
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••• •••••• • ••••• •••• • •••
•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• "·n:::::: •• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• •••••• • ••• •••• ••••• ••••••• •••• • ••••••• •••• • •••••• •••••••••••••• •••••••••••• •••••••••••• •••••••••••••• •••• • •••••• •••• • ••••••• ••••••• ••••• •••• ••••
•••• • •••• ••••• • •••••• •••••• • •••••••• ••••••• • •••••••••• ••••••• • •••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••••••••• • ••••• •••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• •••••• • ••••• •••••• •••••• •••••• •••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • ••• •••••• •••••• •••••• ••••••

•••• • ••• •••• • ••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• •••• • ••• •••• •••• • ••• •••• •••• • ••• •••••• •••• • ••••• •••••• • ••••• •••••• • ••••• •••••• • •••••
•••• • ••• ••••• ••• •••••••••••••••••• , ... •••••••••••••••••• •••••••••••••••••• •••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• •••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••••••••••••••••• •••• • ••• •••• • •••

•••• • ••••• ••••• • ••••• •••••• • ••••• ••••••• • ••••• ••••••• •••• • ••• •••• ••••• • ••• •••• •••••• • ••• •••• • •••••••••• ••••••••••••••••••• ••••••••••• • ••••• •••••••••• • •••• •••••••• • ••• ••••••

IBM System/3
Model 10 Disk System
Operation Control Language and
Disk Utilities
Reference Manual

Program Number 5702-SC1

GC21-7512-4

PREFACE

This manual provides the new programmer with the information he needs to run
programs on the IBM System/3 Model 10 Disk System and to use the disk utility
programs for doing jobs such as preparing disks for use or updating system libraries.
This information is divided into two parts:

• Part I - operation control language (OCL) statements needed to run programs in
the Disk System.

• Part II - disk utility programs and utility control statements needed to run them.

Note: In this publication there are some references to support of 64K bytes of main
storage. A System/3 Model 10 with a 64K processing unit is available only as an
RPQ. Your IBM Marketing Representative can provide information about this.

Related Publications
Publications that are related (not prerequisites) to this one are:

• IBM Systeml3 Disk System Introduction, GC21-7510

• IBM Systeml3 Disk System RPG II Reference Manual, SC21-7504

• IBM Systeml3 Disk System Operator's Guide, GC21-7508

• IBM Systeml3 Disk System Halt Procedure Guide, GC21-7540

• IBM Systeml3 Disk System RPG " and System Additional Topics
Programmer's Guide, GC21-7511

• IBM Systeml3 Disk Concepts and Planning Guide, GC21-7571

Fifth Edition (April 1972)

This is a major revision of and obsoletes GC21-7512-3. Additions have been made to support
the IBM 5445 Disk Storage Drive. The IBM 1442 Card Read Punch can now replace the IBM
5424 Multi-Function Card Unit (MFCU). The system punch device can be changed using
the /I PUNCH statement.

This edition applies to version 06, modification level 00 of the IBM System/3 Model 10 Disk
System and to all subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the specifications herein;
before using this publication in connection with the operation of IBM Systems, consult the
latest IBM System/3 Newsletter, Order Number GN20-2228 for the editions that are applicable
and current.

This manual has been extensively revised and should be reread in its entirety.

Requests for copies of IBM publications should be made to your I BM representative or to the
IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Publications, Department 245,
Rochester, Minnesota 55901.

© Copyright International Business Machines Corpora~ion 196,9,1970,1971,1972

CONTENTS

HOW TO USE THIS MANUAL iii Split Cylinder Files . 56
Restrictions for Using Split Cylinder Files 56

PART I. OClSTATEMENTS. Creating the First Split Cylinder File in a Group 56
Creating Other Split Cylinder Files 57

INTRODUCTION TO OCl STATEMENTS • 3 Accessing Existing Split Cylinder Files 57
What is OCL? 3 loading to Existing Split Cylinder Files 57

OCl and the Job Stream 4 Scratch Split Cylinder Files 57
Organization of Part I 4 Automatic File Allocation . 58

Compiling and Storing a Source Program in an Object
CODING RULES 5 Library . 58
Types of Information 5 Sample Statements . 59

Statement Identifiers 5 loading Programs in a DPF Environment 59
Parameters 5 OCl Considerations For loading Programs in a DPF

General Coding Rules • 6 Environment 59
Statements Beginning with /I 6 DPF Considerations. 62
Statements Beginning with Other Than II 7 Sample Job Streams 62
Continuation. 7 Restarting a Checkpointed Program 64
Comments 8 Programming Considerations 64

Restart Procedure 64

STATEMENT DESCRIPTIONS 9 OCl Considerations for Using Checkpoint/Restart. 64

DATE Statement 14 Statement Examples 65

lOAD Statement 15 Example. 65

RUN Statement . 18
SWITCH Statement. 19 PART II. DISK UTILITY PROGRAMS. 69

COMPI lE Statement 20
I MAG E Statement 22 INTRODUCTION TO DISK UTILITY PROGRAMS 71

FORMS Statement . 25 To Write Utility Control Statements . 71

lOG Statement . 26 Control Statements . 72

READER Statement 27 Special Meaning of Capital letters, Numbers, and Special

PUNCH Statement . 28 Characters 73

NOHAl T Statement 29
HALT Statement 29 DISK INITIALIZATION PROGRAM 75

*(Commentl Statements 29 Parameter Descriptions. 78

PAUSE Statement 30 TYPE Parameter (UIN) . 78

/& Statement 30 UNIT Parameter (UIN) . 78

/* Statement. 30 VERIFY Parameter (UIN) 79
FilE Statement. 31 ERASE Parameter (UIN) 79

CAll Statement 41 CAP Parameter (UIN) 79
Procedures 42 PACK Parameter (VOL) 80

Example. 43 ID (Identification) Parameter (VOL) 80
Nested Procedures 44 NAME 360 Parameter (VOL) 80

OCl Considerations 80
USING OCl • 47 Examples 80

Compiling an RPG II Program. 48 Primary Initialization of Two Disks 80
Creating a Disk File. 48 Messages For Disk Initialization 81
loading and Running Programs 49

IBM Programs 49 ALTERNATE TRACK ASSIGNMENT PROGRAM 83
Object Programs Using Card Files. 49 Parameter Descriptions. 85

Object Programs Using One Disk File. 49 PACK Parameter 86

Object Programs Using More Than One Disk File 50 UNIT Parameter. 85

Object Programs Using One Disk File and External VERIFY Parameter. 86

Indicators 50 ASSIGN Parameter. 86
Multivolume Files 51 UNASSIGN Parameter 86
File Statement Parameter Considerations for Multivolume OCl Considerations 87

Files. 52 Examples 87
Conditional Assignment 87

Messages for Alternate Track Assignment 88

ALTERNATE TRACK REBUilD PROGRAM 89 LIBRARY MAINTENANCE PROGRAM 115
Parameter and Substitute Data Descriptions. 90 Library Description • 115

PACK Parameter 90 Location of Libraries on Disk . 115
UNIT Parameter. 90 Organization of library Entries 116
TRACK Parameter 90 Organization of this Section 117
lENGTH Parameter 90 Allocate Function 118
DISP (Displacement) Parameter 90 Library Maintenance Allocate Restrictions 119
Substitute Data • 91 TO Parameter 120

OCl Considerations 91 SOURCE and OBJECT Parameters 120
Examples 91 DIRSIZE Parameter 120

Correcting Characters on an Alternate Track 91 SYSTEM Parameter 120
WORK Parameter 121

FILE AND VOLUME lABEL DISPLAY PROGRAM 93 Using the Allocate Function 122
Parameter Descriptions. 94 Copy Function 125

UNIT Parameter. 94 Using the Copy Function 131
lABEL Parameter 94 Delete Function . 136

OCl Considerations 97 Rename Function 138
Examples 98 OCl Considerations 139

Printing VTOC Information for Two Files 98 Examples 139

FilE DELETE PROGRAM 99 IBM SYSTEM/3 5445 DATA INTERCHANGE

Parameter Descriptions. 101 UTiliTY PROGRAM. 144

PACK Parameter 101 Parameter Descriptions. 146

UNIT Parameter. 101 PACK Parameter 146

lABEL Parameter 101 UNIT Parameter. 146

DATE Parameter 102 OCl Considerations 146

OAT A Parameter 102
OCl Considerations 103 APPENDIX A. IBM SYSTEM/3 STANDARD

Examples 103 CHARACTER SET 147

Deleting One of Several Files Having the Same Name 103
APPENDIX B. CONVERSION 149

DISK COPY/DUMP PROGRAM 105 Records To Tracks Conversion 149

Parameter Descriptions • 108 Determining the Number of Sequential or Direct
FROM and TO Parameters (COPYPACK) 108 File Tracks . 149
OUTPUT Parameter (COPYFllE) 108 Determining the Number of Indexed File Tracks 149
DELETE Parameter (COPYFllE) 109 CylinderlTrack to Track Number Conversion 150
REORG (Re-organize) Parameter (COPYFILE) • 109 Track Number to Cylinder/Track Conversion 150
WORK Parameter (COPYFllE) 110
SELECT KEY and SELECT PKY Parameters APPENDIX C. SYSTEM/36O-SYSTEM/370 DISK FILE

(SELECT) 110 COMPATIBILITY. 151
SELECT RECORD Parameters (SELECT) 110 System/3 to System/360-System/370 151

Copying Multivolume Files 111 System/360-System/370 to System/3 151

Maintaining Proper Volume Sequence Numbers. 111
Maintaining Correct Relative Record Numbers 111 INDEX 153

Direct File Attributes 111
Copying Multivolume Indexed Files 111

OCl Considerations 111
Examples. 113

ii

Part I

HOW TO USE THIS MANUAL

This publication contains two parts. Part I describes operation control language
(Oel) statements. Part II describes disk utility programs.

Refer to Part I if you want to know:

1. What an Oel statement is.

2. What each Oel statement is used for (function).

3. Where each Oel statement is placed in relation to others and when it is needed
(placement).

4. How each statement must be coded (format).

5. What each statement must contain (contents).

Part II
Refer to Part II if you want to know:

1. What disk utility programs are supplied with the system.

2. The function of each disk utility program.

3. The operation control language (Oel) statements and utility control statements
necessary to request each disk utility program.

How to Use This Manual iii

iv

PART I. oel STATEMENTS

OC L Statements 1

(
2

INTRODUCTION TO OCl STATEMENTS

WHAT ISOCL?
Operation control language (OCL) is your means of communicating with the IBM
System/3 Model 10 Disk System. You must write a set of OCL statements for each
program you want to run. Based on the information supplied by the OCL state
ments, the Disk System will load and execute your Disk System programs or
perform system utility functions.

You can supply OCL statements in two ways: (1) punch the statements into
cards, which are then read by the Disk System; (2) use the printer-keyboard to
key the statements directly to the Disk System.

After the Disk System reads a set of OCL statements for a program, it runs the
program. When the program ends, the Disk System reads the set of statements
for the next program, then runs that program. This procedure is repeated until
all OCL statements have been read and the corresponding programs have been run.

The running of your programs is controlled by system control programs. System con
trol programs must be in core storage before your jobs can be run. These programs
are located on disk and are brought into storage by a procedure called initial program
load (lPL). IPL is performed by the operator when the system is turned on. For more
information on IPL, see the IBM System/3 Disk System Operator's Guide, GC21-750S.

The DATE statement is part of the IPL process and must be the first statement pro
vided for your program. (See DA TE Statement in Statement Descriptions for more
information.)

Introduction to oel Statements 3

4

OCL and the Job Stream
The Del statements you supply form the basis of the job stream. If your program
requires the use of data from the system input device (the device used to read Del
statements) your program and that data must follow the corresponding DeL. The job
stream, therefore, can contain programs and program data as well as Del statements.
Figure 1 is an example of a card input job stream.

You can also store sets of Del statements for your programs outside of the job stream
in a source library on disk. These sets are called procedures. You can instruct the
system to merge procedures into the job stream. The ability to store sets of frequent
ly used Del statements on disk makes it possible to avoid recoding the statements
every time they are used. (See Procedures under Statement Descriptions for more in
formation.)

ORGANIZATION OF PART I
Part I is divided into:

1. Coding Rules defines the general contents of the Del statements and explains the
rules for writing the statements.

2. Statement Descriptions explains the functions, format, and contents of each Del
statement, and the places in the job stream the statement may be used.

3. Statement Examples presents and explains a job stream containing most of the Del
statements.

DCl Statements for
Second Program

Data for First Program

First Program

~ DCl Statements for First Program

_______ -1 -- DATE Statement

Figure 1. Job Stream

CODING RULES

TYPES OF INFORMATION
Operation control language (OCL) statements contain, at most, two types of inform
ation: a statement identifier and parameters. A statement identifier is information
that tells one statement from another. A parameter is additional information supplied
with the statement identifier. Figure 2 shows the general form of OCL statements.

Identifier Parameter t. Parameter 2 •...• Parameter n

Figure 2. General Form of eel Statements

Statement Identifiers
Every OCL statement needs a statement identifier. The identifiers are as follows:

DATE FORMS * (asterisk)

LOAD LOG PAUSE
RUN READER /&
SWITCH PUNCH FILE
COMPILE NOHALT CALL

IMAGE HALT PARTITION

LOAD is an example of a statement identifier.

Parameters
Some statements need parameters. Others do not. (See Statement Descriptions for
an explanation of the statements which need parameters.) Parameters can be
either codes or data. A code is a word or group of characters that has a certain
meaning. Data is information such as the names, locations, and lengths of files on
disk. (See Statement Descriptions for data and code restrictions on parameters.)
In the following example, PROG2 is the name of an RPG II object program, and F 1
is a code that stands for the fixed disk on drive one. PROG2 is a data parameter
and F1 is a code parameter.

1 4 8 12 16 20 24 28 32

III OIA I> Pil t;? F1

Coding Rules 5

6

Some statements require certain words in parameters to tell one parameter from
another. The words are called keywords. Parameters containing keywords are
called keyword parameters. In Figure 3, NAME-MASTER, PACK-VOL1, and
UNIT-R1 are keyword parameters. NAME, PACK, and UNIT are keywords.
MASTER and VOL 1 are data parameters. R1 is a code parameter. There should
always be a hyphen between the keyword and the code or data parameter.

:,,:;;;;:: ::~
.. .: • ::, ..

F - '.:

JJJ til
I I I r I I

Figure 3. Keyword Parameters

GENERAL CODING RULES
In Part 1 of this book, the numbers that appear .above statement formats and
examples indicate the card columns or line positions occupied by the statements.
In statement formats, special characters, such as /I, and words written in capital
letters are information that must be used exactly as shown. Words written in
small letters, such as code, program-name, and unit, represent information that
you must supply.

Statements Beginning with /I
The rules for coding the statements are as follows (the term position refers to
either card column or line position):

• Place the II in positions 1 and 2.

• Leave one or more blanks between the II and the word that forms the statement
identifier (LOAD, RUN, CALL, etc.).

• Leave one or more blanks between the end of the statement identifier and the
first parameter.

• If you need more than one parameter, use a comma to separate them. No blanks
are allowed within or between parameters. (For the exception to this rule, see the
description for the HIKEY parameter under FILE Statement.) Anything
following the first blank is considered a comment (see Comments).

• If you are writing keyword parameters, place the keyword first and use a
hyphen to separate the keyword from the code or data parameter.

• If the parameter is not a keyword parameter, write the parameters in the order
in which they are discussed in this manual.

Figure 4 illustrates the coding rules. The statement identifiers are lOAD and
FilE. The parameters are PROG1, R1, NAME-MASTER, UNIT-R1, and PACK

VOL 1. The last three parameters are keyword parameters.

Figure 4. Illustration of General Coding Rules

Statements Beginning with Other Than /I
* and 1& statements do not require /I preceding them when coded. (See Statement
Descriptions for * and 1& statements.)

Continuation
All OCl statements except FilE must not exceed 96 characters, including blanks
and comments. Because of the large number of parameters possible in a FI lE
statement, you can use two or more cards or lines for those statements. Each card
or line you use must not exceed 96 characters. (Data for the IMAGE statement
requires continuation for the cards or lines containing the chain image characters,
but the data follows different continuation rules. See IMAGE Statement under
Statement Descriptions for more information.)

The continuation rules are as follows:

• Place a comma after the last parameter in every card or line except the last.
The comma, followed by a blank, tells the system that the statement is con
tinued in the next card or line.

• Begin each new card or line with a /I in positions 1 and 2.

• leave one or more blanks between the II and the first parameter in the card or
line.

Figure 5 illustrates the continuation rules.

1 4 8 12 18 20 24 28 32

'/1 FI L.f: ~4 St7 e~
'I 'I IA & . ,! , L LI NGo tlA 1! -tJ. 72 , &'1

II ;" I T- Il(1 IH4I tell!:: -" ~ 1

Figure 5. Illustration of Continuation Rules

Coding Rules 7

8

Comments
You can include comments in the following places in your statements:

• Following the II in statements beginning with II. Begin the comment in position 3,
immediately following the II. You can use up to eight characters without blanks.
leave one or more blanks between the comment and the word forming the state
ment identifier. Figure 6 contains such a comment. The word BilLING is the
comment .

• After the last parameter. leave one or more blanks between the last parameter
and your comment. The comment can be any combination of characters. If the
statement is continued in subsequent cards or lines, you can place comments after
the last parameter in any of the cards or lines.

In addition to writing comments within your DCl statements, you can include whole
cards or lines of comments. The DCl comment statement is provided for that
purpose. (See * (Comment) Statements under Statement Descriptions for more
information.)

Figure 6. Comment Following /I

STATEMENT DESCRIPTIONS

Each Oel statement is described separately in this section. The following informa
tion is given for each statement:

1. The function of the statement.

2. The placement of the statement in regard to other statements and the circum
stances under which the statement is needed.

3. The format of the statement.

4. The contents of the statement, explaining the parameters that can be used in the
statement.

Figure 7 gives the function, placement, and restrictions on use for each Oel
statement.

Figure 8 describes the contents of the Oel statements. It is meant for reference
only. If you are not familiar with an entry, or you do not know when to use or
omit it, refer to the proper statement in the remainder of this section.

When using Figure 8, remember that words written in small letters such as filename
or value require a choice on your part, depending on the functions you want the
statement to perform. Refer to Figure 8 to see which parameters are available.
Those parameters that are capitalized must be coded along with the data or code
parameter.

Statement Descriptions 9

PLACEMENT
STATEMENT FUNCTION STATEMENT APPEARS STATEMENT APPEARS RESTRICTIONS ON USE

IN JOB STREAM IN A PROCEDURE

/I DATE Supplies the system with Must follow lOAD or CAll Must follow the lOAD Must be supplied during the
a date, this date is given statement and precede the statement and precede the Initial Program load. The
to disk files being created. RUN statement except at RUN statement (if RUN is effect of the statement is

IPl time, when it must usedl. for that job only.
precede the first lOAD
or CAll statement.

/I lOAD * I ndicates that the object Must precede the Not allowed in lOAD * cannot be used in
program will be loaded i RUN statement a procedure. program level 2.
from the system input
device following the
RUN statement.

/I lOAD Identifies the program Must precede the Must be the first
to be run and in- RUN statement. /I statement.
dicates the disk that
contains the object
library from which it is
to be loaded.

/I RUN Indicates the end of the Must be the last OCl May be the last Required in the job stream
OCl statements for a statement. statement. for each program which is
program and tells system to be run.
to run the program.

/I SWITCH Used to set one or more Must follow lOAD or CAll Must follow the lOAD
external indicators on statement and precede the statement and precede the
or off or leave the in- RUN statement. RUN statement (if RUN is
dicator as it is. usedl.

/I COMPilE Tells the system where Must follow lOAD or CAll Must follow the lOAD
the source program to statement and precede the statement and precede the
be compiled is located RUN statement. RUN statement (if RUN is
and where to place the usedl.
object program.

/I IMAGE Tells the system to re- Anywhere among the Must precede the Required if the printer chain
place the chain-image OCl statements. RUN statement (if has been changed.
area with characters RUN is used).
indicated in the fol-
lowing data cards or
characters keyed in
or read from source
library.

/I FORMS I nstructs the system to Anywhere among the Must precede the

change the number of OCl statements. RUN statement (if

lines printed per page. RUN is usedl.

1/ lOG I nstructs system to Anywhere among the Must precede the RUN Device cannot be
start or stop pri nti ng OCl statements. statement lif RUN is specified in program
OCl statements and used). level 2.
codes and indicates the
device to be used to
print them.

Figure 7 (Part 1 of 2). Table of OCl Statements

10

PLACEMENT
STATEMENT FUNCTION STATEMENT APPEARS STATEMENT APPEARS RESTRICTIONS ON USE

IN JOB STREAM IN A PROCEDURE

/I READER Changes the system input Must precede LOAD or Must precede the Can be used in job stream only.
device used to read OCL CALL statement or follow LOAD statement {if
statements. the RUN statement and LOAD is used!.

precede the next LOAD
or CALL statement

/I PUNCH Enables you to change Anywhere among the Must precede the RUN
the system punch device .. OCL statements. statement.

/I NOHALT I nstructs system to Anywhere among the Must precede the RUN Ignored in program level 2.
continue without OCL statements. statement (if RUN is
stopping when a used).
program ends.

/I HALT Instructs system to halt Anywhere among the Must precede the RUN Ignored in program level 2.
when program ends; OeL statements. statement {if RUN is
cancel s the effect of used!.
the NOHALT
statement.

*(Comment) Used to explain the job Anywhere. Anywhere.
or give the operator
i nstructi ons; does not
affect the program in
operation.

/I PAUSE Tells the program to stop Anywhere among the Must precede the
in order to give the OCL statements. RUN statement (if
operator ti me to per- RUN is used!.
form a function.
Operator must restart
program.

/& Provides OCL security Recommended as the first Not allowed in a Can be used in the job stream
from previous job. statement of a job. procedure. only.

/I FILE Supplies information Must follow LOAD or CALL Must follow the LOAD Required for every new file
about the file to the statement and precede the statement and precede the created and existing files being
system. RUN statement. RUN statement (if RUN used.

is used).

/I CALL Identifies procedure to Must precede the I ndicates chained Can be no more than nine
be merged into job RUN statement. procedures. levels of nested chained
stream and the disk procedures.
containing the source
library from which to
read the procedure.

/I PARTITION Guarantees a minimum Anywhere, among the Must precede the RUN Cannot be submitted in
size to level 2 for a OCL statements. statement (if RUN is program level 2 or when
program in that level. used!. program level 2 is processing.

Figure 7 (Part 2 of 2). Table of OCL Statements

Statement Descriptions 11

STATEMENT PARAMETER CODE MEANING OF CODE

/I DATE date mmddyyor System date or date within a set of statements
ddmmyy

/I LOAD asterisk * Program is to be loaded from the system input device

program name name Name of program that is to be loaded from disk

unit Object library resides upon:
R1 Removable disk on drive one
R2 Removable disk on drive two
F1 Fixed disk on drive one
F2 Fixed disk on drive two

/I RUN none

1/ SWITCH i ndicator-setti ng5 Refer to SWITCH
Statement under
Statement Descriptions

/I COMPILE SOURCE SOURCE-name Name of source program

UNIT UNIT-R1 Where disk that contains the source library is
R2 located (the meanings of the unit codes are the
F1 same as for LOAD)
F2

OBJECT OBJECT-R1 Where to place the object program (the meanings
R2 of the unit codes are the same as for LOA 01
F1
F2

I/IMAGE format HEX To indicate characters from cards are in hexadecimal
form

CHAR To indicate characters from cards are in EBCDIC form
MEM To indicate characters are from the source library

number value Number of new characters

name name Identifies the characters in the library

unit R1 Where the disk that contains the library is located

R2 !the meanings of the unit codes are the same as for

F1 LOAD)

F2

1/ FORMS DEVICE DEVICE-name Indicates which printer is used

LINES LINES-value Indicates number of lines to be printed per page

/I LOG code CONSOLE Use printer-keyboard as logging device
PRINTER Use printer as logging device
OFF StoP printing
ON Start printing

/I READER system input device CONSOLE Printer-keyboard
MFCU2 Secondary hopper of MFCU
MFCU1 Primary hopper of MFCU
1442 Card Read/Punch

/I PUNCH system punch device MFCU2 Secondary hopper of MFCU
MFCU1 Primary hopper of MFCU
1442 Card Read/Punch

Figure 8 (Part 1 of 2). Table of Parameters

12

STATEMENT PARAMETER CODE MEANING OF CODE

/I NO HALT none

/I HALT none

* (Comment) none

/I PAUSE none

/& none

I/FILE NAME NAME-filename Name of the program uses to refer to the file

UNIT UNIT-R1 Where the 5444 disk that contains or will contain the
R2 file is located (the meanings of the unit codes are the
F1 same as for LOAD)
F2

01 Where the 5445 disk that contains or will contain
02 the file is located.

PACK PACK-name Name of disk that contains or will contain the file

LABEL LABEL-filename Name by which your file is identified on disk

RECORDS or RECORDS-number of Amount of space needed on a disk for a file
TRACKS TRACKS-number

LOCATION LOCATION-track Number of track on which file begins or is to begin
number (5444 disk only)

LOCATION-cylinder Cylinder number on which file begins or is to begin.
number Track assumed zero (5445 disk only).

LOCATION-cylinder Cylinder number, track number on which file begins
numberltrack number or is to begin (5445 disk only).

LOCATION-filename Filename of a split cylinder file that is the first split
cylinder file in a group, or is an already I!xisting split
cylinder file. (5445 disk only). For further discus-
sion see Split Cylinder Files.

RETAIN RETAIN-T Temporary file
S Scratch file
P Permanent file
A Reactivate scratch fi Ie

DATE DATE-mmddyy Tells the system the date the file was created
ddmmyy

HIKEY HIKEY-'highest List of highest key fields
key fields allowed' allowed on each pack

SPLIT SPLIT -tracks/cylinders The number of tracks per cylinder needed for the
or split cylinder file; the number of cylinders needed

SP LI T -tracks for a group of split cylinder files (5445 disk only).
For further discussion see Split Cylinder Files.

/I CALL procedure name name Name that identifies the procedure in the source library

unit R1 Where the disk containing the procedure is located
R2 (the meanings of the unit codes are the same as for
F1 LOAD)
F2

/I PARTITION size value Minimum size of program level 2 in decimal bytes

Figure 8 (Part 2 of 2). Table of Parameters

Statement Descriptions 13

DATE STATEMENT

Function

Placement

Format

Contents

Example

14

The DATE statement gives the Disk System a date, called the system date. The
system date is referred to by RPG II field names UDATE, UMONTH, UDAY,
and UYEAR. The preceding field names can also be used when referring to the
date given to the disk files when they were created.

A DATE statement within the set of statements for a program changes the
system date, but only for that program. When the program ends, the date
supplied in the DATE statement at IPl time is again used. There can only be
one DATE statement per job.

A DATE statement is always required during Initial Program load (lPl). It is
the only OCl statement required by the system at that time.

A DATE statement can also appear within any of the sets of statements for your
programs. The DATE statement must follow the lOAD or CAll statement
and precede the RUN statement.

II DATE date

The system date can be in either of two forms: month-day-year (mmddyy) or
day-month-year (ddmmyy). You must specify the form at System Generation
time. (See IBM System/3 Disk System Operator's Guide, GC21-7508, for more
information on System Generation.) The date you specify must be in that form.

The date can be written with or without punctuation. For example, July 25, 1970,
could be specified in anyone of the following ways:
07-25-70
25-07-70
072570
250770

Month, day, and year must each be 2-digit numbers but lead zeros in month and
day may be omitted when punctuation is used (7-25-70 or 25-7-70). In the
punctuated form, any characters except commas, quotes, numbers and blanks
can be used as punctuation.

LOAD STATEMENT

Function

Placement

Format

Contents

The LOAD statement identifies the program to be run and indicates whether the
program will be loaded from the system input device or disk.

One LOAD statement is required within each of the sets of statements for your
programs. If the set of statements appears on the job stream, the only requirement
for the LOAD statement is that it must precede the RUN statement. In procedures,
the LOAD statement must be the first II statement. (For more information about
procedures, see Procedures in this section)

The LOAD statement has two formats. The first format is used for object pro
grams loaded from the system input device and cannot be used in a procedure.
The second format is used for programs loaded from disk.

II LOAD *
II LOAD program-name,unit

Asterisk: An asterisk indicates that the object program will be loaded from the
syste~ input device. Program-name and unit parameters must not be included.
The cards or lines that contain the program must follow the RUN statement for
the program and must be followed by /* or 1& to signify the end of the pro~ram.
LOAD * cannot be used in programming level 2 (see Using OeL, Loading Programs
in a DPF Environment, for more information on dual programming).

Program-name: The program-name parameter is the name used on disk to identify
the program.

The names you must use for your RPG II programs depend on the way the pro
grams were placed on disk. One way includes an RPG II compiler option. You
can specify, in the RPG II Control Card specifications, that your RPG II program
be placed on disk immediately after it is compiled. The name you supply in
columns 75-80 of the Control Card specifications is the name used to identify
the program. If you left columns 75-80 blank, the name RPGOBJ is used.

Another way to place your RPG II Program on disk is by using the Library
Maintenance program. If you used that program, the program-name you supplied
in the Library Maintenance control statements is the name used to identify your
program. (For more information, see Library Maintenance in Part II of this book.)

Statement Descriptions 15

16

LOAD STATEMENT (continued)

The Disk System programs are identified by the following names:

Program Name

Alternate Track Assignment $ALT

Alternate Track Rebuild $BUILD

Assembler $ASSEM

Data Recording $DREC

Data Verifying $DVER

Disk Copy/Dump $COPY

Disk Initialization $INIT

Disk Sort $DSORT

File and Volume Label Display $LABEL

File Delete $DELET

Library Maintenance $MAINT

List $CLlST

MFCU Sort/Collate $CSORT

Reproduce and Interpret $REPRO

Restart $$RSTR

RPG II Compiler $RPG

80-96 Conversion $CNVRT

Unit: The unit parameter is a code. It indicates where the disk that contains
the program is located. The codes are as follows:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

LOAD STATEMENT (continued)

Example

The unit parameter is required because your programs can be on any of the
disks on your disk unit. The disk area containing your object program is called
an object library. You can create an object library on any of the disks on your
disk unit by using the Library Maintenance program. (See Library Maintenance
in Part II of this manuaL)

In the following sample LOAD statement, $RPG is the name that identifies the
RPG II Compiler.

~' • " " '" ,. ,. " 36

n Illl! Mrrl'j1!11111111111111111111111111111111
F1 is the code indicating the fixed disk on drive one, where the compiler would
be located in this case.

Statement Descriptions 17

RUN STATEMENT

Function

Placement

Format

Contents

18

The RUN statement indicates the end of the GCl statements for a program.
After the system reads the RUN statement, it runs the program.

A RUN statement is needed for each of the programs you want the system to run.
In the job stream, it must be the last statement within each of the sets of GCl
statements for your programs. It can also be the last GCl statement in a pro
cedure. (For more information about procedures, see Procedures in this section.)

II RUN

None

1

SWITCH STATEMENT

Function

Placement

Format

Contents

Example

The purpose of the SWITCH statement is to set one or more RPG II external
indicators on or off. The indicators are always off after the operator uses the
IPL procedure to start the system. If a SWITCH statement is used to set an
indicator on, the indicator remains on until another SWITCH statement sets it
off, or until the operator again uses the IPL procedure to start the system. There
can be only one SWITCH statement per job.

The SWITCH statement can appear within any of the sets of statements for your
programs. The only requirements for the SWITCH statement are that it must
follow the LOAD or CALL statement and precede the RUN statement.

II SWITCH indicator-settings

Indicator-settings: The indicator-settings parameter is a code that consists of
eight characters, one for each of the eight external indicators (Ul-U8). The first,
or leftmost, character gives the setting of indicator U 1; the second character
gives the setting of U2; and so on.

The code must always contain eight characters. For each indicator, one of the
following characters must be used:

Character Meaning

o Set the indicator off

Set the indicator on

x Leave the indicator as it is

The code lX0110XX would cause the following results:

Indicator Result

Ul Set on

U2 Unaffected

U3 Set off

U4 Set on

U5 Set on

U6 Set off

U7 Unaffected

U8 Unaffected

Statement Descriptions 19

COMPI lE STATEMENT

Function

Placement

Format

Contents

20

The COMPI lE statement tells the system two things: (1) where the source pro
gram to be compiled is located if it is coming from a disk source library; (2) where
the object program is to be placed. (An object program is a source program which
has been compiled or translated into machine language.)

The COMPI lE statement must be within the set of OCl statements that apply
to the compilation. The COMPI lE statement must follow the lOAD or CAll
statement and precede the RUN statement.

II COMPilE parameters

All the parameters are keyword parameters (keywords are in capital letters). The
keywords are: SOURCE, UNIT, and OBJECT.

SOURCE: The SOURCE parameter tells the system the name of the source pro
gram. The keyword SOU RCE must be followed by the name of the source pro
gram on disk. The name is the name by which the source program is identified
on disk in the source library. (For more information concerning the source library
see CALL Statement in this section.)

The only way you can place source programs in a source library is by using the
Library Maintenance program. The program name you supply in Library Main
tenance control statements is the name used to identify the source program in
the library. (For more information, see Library Maintenance in Part II of this
manual.)

If the SOURCE parameter is not used, the source program is assumed to be in the
job stream following the RUN statement.

The SOURCE parameter must always be accompanied by the UNIT parameter.

UNIT: The UNIT parameter is used only when the SOURCE parameter is used.

The UNIT parameter is a code indicating where the disk that contains the source
library is located. The codes are as follows:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

COMPILE STATEMENT (continued)

Example

OBJECT: The OBJECT parameter tells the system where to place the object pro
gram. The OBJECT parameter may be specified without using the SOURCE and
UNIT parameters. The codes which are used to indicate the disk unit on which
the object program is to be placed are R 1, F2, R2, or F2.

Note: If the OBJECT parameter is omitted, it is assumed that the object program
is to be placed on the same disk as the compiler. The object program name is a
function of the RPG I I Compiler. (For more information see the IBM System/3
Disk System RPG 1/ Reference Manual, SC21-7504.)

The following sample COMPI LE statement tells the system that the source program
with the name PROG3 is located on the fixed disk on drive one (F 1).

The parameter, OBJECT-Rl, tells the system to place the object program on the
removable disk on drive one.

Statement Descriptions 21

IMAGE STATEMENT

Function

Placement

Format

Contents

22

To operate correctly, the printer requires characters matching those on the
printer chain to be in a special area of core storage called the chain-image area.
When you replace the printer chain with one having different characters, you must
also change the contents of the chain-image area.

The IMAGE statement instructs the system to replace the contents of the chain
image area with the characters indicated by the statement. The characters can be
entered from the system input device, or contained in a source library on disk.
The effect of the IMAGE statement is temporary and the system chain image is
returned to the chain-image area when IPL occurs.

The IMAGE statement can appear anywhere among the OCL statements. In a
procedure, it must precede the RUN statement.

II IMAGE parameters

The IMAGE statement tells the system either of two things: (1) the new chain
characters are to be read from the system input device; or (2) the new chain
characters are to be read from the source library.

The IMAGE parameters are:

format-HEX, CHAR, or MEM

number-value

name-name

unit-code

(Coding only HEX, CHAR, or MEM is preferable for format but HEXADECIMAL,
CHARACTER, or MEMBER can be coded.)

Characters From the System Input Device

If you wish to indicate that the new chain characters are to be read from the
system input device, use the following parameters:

Format: Use the word CHAR to indicate that the characters are in EBCDIC form.
Use the word HEX to indicate that the characters are in hexadecimal form.

Number: The number parameter must be used with HEX and CHAR. It must be
a value which is equal to the number of columns or line positions in the data cards
or the data keyed in following the IMAGE statement that contains the new charac
ters. This number must not exceed 240 when the characters are hexadecimal, 120
when characters are EBCDIC. The name and unit parameters must not be coded.

IMAGE STATEMENT (continued)

Following are the rules for punching or keying the new characters:

1. The characters must begin in column or line position 1.

2. Consecutive card columns or line positions must be used; however, only
the first 80 columns or line positions of the card or line can be used. Hexa
decimal requires an even number of columns or line positions, two per
character.

3. To continue the characters on another card or line begin the characters
in column or line position 1.

Characters From the Source Library on Disk

To indicate that new chain characters are to be read from the source library on
disk, the format parameter must specify the word MEM.

The following parameters must also be included:

Name: The name parameter identifies the source member containing the charac
ters in the library. The only way you can place the characters in a source library
is by using the Library Maintenance program. The name you supply in Librarv
Maintenance control statements is the name used to identify the characters in
the source library.

Unit: The unit parameter must be used with the name parameter. It is used to
tell the system where the disk centaining the source library is located on the disk
unit. The codes which are used are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Statement Descriptions 23

24

IMAGE STATEMENT (continued)

Example

1 4 8

III 1M l4~~
Fit Fllr

711 Is 9 ~~

1 4 8

® ILl I~ AG~
112 39- 15&7

The IMAGE statement in example A tells the system that the new characters are
on data cards or keyed in. The format parameter indicates that new characters
are in hexadecimal form; the number parameter indicates that there are 120
columns or line positions containing the new characters.

In example B, the new characters, on data cards or keyed in, are in EBCDIC. The
number parameter indicates that there are 48 columns or line positions contain
ing the new characters.

Example C tells the system that the new characters are to be read from the
source library on disk. The format parameter indicates that the new chain
characters are in the source library. The name parameter indicates that the
characters were named CHAIN in the source library. The unit parameter indi
cates that the source library containing them is on the removable disk on drive
one (R 1). Examples of the member specified in example C are the data por
tions of examples A and B. The member itself requires a II IMAGE card with
the characters either in hexadecimal or EBCDIC. The number of columns or
line positions containing the characters must also be specified.

(See Library Maintenance in Part II for restrictions on the name used in coding
MEM.)

12 16 20 24 28 32 36 40 44 48 52 56 60

H~ x, tl~a
I,F 17~ air 9 f.'C 2 ~, 7'117 ~~ lI:l ~ID 111.: H :;171 l71i~ 17'lIL

S4 7'IC tC 1~lr ~C 4C .'iC~ IJl''; 1'!L C~ I!~ 1'7 IBI~~ IrlL IcILI.c

12 16 20 24 28 32 36 40 44 48 52 56 60

eli ~~ ,48
/,.c, T Ivw Xrt Ii!~ I, ~ 13K LH 1'40 IfQ l.ci-$* AlA ;nl,c:l~ lJl .,. • I

64

64

B 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

© n1 r~m rtmf11'~WII

FORMS STATEMENT

Function

Placement

Format

Contents

Example

The FORMS statement enables you to change the number of lines that the print
er will print per page. The printer automatically assumes the number of lines
per page specified at system generation time unless a FORMS statement is used
or an RPG II program specifies some other number. This number of lines is
effective until another FOR MS statement is used or an RPG II program with a
line counter specification is run. (See IBM System/3 Disk System RPG " Ref
erence Manual, SC21-7504.)

The FORMS statement can be placed anywhere among the OCl statements.

In a procedure it must precede the RUN statement.

II FORMS parameters

All of the parameters are keyword parameters (keywords are in capital letters).
The parameters are as follows:

DEVICE-name

LINES-value

DEVICE: The keyword for this parameter is DEVICE. It must be followed by
the name of the printing device. The name of the printing device is 5203l or
5203. You may omit the DEVICE parameter entirely.

LINES: The LINES parameter is used to indicate the number of lines per page.
The maximum number of lines that can be specified per page is 112. The LINES
parameter remains in effect until either an IPl is performed or another FORMS
statement for the same device is read. If a line counter specification is used in an
RPG II program, it remains in effect only for the duration of the program.

In the following FORMS statement, the system is using the left carriage of the
5203 Printer. The statement tells the system that the forms length is 88 lines
per page.

I' · , " " '" " " " ,. .. " "
tl rmTl m1'm-rrmt~lfl'-m 1I11111I1111111111

Statement Descriptions 25

LOG STATEMENT

Function

Placement

Format

Contents

26

OCL statements and message codes are printed on the printer-keyboard. If your
system has no printer-keyboard, the statements and codes are printed on the
printer. The device used to print OCL statements and message codes is called
the logging device. If you want to change the logging device, or specify whether
or not the statements and codes are to be printed, you must use a LOG statement.

The LOG statement tells the system to do one of four things:

Use the printer as the logging device

Use the printer-keyboard as the logging device

Stop printing OCL statements and message codes

Start printing OCL statements and message codes

You can use the LOG statement within any of the sets of OCL statements for
your programs. In a procedure it must precede the RUN statement.

II LOG code

Four codes can be used as parameters. The codes are as follows:

Code

CONSOLE

PRINTER

OFF

ON

Meaning

Use printer-keyboard as logging
device

Use printer as logging device

Stop printing

Start printing

Only one code can be used in one LOG statement. The starting of the logging
device is implied when coding CONSOLE or PRINTER.

When the system reads a LOG statement that contains the OFF code, it stops
printing OCL statements and message codes. The only way you can instruct the
system to start printing them again is by using a LOG statement that contains the
ON, PRINTER, or CONSOLE code. When ON is specified printing resumes on
the last logging device specified.

READER STATEMENT

Function

Placement

Format

Contents

The device used to read OCl statements is called the system input device. The
system assumes that the system input device is the primary hopper of the MFCU.
You must use a READER statement if you want to use the printer-keyboard.
secondary hopper of the MFCU. or the 1442 Card Readl Punch as the system
input device.

The READER statement must not come between the LOAD or CALL statement
and a RUN statement. The READER statement must precede the initial LOAD
or CALL statement or follow the RUN statement. preceding the next LOAD or
CALL statement. If you use the READER statement to change the system input
device. the device you specify is used to read source programs. control statements.
or OCL statements. Changing the system input device affects the placement of
source programs and control statements as well as OCL statements.

You must place the READER statement in the current system input device.

II READER system input device

The codes are:

Code

CONSOLE

MFCU2

MFCU1

1442

Meaning

Printer-keyboard

Secondary Hopper of the
MFCU

Primary Hopper of the MFCU

Card ReadlPunch

Statement Descriptions 27

PUNCH STATEMENT

Function

Placement

Format

Contents

28

The PUNCH statement enables you to change the system punch device.

The PUNCH statement can be placed anywhere among the OCL statements.
In a procedure it must precede the RUN statement.

II PUNCH punch device

Three codes can be used as parameters. They are:

Code

MFCU1

MFCU2

1442

Meaning

Primary Hopper of the MFCU

Secondary Hopper of the
MFCU

Card ReadlPunch

NOHAl T STATEMENT

Function

Placement

Format

Contents

HALT STATEMENT

Function

Placement

Format

Contents

*(COMMENT) STATEMENTS

Function

Placement

Format

Contents

Normally the system halts when a program ends. The NOHAl T statement tells
the system to continue by reading the next set of OCl statements without stop
ping, when a program ends. The effect of this statement lasts until the system
reads a HALT statement or an IPl occurs. The effect of the NOHAl T statement
is ignored temporarily when an abnormal job halt occurs. The system reverts to
the NOHAl T mode after a response.

A NOHAl T statement can be placed anywhere among the OCl statements. In a
procedure it must precede the RUN statement. The NOHAl T statement is ignored
if loaded in program level 2.

1/ NOHAlT

None

The HALT statement tells the system to halt when a program ends. The operator
can restart the system when he is ready, and the system continues reading the
next OCl statements.

The HALT statement is needed only if you want to cancel the effect of a NOHAl T
statement.

A HALT statement can be placed anywhere among the OCl statements. In a
procedure it must precede the RUN statement. The HALT statement is ignored
if loaded in program level 2.

II HALT

None

Comment statements are commonly used either to explain the jobs or to give the
operator instructions. Operator instructions are usually given in connection with
a PAUSE statement. Comment statements are printed along with the other OCl
statements. They have no other effect on the system.

You can include, in OCl statements, special statements that contain only com
ments. Comment statements must contain as asterisk (*) in column 1. They can
be placed anywhere among the OCl statements in either a job stream or a pro
cedure.

*comment

The comment can be any combination of words and characters. The only require
ment is that an asterisk (*) be in column 1.

Statement Descriptions 29

I· PAUSESTATEMENT

Function

Placement

Format

Contents

1& STATEMENT

Function

Placement

Format

Contents

1* STATEMENT

Function

Placement

Format

Contents

30

The PAUSE statement causes a halt. It usually is used to give the operator time
to prepare for the next program. He might, for example, have to place removable
disks on the disk units or insert special forms into the printer. Comment state
ments that give the operator instructions usually precede PAUSE statements.

When the operator is ready, he can restart the system. The system continues
reading the OCl statements that follow the PAUSE statement.

PAUSE statements can be placed anywhere among the OCl statements. In a pro
cedure it must follow the lOAD statement and precede the RUN statement.

II PAUSE

None

1& statements are used as a precautionary measure. Placed in front of your OCl
set, a 1& statement signals the system that a new set of OCl statements is coming.
It prevents your statements from being read as a part of the preceding set of
statements or data. Any attempt to read more data from that device will be block
ed.

1& statements are not required. It is recommended, however, that you use them
as the first statement in each of the sets of Oel statements for your programs.
They are not allowed in a procedure.

1&

None

/* statements indicate the end of a data file read in from a card reader
or console.

A /* statement should be the last card of an input data file or program
deck.

/*

None

FILE STATEMENT

Function

Placement

Format

Contents

The FI LE statement supplies the system with information about disk files. The
system uses this information to read records from and write records on disk.

You must supply a FI LE statement for each of the new disk files that your programs
create, and for each of the existing disk files that your programs use. The FILE state
ment must follow the LOAD or CALL statement and precede the RUN statement.

/I FILE parameters

All of the parameters are keyword parameters. The parameters are as follows
(keywords are in capital letters):

NAME-filename (in program)

UNIT-code

PACK-name

LABEL-filename (on disk)

RECORDS-number or TRACKS -number

{

track num. ber (5444 disk only)
LOCATION- cylinder number }

cylinder number/track number
filename

RETAIN-code

DATE-date

HIKEY-highest allowed key fields (on pack)

SPLIT-number of tracks per cylinder or both
the number of tracks per cylinder and the
number of cylinders (5445 disk only)

5445 only

The NAME, PACK, and UNIT parameters are always required. The others are re
quired only under certain conditions.

NAME: The NAME parameter is always needed. It tells the system the name that
your program uses to refer to the file. The NAME parameter must be placed on
the first card or line if two or more cards or lines are used for the FILE statement.
(See General Coding Rules for rules on continuation.)

If you are executing a program compiled by RPG " that uses a disk file, the
filename in this parameter must be the same name used on the File Description
specifications at compile time. .

For some of the programs, you must use specific names for certain files.

Statement Descriptions 31

FILE STATEMENT (continued)

32

Program

Disk Copy/Dump

Disk Sort

Assembler

RPG II
Compiler

File

Input
Output

Input
Work
Output

Input
Work
Output

Input
Work

Name

COPYIN
COPYO

INPUT
WORK
OUTPUT

$SOURCE These files
$WORK must be on
$WORK 2 (optional) a 5444

disk device.
$SOURCE
$WORK

The keyword for the parameter is NAME. It must be followed by the filename
used by the program. The name can be any combination of characters except
commas, quotes, or blanks. The first character must be alphabetic. The number
of characters must not exceed 8. The following example shows how the NAME
parameter for a file named F I LEA would be coded.

UNIT: The UNIT parameter is always needed. It tells the system the disk that
contains or will contain the file. The keyboard for this parameter is UNIT. It
must be followed by a code that indicates the unit. The codes are as follows:

R1 Removable disk on 5444 drive one

F1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two

F2 Fixed disk on 5444 drive two

D1 Removable disk on 5445 drive one

D2 Removable disk on 5445 drive two

The previous example shows how the UNIT parameter for a file located on the
removable disk on drive one would be coded.

PACK: The PACK parameter is always needed for disk files. It tells the system
the name of the disk that contains or will contain the file. The system checks this
name to ensure that the proper disk is being used. (For information about how a
disk is given a name, see Disk Initialization in Part II of this manual).

The keyword for this parameter is PACK. It must be followed by the name of the
disk. Figure 15 shows how the PACK parameter for a file on a disk named VOL 1
would be coded.

FILE STATEMENT (continued)

LABEL: The LABEL parameter tells the system the name by which your file
is identified on disk.

If the file is being created, the name you supply in the LABEL parameter is used
to identify the file on disk. If you omit the LABEL parameter from a disk FI LE
statement, the name from the NAME parameter is used.

If the file is an existing disk file, you must supply a LABEL parameter when the
name your program uses to refer to the file differs from the name by which the
file is identified on disk.

Several versions of a file can be created on the same disk and be given the same
name. If the TRACKS or RECORDS parameter you are using in creating a file
is the same as the TRACKS or RECORDS specified for an existing file you must
specify LOCATION. You can reference each of these files by its name and date,
or by its name and location on disk. Both date and location must be unique for
each version. (See Example 2 for an example of how to reference one version of
a file.)

If a space parameter (TRACKS or RECORDS) is given when creating another
version of an existing file it must be equal to the original value for the existing
file.

The keyword for the parameter is LABEL. It must be followed by the name of
the file on disk. The name can be any combination of characters except commas,
quotes, or blanks. The first character must be alphabetic. The number of char·
acters must not exceed 8. The LASE L parameter for a file named PAYROLL is
coded in the following example.

TRACKS or RECORDS: The TRACKS or RECORDS parameter is needed for
files that are being created. The parameter tells the system the amount of space
needed on disk for the file.

If you use the TRACKS keyword, you specify the number of disk tracks needed
for the file.

If you use the RECORDS keyword, you specify the approximate number of
records for the file. The total space allocated will be rounded up to full tracks
allowing adequate space to accomodate at least the number of records indicated.

Either of these two keywords, TRACKS or RECORDS, can appear in the FILE
statement, but not both. The keyword must be followed by a number indicating
the amount of space needed.

Statement Descriptions 33

FILE STATEMENT (continued)

34

If TRACKS is used, the number must be within the range 1-398 if you are using
full capacity 5444 disk packs. If you are using half capacity 5444 disk packs, the
number must be within the range 1-198. If you are using 5445 disk packs, the
number must be in the range of 1-3980. The following example shows how the
TRACKS parameter for a file requiring 20 tracks is coded.

m ~'~~'_I'rmflffii1uWn-~_111
If RECORDS is used, the number can be up to six digits long. The RECORDS
parameter for a file containing 250 records is coded as follows:

r~ li'f~'rrmrrtffi'm'~1'1'=m~i_1 i
LOCA TION: The LOCATION parameter is not required. It can, however, be
used for files that are being created. LOCATION is required when creating
several versions of a file or when loading an offline multivolume file to packs
which contain other files. (See Example 4.) It can also be used in referencing
one of several files housing the same name and same size. LOCATION is not
required if sizes differ.

For files that are being created, the parameter tells the system the number of the
track on which the file is to begin. If it is omitted, the track is chosen for you.

For files that are being referenced, the parameter tells the system the number of
the track on which the file begins. In this case, the system uses the track number
to tell one file from another.

The keyword for this parameter is LOCATION. For the 5444 disk the
LOCATION format is:

LOCATION-track number
\~ ____ Track number must be between

8-205 (half-capacity disk) or
8-405 (full-capacity disk). Tracks
0-7 are reserved for the system.

For the 5445 disk the LOCATION format is: Slash is needed to separate
cylinder number and track

LOCATION-cylinder number/track number number (when both are

\ \ specified

Cylinder number must be LTrack number must be between 0-19.
between 1-199. Cylinder 0 Track number 0 is assumed if track
is reserved for the system. number is not specified.

Split cylinder file support on the 5445 disk allows for an additional
LOCATION parameter:

LOCATION-file name

For a discussion on how the LOCATION parameter is used when
specifying split cylinder files, see Split Cylinder Files.

FILE STATEMENT (continued)

RETAIN: The RETAIN parameter is used to classify files according to their use:
scratch, temporary, or permanent.

A scratch file is normally used only once in a program and not retrieved after
the program has ended. However, a scratch file can be retrieved if a previous pro·
gram has defined it as a permanent or temporary file and then redefined it as a
scratch file. To change a permanent file to a scratch file you must use a utility
program. A temporary file can become a scratch file by using a utility program
or by using a RETAIN·S parameter. A RETAIN·A parameter is needed to change
a scratch file to a temporary file. A scratch file cannot become a permanent file
unless it becomes a temporary file first. A temporary file can be changed to a
permanent file only if the file name is changed and copied as a permanent file.
The system will overlay a scratch file if the disk pack is full and/or file space
is needed by a new file or by a system program.

A temporary file is usually used more than once. The area containing a temporary
file can be only given to another file under one of the following conditions:

1. A FILE statement containing the RETAIN·S parameter is supplied for the
temporary file. This converts the temporary file to a scratch file.

2. Another file with the same LABEL name is loaded into the exact area
occupied by the temporary file but this only changes the data. Space and
location parameters are required.

3. The File Delete program is used to delete the file.

The area containing a permanent file cannot be used for any other file until the
File Delete program has deleted the permanent file.

A disk file is classified as scratch, temporary, or permanent when it is created.
If the RETAIN parameter is omitted from the FI LE statement when the file is
created, the file is assumed to be a temporary file. The RETAIN parameter may
be omitted when accessing an existing file; however, RETAIN·A must be coded
to reactivate a scratch file.

The keyword for the parameter is RETAIN. It must be followed by a code that
indicates the classifications of the file. The codes are:

Code Meaning

S Scratch file

T Temporary file

P Permanent file

A Reactivate scratch file

The RETAIN parameter for a permanent file is coded as follows:

Statement Descriptions 35

FILE STATEMENT (continued)

1 4 ;

III IFII'I
::'

11/ ~II ~Ii: ..
.. :::::: :::::

36

DA TE: The DATE parameter tells the system the date of a file. It is used to
ensure that the proper version of the file is referenced.

When a file is created on disk, its LABEL name and creation date are written on
the disk as identification. The system date is the date used. (The system date
is explained under DA TE Statement.) More than one file on a disk can be given
the same name. The creation dates of these files must, however, be different.
To reference such a file, you can use its name and date (see Example4), or its
name and location on disk. If neither the date nor the location is given, the file
having the latest date is the one automatically referenced.

The keyword for this parameter is DATE. It must be followed by a 6-digit
number representing the date (two more spaces are allowed for punctuation
delimiters).

The date can be coded in one of two forms: month-day-year (mmddyy) or
day-month-year (ddmmyy). You must specify the form when the system is
generated. The date you specify in the DATE parameter must be in that form.
The date can be coded with or without punctuation. For example, July 31, 1971,
might be coded in anyone of the following ways:

073171
310771
07/31/71
31/07/71

Month, day, and year must each be 2-digit numbers but lead zeros in month and
day may be omitted when punctuation is used (7-31-71 or 31-7-71). A blank,
comma, number, or quote cannot be used to punctuate the date.

To illustrate this parameter, assume that two versions of a file are written on the
same disk. In the next example are the NAME, LABEL, and DATE parameters
for two versions of a file on the same disk, one written on April 5, 1971, the
other on August 3, 1971. Both files have the same label: F0001.

'.::. .. :', . . l€ 40 'i4 u: "". .; ·:: .. 64

IFI/ F.A, IATIE '41 ~S 111 11 :·:.ID 11, 11 I<

ii~f[
II ..

1= ~~~ ~ : .. :: .;:, .: :
.. " "

IIIL It; III ,1\ ATIE ~I ;~ 17U lu~ !/17 ~1 ,I P Ale 1- rtI fl:L II II ::::
...

: : :', :.' : .. J
: ~:::: ':', ...

I I I

HIKEY: The HIKEY parameter must be used when you define a multivolume
indexed file. The highest keyfield for each pack must be entered. For further
information and an example of H I KEY see Multivolume Files under Using OCL.

SPLIT: The SPLIT parameter is used when creating and maintaining split
cylinder files on a 5445 disk. For further information on SPLIT see
Split Cylinder Files.

1
I I I

FILE STATEMENT (continued)

Examples

1 4 8

The following are examples of FI LE statements. In each example, the file is
described first, then the corresponding FILE statement is shown.

Example 1: Suppose that each week you create a disk file that contains the
records for the transactions you had made that week. Assume the following
facts about that file:

The name your program uses to refer to the file is TRANS, which is also
the name you want to use to identify the file on disk.

You are placing the file on a removable disk named VOL03.

You intend to mount the disk on drive one.

You want to save the file for use at the end of the month.

The file contains 225 records.

You are letting the system choose the disk area that will contain the file.

The following example shows how the FILE statement for the preceding file is
coded when using a 5444 disk.

12 16 20 24 28 32 36 40 44 46 52 56 60

II/ 111 LE ~A ~e- 1'4 ~IC vo ~3 UN t ~7 -1111 RoE ITA lIN -IT ~I: (!b Rrl 5- 1215

The FI LE statement when using a 5445 disk would be:

Example 2: Suppose you had created, on the same disk (VOL03), four versions
of the transaction file described in the preceding example-one for each of the
weeks in February, 1970. Assume the following:

You had created the files on the following days: 2/6/70,2/13/70,
2/20/70, and 2/27/70 (these were the system dates used for each of the
files).

You want to reference the third file (the one created 2/20/70).

You intend to mount the disk on drive one.

The file statement you would need is:

Statement Descriptions 37

FILE STATEMENT (continued)

38

Example 3: Suppose at the end of the month you combine the files referred
to in Example 2, for use in preparing your monthly bills. Further assume the
following:

Your program uses the name TRANS to refer to the file, but you want to
use the name BILLING to identify the file on disk.

You are expressing the amount of disk space as the number of tracks re
quired to contain the file (assume the number is 15), and you want the
file to begin on track 8.

You are placing the file on a removable disk named VOL01.

You intend to mount the disk on drive one.

The following example shows the FILE statement you would use for this file.

I 4 8 12 Ie 20 24 28 32 3

III FI L.~ /1/A ~I& -1 I~A ~~ l.~ sle L ~ I LI IflleS
1/1 UN IT -F< 1 PiA Ie: " -v L~ t

III Til. AC III~ -J 15 ~O CA 17 I Il:~ -1
III Rot: 7A l'f<j -iT

Example 4: Suppose you want to create two versions of two files on disk and
later to access one version of each file. Further assume the following:

The names your program uses to refer to the files are AA and BB, which
are also the names you want to use to identify the files on disk.

File AA is being placed on a fixed disk on drive two named FIXED2.

File BB is being placed on a removable disk named REM5.

You intend to mount the disk on drive two.

One version of each file is created on 5/11/70 and 5/12/70.

Disk space and location for the files are:

File

AA

BB

Version

5/11/70
5/12/70

5/11/70
5/12/70

Tracks

10
10

20
20

Location

200
210

200
220

You want to access file AA, version 5/11/70 and file BB, version 5/12/70.

FILE STATEMENT (continued)

File Processing Considerations

The following OCl statements are needed to create the above versions of files
AA and BB and to access a version of each file.

I • 8 12 IS 20 2. 28 32 38 40 44

I S 8

IT 15 II
IA I

~ - I
- Ii -

IA -
-

IN

~ It: 1~1.6 " V ~
V rr ~

-
1/
IJ -
II - -
1/ 1111

~ II

1/ ~
IN

I
IN -

I ~ - 12
I"

lOCATION and space (TRACKS or RECORDS) must be specified when
you are loading to an existing temporary file.

If you are referencing a file by the DATE parameter and space is given, the
space must be equal to the space given when that file was created.

If you are accessing a file by the lOCATION parameter and space is given,
the space must be equal to the space given when that file was created.

You can create several versions of a file with a program by changing the
locations of the files and using different system dates.

You can create different versions of a file without lOCATION if the space
parameters as well as the system dates are different.

The system assumes that a new file is being created if space is given without
lOCATION or DATE and the given filename was found but its space does
not match.

The DATE parameter is only allowed for accessing existing files.

Whenever a load is performed to an existing file, the system date replaces
the previous date for that file.

Statement Descriptions 39

FILE STATEMENT (continued)

40

If a RETAIN parameter is not specified when loading to an existing file,
the existing file classification is assumed.

When a scratch file is created, it is not entered in the Volume Table of
Contents (VTOC). After the job that created the file is run, the file is lost.
The way that an S retain type can appear in the VTOC is to change a T
entry to an S by using RETAIN·S in the FILE statement, or to change a T
or P entry to S by using a $DELET SCRATCH statement.

CALL STATEMENT

Function

Placement

Format

Contents

Example

CAll statements are needed only when you want to merge procedures into the
job stream.

To understand the funtion of the CAll statement, you must understand the
relationship between the job stream and procedures. The job stream contains
the OCl statements that control the system. The system reads it either from
cards or the printer·keyboard. Procedures are sets of OCl statements in a source
library on disk. They have no effect on the system until they are merged into
the job stream.

You can modify the procedure identified by a CALL statement, by providing other
other OCL statements (procedure override statements, see Changing Procedure
Parameters) after the CALL statement. These statements temporarily modify the
procedure. The last statement of the CALL sequence must be a RUN statement.
The RUN statement is required, however, whether or not you supply other OCL
statements. (Procedures are further explained in Procedures.)

CALL statements can be used in the job stream or in a procedure. They are, in
effect, replaced by the procedures they identify. The last statement of the CALL
sequence must be a RUN statement.

II CALL procedure-name,unit

Procedure-name: The procedure-name is the name that identifies the procedure
in the source library. You supply the procedure-name in the Library Mainten
ance control statements when you use the program to place the procedure in the
library. (See Library Maintenance in Part II of this manual for restrictions on
procedure-name.)

Unit: The unit parameter is a code. The code indicates where the disk that con
tains the procedure is located on the disk unit. The codes are as follows:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

There is no CALL statement example here. The following section, Procedures,
contains CALL statement examples.

Statement Descriptions 41

PROCEDURES
Procedures are sets of OCl statements in a source
library on disk. Procedures can be put into the
source library by using the Library Maintenance
program. (See Part II of this manual, Library
Maintenance, Copy Function, Reader-to-Disk.)
Procedures must begin with a lOAD statement as
the first OCl statement. All OCl statements
except READER; CAll, lOAD, and /&, can follow
the lOAD statement in a procedure. Object pro
grams loaded from cards (lOAD*) are not allowed
in procedures. The object programs are loaded
from the system input device. However, lOAD*
statements are allowed in procedures.

A maximum of 25 utility control statements can
be included in procedures for the utility programs.
The utility statements must follow the OCl state
ments in the procedure. (See Library Maintenance,
Part II of this manual.) A RUN statement must be
the last OCl statement in the procedure to separ
ate the OCl statements from the utility control
statements. The RUN statement in the job stream,
rather than the one in the procedure, causes the
system to run the program.

An example of a procedure is shown in Figure 9.
This procedure will be referred to in all of the
following examples. Assume that the name of the
procedure is PROC1. The procedure-name is the
name that identifies the procedure in the source
library. Further assume that the procedure is
contained on the fixed disk on drive one (F1).

Normal Procedure Call

1

1/11
III

To merge the procedure (unchanged) into the job
stream, the statements in Figure 10 would be used
in the job stream.

4 8 12 16 20 24 28 32

LiJol

'"
;lii~

I E I" ~~ ,,-"~L 1tlrT CJW liT -I.e 12 II~ "I~ -

36

VI FI L.E N A'" Eo ACt' 11'17 Ll4 ..!lIE L- TO Til L /jill

/ LI. IT CH x,
1/1/ (/~

Figure 9. Procedure Example

42

i,

1 4 8 12 16 20 24 28 32

Ill! r>lA L If(Ito 1 IFI1
/1; ~U~

Figure 10. Normal Call for Procedure

Changing Procedure Parameters

1

lit'
/II
iJi/
iI/

You can change any of the parameters in any of the
statements in the procedure for one job, by placing
procedure override statements between the CAll
and RUN statements. Procedure override statements
modify the procedure for one job only. For example,
assume you wanted to make the following changes
to procedure PROC1 (see Figure 9):

• In the first FilE statement (NAME-DAlTOT),
change the RECORDS parameter from RECORDS-
1500 to R ECOR DS-1750.

• Change the parameter in the SWITCH statement
from XXX01XXO to XXX10XX1.

Figure 11 shows the statements needed in the job
stream to call and modify PROC1. Note that the
NAME parameter is also supplied in the FilE state
ment. This is necessary to identify the FilE state
ment to which the change applies.

4 8 12 16 20 24 28 32

CIA LIL 1P1,q oc 1 I.e 1
F/ Llf: IiIIA 1A1~ -~ !AL 1T~1r 5-117 I.!:I~

1.5lk itT irH ~I)(1)(1 ~Ix Xll
Ril,1f"

Figure 11. Call for Procedure: Changing Parameters

Delete a Procedure Parameter

4D

..

Besides changing a parameter you can delete a para
meter in a procedure statement entirely if it is a
keyword parameter. To delete a parameter in any
of the statements you must code the keyword and
the hyphen and follow them immediately with a

44 48 62 66 60 64 68 72

R :l!tc I'II~ IllS -11 ISial a, IRE rill IN -p
7-Rl A " lie -Iv ... 12Il. n AI1 E- ~1 l/tJ 4/ 1

comma. The statement in Figure 12 deletes the
RETAIN parameter completely.

Figure 12. Deleting a Procedure Parameter

Adding a Statement

1

~II
IliI
III/

You can add statements to the procedure by plac
ing the statements you are adding between the
CAll and RUN statements. For example, assume
that you wanted to add a NOHAl T statement to
the procedure. Figure 13 shows the statements
needed in the job stream.

4 8 12 16 20 24 28 32

!J,IA lclR It ell In
~I'" IfllA LI7
R ~

Figure 13. Call for Procedure: Adding a Statement

Add Missing Parameter
You can omit any of the parameters from all OCl
statements in a procedure. If you do, you must
supply the missing parameters between the CALL
and RUN statements. For example, assume that
the procedure contained the lOAD statement
shown in Figure 14. The statements in Figure 15
would be needed in the job stream to run the
ENDMON program. Note that the entire lOAD
statement did not have to be supplied. Only the
missing parameter was included.

II CALL PROC1,Fl
XX LOAD ENDMON,R2

Figure 14. LOAD Statement Missing a Parameter

1 4 8 12 16 20 24 28 32

~J CIA ILL IF II< lac 11 Fl
~J IL~ ~~ ~ IIlIA IAi
II I~I/JI"

Figure 15. Call for Procedure: Supplying a Missing Parameter

Example

1

1/
11/
III
lit
III

Procedure override statements are printed on the
logging device along with the statements in the
job stream. Assume that the statements in Figure
16 are used in the job stream. The statements

./

4

from the procedure would be merged with the
preceding statements and printed as shown in
Figure 17.

Statements preceded by XX represent the pro
cedure statements as they appear in the source
library. The CALL and RUN statements and
any statements which are intended as overrides to
procedure statements or additions to the procedures
begin with II.

8 12 16 20 24 28 32

dA ;LL PII/ III i-'!1 1=1
IF I LIE N~ !,t Ii _ ;71

AL TIJT R.E Ctlle S 1'1 51~
~~ IT Ctl XIX ~1 ¢x Xl
~O I1A T
'R. tJfl

Figure 16. Call for Procedure Example

XX FILE NAME-DALTOT,UNIT-F2,PACK-VOL04,RECORDS-1500,RETAIN-P
II FILE NAME-DALTOT,RECORDS-1750
XX FILE NAME-ACCTOT, LABEL-TOTAL, UNIT-R1,PACK-VOL02,DATE-OI/041 71
XX SWITCH XXX01XXO
II SWITCH XXXIOXXl
I I NOHAL,.T
XX RUN
I I RUN

Figure 17. Printout of Sample Case

Statement Descriptions 43

Nested Procedures
Some procedures are done in the same order every
time a job is performed. Nesting procedures is a
convenient way to link the procedures together
and requires you to call only the first procedure.
Each procedure will call the next procedure until
the job has been compieted.

By nesting procedures together several benefits can
be realized.

• Programs are always run in the correct sequence.

• Operator intervention (and chance of operator
error) is decreased.

• File space can be saved. Files used to pass data
from job to job can be scratched after the last
program.

• Files are less likely to be destroyed by running
nonrelated programs between programs of a job.

Here is an example of how nested procedures might
be used. Suppose you want to back up a fixed disk
pack containing files which will be used in the
future. The OCl statements and utility control
statements to copy one disk pack (F2) to another
disk (R2) would look like this if nested procedures
were not used:

1 • 10 14 16 ,. 25

II 011 1111 1$ JIll A I N7 1Ft
II RuIN

30

II ALII Oc AITIE IT 1'1- 1<7.. ,S Oil) ~ C~ -~ OIB
II IN

II I /IT. I~ fL E.T JFt
II V<U
II II(If OyLt: 'JJNI 17-~:z I, p ~C -~ XIX 1~1}j
II N

II ill lz ~C IJ: y, 1~1
II I!WN
II Co Ylf lAC ~~ 1OJ,4j - 2- IT~ -lIC'l~
II 1J:111

"

JE. e -~

1)(Ii 11!1~

By using neSted procedures these control statements
could be stored on disk and the job could be per
formed by calling only one procedure. Figure 18
shows the three procedures needed to perform the
copy job described. There is only one CAll state
ment necessary in the job stream from the system
input service.

This CAll statement links the job stream to a
master procedure (CPYF22) which is used to call
the procedure necessary to perform the job.
CPYF22 contains three CAll statements that call
the three procedures necessary to copy F2 to R2.
Notice that CPYF22 contains only CAll statements.
Any procedure within nested procedures can consist
entirely of CAll statements and does not need a
RUN statement to indicate the end of the procedure.
Nested procedures allow you to have an unrestricted
number of CAll statements in a procedure. There
fore CPYF22 could have more then three CAll
statements if you felt it necessary to add any pro
cedures.

40 .. so 55 60 "

L-1\/110

Level 1 Level 2
System Input Device

/I CALL CPYF22,F1 CPYF22

/I RUN I'. /I CALL DEALlB,F1 DEALIB

1/ CALL DEALF1 ,F1 ' /I LOAD ·$MAINT,F1

\ /I CALL CYF2R2,F1 ~\
/I RUN
/I ALLOCATE

.\ /lEND

Figure 18. Nested Procedures

Figure 19 is an inventory application of nested
procedures. A company issues daily reports on
goods bought and sold by calling the DAY pro
cedure. By nesting procedures together a daily
report and a weekly report can be written by
calling the WEEK procedure. Once a month II
CALL MONTH is used to write out daily, weekly,
and monthly reports. Finally, monthly, weekly,
daily, and yearly reports are written once a year by

/I CALL YEAR /I CALL MONTH

Yee,

/I CALL MONTH Month

/I CALL END1 '. /I CALL WEEK
,

... /I CALL MONSUM

END1

Year End

\ Report

Figure 19. Inventory Example

I'
'.

.:-.,

\

,\

DEALF1

/I LOAD $DELETE,F1
/I RUN

\ /I REMOVE
\\ /I END

CYF2R2

/I LOAD $COPY,F1

\ /I RUN

\ /I COPYPACK •••
/I END

calling the YEAR procedure which nests all of the
other procedures together.

No more than nine levels of CALL procedures can
be nested together. Levels of procedures are deter
mined by the number of CALL statements away
from the system input device a procedure is
located. For instance, in Figure 19 when II CALL
YEAR is given in the system input device, the

1/ CALL WEEK

Week

/I CALL DAY

/I CALL WEKSUM

MONSUM

Monthly
Report

, ~J
\\~"\'

1/ CALL DAY

Day

Daily
Report

WEKSUM
t-----i
Weekly

\ Report

Statement Descriptions 45

46

YEAR procedutl! would be one level away from
the system input device. MONTH and END1 pro
cedures are twoi~els away from the system input
device when 1/ CALL YEAR is given.

By using nested ptocedures, fewer control state
ments are needed in the job stream from the
system input deti.:e. However, certain rules must
be followed to make nested procedures work:

1. No more than nine levels of procedures are
permitted.

2. Each procedure may have an unrestricted num
ber of CALL statements to the next level of
procedures.

3. Only utility control statements can follow a

RUN statement.

4. Procedure additions or overrides supplied between
the CALL and RUN statements in the job
stream are merged between the first LOAD and
RUN statements encountered in the procedures
(see Example of Nesting Procedures).

5. Any OCL statements permitted before the RUN
statement in the job stream are also permitted
anywhere before the RUN statement in a pro
cedure (see Example of Nesting Procedures).

Example of Nesting Procedures
Suppose you want to decrease operator intervention
by using the NOHAL T statement. In Figure 18 the
NOHAL T statement could be placed between the
CALL and RUN statements in the system input
device. In this case it would be read as an additional
OCL statement for the DEALIB procedure.
However, it could be placed anywhere in the master
procedure, CPYF22, or anywhere before the RUN
statement in the DEALI B, DEALF 1, or CYF2R2
procedures. The rule would still be followed no mat
ter what procedure contained the additional OCL
statement.

This section is designed to aid you in your use of OCL. The topics described in this
manual involving the use of OCl are:

• Compiling an RPG II program

• Processing a card file

• Creating and processing a disk file

• Processing two disk files

• Processing a disk file that uses external Indicators

• Creating and processing multivolume files

• Creating and processing split cylinder files

• Automatic file allocation

• Storing programs and procedures into libraries

• Checkpoint/restart

• Dual programming feature

• Statement examples

For a more complete explanation of the statements, their parameters, and coding
rules refer to Statement Descriptions and Coding Rules in Part I of this manual.

USING OCL

UsingOCL 47

COMPILING AN RPG II PROGRAM

1

IV
IV

1/

48

After your RPG II program is written and recorded
in cards, it must be compiled. To compile an RPG
II program, two OCL statements are required,
CALL and RUN.

4 8 12 16 20 24 26 32

110 AD * F/ Ll NA NE ·.Ii EIW IS K IPA CK -~ ilL 1 IL !N J If
RUW

36

1U

In the preceding example the first statement, II
CALL RPG,F1, tells the system to get the RPG II
Compiler from the fixed disk. The second statement
/I RUN, tells the system to run the compiler pro
gram. The source deck always follows the RUN
statement.

CREATING A DISK FILE

40

Joj

To create a disk file, sequential or indexed, you
must tell the system the size of the file and the
use of the file. To state the file size (using the
FI LE statement), two keywords are available:
TRACKS and RECORDS. You may use one or
the other, but not both.

If you use RECORDS, the system calculates the
disk space required and converts it to tracks for
you. If you use the TRACKS parameter, there is
no need for the system to perform these calcula
tions.

A file is classified as scratch, temporary, or perman
ent when it is created. You use the RETAIN para
meter of the FILE statement to tell the system how
to classify the use of a file. If you omit the
RETAIN parameter, the file is assumed to be a
temporary file.

For example, you want to create a master file of
names and addresses. You would code the following:

44 48 52 66 eo 84 66 72

C~ ~ .41. (,'1 ~~ ·R T~ Itl -p

(This master file is classified as permanent.)

LOADING AND RUNNING PROGRAMS

I BM Programs
Many IBM programs require only two OCL state
ments, LOAD and RUN.

The following examples show the OCL cards needed
to load and run two IBM programs. (The Disk
Initialization and File Delete programs are discussed
in Part II of this manuaL)

1/ RUN

II LOAD $INIT, F1

The Disk Initialization program
is loaded and run.

/I RUN

/ I/LOAD$ DELET, F1

The File Delete program is
loaded and run.

-

I 4

Object Programs Using Card Files
LOAD and RUN are the only two OCL statements
needed to load and run RPG II programs that use
no disk files. To run a certain job, the object pro
gram must be loaded into storage. To load an ob
ject program that is on cards (object deck), an *
must follow the word LOAD. (The * tells the sys
tem that an object deck follows the RUN state
ment.)

For example, only these two statements are re
quired for a program that prints data from a
transaction card file.

Object Programs Using One Disk File

8

To load and run an object program that uses a
disk file, another OCL statement is required:
FILE. Three items of information must follow
the word FILE:

• The name of the file.

• The name of the disk pack the file is on.

• The location of the disk pack.

For example, you want to load and run an object
program using a disk file named SEQDISK. The
file resides on removable disk pack named VOL 1.
You would code the following:

12 18 20 24 28 32 38 «I

1/ I. A Dill J_ Alb

I ill '1 1 11
!Ill

IJ/ ~ iN III
III

UsingOCL 49

Object Programs Using More Than One Disk
File

1

VI
II
II
II

One FILE statement is required for each disk file
used by a program. To load and run an object
program that uses two disk files, two FI LE state
ments are required.

In the following example, two disk files are used:
an input file (lNDISK) and an output file (OUT
DISK).

4 8 12 16 20 24 28 32
,(, AT fN
1-, Le. ~~ ~~ -~ ~n IlS II<) r:A C" -V OLi /VI

36

7- ~11
F/ 1..13- 'Nil I~ II: - IJ 7 Tl/ S~ ,F Ae K.- vtJ ILt UiAJ l'rr -II< i
/(,'IN

The first FILE statement contains information
needed to access the data in that file. The second
FILE statement contains information needed to
create an output file.

Object Programs Using One Disk File and
External Indicators

1

II

II

II I

IIV

50

4

The SWITCH statement is used to set external in
dicators (Ul-U8 on RPG II specifications sheets)
on or off. External indicators are used to regulate
when certain functions are performed.

In the following example,you are running a program
using ,one disk file (lNVMSTR), an inventory master
file.

8 12 16 20 24 28 32 36

'''' Al f*

1-, LE. W~ ~~ -/ lflJJ 1<.- IVO 11 ~I 7- ~11

."iJ.. /17 I'H J

l(i/lN

In order for the program to perform certain func
tions, such as updating and output, the first exter
nal indicator (Ul) must be turned on. In the
SWITCH statement the eight characters correspond
to the eight external indicators. In this program only
one external indicator (Ul) is used.

40 44 48 52 56 60 64 68 72

I"ln IAl Tl s- ,L 7 2dJ ,f(IT~ I fi-

40 44 48 52 56 60 64 68 72

MULTIVOLUME FilES
Coding the FILE statement to process multivolume
files differs from single volume files in that you
must define and code additional parameters for
these keywords: PACK, UNIT, TRACKS, RE
CORDS, and LOCATION.

These additional parameters are necessary for two
reasons:

1. When processing files contained on more than
a single volume, the system requires information
about each volume in order to perform all the
protection and checking functions necessary.

2. Additional information is needed to determine
and check the sequence in which the volumes
are processed and when they are to be mounted
on the disk drives.

Because a multivolume file involves more than one
disk, some FILE statement parameters require
a list of data or codes to describe all of the disks
containing the files. This section explains the con
siderations for using these lists in the parameters.

Figure 20. lists of FilE Statements

The rules for coding a list of data or codes after a
keyword are as follows:

1. The list must be enclosed by apostrophes.

2. The items in the list must be separated by com
mas. No blanks are allowed within or between
items.

Figure 20 shows an example of lists in parameters.
The file is online.

The PACK parameter requires a list. The UNIT par
ameter may require a list while LOCATION,
TRACKS, HIKEY, and RECORDS require a list
if they are stated. The considerations for using the
lists in these parameters are included in the para
meter discussions following. The functions of the
parameters are explained under FI LE statement.
(Parameters not mentioned here are used as ex
plained under FILE Statement.)

56 60 64 68 72

Using Oel 51

52

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME FILES

PACK

UNIT

The names of the disks that contain or will contain the multivolume file must
follow the keyword PACK. (PACK names must be unique for proper function
ing.)

When a multivolume file is created, the system writes a sequence number on the
disks to indicate the order of the disks. The disks are numbered in the order in
which you list their names in the PACK parameter.

When a multivolume file is processed the system provides two checks to ensure
that the disks are used in the proper order.

1. It checks to ensure that the disks are used in the order that their names
are listed in the PACK parameter.

2. It checks the sequence numbers of the disks used to ensure they are con
secutive and in ascending order (01,02, and so on).

The system stops when it detects a disk that is out of sequence. The operator
can do one of three things:

1. Mount the proper disk and restart the system.

2. Restart the system and process the disk that is mounted if the sequence
is ascending (for consecutive input and update).

3. End the program.

Consecutive input or update sequence numbers are ignored if the file was not
created as multivolume. If the file is multivolume created and the sequence
is ascending but not consecutive, a diagnostic halt is given which allows the
proceed option.

The following is an example of the PACK parameter for an offline multivolume
file that is contained on three disks, named VOL 1, VOL2, and VOL3.

4 8 12 16 20 24 28 ... ;12 ••••••••• :jf!•... ;Ij) •...•.•..••.•.•.••. ~... • .•• 111 •.....

The keyword UNIT must be followed by a code or codes indicating the location
on the disk unit that contains or will contain the file. No UNIT parameter may
be repeated. The codes are as follows:

Codes Meaning

R1 Removable disk on 5444 drive one

F1 Fixed disk on 5444 drive one

R2 Removable disk on 5444 drive two

F2 Fixed disk on 5444 drive two

D1 Removable disk on 5445 drive one

D2 Removable disk on 5445 drive two

I

11/
IV

FilE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME FilES (continued)

®

@

TRACKS or RECORDS

4 8 12 18 20

i,: II \I ~ .'
~~I- "Ill L1 Vn

rl:T:':'

The order of codes in the UNIT parameter must correspond to the order of
names in the PACK parameter.

When you are creating or processing a consecutive or indexed file, you can use
the same drive for more than one of the disks, however, the disks must then all
be removable disks. If you do, you must not repeat the code for the drive in the
UNIT parameter. When the number of codes in the UNIT parameter is less than
the number of names in the PACK parameter, the system uses the codes alternately.

For the 5445 the UNIT parameter can have a maximum of two unit codes.
When two unit codes are given, the volumes must be mounted alternately in
the order indicated by the unit codes. If all the volumes are to be mounted
on the same drive, you specify only one unit code.

If any fixed unit, F 1 or F2, is specified, the file must be online multivolume.

Assume that your program processes an offline file consecutively. Further
assume the following:

The disks containing the file are named VOll, VOL2, and VOL3, respectively.

You intend to mount VOL 1 and VOL3 on 5444 drive one, and VOL2
on 5444 drive two.

In the following examples, line A shows the PACK and UNIT parameters for the
file. If all three disks were used on 5444 drive one, the UNIT parameter in line B
would have been used.

4 8 12 16 20 ~ ~..... 32 ,.,.,.,,'.,.,.,~.,.,.:.:.:.:.:.:.:.M..:.:.:.:.,: .•... ,.,.4,.,., " ... ,.n..:., ..

8 12 16 20 24 28 32 36 40 44 ,".......... 52

A keyword, TRACKS or RECORDS, must be followed by numbers that indicate
the amount of space needed on each of the disks that will contain the multivol
ume file. TRACKS or RECORDS must be specified. Any multivolume file
load requires a TRACKS or RECORDS parameter whether the file previously
existed or not. The order of these numbers must correspond to the order of the
names in the PACK parameter. For example, assume the following:

Your program is creating a sequential (offline) file on three disks:
VOL1, VOL2, and VOL3.

The first 50 records are to be placed on VOL 1, the next 500 on VOL2,
and the last 200 on VOL3.

The PACK and RECORDS parameters for the file are:

24 28 32 38 40 44 46 52 58 eo 84 88

11.\
; "f. ~\~ V~ LI! ~~ ~~ .~ I, Z~

' .. :

72

UsingOCL 53

1

III
i/lt
I1I1
111/

l!
III
III

54

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME FILES (continued)

LOCATION

4 I~ IE !~

I ~ II

.~ II" ~

IL !.
~Il' la~ I " ~"

RETAIN

HIKEY

-~ 12 IE !~

Nil :1;
1~l :J1 IzjK Ie !v / J InN lEis NI t' HIl)

The keyword LOCATION must be followed by the numbers of the tracks on
which the file is to begin on each of the disks you use for the file. The order
of the numbers must correspond to the order of the names in the PACK para
meter. For example, assume the following:

The disks containing the file are: VOL 1, VOL2, and VOL3.

The tracks on which the file is to begin on each disk are: track 198 in
VOL1, track 1 0 in VOL2, and track 8 in VOL3.

The PACK and LOCATION parameters for the file are shown in the following
example. If you omit the LOCATION parameter, the system chooses the be
ginning track on each of the disks. If LOCATION is specified for one disk, it
must be specified for all disks. If the multivolume file exists, LOCATION must
be given for all disks and must be identical to the LOCATION parameters spec
ified when the file was created.

~ ZI! :r. 36 4(44 lIB 5: 5E 6C)4 6Il

I' ~Il 115 51'! 115 I'll

~ 13' !:::

~» I'. i::::: ..
'" .

RETA/N-S must not be specified unless the file is online multivolume. If
RETAIN-S is used for online multivolume, it cannot be changed to RETAIN-T
unless also done online.

The HIKEY parameter is used only for multivolume indexed files. HIKEY
limits the highest keyfield that can be put on each pack of a multivolume file.
The following example contains an example of a HIKEY parameter list using
the file used in example A under Unit. In this case the three volumes contain
lists of names. The highest keyfield allowed on the first volume is JONES. This
means that all the records beginning with A and including JONES will be pro
cessed on this volume. Since H I KEY parameters must be in ascending order,
the next volume should contain all of the records with names following JONES
and including NICHOL. The last volume will contain all the records with names
that come after NICHOL.

2' 21! 32 16 W ~~ 48 52 56 6()4 51!

:'

I
I/!v~ 1 IV 12 Vlll IL3 11

II
I I

7:

1

I) II
III

FILE STATEMENT PARAMETER CONSIDERATIONS FOR MULTIVOLUME FILES (continued)

4 8 12 16 20

1/., I/~ IAU~ -~ 1~1,t IJILI~ IA II
",I ~~ 1>- III I ~Iil Lli I, WZ 15 1111 jj I, III I

OCl considerations for the HIKEY parameter are:

1. All characters except commas are valid.

2. The list of HIKEY parameters must begin and end with an apostrophe
even if only one parameter is specified. A single apostrophe in a key field
must be written as a double apostrophe in the HIKEY par~meter.

3. For each PACK parameter specified, there must be a cor,,~sponding
HIKEY keyfield parameter for that pack.

4. The HIKEY fields must be equal in length and must be specified in
ascending order.

5. The maximum length of a HIKEY field is 29 characters.

6. The HIKEY fields must be the same length as the keys on file.

Packed HIKEY: The packed HIKEY parameter has all the Oel considerations
for HIKEY including the following restrictions:

1. The first character following the HIKEY keyword and dash (HIKEY-) must
be a P to indicate packed HIKEY.

2. All characters in the packed HIKEY must be zoned numerics (0-9).

3. The number of digits in each packed key must be the same.

4. The number of zoned numeric characters per packed HIKEY must not ex
ceed 15, since the maximum packed key field length is 8.

The following example shows a packed HIKEY parameter. In the example the
key field length of MVFILE is 2. The HIKEYs are X'085F', ~r~2F', and
X'IOaF' for VOL 1, VOL2, and VOL3 respectively. The first ~o packed keys
required a leading zero to make the lengths consistent.

24 28 32 36 40 44 48 52 56 60 64 68

17- '~ f. ~I~ 'I, IfIA elJ< - I I~I' 1..1 1\11 LI.~ 1II1~ L.~ I ,
72

UsingOCL 55

SPLIT CYLINDER FILES Creating the First Split Cylinder File in a Group
The SPLIT parameter is required when creating the
first split cylinder file in a group of split cylinder
files. The LOCATION parameter is optional.

To use split cylinder file support, two parameters
(SPLIT and LOCATION) are specified on the FI LE
statement. The SPLIT parameter specifies the size of
each split cylinder file. It can also be used to specify
the size of the group of split cylinder files you want
on disk. The LOCATION parameter determines
where on the 5445 disk each split cylinder file can be
found. For further discussion of split cylinder file
concepts, see IBM System/3 Disk Concepts and.
Planning Guide, GC21-7571.

The SPLIT parameter entries are:

SPLIT-tracks per cylinder/number of cylinders

Restrictions for Using Split Cylinder Files

The tracks per cylinder entry specifies the amount of
space needed on each cylinder for the first split
cylinder file. The cylinders entry shows the number
of cylinders needed for the whole group of split
cylinder files to be specified.

56

1. Split cylinder files can only be direct or consecu
tive files and cannot be multivolume files.

2. Split cylinder files can only be used with the 5445
disk and not the 5444 disk.

3. TRACKS or RECORDS parameters must not be
specified.

4. Labels must be unique. Therefore, the DATE
parameter is used only to further qualify the split
cylinder file. The file date is always the current
system date for the job.

5. A data block cannot overlap cylinders. This means
that a data block cannot be longer than the space
available on one cylinder of a split cylinder file.

The LOCATION parameter is optional since the
system will find a starting location for the split file
group. However, if you want to specify a particular
cylinder, you may.

The LOCATION entries are:

LOCATION-cylinder number/track number

The split cylinder file group must always start at
track O. Since 0 will always be the entry for track,
you can omit it from the LOCATION parameter and
use:

LOCATION-cylinder number

File Statement Example: First Split Cylinder File in a
Group

be unique name. File temporary file.

4 tracks per cylinder are needed
contain this file; 3 cylinders

are needed to contain series of
files.

\ II I 1 1 '" 1 1 1 I 1 1

1\1 III .[11:1

ThiS file Will reside on First file IS to begin on
volume 1, drive 1. cylinder 5, track O.

LOCATION is optional
(see Coding Notesl.

Coding Notes:

1. On the SPLIT parameter, tracks per cylinder,
must be 1·19 and the number of cylinders speci
fied must be 1-199.

2. On the LOCATION parameter, the cylinder num
ber must be 1-199 and the track number, if
specified, must be O.

3. LOCATION-5 could be the location entry in this
example since track 0, the required track entry,
need not be specified. The LOCATION parameter
itself is optional.

Creating Other Split Cylinder Files
To create the rest of the split cylinder files in a group
both the SPLIT and LOCATION parameters are
required. The SPLIT parameter must be in the
format:

SPLIT-tracks per cylinder

This entry, tracks per cylinder, indicates the number
of tracks needed on each cylinder for the file
specified.

The LOCATION parameter must be the filename of
either the first split cylinder file in the group or any
other split cylinder file in the group that was created
in a previous job.

LOCATION-filename

File Statement Example: Other Split Cylinder Files

Must be unique name.

This file will reside
on volume 1, drive 1.

Coding Notes:

1. On the SPLIT parameter, tracks per cylinder must
be 1-19.

2. On the LOCATION parameter, the filename must
be the name of a temporary or permanent split
cylinder file in the same group.

Accessing Existing Split Cylinder Files
To access existing split cylinder files, the SPLIT and
LOCATION parameters are not required. Their use
would only be needed to further qualify the file
being accessed.

Loading to Existing Split Cylinder Files
To load to existing split cylinder files, the SPLIT
parameter is required and the LOCATION may be
required or optional. The SPLIT parameter specified
for loading must agree with the SPLIT parameter of
the existing split cylinder file. If the format of the
SPLIT parameter is tracks per cylinder/cylinders, the
LOCATION parameter is required and must match
the cylinder number/track number of the existing
split cylinder file. If the format of the SPLIT para
meter is tracks per cylinder, the LOCATION para
meter is optional.

Scratch Split Cylinder Files
Split cylinder files may be created as temporary or
permanent files and in subsequent jobs made scratch
files. However, the scratch files remain on the 5445
disk only until the area is needed for the allocation
of a new file. Then, the scratch split cylinder file is
deleted. If you have scratched split cylinder files
and you want to make sure they are not deleted, you
may reactivate them to temporary files by using a
RETAIN-A on the FILE statement.

File is a temporary file.

4 tracks per cylinder are needed for this
file. 4 tracks per cylinder on 3 cylinders
(specified on first split cylinder file) means
that File B has 12 tracks allocated to it.

I

I

Filename of a split
cylinder file already
specified.

UsingOCL 57

AUTOMATIC FILE ALLOCATION
You can allocate disk space for a file by determining
the size of the file and the location of an available
number of tracks that can contain that file. (If you
have planned the location of your files, you know
where files are located and the tracks that are
available for further allocation. The Disk File
Layout Chart, GX21·9108, is available to docu
ment your file locations.) After you have deter
mined where to place your file, you can code the
LOCA TI ON parameter of the FILE statement to
tell disk system management on which track the
file is to begin. Figure 21, part A, is a sample
FILE statement containing a LOCATION para
meter to tell disk system management that
F I LEA is to be located on disk VOL 1 beginning
on track 10.

If, as in Figure 21, part B, no LOCATION para
meter is coded, FI LEA is located on the disk pack
automatically for you. The process used by disk
system management to allocate file space for you
is known as automatic file allocation.

COMPILING AND STORING A SOURCE
PROGRAM IN AN OBJECT LIBRARY

The COMPI LE OCL statement tells disk system
management to:

1. Compile a source program from a source
library and store the object program in an ob
ject library, or

2. Compile a source program from cards and store
the object in an object library.

1 4 8 12 16 20 24 28

I~
32 36

The format ofthe COMPILE statement looks like
this:

/I COMPI LE sou RCE-~m,.UN IT - {~}. OBJECT - { ~f }
The SOU RCE keyword parameter is used if the
source program is located in a source library. You
must supply the same name given to the source
program when it was stored in the library by the
Library Maintenance program. The UNIT para
meter must be used with the SOU RCE parameter
to identify the disk location of the source program
to be compiled.

If the SOURCE keyword parameter is not used,
the source program is assumed to be on cards
following the RUN statement in the job stream.

The OBJECT keyword parameter tells the system
where the disk which will contain the Object
program is located. If the source 'program is on
cards, the OBJECT keyword parameter is the only
parameter which can be specified. If the OBJECT
keyword parameter is omitted in either case, the
object program is placed on the same disk pack as
the compiler. The name assigned to the object pro
gram in the object library is the name you assigned
in the Program Identification (columns *75-80)
on the RPG II Control Card Sheet. If you did
not assign a name in these columns, RPGOBJ is
assumed.

40 44 48 52 56 60 64 68

@
@

II II, ~ ~IA ~~ 11:1 I/~ IA IJ II'IA ciA -Iv 11'11 11 J iii I 17-li;lj ,17 11oi1J: ~ lc:; - L:! 112 I 1..(1., IV, I} - 1.1 [Q
III II, ~ IAIA I/I~ -IJ: I ~IA) lAc IA-11111' 1.1 Iu~ 117 -~ Ij I 1711 III ljotc -~~

Figure 21. File Statement and Use of the LOCATION Parameter

58

Sample Statements

1

IJ~
II
II I
II

119'
I I

/I
1/
1/
/I

4 8 12 16 20 24 28 32 36 40

AL I f.I- 6) 1
~P /I.E. -c:; AI. ElS)~ ~I 17 -~l1 ~p. JIC CIT -~11

I< lI\

This sample job stream tells the system that the
source program named SALES is located on a
fixed disk on drive one (F1). The OBJECT-R1
keyword parameter tells the system to place the
object program on a removable disk on drive one
(R1).

£0 AD $p R6 1=1.
CO iMP HE 08 IJE CiT -R1
f:.I Lli: INA IH -1$ 1,,1t! RII(UN IT -If J Pit C.K -IJ:
~L LE- NA lili E -~ .so u.R. CE lui ... IT -IJ: .t PA c.1",
l'lul"

iF tF 1.. IRE
-1= 111= Lin

44 48 52 56 60 64 68 72

Til IT AI -s 171l 4c K~ -21¢
HE TR IN -s 17 RR Kis -21tll

If 5 OIlJ HC E DE CK)

This'sample job stream compiles a source program
on cards and stores it in an object library on R 1.
If the OBJECT parameter was not coded, the pro
gram would be compiled and placed into the

LOADING PROGRAMS IN A DPF ENVIRON
MENT

A program can be loaded into either program level
first. You tell the supervisor which system input
device contains the job streams for the programs

same object library as the compiler (F1).

by selecting the device on the Dual Program Control
Switch. (Refer to the IBM System/3 Disk System
Operator's Guide, GC21-7508 for further operating
procedures.) When preparing your job streams,
you should be aware of the following OCl consider
ations:

OCl CONSIDERATIONS FOR lOADING PROGRAMS IN A DPF ENVIRONMENT

DATE statement

lOG statement

The DATE statement you use as an IPl statement to set the system date must be
supplied with the first program loaded in one program level. The DATE statement
must precede the set of statements for the first program. In the device associated
with the other program level, a DATE statement must not precede the sets of
statements for the programs being run in that level.

A DATE statement that temporarily changes the system date can be used within
the set of OCl statements for programs in either program level. This DATE
statement applies only to the program for which it is used.

lOG statements can be placed anywhere among the statements in either job
stream. There are, however, certain restrictions on their use.

Only lOG statements for program level 1 can tell the system to use a dif
ferent logging device. Only ON or OFF can be specified in program level 2.
The device used for level 1 is also used for level 2.

Using Oel 59

60

OCl.. CONSIDERATIONS FOR LOADING PROGRAMS IN A DPF ENVIRONMENT (continued)

NOHAl T statement

HAL T statement

IMAGE statement

FORMS statement

LOAD statement

PARTITION statement

lOG must be on for both program levels before logging can occur. If a
lOG statement for either program level stops the logging function, logging
is stopped for both levels. The program level that turned the logging device
off must turn it back on before logging can resume. If both ievels specify
OFF, then both program levels must turn the logging device back on before
logging can resume.

When the printer is the logging device, OCl statements and message codes
are not printed if the program in either level uses the printer as an output
device.

The following example shows sample lOG statements in a job stream:

, 4 8 12 18 211 24 28 32

1/1 L ~ I, I AI 17E~
iiI IL ~ 1=1
1/1 I~ ~
III IL cr IF
!II II ~ in.
Ill! IA IAI
I,ll ~ 161

Note: The first lOG statement indicates that the printer is used as the logging
device while program PROG1 is being run. OCl statements and error messages
are not printed for program PROG2 because of the second LOG statement. The
third lOG statement causes the logging device to be used again.

The NOHAl T statement is ignored for program level 2. The program in this
level always stops after each job.

The HALT statement is ignored by program level 2.

The IMAGE statement is invalid and the job cannot be run, if the other level has
the printer allocated to it.

The FORMS statement is invalid and the job cannot be run, if the other level has
the printer allocated to it.

The lOAD* statement cannot be used in program level 2.

The PARTITION statement is used only in DPF.

The PARTITION statement is used to guarantee a minimum size to level 2 for a
subsequent program in that level.

OCl CONSIDERATIONS FOR lOADING PROGRAMS IN A DPF ENVIRONMENT (continued)

Supervisor Supervisor

Program level 1 Program level 1

Unused Area Unused Area

1--------------------

• Storage needed for

I Program level 2
Program Level 2 • (a minimum of 5K bytes I

I

1
of storage is reservedl I

I
I

Without a PARTITION Statement With a PARTITION Statement

If level 1 is not using the storage and a
program is loaded into level 2, it is assigned
the number of bytes requested by program
attributes. When the program in level 2
comes to end of job, the storage for level 2 is
no longer reserved and level 1 can use it.

If a PARTITION statement is used, the
assigned storage can only be used by the
program in level 2. It is reserved. Even
when the program in level 2 comes to
end of job that storage is reserved for
future programs in level 2.

If you do not use a PARTITION statement and, therefore, do not indicate the
minimum size of program level 2, the system automatically assigns, during
execution, the storage needed to level 2. You cannot submit a PARTITION
statement in program level 2 or when program level 2 is processing. In a
procedure the PARTITION statement must follow the LOAD statement and
precede the RUN statement.

The format of the PARTITION statement is:

II PARTITION size

You must state the minimum number of bytes of storage you want to save for
program level 2. The number must be equal to or greater than 5120. The
amount of storage you specify is rounded to the next highest .25K by the
supervisor, if it is not a multiple of .25K.

Using Oel 61

DPF Considerations

62

All programs require 5K bytes of storage for initia·
tion and termination even though a program may
occupy less than 5K. System programs use this
storage for performing system functions just prior
to loading the user's object program (initiation) and
again immediately following the end of object pro·
gram execution (termination).

This 5K requirement also affects DPF. For inde
pendent initiation and termination of a program in
DPF, at least 5K bytes of storage must be available
for each program level, regardless of the size of the
program to be executed. If a program needs less
than 5K while another program requires the remain
ing storage which is 5K or larger, the smaller pro
gram must be initiated first so that the storage re
quired by the system for initiation will be available.
The system can then use all the storage not re-
quired by the smaller program for the larger program.
However, the smaller program must wait for termin
ation of the larger program, so that 5K is available
for the smaller program's termination.

In a 12K DPF system only limited independent
initiation and termination is allowed. With a 4K
minimum size requirement for the supervisor only
8K is available for user programs. Independent pro
gram initiation and termination for each program
is possible if each program being run occupies 3K
or less of storage. The remaining 2K of storage is
used alternately by either program to satisfy the
5K system requirement. If one program needs more
than 3K, the smaller program must be initiated first
and can have a maximum executing size of 3K. The
larger program is then initiated and can occupy the
remaining storage. The larger program level must
be terminated before the smaller program level.

Sample Job Streams
Suppose you had four jobs to be run requiring the
I/O shown in Figure 22. Jobs 1 and 2 and Jobs
3 and 4 can be run together, because they do not
require the same I/O devices. If Job 2 finishes
before Job 1, you could run Job 4 because Jobs 1
and 4 do not require the same devices. If, on the
other hand, Job 1 finishes first, Job 3 could not
be run with Job 2, because both jobs require the
printer for output.

Figure 23 shows the job streams required to load
the four jobs. Assume the system has the mini
mum system configuration plus the 5471 Printer
keyboard and dual drives. The Dual Program
Switch indicates from what device OCl statements
are read. MFCU is always hopper 1, and at sys
tem generation time P-KB was assigned to the
5471 Printer-keyboard.

Program
Level 1

Program
Level 2

JOB1

An inquiry
program that:

• Reads printar-
keybOard.

• Reads disk.

• Writes printer-
keybOard.

JOB2

An inventory
updating program
that:

• Reads cards.

• Reads disk.

• Updates disk.

• Prints.

Figure 22. Job Scheduling for DPF

JOB3

A stock status report
that:

• Reads disk.

• Prints.

JOB4

A detail punching
job that:

• Reads cards.

• Punches cards.

1 • • I. 18 20 24 ,. 3. 36 40 52 56 eo 7' 78 SO 82 ..
I- P I If~

I' S I H liP I CL - RI -

1- . I~ s ~
I :, (S, 1/

/ , I I D

I F/L - I -F 14 - IX
() S L S ~I til - III I II! I

U L I iI'1 u
I P !j

s
I " D IPD I 0 I

II. f.-/ I - iI" -- ~ rlJ A ,
I So 5 L. I I o IN L
I -- . - of -_ .. -

I 10 II: /.. S

II F 10 s s , , - -
I /.. . U - ,

IAI III lIN S u (H lIN 1/ L

N 15P!.A I. IS s IT
.4 J I

L F F /I I:

.-~ t -
Ii

Figure 23. Sample Job Stream

Using OeL 63

RESTARTING A CHECKPOINTED PROGRAM
Checkpoint is a means of recording the status of a
problem program at desired intervals. Restart is a
means of resuming the execution of the program
from the last checkpoint rather than from the begin
ning, if processing is terminated for any reason (with
the exception of a controlled cancel) before the
normal end of job. For example, a power failure may
occur and cause an interruption.

Restart Procedure
To restart the interrupted job at the last checkpoint
submit the following OCl statements:

II lOAD $$RSTR, unit
II RUN

The unit in this example is a pack with module
$$RSTR. If an IPl occurs it must be from the pack
other than the pack that contains the active check
point is allowed, but programs executed under con
trol of the new IPl system cannot access disk vol
umes used in the active checkpointed program or
modify the object library where the checkpointed
program resides.

Programming Considerations

64

• Checkpoint/Restart enables the user to restart a
checkpointed program from the last checkpoint
taken provided no intervening program executions
have taken place.

• Sufficient disk space is allocated by Library
Maintenance on a checkpoint system pack (5444)
at System Generation or Library Maintenance
time to allow one active checkpoint. On a system
with Checkpoint and Inquiry, the disk space will
be used by both functions. The checkpoint pro
gram cannot be an inquiry evoking program since
the disk space is used by both facilities.

• Checkpoint requests are accepted only in program
level 1. Checkpointed programs must be restarted
in program level 1. If program level 2 is used to
execute a checkpointed program, the checkpoint
requests are ignored.

OCl CONSIDERATIONS FOR USING CHECKPOINT/RESTART

Other OCl statements that may be required are the
PARTITION and lOG statements.

PARTITION statement A PARTITION statement may be required at restart to guarantee
the required minimum level 2 size. See Loading Programs in a
DPF Environment for further information on the PARTITION
statement.

lOG statement

A halt will occur if restart is attempted without sufficient
space in program level 1. An immediate cancel is take".

Checkpoints can only be taken in program level 1. To
restart a checkpointed program, program level 1 must be
used. If level 2 is used to execute a checkpointed program,
the checkpoint requests are ignored.

Restart requires 5K of storage; therefore level 2 must be
such that level 1 has 5K.

A lOG statement may be required at restart to reestablish the
logging device. See LOG Statement under Statement Descrip
tions and Loading Programs in a DPF Environment for further
information on the lOG statement.

STATEMENT EXAMPLES
This section shows an example that illustrates
some of the uses of the OCL statements. The
example consists of a series of jobs. The jobs in
volve three files: customer, inventory, and transac
tion. The customer file contains such information
as customer names and addresses, total amounts
of charges over a period, and total amounts of
payments over the same period. The inventory
file contains such information as item numbers
and descriptions, prices of the items, and the
numbers of items in stock. The transaction file
contains such information as orders for items, re
fund orders for items returned, and customer
payments. The transaction file is used to update
the inventory and customer files.

Example
The OCL statements for the jobs are shown in
Figure 24. Sets of statements in the figure are
numbered. The explanations corresponding to
those numbers are given in the following section.

Explanation
1. The DATE statement supplies the system date,

10/20/71. It must be read by the system before
the first LOAD or CALL statement after initial
program load.

I • 8 12 I. ,. 2. 28 32

{II ~ 11 IGm~ / 1

(~ I.L J

)" C (A IS II; S

) I

~
/)

I
c rr A S I

~ I I III s IW
u

{ I

Figure 24 (Part 1 of 4). eel Statement Example

36 40 44

I ~

I

l(

2. Two programs are being compiled: one that
transfers the customer file from cards to disk;
and one that transfers the inventory file from
cards to disk. The OCL statements for the
RPG II Compiler are in a procedure called RPG.
A CALL statement, therefore, is used to instruct
the system to read the procedure each time the
compiler is to be run. The procedure is located
on the fixed disk on drive one.

The RPG II source programs following each set
of CALL and RUN statements are input to the
compiler. Like all input, each source program
must be followed by a /* card. However, to
be safe, /& statements were used before each
LOAD and CALL statement in case the /* cards
had not been placed after the source programs.

3. In the next two jobs, the object programs just
compiled will be run. The comment and PAUSE
statements are to remind the operator to place
the object- program cards after the correspond
ing sets of OCL statements.

4. The system stops, temporarily, after each of the
preceding compilations, giving the operator
time to ensure that the compilations were
successful. However, there is no need for the
system to stop after the next few jobs. A
NOHAL T statement, therefore, is given at
this point.

48 .2 56 60 64 68 72 7. 8.

IS)

I)

T C 1/

Using eel 65

66

5. The two object programs previously compiled
are being run to transfer the customer and in
ventory files, respectively, to disk.

In each case, a disk file is being created. Both
files are permanent. The name that will iden
tify the customer file on disk is CUST; the
inventory-file name is INV. The date for both
files will be 10/20/71.

I • 8 12 I. 20 2. 2f! 32

II
1/ IL Ii - " - , IN -
I

0 (A H S

/I S C 0511 1)

I

I
II
I I -I ,P C - D£2, 1 -

01) 0 2 I V
/I
I

c 0 C II
I

T (J I)

I

I
I LL P I

(IA 5 5

PI I
I

Figure 24 (Part 2 of 4). OCl Statement Example

I • 8 12 I. 20 24 28 32

I
1/
/I -) c - OL2 I
/I

(5 S
I

A S { ,
I

<D I L

I
II .4 I

III I ~ -, J S J
I ,

J I I
II I I L- 5,
II ~

~ P C ,IF' 1 S

Figure 24 (Part 3 of 4). OCl Statement Example

36 40 ..
1 -
e I Iii

) 5

I

I I

CL

36 40 44

1. , -
I N If

- I -
II< - OL I I -

The cards containing the records to be trans
ferred to disk are being read from the same
device as the OCl statements. In each case, the
cards must immediately follow the program
that reads them. If the programs had been
loaded from disk, the cards would have fol
lowed the RUN statement in each case.

.. .2 .. 60 84 .. 72 7. 80 ..
liN

1

I -p

1)

1

T C ~ ~ 1/

.. 52 .. 60 84 os 72 7. so ..
L -

IS

- ~

-

6. A program that transfers a transaction file,
TRANS, from cards to disk is being compiled.
Because the resulting object-program cards are
to be placed with the next set of OCl state
ments, comment and PAUSE statements are
used to remind the operator.

7. The transaction file is first transferred from
cards to disk, and then sorted on disk by the
Disk Sort program. A HALT statement pre
cedes the sort job so that the system will stop
after the sort job. This gives the operator a
chance to check any diagnostic messages to en
sure that the sort was successful. The HALT
statement remains in effect for the remaining
jobs.

The INPUT and OUTPUT files are the same.
The transaction file is read, sorted, and then
written back on the same area of disk.

I • • " I. 2 • 24 2. 32

I
/I L P I 1

I
(ID I

/I

/I ~ IP ~ 1
/I IlL III I liP - 12, I
II I 5, - 0 I
1/ I
I

Figure 24 (Part 4 of 4). OCl Statement Example

-

3. 40 44

I

The sort specification cards following the
RUN statement are input to the Disk Sort
program. Like all input, the last card must be
a 1* card.

8. The program that updates the inventory file
with information from the transaction file is
compiled. Comment and PAUSE statements
again remind the operator to include the ob
ject-program cards with the next set of OCl
statements.

9. The program just compiled is run to llpdate
the inventory file. This program can also print
the transaction-file records. The printed out
put file, however, is conditioned by external
indicator U1. Because the SWITCH state-
ment sets U 1 on, the transaction records will
be printed. If the SWITCH statement had not
been used, the indicator would have remained
off and the records would not have been printed
(external indicators are all initialized off at
IPl time).

48 " .. so •• .. " 7. .. 84

UsingOCl 67

68

PART II. DISK UTILITY PROGRAMS

Disk Utility Programs 69

70

INTRODUCTION TO DISK UTILITY PROGRAMS

The Disk System includes a group of disk resident utility programs. These pro
grams do a variety of necessary jobs, from preparing disks for use to maintaining
the system libraries. The disk utility programs are:

• Disk Initialization

• Alternate Track Assignment

• Alternate Track Rebuild

• File and Volume label Display

• File Delete

• Disk Copy/Dump

• library Maintenance

• 5445 Data Interchange Utility

The information for every program is divided into five sections:

• Control statement summary

• Parameter summary

• Parameter descriptions

• DCl (operation control language) considerations

• Examples

TO WRITE UTILITY CONTROL STATEMENTS
To write utility control statements (see Control Statements), use the sections in the
following way:

1. look at the Control Statement Summary to determine which control statements
and parameters apply to the program uses you are interested in. (The program
uses are stated in the text preceding the Control Statement Summary.)

2. If you need information about the contents or meanings of particular parameters,
look at the Parameter Summary.

3. If you need more detailed information about parameters, read the Parameter
Descriptions following the Parameter Summary.

4. If you need examples of specific jobs, look at the Example section. All examples
show the DCl statements and utility programs for specific jobs.

5. To find information concerning the use of utility programs on disk refer to
DCL Considerations for the necessary DCl statements.

Introduction to Disk Utility Programs 71

72

Control Statements
All of the programs require utility control statements, which you must supply.
These statements give the program information concerning the output you want
the program to produce or the way in which you want the program to perform
its function. The programs read these statements from the system input device.
They must be the first input read by the programs.

Every control statement is made up of an identifier and parameters. The identifier
is a word that identifies the control statement. It is always the first word of the
statement. Parameters are information you are supplying to the program. Every

parameter consists of a keyword, which identifies the parameter, followed by the
information you are supplying.

Coding Rules
The rules for constructing control statements are as follows:

1. Statement identifier. / / followed by a blank should precede the statement identi·
fier. Do not use blanks within the identifier.

2. Blanks. Use one or more blanks between the identifier and the first parameter.
Do not use them anywhere else in the statement.

3. Statement parameters. Parameters can be in any order. Use a comma to separate
one parameter from another. Use a hyphen (-) within each parameter to separate
the keyword from the information you supply. Do not use blanks within or be·
tween parameters.

4. Statement parameters containing a list of data after the keyword. Use apostrophes
(') to enclose the items in the list. Use a comma to separate one item from another.
For example: UNIT·'R1,R2' (R1 and R2 are the items in the list).

5. Statement length. Control statements must not exceed 96 characters.

The following is an example of a control statement:

II COpy FROM·F1,LlBRARY·0,NAME·SYSTEM, TO·R1

The statement identifier is COpy. The parameter keywords are FROM, LIBRARY,
NAME, and TO. The information you supply is F1, 0, System, and R1.

End Control Statement
The END statement is a special control statement that indicates the end of control
statements. It consists of II END starting in position 1 and must always be the last
control statement for the programs.

SPECIAL MEANING OF CAPITAL LETTERS, NUMBERS, AND SPECIAL
CHARACTERS

Capitalized words and letters, numbers, and special characters have special meanings
in Oel and utility control statement descriptions.

In utility control statements, capitalized words and letters must be written as they
appear in the statement description. Sometimes numbers appear with the capitalized
information. These numbers must also be written as shown.

Words or letters that are not capitalized mean you must use a value that applies to
the job you are doing. The values that can be used are listed in the parameter sum
maries for the control statements.

Braces ({ }) sometimes appear in parameters shown in control statement sum
maries and parameter summaries. They are not part of the parameters. They simply
indicate that you must ~hoose one of several values to complete the parameter. For
example, RETAIN- l; t means you can use either RETAIN-T or RETAIN-P.

Introduction to Disk Utility Programs 73

74

DISK INITIALIZATION PROGRAM

All disks must be initialized before use. Disks that have been initialized need not
be re-initialized unless you want to erase their contents and rename them.

The Disk Initialization program prepares disks for use. It does this by:

• Writing track and sector addresses on the disk.

• Checking for defective tracks, a process called surface analysis.

• Assigning alternate tracks to any defective tracks found.

• Writing a name on each disk to identify the disk.

• Formatting the volume table of contents.

The process is called initialization. The program can initialize up to five disks
during the same program run.

There are three types of initialization: primary, secondary, and clear. Primary is
used to initialize any disk to disk drive capacity. Secondary is used only when
using the 5444 disk and only when the drive capacity of your system is increased
and you have programs and data on your disks that you want to keep. Clear is
used to unconditionally initialize a disk.

CAUTION

Clear will destroy any files or libraries that
were previously on disk.

The control statements you supply for the Disk Initialization program depend
on the type of initialization and the number of disks you are initializing.

Disk Initialization Program 75

76

CONTROL STATEMENT SUMMARY

Type of Initialization

Primary(:!}

New Disks

Control Statements Q)

(!)
r.'\ {code} {HALF} /I UIN TYPE-PRIMARY'.!J,UNIT- , d' ,VERIFY-number ,CAP-

co es CD FULL

/I VOL PACK-name,1 D-characters,NAME360-<:haracters

/I END

Disk already in
use (reinitialize)

<D
{ code } {NO } { HALF} /I UIN TYPE-PRIMARY,UNIT- 'codes' ,VERIFY-number,ERASE- YES ,CAP- FULL

o

Secondary ~):

Disk alreadY in
use

Clear(!):

/I VOL PACK-name,1 D-characters,NAME360-<:haracters

/I END

J COde} /I UIN TYPE-SECONDARY,UNIT- \. d ' ,VERIFY-number
I.. co es

/I END

{ d } 0{HALF} /I UIN TYPE-CLEAR,UNIT- ,code, ,VERIFY-numper,CAP-
co es FULL

/I VOL PACK-name,ID-<:haracters,NAME360-<:haracters 0
/I END

Q) Control statements are required in the order they are listed: UIN, VOL, END or UIN, END.

o For primary initialization, one VOL statement is required for each disk listed in the UNIT parameter of the
UIN statement. The PACK parameter in the first VOL statement applies to the first disk listed in the UNIT
parameter. The PACK parameter in the second VOL statement applies to the second disk listed in the UNIT
parameter, and so on.

CD If the TYPE parameter is omitted, TYPE-PRIMARY is assumed.

o VOL statements are not required for secondary initialization because the disks are alreadY named.

(!) If the TYPE parameter CLEAR is selected, ERASE-YES is assumed.

o CAP-FULL should not be used on a half capacity system and can only be used on the 5444 disk.

o NAME360 can only be used on the 5445 disk.

PARAMETER SUMMARY

UIN (Input Definition) Statement

TYPE-PRIMARY

TYPE-SECONDARY

TYPE·CLEAR

UNIT-code

UN I T·'code ,code'

UN IT·' code ,code ,code'

UNIT·'code,code,code,code'

UNIT·'code,code,code,code,
code'

VE R I FY ·number

ERASE·YES

ERASE·NO

CAP·HALF CD

CAP·FULL CD

VOL (Volume) Statement

PACK·name

ID-characters

NAME360·characters

Primary initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re·initialized. The program will not
initialize disks containing libraries, temporary data files, or permanent data files.

Secondary initialization (5444 disk only). Applies only to disks that were
initialized on drives of less capacity than the drives you are now using. It means
initialize the uninitialized portions of the disks to the capacity of the drives on
which the disks are mounted. Tracks already initialized are not disturbed.

Clear initialization. Initialize the disks to the capacity of the drives on which they
are mounted. Tracks already initialized are re·initialized. Active files and library
checking is bypassed and any data on the tracks is destroyed.

Disk location (one disk). - Possible
codes:

Disk location (two disks)' R1, F1,
R2,F2

Disk location (three disks). 01,02

Disk location (four disks).

Disk location (five disks)' -

Do surface analysis the number of times indicated (number can be 1·255). VERIFY·1
is assumed if you omit the parameter.

Retest defective tracks.

Do not retest defective tracks.

]
Primary initialization only. ERASE·NO is
assumed if you omit the parameter.

Initialize a disk to half capacity even if on a full capacity drive (5444 disk only).

Initialize a disk to full capacity (5444 disk only).

Disk name. Can contain any of the standard System/3 characters except apostrophes,
leading or embedded blanks, and embedded commas@ Its length must not exceed
six characters.

Additional identification. Ca.n contain any of the standard System/3 cha~ers
except apostrophes, leading or embedded blanks, and embedded commas~. Its
length must not exceed ten characters. If you omit this parameter no additional
identification is written on the disk.

Additional identification for 5445 disk. The name will be placed in the
System/360 format 1 DSCB. Can contain any of the standard System/3
characters except apostrophes, leading or embedded blanks, and embedded
commas 0 . Its length must not exceed 44 characters. If you omit this
parameter the program defaults to SYSTEM/3.DATA.

CDThe CAP keyword forces ERASE·YES. Pack is initialized to capacity of the drive if this keyword is omitted.

(DThiS is due to their delimiter function.

Disk Initialization Program 77

PARAMETER DESCRIPTIONS

TYPE Parameter (UIN)
The TYPE parameter indicates the type of initializa
tion you want the program to do: primary, secon
dary, or clear. The type of initialization and the ca
pacity of the disk drives on which the disks are
mounted determine which disk tracks will be
initialized.

Disk Drive Capacity
Disk drives of different data-storage capacities are
available for the System/3 Model 10 Disk System.
The difference is the number of tracks the drives can
use: the larger the drive capacity, the more tracks
the drive can use. However, you must initialize the
disk tracks before using them.

Primary Initialization
Primary initialization applies to new disks, or disks
you have used but want to initialize again. The pro
gram initializes all tracks corresponding to the
capacity of the drives on which the disks are
mounted. Tracks that were previously initialized
are initialized again. Any data on the tracks is
destroyed.

You can use primary initialization on a disk as often
as you want. However, the program will not
initialize disks containing libraries, temporary
data files, or permanent data files. You must de
lete the files using File Delete and the libraries
U!;ing the allocate function of Library Maintenance.

Secondary Initialization (5~44 Disk Only)

78

SI:!Condary initialization applies to disks that were
initialized on drives of less capacity than the drives
you are now using. When you increase the capacity
of your drives, more tracks on your disks be-
come available for use. You must initialize the
additional tracks. Use secondary initialization
if you do not want information destroyed on
tracks already in use. The program initializes the
additional tracks only. Tracks already in use are
not disturbed.

The program will not do secondary initialization
on new disks or disks that have already been
initialized to the capacity of the drives on which
they are mounted.

Clear Initialization
Clear initialization applies to new disks but 9nly to
those which cannot be used because of invalid
pack labels or some other unrecoverable disk
error. All tracks corresponding to the capacity
of the drives on which the disks are mounted are
initialized. Tracks that were previously initialized
are re-initialized.

Warning: All libraries, temporary data files, or
permanent data files are completely wiped out.

UNIT Parameter (UIN)
The UNIT parameter (UNIT-code) tells the location
of the disks you want to initialize. The program
can initialize up to five disks during one program
run.

The form of the UNIT parameter depends on the
number of disks you are initializing:

1. For one disk, use UN IT-code.

2. For two disks, use UNIT-'code,code'.

3. For three disks, use UNIT-'code,code,code'.

4. For four disks, use UNIT-'code,code,code,code'.

5. For five disks, use UNIT-'code,code,code,code,
code'.

The codes indicate the locations of the disks:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

01 Removable disk on
5445 drive one

02 Removable disk on
5445 drive two

For primary initialization, the order of codes must
correspond to the order of VOL control state
ments. If, for example, you had used the parameter
UNIT-'R1,R2', the first VOL statement applies
to the removable disk on drive one and the second
VOL statement to the removable disk on drive
two. (No VOL statements are required for second
ary initialization. The disk is already named.)

You cannot initialize the pack from which you
loaded the Disk Initialization program or the
system pack.

VERIFY Parameter (UIN)
The VERIFY parameter (VERIFY-number) con
cerns surface analysis. It enables you to indicate
the number of times you want the program to do
surface analysis before judging whether or not
tracks are defective. The number can be from
1-255. The greater the number specified in the
VERIFY parameter the longer it takes to initialize
the disk.

Surface Analysis
Surface analysis is a procedure for testing the con
dition of tracks. It consists of writing test data
on tracks, then reading the data to ensure it was
recorded properly.

In judging whether or not tracks are defective,
the program does surface analysis the number of
times you specify in the VERIFY parameter. If
you omit the VERIFY parameter, surface analysis
is done once. Tracks that cause reading or
writing errors any time during surface analysis
are considered defective. Defective tracks can be
assigned alternates. The 5444 has six alternate
tracks available; the 5445 has 60. If the program
finds more than 6 or 60 defective tracks respectively
it considers the disk unusable and stops initializing it.

The program also considers the disk unusable if either
track 0 or 1 is defective. Tracks 0 and 1 are used only
by the system and cannot have alternates assigned to
them. For the 5445 the program also considers the
disk unusable if any tracks in cylinder 0 are defective.

Alternate Track Assignment
Alternate track assignment is the process of assigning
an alternate track to a defective track. If the Disk
Initialization program finds a defective track
during surface analysis, it assigns an alternate track
to the defective track. The alternate is, in effect,
a substitute for the defective track. Any time a
program attempts to use the defective track, it
will automatically use the alternate instead. Each
5444 disk has six alternate tracks (tracks 2-7). Each
5445 disk has 60 alternate tracks (tracks 4000-4059).

If tracks become defective after a disk is initialized,
another program (see Alternate Track Assignment
Program) is used to assign alternate tracks. Disks
need not be re-initialized to assign alternate tracks.

ERASE Parameter (UIN)
The ERASE parameter concerns alternate track
assignment. It applies only to disks that have
already been initialized and used, but which you
are re-initializing using primary initialization.

The condition of tracks on such disks has been
tested at least once before (during the previous
initialization) and tracks that were found to be
defective during surface analysis were assigned
alternates. The ERASE parameter, therefore,
enables you to indicate whether youlwant the
program to (1) retest the tracks to which alternate
tracks are already assigned, or (2) leave the alter
nate tracks assigned without retesting the tracks.

The parameter ERASE-YES means to retest. If
you tell the program to retest, it erases any
existing alternate track assignments, and tests
all tracks as though the disk were new.

The parameter ERASE-NO means not to retest.
If you tell the program not to retest, it tests only
those tracks to which no alternate tracks are as
signed. Alternate tracks previously assigned re
main assigned.

Defective tracks are not retested if the ERASE
parameter is omitted.

CAP Parameter (UIN)
The CAP parameter (5444 disk only) determines pack
size when the pack is initialized. The CAP-HALF
parameter means to initialize the pack to half capacity
even if it is on a full capacity drive. The CAP-FULL
parameter means to initialize the pack to full capa
city. The use of the CAP keyword forces ERASE-YES.

Disk I'nitialization Program 79

PACK Parameter (VOL)
The PACK parameter (PACK-name) applies to
primary initialization only. During primary initiali
zation, the Disk Initialization program writes a
name on each disk. It uses the name you supply
in the corresponding PACK parameter. (One VOL
control statement containing a PACK parameter
is required for each disk.)

The name can be any combination of standard
System/3 characters except apostrophes, leading
or embedded blanks, and embedded commas (due
to their delimiter function). (See Appendix A for
a list of standard System/3 characters.) Its length
must not exceed six characters. The following are
valid disk names: 0,F0001, 012, A1B9, ABC.

In general, disk names are used for checking pur
poses. Before a program uses a disk, the disk
name is compared with a name you supply
(either in OCl statements or control statements
required by the program). If the names do not
match, the program halts and prints a message.
In this way, programs cannot use the wrong disks
without the operator knowing about it.

10 (Identification) Parameter (VOL)
The ID parameter (ID-characters) applies to primary
initialization only. It enables you to include a max
imum of ten characters, in addition to the disk
name, to further identify a disk. The characters
can be any combination of standard System/3
characters (Appendix A) except apostrophes,
leading or embedded blanks, and embedded com
mas (due to their delimiter function). The informa
tion is strictly for your use. (It is not used for
checking purposes by the system.) If you use
the File and Volume label Display program to
print the disk name, it will also print the addition
al identification for you.

NAME360 Parameter (VOL)

80

The NAME360 parameter (NAME360-name) is used
to specify a filename for data interchange with
System/360-System/370. System/360-System/370
can use data on a System/3 disk pack by treating the
pack like a file. System/3 gives a default filename of
SYSTEM/3.DATA. The NAME360 parameter can be
used if you would like to code a filename of your
own.

NAME360 can contain any of the standard System/3
characters except apostrophes, leading or embedded
blanks and embedded commas. Its length must not
exceed 44 characters.

OCL CONSIDERATIONS
The following OCl statements are needed to load
the Disk Initialization program.

/I lOAD $INIT, code
/I RUN

The code you supply depends on the location of
the disk containing the Disk Initialization program.
The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Primary Initialization of Two Disks

1

I:t
1/
/I

Figures 25 and 26 are examples of the OCl state
ments and utility control statements needed for
the primary initialization of two disks.

4 8 12 16 20 24 28 32

LOA $1 1'4 1 Ifl f·1
RUN

Explanation:

• Disk Initialization program is loaded from the fixed disk on
drive one.

Figure 25. Del load Sequence for Disk Initialization

3

1 4 8 12 16 20 24 28 32 3

III IN UN 1 ~ -' f2 , lao 2.' 1'1 p~ -p RI tMl~ R'f
II VO PA CK -~ 22.2.
11/ v L PIA c.~ .p b.'f RO , \ \) 14) 2.17 ~
1// END

Explanation:

• The two disks on drive two are being initialized (UNIT-'F2,R2'
in UIN statement).

• The fixed disk (F2) will be given the name 2222 (PACK-2222
in first VOL statement!.

• The removable disk (R2) will be given the name PAYROL
(PACK-PAYROL in second VOL statement!. Additional
identifying information, 010270, will be written on the removable
disk (I D-01 0270).

Figure 26. Utility Control Statements for Primary Initialization
of Two Disks

MESSAGES FOR DISK INITIALIZATION

Message

INITIALIZATION
ON XX COMPLETE

INITIALIZATION ON XX
TERMINATED

**ALTE'RNATE TRACKS
ASSIGNED**

PRIMARY TRACK XXX
ALTERNATE TRACK XXX

UNRECOVERABLE ERROR;
RE-INITIALIZING PACK

Meaning

This message is printed when initialization of a disk is
complete. XX indicates the unit (R 1, R2, F 1, F2, D 1,
or D2) on which the initialization is complete.

This message is printed when initialization of a disk
must be terminated for one of the following reasons:

1. Cylinder zero is defective.

2. More than 6 5444 tracks or 60 5445 tracks
are defective.

3. Possible disk hardware error exists.

4. The program attempted to initialize the disk
ten times without success.

After this message is printed, halt 33 will occur. XX
indicates the unit (R1, R2, F1, F2, D1, or 02) on
which the initialization is terminated.

These two messages are printed when a primary track
is defective and an alternate track is assigned to it.
XXX indicates the tracks involved.

This message is printed when the Disk Initialization
program determines that the disk has not been
initialized properly. The program will again attempt
to initialize the disk correctly with ERASE-YES forced.
The maximum number of times that the program will
attempt to initialize a disk is ten. After that number of
times, halt 33 occurs.

Disk Initialization Program 81

82

ALTERNATE TRACK ASSIGNMENT PROGRAM

The Alternate Track Assignment program assigns alternate tracks to disk tracks that
become defective after they are initialized. An tlternate track is a track that can be
assigned to replace another track. When the program assigns an alternate, it transfers
the contents of the defective track to the alternate. The 5444 has 6 alternate tracks,
the 5445 has 60. An alternate track can replace any track except 0 and 1 on the 5444
or 0-19 of cylinder 0 on the 5445.

The program has three uses. The control statements you must supply depend on
the program use.

The program uses and the situations to which they apply are as follows:

Program Use

Conditional assignment.
Program tests the condition
of a track and assigns an
alternate to it if it is defec
tive. (This is the normal
use.)

Unconditional Assignment CD
Program assumes the track
is defective and assigns
an alternate to it without
testing its condition.

Cancel prior assignment. CD
Program cancels an
alternate track assignment
to free the alternate for
use with another track.

Situation

Any time a disk track causes reading or writing
errors during a job, the system halts with a code
indicating that a disk error has occurred. You
would now run the Alternate Track Assignment
program to do conditional assignment.

You have used the Alternate Track Assignment
program to do conditional assignment. The
test on the track indicated that the track was not
defective (an alternate, therefore, was not
assigned). But the track still causes reading or
writing errors, and you want to assign an
alternate to it.

A defective track was found, but all alternates
are in use. You want to free an alternate so you
can recover the data from the defective track.
Before freeing the alternate, however, you would
normally copy (to another disk) the file or
library entry that uses the alternate. This saves
the data that is already on the alternate.

<D Whenever you request an unconditional assignment or cancel prior assignment, any
pending suspected defective tracks are checked (conditional assignment).

Alternate Track Assignment Program 83

CONTROL STATEMENT SUMMARY

Use Control Statements CD
Conditional Assignment /I AL T0PACK-name.UNIT -code,vERI FY-number

/I END

Unconditional Assignment o ~ track ~ /I AL T PACK-name. UN IT -code.ASSIGN-. k •
/I END trac s

.VERIFY-number0

Cancel Prior Assignment /I ALT0PACK-name.UNIT-code.UNASSIGN-l.trac~.~ .VERIFY-number0
/I END . trac

G) For each use. the program requires the statements in the order they are listed: ALT. END.

o There can be only 6 AL T statements per job.

®The VERI FY parameter applies to the automatic conditional assignment that follows the unconditional request.
(See Program Use and Situation.)

PARAMETER SUMMARY: AL T IAL TERNATE) STATEMENT

PACK-name Name of the disk.

UNIT-code Location of the disk. Possible
codes are R1. Fl. R2. F2. 01. 02.

VERI FY-number In testing the condition of a track.
do surface analysis the number of
times indicated (number can be
1-255). If VERIFY parameter is
omitted. do surface analysis once.

ASSIGN-track Assign an alter- - Use track num·
bers 8-205 or nate luncon-
8-405 (for 5444) ditionally) to

one track. 20-3999 (for
5445) to identify

ASSI G N-·track.track •... . Assign one alter- tracks. Tracks

nate (uncon- 0-1 for the 5444

ditionally) to or 0-19 for the

each track 5445 are used by

(maximum the system and

is six). cannot be assign-
- ed alternates. -

UNASSI GN-track Cancel one
alternate track Use track num-

assignment. <D bers 8-405 (for
5444). or <D Before canceling an assignment. the program tests the con-

UNASSI GN-·track.track •... • Cancel two or 20-3999 (for dition of the track to which the alternate is assigned. The
more alternate 5445) to which assignment is canceled if the test indicates that the track is
track assign- alternates are not defective. If the test indicates that the track is defective.
ments (®Ximum assigned. the program does not cancel the assignment unless the operator
is six). 1 tells it to do so. -

B4

PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the pro
gram the name of the disk containing the defective
tracks. This is the name written on the disk by the
Disk Initialization program. (See Disk Initialization
Program.)

The Alternate Track Assignment program com
pares the name in the PACK parameter with the
name on the disk to ensure they match. In this
way, the program ensures that it is using the right
disk.

UNIT Parameter
The UNIT parameter (UNIT-code) indicates the
location of the disk containing defective tracks.
Codes for the possible locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

01 Removable disk on
5445 drive one

02 Removable disk on
5445 drive two

VERIFY Parameter
The VERIFY parameter (VERIFY-number) con
cerns conditional assignment. (See Program Use
and Situation for unconditional and cancel prior
assignments.) It enables you to indicate the num
ber of times you want the program to do surface
analysis before judging whether or not the track
is defective. The number can be from 1-255. If
you omit the parameter, the program does surface
analysis once.

Conditional Assignment
Conditional assignment consists of testing the
condition of a track (surface analysis) and, if
the track is defective, assigning an alternate track
to replace it. It is the normal use of the Alternate
Track Assignment program.

Situation. Conditional assignment applies to tracks that
cause reading or writing errors during a job. Any
time a track causes such errors, the system does
the following:

1. Stops the program currently in operation.

2. Writes the track address in a special area on the
disk.

3. The system then halts with a halt code indicat
ing a permanent disk I/O error. You can then
run the Alternate Track Assignment program.

When you use the Alternate Track Assignment pro
gram to do conditional assignment, the program
locates the tracks by using the addresses in the
special area on disk. All disks, fixed and remova
ble, have such an area. The program will do
conditional assignment for all tracks identified
in the area (one at a time), as long as there are
alternate tracks available for assignment.

Surface Analysis. Surface analysis is a procedure the pro
gram uses to test the condition of tracks. It con
sists of writing test data on a track, then reading
the data to ensure it was written properly.

Before doing surface analysis, the Alternate Track
Assignment program transfers any data from the
track to an alternate track. This is the alternate
that will be assigned if the track proves to be
defective.

In judging whether or not the track is defective, the
program does surface analysis the number of times

you specify in the VERIFY parameter. If you omit
the parameter, the program does surface analysis
once. If the track causes reading or writing errors
any time during surface analysis, the program con
siders the track defective.

Assignment of Alternate Tracks. If a track proves to be
defective, the program assigns an alternate track.
The alternate becomes, in effect, a substitute for
the defective track. Any time a program attempts
to use the defective track, it automatically uses
the alternate instead.

The 5444 has 6 alternate tracks; the 5445 disk has
60. The program will not do conditional assign
ment if all alternate tracks are in use.

Alternate Track Assignment Program 85

Incorrect Data. If a track is defective, some of the data
transferred to the alternate track could be incorrect.
Therefore, when reading data from the defective
track, the pr,ogram prints all track sectors con
taining data that caused reading errors. Characters
that have no print symbol are printed as 2-digit
hexadecimal numbers.

The following is an example:

ABCDE GH123 56 ...
B
6

A
4

Appendix A lists the characters in the standard
character set and their corresponding hexadecimal
numbers.

To correct errors on the alternate track, use the Al
ternate Track Rebuild program.

ASSIGN Parameter
The ASSIGN parameter (ASSIGN-track) applies to
unconditional assignment. It tells the program which
tracks you want alternates assigned to.

For 5444, you can assign alternates to any tracks
except 0-7, which are for system use only. For
5445 you can assign alternates to any tracks
except 0·19 or 4000·4059; for system use only.

The form of the ASSIGN parameter depends on the
number of tracks you want to specify. For one
track, use ASSIGN-track; for two tracks, use
ASSIGN-'track,track'; and so on. You can specify
up to six tracks.

Use the track numbers 8·405 (for 5444) or 20-3999
(for 5445) to identify the tracks. For example, the
parameter ASSIGN·'50,301,353' causes the program
to assign alternate tracks to tracks 50, 301, and 353.

Unconditional Assignment

86

Unconditional assignment applies to tracks that
occasionally cause read or write errors. Such
tracks might not cause errors when tested by the
Alternate Track Assignment program during con
ditional assignment. If they don't, the program
will not assign alternate tracks to them. If you
still want to assign alternates to these tracks, use
unconditional assignment. In doing unconditional
assignment, the program assigns alternates without
first testing the condition of the tracks suspected
of being defective.

UNASSIGN Parameter
The UNASSIGN parameter (UNASSIGN-track)
applies to cancelling alternate track assignments.
It identifies tracks for which you want the program
to cancel assignments.

You can cancel up to six assignments. The form of
the UNASSIGN parameter depends on the number
of assignments you want to cancel. For one assign
ment, use UNASSIGN-track; for two assignments,
use UNASSIGN-'track, track'; and so on.

Use the track numbers 8·405 (for 5444) or 20·3999
(for 5445) to identify the tracks. For example, the
parameter UNASSIGN·'50,301 ,352' causes the
program to cancel alternate·track assignments for
tracks 50, 301, and 352.

Cancel Prior Assignment
Cancelling an alternate track assignment consists
of transferring the data from an alternate track
back to the original track (the track to which the
alternate is assigned), therefore, freeing the alter
nate from being the substitute for the original
track.

Before transferring data back to the original track,
the Alternate Track Assignment program tests the
condition of the original track. 11 the test indicates
that the track is defective, the program stops.
Through the restart procedure you choose, you can
tell the program to do one of four things (see ...
IBM System/3 Disk System Halt Procedure Guide,
GC21-7540):

1. Cancel the assignment and transfer the data back
to the original track regardless of the condition
of the original track.

2. Test the track again.

3. Leave the assignment as it is. If there are other
tracks for which you are cancelling assignments,
the program continues with those. Otherwise,
it ends.

4. Cancel the job.

Cancelling assignments is not often done. It ap
plies to cases where a defective track is found, but
all six alternates are in use. To recover the data
from the defective track, you might want to
cancel an alternate track assignment to free the
alternate ~rack. Normally this involves copying,
to another disk, a file or library entry that uses an
alternate track, then freeing the alternate for use
with the defective track you found.

OCL CONSIDERATIONS
The following OCl statements are needed to load
the Alternate Track Assignment program.

1/ lOAD $Al T,code
II RUN

The code you supply depends on the location of
the disk containing the Alternate Track Assign
ment program. The codes are as follows:

Code Meaning

Rl Removable disk on
drive one

Fl Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Conditional Assignment
Figures 27 and 28 are examples of the OCl state
ments and utility control statements needed for a
conditional assignment as described in the following
situation.

Situation

1

IJ
1/
/I

The sytem cancels a job if a defective track is found
on the removable disk on drive one. (The name of
the disk is BlllNG.) Before doing more jobs, the

operator wants to use the Alternate Track Assign
ment program to check the condition of the track
and assign an alternate to the track if it is defective.

4 8 12 16 20 24 28 32

L A ~A ltr FI1
R N

Explanation:

• Alternata Track Assignment program is loaded from the fixed
disk on drive one:

Figure 27. DCl load Sequence for Alternate Track Assignment

•
1 4 8 12 16 20 24 28 32

1I1I ~ ~ 11'111 ~- 81 LIL INk; ,Ill ~ , h-~Il
VI ~~~

Explanation:

• The nama ofthe disk (BI llNG) and its location (removable
disk on drive one) ara indicated by the PACK and UNIT
parameters in the Al T statement.

3

3

• Because we omitted the VERIFY parameter from the Al T
statement, the program does surface analysis once when it tests
the condition of the tracks.

Figure 28. Utility Control Statements for a Conditional
Assignment

Alternate Track Assignment Program 87

MESSAGES FOR ALTERNATE TRACK ASSIGNMENT

Message Meaning

ALTERNATE TRACK ASSIGNED This message is printed when an alternate track has been
assigned to a defective track and the data has been trans-
ferred to the alternate track.

PRIMARY TRACK HAS BEEN TESTED This message is printed when it is determined that a
OK primarY track is not defective.

PRIMARY TRACK STI LL DEFECTIVE This message is printed when the Alternate Track Assignment
program determines that the track is still defective.

DATA TRANSFERRED BACK TO This message is printed when the data is transferred back to
PRIMARY TRACK the primary track.

SECTOR WITH DATA ERROR This message is printed when the Alternate Track Assignment
program found an error when transferring data. The sector
that has the error is printed out.

RECORD WITH DATA ERROR This message is printed when the Alternate Track Assignment
program found an error when transferring data. The record
that has the error is printed out.

PRIMARY TRACK xxx ALTERNATE This message is printed after ALTERNATE TRACK
TRACK yyy, UNIT-zz ASSIGNED and DATA TRANSFERRED BACK TO PRIMARY

TRACK. xxx is the primary track number, YYY is the alternate
track number, and zz is the unit involved.

88

ALTERNATE TRACK REBUILD PROGRAM

The Alternate Track Rebuild program enables you to correct data that could not be
transferred correctly to an alternate track. One or more alternate tracks can be
corrected during a program run. You must supply the control statements and data
used to correct the errors.

In writing control statemehts for this program, you will need the information printed
by the Alternate Track Assignment program when it assigned the alternate track.
The printed information tells you the name of the disk and numbers of the track
and sectors suspected of containing incorrect data. It also includes the data from
these sectors, which you can use to locate incorrect data. On the 5445, fixed
record refers to a physical 256-byte record, similar to the sector on the 5444

CONTROLSTATEMENTSUMMAR~
/I REBUILD PACK-name,UNIT-code,TRACK-location, LENGTH
number,DISP-position

Substitute data

/I END

0-ro replace characters 1-12 and 75-78 of a sector, you can use
either of the following:

1. Use one REBUI LD statement to replace all the characters
with a LENGTH parameter of 78.

2. Use one REBUILD statement for every set of positions'
you correct.

The data you want to substitute must follow the RE BU I LD
statements to which it applies. The order of the statements
and data in the preceding example would be:

/I REBUILD statement
data
/I END

/I REBUI LD statement
data
/I REBUILD statement
data
1/ END

for positions 1-78

for positions 1-12

for positions 75-78

PARAMETER AND SUBSTITUTE DATA SUMMARY

REBUILD Statement

PACK-name Name of the disk.

UNIT -code Location of the disk. Possible codes are
R1, F1, R2, F2, 01, D2.

TRACK-location 5444 Disk Unit-Number of track and
sector containing incorrect data.
Number is printed by Alternate Track
Assignment program. Track number
must be three digits; sector number
must be two digits. (TRACK-01109
means track 11 sector 91.

5445 Disk Unit-Number of track and
fixed record containing incorrect
data. Number is printed by Alternate
Track Assignment program. Track
number must be four digits; fixed
Record number must be two digits.
(TRACK-011109 means track 111,
fixed record 91.

LENGTH-number Number of characters being replaced.

DISP-position

Substitute Data

Number can be 2-256 and must be a
multiple of 2 (2,4,6, etc.l.

Position of the first character being re
placed in the sector. Position can be
1-255.

Code each character in hexadecimal form. Follow every second
character. except the last. with a comma. EXAMPLE: The
numbers 123456 would be coded as F1 F2,F3F4,F5F6.
(Appendix A lists the hexadecimal codes for System/3 charac
ters.1

Alternate Track Rebuild Program 89

PARAMETER AND SUBSTITUTE DATA
DESCRiPTIONS

PACK Parameter
Th.e PACK parameter (PACK·name) tells the pro·
gram the name of the disk that contains the alter·
nate track being corrected .. This name is the one
written on the disk by the Disk Initialization
program.

The Alternate Track Rebuild program compares the
name in the PACK parameter with the name on the
disk to see if they match. In this way, the pro·
gram ensures that the program is using the right
disk.

UNIT Parameter
The UNIT parameter (UNIT·code) indicates the
location of the disk that contains the alternate
track being corrected. Codes for the possible
locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

TRAC K Parameter

90

The TRACK parameter (TRACK~location) identifies
the track and sector that contains the data being
corrected. The defective track, not the alternate
track, is the one you refer to. Referencing the
defective track is the same as referencing the alter
nate track.

For the 5444 disk, the possible track numbers are
008·405. Always use three digits. The possible
sector numbers are 00-23. Always use two digits.
The track number must precede the sector number.
For example, the parameter TRACK·11 019 means
track 110, sector 19.

For the 5445 disk, the possible track numbers are
0020·3999. Always use four digits. The possible
fixed record numbers are 01-19. Always use two
digits. The track number must precede the fixed
record number. For example, the parameter
TRACK·111 019 means track 1110, record 19.

Track and sector numbers are printed by the Alter·
nate Track Assignment program when it prints data
from sectors that contain incorrect data.

LENGTH Parameter
The LENGTH parameter (LENGTH·number) tells
the program how many characters you are replacing
in the sector or fixed record. You must replace
characters in multiples of2 (2,4,6, and so on). The
maximum is 256, which is the capacity of a sector
or fixed record.

Length applies to characters that occupy consecu
tive positions in the sector or fixed record. If the
characters you want to replace do not occupy con
secutive positions, you must either replace all inter
vening characters or use more than one REBUI LD
statement. For example, to replace characters 10-11
and 24-25 in a sector or fixed record, you can do
either of the following:

1. Use one REBUILD statement to replace charac
ters 10·25 (LENGTH-16).

2. Use two REBUILD statements to replace charac·
ters 10-11 (LENGTH-2) and 24·25 (LENGTH·2).

DISP (Displacement) Parameter
The DISP parameter (DISP-position) indicates the
position of the first character being replaced in the
sector or fixed record. The position of the first
character is 1; the position of the second character
is 2, and so on. The maximum position you can
specify is 255.

Beginning at the position you indicate, the Alternate
Track Rebuild program replaces the number of char·
acters you indicate in the LENGTH parameter.

Substitute Data
After each REBUI lD statement, you must code the
substitute characters that apply to that statement.
The characters must be in hexadecimal form. Ap
pendix A shows the hexadecimal codes for the
System/3 character set.

Include a comma after every second character.
For example, the data F1 F2,F3F4,F5F6 represents
123456. F 1 is the hexadecimal form of 1; F2 is
the hexadecimal form of 2; and so on.

Code only the number of characters you indicated
in the lENGTH parameter in the R EBU I lD state
ment.

Note: If the lENGTH parameter of the REBUI lD
statement exceeds 38, at least two substitute data
cards are required. Each substitute data card, except
the last one, must be completely filled with data and
must have a comma in column 95 and a blank in
column 96.

OCl CONSIDERATIONS
The following OCl statements are needed to load
the Alternate Track Rebuild program.

/I lOAD $BUI lD, code
/I RUN

The code you supply depends on the location of
the disk containing the Alternate Track Rebuild
program. The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

Correcting Characters on an Alternate Track
Figures 29 and 30 are examples of the OCl and
utility control statements needed for correcting
characters on an alternate track.

1 4 8 12 16 20 24 28 32

II
/I LO !AlP IU UI L/) tf1
II/ ~~IH

Explanation:

• Alternate Track Rebuild program is loaded from the fixed disk
on drive one.

Figure 29. Oel load Sequence for Alternate Track Rebuild

31

Alternate Track Rebuild Program 91

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

/I lit B I :L l) p~ , J(- ~I N6 ,U ~, 1-1~1 ,rt' R~ ~l(- f:!N t:.T~ 4, 0' ~IP :1!1 f!
... 11 '18 ,Ie FHI1
II f:NP

Explanation:

• The name of the removable disk (BILLNGI and its location (drive onel are indicated in the PACK and UNIT
parameters in the REBUILD statement.

64

• The sector containing the incorrect characters is sector 0 of the alternate track assigned to track 20 (TRACK-020001.
The character in position 120 is the first character being replaced (DISP-1201.

• The characters in positions 120 through 123 in sector 0 are being replaced (LENGTH-4I.

• The substitute characters follow the REBUILD statement. They are G (C71, H (Cal, I (C91, and 1 (FlI.

Figure 30. Utility Control Statements for Correcting Characters on an Alternate Track

Situation
Assume that the Alternate Track Assignment pro
gram printed the following information:

SECTOR WITH DATA ERROR

68 72

TRACK
02000

1 ••••••• 10 •••••••• 20 •••••••• 30 •••••••• 40 •••••••• 50 •••••••• 60 •••••••• 70 •••••••• 80 •••••• 88

92

Z ABCDEFGHI JKLMNOPQR STUVWXYZ 0123456789
FFFFFF903B524677 DC CCCCCCD DDDDDDEE EEEEEE FFFFFFOOOOOO
FEDCBAFBEDFEF705 FO ABCDEFO ABCDEF01 ABCDEF ABCDEFOOOOOO

00000000000000000000000000000020001000083000
000000000000000000000000000000024888C2100100

00OOOOOOOOOOOOOOOOOOOOOOOOOC
005A

It means that errors were detected in sector 0 of
track 20. (Assume the name of the disk is BI LLNG.)

In checking the characters printed by the program,
you found that the characters in positions 120-123
in the sector are incorrect and you want the oper
ator to run the Alternate Track Rebuild program
to correct them.

I 55202A

FILE AND VOLUME LABEL DISPLAY PROGRAM

The File and Volume Label Display program has two uses:

1. Print the entire Volume Table of Contents (VTOC) from a disk.

2. Print only the VTOC information for certain data files.

In both cases, the program also prints the name of the disk.

The printed VTOC information is a readable, up-to-date record of the contents of
the disk. There can be any number of reasons why you might need the information.
Some of the more common ones are as follows:

1. Before re-initializing a disk, you might want to check its contents to ensure that
it contains no libraries, permanent data files, or temporary data files.

2. You want to find out what disk areas are available for libraries or new files.

3. You want specific file information, such as the file name, designation (permanent,
temporary, scratch), or the space reserved for the file.

The control statements you supply for the program depend on the program use.

CONTROL STATEMENT SUMMARY PARAMETER SUMMARY (DISPLAY STATEMENT)

Usfl$ Control Statement <D UNIT -code Location of the disk containing
the VTOC information being

Pri nt enti re 1/ DISPLAY UNIT-code, LABEL-VTOC printed. Possible codes are R1.

VTOC 1/ END F1. R2. F2. 01. 02.

Print only file 1/ DISPLAY UNIT -code. LABEL r~lename .} ®
information /I END fllenamfl$

from VTOC

LABEL-VTOC Print entire contents of VTOC.

LABEL-filename Print VTOC information for
one file.

<D For each use, the program requires the statements in the
LABEL-·filename.filename • Print VTOC inform~on for

more than one file. 1
order they are listed: DISPLAY, END.

® The number of filenames you list for a program run may not
exceed 20. (VTOC is considered as one filename.)

CD The number of filenames you list for a program run may not
exceed 20. (VTOC is considered as one filename.)

File and Volume Label Display Program 93

PARAMETER DESCRIPTIONS

UNIT Parameter
The UNIT parameter (UNIT -code) indicates the
location of the disk containing the VTOC informa
tion being printed. Codes for the possible locations
are as follows:

Code

R1

F1

R2

F2

D1

D2

PACk-IUlll

Meaning

Removable disk on
5444 drive one

Fixed disk on 5444
drive one

Removable disk on
5444 drive two

Fixed disk on 5444
drive two

Removable disk on
5445 drive one

Removable disk on
5445 drive two

IO-ANIlI:RSON

NO. OF ALTERhATE TRACKS AVAILABLi:-2

TRACKS wiTH ALTERNATE ASSIGNtD-30l,lUO

DEFECTIVE ALTERNATE TRACKS-3~

OEVICI: CAPACITY-400

LIBRARY EXTfNT-- START ENO ExTENOI:D eND
008 021 Oll

AVAILABLE SPACE ON PACK
LOCATION TRACKS

028 361
399 001
1t01 001

UNIT-Rl DATI: 11/11110 PACK-llUll
FILE
NAME

FILE KEEP FILE REC KEY ~EY
DATI: TYPE TYPt ll:N LEN lOC

COST 09/21111 T C 01.28
MASTER Q3/14!1l P C 0128
EMPLOYEE 12101170 P I 0128 05 0005
UPDATE 99!11t!* T I 0128 05 0005
PARTS 08109/71 T I) 0128
SERIAL 9S/16!71 T C 0128
ADDRESS 09121111 T C 0080
BACKUP 09/29111 S C OL28

Figure 31. VTOC Printout Example

94

LABEL Parameter
The LABEL parameter indicates the information
you want printed: the entire contents of the VTOC
or only the information for certain files. The VTOC
is an area on disk that contains information about
the contents of the disk. Every disk, fixed and re
movable, contains a VTOC.

Entire Contents of VTOC
The parameter LABEL-VTOC means toprint the
entire contents of the VTOC. The meaning of the
information the program prints is given in the
following chart. Headings that are listed are the
ones printed by the program to identify the informa
tion. Figures 31 and 32 are examples of VTOC
printouts.

If the program needs more than one page to list
the file information it prints the headings for the
file information at the top of each new page,

NEXT AVAIL
RI:WRO

405/11/129
404/H/1.29

**.*
3'9.6/11/129

* •••
398/111 L29
39110b/Ob!»
399/111129

NEXT AVAIL
KI::Y

402lCl11i9
395/0C/185

INDEX
START END

40, 40,
395 395

I)A TA
STAR T ENO

405 itO!»
404 404
403 40j
396 396
400 400
HlI 398
397 397
399 399

VOL
SHi

00
00
02
00
01
00
00
00

166201 A

P4CK-IHO 101 1",-

NO. uf AL TERj-.UIt TRACKS AVAILAtll.t;-b...,.O--------------------

AVA1~ABlc SPACE UN P~CK

LueA T 1 OI'~ rKACKS

001/vO

1 ~9/00 \lOOl

PAC~-u1v1UL
FlU 1-1Lt:

U~IT-u~ DAre O~/l9/11
KEEP flLt KtC KcY KtY

IIIAME (JAH;

COST 09/LlI1! T 0 Oi.~d-

I1AST':K OJ/14/11 P 0 0096
tHPLOvt:t lU07/10 P I 00>0 0) OOOb
PARTS 08/09171 T I) Ol)b
ADDRtSS 09U.1171 T C 0030
SEiUAI.. 01l/1b/71 T C UlOu
UI'I)ATI: 09/1-./7 L S I OlOO OJ OOul

Figure 32. VTDC Printout Example of 5445 Disk

i'4EXI AVAIL HcXT AIIAIL li'4uEX OATA VOl..
RECURu KEY START EI~O - STAR T--ENIJ----SEQ-

-_. __ ._ .. _---_.-
••••• 199/10 199/19 00

••••• 199/08 1991~9 00
199/0J/Ol/101 199/0l/01/01-J 199/0;" 199/02 199/03 199/07 00

••••• 198/18 198119 00
191i/lb/Ol/ub1 -------198116 198/17 01
1911/0J.l01/l01 198/01 198/1S OU
199/01102114) 199/00/U1/01) 199/00 199/00 199/01-199/"0-1-00--

File and Volume Label Display Program 96

MEANING OF VTOC INFORMATION

Hesding

PACK-name

I D-characters

NUMBER OF ALTERNATE TRACKS
AVAILABLE-number

TRACKS WITH ALTERNATE ASSIGNED

DEFECTIVE ALTERNATE TRACKS

DEVICE CAPACITY-number

LIBRARY EXTENT

START

END

EXTENDED END

AVAILABLE SPACE ON PACK

LOCATION

TRACKS

PACK-name

UNIT -code

DATE-xx/xx/xx

FILE NAME

FILE DATE

KEEP TYPE

FILE TYPE

REC LEN

KEY LEN

KEY LOC

96

Meaning

Name of the disk_

Additional disk identification (if anyl.

Number of alternate tracks available for assignment.

Numbers of primary tracks that have been assigned an alternate.

Numbers of the alternate tracks that are defective.

Disk drive capacity (number of tracksl - 5444 disk only.

Boundary of libraries on the disk. (If the 5444 disk contains no libraries,
these headings are not printed.}

Track on which library begins.] If 5444 disk contains both source and
object library, START refers to begin-

Track on which library ends. ning of source library and END refers
to end of object library.

Object library only (5444 disk onlyl. Track on which extension to library
ends. When object library is full, temporary entries can be placed in space
following end of library, provided that space is available.

Available disk areas.

First track in available area (54441. First cylinder/track in available area (54451.

Number of tracks available.

Name of the disk.

Location of the disk containing the VTOC information.

Program level date

Name that identifies file in VTOC.

Date given the file when file was placed on disk.

File designation:
P = permanent
T = temporary
S = scratch

File type:
I indexed
C = consecutive
o = direct
SC = split cylinder, consecutive
SO = split cylinder, direct

Number of characters in each record in file.

Indexed files only. Number of characters in each record key.

Indexed files only. Position in record"Occupied by last character of record
key.

Heading

NEXT AVAIL RECORD

NEXT AVAIL KEY

INDEX
START END

DATA
START END

VOL
SEQ

Meaning

Beginning location of next available record in file. For 5444 disk, location is
treck, sector, and position within sector. For 5445 disk, location is cylinder,
track, fixed record, and position within record. Ii"
EXAMPLE: 099/18/006 = track 99, sector 18, position 6.\.!.!

050/02/12/006 = cylinder 50, track 2, fixed record 12,
position 6.CD

Indexed files only. Beginning location of next available record key in index
portion of file. For 5444 disk, location is track, sector, and position within
sector. For 5445 disk, location is cylinder, track, fixed record, and position
within record. Ii'
EXAMPLE: 090/10/006 = track 90, sector 10, position 6.\!I

052/03/10/006 = cylinder 52, track 3, fixed record 10,
position 6.0

Indexed files only. For 5444 disk, tracks on which index starts (START) and
ends (END). For 5445 disk, cylinderltrack on which index starts (START)
and ends (END).

Disk area reserved for the file. START is the first 5444 track or 5445 cylinder/
track of the area. END is the last 5444 track or 5445 cylinderltrack. For
indexed files, this refers to the data portion of the file.

VOL SEQ applies to multivolume files only. It indicates the order of this disk
as it relates to the other disks containing the remaining portion of the file.

CD If the first byte of the next'available record occurs in the next track after the end treck of DATA START E NO then this
field will contain ****.

If the first byte of the next available key occurs in the next track after the end track of INDEX START END,
then this field will contain * ** *.

File Information Only
The parameter LABEL-filename or LABEL-'file
names' means to print certain file information
from the VTOC. For one file,use LABEL-filename;
for two files, use LABEL-'filename,filename'; and so
on. (Use the names that identify the files in the
VTOC.) You can list 20 filenames for a program
run. The statement length, however, is restricted
to 96 characters.

The program prints the file information for each
of the files you list. This is the information des
cribed for the headings PACK name and FI LE
LABEL in the chart, Meaning of VTOC Information.

If the program needs more than one page to list the
file information, it prints headings for the file
information at the top of each new page.

OCl CONSIDERATIONS
The following OCL statements are used to load the
the File and Volume Label Display program.

II LOAD $LABEL,code
II RUN

The code you supply depends on the location of
the disk containing the utility program. The codes
are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

File and Volume Label Display Program 97

EXAMPLES

Printing VTOC Information for Two Files
Figures 33 and 34 are examples of the OCL state·
ments and utility control statements needed to
print VTOC information for two files.

1 4 8 12 16 20 24 28 32

V
VI l AI> 5L lQiB E .Fl
/I RUN

Explanation:

36

• The File and Volume Label Display program is loaded from the
fixed disk on drive one.

Figure 33. OCL Load Sequence for File and Volume Label Display

1 4 8 12 16 20 24 28 32 36

II PI sip A 'I' UN ih" -~1 AS cL -' BIL ~i6 1N ~"
1/ END

Explanation:

• The files for which information is printed are named BI LLNG
and INV01 (LABEL·'BI LLNG,INV01' in DISPLAY statement!.
They are located on the removable disk on drive one (UNIT·R1).

40 44

40 44

l'

Figure 34. Utility Control Statements for Printing VTOC Information for Two Files

98

48 52 56 60 64 68 72

48 52 56 60 64 68 72

FILE DELETE PROGRAM

The File Delete program has three uses:

• Remove all files from a disk.

• Remove only the files you name.

• Scratch file references in the Volume Table of Contents (VTOC). Deleting files
frees the space they occupy for use by new files.

The program may be used on temporary, scratch and permanent files. To delete per
manent files, you must use the File Delete program. You can scratch temporary files
by using the File Delete program or by changing the file designation from temporary to
scratch (using the OCl keyword RETAIN) when you use the file.

The control statements you supply for the File Delete program depend on the function
to be performed.

The SCRATCH statement does not erase files from the disk. It changes their designa
tion to scratch (S) in the Volume Table of Contents (VTOC). By doing this, the prog
ram makes the areas that contain the files available for other files or for system prog
rams. A halt will occur if an attempt is made to create a new multivolume file that
will have the same label on disk as an existing single volume file, or an attempt is made
to create a single volume file bearing the same label as an existing multivolume file.
The halt will occur even though the existing file is a scratch file. If a REMOVE state
ment is used, files are erased from the disk. No file is physically scratched or removed
from the VTOC until end of job has occurred.

File Delete Program 99

100

CONTROL STATEMENT SUMMARY

Use

Scratch all
files in the
VTOC.

Control Statements (!)
/I SCRATCH PACK-name, UNIT-code, LABEL-VTOC
/I END

Scratch only I/SCRATCH PACK-name, UNIT-code, LABEL-filename, DATE-date @
one file in
the VTOC.

Scratch
multiple
files in

jfilename t
II SCRATCH PACK-name, UNIT-code, LABEL- 1'filenames'S

the VTOC

~emove all 1/ REMOVE PACK-name, UNIT-code, LABEL-VTOC, DATA-l :r
O

{
files from YES \
disk

Remove
only the
files named
from disk

/I END
II REMOVE PACK-name, UNIT-code, LABEL-

II END

~ filename ~ ~ NO ~ '1"1 ,DATE-date, DATA- or
I enames YES

(!) For each use, the program requires the statements in the order they are listed: SCRATCH, END, or
REMOVE, END.

@Usethisform of the SCRATCH or REMOVE statement when two or more files have the same name and
you want to delete one of them. At least one SCRATCH or REMOVE statement is required by the
program. When deleting files, you can list as many filenames as the statement will hold. The statement
length, however, cannot exceed 96 characters. If you want to delete more files than you can specify
in one SCRATCH or REMOVE statement, use additional statements. The END statement must follow
the last SCRATCH or REMOVE statement.

PARAMETER SUMMARY

PACK·name

UNIT-code

LABEL·VTOC

LABE L·filename

Name of the disk.

Location of the disk. Possible
codes are R1. F1, R2, F2, 01. D2.

Scratch or remove all files
from the VTOC.

Scratch or remove -

only the file Use names
named in the VTOC. that

LABEL·'filename,filename ••.. Scratch or remove
only the files
named in the
VTOC.

identify
files in
VTOC.

- CD

DATE.date(!)

DATA. {~rO }
YES

Date of the file being deleted.
Date must be a 6-digit number.
EXAMPLE: DATE·062070
means June 20, 1970.

Delete files from VTOC
and/or disk 0

CDThese are the names you gave the files when you placed them
on disk.

(!)If the pack has more than one file with the name you list in
the LABEL parameter, they will all.be deleted unless you
use the DATE keyword and parameter to indicate a particular
file. If the DATE keyword is used, only one filename can be
given in the LABEL parameter for that control statement.
(The DATE parameter must be in the same format as the
system date.)

0 1 f YES is used. then all files specified will be deleted from
the VTOC and the disk. A message will be printed on the
Syslog device for each file removed. YES is not allowed
on a SCRATCH statement. NO is the default value. If NO
is used, all files specified will be deleted from the VTOC
but not deleted from the disk.

PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK·name) tells the pro·
gram the name of the disk that contains the files
being deleted. The name you supply in this para·
meter is the one written on the disk by the Disk
Initialization program.

The File Delete program compares the name in the
PACK parameter with the name on the disk to en·
sure they match. In this way, the program ensures
that it is using the right disk.

UNIT Parameter
The UNIT parameter (UNIT -code) tells the pro·
gram the location of the disk containing the files
being deleted. Codes for the possible locations
are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

01 Removable disk on
5445 drive one

02 Removable disk on
5445 drive two

LABEL Parameter
The LABEL parameter identifies the files you want
to delete from the disk. Its form depends on the
files you are deleting:

Form

LABEL·VTOC

LABE L·filename

Files Deleted

All of them.

Only the file that is
named. The name can
apply to more than one
file. If it does, all of
those files are deleted
unless you use a DATE
parameter to identify a
particular one.

Fila Delete Program 101

Form Files Deleted

LABE L-'filename,filename, ... '
Only the files that
are named. A name
can apply to more
than one file. If it
does, all of those files
are deleted. You can
list as many filenames
as the statement can
hold; the statement
length, however, is
restricted to 96 char
acters. Additional
REMOVE or
SCRATCH statements
may be used for ad
ditional filenames.
The maximum num-
ber of files that can be
deleted in one run is 40.

DATE Parameter

102

The DATE parameter can only be used with
LABEL-filename. The DATE parameter (DATE
date) applies to two or more files that have the
same name. It tells the program the date of the
one you want to delete.

Every file on disk has a date, which is given to the
file at the time it is created. When two or more
files have the same name, the dates are used to
tell one file from another.

The date is a 6-digit number: two digits for day,
two for month, and two for year. Day, month,
and year can be in one of two orders: (1) month,
day, year, and (2) day, month, year. For example,
061870 and 180670 both mean June 18, 1970.

In the DATE parameter, be sure to specify day,
month, and year in the same order as they were
specified when you placed the file on disk.

DATA Parameter
The DATA parameter lets you remove the files
specified directly from the disk as well as from
theVTOC.

If NO is coded 'in this parameter, then the file
specified will not be removed from the disk, but
any reference to it in the VTOC will be removed.
If neither YES or NO is specified, NO is used as the
default condition.

If YES is coded in this parameter, then the file
specified will be removed from the disk, and any
reference to it in the VTOC will be removed. In
addition, a message will be printed on the Syslog
device for each file removed from the disk in this
format:

'DATA REMOVED FOR FILE DATE 000000'

The DATA parameter may be used on a SCRATCH
statement but only NO may be coded. If YES is
coded on a SCRATCH statement, an error will
occur.

OCL CONSIDERATIONS
The following OCL statements are needed to load
the File Delete program:

II LOAD $DELET,code
// RUN

The code you supply depends on the location of the
disk containing the utility program. The codes
are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

1 4 8 12 16 20 24 28 32 36

IJlt
IJV l~ 1~ID ~D IEL Ert t fl1 .
III IR IN

Explanation:

• File Delete program is loaded from the fixed disk on drive one.

Figure 35. OCL Load Sequence for File Delete

1 4 8 12 16 20 24 28 32 36

/1 5 lU, ~H p~ q~ -~ ~~ fIJi sL AS ~ .. \ NV 011 U~
/1 J;~I"I

Explanation:

l'r

EXAMPLES

Deleting One of Several Files Having the Same
Name

Figures 35, 36, and 37 are examples of the OCL
statements and utility control statements needed
to delete one of several files having the same name
as described in the following situation.

Situation

40

40

-t 1,

Assume that three files on a removable disk have
the same name: I NV01. The dates of these files
are 6116/70, 8118/70, and 11/15/70. You want to
delete the version dated 6/16/70.

44 48 52 56 60 64 68 72

44 48 52 56 60 64 68 72

D~ rre -IG I', ro7_

• Disk that contains the file being deleted is named 00001 (PACK-00001 in SCRATCH statement).

• Because two other files heve the name I NV01, the date (061670) is needed to complete the identification
of the file you want to delete (LABEL-INV01 and DATE-061670).

• The removable disk containing the file to be deleted is on drive one (UNIT-R1).

Figure 36. Utility Control Statements to Delete One Version of a File

File Delete Program 103

1 4 8 12 16 20 24 28 32 36

IV ~E I!4vw PA 1(- I/IJ~ ~!Ill AS EL -I NV 1'111 IN I 1-

Explanation:

• A REMOVE statament is used instead of a SCRATCH statement.

• Disk that contains the file being deleted is named 00001
(PACK-OOOO1 in REMOVE statement).

• Because two other files have the name INV01, the date (061670)
is needed to complete the identification of the file you want to
delete (LABEL-INV01 and DATE-061670).

• The removable disk containing the file to be deleted is on drive
one (UNIT-R1).

• The YES specification in the DATA parameter will delete all
data from the disk containing information on the specified file.

40 44 48 52

R1 DA h'f -~ '1 ~1 ~

Figure 37. Utility Control Statement to Delete One Version of a File Using a REMOVE Statement

104

56 60 64 68 72

IDIA :1 A -IY E.5

DISK COPY!DUMP PROGRAM

The Disk Copy/Dump program has three general uses. The control statements you
must supply depend on the program use.

The program uses and most common reasons for them are as follows:

Program Use

Copy entire contents of one
disk to another.

Copy a data file from one
disk to another, or from one
area to another on same disk.

Print all or part of a data file.

Common Reasons

Provide a reserve disk in case something
happens to the original disk. Important
disks, such as those containing your libraries
and permanent data files, are normally the
ones you would copy.

Any of the following:

• Provide a reserve file in case something
happens to the original file.

• Move a file to a larger disk area.

• Re-organize the data portion of an in
dexed file. (Data in the copy of the file
is re-organized; the original file is un
changed.)

• Delete records from a file. (Records are
omitted from the copy of the file; the
original file remains unchanged.)

Provide a printed copy of the records in a
file, perhaps for use in checking the records
for errors.

The OCl sequence used to load the program describes the disk file being copied or
printed. If you are copying the file to disk, the file being created must also be des
cribed in the OCl sequence.

Disk Copy/Dump Program 105

CONTROL STATEMENT SUMMARY

, Uses CD Control Statements CD
Copy an Entire Disk /I COPYPACK FROM-code,TO-code

/lEND

Copy a Data File /I COPYFILE ~ OU:~X-lDISK'lD~~~TE-\,position,character'~REORG- ~:~ { ,0WORK-l:~ \ CD
IOUTPUT-f OMIT- tYES~ YES

/I END

Copy and Print
a Data File

Copy a Data File,
But Pri nt Only a
Part of the File

Print an Entire Data
File

Print Only a Part
of a Data File

/I COPYFILE ~ OU:~X-l BOTHJD~~~TE-l,position,character,,0REORG_YEs,0woRK_l:~ l CD

I OUTPUT-f IOMIT- ~ YES~
/I END

/I COPYFI LE ~ O~:~TX·t BOTH'lDE!~TE-{'Position,character', 0REORG-YES, 0 WORK-l :~ l
IOUTPUT-\ f.\ OMIT- ~ YESf

/I SELECT KEY,FROM-'key,\!I
-or- f.\

/I SELECT KEY,FROM-'key',TO-'key' \!I
-or-

/I SELECT RECORD,FROM-number
-or-

flSELECT RECORD,FROM-number,TO-number

/I SELECT PKY,FROM-'key' CD

-or-
/I SELECT PKY,FROM-'key',TO-'key' 0
/I END

/I COPYFILE ~ OUTPTX-~ -or- PRINT
OUTPUT-

/tEND

/I COPYFILE ~ OU:~X-.t PRINT

IOUTPUT-\
/I SELECT KEy,FROM-'key,0

-o~ f.\
/I SELECT KEY,FROM-'key',TO-'key' \!I

-or-
/I SELECT RECORD,FROM-number

-or-
/I SELECT RECORD,FROM-number,TO-number

/I SELECT PKy,FROM-'key'CD
-or- t';\

/I SELECT PKY,FROM-'key' ,TO-'key' 0
/I END

One of these (!)

One of these ®

CDThe program uses include the possible combinations of copying and printing files.

0For each use, the program requires the control statements in the order they are listed: COPYPACK, END; COPYFILE, END; and
COPYFI LE,SELECT,END.

0Needed only if you want to delete a certain type of record. DELETE cannot be usediwit~ direct files.

o Applies only to indexed files. When OUTPUT-BOTH is specified, REORG-YES is required.

CDWORK-YES applies if you are copying the file from one removable disk to another using the same disk drive (drive onel. WORK-NO
applies if you are copying the file from one area to another on the removable disk on drive one.

CD Identifies the portion you want to print.

01 ndex files with packed keys.

106

PARAMETER SUMMARY

COPYPACK Statement

FROM-code

TO-code

COPYFILE Statement

OUTPUT-DISK

OUTPUT-PRINT

OUTPUT -BOTH

~ DISK ~
OUTPTX- PRINT

BOTH

DELETE-'position,character'
-or

OMIT-'position, character'

REORG-N00

REORG-YES0

WORK-NO(!)

WORK-YES(!)

SELECT Statement

{~~~} ,FROM-'key'

{~~~ },FROM-'key',TO-'key'

RECORD,FROM-number

RECORD,FROM-number,
TO-number

location of disk to be copied. Possible codes are R1, F1, R2, F2, D1, D2.

Location of disk to contain the copy. Possible codes are R1, F1, R2, F2, D1, D2.

Copy the file from one disk to another, or from one area to another on the same disk. CD

Print the entire file or only part of the file. CD

Copy the file from one disk to another, or from one area to another on the same disk. CD
Also print the entire file or only part of it.

Printed output will be displayed in hexadecimal values.

These parameters are optional. It means that all records with the specified character in the speci
fied record position are deleted. DELETE causes deleted records to be printed. 0 OMIT causes
deleted records not to be printed. Character can be any of the System/3 characters except blank,
apostrophe, or comma. CD Position can be any position in the record (the first position is 1,
second 2, and so onl. The maximum position is 4096.

Indexed files only. Copy records in the same way as they are organized in the original file
(the file from which the records are copied).

Indexed files only. Re-organize the records so that the records in the data portion of the
file are in the same order as their keys are listed in the index.

Required for copying a file from one area to another on a removable disk on drive one.
It means: do not use a work area on the fixed disk on drive one.

Required for copying a file from one removable disk on drive one to another removable
disk on that drive. It means: use a work area on the fixed disk on drive one or on the
removable disk on drive one if the file being copied is on the 5445. R1 must have a
minimum of 198 contiguous unused tracks.

Indexed files only. Print only the part of the file from the record key that is specified
in the FROM parameter to the end of the file.

Indexed files only. Print only the part of the file between the two record keys that are
specified in the FROM and TO parameters (including the records indicated by the
parameters). To print only one record, make the FROM and TO record keys the same.

Print only the part of the file from the relative record number specified in the FROM
parameter to the end of the file.

Print only the part of the file between the relative record numbers indicated by the
parameters (including the records indicated by the parameter).(!)

CDln the OCl load sequence, the operator indicates which file is to be copied or printed. For files being copied, he must also
indicate whether the file is being copied from one disk to another or from one location to another on the same disk.

<!)Program prints the records it deletes.

CD This is due to their delimiter function.

0REORG-NO is assumed if you omit the REORG parameter. When OUTPUT-BOTH is used for indexed files, REORG-YES
is required.

(!)WORK-NO is assumed if you omit the WORK parameter.

(!)TO print only one record, make the FROM and TO record keys the same.

Disk Copy/Dump Program 107

PARAMETER DESCRIPTIONS

FROM and TO Parameters (COPVPACK)
The COPYPACK statement is used to copy tl:le con
tents of one disk to another. It has two parameters:
FROM and TO. They tell the program the locations
of the two disks on the disk unit.

The FROM parameter (FROM-code) indicates the
location of the disk you are copying. The TO para
meter (TO-code) indicates the location of the disk
that is to contain the copy.

Codes for the possible locations are as follows:

Code Meaning

R1 Removable disk on
5444 drive one

F1 Fixed disk on 5444
drive one

R2 Removable disk on
5444 drive two

F2 Fixed disk on 5444
drive two

D1 Removable disk on
5445 drive one

D2 Removable disk on
5445 drive two

Copying Entire Disk

108

When copying a disk, the Disk Copy/Dump pro
gram transfers the contents of the disk to another
disk. The content of the two disks will be the same,
except for the disk names and alternate track infor
ation which may be different.

The disk you are copying can contain libraries or
data files or both. The disk that is to contain the
copy must not contain libraries, temporary data
files, or permanent data files.

The program can copy the contents of one remova
ble disk to another using one disk drive. The drive,
however, must be drive one when using the 5444
disk. (The system pack and the pack from which
the Disk Copy/Dump program is loaded must be
F1.)

To do this, the program uses available space on the
fixed disk on drive one (5444 disk). It fills the
available space with information from the disk you
are copying. Then it prints a message telling the
operator to mount the other removable disk (the
one to contain the copy) on drive one. After trans
ferring the information from the fixed disk to the
removable disk the program prints another message
telling the operator to remount the disk you are
copying. The program repeats this procedure until
all information has been transferred.

Until the contents of the disk is completely copied
on the new disk, three addressing portions of the
new disk are changed to prevent accidental usage
of a partially filled disk. Therefore, if the copying
process is stopped before it is completed, the pack
is lunusable. You can restart the copying process
by reloading the Disk Copy/Dump program, or you
can restore the disk by reinitializing.

After a successful copy, the copy program prints
a message:

COPYPACKISCOMPLETE

Note: If you copy a disk containing an active check
point, that checkpoint will exist on both the FROM
and TO disks. When one of the two active check·
points is utilized to restart the checkpointed program,
care must be taken to ensure that the job is not
restarted a second time. To ensure that this will not
occur, it is recommended that you perform IPL and
load Restart ($$RSTR) from the pack containing
the second active checkpoint If you then select the
controlled cancel option when the HYmn halt occurs
(nn is the last requested checkpoint number), the
checkpoint will be deactivated.

OUTPUT Parameter (COPVFILE)
The OUTPUT parameter is used when copying and
printing data files. It indicates whether you want
the program to copy, print, or copy and print a
file. The OUTPTX parameter can be used to dis
play printed output in hexadecimal values.

The parameter OUTPUT·DISK means to copy the
file; OUTPUT·PRINT means to print the file; and
OUTPUT-BOTH means to copy and print the file.

Copying Files
The Disk Copy/Dump program can copy a file from
one disk to another or from one area to another on
the same disk.

The OCL load sequence for the Disk Copy/Dump
program indicates (1) the name and location of the
file being copied, and (2) the name and location of
the copy being created. (See DCL Considerations
in this section.)

The program can copy a file from one removable
disk to another using one disk drive. The drive,
however, must be drive one. (See description of the
WORK parameter for more information.) (The
system pack and the pack from which the Disk
Copy/Dump program is loaded must be F1.)

In copying a file, the program can omit records.
(See the description of the DE LETE parameter for
more information.)

In copying an indexed file, the program can re
organize records in the data portion such that they
are in the same order as their keys are listed in the
index. (See the description of the REORG para
meter for more information.)

Printing Files
The program can print all or part of a data file. To
print only part, the program needs a SELECT con
trol statement. (See the description of the SELECT
control statement parameters in this section.) If you
do not use a SELECT statement, the entire file is
printed.

If you use SELECT or REORG, records from in
dexed files are printed in the order their keys ap
pear in the index portion of the file; otherwise, they
are printed as they appear in the file. For each
record, the program prints the record key followed
by the contents of the record.

Records from sequential and direct files are printed
in the order they appear in the file. For each record,
the program prints the relative record number fol
lowed by the contents of the record.

The program uses as many lines as it needs to print
the contents of a record. Appendix A lists the
hexadecimal numbers for characters in the stan
dard character set.

The following is an example of the way the pro
gram prints hexadecimal numbers using OUTPTX:

ABCDE GHIJ 12345

CCCCCBCCCDFFFFF4444444
1234567891123450000000

The hexadecimal number B6 represents a charac
ter that has no print symbol.

After printing the last record, the program triple
spaces and prints the following message:

(number) RECORDS PRINTED

DELETE Parameter (COPVFILE)
In copying a data file, the Disk Copy/Dump pro
gram can omit records of one type. The DELETE
parameter identifies the type of record. Use of the
DELETE parameter is optional. If you do not use
it, no records are deleted.

The form of the parameter is DELETE-'position,
character'. Character is the character that identifies
the records. Position is the position of the charac- .
ter in the records. For example, with the parameter
DELETE-'100,X', all records with an X in position
100 are deleted.

Deleted records are always printed. If you are both
copying and printing a data file, deleted records
are printed with the other records that are printed.
The deleted records are preceded by the word
DELETE.

The OMIT keyword can be used instead of
DE LETE. The deleted records are not printed if
OMIT is used.

REORG (Reorganize) Parameter (COPVFI LE)
In copying an indexed file, the program can re
organize the file, such that the records in the data
portion are in the same order as their keys in the
file index. The REORG parameter tells the pro
gram whether or not to reorganize the file.

REORG-YES means to reorganize. REORG-NO
means not to reorganize. REORG-NO is assumed
if you omit the parameter.

If you tell the program to reorganize the file, the
reorganization applies to the copy of the file rather
than the original file. The original file is not
affected.

Reorganization (REORG-YES) is required when
you are both copying and printing an indexed file
(OUTPUT-BOTH). However, the REQRG parameter
does not apply to copying temporary entries.

Disk Copy/Dump Program 109

WORK Parameter (COPYFILE)
The WORK parameter applies to copying a data
file from (1) one removable disk to another using
the same disk drive (WORK·YES), or (2) one area
to another on a removable disk on drive one
(WORK·NO). It tells the program whether or not
to use a work area on the fixed disk on drive one.

The parameter WORK·YES means to use a work
area. WORK·NO means not to use a work area.
WORK·NO is assumed if you omit the WORK
parameter.

Work Area
If you have only one disk drive, a common use of
the Disk Copy/Dump program might be to copy
a file from one removable disk to another. To do
this, the program must use a work area on the
fixed disk. The output file must be a new file.

If you are copying on 5445 drive one, the work area
will be on Rl. Rl must contain a minimum of 198
contiguous unused tracks. It is recommended, how·
ever, that Rl contain no files or libraries as the num
ber of pack changes on D1 will decrease with an in
crease in work area space. You cannot copy split
cylinder files from D1 to D1 using WORK·YES.

In copying the file, the program fills the work area
with records from the file you are copying. Then
it prints a message telling the operator to mount
the other removable disk (the one to contain the
copy) on drive one. After transferring the records
from the work area to the removable disk, the pro·
gram prints another message telling the operator to
remount the disk containing the file you are copy·
ing. The program repeats this procedure until all
records have been transferred.

If you have two disk drives, you can also use the
same drive to copy a file from one removable disk
to another. The drive, however, must be drive one.

You can copy a file from one area to another on the
same disk. If you do, and the disk is a removable
disk that you plan to mount on drive one, use the
WORK·NO parameter. This keeps the program from
using a work area on the fixed disk when it transfers
the file from one area to the other.

SELECT KEY and SELECT PKY Parameters
(SELECT)

110

The SELECT KEY and SELECT PKY parameters
apply to printing part of an indexed file. The
SELECT PKY parameter applies to printing part of
an index file which contains packed keys. The
parameters are FROM and TO.

The FROM parameter (FROM·'key') gives the key
of the first record to be printed. The TO parameter
(TO·'key') gives the key of the last record to be
printed. The record keys between those two in the
file index identify the remaining records to be
printed. If you want to print only one record, use
the same record key in both the F ROM and TO
parameters.

For example, the parameters FROM·'000100' and
TO·'oo0199' mean that records identified by keys
000100 through 000199 are to be printed.

If the file index does not contain the key you indio
cate in a FROM parameter, the program uses the
next higher key in the index.

You can omit the TO parameter. If you do, the
program assumes that the last key in the index is the
TO key.

You can use fewer characters in the FROM or TO
parameter than are contained in the actual keys;
when keys are packed, however, you must use the
same number of characters as contained in the ac·
tual keys. If you use fewer characters, the program
ignores the remaining characters in the record key.
The number of characters used in the F ROM and
TO parameters need not be the same.

For example, assume that the following area con
secutive record keys in an index: 99999, A 1000,
A 1119, A 1275, A 1900, A 1995, and A2075. The
parameters, FROM·' A l' and TO·' A 199' refer to
record keys A 1000 through A 1995.

If none of the keys in the file index begin with the
characters you indicate in a FROM parameter, the
program uses the key beginning with the next
higher characters in the FROM parameter.

For example, assume that four consecutive record
keys in an index begin with these characters: A 1,
A2,A8, and B1. The parameters FROM·'A3' and
TO·'A9' would refer to keys beginning with the
characters AS.

SELECT RECORD Parameters (SELECT)
The SELECT RECORD parameters can apply to any
file, but are normally used for sequential and direct
files. These parameters use relative record numbers
to identify the records to be printed.

Relative record numbers identify a record's location
with respect to other records in the file. The rela·
tive record number of the first record is 1, the
number of the second record is 2, and so on.

The SELECT RECORD parameters are FROM and
TO. The FROM parameter (FROM-number) gives
the relative record number of the first record to
be printed. The TO parameter (TO-number) gives
the number of the last record to be printed. Records
between those two records in the file are also
printed.

For example, the parameters FROM-1 and TO-30
mean that the first thirty records (1-30) in the
file will be printed.

You can omit the TO parameter. If you do, the
program assumes that the number of the last re
cord in the file is the TO number. If you want
to print only one record, use the same number in
the FROM and TO parameters.

COPYING MULTIVOLUME FilES
When copying multivolume files the first volume
of the input file has to be online when the job is
initiated. The output file must be a new file. If
either condition is not satisfied, a halt occurs.

Maintaining Proper Volume Sequence Numbers
To maintain proper volume sequence numbers
when copying a multivolume file, you must either
copy all the volumes of the file in one run or copy
only one volume for each run of $COPY. For
example, if you copy a 3-volume file one volume
at a time (volume 1 in the first run, volume 2 in
the second run, and volume 3 in the third run),
the volumes will retain their original sequence
numbers in the output file. Or if you copy all the
volumes (1, 2, and 3) in the same run, the volume
sequence numbers in the new file will be the same
as in the original file. However, if you copy only
volumes 2 and 3 in one run, their volume sequence
numbers will be changed to 1 and 2 in the output
file.

Maintaining Correct Relative Record Numbers
To maintain correct relative record numbers when
copying one volume of a multivolume direct file,
the size of the output volume must be the same as
the size of the input volume. (If you want to in
crease the size of a file, you must copy the entire
file.) If you copy the first volume of a 2-volume
file and increase the number of records on that
volume, you are also increasing relative record num
Qers of all the records on the next volume. There
fore, to maintain the correct relative record numbers,
output and input volume extents must be equal if
you are copying only one volume of a multivolume
direct file.

Direct File Attributes
If you copy an entire multivolume direct file in one
run, the output file will be given consecutive attri
butes in the Volume Table of Contents (VTOC).
However, this does not effect file processing. A file
with either consecutive or direct attributes can be ac
cessed by a consecutive or direct access method. If
only one volume is copied, the direct attribute will
be maintained.

Copying Multivolume Indexed Files
If you want to copy a multivolume file, REORG
YES must be given in the FILE statement. Since
an unordered load to a multivolume indexed load
is not permitted, a REORG-NO will cause a halt if
an out of sequence record is encountered. If you
would prefer not to reorganize the file, it must be
copied one volume at a time. When copying one
volume at a time, the HIKEY on the output volume
must be the same as the HIKEY on the input vol
ume. Making the HIKEYs the same will ensure
that both the input and output volumes are the
same length and no records will be lost. When copy
ing one volume of a multivolume index file, either
REORG-YES or REORG-NO may be specified.

OCl CONSIDERATIONS
The following OCL statements are needed to load
the Disk Copy/Dump program, if you are using
the program to copy an entire disk.

/I LOAD $COPY,code
/I RUN

The code you supply depends on the location of
the disk containing the Disk Copy/Dump program.
The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
oner

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

Disk Copy/Dump Program 111

If you are copying or printing files you must (1)
describe the disk files being copied or printed and
(2) describe the file being created. To do this,
the following OCL statements are needed in the load
sequence:

/I LOAD $COPY,code

// FILE NAME-COPYIN,UNIT-code, PACK-diskname, LABEL-filename

// FILE NAME-COPYO, UNIT-code, PACK-diskname, LABEL-filename,

II {TRACKS-number } ,RETAIN-code
RECORDS-number

II RUN

Statement
Entry

II LOAD

$COPY

code

II FILE

NAME-COPYIN

UNIT-code

PACK-diskname

LABEL-filename

112

Considerations

Name of Disk CopylDump
program.

Location of disk con
taining Disk CopylDump
program. Can be R 1, R2,
Fl, F2.

Name Disk CopylDump
program uses to refer to
file to be copied (input
file).

Location of disk containing
file to be copied. Can be
Rl, R2, Fl F2, 01, 02.

Name of disk containing
file to be copied.

Name by which file to be
copied is identified on disk.

Statement
Entry

/1 FILE

NAME-COPYO

UNIT-code

PACK-diskname

LABE L-filename

TRACKS-number
RECORDS-number

RETAIN-code

II RUN

Considerations

Name Disk CopylDump
program uses to refer to
output file being created.

Location of disk on which
output file is to be created.
Can be Rl, R2, Fl, F2,
Dl,D2.

Name of disk on which
output file is to be identi
fied on disk.

Name by which output
file is to be identified on
disk.

Size of output file ex
pressed either as number
of records (RECORDS)
or number of disk tracks
(TRACKS).

Designation (temporary,
permanent, or scratch)
of output file. Can be
T, P, or S.

EXAMPLES

1

1/
1/1
111

Figures 38-43 are three examples of the Oel state·
ments and utility control statements needed to
(1) copy an entire disk, (2) copy a file from one
disk to another and (3) print part of a file. Each
of the three examples has two figures.

4 8 12 16 20 24 28 32

LnlA Sc ,.,p., Fl1
R N

Explanation:

1 4 8 12 16 20 24 28 32

III py PA lC FIR b~- 2, Tn -R2.
1/ E:.~

Explanation:

• The Disk Copy/Dump program is loaded from the fixed disk on
drive one.

• The contents of the fixed disk on drive two (FROM·F2 in
COPYPACK statement> is copied onto the removable disk on
drive two (TO-R21.

Figure 38. OCl load Sequence for Copying an Entire Disk Figure 39. Utility Control Statements for Copying an Entire Disk

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

II~
IV L~~ $(np 'I Fl
If/ FI LE NA ME c ~\" UN III -F 1, PA 1c.1(~1 , L ~& ~L -~ AS T!;IR
III lLE NA ME- , NI 11'- III) P AC II(- 82 , L AI'! ElL -8 A't" a(U P~ TR lAC KS -~ I"I,IR rrA IN -p
III RUN

Explanation:

• Disk Copy/Dump program is loaded from fixed disk on drive one.

• Input file (OCl sequence):
1. Name that identifies file on disk is MASTER {lABEl-MASTERI.
2. Disk that contains the file is the fixed disk on drive one {UNIT-F1 I.

Its name is Al (PACK-Al).

• Output file {OCl sequencel:
1. Name to be written on disk to identify the file is BACKUP {lABEl·BACKUPI.
2. Disk that is to contain the file is the removable disk on drive one {UNIT-R1 I.

Its name is B2 (PACK-B2).
3. The file is to be permanent {RETAIN-PI.
4. The length of the file is 50 tracks {TRACKS-501.

Figure 40. OCl load Sequence for Copying a File from One Disk to Another

Disk Copy/Dump Program 113

1 4 8 12 16 20 24 28 32 36

II ~,., p~ iI-I LE "U Tp l1[T DI S~
1/ ~~,'"

Explanation:

• The COPYFI LE statement tells the program to create the output
file using all the data from the input file. The output file is a
copy of the input file.

40 44

Figure 41. Utility Control Statements for Copying a File from One Disk to Another

1 4 8 12 16 20 24 28 32 36 40 44

I
'II Lv AD ~r it' p

'I'll fl
II F I LE ~A ~E- Pv H.I , ~H rr-IR 1, fA ,,, Rt , It IAIB EL -1& A~
1/1 R IN

Explanation:

• Disk Copy/Dump program is loaded from the fixed disk on drive one.

• Input file (OCl sequence):
1. Name that identifies the file on disk is BACKUP (lABEL-BACKUP).
2. Disk that contains the file is the removable disk on drive one (UNIT-R1).

Its name is B2 (PACK-B2).

Figure 42. OCl load Sequence for Printing Part of a File

1 4 8 12 16 20 24 28 32 36 40

II ~~ P~ IF I LE TP ~T -p .RI NIT
II ~f: L~ 1 K ~ RCl ta1- ~D AJ.1 '::I' ,1 0- ~6 AI(liP
1/ f"N~

Explanation:

• The file is being printed (COPYFI lE stetement).

• The file is an indexed file. The part being printed is identified by the record
keys from ADAMS to BAKER in the index (SELECT statement).

Figure 43. Utility Control Statements for Printing Part of a File

114

44

48 52 56 60 64 68 72

48 52 56 60 64 68 72

I(P

48 52 56 60 64 68 72

LIBRARY MAINTENANCE PROGRAM

The Library Maintenance program has four functions:

Function

Allocate

Copy

Delete

Rename

Meaning

Create (reserve space for), delete, re-organize, and
change the sizes of libraries.

Place entries in, and display the contents of, libraries.

Delete library entries.

Change the names of library entries.

The control statements you must supply depend on the function you are using.

LIBRARY DESCRIPTION
The source library is an area on disk for storing procedures and source statements.
Procedures are groups of OCL statements used to load programs. The statements
can be followed by input data for the programs. (Procedures for utility programs
can, for example, contain utility control statements.) Source statements are sets
of data, the most common of which are RPG II source programs and Disk Sort
sequence specifications.

The object library is an area on disk for storing object programs and routines. Object
programs are programs and subroutines in such a form that they can be loaded for
execution. (They are sometimes called executable object programs.) Routines are
programs and subroutines that need further translation before being loaded for
execution. (They are sometimes called nonexecutable object programs.)

Location of Libraries on Disk
Libraries can be located anywhere on disk. However, the location of a source
library with respect to an object library is always the same:

I

User Area Source Library Object Library : User Area

I

• Track 0 Upper Boundary

The boundaries of a source library are fixed. They can be changed only by the
allocate function of the Library Maintenance program. The upper boundary of an
object library, however, can be moved as additional space is needed when entries
are placed in the library. This happens only if space is available following the library
and if the entries being placed beyond the normal boundary are not permanent
entries.

Library Maintenance Program 115

116

Organization of Library Entries

Obje~ Library
Entries are stored in the object library serially; that is, a 20-sector program occupies
20 consecutive sectors. Temporary entries follow all permanent entries in the object
library.

If necessary, the upper boundary is changed to allow more space for temporary
entries. But when a permanent entry is placed in the library or the library is
reorganized, all temporary entries are deleted and the upper boundary returns to
its original location. Permanent entries cannot exceed the original upper boundary.

Gaps can occur in the object library when a permanent entry is deleted and replaced
with a permanent entry using fewer sectors. The Library Maintenance program scans
the library to see what sectors are available. The entry is then placed into the gap
that has the fewest sectors over and above the number required by the new entry.
If the entry is the same size, no sectors are lost, but aJlitemporary entries are deleted.

If the number of unusable sectors becomes excessive, the library should be re
organized. In reorganizing entries, the Library Maintenance program deletes
temporary entries and shifts entries so that gaps do not appear between them. This
makes more sectors available for use.

Source Library
The source library differs from the object library in that entries within the source
library need not be stored in consecutive sectors. An entry can be stored in many
widely separated sectors with each sector pointing to the sector that contains the
next part of the entry. When an entry is placed in the source library, it is placed in
as many sectors as required regardless of where the sectors are located within the
library.

The boundary of the source library cannot be expanded; therefore, an entry must
fit within the available library space. To provide as much space as possible with-
in the prescribed limits of the source library, the system compresses entries. That
is, all duplicate characters and blanks are removed from entries. Later, if the entries
are printed or punched, the duplicate characters and blanks are re-inserted.

When the size of the source library is changed or the source library is reorganized,
all temporary entries are deleted.

Library Directories
The program creates a separate directory for each library. Every library entry has a
corresponding entry in its library directory. The directory entry contains such infor
mation as the name and location of the library entry. The first character of a
directory name must be an alphabetic character. Maximum length is six characters.
The program also creates a system directory, which contains information about the
size and available space in libraries and their directories.

Organization of this Section
The four functions of the Library Maintenance programs are described separately.
Every description contains the following:

1. List of specific uses.

2. Control statement summary indicating the form of control statement needed
for each use.

3. Parameter descriptions explaining, in detail, the contents and meanings of the
parameters.

4. Function descriptions explaining the details of each function.

Following the function descriptions are:

1. OCl considerations

2. Examples

Library Maintenance Program 117

ALLOCATE FUNCTION

ALLOCATE USES

• Create (reserve space for) libraries.

• Change the sizes of libraries.

• Delete libraries.

• Reorganize libraries.

ALLOCATE CONTROL STATEMENT SUMMARY

II ALLOCATE To-code,SOURCE-l ~umber (,OBJECT-l ~umber (.sYSTEM-l ~~S (,DIRSIZE-number,WORK-code

Source
Library

Object
Library

Use G) Parameter Needed®

Create TO-code.sOURCE-number,WORK-code ®
Change Size

Delete

Reorganize

Create

Change Size

Delete

Reorganize

TO-code,SOURCE-number,WORK-code

TO-code,SOURCE-O

TO-code,SOURCE-R,WORK-code

TO-code,OBJECT -number .sYSTEM· ~ ~~S ~
TO-code,OBJECT-number,WORK-code

TO-code,OBJECT -0

TO-code,OBJECT-R,WORK-code

(!) You can indicate a source library use, any object library use, or uses involving both. libraries (for example, deleting the source
library and changing the size of the object library>'

(~) If you are indicating uses for both libraries, use only one TO parameter. (The libraries must be on the same disk:) Also, use
only one WORK parameter if both uses require a WORK parameter.

@) The WORK parameter is needed only if the disk contains an object library that you are not deleting.

118

Library Maintenance Allocate Restrictions
This program has restrictions and operating condi
tions that the user must be aware of when maintain
ing libraries.

Limit of Four Allocations
The system control program allows no more than
four allocations of disk space per job. Each
ALLOCATE statement that requires additional
space (create, increase size) counts as one allocation.
The WORK parameter also counts as one allocation
(see WORK Parameter). For example. creating a
source library on a disk that already contains an
object library would require two allocations (a work
area is needed), but deleting an object library would
require no allocations.

Removing Temporary Entries
When a library is reorganized, its size is changed, or
it is moved, all temporary entries in that library are
deleted. This applies to both the source and object
libraries.

Library Restrictions
The Allocate function cannot reference the libraries
on the pack from which the Library Maintenance
Program or the system was loaded. For example, if
the system was loaded (lPL) from F1 and the Library
Maintenance Program was loaded from R 1, the source
or object libraries on F1 and R1 cannot be referenced
on an ALLOCATE statement.

Moving the Object Library
When allocating or reallocating the source library on
a pack that contains an object library. the object
library is reorganized and all temporary entries are
deleted.

ALLOCATE PARAMETER SUMMARY

TO-code

SOURCE-number (no
source library)

SOURCE-number (source
library already on disk)

SOURCE-R

OBJECT-number (no
object library on disk)

OBJECT-number (object
library already on disk)

OBJECT-R

01 RSI ZE-number

SYSTEM-NO

SYSTEM-YES

WORK-code

Location of disk you are using.
Possible codes are R1. F1. R2.
and F2.

Create a source library. Number
indicates the number of tracks
you want to assign.

Delete or change the size of the
source library. Use depends on
number:

Number

o

Any number
but zero

Use

Delete

Change size

Reorganize the source library.

Create an object library. Number
indicates the number of tracks
you want to assign.

Delete or change the size of '(he
object library. Use depends on
number:

Number

o

Any number
but zero

Use

Delete

Change size

Reorganize the obiect librar'!.

Number of tracks you want for
the directory when creating, re
allocating, or reorganizing the
object library.

Assign one track to object library
directory. Object library directory
will not be large enough to contain
system program entries.

Assign three tracks to object
library directory. Object library
directory will be large enou9h to
contain system program entries.

Location of disk containing space
the program can use as a work area.
Possible codes are R1, F1, R2, or
F2.

Library Maintenance Program 119

TO Parameter
The TO parameter (TO-code) indicates the location
of the disk that contains, or will contain, the library.
If the program use involves both libraries, the
libraries must be on the same disk. The TO para
meter cannot be the same unit from which the
librarian or system is loaded.

Codes for the possible locations are as follows:

Code

Rl

Fl

R2

F2

Meaning

Removable disk on
drive one

Fixed disk on drive
one

Removable disk on
drive two

Fixed disk on drive
two

SOURCE and OBJECT Parameters
These parameters identify library uses:

120

Parameter Use

SOURCE-number • If the disk contains
OBJECT-number no library, parameter
(number is not zero) means create a library.

SOURCE-O
OBJECT-O

SOURCE-R
OBJECT-R

Number is the number
of tracks you want to
assign to the library.

• If the disk contains a
library, parameter
means change the
library size. Number
is the number of tracks
you want to assign to
the library.

Delete the library.

Reorganize the library.

01 RSI ZE Parameter
The DI RSIZE parameter allows the user to specify
the size of the object library directory. The number
of tracks specified (1-9), overrides the SYSTEM
parameter in determining directory size. Each track
can contain 288 directory entries. One entry is
needed for the directory, so the formula for the
number of entries in a directory is (t x 288)-1, where
t is the number of tracks. If the DIRSIZE parameter
is omitted, the SYSTEM parameter determines the
directory size.

SYSTEM Parameter
The SYSTEM parameter applies to creating, chang
ing the size of and reorganizing object libraries. It
tells the program whether you intend to include
system programs in the library. If system programs
are to be included, a scheduler work area must be
assigned and the directory must be large enough for
all those system programs necessary for program
loading and running (minimum system), and those
necessary for generating and maintaining a system.

Space for the scheduler work area is assigned imme
diately preceding the object library. If the disk con
tains a source library, the work area is between the
source and object libraries. For information about
the size of the scheduler work area, see Scheduler
Work Area Size.

The following charts show the results of coding the
SYSTEM parameter for different allocate users.

Creating an Object Library

Parameter Scheduler Work Area Directory Size *

SYSTEM-YES Created Three Tracks

SYSTEM-NO Not Created One Track

not coded Not Created One Track

*The directory size is overridden ifthe DI RSIZE
parameter is coded.

Changing the Size of or Reorganizing an Object Library
That Contains System Programs

Parameter Scheduler Work Area Directory Size *

SYSTEM-YES Retained Not Changed

SYSTEM-NO Removed Not Changed

not coded Retained Not Changed

*The directory size is overridden if the OIRSIZE
parameter is coded.

Changing the Size of or Reorganizing an Object Library
That Does Not Contain System Programs

Parameter Scheduler Work Area Directory Size *

SYSTEM-YES Created Not Changed

SYSTEM-NO Not Created Not Changed

not coded Not Created Not Changed

*The directory size is overridden if the 01 RSIZE
parameter is coded.

WOR K Parameter
The WORK parameter (WORK-code) indicates the
location of the disk that contains a work area.
Library entries are temporarily stored in the work
area while the program moves and reorganizes
libraries.

Codes for the possible disk locations are as follows:

Code Location

R 1 Removable disk on drive 1.

F1

R2

F2

Fixed disk on drive 1.

Removable disk on drive 2.

Fixed disk on drive 2.

When the WOR K parameter is coded on an ALLO
CATE statement, an additional disk allocation is
used. This is included in the limit of four allocations
per job (see Limit of Four Allocations).

Size of the Work Area
The work area must be large enough to hold the
entire source library, object library, or both libraries
depending on the program use. If you are combin
ing uses, such as changing the sizes of both libraries,
the work area must be large enough to hold the
contents of both libraries.

Use

Create a source
library (disk con
tains an object
library).

Change source
library size (disk
contains an ob
ject library).

Change source
library size (disk
doesn't contain
an object library).

Reorganize
source library
(disk contains an
object library).

Reorganize
source library
(disk doesn't con
tain an object
library).

Change object
library size.

Reorganize
object library.

Contents of Work Area

Object library.

Source library and object
library.

Source library.

Source library and object
library.

Source library.

Object library.

Object library.

Location of Work Area on Disk
The program uses the first available disk area lame
enough to hold the library, or libraries.

Location of Disk Containing the Work Area
The work area can be on either disk on either drive.
However, it cannot be the same disk as the one you
specified in the TO parameter. The only require
ment is that the disk must have an available area
large enough for the work area. If your system has
two disk drives, the program works faster if the disk
containing the libraries is on a different drive than
the disk containing the work area.

Library Maintenance Program 121

Using the Allocate Function

Creating a Source Library (SOURCE-number)

Source Library Size
• Minimum: One track.

• Maximum: Number of tracks in the available
area.

• Regardless of the number of tracks you specify,
the first two sectorslof the first track are assigned
to the library directory. Additional sectors are
used as needed for the directory.

Placement of Source Library (Disk With an Object
Library)

• The source library must immediately precede the
object library. A disk area large enough for the
source library must follow the object library
because the program moves the object library to
make room for the source library (Figure 44). To
do this, it needs a work area. (See WORK para
meter) The object library is reorganized and all
temporary entries are deleted.

• If you allocate a source library after deleting it,
the program automatically moves the object

• library to make room for the source library. The
starting location of the source library is the pre
vious starting location of the object library.

Disk Space Before Creating Source Library

Object Library
(30 tracks)

Available Space
(15 tracks

I 0-7!-- 8-37 -_. '-I ,-
Tracks

Disk Space After Creating Source Library

Source Object Library Available
Library (30 tracks) Space
(5 tracks) (10 tracks)

I 0-71 8-12 1-13-42 .1. 43-52-1
Tracks

Customer
Files

Figure 44. Moving Object Library to Insert Source Library

122

\

Placement of the Source Library (Disk Without an Object
Library). The program assigns the source library to
the first available disk area large enough for the
library.

If you allocate a source library after deleting it, the
source library is assigned the same way.

Changing the Size of a Source library
Any time the program changes the source library
size, it reorganizes both the source and object
libraries and deletes all temporary entries. (See
Reorganizing' a Source Library.) To do this, it needs
a work area. (See WORK parameter.)

Making the Source Library Larger
• If the disk contains an object library space must

be available immediately following the object
library. The program moves the object library to
make tracks available at the end of the source
library (Figure 45).

• If the disk does not contain an object library,
space must be available immediately following
the source library.

Disk Before Tracks Are Added to Source Library

Source Object Available Customer
Library Library Space Files
(10 tracks) (30 tracks) (15 tracks)

1 0-71 8-22 1-18-47 -I 48-62
Tracks

Disk After Five Tracks Are Added to Source Library

\

Source Object Available Customer \
Files (Library Library Space

(10 tracks) (30 tracks) (15 tracks))

1 0-71 8-22 1-18-47 -I 48-62
Tracks

Figure 45. Increasing Source Library Size

Making the Source Library Smaller
• If the disk contains an object library, the program

moves the end location of the source library to
make the library smaller. The object library is
moved and space becomes available following the
object library. (Figure 46)

• If the disk does not contain an object library, the
program moves the end location of the source
library to make the source library smaller.

Disk Before Source-Library Size Was Decreased

Source Object Customer I
library Library Files }
(15 tracks) (30 tracks)

10-1 I- 8-22--r·1-. -23-52 --1.1
Tracks

Disk After Five Trecks Were Taken From Source Library

Source
library

(10 tracks)

10-11 8-17

Object Available
library Space

(30 tracks) (5 tracks)

I- 18-41 -I 48-52
Tracks

Figure 46. Decreasing Source library Size

Deleting a Source Library (SOURCE-O)

Files
C,,,.",,, \

The program makes the disk area occupied by the
source library available for other use (disk files).
(Figure 47)

Disk Before Source Library Deleted

Source Object library Customer
library (30 tracks) Files
(15 tracks)

10-1 j..- 8-22 ·1· 23-52-1

Disk After Source Library Deleted

)
\

Available Object library Customer \ Space (30 tracks) Files
(15 tracks)

10-71-8-22 - 1.- 23-52-1

Figure 41. Deleting Source library

Reorganizing a Source Library (SOURCE-R)

Reason for Reorganizing the Library. Areas from which
source library entries are deleted are completely re
used for new entries. If an entry exceeds the space
in such an area, the program puts as much of the
entry as will fit in the area and continues the entry
in the next available area. In this way, the program
efficiently uses library space. This can, however,
decrease the speed at which those entries can be
read from the library. Therefore, if you frequently
add and delete source library entries, you should
reorganize your source library periodically.

Reorganizing the Library. The program relocates entries
so that no entry is started in one eara and continued
in another. All temporary entries are deleted. The
program needs a work area. (See WORK parameter.)

Creating an Object library (OBJECT-number)

Object Library Size
• Minimum: 30 tracks, including the directory

tracks, if the object library is to contain a mini
mum system; otherwise, the minimum is three
tracks including the directory tracks. A minimum
system is made up of those system programs
necessary to load and run programs. It does not
include system programs necessary to generate
and maintain a system.

• Maximum: Number of tracks in available area.

• Library Directory: The first three tracks in the
library are reserved for the library directory if the
library is to contain system programs; otherwise,
only the first track is used. If the 01 RSIZE para
meter is entered, the directory size specified is
used.

Library Maintenance Program 123

• Scheduler Work Area: If the library is to contain
system programs, the space available on the pack
must be large enough to contain a work area for
the Scheduler program (one of the system pro
grams). The work space is not included ·in the
number you specify in the OBJECT parameter;
the space is calculated and assigned by the Library
Maintenance program. The amount of space
needed depends on whether DPF (Dual Program
mingFeature) and/or the inquiry feature is on the
system. For non-DPF systems, two tracks are
needed; for DPF systems, four tracks are needed.
The inquiry and checkpoint/restart features
require additional tracks for a Roll-in/Roll-out
area. The number of tracks needed depends on the
main storage size of the system.

Main Storage Size Ro/l-in/Ro/l-out Tracks

12K 4

16K 5

24K 6

32K

48K

64K

7

10

13

Placement of Object Library (Disk With a Source Library).
Space for the object library must be available immed
iately following the source library.

Placement of Object Library (Disk Without a Source
Library). The program assigns the object library to
the first available disk area that is large enough.

Changing the Size of an Object Library (OBJECT·number)

Making the Library Larger. The number of tracks you want
to add must be available immediately following the
object library. The program assigns the additional
tracks to the library. (The starting location of the
library remains unchanged.)

Making the Library Smaller. The program moves the end
location of the object library to decrease the library
size. Tracks, therefore, become available following
the library.

Reorganizing the Library. Any time the program changes
the library size it also reorganizes the library and
deletes all temporary entries. (See Reorganizing an
Object Library.) To do this, it needs a work area.
(See WORK parameter.)

Deleting an Object Library (OBJECT·O)
The program makes the disk area occupied by the
object library (and the scheduler work area if this
was a system pack) available for other use.

Reorganizing an Object Library (OBJECT·R)
Gaps can occur between object library entries when
you add and delete entries. By reorganizing the
library, these gaps are removed. When the librl\ry is
reorganized, all temporary entries are deleted. A
work area is needed. (See WORK parameter.)

COPY FUNCTION

COPY USES

R eader-tOoD isk

Disk-to-Disk

Disk-to-Printer

Disk-to-Card

Disk-to-Printer
and-Card

• Add or replace a library entry. The reader is the system input device, which can be either
the keyboard or a card reader.

• Copy one library entry (or those entries with the same name from alilibrariesl.

• Copy library entries that have names beginning with certain characters.

• Copy all library entries.

• Copy minimum system.

I • Copy minimum system.

• Print one library entry (or those entries with the same name from alilibrariesl.

• Print library entries that have names beginning with certain characters.

• Print all library entries of a certain type.

~

) • Print directory entries for library entries of a certain type.

• Print entries from all directories including system directory.

• Print system directory only.

{

• Punch one library entry (or those entries with the same name from alilibrariesl.

• Punch library entries that have names beginning with certain characters.

• Punch all library entries of a certain type.

{

• Print and punch one library entry (or those entries with the same name from all libraries).

• Print and punch library entries that have names beginning with certain characters.

• Print and punch all temporary or permanent library entries of a certain type.

Library Maintenance Program 125

COPY CONTROL STATEMENT SUMMARY: READER·TQ-DISK

Add or Replace a Library Entry

/I COPY FROM-READE R.LIBRARY'{ ~ } .NAME~~ •• TC><odo.RETAIN'l : 1

Library Entry

/I CEND ~ Must always follow the source or object statement being placed into
the source or object libraries.

COPY CONTROL STATEMENT SUMMARY: DISK·TQ-DISK

Copy One Library Entry (or Entries with the Same Name from All Libraries)

/I COPY FROM.COde'LIBRARY.{~ l ,NAME'M"".TO __ ,RETAIN{~NEWNAME~CD
ALS

Copy Library Entries that Have Names Beginning with Certain Characters

/I COpy FRD..."...UBRARY'\ ~ l.NAME, .. "",,,".,ALL.TO-code.RETAI N'I : ~ ,NEWNAME-cho,""",ALL

tALJ

Copy All Library Entries

/I COPY FROM-COde'LiBRARY.{~ t ,NAME-ALL.TO<od •• RETAIN,l:1

ALL~
Copy Minimum System

126

/I COpy FROM-code,LIBRARY-Q,NAME-8YSTEM,TO-code

CD NEWNAME parameter is needed in either of the following cases:
1. If you want the copy to have a different name than the original entry.
2. If you want to replace an entry on the TO disk with an entry from the

FROM disk, but the entries have different names.
3. If you want the names of the copies to begin with different characters

than the names of the original entries, the same number of characters
must be in the NEWNAME parameter as in the NAME parameter.

4. If the FROM and TO packs are the same pack, NEWNAME cannot be
DIR, ALL, or SYSTEM.

COPY CONTROL STATEMENT SUMMARY: DISK-TO-PRINTER-AND/OR-CARD

Print and/or Punch One Library Entry (or Entries with the Same Name from All Libraries)

{ s l P PUNCH
1/ COPY FROM-code,LlBRARY- 0 ,NAME-name,TO,{ PRINT }

RPRTPCH

ALL

Print and/or Punch Temporary and Permanent Library Entries that Have Names Beginning with
Certain Characters

ts

J
P PUNCH

1/ COpy FROM-code,LlBRARY- 0 ,NAME-characters,ALL,TO- {PRINT }
R PRTPCH
ALL

Print and/or Punch All Temporary and Permanent Library Entries of a Certain Type

/I COPY FROM-code,LIBRARY- P ,NAME-ALL,TO- PRINT {
S} {PUNCH}

o PRTPCH
R

Print Directory Entries for Library Entries of a Certain Type

/I COPY FRO_,LlBRARV-{ ~} ,NAME-DIR,TMRINT

Print Entries from All Directories Including System Directory

/I COpy FROM-code,LlBRARY-ALL,NAME-DIR,TO-PRINT

Print System Directory Entries Only

/I COpy FROM-code,LlBRARY-SYSTEM,NAME-DIR,TO-PRINT

Print Directory Entries, Omitting Selected Entries

II COpy FROM-code,LlBRARY- {~ J ,NAME-D,R,TO-PR,NT,OM,T-l name l
R CHARACTERS.ALL ~
ALL

Library Maintenance Program 127

COpy PARAMETERS

FROM·READER

FROM-code

LlBRARYOU}

LIBRARY·ALL

LlBRARY-SYSTEM

1 name I
NAME· characters.ALL

ALL

NAME-SYSTEM

NAME·DlR

NAME-$cc.ALL

128

Entry to be placed in library is to be read from system input device, which
can be a keyboard or card reader.

Location of disk containing library entries being copied, printed, or punched.
Possible location codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entries involved in copy use. Possible codes are:

Code Meaning

S Source statements (source library)

P oeL procedures (source library)

o Object programs (object library)

R Routines (object library)

All types of entries (S, P, 0, and R) from both libraries are involved in copy use.

Only system directory entries are being printed.

Specific library entries on the FROM pack, of the type indicated in LIBRARY
parameter, involved in copy use. Possible information is:

Information Meaning

name Name of the library entry involved.

characters.ALL Only those entries beginning with the indicated characters.
The names of the copies and original entries will be the
same unless you use a NEWNAME parameter (NEWNAME·
characters). (You can use up to five characters'!

ALL All entries. (The type indicated in LIBRARY parameter.)

Only system programs that make up the minimum system are involved in the
copy use. The minimum system is made up of system,programs necessary to
load and run programs. System programs necessary to generate and maintain
the system are not included.

Directory entries for all library entries of the type indicated in the LIBRARY
parameter are involved in the copy use. If the LIBRARY parameter is
LIBRARY·ALL, system directory entries are also printed.

The IBM program with the name beginning with the indicated characters ($cc)
is involved in tbe copy use. For example, $MA.ALL means the Library
Maintenance program ($MAINT).

RETAIN-l ~!

TO-code

TO-PRINT

TO-PUNCH

TO-PRTPCH

NEWNAME-name

NEWNAME-characters.

OMIT-name

OMIT-characters.ALL

Adding Entry to Library. RETAIN gives designation of the TO entry:

Code Meaning

T Temporary

Por R Permanent

Replacing Existing Library Entry. RETAI N gives designation of the TO entry and
tells program whether to halt befora replacing entry:

Code

T

P

Meaning

Temporary designation. Halt before replacing entry.

Permanent designation. Do not halt before replacing entry.

Permanent designation. Do not halt before replacing
entry.

Printing or Punching Entries. The RETAI N parameter is ignored.

Location of disk that is to contain the copies of the entries:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Entries are being printed.

Entries are being punched.

Entries are ~eing printed and punched.

Name you want used on the TO disk to identify the entries being put on that
disk. If you omit this parameter, the program uses the NAME parameter in
naming the entries.

Beginning characters you want to use in names identifying entries being put
on TO disk. You must use the same number of characters as in the NAME
parameter (NAME-characters.ALLI. If you omit this parameter, the program
uses the NAME parameter in naming the entries.

When printing directory entries, omit the entry specified by name.

When printing directory entries, omit all entries with these beginning
characters.

Library Maintenance Program 129

library Directories

Source and Object Library Directories
• The source and object libraries have separate

library directories. Every library entry has a
corresponding entry in its library directory. The
directory entry contains such information as the
name and location of the library entry_ (See
Figures 48-50)

• The Library Maintenance program makes entries
in the directories when it puts entries in the
libraries_

System Directory
• Every disk that contains libraries contains a

system directory. The system directory contains
information about the sizes of and available
space in libraries and their directories. (See
Figures 48-50)

• The Library Maintenance program creates and
maintains the system directory.

Naming Library Entries

Characters to Use. Use any combination of System/3
characters except blanks, commas, quotes. and
periods. (Appendix A lists the characters.) The
names of all IBM programs begin with a dollar sign
($). Therefore, to avoid possible duplication, do not
use a dollar sign as the first character in the names
you use for your entries. The first character must be
alphabetic.

Length of Name. The name can be from one to six
characters long.

Restricted Names. Do not use the names ALL, DIR, and
SYSTEM. They have special meanings in the NAME
and NEWNAME parameters.

130

Entries with the Same Name. For each of the two physical
libraries, source and object. there are two types of
entries. The source library has type P and type S
entries. The object library has type 0 and type R
entries. Entries of the same type cannot have the
same name, but entries of different types may. For
example, two procedures in a source library cannot
have the same name. but a procedure and a set of
source statements can.

Retain Types

Temporary Entries
• Temporary entries are entries you do not intend

to keep in your libraries. They are normally used
only once or a few times over a short period.

• In the object library, temporary entries are placed
together following the permanent entries. Any
time a permanent entry is added to the library, all
temporary entries are deleted. Temporary entries
are also deleted when you replace one permanent
entry with another.

• In the source library, temporary and permanent
entries can be in any order. One entry is placed
after another regardless of their designations.
Temporary entries, therefore, are not automatically
deleted every time you add a permanent entry.
However, when the source library is reallocated or
reorganized, only permanent entries will remain.

• You can use temporary entries as often as you
like until they are deleted.

• A temporary entry cannot replace a permanent
entry.

Permanent Entries
• Permanent entries are entries you intend to keep

in your libraries. They are normally entries you
use often or at regular intervals (once a week,
once a month, and so on).

• The program will not delete permanent entries
unless you use the delete function of Library
Maintenance to delete them, or the allocate
function to delete the entire library.

Using the Copy Function

Reader-to-Disk

Input. The program reads one library entry. It can be any
one of the following types:

1. Source statements

2. Procedure

3. Object program

4. Routine

The entry is read from the system input device, which
is normally the primary hopper of the MFCU. The
operator can, however, change the system input
device by using the OCL READER statement.

Output
• Blanks and duplicate characters are removed from

source statements and procedures before they are
put in the source library. The program does not
check them for errors.

• Object programs and routines are placed in the
object library.

Adding Entries
• The program can add a new entry to a library.

The name of the entry is taken from the NAME
parameter. See Naming Library Entries for valid
names. The RETAIN parameter specifies whether
the entry will be temporary or permanent. If the
RETAIN parameter is omitted, RETAIN-T is
assumed. (see Retain Types)

Replacing Existing Entries
• The program can replace an existing library entry

with the entry you are putting in the library. The
RETAIN parameter specifies the new retain type.
Ifthe RETAIN parameter is omitted, RETAIN-T
is assumed. A temporary entry cannot replace a
permanent entry.

• The program can halt before replacing an existing
entry. Whether it does depends on the RETAIN
parameter you use. (see RETAIN parameter)

• Before the new entry is added, the duplicate entry
is deleted. Additional library space is not needed
unless the new entry is larger than the old one.

Disk-to-Disk

Input. The program can copy one or more library entries
from one disk to another. The types of entries can
be:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All the preceding types

6. Minimum system

The NAME and LIBRARY parameters specify which
entries to copy.

Output
• The entries, regardless of their type, are copied

from one disk to the other without change. How
ever, if all library entries are copied (L1BRARY
ALL,NAME-ALL). both the source and object
libraries are reorganized and temporary entries
become permanent entries in the new libraries.

• Entries can be copied and renamed on the same
disk by using the NEWNAME parameter. (see
NEWNAME parameter and Naming Library
Entries)

• If you are copying a minimum system or all of
the types, the disk you specify in the TO para
meter must not contain any entries.

• The RETAIN parameter specifies whether the
entries will be temporary or permanent. If the
RETAIN parameter is omitted, RETAIN-T is
assumed. When the parameters LIBRARY-ALL
and NAME-ALL or LlBRARY-O and NAME
SYSTEM are used, RETAIN-P is assumed and
RETAIN-T is invalid.

Library Maintenance Program 131

Adding Entries
• You can omit the NEWNAME parameter. If you

do, the name used for the copy is taken from the
NAME parameter. (The copy will have the same
name as the\original entry.)

• If NAME-ALL is specified, the names by which
the entries are identified on the F ROM disk are
also used on the TO disk to identify the entries.

Replacing Existing Entries
• The program can replace existing entries with the

entries you are putting in the library. If the entry
you are copying (the entry on the disk you identi
fy in the FROM parameter) has the same name as
the entry you are replacing (the entry on the disk
you identify in the TO parameter), you must omit
the NEWNAME parameter because the NEWNAME
parameter cannot be the same as the NAME para
meter. If the names are not the same, you must
use the NEWNAME parameter to give the name of
the entry being replaced.

• The program can halt before replacing an existing
entry. Whether it does depends on the RETAIN
parameter. (See RETAIN parameter.)

• A temporary entry cannot replace a permanent
entry.

Disk-to-Printer and/or Card

Types of Entries that Can Be Printed or Punched

132

• The program can print or punch one or more
library entries. They can be anyone of the
following types:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. All of the preceding types (limited to entries
having the same name and entries beginning
with the same characters)

• The program can print (but not" punch) the follow
ing types of directory entries:

1. Source statements

2. Procedures

3. Object programs

4. Routines

5. System directory

6. All of the preceding types

The program will sort directory names before
printing them only if there is available work space
on the FROM pack. This causes an allocation of
disk space that counts toward the total of four
allowable allocations. (See Limit of Four Alloca
tions.)

Printed or Punched Library Entries
• Blanks and duplicate characters are reinserted

into source statements and procedures to make
them redatable.

• Object programs and routines are printed and
punched as they exist in the library.

Printout of Directory Entries
• Source library directory (Figure 48)

• Object library directory (Figure 49)

• System directory (Figure 50)

PRINTOUT

SOURCE DIRECTORY FROM XX VOL. ID XXXXXX MM/DD/YY

ADDRESS
TYPE NAME FIRST@ LAST@ ATTRI #SECTORS
X XXXXXX XXX-XX XXX-XX X XXX

Explanation:

Heading

TYPE

NAME

ADDRESS
(FIRST and LAST)

ATTRI

#SECTORS

Meaning

S = source statements
P = procedure

Name of library entry (up to six characters)

Addresses of first and last sectors that contain the library entry.
Addresses are expressed by track and sector numbers.
EXAMPLE: 008-03 means track 8, sector 3.

T = temporary
P = permanent

Total number of sectors used for the library entry.

Figure 48. Source Library Directory Printout

PRINTOUT

OBJECT DIRECTORY FROM XX VOL. ID XXXXX MM/DD/YY

DSK CYL/ TXT- LINK RLD ENTRY CORE
TYPE
A L

NAME ADD SEC CAT AD DR DISP PNT SEC ATTR
XXXX

TOT
LEVEL SEC

XXXXXX TTT ISS CC/SS XXX XXXX XX XXXX XXX XXX XXXXX

EXPLANA TION:

Heading

TYPE

NAME

DSK ADD

CYL/SEC

TXT-CAT

Meaning

A ~
P=permanent ~ Attribute
T=temporary

L ~
O=object
R=routine f Library

Name of library entry (up to six characters)

Address where library entry begins on disk. EXAMPLE: 015/10 means track 15, sector 10
lin decimal!. T = track, S = sector.

Address where library entry begins on disk (in hexadecimal!. C = cylinder, S = sector.

For object programs, this number indicates the number of sectors used for the text portion of
the library entry. Object programs consist of two parts: text and RLD. Text is the program;
RLD is information used in loading the program for execution.

For routines, this number is the category of the routine. This number is used by the Overlay
Linkage Editor for determining overlays.

Figure 49. Object Library Directory Printout (Part 1 of 21

Library Maintenance Program 133

134

PRINTOUT (Continued)

Heading

LlNKADDR

RLD DISP

ENTRY POINT

CORE SEC

ATTR

LEVEL

TOT SEC

Meaning

Object programs only. Assigned core address of this library entry.

Object programs only. It indicates the position in which RLD information begins in the last
text sector. If the last text sector contains no RLD information, the RLD displacement is 0,
indicating the information starts in the next sector.

Object programs only. Main storage address where program execution begins before relocations.

Core size, given in sectors, required to run the program.

Byte 1:

Bit 0=1
o

Bit 1=1
Bit 2=1

Bit 3=1

Bit 4=1

Bit 5=1
Bit 6=1
Bit 7=1

Byte 2:

Permanent Entry
Temporary Entry
Inquiry. This program requires that the Inquiry key be pressed to start processing.
Inquiry Invoking. This program runs in program level 1 and can be rolled out to
allow an Inquiry program to run.
Dedicated. In a DPF system, this program must run with the other program level
inactive.
Source Required. This program requires the allocation of the $WORK and $SOURCE
files. $SOURCE must be filled either from SYSIN or a source library.
Deferred Mount. This program accepts mounting of packs during its execution.
PTF Applied. A program temporary fix (PTF) has been applied to this program.
RPG Object/Overlay Program

Bit 0=1 SYSIN Dedication. The SYSIN device must be dedicated to this program. The device
is released at end of job.

Bit 1=1 Checkpoint/Restart Program
Bit 2=1 Direct Source Read. This program can have a /I COMPI LE statement and a no source

required attribute (byte 1, bit 4=0). The program will access the source itself.

Bit 3 Reserved
Bit 4=1 Macro Processor Allowed. This program can be preceded by the macro processor.

If the source required attribute is present and the UPSI condition of X'SO' is satis
fied, the $SOURCE file is opened as input instead of output.

Bit 5=1 Program Common. This program requires that a new load address be calculated at
load time to place it in main storage beyond its own program common region.

Bit 6 Reserved
Sit 7 Reserved

Release level of system programs. For user programs this can be assigned by the Overlay
Linkage Editor.

Total number of disk sectors occupied by the library entry.

Figure 49. Object Library Directory Printout (Part 2 of 2)

SYSTEM DIRECTORY

SOURCE LIBRARY SECTION

Source Directory Location TTT-SS
Next Available Library Sector TTT-SS
End of Library TTT-5S
Number of Directory Sectors XXX
Number of Permanent Library Sectors XXX
Number of Active Library Sectors XXX
Number of Available Library Sectors XXX

Allocated Size of Library YYY

OBJECT LIBRARY SECTION

Object Directory Location TTT-SS
End of Directory TTT-SS
Start of Li brary TTT-5S
Allocated End of Library TTT-SS
Extended End of Library TTT-SS
Number of Available Permanent Directory Entries XXX
Number of Available Temporary Directory Entries XXX
First Temporary Directory Entry TTT-5S-DDD
Next Available Temporary Directory Entry TTT-5S-DDD
Next Available Library Sector for Permanents TTT-SS
Next Available Library Sector for Temporaries TTT-SS
Number of Available Library Sectors for Permanents XXX
Number of Available Library Sectors for Temporaries XXX
Number of Active Library Sectors XXX
Number of Active Object Permanent Library Sectors XXX
Number of Active Routine Permanent Library Sectors XXX
Allocated Size of Library YVV

Roll-in/Roll-out Location TTT-SS
Roll-in/Roll-out Size VYV

Scheduler Work Area Location TTT-SS
Scheduler Work Area Size VVY

Start of Libraries TTT-SS
End of Libraries TTT-SS

TTT -SS-DDD means track, sector, and displacement. Displacement is the number of characters from
the beginning of the sector. XXX means number of sectors. VVV means number of tracks.

Figure 50. System Directory Printout

Library Maintenance Program 135

DELETE FUNCTION

DELETE USES

• Delete a temporary or permanent entry from.a library (or
entries with the same name from alllibrariesl.

• Delete temporary or permanent

• Delete a temporary or permanent entry from a library (or
entries with the same name from alilibrariesl.

• Delete temporary or permanent library entries that have names
beginning with certain characters.

• Delete all temporary or permanent library entries of a certain
type.

DELETE CONTROL STATEMENT SUMMARY

DELETE RESTRICTIONS

• System modules cannot be deleted from the active
system pack (the pack the system was loaded from at
IPL time!.

• The object library cennot be deleted from the pack that
the system or the Library Maintenance program was
loaded from.

• When all temporary entries are deleted from the object
library using LlBRARY-O,NAME-ALL,RETAIN-T, the
temporary routines (LIBRARY-RI are also deleted.

• The RETAIN parameter must match the attribute of the
entry in the library. Otherwise the entry is considered
not found. RETAIN-T is assumed if the RETAIN para
meter is omitted.

Delete a Temporary or Permanent Library Entry (or Entries with the Same Name from All Libraries)

/I DELETE FROM_COde'LIBRARY-{~ l'NAME __ ~ETA'N'{:}
ALJ

Delete Temporary or Permanent Entries with Names Beginning with Cenain .Characten

/I DELETE FROM~Ode'LiBRARY_{~ l.NAME ~"".ALL.RETA,N·l:!
ALL)

Delete All Temporary or Permanent Entries of a Certain Type

/I DELETE FROM.-.L'SRARV.{ ~ }.NAME'ALL~ETA'N'{ :}

136

DELETE PARAMETERS

FROM.{~}

LIBRARy.l~ (
{ALL)

{
name }

NAME- characters.ALL
ALL

RETAIN-l: f

Location of disk that contains library entries you are deleting. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of entries being deleted. Possible codes are:

Code Meaning

8 Source statements (source library)

P Procedures (source library)

° Object programs (object library)

R Routines (object library)

ALL All types of entries (8, P, 0, and R) are being deleted.

Particular entries, of type indicated in LIBRARY parameter, being deleted. These
entries are further identified by the RETAIN parameter. Possible codes are:

Code

name

character.ALL

ALL

Meaning

Name of the library entry, or entries, being deleted.

Entries that have names beginning with the indicated
characters. You can use up to five characters.
EXAMPLE: NAME-INV.ALL refers to the entries
heving names that begin with INV.

All entries (of the type indicated in LIBRARY parameter).
NAME·ALL cannot be used with LIBRARY-ALL.

Designation of entries being deleted:

Code Meaning

T Temporary

P Permanent

Library Maintenance Program 137

RENAME FUNCTION

RENAME USE

• Change the name of a library entry.

• Change the name of library entries that have names
beginning with certain characters.

RENAME CONTROL STATEMENT SUMMARY

/I RENAME FROM-c_.LIBRARY.{ ~} .NAME_m •• NEWNAME~~

/I RENAME FROM_.LI BRARY { ~} .NAME~"'rn"" • .ALL.NEWNAME"""_n

138

RENAME PARAMETERS

FROM-code

LIBRARy-m

NAME-name

location of disk that contai ns the entry
you are renaming. Possible codes are:

Code Meaning

R1 Removable disk on drive one

F1 Fixed disk on drive one

R2 Removable disk on drive two

F2 Fixed disk on drive two

Type of library entry you are renaming.
Possi bl e codes are:

Code Meaning

S Source statements (source
library)

P Procedures (source library)

o Object programs (object library)

R Routines (object library)

Current name of the entry you are re
naming. This is the name that identifies
the entry in the library directory.

NAME-characters.All Only those entries beginning with
the indicated characters. (You can
use up to five characters.)

NEWNAM E-name New name you want to give the entry.
Follow these rules to construct the name:

1. Yau can use any System/3 charac
ters except blanks, commas, quotes,
and periods. (Appendix A lists the
characters.) However, the names
of all IBM programs begin with a
dollar sign ($). Therefore, to avoid
possible duplication, do not use a
dollar sign as the first character in
the names you use for your entries.
The first character must be alpha
betic.

2. You can use up to six characters,
but you cannot use the names All,
OIR and SYSTEM. They have
special meanings in the NAME
parameter.

NEWNAME-characters Beginning characters you want to use in
names identifying the copies. (You can
use up to five characters.

OCl CONSIDERATIONS
The following OCl statements are needed to load
the Library Maintenance utility program.

II lOAD $MAINT,code

II RUN

The code you supply depends on the location of
the disk containing the Library Maintenance pro
gram. The codes are as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

EXAMPLES

1

/I~
1/
1/

4

Figures 51-62 illustrate the functions of the Library
Maintenance utility program. Figure 51 is an exam
ple of the OCl needed to load the utility program.
The other figures are examples of the control state
ment necessary to carry out the specified function.

8 12 16 20 24 28 32

U" Aln $1'tI AI Nrt" I, Fi1
I~ ill

Explanation:

• Library Maintenance program is loaded from the fixed disk on
drive one

Figure 51. OCl load Sequence for Library Maintenance

Library Maintenance Program 139

1 4 8 12 16 20 24 28 32 36 40 44 48 52

II A L ~A lE In -~ 111')5 -I ~\ T- ~S' S
II Nb

Explanation:

• Libraries are being created on the removable disk on drive one (TO-R1 in ALLOCATE statement).

• Source library space is 12 tracks long (SOURCE-12).

• Object library space is 45 tracks long (OBJECT -451. The object.library will contain system
programs (SYSTEM-YES). Thus, the disk area will also include space for the Scheduler work area.

• Directory will be three tracks.

Figure 52. Allocate Example. Creating Both Source and Object Libraries on a Disk

1 4 8 12 16 20 24 28 32 3€ 1 4 8 1~ 16

66

~I AL Ln I"~ TE it ~1 or, U~ I"E -1 ~ Ir.IO RK r FI1 11l ,A il \. ~II t: hI'! .1
~I ND II END

Explanation: Explanation:

60 64 68 72

20 4 28 32

pI ~e T-.

• Source library is located on the removable disk on drive one
(TO-R1 in ALLOCATE statement).

• Object library is located on the removable disk on drive one
(To-R1 in ALLOCATE statement).

• Size of the source library is being changed to 15 tracks
(SOURCE-15).

• OBJECT-O parameter tells the program to delete the object
library. If a Scheduler werk area precedes the object library,
the program also deletes the work area.

• Any time the program changes the size of a library, it re
organizes the library. To do this, it needs a work area. This
area is on the fixed disk on drive one (WORK-F1). Figure 54. Allocate Example: Deleting the Object Library from

a Disk

Figure 53. Allocate Example: Changing the Size of a Source
Library

1 4 8 12 16 20 24 28 32

:/1 np'r' H~ M- F_1 ,L Il~ I.A IRrt -0 NA ~E -5 ~S
'(I END

Explanation:

36 40

TIEM 0-

• System programs are in the object library on the fixed disk on drive one
(LIBRARY-O and FROM-F1 in COpy statementl.

• The NAME parameter (NAME-SYSTEM) tells the program to copy the
system programs.

• The disk that is to contain the copy is the removable disk on drive one
(TO-R1).

44

Iii

Figure 55. Copy Example: Copying Minimum System from One Disk to Another

140

48 52 66 60 64 68 72

1 4 8 12 16 20 24 28 32 36 40 44

1/1 ~ ... F~ "til -~ 11\ L I 8R AR y- IAIL , I It 'T -p RI N~
11/ Nv

Explanation:

• All library directories and the system directory on the removable disk on drive one
are printed (COPY statement):

1. FROM identifies the disk containing the directories.
2. LI BRARY indicates which directories are to be printed.
3. NAME and TO indicate that the program is to be printing directories.

Figure 56. Copy Example: Printing Library Directories

1 4 8 12 16 20 24 28 32 36 40 44

11/ ~" PI'!' IRr"I M- IRI1 II l 1& R~ It~ -0 I, N AM E- i~lc. ir'T TO -F 1 I~E IT~
/1 IE~ID

Explanation:

• LlBRARY·C, NAME·ACCT, and FROM·R1 in the COpy statement tell the program
to read the object program named ACCT from the removable disk on drive one.

• TO·F1 tells the program to copy the object program to the fixed disk on drive one.
There is no NEWNAME parameter in the COPY statement. Therefore, the name the
program will have on the fixed disk is ACCT (NAME·ACCT). Since the old version
of the program already exists on the fixed disk under that name, the old version is
replaced.

• The Library Maintenance program normally halts before replacing a library entry.
The RETAIN·R parameter, however, tells the program to omit that halt.

Figure 57. Copy Example: Copying Object Program to F1

1 4 8 12 16 20 24 28 32 36

/ E\. E'T IE It'~ PM -I(1 III -$ It N IA~ E p~ ~Rn
I !E~O

Explanation:

• The program deletes a set of source statements (LiBRARY-S in
DELETE statement) named PAYROL (NAME·PAYROLI from
the removable disk on drive one (FROM·R1) that has a temporary
attribute.

Figure 58. Delete Example: Deleting an Entry from a Library

40 44

48 52 56 60 64 68 72

48 52 56 60 64 68 72

IN -R

48 52 56 60 64 68 72

Library Maintenance Program 141

1 4 8 12 16 20 24 28 32 36

III DiE LiE T~ FP- ~IM -IR1 LI 181R ~k ~- AL N!A ~E. IN
1/ E~"

Explanation:

• The entries being deleted are on the removable disk on drive one
(FROM-R1 in DELETE statement).

• The program deletes all entries from both source and object
libraries (LIBRARY-ALL) that have names beginning with the
characters INV (NAME-INV.ALL). with temporary attributes.

40 44 48 52

V. IA.IL

Figure 59. Delete Example: Deleting All Entries with Names that Begin with Certain Characters

1 4 8 12 16 20 24 28 32 36 40 44

'"
DE LE TE ~p M- R1 IL I -p Nl MJ; A L ~U; TI~ , N -T

II ENP

Explanation:

• The entries being deleted are on the removable disk on drive one
(FROM-R1 in DELETE statement>.

• All temporary procedures are being deleted from the source
library (LiBRARY-P.NAME-ALLl.

Figure 60. Delete Example: Deleting All Library Entries of One Type

1 4 8 12 16 20 24 28 32 36

II RE NIA ME Fit M-IR1 ill -~ N~ ~e -Ill II'~ if
II IEINIO

Explanation:

40 44

I: ",16

• The removable disk on drive one conteins the entry being renamed (FROM-R1
in RENAME statement>.

• The entry is a set of source statements in the source library (L1BRARY-S).
Its name is ACCT (NAME-ACCT).

• The entry name is being changed to ACCT1 (NEWNAME-ACCT1).

e-

48

48

Figure 61. Rename Example: Renaming a Set of Source State ments in a Source Library

142

52

52

56 60 64 68 72

56 60 64 68 72

56 60 64 68 72

.
1 4 8 12 16 20 24 28 32 36 40 44 48

1. 1/ LOA D $11/ Air 1fT • ,1= J.

/I R /oj

I I ALL CA TE 170 -R J , 08 !J E cI7 - Sit' UR c£-I(IJ 2.
3.
4.

/I ALL CA TE Iro -/U 08 JE CT -IJ SOU RC6 -12 SYS7& 1M -Yes
I I Copl\' ;R ol~ - FJ.. TO - RJ. t.x 8R It y- A

I I ENlr

Reload System (lPLI from R 1

5. II Lll All ~1.tI AI NIT R.1.
I I IlUlII
I I A LiLO AI7 E 170 - F 1 0 BIJ ECT- 5 UR
I I A LLO CA TE T -1=1 ols .TeeT -II!" sollJ

6.

7.

8. 1/ COpy J:R ~~ - RJ. TO- Ft LI leRR RY-A
I I END

Reload System (lPLI from F1

Explanation:

1. The system and $MAINT are both loaded from F1.

2. The libraries on R1 are deallocated (if present!.

3. New library space is allocated on R1.

LL. !.vIA IME- ALL

ee-
Ree -1.2 l.:;Ylsrr e ~-YE5
LL NA I ... E- ALL

4. The libraries are copied from F1 to R1. The libraries are reorganized as they are copied.
Temporary entries become permanent when copied (see Disk-to-Disk Considerations, Output).

5. The system and $MA I NT are now loaded from R 1.

6. The libraries on F 1 are deallocated.

7. New library space is allocated on F1.

8. The libraries are copied back to F 1. The pack on R 1 could be used as a back-up pack. It
contains the same libraries as F 1.

Figure 61. Reorganizing the System Pack

52 56 60 64 68

DZ R SIe £-7

Dlr Rls I Z E.-7

Library Maintenance Program 143

144

IBM SYSTEM/3 5445 DATA INTERCHANGE UTILITY PROGRAM

All IBM 2316 disk packs initialized on System/3 5445 Disk Drive by $INIT have a System/360-
System/370 formatted volume table of contents (VTOC). The System/360-System/370
VTOC is not used by System/3. When it is necessary to exchange data between System/3 and
System/360-System/370 on a 2316 disk pack, the IBM System/3 5445 Data Interchange
Utility can be used (see Appendix C for an alternate method). The utility must be run going
to and returning from System/360-System/370.

When the utility program is run against a 2316 disk pack, the contents of the System/3
VTOC are mapped to the System/360-System/370 VTOC. If data is to be returned to the
System/3 via the utility without reinitialization, then restrictions on the use of the pack on
System/360-System/370 must be observed. Any deviations from these restrictions can
result in the format of the pack being altered beyond the capacility of the utility to return
the pack to normal System/3 format. This can result in errors in the utility run returning
the pack or unrecoverable errors on the pack while processing it on System/3.

Following is a list of the methods of processing data files on the interchange pack by OS
or DOS:

Functions (sequential processing only) Disposition Type Open

Reading with OS using BSAM or QSAM OLD FBS INPUT

Reading with DOS using SAM-GET INPUT

Update in place with OS using BSAM or
QSAM OLD FBS UPDATE

Update in place with DOS using SAM-
GET/PUT UPDATE INPUT

CAUTION:

Only the above disposition and open types may be used.

The update-in-place function can be used on a data set written on System/3 filled with
dummy records. Since duplicate file names are not allowed on System/360-System/370, the
System/3 file names will be qualified with the file date. An example would be PAYROLL.
0711026. PAYROLL would be the file name on System/3 and the file was created on
October 26,1971.

Files to be processed by OSAM must have a logical record length that is an even submultiple
of 256.

No files may be allocated or deleted on Systeml360 or System/370.

Any System/3 P or T file on the pack is mapped into the System/360-System/370 VTOC.
Multivolume files are not supported and their interchange results in a System/360-
System/370 entry that appears like a single volume file. Split cylinder files will have a
System/360-System/370 format one but it is not usable due to basic differences in split
file philosophy between the systems. If the System/3 file type is either consecutive or
indexed but not split, then a System/360-System/370 end-of-file mark is written in the
file area at the end of data. When the utility is run to return the pack to System/3, the
end of file marks are removed and the System/360-System/370 VTOC entries are deleted.

The utility must always be run last when going to System/360-System/370 and first
when returning to System/3. Any deviation from this procedure can result in loss of
data on the pack.

The attributes of all System/360-System/370 VTOC entries assigned by the utility are
as follows:

Name of file

Creation date

Expiration date

Volume sequence number

Record/block format

Organization

System Code

Block length

Logical record length

Extent type

CONTROL STATEMENT SUMMARY

System/3 to System/360-System/370 Conversion

/I NEWVTOC UNIT-{ ~~} ,PACK-name

/I END

System/360-System/370 to System/3 Conversion

/I UPDATE UNIT- { ~~} ,PACK-name

1/ END

name. DYYMMDD

00000

99365 (date protected)

0001

FIXED BLOCK STANDARD (FBS)

sequential (regardless of S/3 type)

"IBM DSM/3"

256 bytes

same as S/3 length

single

PARAMETER SUMMARY

PACK-name

UNIT-code

Name of the disk.

Location of the disk. Possible codes
are 01 and 02.

Library Maintenance Program 145

PARAMETER DESCRIPTIONS

PACK Parameter
The PACK parameter (PACK-name) tells the pro
gram the name of the pack being transferred. The
name you supply in this parameter is the one written
on the disk by the Disk Initialization program.

The 5445 Data I nterchange program compares the
name in the PACK parameter with the name on the
disk to ensure they match. In this way, the program
ensures that it is using the right disk.

UNIT Parameter
The UNIT parameter (UNIT-code) tells the program
the location of the pack being transferred. Codes for
the possible locations are as follows:

Code

D1

D2

Meaning

Removable disk on
5445 drive one

Removable disk on
5445 drive two

OCl CONSIDERATIONS

146

The following OCl statements are needed to load
the 5445 Data Interchange Utility program:

II lOAD $VTOC, code
II RUN

The code you supply depends on the location of the
disk containing the utility program. The codes are
as follows:

Code Meaning

R1 Removable disk on
drive one

F1 Fixed disk on drive
one

R2 Removable disk on
drive two

F2 Fixed disk on drive
two

1 4 8 12 16 20 24 28 32

j~

1/ La An ~V 170C F1
1/ R N

Explanation:

• 5446 Data Interchange Utility is loaded from the fixed disk
on drive one.

APPENDIX A. IBM SYSTEM/3 STANDARD CHARACTER SET

Hexadecimal Hexadecimal Hexadecimal
Character Equivalent Character Equivalent Character Equivalent

Blank 40 # 7B Q 08

¢ 4A @ 7C R 09

4B • (apostrophe) 70 S E2

< 4C = 7E T E3

(40 .. 7F U E4

+ 4E A C1 V E5

I 4F B C2 W E6

& 50 C C3 X E7

I 5A 0 C4 y E8

$ 5B E C5 Z E9

* 5C F C6 0 FO

) 50 G C7 1 F1

; 5E H C8 2 F2

I 5F I C9 3 F3

• (minus) 60 } DO 4 F4

I 61 J 01 5 F5

. 6B K 02 6 F6

% 6C L 03 7 F7

- (underscore) 60 M 04 8 F8

> 6E N 05 9 F9

? 6F 0 06

: 7A P 07

Appendix A. IBM System/3 Standard Character Set 147

148

APPENDIX B. CONVERSION

RECORDS TO TRACKS CONVERSION

Determining the Number of Sequential or Direct File Tracks
The following two steps should be followed to determine the number of tracks in a
sequential or direct file. (Round results to the nearest whole number.)

1. number of records x record length = number of characters

2. number of characters

number of characters per track CD number of tracks

Determining the Number of Indexed File Tracks
The following two steps should be used to determine the number of data tracks in an
indexed file:

1. number of records x record length = number of characters

2. number of characters in a sector0
-----------1'1\ = number of data tracks
number of characters per track \!.I

The following four steps should then be followed to determine the number of index
tracks in an indexed file:

1. key field length + (3 for 5444 or 4 for 5445) = index entry length

2. number of characters in a sector 0

index entry length
= number of entries per sector

3. number of records
number of sectors

number of entries per sector

4. number of sectors
-------Ij\
number of sectors per track \V

number of index tracks

The total number of tracks in an indexed file can then be determined by adding the
number of data tracks to the number of index tracks.

CD 6144 for the 5444
5120 for the 5445

0 256 (For the 5445, a sector is referred to as a fixed record.)

0 24 for the 5444
20 for the 5445

Appendix B. Conversion 149

150

CYLINDER/TRACK TO TRACK NUMBER CONVERSION
To convert cylinder/track to track number, multiply cylinder number by the number
of tracks on each cylinder and add track.

EXAMPLE: 5/3 = cylinder/track
5 X 20*+3 = 103
103 = track number

TRACK NUMBER TO CYLINDER/TRACK CONVERSION
To convert track number to cylinder/track, divide track number by the number of
tracks on a cylinder. The quotient is the cylinder and the remainder is track.

EXAMPLE: 103 = track number
103 -:- 20* = 5 (remainder 3)
5/3 is the cylinder/track

* 20 number of tracks on a cylinder

APPENDIX C. SYSTEM/360-SYSTEM/370 DISK FILE COMPATIBILITY

This appendix is intended for the user who intends to exchange data between System/3
and System/360-System/370 without using the IBM System/3 5445 Data Interchange
Utility Program. The access method limitations listed in the utility program section of
this manual should be followed.

Disk files created on the 5445 can be read and updated using System/360-System/370.
Disk files can also be created using System/360-System/370 and subsequently read or
updated with a System/3 Model 10 Disk System.

The volume label and volume table of contents (VTOC) identify the information con
tained on the disk pack. The volume label identifies the volume and points to the
System/360-System/370 VTOC. The System/360-System/370 VTOC contains one label
record which describes the complete pack as one System/360-System/370 file. The
System/3 VTOC resides in a fixed location within this System/360-System/370 file and
can be examined by the System/360-System/370 program.

See IBM Systeml3 Disk Systems System Control Program Logic Manual, SY21-0502,
for a description of the System/3 VTOC and volume label.

System/3 to System/360-System/370
The System/3 Disk Initialization Program writes a volume label in the System/360-
System/370 format on every disk pack. The System/3 disk format consists of
256-byte physical records. This record length may be altered for System/360-
System/370 VTOC records.

Any of the access methods previously listed may be used by System/3 when creat
ing a file to be used by System/360-System/370. The logical records in a particular
System/3 file can be accessed by System/360-System/370 by means of a user pro
gram using the Sequential Access Method if the user program:

• Locates the file label in the System/3 VTOC for the desired file.

• Uses the start of data information and record length information from the
System/3 VTOC to perform the accessing and logical deblocking.

• Uses the end-of-file information from the System/3 VTOC.

System/360-System/370 to System/3
Volumes created on System/360-System/370 can be processed on System/3 if
System/360-System/370 provides a System/3 VTOC entry and writes 256-byte
physical records. A System/3 user program or utility can then read and unblock
the file according to the information in the System/3 VTOC.

CAUTION

If the System/3 VTOC provided by System/360-System/370 is not exactly
the same as the System/3 format, unexpected results (destroyed data files
or unrelated halts) may occur.

Appendix C. System/360-System/370 Disk File Compatibility 151

152

*(comment) statement 29
contents 29
format 29
function 29
placement 29

*parameter for the lOAD statement 15
1& statement 30

contents 30
format 30
function 30
placement 30

1* statement
contents 30
format 30
functions 30
placement 30

accessing split cylinder files 57
adding a missing parameter to a procedure 43
adding a statement to a procedure 43
additional disk identification 80
advantages of nested procedures 44
allocate restrictions 119
AllOCATE statement

control statement summary 118
DI RSI ZE parameter 120
function 118
OBJECT parameter 120
parameter summary 119
SOURCE parameter 120
SYSTEM parameter 120
TO parameter 120
WORK parameter 121

allocation limit 119
Alternate Track Assignment program 83

Al T statement (see Al T statement!
cancel prior assignment 86
conditional assignment 85
examples 87
messages 88
OCl considerations 87
unconditional assignment 86

Alternate Track Rebuild program 89
examples 91
OCl considerations 91
REBUI lD statement (see REBUI lD statement!
substitute data 90

Al T statement
ASSIGN parameter 86
control statement summary 84
PACK parameter 85
parameter summary 84
UNASSIGN parameter 86
UNIT parameter 85
VERIFY parameter 85

assignment of alternate tracks
Alternate Track Assignment program S5
Disk Initialization program 78

ASSIGN parameter for the Al T statement 86
automatic file allocation 58

CAll statement 41
example 41
format 41
function 41
placement 41
procedure-name parameter 41
unit parameter 41

cancel prior assignment 86
CAP parameter for the UIN statement 79
chain-image area 22

changing 22
changing a permanent file to a scratch file 35
changing a scratch file to a temporary file 35
changing a temporary file to a scratch file 35
changing procedure parameters 42
changing punch device (see PUNCH statement!
changing the contents of the chain-image area 22
changing the logging device 26
changing the name of a library entry 138

Index

changing the number of lines the printer will print per page 25
changing the size of the object library 121
changing the size of the source library 122
changing the system input device 27
characters from the source library on disk 24

example 24
characters from the system input device 22

example 24
characters to use when naming library entries 130
CHAR, format parameter for the IMAGE statement 22
Check poi ntlRestart

OCl consideration 64
programming consideration 64

choosing the designation of a library entry
permanet 130
temporary 1 30

clear initialization 78
coding rules for OCl 5

comments 8
continuation 7
statements beginning with II 6
statements beginning with other than /I 7

coding rules for utilitY" control statements 72
comments 8
compatibility of disk files 151
COMPI lE statement 20

example 21
format 20
function 20
OBJECT parameter 21
placement 20
SOURCE parameter 20
UNIT parameter 20

compiling and storing source programs in the object library 58
sample statements 59

compiling an RPG II program 48

Index 153

conditional assignment 85
assignment of alternate tracks 79.85
example 87
incorrect data 86
surface analysis 79.85

CONSOLE parameter
LOG statement 26
READER statement 27

continuation (OCL) 7
control statement summary

ALLOCATE statement 118
AL Tstatement 84
COPYFILE statement 106
COPYPACK statement 106
COPY statement 125-135
DELETE statement 136
DISPLAY statement 93
REBUILD statement 89
REMOVE statement 100
RENAME statement 138
SCRATCH statement 100
SELECT statement 106
UIN statement 76
VOL statement 76

conversion
cylinder - track 150
records - tracks 149
track number - cylinder number 150

COPYFILE statement
control statmeent summary 106
DELETE parameter 109
OMIT parameter 109
OUTPTX parameter 108
OUTPUT parameter 108
parameter summary 107
REORG parameter 109
WORK parameter 109

copying an entire disk 108
example 113

copying files 108
example 115

copying minimum system from one disk to another 126
example 140

copying multivol ume files 111
copying multivolume indexed files 111
direct file attributes 111
maintaining correct relative record numbers 111
maintaining proper volume sequence numbers 111

copying multivolume indexed files 111
copying object programs to F1 141

example 141
COPYPACK statement

control statement summary 106
FROM parameter 108
parameter summary 107
TO parameter 108

COPY statement
control statement summary 126-127
disk-to-<:ard 132
disk-to-disk 131
disk-to-printer/card considerations 132
FROM parameter 128
function 125
LIBRARY parameter 128
NAME parameter 128

154

NEWNAME parameter 129
parameters 128-129
reader-to-disk 131
RETAIN parameter 134
TO parameter 127
uses 125

correcting characters on an alternate track 89
example 91

creating an object library 120
creating a source library 122
creating disk files 48
creating split cylinder files 56,57

Data Interchange Utility 144
DATA parameter for the REMOVE statement 102
DATE parameter

FI LE statement 36
REMOVE statement 102
SCRATCH statement 102

date parameter for the DATE statement 14
DATE statement 14

date parameter 14
example 14
format 14
function 14
placement 14
system date 14

DELETE parameter for the COPYFILE statement 109
DE LETE statement

control statement su mmary 136
FROM parameter 137
function 136
LIBRARY parameter 137
NAME parameter 137
parameters 137
restrictions 136
RETAIN parameter 137
summary 136
uses 136

deleting an object library 124
deleting a procedure parameter 42
deleting a source library 123
deleting entries

all entries of one type 136
example 142

all entries with names that begin with certain characters 136
example 142

all temporary or permanent entries of a certain type 136
an entry from a library 136

example 141
library entries 136
temporary or permanent entries with names beginning
with certain characters 136

deleting one of several files having the same name 103
DEVICE parameter for the FORMS statement 25
direct file attributes 111
DIRSIZE parameterifor ALLOCATE statement 120
Disk Copy/Dump program 105

COPYFILE statement (see COPYFILE statement!
copying multivolume files (see copying multivolume files)
COPYPACK statement (see COPYPACK statementl
examples 113
OCL considerations 111
SELECT statement (see SELECT statementl

disk drive capacity 78
disk file compatibility 151
Disk Initialization program 75

clear initialization 78
disk drive capacity 78
examples 80
messages 81
OCl considerations 80
primary initialization 78
secondary initialization 78
UIN statement (see UIN statement!
VOL statement (see VOL statement!

Disk System 3
disk-to-card considerations for the copy function of the Library

Maintenance program 132
disk-to-disk considerations for the copy function of the Library

Maintenance program 131
disk-to-printer considerations for the copy function of the Library

Maintenance program 132
DISPLAY statement

control statement summary 93
lABEL parameter 94
parameter summary 93
UNIT parameter 94

DISP parameter for the REBUilD statement 90
dual programming feature 59

additional space 124
considerations 62
loading programs inm DPF environment (see loading programs
in a DPF envinronment!

end-of-data (see I" statement!
END statement 72
ERASE parameter for the UIN statement 79
examples

CAll statement 41
changing the size of a source library 132
characters from the source library on disk 24
characters from the system input device 24
COMPI lE statement 21
conditional assignment 87
copy ing a file from one disk to another 113
copying an entire disk 113
copying minimum system from one disk to another 140
copying object programs to F1 141
correcting characters on an alternate track 91
creating both source and object libraries on a disk 140
DATE statement 14
deleting all entries of one type 142
deleting all entries with names beginning with certain
characters 142
deleting an entry from a library 141
deleting one of several jobs having the same name 103
deleting the object library from a disk 140
FI lE statement 31-39
FORMS statement 25
lOAD statement 15
nested procedu res 44
primary initialization of two disks 80
printing library directories 141
printing part of a file 114
printing VTOC information for two files 97
procedures 43
renaming a set of source statements in a source library 142
reorganizing the system pack 143

existing split cylinder files 57
external indicators 19

File and Volume label Display program 93
DISPLAY statement (see DISPLAY statement!
examples 97
OCl considerations 96

File Delete program 99
examples 103
OCl considerations 103
REMOVE statement (see REMOVE statement)
SCRATCH statement (see SCRATCH statement)

file names used in the FILE statement 32
FI lE statement 31

DATE parameter 36
example 37-39
file processing considerations 39-40
format 31
function 31
HI KEY parameter 36, 54
lABEL parameter 33
lOCATION parameter 34,54
NAME parameter 31
packed HIKEY parameter 55
PACK parameter 32, 52
placement 31
RETAIN parameter 35,54
TRACKS or RECORDS parameter 33, 53
UNIT parameter 32,52

FI lE statement considerations for multivolume files 51
format of OCl statements

"statement 28
I & statement 30
I" statement 30
CAll statement 41
COMPI lE statement 20
DATE statement 14
FI lE statement 31
FORMS statement 25
HALT statement 29
IMAGE statement 22
LOAD statement 15
lOG statement 26
NOHAl T statement 29
PARTITION statement 61
PAUSE statement 30
PUNCH statement 28
READER statement 27
RUN statement 18
SWITCH statement 19

format parameter for the IMAGE statement
CHAR 22
HEX 22
MEM 23

FORMS statement 25
DEVICE parameter 25
example 25
format 25
function 25
II NES parameter 25
placement 25

FROM parameter
COPYPACK statement 108
COpy statement 128
DELETE statement 137

Index 155

RENAME statement 138
function of OCl statements (see desired statement type)

general form of OCl statements 5

HALT statement 29
contents 29
format 29
function 29
placement 29

HEX, format parameter for the IMAGE statement 22
HI KEY parameter for the FI lE statement 36, 54

packed 55

IBM System/3 Standard Character Set 147
ID parameter for the VOL statement 76
IMAGE statement 22

example 24
format 22
format parameter (see format parameter)
function 22
name parameter 23
number parameter 22
placement 22
unit parameter 23

including comments in OCl statements 8
including system programs in a library 120
incorrect data 86
indicating the number of lines per page the printer will print 25
indicator-settings parameter for the SWITCH statement 19
input device, changing (see READER statement)
input/output devices in a DPF environment 59
IPl (Initial Program load) 3

job stream 4
relationship to OCl 4
sample 4

keyword 6
keyword parameter 6

LABEL parameter
DISPLAY statement 94
FI lE statement 33
REMOVE statement 101
SCRATCH statement 101

length of names given to library entries 130
lENGTH parameter for the REBUilD statement 90
library description 116
library directory printouts

object library 133
source library 133
system directory 135

library entries
removing temporary 119

I ibrary maintenance allocate restrictions 119
Library Maintenance program 115

AllOCATE statement (see AllOCATE statementl
COpy statement (see COpy statementl
DELETE statement (see DELETE statementl
examples 139-143
library description 116
OCl considerations 139
RENAME statement (see RENAME statementl

156

library, object (see object library)
library, source (see source library)
LIBRARY parameter

COpy statement 128
DE lETE statement 136
RENAME statement 138

library, source (see source library)
limited nu mber of allocations 119
LINES parameter for the FORMS statement 25
lOAD * statement 15
loading and running programs 49

I BM programs 49
object programs using card files 49
object programs using more than one disk file 45
object programs using one disk file 49
object programs using one disk file and external indicators 50

loading existing split cvlinder files 57
loading object programs from the system input device 15
loading programs from disk 15
loading programs in a DPF environment 59

DATE statement 59
FORMS statement 60
HALT statement 60
IMAGE statement 60
lOAD statement 60
LOG statement 59
NOHAl T statement 60
PARTITION statement (see PARTITION statementl
planning information 62
sample job streams 62

lOAD statement 15
* parameter 15
example 18
format 15
function 15
placement 15
program-name parameter 15
unit parameter 17

location of object library 123
location of source library 122
lOCATION parameterfor the FilE statement 34,54
logging device

changing 26
starting 26
stopping 26

lOG statement 26
CONSOLE parameter 26
format 26
function 26
logging device 26
OFF parameter 26
ON parameter 26
placement 26
PRINTER parameter 26
use in checkpoint/restart 64

maintaining correct relative record numbers when copying
multivolume files 111

maintaining proper volume sequence numbers when copying
multivolume files 111

maximum number of levels that can be nested together 45
maximum number of utility control statements in a procedure 42
MEM, format parameter for the IMAGE statement 23
messages for the Alternate Track Assignment program 88
messages for the Disk Initialization program 81

MFCU1 parameter
PUNCH statement 28
READER statement 28

MFCU2 parameter
PUNCH statement 28
READER statement 28

moving object library 119
multivolume files 51

copying 111
file statement considerations 51

naming library entries
characters to use 130
length 130
restrictions 130

name of entry to be deleted 136
name of entry to be renamed 138
NAME360 parameter

VOL statement 80
NAME parameter

COpy statement 128
DE lETE statement 137
FI lE statement 31
IMAGE statement 23
RENAME statement 139

nested procedures 44
advantages 44
examples 46
maximum number of levels that can be nested 45
rules 46

NEWNAME parameter
COpy statement 129
RENAME statement 139

new name to be given to an entry 130
rules 130

NEWVTOC statement 145
NOHAl T statement 29

contents 29
format 29
function 29
placement 29

normal procedure call 42
not including system programs in a library 120
number of alternate tracks on a disk 83
number parameter for the IMAGE statement 22

object library
changing size 120
creating 120
deleting 124
location 123
moving 119
organization 123
reorganizing 120

OBJECT parameter
AllOCATE statement 116
COMPI lE statement 21

OCl considerations for utility programs
Alternate Track Assignment program 87
Alternate Track Rebuild program 91
Disk Copy/Dump program 111-112
Disk Initialization program 80
File and Volume Label Display program 96
File Delete program 103
Library Maintenance program 139

OCl parameters summary 12-13

OCl statements
* statement 29
/ & statement 30
/ * statement 30
CAll statement 41
COMPI lE statement 20
DATE statement 14
FI lE statement 32
FORMS statement 25
HALT statement 29
IMAGE statement 22
lOAD statement 15
lOG statement 26
NOHAl T statement 29
PARTITION statement 61
PAUSE statement 30
PUNCH statement 28
READER statement 27
RUN statement 18
SWITCH statement 19

OCl statement summary 9
OFF parameter for the lOG statement 26
OMIT parameter for the COPYFllE statement 109
ON parameter for the lOG statement 26
organization of the object library 116
organization of the source library 116
OUTPTX parameter for the COPYFllE statement 108
OUTPUT parameter for the COPYFllE statement 108

PACK parameter
Al T statement 85
FI lE statement 32. 52
NEWVTOC statement 146
REBUI lD statement 90
REMOVE statement 101
SCRATCH statement 101
UPDATE statement 140
VOL statement 79

parameter 5
keyword 6
table of parameters 12-13

parameter summary of utility control statements
AllOCATE statement 119
Al T statement 84
COPYFILE statement 107
COPYPACK statement 107
COpy statement 128-129
DELETE statement 137
DISPLAY statement 93
REBUI lD statement 89
RENAME statement 138
SCRATCH statement 101
SELECT statement 107
UI N statement 77
VOL statement. 77

PARTITION statement 60
format 61
function 60
placement 61
size parameter 61
use in checkpoint/restart

PAUSE statement 30
contents 30
format 30
function 30

Index 157

placement 30
permanent file 35

changing to a scratch file 35
placement of OCL statements (see the desired statement typel
primary initialization 78

example 80
printer chain image (see IMAGE statementl
printer forms (see FORMS statementl
PRINTER parameter for the LOG statement 26
printing file information from the VTOC 96
printing files 109

example 114
printing library directories 133-135

example 141
printing records using record keys 110
printing records using relative record numbers 110
printing the entire contents of the VTOC 94
procedure-name parameter for the CALL statement 41
procedure override statements 42
procedures 42

adding a missing parameter 43
adding a statement 43
changing procedure parameters 42
deleting a procedure parameter 42
example 43
nested 44
normal procedure call 42
procedure override statements 42

processing multivolume files 51
program-name parameter for the LOAD statement 15
program size 62
PUNCH statement 28

contents 28
format 28
function 28
placement 28

READER statement 27
CONSOLE parameter 27
format 27
function 27
MFCU1 parameter 27
MFCU2 parameter 27
placement 27
system input device 27
1442 parameter 27

reader-to-disk copy function of the Library
Maintenance program 131
reorganizing the system pack 143
REBUI LD statement

control statement summary 89
DISP parameter 90
LENGTH parameter 90
PACK parameter 90
parameter summary 89
TRACK parameter 90
UNIT parameter 90

RECORDS parameter for the FILE statement 33,53
records-tracks conversion 149
relationship of OCL to the job stream 4
REMOVE statement

158

control statement summary 100
DATA parameter 102
DATE parameter 102
LABEL parameter 101

PACK parameter 101
parameter summary 101
UNIT parameter 101

removing files from a disk 99
removing temporary library entries 119
RENAME statement

control statement summary 138
FROM parameter 138
function 138
LIBRARY parameter 138
NAME parameter 139
NEWNAME parameter 139
parameter summary 139

renaming a set of source statements in a source library 138
example 142

reorganizing an object library 124
reorganizing a source library 123
REORG paramater for the COPYFILE statement 109
replacing existing library entries 131
replacing incorrect data 89
replacing the printer chain 22
restarting checkpointed program 64
restrictions, library maintenance 119
restrictions on naming library entries 130
restrictions on split cylinder files 56
restrictions using Library Maintenance 119
RET AI N parameter

COpy statement 134
DE LETE statement 137
FI LE statement 35, 54

retrievi ng a scratch file 35
rules for nested procedures 46
RUN statement 18

contents 18
format 18
function 18
placement 18

sample job stream 4
sample statements for compiling and storing source programs
in the object library 59

scratch file 35
changing a permanent file to a scratch file 35
changing a scratch file to a temporary file 35
changing a temporary file to a scratch file 35
split cylinder 57

scratching a file 35
SCRATCH statement

control statement summary 100
DATE parameter 102
LABEL parameter 101
PACK parameter 101
parameter summary 101
UNIT parameter 101

secondary initialization 78
SELECT KEY for the SELECT statement 110
SELECT PKY for the SELECT statement 110
SELECT RECORD for the SELECT statement 110
SELECT statement

control statement summary 106
FROM parameter 110
parameter summary 107
SELECT KEY 111
SELECT RECORD 111
TO parameter 111

setting external indicators 19
size of DPF programs 59
size parameter for the PARTITION statement 61
source library

changi ng size 122
creating 122
deleting 123
location 122
organization 116
reorganizing 123

SOURCE parameter
ALLOCATE statement 120
COMPI LE statement 20

special meaning of capital letters, numbers, and special
characters 73

split cylinder files 56-57
SPLIT parameter

FILE statement 36
starting the logging device 26
statement descriptions (OCLl 9
statement examples (OCLl 6s-:68
statement identifier 5
statements beginning with /I 6
statements beginning with other than /I 7
stopping the logging device 5
storing and compiling source programs in the object library 58

sample statements 59
substitute data 90
summary of OCL parameters 12
summary of OCL statements 9
surface analysis 79, 85
SWITCH statement 19

example 19
external indicators 19
format 19
function 19
indicator settings 19
placement 19

system date 14
system directory 135
system input device 27

changing 27
SYSTEM parameter for the ALLOCATE statement 120
system punch device (see PUNCH statement)
System/36~System/370 packs 151

table of OCL statements 10-11.
table of parameters 12-13
telling the system not to halt 29
telling the system to halt 29
temporary file 35

changing a temporary file to a scratch file 35
changing a scratch file to a temporary file 35

temporary library entries 119
TO parameter

ALLOCATE statement 120
COPYPACK statement 108
COpy statement 127

TRACKS parameter for the FI LE statement 33, 53
TRACKS parameter for the REBUILD statement 90

TYPE parameter for the UI N statement 78
types of directory entries 135
types of library entries 116

UI N statement
CAP parameter 79
control statement summary 76
ERASE parameter 79
parameter summary 77
TYPE parameter 78
UNIT parameter 78
VERIFY parameter 79

UNASSI GN parameter for the AL T statement 86
unconditional assignment 86
UNIT parameter

AL T statement 85
COMPI LE statement 20
DISPLAY statement 94
FI LE statement 32, 52
NEWVTOC statement 146
REBUILD statement 90
REMOVE statement 101
SCRATCH statement 101
UI N statement 78
UPDATE statement 146

unit parameter
CALL statement 41
IMAGE statement 23
LOAD statement 17

UPDATE statement 146
using OCL 47

VE RI FY parameter
AL T statement 85
UI N statement 79

VOL statement
control statement summary 76
I D parameter 80
PACK parameter 79
parameter summary 77

VTOC (volume table of contents)
System/3 88
System/36~370

work area
Disk Copy/Dump program 109
Library Maintenance program 121

WORK parameter
ALLOCATE statement 121
COPYFILE statement 109

writing utility control statements 71
coding rules 72
control statements 72
END statement 72

1442 parameter
PUNCH statement 26
READER statement 26

5445 Data Interchange Utility 144

Index 159

READER'S COMMENT FORM

IBM System/3
Model 10 Disk System
Operation Control
Language and Disk Utilities
Reference Manual

YOUR COMMENTS, PLEASE __ .

GC21-7512-4

Your comments concerning this publication will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

