
VTAM Concepts ,

Mini-Course 1
VTAM Overview

)

MINI-COURSE 1. ACF/VTAM Overview

Introduction

Advanced Communications Function for the Virtual Telecommunication Access
Method (ACF/VTAM) is an IBM program product that controls communication
between resources in a data communications network. ACF /VT AM resides in a
host processor and runs under control.of a virtual operating system (OS/VS or
VSE).

ACF/VTAM consists of programming modules that provide services that allow
VT AM application programs in the host processor to communicate with each other
and with terminals controlled by ACF/VTAM. An ACF/VTAM access method
and the resources that it controls is called a domain. Two or more domains may be
connected to form a multi-domain network. In a multi-domain network, VT AM
application programs and terminals in one domain may communicate with VT AM
application programs and terminals in another domain.

For convenience, we will henceforth refer to ACF /VT AM as VT AM.

Logical Structure of a VTAM Network

VTAM implements systems network architecture (SNA), therefore a VTAM
network is structured according to SNA (see Figure 1-1).

Mini-Course 1. ACF /VT AM Overview 1-1

HOST PROCESSOR

TERMINAL

I PU I .
I LU I

LU LU LU

CLUSTER CONTROLLER

I I Q G SSCP

LU l LU l LU

I I PC and DLC

ACF/VTAM

COMMUNICATIONS
CONTROLLER

0

nR~Z S~c~
B 0
~ LU l LU

Flpre 1-1. Lop:.! Stncture of a VTAM Netwcllk

Since VT AM implements SNA, it consists of the SNA components system services
control point (SSCP), physical unit (PU), path control {PC) and data link control
(DLC) components, and supplies part of each host logical unit (LU). The host
logical units (LUs) may be supplied by IBM subsystems (for example, CICS, IMS,
and TSO) or they may be user-written logical units.

VT AM sees the network as physical units and logical units rather than as terminals,
controllers, and processors. Each terminal controller and each processor is seen as
a single physical unit and one or more logical units. Each communications.
controller and its NCP is seen as a physical unit.

Major Components of a VTAM Domain

1-2 ACF/VTAM. Concepts

The type and number of major components that make up a VT AM domain depend
on the domain configuration. Figure 1-2 shows a configuration that includes
channel-attached terminals (local terminals) and link-attached terminals (remote

)

AUXILIARY
STORAGE

HOST
PROCESSOR

VTAM
APPLICATION
PROGRAMS ..._ ___ _.r-

VTAM

tenninals). This figure illustrates major components of a VTAM domain and you
may want to refer to the figure as we discuss each of the components.

VTAM NETWORK

r-----------------------------~

I
I
I

I
I
I
I

LOCAL SNA
TERMINAL

!COMMUNICATIONS
I CONTROLLER

I
I

NCP

. LOCAL
INON-SNA
I 3210

I NON-SNA
I TERMINALS

NCP

SOLC

NCP

TERMINALS ON
SWITCHED LINES

SDLC

SNA TERMINALS
ON SWITCHED

OR NONSWITCHED
LINES

NON-SNA
3270

TERMINALS

PROCESSORS

L------------------------------
fJpre 1-2. Major Compoaeats of a VTAM Domain

Vf AM Application Program

Major components of a VT AM domain include the following:

• VTAM application programs

• VTAM

• Network control programs (NCPs)

• Terminals and distributed processors

• Data links

A VT AM application program is a program that uses VT AM macro instructions to
communicate with resources in the VT AM network. A VT AM application
program must identify itself to VT AM before it can communicate with other
resources in the network. Once it has identified itself to VT AM, a VT AM
application program uses VT AM macros to access VT AM services. VT AM
application programs use VT AM macros to establish sessions with other logical

MW-Course 1. ACF/VI'AMOverview 1-3

VTAM

Network Control Program (NCP)

1-4 ACF ;vr AM Concepts

units, to receive information from and to send information to those logical units,
and to control the sessions.

A VT AM application program performs the function of a logical unit. By
identifying itself to VT AM, a VT AM application program establishes a session with
VTAM, called an SSCP..:Lu session. For convenience, we'll refer to a VTAM
application program as a VT AM program henceforth. Using the term VT AM
program rather than logical unit is a way of differentiating it from logical units
outside the host processor. Logical units outside the host processor reside in
peripheral nodes and can be called peripheral logical units.

VT AM is the central point of control for its domain. Once VT AM obtains control
of the resources (physical units, logical units, and data links) to establish its
domain, it provides services which allow logical units to communicate with each
other. The services performed by VT AM include:

• Controlling the allocation of network resources (for example, links,
communications controllers, and terminals)

• Establishing, controlling, maintaining, and terminating sessions between
resources in the network

• Permitting use of resources without specific knowledge of their location

• Transferring data between network resources

• Permitting VT AM programs to share resources in the network

Permitting a VT AM operator to monitor and alter the network

• Permitting the network configuration to be changed while the network is being
used

• Initiating the detection and correction of problems in the operation of the
network

A network control program (NCP) resides in a communications controller to which
terminals and processors are attached. Each NCP, under VTAM direction,
manages the part of the network that is attached to its controller. The NCP, along
with its communications controller, provides such functions as the following:

• Transmitting data between network nodes

• Controlling lines

• Controlling buffering

• Deleting and inserting communication control characters

• Detecting permanent and temporary line errors

• Gathering line statistics

)

Activating and deactivating lines

Closing down portions of the network

Handling recoverable line errors

• Providing error statistics to VT AM

• Testing communication links

Although these activities are performed in communications controllers, they are
actually managed by VTAM. For example, when the NCP is to deactivate a link,
the command to deactivate comes from VT AM.

T enninals and Distributed Processors

Data Links

Each terminal or distributed processor is represented to VT AM as a physical unit
(PU) and one or more logical units (LUs). To a VTAM program, a terminal or
distributed processor is one or more logical units. A VT AM program is not aware
of physical units (PUs).

Data links include telecommunication links and host processor data channels.
Telecommunication links may be managed by the following link protocols.

• Synchronous data link control (SDLC)

Binary synchronous control (BSC)

• Start-stop (S/S)

SDLC links connect SNA products and certain models of the non-SNA 3270
family of terminals. The BSC line discipline is supported for BSC 3270s. And ·
certain start-stop devices and BSC devices are supported via the network terminal
option (NTO) that resides in the communications controller.

Data channels are managed by the data channel protocol which consists of channel
command words (CCWs). Communications controllers and terminal controllers
can be directly attached to the host processor via data channels. Channel-attached
devices are called local devices.

VTA1W' Network Configurations

Single Domain Network

A VT AM network may consist of a single domain with local and/ or remote
networks or of a multi-domain network with local and/ or remote networks.

Figure 1-3 illustrates a single domain network. A variety of SNA and

Mini-Course 1. ACF/VfAMOverview 1-S

HOST
PROCESSOR

l

Non-SNA SNA
Devices Devices

Loop
Adapter

VTAM
Programs

Non-SNA
Devices

SNA
Devices

BSC SDLC

Communication
Adapter

Channel
Links

COMMUNICATIONS
CONTROUER

NCP

NTO

COMMUNICATIONS
CONTROLLER

SDLC

SNA
Devices

ACF/VTAM
NCP BSC

Non-SNA
Devices

Channel
Links

SNA
Devices

COMMUNICATIONS
CONTROLLER

NCP

SDLC

BSC

Figure 1-3. VT AM Single Dolllllia Coaf"iguradoa

1-6 ACF /Vf AM. Concepts

non-SNA devices are supported in the local and remote network. t

The local network is connected to the host processor by channel links (data
channels) and by loop adapters. Terminals attached via the loop adapter feature of
the host processor appear to VfAM as channel-attached terminals. Note,
however, that not all processors support the loop adapter feature.2

Terminals remote to the host processor can be linked to vr AM by a
communications controller or by a communication adapter (if supported by the host
processor2). SNA terminals, communications controllers, and BSC 3270 control

2

Specific devices that are supported are listed in the ACF /Vf AM. General Information manual
(Fonn Number: GC27-0608).

Host processors that support the loop adapter and communication adapter features are listed in
the ACF/VfAM General Information manual (Form Number: GC27-0608).

Multi-Domain Network

units may be connected by the communication adapter. SNA terminals and BSC
3270 control units may be connected by a communications controller. One or
more communications controllers may be link-attached to other communications
controllers.

Certain S/S and BSC devices are supported in conjunction with the network
terminal option (NTO) program product which runs in a communications
controller.

One domain may be connected to another as shown in Figure 1-4.

DOMAIN A

HOST PROCESSOR

ACFNTAM

COMMUNICATIONS
CONTROLLER

ACF/NCP

Figure 1-4. Mald-Domlin vr AM Network

DOMAIN B

HOST PROCESSOR

ACFNTAM

COMMUNICATIONS
CONTROLLER

ACF/NCP

Each domain consists of a VT AM access method and the network controlled by
that VT AM. This figure illustrates the various ways that the two domains may be
connected. The host processors may be channel-attached, the communications
controllers in each domain may be channel-attached to the host processor in the
other domain, or the two communications controllers may be attached to each
other by one or more SDLC links. Any or all of these connection methods may be
used to connect a pair of domains. Any number of domains may be interconnected
to form a network providing the capability for resources in each domain to
communicate with resources in any of·the other domains.

Mini-Course 1. ACF/VTAMOverview 1-7

Major Functions of VTAM

We'll assume a single-domain network for all of our discussions except in
Mini-Course 16, which deals with multiple domain communication.

VT AM monitors and controls the network resources that are defined to it. As the
central point of control, VTAM performs several major functions. Four of these
functions include:

• Starting and stopping the network

• Changing the configuration dynamically

• Allocating and sharing of network resources

• Handling input/ output processing

Starting and Stopping the Network

VT AM allows the user to define the network resources to VT AM. The user
defines network resources by writing definition statements and including them in a
VT AM definition library. Certain definitions must be stored in the VT AM
definition library before VT AM can be started. Once these definitions are placed
in the VT AM library, the system operator can invoke a procedure to start VT AM
execution. VTAM, once it is started, obtains these network resource definitions
and uses them to monitor and control the network.

VTAM can also shut down the VTAM network. VTAM does this by sending
commands to network resources to deactivate them. Typically, the VTAM network
operator prompts VT AM to deactivate network resources.

D}namically '.\1odifying the Configuration

1-8 ACF /VT AM Concepts

The VT AM network operator can submit commands to VT AM to modify the
network configuration while the network is being used (see Figure 1-5).

HOST
SU BA REA

NOOE SA1

SU BA REA
NOOE

NCP11

Figure 1-5. Modifying Network Configuntloa

LU1

TG52---t

TG52---t

TG51---t

NCP12

SUBAREA
NODE

NCP21

Assume that NCP12 is located in a different time zone than the other part of the
network and that the users of the NCP12 resources terminate activity at 5:00 p.m.
each day.

Mini-Course 1. ACF/VTAMOverview 1-9

The operator can issue deactivate commands to VTAM to deactivate NCP12's
resources and to deactivate NCP12. Once NCP12 is inactive, VTAM knows
nothing about NCP12 and its resources. It's as though that part of the network
doesn't exist.

Any part of the VT AM network can be activated or deactivated at any ti.me.

In addition to the network operator, an authorized VTAM program can send
commands to VT AM to request activation or deactivation of network resources.

Allocating and Sharing Network Resources

AUXILIARY
STORAGE

VT AM allows the users of a network to share resources of that network. A
resource can be shared concurrently or serially. For example, a VTAM program
can communicate concurrently with several other logical units, but a logical unit in
a terminal controller can communicate with only one VT AM program at a ti.me.

Figure 1-6 illustrates the status of resources in a VT AM configuration at a
particular time.

LOCAL 3270

LUB

.-----IPU ---- LU9

LU10

LU11
HOST
PROCESSOR

FILEUPDT

ORDER ENT

. VTAM' /:i';
···PROGRAM""
.·· ~.:·~~'1:-;~~,.·.'2 ~~~~.

VTAM

Filan 1-4i. VrAM Network a---

1-10 ACF /vrAM. Concepts

LOCAL
COMMUNICATIONS
CONTROLLER

002
NCP11

SDLC

REMOTE
COMMUNICATIONS
CONTROLLER

The VTAM program Fll..EUPDT is in session with four logical units: LUl, LU2,
LU3, and LUS. The VTAM program ORDERENT is in session with three logical
units: LU4, LU6, and LU7. FILEUPDT and ORDERENT are shared concurrently
and logical units LU1 through LU7 are shared serially. H ORDERENT requested
a session with LU1, VT AM would not allow it. LUt is a serially shared resource
and it already has an LU-LU session. VTAM will not allocate the resource (LU1)
for the ORDERENT-LUl session.

AUXILIARY
STORAGE

Once processing has completed on an LU-LU session, usually the session is
terminated. For example, processing completes on the FILEUPT-LUl session and
on the FILEUPDT-LU3 session and the sessions are terminated. Now it is possible
for LUl and LU3 to establish a session with FILEUPDT, ORDERENT, or another
VTAM program to process more data. We'll assume that ORDERENT requests a
session with LUl and VTAM allocates the resources for the session. Network
status is shown in Figure 1-7.

LOCAL 3270

LUS

.----.,.PU LU9

LU10

LU11
HOST
PROCESSOR

FILEUPDT

ORDER ENT

VTAM
PROGRAM

VTAM

LOCAL
COMMUNICATIONS
CONTROLLER

002

NCP11

SDLC PU

SDLC
..c-----1 PU LU3

SDLC
.&.---1 PU LU4

NCP12

REMOTE
COMMUNICATIONS
CONTROLLER

Figure 1-7. Allocating Network Resources for an LU-LU Sesmoa

Input/ Output Processing

Resources that make up the paths between logical units are also shared. Looking at
Figure 1-7, the shared resources include VTAM, the channel link, the NCP, and
the SDLC links. VT AM uses path elements on behalf of logical units only as long
as needed to complete a specific data-transfer request.

Once a session is established between a VT AM program and another logical unit,
VT AM manages the transmission of data between the two. To illustrate this
process, we'll use the session between FILEUPDT and LU3 as shown in
Figure 1-8.

Mini-Course 1. ACF/VTAM Overview 1-11

AUXILIARY
STORAGE

LOCAL 3270

LUB

.----1PU
LU9

LU10

LUl 1
HOST
PROCESSOR

FILEUPOT

ORDER ENT

VTAM
PROGRAM

PIU ~

JTHIRH! RU I
VTAM

LOCAL
COMMUNICATIONS
CONTROLLER

LU1
SDLC PUt-----t

LU2
PIU ~

FH!RH! RU I
002 SOLC

NCP11

SDLC

NCP12

REMOTE
COMMUNICATIONS
CONTROLLER

PU LU4

LU5

PU LU6

LU7

Figure 1-8. VT AM Program Sending to Logical Unit

1-12 ACF/VTAM Concepts

FILEUPDT has data to send to LU3, so it issues a VTAM macro instruction that
requests VT AM to transmit the data. FILEUPDT supplies information in the
request that tells VT AM such things as:

• The location of FILEUPDT's data

• The address of LU3

• How to handle the request

• Whether a response is to be returned

VTAM uses this information to generate a path information unit (PIU). The PIU is
shown.in Figure 1-8 going from VTAM to NCPl 1. The request header (RH)
contains information describing the request unit (RU) and describes how the
request is to be handled. The transmission header (TH) contains the origin and
destination addresses, the sequence number of the request, and other information.
The request unit (RU) contains the application data that is being sent to LU3.

Upon receipt of the PIU, the NCP determines from the transmission header that
the destination address is LU3. Therefore the PIU is sent over data link 002 to
LU3. LU3 will return a response if the appropriate bits in the request header
indicate that one is required.

Now we'll assume that LU3 has data to send to FILEUPDT and that the flow is as
shown in Figure 1-9.

HOST
PROCESSOR

FILEUPOT

ORDER ENT

VTAM
PROGRAM

AUXILIARY
STORAGE

LOCAL 3270

LU8

----tPU
LU9

LU10

LU11

----.....--

VTAM

4 PIU

!TH!RH! RU I

LOCAL
COMMUNICATIONS
CONTROLLER

NCP11

LU1
PUi-----1

LU2

SDLC

SDLC
PU LU4

NCP12

REMOTE LUS
COMMUNICATIONS

PU LU6
CONTROLLER

LU7

Figure 1-9. Logical Unit Sending to VTAM Program

A path information unit (PIU) is generated by LU3 and is sent across the link to its
NCP. The NCP sends the PIU on to VTAM, and VTAM presents the data to
FILEUPDT if FILEUPDT has issued a VT AM macro to receive transmissions
from LU3. Otherwise, VTAM stores the data until a VTAM macro is issued to
receive the data.

From this discussion you should note that VTAM does not initiate the input/output
activity; but, upon request, it manages the transmission.

Routing Within a VT AM Domain

Explicit routes

When a session is established between two network addressable units (SSCP, PUs,
LUs), the session is assigned to and uses a network communications path called a
route. Session traffic flows on that route for the duration of the session.

There are physical routes, called explicit routes (ERs), that must be defined and the
definitions are stored in the VT AM route table and in NCP route tables. There are
logical routes, called virtual routes (VRs), that are used in the process that assigns
sessions to appropriate explicit routes.

Explicit routes are defined between an origin subarea and a destination subarea.
Figure 1-10 shows a VT AM network configuration that includes four subareas
(subareas l, 11, 12, and 21). One or more explicit routes must be defined between
subareas 1 and 11, between subareas 1 and 12, and between subareas 1 and 21.

Mini-Course 1. ACF/VTAM Overview 1-13

1-14 ACF /VT AM Concepts

SUBAREA
NOOE

NCP11

Figure 1-10. Routing

HOST
SUBAREA

NOOE SA1

LU1

ACFNTAM

TG52---t

TG52---t

TG51---t

NCP12

SUBAREA
NOOE

NCP21

We'll discuss the routes between subareas 1 and 12. There are several possible
paths between the host subarea node in subarea 1 and the subarea node in subarea
12 (NCP12). Here are three examples:

SA1.TG1.SA11.TG62.SA12
SA1.TG1.SA21.TG72.SA12
SA1.TG1.SA11.TG52.SA21.TG71.SA12

The first notation identifies the route from subarea 1 over TG 1 to subarea 11, and
over TG62 to subarea 12. The first route includes the subarea nodes in subareas 1,
11, and 21 and the transmission groups TG 1 and TG62. The third route includes
the subarea nodes in subareas l, 11, 21, and 12 and the transmission groups TGl,
TG52, and TG71.

We'll assume that two explicit routes are defined between subareas 1 and 12 as
shown in Figure 1-11.

Mini-Course 1. ACF /vr AM Overview 1-15

1-16 ACF /VTAM Concepts

SUBAREA
NODE

Figure 1-11. Explicit Routes

HOST
SU BA REA

NODE SAi

LU1

TG52--'"'I

TG52--'"'I

TG51 ---t

NCP12

RT

SUBAREA
NODE

ER-Explicit Route
RT -Route Table

One explicit route is numbered zero and the other is numbered one. A maximum
of eight explicit routes can be defmed between the two subareas, ERO through
ER7. ERO and ERl are the same length and are the shortest possible routes. Both

routes also include a two-link transmission group. We'll designate ERO as the
primary route for all sessions and ERl as an alternate route. Sessions are
established on ERO if the route is operational, otherwise sessions are established on
ERl.

We'll also assume that two explicit routes are defined between the other two pairs
of subareas as shown in Figure 1-12 and in Figure 1-13. Explicit routes between
subarea8 1and11 are shown in Figure 1-12 and explicit routes between subareas 1
and 21 are shown in Figure 1-13. ERO is to be the primary route and ERl is to be
an alternate route. Other alternate routes can be defined if required.

Mini-Course 1. ACF/VTAMOverview 1-17

NCP11

. Figure 1-12. More Explicit Routes

1-18 ACF /Vf AM. Concepts

HOST
SUBAREA

NOOE SAl

LUl

ACFNTAM

[ill

TG52--~

TG52--~

TG51---

NCP12

RT

SUBAREA
NODE

NCP21

ER"'-Expllcit Route
RT -Route Table

Figure 1-13. More ExpUclt Roat•

SU BA REA
NODE

HOST
SUBAREA

NODE

LUl

ACFIVTAM

GiJ

NCP12

SAi

RT

NCP21

ER-Explicit Route
RT -Route Table

Mini-Course l. ACF/VTAM Overview 1-19

Virtual Routes

Class of Service

1-20 ACF/VTAM Concepts

Sessions are not assigned directly to an explicit route. Sessions are assigned to a
virtual route and the virtual route is mapped to the appropriate explicit route.
The mapping of the virtual route to the explicit route causes the session to use that
explicit route.

The mapping of virtual routes to explicit routes is done in the host subarea node.
Definitions are included in the VT AM route table to accomplish the VR to ER
mapping.

A virtual route consists of a virtual route number and a transmission priority
number. For example:

VR= (0, 1)

The virtual route number is zero and the transmission priority number is one.
A session assigned to this virtual route is assigned virtual route number zero. The
traffic that flows on this session is assigned a transmission priority of one. There
are three transmission priorities, 0, 1, and 2, with 2 being the highest. Session
traffic with a higher transmission priority can pass session traffic with a lower
transmission priority at certain points in the network.

We'll assume that the VTAM route table includes definitions that map virtual route
number zero to explicit route zero and maps virtual route number one to explicit
route one. Now we have two virtual routes:

VR= ((0, 1) , (1 , 1))

The first virtual route is the primary route and the second virtual route is an
alternate route. Other virtual routes could be added to this list. The first virtual
route in the list is the most desirable for a session, the next virtual route is the
second most desirable, and so on.

The various types of sessions in a network require specific routing services.
For example, interactive sessions need a route that provides good response. Batch
sessions need a route that can handle large volumes of traffic, and sessions that
handle confidential data need a route that provides security features.

A list of virtual routes is established for each set of sessions that require unique
routing services. Each virtual route list is named so the list can be selected when
assigning sessions to routes. Each named list of virtual routes is called a cu of
service. All classes of service are stored in a class of service table that resides in the
host subarea node and is accessible to VT AM. Figure 1-14 illustrates a class of
service table that contains four classes of service.

• ISTVTCOS

• BATCH

• INTERACT

• SECURE

Assigning a Session to a Route

ISTVTCOS ((0,2),(3,2),(4,2))
BATCH ((1,0),(4,0))
INTERACT ((O,l),(3,l),(4,1))
SECURE (2,0)

Figure 1-14. Class Of Senice Table

ISTVTCOS is the class of service for all VTAM sessions (SSCP-PU, SSCP-LU,
and SSCP-SSCP). INTERACT could be used for CICS and IMS type sessions,
RJE type sessions could use the BATCH class of service, and sessions that handle
confidential data would be assigned the SECURE class of service.

Referring to Figure 1-12, assume that LU12 initiates a session with LUl and the
session initiation request specifies the INTERACT class of service. The first virtual
route in INTERACT (see Figure 1-13) specifies VRO and TPl. Assuming that
VRO is operational, the LU1-LU12 session is assigned to VRO with a transmission
priority of 1. Definitions in VT AM's route table will map virtual route number 0 to
the appropriate explicit route. We've assumed that explicit route zero is the best
route so VRO is.mapped to ERO. Therefore LU1-LU12 session traffic will use
explicit route zero and the traffic has a transmission priority of one.

Each time that a session (SSCP-PU, SSCP-LU, LU-LU) is initiated, a class of
service is specified, a virtual route is selected from the class of service, the virtual
route number is mapped to an explicit route, and the session uses that explicit
route.

Please turn to Mini-Course I in your Personal Referena Guide and do Exercise I.I.

Mini-Course 1. ACF/VTAM Overview 1-21

VTAM Concepts

Mini-Course 2
VTAM Program Concepts

)

MINI-COURSE 2. VTAM Program Concepts

Introduction

APPLICATION
PROCESSING
PROGRAMS

A

B

c

F'igure l-1. VTAM Programs

A VT AM program is a logical unit that resides in a host subarea node. It uses
VT AM macro instructions to invoke the services of VT AM for communication
with other logical units. VT AM programs are written in assembler language.

Figure 2-1 shows two VT AM programs and three application processing programs
(end users).

VTAM
PROGRAMS

VTAM

Peripheral
Devices

8- -End User

NCP

Peripheral
Devices

~

8

The VT AM programs can establish sesSions with peripheral logical units and with
other VTAM programs. For example, the two VTAM programs can establish a
session with each other. The VT AM prognuns can interface to the three
application processing programs shown in the figure. For example, application
processing program A has information to send to the end user associated with
logical unit LU4. Application processing program A gives the information to
logical unit LUl; LUl establishes a session with LU4 and sends the information to
LU4, and LU4 gives the information to its end user.

Mini-Course 2. VT AM Program Concepts 2-1

LU4's end user can send information to application processing program A on the
LU1-LU4 session. The end user gives the information to LU4, LU4 transmits it to
LUI, and LUl gives the information to application processing program A.

Functions of VTAM Programs

Flpn 2-2. VfAM Prop'llll

Application
Data

2-2 ACF/VTAM Concepts

Each VTAM program performs several functions and these functions are related to
end users, other logical units, and to VTAM. Figure 2-2 shows one VTAM
program and lists the functions of a VT AM program.

Each VTAM program performs the following functions:

• Identifies itself to VTAM

• Disconnects itself from VT AM

• Establishes and terminates sessions with other logical units

• Sends application related data to and receives application related data from
other logical units (includes accepting data from application processing
programs for transmission over sessions and receiving data on sessions and
giving the data to the appropriate application processing program)

• Processes exception conditions that occur in a session

• Participates with its session partner to control the session (includes quiescing
data transmission and shutting the session down)

,­
'
'··

(

The purpose of the VT AM program is to transmit data between application
processing programs and logical units.

Application processing programs process application-related data received from
VT AM programs and give data to the VT AM programs to be transmitted to an end
user.

PTAM Proassing Instrudions

PTA1\.1 Macro Instrudions

ACB-Based Macro Instructions

The VTAM program contains VTAM macro instructions and some processing
instructions. Processing instructions within a VT AM program enable the program
to make decisions concerning its communication with logical units. For example,
assume that the VT AM program sends data to a logical unit and a physical error
occurs. The VT AM program must test for this condition and decide what to do.
The processing instructions can instruct the program to ignore the error, to resend
the data, or to terminate the session. The processing instructions in the VT AM
program do not process the application data.

VT AM macro instructions provide an interlace between the VT AM program and
VT AM. Each VTAM program must use the VT AM macros to invoke VT AM
services and these services are required for VT AM programs to communicate with
other logical units.

VT AM macro instructions are grouped into the following categories:

• ACB-based macro instructions

• Declarative macro instructions

• RPL-based macro instructions

• Manipulative macro instructions

ACB-based macro instructions are not VTAM macros. However, they're required
to identify a VT AM program to VT AM and to disconnect a VT AM program from
VTAM. ACB-based macro instructions include:

• OPEN

• CLOSE

Once a VTAM program is started, it must notify· VT AM that it is to be recognized
as an active element in the network. The VT AM program does this by issuing an
OPEN macro instruction and upon completion of the OPEN operation, an
SSCP-LU session is established. The VT AM program is recognized as an active
element in the network and can issue VT AM macros to access VT AM services.

A VT AM program removes itself as an active element in the network by issuing a
CLOSE macro instruction. The CLOSE macro instruction tells VT AM to
terminate the SSCP-LU session and to mark the VTAM program as no longer
present in the network. Once the CLOSE operation completes, the VT AM
program can no longer use VT AM macro instructions to access VT AM services.

Mini-Course 2. VTAM Program Concepts 2-3

Declarative Macro Instructions

2-4 ACF /VT AM. Concepts

Declarative macro instructions are used to build and to initialize VT AM program
interface control blocks. The control blocks are the VTAM program's interface to
VTAM. A VTAM program communicates information to VTAM and VTAM
communicates information to the VT AM program via the control blocks.
Declarative macro instructions include:

• ACB

• RPL

• NIB

• EXLST

ACQ/!D Method Control Block (ACB) Macro Imtruction: The ACB macro builds and
initializes an Access Method Control Block (ACB). The ACB control block
identifies the VTAM program to VTAM and to the SNA network as a logical unit.

Request PartlltletD' List (RPL) Macro Il&ftrudion: The request parameter list (RPL)
macro builds and initializes an RPL control block. Every request that a VT AM
program makes for session establishment or communication must refer to an RPL.
The RPL control block describes the VT AM program request to VT AM.

Node Initialization Block (NIB) Macro Instruction: The node initialization block
(NIB) macro builds and initializes a NIB control block. The NIB control block is
used during the initiation and establishment of LU-LU sessions to identify and
define those sessions.

EXLST Macro lmtruction: The EXLST (exit list) macro builds and initializes an
EXLST control block with addresses of the VT AM program exit routines.
The EXLST macro instruction may specify addresses for the following VTAM exit
routines:

• LE RAD

• SYN AD

• DFASY

• RESP

• SCIP

• TPEND

• RELREQ

• LOGON

• LOSTERM

• NSEXIT

r
\

' \

RPL-Based Macro Instructions

)

An exit routine is scheduled by VT AM when a specific event occurs, for example,
when an error occurs or when a logon is received for the VT AM program.

RPL-based macro instructions include those VTAM macro instructions that refer
to a request parameter list (RPL) control block. Each RPL-based macro
instruction specifies that VT AM perform a particular operation and the referenced
RPL provides VTAM with the information it needs to perform that operation.

There are four categories of RPL-based macro instructions:

1. Session establishment macro instructions

2. Communication macro instructions

3. Program operator macro instructions

4. Macro instructions that assist in session establishment or communication

Ses!ion &tablislunent Macro Instructions: Session establishment macros are used by
a VT AM program to initiate sessions with other logical units and to terminate
existing LU-LU sessions.

When a VT AM program acts as a primary logical unit, it uses the following macro
instructions to establish and terminate LU-LU sessions:

• OPNDST

• SIMLOGON

• CLSDST

OPNDST requests VT AM to establish a session with the designated logical unit in
which the VT AM program will act as the primary logical unit.

SIMLOGON requests VTAM to initiate a session on behalf of the designated
logical unit in which the VTAM program is to act as the primary logical unit.

CLSDSf requests VT AM to terminate the session between the VT AM program
and the designated logical unit when the VT AM program is acting as the primary
logical unit.

When a VT AM program acts as a secondary logical unit, the following macro
instructions are used to establish and terminate LU-LU sessions:

• REQSESS

• OPNSEC

• TERMSESS

• SESSIONC

REQSESS requests VT AM to initiate a session with a designated logical unit in
which this VT AM program will act as a secondary logical unit. The REQSESS

Mini-Course 2. VfAM Program Concepts 2-5

macro instruction is used by a VT AM program to initiate a session with another
VT AM program.

OPNSEC is issued by a VTAM program that is to act as a secondary logical unit.
When the VT AM program receives a BIND request from another program, it issues
the OPNSEC macro instruction to accept the BIND parameters.

TERMSESS is issued by a VT AM program that is acting as a secondary logical
uniL TERMSESS requests VT AM to terminate the session between this VT AM
program and the designated logical unit.

SESSIONC is used to send negative responses to a BIND request and to send
certain c0mmand requests (for example, STSN, RQR, and SDT).

Comnuutication Mtlt:l'O 1""1fldiol&r: Communication macro instructions are used by
a VT AM program to send information to and to receive information from another
logical unit. Communication macro instructions include:

• SEND

• RECEIVE

• RESETSR

• SESSIONC

SEND requests VT AM to transmit a request or a response on a session to a
specific logical unit. Data in a request is transferred from a data area in the VTAM
program.

RECEIVE requests VTAM to transfer request and response information to the
VT AM program. These requests and responses are transmitted by the VT AM
program's session partners.

The RESETSR (reset send-receive) macro can be used to change the mode of a
logical unit that is in session with the VT AM program. The modes are used to
restrict input from logical units.

The SESSIONC (session control) macro is used in the recovery from sequence
errors that occur in VT AM program to logical unit sessions. It can stop data flow
and clear the data path, perform the recovery, and start data flow following
recovery.

Program Operator Macro Instructions

2-6 ACF/VTAM Concepts

Program operator macro instructions can be used by an authorized VT AM program
to control or display the status of the network, to receive messages from VT AM,
and to reply to VT AM messages that require a reply.

Program operator macro instructions include:

• SENDCMD

• RCVCMD

)

A VT AM program that is authorized to use these two macros can essentially
perform the same function as the VT AM network operator. SENDCMD is used to
send operator commands to VTAM. RCVCMD is used to receive VTAM
messages.

Macro Imtructiom That Assist in &s.tion Ertablislunmt or Communicatiom: These
macro instructions include CHECK, EXECRPL, INQUIRE, INTRPRET, and
SETLOGON. Later we'll discuss the use of some of these.

Manipulative Macro Instructions

VTAM and DB/DC Systems

A VT AM program places values in control blocks (ACB, RPL, NIB, and EXLST)
that are used by VT AM when the VT AM program requests VT AM to perform
actions on its behalf. These control block values describe how VTAM is to handle
the operation. Manipulative macro instructions can be used to place values in the
control blocks.

Manipulative macro instructions include:

• GENCB

• SHOWCB

TEST CB

MOD CB

Manipulative macro instructions build, modify, access or test control blocks during
program execution. These are not VT AM macros.

GENCB can be used to build ACBs, EXLSTs, NIBs, and RPLs during program
execution and can initialize designated fields within the control blocks with
specified values.

SHOWCB obtains the value or values from one or more fields of a control block
(ACB, EXLST, NIB, or RPL) and places them in an area in the VTAM program
where they can be examined.

TESTCB compares the contents of a control block field against a user-specified
value. The comparison sets the condition code in the PSW.

MODCB changes the contents of one or more specified fields of a control block
(RPL, ACB, EXLST, or NIB) by inserting specified values in the fields.

The programmer has the option of either using these manipulative macro
instructions or performing the same functions with assembler language instructions.

I

Discussions to this point have been in relation to a user-written VT AM program.
This means that the user codes the VT AM program using assembler language, and
codes the application processing program using assembler language or a higher
level language. Now let's tum our attention to DB/DC systems where the user
doesn't code the VTAM program. The VTAM program is included as part of the
DB/DC system.

Mini-Course 2. VT AM Program Concepts 2-7

VTAM and CICS/VS

2-8 ACF/VTAM Concepts

Many VTAM programs may communicate concurrently with logical units through
VTAM. One of the VTAM programs may be CICS/VS. Like a user-written
VTAM program, CICS/VS must use VTAM macro instructions to communicate
with other logical units in a VT AM network.

Figure 2-3 shows the relationship between CI CS/VS, a VT AM program, and
VTAM.

Figure 2-3. VfAM ReJatiomblp to OCS/VS

Figure 2-3 shows only those logical units that belong to VTAM. CICS/VS may
communicate with other resources through another access method (BT AM, for
example).

The CICS/VS application programs shown in Figure 2-3 are user-written
programs. They use CICS/VS macro instructions to request CICS/VS services.
However, CI CS/VS application programs may communicate with VT AM logical
units only through a VT AM program.

The VTAM program, a module within CICS, receives data from a logical unit.
CICS/VS gives the data to the appropriate application processing program. Also,
CICS transfers data from an application processing program to the VT AM program
so the data can be transmitted to the appropriate logical unit.

The CICS generation process generates a VTAM program as part of CICS.

VT A..'1 and IMS/VS

Figure 2-4 shows the relationship between IMS, a VT AM program, and VT AM.

~ 2-4. VTAM Reladomblp to IMS/VS

Figure 2-4 shows only those logical units that belong to VT AM. IMS may
communicate with other resources through another access method.

The message processing programs (MPPs) shown in Figure 2-4 are user-written
programs. The MPPs communicate with IMS in order to send data to a logical unit
or to receive data from a logical unit. IMS, in tum, communicates with logical units
through the VT AM program.

The IMS generation process generates a VTAM program as part of IMS/VS.

Please tum to Mini-Coune 2 in your Penonal Refennt:e Guide and do Exo-cise 2.1.

Mini-Course 2. vrAM Program Concepts 2-9

Mini-Course 3
VTAM Definition Concepts

\
I

)

Mini-Course 3. VTAM Definition Concepts

Introduction

Typically, each user that installs a VTAM network has different requirements. In
fact, the day-to-day activities of many data processing installations may require
more than one VT AM network configuration. VT AM provides for this possibility.
A user may generate several sets of network resource definitions and each set
defines a subset of the network resources. Each time VT AM is started, the user
has the option of directing VT AM to select specific sets of definitions to activate
specific parts of a VT AM network. The user can modify the network configuration
while the network is being used. Figure 3-1 illustrates one possible configuration.

3270

LU
PU LU 8775

LU PU LU

COMMUNICATIONS
HOST PROCESSOR

VTAM PU LU
PROGRAMS VTAM NCP

8100

LU

LU
PU

LU

LU

3767

PU LU

Figure 3-1. VfAM Network

The configuration in the figure includes four VTAM programs (LUs), one local
SNA 3270-information display system, and one NCP subarea that includes two
8775 display terminals, one 3767 .communication terminal, and one 8100
information system. All of these resources must be defmed to VT AM.

Defining a Specific Network Configuration

A minimum of three sets of network definitions are required to define the network
configuration shown in Figure 3-1 to VT AM.

• A set of defmitions for the NCP subarea

• A set of defmitions for the local SNA 3270 information display system

• At least one set of definitions for the VTAM programs (LUs)

The set of defmitions for the NCP subarea is used for two purposes. First, the
definitions are used to generate an NCP load module that is loaded into the

vrAM Definition Concepts 3-1

3-2 ACF /Vf AM Concepts

communications controller to control its network resources. The generated NCP
will contain the addresses of all of its resources (data links, physical units, and
logical units) along with other required information. Second, the definitions are
used to provide VTAM with the information that it needs to manage the NCP
subarea. VTAM obtains network addresses for the NCP resources from the
resource resolution table !RRT) that is created during NCP generation.

The channel-attached 3270 must be defined to VT AM. In our example, one
physical unit (PU) and three logical units (LUs) must be defined.

One to four sets of definitions are required to define the VT AM programs to
VT AM. Each set of definitions for VT AM programs can include definitions for
one or multiple VT AM programs. All definitions must be stored in the VT AM
definition library.

At VT AM startup, VT AM can be directed to obtain all the network definitions,
some of the network definitions, or none of the network definitions. VT AM uses
the definitions to build resource definition tables (RDTs) to maintain the status of
network resources. Once VT AM obtains a set of network definitions from the
definition library and network addresses from the NCP resource resolution table
and puts them in a resource definition table, VT AM has all the required
information to monitor and control the associated resources.

Once VT AM is executing, the VT AM network operator can issue commands to
VT AM to obtain more definitions from the definition library to build additional
resource definition tables. VT AM can also be directed to remove sets of
definitions from resource definition tables. Once a set of definitions has been
removed from a resource definition table, VT AM knows nothing about the
associated resources. As far as VTAM is concerned, those resources don't exist.
So the VT AM network configuration can be changed while the network is being
used.

VIAM Nodes

)

)

The sets of network definitions that we've been discussing are VT AM nodes.
There are two types of VT AM nodes, major nodes and minor nodes.

VT AM major nodes include:

• VT AM application program

• Local non-SNA

• Local SNA

• Switched

• NCP

Channel-attachment (CA)t

• Communications adapter (CA) t

• Cross domain resource manager (CDRM)

Cross domain resource (CDRSC)

A VT AM network can contain a maximum of 255 major nodes. Each of the
elements within a major node is called a minor node. Any major node may include
one or more minor nodes. The number of major nodes and the number of minor
nodes defined in each major node are determined by the user.

Figure 3-2 contains examples of major and minor nodes in a single domain. Study
the figure, then read the discussion that follows.

Definitions for channel-to-<:hannel attachments and for the communications adapter are included
in the channel attachment major node. One set of definitions describes the channel-to-channel
connection for two host processors while another set of defmitions describes the links and
resources attached to a communications adapter.

VT AM Defmition Concepts 3-3

HOST COMPUTER 1. VTAM PROGRAM MAJOR NOOE

i-- - - -.- ,._. ___ EACH SET OF VTAM PROGRAMS IS A MAJOR NODE.

I . . . EACH VTAM PROGRAM IS A MINOR NODE.
I . I
;: . 1 f:Jgf· .. •· -·_,. '.#J!'.:"1\f;".+--2. LOCAL MAJOR NODE

FI>~~ jj~~j ;.··~ · -~- : ;~~~1~~L~~s L~~AA~~~7~oDE.
n~ f'._ _ .. --
1? VTAM

t,~<~- - _.::;;;~:;_ ~~~dJ

6. CA MAJOR NODE .

t'" 3274- ."."'" ~ - -- -;.37;.;s;.;1-_-....,_-_-_._-,.· ~
: PU I

I LU LU ··~~·---
' I I · . _,.,_;;: I
..... _ ~~;.J

EACH LOCAL 3270 TERMINAL
IS A MINOR NODE.

LOCAL SNA MAJOR NODE

EACH SET OF LOCAL SNA TERMINAL
SYSTEMS IS A MAJOR NODE.

EACH LOCAL PHYSICAL UNIT
AND EACH LOGICAL UNIT IS A
MINOR NODE .

,_ ____ _ ----, 4. NCP MAJOR NODE I
I
I
I
I
I .
I .
I
L;

Figure 3-2. VTAM Nodes

· 3-4 ACF/VTAM. Concepts

EACH LOCAL OR REMOTE NCP AND ITS ASSOCIATED NETWORK IS A MAJOR NODE

EACH
LINE GROUP
LINE
PHYSICAL UNIT OR CLUSTER CONTROL UNIT
LOGICAL UNIT OR TERMINAL
TERMINAL COMPONENT

IS A MINOR NOOE.

------------__ 5. SWITCHED SNA MAJOR NODE
r:·•"~"'·-· ~' .· ~""'°•')it'.;;·,. d+--- EACH SET OF SNA TERMINALS

1~ ~u ' Eau ~ E]u I THAT CAN BE CONNECTED ON
F ~- ··I SWITCHED LINES IS A MAJOR
f. LU LU LU '. LU . I NOOE.

·~-,,... ~/.},·<:·~-~··
~. LU;..,LU HE.. ! ···: -t!
I:- LU LU ': ·; I I . .
··~ :~-:.:.. - - -·~- ~~-._;..--i:~.~~~J

EACH SNA PHYSICAL UNIT ANO
LOGICAL UNIT IS A MINOR NOOE.

VT AM Program Major Node

Local Non-SNA Major Node

Local SNA Major Node

NCP Major Node

)

The VTAM program major node includes two minor nodes. Each minor node is a
definition of a VT AM program (LU).

Typically, a VTAM program major node includes definitions for VTAM programs
(minor nodes) that are to be active at the same time. Several sets of VTAM
application major nodes may be defined and each major node will contain
definitions for one or more VT AM programs.

VTAM activates a VTAM program major node by obtaining the definitions from
the VT AM definition library and placing them in a resource definition table.
Having done that, VT AM has all the facts that it needs about each of the VT AM
programs defined in that major node.

Once a VTAM program major node has been activated, each of the VTAM
program names can be used by a program to identify itself to VTAM as a VTAM
program, that is, to form a session with VTAM (SSCP-LU). Once a VTAM
program is in session with VT AM, it can establish sessions with other logical units.

Each VTAM program is defined with an APPL definition statement. The VTAM
program major node example in Figure 3-2 would require two APPL statements.

The local non-SNA major node includes four minor nodes; that is, it includes
definitions for a 3277, 3284, 3286, and a 3288.

Each local non-SNA major node is defined with an LBUILD statement followed by
one or more LOCAL statements. Each local 3270 terminal (minor node) is
defined with a LOCAL statement. The 3272 controllers are not defined.

Item 3 in Figure 3-2 is an example of a local SNA major node. One or more sets
of terminals can be defined as a major node. For example, a 3274 information
display system and a 3790 communications system can be defined as one major
node or as two major nodes.

A VBUil..D definition statement is used to describe the local SNA major node. PU
statements describe the characteristics of eacll physical unit, while LU statements
describe the characteristics of each logical unit.

Item 4 in Figure 3-2 is an example of an NCP major node. One or more NCP
major nodes can be defined for each communications controller. Only one NCP
major node can be active at one time for a given communications controller. NcP
minor nodes include the following:

• Lines, each defined by a LINE statement

• Physical units, each defined by a PU statement

• Logical units, each defined by an LU statement

VTAM Defmition Concepts 3-5

Switched SNA Major Node

Item S in Figure 3-2 is an example of a switched SNA major node. One or more
major nodes can be defined for SNA terminals on switched lines. Each major node
represents one or more physical units and their associated logical units.

A VBUILD statement begins the definition of a switched SNA major node. A PU
statement describes each physical unit, an LU statement describes each logical unit,
and one or more PA 1H statements are required for each PU statement.

Communication Adapter Major Node

Item 6 in Figure 3-2 is an example of a communication adapter major node.

ACF/VTAM supports SDLC and BSC lines attached to a communication adapter
in a VSE system. A communication adapter (CA) major node can define one line
and attached resources or it can defme multiple lines and attached resources. A
VBUILD statement is used to define the major node and LINE, PU, and LU
statements are used to define the minor nodes.

Major Nodes Unique To Multiple Domain Networks

Naming Major and Minor Nodes

Node Structure

3-6 ACF/VTAM Concepts

CORM, CDRSC, and CA major nodes are used in multiple domain networks. A
channel-to-channel attachment (CA) major node is defined for a channel that
connects two domains, that is, the channel connects two host processors that
contain .VT AM.

CORM major nodes are defined so that each domain can communicate with every
other.

CDRSC major nodes are defined so that logical units in one domain can
communicate with logical units in other domains.

Each major and minor node must be assigned a symbolic name. The following
rules apply to assigning names:

• Duplicate major node names are not permitted.

• Duplicate minor node names are not permitted in the same major node.

• A major node and a minor node may not have the same name .
..

• Major nodes containing duplicate minor node names cannot be active
simultaneously. If a major node that contains a duplicate minor node name is
activated, the second minor node name is ignored.

VTAM defmition statements are used to identify all major and minor nodes and to
place each node within a hierarchical structure of controllable elements. Each
major node structure has the general form shown in Figure 3-3.

· .. ----···-----·;·--·-·- -·-~·· ··.-·--;··--.--

MAJOR NODE
MINOR NODE 1
MINORNODE2
MINORNODE3

· MINOR NODE 4

Figure 3-3. VTAM Node Structure

Each major node structure can be controlled as a whole, or portions of it can be
controlled through the minor nodes within each major node; that is, an individual
minor node can be activated as long as all nodes between the minor node and
VT AM are active. A user can activate minor nodes by activating the associated
major node. Similarly, deactivating a major node causes all subordinate nodes
(minor nodes) to be deactivated.

Installing and Implementing a VTAM Network

An operational ACF /VT AM network is accomplished by first installing
ACF /VT AM and then providing the definitions for ACF /VT AM to monitor and
control the network. Installing ACF /VT AM includes the following activities:

• Defining VT AM, local devices, and VT AM system libraries to the operating
system

• Loading VT AM modules in a VT AM library

Implementing the VT AM network includes the following:

Defining nodes to VT AM

NCP

Local non-SNA

Local SNA

VT AM program

Channel-to-channel attachment

Communications adapter

Switched

Cross domain resource manager (CORM)

Cross domain resource (CDRSC)

• Coding and including accounting and authorization exit routines

VTAM Definition Concepts 3-7

Installing Vl'.Al\1

3-8 ACF/VTAM Concepts

• Defining connection and disconnection procedures for logical units (USS tables
and logon mode tables)

• Defining a class of service table

• Defining start options

• Defining configuration lists

• Defining paths

We will discuss the installation and implementation process in relation to the
VT AM configuration shown in Figure 3-4. Study the figure, then continue reading.

3270

LU
PU LU 8775

LU PU· LU
COMMUNICATIONS

HOST PROCESSOR CONTROLLER

VTAM PU LU
PROGRAMS VTAM NCP

8100

LU
002 LU

PU
LU

LU

3767

PU LU

Figure 3-4. VT AM Network to be Def med

Installing ACF /VT AM includes defining VT AM, local devices, and VT AM
libraries to the operating system and loading ACF /VT AM modules from the
product tapes into the appropriate VTAM library. This is a system generation
process. In Figure 3-4, the loccsl 3270 controller and the communications
controller must be defined to the operating system.

VSE. You no longer need to define ACF/VTAM to VSE because the VSE system
generation statements already include ACF /VT AM support. Core image libraries
contain VT AM load modules, tables, and system exit routines and source statement
libraries contain network definitions. The maintain system history program
(MSHP) is used to load VT AM modules from the product tapes to the core image
library and is illustrated in Figure 3-5.

t
\

...... ._,,......__,,.,..-, ..

ACFNTAM Distribution
Medium

Maintain System
History Program

Source
Statement
Library

'3'\',:Jc:;~

Ef~~~
-, :. "·,-·,

Link Edit
Job

Figure 3-5. lnstalllng ACF /VT A!'\1 Modules (VSE)

ACFNTAM Distribution
Medium

OS/VS. The VTAM libraries used by OS/VSl and OS/MVS systems include
VTAMLST, VTAMLIB, and VTAMOBJ. VTAMLSTcontains VTAM network
definitions and VT AMLIB contains VT AM modules, tables, and system exit
routines. VTAM stores its records of active major nodes in VTAMOBJ the first
time that the major node is activated. The user does not access or store
information in VTAMOBJ.

The system modification program (SMP) is used to load VT AM modules from the
product tapes into VTAMLIB and is illustrated in Figure 3-6.

System
Modification
Program

Libraries
Used by
ACFNTAM

Figure 3-6. lnstalllng ACF/VTA!'\1 Modules (OS/VS)

Pleaw new tlw vid«Jtape for Mini-Course 3. Then tum to Mini-Course 3 in your
Personal R~femrt:¥ Guide and do &rc;. 3.1.

VTAM Definition Concepts 3-9

VTAM Concepts

Mini-Course 4
Controlling a VTAM Domain

MINI-COURSE 4. Controlling a VTAM Domain

Introduction

Controlling a VT AM domain includes starting and stopping VT AM as well as
controlling the domain while VT AM is active. VT AM can be controlled by
network definitions and by network operator commands.

Controlling VTAc\1 with VTAi\1 Definitions

VT AM is controlled at startup by start options and by configuration lists. VT AM
start options, which tailor the VT AM domain, do the following:

Assign a subarea number to the VT AM subarea

• Specify the number and size of each VT AM buffer

Specify the maximum number of sessions that can be initiated or terminated at
the same time

The configuration list specifies the major nodes that VT AM is to activate at
startup.

Definitions of network resources can specify such things as the following:

·whether a minor node will be activated when its associated major node is
activated

• Whether a logical unit will be automatically logged on to an active VT AM
program when the LU is activated

Controlling VT AM With Network Operator Commands

Network operator commands are used to start/stop, monitor, and modify the
network. Network operator commands may be initiated by a network operator, or
many of the commands may be initiated by a VTAM program called a program
operator. The program operator can monitor and control a VT AM domain but it
cannot start or stop VT AM.

Resource Definition Tables (RDTs)

Before getting into the discussion on starting VTAM, we'll explore the concept of
how VT AM monitors the status of its network resources.

VT AM builds tables to keep track of its current configuration. It builds a table for
a major node when there is a request to activate the major node. For example,
assume that VTAM is to activate a local SNA major node (3270 system). VTAM
builds a table and obtains the definition statements for that 3270 to make the
necessary entries in the table. Later, the network operator may issue a command
to activate an NCP major node. This causes VTAM to build a table for that node.
Definition statements for that NCP and its network are obtained to make the
necessary entries in the table.

VT AM builds table entries for each major node that is activated. VT AM maintains
the status (active or inactive, for example) of each resource defined in each active

Mini-Course 4. Controlling a VTAM Domain 4-1

Starting VTAM

4-2 ACF/VTAM Concepts

major node. VTAM deletes the table for a major node when that node is
deactivated.

Each of the definition tables built by VT AM is called a resource defmition table
(RDTI. RDT entries include such information as:

• The symbolic name of each addressable resource (logical units or physical unit,
for example)

• The network address of each resource

• The status of each resource (that is, active, inactive, or in session with another
resource)

You should understand that RDTs identify VTAM's world. If it isn't in an RDT,
then VT AM doesn't know about it

Starting VT AM not only means that VT AM execution is initiated, but also that
VTAM may obtain network definitions and build resource definition tables (RDTs)
for the definitions. At start up, VT AM can obtain the network definitions and
build the RDTs to support the whole network, part of the network, or none of the
network. Some things that may happen during the start-up process are the
following:

• Some or all nodes may be activated.

• Some or all logical units may be logged on to active VT AM programs.

• Selected VTAM facilities (such as TRACE) may be activated.

The network configuration shown in Figure 4-1 is the basis of our discussion in this
mini-course. It shows the VTAM network that was defmed in Mini-Course 3.
We're going to discuss how VTAM is started and how it is prompted to obtain the
definitions to support the nodes shown in the figure.

During discussions on activation and deactivation you should refer to the figure to
keep track of the status of the network as it is modified.

The ST ART Command

The EXEC Command

Conf"iguring VTAM

8775

HOST PROCESSOR PU2 LU4

VTAM PU1
8775

APPLICATION
LU5 PROGRAMS PU3

APPl.2 8100

IMSSYS 3705/25 LU6
INQUIRY LU7 VS VTAM NCP11

PU4
LU8

APPL1 LU9

ORDER ENT
FILEUPOT 3767

PUS LU10

Figure 4-1. Conflgmadoa Defined to VT AM

The format of the START command shown below is for an OS/VS system.

START procname [,,,{options)]

VTAM can be started by JCL or by a network operator command (EXEC
command for VSE and START command for OS/VS).

The procedure name is required. It is the name of a cataloged procedure that
contains the JCL needed to start and run VTAM. This procedure is written and
named by the user. If any start options are included with the command, they
override any duplicate options in the specified start option definitions.

The format of the EXEC command (for VSE) is as follows:

EXEC PROC=name

In this command, "name" is the name assigned to a user-written cataloged
procedure that contains the JCL needed to start and run VTAM. Start options are
not allowed in the EXEC command, but VTAM can prompt the operator to enter
options.

Before beginning the discussion of starting VT AM, we need to define the terms
active statm and inactive status. A physical unit or a logical unit is active when it is
in session with VTAM; that is, there is an SSCP-PU session and an SSCP-LU
session. The systems services control point (SSCP) is a component of VTAM.

Figure 4-2 shows our network definitions and the START command issued by the
network operator. Study the figure, then read the discussion that fallows.

Mini-Course 4. Controlling a VTAM Domain 4-3

VIRTUAL

OPERATING

SYSTEM

VTAM

ROT

•

G

VTAM LIBRARY

ATCSTROO

HOSTSA=5
MAXSUBA=31
CONFIG=OO
NO PROMPT
MAX APPL= 1 00

ATCSTRDl j
- .

HOSTSA=10
MAXSUBA=31
CONFIG=02

APPl.1

ORDER ENT
AND
FILEUPDT
SOURCE

e ATCCONOO

APPL2
APPL1
LOC3270
NCP11

G) ATCCON01

APPL2

LOC3270

NCP11

D El DEFINITIONS

SOURCE -- DEFINITIONS
ST ART !tElW&l.,111,.iptll! e APPL2

Flpre 4-2. Startial VfAM

4-4 ACF /Vf AM Concepts

IMSSYS
ANO 0 NCP11
INQUIRY
SOURCE SOURCE

DEFINITIONS DEFINITIONS

Note: For VSE, ATCSTRxx and ATCCONxx are appended to B. giving
B.ATCSTRxx and B.ATTCONxx.

The network definitions in the VTAM definition library are labeled.A through I.
Items F, G, H, and I illustrate the definitions for the VTAM configuration shown in
Figure 4-1. Items A and B show start options lists and items C, D, and E show
configuration lists. Also shown is the VT AM load module library that contains
VT AM modules.

We'll assume that the START command shown at the lower left of Figure f-2 is
submitted by the network operator. It specifies the start procedure NETW AEC
(item 1) and a start options list LIST=Ol (item 3).

Now let's talk about the function of the NETW AEC start procedure. It causes the
VTAM modules (item 2) to be loaded into virtual storage and then starts VTAM
executing.

VTAM selects the start list specified in the START command, start list 01
(ATCSTROl), and obtains the start options from that list to tailor itself.

ATCSTROl contains three start options: (1) HOSTSA=lO, (2) MAXSUBA=31,
and (3) CONFIG=02. HOSTSA=lO specifies that VTAM and the major nodes
that axe part of the VT AM subarea are to be assigned subarea 10.
MAXSUBA=31 specifies that the VTAM network will support a maximum of 31
subareas; CONFIG=02 identifies the configuration list (ATCCON02) that
contains a list of major nodes to be activated by VT AM during this startup.

Once VTAM is initialized it will activate the major nodes. We'll discuss the
activation process of major nodes after we complete our discussion of the other
start options.

So far we've used only four start options. These start options came from two
sources: one from the START command (LIST=Ol) and the three from the
referenced start list (ATCSTROl). When starting VTAM in an OS/VS system,
there are four sources of start options:

1. START command

2. Start options list specified in the ST ART command

3. Start options list ATCSTROO

4. Defaults

The order of this list also indicates the start option selection hierarchy, Start
options in the START command take precedence over all other option sources, the
options list specified in the START command takes precedence over options from
ATCSTROO and defaults, and the options from ATCSTROO take precedence over
defaults.

Since VTAM has used start options from the START command and from
ATCSTROl, it will obtain options from ATCSTROO next. VTAM searches
ATCSTROO for those start options that weren't specified in the ST ART command
and in ATCSTROl.

The NOPROMPT option specifies that the network operator is not to be prompted
for options. The PROMPT/NOPRO.MPT option is ignored when the START
command specifies a start options list other than ATCSTROO, which it does in our
example. HOSTSA, MAXSUBA, and CONFIG are not used because they're
specified inATCSTROl. MAXAPPL=lOO will be used because it isn't specified in
ATCSTROl. This option specifies that a maximum of 100 VTAM programs
(logical units) will be supported by VTAM.

The VTAM default values are used for the remaining start options.

Now that VTAM is started and tailored according to the start options, VTAM uses
the CONFIG parameter (in ATCSTROl) to determine which major nodes (if any)
are to be activated. CONFIG=02 means that configuration list ATCCON02 (item
E) contains the list of major nodes that VTAM is to activate at this time.

ATCCON02 specifies two major nodes (APPLl and i.OC3270), therefore VTAM
will activate those major nodes. The -two major node definitions are shown at items

Mini-Course 4. Controlling a VTAM Domain 4-S

4-6 ACF/VTAMConcepta

F and H. vr AM obtains the definitions from the vr AM library, builds a resource
definition table (RDT) for each major node and inserts the definitions in the tables. ~
The two major nodes are considered to be active once the RDTs are completed.
Figure 4-3 shows vr AM's view of the network at this time.

HOST PROCESSOR

VTAM- I-
-~·

-ORDERENT}
--FILEUPDT APPL1

- ~· vs -1-·
-t-

-+-

----PU.1 }
----LU1

----LU2

----LU3

LOC3270

Ftgare 4-3. vr AM's View of the Network After Startup

The APPLl major node definitions for the VTAM programs ORDERENT and
FILEUPDT reside in one ROT. OROERENT and FILEUPDT are minor nodes.
The LOC3270 major node defines the minor nodes PUI, LUI, LU2, and LU3.

A major node is said to be active when the major node definitions are included in
the ROT. PUs and LUs (minor nodes) are said to be active when they're in session
with the SSCP. Therefore, PUI, LUI, LU2, and LU3 are not active at this time.
However, all of the minor nodes are known to VTAM as their definitions reside in
an active major node.

Minor nodes can be activated during VT AM startup if their definitions specify
them as initially active, and if all nodes, links, and link stations in the path to vr AM
are active. Since PUI is connected to the host channel, there are no nodes between
it and VTAM. Assuming that PUI and LUI are defined as initially active, they will
be activated during vr AM startup in our example.

Figure 4-4 illustrates the activation of PUI and LUI. Study the figure, then read
the discussion that follows.

VTAM

SSCP PU1
ACT PU

+RESPONSE

LU1
ACTLU

+RESPONSE -------

flame 4-4. Acdndai PUI _.WI

(

(

.·.~4

Once VT AM activates the LOC3270 major node, it scans the minor node
definitions to determine if they're to be activated. The definition for PUl contains
ISTATUS=ACTIVE which causes VTAM to send the ACTPU request to activate
PUl. LUl is also defined as ISTATUS=ACTIVE, therefore VTAM sends the
ACTLU request to activate LUl.

The startup operation is complete. VT AM has started executing, has initialized
itself according to the specified start options, and has been configured to support
the major nodes APPLl and LOC3270 as specified in the configuration list
ATCCON02. And now there is an SSCP-PUl session and an SSCP-LUl session.

Now test your understanding of the startup process with the following questions.

Questions

1. Which major and minor nodes are in the VTAM RDT(s) at this time?

2. Which major and minor nodes are active at this time?

3. Which nodes may establish sessions with active VTAM programs (LUs) at this
time?

Answers

1. APPL1 (major node)
ORDERENT (minor node)
FILEUPDT (minor node)

LOC3270 (major node}
PU1 (minor node}
LU1 (minor node}
LU2 (minor node}
LU3 (minor node}

2. APPL1 (major node)

LOC3270 (major node)
PU1 (minor node)
LU1 (minor node}

3. LUl (This is the only logical unit active at this time.)

Now we'll take a look at what happens when the START command contains no
start options as shown in Figure 4-5. The START command located in the
lower-left part of the figure is coded as follows:

START NETWAEC

This START command includes only the procedure name and no options. You
might wonder which start options list and configuration list, if any, will be used
during startup. Start options list 00 (ATCSTROO) is used. In Figure 4-5 you can
see that ATCSTROO defmes HOSTSA=5, MAXSUBA=31, CONFIG=OO,
NOPROMPT, and MAXAPPL= 100.

Mini-Course 4. Controlling a VT AM Domain 4-7

VIRTUAL

OPERATING

SYSTEM .

VTAM

ROT

-­START NETWAEC

4-8 ACF/VTAM Concepts

VTAM LIBRARY

' - "' ---- .
, ATCSTROO ; . ATCCOl)JOO ~

~- , .
HOSTSA=5

APPL2 MAXSU8A=31
CONFIG=OO APPL1

NOPROMPT LOC3270
MAXAPPL"' 100 NCP11

VrAf!~-;~q~
MO~LES~· e ATCSTR01 CD ATCCON01

HOSTSA= 10 APPL2
NETSOL=NO LOC3270
MAXSU8A=3l

NCP11
CONFIG=02

ATCCON02

APPL1
ORDERENT LOC3270
ANO
FILEUPOT
SOURCE
DEFINITIONS

Note: For VSE, ATCSTRxx and ATCCONxx are appended to 8. giving
8.ATCSTRxx and 8.A,TTCONxx.

VTAM and the resources in its subarea will be assigned subarea number S,
maximum number of subareas supported is 31, configuration list ATCCONOO
defmes the major nodes to be activated, NOPROMPT specifies that the network
operator is not to be prompted for start options, and a maximum of 100 VTAM
programs can be supported. ATCCONOO specifies that major nodes APPLl,
APPL2, LOC3270, and NCPl 1 are to be activated. It just so happens that this
includes the entire network.

RDTs are built and initialized for the major nodes APPLl, APPL2, LOC3270, and
forNCPll.

This completes the discussion on VTAM startup. Now assume that VTAM is
configured according to the START command shown in Figure 4-2. The major
nodes APPLl and LOC3270 are active as well as the minor nodes PUl and LUI.

c

)

)

Modifying the Network Configuration

Now we'll talk about modifying the network configuration after VT AM startup
completes. The network operator command VARY can be used to initiate
activation and deactivation of major and minor nodes. Figure 4-6 shows a VARY
command that requests VT AM to activate the major node NCPl l.

NCP LIBRARY

NCP -~,:

MODULES

VTAM

AD Ts

LOC3270

NCP :':

APPL1

NCP11

D VTAM DEFINITION LIBRARY

"VARY NET.ACT, ID= NCP11

NCP11

·vsE
MSG F1
VARY NET.ACT, ID= NCP11

Figure 4-6. VARY AcdffNCPll

NET identifies a procedure which routes the VARY command to VTAM. ACT
says that the specified node is to be activated, and ID identifies the node to be
activated.

VT AM receives the VARY command and determines that it is to activate the
NCPl 1 major node which includes the NCP, one 3767, two 8775s, and an 8100
(see Figure 4-1).

VTAM builds a resource definition table (RDT) and makes entries required to
support the NCPl 1 major node. This information is obtained from NCPl 1 source
definitions shown at item 1 in Figure 4-6. The definition· library is the same one
that we've been using all along. The figure illustrates only the one set of
definitions, although we know that the VT AM definition library contains all the
network definitions.

Mini-Course 4. Controlling a VTAM Domain 4-9

4-10 ACF /VfAM Conc:epta

Now there are three RDTs containing three sets.of definitions:

1. LOC3270 major node

12. APPLI major node

3. NCPl 1 major node

This activation process also causes the NCP executable modules to be loaded into
the appropriate communications controller (item 2). Figure 4-7 shows the SNA
request flow which activates NCPl 1 as well as the two attached data links. Study
the figure, then read the discussion that follows. ·

VTAM

v net, act.id• ncp 11 SSCP

Flpre 4-7. Acthatiat NCPl 1 and Aa.cbed Links

ACT PU

+ .f!~P.Q~~ -

SOT

+RESPONSE

NCP11

PU

The NCP is activated when the SSCP sends an activate physical unit (ACTPU)
request to NCP's physical unit. This establishes the SSCP-PU session with NCP.
The start data traffic (SDT) request is sent to place the session in
data-traffic-active state so function management data (FMD) requests can flow on
the session. Now vrAM can communicate with and through the NCP. Next, the
SSCP sends activate link (AC'IUNK) requests to NCP's PU requesting that it
activate links 001 and 002.

Now tum back to Figure 4-1. Notice links 001 and 002 and the position of the
physical units and logical units attached to those links.

Which of the physical units and logical units defmed to NCPl 1 will be activated, if
any? The physical units and logical units will be activated only if they were defined
as ISTATUS=ACTIVE. We can go one step further and say that initially active
logical units will be activated only if their associated physical units are activated.
As an example, let's assume that PU4 and LU8 were defmed as
!STATUS-ACTIVE. Since the NCP and data link 002 are active, it's possible to
activate PU4 and LU8, in that order. Figure 4-8 shows the operator and SNA
request sequence that accomplish this. •

VTAM

v net.act,id .. pu4

v net,act,id=lu8

Figure 4-8. Activating PU4 llld LUI

)

NCP11 8100

CONTACT
PU

+RESPONSE SNRM PU4

LU9

D

The operator command

v net,act,id=pu4

causes the SSCP to send a CONTACT request to the NCP's physical unit that
requests it to contact the 8100 controller. The contact is performed at the data link
control (DLC) level using SDLC commands set normal response mode (SNRM)
and unnumbered acknowledgement (UA). This SDLC exchange says that the
8100 controller is "powered-on" and is ready to establish communication with the
SSCP. Next, the SSCP sends the ACTPU request to PU4 to establish an
SSCP-PU4 session. With that session established, the operator command

v net,act,id=lu8

causes the ACTLU request to be sent to activate LU8. This establishes the
SSCP-LU8 session. Now both PU4 and LU8 are active. That is, the SSCP is in
session with both PU4 and LU8.

The VT AM operator comm.ands generally control the SSCP-PU and SSCP-LU
sessions. The LU-LU sessions involve the logical units, and ordinarily the VTAM
network operator is not involved with establishing and terminating LU-LU
sessions.

At this point, what resources does VTAM know about? Earlier we said that
VT AM knew about only those items in its RDTs. There are three RDTs at this
time, one for the major node LOC3270, one for the major node APPL!, and one
for the major node NCPl 1. Figure 4-9 illustrates VTAM's view of the system at
this point in time.

M.ini-Comse 4. Controlling a VfAM Domain 4-11

4-12 ACF/VTAM Concepts

HOST PROCESSOR

- - - -- - PU1 } - - --- - LU1
- - - -- - LU2

- -- - LU3

LOC3270

- -- - PU2 }
v - -- - LU4 8775

- - - - PU3 }
vs T - -- - LUS 8775

- -- - PU4} A - -- - LU6
--- - LU7

M --- - LUS
- - - - LU9

8100
NCP11

- - -- - - PUS }
- -- - - - LU10 3767

-- ORDER ENT}
-- FILELIPOT

APPl.1

Figure 4-9. VTAM's View of tbe Network

The figure shows that VT AM knows about everything except the major node,
APPL2. PUl, LUl, PU4, and LU8 are highlighted to indicate that they are active.

ORDERENT and FILEUPDT are not executing at this time. The figure indicates
only that their definitions are now in a VT AM RDT.

Pl-.. turn to Mini-COlll'Se 4 in yo11r Penonal Re/ennce Guide 111111 do Ex6cise 4.1.

VTAM Concepts

Mini-Course 5
Identifying a VTAM Program to VTAM

Ml N 1-COU RSE 5. Identifying a VTAM Program to VTAM

Introduction

A VT AM program that is executing under control of an operating system (VSE or
OS/VS) can issue an OPEN macro to identify itself to VTAM at any time.
Specifications in the OPEN macro depend on the contents of VT AM's resource
definition tables (RDTs). Therefore, we'll briefly review RDTs before getting into
the concept of how a VT AM program identifies itself to VT AM.

Mini-Course 4 pointed out that VT AM's RDTs contain all the information required
by VT A..'d to monitor and control the network. The symbolic name of each VT AM
program and each logical unit is included in an RDT. The actual format of the
RDT isn't important to grasp the concept of identifying a VTAM program to
VT AM. Therefore, we can view the general representation of the RDT as shown
in Figure 5-1 .

PU1 INFO

LU1 INFO

LU2 INFO

··.:'!, LU3 INFO
-~~~1--~~----1----=:..-=--------I

:":!t--P_U_2 ____ --r----"-!N_F_;;;O _____ __.

'·' LU4 INFO

PU3 INFO

' '· LUS INFO

PU4 INFO

LU6 INFO
·'"·' t-------t-----"-_:.__----~

LU7 INFO
.--~;.·-.1--------;..---=:....::.... ____ ___.

LUS INFO
:~::,t-------+---~_;;_ ____ __J

LU9 INFO

F'lpre 5-1. Resoan:e Deflnidoa Tlhle (1lD'O

Figure 5-1 shows the symbolic names of all the physical units and logical units that
VT AM knows about at this time. The figure also indicates that other information
about each major node is contained in the RDT. With this picture in mind, let's
consider how a VT AM program identifies itself to VT AM.

Mini-Course S. Identifying a VfAM Program to VfAM 5-1

Activating a VTAM Program

TheACB

Opening an ACB

S-2 ACF /VTAM Concepts

A VT AM program issues an OPEN macro to identify itself to VT AM, which
activates the VT AM program. The OPEN process must use a symbolic name that
is contained in an RDT. Figure·s-1 includes two VTAM program entries
(ORDERENT and FILEUPDT) in the RDT. An OPEN operation would have to
identify either ORDERENT or FILEUPDT to successfully complete the open
process. During this process, the VT AM program provides VT AM with other
information during the OPEN process such as whether it will accept logons. The
VTAM program provides the information in a control block, called the access
method control block (ACB).

The ACB identifies the VTAM program to VTAM and specifies certain processing
requirements. The ACB identifies an APPLID (VT AM program identification)
entry in the RDT and an appropriate password if the VT AM program was defined
with a password. The ACB also specifies whether the VTAM progrm will accept
logons and may identify some user-coded exit routines.

The OPEN process must specify an ACB, which is to say the ACB is opened.
To VTAM, the ACB is the VTAM program. So it's quite proper to say that an
ACB identifies itself to VTAM.

A VTAM program must specify an ACB in every VTAM macro instruction that it
uses. For example, the VT AM program must specify an ACB when it sends data
to, or receives data from another logical unit. The ACB provides information that
tells VTAM some of the VTAM program's requirements.

Typically, a VTAM program will contain only one ACB, even though it can contain
more than one. The use of multiple ACBs is a way of breaking a VT AM program
into "sub-applications."

Now we'll look at an example that illustrates how a VTAM program identifies itself
to VTAM. Figure S-2 illustrates the relationship between the OPEN macro
instruction, the ACB, and the RDT contents.

~-r:o-.~---~- ·-··---~----··-- ... ·-·····

.)

VTAM PROGRAM: INVEN VTAM

OPEN' acbname
-~ ROT

ACB I

PU1 I info -- LU1 I info

PASS~9.,RD·~ LU2 I info
APPLID~ LU3 I info

77 PU2 I info

LU4 i info
SECRET PU3 I info

o~o~~..il>if "'\ LU5 I info

PU4 I info

LU6 l info

LU7 : info

\
LUS I info

LU9 I info

PUS 1_ info

l'i
LU10 I info

ORDERENT : info

FILEUPDT : info

Figure 5-2. Opening ID ACB

The OPEN macro instruction specifies the name of an ACB. This example shows
only two fields of the ACB. The APPLID, field, identifies the symbolic name
(ORDERENT) of the VTAM program as it is contained in the RDT. The other
field identifies the password SECRET, assuming that VTAM program
ORDERENT was defined with the password SECRET.

The VT AM program is stored in a program library under the name INVEN as
shown in the top of the figure. The system operator starts the program executing
under control of the operating system. Once INVEN is executing, it can issue the
OPEN macro to identify itself to VTAM. The OPEN macro specifies the name of
an ACB that identifies a VT AM program name that is contained in the RDT.
The OPEN gives control to VTAM, and VTAM uses the program name identified
by the APPLID field in the ACB to search its RDT.

Since the name ORDERENT is in the RDT, VTAM builds the necessary control
block structure to identify the VT AM program to VT AM. VT AM uses these
control blocks to manage any sessions in which the VTAM program participates.

Notice that the program name and the name specified in the ACB are different.
The program name INVEN is known to the operating system while the name
specified in the ACB, ORDERENT, is the one known to VTAM. Both names
could be the same; that is, the program name known to the operating system could
be ORDERENT .

Mini-Course S. Identifying a VTAM Program to VTAM 5-3

5-4 ACF/VTAM Concepts

Now we'll discuss the OPEN process for two other VTAM programs (IMSPROG
and PROG2). Assume that both programs are executing. Study Figure 5-3, then
read the discussion that follows.

OPEN acbname

~
ACB1

~PLl°;J I

ACB3

EPLl°i I
FILEUPOT

RD Ts

ORDERENT I
T

FILEUPD1'.J '',

Figure 5-3. ldeutlfylnc Vl'AM Pr1Jlll'lllll to Vl'AM

PROG2 issues an OPEN macro to identify itself to VTAM via the name
INQUIRY. The RDT shown in Figure 5-3 doesn't contain the name INQUIRY,
because its associated major node, APPL2, hasn't been activated yet. Therefore
the OPEN process completes unsuccessfully, and PROG2 is not identified to
VTAM.

Although for our example we do not want PROG2 to be identified to VTAM yet, it
would be possible if the operator command VARY was submitted to activate the
APPL2 major node. This would cause the program names INQUIRY and IMSSYS
to be placed in an RDT. Then PROG2 could identify itself to VTAM by issuing
the OPEN that specifies an ACB identifying the VTAM program name INQUIRY.
For now, however, let's consider the APPL2 node to be inactive.

Now look at IMSPROG in Figure 5-3. The OPEN macro instruction references
the ACB (ACB3) which identifies the program name FILEUPDT. VTAM
searches the RDT and finds that name. The OPEN process completes successfully
and IMSPROG is identified to VTAM as FILEUPDT.

--

EXLST Exit Routines

VT AM provides for the designation and use of a group of special- purpose exit
routines: LERAD, SYNAD, DFASY, RESP, SCIP, TPEND, RELREQ, LOGON,
LOSTERM, and NSEXIT. The purpose of these routines is understood by both
VT AM programs and VT AM. An EXLST exit routine is coded by the user as part
of a VT AM program.

VT AM causes control to be transferred to a particular exit routine when a specific
event occurs, such as a physical l/0 error, a response from an LU, or when contact
with an LU is lost. For example, a VT AM program issues a SEND macro
instruction which directs VT AM to transmit a request to a logical unit. A logical
error occurs, causing VT AM to give control to the LERAD exit routine. The
coding provided by the user in the LERAD exit routine processes the error and
returns control to VT AM.

The same sequence of operation occurs for each exit routine: VT AM gives control
to the appropriate exit routine when a special event occurs, the user-coded exit
routine processes the error, and control is returned to VT AM.

If an exit routine is not provided for a specific error, VTAM gives control to the
next sequential instruction. For example, a SEND macro instruction is issued, and
control is not to be returned to the VT AM program until the SEND operation
completes. A physical error occurs, but there is no SYNAD exit routine. Therefore
VT AM gives control to the instruction following the SEND macro instruction.

Some, all, or none of these exit routines can be included in a VT AM program.
The exit routines that are included in a VT AM program are specified in an exit list
control block (EXLST) in the program. The identity of an EXLST exit routine is
made known to VT AM either when the program is opened, or for certain types of
exit routines, when the program establishes a session with a logical unit.

We'll now discuss how the EXLST exit routines are identified to VTAM at the time
the OPEN macro is issued. The ACB macro instruction identifies to VT AM the
name of an EXLST that contains the address of each exit routine within the
program. Figure 5-4 illustrates how EXLST exit routines are identified to VT AM.

Mini-Course S. Identifying a VTAM Program to VTAM 5-5

5-6 ACF/VTAM Concepts

OPEN acbname ...
ACB

0 EXLST==·.

EXLST AM=VT AM,

LERAO 1

LOGICAL

'
USER CODED

EXIT ROUTINE

Figure 5-4. Idendfyfng EXIST Exit Roadnes to VrAM

SYNAD=1YSICAi_j

PHYSICAL

USER-CODED

EXIT ROUTINE

The ACB EXLST parameter (item 1) identifies an exit list located at EXLSTA.
The EXLST macro instruction (item 2) builds and initializes the exit list control
block. The exit list control block contains the addresses of the included exit
routines. In this example, the control block identifies the LERAD and SYNAD exit
routines to VT AM.

Pleate turn to Mini-Coune 5 in)'Olll' Penonal Refema Gllid6 and do .Exerem 5.1.

VTAM Concepts

Mini-Course 6
LU-LU Session Concepts

/

MINI-COURSE 6. LU-LU Session Concepts

Introduction

BINDing the LU-LU Session

VT AM program logical units and peripheral logical units must be in session with
VT AM before sessions can be established between two VT AM programs or
between VT AM programs and peripheral logical units. Once these SSCP-LU
sessions are established session initiation requests can be submitted to VT AM to
establish LU-LU sessions.

Peripheral logical units support one LU-LU session at a time while VTAM
programs may be designed to support several LU-LU sessions at a time.

There are several sources for initiating sessions between logical units.

Primary logical unit

Secondary logical unit ·

VT AM network operator

Network definitions

• A third party logical unit

If an LU-LU session is initiated by a primary logical unit, this process is called
acquiring a logical unit. All other session initiation requests are forms of logons.
Whether acquiring an LU or issuing a logon, the session initiation request is
submitted to VTAM (the SSCP). VTAM then notifies the appropriate VTAM
program of the session initiation request. The VT AM program issues an OPNDST
to BIND the session.

So there are three stages in establishing an LU-LU session:

1. A session initiation request is submitted to VT AM.

2. VTAM notifies the appropriate VT AM program.

3. The VTAM program issues an OPNDST to BIND the session.

This mini-course discusses the third stage, binding the session. Mini-Courses 7 and
8 discuss the other two stages of establishing LU-LU sessions.

If a session is to be established between two VT AM programs, one of the programs.
will be the primary logical unit and the other program the secondary logical unit.
In a session between a VT AM program and a peripheral logical unit, the VT AM
program is the primary logical unit.

Regardless of how a session is initiated, the VT AM program that is acting as a
primary logical unit issues an OPNDST macro instruction to bind the session.

Mini-Course 6. LU-LU Session Concepts 6-1

To say it another way, the VTAM program that issues the OPNDST macro is the
primary logical unit and the logical unit that receives the BIND request is the
secondary logical unit.

The OPNDST macro must provide information to VT AM that specifies how
VT AM is to handle the OPNDST operation. This information includes the
symbolic name of the primary logical unit (VT AM program) and the secondary
logical unit. The information for handling the OPNDST operation is provided in
three VT AM control blocks:

1. Access method control block (ACB)

2. Request parameter list (RPL)

3. Node initialization block (NIB)

The OPNDST and associated control blocks are shown in Figure 6-1.
The OPNDST specifies the appropriate RPL and that RPL, in turn. specifies an
appropriate ACB and NIB.

Figure 6-1. OPNDSf and Aaociated Control Blocks

The RPL contents describe the OPNDST operation requirements to VT AM.
The ACB identifies the VTAM program to VTAM. The NIB identifies the
secondary logical unit to which a BIND request is to be sent.

SNA Request Flow for the OPNDST Operation

6-2 ACF/VTAM Concepts

Figure 6-2 shows the SNA requests which flow as the result of issuing the
OPNDST·macro. Study the figure, then read the discussion that follows.

Status of a Logical Unit

)

VTAM PROGRAM ILUl VTAM LU] .

·.·''.~.·i:i
'

"~ :·1
)
l
j
j

· .• /f;: J

OPNDST APL
DJ

_ .. BIND r r .,

~~-+--
NIB

I NAME=lunamel 0 SOT ,.

r"-1 -- r--·
+--1 -- -----

I ACB I ..

..... . -~ .,
* .. "'\ • .);.;~~~·,~.

. . .. , __ ::.~:.:
-~ .. :. ~_ _·· ~ . . : -· ..

Figure 6-2. OPNDSf and the SlllA Requests

The OPNDST macro instruction references an RPL, the RPL references an ACB
and a NIB. The NAME=operand in the NIB specifies the symbolic name of the
logical unit to be connected to the VTAM Program. The OPNDST operation
causes the BIND request to flow to the secondary logical unit (LU). The LU-LU
session is established when the secondary LU returns the positive response.

The BIND request establishes an LU-LU session in the data traffic reset state. In
this state, function management data (FMD) requests and data flow control (DFC)
requests are not allowed to flow. This means that application data cannot be
transmitted between the two session partners. The data traffic reset state is used
for recovery situations such as testing and setting request sequence numbers.

FMD and DFC requests can flow when the session is in the data traffic active
state. The start data traffic (SDT) request is used to change an LU-LU session
from the data traffic reset state to the data traffic active state. The SOT request
can be sent by the primary logical unit or by VTAM. In Figure 6-2, VTAM sends
the SDT request. The VTAM program (the primary logical unit) obtains the
responsibility to send the SOT request by including the operand SOT =APPL in the
NIB referenced by the OPNDST macro. We will see a need for the VT AM
program to send the SDT request when we discuss negotiable BIND requests in
Mini-Course 10 ..

The status of a logical unit can affect whether an OPNDST operation can connect
the logical unit to the VT AM program. The logical unit may be active or inactive.
As you may recall, a logical unit is active when it is in session with VT AM.
Otherwise it is inactive. Also, a logical unit that is active is either available or
unavailable. A logical unit is unavailable if it is at its session lilnit. An active
logical unit may be connected to a VT AM program if it is available.

Mini-Course 6. LU-LU Session Concepts 6-3

Communication Identifier (CID)

You just saw that an OPNDST specifies the symbolic name (not the network
address) of the secondary logical unit that is to be connected. VT AM maintains a
table of network resource symbolic names and their associated network addresses.
Therefore, when a VTAM program issues an OPNDST, VTAM uses the symbolic
name provided in the referenced NIB to search its table for the network address of
the logical unit. VT AM places the network address in the BIND request to send
the BIND to the destination logical unit.

Once the session is established between the VT AM program and the secondary
logical unit, both logical units must specify network addresses for all transmissions
on the session rather than specifying symbolic names. Each request and response
sent by a session partner must include the destination network address and the
origin network address. For example, the VT AM program sends a request to the
secondary logical unit and that request must include the network address of the
VT AM program as well as the network address of the secondary logical unit.
In VT AM, this combination of the origin and destination addresses is called the
communications identifier (CID). The CID (origin network address and
destination network address) is placed in the transmission header (TH) of each
request and response sent by the VT AM program.

The two network addresses are made available to both session partners during the
OPNDST (BIND) operation. The secondary logical unit obtains the two network
addresses from the transmission header of the BIND request. VT AM makes the
CID available to the VT AM program by placing the CID in the associated RPL
and NIB at the completion of a successful OPNDST. VTAM places the CID in the
ARG field of the RPL and in the CID field of the NIB. In Mini-Course 7 you will
see why the CID is placed in two different control blocks.

Since VT AM places the CID in the RPL referenced by the OPNDST macro, that
same RPL can be used by VT AM macro instructions that communicate with the
logical unit. For example, if the OPNDST references RPLl at the completion of
the OPNDST operation, VTAM places the CID in RPLl. A SEND macro
instruction can reference RPLl to transmit data to the secondary logical unit since
RPLl already contains the CID for the session.

If RPLl is used by the VTAM program to communicate with more than one LU,
RPLl 's ARG field must be set to the appropriate CID before a VT AM macro
operation communicates with another logical unit. To do this, a VTAM program
typically maintains a table of each logical unit's symbolic name and its associated
CID. ,

At the completion of each OPNDST operation, the VT AM program places the
VT AM-provided CID in the table with the appropriate symbolic name.

Specifying Session (BIND) Parameters

Logmode Tables

6-4 ACF /VT AM Concepts

The BIND request that is sent to a secondary logical unit contains session
parameters that specify the protocols (rules) that the two session partners must
abide by. There are two sources for session parameters: logmode tables and the
VT AM program.

Network definitions assign a logmode table to each logical unit that performs the
role of a secondary logical unit. One logmode table could be associated with all of
the logical units or there could be a different table for each logical unit. A logmode

)

)

J

table contains one or more named sets of session parameters. The logmode table
that is associated with a logical unit should contain one or more named sets of
session parameters appropriate for use by that logical unit. The name of a set of
session parameters is called a logmode name.

A logon issued by a secondary logical unit includes a logmode name that specifies a
set of session parameters in the associated logmode table. That set of session
parameters is to be included in the BIND request that establishes the LU-LU
session. However, the primary logical unit (VTAM program) can override the
logmode name in the logon by specifying another set of session parameters to be
included in the BIND request.

Session Parameters From a VT AM Program

Session parameters can also be supplied by the VT AM program. These session
parameters are specified by the NIB that is used in an open operation.

Selecting Session Parameters for the BIND Request

Figure 6-3 illustrates the process for selecting session parameters. Study the figure,
then read the discussion that follows.

Mini-Course 6. LU-LU Session Concepts 6-5

VTAM
PROGRAM (LUI

OPNOST RPL

~
NIB

NAME=LU1

LOGMODE=O

BNOAREA = addr.

SESSION

PARAMETERS

VTAM

BIND

SESSION
PARAMETERS

OR

LU1

LOGMOOE TABLE

Figure 6-3. Selecting St!Won Parameters

6-6 ACF /VT AM Concepts

SESSION PARAMETERS

SESSION PARAMETERS

•

SESSION PARAMETERS

Assume that the VT AM program initiates a session by issuing an OPNDST request.
Two fields in the NIB referenced by the OPNDST macro specify the session
parameters to be included in the BIND request:

1. LOGMODE

2. BNDAREA

Both fields are initialized by the NIB keyword operands, LOGMODE== and
BNDAREA==. The setting of these fields determine the session parameters
selected.

Case 1: LOGMODE=O
BNDAREA=O

When both fields are set to 0, the first set of session parameters in the logmode
table associated with the secondary logical unit is included in the BIND request.

Case 2: LOGMODE=logmode name
BNDAREA=O

,..
i

)

The set of session parameters named in the LOGMODE operand is obtained from
the logmode table associated with the secondary logical unit.

Case 3: LOGMODE=O
BNDAREA=address

The set of session parameters at the address specified by the BNDAREA operand
is includ~d in the BIND request.

At this point, you should understand that a VTAM program issues an OPNDST
macro instruction to connect a secondary logical unit to that program. The
OPNDST must reference an RPL, and the RPL must specify the appropriate ACB
and NIB. The VT AM program is responsible for placing the required information
in the control blocks before the OPNDST is issued. Also, VT AM places the CID
(network addresses of the VTAM program and the secondary logical unit) in the
RPL and in the NIB at the completion of the OPNDST operation. The CID must
be used in any subsequent communication with the logical unit.

Please turn to Mini-C~ 6 in J'OIU' Persollll/ Re/enna Guide and do Exerci. 6.1.

Mini-Course 6. LU-LU Session Concepts 6-7

VTAM Concepts .

Mini-Course.- 7
Acquiring Peripheral Logical Units

MINI-COURSE 7. Acquiring Peripheral Logical Units

Introduction

A VT AM program may be authorized to acquire logical units. Authorization is
granted by including the appropriate parameter in the APPL definition statement
used to define the program. Acquiring means that the VT AM program takes the
initial action to establish a connection with a logical unit. Without any prompting
from the secondary logical unit, the program issues an OPNDST macro instruction
to BIND the session.

Acquiring is suitable for VT AM programs that require access to a specific resource
or resources in order to function. A printer is an example of a resource that might
be required for a program to function.

A VT AM program can acquire a single logical unit or multiple logical units with an
OPNDST macro instruction. The acquisition of a single logical unit is discussed
first. The discussion is based on the system that was generated earlier, shown in
Figure 7-1 . Study the figure to become familiar with the current status of the
network.

v
T
A
M

Figure 7-1. VT AM Coafiguradon

VTAM PROGRAMS

LL LL LL LL
uuuuuuuu
2 3 4 5 6 7 9 10

LOGICAL UNITS

The figure shows that the two VTAM programs, ORDERENT and FILEUPDT,
are active because both have been identified to VT AM. Two peripheral logical
units, LUI and LU8, are active, that is, both are in session with VTAM. Also,
LUI and LU8 are available because neither LU is in session or queued for a
session with a VT AM program.

Acquiring a Single Logical Unit

Assume that ORDERENT is authorized to acquire logical units:

ORDERENT APPL AUTH=ACQ

Mini-Course 7. Acquiring Peripheral Logical Units 7-I

For this example, ORDERENT acquires logical unit LUl by issuing the OPNDST
macro, as illustrated in Figure 7-2. Study the figure and then read the·discussion
that follows.

Figure 7-2. Acquiring a Single Logical Unit

The OPNDST macro instruction references an RPL, and the RPL references an
appropriate ACB and NIB. The RPL operand OPTCD specifies the value
ACQUIRE which informs VTAM that this OPNDST operation is to acquire a
logical unit. VTAM utilizes the definition of ORDERENT to verify that the
program is authorized to do an acquire. This OPNDST is referred to as an
OPNDST ACQUIRE.

The ACB identifies the VTAM program ORDERENT to VTAM. The NAME
operand in the NIB specifies that LUl is the logical unit with which ORDERENT
is requesting a session.

VTAM processes the OPNDST request and the ORDERENT-LUl session is
established. VT AM places the CID for this session in the associated RPL and NIB.
VT AM then notifies ORDERENT that the operation is complete and now
ORDERENT may communicate with LUl.

Acquiring Multiple Logical Units

7-2 ACF/VTAM Concepts

A single OPNDST macro may be coded to acquire multiple logical units. This is
accomplished by an OPNDST that references multiple NIBs, called a NIB list.
Each NIB identifies and describes a single logical unit. Figure 7-3 illustrates the
use of a NIB list.

)

J

Figure 7-3. NIB List

The NIBs of a NIB list must be coded one after the other. The last NIB in the list
must have the LISTEND operand set to YES, and each NIB before the last one
must have the LISTEND operand set to NO, as shown in Figure 7-3.

The VT AM program has two options as to how many sessions will be established
when an OPNDST references a NIB list: any and all. The OPTCD operand in the
RPL is coded to specify the desired option:

OPTCD=CONANY or OPTCD=CONALL

Specifying OPTCD=CONANY allows one session to be established. VTAM scans
the NIB list and a session is established with the first available logical unit; the rest
of the list is not scanned. Referring to Figure 7-3, you see that VTAM will try to
establish a session between the VTAM program (ORDERENT) and LUI. If LUl
is not available, LU2 is tried next and if LU2 is not available, VT AM tries LU3.
The OPNDST will complete without a session being established if none of the
logical units specified in the NIB list are available.

Specifying OPTCD=CONALL means that sessions are to be established with all
available logical units specified in the NIB list. The OPNDST in Figure 7-3 could
establish sessions with a maximum of three logical units (LUI, LU2, and LU3) if
the RPL includes OPTCD=CONALL. How can ORDERENT determine which
sessions were established? VT AM sets the NIB connection status field to YES
(CON=YES) when a session is established with the specified LU. The VTAM
program must test each NIB to determine if a session was established with the
specified LU.

VT AM places the CID of each logical unit in the appropriate NIB when the VT AM
program establishes a session with that LU. The VTAM program must save each
CID for subsequent communication with each logical unit. The ARG field of the
OPNDST RPL is not valid at the completion of the operation when a NIB list is
used; therefore, the VT AM program will have to extract the CIDs from the NIBs
and store them for future use.

Mini-Course 7. Acquiring Peripheral Logical Units 7-3

At this point, you may see a reason why VT AM places the CID in both the RPL
and and in the NIB. The CID is in the RPL after a session is established with a
single logical unit. The program can communicate with the logical unit, using that
RPL, without having to load the CID for that session into the RPL. On the other
hand, the RPL can hold only one CID. Therefore. provisions must be made for
saving CIDs when sessions are established with multiple logical units through the
use of NIB lists. To accomplish this, VTAM places CIDs in appropriate NIBs.

OPNDSTACQUIREExam~~

7-4 ACF/VTAM Concepts

Now you will study two OPNDST ACQUIRE examples and determine the LU-LU
sessions that are established in each case. First, you may want to refresh your
memory as to the initial status of the VT AM network by studying Figure 7-1.
Next, study the first OPNDST ACQUIRE example, shown in Figure 7-4.
Determine which LU-LU sessions will be established and then read the discussion
that follows.

;

!
L

Figure 7-4. OPNDSf ACQUIRE Example One

The OPNDST in Figure 7-4 specifies that sessions are to be established with all
available logical units (OPTCD=CONALL) specified in the NIB list. Sessions are
established with LUI and LU8. A session is not established with LU3 because it
isn't available, as you can see from Figure 7-1. VTAM sets the connect field
(CON) in NIB2 and in NIB3 to YES, to indicate that LUl and LU8 are in session
with ORDERENT. Also, VTAM places appropriate CIDs in NIB2 and in NIB3.

A second OPNDST ACQUIRE example is shown in Figure 7-5. For this example,
assume that the status of the VT AM network is as shown in Figure 7-1. That is,
ORDERENT, FILEUPDT, LUl, and LU8 are in session with VTAM but no

LU-LU sessions exist. Study the OPNDST in Figure 7-5 and determine which
sessions will be established, then read the discussion that follows.

Figure 7-S. OPNDST ACQUIRE Example Two

OPTCD=CONANY says that only one session is to be established by this
OPNDST. VTAM scans the NIB list and finds that the first available logical unit is
LU8. The ORDERENT-LU8 session is established, VTAM sets NIB2's connect
field to YES (CON= YES), and VTAM places the CID in NIB2's CID field and in
the RPL's ARG field. VTAM then notifies ORDERENT that the OPNDST
operation is complete.

What are the significant points about acquiring logical units? A VT AM program
must be authorized to issue an OPNDST ACQUIRE macro instruction.
Authorization is provided by coding the appropriate value in the program's
definition statement. A VT AM program may acquire one or multiple logical units
with an OPNDST macro instruction. The OPNDST references a single NIB in
order to acquire one logical unit. The OPNDST references a NIB list in order to
acquire multiple logical units. All NIBs used in an acquire operation must specify
the name of a logical unit.

Sessions are established with available logical units. VT AM places the CID of a
logical unit in the associated RPL and NIB when a session is established with that
LU. The RPL's ARG field does not contain a valid CID when sessions are
established with multiple logical units by a single OPNDST operation.

Please tum to Mini-Course 7 ;;, your Personal Re/l!IY!llCe Guide and do Exercise 7.1.

Mini-Course 7. Acquiring Peripheral Logical Units 7-5

VTAM Concepts

Mini-Course 8
Accepting Logons from Peripheral
Logical Units

i
/

MINI-COURSE 8. Accepting Logons From Peripheral Logical
Units

Introduction

A logon is submitted to VT AM by a secondary logical unit or on behalf of a
secondary logical unit. A logon is a request for a session to be established between
the submitting logical unit and a specific VT AM program. VT AM, upon receipt of
the logon, notifies the specified VT AM program of the logon request. It is up to
the VTAM program to issue an OPNDST macro to BIND the session.

An OPNDST with OPTCD=ACCEPT specified in the referenced RPL requests
VT AM to process a logon, that is, send a BIND to the logical unit that makes the
request. So we have an OPNDST ACCEPT to accept a logon and BIND the
session, and we have an OPNDST ACQUIRE to BIND a session with a logical unit
that did not submit a logon.

We will examine three aspects of logon requests:

• Generating the logon

• Logon contents

• How a logon is processed by a VT AM program

Generation of the Logon by a Logical Unit

Field-Formatted Logon

With respect to format, there are two types of logons: field-formatted or
character-coded. A logical unit generates a logon in one of these two formats and
submits it to VTAM. Usually, programmable logical units generate field-formatted
logons and non-programmable logical units generate character-coded logons.

A field-formatted logon is an initiate-self (INIT-SELF) request. An INIT-SELF
request is an SNA comm.and that has a specific format. Logical units that submit
field-formatted logons generate the INIT-SELF request for transmission to VT AM
in a path information unit (PIU). Figure 8-1 illustrates a field-formatted logon in a
PIU.

RU

TH

Figure 8-1. Field-Formatted Logon

Mini-Course 8. Accepting Logons from Peripheral Logical Units 8-1

8-2 ACF/VTAM Concepts

The request unit (RU) portion of the PIU contains the logon. Note the following:

• The request code field contains the SNA command INITIATE SELF ..

• The mode field contains a logmode name that identifies a set of session
parameters for this session. The VT AM program and the logical unit, when
connected, must abide by the protocols (rules) specified by the session
parameters.

• The host LU field contains the symbolic name of the VT AM program with
which the logical unit is requesting a session.

• The requester ID field contains the symbolic name of the logical unit submitting
the logon.

• The password field can contain a password that can be validated by the VT AM
program.

• The last field may contain user data.

VTAM can process a field-formatted logon in its existing form. Figure 8-2 shows a
field-formatted logon being sent to VT AM. Study the figure and then continue.

WORK
STATION

LDGOCAL UNIT ~
--~~~~~~~~
THE TERMINAL SYSTEM
PROGRAM FORMATS THE
LOGON ON ITS OWN OR
AS THE RESULT OF A
WORK STATION REQUEST

Fipre 8-2. Sending a Field-Formatted Lagoa to Yr AM

The logical unit creates and submits the logon either on its own or as the result of a
prompt from a work station. VT AM, upon receipt of the logon, notifies the target
VTAM program about the logon. Certain fields of the logon (requester ID,
password and user data, and the session parameters specified by the mode field)
can be accessed by the VT AM program. The program can use the logon message,

"\
I

)

Character-Coded Logon

password, and requesting logical unit name to verify authorization for the session
with the logical unit. The VT AM program may access the session parameters
specified in the logon for the sake of determining if they're acceptable and to
modify them if they are not acceptable. If the program modifies the session
parameters, then the OPNDST must be set up to use the modified parameters
rather than the session parameters referenced in the logon.

A typical logical unit that submits a character-coded logon is a terminal logical unit
that is associated with an operator. The character-coded logon is user-defined and
meaningful to the operator that enters the logon.

A character-coded logon can be as simple as the symbolic name of the VT AM
program with which the submitting logical unit wishes a session with. For example,
suppose the operator at a terminal logical unit wishes to establish a session with the
CICS logical unit and that CICS's symbolic name is defined as CICS. The operator
enters:

CICS

The terminal logical unit builds a PIU containing CICS and sends it to VT AM.
The character-coded logon must be converted to a field-formatted logon before
VT AM can process it. VT AM has two routines to process each type of logon:

l. The formatted systems services (FSS) routine processes field-formatted logons.

2. The unformatted systems services (USS) routine processes character-coded
logons. It converts the character-coded logon to the field-formatted logon
format and submits it to the FSS routine for further processing. A table, called
an unformatted systems services (USS) table, must be available to the routine
in order for it to make the conversion. USS tables must be defined and
included in a VTAM library.

You may want logical units to provide the appropriate password in the logon:

PROGA X2634

PROGA is the symbolic name of the VTAM program and X2634 is the password
assigned to PROGA.

It may be desirable to set up standard logon formats for your establishment.
Appropriate USS tables must be defined so that VT AM can convert the
character-coded logons to field-formatted logons.

Handling a Logon Submitted by a Logical Unit

We have examined the generation and submission of the various types of logons by
a logical unit. Now let's see how a VT AM program handles a logon.

A VT AM program can accept a logon in the mainline code, or a LOGON exit
routine can be included to accept logons. Typically, LOGON exit routines are used
to accept logons. Regardless of whether a LOGON exit routine is included, you
should keep in mind that a session is established between a VT AM program and a
logical unit by an OPNDST macro instruction. We will now describe an OPNDST
that is used to establish a session as the result of a logon.

Mini-Course 8. Accepting Logons from Peripheral Logical Units 8-3

Accepting a Logon

8-4 ACF/VTAM Concepts

An OPNDST must be coded specifically to accept a logon and BIND the session.
The OPNDST must reference an RPL that includes OPTCD=ACCEPT.
Furthermore, an OPNDST ACCEPT can be coded to accept a logon from a
specific logical unit, or it can be coded to accept a logon from any logical unit.

We include OPTCD=(ACCEPT,ANY) in the RPL in order to accept logons from
any logical unit. An OPNDST ACCEPT ANY will be completed by any logon that
is directed to this VT AM program. VT AM places the name of the logical unit in
the referenced NIB at the completion of the OPNDST operation. Also, VT AM
places the CID of the logical unit in the RPL and and in the NIB.

We include OPTCD=(ACCEPT,SPEC) in the RPL referenced by the OPNDST to
accept a logon from a specific logical unit. Also, we must include in the referenced
NIB the name of the logical unit to be connected. An OPNDST ACCEPT SPEC
will accept a logon only from the logical unit named in the referenced NIB.
Figure 8-3 illustrates an OPNDST that accepts a logon from a specific logical unit.

. ~:--

- ·~ - '

RPL

OPTCO= (ACCEPT, ·:. '.:.
SPEC)

NIB

NAME=LU1

Figure 8-3. Accepting a Logon From a Specific Logical Unit

The ACB specifies that ORDERENT will accept logons. The RPL specifies that
the OPNDST will accept a logon from a specific logical unit and the NAME
operand in the NIB provides the symbolic name of the logical unit. The OPNDST
will be completed when a logon is received from LUI.

, _,

Logon Exit Routine

Figure 8-4 illustrates an OPNDST that will accept logons from any logical unit.

Figure 8-4. Accepting a Logoo From Any Logical Unit

The referenced RPL includes OPTCD=(ACCEPT,ANY), which means that the
OPNDST can be completed by a logon from any logical unit. This type of
OPNDST is referred to as an OPNDST ACCEPT ANY. The NIB does not include
a logical unit name. Even if it did, VT AM would not use the name, because this is
an ACCEPT ANY.

At the completion of the OPNDST, VT AM places the CID of the session in the
referenced RPL and in the referenced NIB. Also, VT AM places the symbolic
name of the connected logical unit in the NIB. If the NAME operand of the NIB
already contained a logical unit name, VT AM overlays it with the name of the
logical unit with which the session was established.

This describes how a LOGON exit routine is used to handle logons. A LOGON
exit routine is an asynchronous routine; that is, VT AM schedules the routine to get
control when VT AM receives a logon for the program. Once the logon exit routine
receives control, it processes the logon and then returns control to VT AM. At that
time, VT AM may give control to the mainline code or to another exit routine.

A session is not established at the point in time when the routine gets control. The
routine has the opportunity to obtain and examine the logical unit name, password,
user data, and specified session parameters identified in the logon. The routine
determines whether the logical unit has the authority to connect to this program.
Assuming that the logical unit is authorized for a session with the program, the
routine can either establish the LU-LU session or it can provide the necessary
information to the mainline code to establish the session. Figure 8-5 illustrates one
way that the LOGON exit routine can be used to process a logon. Study the figure
and then read the discussion that follows.

Mini-Course 8. Accepting Logons from Peripheral Logical Units 8-5

8-6 ACF /VT AM Concepts

OPEN ACB1

~
SETLOGON

~

Figure 8-5. LOGON Exit Routing Usage

VT AM cannot schedule the LOGON exit routine until it has been activated.
The mainline code of the VTAM program issues the VTAM macro SETLOGON to
activate the LOGON exit routine. This allows the VT AM program to prepare itself
before activating the LOGON exit routine to accept logons.

The figure shows a logical unit submitting a logon. The logon is routed to VT AM.
VT AM examines the logon and determines which VT AM program that the logon
request is for and schedules that program's LOGON exit routine. Once the exit
routine gets control, it obtains and examines the logon message to determine if the
logical unit is authorized for a session with this VT AM program. The logon
message could consist of a password to establish the logical unit's authority.

Some VTAM programs, such as CICS and IMS, include in a table the symbolic
names of all logical units that are authorized for a session. The program obtains
the symbolic name of the requesting logical unit from the logon, compares it with
names in its table, and processes the logon if the name is found in the table.

Assuming that the logical unit is authorized for a session, the exit routine shown in
Figure 8-4 issues an OPNDST ACCEPT to BIND the session. When all processing
is complete, the exit routine returns control to VT AM. VT AM can then return
control to mainline code or to an exit routine.

Assume that the logical unit is not authorized for a session with the specified
VT AM program. Rather than issuing an OPNDST macro, the LOGON exit
routine issues a CLSDST macro to terminate the logon request.

The OPNDST does not have to be issued in the exit routine. The routine could
verify authorization of the logical unit and let mainline code issue the OPNDST to
establish the session. In that case, the exit routine mu~~ provide the logical unit

Other Logon Types

Network Operator

Automatic Logon

SllllfLOGON

name to mainline code before the routine returns to VT AM. When mainline gets
control, it can issue an OPNDST ACCEPT to establish the session.

You should realize that a LOGON exit routine has the opportunity to determine
the authorization of a requesting logical unit before a session is established with the
logical unit. If a LOGON exit routine is not included, connections must be
established from mainline code. However, mainline code does not have the
opportunity to determine the authorization of a logical unit to form a session with
the VT AM program. Mainline code issues an OPNDST and eventually the
OPNDST is completed, meaning that a session is established. The program can
then determine if the logical unit should have been connected. If it should not have
been connected, a CLSDST is issued to disconnect the logical unit. A LOGON
exit routine can be more efficient when there is a lot of logon and logoff activity.

The previous discussion of logons was oriented toward logons issued by secondary
logical units. Most of that discussion applies to the following logon types:

• Logon submitted by the network operator

Automatic logon

• SIMLOGON by a VT AM program

A VT AM program passing a logical unit to another VT AM program.

The following discussion will point out how these logon types differ from those
issued by secondary logical units.

The network operator can enter a VARY command that requests VT AM to issue a
logon on behalf of a specified logical unit. The VARY command also specifies the
name of the VT AM program to which the logon is to be sent. Once the logon is
submitted, the remainder of the logon operation is the same as previously
discussed.

A logical unit may be defined to connect to a specific VT AM program. This is
accomplished by including "LOGAPPL= VT AM program name" in the logical unit
definition. This indicates to VT AM that the logical unit is to be connected to the
specified VT AM program. VT AM will automatically submit a logon on behalf of
that logical unit any time that it is available. The rest of the operation is the same
as before.

VT AM provides the facility for a VT AM program to initiate a logon. The program
can do this by issuing a SIMLOGON macro instruction, which requests VT AM to
issue a logon on behalf of the specified logical unit. The effect of the simulated
logon is to schedule the program's LOGON exit when the specified logical unit is
available. A subsequent OPNDST ACCEPT establishes the session.

SIMLOGON is handy for a VT AM program that is designed for logons; that is, the
program doesn't acquire logical units. On occasion, the program may need to

Mini-Course 8. Accepting Logons from Peripheral Logical Units 8-7

CLSDSTPASS

initiate a session with a logical unit. So rather than including acquire coding in the
program, a SIMLOGON is used. This can save additional programming.

A VT AM program uses the CLSDST macro instruction to disconnect a logical unit.
Also, the CLSDST. can be coded to cause the logical unit to be passed to another
VT AM program. This is an option and is implemented by setting the PASS option
code in the CLSDST's RPL.

CLSDST RPL=RPL1,0PTCD=PASS

A program must be authorized in its definition statement-to use this option.

For a CLSDST PASS operation, VTAM first disconnects the logical unit and then
generates a logon for the logical unit. The VTAM program that issues the
CLSDST PASS must indicate in the CLSDST's RPL the name of the VTAM
program to which the logon is to be sent.

Queueing Logom to a VTAM Program

8-8 ACF/VTAM Concepts

There are occasions when VT AM queues logons to a VT AM program to be
processed later. If a VT AM program is executing, is in session with VT AM, and is
defined to accept logons, VT AM will direct logons to the program. If the VT AM
program has not issued an OPNDST ACCEPT and has not activated a LOGON
exit routine, VT AM queues any logons for that program.

Assume that the VT AM program does not have a LOGON exit routine. Then
OPNDST ACCEPTs must be issued in mainline code to process logons. A VT AM
program can issue OPNDST ACCEPTs to be completed when a logon arrives for
the program. As logons arrive for the VTAM program, an OPNDST will process
the logon. If logons are queued to the VT AM program while an OPNDST
ACCEPT is not issued, the next OPNDST ACCEPT that is issued will accept the
first logon that was queued.

Assume that the VT AM program has a LOGON exit routine. VT AM queues
logons to the VT AM program if the exit routine has not been activated. Once the
exit routine is activated, the first logon in the queue drives the exit. VT AM also
queues logons if the exit routine does not process the logons at the rate that they
arrive.

Pleaw tum to Mini-Cour. 8 in)'Oll1' Pmonal Refenna Guide and do Exercise 8.1.

)

VTAM Concepts

Mini-Course 9
Terminating Sessions Between VTAM Programs
and Peripheral Logical Units

MINI-COURSE 9. Terminating Sessions Between VTAM
Programs and Peripheral Logical Units

Introduction

An LU-LU session may be terminated because communication between the two
logical units has completed or because of some error condition. The termination
may be an orderly shutdown of the session or it may be an immediate
disconnection.

Orderly Session Termination: Orderly shutdown of a session is the typical way to
terminate an LU-to-LU session. An orderly shutdown of a session can be initiated
by the secondary logical unit or by the primary logical unit (VT AM program). A
VT AM program that acquires a logical unit may make the decision that
communication is complete. In that case, the program will initiate disconnection.
On the other hand, a logical unit that issued a logon for connection may be more
qualified to decide when communication is complete. In this case, the secondary
logical unit will initiate disconnection.

An orderly shutdown consists of a dialogue between the VTAM program and the
secondary logical unit to ensure that both resources are ready to terminate the
session. The dialogue ensures that there are no outstanding requests to be
processed.

Regardless of which logical unit initiates session termination. the VT AM program
actually terminates the session by issuing a CLSDST macro instruction.
The CLSDST macro causes VT AM to send an UNBIND request to the VT AM
program's session partner and the session is terminated.

Immediate Session Termination: For immediate session termination, there is no
dialogue between the two session partners. One of the session partners sends a
request to VT AM for immediate session termination. The session may be
terminated immediately by VTAM or by the primary logical unit (VT AM
program). We'll discuss both cases.

The way each session partner may terminate a session will be described first for the
case in which the primary logical unit initiates session termination. Then we will
look at the case in which the secondary logical unit initiates the termination.

Session Termination by the VTAM Program

A VT AM program can request assistance from VT AM to terminate a session with
another logical unit or the VT AM program can negotiate with the session partner
for session termination. Figure 9-1 shows two ways that the VT AM program can
initiate the process to terminate an LU-LU session.

Mini-Course 9. Terminating Sessions Between VTAM Programs and Peripheral Logical Units 9-1

VTAM
PROGRAM IPLUI

CLSDST

SHUTD

VTAM SLU

-v

v

Figure 9-1. VTAM Program Terminates LU-LU Sessions

9-2 ACF/VTAM Concepts

The VT AM program can issue a CLSDST macro to request VT AM to terminate a
session with a specific logical unit and this is called an immediate termination.
The session is terminated even though the secondary logical unit may not be ready
to terminate the session. A VT AM program might use immediate termination
when it has acquired a logical unit, such as a printer. In this case the VT AM
program knows when it has sent a complete report to be printed. The VT AM
program can terminate the session immediately without destroying any data.

Except for the above situation, the VT AM program normally uses an orderly
session termination process. That is, the VT AM program can negotiate with a
session partner for session termination. It does this by issuing a SEND macro to
transmit a shutdown (SHUTD) request to its session partner. SHUTD is an SNA
command.

Submitting Session Termination Request to VT AM

Figure 9-2 illustrates the command flow for immediate session termination.

NIB
r -
l~AME= luname

Figure 9-2. Submitting Session Termination Request to VfAM

The VT AM program issues a CLSDST macro requesting VT AM to terminate a
session. The CLSDST macro references an RPL and the RPL specifies the
appropriate ACB. There are two ways to identify the secondary logical unit to be
disconnected. The CLSDST macro can identify the logical unit to VT AM either by
placing the appropriate CID in the ARG field of the RPL, or by specifying a NIB
that contains the symbolic name of the logical unit.

The CLSDST prompts VT AM to send the UNBIND request to the secondary
logical unit, thereby terminating the session. The secondary logical unit returns a
positive response to VT AM for the UNBIND, and VT AM notifies the VT AM
program that the CLSDST operation is complete.

Submitting Session Termination Request to the Secondary Logical Unit

A VT AM program uses orderly session termination when a network or system
operator submits a command to terminate execution of the VT AM program or to
terminate execution of the operating system under which the VT AM program is
running. The VT AM program wants to terminate all of its sessions at logical
points, that is, at the completion of a transaction. Figure 9-3 illustrates the request
flow when the VT AM program initiates orderly session termination with a specific
peripheral logical unit.

Mini-Course 9. Terminating Sessions Between VTAM Programs and Peripheral Logical Units 9-3

9-4 ACF /VT AM Concepts

lS°V IAM·' .. ·_, '· · .· . 1~-:.;.;~·.··
~- PROGRAM IPLUI

SEND ISHUTDI

.. ··-- ... -··-...... .--_:. ;._·~---'"'.r ~ ···-.. -:......-...

;;SECoNDARv··: ·
LOGICAL UNIT -··.

SHU TD

RECEIVE !RESP) .-----------.-~~~S!__
RECEIVE ~ CHASE

(NORMAL FLOW REQUEST) RESPONSE

SEND !RESP) ----------------.

RECEIVE SHUTC

!EXPEDITED REQUEST)
RESPONSE

SEND IRESPI -----------------.

SEND ICHASEI • CHASE •

RECEIVE (RESPI

CLSDST
~----------~~~~-
------· UNBIND •

.,__!_ESP~S~ _

Figure 9-3. Submitting Session Termination Request to the SLU

The VTAM program issues a SEND macro that specifies that the SNA shutdown
(SHUTD) command is to be sent to the logical unit that is specified in the the
referenced RPL. The SHUTD request travels on the expedited-flow and notifies
the receiving logical unit that the session is to be terminated at the completion of
the current transaction. At the completion of the current transaction, the
secondary logical unit must send a shutdown complete (SHUTC) request to the
VT AM program signifying readiness for session termination. The sending of the
SHUTC reque~t is a promise by the secondary logical unit that it will not initiate
any more transactions or data traffic.

Before sending the SHUTC request, the secondary logical unit may send a CHASE
request to the VT AM program to verify that it has no outstanding requests on the
session. The CHASE request travels on the normal-flow and the VT AM program
accepts. the request with a RECEIVE macro that accepts normal-flow requests.
The VT AM program returns a response for the CHASE request only after
responses to all other requests have been returned. The secondary logical unit
knows that there are no outstanding requests when it receives the response for the
CHASE request. Typically, non-programmable logical units don't have the
capability to use the CHASE request.

The SHUTC request travels on the expedited-flow and can be accepted in the
VT AM program either by a RECEIVE macro that is coded to accept an expedited
request or by a DF ASY exit routine. The VT AM program in Figure 9-3 uses a
RECEIVE macro.

The VT AM program, once it receives the SHUTC request, has the option of using
the CHASE request to determine if it has any outstanding requests. Once the
response is received for the CHASE request, the VT AM program issues a CLSDST
macro to send the UNBIND request to the secondary logical unit, terminating the
session.

Session Termination by the Secondary Logical Unit

VTAM
PROGRAM IPLUl

.......
~

<.

Like the primary logical unit (VTAM program), the secondary logical unit can
initiate the process for terminating the LU-LU session. Figure 9-4 illustrates the
ways that the secondary logical unit asks for session termination.

VTAM SLU

LOGOFF or
TERM-SELF

.......

RSHUTD

GET OFF

Figure 9-4. Peripheral Logical Unit Initiates Session Tennination

The secondary logical unit can request VTAM's assistance to terminate the LU-LU
session, or it can negotiate with the primary logical unit (VT AM program) for
orderly session termination. The secondary logical unit transmits a user-defined
logoff or a terminate-self (TERM-SELF) request to VTAM to get VTAM's
assistance in performing immediate session termination.

The secondary logical unit can start an orderly session closedown by sending a
request containing either a request shutdown (RSHUTD) or a user-defined
character string to the VT AM program.

A secondary logical unit that initiates all transactions might use immediate session
termination. For example, a terminal operator may enter a part number to find out
how many items are in stock. Once the reply is received from the VT AM program,
the operator submits a logoff for immediate termination of the session. There are
no more transactions to be processed at this time.

Mini-Course 9. Terminating Sessions Between VTAM Programs and Peripheral Logical Units 9-5

Submitting Session Tennination Request to VT AM

9-6 ACF /VT AM Concepts

Figure 9-5 illustrates request flow when the secondary logical unit submits a session
termination request to VT AM.

VTAM PROGRAM (PLUI VTAM

LOSTERM EXIT ROUTINE

.L

CLSDST ,.

...

VTAM PROGRAM IPLUI VTAM

LOSTERM EXIT ROUTINE

A_-

CLSDST --,.

.....
:"' +RESPONSE

SECONDARY
LOGICAL UNIT

TERMINATE-
SELF (CONDI

L-- I-_. 1------1

UNBIND ,.

+RESPONSE
1------i 1--1--1

I

.L ,.,
I
!.... _ _,

UNBIND

<l---1

+RESPONSE

SECONDARY
LOGICAL UNIT

TERMINATE-
SELF (UNCONDl

t--+ -----1

=t>
+RESPONSE
-----1 t--

Figure 9-5. Submitting Semon Termination Request to VT AM

The secondary logical unit sends the terminate-self (TERM-SELF) request to
VT AM to get VT AM's assistance in terminating the session. A programmable
logical unit may have the capability to generate and transmit the TERM-SELF
request. Typically, a non-programmable logical unit does not have this capability.
Normally, a terminal operator submits some user-defined character string and
VT AM processes it against a user-supplied USS table to build the TERM-SELF
request.

The TERM-SELF request can specify either conditional or unconditional
termination of the session.

Conditional Session Termination: The top part of Figure 9-5 shows a conditional
TERM-SELF request being submitted to VTAM. The TERM-SELF request
causes VTAM to schedule the VTAM program's LOSTERM exit routine.
The VT AM program must include the LOSTERM exit routine to be notified of the
TERM-SELF disconnection request. The VTAM program should issue a CLSDST
macro to send the UNBIND request to the secondary logical unit, thereby
terminating the session.

Unconditional &ssion Termination: The bottom part of Figure 9-5 shows the request
flow when the secondary logical unit submits a TERM-SELF request that specifies
unconditional termination of the session. VT AM immediately sends an UNBIND
request to the secondary logical unit, thus terminating the session. The VT AM
program does not yet know that the session is terminated. If the VT AM program
tried to send data to the secondary logical unit, the send would fail. VT AM would
post an error code in the RPL referenced by the SEND macro that indicates that
the session has been terminated.

Once VT AM has sent the UNBIND request to the secondary logical unit, it notifies
the VT AM program by scheduling its LOSTERM exit routing. VT AM provides a
specific code to the exit routine which says that the session has already been
terminated. The VT AM program still must issue a CLSDST macro to clean up the
session information that exists between the VT AM program and VT AM.

Submitting Session Termination Request to the VTAM Program

The secondary logical unit can use the SNA protocol RSHUTD or a user-defined
character string to start session termination.

Figure 9-6 illustrates the request flow when the secondary logical unit uses
RSHUTD to terminate the session. Study the figure and then read the discussion
that follows.

RECEIVE (NORMAL-FLOW)

SEND !RESP!

RECEIVE (EXPEDITED
REQUEST)

SEND (RESP!

SEND (CHASE!

RECEIVE (RESP!

CLSDST

CHASE

·-.!!~~:...----------~
. RSHUTD

4 RESPONSE

---------------~
CHASE

~

+-----------~~~:...-
----·· UNBIND •

<J---------+-__!l~ON~--

Figure 9-6. Secondary Logical Unit Submits RSHUTD Request

Mini-Course 9. Terminating Sessions Between VT AM Programs and Peripheral Logical Units 9-7

A secondary logical unit that has the capability may use the CHASE request to
verify that there are no outstanding requests before starting session termination.
Once the response is received from the VTAM program for the CHASE request,
the logical unit sends the request shutdown (RSHUTD) request to the VTAM
program. The RSHUTD request indicates to the program that the secondary
logical unit is at the "end of job" condition, and would like the session to be
terminated.

The VT AM program must make provisions to receive the expedited RSHUTD
request. The request can be received either by a RECEIVE macro instruction that
is coded to accept expedited requests or by the DF ASY exit routine. The DF ASY
exit routine is entered (if provided) when an expedited request is received.

The VT AM program may or may not be ready to terminate the session. If not,
communication with the logical unit continues. Assuming that the program is ready
to terminate the session, it may want to use the CHASE command to verify that it
has no outstanding requests.

Once the secondary logical unit returns a response for the CHASE request, the
session can be terminated with assurance that there are no requests in the session
that haven't been processed. The VTAM program issues a CLSDST macro to send
the UNBIND request to the secondary logical unit, terminating the session.

Submitting User-Defined Session Termination Request

9-8 ACF/VTAM Concepts

Assume that the VT AM program recognizes the character string GETOFF as a
request to terminate the session. Figure 9-7 shows the request flow when the
secondary .logical unit submits GETOFF to the VT AM program .

. . ~- "". ~ . ""- ·,,.
SECONDARY
~OGl~L UNIT , .·.

RECEIVE !NORMAL-FLOW REQUESn CHASE

SEND IRESPI

RECEIVE (NORMAL-FLOW
REQUEST)

SEND IRESPI

SEND ICHASEI

RECEIVE (RESP!

CLSDST

·-.!!:~~=-----------·
~ RESPONSE

GETOFF

---------------~
____ ... CHASE •

~----------~~~~­
----·· UNBIND •

~--------+-~~~~--

Figure 9-7. Secondary Logical Unit Submits User-Def med Logol'f

This request flow is identical to the one shown in Figure 9-6. The only difference
is that the secondary logical unit starts session termination by sending a request
that contains the user-defined logoff GETOFF, rather than the RSHUTD request.

Pleme tum to Mini-Course 9 in your Personal Referenu Guide and do Exercise 9.1.

VTAM Concepts

Mini-Course 10
. Establishing Sessions Between VTAM Programs

\

i

Ml N 1-COU RSE 10. Establishing Sessions Between VTAM
Programs

Introduction

In order for a VT AM program to connect to and communicate with another
VT AM program, one of the programs must fulfill the role of a secondary logical
unit and the other program must fulfill the role of a primary logical unit. When
performing the function of a secondary logical unit (SLU) the program must be
able to submit a logon, accept a BIND request, respond to the BIND request, and
perform other SLU functions.

Figure 10-1 shows three VTAM programs (APPLA, APPLB, and APPLC) and
two peripheral logical units (LUl and LU2). APPLA has three LU-LU sessions
and is performing the role of a primary logical unit (PLU) for all three sessions:

APPLA-APPLB
APP LA-APP LC
APPLA-LU1

APPLB is performing the role of a secondary logical unit (SLU) for both of its
sessions:

APPLB-APPLA
APPLB-APPLC

APPLC performs the role of an SLU for the session with APPLA:

APPLC-APPLA

APPLC performs the role of a PLU for its sessions with APPLB and LU2:

APPLC-APPLB
APPLC-LU2

Mini-Course 10. Establishing Sessions Between VTAM Programs 10-1

APP LA APP LB

PLU SLU

LU1 LU2

Figure 10-1. Primary and Secondary VTAM Programs

A VTAM program can perform the role of a PLU and an SLU at the same time.
As an SLU it can connect to one or more PLUs. As a PLU it can connect to one
or more SLUs.

The program that issues the OPNDST macro instruction automatically becomes the
PLU. The program that submits a logon becomes the SLU.

Acquiring a Secondary VTAM Program (SLU)

10-2 ACF/VTAM Concepts

Figure 10-2 illustrates a VTAM program acquiring a VTAM program. Study the
figure, then read the discussion that follows.

Figw"e 10-2. Acquiring a VTAM Program

The primary logical unit (VT AM program) issues an OPNDST to send a BIND
request to the secondary logical unit (VTAM program). The secondary logical unit
must include the SCIP exit routine and the routine must be enabled by the

'·

SETLOGON macro instruction-to receive the BIND request. The exit routine
examines the session parameters received in the BIND request. If the parameters
are acceptable, the exit routine issues an OPNSEC macro to send a positive
response (+ FME) to the PLU and the session is established. If the session
parameters are unacceptable, the exit routine issues a SESSIONC macro to send a
negative response (-FME) to the PLU to reject the session.

Submitting a Logon From a VTAM Program

Negotiable BIND

A VTAM program can be designed to submit logons. Figure 10-3 illustrates a
VT AM program submitting a logon to another VT AM program.

Figure 10-3. VTAM Program Submits Logon

The secondary VT AM program uses the REQSESS macro instruction to send an
initiate-self (INIT-SELF) logon to the PLU. The REQSESS macro instruction
causes the INIT-SELF request (logon) to be sent to the specified VT AM program.
VTAM gives control to the primary logical unit's (PLU) logon exit routine to
process the logon. The PLU determines that the requesting SLU is authorized for a
session with the PLU and issues an OPNDST to send a BIND request to the SLU.
The BIND request drives the SLU's SCIP exit routine. The SLU accepts the BIND
request by issuing an OPNSEC macro instruction to send a positive response and
the session is established.

A primary logical unit (VT AM program) has the capability to send a negotiable or
a non-negotiable BIND to a secondary logical. unit. If a non-negotiable BIND
request is sent, the secondary logical unit only has the option of accepting or
rejecting the session by returning a positive or negative response. If the primary
logical unit and the secondary logical unit support negotiable BIND requests, then
they can negotiate which BIND parameters to use for the LU-LU session.

The negotiable BIND allows the secondary logical unit to modify session
parameters received from the primary logical unit and return them in the positive
response for the BIND. If the modified session parameters are acceptable to the
primary logical unit, it allows the session to continue; otherwise, it terminates the
session.

Mini-Course 10. Establishing Sessions Between VT AM Programs 10-3

Negotiating Session Parameters

10-4 ACF/VTAM Concepts

The primary logical unit causes a BIND request to be identified as negotiable by
setting an operand field in the NIB referenced by the OPNDST.

NIB

PROC=NEGBIND

The secondary logical unit recognizes the BIND request as negotiable by examining
a field in the BIND requesL

Figure 10-4 illustrates a negotiable BIND operation when the secondary logical
unit issues a logon. Study the figure, then read the discussion that follows.

PRIMARY LOGICAL UNIT SECONDARY LOGICAL UNIT

lLOGON EXIT
LOG ON IL REQSESS

BIND
SCIPEXIT

OPNDST
+DR 1 - includes •

IL
session parameters

OPNSEC

SOT SESSIONC,,

T l

Figure 10-4. Negotiating Session Parameten

The secondary logical unit (VT AM program) issues a REQSESS macro to send a
logon to the primary logical unit. The logon drives the primary logical unit's
LOGON exit. The primary logical unit obtains the session parameters specified in
the logon, modifies them, and stores them in its storage space. Next, the primary
logical unit issues an OPNDST to send a negotiable BIND to the secondary logical
unit. Two operands must be coded in the NIB referenced by the OPNDST to
specify the BIND as negotiable and to identify the location of the modified session
parameters to be included in the BIND:

PROC=NEGBIND

BNDAREA=address of modified session parameters

PROC=NEGBIND causes VTAM to mark the BIND request as negotiable.
VT AM locates the modified session parameters using the address from the
BNDAREA field and places the parameters in the BIND request.

The secondary logical unit bas the option of accepting the BIND parameters,
rejecting the BIND parameters, or negotiating for different BIND parameters.
We'll assume that the secondary logical unit negotiates for different BIND
parameters.

The secondary logical unit (Figure 10-4) obtains the session parameters and
modifies them. The secondary logical unit must specify that a negotiable BIND
response be sent by specifying PROC=NEGBIND in the NIB referenced by the

Parallel Sessions

Establishing Parallel Sessions

)

,..OPNSEC. The BNDAREA operand in the NIB must specify the address of the
modified session parameters so VT AM can include them in the response.

The primary logical unit receives the response, obtains and examines the session
parameters, and finds that the session parameters are acceptable. The primary
logical unit then sends the start data traffic (SDT) request to the secondary logical
unit to allow user data traffic in the LU-LU session.

Regardless of whether the session parameters are acceptable to the primary logical
unit, the session is established upon receipt of the positive response. However, user
data traffic is not allowed in the session until the SDT request is sent to and
received by the secondary logical unit.

If VT AM is allowed to send the SDT request, the secondary logical unit may start
sending data as soon as it receives the request. This means that data may flow in
the session before the primary logical unit has a chance to examine the negotiable
session parameters. Therefore, it is preferable for the primary logical unit to send
the SDT request rather than to allow VT AM to send the request. When the
primary logical unit is specified to send the SDT request, the following occur for a
negotiable response from the secondary logical unit.

• First, the primary logical unit receives the negotiable response and examines the
modified BIND parameters. (The session is established when the response is
received.)

• Second, the primary logical unit sends the SDT request if the modified
parameters in the response are acceptable. If the parameters are not
acceptable, the primary logical unit·issues a CLSDST macro instruction to
terminate the session.

ACF /VT AM allows multiple simultaneous sessions (parallel sessions) between the
same two VTAM programs. Each of the parallel sessions between the same LU
pairs are independent of each other.

Each parallel session can employ a different set of protocols and have independent
session control. For example, one session could use chaining while other sessions
might not use chaining, each session could support different maximum RU sizes,
and some sessions could use brackets while others might not. On the other hand,
all the parallel sessions may support the same protocols.

There can be any number of parallel sessions between two VT AM programs up to
the limit of the SNA addressing structure. The definition of a VT AM program
must include the coding P ARSESS= YES for the program to participate in parallel
sessions.

Each VT AM program has one network name but can have many unique network
addresses. ACF/VTAM provides for a VTAM program (logical unit) to have one
secondary address and multiple primary addresses.

Figure 10-5 shows two VT AM programs with network names PROG 1 and
PROG2. The three lines between PROGl and PROG2 represent three parallel
sessions. The three enclosed Ps (Pl, P2, and P3) in PROGl are to indicate that

Mini-Course 1 O. Establishing Sessions Between VT AM Programs 10-5

10-6 ACF /vr AM Concepts

PROG 1 is the primary for all three sessions. There is a unique CID for each
session. The enclosed S in PROG2 is to indicate that PROG2 is the secondary
logical unit for all three sessions.

Figme 10-5. Parallel Sessions

The next description is a logon operation with PROG2 submitting a logon that
drives PROGl'sLOGON exit. It is assumed that one session (S-Pl) already exist:
Study Figure 10-6, then read the discussion that follows.

0 •••••• ,.. A·;-· 0

PROG1

LOGONEXIT

PARAMETER LIST
V RPL address
CID

OPNDST ACCEPT SPEC
or

OPNDST ACCEPT ANY

Figure 10-6. Establlsbing Parallel Sessions

.. ~ .·':.~.·;:·:-;;~"··."' ~·· . :···
, .. r·;••. •

LOG ON

., "· ... " ·'· ·. SCIP

EXIT

PROG2

REOSESS
NIB

NAME=PROG1
LOGMODE=MODEl

. . . ~

.. - * .. ··-·

PROG2 issues the REQSESS macro to send a logon. The NAME field of the
referenced NIB directs the logon to PROG 1. The LOG MODE field specifies a set
of session parameters to be included in the BIND request. There is nothing that
PROG2 has to do to specify that a second session is to be established during this
logon operation.

The logon flows to PROGl where it drives the LOGON exit. The LOGON exit
routine doesn't necessarily have to do anything special or different just because a
second session is being established. The exit can obtain and examine session
parameters to determine their acceptability. It can obtain the logon message and
verify the authority of the LU to logon. Then the exit can issue an OPNDST with
OPTCD=ACCEPT to accept the logon that invoked the LOGON exit. The
OPNDST causes the BIND to be sent to PROG2. H PROG2 returns a positive
response, the session is established. VTAM places a unique CID for this second
session (S-P2) in the RPL and in the NIB referenced by the OPNDST macro
instruction. Now there are two LU-LU sessions between PROG 1 and PROG2.

Plea.w tum to Mini-Course 10 in your Personal Re/ennce Guide and do Exercise 10.1.

VTAM Concepts

Mini-Course 11 ·
Terminating Sessions Between VTAM Programs

,I

MINI-COURSE 11. Terminating Sessions Between VTAM
Programs

Introduction

A VT AM program that performs the role of a secondary logical unit must be able
to receive and process session termination requests which include UNBIND and
SHUTD. Also, there is a session termination protocol that may be used for a
session that uses brackets protocol called the stop bracket initiation protocol.
VT AM programs have the capability to use this protocol.

Primary Logical Unit Initiates Session Termi1111tion

A primary logical unit can initiate session termination by requesting VT AM's
assistance or by sending a request to the secondary logical unit. Two requests can
be sent to the secondary logical unit: SHUTD and SBI (stop bracket initiation).

Submitting Termination Request to Vf AM

The primary logical unit requests VTAM's assistance to terminate a session by
issuing a CLSDST macro, as shown in Figure 11-1.

VTAM SLU

CLSDST ------o UNBIND -------------1> SCIP
EXIT

Figure 11-1. Submitting Termination Request to VTAM

The secondary logical unit must include a SCIP exit routine to receive and process
the UNBIND request.

Submitting Termination Request to the SLU

Next we examine two requests that are sent to a secondary logical unit to terminate
LU-LU sessions, namely the SHUTD request and the SBI request.

Sending the SHUTD Request: Figure 11-2 shows the request flow when the primary
logical unit initiates session termination with the SHUTD request.

Mini-Course 11. Terminating Sessions Between Vf AM Programs 11-1

Figure 11-2. Submitting the SHUTD Request

11-2 ACF/VTAM Concepts

The primary logical unit (PLU) issues a SEND macro to transmit a SHUTD request
on the expedited-flow. The secondary logical unit (SLU) uses a RECEIVE macro
instruction or a DFASY exit routine to accept the SHUTD request from the PLU.
Upon receipt of the SHUTD request, theSLU optionally issues a SEND to transmit
the CHASE request ensuring that there are no outstanding requests. The SLU then
issues a SEND macro to transmit the SHUTC request to the PLU on the
expedited-flow, indicating that the SLU is ready for session termination. The PLU
optionally issues a SEND macro to transmit a CHASE request, ensuring that there
are no outstanding requests. Then the PLU issues a CLSDST to transmit the
UNBIND request to the SLU, driving the SLU's SCIP exit and causing the session
to be terminated.

Sending the SBI Request: Now assume that the two session partners are using
brackets protocol and will use the stop bracket initiation protocol to terminate the
session. The logical place to terminate the session is at the end of a bracket.
The primary logical unit can send a request asking the secondary logical unit to stop
initiating brackets and when it agrees and the session is between brackets, the
session can be terminated with assurance of not losing any data. Figure 11-3
shows the request sequence when the stop bracket initiation protocol is used.

''SLU •. ··

RECEIVE SEND
RTYPE = DFSYN CONTROL= DATA

REQUEST !BB) BRACKET= !BB, NEB)

•
RECEIVE

SEND RTYPE = DFSAY
CONTROL= SBI REQUEST ISBll or

DFASY EXIT

RECEIVE
RTYPE = DFASY SEND

or REQUEST !BISI CONTROL= BIS
OFSAY EXIT

SEND RECEIVE
CONTROL=OATA RTYPE = DFSYN
BRACKET= (NBB,EBl REQUEST !EBl

CLSDST UNBIND ---------------r> SCIP EXIT

Figure 11-3. Stop Bracket Initiation Protocol

The primary logical unit is ready to terminate the LU-LU session, so it issues a
SEND to transmit a control request to the secondary logical unit on the expedited
flow. The CONTROL=SBI operand, specified in the RPL referenced by the
SEND macro, causes the stop bracket initiation command (SBI) to be placed in the
request unit (RU).

The secondary logical unit accepts the request with either a RECEIVE that accepts
expedited requests or with a DF ASY exit routine. The secondary logical unit can
continue initiating brackets, that is, starting transactions, until it is ready to
terminate the session. Then it transmits a request to the primary logical unit that
contains the bracket initiation stopped (BIS) command. Now the secondary logical
unit is not allowed to start another bracket. The primary logical unit then issues a
CLSDST macro to transmit the UNBIND request to terminate the session.

Secondary Logical Unit Initiates Session Termination

The secondary logical unit can issue a TERM-SELF request to terminate sessions.
The stop bracket initiation (SBI) request can be used to terminate sessions but will
not be covered since it is the same as when the primary logical unit uses it.

Submitting Termination Request to VT AM

Figure 11-4 shows the session termination request sequence when the secondary
logical unit submits to VTAM a TERM-SELF request that specifies unconditional
session termination.

Mini-Course 11. Terminating Sessions Between VTAM Programs 11-3

11-4 ACF /VT AM Concepts

Figure 11-4. SLU Sullmlts 1ERM-8ELF

The secondary logical unit (SLU) issues a TERMSESS macro instruction to
transmit the unconditional TERM-SELF request to the primary logical unit (PLU).
VfAM schedules the PLU's LOSTERM exit routine to notify it that the SLU is to
be disconnected. VfAM also sends an UNBIND request to the SLU (drives the
SCIP exit). The UNBIND terminates the session but the PLU must still issue a
CLSDST to clean up control blocks used in the connection.

Figure 11-5 shows the request sequence when the SLU transmits a conditional
TERM-SELF request to Vf AM.

Flgare 11-5. Coaditicmal TERM-SELF Request

The SLU issues a TERMSESS macro instruction to transmit a conditional
TERM-SELF to the primary logical unit. Vf AM schedules the PLU's LOSTERM
exit, notifying it of the request for a conditional termination. The PLU has the
option of when to terminate the session. When it is ready for termination, it issues
a CLSDST macro instruction, causing vr AM to send an UNBIND request which
drives the SLU's SCIP exit.

Submitting Termination Request to the PLU

Figure 11-6 shows the request sequence when the SLU transmits a RSHUTD
request to the PLU.

F'igure 11-6. Submitting RSHUID Request

Terminating Parallel Sessions

The SLU issues a SEND to transmit the RSHUTD request on the expedited flow to
the PLU requesting session termination. The PLU uses a RECEIVE macro that
accepts expedited requests or a DF ASY exit routine to accept expedited requests.
The PLU issues a CLSDST when it is ready to terminate the session.

A specific LU-LU session or all parallel sessions between the same two LUs can be
terminated with one VT AM macro instruction. First, the CLSDST macro is used
by the primary logical unit. Second, the TERMSESS macro is used by the
secondary logical unit.

A primary LU uses the CLSDST macro instruction to terminate a specific session
or all parallel sessions with a specific secondary logical unit. A specific session is
terminated when the CLSDST is coded to include the CID that represents the
session. All parallel sessions are terminated when the CLSDST is coded to include
the LU name of the secondary LU.

A secondary LU uses the TERMSESS macro instruction to send a TERM-SELF
request to the primary LU. This request can cause a specific sessioi;t or all parallel
sessions with the primary LU to be terminated. A specific session is terminated
when the TERMSESS is coded to include the CID that represents the session.
All parallel sessions are terminated when the TERMSESS is coded to include the
LU name of the primary LU.

Pie.a# tum to Mini-Course 11 in your Personal Reference Guide find do Exercise I I. I.

Mini-Course 11. Terminating Sessions Between VTAM Programs 11-5

..

...

VTAM Concepts

Mini-Course 12
Basics of LU-LU Communication

MINI-COURSE 12. Basics of LU-LU Communication

Introduction

Types of In/onnation

Requests

The purpose of LU-LU sessions is to communicate units of information between
two session partners. Units of information consist of user data, commands (control
information), and acknowledgement information. Each unit of information is
sequence numbered and the units may be logically grouped. This mini-course
describes the units of information, how they are sequence numbered and why, and
how requests can be grouped into a set called a request chain.

Communication between a VT AM program and a logical unit consists of exchanges
of requests and responses. A request consists of either data and control
information or control information alone. A response indicates whether the request
was acceptable or unacceptable.

A request that includes data and control information is called a data request.
A request that contains an SNA command is called a command request.

Data Requests: The main function of a VT AM network is to transmit data requests
between VT AM programs and logical units. Figure 12-1 illustrates a data request.

TH

Figure 12-1. Data Request PIU

RH
CONTROL

INFORMATION

RU

APPLICATION DATA

All requests are transmitted in the form of a path information unit (PIU).
Figure 12-1 shows data mthe request unit (RU) and control information in the
request header (RH). The RH identifies the type of information that's contained in
the RU, the form of response requested, and other control information. The RU
itself contains application data, that is, data to be processed.

Command Requests: A command request does not include application data.
A command request includes information in the RH and a command in the RU.
This information is used for such things as data-flow control and shutting down the
session.

Figure 12-2 shows a PIU that contains a command request. The RH contains
control information and the RU contains an SNA command.

Mini-Course 12. Basics of LU-LU Communication 12~ 1

Responses

12-2 ACF/VTAM Concepts

TH

Figure 12-2. Conttol Request PIU

RH RU

I CONTROL I
INFORMATION COMMAND

The request header (RH) of every request PIU contains an indicator that specifies
whether a response is to be returned by the receiving logical unit. The RH of a
data message PIU can specify a definite response, exception response, or that no
response is to be returned. The RH of a PIU that contains an SNA command must
specify a definite response.

The logical unit that receives a request may return a response to the request sender
to indicate whether the request was acceptable. A positive response indicates that
a request was acceptable, while a negative response indicates that a request was
unacceptable.

When a VT AM program or a logical unit sends a request, it specifies the form of
response for that request. The request sender can indicate a definite response, an
exception response, or no response.

Requesting a definite response means that the sender wants an appropriate positive
or negative response to be returned. The receiver of the request must return the
appropriate response. Requesting an exception response means that the request
sender wants a response only if a negative response is appropriate. The request
receiver must return a negative response if the request is unacceptable, otherwise
no response is to be returned. Finally, requesting no response means that
regardless of the acceptability of the request, the receiving logical unit is not to
return a response.

VT AM provides the facility for the request sender to indicate one or two responses
each time it sends a message request. The responses are referred to as type one
responses (DRI) and type two responses (DR2). The VTAM parameter FME
indicates a DRl response and the VTAM parameter RRN indicates a DR2
response. FME and RRN are VTAM terminology, while DRl and DR2 are SNA
terminology.

The request sender can indicate either DRl (FME) or DR2 (RRN), or both.
Whichever is indicated, the request sender must also specify either definite
response or exception response. This means that there are seven possible
responses: (1) definite DRI (FME), (2) definite DR2 (RRN), (3) both definite
DRI and DR2 (FME and RRN), (4) exception DRl (FME), (5) exception DR2
(RRN). (6) both exception DRl (FME) and DR2 (RRN), and (7) none.

Programmable logical units can assign different meanings to DRI and DR2
responses. A use for both could be as follows. A positive DR2 (RRN) response
could signify that the message request has been received by the receiving logical
unit, and that logical unit accepts responsibility for getting the message request to
the end user. The end user could be an operator or a printer or some other end
user. A positive DRl (FME) response could signify that the message request has
been delivered to the end user by the receiving logical unit.

)

LU-LU sessions may not need to distinguish between the two types of responses.
In fact, most logical units only support one form of the response.

It's mandatory that both session partners agree to use the same response protocol.
The response protocol to be used in a session is specified by session parameters in
the BIND request that establishes the LU-LU session. While communicating, the
request sender specifies the form of response to be returned. This specification is
placed in the request header of the PIU that contains the request. The request
receiver analyzes the information in the request unit and responds according to the
response indicator in the associated RH.

Figure 12-3 shows a secondary logical unit sending a request to a VTAM program
(item 1). The RH specifies a definite DRl (FME) response.

rDR1 (FME)

D 4 hH I RH I MESSAGE I
r+DR1 (+FME)

I TH I RH I MESSAGE ACCEPTABLE

r-DR1 (-FME)

I I I REASON I
TH RH CODE MESSAGE UNACCEPTABLE •

Figure 12-3. Requesting a Definite Response

The definite DR 1 specification in the RH indicates that the VT AM program is to
return a positive or negative response as appropriate. The VT AM program issues a
SEND macro to return a positive response if the request is acceptable (item 2).

SEND
STYPE=RESP
RESPOND=(NEX,FME,NRRN)

The STYPE (send type) operand specifies that a response is to be transmitted and
the RESPOND operand specifies the form and type of response to be returned.
NEX (not exception) specifies a positive response, FME specifies that an FME
(DRl) is to be transmitted, and NRRN (not RRN) specifies that an RRN (DR2) is
not to be returned. The SEND macro causes a response PIU to be transmitted and
the SEND operands cause the response indicators to be set in the associated
response header (RH).

If the request received from the logical unit is unacceptable, the VT AM program
issues a SEND macro to transmit a negative response (item 3).

SEND
STYPE=RESP
RESPOND=(EX,FME,NRRN)
SSENSEO=code,
SSENSMO=code

Mini-Course 12. Basics of LU-LU Communication 12-3

12-4 ACF /VT AM Concepts

The RESPOND parameter EX (exception) specifies a negative response.
Therefore, the response header of the associated response PIU will be set to specify
a negative FME (ORI). A negative response also includes a code in the response
unit (RU) that describes why the request was unacceptable. The VT AM program
supplies the reason code by the two operands, SSENSEO and SSENSMO.

Figure 12-4 shows a secondary logical unit sending requests to a VT AM program
and each request specifies an exception response.

VTAM PROGRAM SECONDARY
IPLUI .. · LOGICAL UNIT

r. EXCEPTION DR2 (RRNI

D 4 hHI RH I MESSAGE'

r+ EXCEPTION DR2 (RRN)

I THI RH I MESSAGE! r NEGATIVE DR2 (-RRNI

I TH I REASON
RH I CODE I

Figure 12-4. Requesting an Exception Response

Exception DR2 is specified as shown in the RH of each request PIU (items I and
2). The first request is acceptable to the VT AM program (item I), therefore a
response is not returned to the logical unit. The second request is unacceptable to
the VT AM program (item 2), therefore the program uses a SEND macro to
transmit a negative response to the logical unit (item 3).

SEND RPL=RPL1,
STYPE=RESP,
RESPOND=(EX,NFME,RRN),
SSENSEO=code,
SSENSMO=code

The RESPOND operand specifies a negative (EX) RRN (DR2) response to be
transmitted to the logical unit. The SSENSEO and SSENSMO operands specify
the code to be transmitted in the response unit (RU) describing why the associated
request is unacceptable. ·

So a request sender must specify the form of response to be returned. The request
sender specifies two types of information:

I. Whether a definite response, exception response, or no response is desired

2. Whether a ORI (FME) or a DR2 (RRN), both DRl and DR2, or no response
is desired

The request receiver must respond accordingly.

Sequence Numbering

)

A sequence numbering technique is used to ensure that message requests arrive at
their destination in the order that they are sent. This is accomplished by having
VT AM assign a sequence number to each message request that is sent to a logical
unit. VT AM places the sequence number in the transmission header (TH) of the
PIU and provides the sending VTAM program with the sequence number.

The numbering begins with the first request sent after the LU-LU session is
established. The number is increased by one for each subsequent message request.
This process continues until the session is terminated, unless the VT AM program
interrupts it earlier. The VT AM program might have to reinitialize the sequence
numbers if a data transmission error occurs.

A logical unit assigns sequence numbers to message requests sent to the VT AM
program. So you should understand that message requests in the primary to
secondary flow (out bound) are sequence numbered and message requests in the
secondary to primary flow (in bound) are sequence numbered. The sequence
numbering for· either flow is independent of the other, as illustrated in Figure 12-5.

D SEQ #1

B SEQ #2

EJ 4
D

SEQ #1

SEQ #3

liJ 4 SEQ #2

m • SEQ #3

D SEQ #4

D 4
liJ

SEQ #4

SEQ #5

Figure 12-5. Sequence Numbering for Message Requests

For this discussion, assume that the session has just been established. Items
1,2,4,7, and 9 show message requests flowing from the VTAM program to the
secondary logical unit. These message requests are assigned sequence numbers 1
through 5, in order. Items 3,5,6, and 8 show message requests flowing from the
secondary logical unit to the VT AM program. These message requests are assigned
sequence numbers 1 through 4, in order.

Sequence numbers are also assigned to responses. The sequence number of each
response must be the same as that of the associated request. The VT AM program
and the secondary logical unit are responsible for assigning sequence numbers to
responses.

The VT AM program has access to the sequence number of each received request.
This access is via the RPL referenced by the RECEIVE macro that accepts the

Mini-Course 12. Basics of LU-LU Communication 12-5

Request Chaining

12-6 ACF /VT AM Concepts

request. When VT AM receives a request path information unit (PIU) for a VT AM
program, VTAM moves information from the request unit (RU), request header
(RH), and the transmission header (TH) to the VTAM program. Information from C
the headers is placed in the RPL referenced by the RECEIVE macro. Therefore,
the VTAM program can obtain the sequence number of the received request and
include it in the response that is transmitted to the logical unit.

The logical unit also has access to the sequence number of received message
requests. It too assigns the appropriate sequence number to all responses that it
sends.

Applications deal with units of work. The unit of work for one application could
consist of a VT AM program sending one request to a logical unit. The unit of
work f~r another application could consist of many requests being transmitted.

An example of a unit of work can be illustrated by an inquiry operation. Assume
that a logical unit sends an inquiry request to a VT AM program. The VT AM
program is to obtain various pieces of information from different data files and, as
they become available, send them to the logical unit. That means that a number of
message requests are sent to the logical unit. The unit of work is complete when
the logical unit receives all of the message requests required to satisfy the inquiry.

The VT AM program can group these message requests into a set called a request
chain. If the receiving logical unit can recognize the first and last requests in the
chain, it knows that it has received the information to satisfy the inquiry. The
sender (VTAM program in our example) can indicate which is the first request of
the chain, the last request of the chain, and those requests between. All requests in
a chain, other than the first and last requests, are called middle-of-chain requests.
Figure 12-6 shows a sequence of SEND macro instructions that sends a four
element request chain (items 1,2,3, and 4 at the top of the figure).

)

D SEND APL CHAIN=FIRST

fJ SEND APL CHAIN=MIDDLE

EJ SEND APL CHAIN=MI DDLE

D SEND APL CHAIN=LAST

SECONDARY .. :'
LOGICAL. ':!~"-'~·.i ·.

ITH I RBCHI I RU
• • _ DATA MESSAGE'----·

IJ

IJ

I DATA MESSAGE I---··
I DATA MESSAGE I ---··

ECI I DATA MESSAGE I ---

BCI - BEGIN CHAIN INDICATOR
ECI - END CHAIN INDICATOR

Figure 12-6. Request Chain

The RPL operand CHAIN =FIRST identifies the message request as the first
request in the request chain (item 1). The CHAIN=FIRST operand causes the
begin chain indicator(BCI) to be set in the RH. The RPL operand
CHAIN=MIDDLE identifies the second and third message requests as
middle-of-chain message requests (items 2 and 3). The begin chain indicator
(BCI) and end chain indicator (ECI) are set off in the RH. The RPL operand
CHAIN =LAST identifies the fourth message request as the last request of the
chain (item 4) and causes the end chain indicator (ECI) to be set in the RH.
VT AM sets an RH field in each PIU to identify which part of the request chain is
being transmitted' as shown in the lower part of Figure 12-6. The SEND macro
instruction at item 1 initiates the PIU at item 5. The rest of the PIUs are initiated
in order by the SENDs at items 2,3, and 4.

Each transmitted request is considered to be part of a request chain. Each
transmitted request is either a single element request chain or it's a single-element
of a multiple-element chain. A VTAM program identifies a single element request
chain with the RPL operand CHAIN=ONLY.

Pl~ tum to Mini-Course 12 in your Personal Reference Guide and do Exercise 12.1.

Mini-Course 12. Basics of LU-LU Communication 12-7

VTAM Concepts

Mini-Course 13
Communication Macros and Control Blocks

MINI-COURSE 13. Communication Macros and Control Blocks

Introduction

'

A VT AM program issues SEND macro instructions to transmit requests and
responses to other logical units. A VT AM program issues RECEIVE macro
instructions to obtain requests and responses transmitted to the program from other
logical units.

Communication Macro Instructions and Control Blocks

All SEND/RECEIVE macro instructions must reference a request parameter list
(RPL) control block since the RPL provides VTAM with the necessary information
to process the SEND/RECEIVE request. Figure 13-1 illustrates a
SEND/RECEIVE macro instruction referencing an RPL control block.

Figure 13-1. SEND/RECEIVE Macros and the RPL Control Block

As the figure shows, the RPL identifies the logical unit (LU) to which a request or
response is to be transmitted, or from which a request or response is to be received.
The RPL identifies the access method control block (ACB) that represents this
VT AM program to VT AM.

The RPL also contains other information:

Bracket indicators

• Response indicators

• Chaining indicators

Sequence number

Error codes for negative responses

Specifications as to how VT AM is to handle the operation

Control information for the target logical unit

Mini-Course 13. Communication Macros and Control Blocks 13-1

13-2 ACF/VTAM Concepts

The RPL control block can be generated by the RPL macro instruction. The RPL
macro is coded as part of a VT AM program and when the program is assembled,
the RPL control block is generated. The fields of the control block are initialized
according to the values specified in the coded RPL operands. RPL control blocks
may also be generated at execution time by the use of the GENCB macro
instruction.

One or more RPLs can be generated for a VT AM program. The number of RPLs
depend on such things as the following:

• The number of logical units that the VT AM program communicates with
concurrently

• The types of operations that use an RPL

Regardless of whether one or many RPLs are used in a VT AM program, the fields
of each RPL are continually modified by the VT AM program and by VT AM.
The VT AM program can modify RPL fields using one of the following:

• Assembler instructions

• Manipulative macro instructions (for example, MODCB)

• RPL modifier parameters in the macro instructions that reference the RPLs

We will refer to the following skelton VT AM program in explaining how and when
RPL fields are set.

VT AM Program

RPL1

OPNDST RPL=RPL1

MVC
SEND RPL=RPL1

MO DCB
RECEIVE RPL=RPL1

SEND RPL=RPL 1 I
BRACI<ET={NBB,EB)

RPL ACB=ACB1 I

BRACKET=(BB,NEB),
CHAIN=ONLY,
NIB=NIB1

The RPL macro (named RPLl) is shown at the bottom. Four operands are coded
and those associated RPL fields will be initialized to the coded values by the

Identifying the Logical Unit

assembly process. Certain of the other fields will be initialized to default values
and the remaining fields will not be initialized.

The OPNDST macro is the first to reference RPLl and the initial field values are
used. VTAM uses the RPL values to process the OPNDST. The OPNDST sends a
BIND request to establish an LU-LU session. At the completion of the OPNDST
operation, VT AM sets certain fields in RPLl to a particular value. VT AM places
the CID (network addresses of the VT AM program and the logical Ul".it) that
represents the session in the ARG field of RPLl. When the ARG field contains
this CID, the VTAM program can use RPLl to communicate with the logical unit.

The next VTAM macro is a SEND and it references RPLl. RPLl contains the
appropriate CID but several other RPL fields may not be set appropriately for the
SEND operation. The coding shows an assembler instruction before the SEND
macro and it is used to modify a field in RPLl in preparation for the SEND
operation. If several RPL fields need to be modified, then several assembler
instructions will be needed. Once the RPL fields are set, the SEND macro
instruction is executed and the new RPL field values are used.

The RECEIVE macro also references RPL 1 and certain RPL fields must be set to
different values than for the previous SEND. Our coding example shows the
MODCB macro being used to modify fields in RPLl. Depending on the number of
RPL fields to be modified, several instructions may be required.

The third way to modify RPL fields is illustrated by the second SEND macro.
The RPL operand BRACKET is coded in the SEND macro instruction. This
causes the BRACKET field of RPLl to be set to the coded value before the SEND
operation is performed.

A VT AM program can use any combination of the three ways to modify RPL
fields.

Not all RPL fields are used by each VT AM macro that references the RPL.
A certain set of RPL fields are used for SEND operations, another for RECEIVE
operations, and so on.

VT AM programs pass information to VT AM in control blocks. (For example the
RPL), and VTAM passes information to VTAM programs in those same control
blocks.

The VT AM program uses the SEND macro instruction to transmit requests and
responses to a logical unit (LU). The RPL that is referenced by a SEND must
contain a CID, because a SEND request is always directed to a specific logical unit.
The CID must be placed in the RPL before the SEND macro instruction is
executed.

A RECEIVE may be coded to accept requests and responses from a specific logical
unit, or from any logical unit that is connected to the VTAM program. To accept
input from a specific LU, the CID must be included in the referenced RPL and
OPTCD=SPEC must be specified. A RECEIVE that accepts input from any
connected logical unit does not have to provide a CID in the referenced RPL and
OPTCD=ANY is specified. VT AM completes the RECEIVE with a request or a
response from one of the connected logical units and places the CID of that logical

Mini-Course 13. Communication Macros and Control Blocks 13-3

unit in the referenced RPL. The VT AM program can use the CID to determine
which logical unit the request or response came from.

You should now realize that an appropriate CID must be included in an RPL
associated with a SEND operation, and that a CID must be included in an RPL that
is associated with a RECEIVE that is to accept input from a specific logical unit.

Sending and Receiving Requests

Sending Requests

DATA MESSAGE

Figure 13-2. Sending Data Requests

13-4 ACF/VTAM Concepts

You learned earlier that a transmitted data request includes control information as
well as application data. Now you will see how both application data and control
data are handled as they flow through the VT AM network. The first data flow
description is from the VT AM program to the logical unit.

Figure 13-2 illustrates a SEND operation.

VT AM has a number of buffers used in the transfer of requests between logical
units and VT AM programs. The VT AM program doesn't have to know about the
VTAM buffers, nor about the addresses, sizes, or number of buffers available.
The VT AM program must only include an area to hold data that is to be sent to a
logical unit.

The SEND RPL shown in Figure 13-2 references the appropriate ACB, specifies a
logical unit (LUI), and includes the address of the data area. The RPL also
specifies that it is sending a request (REQ), not a response.

When the SEND macro instruction is executed, VT AM moves the data message
from the VT AM program's data area to a VT AM buffer (item 1). VT AM
proceeds to build a PIU using information from the RPL (item 2). The CID is
placed in the origin and destination fields of the transmission header (TH).
Control information is placed in the request header (RH) that describes the
contents of the request unit (RU) and how it is to be processed.

The PIU now resides in a VTAM buffer. VTAM can send it to the target logical
unit (item 4) because the logical unit's address is in the TH.

Not only does information flow from the RPL to VT AM, but VT AM changes some
of the RPL fields at the completion of a requested operation (item 3). This
includes information such as error codes and the sequence number of the request.

-~----........ ~ .. -- -----·---·--·-·-- ~ ..

Receiving Requests

/

The RPL is the main vehicle for communication between the VT AM program and
VTAM.

You saw that data flow outbound from the VTAM program is initiated by a SEND
macro instruction. Does that mean that inbound data flow is initiated by a
RECEIVE macro instruction? The answer is no. Logical units, without prompting
from a VT AM program, send requests inbound as illustrated in Figure 13-3.

Figure 13-3. Receiving Mes.sage Requests From a Logical Unit

This figure shows VT AM receiving requests from LUl (item 1) and from LU2
(item 2). The transmission header (TH) of each request contains the address of
the destination VT AM program.

The destination VT AM program in our example shows a RECEIVE that indicates
that it will accept a request from LU2 as specified in the RPL (item 3). The
OPTCD field of the referenced RPL is set to the SPEC value

RPL fields
OPTCD=SPEC

The RPL also identifies a data area within the program that is to receive the data
message from LU2 (item 4). VT AM completes the RECEIVE by placing the
message in the program's data area (item 5) and placing information in the RPL
(item 6).

The request from LUI is also for this VTAM program. Another RECEIVE must
be issued to obtain the request from LUI and the RECEIVE may reference the

Mini-Course 13. Communication Macros and Control Blocks I3-5

same RPL or a different RPL. If the same RPL is referenced, the VT AM program
must place the CID of LUl in the RPL before the RECEIVE macro instruction is
executed. VT AM stores received requests until the destinatiort VT AM program
issues a RECEIVE instruction to accept it.

There is still another way that a RECEIVE macro instruction can obtain the two
requests from LUl and LU2. An RPL can be coded to accept input from any
connected logical unit rather than a specific logical unit. This is shown in
Figure 13-4.

RECEIVE

Figure 13-4. Obtaining Input From Any Logical Unit

-+-.. ACS
__ ,.ANY LU

The OPTCD field of the referenced RPL must be set to the ANY value in order to
accept input from any logical unit that has a session with the associated VT AM
program.

RPL fields

OPTCD=ANY

VT AM completes the RECEIVE by giving to the program the request that has
been waiting the longest. VT AM also places the CID of the logical unit in the RPL
so the VT AM program will know which logical unit sent the request. Each time
that the RECEIVE is issued, it may obtain input from a different logical unit.

Sending and Recefring Responses

13-6 ACF /VT AM Concepts

A VT AM program uses a SEND macro instruction to transmit a response. A
VT AM program accepts a response from a logical unit with the following:

• A RECEIVE macro instruction

• An RPL referenced by a SEND macro instruction

• A response exit routine

Sending Responses

Receiving Responses

Figure 13-5 illustrates a VT AM program transmitting a response.

VT AM PROGRAM VTAM

SEND ACB

APL
D STYPE=RESP LU2

LU1 LU3

Figure 13-5. Transmitting a Response

The RPL specifies that a response (STYPE=RESP) is to be sent (item 1) and that
the response is to be sent to LUl. You should notice that the RPL doesn't specify
a data area. VT AM obtains all response data from the RPL and places it in a PIU
(item 2) to be transmitted to LUl. All response information must be placed in the
RPL by the VT AM program before the SEND is issued.

There are three ways that a VTAM program can obtain a response: (1) with the
RPL that is referenced by the SEND macro instruction that sent the request, (2) by
a RECEIVE macro instruction, and (3) by a RESP exit routine.

The method for obtaining a response depends on when the SEND RPL is freed to
be used in another operation. An operand in the RPL is used to specify when
VTAM is to free the RPL. POST=RESP says that VTAM is to free the RPL when
a response is returned. POST =SCHED says that VT AM is to free the RPL before
a response is returned.

The SEND RPL will obtain the response when POST=RESP is used. This is
illustrated in Figure 13-6. Study the figure and then read the discussion that
follows.

Mini-Course 13. Communication Macros and Control Blocks 13-7

Figure 13-6. Obtaining a Response With a SEND RPL

13-8 ACF /VT AM Concepts

The SEND macro instruction is executed to transmit a request to a logical unit
(item 1). The RPL specifies POST=RESP and definite DRI.

The data message (item 2) and RPL information (item 3) are used by VTAM to
build a PIU. VTAM transmits the PIU to the specified logical unit (item 4) and
then receives a response from that logical unit (item 5). VTAM places the
response information in the RPL referenced by the SEND (item 6). VT AM
completes the operation and gives control to the VT AM program (item 7). The
program can access the RPL to obtain the returned response information.

When is a RECEIVE macro instruction used to obtain a response? A RECEIVE
macro instruction is used to obtain a response when the associated SEND macro
instruction specifies POST=SCHED. POST=SCHED causes VTAM to free the
SEND RPL before the response is returned. This means that the RPL will not be
available to accept a response. Therefore, a RECEIVE macro instruction may be
used to obtain the response as illustrated in Figure 13-7. (A response exit routine
could be used instead of a RECEIVE.) Study the figure and then read the
discussion that follows.

)

·._ ~·~~-~~~, ·.~·-· _·:~; ::r~· ·;~-~--· .
~ ~.... . ,:< .. ~,~;;~.::. ,;_ . : .

.· ···.· ~·-·~·.':·· --

D NEXT SEQUENTIAL INSTRUCTION

t7gl?:;f:if;:;_·._·.
mJ RECEIVE

RPL

m RTYPE=RESP
ACB
LU1

:.: .

Figure 13-7. Obtaining a Response With a RECEIVE Macro Instruction

Types of Flow

The SEND RPL specifies that a request is to be sent (item 1), specifies
POST=SCHED (item 2), and indicates a definite DRl (item 3). VTAM builds the
PIU (item 4 and item 5), makes a few checks, and posts feedback information in
the RPL (item 6). VT AM then gives control to the next sequential instruction in
the VT AM program.

The SEND operation is now complete. The RPL is free to be used in another
operation. The VT AM program can continue executing (item 7). Concurrently,
the request is transmitted to LUI (item 8) and LUI returns a response (item 9).
VT AM cannot place the response in the SEND RPL because it has been freed for
use with other operations. VT AM looks for a RECEIVE that will accept responses
or for a response exit routine. VTAM finds a RECEIVE in this example (item 10).
The referenced RPL specifies that this RECEIVE will accept a response (item I I)
from LUI (item 12). VTAM moves the response data to the RPL.

The programmer could include a response exit routine to obtain responses instead
of the RECEIVE. In that case, VT AM schedules the exit routine when a response
is received from a logical unit. The routine determines which logical unit sent the
response and then takes appropriate action.

The exchange of requests during a session is divided into two flows, normal-flow
and expedited-flow. Certain requests travel on the normal-flow and certain
requests travel on the expedited-flow. In each direction of flow between session
partners (primary-to-secondary and secondary-to-primary), the normal-flow
requests and the expedited-flow requests are independently sequence numbered or
identified.

Mini-Course 13. Communication Macros and Control Blocks I 3-9

Normal-Flow

Expedited-Flow

VTAM PROGRAM

SEND REQUEST #1

SEND REQUEST #2
SEND REQUEST #3
SEND EXPEDITED f---

REQUEST

Requests that travel on the expedited-flow can change the state of the normal-flow.
For example, certain expedited-flow requests quiesce data traffic on the
normal-flow, reset sequence numbers on the normal-flow, and terminate the
LU-LU session. So control requests on the expedited-flow impose useful
flow-controls on end-user traffic that travels on the normal-flow. Traffic on the
expedited-flow is not restricted, allowing expedient and timely control over traffic
on the normal-flow.

The normal-and expedited-flows on one session are independent of normal-and
expedited-flows on other sessions.

Requests that are transmitted on the normal-flow arrive at their destination in the
order in which they were sent. All data requests and some command requests are
always transmitted on the normal-flow.

A request that is transmitted on the expedited-flow can pass a request that is
transmitted on the normal-flow, as illustrated in Figure 13-8. Study the figure and
then read the discussion that follows.

VTAM NCP LJL

BUFFER QUEUE BUFFER QUEUE

r---------------1 r-:+ I
I

REQUEST #1 l REQUEST #2
I
I REQUEST #3
I
I
'~ EXPEDITED REQUEST !--- !---

Figure 13-8. Sending on the Expedited-Flow

13-10 ACF /VT AM Concepts

Message requests numbered 1,2, and 3 are sent on the normal flow. First, VTAM
moves data request #1 to its own buffer and then sends it to the appropriate NCP
where it is held in an NCP buffer. It is at the top of the buffer queue. The data
request at the top of a buffer queue is the next one to be sent to the logical unit.

Data request #2 is sent next. VT AM puts the data request in one of its buffers and
this request is now at the top of the VTAM buffer queue. Next, data request #3 is
moved to a VTAM buffer. It is second in the queue behind request #2.

While data request #1 is still in an NCP buffer and data requests #2 and #3 are still
in VTAM buffers, the VTAM program sends a request that is to be transmitted on
the expedited-flow. The request is moved to a VT AM buffer and is put at the top
of the queue. This means that the expedited-flow request will be the next one to be
sent by VT AM.

)

There are two queue points where requests on the expedited-flow can pass requests
on the normal-flow:

• Within VT AM

• Boundary function within NCPs

Certain SNA commands are transmitted on the expedited-flow. These commands
are used for error recovery and for session control. Error recovery and session
control require immediate communication between the VT AM program and the
logical unit.

PleaM turn to Mini-Course I J in your Personal Re/ett11t2 Guide and do Exercise 1 J. I.

Mini-Course 13. Communication Macros and Control Blocks 13-11

VTAM Concepts

Mini-Course 14
Data Flow Control

)

MINI-COURSE 14. Data Flow Control

Introduction

A VT AM program may be in session with a number of logical units. Each logical
unit may have different functional capabilities. The VT AM program may have to
perform different operations in order to maintain data flow with each logical unit.
For example, one logical unit may be able to send and receive multiple element
request chains. Assuming that the application calls for request chaining, the
VT AM program would have to contain the logic to send and receive multiple
element request chains. At the same time, the program may be in session with
another logical unit that cannot send or receive multiple element request chains, in
which case the VT AM program would not have to support the chaining protocol
for that session.

Each session may perform a different application. One session might perform a
batch operation, while another session might perform an interactive operation, and
so on. In the batch operation, the VT AM program might receive all the· time.
Therefore, the VT AM program would not be concerned about sending data
requests. On the other hand, the VT AM program would have to send and receive
data requests when performing an interactive operation. That means that the
VT AM program and logical unit require a method to control when the VT AM
program is allowed to send and when the logical unit is allowed to send.

The complexity of maintaining control of the data flow between a VT AM program
and a logical unit depends on the functional capability of the logical unit and the
application to be performed. A VT AM program and a connected logical unit must
agree on protocol rules that each will abide by in order to maintain data flow. Each
session might agree on a different group of protocol rules. The application to be
performed dictates which protocol rules are required for this session. Therefore, it
makes sense to combine protocol rules into sets; each set is appropriate for a
particular session. A set of protocol rules is identified by a set of session
parameters.

Supplied with each VT AM system is a logon mode table that contains sets of
session parameters. The user may require combinations of session parameters that
differ from those in the IBM-supplied logon mode table. The user can define and
include one or more logon mode tables that contain combinations of session
parameters of the user's choice. The VT AM program is a third source of session
parameters; the program can generate sets of session parameters.

Session parameters identify protocol rules for controlling data flow in a session.
The following protocols, specified by session parameters for use by the session, will
be covered:

•Full-duplex communication •Changing the direction of data flow

•Half-duplex communication • Quiescing data flow

•Bracket protocol

Mini-Course 14. Data flow Control 14-1

Selecting Session-Communication Rules

Before discussing rules for controlling data flow in a session, notice how a VT AM
program and a logical unit agree on a set of rules for data flow.

Session partners must agree on matters such as these:

• Will multiple element request chains be used?

• Will communication be in full duplex mode or will it be in half duplex mode?

• Will bracket protocol be used?

• Which session partner will be responsible for handling recovery should an error
occur?

How does a VT AM program and a logical unit select a set of session parameters?
You already know that there are three sources of session parameters:

• IBM-supplied logon mode table

• User-supplied logon mode table(s)

• The VT AM program

The logical unit can specify in a logon (by logmode name) a set of session
parameters. The VTAM program, upon receipt of the logon, can examine the
specified session parameters to determine if they're acceptable. If they are
acceptable, the VT AM program issues an OPNDST macro to send a BIND request
and establishes the LU-LU session. ·VTAM includes the session parameters in the
BIND command. The logical unit checks these session parameters and returns a
positive response if the parameters are acceptable. Otherwise the logical unit
returns a negative response and the session is not established.

The VT AM program always has the ability to specify the set of session parameters
to be included in the BIND request. The program can allow the ones specified in a
logon to be used, specify a set in a logon mode table, or specify that session
parameters located within the program's storage area are to be used.

Next we will examine some of the LU-LU session protocols that are established by
the BIND request.

Full-Duplex Communication Protocol

14-2 ACF/VTAM Concepts

A VT AM program and a logical unit can communicate in full-duplex mode, which
imposes few restrictions on the two logical units. Both logical units are allowed to
send at anytime, regardless of whether the other is sending. The following inquiry
example illustrates full-duplex communication.

This example involves banking customers who want to find out their savings
account balances. A bank teller receives a request for an account balance from a
customer and submits the request from a terminal station. The request is formatted
by the associated logical unit and sent to a VT AM program which gives the request
to the appropriate application processing program. The application program
accesses the customer's savings account records, determines the account balance,
gives the information to the VT AM pro.gram and the VT AM program transmits the

\
J

,I

reply to the logical unit. The logical unit, in turn, sends the information to the
terminal station.

The bank teller doesn't have to wait for the reply to one request before submitting
another request. The teller may submit many requests before the first reply is
returned. This is full-duplex communication.

Although a VT AM network allows this kind of unrestricted full-duplex operation,
the nature of many (and probably most) applications prohibits such unrestricted
exchange of data. For that reason, VT AM provides methods of communication
that allow the VT AM program and the logical unit to control each other's ability to
send to each other.

Half-Duplex Communication Protocol

Half-duplex communication protocol is a way of restricting when session partners
can send to each other. Half-duplex communication allows only one session
partner to send at a time. Thus, at any given time, one session partner is a sender
and the other session partner is a receiver. The session parameters in the BIND
command specify which session partner can send first and which partner has
priority to send when both issue requests at the same time.

A session may agree to use half-duplex flip-flop protocol or half-duplex contention
protocol. The protocols are enforced by the VT AM program and the logical unit.
VT AM does not enforce the protocols but it provides support for them in the
VT AM macro instructions.

Half-Duplex Flip Flop Communication

Half-duplex flip-flop protocol allows only one session partner to send at any given
time. In addition to specifying half-duplex flip-flop protocol, session parameters in
the BIND request specify which session partner is the first speaker (that is, which
partner is allowed to send first). We'll assume that the secondary logical unit is the
first speaker.

When the LU-LU session is established, the logical unit can start sending requests
to the VT AM program. Once the logical unit exhausts the information that it has
to send, the change direction indicator (CDI) is turned on in the last request to
notify the VT AM program that it is allowed to send. Once the VT AM program
becomes the sender, the logical unit becomes the receiver. The sender maintains
control and the receiver cannot send requests until the sender signals the receiver to
start sending. Figure 14-1 illustrates half-duplex flip-flop communication. Study
the figure, then read the discussion that follows.

Mini-Course 14. Data Flow Control 14-3

TH RH RU

RECEIVE 4 1 I ac1. ec1. RQD. co1 I DATA MESSAGE I a
SEND (STYPE=RESP) ------_!~.Q.N..2,.E ________________ •

II SEND (STYPE=REQ) I I SCI, RQE, I DATA MESSAGE I •
IJ SEND (STYPE=REQ) I I RQE DATA MESSAGE I •
II SEND (STYPE=REQ) I I ECI, RQO, COi DATA MESSAGE I •

RECEIVE (RTYPE=RESPI f-----~fil~~§.5--·--------------

BCI - BEGIN CHAIN INDICATOR

ECI - ENO CHAIN INDICATOR

COi - CHANGE DIRECTION INDICATOR

RQD - REQUEST DEFINITE RESPONSE

RQE - REQUEST EXCEPTION RESPONSE

Figure 14-1. Half-Duplex Flip-Flop Commllllic:adoa

Since the logical unit is the first speaker, it is first to transmit a request (item 1).
The indicators in the request header (RH), begin chain indicator (BCI), and end
chain indicator (ECI) indicate that this is a single element request chain. A definite
response is requested as indicated by the RQD notation. The change direction
indicator (CDI) notifies the VTAM program that it can now send. The VTAM
program accepts the request with a RECEIVE macro and the data in the request
unit (RU) is placed in a specified data area within the program. The information
from the TH and the RH is placed in the RPL referenced by the RECEIVE. The
program can test the appropriate RPL fields to determine that it received a single
element request chain, that a DRl response must be returned, and that the VT AM
program can now send.

The VT AM program now becomes the sender and the logical unit becomes the
receiver. The VTAM program sends a three element request chain (items 2, 3, and
4). The third element contains a change direction indicator (CDI) to notify the
logical unit that it can send. The role of each session partner continues to alternate
between send and receive until the session is terminated. This protocol works only
because both session partners enforce it.

The session partner that is currently a receiver is restricted from sending
normal-flow requests. However, it is free to send responses and expedited-flow
requests.

Half-Duplex Contention Communication

14-4 ACF/VTAM Concepts

The other half-duplex protocol~ half-duplex contention, is similar to half-duplex
flip-flop in that only one session partner is allowed to send at a time. However, the
method of determining which partner may send is different.

Bracket Protocol

)

With contention mode, the VTAM program (primary logical unit) and the
secondary logical unit are in contention to send when the session is established.
The first one to attempt to send becomes the sender and the other the receiver.
Both session partners return to contention status when the last element of a request
chain is sent and received. This is true whether single element or multiple element
request chains are transmitted.

What happens if both session partners send to each other at the same time?
A session parameter in the BIND request specifies one of the session partners to
win a contention. Let's assume that the secondary logical unit is specified to be the
winner of a contention. If. both session partners try to send at the same time, the
logical unit's request will be accepted by the VTAM program, but the logical unit
sends a negative response to reject the VTAM program's request.

The half-duplex contention protocol might be used when both session partners
intermittently have data to send. Either partner can send without first getting
permission to send.

Like the half-duplex flip-flop protocol, this protocol is enforced by the two session
partners.

The bracket protocol facility is used to identify a unit of work that must be
completed before another unit of work is started. An inquiry from a logical unit to
a VT AM program is one example of a unit of work where bracket protocol can be
used. Once the inquiry is submitted, the logical unit wants to handle only the data
associated with the inquiry. Completion of the inquiry could consist of a number of
interchanges between the logical unit and the VT AM program.

For example, the logical unit sends an inquiry request to the VTAM program and
the VT AM program gives the inquiry to the appropriate application program to
process against a data base. The application program generates a reply and gives it
to the VT AM program for transmission to the logical unit. The reply could result
in several requests being sent to the logical unit. Assuming that the requests do not
satisfy the inquiry, the logical unit sends another request asking for more data.
Eventually the transaction or unit of work is completed.

In this example, even though there are multiple transmissions, all the transmissions
are related to the initial inquiry. The logical unit isn't supposed to submit another
inquiry before the current one is complete. Nor is the VT AM program supposed to
transmit a request that isn't related to the present inquiry. The two session
partners must agree on some method of control to ensure that the unit of work or
transaction isn't interrupted by another unit of work or transaction.

Bracket protocol provides the facility to control the data flow in this manner. A
begin bracket indicator (BBI) and an end bracket indicator (EBI) are used to start
and end a bracket, respectively. These two indicators are transmitted in the request
header (RH) of a request.

Figure 14-2 illustrates the use of bracket protocol. The figure shows the PIUs that
are transmitted between the VT AM program and the logical unit. Study the figure
and then read the discussion that follows.

Mini-Course 14. Data Flow Control 14-5

fJ
RECEIVE +--11 BC1,Ec1.BB1.RaD !DATA MESSAGE I

---~~~~~~--------~
11

SEND 1sTVPE=REOI I I Bc1.RaE)DATA MESSAGE 14
SEND (STVPE=REQ) I I ROE

a
!DATA MESSAGE I-+

B
SEND ISTVPE=REOI 11 ECl,ROD !DATA MESSAGE h

~~-~~~~~~-----------
11

RECEIVE +--I I Bc1.Ec1,RaD !DATA MESSAGE J
E (PE- Pl +RESPONSE11.. S ND STY -RES -----------------....,.

D
SEND ISTVPE=REOI I I Bc1.Ec1.RaD !DATA MESSAGE I-+
RECEIVE (RTVPE= + RESPONSE

RESPlf-------------------
EJ .

RECEIVE +--I I BCl.ECl,RQD,EBI I

BCI - BEGIN CHAIN INDICATOR

ECI - END CHAIN INDICATOR

ROD - REQUEST DEFINITE RESPONSE

ROE - REQUEST EXCEPTION RESPONSE

BBi - BEGIN BRACKET INDICATOR

EBI - END BRACKET INDICATOR

Figure 14-2. Bracket Protocol

DEVICE

An operator enters an inquiry.from a work station (item 1). The logical unit
transmits the request to the associated VTAM program (item 2). The RH indicates
that this is a single element chain (BCl,ECI), and it indicates that this request
begins a bracket (BBi). The VTAM program receives the request, and now the
session is considered to be in an in-bracket state. Another bracket cannot be
started until this bracket has been terminated.

14-6 ACF /VT AM Concepts

The VT AM program gives the inquiry to the appropriate application program to
process against a data base. The application program's reply results in the VT AM
program returning three requests (items 3, 4, and 5). The three requests are
transmitted in the form of a three-element request chain. The logical unit receives
the three requests and determines that it needs more information. So it sends
another request to the program asking for more information (item 6). This reply
results in one request being transmitted to the logical unit (item 7).

,

Bidding to Begin a Bracket

)

)

The logical unit determines that this request completes the inquiry. Now the
bracket can be terminated. The logical unit terminates the bracket by including an
end bracket indcator (EBI) with the next request (item 8). Because there is no
data to be sent, the PIU containing the EBI will have no RU. The session now is
considered to be in a between-bracket state. Another bracket can now be started.

Session parameters in the BIND command specify which session partner is allowed
to begin a bracket and which is allowed to end a bracket.

First Spealcr. The logical unit or the VT AM program is referred to as first speaker.
The first speaker is allowed to begin a bracket without requesting permission from
its session partner.

Bidder. The VT AM program or the logical unit is referred to as the bidder. The
bidder must request and receive permission from the first speaker to begin a
bracket. The BID request is used by the bidder to obtain permission to begin a
bracket.

We'll assume that the logical unit is the frst speaker and that the VTAM program is
the bidder. Also, the logical unit is defined to end a bracket. The logic of this
application requires that the logical unit identify each unit of work or transaction
by beginning a bracket. However, there are occasions when the VTAM program
needs to initiate a transaction, which means that the VT AM program will need to
begin a bracket.

The VT AM program requests permission from the logical unit to begin a bracket
by sending a BID request. The logical unit returns a positive response to accept the
request and a negative response to reject the request. If the session is in the
in-bracket state, the logical unit cannot give permission immediately. Permission
can be given when the bracket has ended. The logical unit can convey this message
to the program by including a predefined sense code in the negative response that is
returned to the program. The sense code says that the program cannot begin a
bracket now, but that the logical unit will send notification when the bracket can be
started.

The session partners continue to process the present bracket to completion.
At that time, the logical unit notifies the program that it can start a bracket.
The logical unit does this by sending the ready to receive (RTR) request to the
VTAM program. Upon receipt of the RTR request, the VTAM program may begin
a bracket.

The BID and RTR requests are transmitted in the RU of a path information unit
(PIU).

Figure 14-3 illustrates a session using bracket protocol. Study the figure and then
read the following explanation.

Mini-Course 14. Data Flow Control 14-7

BIDDER FIRST SPEAKER

D RECEIVE

fJ SEND

II SEND

a SEND

II RECEIVE

li!SEND

4 BCl,ECl,BBl,RQO DATA MESSAGE

______ + ~~P..QN~E- _________ •

BCl,RQE DATA MESSAGE

ECl,RQD . DATA MESSAGE

f _ _ _ _+ £!E~P.QN.§.E _________ _

BCl,ECl,RQO BID COMMAND •

fJ RECEIVE

Iii RECEIVE

liJ SEND

- RESPONSE (STATUS INFOI BRACKET 4--------- -----------
BCl.ECl,ROO DATA MESSAGE

+RESPONSE · --------------------· mJ SEND

m SEND

IE RECEIVE

iEJ RECEIVE

IJ SEND

mJSEND

BCl,RQE,EBI DATA MESSAGE

ECl,RQO DATA MESSAGE

·----~£!~~~~---------
BCl,ECl,RQO RTR COMMAND

______ + £!E~P.QN.§.E __________ •

BCl,ECl,BBl,EBl.RQO DATA MESSAGE •

mJ RECEIVE f _____ + £!~PQN.§.E_ _ _ _ _ _ _ _ _ _ BRACKET

BBi - BEGIN BRACKET INDICATOR

EBI - ENO BRACKET INDICATOR

BCI - BEGIN CHAIN INDICATOR

ECI - ENO CHAIN INDICATOR

ROD - REQUEST DEFINITE RESPONSE

ROE - REQUEST EXCEPTION RESPONSE

Figure 14-3. Bracket Protocol (BID ud RTR Usage)

14-8 ACF/VTAM Concepts

The logical unit sends a request and begins a bracket at item 1. The VT AM
program replies with a two-element request chain (items 3 and 4). The VTAM
program now wants to send a request that is unrelated to the bracket. It requests
permission to start a bracket by sending the BID request to the logical Unit (item
6). The logical unit receives the BID but will not give permission to start a bracket,
because the present bracket has not been completed. The logical unit sends a
negative response to inform the program that it cannot start a bracket at this time
(item 7). Status information included in the negative response lets the program
know that later it will be given permission to start a bracket.

The processing of the bracket continues to completion_ (items 8 - 12). The logical
unit then sends an RTR request to the program, which tells the program that it can
begin a bracket (item 13). The program sends one request and indicates that the
single request begins and ends the bracket (item 15).

A bracket spans one or more request chains transmitted in both directions. That is,
a bracket may consist of several interchanges of request chains by two session
partners. A session partner begins a bracket by including the begin bracket

Quiescing Data Request Flow

indicator (BBi) on the first chain element of the bracket. A session partner signals
termination of a bracket by including the end bracket indicator (EBI) in the last
request chain of the bracket. If the last request chain contains multiple elements,
the BB indicator must be included in the first element of that chain. The bracket is
not terminated until the last element of the chain has been transmitted and
received.

Quiescing or temporarily stopping the flow of data requests in one directfon is
another way to control data flow within a session. Three commands can be used to
achieve this control:

• Quiesce at end of chain (QEC)

• Quiesce complete (QC)

• Release quiesce (RELQ)

Let's consider one example of why a session partner might need to quiesce data
request flow. A logical unit may want to stop data request flow from the VTAM
program temporarily because the request is too fast to handle or because the logical
unit needs to do some local processing before more data is received.

How is quiescing accomplished? Assume that the VT AM program is presently
sending and the logical unit wants to tell the program to stop sending for a while.
The logical unit sends the QEC request to the VT AM program, thereby requesting
the VT AM program to stop sending after it completes the request chain that is
being sent.

The VT AM program sends the remainder of the current request chain and then
sends the QC request to the logical unit. This says that the VT AM program is in a
quiesced condition. In effect, the VTAM program and the logical unit switch roles.
That is, the VT AM program becomes the receiver and the logical unit becomes the
sender. The logical unit may or may not send requests. What the logical unit does
depends on why the VT AM program was quiesced. In any case, the VT AM
program expects to eventually receive the RELQ request to release it from the
quiesced condition. The RELQ request causes the VT AM program and the logical
unit to revert back to their previous roles. The VT AM program again becomes the
sender while the logical unit becomes the receiver.

Figure 14-4 illustrates the quiesce data flow control function.
Study the figure and then read the following discussion.

Mini-Course 14. Data Flow Control 14-9

Data Flow Control

Sending Data Requests

14-10 ACF /Vf AM Concepts

SECONDARY.«·.
LOGICAL UNIT ··'.'

II SEND DATA MSG. BCI DATA MESSAGE • fJ SEND DATA MSG. DATA MESSAGE • II RECEIVE CTRL. MSG. 4 BCI, ECI QEC COMMAND

II SEND DATA MSG. DATA MESSAGE • II SEND DATA MSG. ECI DATA MESSAGE • II SEND CTRL. MSG. BCI, ECI QC COMMAND • -~
fJ RECEIVE CTRL. MSG. 4 BCI, ECI RELQ COMMAND

QEC - QUIESCE AT END OF CHAIN

QC - QUIESCE COMPLETE

RELQ - RELEASE QUIESCE

Fipre 14-4. Quiesce Data f1ow Control

This figure shows a VT AM program sending a multiple element request chain to a
logical unit, at which time the logical unit needs to quiesce the program. The
logical unit sends the quiesce at end of chain (QEC) request to the VTAM program
(item 3). The program receives the QEC request, but continues sending the
request chain (items 4 and S). The program sends the quiesce complete (QC)
request when it has completed sending the request chain (item 6). The QC request
informs the logical unit that the quiesce is complete. That is, the VTAM program is
in a quiesced condition and is ready to receive if the logical unit wants to send a
request. The logical unit wanted to temporarily stop request flow from the VT AM
program so that it could process the backlog. After the logical unit processes the
backlog, it sends the release quiesce (RELQ) request. to the VT AM program (item
7). This removes the VTAM program from the quiesced condition, allowing the
program to start sending again.

The data flow protocols just discussed are implementations of systems network
architecture (SNA). The architecture defines the restrictions imposed on each
session partner: it defines when and what a session partner can send, and it defines
the indicators and commands to be used to implement each protocol.
The protocols just discussed are enforced by the two session partners. Therefore

·you need to know what a VT AM program can send and receive when using any of
these pi:otocols.

What follows is a general discussion of what the VT AM program can send and
receive for the various protocols. First, let's consider the transmission of data
requests.

Figure 14-5 illustrates the sending of a data request. Study the figure and then
read the discussion that follows.

Sending Command Requests

)

SEND
RPL APL

CHAINING CONTROL INDICATORS
CHANGE DIRECTION CONTROL INDICATORS
BRACKET CONTROL INDICATORS

FiglU'e 14-5. Sending a Mesage Request

RU

The vr AM program issues a SEND macro instruction to transmit a data request.
The SEND must identify an RPL to be used for this operation. The program must
place the appropriate information in the RPL before the SEND is executed.

The RPL can contain information such as the following:

Chaining indicators

Change direction indicators

• Bracket control indicators

VT AM takes all of these control indicators from the RPL and places them in the
RH of the request. It is the responsibility of the logical unit to examine these
indicators and take appropriate action.

Command requests are transmitted by the SEND macro instruction. This is
illustrated in Figure 14-6. Study the figure and then read the discussion that
follows.

SEND RPL

RPL I TH I RH I RU

BID

NOTE: ONLY ONE COMMAND IS
TRANSMITIEO WITH EACH SEND.

Figure 14-6. Sending Command Requests

I

NORMAL
FLOW

EXPEDITED
FLOW

A SEND macro instruction can transmit one SN.A command. A command is
transmitted on either normal-flow or expedited-flow. Vf AM takes care of
transmitting a command on the appropriate flow (normal or expedited). The QEC

Mini-Course 14. Data Flow Control 14-11

Recehing Command Requests

and RELQ commands are transmitted on the expedited-flow while the BID and
QC commands are transmitted on the normal-flow.

Figure 14-7 illustrates a VT AM program receiving command requests.

RECEIVE RPL

I TH I RH I ~icLgR
EXPEDITED FLOW

F'igure 14-7. Recehing COllllDllDd Requests

The upper part of Figure 14-7 shows a RECEIVE macro instruction that will
accept normal-flow requests as specified by the RPL parameter DFSYN. Because
there is no data message, nothing will be placed in the data area specified by the
RPL. The RECEIVE macro instruction shown at the bottom of the figure will
accept an expedited-flow request as specified by the RPL parameter DF ASY. The
RPL does not specify a data area because an expedited-flow request does not
contain a data message.

When and what can a VT AM program send for the various protocols? The
following descriptions concentrate on this question.

Sending and Receiving When Quiesced

What is a quiesced VTAM program allowed to send and receive? It can receive all
requests and responses while quiesced. It can send responses and expedited-flow
requests, but not normal-flow requests.

Sending and Receiving in Half-Duplex Mode

14-12 ACF /VT AM Concepts

A VT AM program participating in half-duplex flip-flop communication can receive
all types of information at any time. It can send responses and expedited-flow
requests at any time. Normal-flow requests can be sent only when the program is
in sender status. Either the VT AM program or the secondary logical unit becomes
the sender at the time the session is established. Session parameters specify which
is the sender.

Both session partners can send at any time when communicating in half-duplex
contention mode. Session parameters specify which partner will win a contention
when both partners send simultaneously.

)

~~---...;._ --~-----·•·- _.. ___ r, - ·-------~ •"" •••

Sending and Receiving When Using Brackets

Bracket protocol does not restrict a session partner from sending and receiving
normal-flow requests, expedited-flow requests, and responses. It specifies that only
one bracket can be active within a session at a given time. Also, it specifies which
session partner can begin or end a bracket.

Pl~ tum to Mini-COlll'S4 14 in your Penotllll Re/erma Guide and do Exercise 14.1

Mini-Course 14. Data Flow Control 14-13

VTAM Concepts

Mini-Course 15
VTAM Macro Execution Sequence
and Error Notification

)

MINI-COURSE 15. VTAM Macro Execution Sequence and Error
Notification

Introduction

Transfer of Control

Synchronous Request Handling

Asynchronous Request Handling

In this mini-course, we will first consider the transfer of control between the
VT AM program and VT AM. Then we will look at how VT AM notifies the
program about an error.

Control is transferred from the VT AM program to VT AM when the program
issues a VTAM macro instruction. The program regains control at different times,
according to whether a request is handled synchronously or asynchronously.

Synchronous request handling means that VT AM returns control to the next
sequential instruction (NSI) in the VT AM program only after the requested
operation has completed. Program execution is halted until VT AM determines that
the operation has completed. Figure 15-1 shows a VTAM program issuing a
SEND macro instruction that is to be handled synchronously. The SYN parameter
in the macro instruction indicates synchronous.

. VT AM PROGRAM I VTAM I

SENDSYN--~~~~4
PROCESS SEND OPERATION
(SEND MESSAGE AND RECEIVE RESPONSE)

SEND COMPLETED

Figure 15-1. Synchronous SEND Request

The SEND macro instruction causes control to be given to VT AM. VT AM
processes the request and returns control to the program only when the SEND
operation is completed. Control is returned to the next sequential instruction.

Asynchronous request handling means that VT AM returns control to the next
sequential instruction in the VT AM program as soon as VT AM has accepted the
request, not when the requested operation has been completed. Accepting the
request consists of screening the request for errors. While the requested operation
is being completed by VTAM, the VTAM program is free to initiate other I/0
transactions or processing. For example, a VTAM program might issue a
RECEIVE macro instruction and indicate that it is to be handled asynchronously;
while the input operation is being completed, the VT AM program can begin to do
other processing or communicate with another logical unit.

Mini-Course 15. VT AM Macro Execution Sequence and Error Notification 15-1

15-2 ACF/VTAM Concepts

How does VTAM notify a VTAM program that an asynchronous operation has
completed? That depends on specifications within the VTAM program. A VTAM
program can specify for each request either an event control block (ECB) or an
RPL exit. VTAM will post the ECB complete (when provided), or schedule the
RPL exit (when provided) upon completion of the requested operation. First we'll
discuss requests that specify an ECB and then the use of RPL exit routines.

Using an ECB: Figure 15-2 illustrates an asynchronous (ASY) SEND request that
specifies an ECB.

I ·-· · 1
;~y,r~;:

D SEND ASY,ECB-----.. ~

fJ :
NSI •4----------· REQUEST ACCEPTED

! SCHEDULES OUTP1 ., . .
E1 WAIT ECB . . .
El •f-------Po_s_T_E_c_e_: II SEND 1s COMPLETED . .
Iii CHECKRPL-------

NSI

Figure 15-2. Asyncbronous SEND Request (ECB)

POST STATUS INFORMATION

FREE RPL

CLEAR ECB

The SEND causes control to be given to VTAM (item 1). VTAM screens the
request for errors and returns control to the next sequential instruction (item 2)
following the SEND. The VTAM program continues processing concurrently with
the SEND operation. The program issues a WAIT ECB when it needs to know the
result of the SEND operation (item 3). Upon completion of the SEND (item 4),
VT AM posts the ECB and returns control to the instruction following the WAIT
(item 5).

The VT AM program must issue a CHECK macro instruction to cause VT AM to
post status information, free the RPL, and clear the ECB (item 6). Both the RPL
and the ECB can now be reused. VT AM then returns control to the VT AM
program at the instruction following the CHECK macro instruction.

The VT AM program can use one WAIT macro instruction for a combination of
VTAM and non-VT AM requests that use ECBs. For example, a VTAM program
can issue three VTAM asynchronous requests and three requests for DISK 1/0.
By issuing one WAIT for all six ECBs, the program can continue processing when
any one of the six operations completes. ·

Using an RPL Exit Routine: Now we'll consider an asynchronous SEND that
specifies an RPL exit routine. Study the asynchronous SEND operation shown in
Figure 15-3 and then read the discussion that follows.

)

.... ·:-.-. ------·----"····~~ ··~· ·······-

I \ VTAM PROGRAM ·

D SEND ASY,EXITA --------• . .
NSI ----------• REQUEST ACCEPTED
WAIT ECB

APL EXIT

ROUTINE

fJ : SEND IS COMPLETED.

APL EXIT ROUTINE IS SCHEDULED

: EJ

Figure 15-3. Asynchronous SEND Request (RPL Exit Routine)

The SEND macro instruction specifies an RPL exit routine at the label EXIT A
(item 1). This routine is to be given control when the SEND operation completes.

The SEND causes control to be given to VTAM (item 1). VTAM screens the
request for errors and returns control to the next sequential instruction following
the SEND. The VTAM program continues processing concurrently with the SEND
operation. When the program has no more data to process, it issues a WAIT on an
ECB. VT AM program execution is suspended until an outstanding operation
completes.

When the SEND operation completes, VTAM schedules the RPL exit routine
EXIT A. The user-written RPL exit routine executes, then returns to VT AM.
VT AM returns control to the VT AM program when another operation completes.

Freeing the RPL and Clearing the ECB

An RPL becomes active when the associated macro instruction is issued. The RPL
cannot be used in another operation until it is set inactive by the CHECK macro
instruction.

VT AM CHECKs the RPL at the completion of a synchronous operation, setting
the RPL inactive. Therefore you should not CHECK an RPL that was used in a
synchronous operation. CHECKing an inactive RPL gives a logical error.

The VT AM programmer is responsible for CHECKing an RPL that was used in an
asynchronous operation. When should the CHECK be issued? That depends on
whether the operation used an ECB or an RPL exit routine.

When an ECB is specified, you have two options as to when to CHECK an RPL:
(1) after a WAIT or (2) without W AITing on the associated ECB. Normally a
WAIT is included to WAIT on the ECB. Execution falls through the WAIT after

Mini-Course 15. VTAM Macro Execution Sequence and Error Notification 15-3

the requested operation completes and the ECB is posted. You would CHECK the
appropriate RPL after the WAIT. An alternative is to CHECK the RPL without a
WAIT on the associated ECB. This could be inefficient since execution is
suspended until the operation completes. Upon completion of the operation, the
ECB is posted and the CHECK operation can complete. The CHECK clears the
ECB, frees the RPL (marks the RPL inactive), and posts feedback information.

When an RPL exit routine is specified, normally the CHECK is issued in the
routine. The CHECK marks the RPL inactive and posts feedback information.

Responded and Scheduled SEND Requests

Responded Output

Scheduled Output

Synchronous Responded SEND

15-4 ACF/VTAM Concepts

You have read the description of synchronous and asynchronous request handling
for requests that specify either an ECB or an RPL exit routine. A synchronous or
asynchronous request indicates the action that the program can take while waiting
for the request to complete. Synchronous or asynchronous can be specified in any
RPL-based request.

There are two other parameters that may be specified in a SEND request:
responded and scheduled. They identify when the SEND is considered complete.

Responded output is specified in a SEND macro instruction by including
POST=RESP in the referenced RPL. VTAM considers a responded SEND
complete when a response is returned from the logical unit. The RPL and the
output data area specified in the SEND macro instruction are not reuseable until a
response has been received from the logical unit. If the response indicates that an
error occurred, the data is still available for retransmission.

Since a responded SEND completes when a response is returned, RPL coding that
specifies a definite response should be included when a responded SEND is
specified.

Scheduled output is specified in a SEND macro instruction by including
POST =SCHED in the referenced RPL. Requesting a response is optional. A
SEND macro instruction that includes POST=SCHED is considered complete as
soon as the request has been scheduled for transmission and the output data area is
free. The SEND and the referenced RPL are no longer associated with the data
being transmitted. You must provide a way, other than the SEND RPL, to obtain
response information if a response is requested. You can do one of two things to
obtain response information: (1) include a RECEIVE macro instruction that
specifies RTYPE=RESP, or (2) include a response exit routine. Both of these will
accept incoming responses. You will read a few SEND examples for both
responded and scheduled output.

Figure 15-4 illustrates a synchronous SEND operation that specifies responded
output. This JI].eans that the SEND operation is to be considered complete when
the response is returned to the VT AM program.

Synchronous Scheduled SEND

'.f YJAM_~'?_GJiA~AU.~~: I IYt~ I I PeRIPH~~LOGiCAL UNIT I
ACCEPTS REQUEST AND

D SEND SYN,RESP .. SCHEDULES OUTPUT

fJ~ SENDS MESSAGE •

• ~E§!Q~§..---EI .
NSI • D

Figure 15-4, Syncbronom Responded SEND

The SEND macro instruction (item 1) causes control to be given to VT AM.
VT AM screens the request for errors, schedules the request to be transmitted, and
transmits the request to the peripheral logical unit (item 2). The peripheral logical
unit receives the message and returns a response (item 3). VTAM posts the
response information in the RPL and returns control to the next sequential
instruction (item 4) in the VT AM program. The program can now examine the
response information.

Figure 15-5 illustrates a synchronous SEND operation that specifies scheduled
output. The SCHED parameter directs VT AM to consider the operation complete
as soon as the operation is scheduled. As a result, the VT AM program regains ·
control as soon as VT AM schedules the request to be transmitted. Study the
figure, then read the discussion that follows.

WI
~

PERIPHERAL
LOGICAL UNIT

D SEND SYN,SCHED----~

e:
~s1•4~~~~~~~---

ACCEPTS REQUEST

SCHEDULES OUTPUT

SENDS MESSAGE •
• RESPONSE EJ RECEIVE SYN RESP-----1----------

NSI II

Figure 15-5. Synchronous Scheduled SEND

The SEND macro instruction (item 1) causes control to be given to VT AM.
VT AM screens the request for errors, and schedules the request to be transmitted.
VT AM posts the RPL and returns control to the next sequential instruction (item
2) in the VTAM program. The program can now examine information in the RPL
and do other processing.

VT AM considers the operation complete now that the request has been scheduled
for transmission and the RPL may be reused. VT AM transmits the request and
accepts the response when it is returned from the peripheral logical unit. What
does VT AM do with the response, given that the SEND operation has already
completed? The VTAM program must make provisions to obtain the response

Mini-Course 15. VTAM Macro Execution Sequence and Error Notification 15-5

Asynchronous Responded SEND

15-6 ACF/VTAM Concepts

information from VTAM. The program can issue a RECEIVE that specifies
RTYPE=RESP as shown in the figure (item 3). A synchronous RECEIVE is used
in the example for the sake of simplicity. VT AM completes the RECEIVE by
placing the response information in the RECEIVE RPL and returns control to the
next sequential instruction (item 4) in the VT AM program.

The VT AM program can use a response exit routine to obtain the response
information rather than an inline RECEIVE macro instruction. The program can
maintain a single response exit routine (identified in ACB) to handle all responses,
or a response exit routine can be maintained for a specific logical unit (identified in
NIB). Figure 15-6 illustrates the use of a response exit routine.

SEND SYN.SCH ED----• ..

ACCEPTS REQUEST
NSI .,_ _______ __.. SCHEDULES OUTPUT .
: SENDS MESSAGE •

: L-~~£~~----: INTERRUPTION ..-.___ __ /__,• _ n

RESPONSE

EXIT

ROUTINE fl
-~

: 11 -------------
Figure 15-6. Specifying a Response Exit Routine

The SEND operation in this figure is the same as the one in Figure 15-5, up to the
point where the logical unit returns the response to VT AM. Assuming that
main-line code is executing, VT AM interrupts the VT AM program and gives
control to the response exit routine (item 1).

VTAM makes the response information available to the exit routine. The routine
processes the information and returns control to VTAM (item 2). VTAM then
returns control to the program at the point where it was interrupted (item 3).

Figure 15-7 illustrates an asynchronous SEND operation that specifies responded
output. This directs VT AM to consider this SEND operation complete when the
response is returned to the VT AM program. The SEND also specifies an ECB.

Asynchronous Scheduled SEND

)

D SEND ASY ,ECB ,RESP-------. .. .
fJ:

NSI .-------------·

II WAIT ECB

PERIPHERAL
LOGICAL UNIT

SCREENS REQUEST
FOR ERRORS

ACCEPTS REQUEST

SCHEDULES OUTPUT

IJ SENDS MESSAGE •

_ 4_!!_E1.f'_2~S!, __ [ii
~·--------Po_s_T_Ec_s _ _.: l!I . .

IJ CHECK RPL ---------

Figure 15-7. AsyncbroDOUS Responded SEND

POST STATUS INFORMATION

FREE RPL

CLEAR ECB

The SEND macro instruction causes control to be given to VTAM (item 1).
VT AM screens the request for errors and returns control to the VT AM program at
the next sequential instruction (item 2). The RPL cannot be reused because the
operation is not yet complete, but the program can continue executing. Concurrent
with VT AM program execution, VT AM schedules the request to be transmitted
and transmits it (item 4). At some point during execution, the program issues a
WAIT on the ECB (item 3).

The peripheral logical unit receives the request and returns a response (item 5).
VTAM then posts the ECB and gives control to the VTAM program (item 6).

The VT AM program issues a CHECK macro instruction. to request VT AM to post
status information, free the RPL, and clear the ECB (item 7).

Figure 15-8 illustrates an asynchronous SEND operation that specifies scheduled
output. This directs VT AM to consider the SEND operation complete when the
request is scheduled to be transmitted. The SEND also specifies an ECB.

Mini-Course 15. vr AM Macro Execution Sequence and Error Notification 15-7

Error Notification

15-8 ACF/VTAM Concepts

D SEND ASY,ECB,SCHED----... ~

·= NSI ·~-----------" . . .
ACCEPTS REQUEST

WAIT ECB SCHEDULES OUTPUT

•.----------- IJPOSTECB . • ~------_.r.1 SENDS MESSAGE I!, D CHECK RPL- u ,.
POST STATUS INFORMATION

. .
II 0RECEIVE RTYPE=RESP,ECB,ASY . . .

BRANCH TO WAIT INSTRUCTION

Figure 15-8. Asynchronous Schedaled SEND

FREE RPL
CLEAR ECB

4--_!lESPONSE __ Iii

The SEND macro instruction in Figure 15-8 causes control to be given to VT AM
(item 1). VT AM screens the request for errors and returns control to the next
sequential instruction in the VTAM program (item 2). The program can continue
processing but the operation is not yet considered complete.

VTAM schedules the request to be transmitted and posts the ECB (item 3).
Execution in the VTAM program falls through the WAIT, and the program
CHECKs the RPL (item 4). As a result, VTAM posts status information, frees the
RPL, and clears the ECB. VT AM returns control to the VT AM program and the
program continues processing. Concurrently, VTAM sends the request (item 5)
and the peripheral logical unit returns a response (item 6). The program has an
outstanding RECEIVE that accepts responses (item 7). VTAM completes that
RECEIVE with the returned response.

Next you will see how VT AM notifies the VT AM program of any errors that occur
when a request is processed. Error notification varies according to whether a
request is handled synchronously or asynchronously. For synchronous request
handling, error conditions are reported when the request has been completed and
control is returned to the VT AM program.

For asynchronous request handling, error conditions are reported in two stages.
When control is first returned to the VT AM program, VT AM indicates whether it
has accepted or rejected the request. When an accepted request has been
completed. VT AM either posts the specified ECB or schedules the designated RPL
exit routine. VTAM returns information about the completion of the requested
operation when the VT AM program issues a CHECK macro instruction.

Information about success or failure is sent to the VTAM program in register 15
and, under some circumstances, in register 0. If the request is rejected or the
operation is unsuccessful, VTAM normally places additional information in return
code fields of the RPL and may invoke one of the two types of error-handling exit

)

routines that the user can furnish (LERAD and SYNAD). The LERAD routine
handles logic errors and the SYNAD routine handles non-logic errors.

VT AM automatically invokes the appropriate routine when an error occurs during
a synchronous operation. This is not the case for asynchronous operations. For
asynchronous operations, the LERAD or SYNAD exit routine is entered at either
of two times: (I) if the request has been rejected or (2) if the request completes
unsuccessfully. An exit is driven when a CHECK macro instruction is issued. The
invoked routine has access to register 0 and RPL fields that contain information
regarding the specific cause of error. Register 15 contains the address of the exit
routine.

Now we'll discuss how VTAM notifies the VTAM program about errors that occur
during ACB-based macro operations or RPL-based macro operations. Figure 15-9
shows VT AM providing error information to both types of macro instructions.

OPEN ACB

I I ERROR

REGISTER 15 I INFORMATION

1 .. jc, ·.· r • < : : ------ ___ , _______ _
SEND RPL I

Figure 15-9. Error Notiflcation

REGISTER 15

I
I

I ,;_:. :.' .···. (....--: --.---
REGISTER 0

I l!ffft;.T·"-' <....--: --.....--

ERROR
INFORMATION

The upper part of the figure shows VT AM returning error information for an
ACB-based macro operation. VTAM places error information in the ACB and a
nonzero value in register 15 for OPEN ACB and CLOSE ACB macros. Register
15 will contain a zero if there is no error, otherwise it will be nonzero.

The lower part of the figure shows VT AM returning error information for an
RPL-based macro instruction. Error information is placed in the RPL and in
registers 0 and 15. Register 15 will contain a zero if there is no error, otherwise it
will be nonzero. Register 0 will contain a code that indicates the error category.

Mini-Course 15. VTAM Macro Execution Sequence and Error Notification 15-9

OPEN and CLOSE Macro Instructions

RPL-Based Macro Instruction

15-10 ACF /VI" AM Concepts

This description concerns the OPEN and CLOSE macro instructions. The OPEN
macro instruction identifies a VT AM program to VT AM, while the CLOSE macro
instruction disassociates the program from VT AM.

Control is returned to the next sequential instruction following completion of the
OPEN/CLOSE operation. First consider the OPEN operation. The VTAM
program needs to know if the OPEN operation completed successfully. If not, the
program needs to know why not.

The OPEN macro instruction causes control to be given to VT AM. VT AM
processes the request, posts any error information in the ACB, sets register 15 to a
nonzero value if an error occurs, and returns control to the instruction following
the OPEN. Figure 15-10 illustrates how to test for an OPEN error.

Figure 15-10. OPEN Errors

The VTAM program can test register 15 to determine if there was an error
(register 15 is nonzero). The ACB error field will contain an error code if there
was an error. The VT AM program can examine the appropriate ACB field to
determine the reason for failure.

For synchronous RPL-based operations, the VT AM program is notified
automatically of an error when the operation completes. Figure 15-11 illustrates
error notification for a synchronous operation. Error exits are not used in this
example. Study the figure and then read the discussion that follows.

NSI

CONTINUE
PROCESSING

. a: . .
B-4 -----

NO

EXAMINE REGISTER
0 CONTENTS AND
APL ERROR CODE
FIELDS

rVTAM

PROCESS SEND OPERATION .

SEND COMPLETED.

POST ERROR INFORMATION .
IN THE APL, REGISTER 0,
AND REGISTER 15.

Figure 15-11. Error Notification For a Synchronous SEND Operation

VT AM posts error information in the RPL, register 0, and register 15 upon
completion of the operation (item 1). VTAM returns control to the next sequential
instruction (item 2). The program tests register 15 to find out if there was an error
(item 3). If there. was an error, then register 0 and RPL error code fields can be
examined to determine what caused the problem.

Error notification for asynchronous request handling is different. VT AM can post
error information at two different times for an asynchronous request. The first
time that an error may be posted is when VT AM screens a request for
acceptability. VTAM posts an error if it rejects the request. The second time that
an error may be posted is when the requested operation completes. Figure 15-12
shows an asynchronous SEND that specifies an ECB. The figure shows when error
information may be posted by VT AM and when it may be examined by the VT AM
program. Study the figure and then read the discussion that follows.

Mini-Course 15. VT AM Macro Execution Sequence and Error Notification 15-11

15-12 ACF/VTAM Concepts

SEND ASY ,ECB------o!---....

El
NSI

WAIT ECB

SCREEN REQUEST FOR ERRORS .
~NO

>11.CCEPTED?

(REJECT REQUEST!

POST
ERROR
INFORMATION

SEND IS COMPLETED .
NSI -------+--...-: IQ POST ECB

B CHECK APL----------

. .

PROCESS
ERROR

CONTINUE PROCESSING

POST ERROR INFORMATION

FREE RPL

CLEAR ECB

Figure 15-12. F.rror Notif"icadoo For an Asynchronous SEND Operation

VT AM receives the SEND request and screens it for errors. If there is an error,
VT AM does not process the request. Instead, it posts error information in the
RPL, in register 15, in register 0 (item 1), and then returns control to the next
sequential instruction (item 2). The program tests register 15 (item 3), detects an
error, and processes the error.

Now go back to the top of the figure and this time assume that VT AM accepted
the SEND request. VTAM returns control to the program (item 2), and the
program tests register 15 for an error (item 3). There is no error becanse VTAM
accepted the request. The request completes, VT AM posts the ECB, and then
returns control to the program (item 4). At some time, the VTAM program issues
a CHECK macro instruction to cause VT AM to post error information, free .the
RPL, and clear the ECB (item 5). Control is returned to the next sequential
instruction where the program will make its error checks (item 6).

(

The VT AM program could use an RPL exit routine rather than an ECB. In that
case, the sequence of events would be the same up to the point where the request is {

completed. Rather than post the ECB, VT AM would schedule the RPL exit
routine. The exit routine could issue the CHECK macro instruction and process
the error (if any). ,

LERAD and SYNAD Exit Routines

The LERAD and SYN AD exit routines can be used for error notification and
processing. Both types of routines are used the same way, except that they are
used for different types of errors. The LERAD is invoked if a logic error occurs
and the SYNAD routine is invoked if a non-logic error occurs. Let's see what
happens with the LERAD exit routine as the example. The sequence is exactly the
same if the SYNAD routine is invoked.

VT AM invokes the LERAD exit routine when a logic error occurs. Register 0 and
the RPL are available at entry to the routine. Therefore the routine has available
the necessary information to process the error.

Consider how the LERAD routine fits in a synchronous operation. You know that
control isn't returned to the VTAM program until the operation is completed. That
means that VT AM receives a VT AM request, screens it for errors, and schedules
the LERAD exit routine if there is a logical error. Otherwise VT AM processes the
request. If a logical error occurs at request completion, VT AM also schedules the
LERAD exit routine. In either case the LERAD routine processes the error and
returns to VT AM. VT AM then returns control to the next sequential instruction in
the VT AM program. This means that when the VT AM program regains control,
the error routine has already been executed if there was an error.

Figure 15-13 illustrates the use of the LERAD exit routine in an asynchronous
operation. Study the figure and then read the discussion that follows.

Mini-Course 15. VT AM Macro Execution Sequence and Error Notification 15-13

15-14 ACF/VTAM Concepts

I I VTAM,1

SEND ASY ,ECB-----P'-••
I g· ! : SCREEN REQUEST FOR ERRORS

1 ~~;?._,,6-JR~E~J~EC~T~E~D--r-~
;:; I

I
I

I
I . SEND COMPLETED I •

WAIT ECB

NSI •4------1-1---·
I

CHECKRPL------+-1---•

In:
I u:
I:

I
LE .. ~ ~ .. '.·.'.· .• ~ •. ~ .. :.·.·.--.·1~ I . c',<i. I

I ----,-·
I

F"igure 15-13. LERAD Exit Routine

POST ECB

POST ERROR INFORMATION

FREE RPL

CLEAR ECB

The figure shows that the LERAD exit routine can be scheduled for execution if
the request was rejected (item 1). VT AM automatically schedules the routine at
this time.

The lower part of the figure shows that the LERAD routine also can be invoked
when an accepted request completes (item 2). The CHECK macro instruction
causes VT AM to schedule the LERAD exit routine when a request completes with
a logic error. So we can say that CHECK invokes the LERAD exit routine.
CHECK also invokes the SYNAD exit routine when a request completes with a
non-logic error.

NOTE: Most logic errors are not recoverable because it is unlikely that the error
exit could correct a programmer error.

Pleare tum to Mini-Course 15 in your Personal Re/enna Guide and do Eurcise 15.1.

VTAM Concepts

Mini-Course 16
Multiple Domain Communication

i

MINI-COURSE 16. Multiple Domain Communication

Introduction

Domains

Everything that you learned about single domain networks in the previous
mini-courses is applicable to multiple domain networks. This mini-course discusses
those things that are unique to multiple domain networks.

As you will recall, a single domain network includes one SNA access method
(ACF /VT AM in our examples). The access method (VT AM) monitors and
controls all of the network resources. A multiple domain network includes two or
more SNA access methods, for example, ACF /VT AM and ACF /TCAM. In this
mini-course we will only be concerned with VT AM networks.

Each VT AM establishes ownership and controls a portion of the network.
A domain consists of a VT AM and the resources that are owned and controlled by
that VT AM. A multiple domain network typically consists of multiple host
processors with a VT AM in each processor. However, a host processor that runs
under control of VM can support multiple VT AMs.

VT AM domains may be connected to each other by processor channels or by
SDLC links. Once VT AM domains are interconnected by links and appropriate
network definitions have been installed, logical units in one domain can establish
sessions and communicate with logical units in other domains.

You will read how domains are interconnected, the relationship between domains
and subareas, network definitions required for resources in one domain to
communicate with resources in other domains, and how cross-domain sessions are
established and terminated.

Figure 16-1 illustrates a network that consists of three domains. Study the figure,
then read the discussion that follows.

Mini-Course 16. Multiple Domain Communication 16-1

DOMAIN 1 DOMAIN2 DOMAIN3
OSNSl OS/MVS DOSNS

IMS JES1
APPLIC

JES2 TSO
APPLIC CICS POWER APPLIC

UA" "8" "C.,

VTAMl VTAM2 VTAM3

I SSCP1 I I SSCP2 I I SSCP3 I

LU1 LU11

Figure 16-1. Three Domain Network

16-2 ACF/VTAM Concepts

Domain 1 consists of a host subarea node with a VT AM access method and a type
4 subarea node with an NCP. The resources in VTAMl 's domain include: IMS,
JESl, APPLIC "A", NCPl, links L1 and L2, PUs PUl and PU2, and LUs LUI,
LU2, LU3, and LU4. All of these resources are defined to VTAMl, therefore
VT AM 1 can activate and control them.

Domain 2 consists of a host subarea node with a VT AM access method and a type
4 subarea node with an NCP. The resources include: JES2, TSO, APPLIC "B",
NCPl, links L3 and L4, PUs PU3 and PU4, and LUs LUS, and LU6. These
resources are defined to VT AM2, therefore VT AM2 can activate and control them.

As you can see, NCPl resides in domain 1 and in domain 2, which means that an
NCP can have multiple simultaneous owners. In addition to NCPs, non-switched
SDLC links can have multiple simultaneous owners. All other resources can have
only one owner at a time.

Domain 3 consists of a host subarea node with a VT AM access method and a type
4 subarea node with an NCP. The resources include: CICS, POWER, APPLIC
"C", NCP2, links LS and L6, PUs PUS, PU6, and PU7, and LUs LU7, LU8, LU9,
LUlO, and LUI I. These resources are defined to VTAM3, therefore VTAM3 can
activate and control them.

Connecting Domains

Establishing Ownership

Figure 16-1 illustrates the different ways of interconnecting domains. There are
two connections between domains 1 and 2.

1. Processor channel. The two host processors are connected by a processor
channel.

2. Shared NCP. Both host processors are channel-attached to the
communications controller which is controlled by NCPl. Therefore, the two
domains are connected by the shared NCP.

Domain 3 is connected to domains 1 and 2 by an SDLC cross-subarea link, the link
that connects NCPl and NCP2.

So a domain can be connected to another domain by one of the following:

1. Processor channel

2. SDLC cross-subarea link

3. Shared NCP

This is a review of how a VT AM access method establishes ownership of resources
that are defined to VTAM. Use domain 1 (Figure 16-1) as the example.

The three host logical units (IMS, JESl, and APPLIC "A") issue an OPEN macro
to identify themselves to VT AM 1, which, in effect, establishes three sessions:

1. SSCPl-IMS

2. SSCPl-JESl

3. SSCPl-APPLIC "A"

Now the three resources are under control of SSCPl {VTAMl).

SSCPl establishes ownership and control of the other logical units (LUs) physical
units (PUs), and links with the following requests:

NCPl with an ACTPU request

• Each link (Ll and L2) with ACTLINK requests

Each PU (PUl and PU2) with a CONT ACT and ACTPU requests

Each LU (LUl, LU2, and LU3) with ACTLU requests

Mini-Course 16. Multiple Domain Communication 16-3

Cross-Domain Resources

SSCPI must establish ownership of the resources in the following sequence:

• NCPI (PU.T4)

• Links

• Physical Units (PU.Tis and PU.T2s)

• LUs

Now assume that VfAMl, VfAM2, and VTAM3 have established ownership and
control over all of their resources. LUl, LU2, LU3, and LU4 may establish
sessions and communicate with IMS, JESl, and APPLIC "A" in domain 1.
LUS and LU6 may establish sessions and communicate with JES2, TSO, and
APPLIC "B" in domain 2. And LU7, LU8, LU9, LUIO, and LUl 1 may establish
sessions and communicate with CICS, POWER, and APPLIC "C" in domain 3.

Now that the three domains are interconnected by links, the logical units in each
domain should be able to establish sessions and communicate with logical units in
the other two domains. In order for logical units in domain 1 to initiate sessions
with logical units in the other two domains, the logical units in domains 2 and 3
(called cross-domain resources to domain 1) must be defined to VTAMl in domain
1. The same is true for domains 2 and 3. For logical units in domain 2 to initiate
sessions with logical units in domains 1 and 3, the logical units in those two
domains must be defined to VTAM2 in domain 2. And the logical units (LUs) in
domains 1 and 2 must be defined to VT AM3 for the LUs in domain 3 to initiate
sessions with the LUs in domains 1 and 2.

Cross-Domain Resource Managers

16-4 ACF/VTAM Concepts

You know that the logical component in VT AM that is the central point of control
for the network is called the systems service control point (SSCP). Among other
things, the SSCP assists logical units to establish sessions with other logical units in
the domain. For example, a peripheral logical unit submits a logon to its SSCP
requesting a session with a VT AM program. Both logical units must be in session
with the SSCP for the session to be established.

Now consider what happens when that same peripheral logical unit submits a logon
to its SSCP requesting a session with a VT AM program in another domain. Unless
the SSCP knows about the VT AM program in the other domain, the logon request
will fail.

In addition to being aware of the logical unit in the other domain, the SSCP must
be in communication with the SSCP that owns that logical unit for the
cross-domain session to be established. A session must be established between the
two SSCPs for the logical units in one domain to establish sessions with logical
units in the other domain.

An SSCP has two logical components. One is called the SSCP and it manages the
initiation and termination of sessions within its domain. The other is called the
cross domain resource manager (CORM) and it handles the initiation and
termination of cross-domain LU-LU sessions. Figure 16-2 shows a CORM in C?ach
domain.

LU1

DOMAIN 1

OS/VS1

IMS JES1
APPL IC

''A''

VTAM1

I SSCP1 I L.i:IS.11
01

PU1 PU2

DOMAIN2

OS/MVS

JES2 TSO
APPL IC

"B"

VTAM2

I SSCP2 I l!·"M'
03

PU3 PU4

Figure 16-2. Cross-Domain Resource Managers (CDRMs)

Establishing Cross-Domain Sessions

DOMAIN3

DOS/VS

CICS POWER APPLIC
"C"

VTAM3

I SSCP3 I i1hi&FH
04

NCP2
05

LU11

Defining Cross-Domain Resource Managers (CDRMs)

The network definer must define to each domain its own cross domain resource
manager (CORM) as well as CDRMs in other domains that this CORM will
communicate with. CORMs may be defined in a single definition list or in multiple
definition lists. Here is a definition list for domain 1.

CDRM1
CDRM2
CDRM3

VBUILD
CDRM
CDRM
CDRM

TYPE=CDRM
SUBAREA=01,ISTATUS=ACTIVE
SUBAREA=03,ISTATUS=INACTIVE
SUBAREA=04,ISTATUS=INACTIVE

This CORM list shows that CORM! is automatically activated
(ISTATUS=ACTIVE) when VTAMl activates this list. This CORM list also
shows that CORM2 and CORM3 are initially inactive. They can be activated by
network operator commands. CORM! is called the host CORM, because it resides
in the domain of these definitions. CORM2 and CORM3 are called external
CORMs, because they reside in domains external to this domain.

A domain is willing to participate in cross-domain sessions when its host CORM is
active.

The following defintions are for domain 2.

CDRM1
CDRM2
CDRM3

VBUILD
CORM
CORM
CORM

TYPE=CDRM
SUBAREA=01,ISTATUS=INACTIVE
SUBAREA=03,ISTATUS=ACTIVE
SUBAREA=04,ISTATUS=INACTIVE

Mini-Course 16. Multiple Domain Communication 16-5

CDRM2 is the host CDRM while CDRMl and CDRM3 are external CDRMS.
The only difference between these definitions and the ones for domain I is the
!STATUS definition. Typically, ISTATUS=ACTIVE is defined for the host
CDRM.

The following definitions are for domain 3.

CORM1
CORM2
CORM3

VBUILO
CORM
CORM
CORM

TYPE=CORM
SUBAREA=01,ISTATUS=INACTIVE
SUBAREA=03,ISTATUS=INACTIVE
SUBAREA=04,ISTATUS=ACTIVE

Once the CDRM in each domain is active, CDRM-CDRM sessions can be
established. A CDRM-CDRM session must be established before cross-domain
LU-LU sessions can be established.

Defining Cross-Domain Resources

16-6 ACF /VTAM Concepts

Now read about the definition of cross-domain resources (logical units not owned
by the domain). The network illustrated in Figure 16-2 is the basis for this
discussion.

Looking at the figure, you should understand that all logical units in domains 2 and
3 are cross-domain as far as SSCP I is concerned. The same reasoning applies to
domains 2 and 3.

In order for the resources (LUI, LU2, LU3, LU4, JESI, IMS, and application
"A") in domain 1 to initiate a session with the resources in domains 2 and 3, the
resources in those domains must be defined to SSCPl as cross-domain resources.
These resources can be grouped together to form one definition set, or there can be
several definition sets, each defining one or more resouces. For this discussion,
assume that all cross-domain definitions for an SSCP are grouped together, and
refer to that group of definitions as a cross-domain resource (CDRSC) set.
Now take a look at a partial CDRSC set for SSCPl.

JES2
TSO
B
LU5
LU6
LU7
CICS
c

VBUILO
CO RSC
CO RSC
CO RSC
CO RSC
CD RSC
CO RSC
CO RSC
CO RSC
0

0
0

TYPE=CORSC
CORM=CORM2,ISTATUS=ACTIVE
CORM=CORM2,ISTATUS=ACTIVE
CORM=CORM2,ISTATUS=ACTIVE
CDRM=CDRM2,ISTATUS=ACTIVE
CORM=CORM2,ISTATUS=ACTIVE
CORM=CORM3,ISTATUS=ACTIVE
CORM=CORM3,ISTATUS=ACTIVE
CORM=CDRM3,ISTATUS=ACTIVE

Activating this set of definitions allows logical units in domain 1 to initiate sessions
with logical units in the definition list. For example, LUI in domain 1 can initiate a
session with CICS in domain 3 because CICS is defined as a cross-domain resource
in domain 1. However, LUI cannot initiate a session with POWER in domain 3
because POWER is not defined as a cross-domain resource in domain 1.

Cross-domain resources must be defined in the domain that initiates the session.
For example, LUI in domain 1 initiates a session with CICS in domain 3.
The network definer must define CICS as a cross-domain resource in domain 1.
CDRMI in domain 1 must know the subarea of the CDRM in CICS's domain to
send a session setup request. Optionally, LUI may be defined as a cross-domain

,, .-.- . r·

resource in domain 3. Definitions for the host CORM in domain 3 (CDRM3) can
specify that that domain automatically define LUl as a cross-domain resource
when a session request is received from that LU. If the definitions do not specify
automatic definition of cross-domain resources, then the network definer must
include a cross-domain definition for LUl in domain 3 and for any other LUs that
request sessions with LUs in domain 3.

Now that the CDRMs and CDRSCs are defined, you will see how cross-domain
sessions are established. CDRM-CDRM sessions must be established first, then
cross-domain LU-LU sessions can be established.

Establishing CDRM-CDRM sessions

DOMAIN 1

OS/VSl

IMS JESl
APPLIC
"A"

VTAM1

I SSCPl 1®*1
01

L1

LU1 LU2 LU3

PU1

Figure 16-3. CDRMl and CDRM2

Now CDRMl in domain 1 will establish a session with CDRM3 in domain 3 (see
Figure 16-3).

DOMAIN 2

OS/MVS

JES2 TSO
APPL IC

""B"

VTAM2

I SSCP2 I I CD.RM2 I
03

DOMAIN 3

DOS/VS

CICS POWER APPLIC
"C"

VTAM3

I SSCP3 I ll?ij@'I
04

NCP2
05

LU11

The CORM definition for domains 1 and 3 are shown below. Study the definitions,
then continue.

CORM DEFINITION LIST FOR DOMAIN 1

CDRM1
CDRM2
CDRM3

VBUILD
CORM
CORM
CORM

TYPE=CDRM
SUBAREA=01,ISTATUS=ACTIVE
SUBAREA=03,ISTATUS=INACTIVE
SUBAREA=04,ISTATUS=INACTIVE

CORM DEFINITION LIST FOR DOMAIN 3

CDRM3
CDRM1
CDRM2

VBUILD
CDRM
CDRM
CORM

TYPE=CDRM
SUBAREA=04,ISTATUS=ACTIVE
SUBAREA=01,ISTATUS=INACTIVE
SUBAREA=03,ISTATUS=INACTIVE

Mini-Course 16. Multiple Domain Communication 16-7

16-8 ACF/VTAM Concepts

When the CDRM definition list for domain 1 is activated, CDRMl is activated,
while CDRM2 and CDRM3 are not activated. When the CDRM definition list for
domain 3 is activated, CDRM3 is activated, while CDRMl and CDRM2 are not
activated. Both domain 1 and domain 3 perceive their own CDRM as active, but
perceive the other CDRMs as inactive.

To initiate the CDRM1-CDRM3 session, the following network-operator
command is issued to SSCPl in domain 1.

VARY NET,ACT,ID=CDRM3

SSCPl receives the VARY command and searches its tables for the name CDRM3.
When CDRM3 is found, SSCPl determines that it is a cross-domain resource
manager (CDRM) and gives control to CDRMl so it can activate CDRM3.
The definition for CDRM3 (see above CDRM definition list for domain 1) shows
that it is located in subarea 03 and is inactive as far as domain 1 is concerned.
Now CDRMl will issue an activate cross-domain resource manager (ACTCDRM)
request. This will establish the CDRM1-CDRM3 session. The request flow is
shown in Figure 16-4.

, . :-:.°'i~:.f · i . 'CDRM1 , . . l. ,;. ·, :c!>ru.,';_ . , "-:-' · "< · :~J
• = • • • • ~ ~ ~ : ~~ • a : • • ~ ' - -. ~ ~ ·~: ; • - ~ ;~)1

I ACTCORM -1-----+--.....

------1-+Response

SOT--+-----+--.

---r-----t-+Response

Figure 16-4. Establishing a CDRM-CDRM Session

The figure shows the ACTCDRM request flowing from CDRMl to CDRM3.
Upon receipt of the ACTCDRM request, CDRM3 verifies that the sending CDRM
is valid by comparing the sender's subarea number with the list of subarea numbers
in its CDRM definition list(s). In this case, the sending CDRM (CDRMl; subarea
01) is valid (see above CDRM definition list for domain 3). CDRM3 returns a
positive response to CDRMl, and the CDRM1-CDRM3 session is established.
CDRM3 is marked as active in domain 1 and CDRMl is marked as active in
domain 3. CDRMl sends the SDT request to place the session in the
data-traffic-active state.

·The CDRM1-CDRM3 session could have been initiated from domain 3 as well as
from domain 1.

Establishing Cross Domain LU-LU Sessions

DOMAIN 1

OSNS1

Now that there is a CDRM1-CDRM3 session, LU-LU sessions can be established
between the two domains.

The following describes a session formation between LUl in domain 1 and CICS in
domain 3; assume that LUl sends a logon (INIT-SELF) to CICS. Figure 16-5
illustrates the logon flow as well as the data flow path between LUl and CICS
after the LU-LU session is established. Study the figure, then read the discussion
that follows.

DOMAIN2 DOMAIN3

OS/MVS DOSNS

IMS JES1
APPLIC

JES2 TSO
APPL IC POWER APPLIC

I
I

I

I
I

I

I
I

I

"A"

VTAM1

ISsCPi1 I CD~~1 I '7-\01 I

'

(PU1

Logon Request
(IN IT-SELF)

LU3

Figure 16-5. Cross-Domain Logon

PU2

Oat

"B"

VTAM2

I SSCP2 I I CDRM2 j
03

"C"

VTAM3

(3scP3 I I coRM3 j
04 I

r

- - - -/

NCP2
05

I

LU11

LUl is owned by SSCPl, therefore the logon request must flow to SSCPl. LUl
includes the symbolic name CICS in the INIT-SELF request but SSCPl has no
knowledge of CICS since it does not reside in its domain. Therefore SSCPl gives
the logon request to CDRMl and since CICS is defined as a cross-domain
resource, CDRMl processes the logon.

CDRMl communicates with CDRM3 to determine if the session can be
established. CICS must be active and accepting logons, and the class of service
specified in the logon must be available for route selection. Once the logon request
has been validated the logon is sent to CICS and CICS issues an OPNDST macro
to send the BIND request to LUl and the CICS-LUl session is established.

Figure 16-6 illustrates the request flow to establish the CICS-LUl cross-domain
session. Study the figure before you read the discussion that follows.

Mini-Course 16. Multiple Domain Communication 16-9

16-10 ACF /VI' AM Concepts

- .. ~ ~~· ?- -,;A,_ · -~·-~: ~:\'.f~' . , t

LU1 . "~'!?; :.,\:>~IJ;l '.» . ..~1,'1 ' . ,..1,1:,·;::, ·!·. ~" ·. :CICS ~
~. - CJ • ._-'· ! . l .. ,~~,;.:-..,~,_ .• ;,

(INIT-SELFI ~- -1 ... COINIT -ti----_.·
I •4 -tli----. +I +Response I
~ +Response I

CDCINIT ___ .__

I f I I +Response I I
I - --,--+ Logon

CINITJ.+ Exit

f I I I BIND
+Responw-t-----t-----+----+-----+-----1--...

+---:-- SESSST
I +Response Y .,._.J__ I

•f-...._ __ _..I CDSESSST I
I +Response ... 1 ____ f.._..... I

t--l-- I

Figure 16-6. Establlsblng Cross-Domain LU-LU Session

SSCPl receives the logon from LUl and searches its local resource definition set(s)
for the name CICS. When the name is not found, control is given to CDRMl,
which searches its cross-domain resource sets(s) and finds CICS. The search
reveals that CICS's cross domain resource manager (CORM) is CDRM3, located
in subarea 04. Now CDRMl will communicate with CDRM3 to verify the validity
of the logon.

CDRMl sends the SNA request cross-domain initiate (CDINIT) to CDRM3.
The CDINIT request contains the secondary LU name (LUl), the primary LU
name (CICS), and the class of service name. Upon receipt of the CDINIT request,
CDRM3 determines that CICS is active and accepting logons, and determines that
the specified class of service for the LU-LU session is available. Therefore,
CDRM3 returns a positive response to CDRMl. A positive response is returned to
LUl to complete the INIT-SELF request.

Now CDRMl sends the cross-domain control initiate (CDCINIT) request which
contains the session parameters as specified by LUl and the logon message, if any.
CDRM3 receives the CDCINIT and returns a positive response if CICS is still
active and accepting logons.

Next, CDRM3 gives control to SSCP3. SSCP3, in turn, invokes CICS's logon exit,
providing the control initiate (CINIT) request unit. The CINIT contains all the
logon information sent over from domain 1. The rest of the session initiation is
handled by the two LUs, the same as for a single domain network.

CICS issues an OPNDST macro to send the BIND request to LUl, and a positive
response from LUl establishes the session. Both SSCPs (SSCPl and SSCP3) need
notification that the session was established. The primary LU (CICS) notifies

SSCP3 that the session was established by sending the session started (SESSST)
request to SSCP3. SSCP3 gives control to CDRM2 to notify domain 1 that the
session was established. CDRM3 sends the cross domion session started
(CDSESSST) request to CDRMl, which in tum notifies SSCPl. Now both SSCPs
and both LUs are aware of the LU-LU session.

The SDT request is sent to place the session in a data traffic active state.

Terminating Cross-Domain Sessions

You have seen how to establish CDRM-CDRM sessions and cross domain LU-LU
sessions. Now let's see how the sessions are terminated.

Terminating Cross Domain LU-LU Sessions

DOMAIN 1

OSNS1

Figure 16-7 illustrates two LU-LU sessions: (1) LUl-CICS, and (2) LU2-APPLIC
"C" The figure also shows LU2 sending a TERM-SELF request to APPLIC "C"

DOMAIN2 DOMAIN3

OS/MVS

IMS JES1
APPL IC

JES2 TSO
APPL IC POWER to~PLIC

"A"

VTAM1

I SSCP~ I I C[t~1 I
' 01

"B"

VTAM2

I SSCP2 I I CDRM2 I
03

:·."'. .. 'C"·

VTAM3

-, S-S-CP-3-104 ~

I ,, __
i
I

Logoff Request
(TERM-SELF)

LU11

Figure 16-7. Two Croa-Domain LU-LU Sessions

Like the logon (INIT-SELF), the logoff (TERM-SELF) is directed to the SSCP
that owns the logical uni~, SSCPl in this example.

Figure 16-8 illustrates the sequence of requests to terminate the session. Study the
figure and then continue.

Mini-Course 16. Multiple Domain Communication 16-11

16-12 ACF/VTAM Concepts

TERM-SELF-r---t I
--tcDTERM

I
---.... ,-• I

4 4 ' I +Response I I LOSTERM EXIT

--,•CTERM ~

I I CLSDST

•4-...__ __ _..... _____ __ _..... ___ _.._ __ __..I UNBIND

+Response ------'--------------""'-----'I'--_
I

~SESSEND

I I I +Response~

I I I +---1 - -~---CDSESSEND~---
1 I

I +Response +1---•1-...

I

Figure 16-8. Terminating LU-LU Sessions (TERM-SELF)

SSCPl receives the TERM-SELF request, determines that the request is not
directed to a resource in this domain, and gives control to CDRMl. CDRMl
transmits the cross-domain terminate (CDTERM) request to notify CDRM3 of the
logoff request. The contents of the CDTERM request identify the primary and
secondary LUs as well as the type of logoff. CDRM3, in turn, gives control to
SSCP3 to forward the logoff to application 11 C". SSCP3 drives the LOSTERM exit
of application 11 C 11

, providing a control terminate (CTERM) request.
The CTERM request supplies the network address of LU2 as well as the type of
terminate request.

APPLIC 11C" issues a CLSDST macro instruction when it is ready to terminate the
session. The CLSDST causes an UNBIND request to be sent to LU2, terminating
the session. Now both SSCPs must be notified that the session has been
terminated. APPLIC 11C" sends the session ended (SESSEND) request to notify
SSCP3 that the session has been terminated. APPLIC 11 C" sends the SESSEND
request after it receives a positive response for the UNBIND request.

Now SSCPl must be notified. SSCP3 gives control to CDRM3 and it transmits the
cross-domain session ended (CDSESSEND) request to CDRMl notifying that
domain of the terminated session. CDRMl, in turn, notifies SSCPl. The
boundary function for LU2 in NCPl also sends a SESSEND request to SSCPl.
This is done in case the CDRM1-CDRM3 session has been terminated and the
CDSESSEND request cannot be sent to SSCPl. If SSCPl is not notified that the
LU2-CICS session has been terminated, it will not allow another session with LU2.

-.:·, ... ·· .. -· ..• ~ .. --:" •--~~·--,,,-1

Terminating CDRM-CDRM Sesmons

This is the sequence of commands to terminate the CORM- CORM session.

Previously, a CORMI-CORM3 session was established (see Figure 16-7).
Now the session will be terminated. Assume that there are no LU-LU sessions
between domains 1 and 3 at this time.

The following network operator command is issued to SSCP 1 in domain 1 to cause
the CDRM1-CDRM3 session to be terminated:

V'ARY NET,INACT,ID=CDRM3

SSCPl receives the VARY command and gives control to CORMl since this is a
cross-domain session. Figure 16-9 shows the request sequence to terminate the
session.

,-<'1·.--· c CDRM1 · 1:· CDRMl ~'f:'!>Y

I

J DACTCDRM '------°"
I I

t---it-----1-+Response

Figure 16-9. Terminating a CDRM-CDRM Session

CDRMl transmits the deactivate cross domain resource manager (OACTCORM)
request to CORM3, terminating the session.

If LU-LU sessions exist between domains 1 and 3 when the network operator
command (VARY NET,INACT,ID=CDRM3) is submitted, the CORMI-CDRM3
session will not terminate immediately. However, the LOSTERM exit of each LU
that has a cross-domain session is scheduled, notifying the LU that the
CDRM-CDRM session is to be terminated. As soon as all the LU-LU sessions are
terminated, the CDRM1-CORM3 session terminates.

Please tum to Mini-Coune 16 in your Personal Reference Guide and do Exercise 16.1.

Mini-Course 16. Multiple Domain Communication 16-13

