement.

® Disk that contains the file being deleted is named 00001
(PACK-00001 in REMOVE statement).

® Because two other files have the name INVO01, the date (061670)
is needed to complete the identification of the file you want to

delete (LABEL-INVO1 and DATE-061670).

® The removable disk containing the file to be deleted is on drive
one (UNIT-R1).

® The YES specification in the DATA parameter will delete all
data from the disk containing information on the specified file.

Figure 37. Utility Control Statement to Delete One Version of a File Using a REMOVE Statement

126

DISK COPY/DUMP PROGRAM-—$COPY
S

The Disk Copy/Dump program has three general uses. The control statements you
must supply depend on the program use.

The program uses and most common reasons for them are as follows:

Program Use Common Reasons
Copy entire contents of one Provide a reserve disk in case something
disk to another. happens to the original disk. Important

disks, such as those containing your libraries
and permanent data files, are normally the
ones you would copy.

Copy a data file from one Any of the following:
disk to another, or from one
area to another on same disk. ® Provide a reserve file in case something

happens to the original file.
® Move a file to a larger disk area.

® Re-organize the data portion of an in-
dexed file. (Data in the copy of the file
is re-organized; the original file is un-
changed.)

® Delete records from a file. (Records are
omitted from the copy of the file; the
original file remains unchanged.)

Print all or part of a data file. Provide a printed copy of the records in a .
file, perhaps for use in checking the records
for errors.

The OCL sequence used to load the program describes the disk file being copied or

printed. If you are copying the file to disk, the file being created must also be des-
cribed in the OCL sequence.

Disk Copy/Dump Program--$CGFY 127

CONTROL STATEMENT SUMMARY

Uses @

Copy an Entire Disk

Part of the File

Control Statements @

// COPYPACK FROM-code, TO-code

/1 SELECT KEY,FROM-'key’

®

/l END
OUTPTX~ DELETE- @ ‘ NO @
Copy a Data File // COPYFILE -or- DISK,{ -or- ‘position,character’,~ REORG- { -or- » \~/WORK-
OUTPUT- oMIT- YES
// END
OUTPTX~ DELETE- NO
Copy and Print // COPYFILE -or- BOTH,! -or- 'position,character',@nEQRG-YES,CDwoRK_ -or-
a Data File OUTPUT- OoMmIT- [YES
/l END
OUTPTX- DELETE- NO
Copy a Data File, // COPYFILE -or- %BOTH, -or- ‘position,character’, ®REORG-YES,®WORK- -or-
But Print Only a OUTPUT- OMIT- YES

NO |
-or-
YES

aor-
// SELECT KEY,FROM-'key’,TO-'key'@
) -or-
// SELECT RECORD,FROM-number
-or-
// SELECT RECORD,FROM-number,TO-number

// SELECT PKY,FROM-'key’ @
-or-
// SELECT PKY,FROM-'key’,TO-key’ @

// END
QUTPTX~,
Print an Entire Data // COPYFILE 3 -or- % PRINT
File QUTPUT-
// END
OQUTPTX-
Print Only a Part {/ COPYFILE 3 -or- % PRINT
of a Data File OUTPUT-

1 SELECT KEY,FROM-key'(®
-or-
// SELECT KEY,FROM-‘key’, TO-'key’ @
-or-
// SELECT RECORD,FROM-number
-or-
// SELECT RECORD,FROM-number, TO-number

/I SELECT PKY,FROM-'key’@
-or-
// SELECT PKY,FROM-'key’, TO-'key’ @

// END

One of these

One of these

1
§ ®

(@

§@

@The program uses include the possible combinations of copying and printing files.

COPYFILE,SELECT,END.

@ Identifies the portion you want to print.

@ Index files with packed keys.

@Needed only if you want to delete a certain type of record. DELETE cannot be used with direct files.

@Applies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

@ For each use, the program requires the control statements in the order they are listed: COPYPACK, END; COPYFILE, END; and

@WORK-YES applies if you are copying the file from one removable disk to another using the same disk drive (drive one). WORK-NO
applies if you are copying the file from one area to another on the removable disk on drive one.

128

PARAMETER SUMMARY

COPYPACK Statement
FROM-code

TO-code

COPYFILE Statement @

OUTPUT-DISK
OUTPUT-PRINT

OUTPUT-BOTH @

DISK
OUTPTX- § PRINT (
? BOTH)

DELETE-'position,character’
-0r-
OMIT-'position, character’

REORG-NO@
reonsves(D) (8)
WORK-NO @

WORK-YES@

SELECT Statement
KEY T
{ PKY} ,FROM-"key

KEY s ,) ,
{PKY },FROM- key', TO-'key

J

RECORD,FROM-number

RECORD,FROM-number,
TO-number

Location of disk to be copied. Possible codes are R1, F1, R2, F2, D1, D2,

Location of disk to contain the copy. Possible codes are R1, F1, R2, F2, D1, D2.

Copy the file from one disk to another, or from one area to another on the same disk.@

Print the entire file or only part of the file.@

Copy the file from one disk to another, or from one area to another on the same disk.@
Also print the entire file or only part of it.

Printed output will be displayed in hexadecimal values.

These parameters are optional. It means that all records with the specified character in the speci-
fied record position are deleted. DELETE causes deleted records to be printed. OMIT causes
deleted records not to be printed. Position can be any position in the record (the first position

is 1, second 2, and so on). The maximum position is 9999.

Indexed files only. Copy records in the same way as they are organized in the original file
(the file from which the records are copied).

Indexed files only. Reorganize the records so that the records in the data portion of the
file are in the same order as their keys are listed in the index.

Required for copying a file from one area to another on a removable disk on drive one (R1 or D1).
It means: do not use a work area.

Required for copying a file from one removable disk on drive one to another removable
disk on that drive. It means: use a work area on the fixed disk on drive one or on the
removable disk on drive one if the file being copied is on the 5445. R1 must have a
minimum of 198 contiguous unused tracks.

Indexed files only. Print only the part of the file from the record key that is specified
in the FROM parameter to the end of the file.

Indexed files only. Print only the part of the file between the two record keys that are
specified in the FROM and TO parameters (including the records indicated by the
parameters). To print only one record, make the FROM and TO record keys the same.
Print only the part of the file from the relative record number specified in the FROM
parameter to the gnd of the file.

Print only the part of the file between the relative record numbers indicated by the
parameters (including the records indicated by the parameter). To print only one record, the
FROM and TO record keys should be the same.

Disk Copy/Dump Program—$COPY 129

In the OCL load sequence, you indicate which file is to be copied or printed. For files being copied, you must also indicate
whether the file is being copied from one disk to another or from one location to another on the same disk.

REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES

is required.
@WORK-NO is assumed if you omit the WORK parameter.

If halt UC3CCS occurs, indicating that there is not enough core available to execute the job, consider the following:

1. If you have OUTPUT-BOTH, change to OUTPUT-DISK.

2. If you have REORG-YES, change to REORG-NO.

3. If running on a DPF system, use a larger partition if possible.

130

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK)

The COPYPACK statement is used to copy the con-
tents of one disk to another. It has two parameters:
FROM and TO. They tell the program the locations
of the two disks on the disk unit.

The FROM parameter (FROM-code) indicates the
location of the disk you are copying. The TO para-
meter (TO-code) indicates the location of the disk
that is to contain the copy. The FROM and TO
codes must be for the same type disk drive. You
cannot copy a 5444 pack from or to a 5445 pack.

Codes for the possible locations are as follows:

Code Meaning

R1 Removable disk on 5444 drive one
F1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two
F2 Fixed disk on 5444 drive two

D1 Removable disk on 5445 drive one
D2 Removable disk on 5445 drive two

Copying Entire Disk

When copying a disk, the Disk Copy/Dump program
transfers the contents of the disk to another disk.
The content of the two disks will be the same, except
for the disk names and alternate track information
which may be different.

The disk you are copying can contain libraries or data
files or both. The disk that is to contain the copy
must not contain libraries, temporary data files, or
permanent data files.

The program can copy the contents of one removable
disk to another using one disk drive. The drive
however, must be drive one when using the 5444
disk. (The system pack and the pack from which

the Disk Copy/Dump program is loaded must be

F1.)

To do this the program needs 20 tracks on the fixed
disk on drive one (5444 disk). It fills this space with
information from the disk you are copying. Then it
prints a message telling the operator to mount the
other removable disk (the one to contain the copy)
on drive one. After transferring the information

from the fixed disk to the removable disk, the program
prints another message telling the operator to remount
the disk you are copying. The program repeats this
procedure until all information has been transferred.

Until the contents of the disk is completely copied
on the new disk, three addressing portions of the
new disk are changed to prevent accidental usage
of a partially filled disk. Therefore, if the copying
process is stopped before it is completed, the pack
is unusable. You can restart the copying process
by reloading the Disk Copy/Dump program, or
you can resotre the disk by reinitializing.

After a successful copy, the copy program prints
a message:

COPYPACK IS COMPLETE

Note: If you copy a disk containing an active
checkpoint, that checkpoint will exist on both

the FROM and TO disks. When one of the two
active checkpoints is utilized to restart the check-
pointed program, care must be taken to ensure that
the job is not restarted a second time. To ensure
that this will not occur, it is recommended that you
perform IPL and load Restart ($$RSTR) from the
pack containing the second active checkpoint. If
you then select the controlled cancel option when
the Hbnn halt occurs (nn is the last requested check-
point number), the checkpoint will be activated.

OUTPUT Parameter (COPYFILE)

The OUTPUT parameter is used when copying and
printing data files. It indicates whether you want
the program to copy, print, or copy and print a
file. The OUTPTX parameter can be used to dis-
play printed output in hexadecimal values.

The parameter OUTPUT-DISK means to copy the
file; CGUTPUT-PRINT means to print the file; and
OUTPUT-BOTH means to copy and print the file.

The output file must be a new file unless the file
you are copying over is a temporary file, in which
case, the following rules apply:

1. If RECORDS were used to create the tem-
porary file, then the COPYO file card must
specify RECORDS and LOCATION.
RECORDS must be equal to the number
used to create the original file.

Disk Copy/Dump Program—$COPY

131

2. 1f TRACKS were used to create the
temporary file, then the COPYO file card
must specify TRACKS and LOCATION.
TRACKS must be equal to the number
used to create the original file.

Copying Files

The Disk Copy/Dump program can copy a file from
one disk to another or from one area to another on
the same disk.

The Disk/Copy Dump program cannot be used
to copy a single volume file to a multivolume
file or one volume of a multivolume file to a
single volume file.

The OCL load sequence for the Disk Copy/Dump
program indicates (1) the name and location of the
file being copied, and (2) the name and location of
the copy being created. (See OCL Considerations
in this section.)

The program can copy a file from one removable
disk to another using one disk drive. The drive,
however, must be drive one. (See description of
the WORK parameter for more information.)
(The system pack and the pack from which the
Disk Copy/Dump program is loaded must be F1.)

In copying a file, the program can omit records.
(See the description of the DELETE parameter
for more information.)

Printing Files

The program can print all or part of a data file.
To print only part, the program needs a SELECT
control statement.. (See the description of the
SELECT control statement parameters in this
section.) If you do not use a SELECT statement,
the entire file is printed.

If you use SELECT or REORG, records from in-
dexed files are printed in the order their keys
appear in the index portion of the file; otherwise,
they are printed as they appear in the file. For
each record, the program prints the record key
followed by the contents of the record.

Records from sequential and direct files are print- -
ed in the order they appear in the file. For each
record, the program prints the relative record
number followed by the contents of the record.

132

The program uses as many lines as it needs to print
the contents of a record. Appendix A lists the
hexadecimal numbers for characters in the standard
character set.

The following is an example of the way the program
prints hexadecimal numbers using OUTPTX:

ABCDE GHIJ 12345

CCCCCBCCCDFFFFF4444444
123456789 1123450000000

The hexadecimal number B6 represents a character
that has no print symbol.

After printing the last record, the printer triple
spaces and prints the following message:

(number) RECORDS PRINTED

DELETE Parameter (COPYFILE)

In copying a data file, the Disk Copy/Dump program
can omit records of one type. The DELETE para-
meter identifies the type of record. Use of the
DELETE parameter is optional. If you do not use
it, no records are deleted.

The form of the parameter is DELETE-'position,
character’-. Position is the position of the character
in the records. Character is the character, except
for apostrophes, blanks, or commas, that identifies
the record. For example, with the parameter
DELETE-“100,R’, all records with an R in position
100 are deleted. By specifying the hexadecimal
code for the character, any character (including
apostrophes, blanks, commas, and packed data)
can be used to identify the records to be deleted.
For example, with the parameter DELETE-'100,
X40’, all records with a blank (hexadecimal 40)

in position 200 are deleted.

Deleted records are always printed. |f you are
both copying and printing a data file, deleted
records are printed with the other records that
are printed. The deleted records are preceded
by the word DELETE,

The OMIT keyword can be used instead of
DELETE. The deleted records are not printed
if OMIT is used.

REORG (Reorganize) Parameter (COPYFILE)

In copying an indexed file, the program can
reorganize the file, such that the records in the
data portion are in the same order as their keys in
the file index. The REORG parameter tells the
program whether or not to reorganize the file.

REORG-YES means to reorganize. REORG-NO
means not to reorganize. REORG-NO is assumed
if you omit the parameter.

If you tell the program to reorganize the file, the
reorganization applies to the copy of the file
rather than the original file. The original file is
not affected.

Reorganization (REORG-YES) is required when
you are both copying and printing an indexed
file (OUTPUT-BOTH).

WORK Parameter (COPYFILE)

The WORK parameter applies to copying a data
file from (1) removable disk to another using

the same disk drive (WORK-YES), or (2) one
area to another on a removable disk on drive one
(WORK-NO). It tells the program whether or not
to use a work area on the fixed disk on drive one.

The parameter WORK-YES means to use a work
area. WORK-NO means not to use a work area.
WORK-NO is assumed if you omit the WORK
parameter.

Work Area

If you have only one disk drive, a common use of
the Disk Copy/Dump program might be to copy
a file from one removable disk to another. To do
this, the program must use a work area on the
fixed disk.

If you are copying on 5445 drive one, the work
area will be on R1. R1 must contain a minimum
of 198 contiguous unused tracks. It is recommend-
ed, however, that R1 contain no files or libraries

as the number of pack changes on D1 will decrease
with an increase in work area space. You cannot
copy split cylinder files from D1 to D1 using
WORK-YES.

In copying the file, the program fills the work
area with records from the file you are copying.
Then it prints a message telling the operator to
mount the other removable disk (the one to con-
tain the copy) on drive one. After transferring
the records from the work area to the removable
disk, the program prints another message telling
the operator to remount the disk containing the
file you are copying. The program repeats this
procedure until all records have been transferred.

If you have two disk drives, you can still use the
same drive to copy a file from one removable disk
to another. The drive, however, must be drive one.

You can copy a file from one area to another on the
same disk. If you do, and the disk is a removable
disk that you plan to mount on drive one, use the

WORK-NO parameter. This keeps the program from

using a work area on the fixed disk when it transfers
the file from one area to the other.

When using WORK-YES, the input and output files
must have different labels, locations, or pack names.
It is good practice to have different pack names on
all packs in an installation.

SELECT KEY and SELECT PKY Parameters
(SELECT)

The SELECT KEY and SELECT PKY parameters
apply to printing part of an indexed file. The
SELECT PKY parameter applies to printing part
of the index file which contains packed keys. The
parameters are FROM and TO.

The FROM parameter (FROM-‘key’) gives the key
of the first record to be printed. The TO para-
meter (TQO’key’) gives the key of the last record to
be printed. The record keys between those two in
the file index identify the remaining records to be
printed. |f you want to print only one record, use
the same record key in both the FROM and TO
parameters.

For example, the parameters FROM-'000100° and
TO-'000199’ mean that records identified by keys
000100 through 000199 are to be printed.

If the file index does not contain the key you

indicate in a FROM parameter, the program uses
the next higher key in the index.

Disk Copy/Dump Program—$COPY

133

You can omit the TO parameter. If you do, the
program assumes that the last key in the index is
the TO key.

You can use fewer characters in the FROM or TO
parameter than are contained in the actual keys;
when keys are packed, however, you must use the
same number of characters as contained in the
actual keys. If you use fewer characters, the pro-
gram ignores the remaining characters in the record
key. The number of characters used in the FROM
and TO parameters need not be the same.

SELECT RECORD Parameters (SELECT)

The SELECT RECORD parameters can apply to any
file, but are normally used for sequential and direct
files. These parameters use relative record numbers
to identify the records to be printed.

Relative record numbers identify a record’s location
with repsect to other records in the file. The rela-
tive record number of the first record is 1, the
number of the second record is 2, and so on.

The SELECT RECORD parameters are FROM and
TO. The FROM parameter (FROM-number) gives
the relative record number of the first record to

be printed. The TO parameter (TO-number) gives
the number of the last record to be printed. Records
between those two records in the file are also
printed.

For example, the parameters FROM-1 and TO-30
mean that the first thirty records (1-30) in the
file will be printed.

You can omit the TO parameter. If you do, the
program assumes that the number of the last re-
cord in the file is the TO number. If you want
to print only one record, use the same number in
the FROM and TO parameters.

COPYING MULTIVOLUME FILES

When copying multivolume files the first volume
of the input file has to be online when the job is
initiated. The output file must be a new file. If
either condition is not satisfied, a halt occurs.

Maintaining Proper Volume Sequence Numbers

134

To maintain proper volume sequence numbers
when copying a multivolume file, you must either
copy all the volumes of the file in one run or copy

only one volume for each run of $COPY. For
example, if you copy a 3-volume file one volume
at a time (volume 1 in the first run, volume 2 in
the second run, and volume 3 in the third run),
the volumes will retain their original sequence
numbers in the output file. Or if you copy all the
volumes (1, 2, and 3) in the same run, the volume
sequence numbers in the new file will be the same
as in the orginal file. However, if you copy only
volumes 2 and 3 in one run, their volume sequence
numbers will be changed to 1 and 2 in the output
file.

$COPY will insure that all volumes of a multivolume
file have the same date in the following manner.

If only one volume of a multivolume file is copied,
for each run of $COPY, the new file will assume

the same data as the input file. If all volumes, or

as in the example above, volume 2 and 3 of a 3-
volume file are copied in a single run, the new file
will assume the current system data.

Maintaning Correct Relative Record Numbers

To maintain correct relative record numbers when
copying one volume of.a multivolume direct file,
the size of the output volume must be the same as
the size of the input volume. . (If you want to in-
crease the size of a file, you must copy the entire
file.) 1f you copy the first volume of a 2-volume
file and increase the number of records on that
volume, you are also increasing relative record
numbers of all records on the next volume. There-
fore, to maintain the correct relative record num-
bers, output and input volume extents must be
equal if you are copying only one volume of a
multivolume direct file.

Direct File Attributes

If you copy an entire multivolume direct file in
one run, the output file will be given sequential
attributes in the Volume Table of Contents
(VTOC). However, this does not effect file pro-
cessing. A file with either sequential or direct
attributes can be accessed by a consecutive or
random access method. If only one volume is
copied, the direct attributes will be maintained.

Copying Multivolume Indexed Files

If you want to copy a multivolume file, REORG-
YES must be given in the FILE statement. Since
an unordered load to a multivolume indexed load
is not permitted, a REORG-NO will cause a halt

if an out of sequence record is encountered. |f The code you supply depends on the location of

you would prefer not to reorganize the file, it must the disk containing the Disk Copy/Dump pro-

be copied one volume at a time. When copying gram. The codes are as follows:

one volume at a time, the HIKEY on the output

volume must be the same as the HIKEY on the Code Meaning

input volume. Making the HIKEYs the same will

ensure that both the input and output volumes R1 Removable disk on drive one

are the same length and no records will be lost.

When copying one volume of a multivolume file, F1 Fixed disk on drive one

either REORG-YES or REORG-NO may be

specified. R2 Removable disk on drive two
F2 Fixed disk on drive two

OCL CONSIDERATIONS

The following OCL statements are needed to
load the Disk Copy/Dump program, if you are
using the program to copy an entire disk.

// LOAD $COPY, code
// RUN

Disk Copy/Dump Program—$COPY 135

If you are copying or printing files you must (1)
describe the disk files being copied or printed and
(2) describe the file being created. To do this,

the following OCL statements are needed in the load

sequence:

// LOAD $COPY ,code

// FILE NAME-COPYIN,UNIT-code, PACK-diskname, LABEL-filename

// FILE NAME-COPYO, UNIT-code, PACK-diskname, LABEL-filename,

For further information on the
FILE statements, see Disk File
Statement, File Processing

Considerations in Part | of this

TRACKS-number manual.
" { RECORDS-number} RETAIN-code
// RUN
Statement Statement
Entry Considerations Entry Considerations
// LOAD - - // FILE -
$COPY Name of Disk Copy/Dump NAME-COPYO Name Disk Copy/Dump
rogram. program uses to refer to
P output file being created.
code Location of disk con- UNIT-code Location of disk on which
taining Disk Copy/Dump el
rogram. Can be R1, R2 output file is to be created.
',’:1 Fo P N Can be R1, R2, F1, F2,
T D1, D2.
// FILE - - PACK-diskname. Name of disk on which
output file is to be identi-
NAME-COPYIN Name Disk Copy/Dump fied on disk.
program uses to refer to .
file to be copied (input LABEL-filename Name by which output
file). file is to be identified on
disk.
UNIT-code Location of disk containing
file to be copied. Can be TRACKS-number Size of output file ex-
R1, R2, F1, F2, D1, D2. RECORDS-number pressed either as number
of records (RECORDS)
PACK-diskname Name of disk containing or number of disk tracks
file to be copied. (TRACKS).
LABEL-filename Name by which file to be RETAIN-code Designation (temporary,
copied is identiﬂed on disk. permanent, or scratch)
of output file. Can be
T, P, or S.
// RUN -

136

EXAMPLES

Figures 38 through 43 are three examples of the OCL
statements and utility control statements needed to
(1) copy an entire disk, (2) copy a file from one

disk to another and (3) print part of a file. Each

of the three examples has two figures.

1 4 8 12 16 20 24 28 32 1 4 8 12 16 20 24 28 32
/I | /1/] IcloPlPlalc]k TFIROM-[Fl2], FroF IRz
/V/| [LolAD| $icloPl, [FiL /[lEIND
/IR
Explanation:
Explanation:

® The Disk Copy/Dump program is loaded from the fixed disk on
drive one,

Figure 38. OCL Load Sequence for Copying an Entire Disk

® The contents of the fixed disk on drive two (FROM-F2 in

COPYPACK statement) is copied onto the removabie disk on
drive two (TO-R2).

Figure 39. Utility Control Statements for Copying an Entire Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/gl 1]]

/V/| [Liolp| BicoPi|,|FiL

/171 IFlv el INlaME | [clolppe[t ING [ulnl [Ti-F (1] IPlalcic]-|ala), [LNBE(L - MASITIER

/1/] IFLLIE] INAMEL-[clolPiPlols UIN [Ti- R[], [P Inlcixi=BI2], [LnIBIEILL- [BlAlc [kiulp]s [T [RINCIKIS|-51d, RETIAll N|-IP

/\/| RU

Explanation:

® Disk Copy/Dump program is loaded from fixed disk on drive one,

® Input file (OCL sequence):

1.
2,

Narne that identifies file on disk is MASTER (LABEL-MASTER).
Disk that contains the file is the fixed disk on drive one (UNIT-F1).
Its name is A1 (PACK-A1).

® Output file (OCL sequence):
Name to be written on disk to identify the file is BACKUP (LABEL-BACKUP).

1.
2.

3.
4,

Disk that is to contain the file is the removable disk on drive one (UNIT-R1).
Its name is B2 (PACK-B2). :

The file is to be permanent (RETAIN-P),

The length of the file is 50 tracks (TRACKS-50).

Figure 40. OCL Load Sequence for Copying a File from One Disk to Another

Disk Copy/Dump Program—$COPY 137

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/17| IclolPlYIFh [LE] jouiTPiT-oli Isik
/|/| END:
Explanation:
® The COPYFILE statement tells the program to create the output

file using all the data from the input file. The output fileisa

copy of the input file.
Figure 41. Utility Control Statements for Copying a File from One Disk to Another
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/¢
/|7 [LiojAlD| @|clolPiy], |FIL
/1/] [F{LILEE| NAMEI-ICIOPM|I N[, JUN\ [T|-RIL/ [PIAICK - BI2, [UABIE[L |- [BIAICIKIUIP]

/| R

Explanation:
® Disk Copy/Dump program is loaded from the fixed disk on drive one.
® |nput file (OCL sequence):

1. Name that identifies the file on disk is BACKUP (LABEL-BACKUP).

2. Disk that contains the file is the removable disk on drive one (UNIT-R1).

Its name is B2 (PACK-B2).
Figure 42. OCL Load Sequence for Printing Part of a File

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
/17T TclolPl[H1 [Te] To[urlPlo-PRIIN L
/\/| SELEKT] KEEM, FIROM-I [ApaMS! |, [tlol- BIAKER]
|/ IEIND
Explanation:

® The file is being printed (COPYFILE statement).

® The file is an indexed file. The part being printed is identified by the record
keys from ADAMS to BAKER in the index (SELECT statement).

Figure 43. Utility Control Statements for Printing Part of a File

138

DUMP/RESTORE PROGRAM — $DCOPY
e

The Dump/Restore program ($DCOPY) is a utility program used with the IBM
System/3 Model 10 Disk System control program. The $DCOPY program allows
the user to copy or dump the entire contents of a disk onto tape. The tape then
serves as a back-up copy in case something happens to the information on the disk.
The disk can at any time be restored to its original contents by transferring informa-
tion back from the tape. Important disks, such as those containing libraries and
permanent data files, are normally the ones copied. The tape contains a copy of
the data on all tracks, including those on cylinder 0, except for the alternate and

CE tracks.

CONTROL STATEMENT SUMMARY

Uses Control Statements @

Copy an entire // COPYPACK™—’Y TO-code [, PACK-name]
disk to tape or FROM-code
restore an entire // END @

disk from tape.
@ Control statements are required in the order they are listed.
@ There can be only one COPYPACK statement in a program.

END statement must appear only once in a program since it is a delimiter
indicating end-of-job.

PARAMETER SUMMARY

COPYPACK Statement

Parameter Meaning

FROM-code Location of disk to be copied. Possible codes are F1, R1,
F2,R2,D1, D2.

TO-code Location of disk to receive the copy. Possible codes are F1,

R1, F2,R2,D1, D2. See Figure for relationship of FROM
and TO locations.

PACK-name Name of the disk pack being used.

Dump/Restore Program—$DCOPY 139

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPYPACK)

The COPYPACK statement is used to copy informa-
tion from disk to tape or from tape to disk.

The FROM parameter (FROM-code) indicates the
location of the disk being copied. The TO
parameter (TQO-code) indicates the location of disk
to receive the copy.

Codes for passible locations of FROM and TO
parameters are:

Code

F1
R1
F2
R2
D1
D2

Location

5444, fixed disk on drive one
5444, removable disk on drive one
5444, fixed disk on drive two
5444, removable disk on drive two
5445, disk drive one

5445, disk drive two

See Figure 44 for the relationship of FROM and TO
locations.

5444 Disk DUMP COPY TO>
(F1, R1, F2, or R2)
and
<RESTORE COPY TO
DUMP COPY TO>
5445 Disk and
(D1 orD2)
<RESTORE COPY TO

Notes:

1. When copying disk to tape (dump), any pack may be specified as input including the IPL pack or program pack.

2. When copying tape to disk (restore), the disk must not be the IPL pack, the program pack, or another pack con-
taining libraries, temporary data files, or permanent data files.

3410/3411 Tape
(T1, T2, T3, 0r T4 as
indicated on // FILE
statement)

3410/3411 Tape
(T1, T2, T3,0or T4 as
indicated on // FILE
statement)

3. The disk receiving the copy at restore time must be the same type (5444 or 5445) and at least as large as the

original disk.

140

Figure 44. Relationship of Disk to Tape Drives when Using SDCOPY

PACK Parameter (COPYPACK)

The pack name specified will be checked against the
actual name of the pack. A halt occurs if they are

not the same. |f the parameter is not used, no check-

ing will occur.

OCL CONSIDERATIONS

The $DCOPY utility requires the following OCL
statements:

// LOAD, $DCOPY, code
// FILE parameters
// RUN

The code identifying the location of the $DCOPY
program can be one of the following:

Code Location
R1 Removable disk on 5444 drive one
F1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two
F2 Fixed disk on 5444 drive two

FILE Statement When Copying From Disk to
Tape (Dump)

For 7-track tape:

T1
nnnnnn s

// FILE NAME-BACKUP UNIT- 1T_§ LREEL- {\,

T4

filename on tape

‘character string’

[LABEL- 3 mimddyy $

L1 [DATE. } ddmmyy

code
[,RETAIN- 3 000 %] [,BLK L-block length]

[,RECL-record length] [, RECFM-F]

LEAVE
[LEND- < REWIND

UNLOAD

200
556 »]
800

] [LDENSITY-

,CONVERT-ON[,PAR ITY-ODD] [, TRANSLATE-OFF]

For 9-track tape: T1

nnnnnn
// FILE NAME-BACKUP, UNIT- ;g

LREEL-
T4

filename on tape

mmddyy 2
‘character string’

[LABEL-} ddmmyy

% 1 [,DATE-%
code
[,RETAIN-’ 00 2 1 [BLKL-block length]

[,RECL-record length] [,RECFM-F]

LEAVE 800
[LEND-< REWIND >] [,DENSITY- 3 1600 %]
UNLOAD

FILE Statement When Copying From Tape to
Disk (Restore)

For 7-track tape:

T1
T2 nnnnnn
// FILE NAME-BACKUP,UNIT- REEL- {n |
T3
T4

filename on tape mmdd
[,LABEL-’ P vy % 1

‘character string’ i] [DATE- ; ddmmyy

[,BLKL-block length] [,RECL-record length]

| LEAVE 200
[,RECFM-F] [LEND-{ REWIND »] [,DENSITY-{ 556
UNLOAD 800

,CONVERT-ON [,PARITY-ODD] [, TRANSLATE-OFF]

Note: The DENSITY parameter must be the same
number as specified for the dump.

For 9-track tape:

T1

nnnnnn
// FILE NAME-BACKUP,UNIT- g %

REEL- {
T4

filename on tape mmddyy) _
[,LABEL- ; ‘character string’ i] LDATE:- 3 ddmmyy %]

[,BLKL-block length] [,RECL-record length]
LEAVE

[,RECFM-F] [,END-< REWIND]
UNLOAD

Dump/Restore Program—$DCOPY 141

b

Statement Entry

Considerations

// LOAD
$DCOPY

code

/! FILE
NAME-filename

UNIT-code

nnnnnn
REEL- { NL

filename on tape
‘character string’

LABEL- {
DATE-date

RETAIN-code

BLKL-block length
RECL-record length

RECFM-code (record format)

END-position of tape after
processing

200
DENSITY-{ 996
800

1600

Name of Dump/Restore program.

Location of disk containing Dump/Restore program. Can be R1, R2, F1, F2.

Filename entry must be BACKUP.

The UNIT parameter is required. Code indicates tape unit. Allowable codes are:
T1,T2,T3, T4

The REEL parameter is optional when copying from disk to tape; it is required
when copying from tape to disk.
nnnnnn Volume is identified by coding a maximum of six characters,
excluding commas, apostrophes, and blanks.
NL Not labeled. The first record of an unlabeled tape must not be
an 80-byte record beginning with VOL1.
If REEL parameter is not specified, standard labels are assumed.

The name of the tape file as it exists in the header label.
Format can be mmddyy or ddmmyy.

Specifies number of days (000-998) a file should be retained. RETAIN
parameter does not apply when copying from tape to disk. Default value
when copying from disk to tape is 000.

Block length and record length must be equal and one of the following values:

Note: The tape record created is two bytes longer than specified since a two-
byte logical record number is appended to the tape record. Defaults are
underlined.

Disk Length in Bytes Number of Tracks
5444 3072 1/2 track
6144 1 track
12288 2 tracks
5445 2560 1/2 track
5120 1 track
10240 2 tracks

RECFM entry must be fixed length (F).

END entries can be LEAVE, REWIND, or UNLOAD. Default is UNLOAD.

800 is the default when using 7-track tape; 1600 is the default value when using
9-track tape. DENSITY parameter does not apply for the 9-track Restore opera-
tion. If correct density is not specified (or defaulted) for the 7-track Restore
operation, tape errors will occur.

142

Parameter Summary (Con’t)

Statement Entry

Considerations

CONVERT-ON

PARITY-ODD

TRANSLATE-OFF

// RUN

For 7-track tape, CONVERT-ON must be specified; CONVERT-ON must
be used for $DCOPY or data will be lost. Default is OFF. CONVERT-ON

is not a valid parameter for 9-track tape.

Should be specified if 7-track tape is used. PARITY-ODD must be used
for $DCOPY or data will be lost. Default is ODD.

Do not use TRANSLATE-ON since TRANSLATE-ON and CONVERT-

ON are mutually exclusive (cannot specify both as ON). TRANSLATE-
ON specifies that a 64-character subset of EBCDIC is being used; characters
outside the subset (such as X'00’) are lost — translated without error
indication to something that is not meaningful. Default is OFF.

For a detailed description of the OCL statements, see Part /, OCL Statements.

Messages for DUMP/RESTORE

Note: The following messages will be printed if the 1403 is the logging device and is not allocated to the other

partition.

Message

Meaning

Copypack is complete

This message is printed when the
specified pack has been dumped
to tape or when the tape has
been restored to disk.

n tracks not restored at

CC/ss

CCC/hh/rr

This message is printed when
tracks have not been restored
on the 5444 or 5445 disk. n =
the number of tracks rot res-
tored. CC/SS is the disk
address for a 5444 disk.
CCC/hh/rr is the disk address
for a 5445 disk.

nn tape errors occurred
pack is not completely
restored.

This message is printed when
tape errors have occurred or the
restored pack has missing data.
nn = the number of tape errors.
See previous messages for loca-
tion of tracks not restored.

Dump/Restore Program—$DCOPY

143

EXAMPLES

The parameters of the FILE statement vary depend-

ing upon whether the copy is to or from the tape.

n FROM disk TO tape:

Only required parameters are included in this ex-

ample. See OCL Considerations for listing of

possible parameters.
OCL STATEMENTS

1 4 8 12 16 20 24 28
/e

LAD Bloeblelyl, IF
/l/| AIILE W ~IBACKIMP, [UNI T[T |
// R%ﬂ

Explanation:

The Dump/Restore program is loaded from the
fixed disk on drive one.

|

The file name is always BACKUP.

The copy will go to tape unit two.

— Tape unit two is a 9-track drive.

FROM tape TO disk:

All possible parameters are included in this example.

OCL STATEMENTS

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
/¢ |

/U LlgAlD $pebolay!, AL
/i/| [FULE INAME - BACIKUR, (UNI T]- TR, IREEL]-TAPER, ILABEL-KEEPS, DATEA3L1173),
/ ALK | RECI-Ie/dld], IRECFM-IF, [EIND-uNILOMD!, (clon ON,
PAR | TY]-00D), TIRIANS |LATTE-0[A H

/V| [RU

Explanation: — TAPE2 is the label of the tape volume.

fixed disk on drive one.

The file name is always BACKUP,

Tape unit two contains the disk copy.

Tape unit two is a 7-track drive.

144

The Dump/Restore program is loaded from the

KEEPS is used in the header label.

— The date is March 11, 1973.

— Block and record lengths are 6144 and indicate
that the disk device is a 5444.

CONVERT-ON indicates data conversion.

|

END, PARITY, and TRANSLATE parameters
given are the same as the default values.

The following control statements show the use of
all possible parameters.

1 3

5 6 7 8 9 101 |2I3M15IG|7IB19202l__2_2'232l’152627282930 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

/T loPPel] [FRoMAE! | PINCK- I IMEoL]
/ EMF

The COPYPACK statement tells the program to
copy an entire disk to tape.

The copy is from the fixed disk on drive one.

|

FIXED 1 is the name of the pack being used. The
program will verify that the specified pack is
mounted.

Note: These utility control statements would be used
with the OCL shown in example 1.

Dump/Restore Program—SLCOPY

145

146

LIBRARY MAINTENANCE PROGRAM—SMAINT
S

The Library Maintenance program has five functions:
Function Meaning

Allocate Create (reserve space for), delete, re-organize, and
change the sizes of libraries.

Copy Place entries in, and display the contents of, libraries.
Delete Delete library entries.

Modify Modify source library entries.

Rename Change the names of library entries.

The control statements you must supply depend on the function you are using.

LIBRARY DESCRIPTION

The source library is an area on disk for storing procedures and source statements.
Procedures are groups of OCL statements used to load programs. The statements
can be followed by input data for the programs. (Procedures for utility programs
can, for example, contain utility control statements.) Source statements are sets
of data, the most common of which are RPG 1l source programs and Disk Sort
sequence specifications.

The object library is an area on disk for storing object programs and routines. Object
programs are programs and subroutines in such a form that they can be loaded for
execution. (They are sometimes called executable object programs.) Routines are
programs and subroutines that need to be link-edited into object programs before they
can be loaded for execution. (They are sometimes called nonexecutable object
programs.)

Location of Libraries on Disk
Libraries can be located anywhere on disk. However, the location of a source
library with respect to an object library is always the same:

User Area | Source Library Object Library

4)

Track O Upper Boundary

User Area

U ———

The boundaries of a source library are fixed. They can be changed only by the
allocate function of the Library Maintenance program. The upper boundary of an
object library, however, can be moved as additional space is needed when entries

are placed in the library. This happens only if space is available following the library
and if the entries being placed beyond the normal boundary are not permanent
entries.

Library Maintenance Program—$MAINT 147

148

Organization of Library Entries

Object Library

Entries are stored in the object library serially; that is, a 20-sector program occupies
20 consecutive sectors. Temporary entries follow all permanent entries in the object
library.

If necessary, the upper boundary is changed to allow more space for temporary
entries. The upper boundary of the library is extended to the end of the pack or to
the first temporary or permanent file, allowing the maximum amount of space for
the temporary library entry. At the successful completion of the copy, the upper
boundary is returned to its original position or to the end of the last temporary
entry. If the copy was not completed successfully, the upper boundary may
remain extended. When a permanent entry is placed in the library or the library is
reorganized, all temporary entries are deleted and the upper boundary returns to
its original location. Permanent entries cannot exceed the original upper boundary.

Gaps can occur in the object library when an entry is deleted. The associated directory
entries will point to these gaps. When the Library Maintenance program places a new
entry in the library, it searches the directory for a gap that has the same number of
sectors, or the fewest number of sectors over the number required by the new entry.

If the entry is smaller than the gap, the last part of the gap will not be pointed to by a
directory entry. Since this gap has no directory entry, it will not be used until the
library is reorganized.

If the number of unusable sectors becomes excessive, the library should be re-
organized. In reorganizing entries, the Library Maintenance program deletes
temporary entries and shifts entries so that gaps do not appear between them. This
makes more sectors available for use.

Source Library

The source library differs from the object library in that entries within the source
library need not be stored in consecutive sectors. An entry can be stored in many
widely separated sectors with each sector pointing to the sector that contains the
next part of the entry. When an entry is placed in the source library, it is placed in
as many sectors as required regardless of where the sectors are located within the
library.

The boundary of the source library cannot be expanded; therefore, an entry must
fit within the available library space. To provide as much space as possible with-

in the prescribed limits of the source library, the system compresses entries. That
is, all duplicate characters and blanks are removed from entries. Later, if the entries
are printed or punched, the duplicate characters and blanks are re-inserted.

When the size of the source library is changed or the source library is reorganized,
all temporary entries are deleted.

Library Directories

The program creates a separate directory for each library. Every library entry has a
corresponding entry in its library directory. The directory entry contains such infor-
mation as the name and location of the library entry. The first character of a
directory name must be an alphabetic character. Maximum length is six characters.
The program also creates a system directory, which contains information about the
size and available space in libraries and their directories.

Organization of this Section
The five functions of the Library Maintenance programs are described separately.
Every description contains the following:

1. List of specific uses.

2. Control statement summary indicating the form of control statement needed
for each use.

3. Parameter descriptions explaining in detail, the contents and meanings of the
parameters,

4. Function descriptions explaining the details of each function.
Following the function descriptions are:
1. OCL considerations

2. Examples

Library Maintenance Program—$MAINT 149

ALLOCATE FUNCTION

ALLOCATE USES

Create (reserve space for) libraries.
Change the sizes of libraries.
Delete libraries.

Reorganize libraries.

ALLOCATE CONTROL STATEMENT SUMMARY

/! ALLOCATE TO-code,SOURCE-

number

,OBJECT-

number

R

NO

SYSTEM- ,DIRSIZE-number WORK-code

Use @

Create
Source Change Size
Library

Delete

Reorganize

Create
Object Change Size
Library

Delete

Reorganize

Parameter Needed @
TO-code,SOURCE-number, WOR K-code@
TO-code,SOURCE-number, WORK-code
TO-code,SOURCE-0

TO-code,SOURCE-R,WORK-code

TO-code,OBJECT-number, SYSTEM- ; NO %

YES
TO-code, OBJECT-number,WORK-code (&)
TO-code,OBJECT-0

TO-code,OBJECT-R WORK-code @

library and changing the size of the object library),

@ You can indicate a source library use, any object library use, or uses involving both libraries (for example, deleting the source

If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be on the same disk:) Also, use
only one WORK parameter if both uses require a WORK parameter.

@ The WORK parameter is needed only if the disk contains an object library that you are not deleting.

@ The WORK parameter is not required if this is a compress in place.

150

Library Maintenance Allocate Restrictions

This program has restrictions and operating condi-
tions that the user must be aware of when maintain-
ing libraries.

Allocation of Disk Space

The Library Maintenance program allocates disk

space for each of the following functions:

— Allocate a library

— lIncrease the size of a library

— Reorganize a library

— Dynamically extend an object library to copy
temporary entries to the library

— Sort a directory before it is printed

— Modify a source library entry

The space allocated by the program is the first con-
tiguous space large enough for the function to be
performed. The Library Maintenance program will
use as much space as is available to the end of the
pack or to the first temporary or permanent data
file, removing all scratch files in this area. If within
a single load of the program, there are functions
performed which require more than four disk areas
to be allocated, a halt will occur. The Library
Maintenance program must be reloaded to continue.

Removing Temporary Entries

When a library is reorganized, its size is changed, or
it is moved, all temporary entries in that library are
deleted. This applies to both the source and object
libraries.

Library Restrictions

The Allocate function cannot reference the libraries
on the pack from which the Library Maintenance
Program or the system was loaded. For example, if
the system was loaded (IPL) from F1 and the Library
Maintenance Program was loaded from R1, the source
or object libraries on F1 and R1 cannot be referenced
on an ALLOCATE statement.

Moving the Object Library

When allocating or reallocating the source library on
a pack that contains an object library, the object
library is reorganized and all temporary entries are
deleted.

ALLOCATE PARAMETER SUMMARY

TO-code

SOURCE-number (no
source library on disk)

SOURCE-number (source
library already on disk)

SOURCE-R

OBJECT-number (no
object library on disk)

OBJECT-number (object
library already on disk)

OBJECT-R

DIRSIZE-number

SYSTEM-NO

SYSTEM-YES

WORK-code

Location of disk you are using.
Possible codes are R1, F1, R2,
and F2.

Create a source library. Number
indicates the number of tracks
you want to assign.

Delete or change the size of the
source library. Use depends on
number:

Number Use

0 Delete

Any number
but zero

Change size

Reorganize the source library.
Create an object library. Number
indicates the number of tracks
you want to assign.

Delete or change the size of the
object library. Use depends on
number:

Number Use

0 Delete

Any number
but zero

Change size

Reorganize the object library.

Number of tracks you want for
the directory when creating, re-
allocating, or reorganizing the
object library.

Do not create a scheduler work
area. This will be a program pack.

Create a scheduler work area.
This will be a system pack.

Location of disk containing space
the program can use as a work area.
Possible codes are R1, F1, R2, or
F2.

Library Maintenance Program—$MAINT

151

TO Parameter

The TO parameter (TO-code) indicates the location
of the disk that contains, or will contain, the library.
If the program use involves both libraries, the
libraries must be on the same disk. The TO para-
meter cannot be the same unit from which the
Library Maintenance program or system is loaded.

Codes for the possible locations are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

SOURCE and OBJECT Parameters

These parameters identify library uses:
Parameter Use

SOURCE-number e If the disk contains

OBJECT-number no library, parameter

(number is not zero) means create a library.
Number is the number
of tracks you want to
assign to the library.

e If the disk contains a
library, parameter
means change the
library size. Number
is the number of tracks
you want to assign to

the library.
SOURCE-0 Delete the library.
OBJECT-0
SOURCE-R Reorganize the library.

OBJECT-R

DIRSIZE Parameter

The DIRSIZE parameter allows the user to specify
the size of the object library directory. The number
of tracks specified (1-9), overrides the SYSTEM
parameter in determining directory size. Each track
can contain 288 directory entries. One entry is
needed for the directory, so the formula for the
number of entries in a directory is (t x 288)-1, where
t is the number of tracks. If the DIRSIZE parameter
is omitted, the SYSTEM parameter determines the
directory size.

SYSTEM Parameter

The SYSTEM parameter applies when creating,
changing the size of and reorganizing object libraries.
It tells the program whether you intend to include
system programs in the library. |f system programs
are to be included, a scheduler work area must be
assigned and the directory must be large enough for
all those system programs necessary for program
loading and running (minimum system), and those
necessary for generating and maintaining a system.

Space for the scheduler work area is assigned imme-
diately preceding the object library. If the disk con-
tains a source library, the work area is between the
source and object libraries. For information about
the size of the scheduler work area, see Scheduler
Work Area Size.

The following charts show the results of coding the
SYSTEM parameter for different allocate users.

Creating an Object Library

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Created Three Tracks
SYSTEM-NO Not Created One Track
not coded Not Created One Track

*The directory size is overridden if the DIRSIZE
parameter is coded.

Size of the Work Area
The work area must be large enough to hold the
permanent entries of the source library, object
library, or both libraries-depending on the program
use. |f you are combining uses, such as changing

Changing the Size of or Reorganizing an Object Library
That Contains System Programs

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Retained Not Changed the sizes of both libraries,the work area must be
large enough to hold the contents of both libraries.

SYSTEM-NO Removed Not Changed

not coded Retained Not Changed Use Contents of Work Area

*The directory size is overridden if the DIRSIZE

Object library.
parameter is coded.)

Create a source
library (disk con-
tains an object

. library).
Changing the Size of or Reorganizing an Object Library

That Does Not Contain System Programs Change source Source library and object

library size (disk library.
contains an ob-
ject library).

Parameter Scheduler Work Area Directory Size*

SYSTEM-YES Created Not Changed

Change source Source library.
library size (disk
doesn’t contain

an object library).

SYSTEM-NO Not Created Not Changed

not coded Not Created Not Changed
*The directory size is overridden if the DIRSIZE

. Source librar
parameter is coded. Y

Reorganize
source library

WORK Parameter

Change object Object Iibrary, if not
The WORK parameter (WORK-code) indicates the library size. compress in place.
location of the disk that contains a work area. (see compress in place.)
Library entries are temporarily stored in the work Reorganize Object library, if not

area while the program moves and reorganizes
libraries.

object library. compress in place.

Location of Work Area on Disk
The program uses the first available disk area large
Code Location enough to hold the library, or libraries.

Codes for the possible disk locations are as follows:

R1 Removable disk on drive 1.
Location of Disk Containing the Work Area

F1 Fixed disk on drive 1. The work area can be on either disk on either drive.
R2 Removable disk on drive 2. However, it cannot be the same disk as the one you
F2 Fixed disk on drive 2. specified in the TO parameter. The only require-

ment is that the disk must have an available area

When the WORK parameter is coded on an ALLO-
CATE statement, an additional allocation of disk
space may result (see Allocation of Disk Space).

large enough for the work area. If your system has
two disk drives, the program works faster if the disk
containing the libraries is on a different drive than
the disk containing the work area.

Library Maintenance Program—$MAINT 153

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size
e Minimum: One track.

® Maximum: Number of tracks in the available
area.

o Regardless of the number of tracks you specify,
the first two sectors of the first track are assigned
to the library directory. Additional sectors are
used as needed for the directory.

Placement of Source Library (Disk With an Object
Library)

e The source library must immediately precede the
object library. A disk area large enough for the
source library must follow the object library
because the program moves the object library to
make room for the source library (Figure 45). To
do this, it needs a work area. (See WORK para-
meter) The object library is reorganized and all
temporary entries are deleted.

e If you allocate a source library after deleting it,
the program automatically moves the object
library to make room for the source library. The
starting location of the source library is the pre-
vious starting location of the object library.

Disk Space Before Creating Source Library -

Obiject Library

(30 tracks) (15 tracks Files

Available Space | Customer K

lo7 | 8-37 |+ 3850 —]|

Tracks

Disk Space After Creating Source Library

Source Object Library | Available | Customer
Library (30 tracks) Space Files
(5 tracks) (10 tracks)

0-7 8-12 ! 13-42 43-52 >

Tracks

Figure 45. Moving Object Library to Insert Source Library

154

Placement of the Source Library (Disk Without an Object
Library). The program assigns the source library to
the first available disk area large enough for the
library.

If you allocate a source library after deleting it, the
source library is assigned the same way.

Changing the Size of a Source Library
Any time the program changes the source library
size, it reorganizes both the source and object
libraries and deletes all temporary entries. (See
Reorganizing a Source Library.) To do this, it needs
a work area. (See WORK parameter.)

Making the Source Library Larger
e |f the disk contains an object library space must
be available immediately following the object
library. The program moves the object library to
make tracks available at the end of the source
library (Figure 46).

e If the disk does not contain an object library,
space must be available immediately following
the source library.

Disk Before Tracks Are Added to Source Library

Source Obiject Available | Customer
Library Library Space Files
(10 tracks) | (30 tracks) (15 tracks)

| 07| 817 |—1847~| 4862

Tracks

Disk After Five Tracks Are Added to Source Library

Source Object Available Customer
Library Library Space Files
(15 tracks) | (30 tracks) (10 tracks)
0-7] 8-22 l<—- 23-52 -*l 53-62

Tracks

Figure 46. Increasing Source Library Size

Making the Source Library Smaller

e If the disk contains an object library, the program

moves the end location of the source library to
make the library smaller. The object library is
moved and space becomes available following the
object library (Figure 47).

e If the disk does not contain an object library, the

program moves the end location of the source
library to make the source library smaller.

Disk Before Source-Library Size Was Decreased

Source Obiject Customer
Library Library Files
(15 tracks) (30 tracks)
0-7 |«— 8-22—»} 23-52
Tracks

Disk After Five Tracks Were Taken From Source Library

Source Object Available Customer
Library Library Space Files
(10 tracks) | (30 tracks) | (5 tracks)
07| 817 |«— 1847 4852
Tracks

Figure 47. Decreasing Source Library Size

Deleting a Source Library (SOURCE-0)
The program makes the disk area occupied by the
source library available for other use (disk files)

(Figure 48).

Disk Before Source Library Deleted

Source Object Library Customer
Library (30 tracks) Files

(15 tracks)

|0—7 ! 8-22 ! 23-52 ——-—I
Disk After Source Library Deleted

Auvailable Object Library Customer
Space (30 tracks) Files

(15 tracks)

l 0-7 I..—8-22 ——L___ 23-52 —»I

Figure 48. Deleting Source Library

Reorganizing a Source Library (SOURCE-R)

Reason for Reorganizing the Library. Areas from which
source library entries are deleted are completely re-
used for new entries. If an entry exceeds the space
in such an area, the program puts as much of the
entry as will fit in the area and continues the entry
in the next available area. In this way, the program
efficiently uses library space. This can, however,
decrease the speed at which those entties can be
read from the library. Therefore, if you frequently
add and delete source library entries, you should
reorganize your source library periodically.

Reorganizing the Library. The program relocates entries
so that no entry is started in one area and continued
in another. All temporary entries are deleted. The
program needs a work area. (See WORK parameter.)

Creating an Object Library (OBJECT-number)

Object Library Size
® Minimum: Three tracks including the directory
tracks.

e Maximum: Number of tracks in available area.

e Library Directory: The first three tracks in the
library are reserved for the library directory if the
library is to contain system programs; otherwise,
only the first track is used. |f the DIRSIZE para-
meter is entered, the directory size specified is
used.

Library Maintenance Program—$MAINT 155

e Scheduler Work Area: If the library is to contain

system programs, the space available on the pack
must be large enough to contain a work area for

the Scheduler program (one of the system pro-
grams). The work space is not included in the
number you specify in the OBJECT parameter;

the space is calculated and assigned by the Library
Maintenance program. The amount of space

needed depends on whether DPF (Dual Program-
ming Feature) and/or the inquiry capability is gener-
ated in the supervisor. For non-DPF systems, two
tracks are needed; for DPF systems, four tracks are
needed. The inquiry and checkpoint/restart features
require additional tracks for a Roll-in/Roll-out

area. The number of tracks needed depends on the
main storage size of the system.

Main Storage Size Roll-in/Roll-out Tracks

12K 4
16K 5
24K 6
32K 8
48K 10
64K 13

Placement of Object Library (Disk With a Source Library).

Space for the object library must be available immed-
iately following the source library.

Placement of Object Library (Disk Without a Source

Library). The program assigns the object library to
the first available disk area that is large enough.

Changing the Size of an Object Library (OBJECT-number)

Making the Library Larger. The number of tracks you want

to add must be available immediately following the
object library. The program assigns the additional
tracks to the library. (The starting location of the
library remains unchanged.)

Making the Library Smaller. The program moves the end

156

location of the object library to decrease the library
size. Tracks, therefore, become available following
the library.

Reorganizing the Library. Any time the program changes

the library size it also reorganizes the library and
deletes all temporary entries. (See Reorganizing an
Object Library.) A work area is needed if other
functions are being performed with the reorgani-
zation. (See WORK parameter.) |f not, a work
area is not used. (See Compress in Place.)

Deleting an Object Library (OBJECT-0)

The program makes the disk area occupied by the
object library (and the scheduler work area if this
was a system pack) available for other use.

Reorganizing an Object Library (OBJECT-R)

Gaps can occur between object library entries when
you add and delete entries. By reorganizing the
library, these gaps are removed. When the library is
reorganized, all temporary entries are deleted. A
work area is needed if other functions are being
performed with the reorganization. (See WORK
parameter.) |f not, a work area is not used. (See
‘Compress in Place.)

Compress in Place (OBJECT - gﬁumbe,f)

If an object library is to be reorganized, or the
size is to be changed and this is the only func-
tion to be performed, the object library will be
compressed in place. This means that the lib-
rary will be reorganized with all gaps removed
and all temporary entries deleted without using
a work area. The WORK parameter will be
ignored if supplied.

If, however, a source library function is to be
performed or if the directory size (DIRSIZE
parameter) or the pack type (SYSTEM parame-
ter) is to be changed in conjunction with an
object library function, a work area will be
used. (See WORK parameter.) Compress in
place allows the user with a single-spindle or
half-capacity 5444 disk drive to reorganize

the object library. ;

COPY FUNCTION

COPY USES

Reader-to-Library

File-to-Library

Library-to-Library

Library-to-Printer

Library-to-Card

Library-to-Printer
and-Card

I m— N e A—

Add or replace a library entry. The reader is the system input device, which can be either
the keyboard or a card reader.

Add or replace one or more library entries. A 5444 disk file is the input. Each entry in the
file must have a // COPY statement and a // CEND statement. The file is opened and
accessed consecutively.

Copy one library entry (or those entries with the same name from all libraries).
Copy library entries that have names beginning with certain characters.
Copy all library entries.

Copy minimum system.

Print one library entry (or those entries with the same name from all libraries).
Print library entries that have names beginning with certain characters.

Print all library entries of a certain type.

Print directory entries for library entries of a certain type.

Print entries from all directories including system directory.

Print system directory only.

Punch one library entry (or those entries with the same name from all fibraries).
Punch library entries that have names beginning with certain characters.

Punch all library entries of a certain type.

Print and punch one library entry (or those entries with the same name from all libraries).
Print and punch library entries that have names beginning with certain characters.

Print and punch all temporary or permanent library entries of a certain type.

Library Maintenance Program—$MAINT

167

158

COPY CONTROL STATEMENT SUMMARY: READER-TO-LIBRARY

Add or Replace a Library Entry

T
/] COPY FROM-READER,LIBRARY- ,NAME-name’,TO-code,RETAIN-3 P $

R

;_UO'U(I)

Library Entry

/] CEND @ Must always follow the source or object entry being placed into
the source or object library.

/* or /& statements cannot be present in the entries being copied into the libraries.

COPY CONTROL STATEMENT SUMMARY: FILE-TO-LIBRARY

Add or replace one or more library entries.
3 80 R
// COPY FROM-DISK, FILE-filename,RECL- { 96§ , TO-code,RETAIN- (P

@ // COPY FROM-READER,LIBRARY-O,RETAIN-P,NAME-DECKO1

load module
// CEND
Example
@ // COPY LIBRARY-S,NAME-DECKO02 of Data
. in Disk
) File

source module

/l CEND

@ /IEND

@ Only the LIBRARY and NAME parameters are required. Other parameters are ignored.

@ The // END card is optional as the FILE-TO-LIBRARY copy will recognize the
physical end of the data file and terminate the job.

COPY CONTROL STATEMENT SUMMARY: LIBRARY-TO-LIBRARY

Copy One Library Entry (or Entries with the Same Name from All Libraries)

/I COPY FROM-code,LIBRARY-

»>XTOTL

LL

Copy Library Entries that Have Names Beginning with Certain Characters

S
P

T
/NAME-name, TO-code,RETAIN-<{P >, NEWNAM E-name®

R

T

// COPY FROM-code,LIBRARY-{ O > ,NAME-characters.ALL,TO-code,RETAIN- { P » NEWNAME-characters (1)

R
.ALL

Copy All Library Entries

R

S
P
// COPY FROM-code,LIBRARY-< O /NAME-ALL,TO-code,RETAIN-
z ALLS

Copy Minimum System

// COPY FROM-code,LIBRARY-O,NAME-SYSTEM,TO-code

R

o v~

@ NEWNAME parameter is needed in any of the following cases:

1. If you want the copy to have a different name than the original entry.

2, If you want to replace an entry on the TO disk with an entry from the
FROM disk, but the entries have different names.

3. If you want the names of the copies to begin with different characters

than the names of the original entries, the same number of characters
must be in the NEWNAME parameter as in the NAME parameter.
4, If the FROM and TO packs are the same pack.

Note: Newname cannot be DIR, ALL, or SYSTEM.

Library Maintenance Program—$MAINT

159

160

COPY CONTROL STATEMENT SUMMARY: LIBRARY-TO-PRINTER-AND/OR-CARD

Print and/or Punch One Library Entry (or Entries with the Same Name from All Libraries)

S
P PUNCH
// COPY FROM-code,LIBRARY-{ o »NAME-name, TO< PRINT
R PRTPCH
ALL

Print and/or Punch Temporary and Permanent Library Entries that Have Names Beginning with
Certain Characters

PUNCH
/NAME-characters.ALL,TO- < PRINT

PRTPCH

// COPY FROM-code,LIBRARY-

>PVOTOT®

LL

Print and/or Punch All Temporary and Permanent Library Entries of a Certain Type

, S PUNCH
// COPY FROM-code,LIBRARY-{ © \ NAME-ALL.TO-{ PRINT
g PRTPCH

Print Directory Entries for Library Entries of a Certain Type

S
// COPY FROM-code,LIBRARY- z ,NAME-DIR,TO-PRINT
R

Print Entries from All Directaries Including System Directory

// COPY FROM-code,LIBRARY-ALL ,NAME-DIR,TO-PRINT
Print System Directory Entries Only

// COPY FROM-code,LIBRARY-SYSTEM,NAME-DIR, TO-PRINT

Print Directory Entries, Omitting Selected Entries

s
P

/! COPY FROM-code,LIBRARY-< O ,NAME-DIR, TO-PRINT,OMIT- { "ame
R characters.ALL
ALL

COPY PARAMETERS

FROM-READER

FROM-code

FROM-DISK

FILE-filename

80%
RECL- 3@

!

LlBRARY-{
N

O TVTW
-

LIBRARY-ALL

LIBRARY-SYSTEM

name

NAME- < characters. ALL

ALL

Entry to be placed in library is to be read from system input device, which
can be a keyboard or card reader.

Location of disk containing library entries being copied, printed, or punched.
Possible location codes are:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

The entry or entries to be placed into a library or libraries reside in a disk file.
The disk file must be described by an OCL FILE statement.

For a file-to-library copy, this parameter is needed to identify the file on disk.
The filename must match the filename on the OCL FILE statement.

For a file-to-library copy, this parameter gives the size of the disk records.

Only 80 or 96 column card image records (unblocked) are allowed. If this
parameter is omitted, 96 is assumed.

Type of library entries involved in copy use. Possible codes are:

Code Meaning

S Source statements (source library)
P OCL procedures (source library)
0 Object programs (object library)
R Routines (object library)

All types of entries (S, P, O, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM pack, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning
name Name of the library entry involved.

characters.ALL Only those entries beginning with the indicated characters.
The names of the copies and original entries will be the
same unless you use a NEWNAME parameter (NEWNAME-
characters). (You can use up to five characters.)

ALL All entries. (The type indicated in LIBRARY parameter.
To copy a system which you can IPL, specify LIBRARY-
ALL and NAME-ALL.)

Library Maintenance Program—$MAINT

161

NAME-SYSTEM

NAME-DIR

NAME-$cc.ALL
T

RETAIN-< P
R

TO-code

TO-PRINT
TO-PUNCH
TO-PRTPCH

NEWNAME-name

NEWNAME-characters

OMIT-name

OMIT-characters.ALL

Only system programs that make up the minimum system are involved in the
copy use. The minimum system is made up of system programs necessary to
load and run programs. System programs necessary to generate and maintain
the system are not included.

Directory entries for all library entries of the type indicated in the LIBRARY
parameter are involved in the copy use. If the LIBRARY parameter is
LIBRARY-ALL, system directory entries are also printed.

The IBM program with the name beginning with the indicated characters ($cc)
is involved in the copy use. For example, SMA.ALL means the Library
Maintenance program ($MAINT).

Adding Entry to Library. RETAIN gives designation of the TO entry:

Code Meaning
T Temporary
Por R Permanent

Replacing Existing Library Entry. RETAIN gives designation of the TO entry and
tells program whether to halt before replacing entry:

Code Meaning

T Temporary designation. Halt before replacing entry.

P Permanent designation. Halt before replacing entry.

R Permanent designation. Do not halt before replacing
entry.

Printing or Punching Entries. The RETAIN parameter is ignored.

Location of disk that is to contain the copies of the entries:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

Entries are being printed.

Entries are being punched.

Entries are being printed and punched.

Name you want used on the TO disk to identify the entries being put on that
disk. If you omit this parameter, the program uses the NAME parameter in
naming the entries.

Beginning characters you want to use in names identifying entries being put
on TO disk. You must use the same number of characters as in the NAME
parameter (NAME-characters.ALL). If you omit this parameter, the program
uses the NAME parameter in naming the entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning
characters.

162

Library Directories Entries with the Same Name. For each of the two physical
libraries, source and object, there are two types of
entries. The source library has type P and type S
entries. The object library has type O and type R
entries. Entries of the same type cannot have the
same name, but entries of different types may. For
example, two procedures in a source library cannot
have the same name, but a procedure and a set of
source statements can.

Source and Object Library Directories
e The source and object libraries have separate
library directories. Every library entry has a
corresponding entry in its library directory. The
directory entry contains such information as the
name and location of the library entry (see
Figures 49-51).

o The Library Maintenance program makes entries
in the directories when it puts entries in the
libraries.

Retain Types

Temporary Entries
e Temporary entries are entries you do not intend

System Directory to keep in your libraries. They are normally used

e Every disk that contains libraries contains a
system directory. The system directory contains
information about the sizes of and available
space in libraries and their directories (see
Figures 49-51).

o The Library Maintenance program creates and
maintains the system directory.

only once or a few times over a short period.

e In the object library, temporary entries are placed
together following the permanent entries. Any
time a permanent entry is added to the library, all
temporary entries are deleted. Temporary entries
are also deleted when you replace one permanent
entry with another.

e In the source library, temporary and permanent

Naming Library Entries entries can be in any order. One entry is placed

after another regardless of their designations.
Temporary entries, therefore, are not automatically

Characters to Use. Use any combination of System/3 deleted every time you add a permanent entry.

characters except blanks, commas, quotes, and
periods. (Appendix A lists the characters.) The
names of all IBM programs begin with a dollar sign
($). Therefore, to avoid possible duplication, do not
use a dollar sign as the first character in the names:
you use for your entries. The first character must be
alphabetic.

Length of Name. The name can be from one to six

characters long.

Restricted Names. Do ndt use the names ALL, DIR, and

SYSTEM. They have special meanings in the NAME
and NEWNAME parameters.

However, when the source library is reallocated or
reorganized, only permanent entries will remain.

® You can use temporary entries as often as you
like until they are deleted.

e A temporary entry cannot replace a permanent
entry.

Permanent Entries

e Permanent entries are entries you intend to keep
in your libraries. They are normally entries you
use often or at regular intervals (once a week,
once a month, and so on).

o The program will not delete permanent entries
unless you use the delete function of Library
Maintenance to delete them, or the allocate
function to delete the entire library.

Library Maintenance Program—$MAINT 163

Using the Copy Function

Reader-to-Library

Input. The program reads one library entry. It can be any

one of the following types:
1. Source statements

2. Pfocedure

3. Object program

4. Routine

The entry is read from the system input device, which
is normally the primary hopper of the MFCU. The
operator can, however, change the system input
device by using the OCL READER statement.

The header card on an object deck (H in column 1)
contains the date the deck was punched. This date is
in columns 58-63 and is in the format of the system
date, either mmddyy or ddmmyy.

Output

e Blanks and duplicate characters are removed from
source statements and procedures before they are
put in the source library. The program does not
check them for errors.

e Object programs and routines are placed in the
object library.

Adding Entries

® The program can add a new entry to a library.
The name of the entry is taken from the NAME
parameter. See Naming Library Entries for valid
names. The RETAIN parameter specifies whether
the entry will be temporary or permanent. If the
RETAIN parameter is omitted, RETAIN-T is
assumed. (see Retain Types)

Replacing Existing Entries

164

® The program can replace an existing library entry
with the entry you are putting in the library. The
RETAIN parameter specifies the new retain type.
If the RETAIN parameter is omitted, RETAIN-T
is assumed. A temporary entry cannot replace a
permanent entry.

e The program can halt before replacing an existing
entry. Whether it does depends on the RETAIN
parameter you use. (see RETAIN parameter)

o Before the new entry is added, the duplicate entry
is deleted. Additional library space is not needed
unless the new entry is larger than the old one.

File-to-Library

Input. The disk file can contain one or more library entires.

The entries must be in the format put out by the
library-to-card function or by the linkage editor. The
// COPY statement at the beginning of each entry
contains the name of the entry and the type of library
(S,P,O,R). A // CEND statement must follow each
entry in the file.

The disk file must be a sequential 5444 file and be
defined by a FILE statement in the OCL for the
Library Maintenance program.

Output. The output from the file-to-library function is the

same as for the reader-to-library function except that
temporary entries are not allowed.

Library-to-Library

Input. The program can copy one or more library entries

from one disk to another. The types of entries can
be:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All the preceding types
6. Minimum system

The NAME and LIBRARY parameters specify which
entries to copy.

Output

® The entries, regardless of their type, are copied
from one disk to the other without change. How-
ever, if all library entries are copied (LIBRARY-
ALL, NAME-ALL), the object library is reorgan-
ized and temporary entries become permanent
entries in both the source and object libraries.

o Entries can be copied and renamed on the same
disk by using the NEWNAME parameter. (see
NEWNAME parameter and Naming Library
Entries)

® [f you are copying a minimum system or all of the
types (LIBRARY-ALL, NAME-ALL), the object
library on the disk you specify in the TO parame-
ter must be empty. That is, it cannot contain any
entries or deleted entries. When LIBRARY-ALL,
NAME-ALL is specified and the FROM disk is a
system pack, then the TO disk will be a system
pack.

e The RETAIN parameter specifies whether the
entries will be temporary or permanent. |f the
RETAIN parameter is omitted, RETAIN-T is
assumed. When the parameters LIBRARY-ALL
and NAME-ALL or LIBRARY-O and NAME-
SYSTEM are used, RETAIN-P is assumed and
RETAIN-T is invalid.

Adding Entries

o You can omit the NEWNAME parameter. If you
do, the name used for the copy is taken from the
NAME parameter. (The copy will have the same
name as the original entry.)

o If NAME-ALL is specified, the names by which
the entries are identified on the FROM disk are
also used on the TO disk to identify the entries.

Replacing Existing Entries
o The program can replace existing entries with the
entries you are putting in the library. If the entry

you are copying (the entry on the disk you identi-

fy in the FROM parameter) has the same name as
the entry you are replacing (the entry on the disk

you identify in the TO parameter), you must omit
the NEWNAME parameter because the NEWNAME

parameter cannot be the same as the NAME para-
meter. |f the names are not the same, you must

use the NEWNAME parameter to give the name of

the entry being replaced.

® The program can halt before replacing an existing
entry. Whether it does depends on the RETAIN
parameter. (See RETAIN parameter.)

e A temporary entry cannot replace a permanent
entry.

Library-to-Printer and/or Card

Types of Entries that Can Be Printed or Punched
e The program can print or punch one or more
library entries. They can be any one of the
following types:
1. Source statements
2. Procedures
3. Object programs
4. Routines
5. All of the preceding types (limited to entries

having the same name and entries beginning
with the same characters)

o The program can print (but not punch) the follow-
ing types of directory entries:

1. Source statements

2. Procedures

w

. Object programs

4. Routines

(4]

. System directory

(=2}

. All of the preceding types

The program will sort directory names before
printing them only if there is available work space
on the FROM pack. This causes an allocation of
disk space. (See Allocation of Disk Space.)

Printed or Punched Library Entries
e Blanks and duplicate characters are reinserted
into source statements and procedures to make
them readable.

o Object programs and routines are printed and
punched as they exist in the library.

Printout of Directory Entries

® Source library directory (Figure 49)
® Object library directory (Figure 50)
® System directory (Figure 51)

Library Maintenance Program—$MAINT 165

PRINTOUT

SOURCE DIRECTORY FROM XX VOL. ID XXXXXX MM/DD/YY

ADDRESS
TYPE NAME FIRST®@ LAST@ ATTRI #SECTORS
X XXXXXX XXX-XX XXX-XX X XXXX
Explanation:
Heading Meaning
TYPE S = source statements

NAME Name of library entry (up to six characters)
ADDRESS Addresses of first and last sectors that contain the library entry.
(FIRST and LAST) Addresses are expressed by track and sector numbers.
EXAMPLE: 008-03 means track 8, sector 3.
ATTRI T = temporary
P = permanent
HSECTORS Total number of sectors used for the library entry.

P = procedure

Figure 49. Source Library Directory Printout

PRINTOUT

DSK

OBJECT DIRECTORY FROM XX VOL.. ID XXXXX MM/DD/YY

TYPE NAME ADD
X X XXXXXX TTT/SS CC/SS XXX XXXX XX XXXX XXX XXXX XXX XXXX

CYL/ TXT- LINK RLD ENTRY CORE TOT
SEC CAT ADDR DISP PNT SEC ATTR LEVEL SEC

EXPLANATION:
Heading

TYPE

NAME

DSK ADD

CYL/SEC

TXT-CAT

Meaning

The fist character printed indicates the attributes of the entry as follows:
P = permanent
T = temporary

The second character printed indicates the type of module the entry is. Its
meaning is as follows:

O = Object program
R = routine

Name of library entry (up to six characters)

Address where library entry begins on disk. EXAMPLE: 015/10 means track 15, sector 10 ‘
(in decimal). T = track, S = sector.

Address where library entry begins on disk (in hexadecimal). C = cylinder, S = sector.
For object programs, this number indicates the number of sectors used for the text portion of
the library entry. Object programs consist of two parts: text and RLD. Text is the program;

RLD is information used in loading the program for execution.

For routines, this number is the category of the routine. This number is used by the Overlay
Linkage Editor for determining overlays.

Figure 50 (Part 1 of 2). Object Library Directory Printout

166

PRINTOUT (Continued)

Heading
LINK ADDR

RLD DISP

ENTRY PNT
CORE SEC

ATTR

LEVEL

TOT SEC

Meaning
Object programs only. Assigned core hexadecimal address of this library entry.

Object programs only. It indicates the hexadecimal position in which RLD information begins in
the last text sector. If the last text sector contains no RLD information, the RLD displacement
is 0, indicating the information starts in the next sector.

Object programs only. Main storage address hexadecimal where program execution begins before
relocations.
Core size, given in sectors, required to run the program.

Byte 1:

Bit 0=1 Permanent Entry
0 Temporary Entry
Bit 1=1 Inquiry. This program requires that the Inquiry key be pressed to start processing.
Bit 2=1 Inquiry Invoking. This program runs in program level 1 and can be rolled out to
allow an Inquiry program to run.
Bit 3=1 Dedicated. In a DPF system, this program must run with the other program level
inactive.
Bit4=1 Source Required. This program requires the allocation of the SWORK and $SOURCE
files. $SOURCE must be filled either from the system input device or a source library.
Bit 5=1 Deferred Mount. This program accepts mounting of packs during its execution.
Bit6=1 PTF Applied. A program temporary fix (PTF) has been applied to this program.
Bit 7=1 Overlay Object Program

Byte 2:

Bit 0=1 System Input Dedication. The system input device must be dedicated to this program.
The device is released at end of job.

Bit 1=1 Checkpoint/Restart Program

Bit 2=1 Direct Source Read. This program can have a // COMPILE statement and a no source
required attribute (byte 1, bit 4=0). The program will access the source itself.

Bit 3=1 Macro Processor Allowed. This program can be preceded by the macro processor.
If the source required attribute is present and a // SWITCH 1XXXXXXX statement
was processed, the $SOURCE file is opened as input instead of output.

Bit 4 Reserved

Bit 5=1 Program Common. This program requires that a new load address be calculated at
load time to place it in main storage beyond its own program common region.

Bit 6 Reserved

Bit 7 Reserved

Release level of system programs. For user programs this can be assigned by the Overlay
Linkage Editor.

Total number of disk sectors occupied by the library entry.

Figure 50. Object Library Directory Printout (Part 2 of 2)

Library Mairtenance Program—$MAINT

167

168

SYSTEM DIRECTORY FROM xx VOL. ID xxxxxx mm/dd/yy

SOURCE LIBRARY SECTION @
Source Directory Location TTT-SS
Next Available Library Sector TTT-SS
End of Library TTT-SS
Number of Directory Sectors XXX
Number of Permanent Library Sectors XXX
Number of Active Library Sectors XXX
Number of Available Library Sectors XXX
Allocated Size of Library YYy

OBJECT LIBRARY SECTION

Object Directory Location TTT-SS
Allocated Size of Directory YYY
Start of Library TTT-SS
Allocated End of Library TTT-SS
Extended End of Library TTT-SS
Number of Available Permanent Directory Entries XXX
Number of Available Temporary Directory Entries XXX
First Temporary Directory Entry TTT-SS-DDD
Next Available Temporary Directory Entry TTT-SS-DDD
Next Available Library Sector for Permanents TTT-SS
Next Available Library Sector for Temporaries TTTSS
Number of Available Library Sectors for Permanents XXX
Number of Available Library Sectors for Temporaries XXX
Number of Active Library Sectors XXX
Number of Active Object Permanent Library Sectors XXX
Number of Active Routine Permanent Library Sectors XXX
Allocated Size of Library YYY
Roll-in/Roll-out Location TTT-SS
Roll-in/Roll-out Size YYY
Scheduler Work Area Location TTT-SS
Scheduler Work Area Size YYY
Start of Libraries TTT-SS
End of Libraries TTT-SS

TTT-SS-DDD means track, sector, and displacement. Displacement is the number of characters from

@ the beginning of the sector. XXX means number of sectors. YYY means number of tracks.

@ Number of Available Library Sectors for Permanents reflects the space available from the last per-
manent library entry to the allocated end of the library. Gaps and temporary library entries are not
reflected in this figure. The actual number of sectors available for permanent entries may be calcu-
lated by subtracting Number of Active Object Permanent Library Sectors from the total number of
sectors in the library. If the result is much larger than Number of Available Library Sectors for Per-
manents, the library should be reorganized using the ALLOCATE function to remove gaps and tem-
porary object library entries.

Figure 51. System Directory Printout

DELETE FUNCTION

DELETE USES DELETE RESTRICTIONS

e Delete a temporary or permanent entry from a library (or
entries with the same name from ail libraries).

e Delete temporary or permanent library entries that have names
beginning with certain characters.

e Delete all temporary or permanent library entries of a certain

type. °

System modules cannot be deleted from the active
system pack (the pack the system was loaded from at
IPL time).

Library Maintenance program modules cannot be de-
leted from the active program pack.

When all temporary entries are deleted from the object
library using LIBRARY-O,NAME-ALL,RETAIN-T, the
temporary routines (LIBRARY-R) are also deleted.

The RETAIN parameter must match the attribute of the
entry in the library. Otherwise the entry is considered
not found. RETAIN-T is assumed if the RETAIN para-
meter is omitted.

DELETE CONTROL STATEMENT SUMMARY

/I DELETE FROM-code,LIBRARY-

>DVOTL

LL

Delete All Temporary or Permanent Entries of a Certain Type

// DELETE FROM-code,LIBRARY-

O vw»

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

,NAME-name RETAIN-

Delete Temporary or Permanent Entries with Names Beginning with Certain Characters

S N\
P { 7
// DELETE FROM-code,LIBRARY-< O ,NAME-characters. ALL,RETAIN-
R
" ALL)/

/NAME-ALL RETAIN-

T

P

[p

T

P

Library Maintenance Program—$MAINT 169

170

- DELETE PARAMETERS

R1 l

F1
FROM- st

F2

LIBRARY-

DO TvTW®W
v

ALLS

name
NAME- { characters.ALL}
ALL

T
RETAIN-
P

Location of disk that contains library entries you are deleting. Possible codes are:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one
R2 Removable disk on drive two
F2 Fixed disk on drive two

Type of entries being deleted. Possible codes are:

Code Meaning

S Source statements {source library)

P Procedures (source library)

o Object programs (object library)

R Routines (object library)

ALL All types of entries (S, P, O, and R) are being deleted.

Particular entries, of type indicated in LIBRARY parameter, being deleted. These
entries are further identified by the RETAIN parameter. Paossible codes are:

Code Meaning
name Name of the library entry, or entries, being deleted.
character.ALL Entries that have names beginning with the indicated

characters. You can use up to five characters.
EXAMPLE: NAME-INV.ALL refers to the entries
having names that begin with INV.

ALL All entries (of the type indicated in LIBRARY parameter).
NAME-ALL cannot be used with LIBRARY-ALL.

Designation of entries being deleted:

Code Meaning
T Temporary
P Permanent

MODIFY FUNCTION

MODIFY USES

® The MODIFY function is intended primarily for maintenance of source statements and procedures
by using a card reader.

® Reserialize a source library entry.

® List the statements in a source library entry.

® Remove statements from a source library entry.
® Replace source library statements.

® |Insert statements into a source library entry.

MODIFY RESTRICTIONS

® Sequence numbers are a physical part of the source record and must be placed where they will not
conflict with other data in the record. In a procedure they should be placed near the end of the
record beyond the OCL and utility control statements’ keywords and parameters. The sequence
numbers should be placed in source statements where they will not overlay data. For example,
data could be destroyed if sequence numbers were placed in RPGII source statements that con-
tained compile-time tables.

® At least three control statements must be entered to modify the source library. A // MODIFY
statement is needed to describe the library entry. A // REMOVE, // REPLACE, or // INSERT
statement describes the type of modification. A // CEND statement indicates the end of the con-
trol statements.

® The sequence numbers specified by the FROM-segno, TO-seqno, and AFTER-seqno parameters on
the // REMOVE, // REPLACE, and // INSERT statements must be valid numbers and exist in the
source library entry. There are no default values for these parameters. The number of digits entered
must be the same as the number of positions specified by the SEQFLD parameter.

@ All statements in a source library entry must have ascending sequence numbers in the positions
specified by the SEQFLD parameter.

® Multiple operations (REMOVE, REPLACE, INSERT) may be performed within the same MOD-
IFY run if they are done in an ascending sequential order. That is, the FROM sequence number in
a REMOVE or REPLACE statement must be greater than the last sequence number in the preced-
ing statement. The AFTER sequence number of an INSERT statement must be equal to or greater
than the last sequence number of the preceding statement. Consecutive INSERT statements must
not have the same sequence number.

® When modification is complete, the directory entry is written back with a permanent attribute.

® The control statements following the // MODIFY statement are read from the system input device,
which can be the keyboard or a card reader. Since the REMOVE control statement is valid for both
the $DELET utility and $MAINT utility, care should be used when modifying a $DELET procedure.
The program will attempt to determine if the REMQOVE statement is data or a control statement.
If a determination cannot be made, the program will halt and wait for further instructions.

Library Maintenance Program—$MAINT 171

172

MODIFY CONTROL STATEMENT SUMMARY

Initiate Modification ,

YES
// MODIFY NAME-name,FROM-code,LIBRARY- { s} ,WORK-code,RESER- { NO LIST- {YES} ,
P ONLY =
SEQF LD-xxyy,|NCR-number

Control Statements Following // MODIFY
Delete all statements between and including the FROM and TO sequence numbers.
// REMOVE FROM-segno, TO-seqno
Replace all statements between and including the FROM and TO sequence numbers with the statements supplied.

// REPLACE FROM-seqno, TO-seqno

1 - n statements to replace those removed

Insert the supplied statements after the statement indicated by the AFTER parameter.

// INSERT AFTER-seqno

1 - n statements to be inserted

MODIFY PARAMETERS

NAME-name

FROM-ode

S
LIBRARY- { P }

WORK-code
YES
RESER- { NO
ONLY

YES
LIST- {MQ }

SEQFLD-xxyy

INCR-number

Current name of the entry you are modifying. This is the name that identifies the entry in
the library directory.

Location of the disk that contains the entry you are modifying. Possible codes are:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

Type of library entry you are modifying. Possible codes are:

Code Meaning
S Source statements (source library)
P Procedures (source library)

Location of the disk containing space the program can use as a work area. Possible codes
are:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

Specifies whether reserialization should be done when the entry is placed back in the source
library. Possible information is:

Information Meaning

YES Reserialization is done.

NO Reserialization is not done. NO is assumed if the RESER parameter
is omitted.

ONLY Reserialize only; no other maintenance is done. When this is coded,

no REMOVE, REPLACE, or INSERT statements can be entered.
A // CEND statement is not needed.

Specifies whether the source library entry should be listed when the MODIFY run is complete.
NO is assumed if the LIST parameter is omitted.

The starting and ending positions of the field that contains the sequence number. The sequence
number can be up to eight digits long. The starting position is entered first (xx) and then the
ending position (yy). If this parameter is not entered, 9296 is assumed.

Increment value for sequence field if reserialization (RESER-YES or RESER-ONLY) is
specified. The value can be up to five digits. If this parameter is not entered, a value of 10 is
assumed.

Library Maintenance Program—$MAINT 173

REMOVE, REPLACE, INSERT PARAMETERS

FROM-segno The sequence number of the first
statement to be used in the
operation.

TO-segno The sequence number of the last
statement to be used in the
operation.

AFTER-segno The sequence number of the state-
ment after which the new statements
are to be added.

RENAME FUNCTION

RENAME USE

o Change the name of a library entry.

o Change the name of library entries that have names
beginning with certain characters.

RENAME CONTROL STATEMENT SUMMARY

S
// RENAME FROM-code,LIBRARY- g ,NAME-name,NEWNAME-name
R
S
// RENAME FROM-code,LIBRARY- (F; /NAME-characters. ALL,NEWNAME-characters
R

RENAME RESTRICTIONS

® System modules should not be renamed on the
active system pack (the pack the system was
loaded from during IPL).

® Library Maintenance modules should not be
renamed on the active program pack.

174

RENAME PARAMETERS

FROM-code

LIBRARY-{

S——

DO T W

NAME-name

NAME-characters.ALL

NEWNAME-name

NEWNAME-characters

Location of disk that contains the entry
you are renaming. Possible codes are:

Code Meaning

R1 Removable disk on drive one
F1 Fixed disk on drive one

R2 Removable disk on drive two
F2 Fixed disk on drive two

Type of library entry you are renaming.
Possible codes are:

Code Meaning

S Source statements (source
library)

P Procedures (source library)

(0] Object programs (object library)

R Routines (object library)

Current name of the entry you are re-
naming. This is the name that identifies
the entry in the library directory.

Only those entries beginning with
the indicated characters. (You can
use up to five characters.)

New name you want to give the entry.
Follow these rules to construct the name:

1. You can use any System/3 charac-
ters except blanks, commas, quotes,
and periods. (Appendix A lists the
characters.) However, the names
of all IBM programs begin with a
dollar sign ($). Therefore, to avoid
possible duplication, do not use a
dollar sign as the first character in
the names you use for your entries.
The first character must be alpha-
betic.

2. You can use up to six characters,
but you cannot use the names ALL,
DIR and SYSTEM. They have
special meanings in the NAME
parameter.

Beginning characters you want to use in
names identifying the copies. (You can
use up to five characters.

OCL CONSIDERATIONS
The following OCL statements are needed to load
the Library Maintenance utility program.

// LOAD $MAINT code

// RUN

The code you supply depends on the Iocation of
the disk containing the Library Maintenance pro-
gram. The codes are as follows:

Code

R1

F1

R2

F2

EXAMPLES

Figures 52-67 illustrate the functions of the Library
Maintenance utility program. Figure 52 is an exam-
ple of the OCL needed to load the utility program.
The other figures are examples of the control state-
ment necessary to carry out the specified function.

Meaning

Removable disk on
drive one

Fixed disk on drive
one

Removable disk on
drive two

Fixed disk on drive
two

12 16 20 24 28 32

<
=
=
—
N

=
'—\

SN -
SIS |
2

(=]

=z

Explanation:

® | ibrary Maintenance program is loaded from the fixed disk on

drive one

Figure 52. OCL Load Sequence for Library Maintenance

Library Maintenance Program—$MAINT

175

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

4
/ A%IIL WITIE] frlo}-[RI, [SORICE-T1T2], Io[BaE|CiT]-[als], [sH[stEM-YEls
/Y| END

Explanation:
® | ibraries are being created on the removable disk on drive one (TO-R1 in ALLOCATE statement).
® Source library space is 12 tracks (SOURCE-12).

® Obiject library space is 45 tracks (OBJECT-45). The object library will contain system
programs (SYSTEM-YES). Thus, the disk area will also include space for the Scheduler work area.

@® Directory will be three tracks.

Figure 53. Allocate Example. Creating Both Source and Object Libraries on a Disk

1 4 8 12 16 20 24 28 32 3€ 1 4 8 12 16 20 24 28 32
/| |ALILIOKCAITE! [Yjo- R{1], SioluiRiclEl- 15, WORKI-[FI4 /| INULIOCIATIE] [Tiol-[RI, lO/BEICIT]-

/|7 [END /| END

Explanation: Explanation:

® Source library is located on the removable disk on drive one ® Object library is located on the removable disk on drive one
(TO-R1 in ALLOCATE statement). (TO-R1 in ALLOCATE statement).

® Size of the source library is being changed to 15 tracks ® OBJECT-0 parameter tells the program to delete the object
(SOURCE-15). library. If a Scheduler work area precedes the object library,

it is also deleted.
® Any time the program changes the size of a library, it re-
organizes the library. To do this, it needs a work area. This Figure 55. Allocate Example: Deleting the Object Library from

area is on the fixed disk on drive one (NWORK-F1). a Disk

Figure 54. Allocate Example: Changing the Size of a Source

Library
1 4 8 ‘ 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
Cloply [FIROM|-[F[4l, [L|t|BIRIARIY|~]0], IN[AMEE|~ [Sk|S[TIEM], [T/O}- [RIA
/17| [END -
Explanation:

® System programs are in the object library on the fixed disk on drive one
(LIBRARY-O and FROM-F1 in COPY statement).

® The NAME parameter (NAME-SYSTEM) tells the program to copy the
system programs. .

® The disk that is to contain the copy is the removable disk on drive one
(TO-R1).

Figure 56. Copy Example: Copying Minimum System from One Disk to Another

176

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 72
/11 lolp] [FIROM -], [Tt [BRIATRI-AILIL], INAMEL-TDT1 RT, Frlof=JPIR]INFT, bl Frl-1$. JAL L
/|/| [END
Explanation:
® All library directories and the system directory on the removable disk on drive one

are printed (COPY statement):

/

1. FROM identifies the disk containing the directories. ;

2. LIBRARY indicates which directories are to be printed.

3. NAME and TO indicate that the program is to be printing directories.

4. All entries beginning with a $ are not printed.
Figure 57. Copy Example: Printing Library Directories
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 72
/| lcloplY FIROM- R, |L1 [BRIARM!- o], NAME[-INcIcH], Friol-IFA], IRETIAl N[~ R
/|/| [END
Explanation:

® | IBRARY-0, NAME-ACCT, and FROM-R1 in the COPY statement tell the program
to read the object program named ACCT from the removable disk on drive ane.

® TO-F1 tells the program to copy the object program to the fixed disk on drive one.
There is no NEWNAME parameter in the COPY statement. Therefore, the name the
program will have on the fixed disk is ACCT (NAME-ACCT). Since the old version
of the program already exists on the fixed disk under that name, the old version is
replaced.

@ The Library Maintenance program normally halts before replacing a library entry.
The RETAIN-R parameter, however, tells the program to omit that halt.

Figure 58. Copy Example: Copying Object Praogram to F1

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 72
/\/| IDEEILENIE] [FIRIOM-IRI1], [L|) [BIRIARIYI-IS], NAMEL- PRI RO

/17| [END

Explanation:

® The program deletes a set of source statements (LIBRARY-S in
DELETE statement) named PAYROL (NAME-PAYROL) from
the removable disk on drive one (FROM-R1) that has a temporary
attribute,

Figure 59. Delete Example: Deleting an Entry from a Library

Library Maintenance Program—SMAINT

177

1 4 8 12 16 20 24 28 32 36 40 44 438 52
LI0AD] [$IMATI INT], [FlL | | | L]
/I FILLE NArk—BscAEI EL, NI TI-RIL, PlAlCK-BIS|CIAL, LABE]L B From System
// RUN I Input Device
//| CIoPV [FIRiom-[Di slkl, [Tia-FLL], IREITAlN- 1P, 1 ILE- BSICIAF L
XX co?y Luq_m Y—P,MAME-? YRELC
9?0 %_E
XX CO?Y LI BRARY(-dl, IMAME- PlAlYRELC! From Disk File
%?JECT CK
XX END
Al rom System
//END ~ o Devier
Explanation:

® The OCL for a File-to-Library copy must contain a FILE statement
for the disk file.

® The filename on the // COPY statement (FILE-BSCAFILE)
matches the filename on the OCL FILE statement (NAME-
BSCAFILE).

® The // COP ¥ statement does not contain an RECL parameter,
so a record length of 96 is assumed.

® All source and object decks in the disk file must have a
// COPY statement as the first card image. These // statements
(including the // END statement) are printed with XX replacing
the // to indicate they were read from disk rather than from
the system input device.

® All source and object decks in the disk file must have a
// COPY statement as the first card image and a // CEND
statement as the last card to indicate the end of the copy
for each deck. These // statements (including the // END
statement) are printed with XX replacing the // to indicate
they were read from disk rather than from the system input
device.

Note: The // CEND statement is not printed.

® The // END statement read from the file (printed XX END),
causes the next statement to be read from the system input
device. A // END statement must still be read from the
system input device to indicate the end of the Library
Maintenance control statements.

Note: The // END statement in the file is optional as the
system will recognize the physical end of the data file
and terminate the copy.

Figure 60. Copy Example: Disk File to Library

178

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

1
5/ DIELIETIE] [FIRIOM-[RA, [L]1 [BIRIARI¥{-[ATLJL], INAMIET-TINIV]. TATLIL

Explanation:

® The entries being deleted are on the removable disk on drive one
(FROM-R1 in DELETE statement).

® The program deletes all entries from both source and object
libraries (LIBRARY-ALL) that have names beginning with the
characters INV (NAME-INV.ALL), with temporary attributes.

Figure 61. Delete Example: Deleting All Entries with Names that Begin with Certain Characters

]
1

4
/1 PIEILIETIE] FlRloM-[RIA[, Ui [BIRIARM- [P AULL REEFTAl IN]- T

/\/| [END

-

i

Explanation:

® The entries being deleted are on the removable disk on drive one
(FROM-R1 in DELETE statement).

® All temporary procedures are being deleted from the source
library (LIBRARY-P,NAME-ALL).

Figure 62. Delete Example: Deleting All Library Entries of One Type

L LLLLLL] L] L] L] | |1 |
pD|I -liviplutrlal, FRIbIM-RI L 1L BlelalRlyl-ls|, lwclR]k|-IRl1 |, [RESElRI-IviESS |, L1 IsT]-Indol, s EQIFILDI- lolt lolst, |1 WICIR:- 1
/\/| REMOVE! ROH- olal4l [Tiol-lodl lsle
/| clewio] |
LR 1
Explanation:

® The source module named INPUT1 on disk drive R1 is being modified.
® The work space will be on R1.

® The sequence numbers are in positions 1-5 of the statements.

® Sequence numbers 00124 - 00156 are being deleted from the module.
® The module is reserialized with increments of one.

® The module is not listed.

Figure 63. Modify Example: Removing Source Statements from a Module

Library Maintenance Program—$MAINT 179

m
C - [BS

==[0t<
2>m
Tﬁﬁ%ﬂéé_
! Py
= ~lotn
1
S
© 0
=SaBCH™
T <=
=< 0O
1
ol
c-
rox
=~
q

—

SIS NN

SimimT |~

12

Explanation:

The procedure named POCO1 on disk drive R2 is being modified.
The work space will be on R1.

The sequence numbers are in default positons 92-96.

Statements with sequence numbers 00101-00102 are being replaced.

The module is not reserialized.

The module is listed.

Figure 64. Modify Example: Replacing Statements in a Procedure

8 12 16 20 24 28 32 36

60 64 68 72

1
/
/

NS

4
RIEINIAME] [FRIOM-IRIA, Ui TBIRINRNT- 5T, NIAMIE[-TAlclcf],
=

Exp/ahation:

The removable disk on drive one contains the entry being renamed (FROM-R1

in RENAME statement).

The entry is a set of source statements in the source library (LIBRA
Its name is ACCT (NAME-ACCT).

The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

RY-S).

Figure 65. Rename Example: Renaming a Set of Source Statements in a Source Library

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56
/| IMaoliFly FROM-FI.WOKK-FI;MMPE~ olstrl, [L1]8R[alRly[-Is
/1/ E|S|E “st\SEQFLD~308¢,LIST*YES
[INSIEIRT] AFTIER- BT
4l 3| | | 18] DAY
e
Explanation:

® The source module COST on disk drive F1 is being modified.

® The work space is on F1.

® The sequence numbers are in positions 80-84 of the statements.

® A statement is being inserted after statement number 00070.

® The module is reserialized with the default increment value of 10.

® The module is listed.

Figure 66. Modify Example: Inserting a Statement in a Source Module

180

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
1. U [t olalo) giMlalriviT, A2
1] [RluN]
2. /] |A|Lle|oclA[TIE| (TI0|-[R|4], 0|B|TIEIC|TI-|A, |S|OM|RIclEl-1@]
3. /] AfLjLioc|aT|e] [Tlol-[Rrl1], lolBlielciT]-{4a, Is|olulr]lcle|-{4]2], Is|Yis|TIeim| - Y|€|s|, [DiZ |R|S|L[Z|€|-|T
4. |1|1] [clojply| |F|R|oIm|-|ElL],|TIO-[RIZ], |c|L |8RIA\RIY]-|al |L], WlaiMig|-|a]L]L]
/{1] [EINID]
Reload System (IPL) from R1
5 1/] |L{oja|D| |pMIA|ZINIT], |RIL
/(1] |RIUIM
6. |/i/] |AlLlLolclAITIE| |Tiol-|Fi1], 0\BTIElC|T|-|d| ,|SIOIUIR|CIE] @
7. |1[/] JajLiLloiclalTlel |Tio|-|Fl1], olBITIE|C|T|- |4, Is|ojuiRr|clE|-|L (2], ISy IsiTiEM|-|Y|ls|, |PLIIRIS|Z|2]€]- |7
8. |/|/] [c|oply| |FIRloMm|-R|4|,|TI0|-|F|4], [L|I|8|R|4|R]Y|-|alLlL], IMA|MEl-|a|LIL
/|| |ENID
Reload System (IPL) from F1
Explanation:

1. The system and SMAINT are both loaded from F1.
2. The libraries on R1 are deallocated (if present).

3. New library space is allocated on R1.

4, The libraries are copied from F1 to R1. The object library is reorganized as it is copied.
Temporary entries become permanent when copied (see Disk-to-Disk Considerations, Outout).

5. The system and $MAINT are now loaded from R1.
6. The libraries on F1 are deallocated.
7. New library space is allocated on F1.

8. The libraries are copied back to F1. The pack on R1 could be used as a back-up pack. 1t
contains the same libraries as F1.

Figure 67. Reorganizing the System Pack

Library Maintenance Program—$MAINT 181

182

e
IBM SYSTEM/3 5445 DATA INTERCHANGE UTILITY PROGRAM—-$VTOC
L

All IBM 2316 disk packs initialized on System/3 5445 Disk Drive by $INIT have a System/360-
System/370 formatted volume table of contents (VTOC). The System/360-System/370

VTOC is not used by System/3. When it is necessary to exchange data between System/3 and
System/360-System/370 on a 2316 disk pack, the IBM System/3 5445 Data Interchange
Utility can be used (see Appendix C for an alternate method). The utility must be run going

to and returning from System/360-System/370.

When the utility program is run against a 2316 disk pack, the contents of the System/3
VTOC are mapped to the System/360-System/370 VTOC. If data is to be returned to the
System/3 via the utility without reinitialization, then restrictions on the use of the pack on
System/360-System/370 must be observed. Any deviations from these restrictions can
result in the format of the pack being altered beyond the capacity of the utility to return:
the pack to normal System/3 format. This can result in errors in the utility run returning
the pack or unrecoverable errors on the pack while processing it on System/3.

Following is a list of the methods of processing data files on the interchange pack by OS
or DOS:

Functions (sequential processing only) Disposition Type Open

Reading with OS using BSAM or QSAM oLD FBS INPUT

Output with OS using BSAM or QSAM oLD FB or FBS OUTPUT

Reading with DOS using SAM-GET -~ - INPUT

Update in place with OS using BSAM or

QSAM oLD FBS UPDATE

Update in place with DOS using SAM-

GET/PUT — UPDATE INPUT
CAUTION:

Only the above disposition and open types may be used.

The update-in-place function can be used on a data set written on System/3 filled with
dummy records. Since duplicate file names are not allowed on System/360-System/370, the
System/3 file names will be qualified with the file date. An example would be PAYROLL.
D711026. PAYROLL would be the file name on System/3 and the file was created on
October 26, 1971.

Files to be processed by QSAM must have a logical record length that is an even submultiple
of 256.

No files may be allocated or deleted on System/360 or System/370 if the pack is to
be read on System/3 without reinitializing.

IBM System/3 5445 Data Interchange Utility Program—$VTOC 183

Any System/3 P or T file on the pack is mapped into the System/360-System/370 VTOC.
Multivolume files are not supported and their interchange results in a System/360-
System/370 entry that appears like a single volume file. Split cylinder files will have a
System/360-System/370 format one but it is not usable due to basic differences in split
file philosophy between the systems. If the System/3 file type is either sequential or

- indexed but not split, then a System/360-System/370 end-of-file mark is written in the
file area at the end of data (256 bytes must be available). When the utility is run to
return the pack to System/3, the end of file marks are removed and the System/360-
System/370 VTOC entries are deleted.

The utility must always be run just before going to System/360-System/370 and just
after returning to System/3. Any deviation from this procedure can result in loss of
data on the pack.

The attributes of all System/360-System/370 VTOC entries assigned by the utility are

as follows:
Name of file — name.DYYMMDD
Creation date — 00000
Expiration date - 99365 (date protected)
Volume sequence number - 0001
Record/block format — FIXED BLOCK STANDARD (FBS)
Organization — sequential (regardless of S/3 type)
System Code — "IBM DSMm/3"
Block length - 256 bytes
Logical record length - same as S/3 length
Extent type - single
CONTROL STATEMENT SUMMARY PARAMETER SUMMARY
System/3 to System/360-System/370 Conversion PACK-name Name of the disk.
// NEWVTOC UNIT- { D1 } PACK-name UNIT-code Location of the disk. Possible codes
D2 are D1 and D2.
/ END

System/360-System/370 to System/3 Conversion

// UPDATE UNIT- { g;} ,PACK-name

/1 END

PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the pro-
gram the name of the pack being transferred. The
name you supply in this parameter is the one written
on the disk by the Disk Initialization program.

The 5445 Data Interchange program compares the
name in the PACK parameter with the name on the
disk to ensure they match. In this way, the program
ensures that it is using the right disk.

UNIT Parameter
The UNIT parameter (UNIT-code) tells the program
the location of the pack being transferred. Codes for
the possible locations are as follows:

Code Meaning
D1 Removable disk on
5445 drive one
D2 Removable disk on
5445 drive two
OCL CONSIDERATIONS

The following OCL statements are needed to load
the 5445 Data Interchange Utility program:

// LOAD $VTOC, code
// RUN

The code you supply depends on the location of the
disk containing the utility program. The codes are

as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

1 4 8 12 16 20 24 28 32
/ L1
/1] |LjojaD| Ig|viTiolc], |F|2
11| |RIUN|
Explanation:

o 5445 Data Interchange Utility is loaded from the fixed disk
on drive one.

IBM System/3 5445 Data Interchange Utility Program—$VTOC

185

186

S
APPENDIX A. IBM SYSTEM/3 STANDARD CHARACTER SET
S

Hexadecimal Hexadecimal Hexadecimal
Character Equivalent Character Equivalent Character Equivalent
Blank 40 # 78 Q D8
¢ 4A @ 7C R D9

4B * (apostrophe) 7D S E2
< 4c = 7E T E3
(4D " 7F u E4
+ 4E A Cc1 \% E5
] 4F B c2 w E6
& 50 Cc c3 X E7
! 5A D Cc4 Y E8
$ 5B E c5 z E9
* 5C F c6 0 FO
) 5D G c7 1 F1
H 5E H c8 2 F2
7 5F i c9 3 F3
- (minus) 60 } DO 4 F4
/ 61 J D1 5 F5
, 6B K D2 6 F6
% 6C L D3 7 F7
— (underscore) 6D M D4 8 F8
> 6E N D5 9 F9
? 6F 0 D6

7A P D7

Appendix A. IBM System/3 Standard Character Set 187

188

]
APPENDIX B. CONVERSION
S

RECORDS TO TRACKS CONVERSION

Determining the Number of Sequential or Direct File Tracks
The following two steps should be followed to determine the number of tracks in a
sequential or direct file. (Round results to the next higher whole number.)

1. number of records x record length = number of characters

2. number of characters (from step 1)

@ = number of tracks
number of characters per track

Determining the Number of Indexed File Tracks
The following two steps should be used to determine the number of data tracks in an
indexed file:

1. number of records x record length = number of characters

2. number of characters (from step 1)
number of data tracks (round to the next

higher whole number)

number of characters per track @

The following four steps should then be followed to determine the number of index
tracks in an indexed file:

1. key field length + (3 for 5444 or 4 for 5445) = index entry length

2. number of characters in a sector @ .
= number of entries per sector

index entry length (from step 1)

3. number of records
= number of sectors

number of entries per sector (from step 2)

4. number of sectors (from step 3)
P = number of index tracks (round to the next

number of sectors per track higher whole number)

®6144 for the 5444
5120 for the 5445

@256 (For the 5445, a sector is referred to as a fixed record.)

®24 for the 5444
20 for the 5445

Appendix B. Conversion 189

190

If an indexed 5445 file has more than 15 index tracks (from step 4 above), the file
will have a disk master index in addition to the regular index. The following two
steps should be followed to determine the number of tracks needed for the master
index:

1. _number of index tracks (greater than 15)

- = number of fixed records
number of entries per sector (from step 2)

= number of disk master index tracks
(round results to the next higher
whole number)

2. number of fixed records (from step 1)
' 20

The total number of tracks in a 5445 indexed file can be determined by adding the
number of data tracks, the number of regular index tracks, and the number of disk
master index tracks.

CYLINDER/TRACK TO TRACK NUMBER CONVERSION
To convert cylinder/track to track number, multiply cylinder number by the number
of tracks on each cylinder and add track.

EXAMPLE: 5/3 = cylinder/track
5X20*+3 = 103
103 = track number

TRACK NUMBER TO CYLINDER/TRACK CONVERSION
To convert track number to cylinder/track, divide track number by the number of
tracks on a cylinder. The quotient is the cylinder and the remainder is track.

EXAMPLE: 103 = track number
103 = 20* = 5 (remainder 3)
5/3 is the cylinder/track

* 20 = number of tracks on a cylinder

G N
APPENDIX C. SYSTEM/360-SYSTEM/370 DISK FILE COMPATIBILITY
L

This appendix is intended for the user who intends to exchange data between System/3
and System/360-System/370 without using the IBM System/3 5445 Data Interchange
Utility Program. The access method limitations listed in the utility program section of
this manual should be followed.

Disk files created on the 5445 can be read and updated using System/360-System/370.
Disk files can also be created using System/360-System/370 and subsequently read or
updated with a System/3 Model 10 Disk System.

The volume label and volume table of contents (VTOC) identify the information con-
tained on the disk pack. The volume label identifies the volume and points to the
System/360-System/370 VTOC. The System/360-System/370 VTOC contains one label
record which describes the complete pack as one System/360-System/370 file. The
System/3 VTOC resides in a fixed location within this System/360-System/370 file and
can be examined by the System/360-System/370 program.

See /BM System/3 Disk Systems System Control Program Logic Manual, SY 21-0502,
for a description of the System/3 VTOC and volume label.

System/3 to System/360-System/370
The System/3 Disk Initialization Program writes a volume label in the System/360-
System/370 format on every disk pack. The System/3 disk format consists of
256-byte physical records. This record length may be altered for System/360-
System/370 VTOC records.

Any of the access methods previously listed may be used by System/3 when creat-
ing a file to be used by System/360-System/370. The logical records in a particular
System/3 file can be accessed by System/360-System/370 by means of a user pro-
gram using the Sequential Access Method if the user program:

e Locates the file label in the System/3 VTOC for the desired file.

e Uses the start of data information and record length information from the
System/3 VTOC to perform the accessing and logical deblocking.

e Uses the end-of-file information from the System/3 VTOC.

System/360-System/370 to System/3
Volumes created on System/360-System/370 can be processed on System/3 if
System/360-System/370 provides a System/3 VTOC entry and writes 256-byte
physical records. A System/3 user program or utility can then read and unblock
the file according to the information in the System/3 VTOC.

CAUTION
If the System/3 VTOC provided by System/360-System/370 is not exactly
the same as the System/3 format, unexpected results (destroyed data files

or unrelated halts) may occur.

Appendix C. System/360-System/370 Disk File Compatibility 191

192

* (comment) statement (OCL) 31

* parameter for the LOAD statement (OCL) 17
$ALT (see Alternate Track Assignment program)
$BUILD (see Alternate Track Rebuild program)
$COPY (see Disk Copy/Dump program)

$DCOPY (see Dump/Restore program)

$DELET (see File Delete program)

$INIT (see Disk Initializations program)

$LABEL (see File and Volume Label Display program)
$MAINT (see Library Maintenance program)
$TINIT (see Tape Initializations program)

$TVES (see Tape Error Summary program)

$VTOC (see 5445 Date Interchange Utility program)
/& statement (OCL) 32

/* statement (OCL) 32

accessing existing split cylinder files 72
adding a missing parameter to a procedure 54
adding a statement to a procedure 54
adding source library entries 171, 180
additional disk identification 102
advantages of nested procedures 55
AFTER parameter 171,174
allocate restrictions 151
ALLOCATE statement ($MAINT)
Allocation of Disk Work Space 151
control statement summary 150
DIRSIZE parameter 152
function 151
OBJECT parameter 152
parameter summary 151
restrictions 151
SOURCE parameter 152
SYSTEM parameter 152
TO parameter 152
WORK parameter 153
allocation limit 151
Alternate Track Assignment program 105
ALT statement (see ALT statement)
cancel prior assignment 108
conditional assignment 107
examples 109
messages 110
OCL considerations 109
unconditional assignment 108
Alternate Track Rebuild program 111
examples 113
OCL considerations 113
REBUILD statement (see REBUILD statement)
substitute data 112
ALT statement (BALT)
ASSIGN parameter 108
control statement summary 106
PACK parameter 107
parameter summary 106
UNASSIGN parameter 108
UNIT parameter 107
VERIFY parameter 107

INDEX

ASCII parameter
FILE statement 48
VOL statement 90
ASSIGN parameter for the ALT statement 108
assignment of alternate tracks
Alternate Track Assignment program 107
Disk Initialization program 101
automatic file allocation 73

BLKL parameter, FILE statement 46

CALL statement (OCL) 51
cancel prior alternate track assignment 108
CAP parameter for the UIN statement 101
chain-image area 24
changing 24
changing a permanent file to a scratch file 38
changing a scratch file to a temporary file 38
changing a temporary file to a scratch file 38
changing procedure parameters 53
changing punch device (see PUNCH statement)
changing the contents of the chain-image area 24
changing the logging device 28
changing the name of a library entry 174
changing the number of lines the printer will print
per page 27
changing the size of the object library 153
changing the size of the source library 154
changing the system input device 29
characters from the source library on disk 26
characters from the system input device 24
example 26
characters to use when naming library entries 163
CHAR, format parameter for the IMAGE
statement 24
Checkpoint/Restart
OCL consideration 79
programming consideration 79
choosing the designation of a library entry
permanent 163
temporary 163
clear initialization 100
coding rules for OCL. 6
comments 8
continuation 7
statements beginning with // 6
statement beginning with other than // 7
coding rules for utility control statements 86
comments 8
compatibility of disk files 191
COMPILE statement (OCL) 22
compiling source programs and storing them in the
object library 73
sample statements 74
compiling an RPG |l program 60

Index 193

compress in place 156 copying files 132

conditional assignment of alternate tracks 105, 107 example 137
example 109 copying minimum system from one disk to
incorrect data 108 another 159
surface analysis 101, 107 example 176
CONSOLE parameter copying multivolume files 135
LOG statement 28 copying multivolume indexed files 135
READER statement 29 direct file attributes 135
continuation (OCL) 7 maintaining correct relative record numbers 135
control statement summary (utility programs) maintaining proper volume sequence numbers 135
ALLOCATE statement ($MAINT) 150 copying multivolume indexed files 135
ALT statement (SALT) 106 copying object program to F1 177
COPY statement (SMAINT) 157-168 example 177
COPYFILE statement ($COPY) 128 COPYPACK statement ($COPY)
COPYPACK statement ($COPY) 128 control statement summary 128
COPYPACK statement ($DCOPY) 139 FROM parameter 131
DELETE statement (SMAINT) 169 parameter summary 129
DISPLAY statement (SLABEL) 115 TO parameter 131
INSERT statement (SMAINT) 172 COPYPACK statement ($COPY)
MODIFY statement (SMAINT) 172 control statement summary 139
NEWVTOC statement ($VTOC) 184 FROM parameter 140
REBUILD statement ($BUILD) 111 parameter summary 139
REMOVE statement ($MAINT) 172 TO parameter 140
REMOVE statement ($DELET) 122 correcting characters on an alternate track 111
RENAME statement (SMAINT) 174 example 113
REPLACE statement ($MAINT) 172 creating a source library 154
SCRATCH statement ($DELET) 122 creating an object library 152
SELECT statement (3COPY) 128 creating disk files 60
UIN statement ($INIT) 98 creating split cylinder files 71-72

UPDATE statement (§VTOC) 184
VOL statement ($INIT) 98
VOL statement ($TINIT) 90

conversion
cylinder — tracks 190 Data Interchange Utility 183
records — tracks 189 DATA parameter for the REMOVE statement
track number — cylinder number 190 ($DELET) 124
convert seven track tape 48 DATE parameter

COPY statement (SMAINT) FILE statement (OCL) 39
control statement summary 158-160 disk 39
File-to-library 164 tape 46 ‘
FROM parameter 161 REMOVE statement ($DELET) 122
function 157 SCRATCH statement ($DELET) 122
LIBRARY parameter 161 date parameter for the DATA statement (OCL) 16
library-to-card 165 DATE statement (OCL) 16
library to library 164 DEFER parameter, FILE statement 48
library-to-printer/card considerations 165 DELETE parameter for the COPYFILE statement
NAME parameter 161 ($COPY) 133
NEWNAME parameter 162 DELETE statement (SMAINT)
parameters 161-162 control statement summary 169
reader-to-library 164 FROM parameter 170
RETAIN parameter 163 function 169
TO parameter 162 LIBRARY parameter 170
uses 157 NAME parameter 170

COPYFILE statement ($COPY) parameters 170
control statement summary 128 restrictions 169
DELETE parameter 133 RETAIN parameter 170
OMIT parameter 133 summary 169
QUTPTX parameter 130 uses 169
OUTPUT parameter 130 deleting an object library 156
parameter summary 129 deleting a procedure parameter 53
REORG parameter 133 deleting a source library 155

WORK parameter 133
copying an entire disk 130, 139
example 137

194

deleting library entries (SMAINT)
all entries of one type 169
example 179
all entries with names that begin with certain
characters 159
example 179
all temporary or permanent entries of a certain
type 159
an entry from a library 159
example 177
library entries 159
temporary or permanent entries with names beginning
with certain characters 159
deleting one of several files having the same name ($DELET) 125
DENSITY parameter
FILE statement 47
VOL statement 90, 91
DEVICE parameter for the FORMS statement (OCL) 27
direct file attributes 134
DIRSIZE parameter for ALLOCATE statement
(SMAINT) 152
Disk Copy/Dump program 127
COPYFILE statement (see COPYFILE statement)
copying multivolume files (see copying multivolume
files)
COPYPACK statement (see COPYPACK statement)
examples 137
OCL considerations 135
SELECT statement (see SELECT statement)
disk drive capacity 100
disk file compatibility 191
Disk Initialization program 97
clear ininitalization 100
disk drive capacity 100
examples 102
messages 103
OCL considerations 102
primary initialization 100
secondary initialization 100
UIN statement (see UIN statement)
VOL statement (see VOL statement)
Disk System 3
DISPLAY statement (SLABEL)
control statement summary 115
LABEL parameter 116
parameter summary 115
UNIT parameter 116
DISP parameter for the REBUILD statement 112
dual programming feature 74
additional space 156
considerations 77
loading programs in a DPF environment (see
Loading programs in a DPF environment)
dumping disk to tape 139
Dump/Restore program 139
COPYPACK statement 139
FROM parameter 140
OCL considerations 141
TO parameter 140

end-of-data (see /* statement)
END parameter, FILE statement 47
END statement 86
ERASE parameter for the UIN statement 101
examples
CALL statement 51
changing the size of a source library 154
characters from the source library on disk 26
characters from the system input device 26
COMPILE statement 23
conditional assignment 109
copying a file from one disk to another 137
copying an entire disk 137
copying disk file to library 178
copying minimum system from one disk to another 176
copying object programs to F1 177 ‘
correcting characters on an alternate track 113
creating both source and object libraries on a disk 176
DATE statement 16
deleting all entries of one type 179
deleting all entries with names beginning with certain
characters 179
deleting an entry from a library 177
deleting one of several files having the same name 125
deleting the object library froma disk 176
FILE statement
disk 33-42
tape 44
FORMS statement 27
inserting a statement in a source module 180
LOAD statement 17
nested procedures 55
primary initialization of two disks 102
printing library directories 177
printing part of a file 138
printing VTOC information for two files 120
printout of Tape Initialization program 92
printout of Tape Error Summary program 95
procedures 53
removing source statements from a module 179
renaming a set of source statements in a source library 180
reorganizing the system pack 181
replacing statement in a procedure 180
external indicators 21

File and Volume Label Display program 115
DISPLAY statement (see DISPLAY statement)
examples 120
OCL considerations 119

File Delete program 121
examples 125
OCL considerations 125
REMOVE statement (see REMOVE statement)
SCRATCH statement (see SCRATCH statement)

file names used in the FILE statement 34

FILE statement (OCL)

ASCI| parameter 48
BLKL parameter 46
CONVERT 48

Index 195

DATE parameter FORMS statement (OCL) 27

disk 39 FROM parameter
tape 46 COPY statement 161
DEFER parameter 48 COPYPACK statement ($COPY) 129
DENSITY parameter 47 COPYPACK statement ($DCOPY) 139
END parameter 47 DELETE statement 170
example 40-42 MODIFY function 173
file processing considerations 42 RENAME statement 174
format 33 function of OCL statements (see desired statement type)
function 33
HIKEY parameter 39, 67
LABEL parameter gaps in the object library 148
disk 36 general form of OCL statements 5
tape 45
LOCATION parameter 37, 67
NAME parameter HALT statement (OCL) 31
disk 33 HEX, format parameter for the IMAGE statement 24
tape 43 HIKEY parameter for the FILE statement 39, 67
PACK parameter 36, 65 packed 68
PARITY 48
packed HIKEY parameter 68
placement 33 IBM System/3 Standard Character Set 187
RECL parameter 46 ID parameter, VOL statement 90, 98
REEL parameter 45 IMAGE statement (OCL) 24-26
RETAIN parameter including comments in OCL statement 8
disk 38, 67 including system programs in a library 152
tape 46 incorrect data 108
TRACKS or RECORDS parameter 36, 66 INCR parameters of MODIFY statement 173
TRANSLATE 48 indicating the number of lines per page the printer will print 27
UNIT parameter indicator-settings parameter for the SWITCH statement 21
disk 35, 65 initializing disks 97
tape 44 initializing tapes 89
FILE statement considerations for multivolume files 64 input device, changing (see READER statement)
file-to-library copy function of Library Maintenance program 164 input/output devices in a DPF environment 74
format of OCL statement INSERT statement (SMAINT)
* statement 31 : control statement summary 172
/& statement 32 functions 171
/* statement 32 parameters 174
BSCA statement 50 inserting source library entries 171
CALL statement 51 IPL (Initial Program Load) 3

COMPILE statement 22
DATE statement 16

FILE statement 33 job stream 4
FORMS statement 27 relationship to OCL 4
HALT statement 31 sample 4

IMAGE statement 24

LOAD statement 17

LOCKOUT statement 52 keyword 6

LOG statement 28 keyword parameter 6
NOHALT statement 31

PARTITION statement 52, 76

PAUSE statement 32 LABEL parameter
PUNCH statement 30 DISPLAY statement 115
READER statement 29 FILE statement
RUN statement 20 disk 36
SWITCH statement 21 tape 45
format parameter for the IMAGE statement REMOVE statement 122
CHAR 24 SCRATCH statement 122
HEX 24 length of names given to library entries 163
MEM 25 LENGTH parameter for the REBUILD statement 112

196

library description 148
library directory printouts
object library 166
source library 166
system directory 168
library entries
removing temporary 151
library maintenance allocate restrictions 151
Library Maintenance program 147
ALLOCATE statement (see ALLOCATE statement)
COPY statement (see COPY statement)
DELETE statement (see DELETE statement)
examples 175-181
library description 148
MODIFY statement 171
OCL considerations 175
RENAME statement (see RENAME statement)
library, object (see object library)
library, source (see source library)
LIBRARY parameter
COPY statement 161
DELETE statement 169
MODIFY statement 173
RENAME statement 174
library, source (see source library)

library-to-card considerations for the copy function of the Library

Maintenance program 165

library-to-library considerations for the copy function of the Library

Maintenance program 164
library-to-printer considerations for the copy function of the
Library Maintenance program 165
LIST parameter of MODIFY statement 173
listing source library statements 171
LOAD * statement (OCL) 17
loading and running programs 61
IBM programs 61
object programs using card files 61
object programs using more than one disk file 62
object programs using one disk file 61
object programs using one disk file and external indicators
loading existing split cylinder files 72
loading object programs from the system input device 17
loading programs from disk 17
loading programs in a DPF environment 74
DATE statement 74
FORMS statement 75
HALT statement 75
IMAGE statement 75
LOAD statement 75
LOG statement 74
NOHALT statement 75
PARTITION statement (see PARTITION statement)
planning information 76
sample job streams 77
LOAD statement (OCL) 17
* parameter 17
example 17
format 17
function 17
placement 17
program-name parameter 17
UNIT parameter 19

62

location of object library 155
location of source library 154
LOCATION parameter for the FILE statement
LOG statement (OCL) 28
use in checkpoint/restart 79
logging device 28

37,67

magnetic tape (see tape, magnetic)
maintaining correct relative record number when copying
multivolume files 134
maintaining proper volume sequence numbers when copying
multivolume files 134
maximum number of levels that can be nested together 56
maximum number of utility control statements in a procedure
MEM, format parameter for the IMAGE statement 25
messages
Alternate Track Assignment program 110
Disk Initialization program 103
Dump/Restore 143
Tape Initialization 90
MFCU1 parameter
PUNCH statement 30
READER statement 29
MFCU2 parameter
PUNCH statement 30
READER statement 29
MODIFY statement ($MAINT)
control statement summary 172
functions 171
parameters 173
moving object library 151
multivolume files
copying 134
disk 64
file statement considerations
tape 69

65-68

naming library entries
characters to use 163
length 163
restrictions 163
name of entry to be deleted 169
name of entry to be renamed 174
NAME360 parameter
VOL statement 102
NAME parameter
COPY statement 161
DELETE statement 170
FILE statement
disk 33
tape 43
IMAGE statement 24
RENAME statement 175
nested procedures 55
advantages 55
examples 57
maximum number of levels that can be nested 56
rules 57

Index

53

197

NEWNAME parameter
COPY statement 162
RENAME statement 175
new name to be given to an entry 163
rules 163
NEWVTOC statement (VTOC) 184
NOHALT statement (OCL) 31
normal procedure call 53
number of alternate tracks on a disk 105
NUMBER parameter for the IMAGE statement 24

object library
changing size 153
creating 152
deleting 156
gaps 148
location 155
moving 151
organization 153
reorganizing 153
OBJECT parameter
ALLOCATE statement 150
COMPILE statement 23
OCL considerations for utility programs
Alternate Track Assignment program 109
Alternate Track Rebuild program 113
Disk Copy/Dump program 135
Disk Initialization program 102
Dump/Restore 141
File and Volume Label Display program 119
File Delete program 125
Library Maintenance program 175
Tape Error Summary program 96
Tape Initialization program 91
5445 Data Interchange Utility program 185
OCL parameters summary 12-15
OCL statement
* statement 31
/& statement 32
/* statement 32
BSCA 48
CALL statement 51
COMPILE statement 22
DATE statement 16
FILE statement 33
FORMS statement 27
HALT statement 31
IMAGE statement 24
LOAD statement 17
LOCKOUT 52
LOG statement 28
NOHALT statement 31
PARTITION statement 52, 76
PAUSE statement 32
PUNCH statement 30
READER statement 29
RUN statement 20
SWITCH statement 21
OCL statement summary 9
OFF parameter for the LOG statement 28

198

OMIT parameter for the COPYFILE statement 132

ON parameter for the LOG statement 28
organization of the object library 148
organization of the source library 148

OUTPTX parameter for the COPY FILE statement
OUTPUT parameter for the COPYFILE statement

PACK parameter
ALT statement 107
FILE statement 34, 65
NEWVTOC statement 185
REBUILD statement 112
REMOVE statement 123
SCRATCH statement 123
UPDATE statement 184
VOL statement 102
parameter 5
keyword 6
table of parameters 12-15
parameter summary of utility control statements
ALLOCATE statement 150
ALT statement 106
COPY statement 161-162
COPYFILE statement 129
COPYPACK statement 129
DELETE statement 170
DISPLAY statement 115
INSERT statement 172
MODIFY statement 173
REBUILD statement 111
REMOVE statement 172
RENAME statement 174
REPLACE statement 172
SCRATCH statement 122
SELECT statement 128
UIN statement 99
VOL statement
$INIT 99
$TINIT 90
PARITY seven track tape 48
PARTITION statement (OCL) 75, 76
use in checkpoint/restart 79
PAUSE statement (OCL) 32
permanent file 38
changing to a scratch file 38

placement of OCL statements (see the desired statement type)

primary initialization 100

example 102
printer chain image (see IMAGE statement)
printer forms (see FORMS statement)
PRINTER parameter for the LOG statement 28
printing file information from the VTOC 115
printing files 133

example 138
printing library directories 165-167

example 177
printing records using record keys 134

printing records using relative record numbers 134

printing the entire contents of the VTOC 116

129
129

procedure-name parameter for the CALL statement 51
procedure override statement 53
procedures 53

adding a missing parameter 54

adding a statement 54, 171

changing procedure parameters 53, 171

deleting a procedure parameter 53, 171

example 53, 179-180

inserting statements 171

listing 171

modifying 171

nested 55

normal procedure call 53

procedure override statement 53

removing statements 171

replacing statements 171
processing large indexed files 63
processing multivolume files 64-70
program-name parameter for the LOAD statement 17
program size 77
PUNCH statement (OCL) 30

READER statement (OCL) 29
reader-to-library copy function of the Library Maintenance
program 164

REBUILD statement ($BUILD)

control statement summary 111

DISP parameter 112

LENGTH parameter 112

PACK parameter 112

parameter summary 111

TRACK parameter 112

UNIT parameter 112
RECFM parameter, FILE statement 47
RECL parameter, FILE statement 46
RECORDS parameter for the FILE statement 36, 60
records-tracks conversion 189
REEL parameter

FILE statement 44, 70

VOL statement 90
relationship of OCL to the job stream 4
REMOVE statement ($DELET)

control statement summary 122

DATA parameter 124

DATE parameter 124

LABEL parameter 123

PACK parameter 123

parameter summary 123

UNIT parameter 123
REMOVE statement (SMAINT)

control statement summary 172

functions 171

parameters 173
removing files from a disk 121
removing source library statements 171
removing temporary library entries 151
RENAME statement (SMAINT)

control statement summary 174

FROM parameter 174

function 174

LIBRARY parameter 174

NAME parameter 175

NEWNAME parameter 175

parameter summary 175
renaming a set of source statements in a source library 174

example 180
REORG parameter for the COPYFILE statement 133
reorganizing a source library 155
reorganizing an object library 156
reorganizing the system pack 181
REPLACE statement (SMAINT)

control statement summary 172

functions 171

parameters 174
replacing existing library entries 164
replacing incorrect data 111
replacing source library entries 171
replacing statements in a procedure 180
replacing the printer chain 24
RESER parameter of MODIFY statement 173
reserializing a source library entry 171
restarting checkpointed program 79
restrictions, library maintenance 151
restrictions on naming library entries 151
restrictions on split cylinder files 71
restrictions using Library Maintenance 139
RETAIN parameter

COPY statement 163

DELETE statement 170

FILE statement

disk 33, 67
tape 43

retrieving a scratch file 38
rules for nested procedures 57
RUN statement (OCL) 20

sample job stream 4
sample statements for compiling and storing source programs
in the object library 74 ’
scratch file
changing a permanent file to a scratch file 38
changing a scratch file to a temporary file 38
changing a temporary file to a scratch file 38
split cylinder 72
scratching a file 38, 121
SCRATCH statement ($DELET)
control statement summary 122
DATE parameter 124
LABEL parameter 123
PACK parameter 123
parameter summary 123
UNIT parameter 123
secondary initialization 100
SELECT KEY for the SELECT statement 133
SELECT PKY for the SELECT statement 133
SELECT RECORD for the SELECT statement 134
SELECT statement ($COPY)
control statement summary 128
FROM parameter 134
parameter summary 129
SELECT KEY 135
SELECT RECORD 135
TO parameter 135

Index 199

SEQFLD parameter of MODIFY statement 173
sequence numbers in MODIFY functions 173
setting exterhal indicators 21 '
size of DPF programs 74)
size parameter for the PARTITION statement 52, 76
source library ’
adding entries 171
changing size 154
creating 154
deleting 155 .
inserting entries . 171
listing entries 171
location 156
organization 148
removing entries 171
reorganizing 155
replacing entries 171
reserializing entries 171
SOURCE parameter
ALLOCATE statement 152
COMPILE statement - 22 '
special meaning of capital letters, numbers, and special
characters 87
split cylinder files - 71-72
SPLIT cylinder files 71-72
SPLIT parameter for the FILE statement 39
starting the logging device 28
statement descriptions (OCL) 9
statement examples (OCL) 80-83
statement identifier 5
statements beginning with// 6
statements beginning with other than // 7
stopping the logging device 5
storing and compiling source programs in the object library 73
sample statements 74 o
substitute data 112
summary of OCL parameters 12-15
summary of OCL statements 9
surface analysis 101, 107
SWITCH statement (OCL) 21
system date 16
system directory 168
system input device 29
changing 29
SYSTEM parameter for the ALLOCATE statement 152
system punch device (see PUNCH statement)
System/360-System/370 packs 191

table of OCL statements 10-11
table of parameters 12-15
Tape Error Summary program 95
Tape Initialization program 89
tape, magnetic
error logging 95
FILE statement 43
initialization 89
multivolume files 70
telling the system not to halt 31
telling the system to halt = 31

200

temporary file 38
changing a scratch file to a temporary file 38
changing a temporary file to a scratch file 38
temporary library entries 151
TO parameter
ALLOCATE statement 152
COPY statement 160
COPYPACK statement 128
MODIFY function 173
TRACKS parameter for the FILE statement 36, 66
TRACKS parameter for the REBUILD statement 112
TRANSLATE seven track tape 48
TYPE parameter
UIN statement 100
VOL statement 90
types of directory entries 166
types of library entries 148

UIN statement ($INIT)
CAP parameter 101
control statement summary 98
ERASE parameter 101
parameter summary 99
TYPE parameter 100
UNIT parameter 100
VERIFY parameter 101
UNASSIGN parameter for the ALT statement 108
unconditional assignment 108
UNIT parameter
ALT statement 107
COMPILE statement 22
DISPLAY statement 116
FILE statement
disk 34, 65
tape 44,70
NEWVTOC statement 184
REBUILD statement 111
REMOVE statement 122
SCRATCH statement 122
UIN statement 100
UPDATE statement 184
VOL statement 90
unit parameter
CALL statement 51
IMAGE statement 25
LOAD statement 19
UPDATE statement 184
using OCL 59

VERIFY parameter
ALT statement 107
UIN statement 101

VOL statement ($INIT)
control statement summary 98
ID parameter 102
PACK parameter 101
parameter summary 99

VOL statement ($TINIT)
control statement summary 90
parameters 90

VTOC (volume table of contents)
LABEL parameter 116
System/3 115-120
System/360-370 183

work area
Disk Copy/Dump program 133
Library Maintenance program 153
WORK parameter
ALLOCATE statement 153
COPYFILE statement 133
MODIFY statement 173
writing utility control statements 85
coding rules 86
control statements 86
END statement 86

1442 parameter
PUNCH statement 30
READER statement 29
5445 Data Interchange Utility program 183

Index 201

READER’'S COMMENT FORM

GC21-7512-6

{BM System/3 Model 10
Disk System Control Programming
Reference Manual

YOUR COMMENTS, PLEASE. ..
Your comments concerning this publication will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing

and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

@ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

