

IBM System/3
Disk Concepts and Planning Guide

Fourth Edition (December 1975)

This is a reprint of GC21-7571-2, incorporating technical newsletter GN21-5293
dated 17 April 1975.

Information concerning inquiry and dual programming for the Model 10 Disk Sys
tem has been removed from this manual and can now be found in the IBM System/3
Disk System Control Programming Reference Manual, GC21-7512; information
concerning inquiry for Model 6 can now be found in the IBM System/3 Model 6
Operation Control Language and Disk Utility Programs Reference Manual, GC21-
7516; information concerning inquiry and rollout/rollin for Model 15 can be found
in the IBM System/3 Model 15 System Control Programming Reference Manual,
GC21-5077.

Changes are periodically made to the information herein; before using this publica
tion in connection with the operation of IBM systems, refer to the latest IBM
System/3 Bibliography, GC20-8080, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Publications, Depart
ment 245, Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1971, 1972, 1974

This manual discusses the disk concepts and planning information you need to
know to design computer applications for the I BM System/3 Model 6, Model
1 O Disk System, and Model 15. The book is intended for programmers who design

applications for their company.

The System/3 Model 8 is supported by System/3 Model 10 Disk System control
programming and program products. The facilities described in this publication for
the Model 10 are also applicable to the Model 8, although the Model 8 is not referred to.
It should be noted that not all devices and features that are available on the Model 10
are available on the Model 8. Therefore, Model 8 users should be familiar with
the contents of IBM System/3 Model B Introduction, GC21-5114.

Th is manual applies to these program products:

• System/3 Model 10 Disk RPG II (5702-RG1)

• System/3 Model 6 RPG II (5703-RG 1)

• System/3 Model 15 RPG II (5704-RG1)

• System/3 Model 10 Subset ANS COBOL (5702-CB1)

• System/3 Model 15 ANS COBOL (5704-CB1)

• System/3 Model 10 Disk FORTRAN IV (5702-F01)

• System/3 Model 15 FORTRAN IV (5704-F01)

• System/3 Model 6 Disk FORTRAN IV (5703-F01)

Differences between these RPG 11, COBOL, and FORTRAN programs are noted
when applicable, and references are made to related publications.

The chapters of this manual should be read in a specific sequence, as described
in How to Use This Publication which follows.

You should be familiar with the IBM System/3 Disk System Introduction,
GC21-7510, the IBM System/3 Model 8 Introduction, GC21-5114, the IBM System/3
Model 6 Introduction, GA21-9122, or the IBM System/3 Model 15 Introduction,
GC21-5094, depending on the system you have.

After completing this manual, you should be able to write basic programs with
the aid of various reference manuals. For additional information on processing
disk files using RPG II, see the IBM System/3 RPG II Disk File Processing Pro
grammer's Guide, GC21-7566.

PREFACE

HOW TO USE THIS PUBLICATION

ii

This publication has eight chapters and two appendixes:

• Chapters 1 through 5 discuss the basic characteristics of the IBM 5444 Disk Storage
Drive and the IBM 5445 Disk Storage, and describe the following basic file organizations:

Sequential files

Indexed files

Direct files

Record address files

• Chapters 6 through 8 discuss the considerations for selecting a particular file organiza
tion, how to plan the files to be created, and how to store programs and procedures
on disk. Information in these chapters is basically the same for the 5444 and 5445,
but specific differences are noted.

• Appendix A describes the calculations necessary to determine how much
disk space a file will require.

• Appendix 8 describes some performance factors to consider when using in
dexed files.

Chapters 1 through 5 of this manual are for users who need a basic knowledge of how to
use disk files. Chapters 6 through 8 can be read after the reader thoroughly understands
the basic concepts discussed in Chapters 1 through 5. Appendix A should be read for
information about how to calculate file space. Appendix B will help those who plan to
use indexed files.

CONTENTS

CHAPTER 1. DISK STORAGE CHAPTER 7. PLANNING DISK FILES. 41
IBM 5444 Disk Storage Drive 1 Designing a Record . 41
I BM 5445 Disk Storage . 3 Documenting Record Layout 44
Storage Characteristics (5444 and 5445) . 5 Determining Size and Location of a Disk File 48
Comparative Access Times (5444 and 5445) 5 Split Cylinder Capability (5445) 53

Data File Security 54
CHAPTER 2. SEQUENTIAL FILES 6

Creating a Sequential File 6 CHAPTER 8. STORING PROGRAMS AND
Processing a Sequential File 6 PROCEDURES ON DISK 55
Maintaining a Sequential File 7 Advantages of Storing Programs and Procedures on

Disk . 55

CHAPTER 3. INDEXED FILES 9 Location of Libraries on Disk 56

Creating an Indexed File 9 Source Libraries . 57

Processing an Indexed File . 10 Object Libraries . 58

Maintaining an Indexed File 12 Storing Programs and Procedures into Libraries . 61

CHAPTER 4. DIRECT FILES 15 APPENDIX A. CALCULATING DISK FILE SIZE 63

Relative Record Number 16 Determining Number of Records in a File 63

Spill Technique . 21 Calculating Record Space 64

Creating a Direct File 21 Determining How Many Tracks are Needed- 5444. 64

Processing a Direct File . 23 Determining How Many Tracks are Needed - 5445 64

Maintaining a Direct File 24 Calculating Index Space - 5444 65
Manipulating Direct File Data 25 Calculating Index Space - 5445 67

Accessing a File Consecutively 26 File Size 68

Loading and Retrieving Records in the Same Program 26 Calculating Disk File Sizes - Summary 73

Connecting Strings of Related Records 26
Message Queuing in a System/3 Direct File 28 APPENDIX B. PERFORMANCE CONSIDERATIONS
Using a Direct File for Large Arrays 29 FOR PROCESSING INDEXED FILES . 76

Indexes 76
CHAPTER 5. RECORD ADDRESS FILES . 30 Type of Processing 78

Files Containing Relative Record Numbers Highest Added Key Save Area (5445 Only) 86
(ADDROUT Files) 30 Model 6 and 10 (5445 Only) 87

Files Containing Record Key Limits 31 Pre-Sorted Input 88
Key Sort/Key Merge 88

CHAPTER 6. CHOOSING A FILE ORGANIZATION 33 Work File For Key Sort 88
Use of the File 33 Model 15 (5444 and 5445) 89
Volatility of the File 35 Key length 90
Activity of the File 36 Distribution of Added Records 91
Size of the File 37 INDEX File Description Entry (Model 15 RPG II) 91

INDEX 92

iii

CHAPTER 1. DISK STORAGE

The IBM System/3 Model 6, Model 10 Disk System, and Model 15 can use the IBM
5444 Disk Storage Drive to store information such as master, customer, and inventory
files as well as programs used on the system. IBM 5445 Disk Storage, on the other hand,.
can be attached to the IBM System/3 Model 10 Disk System and the IBM System/3
Model 15 to provide additional storage capacity; no libraries can reside on the 5445.

The major advantages of storing information on disk instead of on cards are:

• Large storage capacity. A 5444 disk can hold as much data as 25,600 96-
column cards. Also, a disk pack is more convenient to handle than large num
bers of cards.

• Faster processing rate. A card file must be processed in its entirety, even if all the
cards are not needed. A disk file, on the other hand, can be processed randomly; that
is, only the records needed are accessed and processed.

IBM 5444 Disk Storage Drive

The I BM 5444 Disk Storage Drive consists of one drive, two disks, and an access
mechanism (Figure 1). The lower disk is mounted permanently on the drive.
The upper disk is removable and can be replaced with other disks. Each disk,
whether fixed or removable, is called a volume.

The access mechanism contains four read/write heads, one for each surface of the
two disks. This mechanism moves back and forth across the disk surfaces to posi
tion the heads to read or write data. When the access mechanism is in any one
position, all four heads are positioned in the same relative location on the four
disk surfaces.

Access
Mechanism Read/Write Heads (4)

Drive

Figure 1. I BM 5444 Disk Storage Drive

Removable Disk

Fixed Disk

ART: 52695

Disk Storage

2

Each surface of each 5444 disk provides the user with 100 or 200 tracks, depend
ing on which model of the disk storage drive you have. Tracks are divided into
24 equal parts called sectors; each sector of a track has its own unique address.
Each sector can contain 256 characters (bytes) of data.

1 Track 200
(24 sectors)

Tracks r (maximum)

1 Sector
(256 characters)

Corresponding tracks from both surfaces of one disk form a cylinder. These two
corresponding tracks can be accessed in a single position of the read/write heads.

204 concentric cylinders, 1 for each
set of corresponding tracks on a disk

I

Cylinder 0, Bottom of Disk 1

For this example, cylinders are numbered 0 through 203, beginning with the
outer cylinder. I BM customer engineers use cylinder 203 for diagnostic functions,
so this cylinder is not available for permanent storage. Tracks in cylinders
1, 2, and 3 are used by IBM programming as alternate·tracks whenever tracks in cylinders
1 through 202 are found to be defective; therefore, if I BM programming is being used,
cylinders 1, 2 and 3 are reserved for use as alternate tracks. Cylinder 0 is used by
I BM-supplied programming support.

Although there are actually 104 or 204 tracks per surface depending on which
model you have, only 100 or 200 are available to the user. In this manual and
elsewhere, capacity is referred to as either 100 or 200 tracks per surface or
200 or 400 per disk pack.

The I BM 5444 Disk Storage Drive is available in these configurations:

Number of Number of Number of Storage
Configuration Drives Disks Cylinders Capacity

1 1 2 100/disk * 2,457 ,600 bytes

2 1 2 200/disk 4,915,200 bytes

3 2 3 200/disk 7 ,372,800 bytes

4 2 4 200/disk 9,830,400 bytes

*Models 6 and 10 only

IBM 5445 Disk Storage

IBM 5445 Disk Storage has one or two drives for the Model 10 Disk System or from one
to four drives for the Model 15. Each drive uses a disk pack that contains 11 disks. The
upper surface of the top disk and the lower surface of the bottom disk are unused. There
are, therefore, 20 usable surfaces. The disk pack is removable.

The access mechanism contains 20 read/write heads for the usable disk surfaces.
This mechanism moves back and forth across the disk surfaces to position the
heads to read or write data. When the access mechanism is in any one position,
all 20 heads are positioned in the same relative location on the 20 disk surfaces
(Figure 2).

Each surface of each 5445 disk contains 200 tracks. Tracks are divided into 20
sectors; each sector has a unique address, and contains 256 characters (bytes)
of data.

Access
Mechanism

Figure 2. I BM 5445 Disk Storage

/ve Disk

Disk Storage 3

4

A 5445 cylinder consists of all the tracks on a disk pack in one vertical plane
(Figure 3). Since 20 disk surfaces can be accessed, a cylinder is made up of 20
tracks. The same cylinder address is used for all corresponding tracks in
the cylinder.

00

I
Tracks in
a Cylinder

19

Cylinders 3-5

Figure 3. Cylinder Concept on the IBM 5445

Storage Characteristics (5444 and 5445)

Figure 4 shows the relative storage characteristics of the I BM 5444 and I BM 5445
Disk Storage drives.

Bytes per sector

Sectors per track

Bytes per track

Tracks per cylinder

Bytes per cylinder

Cylinders per disk pack

Bytes per disk pack

Tracks per disk pack

Sectors per disk pack

Maximum number of disk files
stored per disk pack

5444

256

24

6144

2

12,288

100/200

1,228,800/
2,457,600

200/400

4800/9600

5445

256

20

5120

20

102,400

200

20,480,000

4000

80,000

50

Maximum number of usable disk surfaces

50

8 40 (Model 1 O); 80 (Mode! 15)

Maximum number of disk drives 2 2 (Model 10); 4 (Model t 5)

Figure 4. Characteristics of the I BM 5444 and 5445 Disk Storage Drives

Comparative Access Times (5444 and 5445)

Figure 5 illustrates the access times available on the I BM 5444 Disk Storage Drive (normal
and high speed) and the IBM 5445 Disk Storage drive. For more information, see the
IBM System/3 Model 10 Components Reference Manual, (GA21-9103), the IBM System/3
Model 6 Components Reference Manual, GA34-0001, or the IBM System/3 Model 15
Components Reference Manual (GA21-9193).

5444 (normal) * 5444 (high speed) 5445
100 cyl 200 cyl 100 cyl 200_cyl

Minimum access time 39 msec 39 msec 28 msec 28 msec 25 msec

Average access time 153 msec 269 msec 86 msec 126 msec 60 msec

Maximum access time 395 msec 750 msec 165 msec 255 msec 130 msec

_ Data transfer rate 199,000 bytes/sec 199,000 bytes/sec 312,000 bytes/sec

Rotational speed 1500 RPM 1500 RPM 2400 RPM

Average rotational 20 msec 20 msec 12.5 msec
delay

* Models 6 and 10 only

Figure 5. Comparative Access Times (5444 and 5445)

Disk Storage 5

CHAPTER 2. SEQUENTIAL FILES

6

A disk file can be organized and processed like a card file. Such a disk file is
called a sequential file. The sequence of the file can be determined by control
fields, such as an employee number or a customer number, or the records may be
in no particular sequence. Consecutive processing means that the records are
processed one after another in the physical order in which they occur.

An example of a sequential file is an employee master file arranged in employee
number order and containing information about each employe~. When this file is
used for processing, such as payroll checks, the records are processed consecutively.
The lowest employee number is processed first and so on until the last record,
the highest employee number, is processed.

A sequential file may span multiple disk volumes. (A volume refers to one disk
pack. A multivolume file is a file that is contained on more than one disk pack.)
A multivolume file, however, affects the processing of your file. For information
on processing considerations when using multivolume sequential files, see the
discussion on multivolume files in Chapter 6.

Creating a Sequential File

You create a file when you write the records onto a disk for the first time. The
records in a sequential file are placed on the disk consecutively; that is, they are
written on the disk in the order in which they are read. All tracks in one cylinder
are filled first, then all tracks in the next cylinder, and so on until the whole file
is placed on the disk.

Figure 6 shows an example of this process using a 5444. In this example, each record is
128 positions (bytes) long. Since each track can contain 6144 bytes of data, 48 records
can be written on each track; 96 records can be written on each cylinder. The numbers
on the tracks in Figure 6 correspond to the number and position of each record.

Processing a Sequential File

Sequential files can be processed consecµtively or randomly by relative record
number. Normally the file is processed consecutively because a sequential file
is usually used when all the records in the file are to be processed.

Sometimes, however, you may want to process only certain records in the file.
Consecutive processing can be time-consuming in this case, because ali the records
must be processed or at least read. It would be faster to process the records ran
domly by a number related to the position of the records in the file. This number
is called a relative record number. If your sequential file is in order by control
fields and there are no missing or duplicate records, the contents of the control
fields can be used as relative record numbers. For more information on this type
of processing, see Random Processing by Relative Record Number in Chapter 4.

First Cylinder

Record Length = 128

Figure 6. Writing Records on a Disk

Maintaining a Sequential File

Once you create a file, you must maintain it. File maintenance means performing
those functions that keep a file current for daily processing needs. Four file main
tenance functions affect or apply to sequential files:

1. Adding records

2. Tagging records for deletion

3. Updating records

4. Reorganizing a file

Adding Records

Records can be added to a file after the file has been created. When records are
added to a sequential file, they are written at the end of the file. Thus, the file
is extended by the added records.

Sometimes, however, the new records must be merged between the records al
ready in the file. This may be necessary in order to keep the file in a particular
order when the control fields of the new records are not higher in sequence than
those already in the file. In order to puUhe new records in the proper sequence,
you must sort the file to create a new file containing the added recor~s. Another
technique would be to merge the new records into the proper place in the
original file during a copy to a new file.

Note: Adding records to a sequential file is not supported by COBOL. A FORTRAN
program must read all existing records first, and then begin writing.

Sequential Files 7

8

Tagging Records for Deletion

When a record becomes inactive, you will no longer want to process it with the
other records. A record cannot be physically removed from the file during regular
processing; therefore, it is necessary to identify or tag the record so it can be by
passed. One way to tag such a record is to put a code, called a delete code, in a
particular location in the record. When the file is processed, your program can check
for the delete code; if the code is present, the program can bypass that record.

Updating Records

When you update records in a file, you can add or change some data on the record.
For example, in an inventory file you might want to add the quantity of items re·
ceived to the previous quantity on hand. The record to be updated is read into
storage, changed, and written back on the disk in its original location.

Reorganizing a File

When several records in a file have been tagged for deletion, you should physically
remove them from the file. This will free disk space. You can remove the inactive
records by copying the records to be retained onto another disk area.

CHAPTER 3. INDEXED FILES

In some data processing applications you may not want to process your file con
secutively. Consecutive processing is time-consuming if you only want to process
certain records in the file. It is faster to skip the records not needed in a job and
process only the required ones. An indexed file allows this type of processing.

Note: This chapter and any other discussions of indexed files in this manual do

not apply to FORTRAN; indexed files are not supported by FORTRAN.

An indexed file is organized into two parts: an index and the data records. The
index contains an entry for each record in the file. You can go to the index, find
the location of the record, go to that location, and find the record you want.

Under certain conditions up to three types of indexes may be used. These index types
are given specific names in this manual to eliminate confusion. The first, and most used,
index is referred to as the file index. In some cases when using the 5445, the system
may generate an index (on disk) known as the disk track index. Still another type of in
dex, used to improve performance, is the core index. For more information on these
three indexes, see Appendix 8.

Each entry in the file index describes a record in the file. There is an entry in the file
index for each record in the file. For example, if a file index has 2000 entries, the file
contains 2000 records. The first part of the entry contains the record's key field.
Each entry (key) in the key field contains data that uniquely identifies the record. For
example, the customer number may be the key field for a customer master record. The
second part of the file index entry contains the disk address of the record. The disk
address represents the location on the disk where the record is stored. The file index is
arranged in ascending sequence according to the key field in each record.

An indexed file can be a multivolume file. When processing an indexed file, however,
you must consider the effect that multivolume files will have on file processing. For
information on processing considerations when using multivolume indexed files, see

the discussion on multivolume files in Chapter 6.

Creating an Indexed File

When you create an indexed file for RPG 11, the records in the file can be in an
ordered or an unordered sequence; when creating an indexed file for COBOL,
however, the records must be in ascending sequence, as determined by their keys.
An ordered sequence means the records are arranged in order according to some
major control field used as the key field. An unordered sequence means the
records are in no particular order.

An inventory file loaded according to frequency of use is an example of an unordered
file. The most active items are at the beginning of the file. When the file is used to
write customer orders, most of the records needed are located in a small area of the
file rather than scattered throughout the entire file. This reduces the total time it
takes to process the records because the access mechanism does not have to move
back and forth across the whole disk to access the required records.

Indexed Files 9

10

When an indexed file is created, the file index is created as the records are written on disk.
If the file is an ordered file, the file index is in the correct sequence when the records are
written. If the file is an unordered file, the system automatically sorts the file index into
ascending sequence after all the records in the file have been loaded. (The time
required for sort can be reduced if the special work file $1NDEX44 or $1NDEX45
is available.)

The file index area precedes the area where records are placed on a disk. For example,
suppose the file index for a certain file requires five tracks. The· file index entries
would be written on the first five tracks of the file. Records would be written beginning
in the first sector of the sixth track. Both the file index area and the record area must
start at the beginning of a ·track.

Top
Track
of First
Cylinder

Bottom
Track
of Third
Cylinder

For indexed files on the 5445, another type of index is created when the file index uses
more than 15 tracks. This additional index, which precedes the file index, is known as
the disk track index. Each entry in the disk track index refers to one track of the file
index. The disk track index will be used by the system only if its use will improve per
formance. See Appendix B for more information on this subject.

Processing an Indexed File

Indexed files are not limited to consecutive processing; they can be processed
several ways because the file index provides several ways to find records.

Sequential Processing by Key

When an indexed file is processed sequentially by key, the records are processed in the
order of the key fields. This method is used to process all records.in a file, regardless
of their order.

To illustrate this processing method, note the similarities and differences between
File A and File B in Figure 7. Both files contain the same records, and both file
indexes are in order according to the key field. The difference between the two
files is the order of the records. The records in File A are in order according to
key field; the records in File Bare unordered. All records in either file can be
processed in order if you specify the processing as sequential by key.

File A

File Index Records

File B

File Index Records

Figure 7. Example of an Ordered and an Unordered File

Sequential Processing Within Limits

Another way to sequentially process an indexed file is sequentially within limits, a method
in which records are processed in groups.

Note: COBOL supports starting key (lower limit) processing only. Upper limit processing,
if desired, must be provided in your COBOL source program. The limits for an RPG 11
object program can be supplied by a limits record or the lower limit can be set in your pro

·gram. For multivolume files, this type of processing applies only to Model 15.

As an example of sequential processing within limits, suppose that a wholesale company
prepares monthly statements of each customer's charges. Each customer is assigned a
5-digit number; the first digit represents the region the customer is in and the remaining

four digits represent the customer's number. The company's customers are divided
into four regions, allowing monthly statements to be sent each week to the customers
in one of the regions. Region 1 customers (10000-19999) are billed the first week
of the month, region 2 customers (20000-29999) the second week, and so oii. The
statements, therefore, are processed sequentially within limits.

For information on processing an indexed file sequentially within limits, see
. Chapter 5 in this manual.

Indexed Files 11

12

Random Processing

Indexed files can also be processed randomly. This type of processing, called
random by key, permits processing of one particular record without regard to
its relation to other records.

When you process a file randomly by key, you specify the key of the record you
want. The key is found in the file index; the disk address (adjacent to the key) is
then used to locate the record so the record can be transferred to storage for
processing.

Processing an Indexed File Consecutively

Indexed files can be processed (read) consecutively by defining the indexed file as
a sequential input file in the File Description Specifications. When an indexed
file is processed consecutively, the file index is bypassed and data records are pro
cessed consecutively from the beginning of the file to the end, as if it was a se
quential file. Note that indexed files can not be created, added to, or updated
consecutively.

An example of using consecutive processing of an indexed file is reading records
from an indexed file when the file index is unusable for some reason.

· Maintaining an Indexed File

After the file is created, you can use these file maintenance functions to keep the
file current for daily processing needs:

1. Adding records

2. Tagging records for deletion

3. Updating records

4. Reorganizing a file

Adding Records

When a record is added to an indexed file, it is written at the end of the records
already in the file. Records can be added either sequentially by key or randomly
by key. When records are added randomly by key (the records to be added need
not be in any particular sequence) or sequentially by key, the system checks to
ensure that the record is not a duplicate of a record already in the file; if the record
is not a duplicate, it will be added to the file.

The file index entry for the added record is written at the end of the current entries
in the index area. After all the records are added, the keys of the added records and
the keys of the original records are sorted or merged, so that the keys cf all records
in the file are in ascending sequence in the file index, as follows:

File Index Entry Before Additions
(key field and disk address) Key Fields

~ ~ ..
I 1st 2nd 3rd

6 Rec 5 Rec 2 Rec

During Additions

After Additions

(1st 2nd 3rd 4th

l1
6 Rec 5 Rec 2 Rec 1 Rec

If many records are to be added to the file, the time required for the index sort/merge
can be decreased by allocating a special work file. This requires no special RPG 11
coding but does require that the //FI LE statement be included in the OC L statements,
and that the special file name $1NDEX44 or $1NDEX45 be specified. See the IBM
System/3 Model 10 Disk System Control Programming Reference Manual (GC21-7512),
the IBM System/3 Model 6 Operation Control Language and Disk Utility Programs
Reference Manual (GC21-7516), or the IBM System/3 Model 15 System Control Program
ming Reference Manual (GC21-5077), for more information concerning these require
ments.

Tagging Records for Deletion

Inactive records in an indexed file must be handled like inactive records in a sequential
file. Since the record is not removed from the file during regular processing, you must
identify or tag the record so it can be bypassed. To do this, put a code called a delete
code in a particular location in the record; a delete code cannot be put in the key field.
When the file is processed, your program can check for the delete code; if the code is
present, the program can bypass that record.

4th 5th

1 Rec 3 Rec

5th 6th
3 Rec 4 Rec

Indexed Files 13

14

Updating Records

When you update records in a file, the records to be updated are read into storage,
changed, and written back on the disk in their original locations. Records in an indexed
file can be updated:

1. Sequentially by key

2. Randomly by key

3. Sequentially within limits

Note: COBOL supports starting key (lower limit) processing only; upper

limit processing, if desired, must be provided in your COBOL source program. The
limits for an RPG 11 object program can be supplied by a limits file, or the lower limit
can be set in your program.

Records are usually updated sequentially by key when you want to update all the
records in the file. Each record is updated in order.

To update your file randomly by key, you specify the key you want. This key is
then found in the file index so the desired record can be located and moved into
storage for updating.

For a discussion on updating an indexed file sequentially within limits, see Chapter 5
in this manual.

Reorganizing a File

It may be necessary at times to reorganize your in~exed file in order to increase pro
cessing efficiency and free disk space. This can be done by physically merging added
records in sequence with the records originally created, and by removing records tagged
for deletion.

For example, suppose an indexed file was created with the records in ascending key
field order. Since that time, several records were added to the file. These records
were added at the end of the file, but the file index is in sequential order by key field.
When the file is processed sequentially by key, the disk access arm must move back and
forth between the sequenced records (those originally created) and the added records.
This situation often increases processing time for a particular job. During reorganization,
the added records can be placed in sequence.

As records are added to a file, the space reserved for the file becomes filled. Reorganizing
is a means of freeing space since inactive records, those with a delete code, can be physi
cally removed.

A file is reorganized by copying the old file into a new disk area. During the copy,
deleted records can be removed from the file. Records previously added to the
old file will be copied into the new file in sequence with the original records. The
space previously occupied by the old file can then be used to contain new data.

CHAPTER 4. DIRECT FILES

A direct file is a file on disk in which records are assigned specific record positions.
Direct file organization enables you to directly access any record in the file without
examining other records or searching an index. Thus, in some processing situations,
direct file organization has advantages over sequential and indexed organizations.

Figure 8 shows direct file organization. Records are assigned specific locations,
independent of the order they are put into the file. All records put into the file have
record locations, although not all locations contain records. The specific location
in the file assigned to a record is determined from a control field in the record. Re
cords can be scattered throughout the file, depending on the distribution of the con
trol fields. The unused record locations contain blanks.

Direct files may span multiple disk volumes. When a direct file is processed, however,
all volumes containing portions of the file must be mounted on the disk drives, since
every record in the file must be accessible (in other words, the entire file must be
online). Therefore, multivolume direct files on 5444 disk drives are limited to two
volumes with a single disk drive (one fixed volume and one removable volume) and
four volumes with dual disk drives (two fixed volumes and two removable volumes).
Multivolume direct files on 5445 disk drives are limited to two volumes for the Model 10
or four volumes for the Model 15. For more information on processing considerations
when using multivolume direct files, see the discussion on multivolume files in Chapter 6.

Record
Location:

I I
I 21
I I

2

I
3

1
I I
I I

3

Figure 8. Direct File Organization

4

Unused Record
Locations (blanks)

7 8

Direct Files 15

16

Relative Record Number

In a direct file, a record is written and retrieved directly by specifying the location
of the record in relation to the beginning of the file. This relative position is called
the relative record number. The relative record number is not a disk address, but is
a positive, whole number that is converted by disk system management to the disk
address of the record to be accessed.

Deriving the Relative Record Number

A relative record number is similar to the key of an indexed file or the control infor
mation in a sequential file; it is dependent upon a specific field (control field) in the
record. The control field can either be used directly (without change) as a relative
record number or it can be mathematically converted to provide an acceptable re
lative record number.

Direct Method

An easy way to derive relative record numbers is to have them correspond directly
to the control fields in the records. Because the control information need not be
converted into a relative record number, manipulation and programming are kept
to a minimum. For example, in Figure 8, the record with a 1 in the control field
becomes relative record number one; the record with a 5 becomes relative record
number five, and so forth. This method is practical where control numbers can
be assigned on a sequential basis, such as employee numbers for payroll records,
student numbers in a school, and customer numbers for .customer files.

Suppose a small college has an enrollment of 5,000 students. A master student file is
maintained which includes currently enrolled students and graduates for the last two
years. The master file contains approximately 7,000 records. Each student is assigned
a 6-digit file number as follows:

Expected year
of graduation

- I

74~397
I
I

A unique identification
number from 1-9999

The identifying numbers are assigned on a sequential basis; numbers retired from
the master file are available for reassignment.

A direct file with 10,000 record locations is used for the student master file,
satisfying a need for fast access to each student's record. Since the identifying
numbers range between 1 and 9999 and there are no duplicates, the relative record
number is taken directly from the student file number. Figure 9 shows relative
record numbers taken from the student file number being used to update student
addresses.

Student
Address
File

Contro1 ____ -jr-__ ~..,.•:a·008bREW, .JOHN w RR2
Field 2 , ··;:'.:::~::::~:::::~:::=f.====•· 10 11 12 13 ,. 1s !6 11 1a ,9 zo ,, 22 23 2 .. 2s 26 21 2s 29 Jo 11 3z

GLENCOE, MINN

7if04.96JJOHNSON, OHN P 2716
I Z 3 •i::::i::::!:::;:?,::;:=-::;::j 10 1t ll 13 IA IS '' 17 , 19 20 21 22 23 24 25 26 27 1& 29 JO 11 11

MAIN ~T

7f~006'.i.£RCER,.JACQUES B 600
2 3 ':f.:;;;:J.::::~:::::!:::::f.::::f \(II 12 13 14 IS !6 17 1£, 19 20 21 22 23 211 25 zt 27 "9 29 JO 31 lZ

SPRUCE A IRON CITY,MINN
33 34 35 :11; 37 38 39 40 •I · 0 44 U .. , 47 48 0 SO 51 52 53 54 55 56 57 58 S9 60 6 62 61 ~·

7j'(b49$.;SCHMIOTt ERBERT F 316
2 3 ·•:::::$:::::~:::::J:::::t:::::t· 10 U 12 13 1 15 ~6 17 0 19 20 21 21 23 24 .i:S 26 27 211 29 JO 11 3Z

E L M ·5=+y·.w• M J l L V J I.,; E t M I N N
ll 34 35 36 37 38 J 0 41 42 0 .. 4' .t6 47 '8 0 50 ~ 52 53 5• 55 56 5" 58 '.i9 bO 61.62 6l u

1.zti12112a B

A

8
4
2
1

B)o",, B

A A
8 8
4 4
2 2

Direct
Student
Master File

Relative } 496
Record
Number

• 497 498

Figure 9. Relative Record Numbers Corresponding Directly to a Control Field

Conversion Method •

1&1
8006 8007

Conversion refers to any technique for obtaining a desirable range of relative record
numbers from the control fields of the records. The conversion method must be
used when the values in the control fields cannot be used directly as relative record
numbers. For example, employee numbers in a factory range from 0001 to 1500,
but only 450 numbers are in use since numbers belonging to employees who have
retired or terminated have not been reused. A file large enough for 1500 records
is not needed; therefore, a technique must be found for converting the employee
numbers to approximately a 1 through 500 range (which would provide 50 locations
for file expansion).

I ~
8008

Direct Files 17

18

When the conversion method is used, every possible control field in the file must
convert to a relative record number in the allotted range (in this case, 1 through 500),
and the resulting relative record numbers should be distributed evenly across the
allotted range so that there are few synonym records. Synonym records are two or
more records whose control fields yield the same relative record number, but contain
different data (see the next section, Synonym Records). Your program must allow for
synonyms if they are generated.

A way to convert the range of employee numbers from 1500to 500 is to divide the
employee number by 3 and drop the remainder (thus 3 becomes 1; 6 becomes 2;
1500 becomes 500). However, there is a possibility of having synonym records. For
example, if the numbers 6, 7, and 8 are present, all three become relative record number
2.

Another technique that may produce fewer synonyms is to divide the employee number
by 2 and drop the remainder. This compresses 1500 numbers to 750. There are 300
unused locations in this case, rather than 50.

A third method would be to divide the employee number by 499 (500 - 1), and use the
remainder+ 1 as the relative record number.

If there is no sequence to numbers in a control field (such as part numbers), a
conversion technique that produces random numbers can be used. The resulting
numbers should be distributed evenly within the selected range (depending upon
the number of record locations needed), and should be suitable as relative record
numbers (positive, whole numbers). One such technique is squaring the number in
the control field and selecting certain digits from the resulting number as the relative
record number. The calculation must be performed every time the program must
seek a record. For example, suppose you have part numbers that consist of six
digits, with certain digits having a special meaning. No two part numbers are alike.
The part number is squared and, of the resulting digits, only four are used as the
relative record number for the parts inventory file.

Part number= 468152

468152 x 468152 = 2191l6629l5104

Relative record number = 6629

Since four digits are selected, random numbers from 1 to 9999 could be developed.
Therefore, a file containing 10,000 record locations should be provided for the parts
inventory.

Even the technique used in the example above is likely to produce synonym records,
since the selected four digits of the square of two different part numbers can be
identical. If a conversion technique produces too many synonyms, it may be necessary
to find a different technique.

Synonym Records

Two or more records whose control fields yield the same relative record number are
called synonym records. Synonyms have the same relative record numbers, but con-
tain different data. Since only one synonym record can be stored in the record location
for its relative record number, a different method must be found to store and retrieve the
other synonym records.

Chain Technique

One way to handle synonyms is to chain (link) them together so that all can be found by
locating the first. The first record is stored in the record location indicated by its relative
record number. That location is called the home location; the record placed there is

called the home record. The first synonym (second record) is stored in the first unoccu
pied record location in the file (a location for which no relative record number had been
developed). The relative record number of the second location is then stored in the home
record; that is, the first synonym is linked to the home record. The second synonym, if
present, would be stored in the· next unoccupied record location and would be linked to
the first synonym, and so forth. In Figure 10, all records that are synonyms are loaded
into the file after records that can be stored in their home location have been loaded.
Loading the records in this manner simplifies the programming because the coding.for
loading synonym records can be done in a separate program. The chain technique is
useful when a file is created, but tends to be of less value as records are added to or de
leted from a file.

Synonym
82 Added

2

Home J
Location t

A B

2

Record 8
contains location
of synonym 8 1.

3 4 5

Synonym 8 1
contains location
of synonym 8z

Figure 10. Storing Synonym Records in a Direct File

6 7 8 9 10

7 8 9 10

H • J

8 9 10

Direct Files 19

20

If a new record is added to the file, but its home location is already occupied by a
synonym, for a different record location, the new record must be treated as a syno
nym for its home location. Figure 11 shows the file that resulted from the addition
of synonyms in Figure 10. The home location for record C is occupied by a synonym
for record B, so record C is placed in the first unoccupied location. Since record B1
is already linked to record 82, record C must be linked through B2 to its home loca
tion.

I A I B H s, H D

2 3

c

A B

2 3

4 5 6 7 8

Record C is relative record number 3, but
location 3 is already occupied. Therefore,
record C must be placed in the first avail
able location.

G H

4 5 6 7 a·

9 10

• J

9 10

Figure 11. Storing a Record When Its Home Location Is Occupied

When you process a direct file containing synonyms, you must verify every record
retrieved. For example, when you retrieve relative record 3 from the file in Figure 11,.
you get record 81, which is a synonym for relative record 2, which is not the record you
want. However, if you check the record retrieved, you find that it is a synonym. You
can now chain the relative record location, if any, indicated by the first record and re
trieve the second record. You can continue this process until you find the record you
want or until the chain of synonyms ends. In this case, you could eventually.have an
error condition because the requested record is not in the file.

A similar method for handling synonyms is to set aside a portion of the file for synonym
records. Suppose, for example, a file for 8500 records is set up to provide relative record
numbers between 0 and 9999. By actually setting aside enough area for 11,000 records,
any synonyms developed can be stored in record locations from 10,000 to 10,999.

0

Direct File

=-
Relative record numbers b-9999

Synonym
records

9999 10,000 10,999

The relative record number of a synonym is stored in the home location, and a
chain of synonyms is built as in the previous method.

r-------r--~(~~---.-a--(~} ____,-1----.~
A

0
f 10°

00
llt!tll!ll! .. ltll!lll!l!t!l!l!l!l~l!l!l!l!l!l!lll!ll~ll!l!l!l:.,1.~.=!!.l,.JI;.= 0 i 10001 f

11b. 'r11~1 a, o, I ?
..... ----------"'"-------•.--.....1.IMiiiiiiiiiiiiiiiiioii~;i;i;j;i;j;j;iZii;j;j;ji;i;i;i;i;i;,lL---------~!---ijiiiilfl~~~#~W~(------------'------------~.--..a?

2 3 4 10,000 10,001

Processing by this method is faster when records must be added to a file because
a home location is kept free for every relative record number; only one seek
operation is required for records without synonyms. However, this method wastes
more file space, because 11,000 locations are used for 8500 records.

Spill Technique

Synonyms

Another method of handling synonym records, the spill technique, uses the home
location as a starting point. When the file is first loaded, a counter is set to indicate
the maximum number of reads which would be necessary for locating a given
synonym record. (For example, the counter would be set to 3 if the maximum
number of synonyms for a given home address were 3.) T·o retrieve a record from
the file, you would first need to determine the home record location and read the
record from that address. If it isn't the record you want, you read the record in the
next location in the file. This process continues until the correct record is selected
from the file. If the maximum number of reads (3 in the example, above) is reached,
a record-not-found condition exists.

When a record is to be added to a file, you first check the location at the home
address. If this location indicates that the home record has a synonym, you incre
ment the relative record number by one, and continue to check for synonyms, until
an available space is found. At that point you would add the new record to the
file. If the number of times you incremented the r~lative record number exceeds
the count you set up for the maximum number of reads, the count would be incre
mented by one (in the example, the count would be set to 4).

Other methods for handling synonyms can be devised. Whatever the method used,
plan on extra accesses for synonym records and extra coding in order to verify the
records.

Creating a Direct File

To create a direct file, you must define a disk file as: a chained output file (for
RPG 11); a random output file (for COBOL); or, a direct access file (for FORTRAN).
In this way, the file is uniquely identified to disk system management as a direct
file. Disk system management then allocates disk space for the file, and the entire
file space is erased to blanks. This action, in effect, creates dummy records whose
length is determined by the creating program. Once the file has been cleared, one
or more subsequent jobs can be run to read record locations while loading the file.
The method you use to write data records on the file depends on whether or not
you must check for synonyms among those records.

Direct Files 21

22

Whether or not you must check for synonyms, relative record numbers are used in
your program to make the corresponding record locations available for loading. Re
cords are loaded into the file in an update mode by first chaining the record to a
given record location according to its relative record number, and then by output
ting the new record into that record space. The relative record number is the
sequence number of that record within the file. The data used as a relative record
number can come from a field in the input record, or it can be created in your pro
gram.

Creating a Direct File Without Synonyms

If you do not have synonyms, you can load records into a direct file in a single
pass. In this _case, record locations are not inspected before they are filled with
data. If a synonym is encountered, it is written over the previous record and the
previous record is lost.

Creating a Direct File With Synonyms

If you have synonyms, you can create a direct file by using more than one pass to
load records into the file. The exact method you use depends on your scheme for
handling synonym records (see Synonym Records).

Processing a Direct File

Direct files can be processed in three ways:

1. Consecutively

2. Randomly by relative record number

3. Randomly by ADD ROUT file {see Chapter 5. Record Address Files)

Consecutive Processing

Direct files are often used where the activity of a file is low and direct inquiry of
the file is necessary. However, when the activity on a direct file is high for certain
jobs, such as writing a report where the entire file is listed, you may want to process
the file consecutively.

Consecutive processing of direct files is similar to consecutive processing of sequential
files. Record locations are processed one after another until end of job requirements
are met. The direct file has no next available record (EOF) pointer in the label. As a re
sult, consecutive processing will access the entire file space before the last record (LR)
condition occurs. Remember that a direct file is cleared to blanks when it is created,
and record locations not filled remain blank. Thus, in consecutive processing, blank
record locations will be read along with those containing data. Your program should
check for blank record locations and bypass them so that only valid records are processed.

When retrieving and updating a direct file consecutively, you also may want to check
each record for synonyms and then handle the synonyms differently from other records.
However, since consecutive processing does not depend on relative record numbers, a
direct file can be processed consecutively without regard for synonyms.

Random Processing by Relative Record Number

Remember that random processing of indexed files is accomplished by using the control
field value (record key) to search an index. If a match is found, the record at the disk
location contained in the index entry can be accessed. The control field value, therefore,
is not related to the actual location of the record on disk. When processing randomly by
relative record number, however, the relative record number is used by disk system man
agement to calculate the disk location of the record. No index area and index search are
required, since the control field value is directly related to the record location. Therefore,
random processing by relative record number can be faster than random processing by key
of an indexed file. If a large number of synonyms exist in the file, however, retrieving a
record by location may require more extensive programming, and an increase in the
average number of seeks per record due to synonyms.

Records can be processed either in an ordered or an unordered manner. Processing
of records in order according to relative record number is usually faster than unordered
processing since less movement of the disk access mechanism is required. Figure 12
shows the steps involved in random processing of a disk file by relative record number.
In the figure, relative record numbers are obtained for control fields in the input
records; however, they could also be generated by your program. Random retrieval
includes steps one, two, and three in the figure; random update includes all five
steps.

Direct Files 23

24

2

0 /________,
Record is read from
the input file

Relative

I

I
I

I

f) Relatll. record number from
the input record control field
Is used to chain to the disk file .

.................

Disk
File

Record Numbers.----..,-
2 3 4 5

Figure 12. Random Processing by Relative Record Number

Maintaining a Direct File

e New information is
inserted in the record
if update is indicated.

7 (updated)

@)Disk record is
retrieved.

6'0. 8 9

0 Updated disk

10

Three file maintenance functions can be used to keep direct files current after they
are created:

1. Adding records

2. Tagging records for deletion

3. Updating records

Adding Records

Unlike sequential and indexed files, direct files can have space available between
existing records for records to be added. To add records to the file, the relative
record number for the added record must first be determined. The location is then
read into storage. If the location is blank, the record is stored. Otherwise, if the
location already contains a record, the new record is stored as a synonym.

Tagging Records for Deletion

As in other files, records in direct files can be identified for deletion by a delete
code. This code is usually a single chara.cter at a particular location in the record.
When the file is processed, your program must check for the delete code; if the
code is present, the record can be bypassed.

Since the delete code indicates that the record has been deleted, however, the record
location is available for a new record. Either the location can contain a synonym, or
it can be reused by assigning the relative record number to a new record. If the file
contains synonyms, be careful not to delete synonym chaining information when

you delete a recor.d and reuse the location.

Updating Records

When you update records in a file, you can add or change some data on the record.
The record to be updated is read into storage, changed, and written back on the disk
in its original location. Records in a direct file can be updated consecutively or
randomly.

Records are usually updated consecutively when you want to update all or most of
the records in the file. Records are updated in order. However, synonym records
in a consecutively processed direct file may require special handling.

To update your file randomly, you must specify the relative record number of the
record you want. The relative record number is used to find the record in the file
so it can be moved into storage for updating.

MANIPULATING DIRECT FILE DATA

Direct file organization on the System/3 offers you a flexible tool for data manipu
lation that is not available in the other organization methods. With direct organiza
tion, you can:

• Access a file consecutively more than once in the same program.

• Load a file, then retrieve the records in the same program.

• Tie together strings of related records so they can be retrieved as a group when
they are not necessarily stored together in the file.

• Build and retrieve message queues in a communications system.

• Use a direct file for large arrays.

Direct Files 25

26

Using the techniques discussed in this section, a direct file can be used over and
over without being re-created; existing records are re-written when the file is used.
Consequently, it is usually convenient to create the file with a program that does
not load any data. Then all of the accessing programs can define the file as an up
date, chained, direct, or random file. The examples in this section assume a previous
ly created file.

The techniques described normally require that records be placed in the file in con
secutive record locations. The programs will use one or more counters (numeric
total fields) to keep track of the next relative record number.

Accessing a File Consecutively

To access a file consecutively more than once in the same program, the program in
crements the record number counter by one each time a record is accessed, and then
chains to the file. This action is repeated until the last record is read. The counter
is then reset to zero and the process is repeated. The program recognizes the last
record in the file by (1) identifying the last record with a specific code and testing
for that code, or (2) by testing for the first block record in the file, or (3) by know
ing the record number of the last record.

LoadinS(and Retrieving Records in the Same Program

In update mode, the record number counter is used to load records in consecutive
record locations. After records have been loaded, they can be retrieved by record
number using the chain operation.

Connecting Strings of Related Records

This technique, known as chaining, requires that each record in the file contain an
extra field. That field will contain the record number of the next record in the
string. A blank or zero field can be used to identify the last record in a string.

The chaining technique works well in an accounts receivable application. For ex
ample, a customer master file is indexed by customer number. Transactions are
added consecutively to a direct file as they occur and are applied to a balance field
in the customer master record. An inquiry to the master file will cause the balance
information and all transactions for that customer to be displayed.

This is accomplished by adding two fields to each customer master record. These
fields contain the record numbers of the first and last transaction records (respect
ively) for that customer in the transaction file. These fields are set to blank or
zero at the beginning of the accounting period and remain set at zero until the first
transaction is posted for that customer.

,...L--------- Customer Master Record Format

Customer Data First
Transaction
Record Number

Last
Transaction
Record Number

Record 1 in the transaction file is reserved for storing the record number of the
next available record space in the file at the time the file is closed. When the file is
initialized at the start of the accounting period, record 2 is the next available record.

When transactions are added to the file, record 1 is read at the beginning of the job
by the program, to establish where the next transaction will be placed. The value
stored in record 1 is increased by one each time a record is added (the new value is
written back into record 1 at LR time).

!"-------- Initialized Transaction File

,, I 2 i
Record number- 1 · 2 3 4 5 6

Each transaction record contains a number that is used to locate the next transaction
record to the same customer.

l ,..-----Transaction Record Format

4- Transaction Data Next
Transaction
Record Number

Two routines are needed to load transaction records into the file. One loads the first

transaction for a customer; the other loads all subsequent records for the customer.

Assuming (1) the transaction file is the primary file, (2) the customer master record
has been accessed by a CHAIN operation, and (3) the first transaction record
number field is blank or zero, the following is an example of how the first transaction
record is loaded and the records set for a customer:

1. Using the next available record number (from record 1) chain to the transaction
file.

2. Put the new transaction record out in the record space.

3. Place the next available record number in both the first and last number fields
of the master record.

4. Add one to the next available record number.

If one transaction had been loaded for customers X, A, and D, the files would appear
as follows:

Master File 1 c_u_st_o_m_er_A _ __.l.__3_1 _3 1-\H Customer D 14141H""'" __ c_us_to_m_e_r_x __ l2_l 2_l_
Transaction File Customer X I)customer A I (customer D I J I I
Record 2 3 4 5 6

~ Pointer to next available record (in storage)

Direct Files 27

28

The following describes how subsequent records are added:

1. Using the next available record number, add the new transaction to the file.

2. Using the last record number field from the master record, chain to the last
transaction for that customer.

3. Update this record by placing the next available record number in its next
transaction record number field.

4. Place the next available record number in the last transaction record number
field of the master record.

5. Add one to the next available record number.

Assume that one transaction has been added for customer X, one added for customer
D, and another added for customer X. The files would then appear as follows:

Master File - 3 I 31 I customer D 14 I sl I Customer X

Transaction File - 2 CustX 5 CustA CustD 6 CustX 7 CustD

Record number - 2 3 4 5

W- Next available record (in storage)

Remember that the next available record number will be written into record 1 at
LR time.

Message Queuing in a System/3 Direct File

In a communications environment, it is often necessary to store messages as they
are received and make them available for processing at a later time. This technique
known as message queuing, can be readily used with direct files, with the following
restrictions:

• Variable length messages must be blocked by the user to fit the fixed length disk
record.

• Queued messages will be processed on a first in-first out basis within a given queue.
Records (messages) are placed in the queues in the same manner as transactions
were placed in the transaction file in the accounts receivable example presented
earlier in this section.

• Three pointers (record numbers) are normally required for each queue in the
file: a pointer to the first record in the queue, a pointer to the last record in the
queue, and a pointer to the next record in the queue to be processed.

Queue 1 First Last Next
Record Record Record
Pointer, Pointer, Pointer,

Queue X First Last Next
Record Record Record

Pointerx Pointerx Pointerx

6

12 I 7 I
CustX

7

These pointers are usually maintained in arrays, with the queue numbers used for
subscripts. Besides the three pointers previously mentioned, a pointer is required
to the next available record in the file. When the file is closed, all pointers are

stored in a reserved record in a file.

The next record pointer allows the processing program to retrieve records consecu
tively from a given queue. This pointer is initially set equal to the first record point
er, and is then changed each time a record is retrieved from the queue. This pointer
may be maintained within the processing programs instead of in the file, to allow
multiple processing programs to access the same queue. Each using program would
keep track of its own processing position within a queue.

Using a Direct File for Large Arrays

Arrays that are too large to be held in main storage may be stored on disk as a
direct file. The subscript value becomes the record number of the data stored in
the file. There is no minimum record size in System/3 disk files. Data fields in an
array may be stored as individual records in a direct file.

Direct Files 29

30

CHAPTER 5. RECORD ADDRESS FILES

Record address files are input files that indicate which records are to be read from
disk files and the order in which the records are to be read. There are two types of
record address files:

• Files containing relative record numbers

• Files containing record key limits

Files Containing Relative Record Numbers (ADDROUT Files)

A record address file that contains relative record numbers is called an ADDROUT
(address out) file. ADD ROUT files are comprised of binary 3-byte relative record
numbers that indicate the relative position (first, twentieth, ninety-ninth) of
records in the file to be processed.

Creating an ADDROUT File

An ADDROUT file is created by the Disk Sort program. The input for the Sort
program is a file which may be organized as a sequential, indexed, or direct file.
The output from the Sort program is a new file consisting of relative record numbers.
This file of relative record numbers may then be used during the processing of the
original file to provide accessing of the file in a sequence different from the se
quence in which the file is stored on disk. For more information; see the IBM
System/3 Disk Sort Reference Manual, SC21-7522.

The following three points should be considered when using ADD ROUT files:

1. One file can be sorted in several sequences, based on different control fields
in each record of that file. To avoid sorting the entire file each time a
different sequence is required, several ADD ROUT files can be created by
sorting the input file to be used in your programs in several ways. For
example, you have a transaction file in order by stock number. By perform-
ing two ADDROUT sorts on the transaction file, you could have one ADD ROUT
file sequenced by customer number and another by invoice number. Con
sequently, you can access the transaction file by several sequences: stock
number, customer number, or invoice number.

2. An ADDROUT file requires less disk space than the output file of a tag-along
sort because the output records of the ADDROUT file are only three bytes
long (see sorting a file, in Chapter 6).

3. If an ADD ROUT file is used to process a multivolume file (RPG 11 and
COBOL only), all volumes of that file must be mounted during processing
because the next record required may be on any volume.

Processing by an ADDROUT File

All types of file organizations (sequential, indexed, or direct) used as primary or
secondary files can be processed by ADDROUT files. For RPG 11, when an object
program uses an ADD ROUT file to process another file, it reads a relative record
number from the ADDROUT file, then locates and reads the record situated at
that relative position in the file being processed. Only those records whose relative
record numbers are located in the ADD ROUT file are processed. Records are
read in this manner until the end of the ADD ROUT file is reached. Figure 13
shows an ADD ROUT file used to process a disk file.

Note: COBOL uses only direct file organization for this application.

A different approach is needed when using FORTRAN and COBOL. You would define
the ADD ROUT file as an input file, and the corresponding direct file as another input
file. Your program would then read from ADDROUT and put the input data into
the associated variable (specified in the file definition statement) for the direct file.
Execution of a READ statement would then retrieve the desired record from the
direct file. You may terminate reading from ADDROUT either at its EOF or prior
to its EOF. You must logically determine EOF for your own situation (for example,
by a record count).

ADDROUT file
(containing relative
record numbers)

File to be processed
(relative positions
of records)

First Fourth Third Sixth
Record Record Record Record

2 3 4 5 6

Note: The object program will read the ADDROUT file and
find that the first record to be read is in relative position one
of the file being processed. The second record to be read is in
relative position four. Since all records are not read, processing
by ADDROUT file is random processing.

Figure 13. Using an ADDROUT File to Process a File

Files Containing Record Key Limits

A record address file with record key limits contains the lowest and the highest
key fields for a specified section of an indexed file. Record address files containing
record key limits can be entered from disk, card, or printer-keyboard. They are
used to process only indexed files. When a section of an indexed file is processed
using record key limits, the processing method is known as sequential within limits.

Record Address Files 31

32

Note: COBOL supports starting key (lower limit) processing only; upper limit
processing, if desired, must be provided for in your COBOL source code. The
limits for an RPG 11 object program can be supplied by a record, or the lower
limit can be set in your program.

Example: You have an indexed file, but want to process only the records with

keys 2,000 through 3,000. The record key limits in this record address file would
be 2,000 (lowest) and 3,000 (highest key field). Through RPG 11 specifications,
the appropriate section (records with keys 2,000 through 3,000) of the indexed
file would be processed.

Creating a File with Record Key Limits

In order to create this type of record address file, you must first determine the
record key, such as a customer number, of the file to be processed. Each record in
the record address file contains the record key limits (the low record key and the
high record key) to be used for processing. The file can contain several sets of

limits, used one at a time.

For instance, in the example explaining sequential within limits in Chapter 3, the
customers were divided into four regions. If you wanted to process only the records
for customers in region 3, the low record key would be 30,000 and the high record
key would be 39,999. The record in the record address file would specify these
limits like this:

(3000039999

Processing Sequentially Within Limits

Processing a section of an indexed file (RPG 11 and COBOL only) by record keys is
known as sequential within limits. The object program uses one set of limits (one

record in a record address file) at a time. Records are read according to the arrange
ment of the record keys in the section of the indexed file specified by the limits.
When the records identified in one section are read, the program reads another set of
limits from the record address file. The program continues reading records in this
manner until the end of the record address file is reached.

It is not necessary for the record keys that were specified as limits to be in the
file. For example, if you specify the high record key as 2999 and the last record
in that section of the file is 2800, the program will read another set of limits from
the record address file after record 2800 is processed. If you specify the low record
key as 2000 and record 2000 is not in the file, the record with the next higher
key will be read providing that record is not higher than the high limit.

For Model 6, Model 10 Disk System, and Model 15, single volume indexed files
may be processed using limits. In addition, on the Model 15, a multivolume file
may be processed using limits.

CHAPTER 6. CHOOSING A FILE ORGANIZATION

Chapters 1 through 5 of this manual described several disk file organizations that
can be used with the I BM System/3 Model 6, Model 10 Disk System, and Model 15,
and explained the flexibility they provide to perform a variety of jobs. Because
of the flexibility and variety of these different methods, it is important for you to
analyze each of your jobs and choose the file organization method that gives you the
best possible performance.

In many cases, the most appropriate file organization is immediately evident. Some
applications, however, may require more thought because of their complexity,

because a file is used in several jobs, or because special processing is required. Study
ing existing applications is an important aspect of planning for a data processing
system. Decisions in this area must be made before programming begins, since
the efficiency of your data processing installation may be _affected. This section
describes factors to consider when making these decisions.

There are no absolute rules for choosing a file organization method. However,
several characteristics of the file to consider are:

1. Use of the file.

2. Volatility {frequency of additions and deletions) of the file.

3. Activity of the file.

4. Size of the file.

Use Of the File

The use of the file takes priority over all other considerations.

Is the file a master file? Recall that a master file is fairly permanent, is generally
used in several jobs, and is often used with several other files. An example of such
a file is a customer file. A customer file contains a record for each customer; each
record may contain such data as custc;>mer name and address, shipping information,
credit status, accounts receivable, and sales information. Although certain data in
a record, such as accounts receivable, may change {these changes are made with a
transaction file), the record remains in the file as long as the customer does business
with the company. Since this master file contains so much information about each
customer, it may be used in several jobs to produce various reports. Likewise, the
file may be used with several other files, master or transaction.

A transaction file contains records of a less permanent nature than a master file;
transaction files may also contain data that is used to update a master file.

Choosing a File Organization 33

34

When choosing a file organization method for a master file, the major question to
ask is: What are the processing requirements of the file? To answer this question,
you must study the applications in which the file is used:

• Is the file used with other files or in several jobs?

1. If so, what is the organization of the other files?

2. If used with transaction files, are the transaction records ordered or
unordered?

• Must the file be sorted for any jobs?

• Must the file provide for inquiry?

Using a Master File With Several Files or in Several Jobs

If a master file is used with several files (a transaction file, another master file,
or both), the master file can be either sequential, indexed, or direct. The determin
ing factors are the processing requirements of the various runs that will be using
the file and the organization of the other files.

Note: FORTRAN does not support indexed file organization.

If the other files are ordered (sorted in the same sequence as the master file),
then· the master file may be either sequential or indexed. However, to process
unordered files against a master file, the master file must either be indexed, and
processed randomly by key, or direct. Random access of direct files is faster since
a record can be retrieved by a single access. Random access of an indexed file re
quires two accesses, one for the index and one for the record.

If the master file is used in several jobs, and records must be processed both in
order and randomly, then either indexed or direct is a better type of organization
than is sequential organization.

Note: Remember that a sequential file processed randomly by relative record
number has the same retrieval and update characteristics as a direct file. There
fore, whenever the discussion says a direct file could be used, you can also use a
sequential file if other file needs warrant that type of file organization.

Sorting a Master File

If the master file must be sorted for some jobs, you may not want it to be an in
dexed or direct file, because the Disk Sort program cannot produce a sorted in
dexed or direct file. That is, indexed at;d direct files can be sorted, but the sorted
output file will be a sequential file. Instead of keeping the sorted file as the master
file, the original file must be kept.

Inquiring Against a Master File

Most businesses need to get information from a file on an inquiry basis. An inquiry
is a request for information from some type of storage.

Some jobs that emphasize the importance of immediate inquiry and response are:

Demand Deposit
Accounting

Inventory Control

Manufacturing

Payroll

What is the balance
of account number
133420?

How many of part
number 55632 are
on order?

What is the quantity
on hand for part
number 16414?

What are the year-to·
date earnings for
employee number
13862?

System/3 provides for inquiry. The ability to use inquiry depends upon the organi
zation of the file.

Where inquiry is required, a critical question in choosing the best file organization
method is: How fast must the inquiry be answered? The less critical the response
time, the greater the choice of organization and processing methods.

To decide how fast the inquiry response must be, ask yourself the following question:
Can the answer to the inquiry wait until the next updating of the specific master
file? If it can, then these inquiries can be treated as additional transaction records
and so processed. File organization, in this case, can be either sequential, indexed,
or direct, depending on other processing needs.

If the inqiury cannot wait, another question must be asked: Can the answer wait
until the end of the present computer run? If so, the disk pack containing the
specific master file is mounted at the completion of the current job; the inquiry
program is loaded; and the file is processed to produce the required answers. Ob
viously, response time varies considerably depending on (1) the job that is in progress
when the inquiry arrives and (2) the organization of the file that is being searched
for information.

A direct file or an indexed file processed randomly by key will usually provide the
best response time.

Volatility of the File

The number of records added to or deleted from a file is another important consider
ation in choosing the type of file organization to use. Volatility refers to number of
additions and deletions. High volatility means many records are added and deleted;
low volatility means few records are added or deleted.

Choosing a File Organization 35

36

If the file is highly volatile, you probably should not use a direct file. You may waste

file space by having to allow for synonym records or by not reassigning relative record
numbers when records are deleted. If too many synonyms are produced, the average

number of seeks needed to find a record could increase until the direct file is slower
to process than an indexed file. Also, if you are using the conversion method to
derive the relative record number, future additions and deletions to the file
could upset the balance of your conversion technique.

Records in sequential and indexed files are added at the end of the current records.
If a file is sequential and the control fields of the added records are higher than
the last record on the file, additions cause no problem. However, if they are not
higher, and processing of the file depends on the records being in control field
order, additions do cause a problem. In this situation, records added at the end of
the file are out of sequence. To avoid this problem, the disk file must be re-created
or sorted when such additions are made.

If additions are made to an indexed file, there is no need to rewrite the file. Records
are also added at the end of the file, but the keys are in ascending order in the in
dex. Thus, if the records must be processed in order, they can be processed sequen
tially by key. Thus, one of the advantages of an indexed file is that additions and
deletions can be handled without rewriting the file.

However, as the number of additions increases, the efficiency of sequentially
processing an indexed file decreases. Sequentially processing the added records
by key requires more time than processing the records in the order in which they
are written on the disk. This increase occurs because additional access arm movement
is required to read records at the end of the file. The arm must move back and
forth between the index and the records. Even if the original records are in se
quence, the added records are not. The arm must make one additional move for
each added record that is processed.

Thus, for a highly volatile file where records must be processed in order, a se
quential file with consecutive processing is best although the file would have to
be resorted after each addition job. However, if a highly volatile file does not
require processing records in order, the file can be indexed and processed randomly
by key.

If a highly volatile file requires both sequential and random processing, an in
dexed file is best. In this case, to overcome the problem of excessive access arm
movement in order to retrieve records added at the end of the file, the file should
be reorganized frequently.

Activity of the File

The next important consideration, after volatility, is the activity of tha file.
Activity refers to the number of accesses to a file. Activity is usually expressed as
a percentage. For example, if the file has 6000 records and 12,000 transactions
are processed randomly per day using that file, the activity is 200%.

As activity increases, consecutive processing becomes more efficient. This would
justify the use of a sequential file with consecutive processing or an indexed file
processed sequentially by key. Low activity would warrent use of an·indexed file
processed randomly by key or a direct file.

Total activity against a master file may be reduced by sorting the transaction files
so that only one retrieval of a master record is required for each group of trans
actions with the same key field.

For a high activity file, you should consider batch processing. This means the
application does not require transaction records to be processed the moment they
occur; some time lag is all right. Transactions can be accumulated, or batched,
and processed at certain times. The time lag may be hours, weeks, or even months,
depending on the application.

Size of the Fi le

Multivolume Files (RPG II and COBOL Only)

If your file is too large to fit on one disk (volume), you must consider the effect
that a multivolume file has on processing. A multivolume file can be online or
offline. Online means that all the volumes containing the file are running on disk
drives during processing so that all the records are available for processing. Off.
line means that only part of the file is available for processing at any one time;
the volumes must be removed and replaced with other volumes to process the entire
file.

Note: Model 10 COBOL supports only multivolume sequential or direct file organi
zation; Model 15 COBOL supports multivolume indexed file organization in addition
to multivolume sequential or direct file organization ..

Offline Multivolume Files

If you are creating a sequential file or an indexed file, the file can be created as an
offline multivolume file. When this type of file is being created, records are
placed in consecutive order on as many volumes as needed. For multivolume indexed
files, you must specify the highest record key for each volume. Only records with
a key field less than or equal to the specified key will then be placed on the desig
nated volume.

When you process an offline multivolume file sequentially, you mount a diski
wait until all the records have been read, then mount the next disk. For example,
if you have a 2-drive system, the first two volumes can be mounted, then the next
two, and so on until all the volumes are processed.

An indexed file can be processed randomly using an offline multivolume file, but
only if the file was created with this technique in mind. The records can be written on
each volume, according to a predetermined grouping. For instance, a customer

billing procedure could be done according to groups so that Group 1 would be
billed the first week in the month, Group 2 the second week, and so on. The
customers in each particular group could be written on separate volumes. Group
1 could be on one volume, Group 2 could be on another volume, and so on. Then
only the volume needed for each billing date would be mounted. The file could
be processed randomly since all the records needed would be on the volume online.

Online Multivolume Files

If you are creating a direct file, the file must be created as an online multivolume
file. When you create this type of file, you can use both fixed and removable

Choosing a File Organization 37

38

disks. The file, however, cannot exceed the number of disks that can be on the
system at one time.

When an online multivolume file is processed, the records in the file can be on
different volumes but all the volumes must be online. Thus, this type of file
must be used when you are processing your entire file randomly (sequential,
indexed, or direct) and records may be needed from any one of the volumes.

Sorting a File

If the file will be sorted by the System/3 Disk Sort program, the size of the file
also affects the choice of a file organization method.

The System/3 Disk Sort program uses disk work areas. A work area is space on the
disk that the program uses to arrange records in the specified order. The size of
these work areas must be considered when planning files that need sorting.

The table that follows shows the valid devices and file organizations for the files
used by the System/3 Disk Sort program.

Devices File Organization

Input files 5444,5445 Sequential
Indexed
Direct

Tape Sequential

Work files 5444, 5445 Sequential

Output files 5444,5445 Sequential

Tape Sequential

All volumes of a given input, work, or output file must be of the same device
type. Input and output files can be single volume or multivolume (online or off
line); work files can be single volume or online multivolume only. For more
information, see the IBM System/3 Disk Sort Reference Manual (SC21-7522).

When an entire disk file is sorted and the output file contains all the data in
the input file, the maximum size of the input file on a 1-drive system is a little
less than half the total online disk storage drive capacity (a little less than one
volume). On a 2-drive system, half the total online capacity is a little less than
two volumes. In either case, the volume that contains the input file can be re~
moved before the sort program starts writing the output file. Another volume
can be mounted, and in this manner, the input file can be preserved.

Tag-Along Sort

A tag-along sort allows data fields to "tag along" with control fields when the records
in the file are sorted. These data fields can be only certain fields from the input
record or they can be the entire input record. The output for a tag-along sort is a
file of sorted records that can contain:

• Control fields and data

• Control fields only

• Data only

Summary Sort

A summary tag-along sort summarizes (adds together) corresponding data fields
for records with identical control fields. The summarizing occurs while the
output file is being written. Suppose, for example, that a mail order company
wants a sorted file by catalog number of the number of sales for a month. The
catalog number is the control field for the record. If a company uses a regular
tag-along sort, the sorted file looks like this:

I X376 3 I I A500 5 I
'-v-' '-v-'
Cat. No. No. Sold Cat. No. No. Sold

I X376 4 I I A500 2 I
'-v-' '-v-'
Cat. No. No. Sold Cat. No. No. Sold

lx376 101
'-v-'
Cat. No. No. Sold

If the company uses a summary sort for the job, all the sales for the same catalog
number are summarized and the sorted file looks like this:

I ~X-37_6 _______ 1~7' l_A_50_0 _______ 1~I
'-v-' '-v-'
Cat. No. No. Sold Cat. No. No. Sold

Choosing a File Organization 39

40

The output for a summary sort is a file of sorted records that can contain:

• Control fields and summary data

• Summary data only

The output file for a summary sort requires less space than the output file for a
tag-along sort because there is only one record for each unique control field.

ADD ROUT Sort

An alternative to tag-along or summary sort is the ADDROUT sort. An ADDROUT
sort produces a file of relative record numbers. The relative record number can be

used by an RPG 11 or COBOL program to specify the location of a record in the
disk file. The record numbers for a file are sorted into the sequence specified by
the control fields. These numbers are written on the disk. They can be used as
input to an RPG 11 or COBOL program that processes the records in the desired
sequence.

The ADD ROUT sort offers two advantages over the other sort types:

1. The original file is preserved.

2. The work and output areas must only be large enough to provide space for
the record numbers, not for the records.

CHAPTER 7. PLANNING DISK FILES

After deciding which file organization method to use, you should design the record
and determine file size and location.

Designing a Record

The data processing applications that you use when you process a file determine
what data is needed in the file's records. You should study these applications and
then decide the layout of the record. Layout means the arrangement of fields in
a record. When you design a record, you must consider processing requirements of
the record and then determine field length, location, and name.

To illustrate these design considerations, a name and address file is used in this
chapter. Each record in the file contains the following data:

Field Size (number of positions)

Customer Number 6

Name 20

Street Address 20

City and State 20

Record Code 2

Delete Code

Other Fields 47

116Total

Determining Field Size

Field size depends on the nature of the data in the field. The length of the data
may vary, or all data in a field may be the same length. In the example, name is
20 positions. The length of each customer's name varies, but 20 positions should
be sufficient for most names. Customer number, however, is six positions, and
all six positions are used in each record.

Numeric Fields

If the field is a numeric field, you must determine whether the field is to be in a
packed or unpacked decimal format. Packed decimal format can reduce the amount
of storage required for a record.

Planning Disk Files 41

42

Unpacked decimal format means that each byte of storage, whether on disk or
in the computer, can contain one character. (That character may be a decimal
number or it may be an alphabetic or special character.) In the unpacked decimal
format, each byte of storage is divided into a 4-bit zone portion and a 4-bit digit
portion. The unpacked decimal format looks like this:

0---... 1 o --..... ~ 1 o----i~ 1 o-----i~ 1 o -----1~1

Zone Digit Zone Digit Zone Digit Zone Digit Sign Digit

·~
Byte

1101 = Minus Sign
1111 =Plus Sign

The zone portion of the rightmost byte indicates whether the decimal number is
positive or negative. In unpacked decimal format, the zone portion is included for
each digit in a decimal number; however, only the zone over the rightmost digit
serves as the sign. The unpacked decimal format for decimal number 7,462 looks
like this:

7 4

: 0111 0100 I

Sign (indicates whether
the field is positive or
negative)

6 ! 2

: 0110 I : 0010 I
Packed decimal format means that a byte of disk storage can contain two decimal
numbers. This format allows you to get almost twice as much data into a byte
as you can using the unpacked decimal format. In the packed decimal format, each
byte of disk storage, except the rightmost byte, is divided into two 4-bit digit
portions. The rightmost portion of the rightmost byte contains the sign (plus
or minus) for that field. The packed decimal format looks like this:

0---... 7 0---~1

Digit Digit I Digit Sign I
~·

Byte

The sign portion of the rightmost byte is used to indicate whether the numeric
value represented in the digit portions is positive or negative. In the packed
decimal format, the sign is included for the entire number; the zone portion is not
given for each digit in the number. The packed decimal format for decimal number
7,462 looks like this:

0 7 4

I 0000 : 0111 I 01 oo

Sign (indicates whether
the field is positive or

:egativel

2

I
: 0110 I 0010

The maximum length of a packed field is 15 digits (8 bytes). Figure 24 shows the
number of bytes needed for a specified number of characters in a packed field as
compared to the number of bytes needed for that number of characters in an un
packed field.

Unpacked Packed

1 1
2 2
3 2
4 3
5 3
6 4
7 4
8 5
9 5

10 6
11 6
12 7
13 7
14 8
15 8

Figure 24. Number of Bytes needed for Specified Numbers of Characters in Packed

and Unpacked Fields

Alphameric Fields

There are no firm rules for determining alphameric field size. The major problem
involves fields with variable length data. For example, if name is planned as 15
positions and a new customer has 19 characters in his name, a problem arises
when adding his record to the file. To avoid this problem, try to estimate the
largest length of the data that will be contained in a field. Use this length to
determine field size.

Providing for a Delete Code

Recall that records are not automatically deleted. You must place a delete code
on a record with your program. Then, when the file is processed, your program must
check for this code. In the example, if a customer becomes inactive, you may not
want to process his record. Thus, a 1-position field is included to provide for a
delete code.

Providing Extra Space

At this stage in planning, it is often desirable to allow for data to be added to a
record. For example, suppose the name and address file were created with the
fields described, but at a later time each customer's zip code is needed. If all
positions in the record are used, there is-no place to add the zip code. Since record
length is not yet established at the planning stage, we can allow for such addi-
tions to this record. Although it is often difficult to imagine what data might be
added, it is wise to reserve extra space.

Planning Disk Files 43

w
0 CUSTNO NAME
0
u

1 2 3 89

Key

CODE = Record code
CUSTNO = Customer number
NAME = Customer name
ADDA = Customer street address
CITST = City and state
DELETE = Delete code

Naming Field·s

At the same time you are determining field size and location, you can also decide
on names for each field. Since you must specify field names in your source pro
grams, it is a good practice to choose names that follow the coding rules for forming
field names. If these rules are considered at this planning stage, your programs are
easier to write.

For example, an RPG 11 field name can be fr.om one to six characters long. The
first character must be an alphabetic character, but the remaining characters can
be any combination of alphabetic or numeric characters. Blanks and special
characters are not allowed. The field names in Figure 25 follow these rules.

One other important consideration when choosing field names is that the name
should be meaningful. Since field names may be restricted in length and abbreviations
are often necessary, care should be taken to chose a meaningful field name. For ex
ample, the word address has seven letters; it is shortened to ADDR in Figure 25.
Meaningful field names contribute to better documentation, and often avoid misin
terpretation or confusion while writing programs.

ADDR CITST

28 29 48 49

Other Fields ~
68 69

w
!

Reserved Space ~
w
0

127 128

Figure 25. Layout of Customer Master Record

44

Documenting Record Layout

When record layouts are documented, your programs are easier to write. Figure
25 shows the layout of a customer master record. A record layout should include
the order of the fields in the record, the length of each field, and the name of each
field.

Record Length

Although field lengths within a record may vary, the field lengths for the same fields
in each record in a file should be the same, and all records in a particular file must
be the same length. Record length is the sum of the field lengths (including reserved
space).

In our ini.tial example in this section, the sum of the fields was set at 116 positions.
However, record length (Figure 25) was established at 128, to reserve 12 positions
for data that might be needed at a later time.

Block Length

Information about blocks may also be required in your programs. A block is the
number of records transferred between a disk file and the processing unit (input) or
between the processing unit and a disk file (output). Although only one record at
a time is available for processing by your program, one or several records m.aY be
transferred at one time. When more than one record is transferred, the records are
blocked. Transferring blocked records can result in more rapid processing. When
only one record is transferred at a time, the records are unblocked. Transferring
blocks of records can decrease the time required to perform a job, because when
records are transferred one at a time, access time is required for the disk access arm
to locate each record, and when several records are transferred at a time, access time
is usually less.

You may want to use unblocked records when a program takes a large amount of
storage. Total time to do the job may incerase, but your program will fit in storage.

Block length is a multiple of record length. For example, if your record length
is 64, block length could be 256 (64 x 4 = 256). Block length in this case is
four times as large as record length. The multiple 4 indicates the number of records
you want transferred at one ti me.

The design of System/3 influences block length. Recall that the smallest division
of a disk is a sector, and it can contain up to 256 characters. The system transfers
data in sectors, that is, multiples of 256 characters. If your record length is 128, you
might have a block length of 256, indicating that you want two records transferred
(128 x 2 = 256). Or you might have a block length of 512, indicating that four
records are to be transferred (128 x 4 = 512).

For efficient blocking, you should choose a record length that is a multiple of
256 (256 x 2 = 512) or submultiple of 256. A submultiple is a number that di
vides into 256 a vvhole number of times. For example, 64 is a submultiple of
256 (256 + 64 = 4). See Figure 26 for examples of how record length affects
computed block length.

You can, however, specify a record length that is not a multiple or submultiple of
256. The system allows you complete flexibility in choosing a record length to fit
your application and your disk storage capacity. When you use a record length
which is not a multiple or submultiple of 256, no disk storage is wasted; some records
will simply reside in more than one sector.

Sector A Sector B

100 100 56 I 44 100

Record 1 Record 2 '-v-"
Record 3

However, when you specify 100-character records as shown in the example, the
computer requires more main storage to process these records.

..

Planning Disk Files 45

46

Input/Output Number of
Record Area Allocated Records per
Length by RPG II** Block

Group A Group B* Group A Group B

32 256 256 8 8

60 256 512 4 8

64 256 256 4 4

80 256 512 3 6

96 256 512 2 5

128 256 256 2 2

256 256 256 1 1

512 512 512 1 1

*Files in Group B can require a larger input/output area
than files in Group A.

Group A Files

Consecutive Output
Consecutive Input
Indexed Input without

Add or Update, Pro
cessed Sequentially
(Models 6 and 10)

Indexed Output

Group B Files

Consecutive Update
Indexed Input with Add

or Update
Indexed File; Processed

Randomly (Model 15)
Direct File

**These entries represent the number of bytes of 1/0 area
that RPG II will use, assuming that the block length you
have specified is less than or equal to the values shown
in this figure, and that the block length is a multiple of
record length. If the specified block length is greater
than the values shown, RPG 11 will round the block
length so that the computed size is~ multiple of 256.

Note: This figure applies to: 5444 and 5445 files, single
110 areas for data only, single volume files only.

Figure 26. Size of Input/Output Area Computed by RPG II for
Disk Files

L

You recall that the system always transfers data from disk to the computer in
increments of sectors. To process record 3, therefore, two sectors must be in
main storage, sector A and sector B. The first 56 characters of record 3 reside in
sector A; the remaining 44 reside in sector B. Thus, to process 1 OD-character
records with a block length of 100 requires that 512 characters (two sectors) be
available in main storage.

As another example, suppose you specified 1 DO-character records with a block
length of 400. Four 100-character records can span three sectors. To process your
records in this case required 768 characters (three sectors) in main storage.

Sector B Sector C Sector D

100 l12 I 88 100 68 I 32 100

~ ~

Record 6 Record 7 Record 8 Record 9

Block length of 400

The block length for disk records is specified on an RPG 11 File Description
Specifications sheet, and can be from 1 to 9999 bytes for disk files. The block
length in a given program does not have to be the same as the block length speci
fied when loading the file. Block length does not affect the way that records are
written on disk, but is used to specify the amount of core to be used for the 1/0
area in the processing program. Block length can be as large or as small as the
given program will allow; with a large block length, more records are available
(in core) at a given time than if no blocking is specified. In RPG II, if block length
is specified as equal to record length, the compiler will assign an efficient block
length, to take advantage of the fact that the 1/0 area must be a multiple of the
sector size (256 bytes). ·

Blocking can be an advantage if you are likely to process multiple records in the
block - sequential processing, for example. However, if you are processing se
quentially with additions, blocking may have an adverse affect on performance for
Models 6 and 10; blocking does not affect performance for Model 15.

When processing randomly, you shouldn't specify a large blocking factor unless
you are certain that the system will process more than one record in a block
before getting another block.

Planning Disk Files 47

48

Shared Input/Output Area for Model 6 and Model 10 Disk System - RPG II or COBOL
and 5444 Only

Usually a program uses one input/output (1/0) area for each file. However, if
you are using the 5444, and you have a large program that cannot run in the storage
available, you may want to use a shared 1/0 area to reduce the amount of storage
needed. A shared 1/0 area means that all the 5444 disk files in the program share
a single 1/0 area. However, since a shared 1/0 area increases the time required to
process your program, you should not use shared 1/0 areas unless your program is

too large to fit into main storage. In COBOL, the SAME AREA clause is used to
share an 1/0 area. Shared 1/0 is not available on the Model 15.

To determine the total 1/0 are~ needed when each file has its own 1/0 area, you
find the block lengths assigned to each file and add them together. Determining
the block length for RPG 11 is discussed under Block Length earlier in this chapter.
For a discussion of this capability in FORTRAN, see Sharing Buffers in the IBM
System/3 FORTRAN IV Reference Manual, SC28-6874; for a discussion of this
capability in COBOL, see Same Area Clause in the IBM System/3 Subset Ameri
can National Standard COBOL, GC28-6452.

Shared 1/0 does not allow for record blocking. To determine the size of the
shared 1/0 area needed, you find the largest record size in any one disk file
used by the program. The 1/0 area size is then determined as follows:

1. If the record size is 256 bytes, or a submultiple of 256, the 1/0 area size
is 256 bytes.

2. If the record size is a multiple of 256 bytes, the 1/0 area size is equal to the
record size.

3. If the record size is neither a multiple nor a submultiple of 256 bytes, the
1/0 area size is equal to the record size plus 255 bytes, rounded to the next
higher 256-byte increment. Shared 1/0 areas cannot be specified in a program
if that program also specifies a 5445 file.

Buffered 1/0

For certain types of processing (such as consecutive input or output), you can
specify an extra 1/0 area. When this process, called buffering, is specified, an
extra area is reserved so that the records being processed are directed first to one
area, then to the other. Although specifying an extra 1/0 area allows the processing
operations being performed to be overlapped, extra main storage is required, which

reduces the amount of main storage available to the program. Use of dual 1/0
areas in an RPG 11 program may cause overlays that might not otherwise have been
generated.

Determining Size and Location of a Disk File

Another aspect of the planning stage is determining (1) how much disk space a
file requires and (2) where the file will be located on the disk. These two factors
must be considered together since they directly affect each other. For example,
two files are already written on a disk, on cylinders 8-155. A third file is to be
created; it will occupy 55 cylinders. Since the disk in this example contains 200
cylinders, this file has too many cylinders to be contained on this disk (155 + 55 =

210). The file must be written on another disk.

Determining the Size of a Disk File

Appendix A contains examples of the calculations necessary to determine how
much space a disk file requires. The following factors are discussed in Appendix
A:

• Determining number of records in a file

• Calculating record space

• Determining number of tracks needed (5444 and 5445)

• Calculating index space (5444 and 5445)

• Calculating space for disk track index (5445 only)

Note: The file planning information discussed in this section is basically the same
for the I BM 5444 and the I BM 5445. The calculations for determining the size
of a disk file {Appendix A) are different, however, because: the 5445 has only 20
sectors per track as compared to 24 sectors per track for the 5444; for an indexed
file, the disk address in the index entry is four characters in the 5445 instead of
three in the 5444; and, a disk track index may exist for a 5445 file, but not for
a 5444 file.

Deciding Where the File on Disk is to be Located

After you determine the amount of space the file requires, you can decide where
the file should be located on the disk. Since the number of files a disk can contain
depends on the size of the files, it is a good practice to document which files are on
which disk.

The Disk File Layout Chart (Figure 27) is available for this purpose. The Disk File
Layout Chart shows space available on the fixed and removable 5444 disks. There are
406 positions (0-405), represented on the chart. Each position corresponds to a
track. In Figure 27, notice that tracks 0 through 7 have a line through them. These
tracks are reserved for system use only and are not available for data files.

As you create more files, you can refer to the chart of a particular disk to determine
the amount of available space on that disk. It is helpful then to indicate the re
quired space for each file on a Disk File Layout Chart. It is also helpful to indicate
the name of the file on the chart.

Planning Disk Files 49

IB~
lnternatiol\lll 8u1inn1 Mechinn Corpor1tion

Form X21-9108·
Printed In U.S.A.

System/3 Disk File Layout Chert

SYSTEM _____________ _

PROGRAMMER------------- loATE

BJ~jj · 1 I I 1" I I I i" 11 I 1"1 I 1 i'°l 11 ('I I I i"l I 11" 1 11 i"l I I I" I 11 1" 1111" 11 I i"'I
1 3 5 7 9 17 25 33 41 49 57 65 73 81 89 97 105

00%f 111 i"l 11 1''111 ri 11 n 11 n 11 1''111 !"111 n 11 ri 111"111 !''111 n
1 3 5 7 9 17 25 33 41 49 57 65 73 81 89 97 105

I n I I n I I n I I n I I n 11 n I I n 11 n 11 1"11 I 1"1 11 n I I n I I n
109 117 125 133 141 149 157 165 173 181 189 197 205

I n 11 n 11 n 11 n 11 n 11 n 11 n 11 n 11 f"l 11 Cl 11 n 11 n 11 n
109 117 125 133 141 149 157 165 173 181 189 197 205

I (
08

1 I I 1
216

1 I I l
224

I I I l
232

I I I 1
240

1 I I 1
248

1 I I 1
256

1 I I 1
264

1 I I l
212

I I I 1
280

1 I I l
288

I I I 1
296

1 I I 1
304

1
209 217 225 233 241 249 257 265 273 281 289 297 305

I ri I I n I I i"l 1 I i"l I I n I 1 · n I I f "1 11 n I I i"l I I n 11 n I I n I I n
209 217 225 233 241 249 257 265 273 281 289 297 305

Figure 27. Disk File Layout Chart

IB~

Figure 28 shows the space and location of the name and address file using the in
dexed method. The calculations to determine the amount of disk space required
can be done on the back of the chart.

System/3 Disk File Layout Chert

Form X21·9108
Printed in U.S.A.

SYSTEM ______________ _

PROGRAMMER FILE INDEX RECORDS loATE

ENTRY ~ ---..
0 2 4 6~..---2.i 32 40 48 Sil 64 72 80 88 96 104

t2~~51 I I I I I I I I I I I I I I 1 I 11 I I I I I I I I I I I I
1 3 5 7 9 17 25 33 41 49 57 65 73 81 89 97 105

00~
8

1 I I I 1
6

I I I (
4

1 I I 1'
2

I I I i4° I I I (
8

1 I I n I I 164

1 I I I 12 I I I i8° I I I (
8

1 I I 1
96

1. I I n
1 3 5 7 9 17 25 33 41 49 57 65 73 81 89 97 105

,_.-- RE~=-:_DS --------..___

I n I I n I I n I I n I I 1'"1 I I n I I 1"'1 I I 1"1 11 n I I n 11 n 11 n I I n
109 111 125 133 141 149 · 151 165 113 181 189 191 205 I

Figure 28. Disk File Layout for an Indexed File

50

Placement of files in relation to each other also has an effect on the performance
achieved when processing them. For example, when adding records to a file,
it is desirable to have the input on one disk drive and the file on another drive.
In this way, the files can be located as follows for a program that processes an
indexed file and adds records to it:

Input (Adds)
.-- I --.;;;:J

R1
_J"""J.

.....,
_n I

====;::====**================== F1

Object Library

Indexed File

If the program used requires overlays, it might be desirable (depending on your
application) for the input file to be located close to the object library to reduce arm
movement on drive 1. In each RPG II cycle, it might be necessary for the arm to go to
the input area f_or records to be added, and then to the object library for overlays.

1

Consideration might also be given to placing the input close to the index of the
file, or near the midpoint of the file, or even near the end of the file, depending on
the expected distribution of added records.

After you have determined where to place your file, you can code the LOCATION
parameter of the Fl LE statement to tell disk system management on which track
the file is to begin. This sample FILE statement contains a LOCATION para
meter to tell disk system management that Fl LEA is to be located on disk pack

VOL 1, beginning on track 8:

4 8 12 16 20 24 28 32 36 40 44 48 52

!Fl/ LE MA IM£ -IEJ ll E~ ~~ l8C ~- iV!O Ll Lt_u NI]- R1 b.tr ~IA ~~ s-121a ~L IQC A[J I()
I

Automatic File Allocation

1

If you do not specify the LOCATION parameter on the Fl LE statement, FI LEA is
located on the disk pack automatically for you.

4 8 12 16 20 24 28 32 36 40 44 48 52

~l Lt IMA 1t1E -lE IL E~ Je Atl f< ... l\I~ Ll IL I~ I Jj ~lB lt..... IA~ [IR l<S -~~
I I

56

IN-S

60

Planning Disk Files 51

52

The process used by disk system management to allocate file space for you is
known as automatic file allocation.

When allocating file space, disk system management calculates the length of the
file and checks the volume label to determine which tracks are available for
allocation. {The volume label contains the status of each track and indicates which
tracks are available for allocation.) Disk system management then:

1. Finds a continuous string of available tracks.

2. Allocates space for permanent files, then temporary files, and finally scratch
files, if multiple files are being allocated.

Disk system management places your file on the smallest continuous string of
available tracks that can contain your file. For example, it can determine that your
file is 10 tracks long and find one string of 12 available tracks and another of 15
tracks. It places your file in the string of 12 tracks because the 12-track string
is closer to the length of the file.

If disk system management finds two strings and both have the same number of
available tracks, the file is placed at the highest numbered available location. Also,
if your file is the first file placed on a disk, the system allocates space for the file
beginning at the highest numbered track. The system allocates space beginning
at the highest location. This allows you as many available tracks as possible next to
the object library {the object library is located at the lowest numbered tracks), so
that the object library can expand if necessary.

If an area is found containing the same number of available tracks and two files
are already on either side of the area, disk system management determines the type
of file to the left of the available track. If the file to the left has similar attri
butes, the new file is left-adjusted; if the file to the left is not similar, the new file
is right-adjusted, as shown below:

Available Scratch
Part A Permanent File New Permanent File Tracks File

Available Permanent
Part 8 Scratch File Tracks New Permanent File File

Disk system management determines the type of file to the left
of the available tracks. If the file to the left is similar, the new
file is left-adjusted (Part A). If the file to the left is not similar,
it is right-adjusted (Part 8).

Files are placed adjacent to files with similar attributes, so there will be as few
u·nused tracks between files as possible. It is more important, however, to place
a new file on a string of tracks as close to the length of your file as possible. There
fore, a permanent file could be allocated space next to a· temporary or scratch file
if the number of tracks at that location is greater than or equal to the number of
tracks in the permanent file.

Considerations for Using Automatic File Allocation

It is easier to let disk system management allocate file space, but there are some
considerations to make in determining whether or not to use automatic file alloca
tion. After you have gained experience, you should be able to place a file on disk

more efficiently than can disk system management. Disk system management may
leave a string of available tracks between files which is unusable because the string
is not long enough to contain another file.

If you plan your own files and keep your layout chart up-to-date, you can determine
where files are located by checking the Disk File Layout Chart. If you allocate
space for some files automatically and then want to place a file on disk yourself, how
ever, you must check the volume label to determine what tracks are available. This
can be done by using the File and Volume Label Display utility program. (See the
IBM System/3 Model 10 Disk System Control Programming Reference Manual,
GC21-7512, the IBM System/3 Model 6 Operation Control Language and Disk Utili
ty Programs Reference Manual, GC21-7516, or the IBM System/3 Model 15 System
Control Programming Reference Manual, GC21-5077, for more information on this
utility program.)

Automatic file allocation can increase the time needed to copy programs using
the Disk Copy/Dump utility program. (See the appropriate disk utilities reference
manual previously referenced for more information on this utility program.) For
example, you have used automatic file allocation and now wish to copy a file onto
tracks 30 through 50 of the disk on F1. However, disk system management placed
the file to be copied on tracks 50 th rough 70 of the disk R 1. Copying time increases
when a file is copied from one location on a disk to another location on another
disk, because the access mechanism must move. It would therefore be advantageous
to allocate the file space on tracks 30 through 50 of R 1 yourself so that the file
can be copied onto the same tracks (tracks 30 through 50) of F1.

Using the automatic work file allocation function (auto-allocate) when running the
Disk Sort program generally increases the time needed to run a sort job; auto
allocate does not always provide the work file arrangement needed for a fast sort
run. If you are concerned with minimizing sort run time, use a well planned work
file and work file statement, rather than auto-allocate. An advantage of using auto
allocate is that if sufficient contiguous space is not available, the system will find
work space that may be located in different areas of the same pack or on different
packs.

Automatic file allocation provides for effective use of file space, but not for file
usage; it does not provide planning for multiple input files in a program or job-to-job

transitions. If you plan your own file locations, you can place files that are used
together near one another on disk. When files used together are placed near one
another, processing time may be improved.

Split Cylinder Capability (5445)

The 5445 has a split cylinder capability for sequential or direct files (see Figure
29). This means that two or more sequential or direct files can be arranged on
two or more cylinders with each file occupying a corresponding part of each
cylinder. For example, you may allocate File A on tracks 0-3 of cylinders 3-5
and File Bon tracks 4-7 on cylinders 3-5. The advantage of the split cylinder
capability is that you can arrange your files in combinations to decrease the access
time required. For instance, the first file on the cylinder could be a master file
and the remaining tracks on the cylinder could be reserved for files associated with
the master file.

Planning Disk Files 53

54

00

' Tracks in
a Cylinder

19

-l File A 'Master File'
_ \ Tracks 0-3 Cylinders 3-5

...,} File B
_ Tracks 4-7 Cylinders 3-5

Cylinders 3-5

Figure 29. Cylinder Concept on the I BM 5445 Showing Split Cylinder Capability

Data File Security

Once you have stored your data files on disk, you will want to ensure that the
files are not accidentally destroyed. For instance, a wrong disk pack could be
mounted, a wrong program could be loadeq, or a valid data file could be written
over. To avoid these problems, the labels and volume labels are used to provide
file protection.

Every data file stored on disk is protected by a file label containing file character
istics. Some typical fields in the file label are the filename, creation date, re
tention status of the file, and file type. A file cannot be accessed or changed until
the file label is checked.

The volume label defines the characteristics of the volume. Some typical fields
in the volume label are the volume serial number, owner identification, and (for
5444 only) available tracks.

To use a particular disk file required in a program, the operator must use OCL
statements to provide information that the system uses to verify that the correct
pack is mounted and that the required disk file or disk area is available.

CHAPTER 8. STORING PROGRAMS AND PROCEDURES ON DISK

In the IBM System/3 Model 6, Model 10 Disk System, and Model 15, programs and
OCL statements can be stored on an IBM 5444 Disk Storage Drive and transferred as
needed into main storage. (This chapter does not apply to IBM 5445 Disk Storage,
which can not be used to store programs of OCL statements.)

The area_ in which programs are stored on disk is called a library. Two types of libraries
can be located on a disk: object libraries and source libraries. Object libraries contain
object programs and routines; source libraries contain source programs, OCL state
ments, and utility program control statements.

When OCL statements and utility program control statements are stored in a source
library, they are called procedures.

The System/3 Library Maintenance program can be used to:

• Allocate space for libraries.

• Enter programs and procedures into libraries.

• Maintain libraries.

More information about this program and its functions is given later in this chapter
under Library Maintenance Program.

Advantages of Storing Programs and Procedures on Disk

Increasing System Efficiency

All programs and procedures can be placed on a master pack and copied to the fixed
disk for execution. For example, you can load an entire series of application programs
and procedures on a fixed disk. Once your programs and procedures are located on
disk, programs can be transferred quickly into main storage, thereby decreasing the
amount of time to run your jobs. Assume you run payroll every Friday morning. On
Friday, you can use a pretested procedure to transfer all the required programs and
their procedures from the master pack to a fixed disk, then run payroll.

Two library functions make this method particularly efficient: naming conventions
and object library expansion.

Naming Conventions: If you establish and use a naming convention, you can transfer
all the correct programs and procedures from the master pack to the fixed disk using
one Library Maintenance control statement. The names of all programs and procedures
used in an application series should begin with the same letters. For example, you
might name all payroll programs and their corresponding procedures beginning with
the letters PAY. Then, with one COPY control statement, all payroll programs and
procedures in both libraries will be copied onto the fixed disk.

Storing Programs and Procedures on Disk 55

56

A COPY control statement is coded as follows:

Object Library Expansion: Object libraries can be expanded for temporary entries.
When you copy an object program to the object library on fixed disk, you can designate
it as a temporary entry. Then if you add a permanent entry, reallocate the library, or
delete all temporary entries, the object library will return to its normal size. Consequentl1
by using this expansion capability you use a minimum amount of storage on the fixed
disk, leaving it free to perform other functions when you are not using the object
library.

Storing Programs and Their Data Files on Removable Disks

If space on the fixed disk is limited, or if you prefer, you can store programs
and data files on a removable disk. By placing programs and data files on the same
removable disk, you can reduce the number of times disk packs must be changed.
This is especially true if a program uses only one data file. This also provides more
available space on the fixed disk.

There are certain things you must consider when placing both programs and data
files on a removable disk, however. First, additional space is required on the removable
disk.

Maintaining programs on removable disks is more difficult, because they are scattered
across several disks instead of all located on a master pack. For example, if the format
of an inventory record changed, you might be required to search several packs to up
date all the programs using that record, rather than searching just one master pack.
You should have a master pack so that you have copies of your programs if something
happens to one of the other disks.

You should not place data and programs on the same packs if you are processing multi
volume files. The pack containing a program cannot be removed until the program
run is completed.

Locations of Libraries on Disk

You can place a source library, an object library, or both on a disk. If space is allocated
for only one library, the Library Maintenance program places the library in the first
available disk area large enough to contain the library.

If you are allocating space for a source library on a disk containing an object library, a
disk area large enough for the source library must immediately follow the object library
(Figure 30). Note: The Library Maintenance' program will move the object library to

allow space for the source library which must precede it.

If an object library is being allocated on a disk with a source library, space for the
object library must immediately follow the source library.

User Area

Directory

Source Ubrary

Directory

Object Library
- - - - - - - - ___ Upper Boundary

User Area

Figure 30. Relative Positions of Libraries on Disk

Source Libraries

Source libraries can contain source program statements and procedures. Examples
of source statements are RPG 11 source programs and sequence specifica~ions for
the Disk Sort program.

Procedures are sets of OCL statements. The procedures for utility programs can
include program control statements.

Entries in the source library can be comprised of any valid System/3 characters.
Figure 31 shows the format of the source library.

User Area

Source Library Directory

Source Library containing:

1. Source program
statements

2. Procedures

Object Library Directory

optional

Figure 31. Format of the Source Library

Storing Programs and Procedures on Disk 57

58

The source library is one physical area containing two logically different types of
entries. When these entries are copied into source libraries, they are given different
source library designations. Source programs are given an S library designation;
procedures are given a P library designation. Figure 32 shows the logical entries within
the source library.

Source Library

S Library Entries

and

P Library Entries

The S library entries are source programs. Procedures
cannot be executed from the source library.

The P library entries are procedures; procedures can be
execu,ted.

Figure 32. Logical Entries within the Source Library

Physical Characteristics of the Source Library

Size: The minimum size of a source library is one track.

Directory: Note the area labeled source library directory in Figure 31. The directory
acts as a table of contents, and contains the name and location of each source library
entry. The first two sectors of the first track are always assigned to the directory with
additional sectors used as needed.

Organization of Entries: Entries (programs and procedures) within the source library
need not be stored in consecutive sectors. An entry can be stored in widely separated
sectors. Within each sector is a pointer to the sector that contains the next part of
the entry.

The boundaries of the source library cannot be expanded; therefore, an entry must
fit within the available library space. The system provides maximum space within
the prescribed limits of the source library by compressing entries. That is, all dup
licate characters are removed from entries. Later, if the entries are used, the dupli
cate characters are reinserted.

Object Libraries

The object library is a disk area used to store object programs and routines. Object
programs (executable rpograms) are programs and subroutines that can be loaded.
for execution. Routines (nonexecutable programs) are programs and subroutines·
that need.further translation before being loaded for execution. Nonexecutable
programs are used by a compiler and must be on the same disk pack as the compiler.,
Figure 33 is a sample object library.

Source Library (optional)

Object Library Directory

Object Library containing:

1. Executable object
programs

2. Routines (nonexecutable
object programs)

Upper Boundary

User Area

Figure 33. Format of the Object Library

The object library is an area on disk containing two logically different types of entries:
object programs and routines. When these entries are copied into the object library,
they are given different object library designations. Object programs are given an 0
library designation; routines are given an R library designation. Figure 34 shows the
logical library entries within the object library.

Object Library

0 Library Entries

Permanent Entries and

R Library Entries

0 Library Entries

Temporary Entries and

R Library Entries

The 0 library entries are executable programs. They are
loaded by the LOAD statement.

The R library entries are nonexecutable routines.

Figure 34. Logical Parts of an Object Library

Storing.Programs and Procedures on Disk 59

60

Physical Characteristics of the Object Library

Size: You can build an object library an any 5444 disk pack, but you must have
one library online containing the system programs. The minimum size of an object
library is three tracks.

The disk area for the object library consisting of system programs must also be
large enough to contain a work area for disk system management. The· number of
tracks for the work area space is not included in the number of tracks you specify
for the library; the Library Maintenance program calculates and assigns that addition
al space for you.

The amount of additional space needed depends on the capacity of your system
and whether you have the Roll-Out/Roll-In or Checkpoint/Restart capability, or
the dual programming Feature. For Model 6, you may need from two to nine
additional tracks; for Model· 10, you may need from two to 17 additional tracks;
for Model 15, you may need from four to 15 additional tracks. For more informa
tion, refer to the appropriate reference manual (as described in the Preface of
this manual).

Directory: The Library Maintenance program creates a directory for every object
library (Figure 33). The directory acts as a table of contents and contains the name
and location of the object library entries. If the object library is on a system pack,
three of the requested tracks are reserved for the directory. If not, only the first
track is reserved for the directory. The directory size is overidden if the operand
specifying the size of the object I ibrary directory is coded ..

Upper Boundary: The upper boundary of the object library (Figure 33) will auto
matically expand if more space is needed for temporary entries and if the area next
to the library is available. When permanent entries are placed in the library, all the
temporary entries are deleted and the object library returns to its normal size.

To make efficient use of this feature, the area next to the upper boundary of the
object library should be kept free of data files. When disk system management auto
matically allocates file space for you, the area next to the object library is probably
free because your files are placed as close to the end of the disk pack as possible.
When allocating your own file space, you should also place your files toward the end
of the pack to leave room for object library expansion.

Organization of Entries: Entries are stored in the object library serially; that is, a
20-sector program occupies 20 consecutive sectors. Temporary entries follow all
permanent entries in the object library. A new permanent entry is loaded into the
first available space large enough to hold it, usually the space following the last per
manent entry.

Gaps can occur in the object library when a permanent entry is deleted and replaced
with one using fewer sectors. The Library Maintenance program scans the library to
locate available sectors, then places the entry into the smallest gap large enough to
hold it.

You should use the Library Maintenance program to reorganize the library when you
delete permanent entries, when a great number of additions and deletions take place,
or when there is no apparent room.

In reorganizing the library, the Library Maintenance program shifts entries so that

gaps do not appear between them, making more sectors available for use.

Frequent adding, replacing, and deleting of entries may result in unused sectors.
You can determine how many sectors are available by printing the system directory
using the Library Maintenance program.

Storing Programs and Procedures into Libraries

You can use any of three methods to store programs into libraries: the Library

Maintenance program, a specification of the RPG 11 Control Card sheet, FORTRAN
or COBOL Process statement, or the COMPILE OCL statement.

Library Maintenance Program

Depending on your specifications, the Library Maintenance program can:

• Allocate space for a library; create, reorganize, change the size of, or delete a
library.

• Delete entries from a library.

• Copy entries from one location to another within a library or from one library
to another (giving new names if requested), from the input device to a library,
from a file to a library, from a library to a printer, or from a library to a punch.

• Rename library entries.

• Modify source library entries.

For information on the specifications necessary to perform these functions, refer
to the IBM System/3 Model 10 Disk System Control Programming Reference Manual,

GC21-7512, the IBM System/3 Model 15 System Control Programming Reference
Manual, GC21-5077, or the IBM System/3_Model 6 Operation Control Language and
Disk Utility Programs R~ference Manual, GC21-7516, depending on the system
you are using.

Storing Programs and Procedures on Disk 61

62

RPG 11 Control Card Sheet

You can use RPG 11 to indicate the type of object program output you want after
compiling a source program. The compiled program can be stored in an object library
or punched into cards. You us~ally want the object program written in the object
library until you have corrected the severe errors in your program. Programs written
temporarily in the object libr.ary are all overlaid by the next program written perm
anently in the object library; a single program will be overlaid by the next program
of the same name written temporarily in the object library. A program written
permanently in the object library is placed in the smallest gap large enough to hold
it. A program written temporarily in the object library by RPG 11 is written at the
end of the last temporary entry in the library. The object program is written in the
object library that contains the compiler, unless a COMPILE statement indicates
otherwise.

Column 10 on the RPG 11 Control Card sheet is used to specify the object output.
Columns 75-80 are used to name your object program. For detailed information
on the specifications you should make in these columns, see the IBM System/3
RPG II Reference Manual, SC21~7504, or the IBM System/3 Model 6 RPG II
Referenc(! Manual, SC21-7517, depending on the system you are using.

COMPILE OCL Statement

The COMPILE OCL statement tells disk system management to:

1. Compile a source program from a source library and store the object program
in an object library, or

2. Compile a source program from cards and store the object program in an object
library.

For a detailed description of the COMPILE statement, refer to the IBM System/3

Model 10 Disk System Control Programming Reference Manual, GC21-7512, the
IBM System/3 Model 15 System Control Programming Reference Manual, GC21-
5077, or the IBM System/3 Model 6 Operation Control Language and Disk Utility
Programs Reference Manual, GC21-7516, depending on the system you are using.

APPENDIX A. CALCULATING DISK FILE SIZE

This appendix describes the factors to consider when determining how much disk
space a file will require. In some instances, the calculations are different for the
IBM 5444 than for the I BM 5445, in which case the calculations are illustrated
separately.

Determining Number of Records in a File

To determine the disk space required for a file, you must plan how many records
will be in the file at a specified time.

To determine the number of records in a file, you must consider several factors.
First, you must know how many records will be in the file when it is created. If
the file already exists, perhaps as a card file, use the number of records in this file
as a base.

You must also know if records will be added or deleted. If additions are expected,
how many records are expected, and how often will they occur? If records will be
tagged for deletion, consider periodically removing them from the file. By remov
ing records that you no longer need, you free disk space and allow more records to
be added.

Only after considering these factors and the applications that use the file can you
determine the number of records in the file. For example, the customer name and
address file will contain 6000 records at creation time. It is estimated that each
month 200 records will be added and 80 records will be deleted. It is also planned
that the deletion records will be removed once a month. At the end of six months
the file will contain 6720 records (1200 records are added; 480 records are deleted).

6000
+1200

7200
- 480
6720

Records at creation
Records added in six months

Records deleted in six months
Records in file after six months

This example points out another factor to consider. When determining the number
of records in a file, consider expansion for a reasonable time into the future (at
least six months). Of course, most files have deletions, and thus growth is usually
slow. In a file where the number of additions and deletions are about the same,
deleted records need be removed only when the disk space allowed for the file is
filled or when reorganization will improve file access time.

Calculating Disk File Size 63

64

Calculating Record Space

The amount of space required for a file also depends upon whether your file
organization method is sequential, indexed, or direct. If an indexed file, a
sequential file, and a direct file all contain the same number of records, the amount
of space required for the records in all files is the same. However, additional space
is required for the index of an indexed file.

Since the same amount of space is required for the records in any file organization
of the same size (the same number of records), record space is calculated in the
same way for all files. To determine record space, you must know the number of
characters in the file.

To calculate the number of characters in a file, multiply the number of records
(allowing for file expansion) by the length of each record. For the customer name
and address file, there will be 6,720 records in the file at the end of six months.
Each record contains 128 characters. Thus, the number of characters in the file is
calculated as:

6720

x128

860,160

Number of records in the file

Number of characters in each record

Total characters in the file

Note: FORTRAN formatted sequential files must have a record length of 16, 32, 64,
128, or 256 bytes. FORTRAN unformatted sequential files have a record length calcu
lated as follows: divide the record length by 248 and round the result up to the next
whole number. Multiply that number by 256 to get the storage space required for each
record on disk. (The length descriptor for each sector is 8 bytes, which reduces the
available data space from 256 bytes - the sector size - to 248 bytes.)

Determining How Many Tracks are Needed - 5444

To store your file on.disk, you must determine how many tracks will be needed for
that file. Since a track on the 5444 contains 24 sectors and a sector contains 256
characters, each track can contain 6,144 characters (24 x 256 = 6144). To calculate
the number of tracks the file requires, divide the number of characters in the file
by 6144. In our example this calaulation is:

140

Characters in a track 6144) 860160

Tracks required

Characters in the file

The calculation results in a quotient of 140 and no remainder. So 140 tracks are
needed for the name and address file.

When your calculation has a remainder, always add one more track to the quotient.
Otherwise, space is not reserved for the last one or more records.

Determining How Many Tracks are Needed - 5445

Since a track on the 5445 contains 20 sectors and a sector contains 256 characters,
each track can contain 5, 120 characters (20 x 256 = 5120). To calculate the num
ber of tracks the file requires, divide the number of characters in the file by 5120.
If the file contains 6720 records and each record contains 128 characters, the num
ber of characters in the file is 860, 160. To find the number of tracks this file would
require on the 5445, the calculation is:

168

Characters in a track 5120J 860160

Tracks required

Characters in the file

The calculation results in a quotient of 168 and no remainder. So 168 tracks are
needed for the file. When your calculation does have a remainder, always add one
more track to the quotient. Otherwise, space is not reserved for the last one or
more records.

Calculating Index Space - 5444

If the file is indexed, you must also determine the amount of space for the file
index.

Note: FORTRAN does not support indexed files.

To find the space needed for the file index, you must know the size of the index
entry. Recall that an index entry is composed of a key and a disk address. Key
lengths vary, depending on the application, but disk addresses are always three
characters long. Thus, the size of an index entry is the key field length plus 3.

Index Entry Length Key Field Length + 3

For the name and address file, the key fietd is customer number (CUSTNO), and it
is six characters long. In this case, the index.entry length is 9 (6+ 3 = 9).

Another factor affecting index space is sector length. Recall that a sector is the
smallest division of a disk and can contain up to 256 characters. For System/3 an
index entry must be completely contained within a sector: an entry cannot start in
one sector and end in a different sector.

To determine the number of entries that ca·n be written in a sector, divide 256 by the
index entry length. For the name and address example (index entry length is 9), this
calculation is:

28
Index Entry Length 9) 256

-~
76
72
4

Entries in a Sector

Remainder

Notice that the division results in a remainder of 4 .. Thus, 28 entries can be written
in one sector. The last four positions of the sector are not used since a complete
entry must be written in a sector. The twenty-ninth entry is written in the first
nine positions of the next sector.

Calculating Disk File Size 65

66

Remember, when calculating the number of index entries in a sector, drop the
remainder.

Since index space, like record space, is specified in number of tracks, you must con
vert the sector space to track space. To do this, you must perform two calculations.

First divide the number of index entries that can be contained in a sector into the
number of records. In our example, this calculation is:

240
Entries in a Sector 28) 6720

Sectors
Records

You must then add one sector to the result; this sector will serve as a delimiter. The
result of this calculation (240 + 1 = 241 in this example) specifies how many sectors
are needed for the index. If you plan to add to the file at a later time, you must in
clude a minimum of two additional sectors in the final size of the index. One of
these sectors is used as a delimiter for the added key area. The other (possibly more
than one other) sector is used to temporarily store the added keys, until they are
inserted into the original index area at EOF.

Since there are 24 sectors in a track, to find the number of tracks required, divide
the number of sectors needed by 24.

1 o+1 = 11 Tracks

24 ~ Sectors needed
240

In this example, since there is a remainder, the quotient should be rounded up to
the next higher number (11) in order to reserve enough space for the index. Thus,
in this example, 11 tracks will be required to contain the index.

Finally, for an indexed file, add the number of tracks required for the index to the
number of tracks required for the records of the file. In our example, the sum is
151 tracks.

140 (records) + 11 (index) 151

Calculating Index Space - 5445

If your file is indexed, you must determine the amount of space needed for the file
index.

Note: FORTRAN does not support indexed files.

Index space, like file space, is specified in number of tracks. To find the space
needed for the index, you must first find the size of the index entry. The 5445
differs from the 5444 in that the disk address of the index entry for the 5445 is
always four characters long. Thus, the size of the index entry is the key field length
plus 4.

Index Entry Length = Key Field Length + 4

Thus, if you have a key field, such as a customer number, that is six characters long,
the index entry length is 10 (6 + 4 = 10).

Next you must determine the number of entries that can be written in a sector. To
do this, divide 256 (the number of characters per sector) by the index entry length.
Thus, if the index entry length is 10, this calculation is:

25
Index Entry Length 10 f256

20
56
50
6

Entries in a Sector

Remainder

The division results in a remainder of 6. Thus, 25 entries can be written in one
sector. The last six positions of the sector are not used since a complete entry must
be written in a sector. The twenty-sixth entry wil I be written in the first ten posi·
tions of the next sector.

Now you must convert the sector space to track space. To do this, you must perform
two calculations. First divide the number of index entries that can be contained in
a sector into the number of records.

Calculating Disk File Size 67

68

Since this calculation has a remainder, one sector should be added to your quotient
so that enough sectors will be reserved for all the index entries.
In our example, this calculation is:

Entries in a Sector
268 + 1 = 269 Sectors

25) 6720 Records
50
172
150

220
200

20 Remainder

Then, add one more sector to your total; this sector serves as a delimiter. Thus,
270 sectors are needed for the index in this example. If you P!an to add to the file
at a later time, you must include a minimum of two additional sectors in the final
size of the index. One of these sectors is used as a delimiter for the added key area.
The other (possibly more than one other) sector is used to temporarily store the
added keys until they are inserted into the original index area at EOF.

There are 20 sectors in a track on the 5445, so to find the number of tracks required,
divide the number of sectors by 20. tn this example, there is a remainder of 1 O;
therefore, you should add one track to your answer. Otherwise, not enough space
will be reserved for the index.

13 + 1 = 14 Tracks

20 J 270 Sectors needed

~
70
60
10 Remainder

For this example, 14 tracks are needed for the index. For information on how to
calculate the disk track index (5445) see Appendix B.

File Size

The file size (number of records in a file), the length of the records in the file, and
whether or not a file index is used determine the physical size of the file and whether
the file needs to be multivolume. The number of records in a file also affects se
quential processing and loading, as well as key sort.

When loading an indexed file, you can specify either the number of records in the
file, or the number of tracks. When you specify the number of records, the system
determines the number of data tracks, the number of file index tracks, and the num
ber of disk track index tracks by computing record storage requirements, and then
computing index storage requirements. When you specify the number of tracks, the
system determines how the specified space is to be split between data tracks, file
index tracks, and disk track index tracks. Figure 35 illustrates·how the system
splits an area on the 5445, when the TRACKS parameter is used in the OCL state·
ment.

Number Disk Number Number

of Key Record Track File of of Data

Tracks Length Length Index Index Data Keys Records

5 5 64 4 560 320
5 5 128 4 560 160
5 5 256 4 560 80
5 10 64 4 360 320
5 10 128 4 360 160
5 10 256 4 360 80

10 5 64 2 8 1120 640
10 5 128 9 560 360
10 5 256 1 9 560 180
10 10 64 2 8 720 640
10 10 128 9 360 360
10 . 10 256 9 360 180
50 5 64 7 43 3920 3440
50 5 128 4 46 2240 1840
50 5 256 2 48 1120 960
50 10 64 9 41 3240 3280
50 10 128 5 45 1800 1800

* 50 10 256 3 47 1080 940
100 5 64 13 87 7280 6960
100 5 128 7 93 3920 3720
100 5 256 4 96 2240 1920
100 10 64 19 80 6840 6400
100 10 128 10 90 3600 3600
100 10 256 6. 94 2160 1880
500 5 64 63 436 35280 34880
500 5 128 34 465 19040 18600
500 5 256 18 481 10080 9620
500 10 64 91 408 32760 32640
500 10 128 50 449 18000 17960
500 10 256 27 472 9720 9440

1000 5 64 125 874 70000 69920
1000 5 128 67 932 37520 37280
1000 5 256 35 964 19600 19280
1000 10 64 182 817 65520 65360
1000 10 128 100 899 36000 35960
1000 10 256 53 946 19080 18920
2000 5 64 250 1749 140000 139920
2000 5 128 134 1865 75040 74600
2000 5 256 1 69 1930 38640 38600
2000 10 64 2 364 1634 131040 130720
2000 10 128 1 200 1799 72000 71960
2000 10 256 106 1893 38160 37860
3000 5 64 375 2624 210000 209920
3000 5 128 200 2799 112000 111960
3000 5 256 1 104 2895 58240 57900
3000 10 64 2 546 2452 196560 196160
3000 10 128 1 300 2699 108000 107960
3000 10 256 158 2841 56880 56820
3980 5 64 498 3481 278880 278480
3980 5 128 266 3713 148960 148520
3980 5 256 138 3841 77280 76820
3980 10 64 3 724 3253 260640 260240
3980 10 128 2 398 3580 143280 143200
3980 10 256 210 3769 75600 75380

Figure 35. Sample Record Capacities of Indexed Files on a 5445 Disk if TRACKS Parameter is Used in an OCL Statement

Calculating Disk File Size 69

70

Note: The smaller of the 'Number of Keys' and 'Number of Data Records' entries
for a given example represents the upper limit of the capacity of the file for that
example.

* For example, given that TRACKS is specified as 50, the key length is specified as
10, and the record length is specified as 256; then we can see from the underlined
portion of Figure 35 that:

• No disk track index is required (because the file index is not more than 15
tracks).

• Of the 50 tracks, 3 are used for index and 47 are used for data.

• The 3 index tracks can accommodate 1080 keys.

• The 4 7 data tracks can accommodate 940 records.

Figure 36 shows how many keys can be contained in one track of file index. Track
capacity depends on key length.

Keylength Number of Keys Per Index Track

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

5444

1536
1224
1008

864
768
672
600
552
504
456
432
408
384
360
336
312
288
288
264
264
240'·
240
216
216
216
192
192
192
192

Figure 36. Keys per Index Track

5445'

1020
840
720
640
560
500
460
420
380
360
340
320
300
280
260
240
240
220
220
200
200
180
180
180
160
160
160
160
140

Figure 37 shows the number of tracks needed to store a given number of records,
using various record lengths. This information may prove useful in planning file
requirements.

Disk Requirements for Data Records (Number of tracks required; does not include indexes)

Number of
Records

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000
11500
12000
12500
13000
13500
14000
14500
15000
15500
16000
16500
17000
17500
18000
18500
19000
19500

'20000

Rec-Lth - 50

5444

5
9

13
17
21
25
29
33
37
41
45
49
53
57
62
66
70
74
78
82
86
90
94
98

102
106
110
114
119
123
127
131
135
139
143
147
151
155
159
163

5445

5
10
15
20
25
30
35
40
44
49
54
59
64
69
74
79
84
88
93
98

103
108
113
118
123
127
132
137
142
147
152
157
162
167
171
176
181
186
191
196

Rec-Lth - 64

5444

6
11
16
21
27
32
37
42
47
53
58
63
68
73
79
84
89
94
99

105
110
115
120
125
131
136
141
146
152
157
162
167
172
178
183
188
193
198
204
209

5445

7
13
19
25
32
38
44
50
57
63
69
75
82
88
94

100
107
113
119
125
132
138
144
150
157
163
169
175
182
188
194
200
207
213
219
225
232
238
244
250

Rec-Lth - 100

5444

9
17
25
33
41
49
57
66
74
82
90
98

106
114
123
131
139
147
155
163
171
180
188
196
204
212
220
228
237
245
253
261
269
277
285
293
302
310
318
326

5445

10
20
30
40
49
59
69
79
88
98

108
118
127
137
147
157
167
176
186
196
206
215
225
235
245
254
264
274
284
293
303
313
323
333
342
352
362
372
381
391

Rec-Lth - 128

5444

11
21
32
42
53
63
73
84
94

105
115
125
136
146
157
167
178
188
198
209
219
230
240
250
261
271
282
492
303
313
323
334
344
355
365
375
386
396
407
417

5445

13
25
38
50
63
75
88

100
113
125
138
150
163
175
188
200
213
225
238
250
263
275
288
300
313
325
338
350
363
375
388
400
413
425
438
450
463
475
488
500

Rec-Lth - 256

5444

21
42
63
84

105
125
146
167
188
209
230
250
271
292
313
334
355
375
396
417
438
459
480
500
521
542
563
584
605
625
646
667
688
709
730
750
771
792
813
834

5445

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975

1000

Figure 37 (1 of 2). Disk Requirements for Data Records (number of records varies from 500 to 20000)

Calculating Disk File Size 71

Disk Requirements for Data Records (Number of tracks required; does not include indexes)

Number of
Records

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000
19000

,20000
21000
22000
23000
24000
25000
26000
27000
28000
29000
30000
31000
32000
33000
34000
35000
36000
37000
38000
39000
40000
41000
42000
43000
44000
45000
46000
47000
48000
49000
50000
75000

100000
125000
150000
175000
200000

Rec-Lth - 50

5444

9
17
25
33
41
49
57
66
74
82
90
98

106
114
123
131
139
147
155
163
171
180
188
196
204
212
220
228
237
245
253
261
269
277
285
293
302
310
318
326
334
342
350
359
367
375
383
391
399
'407
611
814

1018
1221
1425
1628

5445

10
20
30
40
49
59
69
79
88
98

108
118
127
137
147
157
167
176
186
196
206
215
225
235
245
254
264
274
284
293
303
313
323
333
342
352
362
372
381
391
401
411
420
430
440
450
459
469
479
489
733
977

1221
1465
1709
1954

Rec-Lth - 64

5444

11
21
32
42
53
63
73
84
94

105
115
125
136
146
157
167
178
188
198
209
219
230
240
250
261
271
282
292
303
313
323
334
344
355
365
375
386
396
407
417
428
438
448
459
469
480
490
500
511
521
782

1042
1303
1563
1823
2084

5445

13
25
38
50
63
75
88

100
113
125
138
150
163
175
188
200
213
225
238
250
263
275
288
300
313
325
338
350
363
375
388
400
413
425
438
450
463
475
488
500
513
525
538
550
563
575
588
600
613
625
938

1250
1563
1875
2188
2500

Rec-Lth - 100

5444

17
33
49
66
82
98

114
131
147
163
180
196
212
228
245
261
277
293
310
326
342
359
375
391
407
424
440
456
473
489
505
521
538
554
570
586
603
619
635
652
668
684
700
717
733
749
765
782
798
814

1221
1628
2035
2442
2849
3256

5445

20
40
59
79
98

118
137
157
176
196
215
235
254
274
293
313
333
352
372
391
411
430
450
469
489
508
528
547
567
586
606
625
645
665
684
704
723
743
762
782
801
821
840
860
879
899
918
938
958
977

1465
1954
2442
2930
3418
3907

Rec-Lth - 128

5444

21
42
63
84

105
125
146
167
188
209
230
250
271
292
313
334
355
375
396
417
438
459
480
500
521
542
563
584
605
625
646
667
688
709
730
750
771
792
813
834
855
875
896
917
938
959
980

1000
1021
1042
1563
2084
2605
3125
3646
4167

5445

25
50
75
100

125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975

1000
1025
1050
1075
1100
1125
1150
1175
1200
1225
1250
1875
2500
3125
3750
4375
5000

Figure 37 (Part 2 of 2). Disk Requirements for Data Records (number of records varies from 1000 to 200,000).

72

Rec-Lth - 256

5444

42
84

125
167
209
250
292
334
375
417
459
500
542
584
625
667
709
750
792
834
875
917
959

1000
1042
1084
1125
1167
1209
1250
1292
1334
1375
1417
1459
1500
1542
1584
1625
1667
1709
1750
1792
1834
1875
1917
1959
2000
2042
2084
3125
4167
5209
6250
7292
8334

5445

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500
3750
5000
6250
7500
8750

10000

Calculating Disk File Sizes - Summary

This section contains step-by-step explanations of some common calculations.

Determining the Number of Tracks in a Sequential or Direct File (5444)

1. number of records x record length= number of characters

2. number of characters (from step 1)
6144 (number of characters/track)

=number of tracks (round to the next
higher whole number)

Determining the Number of Tracks in a Sequential or Direct File (5445)

1. number of records x record length= number of characters

2. number of characters (from step 1)
5120 (number of characters/track)

=number of tracks (round to the next
higher whole number)

Determining the Number of Tracks in an Indexed File (5444)

To determine the number of data tracks in an indexed file, the following two steps
should be used:

1. number of records x record length= number of characters

2. number of characters (from step 1)

6144 (number of characters/track)
=number of data tracks (round to the

next higher whole number)

The following four steps should then be used to determine the number of file index
tracks in an indexed file:

1. key field length+ 3 =index entry length

2.

3.

256 (number of characters/sector)

index entry length (from step 1)

number of records

= number of entries per sector (drop
remainder)

number of entries per sector (from step 2)
=number of sectors (round to

the next higher whole number;
then, add one sector for a de
limiter, and two or more addi
tional sectors if you plan to
add records to the file later)

4. number of sectors (from step 3)

24 (number of sectors/track)
=number of index tracks (round to the

next higher whole number)

Calculating Disk File Size 73

74

Determining the Number of Tracks in an Indexed File (5445)

To determine the number bf data tracks in an indexed file, the following
two steps should be used:

1. number of records x record length= number of characters

2. number of characters (from step 1)
5120 (number of characters/track) number of data tracks (round to the

next higher whole number).

The following four steps should then be followed to determine the number of file
index tracks in an indexed file:

1. key field length + 4 = index length

2. 256 (number of characters/sector)
index entry length (from step 1) =number of entries per sector (drop remainder)

3.

4.

number of records
nu.mber of entries per sector (from step 2)

=number of sectors (round to the
next higher whole number; then,
add one sector for a delimiter, and
two or more additional sectors

number of sectors (from step 3)

20 (number of sectors/track)

if you plan to add records to the
file later)

= number of index tracks (round the next
higher whole number)

Determining the Number of Tracks of Disk Track Index (5445)

If an indexed 5445 file has more than 15 index tracks (from step 4 above), the file
will have a disk track index in addition to the file index. The following two steps
should be used to determine the number of tracks needed for the disk track index:

1.

2.

number of index tracks (greater than 15)
number of entries per sector (from step 2 above)

= number of sectors (round
to the next higher whole
number)

number of sectors (from step 1)
20

= number of disk track index tracks (round
results to the next higher whole number)

The total number of'tracks in a 5445 indexed file can be determined by adding the
number of data tracks, the number of file index tracks, and the number of disk track
index tracks.

Converting Cylinder/Track to Track Number

To convert cylinder/track to track number, multiply cylinder number by the number
of tracks on each cylinder and add track number.

EXAMPLES: 5444
6/1 =cylinder track
6x2+1=13
13 = track number

5445
5/3 =cylinder/track
5 x 20 + 3 = 103
103 =track number

Converting Track Number to Cylinder/Track

To convert track number to cylinder/track, divide track number by the number of
tracks on a cylinder. The quotient is the cylinder and the remainder is the track.

EXAMPLES: 5444
13 = track number
13 + 2 = 6 (remainder 1)
6/1 is the cylinder track

5445
103 =track number
103 + 20 = 5 (remainder 3)
5/3 is the cylinder/track.

Calculating Disk File Size 75

APPENDIX B. PERFORMANCE CONSIDERATIONS FOR PROCESSING
INDEXED FILES

76

Many factors affect the performance of a program that processes ·indexed files using
the System/3 Disk Systems, Model 6, Model 10, or Model 15.

Note: In this section, references to the IBM 5444 Disk Storage Drive apply to
Models 6, 10, and 15 unless specifically noted otherwise; references to I BM 5445
Disk Storage apply only to the Models 10 and 15.

Since you can control most of the factors discussed in this appendix, with proper
planning you can obtain optimum results. However, no single approach will produce
optimum results for all users. An understanding of the factors presented in this
appendix will help you adapt your processing techniques for maximum throughput.

Figure 38 describes a sample program run a number of times using different combina
tions of some of the performance factors. This example reflects performance of a
program that randomly adds records to an indexed file, using the 5445 on a System/3
Model 10 Disk System. Figure 39 describes several other performance factors that
remained stable (as specified) for the runs described in Figure 38. These factors
which should be considered when planning for optimum performance, are discussed
later in this appendix.

Run 1 Run 2 Run 3 Run 4 Run 5

Disk Track Index (22-byte core No Yes Yes Yes Yes
index) Used:

Work File for Key Sort/Merge: No No Yes No Yes
Pre-Sorted Input: No No No Yes Yes
Total Job Time (in minutes) 72 50 40 24 13

Figure 38. Performance Achieved with Sample Program Under Various Conditions.

Programming Considerations

• Buffered 1/0: not used

• Shared 1/0: not used (cannot be used with 5445 files)

• Type of processing: · random update with additions, using CHAIN

• Highest added key save area used: yes

• Other data: no overlays; minimal processing; version 7 of Model 10 Disk System
SCP and RPG 11; minimal printing; 24K dedicated system; total time includes
OCL processing; 79 RPG 11 source statements, including 19 detail calculations
specifications

File Considerations

• Key length: 10 bytes

• Record length: 96 bytes

• Block length: 384 bytes

• File size: 25,000 records

• Location of files: indexed file on D1; work file for key sort ($1NDEX45) on
D2; added records on MFCU (Model 2; 500 cards per minute)

• Number of records added: 1500 (from 1500 cards)

• Distribution of added records: evenly throughout the file

Figure 39. Characteristics of Environment for Performance Test

Performance Considerations For Processing Indexed Files 77

78

Indexes

Indexes are defined as follows:

• The core index is located in main storage. The length of the core index is
specified by the programmer.

• The disk file index (or simply the file index) is located on the disk storage device,
and precedes the data records (see Chapter 3 for more information).

• The disk track index is located on an IBM 5445 Disk Storage drive, immediately
preceding the file index. A disk track index is generated by the system when an
indexed file with more than 15 tracks of file index is loaded.

Figure 40 shows the relationship between these index types when using the 5445.

Main Storage

RPG II

Object

Program

Supervisor

Core
Index

Figure 40. Relationship of Indexes

Core Index

5445 Disk Storage Drive

Disk Track Index

File Index

Data Records
(the indexed file)

The core index is a table containing entries for tracks in the index portion of a data
file. Each entry contains a track address and the lowest key field associated with the
next track. Figure 41 shows the layout on disk of the index for the indexed file,
IND EXT, which contains 1000 records. Since all index entries are contained on three
tracks, the core index for INDEXT shown in Figure 42 contains only three entries,
one per track. Each core index entry contains the low key on the next track and the
track address.

Columns 60-65 of the RPG 11 File Description Specifications sheet are used to specify
the number of bytes you want to reserve for the core index and a highest added key
save area (discussed later in this section). Using the amount of core storage you specify,
the system builds the most efficient core index it can. The core index is built im
mediately before your RPG 11 program is executed. A core index can be specified
for more than one file used in a program; note, however, that core index cannot be
used with shared 1/0.

a a a I I d d d
Record# 1 d Record# 2 d Record# 3 d

Track A
r r

key e key e key e
s s 1 s s

~ 16 Bytes -..J i r

a a a I I
d d d

Record# 385 d Record# 386 d Record# 387 d
Track B

key key key e e e
s s s 1\ s

i r

a a a I d d d
I

Track C Record# 769 d Record# 770 d Record# 771 d

key
r

key r
key r

e e e
s s s 1 s s s

l r
Figure 41. Disk Layout of the Index for INDEXT

~--------- 45 bytes----------.~

xx

Key of
Record#
385 xx

Key of
Record#
769 xx

FFFF

~ 13 bytes--+f t r- 1 3. bytes~ ~ 13 bytes~
Track A address Track B Track C
(2 bytes) address address

(2 bytes) (2 bytes)

Figure 42. Core Index for INDEXT

Record# 383
key

Record# 767
key

Record #999
key

Use of the core index can significantly reduce the amount of time needed to process
an indexed file because it enables the system to go more directly to the specific record
you want. With the core index, the system can find a specific record by searching
only a small part of the file index.

Without the core index, if the next key is lower than the last key, all index entries
that precede the desired record must be searched. Using the core index shown
in Figure 42, the system finds record 767 in this manner:

1. The core index is searched until the first key field higher than record 767 is
located. In this instance the key is 769, on track C. Since 769 is the low key
on track C, key 767 must reside on track 8.

a a
d d
d Record# 384 d

r
e key e

s
s

a a
d d
d Record# 768 d

r
e key e

s s

a a
d d
d Record # 1000 d
r key r
e e
s s

s

Performance Considerations For Processing Indexed Files 79

2. Track 8 in the file index is searched until key 767 is located.

3. Then, the system·chains directly to the associated data record.

Figures 43 and 44 show the number of bytes of main storage required for a core
index that provides the most etticient random processing ot an indexed tile lon a

5444 or 5445), using key length and number of records as variables.

Number of Records (in 1000's)

--- ~ ----Key Length 2 5 8 10 15 20

20 176 418 682 836 1254 1672
19 168 399 651 798 1197 1596
18 140 360 560 700 1060 1400
17 133 342 532 665 1007 1330
16 126 306 468 594 882 1170
15 102 255 408 510 765 1020
14 96 224 368 448 672 896
13 90 210 315 405 600 795
12 70 182 280 350 518 700
11 65 156 247 312 455 611
10 60 132 216 264 396 528
9 44 110 176 220 330 440
8 40 100 150 190 280 370
7 36 81 126 153 225 306
6 24 64 96 120 184 240
5 21 49 77 98 140 189
4 18 36 60 72 108 144

Figure 43. Core Index Sizes for 5444 Single Volume Indexed Files Without Additions

Number of Records (in 1 OOO's)

--- __,........__
----Key Length 2 5 8 10 15 20

20 220 550 880 1100 1650 2200
19 210 483 777 966 1449 1911
18 200 460 740 920 1380 1820
17 171 399 646 798 1197 1596
16 162 378 612 756 1134 1512
15 136 340 527 663 986 1309
14 128 288 464 576 864 1152
13 105 255 405 510 750 1005
12 98 224 350 448 658 882
11 78 195 312 390 585 767
10 72 168 276 336 504 672
9· 66 154 242 297 440 583
8 50 120 200 240 360 480
7 45 99 162 198 297 396
6 32 80 128 160 240 320
5 28 63 105 126 189 252
4 24 48 78 96 144 192

Figure 44. Core Index Sizes for 5445 Single Volume Indexed Files Without Additions

Note: To adapt this figure to apply to processing with additions, add one keylength to the
computed core index sizes (Model 10 only).

80

Figure 45 shows the relative number of tracks required when the record length and
number of records are variables.

90

80

70

Tracks 60
Required
For File 50

(Record storage 40
area only; index
area for indexed
file not included) 30

20

10

5 10 15 20 25 30 35 40 45 50 55 60

Figure 45. File Allocation
Number of Records in File (hundreds) - 5444

Core Index Utilization

A core index entry (for either 5444 or 5445 files) contains a track address and the
lowest key field associated with the next track. The format of a core index entry is:

Where C is the cylinder number (one byte)
His the head (track) number (one byte)

The address (C-H) points to a track in the file index or (for 5445 files) to a
track in-the disk track index. The system analyzes the index (on disk) to determine
which kind of index it is.

The core index is constructed before execution of the object program. The number
of entries the core index contains depends on factors such as keylength and number
of tracks in the file index and/or disk track index. (The term keylength refers to the
number of bytes in the key associated with the indexed file.) When the system analyzes
the core index area to determine its optimum use, it looks at the logical file size rather

that at the physical file size specified.

In the fol lowing section is a discussion of the most efficient core index size and the
smallest usable core index. Since the user is not required to provide a core index
entry, for single volume files, the smallest core index is 0 entries. Multivolume
files will always default to the minimum core index size. In the following discussion,
smallest core index refers to the smallest usable core index that can still provide a per
formance advantage, as specified in your program. Core index utilization is dis
cussed in this section.

Note: FORTRAN does not support indexed files; Model 10 COBOL does not sup
port multivolume indexed files.

Performance Considerations For Processing Indexed Files 81

82

Processing 5444 Single Volume Files

The most efficient core index for this type of file would contain one entry for every
track of file index. Its size is computed as follows:

(keylength + 2) x (number of tracks in the file index)

Since only one core index entry would provide no advantage for 5444 files (and, for
RPG II, the system would not build a core index if there was room for only one
entry), the smallest core index you should specify is two entries, one pointing to
the midpoint of the logical file index, and the other pointing to the logical end of
the file index:

File index (tracks)

Core index

Processing 5444 Multivolume Files - Online

The last key in the core index
is set entirely to X'F's.

Since all volumes are online for this type of file, all records are available for processing,
and the most efficient core index would contain one entry for every track of file index
on all volumes. For example, if volume 1 contained 30 tracks of the file index, volume 2
contained 25 tracks of the file index, and volume 3 contained 25 tracks of the file index,
then th~ core index providing the best performance would be computed as follows:

(keylength + 2) x (30 + 25 + 25)

Note that this calcuation is based on the number of tracks of file index actually
containing keys, rather than on the number of tracks allocated.

The smallest core index allowed is one entry for each possible online volume (i.e., 4
entries). When using RPG 11, at least the minimum number of entries is required and
therefore will be supplied, as a default value, if no core index is specified on the
RPG 11 File Description Specifications sheet.

Processing 5444 Multivolume Files - Offline

Since each volume is processed individually, the most efficient core index for this
type of file would be one entry for each track of file index contained in the volume
which has the most tracks of file index. Its size is computed as follows:

(key length+ 2) x ·(greatest number of file index tracks in any volume used)

The smallest core index allowed is one entry for each possible online volume (i.e., 4
entries). When using RPG 11, at least the minimum number of entries is required and
therefore will be supplied, as a default value, if no core index is specified on the
RPG 11 File Description Specifications sheet.

Processing 5445 Single Volume Files - (without additions on Model 10; with or
without additions on Model 15)

The most efficient core index for this type of file would contain one entry for every

track of file index. Its size would be computed as follows:

(keylength + 2) x (number of tracks)

In this case, the smallest core index you should specify is a single entry (keylength + 2).
This minimum size core index will be used if the file index contains 16 or more tracks.
The file will have a disk track index, and the single core index entry will point to
the first track of this disk track index. If the file index contains fewer than 16
tracks, no disk track index exists and the single core index entry will not be used.

Processing 5445 Single Volume Files - (with additions on Model 10)

The most efficient core index for this type of file would contain one entry for every
track of file index, plus one keylength to be used for the highest added key save area
(discussed later in this section). This area is computed as follows:

[(key length + 2) x (number of tracks)] + (key length)

The smallest core index that you should specify will contain one entry plus one key
length to be used for the highest added key save area, computed as follows:

(keylength + 2) + keylength, or 2(keylength) + 2

The single entry will either be used to point to the start of the disk track index or
will not be used at all. The system automatically makes this decision, depending on
which approach will provide the best performance.

Processing 5445 Multivolume Files - Online (without additions on Model 10; with or
without additions on Model 15)

Since all volumes are online, all records are available for processing. The most
efficient core index for this type of file would contain one entry for every track
of file index on all volumes, minus 2, computed as follows:

(keylength + 2) x [(total number of tracks of file index on all volumes) - (2))

For example, if 150 tracks of file index on volume 1 are used, 20 tracks of file index
on volume 2 are used, and the keylength is 10, the core index size that you should
specify to provide the best performance is computed as follows:

(10+.2) x [(150+ 20) - (2)] = 2016

Note: A single core index entry is automatically reserved for each volume; the core
index size you specify will be in addition to this requirement.

The smallest core index that you should specify for this type of file would contain
one entry per volume, cqmputed as follows:

(keylength + 2) x (number of volumes)

Processing 5445 Multivolume Files- Online (with additions on Model 10)

The most efficient core index for this type of file is computed as in the preceding

Performance Considerations For Processing Indexed Files 83

84

ex.ample. Remember that a 'highest added key save area' and a single core index
entry are automatically reserved for each volume; the core index size you specify
will be in addition to these requirements.

The smallest core index that you should specify will contain one entry for each
volume, computed as follows:

(number of volumes) x [(2) (key length)+ 2]

Processing 5445 Multivolume Files - Offline (without additions on Model 10; with or
without additions on Model 15)

Since each volume is processed individually, the most efficient core index for this
type of file would be large enough to accommodate the volume with the greatest
number of file index tracks. The size of such a core index would be computed as
follows:

(keylength + 2) x (greatest number of file index tracks, -2)

A single core index entry is automatically reserved for each volume; the core index
size you specify will be in addition to this requirement.

For this type of file, the smallest core index you should specify would contain a
single entry (keylength + 2). In this case, the core index will be used if the file
index contains 16 or more tracks. Under these circumstances, the file would have a
disk track index, and the single core index would point to the first track of this disk
track index. If the file contains fewer than 16 tracks, no disk track index would exist,
and the core index entry would point to the first track of file index, and would contain
the 'HI KEY' value.

Processing 5445 Multivolume Files - Offline (with additions on Model 10)

The most efficient and the smallest core indexes for these files are computed as
described in the preceding example. The only difference between this example and

the preceding one - processing with additions - is that in this example a 'highest
added key save area' as well as one core index entry are always reserved for each
volume.

File Index

The file index is part of the indexed file that you define using the OCL statement.
The file index precedes the data records in the file, and contains an entry for each
record in the data file. The formats of the file index entries for 5444 and 5445 files
are shown below. Note that the disk addresses shown represent displacements from
the start of the data area.

File Index Entry Format - 5444 Files

I Key I C I S J D I
Where C is the cylinder number (one byte)

S is the sector number (one byte)
Dis the displacement within the sector. (one byte)

The address (C-5-0) points to a data record in the indexed file.

File Index Entry Format - 5445 Files

Where C is the cylinder number (one byte)
H is the head (track) number (one byte)
R is the record number (one byte)
Dis the displacement within the sector (one byte)

The address (C-H-R-D) points to a data record in the indexed file.

See Chapter 3 for more information on file indexes.

Disk Track Index

The disk track index can be used only for indexed files on the 5445. If an indexed
file on the 5445 has more than 15 tracks of file index, a disk track index will be
built by the system when the file is loaded. This index precedes the file index and is
part of the file as specified on the OCL statement. The disk track index contains
one entry for each track of file index. When processing a multivolume file, if volume
1 has 4 tracks of file index and volume 2 has 50 tracks of file index, a disk track index
will be produced only on volume 2.

When processing single volume 5445 indexed files on Model 10, the disk track index
is not used unless a core index is specified in the program. When processing single
volume 5445 indexed files on a Model 15, the disk track index is used whenever it is
more efficient to do so. When processing a multivolume 5445 indexed file, RPG 11
provides two core index entries; an additional core index entry is used if a core index
is specified in the program {see Core Index).

Disk Track Index Entry Format - 5445 only

Where C is the cylinder number (one byte)
H is the head (track) number (one byte)
FF is a 2-byte-long filler (X'FFFF')

The X'FFFF' tells the program that this is a disk track index entry.
The address (C-H) points to a track in the file index.

The disk track index is used only when the system determines that:its use will improve
performance. In effect, it is an extension of the core index, and can be used only in
conjunction with a core index. If the core index is large enough to contain an entry
for every track, or every second, third, fourth, fifth, or sixth track of file index, then
the disk track index will not be used. If the core index is large enough to contain
an entry for only every group of seven or more tracks of file index, then the disk
track index will be used. {See Core Index for more information on that subject.)

Performance Considerations For Processing Indexed Files 85

86

The size of the disk track index must be at least one track, which should be enough
room for most files. The capacity of one track of disk track index varies according
to keylength.

Number of Entries in Capacity -
Keylength Disk Track Index Number of Records

5 560 313,600
10 360 129,600
15 260 67,600
20 200 40,000
25 160 25,600

For example, if your key length is 10 bytes,~ file of 129,000 records will require a
disk track index of only 1 track and a file index of 360 tracks. If the file contains
more than 129,600 records, a disk track index of 2 or more tracks will be required.

To calculate the number of tracks required for a disk track index, perform these
calculations:

E =
256

= number of entries per sector (drop the remainder)
keylength + 4

N =number of tracks of file index = number of sectors required
E

N
T=-

20
number of tracks required for the disk track index
(round up to next whole number)

For example, if your file contains 100,000 records (10-byte keys), the file index
requires 278 tracks. The disk track index requires 0.77 tracks, or rounded upwards,
1 track, computed as follows:

E = 256/(10 + 4) = 18.3 entries per sector

N = 278/18 = 15.4 sectors

T = 15.4/20 = 0.77 tracks, rounded upwards to 1 track.

For more detailed information, see Appendix A. Calculating Disk File Size.

Type of Processing

The type of indexed file processing used, combined with other factors, greatly
affects program performance. Figure 46 shows the different kinds of processing per
mitted by RPG 11 for indexed files, and indicates whether the other factors are re
lated to each type of processing. Notice, for example, that core index is used only
for random processing or for output with additions, while key sort routines are only
used after adding records or after an unordered load.

OTHER PERFORMANCE FACTORS
CORE INDEX

DISK TRACK INDEX
SAVE AREA

KEY SORT
WORK FILE/KEY SORT

LOCATION

Type of processing DISTRIBUTION

for indexed files NUMBER OF RECORDS
NUMBER OF ADDS

Sequential input/update
• By key, with additions x x x xx x
• By key, without additions x x
• By limits x x
Random input/update
• By chaining, with additions x x x x x x xx x
• By chaining, without

additions x x x x
• By ADD ROUT x x x x
Output
• Unordered load (see note) x x x xx
• Ordered load x x
• Additions only x x x x x x xx x

X =Performance factor is applicable

Note: Work file/key sort is not used for an unordered load for
models 6 or 10.

Figure 46. Applicability of Performance Factors to Type of Processing

Highest Added Key Save Area

Model 6 and 10 (5445 Only)

When a record is added to an indexed file, the file is checked to ensure that the
record key being added is not a duplicate of a key already in the file. If the file is
being processed randomly, the file index is scanned. (The file index is the portion
of the index that existed before the current job was started; it is in sequence from
a prior run.) If the new key to be added is not found in this file index, the area
that contains keys added in the current run is searched on a key-by-key basis. The
keys in this area are not necessarily in sequence, and must be searched by examin
ing each key. If no similar key is found, the record is a legitimate "add" to the file.
The number of keys in this "added index area" increases as records are added, and
as a result, the time to search this area increases as the job progresses.

This "highest added key save area" is reserved at the beginning of the core index
area by the system when 5445 indexed files are being processed randomly with
additions (see Figure 46). The save area is equal to one key length. For single
volume files, the save area will exist only if the number of bytes specified for core
index (RPG 11 File Description) is equal to or greater than the key length.

Performance Considerations For Processing Indexed Files 87

88

If the highest key added to the file by the current job is saved, the search of the
"added index area" can be avoided for added records that have keys higher than the
previous highest added key. This saving of search time can be considerable if many
records are being added in a job and if their keys are in ascending sequence (same
sequence as the file).

For multivolume 5445 indexed files processed randomly, there is always a core in
dex, and therefore the highest added key save area will always exist (for additions).

Pre-Sorted Input

When adding records to an indexed file using sequential processing (i.e., matching
records in RPG 11), the input must be sorted in the same typ~ of sequence as the
records in the file. When adding records randomly, it is not necessary that the input
be pre-sorted. However, by pre-sorting the input for random processing, significant
performance improvements are generally realized.

Key Sort/Merge

When adding records to an indexed file, the keys of the added records are held in
an area separate from the file index. At the end of job (eg., after LR processing),
the added keys are sorted and then merged into the file index. If the input is
pre-sorted, the keys don't need to be sorted at end of job, and time can be saved.
Also, if a work file is specified in OCL, the key merge time can be further reduced.
(See Work File For Key Sort/Merge, following.) The amount of main storage also affects
the time required for the key merge operation.

Work File For Key Sort/Merge

As we have seen earlier in this appendix, keys of added records are sometimes sorted
- and are always merged - at end of job when adding to an indexed file. If disk
space is available, you can enhance the performance of this function by specifying a
work file for the key merge routine to use. Also, for Model 15, a work file can be

specified for the key sort routine to use for an unordered load of an indexed file. The
effect of making such a work file available to the key sort/merge is as follows:

Key Sort/Merge Time Reduction in
(in minutes) Processing Time

Without With
work file work file

On 5444 (using $1NDEX44):
• Adding 500 records to 5000 2.7 0.5 81%
• Adding 2500 records to 10,000 22.6 3.9 83%

On 5445 (using $1NDEX45):
• Adding 500 records to 5000 1.9 0.4 78%
• Adding 2500 records to 25,000 36.3 3.1 91%

For this example, the keylength was 10 bytes; the work file for key sort/merge was on a
different drive than were the file index and added key areas; and the added keys were
placed near the beginning of the file (this distribution may somewhat slant the statis
tics, but in this example does not alter the point being made).

The work file is used to merge the added keys into the index, and must be large
enough to contain all of the keys added to the file. If the program adds records
to more than one indexed file, the size of the work file for key sort is computed by
determining (for each file) the number of sectors required to contain the added
keys. The work file must be able to accommodate the largest number of sectors
you have computed.

Model 15 (5444 and 5445)

On the Model 15, there is a "highest primary key save area" as well as a "highest
added key save area" (described in the preceding discussion). When a file is opened,
the "highest primary key save area" contains the highest key in that file. Using
this area, when records are added to the file the system can easily determine if the
new record to be added is logically beyond the end of the original file.

Unlike the Model 10, both the "highest added key save area" and the "highest primary
key save area" are always used to perform random additions to a file, regardless of the
presence of a core index.

If the indexed file is on a 5444 disk, the work file must be named $1NDEX44
and must be located on a 5444 disk. If the indexed file is on a 5445 disk, the
work file must be named $1NDEX45 and must be located on a 5445 disk. To
compute the number of tracks required for the work file, use the following
calculations:

For the 5444 disk:

256 ----- = Number of index entries per sector (drop the remainder)
keylength + 3

Number of adds
Number of index entries

per sector

Number of sectors (round up to next whole
number)

Number of sectors
24

For the 5445 disk:

Number of tracks needed for work file (round up to
next whole number)

256 ----- = Number of index entries per sector (drop the remainder)
keylength + 4

Number of adds
Number of index entries

per sector

Number of sectors (round up to the next whole
number)

Number of sectors
20

Number of tracks needed for work file (round up to
next whole number)

If the work file is not large enough to contain all of the added index keys, the keys
are sorted without using the work file. (For the Model 15, a halt will occur, but
you will be allowed to continue without using the work file.) If possible, the
work file should be locatd on a different disk drive than the indexed file whose keys
are being sorted. If this is not possible, the work file should be as close as possible
to the beginning of the file whose keys are being sorted, in order to minimize the
disk seek time required.

Performance Considerations For Processing Indexed Files 89

90

The work file can be used with multivolume files. However, a work file cannot
be located on a pack that contains an offline volume from a multivolume file.
The pack that contains the work file must remain online while the job is running.

For small indexed files of 10 tracks or less where sort time is negligible, using the
work file will not improve performance and should be avoided.

To use a work file for key sort/merge, it is necessary only to specify the OCL
FI LE statement; no changes are needed to your source program, and your
programs need not be recompiled.

Key length

Keylength, which is usually determined by the application and is not too flexible,
is a major factor in key sort performance as well as being a great determining fac
tor in the size of the file index and the disk track index. For example, assume you
have a file of 50,000 records. As shown in the following, the number of tracks

·required for the file index varies greatly as the keylength changes.

Keylength File Index Tracks

5444 5445

5 66 90
6 75 100
7 84 109
8 91 120
9 100 132

10 110 139

Not only does an increase of one byte in the keylength greatly increase the size
of the file index, but it could also result in an increase of 50,000 bytes in the size
of the file (an increase of 9 tracks on the 5444 or 10 tracks on the 5445).

Distribution of Added Records

The difference in performance between two separate add runs may be explained
by the distribution of added keys. With random additions, program performance
can vary according to the distribution of added keys in relation to the existing file.
If the added keys are distributed throughout the file, the time for the add run may

be longer than if all additions are relatively close together. The reason for the dif
ference in time required lies in the search for duplicate keys. With even distribution
of keys throughout the file, more of the file index must be scanned than would be
required with limited distribution.

For example, assume your file has keys numbered 00001 to 25000. If you were to
add 1000 records with keys spread between 00002 and 24999, the time for this
run ·could take longer than if the added keys were in the range 00002 to 05000, or
from 20000 to 24999, or from 25001 to 26000. Other factors (discussed earlier in
this appendix) which affect performance when adding records are pre-sorted input,
highest added key save area, size of keys, size of index, etc.

ll\IDEX File Description Entry (Model 15 RPG II)

To obtain additional core storage for the file index when processing 5444 or 5445
indexed files, specify this option on the File Description Specification (continuation
statement). Normally only one sector of file index is read into core at a time; with
this option, you can cause two or more sectors of file index to be read into core
at one time.

Performance Considerations For Processing Indexed Files 91

INDEX

access, file consecutively 26
access time

5444 5
5445 5

access mechanism
5444 1
5445 3

activity, file 36
adding records

direct file 25
indexed file 12
sequential file 7

AD DR OUT files
consideration when using 30
creating 30
processing by 31

ADDROUTsort 35
alphameric fields 38
alternate cylinders 2
alternate tracks 2
automatic file allocation

considerations when using 48
description 4 7

batch processing 37
block length

description 45
rules for determining 45

blocked records 45
buffered 1/0 48

calculating file size 63
chain technique 19
chaining 26
choosing a file organization 33
comparative access times

5444 5
5445 5

COMPILE OCL statement 62
configurations available

5444 5
connecting strings of related records 26
consecutive processing

direct file 23
sequential file 6

conversion method for deriving relative record numbers 17
converting cylinder/track to track number 75
converting track number to cylinder/track 75
COPY control statement

92

coding 56
description 55

core index
description 9, 78
utilization 81

creating files
AD DR OUT file 30
direct file

description 21
with synonyms 22
without synonyms 22

indexed file 9
sequential file 7
with record key limits 32

cylinder
split 53
5444 2
5445 4

data file security 54
decimal format

packed 42
unpacked 42

delete code, providing for 43
deleting records (see reorganizing files; tagging records for

deletion)
designing records 41
determining field size 41
direct files

adding records 25
creating

with synonyms 22
without synonyms 22

description 15
manipulating 25
processing 23
tagging records for deletion 25
updating records 25

direct method of deriving relative record numbers 16
Disk File Layout Chart 50
disk address 9
disk copy/dump utility program 53
disk file planning 41
disk file size, calculating

description 63
summary 73

disk pack
5445 3

disk sort program 38
disk storage, advantages of using
disk storage drive

5444 1
5445 3

disk track index
calculating 86
description 9, 10, 78
format (5445 only) 85

field name, rules for 44
field size

alphameric fields 43
description 41
numeric fields 41

file, access consecutively 26
file activity 36
file allocation

automatic 51
specifying 52

file and volume label display
utility program 53

file containing record key limits
creating 32
processing 32

file index
description 9, 78
format

5444 file 84
5445 file 85

file location 46, 49
file maintenance

direct 24
indexed 12
sequential 7

file organization selection
file activity 46
file size 37
file use 33
file volatility 35

file planning 41
file records, determining number of 63, 73
file security 54
file size

determining 49, 68
multivolume files 37
sorting files 38

file space, calculating 64
file storage on removable disks 56
file use 33
file, multivolume 6
file, volatility 35

home location 19
home record 19

1/0 area, shared 48
1/0 areas for RPG 11 files

calculating sizes 46
IBM 5444 Disk Storage Drive 1
IBM 5445 Disk Storage Drive 3
inactive records

indexed file 13
sequential file 8

index 9

1/0 area, shared 56
1/0 areas for RPG II files

calculating sizes 54
I-type program 30
IBM 5406 Processing Unit keyboard console 29
IBM 5444 Disk Storage Drive 1
I BM 5445 Disk Storage Drive 3
IBM 5471 Printer-Keyboard 28
inactive records

indexed file 13
sequential file 8

index 9
index space, calculating

5444 73
5445 75

indexed file sequence
COBOL 9
RPG II 9

indexed files
adding records 12
creating 9
description 9
maintaining 12
multivolume 45
processing 10
reorganizing 14
tagging records for deletion 13
updating records 14

indexes
core index 9, 86
disk file index 9, 86, 92
disk track index 9, 10, 86, 93

input/output area, shared 56
inquiry program

classifying
RPG II 30
FORTRAN 30

description 28
in interrupt environment

description 31
requesting 28

Inquiry Request switch 29
interrupt environment 28, 31

job scheduling (DPF) 37

key field 9
keyboard console, 5406 processing unit 29

keylength 89, 98
keys per index. track

calculated 78

layout 49
libraries

description 63
functions

naming conventions 63
object library expansion 64

locations on disk 64
Library Maintenance program 69
LOAD* OCL card 36
location of files 57
locations of libraries on disk 64

Index 93

index space, calculating
5444 65
5445 67

indexed file sequence
COBOL 9
RPG II 9

indexed files
adding records 12
creating 9
description 9
maintaining 12
multivolume · 37
processing 10
reorganizing 14
tagging records for deletion 13
updating records 14

indexes
core index 9, 78
disk file index 9, 78, 84
disk track index 9, 10, 78, 85

input/output area, shared 48

key field 9
keylength 81, 90
keys per index track

calculated 70

94

layout 41
libraries

description 55
functions

naming conventions 55
object library expansion 56

locations on disk 56
Library Maintenance program 61
loading and retrieving records in the same program 26
location of files 49
locations of libraries on disk 56

maintaining files
direct 24
indexed 12
sequential 7

master file
description 33
inquiring against 34
sorting 34
using with several files or in several jobs 34

merging records, sequential file 7
message queuing in a System/3 direct file 28
model 15 (5444 and 5445) 89

multivolume files
description 6
direct 15
indexed 9
offline 37
online 37
processing 56
sequential 37

naming conventions of a library 55
naming fields 44
nonexecutable programs (see routines)
number of file records, determining 63
numeric fields 41

object libraries
description 58
directory 60
format 59
organization of entries 61
size 60
upper boundary 60

object library expansion 56
offline multivolume files 37
online multivolume files 37
ordered sequence (indexed file for RPG II) 11

performance considerations for processing indexed files
applicability to processing types 87
distribution of added records 'go
for sample program 76
key sort/key merge 88
keylength 90
pre-sorted input 88 ·
type of processing 86
use of highest added key save area 86
use of indexes 78
work file for key sort 88

physical characteristics of the object library 60
planning disk files 41
procedures

description 55
storage into libraries 61
storage on disk 55

processing files
ADDROUT file

using FORTRAN 31
using RPG II and COBOL 31

direct file
consecutive 23
random by ADDROUT file 31
random by relative record number 23

indexed file
consecutive 12
random (random key) 12
sequential by key 11
sequential within limits (single volume files

only) 11,31,32
record address

containing record key limits 32
containing relative record numbers (ADDROUT) 31

sequential file
consecutive 6
random by relative record number 6, 23

program storage
into libraries 67
on disk 61
on removable disks 62

providing extra disk space for expansion 43

random processing
direct file

by ADDROUT file 30, 31
by relative record number 23

indexed file 12
sequential file 6

random updating of an indexed file 12
read/write heads

5444 1
5445 3

record address files
files containing record key limits 31
files containing relative record numbers

(ADD ROUT files) 30
record design 41
record key limits, record address files containing 31
record layout, documenting 44
record length 44
record space, calculating·

5444 65,66
5445 67, 68.

records in a file, determining number of 71
relative record number

deriving
conversion method 17
direct method 16

description 6, 16
synonym records 19

removable disks
5444 1
storing programs and files 56

reorganizing files
indexed files 14
sequential file 8

roll-out and roll-in of 8-type programs, inquiring 3
routines 58, 59
RPG 11 control card sheet 62

sector
5444 2
5445 3

security, data file 54
sequential files

adding records 7
creating 6
description 6
maintaining 7
processing 6
reorganizing 8
tagging records for deletion 8
updating records 8

sequential processing of an indexed file
by key 11
within limits 11

sequential updating of an indexed file
by key 14
randomly by key 14
within limits 14, 32

sequential within limits (see file containing record key limits)
shared input/output area 46
size of file

determining 49
multivolume files 37
when sorting file 38

sorting a file
ADDROUTsort 40
description 40
summary sort 39
tag-along sort 39

source libraries
description 57
directory 58
organization of entries 58
size 58

spill technique 21
split cylinder (5445) 53
starting key (lower limit)

processing, COBOL 11
storage capacity, 5444 3
storage characteristics of 5444 and 5445 5
storing programs and files on removable disks 56
storing programs and procedures

on disk (5444 only) 55
into libraries

COMPILE OCL statement 62
library maintenance program 59
RPG 11 control card sheet 62

Index 95

storing synonym records in a direct file 19
submultiple 45
summary sort 39
synonym records

description 19
storing in a direct file 19

system efficiency, increasing 55
System/3 Disk Sort Program (see disk sort program)

tag-along sort 39
tagging records for deletion

direct file 25
indexed file 13
sequential file 8

track
5444 2
5445 3

TRACKS, parameter in OCL statement 68
tracks required to store given number of records,
calculated number of 71

96

unblocked records 51
unordered sequence (indexed file for RPG 11) 9, 11
updating records

direct file
consecutively 26
randomly 26

indexed file
random by key 14
sequential by key 14
sequential within limits 14, 31

sequential file 8
using a direct file for large arrays 29

volatility, file 35
volume 1
volume label 1, 6

5444 Disk Storage Drive 2
5445 Disk Storage Drive 3

READER'S COMMENT FORM

I BM System/3 GC21-7571-3
Disk Concepts and Planning Guide

YOUR COMMENTS, PLEASE ...

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your I BM
representative or to the IBM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

• Thank you for your cooperation. No postage necessary if mailed !n the U.S.A.

GC21-7571-3

Fold

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

I BM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation
General Systems Division
5775D Glenridge Drive N.E.
Atlanta, Georgia 30301
(USA Only)

I BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

Fold

n
c ...
)>
0
:J

IQ

r:;·
CD

