Il. Inputting Data and Using Loops

Learning System/23 BASIC

Il. Inputting Data and Using Loops

Learning System/23 BASIC

First Edition (January 1981)
Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publications
should be made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers’
comments is provided at the back of this publication. If the form has been removed, address your
comments to IBM Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca
Raton, Florida 33432. IBM may use and distribute any of the information you supply in any
way it believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

©Copyright International Business Machines Corporation 1981

©

Il. Inputting data and using loops

Contents

ADOUL TRIS DOOIK s ssmmss simnonin sm s as s s Vo 5o 5o esiis tasinste 16 i v
Chapter 1. Assigning values from the keyboard.......... =
INTrOdUCTION ..ot 1-1
ASSIgNING @ NUMEIIC VAIUE «.ovuvsivsiinisisminisonsnss amsnsuminis suses 1-2
Assigning a character valueccoooiiiiii 1-4
Assigning more than one value..............cc.ccooii, 1-6
Chapter SUMMArYoooiiiii e 1-13
EXOICISES .ottt 1-14
AATVSVWETS v sommssnasswms sonemas S 4310 Sabamsn S5uAEes o S50 FRUS8 e S0sses 2os 1-16
Chapter 2. Changing the order of execution................ 2-1
INTrOdUCTION ..o 2-1
Using the GOTO StateiMenit s s sssusnsssensesnsmsmsmmomsss svssar s 2-2
Using 18DEIS: covuvinssvvsns swvsansas snmvms ssvnnsn e s vas s svwusss i ssnenahass 2-5
Chapter SUMMAYoo.iiiiee e 2-7
EXErCISES couiiiiiiiie 2-8
ANSWETS L.t 2-9
Chapter 3. Branching with IF, THEN, ELSE 3-1
INTrOdUCTION . .coe e 3-1
Using IF = THEN ... 3-2
Adding a statement to IF - THENcccooeeiiiiiiiiiniiiinns 3-10
Adding ELSE 10/ IF = THEN i:uussss0smmiesininss sssnsos sasesas anbassmis 3-13
USING STOP oo 3=15
Chapter SUMMAIYco.iiiiiieee e 3-16
EXEICISES it 3-17
ANNYSWWIBKS s i s i v 308800 80§65 5050 o SO0 950 s 3-20
Chapter 4. Using loops to control a program............... 4-1
INErOAUCTION ..o 4-1
Using an IF = THEN 100D ..cc.oiiiiiiiiiii e 4-2
Using @ FOR = NEXT 00D .cuuusssssumvsssninsissnsunsssusosas sasossnsns 4-6
Using nested [00PSs: iu s smsmumersmmsmmmas sesmsas mrm s sosses 4-10
Chapter SUMMArY ..o 4-14

Inputting data and using loops n

Il. Inputting data and using loops

Contents (continued)

v

SA34-0122

EXCTISES susubinsbstivm s s insoss sssnss s s s s e sxmssny sosas sy s s 4-15
PATYS VBT S c.vcie s s i ssiins 35 TG TR TS E5 2o 455 5 E6 5450 58 SBT3 58 0 4-17
Chapter 5. Assigning values with READ and DATA5-1
K189 070 [U]e- (/o) o PR S N 5-1
Using READ and DATA statementS..........cccoceeviiiiiiiinnnnn. 5-2
Using the RESTORE statement........c..cccoviiiiiiiniiiiiiennnn. 5-9
Chapter SUMMAIYcouiieiie e e 5-12
EXOICISES cuniiiiei e 5-13
ATVEWIETS wvansmnmususns vamssmsmsssssa s ine e shs S s Ao SF R AR R aET 53 5-16

About this book

You've already finished your first book of Learning
System/23 BASIC. It was probably even easier than you
expected. And just think, you've already written several
BASIC programs. Where do we go from here?

In Book I, we will discuss two major topics: inputting data
and controlling the order in which program statements are
executed.

In Chapters 1 and 5, we will introduce two different ways to
assign values to variables. We will show you how to enter
values from your keyboard, and how to make the values an
actual part of your program.

In Chapters 2, 3, and 4, we will teach you how to control
the order in which program statements are executed. You
will also learn how to use labels to identify program
statements.

We will be using one of the programs from Book | that you
saved on your diskette, so make sure your diskette is still
inserted in diskette drive 1 (or diskette drive 3 if you are
using a 5322(0)). If you have removed your diskette, insert it
again before going on with this book.

Inputting data and using loops Y

vi SA34-0122

B

Chapter 1. Assigning values from the keyboard

Introduction

In Book |, you learned how to assign values to variables by

0’ using the LET statement. In this chapter, you're going to
learn another way to assign values to variables.
You will learn how to use the INPUT statement. The INPUT
statement allows you to /nput, or enter values, from the
keyboard as you run a program.
Objectives
Upon completion of this chapter, you should be able to do
the following:
« Enter values for numeric variables from the keyboard by

using the INPUT statement.
C"f « Enter values for character variables from the keyboard
4 by using the INPUT statement.

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises.

Assigning values from the keyboard 11

Assigning values from the keyboard

Assigning a numeric value

In the accumulated savings program in Book |, you assigned
values to N and | with LET:

Suppose you wanted to run the same program several
times, but use different values for N and |. You could
reenter the program each time, changing lines 10 and 20 to
reflect the new values. But there is an easier way--use the
INPUT statement.

We’ll change the accumulated savings program in a few
moments. But first, let's take a look at how INPUT works.

The INPUT statement allows you to assign a value to a
variable from the keyboard. You can then use different
values every time you run the program. For example, enter
the following:

CLEAR
10 INPUT N

20 PRINT N
30 END

Now run the program:
RUN
Notice that a question mark appears on the screen.

Your System/23 is waiting for you to enter a value for N.

12 SA34-0122

When you enter a number, that value is assigned to the
variable N. Go ahead and enter the number 1000:

21000

Once you have entered a number, the PRINT statement in
line 20 displays that number.

You can rerun this program as many times as you want, and
enter a different value for N each time.

Let's try it again. Enter:

RUN

This time, enter a value of -250 for N:

Notice that the number -250 is not indented one space on
your screen, because it is a negative number.

In these examples, you have been entering numbers
following the question mark. You can enter only a number
in response to INPUT N, because N is a numeric variable.

Note: If you enter a number with more than 15 digits, the
extra digits will be changed to 0’s. Run the program again,
and enter:

RUN
212347608579148423

If you enter more than 22 digits, the number will be
changed to floating-point format. (See ““Arithmetic data” in
your Basic Language Reference.)

Assigning values from the keyboard 1-3

Assigning values from the keyboard

Assigning a character value

You can also enter a value for a character variable with

INPUT. You use the same type of variable name that you O
used in the LET statement--a letter of the alphabet

followed by zero to seven letters and/or numbers and a $.

For example, A$ or NAMES$.

If you enter INPUT N$, your System/23 expects you to
enter a value for a character variable. For example, enter the
following program. (Don’t forget that you can use AUTO to
number your statements if you wish. If you use the AUTO
command, enter AUTO after you enter CLEAR.)

CLEAR

10 REM N$ STANDS FOR NAME
20 PRINT "ENTER YOUR NAME"
30 INPUT N$

40 PRINT "HELLO ";N$

50 END O

Run this program:
RUN

Notice that the question mark appears on the screen below
ENTER YOUR NAME.

Enter your name next to the question mark. (We'll use
JOHN DOE--you use your name.)

2 JOHN DOE

Notice that your name is displayed on the screen following
HELLO. There should be a space between HELLO and your
name, because a space is indicated in line 40.

40 PRINT "HELLO ";N$ 0

14 SA34-0122

,
|

The value of N$ is not defined within the program. You
assign a value (your name) to N$ from the keyboard. Then
the PRINT statement in line 40 displays two character
strings: "HELLO " and your name.

Run the program again:

RUN

This time, enter another name:
JANE DOE

As you can see, the value of N$ can change each time you
run the program.

Now look at line 20:
20 PRINT "ENTER YOUR NAME"

This statement displays a prompt message on the screen. A
prompt is a word or words that tell you what to enter in
response to an INPUT statement. In this example, the
prompt tells you to enter your name when the question
mark appears on the screen.

It is helpful to include prompts any time you use INPUT
statements in a program. Without a prompt to remind you
or whoever uses your program, you may forget what you
are supposed to enter when the question mark appears.

A question mark appears on the screen whenever an INPUT

statement is executed. The question mark tells you to enter
something from the keyboard.

Assigning values from the keyboard 1-5

Assigning values from the keyboard
Assigning more than one value

Let's get back to the accumulated savings program.

Enter the following: 0

CLEAR

10 ! VALUES ENTERED FROM KEYBOARD
20 PRINT "ENTER PRINCIPAL"

30 INPUT P

40 PRINT "ENTER INTEREST RATE"
50 INPUT T

60 PRINT "ENTER NUMBER OF YEARS"
70 INPUT N

80 A=P* ({1+I) **N

90 PRINT A

100 END

In this version of the program, the principal amount is a

variable also. O

Go ahead and run the program:

RUN

Now, enter the values of 400 for the principal, .065 for the
interest rate, and 5 for the number of years:

ENTER PRINCIPAL

2400
ENTER INTEREST RATE

2.065
ENTER NUMBER OF YEARS

?5 o

1-6 SA34-0122

All of the variables in lines 30, 50, and 70 could be placed
‘ in one INPUT statement that looks like this:

70 INPUT P,I,N

Let’s change this program so that line 70 looks like the
INPUT statement shown above. We will also delete lines 30
and 50.

Enter the following:

70 INPUT P,I,N
DEL 30
 DEL 50

~ List the new version of this program:

LL ST

Now run the program:

RUN

When the question mark appears, enter the following values
~ for the principal, the interest rate, and the number of years.
- You must enter the values in the same order as they appear
~ in the INPUT statement. Enter commas between the values.

ENTER PRINCIPAL
. ENTER INTEREST RATE
- ENTER NUMBER OF YEARS

} 2250, .05,6

Assigning values from the keyboard 1-7

Assigning values from the keyboard

Assigning more than one value (continued)

1-8

SA34-0122

You can also combine numeric and character variables in
one INPUT statement.

Enter the following:

CLEAR

10 PRINT "ENTER NAME AND AGE"
20 INPUT NAMES$, AGE

30 PRINT NAMES$, AGE

40 END

Now run this program:

RUN

Enter your name and age, in that order. (Again, we will use
JOHN DOE in our example.)

ENTER NAME AND AGE
?JOHN DOE, 21

Notice that the 21 is displayed in the second print zone.

. Remember that you are displaying two values, and they are

separated by a comma in the PRINT statement

Also notice that you must enter a value for the character

variable NAME$ first, because the character variable

appears first in the INPUT statement.

Whenever there are two items in the INPUT list, you must
enter two items in response to the question mark. If you
only enter a value for the first variable, your System/23 will
respond with an error code and flashing action code.

Sl

Go ahead and run the program again:
RUN

In response to the question mark, enter only your name (for
NAMES):

ENTER NAME AND AGE

?JOHN DOE

As you will see in your Messages book, error code 0501
means that you have entered too few items for the INPUT
statement. Notice also that the number 20 appears to the
right of the error code 0501 on the status line. This means
that the error occurred when your System/23 tried to
execute line 20 - the INPUT statement.

Press the Error Reset key.

Under a line of asterisks, the bottom part of the screen
should be blank. The words READY INPUT should appear.

Now, because the error occurred before the program
finished running, enter:

GO END

GO END tells your System/23 to end the program after you
get an error code.

Assigning values from the keyboard 1-9

Assigning values from the keyboard

Assigning more than one value (continued)

Now, you can run the program again. Enter:

RUN 0

This time, enter the following:

ENTER NAME AND AGE

?JOHN DOE, 21,45

You also get an error when you enter too many values.
Again, press the Error Reset key, and this time enter:

GO 10

GO 10 tells your System/23 to continue running the 0
program, starting at line 10.

This time, enter:

ENTER NAME AND AGE

?JOHN DOE,

You can see that another question mark appears. Your

System/23 expected another input item after the comma.
So, enter:

221

Remember: If you forget to enter something after the
comma, your System/23 lets you enter the second item. 0

110 SA34-0122

e o ————————————— =

You learned in Book | that when you assign a value to a

. character variable by using a LET statement, you must
include the value in quotation marks. For example, you
would say:

LET N$="JOHN DOE" or N$="JOHN DOE"

But, you do not have to enclose a value in quotation marks
every time you assign the value from the keyboard by using
the INPUT statement. So far, you have just been entering
your name, like this:

?JOHN DOE

However, if you want to enter JOHN DOE, JUNIOR, you
must enclose the name in quotation marks, like this:

o ?"JOHN DOE, JUNIOR"

Otherwise, because of the comma, your System/23 will
assume that JUNIOR is a separate value to be assigned to
another variable.

Run the program again:

RUN

Now, enter the following values:

ENTER NAME AND AGE

?2"JOHN DOE, JUNIOR",21

Any time you want to include a comma or a semicolon as

part of a string, you must enclose the entire string in
quotation marks.

Assigning values from the keyboard 1-11

T e —— ™

Assigning values from the keyboard

Assigning more than one value (continued)

Your turn!

In Chapter 6 of Book |, you saved a program called
SALESTAX. Load this program back into the work area.
Because the LOAD command clears the work area before it
loads a program, you do not have to enter CLEAR.

LOAD SALESTAX

If you did not save a copy of this program, enter it now:

CLEAR

10 PRICE=600 ! ADD TAX NOW
20 TOTAL=PRICE+ (PRICE*.06)
30 PRINT PRICE,TOTAL

40 END

Now, change line 10 so that you enter a value for PRICE
from the keyboard. Also, add a statement using line number
5 that displays the prompt ENTER PRICE. Run the program
and enter 600 for PRICE.

Answer:

Here’'s our solution:

5 PRINT "ENTER PRICE"
10 INPUT PRICE
RUN

Now, save this program in a new file called PRICE. Please
note that the file name and variable name do not need to be
the same in a program.

SAVE PRICE//1 or SAVE PRICE//3

112 SA34-0122

Chapter summary

You can enter values from the keyboard while running a

o program by using the INPUT statement. INPUT assigns a
value that you enter from the keyboard to a variable in a
program. A question mark appears on the screen when an
INPUT statement is executed.

You can input numbers, strings, or both by using one
INPUT statement. INPUT statements look like this:

« A number or numbers

10 INPUT X
20 INPUT X,Y

« A string or strings

10 INPUT N$

0 20 INPUT N$,A$

« Numbers and strings

10 INPUT NAMES$,AGE
20 INPUT X,X$

To tell you what value is expected as you run a program,
you should use a prompt. A prompt is a message that is
displayed on the screen. For example, here is a prompt
used with an INPUT statement:

10 PRINT "ENTER YOUR AGE"
20 INPUT AGE

Assigning values from the keyboard 1-13

Assigning values from the keyboard

Exercises

Question 1

Which of the following are valid entries in response to
INPUT N?

a. 55
b. JOHN DOE
c¢. =15

Question 2

Which of the following are valid entries in response to
INPUT AS$?

a. 123 ELM STREET, CHICAGO
b. ||_55"
c. 123 ELM STREET

Question 3

Which of the following are valid entries in response to
INPUT A$,N?

a. JOHN DOE,21,14

b. JOHN DOE, 21
c. JOHN,JR.,10

114 SA34-0122

PN

Question 4

Change line 20 in the following program so that the value of
MILES is assigned from the keyboard.

10 REM CONVERT MILES TO KILOMETERS
20 LET MILES=10

30 LET K=.6214*MILES

40 PRINT "THE ANSWER IS";K

50 END

Answer:

Question 5

Change line 10 in the following program so that the value of
D$ is assigned from the keyboard.

10 D$="07-16-79"
20 PRINT "DATE: ";D$
30 END

Answer:

Assigning values from the keyboard 1-15

Assigning values from the keyboard

Answers

Question 1

a. Valid A
b. Invalid--this is not a numeric value
c. Valid

Question 2

a. Invalid--too many entries

b. Valid
c. Valid
Question 3
a. Invalid--too many entries
b. Valid {
c. Invalid--JOHN,JR. should be enclosed in quotation -
marks There are too many entries. And JR. will be
assigned to N which will fail because JR. is not numeric.
Question 4

20 INPUT MILES

Question 5

10 INPUT D$

Remember that it is a good idea to use prompts before
INPUT statements.

1-16 SA34-0122

Chapter 2. Changing the order of execution

Introduction

In this chapter, you will learn how to use the GOTO
statement to change the order in which your program
statements are executed. You will also learn how to use
labels to identify and locate program statements.

Objectives

Upon completion of this chapter, you should be able to do
the following:

« Change the order in which statements in a program are
executed by using the GOTO statement.

« Use labels in your program statements.
If you are familiar with these tasks, try the exercises located

at the end of this chapter. If not, read through the chapter
before going on to the exercises.

Changing the order of execution 2-1

Changing the order of execution

Using the GOTO statement

In all of the programs you have entered so far, the
statements have executed in ascending line number order.
In the accumulated savings program:

line 10 is executed first, then line 20, and so forth.

With the BASIC language, you can change the order in
which statements are executed by using the GOTO

statement. Let's see how.

Enter the following program:

CLEAR

10 PRINT "SUNDAY"
20 PRINT "MONDAY"
30 GOTO 90

40 PRINT "TUESDAY"
50 PRINT "WEDNESDAY"
60 PRINT "THURSDAY"
70 PRINT "FRIDAY"
80 PRINT "SATURDAY"
90 END

Now run the program:

RUN

2-2 SA34-0122

O

o Only lines 10, 20, 30, and 90 are executed.

Lines 10 and 20 are executed, so SUNDAY and MONDAY
are displayed. But when line 30 is executed, control
branches to line 90. That is, statements 40 through 80 are
bypassed, and control goes directly to another statement in
the program. In this example, control branches to line 90,

& the END statement.

Your turn!

What will be displayed on the screen when the following
program is run?

10 PRINT "OCTOBER"
20 GOTO 40

[30 PRINT "NOVEMBER"
40 PRINT "DECEMBER"
50 END

Answer:

You should have said:

« OCTOBER
DECEMBER
. Line 30 is skipped, because the GOTO in line 20 sends

control to line 40.

Changing the order of execution 2-3

Changing the order of execution
Using the GOTO statement (continued)

Let's look at another example using the accumulated
savings program. Enter the following: 0
CLEAR

10 PRINT "ENTER PRINCIPAL,RATE, YEARS"

20 INPUT P,I,N

30 A=P*(1+1) **N

40 PRINT "PRINCIPAL = ";P

50 PRINT "INTEREST RATE = ";I
60 PRINT "NUMBER OF YEARS = ";N
70 PRINT "SAVINGS = ";A

80 END

Now, we are going to add a statement to the program that
will cause lines 40, 50, and 60 to be skipped. Enter the
following:

35 GOTO 70 0 .

Now list the new version of your program:

LIST
To be sure that the GOTO works, run the program:
RUN

Enter the following values: =

ENTER PRINCIPAL,RATE, YEARS
21000,.12,5

As you can see, lines 40, 50, and 60 are not executed. O

2-4 SA34-0122

Using labels

statement to tell your System/23 which statement to

' You have been using line numbers with the GOTO
execute next.

You can also use /abels to direct the GOTO statement. A
label is another way to identify or locate a statement. For
instance, in the program you last entered, you could label
statement 70 like this:

A label looks like a numeric variable name. It must start

with a letter and can include up to seven additional letters

or numbers. The label must be followed by a colon. When

you list your program, the colon will be followed by a
° space, whether you enter one or not.

The GOTO statement in line 35 could then be written to
send control to the statement with the label SAVINGS. It
would look like this:

Go ahead and change lines 35 and 70. Enter:

E35 GOTO SAVINGS
70 SAVINGS: PRINT 'SAVINGS = ";A

Now list your program:

LIST

Changing the order of execution 2-5

Changing the order of execution

Using labels (continued)

2-6

SA34-0122

Like remark statements, labels can help a programmer see
what a program is doing. The label indicates what part of a
program control is going to. For example, the label
SAVINGS tells you that control is going to the statement
that displays the amount of savings.

Now run the program and enter the following:

RUN
ENTER PRINCIPAL,RATE,YEARS
21000,.12,5

As you can see, when line 35 is executed, control goes to
line 70, which has the label SAVINGS.

A note about labels: You cannot use the same name for a
label that you use for a numeric variable in the same
program. A label can only be defined on one line. For
example, the following program would cause an error at line
30:

10 LET250
[[20 GOTG TOTAL

30 (TOTAL) PRINT "THE AMOUNT IS",TOTAL
40 END

Note also that you cannot use reserved system keywords
such as PRINT and END as labels. For a complete list of
these keywords, see ‘‘Reserved words’’ in your BAS/C
Language Reference manual.

There are many valuable uses for the GOTO statement, as
you will learn in the following chapters. The important thing
to remember is that the GOTO statement changes the order
in which statements are executed. You can go to a label as
many as you want.

o

C

Chapter summary

You can change the order in which your program
statements are executed by using the GOTO statement.
GOTO causes program control to branch to, or go to, a
particular statement.

You can indicate the statement you want control to branch
to by entering either:

« A line number, like this:

10 GOTO 40
20 PRINT
30 PRINT
40 PRINT
50 END

« A label, like this:

10 GOTO THIRD
20 PRINT

30 PRINT

40 THIRD: PRINT
50 END

Labels are used to identify and locate program statements.
They have names like numeric variable names. A label and a
numeric variable cannot have the same name in a program.
A reserved system keyword cannot be used as a label.

Changing the order of execution 2-7

Changing the order of execution

Exercises

2-8

SA34-0122

Question 1

What will be displayed on the screen when you run the
following program?

10
20
30
40
50

Answer:

PRINT "PRINCIPAL = 100"

GOTO 50

PRINT "INTEREST = .12"

PRINT "NUMBER OF YEARS = 10"

END

Question 2

Which line will the control branch to in the following

programs?

a. 10 INPUT P
20 INPUT R
30 GOTO ADD
40 PRINT P

Answer: a.

50 PRINT R
60 ADD: PRINT P+R
70 END

10 PRINT 100

20 GOTO FINISH
30 PRINT 100+20
40 PRINT 100-50
50 FINISH: END

b.

P

Answers

Question 1

PRINCIPAL = 100

Question 2

a. from line 20 to line 60

b. from line 20 to line 50

Changing the order of execution 29

2-10

SA34-0122

Chapter 3. Branching with IF, THEN, ELSE

Introduction

which your program statements are executed by using the
IF statement. The IF statement transfers program control,
but only when specified conditions are met.

b 0 In this chapter, you will learn how to control the order in
)

You'll also learn how to end your programs with the STOP
statement.

Objectives

Upon completion of this chapter, you should be able to do
the following:

« Use IF-THEN statements to change the order in which
program statements are executed.

) ° C « Use IF-THEN-ELSE statements to change the order in
4 which program statements are executed.

: « Add other BASIC statements such as PRINT, INPUT,
and GOTO to previously written IF-THEN statements.

« Use the STOP statement to end a program.
If you are familiar with these tasks, try the exercises located

at the end of this chapter. If not, read through the chapter
. before going on to the exercises.

Branching with IF, THEN, ELSE 31

Branching with IF, THEN, ELSE
Using IF-THEN

In the last chapter, you learned how to use GOTO to
change the order in which statements are executed.

When your System/23 executes a GOTO statement, control
immediately branches to the line number (or label) listed on
the GOTO statement. Your System/23 branches to the
specified statement unconditionally, no matter what else is
happening in the program.

But, suppose you want to branch to another statement only
under certain conditions. In the BASIC language, the
IF-THEN statement lets you do just that.

IF and THEN work together to test conditions. You cannot
use one without the other.

Let’s look at an example.
30 IF NUMBER=100 THEN GOTO 50

In this example, control would transfer from line 30 to line
50 if the value of NUMBER was equal to 100.

Let’s look at this IF-THEN statement in a program. Enter
the following program:

CLEAR

10 PRINT "ENTER ANY NUMBER"

20 INPUT NUMBER

30 IF NUMBER=100 THEN 50

40 PRINT "THE NUMBER IS ";NUMBER
50 END

3-2 SA34-0122

In this program, the value of NUMBER determines whether
‘ or not control branches to line 50.

30 IF NUMBER=100, THEN GOTO ag

/
/If NUMBER equals 100, then control goes to line 50. If
NUMBER is equal to anything except 100, control goes to
. line 40, the next statement in the program. Remember that
NUMBER here is a numeric variable.
Let’s run this program and see what happens:
RUN
When the question mark appears, enter 75 for NUMBER:
ENTER ANY NUMBER
275
You can see that line 40 was executed, because the number
was displayed. Control did not branch from line 30 to line
50.
Run the program again, but enter 100 for NUMBER:

RUN
ENTER ANY NUMBER

2100

This time, line 40 wasn’t executed. As soon as you entered
100, control transferred to line 50, the END statement.

Branching with IF, THEN, ELSE 3-3

Branching with IF, THEN, ELSE

Using IF-THEN (continued)

Look at the following program:

10 A=100

20 B=A*50

30 IF B=5000 THEN 50

40 PRINT "B DOES NOT EQUAL 5000"
50 END

Can you predict the order in which this program will run?
Here’'s how:

Line 10
Line 20
Line 30
Line 50

Line 40 will be skipped because the condition in line 30
(B = 5000) is true.

There are several conditions that can be tested with an
IF-THEN statement:

= equal to (must be exactly equal)
>< or <> not equal to

> greater than

< less than

>= or => greater than or equal to
<= or =< less than or equal to

You must use the symbol (such as = or <), and not the
words, to test a condition in a BASIC statement.

3-4 SA34-0122

-

-

Here are some examples of the ways these conditions can

’ . be tested in an IF-THEN statement:
10 IF A > 100 THEN 50
. 20 IF B <> 9.5 THEN 150
30 IF C$ = "BASIC" THEN 100
. Notice in the last example that you can test conditions for

character variables.

You can also use labels in IF-THEN statements. Let's look
at an example.

List the program currently in the work area:
LIST
Now, make these changes:

30 IF NUMBER=100 THEN ENOUGH
50 ENOUGH: END

List your new program:
LIST

And finally run the program and enter 100 for NUMBER:

RUN
ENTER ANY NUMBER

¢ 2100

As you can see, control again goes to line 50. However, in
this example, the label ENOUGH is used to identify line 50.

Branching with IF, THEN, ELSE 3-5

Branching with IF, THEN, ELSE
Using IF-THEN (continued)

Enter the following:

CLEAR 0 ‘

10 PRINT "ENTER A NUMBER"

20 INPUT NUMBER G
30 IF NUMBER > 5 THEN GOTO 70

40 IF NUMBER < 5 THEN GOTO 90

50 PRINT "NUMBER = 5" '
60 GOTO 100

70 PRINT "NUMBER > 5"

80 GOTO 100

90 PRINT "NUMBER < 5"

100 END

Before you enter the RUN command, look at the different
ways that this program could run.

control branches to line 70. After the PRINT statement in
line 70 is executed, control branches to line 100, the end of
the program. .

If the value you enter for NUMBER is greater than five, 0 .‘

10 PRINT "ENTER A NUMBER"
el IR T

40 IF NUMBER < 5 THEN GOTO 90
50 PRINT "NUMBER = 5"
60 GOTO 100

70 PRINT "NUMBER > 5" '
90 PRINT "NUMBER < 5"
~-100 END :

Notice that the IF-THEN statement in line 30 uses a GOTO
statement. This statement does the same thing as IF-THEN o |
without the word GOTO. (If number > 5 then 70.)

3-6 SA34-0122

Using IF-THEN

If the value you enter for NUMBER is not greater than five,

’ ‘ control of this program goes to the next statement, line 40.
A condition for NUMBER is again tested. If NUMBER is
less than five, control of the program goes to line 90.

10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER
. 30 IF NUMBER > 5 THEN GOTO 70

50 PRINT "NUMBER = 5”

60 GOTO 100

70 PRINT "NUMBER > 5"
80 GOTO 100

90 PRINT "NUMBER < 5"
100 END

If the value you enter for NUMBER is neither greater than
. nor less than five, then NUMBER = 5, and control of the
' o program goes to line 50.

i 10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER

PRINT "NUMBER

70 PRINT "NUMBER > 5"
80 GOTO 100

90 PRINT "NUMBER < 5"
100 END

Branching with IF, THEN, ELSE 3-7

Branching with IF, THEN, ELSE
Using IF-THEN (continued)

Go ahead and run this program, entering the following value
for NUMBER: O (

RUN
ENTER A NUMBER ¢

210
Now run it again, entering the following value:

RUN
ENTER A NUMBER

23

And finally, run it with the following value:

RUN ’
ENTER A NUMBER O ‘

?5 s

This program could have been written with labels instead of
line numbers in the IF-THEN statements. For example, the
program could look like this:

10 PRINT "ENTER A NUMBER"

20 INPUT NUMBER

30 IF NUMBER > 5 THEN GOTO GREATER '

40 IF NUMBER < 5 THEN GOTO LESSTHAN

50 EQUAL: PRINT "NUMBER = 5"

60 GOTO 100 !

70 GREATER: PRINT "NUMBER > 5"

80 GOTO 100

90 LESSTHAN: PRINT "NUMBER < 5" o ‘
100 END

3-8 SA34-0122

Your turn!

Enter a program that will do the following:
« Input a number and assign it to the variable NUMBER
« Test whether the number is greater than or equal to one

. Display a message stating that the number is greater
than or equal to one or that the number is less than one

Answer:

Here's our solution:

CLEAR
10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER
g 30 IF NUMBER>=1 THEN GOTO 60
40 PRINT "NUMBER IS < 1"
50 GOTO 70
60 PRINT "NUMBER IS >= 1"
70 END

Now run your program, and enter the following:

RUN
ENTER A NUMBER

i
.

Branching with IF, THEN, ELSE 39

Branching with IF, THEN, ELSE
Adding a statement to IF-THEN

So far, you have used line numbers and GOTO statements
with IF-THEN, like this:

y

IF X > 100 THEN GOTO 50

IF-THEN can also be paired with other BASIC statements,
like this:

IF X < 10 THEN PRINT "TIME TO REORDER"

In this example, if the value of X is less than 10, the
message “TIME TO REORDER" is displayed. If the value of
X is not less than 10, no message is displayed, and control
goes to the next program statement.

Let's look at another example:
IF X$ = "YES" THEN INPUT DATA$ 4

In this example, if the value of X$ equals “YES"’, your
System /23 displays a question mark on the screen and
waits for you to assign a value to DATA$ from the
keyboard. If the value of X$ does not equal “YES"’, the
INPUT statement is not executed, and control goes to the
next program statement.

3-10 SA34-0122

Do you remember the program that tests to see if the value
' ‘ of a number is greater than, less than, or equal to 5? The
program looks like this:
! 10 PRINT "ENTER A NUMBER"
' 20 INPUT NUMBER
¢ 30 IF NUMBER > 5 THEN GOTO 70
’ 40 IF NUMBER < 5 THEN GOTO 90
50 PRINT "NUMBER = 5"
60 GOTO 100
70 PRINT "NUMBER > 5"
80 GOTO 100
90 PRINT "NUMBER < 5"
100 END

We're going to rewrite this program using a combination of
IF-THEN-PRINT statements.

CLEAR

10 PRINT "ENTER A NUMBER"

20 INPUT NUMBER

30 IF NUMBER>5 THEN PRINT "NUMBER > 5"
40 IF NUMBER<5 THEN PRINT "NUMBER < 5"
50 IF NUMBER=5 THEN PRINT "NUMBER = 5"

60 END

Although this program has fewer statements, the two

programs each accomplish the same thing. In the first

program, control goes to separate PRINT statements

because of the GOTO statements. In the second program,

¢ the statements are executed in ascending order and no
statements are skipped.

Branching with IF, THEN, ELSE 3-11

Branching with IF, THEN, ELSE

Adding a statement to IF-THEN (continued)

3-12

SA34-0122

Your turn!

7~

How would you change the following program so that lines
30, 40, and 50 include the PRINT statements now in lines
60, 80, and 1007 (Delete any unnecessary statements.) i

10 PRINT "ENTER A NUMBER" ’]
20 INPUT NUMBER "
30 IF NUMBER=0 THEN GOTO 60

40 TIF NUMBER>0 THEN GOTO 80

50 IF NUMBER<O THEN GOTO 100

60 PRINT "NUMBER = O"

70 GOTO 110

80 PRINT "NUMBER > 0"

90 GOTO 110

100 PRINT "NUMBER < 0"

110 END

e

Answer:

IR

Here's our solution:

30 IF NUMBER=0 THEN PRINT "NUMBER = 0"
40 IF NUMBER>0 THEN PRINT "NUMBER > 0"
50 IF NUMBER<O THEN PRINT "NUMBER < O"
DEL 60,100

3

Notice that statements 60 through 100 are no longer ‘)
necessary.

)@

>

Adding ELSE to IF-THEN

You've seen how you can include other BASIC statements
in your IF-THEN statements. For example,

10 INPUT X

20 IF X>5 THEN PRINT X

30 IF X<=5 THEN PRINT "X<=5"
40 END

You can add another part to the IF-THEN statement in this
program to combine statements 20 and 30. It's called ELSE.

IF X>5 THEN PRINT X ELSE PRINT ‘X<=b’
—— N e N e’ —_/
If this is true, then do this. Otherwise, do this.
The program could be rewritten to look like this:
10 INPUT X
20 IF X>5 THEN PRINT X ELSE PRINT "X<=5"
30 END

Your turn!

Enter a program that will do the following:

« Input a single letter for the character variable N$
« If N$ is equal to “X"’, display N$

« If N$ is not equal to X", display the number 1

Answer:

Branching with IF, THEN, ELSE 3-13

e Y

Branching with IF, THEN, ELSE

Adding ELSE to IF-THEN (continued)

3-14

SA34-0122

Here’'s our solution:

CLEAR

10 PRINT "ENTER ANY LETTER"
20 INPUT N$
30 IF N$="X"
40 END

THEN PRINT N$ ELSE PRINT 1

Another possible solution is:

CLEAR

10 PRINT "ENTER ANY LETTER"
20 INPUT N$

30 IF N$="X" GOTO 60

40 PRINT 1

50 GOTO 70

60 PRINT N$

70 END

Run your program, and enter the letter S:

RUN
ENTER ANY LETTER

25

The number 1 should appear on your screen. If your
program didn’t run correctly, reenter the commands and
statements and try it again.

There are some more ways to test conditions with the
IF-THEN-ELSE statement. See ‘‘Relational expressions’ in
your BAS/C Language Reference manual for information.

T —————

O«

0"

Using STOP

You can choose to end your program by including the STOP
’ ‘ statement with IF-THEN. STOP causes the program to
come to an immediate end.

s In the last exercise, you could end the program if N$ does
not equal ‘X’ by entering:

. 20 IF N$="X" THEN PRINT N$ ELSE STOP

STOP should not be confused with the END statement.
END must be the /ast statement in a program. STOP does
end a program. But it can be inserted anywhere in your
program.

STOP can also be on a line by itself, like this:
20 IF N$="X" THEN 40

30 STOP
40 PRINT N$

. Let's look at another example. Enter the following:

CLEAR

10 AGE1=18

20 PRINT "ENTER YOUR AGE"
30 INPUT AGE2

40 IF AGE2<AGE1 THEN 70
50 PRINT "18 OR OVER"

60 STOP

70 PRINT "UNDER 18"

80 END

Now run the program, and enter your age:

RUN
ENTER YOUR AGE

2?28

Branching with IF, THEN, ELSE 3-15

Branching with IF, THEN, ELSE

Chapter summary

3-16

SA34-0122

You can use IF-THEN statements to change the order in
which program statements are executed. Your System/23
tests a condition, and control goes to the line number or
label following THEN if the condition is true. If the condition
is false, control goes to the next program statement.

10 IF X=98.6 THEN 50
20 IF X$="AOO1" THEN 90

You can add other BASIC statements to an IF-THEN
statement, like PRINT, INPUT, or GOTO. Your System/23
tests a condition and executes the statement following
THEN if the condition is true.

10 IF X=0 THEN PRINT "REORDER"
20 IF X+Y<10 THEN INPUT Z

You can add ELSE to an IF-THEN statement. Your
System /23 tests a condition. If the condition is true, the
statement following THEN is executed. If the condition is
false, the statement following ELSE is executed, or control
goes to the line number or label following ELSE.

10 IF X=0 THEN 80 ELSE GOTO REPORT
20 IF AGE=10 THEN INPUT N$ ELSE 80

The STOP statement causes a program to end. STOP can
be entered as a line by itself anywhere in a program. It can
also be included as part of an IF-THEN statement.

10 IF X=100 THEN STOP
20 STOP

Exercises

Question 1

’ o List the order in which the following programs will run if the
value of N is entered as 55:

a. 10 INPUT N
20 IF N = 100 THEN GOTO 50
* 30 PRINT "N <> 100"
40 GOTO FINISH
50 PRINT "N = 100"
60 FINISH: END

Answer:

L
) 0 b. 10 INPUT N

20 IF N=100 THEN PRINT N ELSE STOP
’ 30 END

Answer:

c. 10 INPUT N
20 IF N < 235 THEN STOP
30 PRINT 100
40 END

Answer:

Branching with IF, THEN, ELSE 317

e e —————

Branching with IF, THEN, ELSE

Exercises (continued)

3-18

SA34-0122

Question 2

Change line 20 in the following program so that if a value of
235 is entered for XYZ, the program stops.

10
20
30
40
50

Answer:

INPUT XYZ

IF XYZ=235 THEN 40
GOTO 10

PRINT XYZ

END

Question 3

What would you enter to combine lines 30, 40, 50, and 60
of the following program into one IF-THEN-ELSE
statement?

10
20
30
40
50
60
70

Answer:

PRINT "ENTER A NUMBER"
INPUT N

IF N>=1 THEN GOTO 60
PRINT "N<1"

GOTO 70

PRINT N

END

)®

Question 4

Write a program that will do the following:

. Display a prompt and input a value for N$
. Test to see whether N$ = “"JONES”

- Display REPORT and N$ if N$ = “JONES”
« End if N$ does not equal “JONES”

You can write this program using only four BASIC
statements.

Answer:

Branching with IF, THEN, ELSE 3-19

 EEEEEEEEEEEE—,—,— R R ..

Branching with IF, THEN, ELSE

Answers

3-20

SA34-0122

Question 1

1. The programs will run in the following order:

a. line 10
line 20
line 30
line 40
line 60

b. line 10
line 20

c. line 10
line 20

Question 2

20 IF XYz=235 THEN STOP
or
20 IF XYZ=235 THEN 50

Question 3

30 IF N>=1 THEN PRINT N ELSE PRINT "N<1"
DEL 40,60

Question 4

10 PRINT "ENTER THE NAME"

20 INPUT N$

30 IF N$="JONES" THEN PRINT "REPORT",6N$

40 END p

b

Chapter 4. Using loops to control a program

Introduction

) @

In this chapter, you will learn to use loops to control the
way your programs run. A /oop is a series of statements
that executes over and over until some condition causes
control to go to another program statement.

Objectives

Upon completion of this chapter, you should be able to do
the following:

Create a loop by using IF-THEN and GOTO statements.
Create a loop by using FOR and NEXT statements.

Determine how many times the statements in a loop will
be executed.

Determine how many times the statements contained
within nested loops will be executed.

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises.

Using loops to control a program 41

Using loops to control a program
Using an IF-THEN loop

You have seen how to use the GOTO statement to change

the order in which your program statements are executed. O ‘
You have also seen how to use the IF-THEN statement to

change the order of execution depending on certain

conditions. e

There is another use for these statements. Using GOTO and
IF-THEN, you can control the number of times a statement .
or series of statements is executed.

In the program that follows, you will use the IF-THEN
statement to control the number of times your name is
displayed.

Enter the following program, but use your name in line 20:

CLEAR

10 COUNTER=0 .
20 PRINT "JOHN DOE" O ‘
30 COUNTER=COUNTER+1

40 IF COUNTER<5 THEN 20 .
50 END

Before you run this program, let's take a look at some of
the statements. In line 10, you /nitialize, or assign a value
of O to the variable COUNTER. (Your System/23
automatically initializes all numeric variables to O when you
run a program. But it's a good idea to put this statement in
anyway.) This lets you set a counter for the number of
times you display your name with line 20.

In line 30, you are adding a value of one to COUNTER after
each time that you display your name. COUNTER then
equals the new value after each addition. The variable
COUNTER keeps track of the number of times your name is O [
displayed.

4-2 SA34-0122

In line 40, you are testing to see whether COUNTER is
equal to five. If COUNTER is less than five, control
branches back to line 20. Otherwise, the program stops.

Without running the program, can you guess how many
times your name will be displayed?

Go ahead and run the program:

RUN

Your name is displayed five times. The value of COUNTER
is increased by one each time your name is displayed. So,
COUNTER is equal to five after the fifth time your name is
displayed. Just to be sure, enter:

PRINT COUNTER

As you can see, the value of COUNTER is 5 now.

Let's look at another example. Enter the following:

CLEAR

10 NUMBER = 50

20 PRINT "THE NUMBER IS ";NUMBER
30 GOTO 10

40 END

Using loops to control a program 4-3

Using loops to control a program

Using an IF-THEN loop (continued)

Now run the program:

10
20
30
40
50
60

70
180

4-4 SA34-0122

RUN

This program keeps running over and over, because the
END statement can never be reached. This program is in an
end/ess loop. Control never branches out of the loop. To
stop the program, press Cmd Attn, and then enter:

GO END

You should avoid using endless loops like this in your
programs. If you run a program that seems to take too long,
or that does the same thing over and over, you should

check for an endless loop.

Let's try an IF-THEN loop in the accumulated savings
program. You'll set up a loop that will calculate and display
the amount of savings three times.

Enter the following:

CLEAR

VALUE=0
PRINT "ENTER PRINCIPAL,RATE,YEARS"
INPUT P,I,N

A=P* (14+1) **N

PRINT "SAVINGS = ";A

VALUE=VALUE + 1

IF VALUE < 3 THEN GOTO 20

END

n this program, the variable VALUE is the counter. It is
nitialized to zero. The loop is run three times, so that you
an enter three separate values for the principal, interest
ate, and number of years.

O

Run the program and enter the following values for P, I, and
N:

RUN
ENTER PRINCIPAL,RATE,YEARS

21000, <0810
ENTER PRINCIPAL,RATE, YEARS

21000, 09,10
ENTER PRINCIPAL,RATE, YEARS

?21000,.10,10

By using IF-THEN, you can control the number of times a
loop is executed.

Using loops to control a program 4-5

Using loops to control a program

Using a FOR-NEXT loop

4-6

SA34-0122

You can also set up a loop with a pair of statements called
FOR and NEXT. Using FOR and NEXT, you can control the
number of times a statement or series of statements
executes.

We'll write another program to display your name five
times, but this time we’ll use a FOR-NEXT loop.

Enter the following, but use your name in line 20:

CLEAR

10 FOR X=1 TO 5

20 PRINT "JOHN DOE"
30 NEXT X

40 END

-Once again, you keep track of the number of times your

name is displayed with a variable (X).

The FOR statement indicates the number of times your
name is to be displayed. The NEXT statement indicates that
the loop is to be executed again. The loop continues until
your name has been displayed five times.

You must have a NEXT statement for every FOR statement
in your program. The NEXT X statement increases the value
of X and sends control back to the FOR statement.

Now, run the program:

RUN

As you can see, your name is displayed five times.

O

Let's take a closer look at the FOR and NEXT statements.
FOR X=1TO 5

NEXT X

The variable X is increased by one each time the NEXT X
statement is executed. When X equals 5, control goes out
of the loop.

You do not have to assign a beginning value of one to the
variable. For example, enter this program:

CLEAR

10 FOR X=2 TO 14
20 PRINT X

30 NEXT X

40 END

Here, the program will actually display the value of X so you
can see how the value increases each time the loop is
executed. Run the program:

RUN

You can also increase the value of the variable in the FOR

statement by twos or threes or any other amount by using
STEP.

We’'ll change your program to show you how STEP works.
Enter the following:

10 FOR X=2 TO 14 STEP 2

Using loops to control a program 4-7

Using loops to control a program
Using a FOR-NEXT loop (continued)

List your program to see what the new version looks like:

T.TS'T O (
Now run the program: .
RUN

Only the even numbers from 2 through 14 are displayed.

STEP 2 indicates that the value of X should increase by two

each time the loop is run.

Your turn!

Enter a program that will display all of the odd numbers

from 21 through 45. o = ‘

Answer: z

Here’s our solution:

CLEAR

10 FOR X=21 TO 45 STEP 2
20 PRINT X

30 NEXT X

40 END

Now run your program:

RUN o

4-8 SA34-0122

Let's use a FOR-NEXT loop in our accumulated savings
program. We'll change the program so that the principal
and number of years remain the same. The interest rate will
be assigned in the FOR statement.

Enter:

CLEAR

10 REM INTEREST RATE WILL VARY
20 P=1000

30 N=10

40 FOR I=.08 TO .10 STEP .01
50 PRINT P* (1+L)**N

60 NEXT I

70 END

The interest rate varies from eight to ten percent, with a
STEP of .01. Therefore, the formula is calculated for interest
rates of .08, .09, and .10.

Notice that the formula is included in the PRINT statement.
You can include any arithmetic formula or expression in a
PRINT statement and the results of the calculation will be
displayed.

Go ahead and run the program:

RUN

Note: It is usually a good idea to use a variable in your FOR
and NEXT statements that will not change in any other
statements in the loop. If the variable in your FOR and
NEXT statements is modified within the loop, it may affect
loop execution.

Using loops to control a program 4-9

Using loops to control a program
Using nested loops

You can place one FOR-NEXT loop inside another
FOR-NEXT loop, like this:

—FOR X=1 TO 5

L NEXT X

When you place one loop inside another, you have what is
called a nested /oop. Let's take a closer look.

Enter the following:

CLEAR
10 REM NESTED LOOPS
20 FOR X=1 TO 4
30 FOR Y=1 TO 2
[40 PRINT "X = ";X,"Y = ";Y
50 NEXT Y
60 NEXT X
70 END

The outer loop (beginning at line 20 and ending at line 60)
runs four times. The inner loop (beginning at line 30 and
ending at line 50) runs twice every time the outer loop runs.

The PRINT statement in line 40 displays the values of X and
Y when you run the program. You can see the order in
which the statements are executed by looking at the
different values for X and Y. Go ahead and run the
program:

4-10 SA34-0122

PN
S’

RUN
Let's go over that one more time.

10 _REM NESTED LOOPS

20 FOR X=1 TO 4

60 NEXT X

70 END

The inner loop is run twice every time the outer loop is run.
Therefore, when X is equal to 1, Y is first equal to 1 and
then equal to 2. Then, X is equal to 2, and Y is again equal
first to 1 and then to 2. This continues until after X equals 4
and Y equals first 1 and then 2.

Did you notice that NEXT Y (line 50) comes before NEXT X
(line 60)? You must place all of the inner loop (from FOR
through NEXT) inside the outer loop.

This is valid: This is invalid:
—FOR X=1TO 4 FOR X=1TO 4

FORY=1TO 2 FOR Y=1T0O 2

NEXT Y LNEXT X
—NEXT X NEXT Y

Note: Do not use the same variable in the FOR/NEXT
statements in nested loops. If the outer loop starts with
FOR X, the inner loop should not start with FOR X.
Otherwise, you may change the execution of the outer loop.

Using loops to control a program 4-11

Using loops to control a program

Using nested loops (continued)

4-12

SA34-0122

Here's a way to use nested FOR-NEXT loops with the
accumulated savings program. You can assign different
values for the interest rate in one FOR-NEXT loop (as you
did earlier in the chapter).

You
year

can then assign different values for the number of
s in another FOR-NEXT loop. The principal value of

1000 will be assigned within the program.

Enter:

CLE
10
20
30
40
50
60
70

AR

P=1000

FOR I=.08 TO .10 STEP .01
FOR N=10 TO 12

PRINT I,N,P*(1+I)**N
NEXT N

NEXT I

END

In this program, you calculate accumulated savings for
interest rates from eight to ten percent. The number of

year

Do you know how many times the values will be displayed?

Run

RUN

s varies from ten to twelve years.

the program to see if your answer is correct:

The PRINT statement is set up so that you can see exactly
which values of | and N are being used.

This program is useful for calculating the accumulated
savings for various interest rates and periods of time.
There's one more thing that will help make the program
easier to use.

Enter:

5 PRINT "INTEREST","YEARS",'"SAVINGS"

List the new version of your program:

ETST

You now have a heading (in line 5) to make your results
easier to read. Notice that this PRINT statement is outside
the loops, because you only want to display the heading
once.

In the program listing, you can see that the heading uses
three print zones because of the commas. Line 40 also uses

the same three print zones.

Now run the program:

RUN

Using loops to control a program 4-13

Using loops to control a program

Chapter summary

4-14

SA34-0122

A loop is a series of statements that executes over and over
until some condition causes control to go to another
program statement.

You can write a loop using IF-THEN and GOTO statements,
like this:

10 INPUT X
20 IF X=5 THEN 40
30 GOTO 10
40 PRINT X

You can also write a loop using FOR and NEXT statements.
FOR must be the first statement, and NEXT must be the
last statement in the loop, like this:

10 FOR NUMBER=1 TO 5
20 PRINT NUMBER
30 NEXT NUMBER

You can place one loop inside another loop to form nested
loops. The entire inside loop (from FOR to NEXT) must be
enclosed within the outside loop, like this:

10 FOR Y=1 TO 4

20 FOR Z=0 TO 25 STEP 5
30 PRINT Y,Z,Y*Z

40 NEXT Z

50 NEXT Y

The FOR statement assigns an initial and ending value to a
variable and indicates an optional increase amount with
STEP. The NEXT statement increases the value of the
variable and sends control back to the FOR statement.

@

Exercises

Question 1

In the following programs, how many times will JOHN DOE
be displayed?

a. 10
20
30
40
50

b. 10
20
30
40

C. 10
20
30
40

d. 10
20
30

Answer:

e e e ——— e e e e e e

X=0
PRINT "JOHN DOE"
X=X+1
IF X=10 THEN STOP ELSE GOTO 20
END
FOR X=1 TO 5
PRINT "JOHN DOE"
NEXT X
END
FOR Y=1 TO 10 STEP 2
PRINT "JOHN DOE"
NEXT Y
END
FOR X=1 TO 5
PRINT "JOHN DOE"
END

a.

b.

c.

d.

Using loops to control a program

4-15

Using loops to control a program

Exercises (continued)

4-16

SA34-0122

Question 2

Write a program, using a FOR-NEXT loop, that will display
all multiples of three from 15 through 36.

Answer:

Question 3

What will be displayed after these programs are run?

a. 10
20
30
40
50
60

b. 10
20
30
40
50

Answer:

FOR X=10 TO 20 STEP 5
FOR Y=1 TO 2

PRINT X,Y

NEXT Y

NEXT X

END

FOR X=100 TO 300 STEP 100
FOR Y=1 TO 3

PRINT "X = ";X,"Y = ";¥Y
NEXT X

END

a.

C

Answers

Question 1

a. Ten times

b. Five times

c. Five times. After the fifth time it is displayed, Y
becomes 11, which is greater than 10, so the loop is not
run again.

d. It will not be displayed. An error will occur because

there is no matching NEXT statement for the FOR
statement.

Question 2

10 FOR I=15 TO 36 STEP 3

20 PRINT I

30 NEXT I

40 END

Question 3

a. 10 1
10 2
15 1
s 2
20 1
20 2

b. An error message. This program will not run because
there is no NEXT Y statement. The NEXT Y must come
before the NEXT X statement.

Using loops to control a program 417

T e B —— e e e

4-18

SA34-0122

Chapter 5. Assigning values with READ and

DATA

Introduction

In this chapter, you will learn about two more statements:
READ and DATA. The READ and DATA statements work
together to assign values to variables.

You will also learn about the RESTORE statement.

RESTORE is used with READ and DATA to assign the same
values to different variables.

Objective

Upon completion of this chapter, you should be able to do
the following:

« Assign the values in a DATA statement to the variables
in a READ statement.

« Write a program in which values are assigned with
READ and DATA.

« Use the RESTORE statement with READ and DATA to
change the order in which values are assigned.

If you are familiar with these tasks, try the exercises located

at the end of this chapter. If not, read through the chapter
before going on to the exercises.

Assigning values with READ and DATA 5-1

Assigning values with READ and DATA

Using READ and DATA statements

5-2

SA34-0122

So far, you have learned two methods for assigning values
to variables. In Book |, you learned how to use the LET
statement, like this:

10 LET X=250 or 10 X=250)

In Chapter 1 of Book Il, you learned how to use the INPUT
statement, like this: .

10 INPUT X
In this chapter, we will show you one more way to assign
values. The READ and DATA statements work together to

assign values that are an actual part of your program.

Let's take a look. Enter the following:

CLEAR .
10 DATA 5,10,15

20 READ A,B,C

30 PRINT A;B;C

b [
/| ﬂ FND
&L LN

Can you guess what’'s going on here? The READ and DATA
statements work together to assign values to variables. The
values listed in the DATA statement are assigned to the
variables listed in the READ statement.

The values in the DATA statement are assigned in the same

order to the variables listed in the READ statement. Once

the READ and DATA statements are executed, A is equal to i
5, B is equal to 10, and C is equal to 15. .

Go ahead and run the program:

RUN

The DATA statement does not have to come before the
READ statement. It can be placed anywhere in a program.

Just to be sure, let’'s change the program.
Enter:

10 READ A,B,C
20 DATA 5,10,15

List the new version of your program:

L L S

Now run the program:

\

RUN

As you can see, the results are the same. In fact, you can
place the DATA statements anywhere and in any order in
the program.

10 DATA 5

20 READ A,B

30 READ C

40 DATA 10,15

50 PRINT A;B;C
- 60 END

The first DATA value (5) is assigned to the first READ

‘ variable (A). The second value is assigned to the second
variable, and the third value is asigned to the third variable.

Assigning values with READ and DATA 5-3

R ESEEEEEEE———

Assigning values with READ and DATA

Using READ and DATA statements (continued)

If you list more values in the DATA statements than there
are variables in the READ statements, the extra DATA
values are not used. For example,

READ A,B,C

\

DATA 5,10,15,20,25

In this case, the last two values in the DATA statement
would not be used.

But, if you have too few values to assign to the variables in
the READ statement, you will get an error. For example,

READ A,B,C,D,E

\

DATA 5,10,15

In this case, if no other DATA values exist in the program,
an error 0054 will occur. Look in your messages manual for
error code 0054. You must have a DATA value for every
READ variable listed.

Let's try it, and see. Enter the following:

CLEAR
10 DATA 1000,2000,3000
20 READ A,B,C,D,E

30 PRINT A,B,C

40 END

Now run the program:

RUN

5-4

SA34-0122

To get rid of the error code and flashing action code, press
Error Reset, and because the program hasn’t finished, enter:

GO END

You can assign values to character variables with READ and
DATA, too.

List the program currently in the work area:

LIST

Now, add these changes:

15 DATA "SMITH","JONES", "BROWN"
20 READ A,B,C

25 READ A$,B$,C$

35 PRINT A$,B$,C$

Notice that we corrected line 20 to read the correct number
of values from line 10. Now list the new version:

T ST
When you run this program, the values listed in the DATA

statements will be assigned to the variables listed in the
READ statements. Try it. Enter:

RUN

The values in the DATA statements were assigned in the
same order as the variables in the READ statements.

Assigning values with READ and DATA 5-5

e

Assigning values with READ and DATA

Using READ and DATA statements (continued)

5-6

SA34-0122

Look again at lines 10 through 25:

10 DATA 1000,2000,3000

14 DATA "SMITH","JONES", "BROWN"
20 READ A,B,C

25 READ A$%$,B$,C$

The type of values in the DATA statements must be in the
same order as the type of variables in the READ
statements. That is, you must always assign character
values to character variables and numeric values to numeric
variables. The number 1000 is assigned to A. The name
SMITH is assigned to A$.

However, when you place character values (strings) in your
DATA statements, you do not have to use quotation marks.
You can enter your strings just as you would for an INPUT
statement. Line 15 could look like this:

15 DATA SMITH,JONES, BROWN

But remember: If you want to use a comma or a semicolon
in a string, the entire string must be enclosed in quotation

marks. Also, if you want the string to appear in lowercase,
you must enclose the string in quotation marks.

One more note: If you read a number with a character
variable, the number will be treated as a string. For
example, if line 15 looked like this:

15 DATA "SMITH", 27,"BROWN"

then the value of B$ would be the string 27"

Your turn!

Using READ and DATA statements, enter a program that:

« Assigns 1000 to the principal (P), .12 to the interest rate
(1), and 5 to the number of years (N)

« Calculates the amount of accumulated savings
« Displays the results
Hint: In case you've forgotten, the formula is P*(1+)**N.

Answer:

Here’'s our solution:

CLEAR

10 DATA 1000,.12,5

20 READ P,I,N

30 PRINT "SAVINGS=";P* (1+1)%%N
40 END

To make sure it works, run your program:
il RUN
If \}our program didn’t work, reenter the commands and
statements shown above, and try it again. Remember that if

your program stops with an error, you will have to press the
Error Reset, and enter GO END.

Assigning values with READ and DATA 5-7

B e e e e e e e e e e

Assigning values with READ and DATA

Using READ and DATA statements (continued)

5-8

SA34-0122

Remember: You can assign both character and numeric
values with READ and DATA statements. But, the DATA
values must be in the same order as the READ variables:

DATA 10,20,"X¥2" 5, "ZYX"
READ N1,N2,N1$,N3,N2$

or

READ N1,N2

DATA 10,20

DATA "XYz",5,"zZYx"
READ N1$,N3,N2$

You can read a number as a string if the variable in the
READ statement is a character variable. The number will

then be treated as a string, not as a number.

Note: You can not include a remark on a DATA statement.

Using the RESTORE statement

There is a statement that you can use with READ and
DATA. It's called RESTORE. With RESTORE, you can assign
the same values to different sets of variables.

Here's how it works:

DATA 10,20,30
READ A,B,C
RESTORE

READ D,E,F

The values 10, 20, and 30 are assigned to variables A, B,
and C. The RESTORE statement tells your System/23 to go
back to the beginning of the values listed in the DATA
statement, and assign those values to the next set of READ
variables.

‘ Let’s try this in a program. Enter:

CLEAR

10 REM RESTORE EXAMPLE

20 DATA 10,20,30

30 READ NUMBER1,NUMBER2, NUMBER3
40 RESTORE

50 READ NUMBER4,NUMBERS5,NUMBER6
60 PRINT NUMBER1; NUMBERZ ; NUMBER3
70 PRINT NUMBER4; NUMBERS5 ; NUMBERG6
80 END

Now run the program:

RUN

. The values 10, 20, and 30 are assigned to NUMBER4,
. NUMBERS5, and NUMBER®6 as well as NUMBER1,
NUMBER2, and NUMBER3.

Assigning values with READ and DATA 5-9

Assigning values with READ and DATA

Using the RESTORE statement (continued)

5-10

SA34-0122

Look at this program:

10 DATA 15,20,25
20 READ A

30 RESTORE

40 READ B

50 RESTORE

60 READ C

70 PRINT A,B,C
80 END

Can you guess what values would be displayed for A, B,
and C if this program were run?

A, B, C would all be equal to 15. The RESTORE statements
in lines 30 and 50 indicate that the value at the beginning of
the DATA list should be asigned to the next variable read.

What would happen if we deleted line 50?

The variables A and B would both be equal to 15. However,
the variable C would then be equal to 20.

What would happen if we deleted both lines 50 and 60?7
The variables A and B would both still be equal to 15.
However, since the variable C would not be assigned a

value, its value would be zero.

Remember from Book I: If you do not assign a value to a
numeric variable in a program, its value is zero.

Your turn!

‘ Enter a program that will do the following:

« Using READ and DATA, assign the names “SMITH"
and “JONES" to the variables NAME1$ and NAME2$.

« Using RESTORE, reassign those same names to the
variables A$ and B$.

. Display NAME1$, NAME2$, A$, and B$ on the screen.

Answer:

Here’'s our solution:

CLEAR

10 DATA "SMITH","JONES"

20 READ NAME1$,NAME2$

30 RESTORE

40 READ A$,B$

50 PRINT NAME1$,NAME2$,A$,B$
60 END

Run your program:

RUN

Assigning values with READ and DATA 5-11

e e ===ttt

Assigning values with READ and DATA

Chapter summary

5-12

SA34-0122

You can assign values to variables in a program by using
the READ and DATA statements. Values that are listed in
DATA statements are assigned to variables that are listed in
READ statements. For example,

10 DATA 1,2,3

20 READ X,Y,Z

30 DATA "FRANK","JOHN","JOE"
40 READ X$,Y$,Z$

The RESTORE statement causes the next READ statement
to assign values beginning with the first value listed in the
DATA statements. For example,

10 DATA 1,2,3
20 READ X,Y,Z
30 RESTORE

40 READ A,B,C

Exercises

Question 1

o What will be displayed on the screen when the following
programs are run?

a. 10 DATA 100,200,300
20 READ A,B,C
. 30 PRINT A;B;C
40 END

b. 10 READ A,A$,B
. 20 DATA 10,"INVENTORY", 25
30 PRINT A$
40 PRINT A,B
. 50 END

c. 10 READ A$,B$,C
20 DATA "INVENTORY"
O 30 DATA "PAYROLL"
40 DATA 500
50 PRINT A$,B$
60 END

d. 10 DATA "INVENTORY"
20 DATA "PAYROLL","BILLING"
30 READ A$,B$,C
40 PRINT A$,B$,C

50 END
Answer: a.
b.

C.

d.

Assigning values with READ and DATA 5-13

e e T ——

Assigning values with READ and DATA

Exercises (continued)

5-14

SA34-0122

Question 2

Write a program that will do the following:

« Assign the values 100, 200, and 300 to the variables A,
B, and C by using READ and DATA statements

« Display the values five times by using a FOR-NEXT loop

Answer:

Question 3

Using the RESTORE statement, do the following:

a. Assign the values 5, 6, and 7 to the variables D, E, and
F:

10 DATA 5,6,7
20 READ A,B,C
40 READ D,E,F
50 END

b. Assign the name SMITH to the variable PERSONS$:
10 DATA "SMITH","JONES"

20 READ NAME$
40 READ PERSON$

50 END
Answer: a.
b.

Assigning values with READ and DATA 5-15

Assigning values with READ and DATA

Answers

5-16

SA34-0122

Question 1

A 100 200 300

b. INVENTORY
10 25

c. INVENTORY PAYROLL
d. An error code. The value “"BILLINGS’ cannot be

assigned to the numeric variable C.

Question 2

10 DATA 100,200,300
20 READ A,B,C

30 FOR X=1 TO 5

40 PRINT A,B,C

50 NEXT X

60 END

Question 3

a. 30 RESTORE

b. 30 RESTORE

- —rtth"—'trtrhrto iy __Cutor Foid Along Line _ __ _ o o e e e e e ———

READER’'S COMMENT FORM

SA34-0122-0

I1. Inputting Data and Using Loops

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I1BM may
use and distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your |BM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader’'s Comment Form

Fold and tape Please Do Not Staple Fold and tape
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
s oo v)
BUSINESS REPLY MAIL e
T
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK IR
e = e
POSTAGE WILL BE PAID BY ADDRESSEE ——
—————
s [ag e]
IBM Corporation B
Systems Publications, Dept 27T OIS |
RS FRIARAT
P.O. Box 1328]
Boca Raton, Florida 33432 EeETm——)
e s
Fold and tape Please Do Not Staple Fold and tape
SA34-0122-0

Printed in U.S.A.

