

VI. Data Files and Diskettes
--- ------ - ---- ---- - ---- - - ----------_ .-

Learning System/23 BASIC

Second Edition (August 1981)

This is a major revision of, and obsoletes SA34-0126-O . Because the changes and additions are
extensive, this manual should be reviewed in its entirety.

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein ; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to , or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publica­
tions should be made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for
readers' comments is provided at the back of this publication . If the form has been removed,
address your comments to IBM Corporation, Information Development, Department 27T, P.O.
Box 1328, Boca Raton, Florida 33432. IBM may use and d istribute any of the information you
supply in any way it believes appropriate without incurring any obligation whatever . You may,
of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

VI. Data files and diskettes
Contents

About this book v

Chapter 1. Data files-DISPLAY 1-1
Introduction 1-1
Creating a file at the keyboard 1-2
File status and the DIR command 1-5
Correcting an error 1-6
Creating a file in a program 1 - 7
Assigning values from a file 1-12
Chapter summary 1 -14
Exercises 1 -15
Answers 1 -17

Chapter 2. INTERNAL files-sequential access 2-1
Introduction 2-1
Creating a file 2-2
Assigning values from a file 2-11
Chapter summary 2-15
Exercises 2 -16
Answers 2-19

Chapter 3. INTERNAL files-relative access 3-1
Introduction 3-1
The OPEN statement 3-2
The WRITE statement 3-4
Assigning values from a file 3-7
Chapter summary 3-1 0
Exercises. , 3 -11
Answers 3-13

Chapter 4. Repositioning a file 4-1
Introduction 4-1
The RESTORE statement 4-3
The REREAD statement4-13
The . REWRITE statement4-15
The DELETE statement4-16

Data files and diskettes iii

VI. Data files and diskettes
Contents (continued)

The CLOSE statement4-17
Controlling file access errors4-18
Chapter summary4-25
Exercises 4-26
Answers 4-29

Chapter 5. INTERNAL files-key-indexed access 5-1
Introduction 5-1
What is a key-indexed file? 5-2
Setting up a key- indexed file 5-4
Creating an index file 5-6
Reading a record from a key-indexed file 5-15
Writing and deleting records in a key-indexed file 5-17
Chapter summary 5-21
Exercises 5-22
Answers 5-24

Chapter 6. Diskettes and diskette drives 6-1
Introduction 6-1
The share state 6-2
Device sharing information 6- 4
File sharing information 6-6
The DIR and PROTECT commands 6-8
Other BASIC commands 6-10
Chapter summary 6-11
Exercises 6-12
Answers 6-13

iv SA34- 0126

About this book

In Books I through V of this course, you learned the
fundamental commands and statements required to program
your System /23. You now know how to enter and change a
program. You also know how to run a program and store it
on a diskette.

In your programs you can :

Display or print information

Perform arithmetic operations

Branch to specified program sections

Assign values to variables and arrays

Use subroutines, functions, and loops

In Book VI, you will learn about one more helpful
programming feature : the data file . A data file is used to
store information on a diskette.

You will be learning about diskettes and saving copies of
files. Therefore, make sure you still have your diskette
inserted in diskette drive 1 (or drive 3, if you are using a
5322-0) before starting this book.

One more note: So far in this course, whenever we asked
you to enter a command or statement, it was printed in
green in your book. Beginning in Book VI, we will often ask
you to enter several long statements.

Data files and diskettes v

VI. Data files and diskettes
About this book (continued)

CLEAR

When we ask you to enter any long statements, we will still
print the statements in this book in green. However, we will
start the lines on the far lefthand side of the page. These
statements will be enclosed in a box, like this :

10 PRINT "BOOK VI IN THE COURSE LEARNING SYSTEM/ 23 BASI C"
20 END
RUN

vi SA34-0126

..

Chapter 1. Data files - DISPLAY
Introduction

In this chapter, you will learn about data files. A file is a
collection of related items that are stored together. In Book
I of this course, you learned that a program file is a
collection of program statements. Data is known
information. A data file is a collection of related data items .

Objectives

Upon completion of this chapter, you should be able to do
the following:

Assign a name to a data file.

Enter a data file into the work area after first using the
CLEAR DATA command.

Save a copy of a file by using the SAVE command.

Load a display file into the work area by using the
LOAD DATA command.

List the contents of a file by using the LIST command.

Correct an errOr in a program that uses files by using
the DIR, PROTECT, and FREE commands.

• Open a display file by using the OPEN statement.

Copy data into a file by using the PRINT statement.

Input data from a file by using the LlNPUT statement.

If you are familiar with these tasks, try the exercises at the
end of this chapter. If not, read through the chapter before
going on to the exercises.

Data files - DISPLAY 1-1

Data files - DISPLAY
Creating a file at the keyboard

AUTO
00010:_

1-2 SA34-0126

In Book II, you learned how to use READ and DATA
statements to assign values to variables. The data values
were an actual part of the program.

You can also store data values in a file, instead of making
the values an actual part of a program. As the data values
in a file are needed, they are assigned to variables in a
program. The data in a file can also be used by more than
one program.

Let's look at an example. Enter the following:

CLEAR DATA

As you know, the CLEAR command clears the work area of
all statements previously entered. The word DATA tells your
System!23 that you are going to enter data, not a program.

Now, we're going to enter some names and addresses,
which we will save in a data file. Enter the AUTO command,
and see what happens:

AUTO

As you can see, the line number 00010 is followed by a
colon . All of the information in a data file is entered with
line numbers like this (00010:, 00020:, etc.).

00010:6ENERAL BUSINESS
00020:WHI'I'E PLAINS, NY
00030:SENERAL SYSTEMS
00040:ATlANTl, SA
00050:_

00010:G£~RAl BUSl"ESS
~~ RLAIH$, NY
oooao :G~AJ. S'tSTEHS
0004CHATlANTA, SA

Now, on lines 10, 20, 30, and 40, enter the following :

00010: GENERAL BUSINESS
00020: WHITE PLAINS, NY
00030: GENERAL SYSTEMS
00040: ATLANTA, GA

To stop the AUTO operation, press the Scroll Up key.
Remember that this is also how you stop the AUTO
operation when you are entering a program.

Now, you have a data file in your work area . Enter the LIST
command:

LIST

As you can see, this data file is listed just like a program,
except that the listing of your data file has colons after the
line numbers.

You can change a data file in the work area the same way
you change a BASIC program. For example,

To delete line 30, you enter DEL 30.

To add another line of data, you enter the line number
(followed by a colon) and the data.

Let's try to add another line of data. Enter the following :

OOOSO:OFFICE PRODUCTS

Now, list your file:

LIST

Data files - DISPLAY 1-3

Data files - DISPLAY
Creating a file at the keyboard (continued)

1-4 SA34-0126

Your turn!

Enter a command to remove line 50 from your file .

Answer:

You should have entered:

DEL 50

List the file in the work area again to be sure that line 50
was deleted:

LIST

Now. make sure that your diskette is inserted in the diskette
drive. and enter:

SAVE NAME . ADDRESS// 1 (if your
diskette is in drive slot 1)
or
SAVE NAME .ADDRESS//3 (if your
diskette is in drive slot 3)

NAME.ADDRESS is the name that we chose for this data
file. Remember from Book I that a filename can be from 1
to 17 characters long. including periods. Names longer than
eight characters must consist of two or more simple
filenames separated by periods. A simple filename is from 1
to 8 characters long.

File status and the DIR command

On the following pages, we are going to show you how to
use data files in a BASIC program. Before we go on,
however, you should know something about the status of
your files.

In Learning to Use System/23, you learned how to use the
DIR command. Enter the DIR command now, to see what
files are stored on your diskette:

If your diskette is ln drive slot 1, Type: DIR 1.
If your diskette is in drive slot 3 , Type: DIR 3 .

05 NAME.ADDRESS

If the letters NS, lSI , OSI, OSH, or ISH appear in the status
indicator (at the end of each file's information). then that file
has been left open. The word OPEN will be discussed later.

For example, if the file NAME.ADDRESS had somehow
been left open, it might look like this in the DIR:

00005 12 0000512 0001 NS I
Before you could use the file NAME.ADDRESS again, you
would have to close it. (The word CLOSE will be discussed
later.)

Data files - DISPLAY 1-5

Data files - 'DISPLAY
Correcting an error

1-6 SA34-0126

If you get an error while running a program that uses a file,
you should do the following:

1. Enter GO END to end the program.

2. Use the DI R command to see if the file exists and if it is
open (lSI, OS I, NS, OSH, or ISH in the DIR).

3. If you are running a program that creates a new file,
enter FREE filename. This command removes the file
from your diskette. Then skip to step 5.

4. If the file is not open, skip to step 5. If the file is open,
enter PROTECT filename,RELEASE. This command
closes the file and lets you access the file again in your
program.

5. Make any necessary corrections to your BASIC program.

6. Rerun the program.

You should already be familiar with the PROTECT and FREE
commands. For more information, see Chapter 6,
"Commands," in your Operator Reference.

Note: If a file is shared with another system, be sure it is
not in use. If you close a file using PROTECT when a file is
being used, you may cause the file to be lost.

Now, if you should run into problems in the examples that
follow, you will know what to do. Don't forget, too, that you
can always refer to your Messages manual when you get an
error.

Creating a file In a program

CLEAR

You have seen how to enter a data file from the keyboard .
This data file can now be used for different programs. Now
we're going to show you how to create a data file while you
are running a program. All set? Then enter:

10 DIM NAME$*24,ADDRESS$*40
20 OPEN #1 :"NAME=ADDRESS2//1,SIZE=0",DISPLAY,OUTPUT
30 FOR 1=1 TO 2
40 PRINT "ENTER NAME"
50 INPUT NAME$
60 PRINT "ENTER ADDRESS"
70 INPUT ADDRESS$
80 PRINT #l:NAME$
90 PRINT #l:ADDRESS$

100 NEXT I
110 END

Before we run this program, let's look at a few things. First
of all, look at line 10.

10 DIM NAME$*24,ADDRESS$*40

Remember from Book IV that this means you can enter up
to 24 characters for the name and up to 40 characters for
the address.

Now let's look at line 20.

20I oPEN I#1:"NAME=ADDRESS2// 1,SIZE=0",DISPLAy,OUTPUT
or
20IOPENI#1:"NAME=ADDRESS2//3,SIZE=0",DISPLAY,OUTPUT

This statement creates a file called ADDRESS2 on the
diskette in diskette drive 1 or 3. The OPEN statement
makes a file available to a BASIC program.

Data files - DISPLAY '·7

Data files - DISPLAY
Creating a file in a program (continued)

20 OPEN /II1: "NAME=ADDRESS211 1 ,SIZE=O" ,DISPLAY, OUTPUT

The #1 is a file reference number. It identifies a file
throughout a program. You can see that we use this same
file reference number in lines 80 and 90:

80 PRINT [#1]: NAME $
90 PRINT[[D:ADDRESS$

A file reference number can be any number from 1 through
127. It must be preceded by a pound sign (#).

Each program can access many files. If you were using
three files in a program, you could refer to the files as #1,
#2, and #127. The choice" of numbers is unimportant as
long as each file has its own unique file reference number.

20 OPEN # 1 :1"NAME=ADDRESS211 1 ,SIZE=O"I, DISPLAY, OUTPUT

1-8 SA34-0 126

Everything between the quotation marks is the file-id . Note
that the colon and the quotation marks are required.

The file-id identifies a file on a diskette. The name of the
file is ADDRESS2. Note that the NAME= is required.

The / /1 (or / /3) indicates that you are opening a file on
diskette drive 1 (or drive 3). Your System/23 uses this
number to know where to put the file.

•

20 OPEN # 1 : "NAME=ADDRESS2 / / 1 ,lsIZE=ol" ,DISPLAY, OUTPUT

The SIZE= reserves space on the diskette to hold your
data. It also indicates that you are creating a new file. At
this point, don' t worry about what value to enter. Just enter
SIZE=O. After you become more familiar with your
System/23, you can refer to "OPEN statement" in your
BASIC Language Reference manual for more information.

20 OPEN #1: "NAME=ADDRESS2 / / 1 ,SIZE=O" ,IDISPLAY ,OUTPUT I
The word DISPLAY indicates the type of file that you are
using. A DISPLAY file is one that you can load into the
work area and list on the screen.

The word OUTPUT indicates that you are going to copy
data into the file from your program. You copy data into the
file with PRINT statements.

80 PRINT #l:NAME$
90 PRINT #l:ADDRESS$

These statements "print" or copy data into your file, just
like the statement PRINT N$ displays data on the screen.

Data files - DISPLAY 1-9

Data files - DISPLAY
Creating a file in a program (continued)

..... Oltt ',.,AQORISS
_.~,I _aun •• _ •• II!'UT aut
... It ~ltO. __ MJIn'_tWtf ---...... ",lIIT ''INtIIt _IS"
'O"l"!'IfT_I!ll'* PIllllti .. _ _ te MINT 0" __

00100 *Xl I
00110 we

RUN
ENtER IW1E

?6ENERAL BUSINESS
ENTER ADDRESS

?"WHITE PLAINS t NY"
ENTER NAME

?GENERAL SYSTEMS
ENTER ADDRESS

?"ATLANTA, GAit

1-10 SA34- 0126

List your program :

LIST

Now run the program and enter these responses:

RUN
ENTER NAME

?GENERAL BUSINESS
ENTER ADDRESS

? "WHITE PLAINS, NY"
ENTER NAME

?GENERAL SYSTEMS
ENTER ADDRESS

? "ATLANTA , GA"

Notice that we need to use quotation marks around
"WHITE PLAINS, NY" and "ATLANTA, GA" because of the
commas,

If you had a problem with this example, go back and follow
the instructions on page 1-6.

•

You now have two files on your diskette with the same
data:

NAME.ADDRESS-created at the keyboard

ADDRESS2-created in a program

Just to be sure that these two files are the same, let's load
them into the work area. Enter the following:

LOAD NAME.ADDRESS,DATA

The word DATA tells your System/23 that you are loading
a data file, not a program. If you don't enter the word
DATA, your System/23 thinks you are trying to load a
program file.

Notice that the contents of the file are listed on the screen
when you load the file into the work area.

Your turn!

Enter a command to load the second data file into the work
area.

Answer:

You should have entered :

LOAD ADDRESS2 , DATA

As you can see, the two files look the same.

Data files - DISPLAY 1-11

Data files - DISPLAY
Assigning values from a file

CLEAR
10 DIM N$*24 ,A$*40

Now we' re going to write a program that uses the data you
saved in the ADDRESS2 file . Enter the following :

20 OPEN #1 :"NAME=ADDRESS2",DISPLAY,INPUT
30 FOR 1=1 TO 2
40 LINPUT # l:N$
50 LINPUT #l :A$
60 PRINT N$,A$
70 NEXT I
80 END

Look at the statement in line 20,

20 OPEN #1:"NAME=ADDRESS2",DI SPLAY,INPUT

1-12 SA34-0126

This OPEN statement is a little different from the statement
you used to create the file . First of all, you must not include
a SIZE= when you open a file that already exists on your
diskette.

Also, you don' t need the / /1 or / /3. Your System/23 finds
the file since it has already been createq.

In this statement, the word INPUT indicates that you are
going to input data from the file into your program. Notice
that we inputted data from a display file into a program
with LI N PUT statements.

40 LINPUT #l:N$
50 LINPUT #l:A$

The LI N PUT statement inputs an entire string, including any
commas, and assigns that value to a character variable. You
are inputting values for the variables N$ and A$. Notice that
you do not have to use the same variables that you used in
the program that created the file.

Go ahead and run the program:

RUN

You can see that the data values are displayed.

Now, save your program in a file called
ADDRESS.PROGRAM. Do you remember how to do this?
Enter:

SAVE ADDRESS.PROGRAM//l
or
SAVE ADDRESS.PROGRAM//3

Note: This program will also work with the data file
NAME.ADDRESS that you entered at the keyboard. Let's try
it.

Enter this change. (Remember that you can list a program
and make a change to an existing line.)

120 OPEN #l:"NAME=NAME.ADDRESS",DISPLAY,INPUTI

And run your program:

RUN

Notice that the results are the same.

Data files - DISPLAY 1-13

Data files - DISPLAY
Chapter summary

1-14 SA34-0126

You can store data in a file in order to use that data in one
or more programs. The data in a display file can be loaded
into the work area and listed on the screen.

You can create a display file in one of two ways :

At the keyboard by using CLEAR DATA and SAVE

• In a program by using OPEN DISPLAY,OUTPUT and
PRINT

You can retrieve data from a display file in one of two
ways:

• At the keyboard by using LOAD DATA and LIST

• In a program by using OPEN DISPLAY,INPUT and
LlNPUT

A filename is from 1 to 17 characters long, including
periods. If a filename is longer than eight characters, it must
be divided into two or more simple filenames separated by
periods. Simple filenames are from 1 to 8 characters long.

Exercises

Question 1

Which of the following are valid filenames?

a. SAVINGS

b. NAMES.AND.ADDRESSES

c. NAME.10

d. PROGRAM.A 1

e. 2.PROGRAM

Question 2

Match the following commands with the function they
perform.

---- CLEAR DATA a. Display the contents of
the work area.

____ SAVE b. Store a copy of a file onto a
diskette.

LIST c. Clear the work area and allow ----
data to be entered.

____ LOAD DATA d. Place a copy of a data file
back into the work area.

Data files - DISPLAY 1-15

Data files - DISPLAY
Exercises (continued)

Question 3

Add a statement to the following program, on line 30, that
w ill place t he data 1000 MAIN STREET into the file
STREET.

10 OPEN #1: " NAME=STREET// 1, SI ZE=0", DI SPLAY , OUTPUT
20 S$="1 000 MA I N STREET"
40 END

Answer :

Question 4

Add a statement to the following program, on line 20, that
will input a value from the file SCORE and assign that value
to the variable X$.

10 OPEN #5: " NAME=SCORE//3",DI SPLAY ,INPUT
30 S l$="SCORE = "
40 S2 $=Sl$&X$
50 PRINT # 255: S2$
60 END

1-16 SA34-0126

Answer :

Answers

Question 1

a. Valid

b. Inval id-too many characters

c. I nval id-l 0 is not a simple filename

d. Valid

e. Inval id-name must start with a letter

Question 2

c CLEAR DATA

b SAVE

a LIST

d LOAD DATA

Question 3

30 PRI NT #1 : S$

Question 4

20 LINPUT #5: X$

Data files - DISPLAY 1-17

1-18 SA34- 0126

Chapter 2. INTERNAL files - sequential access
Introduction

In this chapter, you will learn how to process another type
of data file. You will learn about internal files:

You will learn the statements that make internal files
available to a program. You will also learn how to copy data
into a file, and how to retrieve data from it.

You cannot load and list an internal file like you can a
display file. Instead, you can only create and access the file
while running a BASIC program.

Objectives

Upon completion of this chapter, you should be able to do
the following:

• Open an internal file by using the OPEN statement.

• Copy data into a file by using the WRITE statement.

Retrieve data from a file by using the READ statement.

Specify the format of input or output data by using the
FORM statement.

If you are familiar with these tasks, try the exercises at the
end of this chapter. If not, read through the chapter before
going on to the exercises.

INTERNAL files - sequential access 2-1

INTERNAL files - sequential access
Creating a file

Address

In this chapter, we're going to show you how to enter r,. __ another data file of customer information (name and

I I
IErnplOyee~

XXX BUILDING
125 1ST ST .
CHICAGO , I L

XYZ PLUMBING
1830 5TH AVE .
CHICAGO, I L

- \ 2 Street
One customer's rec~_1_25_1S_T_ST .

One of three fields
for this record

2-2 SA34-0126

address).

However, in this chapter, we are going to use an INTERNAL
file. You cannot enter an internal file at the keyboard with
CLEAR DATA and SAVE.

Instead, you must write the data to a file, much like you
printed data to a display file.

An internal file is divided into records. One record contains
all of the information for each subject in the file.

For example, in our file of customer information, one record
contains one name and its corresponding address.

A diskette can be compared to a file cabinet. One file on a
diskette is like one drawer of the file cabinet.

Within this file drawer are separate folders, each one
containing information on a specific subject.

A record in a diskette file is like one of these folders in that
everything on it is related and treated as one unit.

In the example to the left, both the folder and the record
contain smaller pieces of information about the customer
named XXX Building. Those pieces of information within
that record are called fields.

Let's go over that again.

There's one thing different about the records and fields on a
diskette. That is, each record in a file must be the same
length, but the fields in one record can be different lengths.

For example, look at this customer file.

Record 1 XXX BUILDING
Record 2 XYZ PLUMBING

t
NAME

125 1ST ST.
1830 5TH AVE.

t
STREET

CHICAGO IL
CHICAGO,IL

t
TOWN

Both records are the same length. They are divided into
fields of name (18 characters). street (19 characters). and
town (11 characters).

INTERNAL files - sequential access 2-3

INTERNAL files - sequential access
Creating a file (continued)

CLEAR
10 OPTION BASE 1

Now let's enter our customer file. Although we are only
writing three items for each record, we will want to set a
longer length than we actually need for the record. We are
only writing the name and address now. But later, we may
want to add more fields of information for each customer.

Let's assign a name field of 20 characters, a street field of
20 characters, and a town field of 20 characters. If we allow
67 characters for additional entries, each record will be 127
characters long (20+20+20+67=127).

All set? Then enter the following program:

20 DIM NAME$*20 ,STREET$*20,TOWN$*20
30 OPEN #1: "NAME=CUST//1,SIZE=0,RECL=127",INTERNAL,OUTPUT
40 PRINT "ENTER NAME "
50 LINPUT NAME$
60 IF NAME$ ="LAST" THEN GOTO 140
70 PRINT "ENTER STREET"
80 LINPUT STREET$
90 PRINT "ENTER TOWN "
100 LINPUT TOWN$
110 WRITE # l,USING 120 :NAME$,STREET$,TOWN$
120 FORM POS 1,C 20,C 20,C 20
130 GOTO 40
140 END

2-4 SA34-0126

Now run the program, and enter the responses shown. Your
System/23 will know there are no more records to add to
the file when you enter LAST for the name.

RUN
ENTER NAME

?XXX BUILDING
ENTER STREET

? 125 1ST ST.
ENTER TOWN

?CHICAGO, IL
ENTER NAME

?XYZ PLUMBING
ENTER STREET

? 1830 5TH AVE.
ENTER TOWN

?CHICAGO, IL
ENTER NAME

?LAST

After you enter LAST for the name, the program will end.
(Remember that you must enter LAST, exactly as it is
shown in line 60 of your program, that is, in all capital
letters.) READY INPUT should now appear on the status
line.

If your program didn' t run, review the steps outlined on
page 1-6 of this book. Then make any necessary
corrections, and rerun the program.

INTERNAL files - sequential access 2-5

INTERNAL files - sequential access
Creating a file (continued)

Let's look at the statements that open your file and write
data to it.

First, let's look at the OPEN statement in line 30.

30\OPEN #1!:"NAME=CUSTI1 1,SIZE=0,RECL=127",INTERNAL,OUTPUT

As you learned in Chapter 1, OPEN makes a file available to
a BASIC program.

The #1 is the file reference number. The number must be
preceded by a pound sign (#).

If a data file is used by more than one program, its file
reference can be different in each program. For example,
CUST might be referred to by #1 in one program and #14 in
another. But in anyone program, its file reference must
always be the same number.

30 OPEN # 1 : "§AME=CUSTII 1\, SIZE=O, RECL= 127" ,INTERNAL, OUTPUT

CUST / /1 tells your System/23 which file to open. Because
your diskette is on drive 1, you entered CUST / / 1.

If you are using drive 3, line 30 should look like this:

30 OPEN # 1 : ''/NAME=CUSTI1 3\, SIZE=O, RECL=127" ,INTERNAL, OUTPUT

30 OPEN #1 : "NAME=CUSTI1 1 ,ISIZE=01,RECL=127" ,INTERNAL,OUTPUT

2-6 SA34-0126

SIZE specifies the amount of space to be reserved on the
diskette when a new file is created. It is required for new
files, but it cannot be specified when opening a file that
already exists. You must leave out SIZE in order to use a
file a second time.

Remember from Chapter I that we will be using SIZE=O in
our examples. After your System/23 uses all the space it
has reserved on a diskette for a file. it automatically
reserves more space for that file .

30 OPEN # 1: "NAME=CUSTI11 ,SIZE=O ,IRECL=1271" ,INTERNAL, OUTPUT

The RECl specifies the length of each record in the file.
This is the total of the field lengths. In the file you created.
it consists of:

Field

Name
Street
Town
Extra space

Number of characters

20
20
20
67

127 total record length

The RECl must be specified for a new file and cannot be
specified for an existing file.

30 OPEN# 1 : "NAME=CUSTI11 ,SIZE=O, RECL= 127" ,IINTERNAL~ OUTPUT

INTERNAL tells your System/23 that you are opening an
internal data file. It can only be accessed through program
control.

30 OPEN# 1 : "NAME=CUSTII 1 ,SIZE=O, RECL= 127" , INTERNAL ,IOUTPUTI

OUTPUT specifies that you can only copy data into the file
by using WRITE statements. This is like printing to a display
file.

INTERNAL files - sequential access 2-7

INTERNAL files - sequential access
Creating a file (continued)

Now let's look at the WRITE statement in line 110.

110IwRITEI#1,USING 120:NAME$,STREET$,TOWN$

WRITE is a statement that adds a record to an internal file .
Records are added to the end of a file, one item after
another. Any fields in a record that do not receive a value
are filled with blanks.

110 WRITE[[D,USING 120:NAME$,STREET$,TOWN$

The #1 is the file reference number you assigned in line 30.

110 WRITE # 1 ,IUSING 1201: NAME $, STREET$, TOWN$

USING 120 tells your System/23 to write the data in the
format specified in line 120. This is an optional entry. If you
do not specify USING, the data in each record will be
stored one item after the other, along with some control
data that is supplied by your System/23. If you write data
to a file without the USING, you can't read the data with a
USING. We'll look at READ on the next few pages.

110 WRITE # 1 , USING 120 :INAME$, STREET$ ~ TOWN$I

2-8 SA34-0126

The values of NAME$, STREET$, and TOWN$ are the
values that are being written to the file . If you are writing
more than one value to a file, you must separate the names
with commas.

Before going on to the READ statement, save a copy of the
program in the work area. Enter the following command:

SAVE WRITE.ADDRESS/11
or
SAVE WRITE.ADDRESS//3

.. 010 _1011 lIAS! 1
OOOD _" _,.ZO.!Il1IUTt.ZO,_ZO

Before we go on to the READ statement, let's run the
WRITE.ADDRESS program again .

Let's add one more name and address to the file.
Remember that we are writing records to a file with
sequential access. Therefore, the records are added to the
end of the file, one record after another.

First, list the program in the work area :

LIST
... ,10 /!Pili .1 :'_PCUSU/I.S1ZE'O ,RfCL'U?". INTERNAL 0U11'UT
0_ 111100 "8ITPI NAIll"
..... LIIII'UT NAIll.

..... " ~'''UST'' TIIOI COTe I~O
~~ H.IIITIlI ,TREET"
mw~~Tt
'~lIJI!If,... -­
OII~~~
OIII~ 4.,11$" 120·lWIlt.$TRun. TCIMNt
001l0~" I.e eo.c to.c zo
00130 Ge1O .. at1 .. _

Look at line 30. Notice that nothing is entered after the
word OUTPUT. This tells your System/23 that we are using
SEQUENTIAL access. We could include the word
SEQUENTIAL, preceded by a comma, but it is not
necessary, so we won' t include it.

Before you can run this program again, you must delete
SIZE=O and RECL= 127 from line 30. Enter:

30 OPEN #l:"NAME=CUST//l",INTERNAL,OUTPUT

List the new version of your program:

LIST

Now run your program again, and enter :

INTERNAL files - sequential access 2-9

INTERNAL files - sequential access
Creating a file (continued)

2-10 SA34-0126

RUN
ENTER NAME

? ARTS AND CRAFTS
ENTER STREET

? 15 5TH AVE.
ENTER TOWN

? NEW YORK, NY
ENTER NAME

? LAST

Remember that the word LAST tells your System/23 t hat
you have added your last record .

Assigning values from a file

To retrieve data from the CUST file, you ' re going to change
the program currently in the work area . List the program:

LIST

D, *20
00030 OPEN 'l:"NAME=CUST//l",INTERNAL,OUTPUT
00 40 PRINT "ENTER NAME"
00050 LINPUT NAMEt
00060 IF NAME$="LAST" THEN GOTD 140
00070 PRINT "ENTER STREET"
00080 LINPUT STREETt
00090 PRINT "ENTER TOWN"
00100 LINPUT TOWNt
00110 WRITE .1.USING 120:NAMEt,STREETt,TOWN$
00120 FORM POS l,e 20,e 20.e 20
00130 GOTO 40
00140 END

Now make the following changes:

DEL 40,70
30 OPEN #l:"NAME=CUST",INTERNAL,INPUT
80 FOR 1=1 TO 3
90 READ #l,USING 120:NAME$,STREET$,TOWN$
100 PRINT USING 120:NAME$,STREET$,TOWN$
110 NEXT I
DEL 130

List the new version of your program:

00030 OPEN ~U: "NAME=CUST", INTERNAL. INPUT
00080 fOR I=1 TO 3
00090 READ .1.USING 120:NAME$,STREETt.TOWNt
00100 PRINT USING 120:NAMEt,STREETt,TOWNt
00110 NEXT I
00120 fORM POS 1,e 20.e 20.e 20
00140 END

INTERNAL files - sequential access 2-11

I NTERNAL files - sequential access
Assigning values from a file (continued)

2-12 SA34-0126

Run the program :

let's look at the statements that opened your file and read
data from it.

30 IOPEN # 11: "NAME=CUST" ,INTERNAL, INPUT

OPEN #1 has the same meaning as before. It opens a data
file and assigns a file reference number of #1.

30 OPEN # 1 :I"NAME=CUST"I, INTERNAL, INPUT

Just like in the OPI;N statement in the WRITE.ADDRESS
program, "NAME=CUST' indicates that the name of the
file is CUST.

Notice that we did not include the RECl or SIZE in this
statement, because CUST already exists. Also, we did not
have to tell the System/23 which diskette drive the file is
on. The System/23 searches the diskettes until it finds the
CUST file.

30 OPEN # 1 : "NAME= CUST" ,IINTERNAL, INPUTI

This is an internal file. It is opened for input. That is, data
can only be accessed by READ statements. READ is almost
like INPUT, as we will show you.

Now let's look at the READ statement in line 90.

90 1 READ #l~US ING 120 : NAME$, STREET$,TOWN$

READ is a statement that assigns a value or values in a file
to a specified variable or list of variables.

The #1 is the file reference number you assigned to CUST
in line 30.

90 READ # l,~S ING 120 bNAME$, STREET$,TOWN$

USING 120 tells your System/23 to read the data in the
format specified in line 120. Th is is an optional entry. But,
to read from a file without USING, the records must have
been written to the file without USING.

90 READ #l,USI NG 1 20 ~NAME$, STREET$,TOWN$ 1

NAME$, STREET$, and TOWN$ are the variables in the
program that are being assigned values from the file . The
variable NAM E$ will receive the first value in the record.
The variable STREET$ will receive the second value in the
record. The variable TOWN$ will receive the third value in
the record.

You are reading the records sequential/y. That means that
the records are read in the same order in which they were
written . Therefore, the f irst time line 90 executes, the first
record in the file is read. The second t ime line 90 executes,
the second record is read, etc.

I NTERNAL files - sequential access 2-13

INTERNAL files - sequential access
Assigning values from a file (continued)

2-14 SA34-01 26

We knew that there were three records in the f ile, so we
set up our FOR/NEXT loop to execute three t imes.

8 0 FOR I=1 TO 3

1 10 NEXT I

The variable names here must be character variable names,
because you are reading character strings. If you were
reading numeric values, you would enter numeric variable
names.

The names of the variables that receive a value do not have
to match the names of the values that were written to the
file . For example, line 90 could look like :

90 READ # 1, US I NG 120 : N$, S$,T$

If you are reading more than one value from a file, you must
separate the names w it h commas, as in
NAME$,STREET$,TOWN $ or N$,S$,T$.

You can think of reading values from a file just as you read
values with READ and DATA in Book II. A value in the file
(or data list) is assigned to a variable in the program. The
values in the file are like the va lues in DATA statements.
But you can store more values in a file, and the values can
be used by more than one program.

Before going on to the exercises, save a copy of the
program in the work area. Enter the following:

SAVE READ.ADDRESS//1
o r
SAVE READ.ADDRESS//3

Chapter summary

,

An internal file is created only through a program. It can be
accessed sequentially. That is, records are written to the file
and read from the file in order (record one, record two,
record three, etc.) .

To copy data into an internal file, you use the WRITE
statement. The file must be opened for OUTPUT.

To retrieve data from an internal file, you use the READ
statement. The file must be opened for INPUT.

Data is written to an internal file by records. One record
pertains to one particular subject. Each record is divided
into fields. A field is one piece of information about the
subject.

Each record in an internal file must be the same length, but
the fields in a record can be different lengths.

INTERNAL files - sequential access 2-15

I NTERNAL files - sequential access
Exercises

Question 1

Match the f0110wing statements with their corresponding
functions.

_WRITE a. Makes an internal file available for input or
output of data

_OPEN b. Assigns values from a data file to variables
in a program

_READ c. Specifies format of input or output data
records

_FORM d. Adds data records to the end of an internal
file

Question 2

Match the parts of the following OPEN statement with their
corresponding functions.

8 0 OPEN #1:"NAME=ACCOUNTSjj1,SIZE=0,RECL=64",INTERNAL,OUTPUT

2-16 SA34-0126

_RECL=64 a. The file reference number used to identify
_//1
_OUTPUT
_#1

the file throughout the program
b. Identifies the diskette drive
c. Sets the record length for a new file
d. Specifies that the file can only be

accessed by WRITE statements

10 NAME$="JOHN DOE"

Question 3

Assume you have run this program before you answer a, b,
and c.

20 OPEN #1:"NAME=XYZ.F1//1,SIZE=0,RECL=24",INTERNAL,OUTPUT
30 WRITE #1,USING 40:NAME$
40 FORM C 24
50 END

a. How many records are there in the file XYZ.F1?

b. How many positions are there in each record?

c. What is in each position of record 1? (Use the dotted
line to indicate positions.)

INTERNAL files - sequential access 2-17

INTERNAL files - sequential access
Exercises (continued)

2-18 SA34-0126

Question 4

What will appear on the screen if you run this program after
running the program in Question 3?

10 OPEN #1:"NAME=XYZ.F1",INTERNAL,INPUT
20 READ #1,USING 40:A$
30 PRINT "THE NAME IS "jA$
40 FORM C 24
50 END

Answer:

Answers

Question 1

d WRITE
a OPEN
bREAD
c FORM

Question 2

c RECL=64
b / /1
d OUTPUT
a #1

Question 3

a. 1

b. 24

c . J OHN DOE

Question 4

THE NAME IS J OHN DOE

INTERNAL files - sequential access 2-19

2-20 SA34-0126

Chapter 3. I NTERNAL files - relative access
Introduction

In this chapter, you will learn how to access an individual
record in a data file by entering its relative record number.
This is known as relative, or direct, access.

When we use relative access with a file, we will refer to the
file as a relative record I/O file. I/O stands for input and / or
output.

Objectives

Upon completion of this chapter, you should be able to do
the following :

• Open a relative record I/O file by using the OPEN
statement.

• Copy data into a relative record I/O file by using the
WRITE statement.

• Retrieve data from a relative record I/O file by using the
READ statement.

If you are familiar with these tasks, try the exercises at the
end of this chapter. If not, read through the chapter before
going on to the exercises.

INTERNAL files - relative access 3-1

INTERNAL files - relative access
The OPEN statement

3·2 SA34-0126

In Chapter 2, you learned how to open an internal file. You
learned how to write data to a file and how to read data
from a file .

The file you used in the last chapter was opened for
sequential access. Records were written to the file one
record after another. Any new records were always added
to the end of the file.

When you read the data from your file, you started with the
first record . You read the rest of the records in the same
order that they were written to the file. (First record one,
then record two, etc.)

In this chapter, you will learn how to access any record
directly. To do so, you must open your file for relative
access. Let's see how.

Do you remember the first program you wrote in the last
chapter? It was WRITE.ADDRESS. This program opened
your file and added records to it.

Since you have already entered most of what you'll need,
we'll use this program again. First of all, you ' ll have to load
your program back into the work area . Enter the following:

LOAD WRITE.ADDRESS

•

Do you remember what this program looks like? List it:

LIST

Now we're going to change the file CUST to a relative
record I/O file. Enter the following:

30 OPEN #1:"NAME=CUST",INTERNAL,OUTPUT,RELATIVE

By entering RELATIVE in the OPEN statement, you have
opened the file CUST for relative or direct access.

Look again at line 30. Do you remember why you didn' t
include the file size or record length in the file ID? It's
because the file CUST already exists on your diskette.

Also, because the f ile CUST already exists, you didn't need
the / /1 (or/ /3).

INTERNAL files - relative access 3-3

INTERNAL files - relative access
The WR ITE statement

When you write a record to a relative record I/O file, you
must indicate the number of the record you are writing. So,
you will have to make a few more changes to your program.

Change line 110 to the following statement:

110 WRITE #l,USING 120,REC=N:NAME$,STREET$,TOWN$ 1

00010 OPTION BASE I
00020 0111 NA/IE'.ZO,STREn."zo.TOIINt.ZO

We are indicating the record to be written (REC=) with the
variable N. We know that there are three records in the
CUST file. So, the next record will be record number 4.

Let's put the statement N=4 on line 35. Enter:

35 N=4

Now, when line 110 is executed, N will equal 4. The next
name and address will be written in the fourth record
(REC=N and N=4).

Then, in order to have the next record after that be record
number 5, enter the following statement:

125 N=N+1

List this new version of your program:

LIST

000]0 OPEN .1: ''!W1E=CUST''.IHT£RNAL.OUTJIUT .REt.ATlY£
00015 LET N=4
00040 PR INT '!(HTEII NA/IE"
00050 LlHI'UT _.

00060 IF HAHU'''LAST'' THEIl GQTO 140
00070 ,'IUNT "EHTER STREET"
oooeo LIHPUT lITRUT.

ooo~o PRINT "ENTER TaWN"
00 I 00 LIHPUT TOIII.
00110 WlUTE el.USING 120.REe=H:HAI1Et.STREET •• r_
00120 FORI1 POS I.e zo.t 20.e 20
OOIZS LET H:H'I
00110 GOTO 40
00140 ENO

3-4 SA34-0126

..

Now run your new program, and enter the responses shown.
Remember that the DIM statement in line 20 limits the
maximum number of characters in your entries to 20.

As in Chapter 2, your System/23 will know there are no
more records to add to the file when you enter LAST for the
name.

RUN
ENTER NAME

? SMITH INC.
ENTER STREET

? 1000 1ST AVE.
ENTER TOWN

? NEW YORK, NY
ENTER NAME

? JONES LTD.
ENTER STREET

? 3050 2ND AVE.
ENTER TOWN

?NEW YORK, NY
ENTER NAME

? LAST

READY INPUT should now appear on your screen. Let's take
a look at what happened when you ran this program.

INTERNAL files - relative access 3·5

INTERNAL files - relative access
The WRITE statement (continued)

First of all, you opened the file CUST, which already existed
on the diskette in drive 1 (or 3). In this new program,
however, you opened the file for relative access. A file that
has been opened for sequential access in one program can
be opened for relative access in another program.

Next, you wrote two records to the file. Both times you used
the WRITE statement in line 110.

110 WRITE #l,USING 120,REC=N:NAME$,STREET$,TOWN$

XXX BUILDING
XYZ PLUMBING
ARTS AND CRAFTS
SMITH INC.
JONES LTD.

3-6 SA34-0126

The values that were written to the file were the values of
NAME$, STREET$, and TOWN$.

With relative access, you indicate the number (with REC=) of
the record you are writing. Your file CUST should now
contain the following records :

125 1ST ST. CHICAGO, IL
1830 5TH AVE. CHICAGO, IL
1~ ~TH AVE. NEW YORK, NY
1000 1ST AVE. NEW YORK, NY
3050 2ND AVE. NEW YORK, NY

Before we go on, let's save this new version of our program.

Do you remember how to save a program using its original
filename? Enter the following:

REPLACE

REPLACE will always save your new program in the file with
the name you entered when you said LOAD.

Assigning values from a file

Now we're going to look at the READ statement that is used
with relative record I/O files . This time we' re going to use
the second program you wrote in the last chapter.

Do you remember the READ.ADDRESS program? It read the
records in your CUST file and displayed the data on your
screen.

To use READ.ADDRESS again, enter the following:

LOAD READ.ADDRESS

Now list the program :

LIST

This time, we will have to make three changes to the
program. First the file has to be opened again for relative
access.

INTERNAL files - relative access 3-7

INTERNAL files - relative access
Assigning values from a file (continued)

Do you remember how to do this? Enter the following :

30 OPEN #1 : "NAME=CUST",INTERNAL ,INPUT,RELATIVE

Now, this time we are going to read just the second record .
We have to take out the FOR/NEXT loop. Enter the
following:

DEL 80
DEL 110

And finally, we have to tell the System/23 to read only the
second record in the CUST file. Enter the following. (Don' t
forget that you can scroll down to line 90 on your screen
and insert ,REC=2.)

1 90 READ #l,USING 120,REC=2:NAME$,STREET$,TOWN$ 1

3·8 SA34- 0126

Relative access is a good technique to use when you know
the relative record number of the record you want to read .

List your program now:

LIST

Now let's run the program and see what is displayed:

..

RUN

XYZ PLUl'lBING

RUN

1830 5TH AVE. CRICAGO.IL

Only one name and address should appear on your screen .

This is the data that is stored in record number 2 of your
CUST file.

A program using relative access reads whichever record is
specified by REC= in the READ statement.

Your turn!

What would be displayed if line 90 looked like this?

90 READ #1,USING 120,REC=5:NAME$,STREET$, TOWN$

JONES LTD.

Answer: ____________________ _

This would be displayed on your screen:

3050 2ND AVE. NEW YORK, NY

What happens if you open a file for relative access, and you
don't specify the record to be read? It will read the next
record.

Don't forget: To read a specific record from a file, you must
include the word RELATIVE in your OPEN statement. You
must also include REC= in your READ statements.

INTERNAL files - relative access 3·9

INTERNAL files - relative access
Chapter summary

3-10 SA34-0126

Record I/O files can be accessed sequentially or directly.
Relative, or direct, access allows you to read an individual
record in a file by specifying its relative record number.

To allow relative access to a file, you must enter RELATIVE
in the OPEN statement, as in:

OPEN #l:"NAME=A",INTERNAL,INPUT,RELATIVE

The WR ITE statement adds records to a relative record I/O
file by using a specific record number, as in:

WRITE #1,REC=3:A,B,C

To read a specific record from a relative record I/O file, you
must enter the record number in the READ statement, as in:

READ #1,REC=3:A,B,C

A READ statement without REC= reads the record that
follows the record previously read.

•

Exercises

Question 1

Match the parts of the following OPEN statement with their
corresponding functions:

80 OPEN #l:"NAME=ACCOUNTS// l",INTERNAL,INPUT,RELATIVE

ACCOUNTS a. The name of the file stored on

_#1

INPUT

RELATIVE

Question 2

diskette
b. Specifies the file can be accessed by

READ statements
c. Allows direct access to a specified

record
d. The file reference number

throughout the program

Assume that the internal file INVENT is stored on diskette
drive 1. It contains the following records:

001 NUTS
107 BOLTS
115 SCREWS

100
50
50

.08

.15

.06

Write a statement that will open the file INVENT for relative
access.

Answer:

INTERNAL files - relative access 3-11

INTERNAL files - relative access
Exercises (continued)

3-12 SA34-0126

Question 3

Using the variables 1$, D$, N, and C, and line numbers 10,
20, and 30, write a three-line program that will read record
number 2 of the INVENT file.

Answer:

Question 4

Change the OPEN statement in the program in Question 3 to
allow you to add another record to the INVENT file.

Answer:

•

•

Answers

Question 1

a ACCOUNTS

Q #1

blNPUT

c RELATIVE

Question 2

10 OPEN #1:"NAME=INVENT// 1",INTERNAL,INPUT,RELATIVE

You could have used any line number and any file reference
number.

Question 3

10 OPEN #1:"NAME=INVENT//1",INTERNAL,INPUT,RELATIVE
20 READ #1,REC=2:I$,D$,N,C
30 END

Question 4

10 OPEN #1:"NAME=INVENT//1",INTERNAL,OUTPUT,RELATIVE

The / / 1 in questions 2, 3, and 4 is optional because the
INVENT file already exists.

INTERNAL files - relative access 3-13

3-14 SA34-0126

Chapter 4. Repositioning a file
Introduction

In this chapter, you will learn how to reposition a file. This
means that you will be able to access the file again either at
the beginning or at a specified record number.

We will discuss the two different access methods that you
have used with internal files: sequential access and relative
access.

You will learn how to reaccess a previously read data record
and how to change a previously written data record.

You will also learn how to close an opened file and how to
specify the action to be taken when an error occurs while
accessing a file.

Objectives

Upon completion of this chapter, you should be able to do
the following:

Reposition a file by using the RESTORE statement.

Assign a value from the record just previously read by
using the REREAD statement.

Update a record in a file by using the REWRITE
statement.

Remove a record from a file by using the DELETE
statement.

Close a file by using the CLOSE statement.

Specify the action to be taken within a program when
an error occurs while accessing a data file.

Repositioning a file 4-1

Repositioning a file
Introduction (continued)

4-2 SA34-0126

If you are familiar with these tasks, try the exercises at the
end of this chapter. If not, read through the chapter before
going on to the exercises.

The RESTORE statement

Do you remember how you used the RESTORE statement in
Book II? You entered RESTORE to go back to the beginning
of your DATA values.

You can do the same thing with values stored in a file .

In this case, you are going back to the beginning of a file.
You are assigning the same values to D, E, and F that you
assigned to A, B, and C.

The #1 in RESTORE #1 is the file reference number. If you
do not include a file reference number, RESTORE refers to
the values in your DATA statements.

You can also use the RESTORE statement in a program to
rewrite data to a file after reading data from it. (REWRITE
will be discussed in this chapter.)

Note: To read from and write to the same file in a program,
the file must be opened with OUTIN in the OPEN
statement. Or, you must close the file after reading from it
and open it again when you want to write to it.

Repositioning a file 4·3

Repositioning a file
The RESTORE statement (continued)

4-4 SA34-0126

Do you remember the two programs that you saved in
Chapter 2? Both programs used sequential access. One
program added data to a file. The other program read data 4
from a file. Next we'll show you how you can do both in the I

same program.

Keep in mind, as you look at and run the next program, that
we are using sequential access in this file. Remember : That
means we are reading the records in the same order in
which they are written.

Let's write a program to store employee data. Each record
will pertain to one employee. The fields in each record will
be name, sex, date of birth, and date of hire.

We will close the file and reopen it to read data from the
file we just created and print that data in a report. Once we
have printed the report, we will use the RESTORE
statement to restore the file back to the beginning . This is
done to read the name and print a second report, using only
the name of the employees.

The rest of the statements in this program should be
familiar to you. If you are confused by a particular section,
you may want to go back and review an earlier part of this
course. For example, the INPUT statement and FOR/NEXT
loop are covered in Book II. The PRINT and PRINT #255
statements are covered in Book III.

All set? OK, let's enter the program from the next page.

•

CLEAR
00010 OPTION BASE 1
00020 DIM NAME$*20,SEX$*1
00030 OPEN #1:"NAME=EMP//l,SIZE=0,RECL=40",INTERNAL,OUTPUT
00040 PRINT "ENTER NAME"
00050 INPUT NAME$
00060 IF NAME$="LAST" THEN 170
00070 PRINT "ENTER SEX (M OR F)"
00080 INPUT SEX$
00090 PRINT "ENTER BIRTH DATE (MO,DAY,YR)"
00100 INPUT Ml,Dl,Yl
00110 PRINT "ENTER HIRE DATE (MO,DAY,YR)"
00120 INPUT M2,D2,Y2
00130 LET COUNT=COUNT+l ! NUMBER OF EMPLOYEES
00140 WRITE #l,USING 150:NAME$,SEX$,Ml,Dl,Yl,M2,D2,Y2
00150 FORM POS 1,C 20,C 1,6*N 2
00160 GO TO 40
00170 CLOSE #1:
00180 OPEN #l:"NAME=EMP",INTERNAL,INPUT
00190 FOR 1=1 TO COUNT
00200 READ #l,USING 150:NAME$,SEX$,Ml,Dl,Yl,M2,D2,Y2
00210 PRINT #255,USING 250:NAME$,SEX$
00220 PRINT #255,USING 260:"BIRTH:",Ml,Dl,Yl
00230 PRINT #255,USING 260:"HIRE:",M2,D2,Y2
00240 NEXT I
00250 FORM SKIP 2,C 20,X 3,C
00260 FORM C 8,N 2,X 1,N 2,X 1,N 2
00270 RESTORE #1:
00280 FOR 1=1 TO COUNT
00290 READ #l,USING 150:NAME$
00300 PRINT #255,USING 320:NAME$
00310 NEXT I
00320 FORM SKIP ,C 20
00330 END

Repositioning a file 4-5

Repositioning a file
The RESTORE statement (continued)

4-6 SA34-0126

Before you run this program, save a copy of it.
Enter:

SAVE EMP.INFO// I
or
SAVE EMP.INFO//3

If your program doesn' t run, check first to make sure that
you didn' t make any typing errors. Then look up the action
code and error code in your Messages manual to find out
the exact cause of your problem.

Remember to expect the line of asterisks on your screen
after you press Error Reset.

List the number of the line on which the program stopped.
That number will be to the right of the error code on the
status line.

If your error was in that line, fix it, then type GO.

If the line you fixed came before the line on which the
program stopped, you will have to type GO END.

Fix the appropriate line and run the program again.

If the action code indicated a filename problem, enter FREE
EM P to release the file the program created when it tried to
run before. Then run the program again .

Use the following input data:

RUN
ENTER NAME
? F.L. BROWN
ENTER SEX (M or F)
?M
ENTER BIRTH DATE (MO,DAY,YR)
? 6,6,38
ENTER HIRE DATE (MO,DAY,YR)
? 3,12,69
ENTER NAME
? S.S. BLACK
ENTER SEX (M or F)
? F
ENTER BIRTH DATE (MO,DAY,YR)
? 1,4,52
ENTER HIRE DATE (MO,DAY,YR)
? 7,16,79
ENTER NAME
? F.R. GREEN
ENTER SEX (M or F)
? M
ENTER BIRTH DATE (MO,DAY,YR)
? 10,13,48
ENTER HIRE DATE (MO,DAY,YR)
? 1,15,73
ENTER NAME
? LAST

The report shown at the left should be printed or displayed,
depending on how you entered lines 210-300.

Repositioning a file 4·7

Repositioning a file
The RESTORE statement (continued)

4-8 SA34-0126

The RESTORE statement in line 270 repositions the EMP
file back to the beginning. Then you read the records in the
same order in which they were written, beginning with
record 1.

Now let's look at a program that uses relative access with
RESTORE.

You ' re go ing to enter an inventory program.

Th is program is a short version of the complete inventory
program found in Book VII. It may look like a lot of lines to
enter, but you should be getting used to longer programs by
now. All set? OK. Take your time and enter the following :

CLEAR
10 REM THIS PROGRAM READS AND WRITES RECORDS
20 DIM 0$ * 20
30 OPEN #1 : "NAME=ITEMS//l , SIZE=0 , RECL=64 " ,INTERNAL , OUTIN , RELATIVE
40 Nl=O
50 PRINT " ENTER ITEM NUMBER "
60 INPUT 1$
70 I F I$= " LAST " THEN GOTO 180
80 Nl =Nl+ l
90 PRINT " ENTER DESCRIPTION "
100 INPUT 0$
11 0 PRINT " ENTER QUANTITY ON HAND "
120 I NPUT Q
130 PRINT " ENTER UNIT COST "
140 INPUT P
150 WRITE # l, USING 160 , REC=N l :I$, D$, Q, P , Q*P
160 FORM C 5,C 20,N 6 , N 9.2,N 17 . 2
170 GOTO 50
180 RESTORE #1 , REC=2: ! RESTORE FILE TO SECOND RECORD
190 READ #l , USING 160:I$, D$, Q, P , Pl
200 REM READ RECORD IN THE FILE
2 10 PRINT USING 220 : 1$, D$, Q, P , Pl
220 FORM C 6 , C 20 , PIC(# , ###l , X 4 , PIC($$$#.##l , x 3 , PIC($$$$# . ##l
230 END

Reposit ioning a file 4-9

Repositioning a file
The RESTORE statement (continued)

4·10 SA34-0126

Now run the program. Use the following input data:

RUN
ENTER ITEM NUMBER

?00001
ENTER DESCRIPTION

?NUTS
ENTER QUANTITY ON HAND .

? 2000
ENTER UNIT COST

? 29
ENTER ITEM NUMBER

?00002
ENTER DESCRIPTION

?BOLTS
ENTER QUANTITY ON HAND

? 1500
ENTER UNIT COST

? 39
ENTER ITEM NUMBER

?LAST

The data for the second record should have been displayed.
If your program didn't run, go back and follow the steps on
page 1-6 of this book.

Let 's look aga in at the program t hat produced th is report.

10 REM THIS PROGRAM READS AND WRITES RECORDS
20 DI M D$ * 20
30 OPEN #1:"NAME == ITEMS// l, S I ZE== 0 , RECL== 6 4 " ,INTERNAL, OUTIN,RELATI VE
40 Nl==O
50 PRINT "ENTER ITEM NUMBER"
60 I NPUT I$

70 IF I$=="LAST" THEN GOTO 180
80 Nl==N l +l
90 PRI NT "ENTER DESCRIPTION"
100 I NPUT D$
110 PRINT " ENTER QUANTITY ON HAND"
120 I NPUT Q
130 PRI NT "ENTER UNIT COST"
140 I NPUT P
150 WRITE #l,USING 160 , REC==Nl:I$,D$,Q,P, Q*P
160 FORM C 5, C 20,N 6,N 9.2 , N 17.2
170 GOTO 50
180 RESTORE #1,REC== 2: ! RESTORE FILE TO SECOND RECORD
190 READ #l, USING 160 :I $, D$, Q, P,Pl
200 REM READ RECORD IN THE FILE
2 10 PRINT USING 220:I$, D$, Q, P , Pl
2 20 FORM C 6 , C 20,PI C(# , ###) , X 4 , PIC ($$$#.##) , X 3 ,PIC ($$$$#.##)
230 END

Do you know what each statement does?

Repositioning a file 4-11

Repositioning a file
The RESTORE statement (continued)

4·12 SA34-0126

Let's look at the statements that pertain to your data file .

Line 30 creates a new file on diskette drive 1. It is called
ITEMS. If you are using drive 3, it would read ITEMS/ /3 .

This is an internal file. It will be accessed by relative record
number, with a record length of 64. It can be used for both
output and input.

Line 150 writes five fields of data in each record of the file.
When N 1 equals 1, t he data goes in the f irst record. W hen
N 1 equals 2, the data goes in the second record .

Line 180 repositions the file to record number 2. Record
number 2 will be the next record to be accessed by READ.

If you don' t tell your System/23 which record to restore (as
in RESTORE #1 :). the file will be repositioned at the
beginning. Remember that if you are using sequential
access, the RESTORE statement also reposit ions the file at
the beginning.

Line 190 reads five items from the second record in the file .

We have shown you how to reposition a file so that you can
access any record . Next we'll show you how to reaccess
only the record that was just read.

.•

The REREAD statement

CLEAR

Suppose you had run the inventory program and entered
100 items. Now you need to know what you entered for
BOLTS. How can you find that information if you don't
know its record number?

We'll show you how to read only the second field from
each record. After you locate BOLTS in the file, you will
read that entire record. Enter the following without using
the AUTO command:

10 REM SEARCH FOR BOLTS
20 DIM D$*20
30 OPEN #l:"NAME=ITEMS",INTERNAL,INPUT,RELATIVE
40 FOR 1=1 TO 100
50 READ #l,USING 55,REC=I:D$
55 FORM X 5,C 5
60 FORM C 5,C 20,N 6,N 9.2,N 17.2
70 IF D$ <> "BOLTS" THEN GOTO 110
80 REREAD #l,USING 60:I$,D$,Q,P,Pl
90 PRINT USING 60:I$,D$,Q,P,Pl
100 GOTO 120
110 NEXT I
120 END

Look at lines 50 and 55.

50 READ #l,USING 55,REC=I:D$
55 FORM X 5,C 5

These statements tell your System/23 to read only one field
from the record. The field to be read is five characters long,
and it begins in the sixth position in the record. Run the
program:

RUN

Repositioning a file 4-13

Repositioning a file
The REREAD statement (continued)

4-14 SA34-0126

Let's look at what else this program is doing.

Line 40 sets up a FOR-NEXT loop with values from 1 to
100. As we run the program, we will break out of the loop
after finding BOLTS. This may happen before 1=100.

That's all right. It will not cause an error. You can break out
of any loop with a GOTO statement, even if you haven't
completed the loop the number of times specified.

Line 50 reads characters in positions 6-10 from each
~ecord. It reads them using the FORM statement in line 55.
By reading only one data item from each record, we save
the time it would take to also read the unnecessary values.

We could have read the entire 20-character field for D$. If
we had, line 70 would need to check D$(1 :5). Remember
from Book V that D$(1 :5) means the first five characters of
D$. If we look at all of D$, it will look like this:
"BOLTS

Line 80 rereads the same record that was just read. But this
time, the program is reading five' fields, not just one.

REREAD acts like READ. It assigns values from a file to
variables in a program. However, the record being reread is
the same record that was just read .

Notice in lines 60 and 70 that you can execute other
statements between the READ and REREAD.

•

The REWRITE statement

CLEAR

How do you update or change one of the records in a file?
You use the REWRITE statement.

Let's look at an example. In the first record of ITEMS, you
entered a quantity on hand of 2000. Suppose you sold 200.
Your new quantity is 1800 .

Let's write a program to update the record. Enter the
following without using the AUTO command:

10 REM PROGRAM TO UPDATE 1ST RECORD
20 DIM D$*20
30 OPEN #1:"NAME=ITEMS",INTERNAL,OUTIN,RELATIVE
40 READ #l,USING 50,REC=1:Q,P
50 FORM X 25,N 6,N 9.2
60 Q=Q-200
70 REWRITE #1,USING 75:Q,Q*P
75 FORM X 25,N 6,X 9,N 17.2
80 PRINT "RECORD REWRITTEN"
90 END

RUN

RECORD REWRITTEN

Now run the program:

RUN

The REWRITE statement in line 70 tells your System/23 to
copy data into the same record that was just read.

The fields that are skipped when the record is read and
rewritten (by using X in the FORM statements) are left
undisturbed.

As with REREAD, you can execute other statements
between READ and REWRITE.

Repositioning a file 4·15

Repositioning a file
The DELETE statement

4-16 SA34-0126

You already know how to remove a line from a program.
DEL 70 deletes line 70. You can also delete records from a
data file. In order to delete records from a data file, the file
must be opened with OUTIN in the OPEN statement.

Suppose you sold the last bolt in your inventory. You are no
longer going to stock that item, so you want to remove it
from your file . Enter the following:

40 READ #1,USING 50,REC=2:
60 DELETE #1:
80 PRINT "RECORD DELETED"
DEL 70,75

The DELETE statement in line 60 removes a record from the
file. It deletes the record that was just read.

Can you guess what this statement will do?

60 DELETE #1,REC=2 :

It will delete record number 2 from file #1 . If you do not tell
your System/23 which record to delete, the last record read
is deleted.

List the new version of your program :

LIST

Remember: When writing, reading, and deleting records,
you can specify REC= only if the file has been opened for
RELATIVE access.

."

The C LOS E statement

RUN '

RECORD DELET£D

The CLQSE statement does the opposite of the OPEN
statement. You use the CLOSE statement to deactivate a
file while running a program.

To close the file ITEMS in the program in the work area,
enter the following:

65 CLOS E #1:

Now run the program :

RUN

When READY appears, you know that the second record
has been deleted (line 60L and the file has been closed (line
65).

CLOSE is especially helpful when you are running a long
program, or when you want to remove a diskette. A file will
automatically be closed when your program reaches an END
or STOP statement. The commands LOAD and CLEAR also
close a file.

You can also use the CLOSE statement to free a file while
you are running a program. For example, if you had wanted
to free the ITEMS file after you finished using it, line 65
would have looked like th is:

6 5 CLOSE #l,FREE:

Repositioning a file 4-17

Repositioning a file
Controlling file access errors

4·18 SA34-0126

So far, you have learned to process files with these
statements:

OPEN
READ/REREAD
WRITE/REWRITE
RESTORE
DELETE
CLOSE

An error could occur while performing any of these. You
can include statements to control your programs when an
error occurs while accessing a file. By doing so, you may
save yourself the time and trouble of reentering or rerunning
a program.

Some common error conditions and actions follow. They
can be used with any of the file processing statements
listed above.

One or more error conditions can be entered in a statement
that accesses a file. You can use error conditions with
READ, WRITE, OPEN, DELETE, etc.

When you use an error condition in a statement, you include
the condition followed by a line number or label. If the
condition occurs, control will branch to that line reference. If
the condition does not occur, the line reference will be
ignored . For a complete list of error conditions, see "EXIT"
in the BASIC Language Reference.

Here are some of the error conditions you might receive.

CONV-A conversion error. The variable name doesn't
match the type of data (numeric versus character). or the
record is not long enough to hold all the items being
written.

EOF-End of file. There are no more records in the file.

IOERR-lnput/ output error. An error has prevented
completion of the statement which is not one of the other
error conditions.

NOREC-No such record. The record number specified
does not exist; it is less than or equal to 0; it has been
deleted, or the number is greater than the number of
records in the file.

SOFLOW-String overflow. The output field is not long
enough for the character string being written, or the variable
is not dimensioned large enough to hold the data being
read.

Here are some example program statements using error
conditions:

Repositioning a file 4·19

Repositioning a file
Controlling file access errors (continued)

10 OPEN #1:"NAME=ACC.RCVBL",INTERNAL,OUTIN,RELATIVE IOERR 40
20 GOTO 50
•
•
•
40 PRINT "FILE DOES NOT EXIST"
45 STOP
50 READ #2,REC=45:A,B,C CONV 120,NOREC 180,EOF 9999
•
•
•
180 PRINT "THERE IS NO RECORD 45"

4·20 SA34-0126

You can also direct program control with one EXIT
statement:

30 WRITE #5,REC=50:A$,B,C EXIT 70
70 EXIT CONV 120,NOREC 80,SOFLOW 300

If an error occurs in line 30, the action is determined by line
70.

,

Let's look at an example in a program . First of all , load the
EMP.INFO program that you saved earlier in this chapter.
Do you remember how? Enter:

LOAD EMP .INFO

List your program:

LIST

Repositioning a file 4·21

Repositioning a file
Controlling file access errors (continued)

00010 OPTION BASE 1
00020 DIM NAME$*20 ,SEX$*1
00030 OPEN #1: "NAME=EMP//l ,SIZE= 0 ,RECL=40 ",INTERNAL , OUTPUT
00040 PRINT "ENTER NAME "
00050 INPUT NAME$
00060 IF NAME$="LAST " THEN 170
00070 PRINT "ENTER SEX (M OR F) "
00080 INPUT SEX$
00090 PRINT "ENTER BIRTH DATE (MO ,DAY,YR)"
00100 INPUT Ml,D l,Yl
00110 PRINT "ENTER HIRE DATE (MO ,DAY,YR)"
00120 INPUT M2 ,D2,Y2
00 130 LET COUNT=COUNT+l ! NUMBER OF EMPLOYEES
00 140 WRITE # l,USING 150 :NAME$,SEX$,Ml,Dl,Yl,M2,D2,Y2
00 150 FORM POS 1 , C 20 ,C 1,6*N 2
00 160 GOTO 40
00170 CLOSE # 1:
00 180 OPEN # l:"NAME=EMP",INTERNAL,INPUT
00 190 FOR 1= 1 TO COUNT
00200 READ #l ,USING 150 :NAME$,SEX$,Ml,Dl,Yl,M2,D2,Y2
00210 PRINT #255 ,USING 250 :NAME$,SEX$
00220 PRINT #255 ,USING 260 :"BIRTH:",Ml,Dl,Yl
00230 PRINT #255 ,USING 260: "HIRE:",M2,D2,Y2
00240 NEXT I
00250 FORM SKIP 2 , C 20 ,X 3 , C
00260 FORM C 8 ,N 2 ,X 1 ,N 2 ,X 1,N 2
00270 RES TORE # 1:
00280 FOR 1= 1 TO COUNT
00290 READ #l ,USING 150 :NAME$
00300 PRINT #255 ,USING 320 :NAME$
003 10 NEXT I
00320 FORM SKIP , C 20
00330 END

4-22 SA34-0126

•

Now make the following changes:

30 OPEN #1:"NAME=EMP//1,SIZE=0,RECL=40",INTERNAL,OUTPUT IOERR 340
DEL 190
200 READ #l,USING 150:NAME$,SEX$,M1,D1,Y1,M2,D2,Y2 EOF 270
240 GOTO 200
DEL 280
290 READ #l,USING 150:NAME$ EOF 330
310 GOTO 290
330 STOP
340 PRINT "FILE ALREADY EXISTS"
350 PRINT "USE DIFFERENT OPEN STATEMENT"
360 OPEN #l:"NAME=EMP",INTERNAL,OUTPUT
370 GOTO 40
380 END

The IOERR in line 30 sends control to line 340 if the EMP
rile already exists. Instead of stopping your program with an
error, we open the file correctly in line 360, and then control
branches back to line 40.

The EOF in line 200 sends control to line 270. The EOF
condition occurs when the READ is issued and all the
records in the file have been read.

Go ahead and run the program witb this input:

Repositioning a file 4-23

Repositioning a file
Controlling file access errors (continued)

4-24 SA34-0126

RUN
FILE ALREADY EXISTS
USE DIFFERENT OPEN STATEMENTS
ENTER NAME
? J.T. WHITE
ENTER SEX (M or F)
? M
ENTER BIRTH DATE (MO,DAY,YR)
? 3,16,47
ENTER HIRE DATE (MO,DAY,YR)
? 3, 16,70
ENTER NAME
? LAST

The report shown at the left should be printed or displayed.

Notice that all of the records in this file were listed because
the file was read from the beginning to the end.

Before we go on, let's save this new version of our
program. Enter:

REPLACE

•

Chapter summary

The RESTORE statement repositions a file to the beginning
or to a specified record.

The REREAD statement assigns values from the record just
previously read . The REWRITE statement copies data into a
previously written record.

The DELETE statement removes a record from a file . The
CLOSE statement closes a file during program execution.

The EXIT statement directs program control when a file
access error occurs. Error conditions include :

CO NV-conversion
EOF-end of file
IOERR-input/ output error
NOREC-no record found
SOFLOW-string overflow

Repositioning a file 4-25

Repositioning a file
Exercises

Assume that the file NAME.ADDR is stored on diskette
drive 1. It contains the following records:

00001 ABC BUILDING 125 1ST ST 12
00103 XYZ PLUMBING 1830 5TH AVE 50
12345 AIRCO SALES 845 MAIN ST 50

Question 1

What will· be displayed if you run the following programs?

a. 10 OPEN # 1 : "NAME=NAME. ADDR/ /1 , 8I2E=0" , INTERNAL, INPUT
20 READ #1,U8ING 30 :A$
30 FORM C 5,X,C 28,N 2
40 PRINT A$
50 END

Answer:

b. 10 OPEN # 1 : "NAME=NAME. ADDR" , INTERNAL, INPUT
20 READ #1,U8ING 30 :A$
30 FORM C 5,X,C 28,N 2
40 REREAD #1,U8ING 30:B$
50 PRINT AjB
60 END

Answer :

4-26 SA34-0126

Question 2

What will be displayed if you run the following programs?

a. 10 OPEN # 1 : "NAME=NAME. ADDR" , INTERNAL, INPUT, RELATIVE
20 READ #l,USING 50,REC=2:A$
30 RESTORE # 1 :
40 READ #l,USING 50:B$
50 FORM C 6
60 PRINT A$;B$
70 END

Answer:

b. 10 OPEN #2:"NAME=NAME.ADDR",INTERNAL,OUTIN,RELATIVE
15 DIM B$*28
20 READ #2,USING 30,REC=3:A$,B$, CO
30 FORM C 5,X,C 28,N 2
40 CO=1 0
50 REWRITE #2,USING 30:A$,B$,CO
60 RESTORE #2:
70 READ #2,USING 30:A$,B$,CO EOF 100
80 PRINT USING 30:A$,B$,CO
90 GOTO 70
100 END

Answer:

Repositioning a file 4-27

Repositioning a file
Exercises (continued)

Question 3

What will be displayed if you run the following programs?

a. 10 OPEN # 2 : "NAME=NAME . ADDR" , INTERNAL, INPUT
15 DIM B$*28,E$*28
20 DATA 00008,NEW PRODUCTS 100 1ST ST, 8
30 READ A$,B$,CO
40 READ #2,USING 50:D$,E$, COl
50 FORM C 5,X,C 28,N 2
60 PRINT USING 50:A$,B$, CO
70 PRINT USING 50:D$,E$,COl
80 END

Answer :

b. 10 OPEN #2:"NAME=NAME.ADDR",INTERNAL,OUTIN,RELATIVE
15 DIM B$*28
20 DELETE #2,REC=2:
30 RESTORE #2:
40 READ #2,USING 50:A$,B$,CO EOF 70
50 FORM C 5,X,C 28,N 2
60 GO TO 40
70 PRINT A$
80 END

Answer:

4-28 SA34-0126

Answers

Question 1

a. An error message-you cannot state the SIZE when
opening an existing file.

b. 0000100001

Question 2

a. 00103 00001

b. 00001 ABC BUILDING 125 1ST ST 12
00103 XYZ PLUMBING 1830 5TH AVE 50
12345 AIRCO SALES 845 MAIN ST 10

Question 3

a. 00008 NEW PRODUCTS 100 1ST ST 8
00001 ABC BUILDING 125 1ST ST 12

b. 12345

Repositioning a file 4-29

4-30 SA34-0126

Chapter 5. INTERNAL files - key-indexed access
Introduction

In the first four chapters of this book, you learned about
files. You learned how to access an individual record by
entering its record number.

In this chapter, you will learn how to use a key-indexed file.
You will learn how to access an individual record, even
when you don't know its record number.

Objectives

Upon completion of this chapter, you should be able to do
the following :

Create an index file by using the LINK command and
the INDEX Customer Support Function.

• Activate a key-indexed file by using the OPEN
statement.

Retrieve data from a key-indexed file by using the
READ statement.

Copy data into a key-indexed file by using the WRITE
and REWRITE statements.

Remove a record from a key-indexed file by using the
DELETE statement.

If you are familiar with these tasks, try the exercises at the
end of this chapter. If not, read through the chapter before
going on to the exercises.

INTERNAL files - key-indexed access 5-1

INTERNAL files - key-indexed access
What is a key-indexed file?

Data me

Index file

5-2 SA34-0126

A key-indexed file is a record I/O file with an associated
index file. The index file contains a key and relative record
number for each record in the data file .

A key is a continuous set of characters used to identify
each record. A key can be a customer number, an item
number, or any other field in a record. It can be from 1 to
28 characters long, and it is read as a character string.

You must use the same location of characters in each
record as the key. For example, the key could be the f irst
five characters of each record. Or, it could be the characters
in positions 10-30 of each record . You decide which field to
use in each file.

Let's look at an example. In the following file of customer
data, positions 1 -3 in each record will be the key.

001 ABC BUILDING 125 1ST ST.
108 XY Z PLUMBING 1830 5TH AVE.
057 WORLDWIDE MFG 1000 8TH ST.

The index for this file will contain the following :

001
057
108
t

Key

1
3
2

t
Re cord number

Note: When you create an index for a file, the keys will be
sorted in ascending order (001, 057, 108). The data file
itself is unchanged.

,

•

When you want to access the data record for customer 1 DB,
you specify KEY="10B". Your System/23 will search
through the index until it finds key 10B. It will see that key
10B is in the second record of the data file. Using record
number 2, it directly accesses the correct record in the data
file .

Key-indexed files are used when you want to access
individual records directly. Instead of searching an entire
data file, your System/23 searches the shorter index file.

If our file of customer data had 1000 records, it would be
much faster to search an index file for a particular customer
number, rather than to search the entire data file.

As you can see in our example, the keys do not have to be
the same numbers as the relative record numbers. In fact,
the key can be, and often is, alphabetic.

For example, in the following file, the key could be the
town, the zip code, or the first three letters of the name.

GENERAL SYSTEMS 4111 NORTHSIDE
OFFICE PRODUCTS 400 PARSONS POND
GENERAL BUSINESS 1133 WESTCHESTER

ATLANTA, GA
FRANKLIN LAKES, NJ
WHITE PLAINS, NY

30327
07417
10604 -- , I , .I

The records in the data file can be added in any order,
regardless of the keys. When you create an index, the keys
are automatically sorted in ascending order.

INTERNAL files - key-indexed access 5·3

INTERNAL files - key-indexed access
Setting up a key-indexed file

CLEAR

To set up an index, first you need a data file . Let' s enter a
new ITEM file and then create an index to go with it.

Enter the following:

10 REM PROGRAM TO CREATE MASTER DATA FILE
20 DIM D$*20
30 OPEN #1:"NAME=ITEM// l,SIZE=0,RECL=60",INTERNAL, OUTPUT
40 PRINT "ENTER ITEM NUMBER"
50 INPUT 1$
60 IF I$="LAST" THEN GOTO 130
70 PRINT "ENTER DESCRIPTION,QUANTITY,COST"
80 INPUT D$,Q,P
90 REM WRITE ITEM TO FILE
100 WRITE #l,USING 110:I$,D$,Q,P,Q*P
110 FORM C 5,C 20,N 6,N 9.2,N 17.2
120 GOTO 40
130 END

5-4 SA34-0126

Now run the program and enter the responses from the
following page :

00001 NUTS
00002 BOLTS
12345 SCREWS
10008 NAILS

RUN
ENTER ITEM NUMBER

? 00001
ENTER DESCRIPTION,QUANTITY,COST

? NUTS,1800,.29
ENTER ITEM NUMBER

? 00002
ENTER DESCRIPTION,QUANTITY,COST

? BOLTS, 1500, .39
ENTER ITEM NUMBER

? 12345
ENTER DESCRIPTION,QUANTITY,COST

? SCREWS,850,. 11
ENTER ITEM NUMBER

? 10008
ENTER DESCRIPTION,QUANTITY,COST

? NAILS, 5000, .02
ENTER ITEM NUMBER

? LAST

The file ITEM now has four records.

1800 .29
1500 .39

850 . 1 1
5000 .02

522.00
585.00
93.50

100.00

INTERNAL files - key-indexed access 5·5

INTERNAL files - key-indexed access
Creating an index file

5-6 SA34-0126

Now we're going to create an index for the data file ITEM
First of all, you will need the Customer Support Functions
diskette that contains INDEX. This diskette was supplied by
IBM when you received your System/23.

Insert your Customer Support Functions diskette containing
INDEX in a diskette drive.

You will have to replace the diskette you ' re using for this
course with the Customer Support Functions diskette if you
only have one diskette drive.

Once your diskette is in place, enter the following:

LINK INDEX

INDEX is a program on your Customer Support Functions
diskette. It creates an index file for any master data file. In
our example, the master data file is ITEM.

LI N K is a command that loads and runs a Customer
Support Function.

When INDEX creates an index file, several screens will be
displayed. Enter your responses exactly as shown on the
screens following on the pages.

The following OPTION MENU should appear on your
screen. You may now remove the Customer Support
Functions diskette and reinsert yours if necessary.

Create Inde. File Menu 04-010

Choo.e one of the follo.ing.

1. De.cription of Create Inde. File
2. Create Inde. File

9. End Create Inde. File

Choice
2

LINK FIELDS 1.03 1 1

Enter a 2 as shown on the screen above. If you enter a 1,
several screens will describe the program. The screens on
the following pages will show all of your responses in
green. Enter each response exactly as shown. Remember to
press the New Line key to get from one input field to the
next.

INTERNAL files - key-indexed access 5-7

INTERNAL files - key-indexed access
Creating an index file (continued)

5·8 SA34-0126

Cr.at. Ind •• File

Ha.ter Filena.e
ITEM

VOLID

Required

Optional if .a.ter
file e.i.t •.

Optional if .a.ter
file exi.t •.

O~-OSi!

Key t ield length Required

Position in record _here
k.v f ield .tarts

Required

LINK FIELDS

C.d 9 Cancel
? Help

1.03 1 1

The master file is ITEM. It is stored on the diskette in
diskette drive 1 (or drive 3). The key is the item number. It
starts in position one, and it is five cha racters long.

Remember to press the New Line key to get from one input
field to the next. Press the Enter key after you complete
each of these screens.

·Create Index File 011-062

Index Filenaae Required
ITE::..:M::.:X ____ _

VOLIO Optional .hen drive
nuaber provided and no
index file exi.t ••
Not requi red if
index file exi.t ••

Optional .hen VOLIo
provided and no
index file exi.t ••
Not requi red if
index file exi.t ••

Include duplicate
kev. in index file

Y-Allo. duplicate kevs
N-No duplicate kev.
X

LINK FIELDS

Cad 9 Cancel
? Help

1.03 1 1

The index file you are creating is ITEMX. This entry can be
any filename. If this file does not already exist, your
System/23 will create a new file. If this file does exist, your
new index will replace any data stored in ITEMX. You are
creating your index file on the same diskette as the master
data file (diskette in drive 1 or 3). The Y response tells your
System/23 that you may use the same item number for
more than one item. If you do, you will have duplicate keys.

INTERNAL files - key-indexed access 5-9

INTERNAL files - key-indexed access
Creating an index file (continued)

5-10 SA34-0126

This screen may not always appear as you run INDEX.

Create Inde. File 011-082

Thi. Custo.er Support Function .ay require
diskette work .pace. It will look for enough
space to create a work file called
INDEX.WDRK . At the co~pletion of this
function, the work file will be freed .

Work file VDLID

Work file drive nu.ber
1

LINK FIELDS

Opt ional when
drive nu.ber provided.

Opt ional when
VDLID provided.

C.d 9 Cancel
? Help

1.03 1 1

This work file is a file that is created and used within the
INDEX program. You will never be concerned with the
contents of this file.

You are telling your System/23 to use the diskette in
diskette drive 1 (or 3) for this file.

Cr •• t. Ind •• Fil.

Infor.ation and ••••• e •• to.
l-Scr •• n only
2-Scr.en .nd printer
3-Print.r only

2

Print.r nu.ber
lO-Fir.t printer
ll-Second printer

10

Li.t duplic.te key.

Required .hen
print.r u.ed

Y-Di.pl.y .nd/or print duplic.te key.
N-Do not li.t duplicate key.

y

LINK FIELDS

011-092

C.d 9 Cancel
? Help

1.03 1 1

You enter 2 to tell your System/23 to display and print any
program messages. If you do not have a printer attached to
your System/23, enter 1 for display only. The messages
include any duplicate keys in the master file and any error
messages.

The 10 refers to the device address of the system printer.

INTERNAL files - key-indexed access 5-11

INTERN.AL files - key-indexed access
Creating an index file (continued)

5·12 SA34-0126

When INDEX completes your index, the following screen is
displayed:

Create Inde. File 011-112

Stathticel
"a.ter record. read
Keye .rUten
Duplicate key .trine.
Duplicate key.

II ..
o
o

Pre •• Enter to continue

LINK FIELDS 1.03 1 1

This screen tells you how many records are in the file ITEM.
It also tells you how many keys are in the index and if there
are any duplicate keys.

To continue, press the Enter key.

Cr •• t. Ind •• Fil. 011-1112

Cr •• te Ind •• File .ucc ••• ful.

Pre •• Enter to return to .enu

LINK FIELDS

00001
00002
10008
12345

t .
Key ln
ITEM

1
2
4
3

t
Record
number

1.03 1 1

This is what is in the index. Now press the Enter key.

INTERNAL files - key-indexed access 5-13

INTERNAL files - key-indexed access
Creating an index file (continued)

5-14 SA34-0126

CreAte Inde. File Menu

Choo.e one of the follo.ing.

1. De.cription of Create Inde. File
2. Create Inde. File

9. End Create Inde. File

Choice
_9

LINk FIELDS

You enter 9 to end the INDEX program.

O~-010

1.03 1 1

Reading a record from a key-indexed file

CLEAR

Now that you have created your index, you are ready to
read a record from your ITEM file. Enter the following:

10 REM READ FROM FILE WITH INDEX
20 DIM D$*20
30 OPEN #l:"NAME=ITEM,KFNAME=ITEMX",INTERNAL,OUTIN,KEYED
40 READ #l,USING 50,KEY="12345":I$,D$,Q,P,P1
50 FORM C 5,C 20,N 6,N 9.2,N 17.2
60 PRINT USING 70:I$,D$,Q,P,P1
70 FORM C 6,C 20,PIC(####),X 4,PIC($$$.##),X 4,PIC($$$$#.##)
80 END

What does this program do? It opens a key-indexed file
and reads the record whose key is 12345. The contents of
the record are displayed on the screen .

Let's look at the OPEN statement in line 30. This line has
two things you haven't seen before.

30 OPEN #1: "NAME=ITEM,tKFNAME=ITEMXt' ,INTERNAL,OUTIN,IKEYED\

KFNAME is key filename. This is the name of the index file
that you created.

KEYED means key-indexed. Th is tells your System/23 that
the records in the ITEM file will be accessed by way of a
key index.

INTERNAL files - key-indexed access 5·15

INTERNAL files - key-indexed access
Reading a record from a key-indexed file (continued)

Now let's look at the READ statement in line 40.

40 READ #1,USING 50,IKEY="12345"I:I$,D$,Q,P,P1

5-16 SA34- 0126

This statement is similar to READ for a relative record I/O
file . But, instead of entering REC=3, you enter
KEY = "12345".

Now run the program:

Notice what was displayed.

The record with 12345 in the key field (first five positions)
was the only record read from ITEM.

Writing and deleting records in a key-indexed file

Now you're ready to add a record to your key-indexed file .
Since this is a record I/O file, you need to use the WRITE
statement. Your index file is automatically updated when
you update your master data file using a key-indexed file.

Let's see how th is works. Enter the following :

10 REM ADD RECORD TO KEY-INDEXED FILE
40 PRINT "ENTER ITEM NO.,DESCRIPTION,QUANTITY,COST"
45 INPUT I$,D$,Q,P
60 WRITE #l,USING 50:I$,D$,Q,P,Q*P
DEL 70

List the new version of you r program :

LIST

Now run this program with the following responses :

RUN
ENTER ITEM NO. ,DESCRIPTI ON, QUANTITY, COST

?H1000,HAMMERS,7,10.98

Item number H1000 is added to the end of the ITEM file.
The index is automatically updated to show that key H 1 000
is in record number 5.

INTERNAL files - key-indexed access 5·17

INTERNAL files - key-indexed access
Writing and deleting records in a key-indexed file (continued)

New keys are added to the end of the index file . But the
computer will read them in logical order. To make your
programs run faster, we recommend that you run the
INDEX Customer Support Function after you change a
key-indexed file.

Now let's see what happens when you update a record in a
key- indexed file. Enter the following:

10 REM UPDATE RECORD IN KEY -INDEXED F ILE
40 READ # l,USING 55 ,KEY="00002":Q,P
45 Q=Q-100
55 FORM X 25 ,N 6 ,N 9 .2
60 REWRITE #l ,USING 65 ,KEY="00002":Q,Q*E
65 FORM X 25 ,N 6 ,X 9 ,N 17.2

5·18 SA34-0126

List your progr.am:

LIST

This program searches the index for the key "00002." This
key is in record 2 of ITEM, so record 2 is read.

The quantity and total value are updated, and the record is
rewritten. Notice in line 60 that you specify the key, and not
the relative record number, of the record to be rewritten.

60 REWRITE # 1 , USING 50 ,IKEY=" 00002 "I: Q, Q*P

CLEAR

Run your program:

RUN

Note: The only field that can't be changed ,on a rewrite is
the key field.

You can use an index file to indicate a deleted record . Enter
the following:

DEL 45
60 DELETE #1,KEY="00002":

RUN

The index file is coded so that item "00002" in the ITEM
file cannot be accessed.

Let's enter one more program to make sure that all of our
changes have been made to the ITEM file. Enter:

10 REM DISPLAY THE RECORDS IN THE FILE
20 DIM D$*20
30 OPEN #l:"NAME=ITEM,KFNAME=ITEMX",INTERNAL,OUTIN,KEYED
40 PRINT "ENTER ITEM NUMBER TO BE CHECKED"
50 INPUT A$
60 IF A$="LAST" THEN STOP
70 READ #l,USING 80,KEY=A$:I$,D$,Q,P,Pl
80 FORM C 5,C 20,N 6,N 9.2,N 17.2
90 FORM C 6,C 20,PIC (####),X 4,PIC($$$.##),X 4,PIC($$$$#.##)
100 PRINT USING 90:I$,D$,Q,P,Pl
110 GOTO 40
120 END

INTERNAL files - key-indexed access 5·19

INTERNAL files - key-indexed access
Writing and deleting records in a key-indexed file (continued)

5-20 SA34-0126

Now run the program, and check item numbers 00001,
10008, Hl000, and 00002:

RUN

The error 4272 in line 70 proves that item 00002 was
deleted. Look in your Messages manual for error code 4272.
Then, press the Error Reset key.

When the asterisks appear on the screen, enter :

GO END

Chapter summary

A key- indexed file is a record I/O file with an associated
index file. The index file cannot be used by itself; it must be
used with a master file.

The index file is created by way of a Customer Support
Function . You enter LINK INDEX to create the index.

The index includes a key, or set of characters, used to
identify each record and the associated relative record
numbers.

Statements used to process a key-indexed file include :

Statement

OPEN

READ
WRITE
REWRITE
DELETE

Programming concerns

KFNAME=key filename
access method=KEYED
KEY = "identifying characters"
do not specify REC= or KEY=
KEY = "identifying characters"
KEY = '~ identifying characters"

You can create more than one index for the same master
file . For example, with a master file of names and
addresses, you could have two different index files:

One with zip codes used as the key.

One with names used as the key.

INTERNAL files - key-indexed access 5-21

INTERNAL files - key-indexed access
Exercises

Question 1

What command must you enter to create an index file for a
master data file?

Answer:

Question 2

Match the parts of the following OPEN statement with their
corresponding functions.

80 OPEN #3:"NAME=ABC,KFNAME=ABCX",INTERNAL,OUTIN,KEYED

-ABC a. The name of the index file.

-ABCX b. The file will be accessed by key.

_#3 c. The name of the master data file.

_KEYED d. The file reference number.

5-22 SA34-0126

Question 3

Assume that the following key-indexed file EMP is stored
on the diskette in drive 1. Its index file is EMPX. The first
six characters in each record are the keys.

573277
120089
007719

JOHN DOE 06-06-38 06-01-66
MARY SMITH 09-13-52 11-15-76
JANE GREEN 01-04-52 07-16-79

What would be displayed if you ran the following program?

10 OPEN #1:"NAME=EMP//1,KFNAME=EMPX",INTERNAL,INPUT,KEYED
20 READ #1,USING 30,KEY="120089":E1$,N1$
30 FORM C 6,X,C 10
40 READ #1,USING 30,KEY="007719":E2$,N2$
50 PRINT USING 30:E1$,N1$
60 PRINT USING 30:E2$,N2$
70 END

Answer:

INTERNAL f iles - key-indexed access 5-23

INTERNAL files - key-indexed access
Answers

5-24 SA34-0126

Question 1

LINK INDEX

Question 2

c ABC
a ABCX
d #3
b KEYED

Question 3

120089
007719

MARY SMITH
JANE GREEN

Chapter 6. Diskettes and diskette drives
Introduction

In this chapter, you will learn how to use the dual-station
System/23 and how to share files on one or more stations.
If you do not have a second computer attached to your
System/23, or if you do not want to share files between
programs, you may want to skip this chapter and go on to
Book VII. (You can refer to Chapter 6, "Commands," in
your Operator Reference manual for information on the
system commands discussed here.)

In this chapter, you will learn how to specify the share state
of a file. You will learn how to allow a file to be used by
one or more programs on one or more work stations. (You
can refer to " Device Sharing," in your Basic Language
Reference manual for more information.)

Objectives

Upon completion of this chapter, you should be able to do
the following:

Specify the share state and span of control by using the
OPEN statement.

Identify the share state of a file by using the DIR
command.

Close a file by using the PROTECT command or CLOSE
statement.

• Identify which computer is using the diskette unit by
reading the status line.

If you are familiar with these tasks, try the exercises at the
end of this chapter. If not, read through the chapter before
going on to the exercises.

Diskettes and diskette drives 6-1

Diskettes and diskette drives
The share state

6-2 SA34-0126

Your diskette unit permits two computers to access the
same data. You can also open a file more than once in the
same program. For that reason, you will need to know how
to use the different share states.

A share state tells your System/23 whether or not your file
can be opened more than once, and if so, how. We use the
word open here as an attempt to gain control of a file. The
three share states are:

SHR-Both OPENs can open the file and read data
from it, but only one OPEN can write data into it.

SHRI-The other OPEN can open the file and read data
from it, but cannot write data into the file.

• NOSHR-The second OPEN will cause an error until the
first OPEN is closed.

In these share states, the first open refers to the first OPEN
statement that tries to access the file. The second OPEN
refers to the second OPEN statement that tries to access
the file when it is already opened.

The share states also depend upon the open mode:

I N PUT-read only mode

OUTPUT-write only mode

• OUTIN-read and write mode (update)

One computer cannot use the files stored on another
computer. But, both computers can use a file stored on the
shared diskette unit.

Let's look at an example. Assume that you have a
dual-station System/23. One computer is called station
"01" and the other is called station "02".

Now, assume that the person using station 01 is running
the following program.

10 OPEN #1:"NAME=ABC// 3,SHR",INTERNAL,OUTPUT
20 FOR X=1 TO 100
30 WRITE #1,USING 50:X
40 NEXT X
50 FORM N 4
60 END

Because of the SHR in line 10, a program on station 02 can
open and read from the file ABC. However, only one
program can have a file open for output at one time, so the
program on station 02 cannot write to the file. The program
on station 01 would have similar restrictions if this program
were running on station 02.

Diskettes and diskette drives 6-3

Diskettes and diskette drives
Device sharing information

6-4 SA34-0126

Sometimes you may have to wait for the diskette unit if the
unit is being used by the other computer. The amount of
time you have to wait depends on what the other computer
is doing.

How can you tell if the other computer is using the diskette
unit? Look at the status line on your screen, at the + 1
shown in the picture.

This field is blank when you are not using the diskette unit
and are not trying to access it. However, whenever you try
to access the unit, either a + 1 or a +0 will be displayed in
this field.

If a + 1 is displayed, your request to use the diskette unit
was successful. The + 1 is displayed until you stop using
the unit.

If a +0 is displayed, the other computer is already using the
diskette unit. You cannot use it at this time. You must wait
for ·the other computer to finish using the unit before you
can access it.

You can do one of two things while the other computer is
using the diskette unit. You can :

Wait for the diskette unit to be free.

You may check with the other operator and find that
there will be only a short wait until the diskette unit
becomes available. So you decide to wait. When the
unit becomes available, the +0 on the status line will
change to + 1.

Cancel the job.

You may decide to cancel your job instead of waiting for
the other computer to finish. If so, do the following:
Hold down the Cmd key and press the Attn key. An
error 6010 will appear with action code 20. Then you
should hold down the Cmd key and press the Error
Reset key.

When the asterisks appear on the screen, enter GO
END, and then enter CLEAR ALL. Then you are ready to
start another job.

CLEAR ALL will cause all data to be lost. It's almost like
turning the machine off, but you don't have to set the
time and date again.

Diskettes and diskette drives 6·5

Diskettes and diskette drives
File sharing information

Let's look at another example. This time, the person using
station 01 is running the following program.

10 OPEN #1:"NAME=ABC//3,SHRI",INTERNAL,INPUT
20 FOR X=l TO 100
30 READ #l:X
40 NEXT X
50 END

The file ABC is opened for input, with SHRI. That means
that the person using station 02 could be reading the file
ABC, also.

For example, the person using station 02 could be running
the following program.

20 OPEN #7:"NAME=ABC//3,SHRI",INTERNAL,INPUT
40 READ #7:NUMBER
60 IF NUMBER=100 THEN 40 ELSE PRINT "END OF FILE"
80 END

Both progr.ams would be reading data from the same file on
the diskette unit.

However, line 20 of the second program could not look like
this:

120 OPEN #7: "NAME=ABC//3,SHR",INTERNAL,OUTINI

Nor could it look like this:

120 OPEN #7: "NAME=ABC/ / 3, NOSHR" , INTERNAL, INPUT I

6-6 SA34-0126

The first program specified sharing for input only. NOSHR
specifies no sharing.

Let's look at one more example. Suppose the person using
station 02 is running the following program.

10 OPEN #5:"NAME=ABC//3,NOSHR,RESERVE",INTERNAL,OUTPUT
20 WRITE #5,USING 30:200,300,400,500
30 FORM N 6.2,N 6,PIC(######) ,PIC(ZZZ###)
40 FOR X=1 TO 66
50 PRINT #255:
60 NEXT X
70 FOR X=1 TO 66
80 PRINT #255:X
90 NEXT X
100 END

The RESERVE in line 10 specifies that the OPEN,NOSHR
share state is to be permanently associated with this file
and station. Until a CLOSE #5,RELEASE: is issued, no
OPENs are permitted on the other computer.

Without the word RESERVE, nobody else can use the file
ABC at the same time as the person running the program.
With the word RESERVE, the file is unavailable to station
01 even after station 02 closes the file, unless RELEASE is
used.

You can reset the RESERVE by using the CLOSE statement,
like this :

35 CLOSE #5,RELEASE:

Diskettes and diskette drives 6-7

Diskettes and diskette drives
The DIR and PROTECT commands

6-8 SA34-0126

In Learning to Use System/23, you learned how to use the
DIR command to list and describe the contents of a diskette
drive. If you are not familiar with DIR, refer to Chapter 6,
"Commands," in your Operator Reference manual.

We must point out two things about using DIR with a
dual-station System/23:

• If the person using station 02 is running a program that
uses file ABC on drive 3, then the person using station
01 is locked out of the diskette unit while station 02
reads or writes to that file.

If a file is left open when a diskette is removed from a
drive, the share state will appear in the DIR listing.

If a file is accidentally left open, you can use the PROTECT
command to close it.

Let's look at an example.

Assume that the person on station 01 accidentally removed
the diskette from drive 3 before the file ABC was closed.
(This situation could also occur during a loss of power.)

Then the person on station 01 reinserted the diskette and
entered DIR 3. The DIR listing would indicate that the file
ABC was open. It wasn't closed before the diskette was
removed.

Until the person on station 01 closes the file ABC, the
person on station 02 cannot use file ABC. Therefore, the
person on station 01 should enter:

PROTECT ABC//3 ,CLOSE

Then the file would be closed and could now be reopened.

Remember: Any time a file is accidentally left open, you can
close the file by reinserting the diskette and entering the
PROTECT command.

If the file left open was being used for output, however,
records may have been lost. Use PROTECT CLOSE only if
you are sure no other station or program is using the file.

You should not issue a PROTECT CLOSE or a PROTECT
RELEASE command on a file that is being used by either
station. Unpredictable results may occur.

Diskettes and diskette drives 6-9

Diskettes and diskette drives
Other BASIC commands

6-10 SA34-0126

Remember from Learning to Use System/23 that you use
the RENAME command to change the name of an existing
file. You cannot use the RENAME command for a file that is
already opened.

While you are in the process of renaming a file on the
diskette unit, the file must not already be open.

You cannot use the DROP and FREE commands to get rid
of a file that is already opened. You must first close the file.

The LINK and LOAD commands, as you know, place a copy
of a program, a display file, or a Customer Support Function
in your work area. These commands will always open the
programs and files for INPUT SHRI. This means that two
people can load one program at the same time.

The SAVE and REPLACE commands open a file for
OUTPUT NOSHR. This means that only one person can
save or replace any particular program or display file at a
time.

You should not use the VOLID command to change the
diskette VOLID if there are open files on that diskette. If
you do, you may not be able to continue processing the
files.

For more information on the dual-station System/23, refer
to "Device sharing" and "File sharing" in the BASIC
Language Reference manual.

Chapter summary

The dual-station System/23 allows two people to use your
system at one time. Both stations have access to the
diskette unit.

The files on the diskette unit can be shared by both
computers. However, certain share states apply :

• SHR-Two OPENs can open the file and read data from
it, but only one OPEN can write data into it.

SHRI-The second OPEN, at the same time, can open
the file and read data from it, but cannot write data into
the file.

NOSHR-The second OPEN cannot open the file until ·
the first OPEN is closed.

You specify the share state in the OPEN statement like this:

OPEN #1:"NAME=XY//3,SHR",INTERNAL,OUTPUT

You can close an open file in a program by using the
CLOSE statement or by normal termination of the program.
If an error situation exists and the file remains open, you
can close an open file on a diskette by using the PROTECT
command. Use the PROTECT command only if you are sure
no other station or program is using the file.

You cannot RENAME, DROP, FREE, SAVE, or REPLACE a
file while it is opened. Both stations can run the same
program at one time by using LINK or LOAD.

Diskettes and diskette drives 6-11

Diskettes and diskette drives
Exercises

Question 1

Assume the person using station 01 is running the following
program.

10 OPEN #8:"NAME=XYZI13,SIZE=0,RECL=24,SHR",INTERNAL,OUTPUT
20 FOR NUMBER=1 TO 80
30 WRITE #8,USING 50:NUMBER
40 NEXT NUMBER
50 FORM N 24.2
60 RESTORE #8:
70 FOR X=1 TO 20
80 READ #8,USING 50:X
90 PRINT X
100 NEXT X
110 END

Which of the following OPEN statements could be executed
on station 02?

-a. OPEN #2: "NAME=XYZI13, SHR" , INTERNAL, INPUT
-b. OPEN #12:"NAME=ABCI13,NOSHR",INTERNAL,OUTPUT
-c. OPEN #8: "NAME=XYZI1 1, SHR", INTERNAL, OUTPUT
-d. OPEN #8: "NAME=XYZI13, SHR" , INTERNAL, OUTPUT

6-12 SA34-0126

Question 2

What command do you use to close a file that was
accidentally left open?

Answer :

Answers

Question 1

a. Yes-XYZ was originally opened SHR

b. Yes-ABC is a different file

c. Yes-Drive 1 is not on the diskette unit

d. No-Only one station can output to a file

Question 2

PROTECT

Diskettes and diskette drives 6-13

6-14 SA34-0126

...
o ...
:::J

U

READER'S COMMENT FORM

SA34-0126-1

VI. Data Files and Diskettes

Your comments assist us in improving the usefulness of ourpublications; they are an
important part of the input used in preparing updates to the publ ications. IBM may
use and distribute any of the information you supply in any way it believes appro­
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your IBM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed :

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Information Development, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
INTHE

UNITED STATES

Fold and tape

SA34-0126-1
Printed in U.S.A.

n c ..

