
Systems

GC27-6995-2
File No. 5370-30

VTAM Macro Language
Reference

Virtual Telecommunications
Access Method (VTAM)

VTAM Level 1.1

DOS/VS
OS/VS1
OS/VS2

Third Edition (December 1974)

This edition replaces the previous edition (GC27-6995-1) and Technical Newsletter GN27-1450
and makes them both obsolete. It applies to VTAM Level 1.1 and is for planning purposes until
this level of VTAM becomes available. Where information applies only to a particular system or
release, this is listed.

Specifications are subject to change; such changes will be reported in subsequent revisions or
technical newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form has been provided at the back of this publication for reader's comments. If the form has
been removed, address comments to the IBM Corporation, Department 64P, Neighborhood
Road, Kingston, N.Y. 12401

©Copyright International Business Machines Corporation, 1973,1974

PREFACE

This book is a reference manual tnat contains detailed information on the macro
instructions used with the Virtual Telecommunications Access Method (VT AM).
The macro instructions are used to write the telecommunication portions of
application programs that communicate with terminals through VT AM. This
manual provides the specifications needed to code such programs.

Although a program could be coded directly from this manual, those who are
unfamiliar with VTAM application programming should first read VT AM Macro
Language Guide, GC27-6994. The Guide is a companion book to this one.

The beginning of this book lists the services provided by VTAM and indicates the
macro instructions that are used to request each service. The beginning of the book
also explains the conventions used throughout the book to indicate how the macro
instructions are to be coded.

The rest of the book (except for the appendixes) contains detailed descriptions of
the macro instructions, arranged in alphabetic order. Each description is presented
in a fixed format with the information about each macro instruction presented in
the same sequence.

With few exceptions, VTAM macro instructions can be coded without regard for
the particular operating sytem (DOS/VS, OS/VSI, or OS/VS2) under which the
program will be running. When there is an exception to this, that exception is
identified in the macro instruction description.

Appendix A is a summary of the control block fields you use with each macro
instruction. Once you have become familiar with the macro instructions, you will
be able to use this appendix as a quick reference source.

Appendix B indicates the line control characters that VTAM inserts into outgoing
data and recognizes incoming data. This information is shown for each BSC and
start-stop device supported by VT AM.

Appendixes C and D describe the return codes that are passed to the application
program upon completion of each VT AM macro instruction.

Appendixes E and F describe the operand formats and special forms of the GENCB,
MODCB, SHOWCB, and TESTCB macro instructions.

Appendix G summarizes the contents of the general purpose registers upon
completion of VT AM macro instructions.

Appendix H shows the format of the application program control blocks and the
DSECTs needed to access these control blocks with assembler instructions.

Appendix I contains information relating to specific devices and the way the VT AM
macro instructions should be used with the devices.

The appendixes are followed by a glossary and an index. The index includes page
numbers for all of the macro instruction operands and all of the fixed values that
can be supplied with the operands.

iii

iv

The reader should be familiar with Introduction to VTAM, GC27-6987, and with
those parts of the OSjVS and DOSjVS Assembler Language GC33-4010, that
explain the rules for coding assembler expressions. The reader should also be
familiar with the characteristics of the devices with which the program will be
communicating, with the line-control discipline (if start-stop or BSC) that will be
used with each one, and with teleprocessing concepts in general. Those unfamiliar
with teleprocessing concepts can read Data Communications Primer, GC20-l668.
The back of the Primer contains a telecommunications bibliography.

A few portions of the VTAM language cannot be fully utilized without a working
knowledge of the Network Control Program of the communications controller. If
the reader is not familiar with this control program, a copy of the following
publication should be obtained:

IBM 3704 and 3705 Communications Controllers Network Control ProgramjVS
Generation and Utilities Guide and Reference Manual (For OSjVS and DOSjVS
VTAll1 Users), GC30-3008. This publication is referred to as the NCP Generation
and Utilities Guide in the remainder of this manual.

CONTENTS

Functions Provided by the VT AM Macro Instruction

Register Restrictions

Categories of VT AM Macro Instructions

A Note on VTAM-VSAM Similarities

A Note on Control Block Manipulation

How the Macro Instructions are Described
The Assembler Format Table
Operand Descriptions
Examples
Return of Status Information

ACB-Create An Access Method Control Block
CHANGE-Change a NIB's PROC Options or USERFLD Data
CHECK-Check Request Status . . • . . . • • . . • . • .
CLOSE-Close One or More ACBs • • • . .
CLSDST -Disconnect Terminals from the Application Program
DO-Initiate LDO-specified I/O Operations
EXECRPL-Execute a Request
EXLST -Create an Exit List
GENCB-Generate a Control Block
INQUIRE-Obtain Terminal Information or Application Program Status .
INTRPRET -Interpret an Input Sequence .•...•
LDO-Create a Logical Device Order . . . •
MODCB-Modify the Contents of Control Block Fields
NIB-Create a Node lnitialization Block
OPEN-Open One or More ACBs ••.••..
OPNDST -Establish Connection with Terminals
READ-Read Data Into Program Storage •.•
RECEIVE-Receive Input from a Logical Unit •
RESET -Cancel an I/O Operation • . . . • .
RESETSR-Cancel RECEIVE Operations and Switch a Logical Unit's CA-CS Mode
RPL-Create a Request Parameter List . • • •
SEND-Send Output to a Logical Unit • • • • • •
SESSIONC-Send SDT, Clear, or STSN Indicators to a Logical Unit • .
SETLOGON-Reset an ACB's Logon Status .•••.•
SHOWCB-Extract the Contents of Control Block Fields
SIMLOGON-Generate a Simulated Logon Request .•.•.
SOLICIT -Obtain Data from a Terminal ..•....
TESTCB-Test the Contents of a Control Block Field .• ••.••
WRITE-Write a Block of Data from Program Storage to a Terminal

Appendix A: Summary of Control Block Field Usage

2

3

5

6

7
7

10
11
11

12
15
17
19
22
26
28
30

.43
47
53
56
63
65
78
82
88
91
98

102
106
132
139
144
148
151
154
157
162

167

Appendix B: Line-Control Characters Recognized or Sent by VTAM Macro Instructions 175

Appendix C: Return Codes for RPL-Based Macro Instructions 179
Return Code Posting 179
Types of Return Codes 180
Specific Error Return Codes (FDBK2) 185
The FDBK Field 205
The SENSE Field 208
The Logical Unit Sense Fields 208

Appendix D: Return Codes for Manipulative Macro Instructions 211

Appendix E: Summary of Operand Specifications for the Manipulative Macro Instructions 215

Appendix F: List, Generate, and Execute Forms of the Manipulative Macro Instructions 223

Appendix G: Summary of Register Usage 231

Appendix H: Control Block Formats and DSECTs 233
Format of the DOS/VS ACB 234
Format of the OS/VS ACB 235
ACB DSECT (IFGACB) 236
Format of the EXLST . . 237

v

vi

EXLST DSECT (IFGEXLST)
Format of the DOS/VS RPL
Format of the OS/VS RPL .
RPL DSECT (IFGRPL)
RTNCD-FDBK-FDBK2 DSECT (ISTUSFBC)
Format of the NIB
NIB DSECT (ISTDNIB)
DEVCHAR DSECT (ISTDVCHR)
PROC DSECT (ISTDPROC)

Appendix I: Device Considerations
IBM 1050 Data Communication System
IBM 2740 Communication Terminal, Modell
IBM 2740 Communication Terminal, Model 2
IBM 2741 Communication Terminal
IBM Communicating Magnetic Card Selectric Typewriter
IBM World Trade Telegraph Station
IBM System/7 CPU
AT&T 83B3 Selective Calling Station
AT &T Teletypewriter Terminal, Models 33 and 35
Western Union Plan U5A Station . . .
IBM 2770 Data Communication System
IBM 2780 Data Transmission Terminal .
IBM 2972 General Banking Terminal System, Models 8 and 11
IBM 3270 Information Display System (Record-Mode)
IBM 3270 Information Display System (Basic-Mode)
IBM 3600 Finance Communication System
IBM 3735 Programmable Buffered Terminal
IBM 3740 Data Entry System
IBM 3780 Data Transmission Terminal
IBM System/3 CPU .
IBM System/370 CPU

Glossary .

Index ••

•

238
239
240
242 .
246
250
251
252
254

255
255
257
258
259
260
261
262
264
265
266
267
268
269
270
273
276
277
279
280
281
282

283

289

FIGURES

Figure 1. Categories of VTAM Macro Instructions 3
Figure 2. Basic Structure of the Description of Each Macro 8
Figure 3. Parameter List for the EXLST Exit-Routines . . 36
Figure 4. ACB-Oriented and NIB-Oriented Exit-Routines . 69
Figure 5. The Effect of BLOCK, MSG, TRANS, and CONT on Solicitation 71
Figure 6. Devices Applicable to Each NIB Processing Option 77
Figure 7. The Major RECEIVE Options 91
Figure 8. The Major RESETSR Options 102
Figure 9. The RPL Fields Applicable to the Macro Instructions That Can Modify RPLs 129
Figure 10. The Major SEND Options 131
Figure 11. The Major SESSIONC Options 139
Figure 12. Types of STSN Indicators and Their Possible Responses . . 143
Figure 13. Control Block Fields That Can Be Extracted with SHOWCB 150
Figure 14. Control Block Fields That Can Be Tested with TESTCB 160
Figure B-1. Line-Control Characters Used with Start-Stop Devices 176
Figure B-2. Line-Control Characters Used with BSC Devices . . . 177
Figure C-1. Posting Return Codes for Synchronous Requests 179
Figure C-2. Posting Return Codes for Asynchronous Requests (with CHECK) 180
Figure C-3. Posting Return Codes for Asynchronous Requests

(with an RPL Exit-Routine) 181
Figure C-4. Completion Conditions Applicable for Initial Completion of

Asynchronous Requests 182
Figure C-5. Completion Conditions Applicable for Completion of Synchronous

Requests or for CHECK 183
Figure C-6. RTNCD-FDBK2 Combinations Possible for Each Macro Instruction 186
Figure D-1. Register 0 Return Codes for Manipulative Macros When Register 15 Is Set to 4 211
Figure D-2. Register 0 Return Codes for Manipulative Macros When Register 15

Is Set to 12 (DOS/VS Only) 213
Figure E-1. Manipulative Macro Instruction Operands Exclusive of Control Block

Field Operands 215
Figure E-2. Manipulative Macro Instruction Operands for ACB Fields . 216
Figure E-3. Manipulative Macro Instruction Operands for EXLST Fields 216
Figure E-4. Manipulative Macro Instruction Operands for RPL Fields . 217
Figure E-5. Manipulative Macro Instruction Operands for NIB Fields 218
Figure F-l. The Forms of the Manipulative Macro Instructions 223
Figure F-2. Optional and Required Operands for the Nonstandard Forms of GENCB 226
Figure F-3. Optional and Required Operands for the Nonstandard Forms of MODCB 227
Figure F-4. Optional and Required Operands for the Nonstandard Forms of SHOWCB 228
Figure F-5. Optional and Required Operands for the Nonstandard Forms of TESTCB 229
Figure G-1. Register Contents Upon Return of Control . . . 231
Figure H-1. The Format of the DOS/VS ACB 234
Figure H-2. The Format of the OS/VS ACB 235
Figure H-3. The DOS/VS and OS/VS ACB DSECT (IFGACB) 236
Figure H-4. the Format of the DOS/VS and OS/VS EXLST . 237
Figure H-5. The DOS/VS and OS/VS EXLST DSECT (IFGEXLST) 238
Figure H-6. The Format of the DOS/VS RPL 239
Figure H-7. The Format of the OS/VS RPL 240
Figure ~-8. The DOS/VS and OS/VS RPL DSECT (IFGRPL) 242
Figure H-9. The RPL's RTNCD-FDBK-FDBK2 DSECT (lSTUSFBC) 246
Figure H-10. The Format of the DOS/VS and OS/VS NIB 250
Figure H-11. The DOS/VS and OS/VS NIB DSECT (ISTDNIB) 251
Figure H-12. The NIB's DEVCHAR DSECT (lSTDVCHR) 252
Figure R-13. The NIB's PROt DSECT (ISTDPROC) 254
Figure 1-1. Handling Input/Output For 1050 Components under DOS/VS and OS/VS1 256

vii

SUMMARY OF CHANGES

viii

These changes have been made since the previous edition and Technical Newsletter
GN27-1450:

• The Continue-Any or Continue-Specific mode can now be specified in the NIB
(as a parameter of the PROC operand). This allows individual terminals to be
handled differently with regard to whether the RPL-specified Continue-Any or
Continue-Specific value will apply on a RECEIVE that specifies OPTCD=ANY.
The NIB value will always be considered first. This allows different treatment,
for example, of terminals whose input requires a single RECEIVE from those
whose input requires multiple RECEIVEs.

• Figures have been changed to reflect that a SESSIONC macro instruction that
specifies CONTROL=CLEAR resets the sequence number to o.

• A sense code has been added for a remote BSC 3270 communicated with in
basic-mode. A SOLICIT or READ with OPTCD=SPEC will complete unsuccess­
fully with a sense indication of "Device end" when a 3270 display that has been
solicited is turned on. The display should be resolicited.

FUNCTIONS PROVIDED BY THE VTAM MACRO INSTRUCTIONS

Record-Mode

Basic-Mode

Common to Basic-Mode and
Record-Mode

The Virtual Telecommunications Access Method (VT AM) provides a program
running under a virtual storage operating system with the ability to communicate
with the terminals of a telecommunications network. The VT AM language
described in this book is the set of macro instructions that are available to request
this communication.

VTAM provides four I/O macro instructions to communicate with a logical unit.
These macro instructions (SEND, RECEIVE, RESETSR, and SESSIONC) are
designated as record-mode macro instructions. The macro instructions used to
communicate with BSC and start-stop terminals (READ, WRITE, RESET,
SOLICIT, DO, LDO, and CHANGE) are designated as basic-mode macro instruc­
tion. All other macro instructions described in this book can be used for both BSC
and start-stop terminals and for logical units.

The program using VTAM can request that VTAM perform or initiate the the
following actions; the macro instruction used to request each one is shown in
parentheses.

• Send a message or response to a logical unit (SEND).

• Receive a message or response from a logical unit (RECEIVE).

• Cancel a RECEIVE prematurely; switch a logical unit's continue-specific mode
or continue-any mode (RESETSR).

• Send a clear, STSN, or SDT indicator to a logical unit and receive the response
(SESSIONC).

• Obtain data from one or a group of terminals and keep the data in VT AM
buffers. Repeat this action until a specified amount of data has been received
(SOLICIT).

• Using data already obtained from any terminal or from a specified terminal,
move the data from VT AM buffers to an area in user storage (READ).

• Obtain data from a specific terminal and move it directly into user storage
(READ).

• Transmit data from an area in program storage to a specified terminal (WRITE) .

• Automatically follow an output operation with an input operation (WRITE) .

• Cancel an I/O operation prematurely; reset an error lock set for a device
(RESET).

• Check the completion status of any of the above activities (CHECK).

• Execute any request defined by an RPL (EXECRPL).

The I/O and I/O-related facilities listed above can be used by a program only after
certain preparation has taken place. Control blocks must be built that describe the
specific nature of the I/O operation to be performed. Since VTAM allows terminals
to be used first by one program, then by another, connection between the program
and the terminal must be established before any I/O activity can take place. The
connection itself needs control blocks that describe the specific nature of that
operation.

1

2

The following VTAM services prepare for and support subsequent I/O activity.

• Create a control block that contains the parameters of a connection or I/O
operation (RPL).,

• Create a control block that identifies the program to VTAM ~nd the
telecommunications network (ACB).

• Create a control block containing entry points for routines to be entered when
certain events occur, such as attention interruptions, hardware errors, or a
terminal's request for connection to the program (EXLST).

• For each terminal, create a control block that contains information that affects
subsequent communication with a particular terminal (NIB).

• Generate any of the above control blocks during program execution rather than
during program assembly; optionally generate them in dynamically allocated
storage (GENCB).

• Test, extract, or modify the parameters contained in these control blocks
(TESTCB, SHOWCB, MODCB).

• Identify the program to VTAM and the telecommunication network (OPEN).

• Establish connection with a terminal or with a group of terminals (OPNDST).

• Simulate a terminal's request for connection, so that a user-written routine that
handles such requests will be invoked (SIMLOGON).

• Allow logon requests to be directed at the application program, notify VT AM
that the application program is no longer accepting logon requests, or indicate
that the application program is once again accepting logon requests
(SETLOGON).

• Obtain the device characteristics or the logon message of a terminal requesting
connection, or find out how many terminals are currently connected to the
program and how many are waiting to become connected (INQUIRE).

• Disconnect a terminal from the application program; optionally request that the
disconnected terminal be connected to another program (CLSDST).

• Disconnect the application program from VT AM and the telecommunications
network (CLOSE).

CATEGORIES OF VTAM MACRO INSTRUCTIONS

Throughout the macro instruction descriptions and the appendixes of this book,
you will encounter the terms manipulative, declarative, RPL-based, and ACB-based,
macro instructions. These terms refer to categories of VT AM macro instructions.
Figure 1 shows these categories and identifies the macro instructions that are
included in each one.

DEC LA RA TIVE MACROS

ACB
EXLST
RPL
NIB
LDO

MANIPULATIVE MACROS

GENCB
MODCB
SHOWCB
TESTCB

ACB-BASED MACROS

[OPEN
CLOSE

RPL-BASED MACROS

CONNECTION MACROS

OPNDST
CLSDST

These build control blocks during program
assembly. They are the only nonexecutable
macro instructions.

These build and manipulate control blocks
during program execution.

These open and close the application
program's ACB.

These are used to request connection and
data transfer. They all use an RPL, and, with
the exception of CHECK, permit RPL
modifications to be specified in the macro
instruction itself.

I/O MACROS MACROS THAT SUPPORT
CONNECTION OR I/O

SEND
RECEIVE
RESETSR
SESSIONC

SOLICIT
READ
WRITE
RESET
DO

CHANGE
INQUIRE
INTRPRET
SETLOGON
SIMLOGON
EXECRPL
CHECK

Figure 1. Categories of VT AM Macro Instructions

3

REGISTER RESTRICTIONS

4

Registers 2-12 (and only these registers) can be used with the macro instructions
described in this book. This restriction applies both to registers used for the macro
instruction itself (register notation for macro instruction operands) and to registers
the programmer sets and expects to remain unmodified by the macro instruction.

The restriction to registers 2-12 applies regardless of the type of operating system,
and regardless of whether the macro is an RPL-based, ACB-based, or manipulative
macro instruction.

There is one exception to this rule: register 1 can be used to supply an RPL address
for any RPL-based macro instruction. Example: SEND RPL=(1)

There is no error return code that indicates an attempted misuse of registers; VTAM
does not enforce the register restriction in any way. The results of using registers 0,
1, 13, 14, or 15 (other than for the exception cited above) are unpredictable.

Readers interested in a description of how VTAM uses the restricted registers
should refer to the table in Appendix G.

A NOTE ON VTAM-VSAM SIMILARITIES

The Virtual Storage Access Method (VSAM) is an access method for direct access
storage devices (DASDs). Like VTAM, it is available to programs running under
virtual storage operating systems. There is considerable similarity between the two
access methods with regard to control block names and fields, control block
manipulation, and general approach to request handling.

Both access methods use an ACB. The VT AM ACB essentially represents an
application program. In VSAM, however, where the user has no need of an
application program control block, the ACB represents the data set and is analogous
to a DCB or DTF. Both types of ACBs are, however, objects of the OPEN macro
instruction, and VSAM and VT AM ACBs can be opened with one macro
instruction.

Both types of ACB can contain pointers to an exit list. Both VSAM and VT AM exit
lists contain addresses of routines to be entered when error conditions occur
(LERAD and SYNAD exit-routines) and addresses of routines to be entered when
special situations occur.

Both access methods follow the same general I/O-request procedure: An I/O macro
instruction is issued that indicates an RPL. The RPL in turn contains information
about the request, such as the location of the I/O work area or whether the request
is to be handled synchronously or asynchronously.

Finally, both access methods use the satpe macro instructions-GENCB, MODCB,
TESTCB, and SHOWCB-to generate and manipulate their respective ACB, EXLST,
and RPL control blocks.

Although the control blocks are similar in name, function, and (to some extent)
content, the control blocks of one access method are not interchangeable with the
corresponding control blocks of another.

To make control blocks unique, a special VT AM operand is used when the control
block is generated. By specifying AM=VTAM on the ACB, EXLST, or RPL macro
instruction, the control block is generated in VTAM-compatible form. Omitting this
operand causes a VSAM-compatible control block to be built.

5

A NOTE ON CONTROL BLOCK MANIPULATION

6

The application program control blocks (ACB, EXLST, RPL, and NIB) can be
examined and modified two ways during program execution: The application
program can use the manipulative macro instructions (GENCB, MODCB, TESTCB,
or SHOWCB) or it can use IBM-supplied DSECTs.

The manipulative macro instructions are essentially branches to access method
routines that perform the control block manipulations specified on the macro.
Their advantage is their ease of use and the freedom from reassembly they provide
should control block formats be changed in future releases of VT AM or should you
change from one operating system to another. (To avoid reassembly, GENCB must
be used in place of ACB, EXLST, RPL, and NIB declarative macros, and MODCB,
rather than RPL-based macros, must be used to modify all RPLs.)

The DSECTs provide labeled overlays for each of the control blocks for each
operating system (the OS/VSl and OS/VS2 ACB,EXLST, and RPL control blocks
are identical, and the NIB is identical for all three operating systems). Their
advantage is the improved performance (less system overhead) available through
user-written assembler instructions. (Their disadvantage is that reassembly may be
required for future releases of VT AM. The impact of reassembly can be lessened,
however, by keeping the teleprocessing portions of the application program-that is,
the VT AM macro instructions-separate from the processing portions.) The general
use of DSECTs is described in "The DSECT Instruction" in OS/VS and DOS/VS
Assembler Language, GC33-40 1 O.

The manipulative macro instructions are described alphabetically in this manual;
tabulated information about them is contained in Appendixes E and F. The formats
and DSECTs for the DOS/VS control blocks are described in Appendix H.

HOW THE MACRO INSTRUCTIONS ARE DESCRIBED

The Assembler Format Table

First, for an understanding of how macro instructions descriptions are arranged in
this book, look at Figure 2. The balance of this section explains the conventions
used in this figure.

Each macro instruction description contains a three-column table that shows how
the macro instruction is to be coded. Since macro instructions are coded in the
same format as assembler instructions, the three columns correspond to an
assembler instruction's name, operation, and operand fields. This table is
subsequently referred to as the macro instruction's assembler format table.

Name: The macro instruction name provides a label for the macro instruction. The
name, if used, can be specified as any symbolic name valid in the assembler
language.

Operation: This field contains the mnemonic operation code of the macro
instruction. It is always coded exactly as shown.

Operands: The operands provide information for the macro expansion program in
the assembler. Generally, the information provided by the operands is made part of
a parameter list provided to VTAM during program execution. All of the macro
instruction's operands are indicated in the operands column of the assembler
format table.

Types of Operands: All operands are either keyword or positional operands. Most
of the VT AM macro instruction operands are keyword operands.

Keyword operands consist of a fixed character string (the operand keyword), an
equal sign, and a single or multiple operand value. The presence of the equal sign
distinguishes keyword from positional operands. Keyword operands do not have to
be coded in the order shown in the operands column. For example, a macro having
a LENGTH=data length operand and an AREA=data area address operand (as
indicated in the operands column) could be coded as either

AREALEN= I 32,AREA=WORK
or

AREA=WORK,AREALEN= 132

Keyword operands must be separated by commas. If a keyword operand is omitted,
the commas which would have been included with it are also omitted.

There are a few instances in the VT AM macro instructions where more than one
value can be coded after the keyword, but parentheses are required to do this. For
example, an operand specified as

FIELDS= lfield name I (field name, ...)}

can be coded as

FIELDS=RECLEN or FIELDS=(RECLEN)

when only one field name is used. When more than one field name is used, however,
the names must be enclosed in parentheses:

FIELDS=(RECLEN,RTNCD,FDBK2)

7

The above instruction is named
and its basic purpose shown.

An explanation tells what the
macro instruction does.

A table arranged in assembler
format depicts the. manner in
which the macro instruction is
coded.

The table is followed by
descriptions of each operand of
the macro instruction. Each
operand's function is explained.

Following the explanation, special
coding restrictions, examples of
use, and special programming
notes may appear.

The operand descriptions are
followed by an example of the
macro instruction.

The location of returned
information is specified here, and
the meaning of the returned
information is explained.

*

Example

Return of Status Information

* I f the macr.o instruction or operand appl ies only to logical units,
"Record-mode Only" is shown. If the macro instruction or operand
applies only to BSe or start-stop terminals, "Basic-mode Only" is
shown. If neither is shown, the macro instruction or operand
applies to all three types of terminal.

Figure 2. Basic Structure of the Descriptions of Each Macro

8

*

Positional operands must be coded in the exact order shown in the operands
column. Positional operands are separated by commas, as are all operands, but if a
positional operand is omitted, the surrounding commas must still be entered. For
example, consider a macro that has three positional operands DCB1, IN OUT, and
ACB 1. If all three are used, they are coded as

DCB1,INOUT,ACB1

but if only DCB1 and ACB1 are wanted, they are coded as

DCB1"ACBl

If the last positional operand or operands are omitted, the trailing comma or
commas should not be coded.

Operand Notation: A notational scheme is followed in the operands column to
show how, when, and where operands can be coded. The notational symbols are
never coded.

• A vertical bar (I) means "exclusive or." For example, AlB means that either A
or B (but not both) should be coded. Such alternatives can also be shown aligned
vertically, as shown in the next paragraph.

• Braces ({}) are used to group alternative operand values. One of the alternative
values enclosed with the braces must be chosen. The alternatives can be stacked
vertically:

OPTCD={~~~ND}
LOCK

or they can appear on one line:

OPTCD= {COND I UNCOND I LOCK}

Both expressions are equivalent. Note how the vertical bar is used to separate
alternative values that appear on one line. When the grouping of alternatives on one
line is unambiguous, the braces are usually omitted:

OPTCD=COND IUNCOND I LOCK

• An underscored value means that if no value for that operand is selected, the
macro will be expanded as though the underscored value had been coded. This
alternative is called the assumed value, or default value. For example:

OPTCD=COND IUNCOND I LOCK

Here COND is the assumed value. If the OPTCD operand is omitted,
OPTCD=COND is assumed by the assembler.

• Brackets ([]) denote optional operands. In the following example, the ERET
operand is optional.

AM=VTAM
[,ERET=error routine address]

• An ellipsis (...) indicates that whatever precedes it (either an operand value or an
entire operand) can be repeated any number of times. Ari operand appearing as

PROC=(processing option, ...)

could, for example, be coded as:

PROC=(CONFTXT ,DF ASYX,RESPX)

• Parentheses, equal-signs, and uppercase characters must be coded exactly as
shown in the operands column. Lowercase words represent values that the user
must supply.

9

Operand Descriptions

10

Comments and Continuation Lines: Comments may contain any characters valid in
the assembler language. Comments can be continued on more than one card by
placing an asterisk in column I as shown in the example below. In this publication,
the comments field is not shown in the macro's assembler format table.

Operands can also be continued on additional cards as shown below. Note that if
the operands are not extended to column 71, they must be separated after a
comma. The continuation character in column 72 can be any nonblank character,
but it cannot be a character of an operand. Comments must by separated from
operands by at least one blank. Throughout the rest of this publication, the
continuation characters are not shown.

Name Operation Operands

LABELl OPI OPERAND 1 ,OPERAND2,OPERAND3,OPERX

LABEL2 OP2

*

~column 1

AND4,OPERANDS THIS IS ONE WAY

OPERAND 1 ,OPERAND2,
OPERAND3,OPERAND4,

'-- column 16

AND THIS X
IS ANOTHER
WAY

column 72-

Following the assembler format table, each operand is named and described. Every
operand description begins with an explanation of the operand's function. If the
operand has more than one fixed value that can be supplied with it, the operand
description also explains the effect that each value has on the action performed by
the macro instruction.

Operand Format: The operand description may include a description of the format
in which the operand should be coded. This description is provided when the
format is an exception to these general rules:

• When a quantity is indicated (for example, RECLEN=data length), you can
specify the value with unframed decimal integers, an expression that is equated
to such a value, or the number of a register (enclosed by parentheses) that will
contain the value when the macro instruction is executed. The value cannot
exceed 32,767. Registers 1-12 can be specified for any RPL operand (that is,
when an RPL address is being supplied). Register notation for all other operands
is restricted to registers 2-12.

• When an address is indicated (for example, ACB=acb address) and the macro
instruction is a declarative macro instruction (see Figure 1), you can specify any
relocatable expression that is valid for an A-type address constant. If the macro
instruction is an RPL-based or ACB-based macro instruction, you can use any
expression that is valid for an RX-type assembler instruction (such as an LA
instruction). Registers 1-12 can be specified for any RPL operand (that is, when
an RPL address is being supplied). Register notation for all other operands is
restricted to registers 2-12.

If any of the terms used in the format descriptions are unclear, refer to the OSjVS
and DOSjVS Assembler Language, publication.

Examples

Return of Status Information

The valid notation for the operands of the manipulative macro instructions
(GENCB, MODCB, SHOWCB, and TESTCB) are not as straightforward. The rules
of syntax for the manipulative macro instructions are defined and tabulated in
Appendix E.

An example showing how the operand is coded used may also be included in the
operand description. Since there is an example elsewhere showing how the macro
instruction as a whole might be coded, an operand example is provided only if the
operand is unusually complex, or if its function can be better explained with an
example.

Following the description of the macro instruction are one or more examples.
These examples show possible ways that the macro and its operands might be
coded.

The way a macro can be specified can often be understood more readily from an
example than it can from the assembler format table, since the latter must show all
possible ways to specify the macro. A macro that appears to be complex in the
assembler format table usually appears far simpler when it is actually coded.

All of the macro instructions post return codes in registers and most indicate status
information in various control block fields when they are executed. Descriptions of
this status information, when applicable, can be found at the end of the macro
instruction description. Here you will often find references to Appendixes C and D,
where the status information is tabulated.

11

ALJ:S

A CB-Create an Access Method Control Block

12

The ACB identifies the application program to VT AM and to the teleprocessing
network.

Every application program must be defined by the installation before the program
can use VT AM to communicate with the terminals throughout the network. The
installation does this by creating an APPL entry for the application program in the
resource definition table during VTAM definition. The application program's
responsibility, then, is to create an ACB that indicates a particular APPL entry. The
application program is identified by VTAM when that ACB is opened with the
OPEN macro instruction.

When the ACB is opened, requests for connection and then requests for I/O
operations can be made (all connection and I/O requests indicate an ACB). When
the ACB is closed (with the CLOSE macro instruction), requests can no longer be
made, and any connections that were established are broken.

Using the ACB, the application program can provide an address of a list of
exit-routine addresses. The various routines represented in this list are invoked by
VTAM when special events occur, such as error conditions, logon requests, and
attention interruptions. The exit list pointed to in the ACB is created with the
EXLST (or GENCB) macro instruction.

Using the ACB, the application program can also prevent or allow VTAM to queue
logon requests that are directed to the ACB.

Every application program using VTAM must have an ACB. An application program
could contain more than one ACB (thus breaking itself down into "subappli­
cations"), but each ACB must indicate a unique APPL entry.

An ACB macro instruction causes an ACB to be built during program assembly. The
control block is built on a fullword boundary. (The ACB can also be built during
program execution with the GENeB macro instruction. See the GENCB macro for
a description of this facility.) The ACB can be modifled during program execution
with the MODCB macro instruction, but only before it has been opened. The ACB
cannot be modified while the ACB is open.

Name Operation Operands

[symbol] ACB AM=VTAM
[, APPLID=address of program's symbolic name]
[, P ASSWD=password address]
[, EXLST=exit list address]
[, MACRF= { LOGON I NLOGON }]

AM::;VTAM
Identifies the ACB built by this macro instruction as a VT AM ACB. This operand is
required.

APPLID=address of application program's symbolic name
Links the ACB during OPEN processing with a particular APPL entry in the
resource definition table. This both identifies the application program to VT AM

and associates the application program with any options that might be indicated in
the PPPL en try.

If you omit this operand, the APPLID field is set to O. If this field is still set to 0
when OPEN is executed, the job step name (in OS/VSl and OS/VS2) or the job
name specified on the program's EXEC statement (in DOS/VS) is used as the
application program's symbolic name.

Format: Expressions involving registers cannot be used with the ACB macro
instruction.

Note: The area pointed to by this operand must begin with a one-byte length
indicator, followed by the application program's symbolic name in EBCDIC. The
length indicator specifies the length of the name. Any name that is longer than 8 is
truncated to 8. You can either pad the name to the right with enough blanks to
form an eight-byte name (length indicator of eight), or you can set the length
indicator to the actual length of the name you are providing and let VT AM do the
padding. In the example at the end of this macro instruction description, the first
method is used.

PASSWD=password address
Allows an application program to associate its ACB with an APPL entry that is
password protected. If a password is included in an APPL entry, any application
program wanting to link its ACB to that entry must specify the entry's password in
the ACB. The two passwords are compared when the application program opens the
ACB. If the passwords do not match, the ACB is not opened. (The purpose of this
password protection is to prevent a program from running as one of the
installation's predefined application programs without the authorization of the
installation.) If you omit this operand, the PASSWD field is set to O.

Format: Expressions involving registers cannot be used with the ACB macro
instruction.

Note: The area pointed to by this operand must begin with a one-byte length
indicator, followed by the EBCDIC password. The maximum length is 8. The
truncation and use of the length indicator are the same as described above for the
APPLID operand.

EXLST=exit list address
Links the ACB to an exit list containing addresses of routines to be entered when
certain events occur. This list is created by an EXLST (or GENCB) macro
instruction. See that macro for descriptions of these events.

More than one ACB can indicate the same exit list. The use of an exit list is
optional. If no exit list is used, the application program is not notified that the
events described in the EXLST macro instruction occurred.

Format: Expressions involving registers cannot be used with the ACB macro
instruction.

MACRF=LOGONINLOGON
Indicates whether or not the application program wants logon requests to be
queued for it. MACRF=LOGON allows VTAM to queue logon requests for the
application program as they occur. When SETLOGON (OPTCD=START) is issued,
the scheduling of the LOGON exit-routine begins. SETLOGON (OPTCD=ST ART)
will not work unless MACRF=LOGON is specified for the ACB.

13

ACB Fields Not Set by the
Application Program

Example

14

MACRF=NLOGON indicates that no queuing of logon requests can occur. Any
logon requests that may have been directed at your application program before the
ACB was opened are canceled. MACRF=NLOGON serves to notify all application
programs issuing INQUIRE (OPTCD=APPSTAT) that logon requests cannot be
directed at the ACB.

A logon request is a request issued by (or on behalf ot) a terminal and directed at
an application program; it in effect asks that application program to connect the
application program to the terminal. A queued logon request cannot be satisfied
until the application program issues an OPNDST macro instruction having an
ACCEPT option code in effect for its RPL. This causes the application program to
become connected to the terminal.

If the ACB's EXLST operand indicates an exit list containing the address of a
LOGON exit-routine (see EXLST macro), that routine is entered whenever a logon
request is queued. This routine can issue the OPNDST macro instruction to request
connection with the terminal and satisfy the logon request.

The following ACB fields are set by VT AM when OPEN processing is completed,
and cannot be set by the application program. The use of these fields is more fully
explained in the OPEN and CLOSE macro instructions.

Field Name

OFLAGS

ERROR

ACBI

NAME

PASFLD

ACB

DC
DC
DC
DC

Contents

Indicates whether or not the ACB has been opened success­
fully. By specifying OFLAGS=OPEN on a TESTCB macro
inst~uction, you can determine if the ACB has been opened.

Indicates why the ACB has not been opened or closed
successfully. You can use either SHOWCB or TESTCB to
examine the codes in this field. The possible codes, along with
their meanings, appear in the OPEN and CLOSE macro
instruction descriptions.

AM=VTAM,APPLID=NAME,P ASSWD=PASFLD,
MACRF=LOGON,EXLST=EXLSTI

X'08'
CL8'PAYROLL'
X'08'
CL8'SECRET'

ACBI generates an ACB that will be associated with the PAYROLL APPL entry
when the ACB is opened. SECRET is the password protecting that APPL entry.
MACRF=LOGON means that terminals can issue logon requests to PAYROLL.
When such requests are made, VTAM will note that ACBI is the ACB providing
access to the application program representing PAYROLL, and will invoke the
LOGON exit-routine indicated in EXLSTI.

\..,nf\l"luD

CHANGE-Change a Terminal's PROC Options or USERFLD Data (Basic-mode only)

This macro instruction causes modifications to the PROC and USERFLD fields to
become effective for a BSC or start-stop terminal. Since this means changing the
ground rules under which all I/O requests for the terminal are processed, all pending
I/O requests for the terminal are canceled when CHANGE is executed.

When an OPNDST macro instruction is executed, the contents of these NIB fields
are moved into internal VTAM control blocks. If the application program later
wants to change the fields in effect for the terminal, altering the NIB to reflect
these changes will not suffice since VTAM is referring to its internal control blocks,
not to the NIB. Internal equivalents of the PROC and USERFLD fields must be
changed as well. This latter function is provided by the CHANGE macro
instruction.

The RPL pointed to in the CHANGE macro instruction must indicate (in its NIB
field) the NIB whose PROC or USERFLD field has been changed, and whose
MODE field has been set to BASIC. The CID of the terminal must be set in the
NIB's CID field. RPL fields (but not the NIB fields) can be set with the CHANGE
macro instruction itself.

To change the NIB fields, this procedure should be followed:

1. Modify the fields in the NIB with MODCB. For example:

MODCB AM=VT AM,NIB=NIB4, USERFLD=NYC,
PROC=(TRANS,CONFTXT ,MONITOR)

2. Issue the CHANGE macro instruction to make these changes effective.
CHANGE can simultaneously be used to make the RPL's NIB field point to the
modified NIB, if it does not already do so:

CHANGE RPL= RPLI ,NIB= NIB4

Name Operation Operands

[symbol] CHANGE RPL=rpl address
[, rpl field name=new value] ...

RPL=rpl address
Indicates the RPL whose NIB field contains the address of the NIB that has been
modified.

rpl field name=new value
Indicates an RPL field to be modified, and the new value that is to be contained
within it. If you wish to avoid the possibility of program reassembly following
future releases of VT AM, set the RPL field with MODCB macro instructions rather
than with the CHANGE macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction
operand that corresponds to the RPL field being modified. The new value can be
any value that is valid for that operand in the RPL macro instruction, or it can
indicate a register.

15

LHANGE.

Return of Status Information

16

Although any RPL operand can be specified, the following operands apply to a
CHANGE macro instruction:

ACB=acb address
Indicates the ACB used when the terminal was connected.

NIB=nib address
Indicates the NIB whose CID field identifies the terminal whose PROC or
USERFLD attributes are being changed.

ECB I EXIT=ecb or rpl exit-routine address
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASY)
CHANGE macro instruction is completed. If EXIT is specified, the RPL
exit-routine is scheduled. Otherwise the ECB is posted, and CHECK or WAIT must
be used to determine when the posting occurs. See the RPL macro instruction for
more information.

OPTCD=SYN I ASY
When the SYN option code is set, control is returned to the application program
when the CHANGE operation has been completed. When ASY is set, control is
returned as soon as VT AM has accepted the request. Once the operation is
completed, the ECB is posted or the RPL exit-routine is scheduled, as indicated by
the ECB-EXIT field.

OPTCD=CSICA
When CA is set, data obtained from the terminal can satisfy a READ
(OPTCD=ANY or OPTCD=SPEC) macro instruction. When CS is set, only READ
(OPTCD=SPEC) macro instructions can obtain data from the terminal.

After the CHANGE operation is completed, the following RPL fie-Ids are set:

The value 25 (decimal) is set in the REQ field, indicating~ CHANGE request.

The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

CHECK

CHECK-Check Request Status

Example

When asynchronous handling has been specified for a request (ASY option code in
effect), the application program receives control when the request has been
accepted by VTAM and the requested operation has been scheduled. A CHECK
macro instruction must be issued for the RPL used for the request. (CHECK should
not be issued for synchronous requests.)

When CHECK is executed, the following actions occur:

• The RPL, which was marked active when the request was accepted, is marked
inactive. Once an RPL has been marked inactive (and issuing CHECK is the only
way to do so for an asynchronous request), it can be reused by another request.

• If the requested operation is not yet completed, CHECK suspends program
execution until it is completed. If the RPL indicates an external ECB, or if the
ECB-EXIT field is not set, CHECKreturns control to the application program
when VTAM posts the ECB complete (see the ECB operand of the RPL macro).
CHECK clears the ECB before returning control. Users of external ECBs with
asynchronous request handling must clear the external ECB (with CHECK or
with assembler instructions) before the next (or first) RPL-based macro is issued.

• If the operation completed with a logical or other error, CHECK causes the
LERAD or SYNAD exit-routine to be invoked, assuming that one is available.

This action also occurs when CHECK is issued in any RPL exit-routine. If the RPL
being checked indicates an RPL exit-routine, CHECK must not be executed before
the operation represented by that RPL has completed and the RPL exit-routine has
been scheduled. This situation can only occur when CHECK is issued outside of the
RPL exit-routine.

Name Operation Operands

[symbol] CHECK RPL=rpl address

RPL=rpl address
Indicates the address of the RPL associated with the connection or I/O request
whose completion status is being checked.

Format: Register notation (for registers 1-12) is valid.

Note: See the ECB and EXIT operands in the RPL macro instruction description
for more information about the RPL exit routine and the ECB.

CHK1 CHECK RPL=RPL1

If CHK1 is in the routine indicated by RPL1 's EXIT field, and the operation
requested via RPL1 ends with a logical or other error, the LERAD or SYNAD exit
list routine is scheduled.

If there is no RPL exit-routine forRPL~, CHK1 causes program execution to stop
until the operation requested via RPL1 has ended. If the operation ends with a
logical or other error, CHK1 causes the LERAD or SYNAD exit-routine to be
invoked.

17

CHECK

Return of Status Information

18

When CHECK processing has been completed, registers 0 and 15 are set as indicated
in Appendix C. If an error occurred and a LERAD or SYNAD exit-routine was
invoked, these registers contain the values set in them by the exit-routine.
Otherwise, VT AM places a general return code in register 15 and a recovery action
return code in register 0 (see Figures C4 and C5 in Appendix C).

CLOSE

CLOSE-Close One or More ACBs

There are three significant results of executing the CLOSE macro instruction:

• VT AM no longer accepts any connection or I/O requests that refer to the ACB
specified in the CLOSE macro. This ACB is effectively disconnected from
VTAM.

• VTAM no longer maintains the association between the APPL entry in the
resource definition table and the ACB specified in this macro instruction.
CLSDST (PASS) logon requests that are directed towards the application
program cannot cause the LOGON exit-routine to be scheduled, but are queued
awaiting the next OPEN. Insofar as terminals requesting logon are concerned,
the portion of the application program represented by the ACB ceases to exist
when CLOSE is executed.

• VT AM breaks every connection that exists between the ACB and other
terminals. Before CLOSE breaks a connection, all I/O activity is stopped and all
pending I/O requests are canceled. (For logical units, a clear indicator is issued,
and for BSC and start-stop terminals, a RESET operation is performed.)

The CLOSE macro instruction can be applied to more than one ACB. CLOSE must
be issued in the main program or in the LERAD or SYNAD exit-routine if the
routine has been entered directly from the main program.- Never issue CLOSE in the
RPL exit-routine or in any of the other EXLST exit-routines.

In OS/VS, where the privileged user can manage multiple tasks in the same
application program, all I/O requests must be completed before CLOSE can be
issued in the main part of the mother task.

Name Operation Operands

[symbol] CLOSE acb address[, acb address] ...

This form of CLOSE is valid in DOS / VS only.

[symbol] CLOSE (acb address[" acb address] ...)

This form of CLOSE is valid in OS/VSl and OS/VS2 only.

acb address
Indicates the ACB that is to be disconnected from VT AM.

Format: If more than one ACB is specified, separate each with a comma if the
program is going to be run under DOS/VS. Separate each ACB address with two
commas if the program is going to be run under OS/VS. The parentheses for the
OS/VS CLOSE can be omitted if only one address is coded.

Note: One CLOSE macro instruction can be issued to close VSAM ACBs in
addition to VTAM ACBs. DOS/VS users can also include DTFs with this macro
instruction, and OS/VSl and OS/VS2 users can also include DCBs.

19

CLOSE

Example

Return of Status Information

20

CLOSE 123 CLOSE ACBl,ACB2,(7) (DOSjVS)

CLOSE123 closes ACBl, ACB2, and the ACB whose address is in register 7. All
terminals connected via these ACBs are disconnected.

When control is returned to the instruction following the CLOSE macro, register 15
indicates whether or not the CLOSE processing has been completed successfully.
Successful completion (meaning that all ACBs specified in the macro instruction
have been disconnected from VT AM) is indicated by a return code of 0 (for
DOSjVS users, register ISis left unmodified). Unsuccessful completion is indicated
by the following register 15 values:

For DOSjVS

nonzero

ForOSjVS

4

Meaning

One or more ACBs (or DTFs or VSAM ACBs) were not
successfully closed.

Meaning

One or more ACBs (or DCBs or VSAM ACBs) were not
successfully closed. Depending on the specific type of error,
the OFLAGS field may indicate that the "bad" ACB is closed
even though CLOSE has failed (for example, the ACB may
never have been opened).

If unsuccessful completion is indicated, the application program can examine the
OFLAGS field in each ACB to determine which ACB was not closed. If you use the
OFLAGS=OPEN operand on a TESTCB macro instruction, an "equal" PSW
condition code will result if the ACB was not closed.

For each ACB, you can use either the SHOWCB or TESTCB macro instruction to
check the ERROR field and determine the cause of the error. For example:

SHOWCB AM=VTAM,ACB=ACBI,FIELDS=ERROR,AREA=SHOWIT,
Length=4

Note: If the ACB address specified in the CLOSE macro instruction does not
indicate an ACB or lies beyond the addressable range of your application program,
nothing is posted in the A CB 's ERROR field.

The value set in the ERROR field indicates the specific nature of the error
encountered by CLOSE (all values except 48 apply to both DOSjVS and OSjVS):

o

4

42 (66)

CLOSE successfully closed the ACB.

A CLOSE macro instruction has already been successfully issued
for this ACB (or the ACB has never been opened in the first
place).

The ACB has been closed but an apparent system error has
prevented the successful disconnection of one or more of the
terminals connected to your application. The fault is VT AM's,
and IBM program systems representatives should be consulted.
The terminals that could not be disconnected are not available to
other application programs, and terminals for which you were
requesting connection when CLOSE was executed wil11ikewise be
unavailable when they are released to you. You can notify the
system operator (during program execution) of the situation so

46 (70)

48(72)

50(80)

70(112)

BC(188)

that the operator can make the terminals available to other
application programs.

CLOSE was not issued in the main program. OPEN and CLOSE
cannot be issued in an exit-routine or in an RPL exit-routine.

CLOSE was not issued in the task that issued OPEN.

VT AM is no longer included as part of the operating system.

CLOSE was issued while the program is in the process of
terminating abnormally. The CLOSE is not necessary since the
ACB will be closed by VTAM when the task terminates.

The ACB is currently in the process of being opened, or is
curren tly in the process of being closed by another CLOSE
request.

21

LL~UST

CLSDST -Disconnect Terminals from the Application Program

22

The CLSDST (close destination) macro instruction requests VT AM to break a
connection between the application program and a specified terminal. CLSDST
cancels any pending I/O requests for the terminal, and any unread data from the
terminal is lost.

The terminal to be disconnected is specified either with the ARG field or the NIB
field of CLSDST's RPL:

• If the ARG field contains the CID of a terminal, that terminal is disconnected.

• If the NIB field contains the address of a NIB, the terminal whose symbolic
name has been placed in that NIB's NAME field is disconnected.

(The RPL cannot contain both a CID and a pointer to a NIB, because the ARG
and NIB fields occupy the same area in the RPL control block.)

Using a CID is easier following normal communication with the terminal, since the
CID is used by all of the I/O requests and thus should be readily available. Using a
NIB address and symbolic name is necessary if you are issuing CLSDST for a
terminal that was never connected to your application program. For example, you
must issue CLSDST in order to reject a logon request, and you can cancel a pending
OPNDST (OPTCD= ACCEPT) macro instruction by issuing CLSDST. In both of
these situations, only the terminal's symbolic name is available to you.

CLSDST with OPTCD=RELEASE causes a dial-line disconnection only if no other
application program has requested connection with the terminal.

If at the time CLSDST is executed, VT AM buffers hold data from the terminal, the
data is not saved for the next application program that becomes connected to the
terminal, but is discarded.

The CLSDST macro instruction can optionally be used to request that VT AM
reconnect terminals to another application program (specified by you) in addition
to disconnecting them. This option is implemented by setting the PASS option
code in CLSDST's RPL. If this option is used (it must be authorized by the
installation), VTAM first disconnects the terminal and then generates a logon
request for it. Your application program must indicate which application program is
to receive the logon request. A logon message from a data area in your program can
also be sent with the logon request. (The data area containing the logon message
can be reused as soon as CLSDST has been completed.)

If a logon request is going to be generated after the disconnection, the RPL's PASS
option code must be set, and the RPL's AAREA field must point to the symbolic
name of the receiving application program. This name must be placed in an 8-byte
field, left justified, and padded to the right with blanks. If a logon message is also to
be sent with the logon request, the AREA and RECLEN fields must indicate the
location and length of the message. If a message is not to be sent, the RECLEN
field must be set to O.

CLSDST (OPTCD=PASS) will fail if the receiving application program has not been
activated, has opened its ACB with MACRF=NLOGON specified, or has issued
SETLOGON (OPTCD=QUIESCE) and closed its logon request queue. However,
CLSDST (OPTCD=PASS) will cause a logon request to be queued if the target
application program has issued SETLOGON (OPTCD=STOP), even though this
indicates that the application program temporarily does not want any logon

requests directed at it. A logon request will also be queued if the application
program has been activated but has not yet opened its ACB (if the ACB is later
opened with MACRF=NLOGON, the logon request is dequeued). VTAM prevents
such queuing if the logon request originates from the logical unit or via the network
solicitor. But for logon requests generated by CLSDST (OPTCD=PASS), an
INQUIRE macro instruction (OPTCD=APPSTAT) normally should be issued before
CLSDST (OPTCD=PASS) is issued. The return code from INQUIRE will indicate
the exact status of the receiving application program.

If the RELEASE option code is used instead of the PASS option code, the terminal
is simply disconnected as far as as the application program is concerned. If another
application program has requested connection to the terminal, or if the installation
indicated during VTAM definition that automatic logon requests are to be
generated, VT AM reconnects the terminal to the appropriate application program.

If an application program has completed its processing and is ready to disconnect
all of the terminals connected to it, CLSDST need not be used. The CLOSE macro
instruction may be used, since it disconnects all of the terminals connected via a
given ACB (as though CLSDST with the RELEASE option had been issued for each
one).

Name Operation Operands

[symbol] CLSDST RPL=rpl address
[, rpl field name=new value] ...

RPL=rpl address
Indicates the location of the RPL to be used during CLSDST processing. Either the
ARG field of this RPL must contain a terminal's CID or the NIB field must be set
to point to the NIB containing the symbolic name of the terminal.

rpl field name=new value
Indicates an RPL field to be modified, and the new value that is to be contained
within it. If you wish to avoid the possibility of program reassembly following
future releases of VT AM, set the RPL field with MODCB macro instructions rather
than with the CLSDST macro instruction.

Format: For rpl field name, code the keyword of the RPL macro instruction
operand that corresponds to theRPL field being modified. ARG can also be coded.
The new value can be any value that is valid for that operand in the RPL macro
instruction, or it can indicate a register. The value supplied with the ARG keyword
must indicate a register.

Although any RPL operand can be specified, the following operands apply to a
CLSDST macro instruction:

ACB=acb address
Indicates the ACB from which the terminal is to be disconnected.

NlB=nib address
Indicates the NIB whose NAME field identifies the terminal to be disconnected. If
the NIB field does not indicate a NIB address, the ARG field must contain the
terminal's CID.

23

CLSDST

Examples

24

ARG=(register)
Indicates the register that contains the CID of the terminal to be disconnected. This
register notation must be used if the CID is to be placed into the ARG field with
tliis-CtsDST macro instruction. ARG and NIB provide two mutually exclusive
methods of iden tifying the terminal.

AR.E:A=address of logon message
indicates the location of the data to be sent to the application program receiving
the terminal. A logon message is sent only if OPTCD=P ASS is set.

REtlEN=length of logon message
Indicates. how many bytes of data are to be sent to the application program
receIving the terminal. No data is sent if RECLEN is set to O.

AAREA=address of receiver's symbolic name
Indicates the name of the application program that is to be connected to the
terminal you are disconnecting. You can specify the application program that is to
receive the terminal only if OPTCD=P ASS is set. The name must be 8 bytes long
and padded to the right with blanks.

ECB I EXIT=ecb or rpl exit-routine address
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASY)
CLSDST macro instruction is completed. The macro instruction is completed when
I/O has been canceled and the terminal has been disconnected; completion does not
depend on the receiving application program issuing OPNDST. If EXIT is specified,
the RPL exit-routine is scheduled. Otherwise the ECB is posted, and CHECK or
WAIT must be used to determine when posting occurs. See the RPL macro
instruction for more information.

OPTCD=SYN I ASY
When SYN is set, control is returned to the application program when the CLSDST
operation is completed. When ASY is set, control is returned as soon as VTAM has
accepted the CLSDST request. Once the operation has been completed, the ECB is
posted or the RPL exit-routine is scheduled, as indicated by the ECB-EXIT field.

OPfCD=RELEASEI PASS
When iELEASE is set, VTAM determines the identity of the terminal's next owner
(if any). When PASS is set, a logon request is directed at the application program
whose symbolic name is indicated in the AAREA field of the RPL used by
CLSDST. If the AREA and RECLEN fields are also set, a logon message is sent to
the appVcation program. The use of PASS must be authorized by the installation.

CLi CLSDST

POSTITI D
NIB3 NIB
APPLNAME DC
LGNMSG DC

RPL=RPLl,
ACB=ACBl,
NIB=NIB3,
AAREA=APPLNAME,
AREA=LGNMSG,RECLEN=60,
ECB=POSTITl,OPTCD=(ASY,PASS)

F
NAME=TERMl,
CLB'PLOTTER'

(TERMINAL TO BE DISCONNECTED)
(APPLICATION TO RECEIVE LOGON REQUESTS)
(LOGON MESSAGE)

CL60'LOGON FROM STATION TERM!'

CLI disconnects the terminal represented in NIB3 (TERM 1) and generates a logon
request for it; the logon request is directed at the application program named
PLOTTER. This macro instruction also sen~s a 60-byte logon message from
LGNMSG with the logon request.

Retunl of Status Infonnation

CLSDST

CL2 CLSDST RPL=RPL2,
ARG=(3), (TERMINAL TO BE DISCONNECTED)
ECB=POSTIT2,OPTCD=(ASY,RELEASE)

CL2 disconnects the terminal whose CID has been placed in register 3. Unlike the
first example above, CL2 does not generate a logon request for a specified
application program, nor does it send any logon message.

cu CLSDST

APPLNAME DC
POSTIT3 DC
NIB6 NIB

RPL=RPL3,
NIB=NIB6, (TERMINAL TO BE DISCONNECTED)
AAREA=APPLNAME, (APPLICATION TO RECEIVE LOGON MESSAGE)
RECLEN=O, (NO LOGON MESSAGE)
ECB=POSTIT3 ,OPTCD=(ASY ,PASS)

CL8'PLOTTER'
F'O'
NAME=TERM3

CL3 disconnects the terminal represented by NIB6 (TERM3), and generates a logon
request for it that is directed at the PLOTTER application program. Since the
RECLEN field is being set to 0, no logon message is sent to PLOTTER.

After the CLSDST operation is completed, the following RPL fields are set:

The value 31 (decimal) is set in the REQ field, indicating a CLSDST request.

The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

25

DO

DO-Initiate LDO-Specified I/O Operations (Basic-mode only)

26

If an application program uses logical device orders (LDOs) to request I/O
operations, it must use the DO macro instruction to initiate the operations. The
special I/O operations initiated with DO are described in the LDO macro
instruction.

The user of the DO, macro instruction specifies an RPL whose AREA field contains
the address of an LDO or list of LDOs, and whose ARG field contains the CID of
the BSC or start-stop terminal that is to be the object of the I/O operations.
Changes to the RPL can be specified in the DO macro instruction itself.

When DO is completed, the AAREA field of the RPL indicates the address of the
last LDO used by DO. If an error occurs, AAREA contains the address of the LDO
that was being processed when the error occurred.

Name Operation Operands

[symbol] DO RPL=rpl address
[, rpl field name=new value] ...

RPL=rpl address
Indicates the location of the RPL whose AREA field contains the address of an
LDO or group of LDOs to be used, and whose ARG field contains the CID of the
terminal that is to be the object of these LDOs.

rpl field name=new value
Indicates a field of the RPL to be modified and the new value that is to be
contained within it. If you wish to avoid the possibility of program reassembly
following future releases of VTAM, set the RPL field with MODCB macro
instructions rather than with the DO macro instruction.

Format: For rpl field name code the keyword of the RPL macro instruction
operand that corresponds with the RPL field to be modified. ARG can also be
coded. The new value can be any value that could have been supplied with the
keyword had the operand been issued in an RPL macro instruction, or it can
indicate a register. The value supplied for the ARG keyword must indicate a
register.

Although any RPL operand can be specified, the following operands apply to the
DO macro instruction.

ACB=acb address
Indicates the ACB that was used when the terminal was connected.

ARG=(register)
Indicates the register containing the CID of the terminal. This register notation
must be used when the CID is placed into the ARG field with this DO macro
instruction.

AREA=ldo address
Indicates the LDO or chain of LDOs to be used by this macro instruction.

Example

Return of Status Infonnation

DO

ECB I EXIT=ecb or rpl exit-routine address
Indicates the action to be taken when an asynchronous (OPTCD=ASy) DO macro
instruction is completed. The macro instruction is completed when the last LDO
has been processed. If EXIT is specified, the RPL exit-routine is scheduled.
Otherwise the ECB is posted, and CHECK or WAIT must be used to determine
when the posting occurs. See the RPL macro instruction for more information.

OPTCD=SYN I ASY
When the SYN option code is set, control is returned to the application program
when the DO operation has been completed. When ASY is set, control is returned
as soon as VT AM has accepted the request. Once the DO operation has been
completed, the ECB is posted or the RPL exit-routine is scheduled, as indicated by
the ECB-EXIT field.

OPTCD=CSICA
When CA is set, data obtained from the terminal can satisfy a READ (OPTCD=
ANY or OPTCD=SPEC) macro instruction. When CS is set, only READ
(OPTCD=SPEC) macro instructions can obtain data from the terminal. See the RPL
macro instruction for more information.

DOLDO DO RPL=RPL1,
AREA=(2),ARG=(3),
EXIT=DONE,OPTCD=(SPEC,ASy)

DOLDO initiates whatever operations are indicated by the LDO (or list of LDOs)
currently pointed to by register 2. In this example, register 3 must contain the CID
of the terminal to be involved in the LDO-specified I/O operation or operations.
Since the ASY option code is specified, control is returned to the instruction
following DOLDO before the operation is" actually performed. Since EXIT is
specified, the routine located at DONE will be scheduled when the DO macro
instruction is completed.

Once DO processing is finished, the following RPL fields are set:

The address of the last LDO used by DO is placed in the AAREA field.

When a NIB is used by OPNDST, the user has the option of specifying an
arbitrary value in the USERFLD field of that NIB. When the DO macro
instruction is subsequently issued for the terminal associated with that NIB,
whatever had been placed in USERFLD by the user is placed in the USER field
of the RPL by VTAM.

If DO is processing a READ or READBUF LDO, the RECLEN field is set to
indicate the number of bytes of data obtained from the terminal.

The value 19 (decimal) is set in the REQ field, indicating a DO request.

If DO is processing a READ or WRITE LDO, the SENSE field is set as indicated
in Appendix C.

If DO is processing a READ LDO, the FDBK field is set as indicated in
Appendix C.

The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

27

EXECRPL

. EXECRPL-Execute a Request

28

When a request fails for a temporary reason and the request might succeed if
reissued, VT AM returns a recovery action return code of 8 in register 0 and in the
RPL's RTNCD field. The portion of the application program receiving control (the
SYNAD exit-routine or the next sequential instrucion) has the address of the RPL
available to it in register 1. The program can issue an EXECRPL macro instruction
to retry the request without having to modify the request's RPL.

The operation performed by EXECRPL depends on the request code that is set in
the RPL's REQ field. If the REQ field indicates a RECEIVE request, for example,
the effect of EXECRPL is identical to that of a RECEIVE macro instruction. (The
REQ field is described in the RPL macro instruction.) EXECRPL can be used to
execute any RPL-based request except CHECK or another EXECRPL macro.

When EXECRPL is used for its intended purp0se-that is, to reexecute a request
that has failed with a recovery action return code of 8-the application program
need not concern itself with the RPL contents when EXECRPL is issued. But if
EXECRPL is used to retry a request that has failed with some other recovery action
return code (or to repeat a request that has not failed at all), close attention must
be paid to RPL fields that can be set by the application program and then modified
by VT AM while the request is being processed.

For example: the RPL's RESPOND field for a SEND request is set by the
application program (to indicate whether a response is to be returned) and is then
reset by VTAM (to indicate the type of response returned). EXECRPL should not
be issued for this RPL unless the RESPOND field is reset to its intended setting.

Figure 9 at the end of the RPL macro instruction description identifies those fields
that can be set by the application program and then reset by VT AM. These fields
are identified with an 'A V' under the appropriate macro instruction.

Name Operation Operands

[symbol] EXECRPL RPL=rpl address
[, rpl field name==new value] ...

RPL=rpl address
Indicates the location of the RPL to be executed.

rpl field name=new value
Indicates a field of the RPL to be modified and the new value that is to be
contained within it. If you wish to avoid the possibility of program reassembly
following future releases of VTAM, set the RPL field with MODCB macro
instructions rather than with the EXECRPL macro instruction.

FOfflzat: For rpl field name, code the keyword of the RPL macro instruction
operand that corresponds with the RPL field to be modified. The new value can be
any value that could have been supplied with the keyword had the operand been
issued in an RPL macro instruction, or it can indicate a register.

Example

Return of Status Information

EXECRPL

RETRYl EXECRPL RPL=(l)

A SYNAD exit-routine has been entered for a retriable error (register 0 is set to 8).
The request is reexecuted as defined by the current contents of the RPL.

Once the EXECRPL macro instruction is completed, the action taken by VT AM
depends on the type of request that EXECRPL has processed. The manner in which
the application program is notified of completion (ECB or EXIT), the RPL fields
and return codes that are returned, and the data areas (if any) that are used depend
on the contents of the RPL when EXECRPL was executed. If the request is
successfully accepted or completed, then registers 0 and 15 at the next sequential
instruction after EXECRPL are set exactly as expected when the original request
was issued.

29

EXLST

EXLST -Create an Exit List

30

The EXLST macro instruction builds a list of routine addresses during program
assembly. Each operand in this macro instruction represents an event in which an
exit-routine is invoked by VT AM. The address supplied for each operand indicates
the user-written routine to be given control when the event that it handles occurs.
The SYNAD operand supplies the address of a routine that handles exception
conditions (other than logical errors), the ATTN operand supplies the address of an
attention-interruption handler, and so forth.

When you examine your program listing, you may discover that the assembler has
reserved space for exit list addresses that you never specified. Unspecified exits will
not, however, be used by VTAM, and you cannot use MOD€B to insert an address
in a field you never specified in the EXLST (or GENCB) macro instruction. An
address of 0 can never be specified.

Two of the exit-routines are invoked by events initiated within the application
program. The LERAD exit-routine is invoked when a request results in a logical
error; the SYNAD exit-routine is invoked when a request results in other errors. If
the error involves a synchronous request (one for which the SYN option code is in
effect), the exit-routine is invoked when the error condition is detected. If the error
involves an asynchronous request (ASY option code) that has been accepted, the
exit-routine is not invoked until a CHECK macro instruction is issued for the
request. (For requests of either type that are not accepted, the exit-routine is
invoked when the error is detected.)

The other exit-routines are invoked as a result of an event initiated outside of the
application program. These exit-routines are scheduled at the time the event occurs.
One routine, LOGON, falls into both categories. The programmer should be aware
that if any synchronous requests are made in these exit-routines, neither the
exit-routine nor the main part of the application program can receive control while
the request is being completed.

When the LERAD and SYNAD exit-routines are invoked, register 1 contains the
address of the failing request's RPL. When the other exit-routines are invoked,
register 1 contains the address of a parameter list. The contents of the parameter
lists vary somewhat between exit-routines. The parameter lists are described in
detail below and are summarized in Figure 3.

For all exit-routines except LERAD and SYNAD, the last instruction must be a
branch to the VT AM address that is in register 14 when the routine receives
control. (For LERAD and SYNAD, the branch is optional if the exit-routine is not
invoked by a macro instruction issued within an RPL exit-routine or other EXLST
exit-routine.) The exit-routines are not provided with a save area for the general
purpose registers. The application program may use and change registers as desired,
but the register 14 address must be saved. The address of the exit list created by the
EXLST macro instruction is placed in the EXLST field of an ACB by the
application program (see the ACB macro instruction for details). More than one
ACB can point to the same exit list, as long as the ACBs are all in the same object
module. In this situation, however, the routines indicated in the exit list should be
reenterable. The LERAD and SYNAD exit-routines should always be reenterable.
All of the exit-routines must reside in the same object module.

The address of an EXLST containing a DFASY, RESP, or SCIP exit-routine address
can also be placed in the EXLST field of a NIB. These NIB-oriented exit-routines
are scheduled when input arrives from the logical unit represented by the NIB. If,

EXLST

for example, DF ASY input arrives from a logical unit, VTAM first determines
whether a DF ASY exit-routine was indicated when that logical unit was connected.
If no NIB-oriented DFASY exit-routine exists, VT AM determines whether an
eligible RECEIVE is available or an ACB-oriented DF ASY exit-routine was
indicated when the ACB was opened. If so, the RECEIVE is completed or the
exit-routine is scheduled.

A few of the exit-routines apply only to BSC and start-stop terminals or only to
logical units. These are noted below as "basic-mode only" or "record-mode only"
respectively. Certain system macros, such as OPEN, CLOSE, DUMP, or PDUMP,
cannot be used by DOS/VS release 30 users, when VT AM invokes a user
exit-routine. A program check will occur, because these system macros will cause a
logical transient to execute, causing the original process to be overlaid.

Name Operation Operands

[symbol] EXLST AM=VTAM
[, LERAD=
[, SYNAD= I [,DFASY=
[, RESP=
[, selP=

exit-routine address]
[, TPEND=
[,RELREQ=
[,LOGON=

I [, LOSTERM=
[,ATTN=

AM=VTAM
Identifies the exit list generated by this macro instruction as a VTAM exit list (as
distinguished from a VSAM exit list). This operand is required.

LERAD=exit-routine address
Indicates the address of a routine that will be entered when the application program
makes a connection or I/O request that results in a logical error.

Generally, logical errors result when an RPL-based request is made that is
inherently contradictory-like attempting to read data from an output-only device.
(Errors that occur because of hardware malfunctions, for example, are not logical
errors; they are handled by the SYNAD exit-routine.)

If the SYN option code is in effect when the error occurs or if the request cannot
be accepted due to a logical error, the LERAD exit-routine is entered immediately;
otherwise if the ASY option code is in effect, the routine is not scheduled until a
CHECK macro instruction is issued for the operation in which the error occurred.
One exception: If the ASY option code is set, the request is accepted by VT AM,
and then VT AM determines that it cannot post the RPL (perhaps because the ACB
has been overwritten), VTAM abnormally terminates the application program.

Before the LERAD exit-routine is given control, VTAM sets a recovery action
return code of 20 or 24 (decimal) in register 0 and in the RTNCD field of the RPL
and sets a specific error return code in the FDBK2 field indicating the specific cause
of the error. These codes are explained in Appendix C.

31

EXLST

32

If the application program has no LERAD exit-routine and a logical ~rror occurs,
VTAM simply returns control to the next sequential instruction. VTAM places a
return code of 4 in register 15 and a recovery action return code of 20 or 24
(decimal) in register O.

If your application program issues (any RPL-based) requests in both the main
program and in the exit-routines, the LERAD exit-routine may be reentered by
VTAM. The routine may likewise be reentered if (any RPL-based) requests are
issued in the LERAD routine itself. In these situations, you must insure that the
exit list routine is reenterable.

When the LERAD exit-routine returns control to VT AM, VT AM leaves registers 0
and 15 intact so that the routine can pass information back in these registers to the
main part of the application program.

Registers Upon Entry: When the LERAD routine receives control, the general
purpose registers contain the following:

Register 0: A recovery action return code (see Appendix C).

Register 1: The address of the RPL associated with the request. If the recovery
action return code in register 0 is set to 24 (decimal), VTAM was unable to place
an indicator in the FDBK2 field specifying the reason for the error. This happens
in two cases: Either a macro has been issued whose RPL is already in use, or
CHECK has been issued for a request whose RPL exit-routine has not yet been
scheduled. See Appendix C for a deSCription of the return codes placed in
FDBK2.

Register 13: The address of an 18-word save area supplied by you when the
macro instruction was issued. If the exit-routine is going to return control via
register 14, it must not change anything in the save area. This means that if any
macro instructions are issued in the exit-routine, register 13 must first be loaded
with the address of a new save area. Furthermore, before control is returned via
register 14, register 13 must be restored with the value it had when the
exit-routine was invoked.

Register 14: The address in VTAM to which the LERAD exit-routine can branch
when it has finished processing. When the exit-routine branches to this address,
VT AM handles the returning of control to the next sequential instruction in the
application program following the request (or following the CHECK macro
instruction issued for the request). The LERAD exit-routine can branch to any
part of the main program because the routine is executed under the same system
task control block as the main program. (Care should be taken, however, to
eventually return to the register 15 address if LERAD was entered from an
RPL-based request issued in another exit-routine.) If the routine returns control
to the next sequential instruction by branching on the register 14 address,
VT AM restores the registers from the save area whose address is in register 13.

Register 15: The address of the LERAD routine.

SYNAD=exit-routine address
Indicates the address of a routine that is entered if an unrecoverable input or
output error (physical error) or other unusual condition occurs during an I/O
operation. (Errors that result from invalid requests are handled by the LERAD
exit-routine.) The SYNAD exit-routine is entered for all recovery action return
codes of 4,8, 12, and 16 (decimal).

If the SYN option code is in effect when the error occurs or if the request cannot
be accepted, the SYNAD exit-routine is entered immediately; otherwise, if the ASY

hXL:S 1

option code is in effect, the routine is not invoked until a CHECK macro is issued
for the operation in which the error occurred.

The SYNAD exit-routine can examine the REQ field of the RPL and determine the
type of request that caused the routine to be invoked. Each RPL-based macro
instruction (except CHECK and EXECRPL) has its own unique REQ code. These
codes are listed in the description of the RPL macro instruction. The SYNAD
exit-routine can analyze the FDBK2 field and attempt to recover from the error.

If the application program has no SYNAD exit-routine and a physical error occurs,
VT AM simply returns control to the next sequential instruction with return codes
in registers 0 and 15.

If your application program issues RPL-based requests in both the main program
and the exit-routines, the SYNAD exit-routine may be reentered by VT AM. The
routine may likewise be reentered if RPL-based requests are issued in the
exit-routine itself. In these situations, you must ensure that the exit-routine is
reenterable.

When the SYNAD exit-routine returns control to VT AM, VT AM leaves registers 0
and 15 intact; this enables the routine to pass information back in these registers to
the main part of the application program.

Registers Upon Entry: When the SYNAD routine receives control, the general
purpose registers contain the following:

Register 0: A recovery action return code (see Appendix C).

Register 1: The address of the RPL associated with the request.

Register 13: The address of an 18-word save area supplied by you when the
macro instruction was issued. If the exit-routine is going to return control via
register 14, it must not change anything in the save area. This means that if any
macro instructions are issued in the exit-routine, register 13 must first be loaded
with the address of a new save area. Furthermore, before control is returned via
register 14, register 13 must be restored with the value it had when the
exit-routine was invoked.

Register 14: The address in VTAM to which the SYNAD exit-routine can branch
when it has finished processing. When the exit-routine branches to this address,
VT AM handles the return of control to the next sequential instruction following
the request (or following the CHECK macro issued for the request). The SYNAD
exit-routine can branch to any part of main program. (Care should be taken,
however, to eventually return to the register 15 address if SYNAD was entered
from an RPL-based request issued in another exit-routine.) If the application
program eventually returns to the next sequential instruction by branching on
the register 14 address, VTAM restores the registers from the same area whose
address is in register 13.

Register 15: The address of the SYNAD routine.

DFASY=exit-routine address (Record-mode only)
The EXLST containing a DF ASY exit-routine address can be pointed to by a NIB,
as well as by an ACB (see the EXLST operand of the NIB macro instruction).

The DF ASY operand indicates the address of a routine to be entered when
asynchronous flow messages (such as QEC, RELQ, and RSHUTD indicators) arrive
from a logical unit. VT AM handles the input in this manner:

33

34

1. If a NIB-oriented DFASY exit-routine is available, it is scheduled. Otherwise-

2. If input is already queued, this input is also queued. Otherwise-

3. If a RECEIVE (OPTCD=SPEC,RTYPE=DFASY) is pending, the input is used to
satisfy that RECEIVE. Otherwise-

4. If the logical unit is in continue-specific (CS) mode, the input is queued.
Otherwise-

5. If the DFASYX processing option is set and an ACB-oriented DFASY
exit-routine is available, the exit-routine is scheduled. If the DF ASYX processing
option is set and an ACB-oriented exit-routine is not available, the input is
queued and can only be received by a RECEIVE with OPTCD=SPEC and
RTYPE=DF ASY. Otherwise-

6. If a RECEIVE (OPTCD=ANY,RTYPE=DFASY) is pending, the input is used to
satisfy that RECEIVE. Otherwise-

7. The input is queued.

The DF ASY exit-routine provides a way for VTAM to notify the application
program that asynchronous flow input has arrived. The application program could
maintain an active RECEIVE macro instruction for this purpose, but the RECEIVE
requires that an active RPL be committed before the input arrives, while the
DF ASY exit-routine does not.

No RECEIVE is issued in the DF ASY exit-routine to obtain the message. Instead,
the exit-routine is passed the address of a read-only RPL. The read-only RPL fields
are set as though a RECEIVE macro instruction (RTYPE=DFASY) had been
completed. Do not issue CHECK for this RPL.

Registers Upon Entry: When the DFASY exit-routine receives control, register 1
contains the address of a 5-word parameter list:

• The first word contains the address of an ACB. This ACB is the ACB of the
application program to which the input data was sent.

• The second word contains the CID of the terminal that sent the data.

• The third word contains whatever has been placed in the USERFLD field of the
NIB associated with that terminal.

• The fourth word contains the number of bytes of data received by VTAM (since
the length of asynchronous flow input is meaningless to the application program,
this word should be ignored).

• The fifth word contains the address of a VTAM-supplied read-only RPL. Other
than the fact that it resides in read-only VT AM storage and cannot be used by an
RPL-based macro instruction, the read-onlyRPL is identical to any other RPL.
The application program can examine the read-only RPL fields with SHOWCB
and TESTCB macro instructions or with assembler instructions. The read-only
RPL feedback fields are set exactly as they would be following a RECEIVE
macro instruction (RTYPE=DF ASy) except that the REQ field is not set.

Other general purpose registers contain the following:

Register 14: The address in VTAM to which the DFASY routine must branch
when it has finished processing. VT AM will handle the return of control to the
instruction following the request that resulted in the invocation of the DF ASY
routine.

Register 15: The address of the DF ASY routine.

The contents of the remaining registers (0 and 2-13) are unpredictable.

RESP=exit-routine address (Record-mode only)
The EXLST containing the RESP exit-routine address can be pointed to by a NIB,
as well as by an ACB (see the EXLST operand of the NIB macro instruction).

The RESP operand indicates the address of a routine to be entered when responses
to data arrive from a logical unit. VT AM handles the response in this manner:

1. If a NIB-oriented RESP exit-routine is available, it is scheduled. Otherwise-

2. If responses are already queued, this response is also queued. Otherwise-

3. If a RECEIVE (OPTCD=SPEC,RTYPE=RESP) is pending, the response is used
to satisfy that RECEIVE. Otherwise-

4. If the logical unit is in continue-specific (CS) mode, the response is queued.
Otherwise-

5. If the RESPX processing option is set and an ACB-oriented RESP exit-routine is
available, it is scheduled. If the RESPX processing option is set and an
ACB-oriented exit-routine is not available, the response is queued and can only
be received by a RECEIVE with OPTCD=SPEC and RTYPE=RESP. Otherwise-

6. If a RECEIVE (OPTCD=ANY,RTYPE=RESP) is pending, the response is used to
satisfy that RECEIVE. Otherwise-

7. The response is queued.

The RESP exit-routine provides a way for VTAM to notify the application program
that a response to a data message has arrived. The application program could
maintain an active RECEIVE macro instruction for this purpose, but the RECEIVE
macro instruction requires that an active RPL be committed before the response
arrives, while the RESP exit-routine does not.

No RECEIVE is issued in the RESP exit-routine to receive the response. Instead,
the exit-routine is passed the address of a read-only RPL. The read-only RPL fields
are set as though a RECEIVE macro instruction (RTYPE=RESP) has been
completed. These fields can be examined with SHOWCB and TESTCB macro
instructions or with assembler instructions like any other RPL. Do not issue
CHECK for this RPL.

Registers Upon Entry: When the RESP exit-routine receives control, the register
contents are the same as those described above for the DFASY exit-routine. That
is:

• Register 1 contains the address of a parameter list containing the ACB address,
the logical unit's CID and USERFLD data, the amount of input (since the length
of a response is meaningless, this should be ignored), and the address of the
read-only RPL. The parameter list is summarized in Figure 3.

• Register 14 contains the address in VTAM to which the RESP exit-routine must
return.

• Register 15 contains the address of the RESP exit-routine.

• The contents of the remaining registers (0 and 2-13) are unpredictable.

SCIP=exit-routine address (Record-mode only)
The EXLST containing the SCIP exit-routine address can be pointed to by a NIB, as
well as by an ACB (see the EXLST operand of the NIB macro instruction).

The SCIP operand indicates the address of a routine to be scheduled when a
request-recovery (RQR) indicator arrives from a logical unit. (The SCIP exit-routine

3S

nAL~l

Exit-Routine
Register 1 Parameter List

1st Word I 2nd Word I 3rd Word I 4th Word 5th Word
I I J

LERAD None (Register 1 contains the RPL address for the request that failed)
I I I
I I I

SYNAD None (Register 1 contains the RPL address for the request that failed)

DFASY ACB address CID USERFLD data Unused Read-only RPL
address

RESP ACB address CID USERFLD data Unused Read-only RPL
address

SCIP ACB address CID USERFLD data Unused Read-only HPL
address

TPEND ACB address Reason-
terminated
code

RELREQ ACB address Address of the
terminal's
symbolic name

LOGON ACB address Address of the Length of
terminal's logon message
symbolic name

LOSTERM ACB address CID USERFLD data Reason-lost
code

ATTN ACB address CID USERFLD data

Figure 3. Parameter List for the EXLST Exit-Routines

36

is the only way the application program can be notjfied of the arrival of an RQR
indicator.) The logical unit is automatically sent a normal response by VT AM
regardless of whether a SCIP exit-routine is available.

No RECEIVE macro instruction is used in the SCIP exit-routine. The address of a
read-only RPL is provided in the SCIP parameter list. The application program
should test the CONTROL field of the read-only RPL to verify that an RQR
indicator has arrived (CONTROL=RQR for a TESTCB macro instruction).

An RQR indicator may signify that the logical unit has discovered a discrepancy
between the sequence number of its messages and the sequence number of the
responses to those messages. The logical unit is in effect asking the application
program to stop all message and response flow, establish the correct sequence
number, and resume message and response flow. These actions are accomplished by
issuing clear, set-and-test-sequence-number (STSN) and start-data-traffic (SDT)
indicators with a SESSIONC macro instruction. (The logical unit cannot accomplish
this recovery procedure itself because only the application program can issue clear,
STSN, and SDT indicators.)

Registers Upon Entry: When the SCIP exit-routine receives control, the register
contents are the same as those described above for the DFASY exit-routine. That
is:

• Register 1 contains the address of a parameter list containing the ACB address,
the logical unit's CID and USERFLD data, the amount of input (since the length
of an RQR indicator is meaningless, this should be ignored), and the address of
the read-only RPL.

• Register 14 contains the address in VT AM to which the SCIP exit-routine must
return.

• Register 15 contains the address of the SCIP exit-routine.

• The contents of the remaining registers (0 and 2-13) are unpredictable.

TPEND=exit-routine address
Indicates the address of a routine to be entered when the network operator issues a
HALT command, or, in OS/VSl and OS/VS2, when VTAM abnormally terminates.
If the operator issues a HALT command to cause an ordinary ("non-quick")
c1osedown, no new connection requests are permitted. If there is no TPEND
exit-routine, the application program is not notified of the HALT command or
pending termination except via the return codes resulting from pending and
subsequent I/O requests. A TPEND exit-routine is strongly recommended.

If the operator issued a HALT command to cause a quick c1osedown, or VT AM
itself terminates, any operations in progress are allowed to complete. Requests not
yet initiated by VTAM are canceled, however, and the RPL's FDBK2 field is posted
to indicate the reason for their premature completion. In a quick closedown
situation, the TPEND exit-routine cannot send or receive any data from the
connected terminals, and must either issue CLSDST for ~ach one, or disconnect
them all with the CLOSE macro instruction. Note: CLOSE cannot be issued in an
exit-routine, but the TPEND routine could cause a CLOSE in the main program to
be executed (by posting an ECB upon which the main program is waiting, for
example). It is imperative that the terminals be disconnected. Failure to do so when
HALT is issued for a quick closedown may result in the termination of your
application program by the network operator.

Registers Upon Entry: When the TPEND exit-routine receives control, register 1
contains the address of a two-word parameter list:

• The first word contains the address of an ACB. This ACB is the ACB of the
application program being shut down .

• The value in the second word indicates the reason for the shutdown:

o The operator issued a HALT command, causing an orderly closedown.

4 The operator issued a HALT command, causing a quick closedown.

8 VT AM is abnormally terminating .

. Other general purpose registers contain the following:

Register 14: The address in VTAM to which the TPEND routine must branch
when it is through processing.

Register 15: The address of the TPEND routine.

The contents of the remaining registers (0 and 2-13) are unpredictable.

RELREQ=exit-routine address
Indicates the address of a routine that is entered when another application program
(or TOLTEP) requests connection to a terminal that is currently connected to your
application program. This occurs when the other application program issues a
SIMLOGON macro instruction (with the RELRQ and Q options specified) on
behalf of your terminal.

37

£AL~l

38

The RELREQ exit-routine may want to determine whether there are any I/O
requests pending for the terminal and release it only after these I/O operations have
been completed. If the application program wants to release the terminal (this is
optional), it should disconnect the terminal with a CLSDST macro instruction. This
CLSDST macro instruction must have the RELEASE option code in effect for its
RPL. The terminal is not disconnected until CLSDST is executed.

If you have no RELREQ exit-routine, your application program cannot be notified
at the other application program's request. If the request was issued with NQ set,
the request is rejected. If Q was set, the request remains pending until you
disconnect the terminal with CLSDST.

The application program that causes your RELREQ exit-routine to be invoked may
have had the CONANY option code in effect for its SIMLOGON request. Although
the use of CON ANY causes VTAM to ultimately connect only one terminal, VTAM
may in the process invoke many RELREQ routines. Thus you may release your
terminal, only to have it remain unconnected when the other application program's
request is satisfied by some other terminal. To prevent this problem, follow the
CLSDST with an OPNDST (OPTCD=ACQUIRE) or SIMLOGON request of your
own. Then if the· other application program is ignoring your just-released terminal,
you get it back.

Registers Upon Entry: When the RELREQ exit-routine receives control, register 1
contains the address of a two-word parameter list:

• The first word of the parameter list contains the address of an ACB. This ACB is
the ACB through which the terminal is currently connected to an application
program.

• The second word of the parameter list contains the address of the symbolic
name of the requested terminal.

The other registers contain the following:

Register 14: The address in VTAM to which the RELREQ routine must branch
when it is through processing. VTAM will handle the return of control to the
instruction in the application program that was about to be executed when the
RELREQ interruption occurred.

Register 15: The address of the RELREQ routine.

The contents of the remaining registers (0 and 2-13) are unpredictable.

LOGON=exit-routine address
Indicates the address of a routine to be entered when VTAM has queued a logon
request for the application program.

VTAM queues a logon request if (1) a terminal issues a logon request via the
network solicitor, (2) the application program to which the terminal is currently
connected issues a CLSDST macro instruction with OPTCD=P ASS, (3) an
application program issues a SIMLOGON macro instruction on behalf of the
terminal, (4) the installation has specified automatic logon requests for the
application program, or (5) the logical unit has issued an Initiate Self command.
These cause the LOGON exit-routine to be scheduled if SETLOGON (OPTCD=
START) is in effect.

For automatic logon requests: If a BSC or start-stop terminal has been defined by
the installation as a dial-in terminal (CALL=IN specified in the LINE or GROUP
definition macro), the LOGON exit-routine is scheduled when the terminal

operator dials in. If a BSC or start-stop terminal has been defined by the installation
as a dial-out terminal (CALL=OUT), the LOGON exit-routine is scheduled when
the application program opens its ACB and issues SETLOGON (OPTCD=START).
(The terminal will not be dialed, however, until OPNDST is completed and the first
I/O request is directed to it.)

Regardless of the mechanism by which the LOGON exit-routine is scheduled, the
routine is in effect being asked to connect the terminal to the application program.
The routine's principal task therefore is to determine if it should honor the request,
and when it determines that it should, issue an OPNDST macro instruction to
establish connection with the terminal. If the request is not to be honored, the
routine should issue the CLSDST macro instruction for the terminal (which
removes the terminal from the logon queue). If neither OPNDST nor CLSDST is
issued, the terminal may remain unconnected to any application program.

If MACRF= LOGON and SETLOGON (OPTCD=QUIESCE) has not been issued,
logon requests are queued for your application program regardless of whether a
LOGON exit-routine is available. A logon request remains queued until you issue
OPNDST or CLSDST for the terminal.

Note that the "queuing" of a logon request does not necessarily mean that the
request is queued for eventual scheduling of the LOGON exit list routine; it merely
means that the request is queued for an eventual OPNDST (OPTCD=ACCEPT)
macro instruction (or CLSDST).

The LOGON exit-routine can issue an INQUIRE macro instruction to obtain the
logon message supplied by the terminal making the logon request. If the routine
determines from this logon message that connection should be requested, it may
wish to establish that connection. This would be accomplished by using
information passed to the LOGON exit-routine, along with information obtained
with the INQUIRE macro instruction, to build or modify a NIB and an RPL, and
by then issuing the OPNDST macro instruction with ACCEPT and SPEC option
codes.

The LOGON exit-routine is entered only ifMACRF=LOGON was speci~ed for the
ACB, and the application program has issued the SETLOGON (OPTCD=ST ART)
macro instruction.

Registers Upon Entry: When the LOGON exit-routine receives control, register 1
contains the address of a 4-word parameter list:

• The first word contains the address of an ACB. This ACB is the ACB to which
the logon request was directed. The ACB address should be specified for the
ACB operand of an INQUIRE macro instruction used to obtain the logon
message.

• The second word contains the address of the 8-byte symbolic name of the
terminal requesting logon. This name should be placed in the NAME field of the
NIB used to establish connection with the terminal. (The symbolic name being
pointed to here is the same as the name of the terminal's entry in the resource
definition table. The terminal's entry is either an LU, TERMINAL, or COMP
entry, or, if the terminal is a dial-in terminal without an automatic ID
verification feature, the UTERM name in a TERMINAL entry. TERMINAL and
COMP are VT AM definition macros used by the installation to build entries in
the resource definition table.)

• The third word is reserved.

39

.cAL~ 1

40

• The fourth word contains the length of the l@gon message sent by the terminal.
This length should be used with the LENGTH operand of any INQUIRE macro
instruction used to obtain the logon message.

Other registers contain the following:

Register 14: The address in VTAM to which the LOGON exit-routine should
branch when it is through processing. VTAM handles the return of control to the
application program instruction that was about to be executed when the
LOGON interruption occurred.

Register 15: The address of the LOGON exit-routine.

The contents of the remaining registers (0 and 2-13) are unpredictable.

LOSTERM=exit-routine address
Indicates the address of a routine to be entered when contact with a terminal has
been lost. As noted below, the application program mayor may not issue CLSDST
to disconnect the terminal. (If the application program fails to issue CLSDST, the
terminal will remain unavailable for connection to any other application program.)

If there is no LOSTERM exit-routine, the application program is not notified that
contact has been lost, except via return codes following pending and subsequent
I/O requests for the terminal. A LOSTERM exit-routine is especially recommended
for those application programs that do not issue specific-mode I/O requests for
their terminals, but are instead driven by input arriving as the result of READ or
RECEIVE macro instructions issued in the any-mode.

When the LOSTERM exit-routine is entered, the application program can no longer
communicate with the terminal, although READ or RECEIVE macro instructions
can still be issued to obtain data already sent from the terminal. The LOSTERM
exit-routine may inform the main part of the application program that the terminal
has been lost.

Registers Upon Entry: When the LOSTERM exit-routine receives control, register
1 contains the address of a 4-word parameter list.

• The first word contains the address of an ACB. This ACB is the ACB of the
application program to which the terminal was connected.

• The second word contains the CID of the terminal. The ARG field of an RPL
used for CLSDST must contain this CID.

• The third word contains whatever had been placed in the USERFLD field of the
NIB associated with the terminal.

• The decimal value contained in the fourth word indicates why the LOSTERM
exit-routine was entered:

o A dial-line disconnection occurred for a dial-in BSC or start-stop
terminal. A CLSDST macro instruction is required.

4 A dial-line disconnection occurred for a dial-out BSC or start-stop
terminal. If no data from the terminal remains in VTAM buffers, a
READ or WRITE (OPTCD=SPEC) macro instruction will redial the
terminal. If redialing fails (causing the LOSTERM exit-routine to be
rescheduled) the CLSDST macro instruction should be issued for the
terminal.

8 Reserved.

12 Contact with a BSC terminal, start-stop terminal, or logical unit has
been lost for one of the following reasons: (1) the network operator has
issued a VARY command for the terminal, (2) the communication
controller's NCP has begun an automatic network shutdown or has
abended and cannot be restarted, (3) there has been a permanent
channel failure between the CPU and the communication controller or
locally attached terminal, (4) there has been a failure in the network
path between the communication controller and the remotely attached
terminal, or (5) a Test Request Message has been received from the
terminal. A CLSDST macro instruction is require.d.

16 When a logical unit is about to be restarted, VTAM first schedules the
LOSTERM exit-routine with a decimal code of 24 in the parameter list.
If the logical unit is successfully restarted, the LOSTERM exit-routine
is rescheduled with this code (16) in the parameter list. An OPNDST
macro instruction should be issued.

20 An unconditional Terminate Self command has been issued by the
logical unit. A CLSDST macro instruction is required.

24 The logical unit is about to be restarted. If the logical unit is
successfully restarted, VT AM reschedules the LOSTERM exit-routine
with a decimal code of 16 in the parameter list. If the logical unit is not
successfully restarted, VT AM reschedules the exit-routine with a
decimal code of 12 in the parameter list. Issue a CLSDST macro
instruction for the logical unit. If you intend to resume communication
if the logical unit is successfully restarted, you can issue RECENE
macros (OPTCD=HQ) to obtain any data still in the network. (If data is
still in the network when the logical unit is restarted, the data is
discarded.) These RECEIVEs must be issued before the CLSDST is
issued.

Other general purpose registers contain the following:

Register 14: The address in VTAM to which the LOSTERM routine must
branch when it is through processing. VT AM handles the return of control to the
point in the application program where the LOSTERM interruption occurred.

Register 15: The address of the LOSTERM exit-routine.

The contents of the remaining registers (0 and 2-13) are unpredictable.

ATTN=exit-routine address(Basic-mode only)
Indicates the address of a routine to be entered when a start-stop terminal
connected to the application program causes an attention interruption and no read
or write operation is pending or in progress for the the terminal.

Such an attention interruption causes an error lock to be set for the terminal by the
CPU or the communication controller; no I/O can be performed with the terminal
until this error lock is reset with a RESET macro instruction.

If there is no ATTN routine to be invoked, the attention interruption is ignored and
the error lock is automatically reset.

The ATTN exit is taken only if (1) the application program specified PROC=
MONITOR in the NIB representing the terminal that issued the attention
interruption, and (2) the terminal is a 2741, 1050, Communicating Magnetic Card
Selectric Typewriter, or an AT&T Teletypewriter Terminal.

. 41

nAL~l

42

The application program is notified of attention interruptions that occur during an
I/O operation by means of a return code set in the FDBK2 field of the I/O request's
RPL.

Registers Upon Entry: When the ATTN routine receives control, register 1 contains
the address of a 3-word parameter list:

• The first word contains the address of an ACB. This ACB is the ACB through
which the terminal issuing the attention interruption is currently connected.

• The second word contains the CID of the terminal. The ARG field of any RPL
used to communicate with this terminal must contain this CID.

• The third word contains whatever had been placed in the USERFLD field of the
NIB associated with the terminal.

Other general purpose registers contain the following:

Register 14: The address in VTAM to which the ATTN routine should branch
when it is through processing. VT AM handles the return of control to the
application at the point that the interruption for the ATTN exit occurred.

Register 15: The address of the ATTN exit routine.

The conteI?-ts of the remaining registers (0 and 2-13) are unpredictable.

GENCB-Generate a Control Block

The GENCB macro instruction builds an ACB, EXLST, RPL, or NIB. The
advantage of using the GENCB macro instruction is that the control blocks are
generated during program execution. (With the ACB, EXLST, RPL, and NIB macro
instructions, the control blocks are built during program assembly.) If GENCB,
MODCB, TESTCB, and SHOWCB are used to build and manipulate the control
blocks, program reassembly should not be required should control block formats be
changed during future releases ofVTAM.

GENCB not only builds the control block during program execution, but can also
build the control block in dynamically allocated storage. One advantage of this
technique is that it can remove application program dependencies on the length of
each control block.

The GENCB user specifies the type of control block to be built and the contents of
its fields. The operands used to specify the field contents are exactly the same as
those used in the macro instruction that builds the control block. For example,
these macro instructions build the same exit list:

GENeB
EXLST

BLK = EXLST ,SYN AD=SYNADPGM,AM=VT AM
SYNAD=SYNADPGM,AM=VT AM

The control block is built either in storage that VTAM obtains via the OS/VS
GETMAIN or DOS/VS GETVIS facility, or in the application program's storage. To
accomplish the latter, the application program should either reserve enough storage
during program assembly to accomodate the control block, or perform its own
GETMAIN or GETVIS operation to obtain the necessary storage. If the application
program is providing the storage, the location and length of this storage must be
coded in the GENCB macro instruction. Dynamic storage allocation for the control
block occurs automatically if the location and length operands (WAREA and
LENGTH) are omitted. The application program can issue FREEMAIN or
FREEVIS macro instructions to free the storage obtained by G ENCB. (If
FREEMAIN is used, return the storage to subpool O. If GENCB is issued in a task
running in privileged state, return the storage to subpool 252.)

Dynamic storage allocation can be successful only if (1) the program is operating in
virtual mode and (2) enough unallocated virtual storage remains in the program's
partition or region to build the control block. See the description of the LENGTH
operand for an explanation of how control block lengths are determined.

List, generate, and execute forms of the GENCB macro instruction are available;
they are designated by the MF operand. These forms must be used in reentrant code
such as the LERAD and SYNAD exit-routines (see the Macro Language Guide).

Because there is a large variety of formats in which the GENCB operands can be
specified, format specifications have been tabulated in Appendix E and do not
appear in this macro instruction description.

Name Operation Operands

[symbol] GENCB BLK= {ACB I EXLST IRPL INIB}
,AM=VTAM
[, keyword=value] ...
[, COPIES=quantity]
[, WAREA =work area addreSs]
, LENGTH=work area length

[, MF=1ist, generate, or execute form parameters]

BLK=ACB I EXLST I RPL I NIB
Indicates the type of control block to be generated.

43

lih.NCB

44

AM=VTAM
Identifies this macro instruction as a VTAM macro instruction. This operand is
required.

keyword=value
Indicates a control block field and the value that is to be contained or represented
within it.

For keyword, code any keyword that can be used in the macro instruction
corresponding to the BLK operand. If BLK=ACB is used, for example, code the
keyword of any operand that can be used in the ACB macro instruction. One
exception: ARG=(register) can also be coded if BLK=RPL.

For value, indicate a register or code any value that could be used if the operand
were being specified in the ACB, EXLST, RPL, or NIB macro instruction, or use
one of the formats indicated in Appendix E.

Note: If no keywords are included, the following types of control blocks are built:

ACB: All fields are set to 0, and the MACRF field is set to NLOGON.

RPL: All fields are set to their default values (as indicated in the RPL macro
instruction description).

EXLST: This form of GE1VCB should be avoided.

NIB: All fields are set to their default values (as indicated in the NIB macro
instruction description).

COPIES=quantity
Indicates the number of control blocks to be generated.

The copies are identical in form and content. With the exception of an exit list,
they are placed contiguously in storage, whether that storage is the area indicated
by the WAREA operand or is dynamically allocated storage. Exit lists begin on the
next fullword boundary following the end of the previous exit list.

The length returned in register 0 is the total length of the generated control blocks.
The length of each block (the total length divided by the number of copies) can be
used to determine the location of the beginning of each block.

Note: If this operand is not used, one control block is built.

WAREA=work area address
Indicates the location of the storage area in the application program where the
control block is to be built. The work area must be aligned on a fullword boundary.
If this operand is specified, the LENGTH operand must also be specified.

If the WAREA and LENGTH operands are omitted, VTAM obtains dynamically
allocated storage via the GETMAIN or GETVIS facility and builds the control
block there. Assuming that GENCB is completed successfully (this is indicated by a
return code of 0 in register 15), the address of the generated control block (or
blocks) is placed in register 1, and their total length is placed in register o.

LENGTH=work area length
Indicates the length (in bytes) of the storage area designated by the WARBA
operand.

If this length is insufficient, register 15 will contain the value 4, and register 0 will
contain the value 9.

Examples

To avoid having to recode your application program should you wish to run it
under a different operating system, use the manipulative macro instructions to
obtain the control block lengths. You do this by specifying ACBLEN, EXLLEN,
RPLLEN, or NIBLEN in either a SHOWCB or TESTCB macro instruction. For
example, to obtain the length of an ACB in your particular operating system, the
following SHOWCB could be coded:

SHOWCB FIELDS= ACBLEN ,AREA=WORKAREA,LENG TH=4 ,AM=VT AM

Or, to test the length of an exit list in your particular operating system, the
following TESTCB could be coded:

TESTCB EXLLEN=(7),AM=VTAM

If you are generating more than one control block, remember that the total length
of each control block is the length indicated by the control block's length field
(ACBLEN, EXLLEN, RPLLEN, NIBLEN) plus the number of bytes required for
fullword alignment. (EXLSTs are variable in length; when no specific EXLST is
specified, the length returned by SHOWCB or tested by TESTCB is the maximum
possible length for your operating system.)

MF=list, generate, or execute form parameters
Indicates that a list, generate, or execute form of GENCB is to be used. Omitting
this operand causes the standard form of GENCB to be used. See Appendix F for a
description of the nonstandard forms of GENCB.

GENI GENCB

BLOKPOOL DS

AM=VTAM,BLK=ACB
APPLID=(3),EXLST=(6),
WAREA=BLOKPOOL,LENGTH=(4)

32D

GENI builds an ACB in statically reserved storage (BLOKPOOL). When GENI is
executed, register 3 must contain the address of an application program's symbolic
name, and register 6 must contain the address of the exit list to be pointed to by
the ACB.

GEN2

L
GETMAIN
LR
GENCB

1 ° ,WO RKARE A
R,LV=(10)

(REG 10=ACB LENGTH)

5,1 (REG5=ACB ADDRESS)
AM=VTAM,BLK=ACB
WAREA=(5),LENGTH=(10)

In this example, the application program is building an ACB in dynamically
allocated storage obtained by itself. Using the procedure described above in the
LENGTH operand description, the application program has obtained the length of
an ACB and placed it in a fullword called WORKAREA. The instructions preceding
GEN2 obtain the correct amount of storage, and GEN2 builds the ACB in that
storage.

GEN3 GENCB BLK=RPL,COPIES=10,AM=VTAM

GEN3 creates 10 RPLs in dynamically allocated storage obtained by VT AM. The
address of the beginning of these RPLs is returned in register 1, and the total length
is returned in register O. This length includes all padding for fullword alignment; the

4S

Return of Status Infonnation

46

RPLLEN field indicates the length of each unpadded RPL. Each RPL is built as
though an RPL macro instruction with no operands had been issued.

After GENCB processing is finished and control is returned to the application
program, register 15 indicates whether or not the operation was completed
successfully. If the operation was completed successfully, register 15 is set to 0; if it
was completed unsuccessfully, register 15 is set to either 4 or 8. If it is set to 8,
register 0 is also set indicating the specific nature of the error (see Appendix D).

INQUIRE-Obtain Terminal Information or Application Program Status

There are seven types of INQUIRE. The setting of the RPL's option code
detennines which one is used. The following descriptions indicate the purpose and
use of these options; see the operand descriptions for details regarding how each is
specified.

LOGONMSG
INQUIRE obtains a logon message from a tenninal that has requested logon for the
application program.

Note: A logon message cannot be obtained after OPNDST is issued.

DEVCHAR
INQUIRE obtains the device characteristics of a terminal, as they are defined by
the installation in the resource definition table. These device characteristics can be
used to define which processing options the program wants to be in effect for the
NIB used to connect that terminal. This type of INQUIRE is also appropriate for
use in LOGON exit-routines where the program is establishing connection with
terminals whose identities are not known during program assembly.

TERMS
For a given LU, TERMINAL, LINE, CLUSTER, or GROUP entry in the resource
definition table, INQUIRE builds a NIB or list of NIBs in the application program.

The purpose of this type of INQUIRE is this: During VTAM definition, the
installation can define a TERMINAL, LINE, GROUP, or CLUSTER entry and
associate a set of terminals with that entry. If the application program builds one
NIB that indicates this entry in its NAME field, it can then issue INQUIRE to
generate NIBs for all of the terminals associated with the entry. Thus the
application program need not be aware of the identities or the number of these
terminals before establishing connection with them. This allows the installation, via
the network operator or VTAM definition procedures, to vary the set of terminals
after the application program has been assembled.

COUNTS
INQUIRE provides the number of tenninals that are currently connected via a given
ACB and the number of terminals that have requested logon via that ACB but have
not yet been connected.

APPSTAT
INQUIRE checks a specified application program and detennines whether the
application program is accepting logon requests, never accepts logon requests, is
temporarily not accepting logon requests, no longer accepts logon requests, or has
not yet opened its ACB. A code representing each situation is returned in the RPL's
FDBK field.

CIDXLATE
Given a terminal's CIQ INQUIRE provides the symbolic name of that terminal.
Conversely, given the symbolic name of a terminal, INQUIRE provides the
corresponding CID of that tenninal.

When a tenninal is connected to an application program, the symbolic name of that
tenninal is converted into a 4-byte equivalent called the CID. This CID must
subsequently be used for all I/O requests for the terminal.

47

48

TOPLOGON
When a terminal directs a logon request at an application program (ACB) or when a
request is made on its behalf, the application program mayor may not immediately
satisfy that request. While the request remains unsatisfied, it is said to be queued to
the ACB. If unsatisfied requests accumulate, more than one is queued to the ACB.

The TOPLOGON option supplies the symbolic name of the terminal that is
currently at the head of the queue for a given ACB.

BSCID
This version of INQUIRE is used when a terminal with an ID verification feature
dials in and causes a logon request to be generated for the application program. If
the application program determines that the terminal's name is one that was
associated with an IDLST having NOMATCH=PASS in effect (see your system
programmer) INQUIRE with OPTCD=BSCID supplies the terminal's ID verification
sequence.

Name Operation Operands

[symbol] INQUIRE RPL=rpl address
[, rpl field name=new value] ...

RPL=rpl address
Indicates the location of the F.PL that indicates which kind of processing INQUIRE
is to perform.

rpi field name=new value
Indicates an RPL field to be modified, and the new value that is to be contained or
represented within it. If you wish to avoid the possibility of program reassembly
following future releases of VTAM, set the RPL field with MODCB 'macro
instructions rather than with the INQUIRE macro instruction.

Format; For rpl field name, code the keyword of the RPL macro instruction
operand that corresponds to the RPL field being modified. The new }Jalue can be
any value that is valid for that operand in the RPL macro instruction, or it can
indicate a register. ARG=(register) can also be specified.

Although any RPL operand can be specified, the following operands apply to the
INQUIRE macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

ARG=(regjster)
Indicates the register containing the CID of the terminal. Register notation must be
used if the CID is to be placed in the ARG field with this INQUIRE macro
instruction. This operand applies to the DEVCHAR and CIDXLATE forms of
INQUIRE.

NIB=nib address
Indicates the NIB whose NAME field identifies the terminal or application program.
This operand applies to the LOGONMSG, DEVCHAR, TERMS, APPSTAT, and

INQUIRE

CIDXLATE fonus of INQUIRE. For DEVCHAR and CIDXLATE, NIB=address
and ARG=(register) are mutually exclusive methods of identifying the terminal.

AREA =address of data area
Indicates where the information produced by INQUIRE is to be placed.

AREALEN=length of data area
Indicates the maximum number of bytes of data that the data area can hold; if the
data to be placed there exceeds this value, a special condition results (RTNCD=O,
FDBK2=5).

ECB I EXIT=ecb or rpl exit routine address
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASY)
INQUIRE macro instruction is completed. The macro instruction is completed
when the information has been placed in the application program's storage area. If
EXIT is specified, the RPL exit-routine is scheduled. Otherwise the ECB is posted,
and CHECK or WAIT must be used to determine when the posting occurs. See the
RPL macro instruction for more information.

OPTCD=SYN I ASY
When the SYN option code is set, control is returned to the application program
when the INQUIRE macro instruction has been completed. When ASY is set,
control is returned as soon as VTAM has accepted the request. Once the INQUIRE
operation has been completed, the ECB is posted or the RPL exit-routine is
scheduled, depending on the setting of the ECB-EXIT field.

OPTCD=LOGONMSG I DEVCHAR I COUNTS I TERMS I APPSTAT I CIDXLATE I
TOPLOGON I BCSID

LOGONMSG
INQUIRE obtains a logon message from a terminal that has requested logon for the
application program.

The RPL's ACB field must indicate the ACB to which the logon request is directed.
The NIB field must point to a NIB whose NAME field contains the symbolic name
of the terminal issuing the logon request. The AREA and AREALEN fields must
indicate the location and length of the storage area where the logon message is to be
placed.

Note: The infonnation required for the ACB, NAME, and AREALEN fields is
passed to the LOGON exit-routine in a parameter list.

VT AM indicates the len~th of the logon message in the RPL's RECLEN field. If the
message is too long to fit, RECLEN is posted with the required length. Conditional
completion is indicated (RTNCD=O and FDBK2=5), and no data is supplied to the
application program.

DEVCHAR

INQUIRE obtains the device characteristics of a terminal, as they are defined by
the installation in the resource definition table.

The RPL must indicate the termina1 in one of two ways: either the RPL's NIB field
must indicate a NIB containing the symbolic name of the terminal, or the RPL's
ARG field must contain the CID of the terminal.

49

INQUIRE

50

The device characteristics are placed in an 8-byte program storage area whose
location is set in the AREA field. The AREALEN field must be set to 8. The bits
that are set in this area indicate whether the device is an input, output, or
input/output device. The specific device type (for example, 3270 display station) is
also indicated, along with additional information. See Appendix H for a complete
description of the DEVCHAR information.

TERMS
For a given TERMINAL, LINE, CLUSTER, or GROUP entry in the resource
definition table, INQUIRE builds a NIB or list of NIBs in the application program.

The RPL's NIB field must point to a NIB whose NAME field contains the name of
an entry that exists in the resource definition table at the time INQUIRE is
executed. A NIB is built for each terminal represented in the entry.

The AREA and AREALEN fields designate the location and length of the work
area where the NIBs are built. The work area must be set to 0 by the application
program before INQUIRE is issued.

VT AM indicates the total length of the NIBs in the RPL's RECLEN field.

If the application program wants the NIBs to be built in dynamically allocated
storage (obtained by the application program), INQUIRE should be issued twice.
For the first INQUIRE, set AREALEN to O. This INQUIRE will complete with
RTNCD=O and FDBK2=5 (insufficient length) and RECLEN will indicate the
required length. Obtain the storage and issue INQUIRE with AREALEN set to the
proper length.

Each NIB contains the symbolic name of the terminal, with flags for the LISTEND
field set in such a way as to group the NIBs together into a NIB list. In addition,
device characteristics are placed in each NIB. These characteristics can be used to
reset the PROC options of the NIB to values that are appropriate for the terminal.

After the user has set each NIB's MODE field to BASIC or RECORD and other NIB
fields to their desired values, the NIBs are ready to be used for connection.

COUNTS
INQUIRE provides the number of terminals that are currently connected via a given
ACB and the number of terminals that have requested logon via that ACB but have
not yet been connected.

The RPL's ACB field must contain the address of the ACB. The AREA field must
indicate a 4-byte area where the information is to be placed. VT AM places the
number of connected terminals in the first 2 bytes and the number of terminals
requesting logon in the second 2 bytes.

APPSTAT
INQUIRE checks a given application program and returns one of the following
decimal values in the RPL's FDBK field:

o ACTIVE: The application program is accepting logon requests (that is,
the ACB is open, its MACRF field is set to LOGON, and SETLOGON
START has been issued).

4 INACTIVE: The application program ACB is not open.

INQUIRE

8 NEVER ACCEPTS: The application program has indicated that it never
accepts logon requests (that is, the ACB was opened with MACRF=
NLOGON specified).

] 2 TEMPORARILY NOT ACCEPTING: The application program has
indicated that logon requests should not be directed toward it. The
application program has issued SETLOGON (OPTCD=STOP) which
implies that this condition is temporary, and that SETLOGON
(OPTCD=ST ART) will eventually be issued to indicate that logon
requests can again be directed toward it. An INQUIRE issued after the
application program issues SETLOGON (OPTCD=START) causes a
FDBK code of 0 to be returned.

16 NO LONGER ACCEPTING: The application program has issued
SETLOGON (OPTCD=QUIESCE) and logon requests cannot be
directed toward it. Unlike a return code of 12, a return code of 16
means that the application program's logon request queue is now
permanently closed. Presumably, the application program is about to
close its ACB.

The RPL's ACB field must contain the address of an opened ACB.

The RPL's NIB field must point to a NIB whose NAME field contains the symbolic
name of the application. (Although the NIB is generally used as a terminal control
block, note that here it is being used to identify an application program. The
symbolic name in the eight-byte NAME field must be left-justified and padded to
the right with blanks. (This name corresponds to the application program's APPL
entry in the resource definition table.)

CIDXLATE
Given a terminal's CID, INQUIRE provides the symbolic name of that terminal.
Conversely, given the symbolic name of a terminal, INQUIRE provides the
corresponding CID of that terminal.

To convert that CID back into its equivalent symbolic name, the RPL's ARG field
must contain the CID when the INQUIRE macro instruction is executed. The
symbolic name is returned in the data area that you indicate in the RPL's AREA
field. The AREALEN field must be set to 8.

To use INQUIRE to convert the symbolic name into a CID, the RPL's NIB field
must contain the address of a NIB. The NAME field of that NIB must in turn
contain the symbolic name to be converted. The CID is placed in the data area that
you indicate in the RPL's AREA field. The AREALEN field must be set to 4.

Note: The NIB and the ARC field occupy the same physical field in the RPL. If
the last macro instruction .operand used to set or modify this field was
ARC=(registerj, or if the field has been left unchanged since VTAM inserted aCID
into it, VTAM recognizes that this field contains a CID. If the last operand used to
set or modify this field was NIB=address, VT AM recognizes that the field contains a
NIB address.

TOPLOGON
INQUIRE returns the symbolic name of the terminal that has directed a logon
request at the application program, and has spent the greatest amount of time
waiting to be connected. If no logon requests are queued, an error return code
results (see Appendix C).

51

INQUIRE

Examples

Return of Status Infonnation

52

The ACB field of INQUIRE's RPL must indicate the ACB whose logon request
queue is to be examined. The symbolic name is returned in the data area indicated
by you in the RPL's AREA field. The AREALEN field must be set to 8.

BSCID
INQUIRE returns the terminal's ID verification sequence. The RPL's NIB field
must point to a NIB whose NAME field contmns the symbolic name of the terminal
(as provided in the LOGON exit-routine's parameter list). The sequence, which can
be up to 20 bytes long, is placed in the storage area pointed to by the AREA field.
Set the AREALEN field to 20.

INQl
TSTI

NIBI

INQUIRE
TESTCB
BE

NIB

RPL= RPLI ,OPTCD= APPSTAT ,NIB=NIB 1
RPL=RPL1,FDBK=0
ACTIVE

NAME=PGMI

INQ 1 determines whether PGMI is active and accepting logon requests. The answer
is returned in RPLI 's FDBK field. TSTI and the branch instruction cause a branch
to ACTIVE if the application program is active and accepting logon requests.

INQ2

NIB2
LGNMSG

INQUIRE RPL=RPL2,OPTCD=LOGONMSG,
ACB=ACBl,NIB=NIB2
AREA= LGNMSG,AREALEN= 1 00

NIB
DS

NAME=TERM2
CLI00

INQ2 obtains the logon message that was sent from the terminal whose symbolic
name is contained in NIB2 and that was directed to the application program
represented by ACB1. This message is placed in the area designated as LGNMSG.

When the INQUIRE operation is completed, the following RPL fields are set:

If INQUIRE (OPTCD=APPSTAT) has been completed normally, as indicated in
register 15, the FDBK field is set as shown above.

If INQUIRE (all versions except OPTCD=APPSTAT) has been completed
normally, the RECLEN field indicates the number of bytes of data that have
been placed in the work area designated by the AREA field. If INQUIRE was
completed successfully but the FDBK2 field indicates that the work area was
too small (FDBK2=5), RECLEN indicates the required length.

The value 26 (decimal) is set in the REG field indicating an INQUIRE request.

The RTNCD and FDBK2 fields are set as indicated in Appendix C.

Registers 0 and 15 are also set as indicated in Appendix C.

INTRPRET

INTRPRET -Interpret an Input Sequence

INTRPRET allows each application program to use translation tables for each
terminal that are specified by the installation and maintained by VT AM, rather
than tables that are created and maintained by each application program.

During VT AM definition, the installation identifies each terminal in its
teleprocessing network, and optionally associates an interpret table with each one.
The interpret table contains one or more variable-length sequences that the terminal
is capable of sending-such as graphic characters, tab characters, or program
function key characters. With each of these sequences, the installation specifies a
corresponding 8-byte sequence (or the address of an installation-written routine
that will generate an 8-byte sequence). An application program issuing INTRPRET
identifies the terminal and provides a particular sequence received from the
terminal; VT AM, if it finds that sequence in the interpret table for that terminal,
returns the corresponding sequence to the application program.

As an example, assume that the installation defines the following interpret tables
for two terminals, T274 I and T3270:

T2741 's interpret table

_Logon.
Repeat last xmission.
Stop.

LOGON
REPEATLT
STOP

T3270's interpret table

LGN

@

LOGON
REPEATLT
LIST

If an application program receives the sequence "Repeat last xmission." from
T2741 , INTRPRET (if provided with the sequence and the identity of the terminal)
would return the sequence "REPEATLT" to the application program. If the
application program identifies T3270 and provides the sequence" "to INTRPRET,
INTRPRET would return the corresponding sequence-in this case, another
"REPEATLT" -to the application program.

Name Operation Operands

[symbol] INTRPRET RPL=rpl address
[, rpl field name=new value] ...

RPL=rpl address
Indicates the· location of the RPL from which INTRPRET obtains needed
infonnation from the application program, and into which it returns completion
status information.

rpl field name=new value
Indicates an RPL field to be modified and the new value that is to be contained or

. represented' within it. If you wish to avoid the possibility of program reassembly
following future releases of VTAM, set the RPL field with MODCB macro
instructions rather than with the INTRPRET macro instruction.

53

INTRPRET

54

Fonnat: For rpl field name code the keyword of the RPL mac.ro instruction
operand that corresponds to the RPL field being modified. The new value can be
any value that is valid for that operand in the RPL macro instruction or it can
indicate a register. ARG=(register) can also be coded.

Although any RPL operand can be specified, the following operands apply to an
INTRPRET macro instruction:

ACB=acb address
Indicates the ACB that identifies the application program.

AIl<i=(regjster)
Indicates the register containing the CID of the terminal. VT AM looks for an
interpret table for this terminal.

NIB=nib address
Indicates the NIB whose NAME field identifies the terminal. VTAM looks for an·
interpret table for this terminal. If the NIB field does not indicate a NIB address,
the ARG field must contain aCID.

AIlEA =data address
Indicates the data area containing the sequence being submitted to VT AM for
interpretation.

RECLEN=data length
Indicates how many bytes are being submitted to VTAM for interpretation.

AAIlEA=data area address
Indicates the data area where VT AM is to place the interpreted sequence.

AAIlEALN=data area length
Indicates the capacity of the data area where VT AM is to place the interpreted
sequence. This value should be at least 8.

ECB I EXIT=ecb or rpl exit-routine address
In4icates the action to be taken by VTAM when an asynchronous (OPTCD=ASy)
INTRPRET macro instruction is completed. If EXIT is specified, the RPL
exit-routine is scheduled. Otherwise the ECB is posted, and CHECK or WAIT must
be used to determine when the posting occurs. See the RPL macro instruction for
more information.

OPTCD=SYN I ASY
When the SYN option code is set, control is returned to the application program
when the INTRPRET macro instruction has been completed. The macro instruc­
tion is completed as soon as the data has been placed in the application program's
storage area. When ASY is set, control is returned as soon as VT AM has accepted
the request. Once the INTRPRET macro instruction has been completed, the ECB
is posted or the RPL exit-routine is scheduled, depending on the setting of the ECB­
EXIT field.

Example

Return of Status Information

INTRPRET

INTI

RPLI
INSEQ
NIB6
QUTSEQ

INTRPRET RPL=RPLI,

RPL
DS
NIB
DS

NIB=NIB6,AREA=INSEQ,RECLEN=(3),
AAREA=QUTSEQ,AAREALN=8

CLI80
NAME=TERMI
CL8

An application program has read a block of data from TERMI and issues INTI to
interpret that data. NIB6 identifies the terminal, hence the interpret table to be
used, AREA indicates the data area containing the data to be interpreted (INSEQ),
and RECLEN indicates the amount of data to be interpreted. Note that if
INTRPRET uses the same RPL that was used to read the data, the NIB-ARG field,
the AREA field, and the RECLEN field would already be correctly set.

Upon completion of INTI, the corresponding sequence is placed in the data area
identified by the AAREA field (QUTSEQ). Although two separate data areas have
been provided in this example for the "input" data (INSEQ) and the "output" data
(OUTSEQ), there is no reason why the same data area could not be used.

When the INTRPRET operation is completed, these RPL fields are set:

If the FDBK2 field indicates that INTRPRET failed because the data to be
placed in the AAREA work area would not fit (FDBK2=5), the ARECLEN field
contains the number of bytes required to hold the data. If INTRPRET was
completed successfully, the ARECLEN field indicates how many bytes of data
have actually been placed in the AAREA work area.

The value 27 (decimal) is set in the REQ field, indicating an INTRPRET request.

The RTNCD and FDBK2 fields are set as indicated in Appendix C. Errors
described in Appendix C include:

• There is no such terminal (invalid NIB or CID).

• There is no interpret table defined for the- terminal.

• The input area is too small.

• There is no such sequence in the interpret table.

• The sequence in the interpret table was found, but the routine that is
supposed to generate a corresponding sequence has not been loaded.

Registers 0 and 15 are also set as indicated in Appendix C.

55

LDO

LDO-Create a Logical Device Order (Basic-mode only)

56

With the READ, WRITE, SOLICIT, and RESET macro instructions, the application
program can perform all but a few of the I/O operations provided by VT AM. To
request any of the following I/O operations, however, the application program must
use the DO and LDO macro instructions:

• Copy the contents of a remotely attached 3277 Display Station buffer to the
buffer of any printer or display unit attached via the same control unit. Use the
COPYLBM or COPYLBT LDOs.

• Read the entire contents of a 3270 display unit's buffer. (To simply read the
data that the terminal operator sends, use the READ macro instruction.) Use the
READBUF LDO.

• Send a positive or negative acknowledgment accompanied by leading graphic
characters, to a System/3 or System/370 CPU, and then read a block of data
from it. Use the WRTPRLG or WRTNRLG LDOs.

• Write data beginning with a block of heading characters to a System/3 or
System/370 CPU. Use the WRTHDR LDO.

• End an NCP session with a terminal. Use the DISCONCT LDO.

• Erase the entire display screen of a 3270 display station (or a 2265 display
station attached to a 2770 Data Communication System) and write a block of
data, or erase only the unprotected portion of a 3270 display station screen and
write no data. Although these operations are available through the WRITE
macro instruction, the latter does not allow erasure to be combined with a
conversational WRITE operation. If the ERASELBM or ERASELBT LDOs are
followed by a chained READ LDO, however, a combined erase-write-read
operation can be achieved. If the EAU LDO is followed by a chained READ
LDO, a combined erase-read operation can be achieved.

The LDO macro instruction generates a control block during program assembly that
indicates one of the above I/O operations. The actual operation is performed when
a DO macro instruction is executed.

Some LDOs can be combined to form a series of operations, much like channel
command words can be combined to form a channel program.

An LDO has four parts:

I c o

b 2 ~ - -t1 4.----- 4 bytes

A A command indicator. This indicates the specific I/O operation to be performed.

B A chaining indicator. A flag can be set in some of the LDOs that cause DO
processing to also use the next contiguous LDO in storage.

C A length indicator. This indicates the length of the data or data area. (The RPL also
has corresponding data address and length fields, but these indicate the LDO address,
not the data address, when the RPL is used by DO.)

o A data address or a data area address. Depending on the command, this address
indicates an area containing data, or a storage area where data is to be placed.

.. I

LDO

Although the operands corresponding to these parts are optional when the LDO
macro instruction is coded, the command, and usually the data address and length
indicator must be set before the DO macro instruction is executed. The LDO
command descriptions below indicates whether these fields must be set. Assembler
language must be used if you want to set LDO fields during program execution.
You cannot use the manipulative macro instructions to modify LDO fields.

Name Operation Operands

[symbol] LDO [CMD=command]
[, ADDR =data address or data area address]
[, LEN =data length or data area length]
[, FLAGS=C ID]

CMD=comrnand

Format: After the CMD keyword, code any of the following values:

COPYLBM
COPYLBT
READ
READBUF

WRITE
WRITELBM
WRITELBT
WRTHDR

WRTNRLG
WRTPRLG
ERASELBM
ERASELBT

EAU
DISCONCT

Function: Indicates the specific I/O operation to be performed.

COPYLBM
This LDO causes the entire contents of a 3277 Display Station buffer to be copied
to a printer or another display unit in the same remotely attached information
display system. VT AM sends the copy request as a message by adding an ETX line
control character at the end. This LDO applies only to remotely attached 3270
terminals.

The ADDR and LEN operands of this LDO must indicate the location and length of
a data area containing (1) a 3270 copy control character and (2) the rightmost 2
bytes of the "from" device's CID. For an explanation of the copy control
character, refer to IBM 3270 Information Display System Component Description,
GA27-2749.

The ARG field of the DO macro instruction's RPL must contain the CID of the
"to" device.

COPYLBT
The COPYLBT LDO performs like the COPYLBM LDO, except that after the data
has been copied, VT AM waits for the receiving device's acknowledgment, and sends
an EOT character after the acknowledgment is received. (The LBM and LBT in the
COPYLBM and COPYLBT LDOs stand respectively for "last block in message" and
"last block in transmission.")

READ
The READ LDO obtains a block of data from a System!3 or System/370 CPU and
places it in a storage area in the application program.

The READ LDO causes VTAM to perform the same action that a READ macro
instruction does. However, a READ LDO can be command-chained after a
WRTPRLG or WRTNRLG LDO. This allows the application program to either (1)
send a negative acknowledgment to the device and then reread the data sent by it or

57

LUU

58

(2) send a positive acknowledgment to the device and then read the next block of
data (or EOT character) sent by it. By generating its own responses in this manner,
the application program can send leading graphic characters along with the
response.

If, at the time DO is executed, no solicited data is in VTAM buffers from the
terminal, VT AM first solicits data from the terminal. This "implicit" solicitation
operates as if a SOLICIT macro instruction had been issued.

The ARG field of the DO macro instruction's RPL must contain the CID of the
device. The ADDR and LEN fields of the READ LDO must indicate the location
and length of the storage area where the data is to be placed.

If the data to be placed there is too long to fit, and the TRUNC option code is in
effect, the excess data is discarded. If the KEEP option is in effect instead of
TRUNC, as much data as will fit is placed in the input area, and the length of the
moved data is placed in RECLEN (so RECLEN=LEN), and the LDO's address is
placed in the RPL's AAREA field. The excess data can be obtained with another
READ LDO or with a READ macro instruction.

READBUF
The READBUF (read buffer) LDO causes the entire contents of a 3275 or 3277
Display Station's buffer to be placed in an area in the application program. VT AM
sends the device-control characters required to distinguish this kind of input
operation from a normal read operation (which obtains data only when the
terminal operator enters data and presses ENTER). This LDO applies to both.
locally and remotely attached 3270 terminals.

The ARG field of the DO macro instruction's RPL must contain the CID of the
sending device.

The ADDR and LEN operands of this LDO indicate the address and length of the
storage area where the data is to be placed. The action taken when the data is too
long to fit is the same as described above for READ.

WRITE
The WRITE LDO writes a block of data to a System/3 or System/370 CPU. For
these devices, the WRITE LDO works exactly like a WRITE macro instruction with
a BLK option code; an STX character is added to the beginning of the data, and an
ETB line control character is added to the end. However, if a WRITE LDO is
command-chained after WRTHDR LDO, (by specifying FLAGS=C on the
WRTHDR LDO), this sequence is written:

SSE
o heading T text T
H X B

The ADDR and LEN operands of the WRITE LDO must indicate the location and
length of the text data to be written. The ARG field of the DO macro instruction's
RPL must contain the CID of the receiving device.

WRITELBM
The WRITELBM LDO writes a block of data to a System/3 or System/370 CPU.
F or these devices, WRITELBM works exactly like a WRITE macro instruction with
an LBM option code; an STX character is added to the beginning of the data, and
an ETX character is added to the end. However, if a WRITELBM LDO is chained

LDO

after a WRTHDR LDO, this sequence is written:

SSE
o heading T text T
H X X

The ADDR and LEN operands of the WRITELBM LDO must indicate the location
and length of the text to be written. The ARC field of the DO macro instruction's
RPL must contain the CID of the receiving device.

WRITELBT
The WRITELBT writes a block of data to a System/3 or System/370 CPU. For
these devices, WRITELBT works exactly like a WRITE macro instruction with an
LBT option code; the data is preceded with an STX character and followed with an
ETX character, and when an acknowledgment is received from the device, an EOT
character is sent. However, if a WRITELBT LDO is chained after a WRTHDR LDO,
this sequence is written:

S S E E
0 heading T text T T 0
H X X I T

I
acknowledgment J.
received - ~ ---

The ADDR and LEN operands of the WRITELBT LDO must indicate the location
and length of the text to be written. The ARC field of the DO macro instruction's
RPL must contain the CID of the receiving device.

WRTHDR
The WRTHDR LDO writes a block of heading characters to a System/3 or
System/370 CPU. The heading characters are provided by the user; VT AM inserts
an SOH character at the beginning of the block and an ETB character at the end.

If a WRITE, WRITELBM, or WRITELBT LDO is chained to a WRTHDR LDO (by
specifying FLACS=C on the WRTHDR LDO), the ETB character is not inserted
after the heading. See the above descriptions of the WRITE, WRITELBM, and
WRITELBT commands.

The ADDR and LEN operands of this LDO must indicate the location and length of
the heading characters to be written. The ARC field of the RPL being used by the
DO macro instruction must contain the CID of the receiving device.

WRTNRLG
The WRTNRLC LDO (write negative response with leading graphics) sends a NAK
character, accompanied by up to seven leading graphic characters, to a System/3 or
System/370 CPU. WRTNRLG can be used only if it is command-chained before a
READ LDO (by specifying FLACS=C on the WRTNRLG LDO) and if BLOCK has
been specified for the device's NIB.

~

The ADDR and LEN operands of the WRTNRLG LDO must indicate the location
and number of graphic characters to be used. The ARG field of the DO macro
instruction's RPL must contain the CID of the receiving device.

WRTPRLG
The WRTPRLG LDO (write positive response with .. leading graphics) sends an ACKO
or ACK! sequence, accompanied by up to seven leading graphic characters, to a

59

LDO

60

System/3 or System/370 CPU. WRTPRLG can be used only if it is command­
chained before a READ LDO (by specifying FLAGS=C on the WRTPRLG LDO)
and BLOCK has been specified for the device's NIB.

The ADDR and LEN operands of the WRTPRLG LDO must indicate the location
and n~mber of graphic characters to be used. The ARG field of the DO macro
instruction's RPL must contain the CID of the receiving device.

ERASELBM
The ERASELBM LDO (erase, write last block of message) erases the screen of a
3270 display station or the screen of a 2265 display station attached to a 2770
Data Communication System. It then writes a block of data ending with STX to the
terminal. A READ LDO can be chained after an ERASELBM LDO.

The ADDR and LEN operands of the ERASELBM LDO must indicate the location
and length of the data to be written. The ARG field of the DO macro instruction's
RPL must contain the CID of the terminal.

ERASELBT
The ERASELBT LDO (erase, write last block of transmission) works exactly like
the ERASELBM LDO, except that after the data is sent to the terminal and an
acknowledgement is received, an EOT character is sent. A READ LDO can be
chained after an ERASELBT LDO.

EAD
The EAD LDO (erase all unprotected) erases the unprotected portion of a 3270
display station's screen. No data is written to the terminal. A READ LDO can be
chained after an EAD LDO.

The ARG field of the DO macro instruction's RPL must contain the eID of the
terminal.

DISCONCT
The DISCONCT (disconnect) LDO sends an EOT to the terminal and terminates
the NCP session with the terminal. The ARG field of the DO macro instruction's
RPL must contain the CID of the terminal.

ADDR=data address or data area address
Indicates the location of the data or data area to be used when the LDO is
processed.

For COPYLBM and COPYLBT LDOs, ADDR points to a 3270 copy control
character and rightmost 2 bytes of the "from" device's CID. For the READ and
READBUF LDOs, ADDR indicates where the data obtained by these LDOs is to be
placed. For the output LDOs, ADDR indicates the location of the data that is to be
wri tten to a device.

If you omit this operand, the ADDR field is set to O. Register notation is not
permitted.

LEN=data length or data area length

•

Indicates the length (in bytes) of the data or data area specified in ADDR.

For COPYLBM and COPYLBT LDOs, this value should always be set to 3. For
READ and READBUF LDOs, VT AM uses this value to determine whether the data

Examples

LDO

to be placed there is too big to fit. For all output LDOs, LEN indicates how many
bytes of data are to be written.

The maximum length you can specify is 32,767 bytes. If you omit this operand, the
LEN field is set to O.

Register notation is not permitted.

FLAGS=C ID
Indicates the action that the DO macro instruction is to take after it has used this
LDO. The presence of this operand indicates that DO is to continue with the next
contiguous LDO in storage. FLAGS=C (command chaining) indicates that the
entire LDO is to be used. FLAGS=D (data chaining) indicates that only the ADDR
and LEN fields of the next LDO are to be used. The absence of this operand
indicates to DO that no further LDOs are to be used.

The following example illustrates the use of the COPYLBM LDO. Assume that the
CID of the 'to' device is already in the ARG field of the DO macro's RPL, and that
the CID of the 'from' device (the CID that must be manipulated) is in the CID field
of NIB].

PRIME SHOWCB
MVC

CPYSCRN DO

LDOl LDO
TEMP DS
CPYSCRNl DC

NIB= NIB 1 ,AREA=TEMP ,LENGTH=4,FIELDS=CID
CPYSCRNl +l(2),TEMP+2
RPL=RPLI ,AREA= LDO 1

CMD=COPYLBM,ADDR=CPYSCRNl,LEN=3
F (TEMP=WORK AREA FOR 'FROM' CrD)
X'630000' (63=A COpy CONTROL CHARACTER,

OOOO=FINAL AREA FOR RIGHT
HALF OF 'FROM' CID)

The purpose of the two instructions at PRIME is to obtain the CID of a 'from'
device (from NIBl into TEMP) and place the rightmost 2 bytes of the CID into a
data area pointed to by LDOl. When CPYSCRN is executed, the device whose CID
is in RPLl's ARG field will be the recipient of the copy operation.

The next example shows how a READBUF LDO might be used.

READ2 DO

READLDO LDO
WORKAREA DS

RPL=RPL2,ARG=(7),AREA=READLDO

CMD=READBUF,ADDR=WORKAREA,LEN=480 '
CL480

When READ2 is executed, register 7 must contain the CID of a 3270 display unit.
VTAM will obtain the entire contents of that device's buffer and place it il1
WORKAREA.

The following example illustrates the use of the WRTHDR LDO.

61

LDO

62

WRITEIT

HDRLDO
TXTLDO
HDRBLOK
TXTBLOK

DO

LDO
LDO
DS
DS

RPL=RPL3 ,ARG=(8) ,AREA=HDRLDO

CMD=WRTHDR,ADDR=HDRBLOK,LEN=S ,FLAGS=C
CMD=WRITE,ADDR=TXTBLOK,LEN=16
CLS
CL200

When WRITEIT is executed, VT AM sends a heading block from AHDRBLOK
combined with a text block from ATXTBLOK. The line control characters added
by VT AM make the sequence look like this:

S data S data E
o from T from T
H AHDRBLOK X ATXTBLOK B

The following example shows how a WRTPRLG LDO can be command-chained to
a READ LDO.

POSRSP

RSPLDO
THENREAD
GRAPHICS

DO

LDO
LDO
DC

RPL= RPL4 ,ARG=(9) ,AREA=RSPLDO

CMD=WRTPRLG ,ADDR=GRAPHICS,LEN=7 ,FLAGS=C
CMD=READ,ADDR=INAREA,LENc 480
C'CPU3003'

When POSRSP is executed, register 9 must contain the CID of a device. VT AM
sends a positive response (ACKO or ACK!) to the device, accompanied by seven
leading graphic characters from GRAPHICS. The next LDO causes VTAM to read
the next block of data frum the device.

MODCB

MODCR-Modify the Contents of Control Block Fields

MODCB modifies the contents of one or more fields in an ACB, EXLST, RPL, or
NIB control block. MODCB works with control blocks created either with
declarative macro instructions or with the GENCB macro instruction.

The user of the MODCB. macro instruction indicates the location of an ACB,
EXLST, RPL, or NIB, the fields within that control block to be modified, and the
new values that are to be placed or represented in these fields.

Any field whose contents can be set with the ACB, EXLST, RPL, or NIB macro
instruction can be modified by the MODCB macro instruction. The operands used
to do this are the same as those used when the control block is created.

The following restrictions apply to the use of MODCB:

• An ACB cannot be modified after an OPEN macro has been issued for it.

• An exit list (EXLST) cannot have exits added to it with the MODCB macro
instruction. If an exit list field is not specified in the EXLST macro instruction,
do not attempt to modify that field with a MODCB macro instruction. MODCB
can, however, be used to change dummy exit addresses to valid addresses.

• An RPL cannot be modifie<t while a request using that RPL is pending, that is,
while the RPL is active.

• A NIB should not be modified while its address is in the NIB field of an active
RPL.

• The AM field of the ACB, EXLST, and RPL control blocks cannot be modified.
Once a control block has been generated in a VT AM-compatible form, it cannot
later be modified for use with another access method.

List, generate, and execute forms of the MODCB macro instruction are available;
they are designated by the MF operand.

Because there are a large variety of formats in which the various MODCB operand
values can be specified, the operand format specifications have been tabulated in
Appendix E, and do not appear here.

Name Operation Operands

[symbol] MOOCB AM=VTAM t' ACB=acb addre", I ' EXLST=exit list address
, RPL=rpl address
, NIB=nib address

{, field name=new value} ...
[, MF =1ist, generate, or execute form parameters]

AM=VTAM
Identifies this macro instruction as a VT AM macro instruction. This operand is
required.

63

MODCB

Example

Return of Status Infonnation

64

ACB=acb address
EXLST=exit list address
RPL=rpl address
NlB=nib address

Indicates the type and location of the control block whose fields are to be
modified.

field name=new value
Indicates a field in the control block to be modified and the new value that is to be
contained or represented within it.

For field name, code the keyword of any operand that can be coded in the macro
instruction corresponding to the ACB, EXLST, RPL, or NIB operand. If
RPL=RPLI is coded, for example, the keyword of any operand in the RPL macro
instruction can be coded. ARG=(register) can also b~ coded.

For new value, code any value that could be used in an ACB, EXLST, RPL, or NIB
macro instruction, or use one of the formats indicated in Appendix E.

MF=1ist, generate, or execute fonn parameters
Indicates that a list, generate, or execute form of MODCB is to be used. Omitting
this operand causes the standard form of MODCB to be used. See Appendix F for a
description of the nonstandard forms of MODCB.

MODI MODCB RPL=(5),OPTCD=(ASY,SPEC,CS),AREA=(6),AM=VTAM

MODI activates the ASY, SPEC, and CS option codes in an RPL. The settings for
the other option codes are not affected. The address of this RPL must be in register
5 when MODI is executed.

After MODCB processing is completed, register 15 indicates whether or not the
operation completed successfully. If the operation completed successfully, register
15 is set to 0; if it completed unsuccessfully, register 15 is set to either 4, '8, or 12.
If it is set to 4 or 12, register 0 is also set indicating the specific nature of the error
(see Appendix D).

NIH

NIB-Create a Node Initialization Block

The NIB generated by the NIB macro instruction is used by the program to identify
which terminal is to be connected when an OPNDST macro instruction is executed.
It also indicates how VTAM is to handle subsequent communication between the
program and that terminal. In this sense a NIB works like an RPL, in that both
contain information that governs I/O requests. But the information in a NIB relates
to the tenninal the NIB represents anq governs all communication directed at that
terminal. (The RPL, in contrast, supplies additional information relating to the
transaction itself, such as the location of data to be written to a terminal or
whether or not the request is to be handled asynchronously.)

When OPNDST is issued, the NIB field of its RPL points to a NIB. Once connection
is established, VT AM associates the terminal with information contained in the
NIB-information that is placed in the NIB by the USERFLD, MODE, and PROC
operands of the NIB macro instruction. This association continues as long as the
terminal remains connected even though the storage containing the NIB can be m:ed
for other purposes as soon as OPNDST is completed. If the USERFLD or PROC
information is to be altered during that time (basic-mode only), the MODCB macro
instruction or a new NIB must be used to make the appropriate changes in the
USERFLD or PROC fields of a NIB (either the original or a new one), and the
CHANGE macro instruction must be used to make these modifications effective.

NIBs can be grouped together into lists. When OPNDST (OPTCD=ACQUIRE) and
SIMLOGON requests are directed towards a NIB that is the first in a NIB list,
VT AM considers all of the terminals represented in the NIB list to be the objects of
the request, not just the terminal represented by the first NIB.

A field called the CID field is part of every NIB. It is not represented in the NIB
macro instruction because its contents cannot be set by the application program.
When the termina1 represented by the CID is connected to the program, VI AM
generates an equivalent of the terminal'~ symbolic name and places it both in the
NIB's CID field and in the ARG field of the RPL being used by the OPNDST m cro
instruction. Subsequent I/O requests directed toward that specific terminal must
have this CID in the I/O request's RPL.

The NIB macro instruction causes the NIB to be built during program assembly; the
NIB macro instruction is not executable. The NIB is built on a fullword boundary.
A NIB can be built during program execution with the GENCB macro instruction.

65

1'11.15

66

Name Operation Operands

[symbol] NIB [NAME=name in resource defmition table]
[, USERFLD=fullword of terminal data]
[,LISTEND=YES INO]
[,MODE=BASICIRECORD]
[,SDT= APPL I SYSTEM]

.. [,EXLST=exit list address]
[,RESPLIM=response limit]

[CAICSIRPLC]
[, NDF ASYXIDFASYX]
[, NRESPXIRESPX]
[, NCONFTXTICONFTXT]
[, KEEPITRUNC]
[, BLOCKIMSGITRANSICONT]
[, LGOUTINLGOUT]
[, LGIN INLGIN]

[, PROC=([, TMFLLINTMFLL])]
[, NEIBIEIB]
[, TIMEOUTINTIMEOUT]
[, ERPININERPIN]
[, ERPOUTINERPOUT]
[, NMONITOR I MONITOR]
[,~ELCIELC]
[, NBINARYIBINARY]

NAME=name in resource definition table
Associates' the NIB with a 'terminal represented in the resource definition table.
When used by the INQUIRE (OPTCD=APPSTAT) macro instruction, the NAME
field associates the NIB with an application program represented in the resource
definition table. (The resource definition table is built by the installation during
VTAM definition.)

Format: Use the name of the LU, TERMINAL, COMP, LOCAL, or APPL entry
that represents the terminal or application program in the resource definition
table.Using unframed EBCDIC characters, code this name as it appears in the
resource definition table.

Example: NAME=TERMI3

Note: Although this operand is optional, the NAME field should be set by the time
the OPNDST macro instruction is issued for this NIB. One exception: When
OPNDST with an ACCEPT processing option and an ANY option code is issued,
the NAME field need not be set, since VT AM will place the name of the connected
terminal in this field.

If you omit this operand, the entire 8-byte NAME field is set to EBCDIC blanks.

USERFLD=four bytes of terminal data
Indicates any 4 bytes of data that the application program wants to associate with
the terminal represented by this NIB. When you subsequently issue I/O requests for
the terminal, VTAM will place whatever data you have set in USERFLD into the
USER field of the I/O request's RPL.

l"ilD

The 4 bytes of data can be anything the application program chooses to associate
with the terminal. It can be the program's own version of the terminal's symbolic
name. This would be useful in the case of a RECEIVE or READ macro with
OPTC D= ANY, since the setting of the USER field in the macro's RPL provides an
efficient way for the program to establish the identity of the terminals from which
the data was just obtained.

Format: Code the 4 bytes of data in either character, fixed-point, or hexadecimal
format, or, if an address is desired, code it as an A-type or V-type address constant.
Register notation cannot be used.

Examples:
USERFLD=C'TERM'
USERFLD=F'lOO'
USERFLD=X'00043 EO'
USERFLD=A(RTNl)
USERFLD=V(EXTRTN)

Note: Use the MODCB and CHANGE macro instrnctions to change the contents
of the USERFLD field after an OPNDST macro instruction has been issued for
the NIB.

If you omit this operand, the USERFLD field is set to zero.

LISTEND=YES I NO
Allows the application program to group NIBs into lists. LISTEND=YES indicates
that this NIB is the last in a list (or is an isolated NIB not part of a list).
LISTEND=NO indicates that this NIB and the NIB immediately following it in
storage are part of a NIB list. Any number of NIBs can be grouped together by
specifying LISTEND=NO for each one except the last.

NIB lists are used by the OPNDST macro with an ACQUIRE option code and by
the SIMLOGON macro instruction. VT AM considers the terminals represented by
the entire list as objects of the OPNDST or SIMLOGON macro instructions.

When OPNDST is used for logical units, VT AM-to-logical unit I/O is performed. For
this reason, OPNDST performance can be improved by including only one SDLC
cluster controller's logical units in a NIB list.

Example: The following use of the LISTEND operand effectively groups the
Boston NIBs into one group, the Chicago NIBs into another, and defines the
Portland NIB as a "list" of one.

BOSTON

CHICAGO

PORTLAND

NIB
NIB
NIB
NIB
NIB
NIB

MODE=BASICI RECORD

NAME=BOSTONl,MODE=RECORD,LISTEND=NO
NAME=BOSTON2,MODE=RECORD,LISTEND=YES
NAME=CHICAGOl,MODE=RECORD,LISTEND=NO
NAME=CHICAG02,MODE=RECORD,LISTEND=NO
NAME=CHICAG03,MODE=RECORD,LISTEND=YES
NAME=PORTLAND,MODE=RECORD,LISTEND=YES

Indicates whether basic-mode macro instructions (such as READ and WRITE) or
record-mode macro instructions (such as SEND and RECEIVE) are to be used to
communicate with the terminal. Except for 3270 terminals, the application
program has no choice; MODE=BASIC must be specified for all BSC and start-stop
terminals, and MODE=RECORD must be specified for all logical units. 3270
terminals can be handled in either mode.

67

68

The application program can be designed to handle both modes of terminal, since
the INQUIRE macro instruction (OPTCD=DEVCHAR) can be used before
connection to determine the terminal type. A simpler and better procedure,
however, would be to maintain one ACB (application program, in effect) for BSC
and start-stop terminals and another ACB for logical units.

SDT=SYSTEM I APPL (Record-mode only)
Indicates whether the application program or VT AM is to send the first
start-data-traffic (SDT) indicator to the logical unit. If SDT=SYSTEM is used,
VTAM automatically sends an SDT indicator as part of the connection process
before posting the OPNDST RPL complete. If SDT=APPL is coded, VTAM does
not send an SDT indicator until the application program tells it to do so (by issuing
a SESSIONC macro instruction with CONTROL=SDT).

The SDr indicator is used to permit the flow of messages and responses between
the application program and the logical unit. See the SESSIONC macro instruction
for more information.

EXLST=exit list address (Record-mode only)
Indicates an EXLST control block that contains the address of a DFASY, RESP, or
SCIP exit-routine (or contains the addresses of any combination of these
exit-routines).

Exit-routines indicated by a NIB (NIB-oriented exit-routines) are scheduled when
VTAMreceives input from the logical unit associated with the NIB. If input is
received and no NIB-oriented exit-routine is available, VTAM then satisfies any
pending RECEIVE macros or schedules the appropriate ACB-oriented exit-routine
(if any).

Figure 4 shows two sets of NIB-oriented exit-routine addresses and one set of
1

ACB-oriented exit-routine addresses. When input from the logical unit associated
with NIB! arrives, the appropriate EXLSTI exit-routine is scheduled. When input
from the logical unit associated with NIB2 arrives, VTAM checks EXLST2 for the
appropriate exit-routine. If there is no exit-routine specified (which in this example
would :be true if the input was a response, since EXLST2 has no RESP entry),
VT AM) satisfies any pending RECEIVE macros or checks for an ACB-oriented
exit-routine address in EXLSTA. When input from any other logical unit arrives,
VT AM uses EXLSTA.

Note: If you omit this operand, the NIB's EXLST field is set to O.

RESPLIM=response limit (Record-mode only)
Indicates the maximum number of responded output requests that can be pending
at one time. (A responded output request is a SEND with POST=RESP,
CONTROL=DATA, and STYPE=REQ specified, and a normal response requested.)
If RESPLIM=O is coded, VT AM imposes no limit on the number of pending
responded output requests.

Note: If this operand is omitted, the RESPLIM field is set to 1. The maximum
value that can be coded is 65,535.

PROC=processing option I (processing option, ...)
Indicates options VTAM is to follow for subsequent I/O requests involving the
terminal connected using this NIB.

ACB
EXLSTA

. -
DFASY=DFASYA

RESP=RESPA

SCIP=SCIPA

NIB1
EXLST 1

.. -
DFASY=DFASY1

RESP=RESP1

SCIP=SCIP1

NIB2 EXLST2

-
DFASY=DFASY2

SCIP=SCIP2

Figure 4. ACB-Oriented and NIB-Oriented Exit-Routines

Format: Code as indicated in the assembler format table above. The parentheses
can be omitted if only one option code is selected.

NIB

NIB

NAME=TERM13,MODE=RECORD,
PROC--{DFASYX,RESPX,CONFTXT)

NAME=TERM 14,MODE=BASIC,
PROC=BLOCK

Note: Not all processing options are valid for all types of devices. See Figure 6 at
the end of this macro instruction description to see which processing options are
valid for the devices supported by VT AM.

CAICSIRPLC
Applies for a logical unit or terminal when input is received from it that may be
used to satisfy a RECEIVE with OPTCD=ANY. This operand is useful for
differentiating terminals by the type of request they may respond to. It overrides
the CS/CA option codes that may have been specified in the RECEIVE RPL, but
not the RPL of any other type of macro instruction.

CS specifies that the connection should be put into Continue-Specific mode for the
input that satisfies this RECEIVE. It can be used when a terminal may not respond
to any subsequent RECEIVE ... ANY s. This might be the case if the terminal
normally sends multiple lines per transaction.

69

70

CA specifies that the connection should be put into Continue-Specific mode for the
input that satisfies the RECEIVE. It can be used when a terminal can always
respond to a RECEIVE ... ANY. This might be the case if the terminal normally
sends no more than one line per transaction.

RPLC, the default, specifies that the CSjCA option code in the RECEIVE RPL
should be used when switching continue modes.

DF ASYX I NDF ASYX (Record-mode only)
Indicates whether a DF ASY exit-routine is to be scheduled when asynchronous
flow messages arrive in VT AM's buffers from a logical unit.

When DF ASYX is set for the logical unit's NIB and no other restrictions prevent
the scheduling of the DFASY exit-routine, the exit-routine is scheduled. (Even if
the exit-routine cannot be scheduled, a RECEIVE OPTCD=ANY, RTYPE=DFASY
will never be satisfied if the connection was established with PROC=DF ASYX.) If
NDF ASYX is specified, the exit-routine is not scheduled. See the DF ASY operand
of the EXLST macro instrudion for information about the DFASY exit-routine
and the conditions that must exist before it can be scheduled.

RESPX I NRESPX (Record-mode only)
Indicates whether a RESPexit-routine may be scheduled when responses arrive in
VTAM's buffers from a logical unit. When RESPX is set for the logical unit's NIB
and no other restrictions prevent the scheduling of the RESP exit-routine, the
exit-routine is scheduled. (Even if the exit-routine cannot be scheduled, a
RECEIVE OPTCD=ANY, RTYPE=RESP will never be satisfied if the connection
was completed with PROC=RESPX.) If NRESPX is set, the RESP exit-routine is
not scheduled. See the RESP operand of the EXLST macro instruction for
information about the RESP exit-routine and the conditions that must exist before
it can be scheduled.

CONFTXTINCONFTXT
Indicates whether or not the data sent to or received from this terminal is to be
considered as "confidential." If CONFTXT is specified, the buffers used to hold the
data are cleared before they are returned to their buffe~ pools. For NCONFTXT, no
such clearing is done.

TRUNCI KEEP
Indicates whether overlength input data is to be kept or discarded.

When TRUNC is used, VT AM fills the input data area and discards the remainder.
No error condition is raised. When KEEP is used, VT AM fills the input data area
and saves the remainder for subsequent RECEIVE or READ macro instructions.

In the basic-mode, the RPL's FDBK field indicates the presence of excess data. If
the EOB flag is set on (DATAFLG=EOB for a TESTCB macro instruction), the
entire block is in the input data area and no excess data remains. If the EOB flag is
set off, there is excess data. In the record-mode, the presence of excess data can be
determined by comparing the RPL's AREALEN field (input area size) with the
RECLEN field (amount of incoming data). If the value in RECLEN exceeds the
value in AREALEN, excess data has been kept (and will be used to satisfy the next
appropriate RECEIVE). Note that when data is kept, the RESPOND field of the
RPL is always set to NEX, NFME, NRRN.

In the record-mode, the NIB's TRUNC-KEEP processing option is overriden if the
RECEIVE RPL's KEEP-TRUNC-NIBTK option code is set to KEEP or TRUNC.

NIB

That is, the NIB's TRUNC-KEEP processing option is effective only if the NIBTK
option code is set in the RPL.

BLOCK I MSG I TRANS I CONT(Basic-mode only)
These control how many blocks of data are to be obtained from a BSC or start-stop
terminal for a solicit operation and how acknowledgments are to be handled as each
block arrives.

Solicit operations are all operations conducted by VT AM to obtain data from a
terminal to VT AM buffers. Solicitation does not involve the transfer of data from
VT AM buffers to the application program.

VT AM solicits data from a terminal when (1) the application program issues a
SOLICIT macro instruction or (2) the application program issues a READ macro
instruction with the SPEC option code in effect for the RPL. Solicitation is not
performed ill the latter case, however, if VTAM already holds data obtained from
the terminal.

Before reading the descriptions of BLOCK, MSG, TRANS, and CaNT that follow,
examine Figure 5. This figure illustrates a typical data transmission from a terminal
and shows how much of it is obtained each time a SOLICIT (or READ, as qualified
above) is executed.

BLOCK
Either a line control response is sent to acknowledge receipt of the previous
solicit operation', or polling is started. One block of data ending in an ECB
line-control character (for start-stop devices) or an ETB or ETX line control
character (for binary synchronous devices) is obtained. No response is sent when
data is obtained as a result of the current solicit request. The data obtained by
the current solicit request is acknowledged only when the next solicit request is
issued.

If the terminal represented by this NIB is a binary synchronous device, an
authorization test is made when an OPNDST macro instruction is issued for this
NIB. If the installation did not authorize the use of BLOCK by the application
program (by so indicating in the application program's APPL entry during
VTAM definition), the OPNDST macro instruction will not be executed
successfully. (The use of BLOCK is restricted this way because it can result in
line throughput that is very low compared to MSG, TRANS, and CaNT. The
low throughput results because the CPU, rather than just the communications
controller, must be interrupted for each block.)

MSG
Blocks of data are continuously obtained until an EaT character (for start-stop
devices) or a block containing an ETX character (for BSC) is received. In effect,
this means that data is solicited from the terminal until an entire message has
been received. For BSC devices, line-control responses are sent as each block is
received, except for the last block. Its receipt is not acknowledged until the next
solicit request is issued.

For start-stop devices, line control responses are sent for each block, including
the last. The procedure used to solicit data from start-stop devices when the
MSG processing option is specified is identical to' that used when TRANS
processing option is specified.

71

BLOCK

When BLOCK is in effect, each
SOLICIT obtains only a block:

USER

SOLICIT

1
BLOCK

I
SOLICIT

VTAM

• Acknowledge
previous block,
or start polling

• Obtain data:

1
• Acknowledge

• Repeat process
(obtain another
block)

MSG

When MSG is in effect, each
SOLICIT obtains a message:

USER VTAM

SOLICIT

MESSAGE

SOLICIT

• Acknowledge
previous block,
or start polling

• Obtain data:

1
• Acknowledge

• Obtain data:

1
• Acknowledge

• Obtain data:

I
• Acknowledge

• Repeat process
(obtain another
message or EOT)

TRANS

When TRANS is in effect, each
SOLICIT obtains a transmission:

USER VTAM

SOLICIT

TRANS­
MISSION

SOLICIT

• Acknowledge
previous block,
or start polling

• Obtain data:

1
• Acknowledge

• Obtain data:

I
• Acknowledge

• Obtain data:

1
• Acknowledge

• Obtain data:

8
(or first block of
new message)

• Start polling

• Repeat process
(obtain another
transm ission)

Figure 5. The Effect of BLOCK, MSG, TRANS, and CaNT on Solicitation

72

CaNT

When CONT is in effect, one
SOLICIT obtains blocks of data
continuously:

USER VTAM

SOLICIT

NO
LIMIT

• Acknowledge
previous block,
or start polling

• Obtain data:

I
• Acknowledge

• Obtain data:

I
• Acknowledge

• Obtain data:

1
• Acknowledge

• Obtain data:

a
(or first block of
new message)

• Start polling

• Repeat process
(continue to
obtain blocks
until stopped
by RESET)

NIB

TRANS
Blocks of data are continuously obtained until an EOT character is received. In
effect, this means that data is solicited from the terminal until an entire
transmission has been received. Line control responses are sent as each block is
received, including the last block. Polling will not resume until the next solicit
request is issued.

CONT
Blocks of data are continuously solicited from the terminal. Line-control
responses are sent for each block received. This solicitation continues indefinite­
ly, unless the solicit operation is canceled with the RESET macro instruction or
the terminal is disconnected from the program.

LGOUT I NLGOUT (Basic-mode only)
Indicates whether or not an output operation with this terminal should be
considered to be in error if the terminal acknowledges receipt of the data with a
response that is preceded by leading graphic characters.

When LGOUT is specified, a code is posted in the FDBK field of the WRITE
request's RPL, and the leading graphic characters are held by VT AM. A READ
request directed at the terminal causes the characters to be moved into the
application program's storage (in the data area indicated by the AREA field of
READ's RPL). If leading graphic characters are received during a conversational
write operation, the characters are passed to the application program as the input
data.

When NLGOUT is specified, the output operation is completed in error if leading
graphic characters are received in return.

LGIN I NLGIN (Basic-mode only)
Indicates whether or not an input operation with this terminal should be considered
to be in error if leading graphic characters are received.

If LGIN is specified, ,the presence of leading graphic characters does not constitute
an error condition; the application program is notified of their presence by means
of a code set in the FDBK field of the input request's RPL.

When NLGIN is specified, the input operation is completed in error if leading
graphic characters are detected.

TMFLL I NTMFLL (Basic-mode only)
Indicates whether or not the communications controller is to insert idle device
control characters into the data sent to this terminal. TMFLL allows the
communications controller to insert these characters. NTMFLL suppresses .the
insertion of these characters, implying that the application program will be
supplying its own time-fill characters. Time fill is only performed for start-stop
devices, which require special timing considerations following a carriage return and
horizontal tab characters. See the INHIBIT=TIMEFILL operand in the NCP
Generation and Utilities Guide.

EIB I NEIB (Basic-mode only)
Indicates whether or not the system is to insert an EIB error information byte
(EIB) after every intermediate transmission block (lTB) received from this terminal.
EIB indicates that an EIB is to be inserted with e&ch intermediate transfer block;
NEIB suppresses the insertion of EIBs.

73

74

If you specify insertion of EIBs, you should scan the input data for ITB characters,
and analyze the next byte (which will be the EIB) to determine whether an error
occurred in the intermediate block. Insertion of EIBs is appropriate when you
expect that many ITBs will be required for a data block. If a transmission error
occurs and you are not using EIB, you cannot determine in which ITB the error
occurred, and so would have to request a retransmission of the entire block.

Note: The presence of ITB characters in the input data does not depend on the
EIB-NEIB processng option; this option only governs the presence of the EIB. The
presence of the ITB character is a function of the terminal itself. See the XITB
operand in the NCP Generation and Utilities Guide.

TIMEOUTINTIMEOUT (Basic-mode only)
Indicates whether or not the communications controller should suppress any text
timeout limitation that might otherwise be used with this terminal. TIMEOUT
pennits normal time outs to occur; NTIMEOUT suppresses them.

When TIMEOUT is in effect, the communications controller imposes a text timeout
limitation as Indicated by the installation in the terminal's TERMINAL entry. (A
timeout limitation means that if the interval between two successive characters sent
by a terminal exceeds a set limit, the I/O operation is terminated with an error
condition.) NTIMEOUT provides the application program with a means of
overriding this limitation and allowing the terminal an indefinite time period
between characters. See the INHIBIT=TEXTTQ operand in the NCP Generation
and Utilities Guide.

ERPIN I NERPIN (Basic-mode only)
Indicates whether or not system error recovery (retry) procedures are to be used if
an I/O error occurs during an input operation with this terminal. ERPIN means that
the error recovery procedures are to be used; NERPIN means that they are not. See
the INHIBIT= ERPR operand in the NCP Generation and Utilities Guide.

ERPOUT I NERPOUT (Basic-mode only)
Indicates whether or not system error recovery (retry) procedures are to be used if
an I/O error occurs during an output operation with this terminal. ERPOUT means
that the error recovery procedures are to be used; NERPOUT means that they are
"not. See the INHIBIT= ERPW operand in the NCP Generation and Utilities Guide.

MONITORINMONITOR (Basic-mode only)
Indicates whether or not VTAM is to invoke the ATTN exit-routine (see EXLST
macro) when this terminal causes an attention interruption. MONITOR means that
the communication controller will monitor the terminal for attention interruptions
while the terminal is not engaged in pending or actual I/O operations, and invoke
the routine when an interruption is detected.

MONITOR is valid only if the installation indicated during VT AM definition that
the communications controller is to react to attention interruptions. If an attention
interruption is received during an I/O operation, the I/O request ends with the
RPL's FDBK2 field posted to indicate why. MONITOR does not apply to attention
interruptions issued during an I/O operation.

If NMONITOR is specified, no monitoring occurs (the attention interruption is
ignored).

ELCINELC (Basic-mode only)
Indicates whether line-control characters are to be generated for the data sent to
this terminal. ELC signifies that the application is embedding its own line control

Example

NIB Fields Not Set by the
Application Program

characters in the data; its use prevents the system from doing so. NELC means that
the application program is relying on the system to insert appropriate line control
characters. See Appendix B for a list of the line control characters that are normally
inserted. ELC can only be used if the NBINARY option code is in effect for the
RPL. For basic-mode 3270 devices, NELC must be used.

BINARY I NBINARY (Basic-mode only)
Indicates how data is to be handled when a WRITE macro instruction is used to
write to a binary synchronous device. When BINARY is specified, the data is sent in
transparent text mode. This means that each of the line-control characters normally
inserted by the communications controller is preceded by a DLE line control
sequence. Any bit patterns can thus be sent, including line-control characters and
object code. NBINARY means that the data is not sent in transparent text mode.
Since the data will be screened for line-control characters, no bit patterns that
happen to be line-control characters should be in the output data. (See
HTransmission in Transparent Mode" in the NCP Generation and Utilities Guide for
a description of transparent text mode.)

NIBl NIB NAME=KBD3270,USERFLD=A(KBDRTN),
MODE=BASIC,LISTEND=YES

NIBl could represent the keyboard component of a 3270 device whose entry in the
resource definition table is labeled KBD3270. When OPNDST is issued to connect
this terminal to the program, the NIB field of the OPNDST's RPL must point to
NlBI. Since LISTEND=YES is coded only this terminal can be connected with the
OPNDST macro. Before OPNDST processing is completed, VT AM obtains the
contents of NIBI's USERFLD field (which in this example is the address of a
routine) and places it in the USER field of the OPNDST's RPL.

All of the operands described above cause NIB fields to be set when the NIB macro
instruction is assembled. There are additional NIB fields that can be examined by
the application program during program execution, but cannot be set by the
application program. VT AM uses these fields to return information to the
application program upon completion of OPNDST processing:

Field Name

CID

CON

Content

A 32-bit value representing the symbolic name you supplied in
the NAME field of the NIB, This shortened name, or CID, is also
placed in the ARG field of the RPL used by the OPNDST macro
instruction. Subsequent I/O requests for the terminal must have
this CID in the ARG field of the RPL used for the I/O request.
The CID can be examined with the SHOWeB and TESTCB macro
instructions.

An indicator that is set to show that the terminal represented by
this NIB has been connected. You can examine this field
following OPNDST by coding CON=YES in a TESTCB macro
instruction; an "equal" PSW condition code indicates that the
CON field is set to YES, and the terminal is connected. This field
is useful if you are using OPNDST to establish connection with
more than one terminal. Should connection be established with
some of the terminals and not others, examination of each NIB's
CON field will tell you which terminals are connected. (If the
terminal is not connected, the CON field is not modified.)

·75

1'110

Devices Applicable for
Each NIB Processing Option

'Field Name

DEVCHAR

Content

An 8-byte field describing the type of terminal that has been
connected and what optional features it has. (If the terminal is
not connected, the DEVCHAR field is not modified.) This field
can be examined with either the SHOWCB or TESTCB macro
instructions or with the ISTDVCHR DSECT. The DEVCHAR
DSECT (ISTDVCHR) is described in Appendix H (Figure H-12).

The following figure shows, for each device supported by VT AM, the processing
options applicable to that device.

An X indicates that the PROC operand value is meaningful for the device.

NIH

O~~~sO~~~~~~o CJ'::>~~"
~~~8~~8~¢~$$~~~~~~ 

Start-Stop Devices 

IBM 1050 Data Communication System X X X X X X X X X X X 

IBM 2740 Communication Terminal, 
X X X X X X X 

Model 1 
IBM 2740 Communication Terminal, 

X X X X X X X X X X Model 1 with checking 

IBM 2740 Communication Terminal, 
X X X X X X X Model 1, with station control 

IBM 2740 Communication Terminal, Model 
X X X X X X X X X X 1, with checking and station control 

IBM 2740 Communication Terminal, X X X X X X Model 2 

IBM 2741 Communication Terminal X X X X X X X X 

I BM Communicating Magnetic Card 
X X X X X X X Selectric Typewriter 

I BM World Trade Telegraph Station X X X X X 

IBM SYSTEM17 X X X X X X 

AT&T 83B3 Selective Calling Station X X X X X 

AT&T Teletypewriter Terminal, Models 
X X X X X X X X 33 & 35 

Western Union Plan 115A Station X X X X X 

BSC and 3270 Local Devices 

IBM 2770 Data Communication System X X X X X X X X X X X 

IBM 2780 Data Transmission Terminal X X X X X X X X X X X 

IBM 2972 General Banking Terminal, X X X X X X X X X Models 8 and 11 

IBM 3270 Information Display System, 
X X X locally attached to controller 

IBM 3270 Information Display System, 
X X X remotely attached to controller 

IBM 3735 Programmable Buffered 
X X X X X X X X X X X X Terminal 

IBM 3740 Data Entry System X X X X X X X X X X X 

IBM 3780 Data Transmission Terminal X X X X X X X X X X X 

IBM SYSTEM/3 X X X X X X X X X X X X X 

IBM SYSTEM/370 X X X X X X X X X X X X X 

SOLe Devices 

IBM 3600 Fi nance System X X X X 

IBM 3270 Information, locally or 
X X X X remotely attached, treated as an SD LC 

device (record-mode) 

Figure 6. Devices Applicable to Each NIB Processing Option 

77 



" ... L./l., 

OPEN-Open One or More ACBs 

78 

The OPEN macro. instructiQn Qpens (or "activates~~)theC ACBsQ that the ACB and 
all subsequent requests referring to it can be idefltlfied by VT AM as representing a 
specific application. program. '. The'. progranul1er ,cQqlngJhe OPEN macro instructiQn 
indicates the ACB (Qr ACBs) thatare to. b.e Op~Iteq. ' 

An ACB represents an applicatiotlprogram, as defined Qythe installatiQn. By means 
of an ACB's APPLID field the 'applicatiQn prQgramassoclatesan ACB with an APPL 
entry. (A symbQlic name 'is generated duringVfAM, definitiQn by the installatiQn 
when it defines the applicatiQn prQgr;tm; the entry is ,generated with the APPL 
definitiQn statement, and is . called ap APPL entiyS YJsduring OPEN processing 
that the assQciatiQn between the AOB ~tld t4e··i\PPL,entry is actually made. One 
effect Qf this assQciatiQn is. :this; tertlliIl~ls directing'logQn requests to. this APPL 
entry will in effect be dir~cting theirlQ~on r~qu~sts:to. the entry's assQciated ACB. 

If yQU do. nQt specify an APPLentry intll.e i\C:S"sAPPLiD field, VT AM assumes 
that the APPL entry will be identifi~d via JeL.In OS/VSI and OS/VS2, the name 
specified Qn the application prQgram's EXEC statement is used; in DOS/VS, the jQb 
name Qr task ID is used. if yQU fail to. indicate an ApPL entry through either the 
APPLID field Qr by JCL, OPEN wjll not be. completed successfully; and, in 
DOS/VS, if there is mQre than one ACB in a given task Qr if mQre than Qne ACB is 
Qpened by a single task, the OPEN is also. likely to' fail. FQr this reaSQn, the 
applicatiQn program shQuld always supply lin APPLentry in the APPLID field fQr 
DOS/VS. 

, . '. 

OPEN (and alSo. CLOSE) must be issued ,in the,ma,i11liIl~progtam (Qr in the LERAD 
or SYNAD exit-rQutines if they have beenent~rei'tdirectly (rQm the main program). 
Never issue OPEN in the RPL exit~rQ~tineor iIl,a:fly qf ~e Qther exit-rQutines. 

In Release 3.1 Qf OS/VS 1, nQnprivileged probleJl~prqgranis ,must issue OPEN macro 
instructiQns Qnly in a jQb ste.ptask. Privileged 08/"S1 Release 3.1 prQgrams and 
OS/VS2 programs can issue OPEN macro. iJ)str~ctions in any task but all OPENs 
must be issued in the same· tasl<',InpOS/VS:Cl:pq)n Feleasesof OS/VS 1 fQllQwing 
Release 3.1, prQgrams can is~:ue.QPEN ffi'lcro'jilstrvctionsin mQre than Qne task. 

If the APPL entry created by the iIlstallati<>n."Gontains '(I password, the ACB being 
Qpened must also. specify thfit same Pi:t;SSW~'~c1,,9J:OPENwiU p.ot be cQmpleted 
successfully. . ',,~,,; .,',' 

If the ACB being Qpenedhas'its MAC~Ffl~* s~rto LOGON, IQgQn requests are 
queued for the applicati~n program. When.SET:L,QGQN (OPTCD=START) is 
subsequently issued, queued and. new loponreql,lests,will cause the LOGON 
exit-routine to. be sche~uled.· , , 

, , ' \! , 
Name. Operation Operands 

. 
" 

[symbol] OPEN acb addr~ss[, acb a4<Jress 1 ~ .. 

This form of OPEN is valid in DOS/VS only. 

'0 

[symbol] OPEN .acb address[ " acba<.ld~essl ... 

This form of OPEN is valid in OS/VSI qnd OS/VS2,qrtly. 
·0 " 

"". " 



Example 

Return of Status Information 

vrLl~ 

acb address 
Indicates the ACB that is to be associated with an APPL entry. 

Format: If more than one ACB is specified, separate each with a comma if the 
program is going to be run under DOS/VS. Separate each ACB address with two 
commas if the program is going to be run under OS/VS 1 or OS/VS2. (The same 
assembler handles both VT AM and non-VT AM macro instructions. An extra 
operand can be supplied with each address for the latter, and so an extra comma is 
required for the VTAM OPEN.) 

Note: VSAM ACB addresses can also be used in the OPEN macro instruction. 
DOS/VS users can also code DTF addresses, and OS/VSl and OS/VS2 users can 
also code DCB addresses. The addresses of different types of control blocks can be 
combined in one OPEN macro instruction, although DOS/VS users are limited to a 
total of 15 addresses. 

OPEN123 OPEN ACB 1 ,ACB2,(7) (DOS/VS) 

OPEN123 opens ACBl, ACB2, and the ACB whose address is contained in register 
7. Each of these ACBs is linked with an APPL entry in the resource definition table. 

When control is returned to the instruction following the OPEN macro instruction, 
register 15 indicates whether or not the OPEN processing was completed 
successfully. Successful completion means that all ACBs specified in the OPEN 
macro instruction were opened; unsuccessful completion means that at least one 
ACB was not opened. Successful completion is indicated by a return code of 0 in 
register 15. For DOS/VS users, register 15 is unmodified and so should be cleared 
before OPEN is executed. Unsuccessful completion is indicated by the following 
register 15 values: 

For DOS/VS 

Nonzero 

ForOS/VS 

4 

8 

12 

Meaning 

One or more ACBs (or DTFs or VSAM ACBs) were not 
successfully opened. 

Meaning 

All ACBs (or DCBs) were successfully opened, but warning 
messages were issued for one or more VSAM ACBs. 

One or more ACBs (or DCBs) were not successfully opened. If 
the error condition indicated by the unopened ACB's ERROR 
field can be eliminated, another OPEN macro instruction can 
be issued for the unopened ACBs. 

One or more ACBs (or DCBs) were not successfully opened. 
Another OPEN macro instruction cannot be issued for the 
unopened ACBs. 

If unsuccessful completion is indicated, the application program should examine 
the OFLAGS field in each ACB to determine which one (or ones) could not be 
opened. Test each OFLAGS field by coding an ACB address and OFLAGS=OPEN 
in a TESTCB macro instruction; if the resulting PSW condition code indicates an 
equal comparison, that ACB has been opened: 

TESTCB 
BE 

ACB=ACB4,OFLAGS=OPEN 
OPENOK 

79 



OPEN 

80 

If an unequal comparison is indicated, meaning that the ACB has not been opened, 
another field in that ACB can be checked to determine the reason. This field is the 
ERROR field. Like OFLAGS, ERROR is not a field that the application program 
should modify (that is, there is no ERROR operand for the ACB macro, and thus 
none for the MODCB macro), but the application program can obtain the contents 
of this field with the SHOWCB or TESTCB macro instruction. 

F or example: 

SHOWeB ACB=ACB 1 ,FIEIDS=ERROR,AREA=SHOWIT ,LENGTH=4,AM=VT AM 

Note: If the ACB is already open, or if the address specified in the OPEN macro 
instruction either does not indicate an ACB or lies beyond the addressable range of 
your application program, nothing is posted in the ACB's ERROR field. Thus if 
you find one of the following return codes in the ACB's ERROR field and none of 
the specified causes apply, perhaps you are actual~y examining a field whose 
contents have not been modified by OPEN. An already-open ACB or an invalid 
ACB address will result in register 15 being set to 4, however. 

These are the values that can be set in the ERROR field of an ACB (except where 
noted, all values apply to DOSjVS and to OSjVS): 

a 

14 (20) 

24 (36) 

46 (70) 

48 (72) 

50 (80) 

52 (82) 

54 (84) 

OPEN has successfully opened this ACB. 

OPEN cannot be processed because of a temporary shortage of 
storage. 

The password specified by the ACB does not match the password 
specified in the corresponding APPL entry, or the ACB does not 
specify a password and one was specit'ied in the APPL entry. 

OPEN was issued in an exit-routine. 

For nonprivileged problem programs in Release 3.1 of OSjVSI, 
OPEN was not issued in a job step task. Or, for privileged 
programs in Release 3.1 of OSjVSl or for privileged or 
nonprivileged programs in OSjVS2, another task already has an 
open ACB (all ACBs must be opened in the same task). 

. VT AM has not been included as part of the operating system. The 
fault lies in your installation's system definition procedures. 

VTAM has been included as part of the operating system, but the 
network operator has issued a HALT command, and VT AM is 
shutting down. You cannot attempt connection or communica­
tion with any terminals. 

Either the address supplied in the ACB's APPLID field lies 
beyond the addressable range of your application program, or no 
entry could be found in the resource definition table that 
matches the name indicated by the ACB's APPLID field (or 
supplied via JCL). 

If the OPEN macro instruction was specified correctly, your 
installation may have failed to include your application program's 
symbolic name during VT AM definition, or you may have 
improperly handled the symbolic name. Refer to the description 
of the APPLID operand in the ACB macro instruction. 



56 (86) 

58 (88) 

SA (90) 

5C (92) 

5E (94) 

60 (96) 

62 (98) 

64 (100) 

66 (102) 

OPEN 

A match for your application program's symbolic name was 
found, but it was for an entry other than an APPL entry. If you 
specified thi~ name in the ACB's APPLID field, verify that the 
installation has supplied you with the correct name and that you 
have handled this name properly (see the APPLID operand of the 
ACB macro instruction). If the symbolic name was supplied via 
JeL, the job step name, job name, or task ID is wspect. 

Another ACB, already opened by VTAM, jndicates the same 
application program symbolic name that this ACB does. The 
iIlstallation may have assigned the same symbolic name to two 
application programs. This is valid only if the programs do not 
run (or are at least not open) concurrently. Possibly the system 
operator initiated your job or job step at the wrong time. 

No entry could be found in the resource definition tabie that 
matches the name indicated by the ACB's APPLID field (or 
supplied via JCL). This error may have occurred because the 
installation deactivated the APPL entry or never created it. 

VT AM has been included as part of the operating system, but is 
inactive. 

The address supplied in the ACB's APPLID field lies beyond the 
addressable range of your application program. 

An apparent system error occurred. Either there is a defect in 
VT AM's logic, or there is an error in your use of OPEN that 
VT AM did not properly detect. Save all applicable program 
listings and storage dumps, and consult your IBM Programming 
Services Representative. 

The APPLID length indicator byte is incorrectly specified. 

The address supplied in the ACB's P ASSWD field lies beyond the 
addressable range of your application program. 

The PASSWD length indicator byte is incorrectly specified. 

Since most of the error conditions ·described above resuJt from an error in your 
application program or in the installation's definition of VTAM, there is little that 
can be done during program execution when these return codes are encountered. If, 
however, you are attempting to open more than one ACB, you may wish to check 
the ERROR field of each ACB. All ACBs whose ERROR fields are set to zero have 
been opened successfully, and your application program ca..1'J. proceed using those 
ACBs. 

Althoug.h the return codes following a DOS/VS OPEN are not identical to those 
following an OS/VS OPEN, the following procedure can be used to produce a 
system-independent determination of a successful or unsuccessful OPEN: 

• Zero register 15 before issuing OPEN. 

• Issue OPEN for only one VTAM ACB at a time. 

• If register 15 is zero, consider the OPEN successful. 

• If register 15 is nonzero, consider the OPEN unsuccessful. Examine the contents 
of the ACB's ERROR field. 

81 



OPNDST 

OPNDST -Establish Connection with Terminals 

Acquiring a Tenninal 

Accepting a Terminal 

The OPNDST (open destination) macro instruction requests VT AM to establish 
connection between the application program and one or more terminals. 

Connection must be established with a terminal before the application program can 
communicate with that terminal. OPNDST is the sole means by which this 
connection can be requested. There ale, however, two fundamentally different 
ways that OPNDST can be used to request connection. 

An application program can initiate a request that a terminal be connected to it. 
This process is called acquiring a terminal. Such a request is satisfied if the terminal 
is available; that is, is not connected to another application program and has not 
issued a logon request. This type of request is implemented by setting the 
ACQUIRE option code in the RPL used by OPNDST. The use of ACQUIRE must 
be authorized by the installation. 

If a terminal has been defined as a dial-out terminal by the installation 
(CALL=OUT), the connection request is completed immediately if the terminal is 
available, but the terminal is dialed only when an I/O request is issued for the 
terminal. 

In the second way of using OPNDST, the application can request that a terminal be 
connected to it only if the terminal requests connection with that application 
program. This process is called accepting a terminal. 

This type of connection request can be embedded in a LOGON exit-routine (see the 
EXLST macro) that is automatically entered when a terminal requests logon. This 
arrangement means that terminal logon requests can, in effect, invoke the type of 
OPNDST which will "grant" the logon request. 

This type of request is implemented as indicated above, except that the ACCEPT 
option code is set in the RPL. 

Note: When a terminal requests logon, VT AM first checks for a LOGON 
exit-routine, and invokes the routine if an active one is found. If no routine exists, 
VTAM checks for outstanding OPNDST requests (that is, OPNDSTs with ACCEPT 
and Q that have not yet been completed because no logon request has been made 
by the terminal operator). Thus a logon request will not cause a pending OPNDST 
with ACCEPT to be completed if a LOGON exit-routine is available. 

Five General Types of OPNDST There are three versions of OPNDST with OPTCD=ACQUIRE. These versions are 
specified with two RPL option codes, CONALL and CONANY, and the LISTEND 
field of the NIB, which govern whether multiple terminals, only one terminal, or 
one specific terminal is to be connected. OPNDST with ACCEPT likewise has two 
versions, specified with two more RPL option codes, SPEC and ANY. These govern 
whether a specific terminal or any eligible terminal is to be connected. 

OPNDST with ACQUIRE, 
CONALL, and a NIB List 

82 

There are therefore a total of five general types of OPNDST. The following five 
sections indicate how you must prepare for each and what happens when the 
connection occurs. 

Set the RPL's NIB field to point to a list of NIBs (described in the LISTEND 
operand of the NIB macro instruction), and set the ACQUIRE and CONALL 
option codes in the RPL. 



OPNDST with ACQUIRE, 
CON ANY, and a NIB List 

OPNDST with ACQUI~ . 
and One NIB 

OPNDST with ACCEPT and 
ANY 

OPNDST 

When OPNDST is issued, VT AM connects the program to all of the terminals 
represente'd in the NIB list that are available when OPNDST is executed. VT AM 
also: 

• Generates' a CID for each connected terminal. Each CID is placed in its 
respective NIB in the CID field, where it can be obtained with the SHOWCB 
macro instruction when it is needed. The CID is not placed in the RPL's ARG 
field. (In the other forms of OPNDST, the CID is placed in the NIB and in the 
RPL.) 

.•. Sets a flag in each NIB indicating that the terminal is connected. This flag can be 
. tested by specifying CON=YES in a TESTCB macro instruction. 

• Places the address of the first NIB of the NIB list in the AREA field of the RPL. 
, (This is the same address you supplied in the RPL's NIB field; it is returned to 
':you because' the contents of the NIB field are modified by VT AM during 

, ;·connection.) 

Caution must be taken when using this type of OPNDST. If all terminals are not 
active~ the OPNDST will fail . 

. Set the RPL's NIB field to point to a list of NIBs, and set the ACQUIRE and 
' .. CONANY option codes in the RPL. 

-.'. . ~. 

When OPNDST is issued, VTAM connects the program to the first (and only to the 
first) available terminal represented in the NIB list. If no terminals are available, 
,VTAM terminates the OPNDST request. A terminal is available if it is not 
connected to any application program and has not issued a logon request. VT AM 
also: 

• Generates a CID for the connected terminal and places it in the ARG field of the 
RPL and in the CID field of the NIB. 

• Sets a flag in the NIB that represents the connected terminal. The application 
pr(jgrain . can locate this NIB by issuing a TESTCB macro instruction with the 
CON=YES operand for each NIB. An "equal" PSW condition code is set 
foilowi.hg.the TESTCB macro instruction if the NIB being tested represents the 
,c:ohtlectedterminal. 

" ,','; ., • Places the address of the first NIB of the NIB list in the AREA field of the RPL. 
,,:.(Tliis is the same address you supplied in the RPL's NIB field; it is returned to 
,:';' you becaus~ the contents of the NIB field are modified by VT AM during 

':~, '\'; ¢orid.ectigri:. 

..},; ii'¢t .~~ iU't.:~)\nnfieldtopoint to one NIB (USTEND field set to YES). VT AM 
po4ilects the,termimu whose symbolic name is in the NIB to the application 

'. ,program. 'VTAM' completes the request immediately; if the terminal is not 
ift1mediateIYavru.hible,it is not connected. VT AM also: 

'i G¢rterates aCID for the connected terminal and places it in the ARG field of the 
APt and in the CID field of the NIB. 

'; '. :Sets a flag in the NIB indicating that the terminal is connected. 

it 'Places the address of the NIB in the AREA field of the RPL. 

Set the RPL's OPTCD field to ACCEPT and ANY, and set the NIB field to point to 
a NIB. This NIB need not have any symbolic name in it, but it must at least have 
the MODE field and the LISTEND field set to YES. 

83 



OPNDST 

OPNDST with ACCEPT and 
SPEC 

84 

When OPNDST is issued, VT AM connects the program to any terminal that has 
directed a logon request to the program. VTAM also: 

• Places the symbolic name of the connected terminal. into the NAME field of the 
NIB. 

• Generates a CID for the connected terminal and places it in the CIl} field of that 
NIB and in the ARG field of the RPL. 

• Places the address of the NIB in the RPL's AREA field. 

Set the RPL's OPTCD field to ACCEPT and SPEC, and set the NIB field to point to 
a NIB. This NIB must have its LISTEND field set to YES. 

When OPNDST is issued, the result will be this: VTAM connects the program to the 
specific terminal represented in the NIB if (or when) that terminal has directed a 
logon request to the program. VTAM also: 

• Generates a CID for the connected terminal and places it in the CID field of the 
NIB and in the ARG field of the RPL. 

• Places the address of the NIB in the RPL's AREA field. 

Besides the SPEC-ANY option code, other RPL and NIB options and fields affect 
how the OPNDST request is handled. Generally, their effect is the same as it is for 
other macro instructions that point to an RPL; see Figure 9 in the RPL macro 
instruction description for a list of these codes and fields. 

Name Operation Operands 

[symbol] OPNDST RPL=rpl address 
[, rpl field name=new value] ... 

RPL=rpl address 
Indicates the location of the RPL to be used during OPNDST processing. 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained 
within it. If you wish to avoid the possibility of program reassembly following 
future releases of VTAM, set the RPL field with MODCB macro instructions rather 
than with the OPNDST macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to RPL field to be modified. The new value can be any 
value that is valid for that operand in the RPL macro instruction, or it can indicate 
a register. 

Although any RPL operand (except ARG=) can be specified, the following 
operands apply to an OPNDST macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program to which the terminal is 
to be connected. 



Examples 

OPNDST 

NIB=nib address 
Indicates the NIB whose PROC~ MODE, and USERFLD attributes are to be 
assigned to the connected terminal. If OPTCD=ACQUIRE or OPTCD=SPEC, the 
NIB also identifies (via its NAME field) the terminal to be connected. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VT AM when an asynchronous (OPTCD= ASY) 
OPNDST macro instruciton is completed. The macro instruction is completed when 
the terminal has been connected. If EXIT is specified, the RPL exit-routine is 
scheduled. Otherwise the ECB is posted, and CHECK or WAIT must be used to 
determine when the posting occurs. See the RPL macro instruction for more 
information. 

OPTCD=SYN I ASY 
When the SYN option code is set, control is returned to the application program 
when the macro instruction has been completed. When ASY is set, control is 
returned as soon as VT AM has accepted the request. Once the connection has been 
established (that is, once the macro instruction has been completed), the ECB is 
posted or the RPL exit-routine is scheduled, as indicated by the ECD-EXIT field. 

OPTCD=ACQUIREIACCEPT 
When.ACQllRE is set, VTAM connects the terminal or terminals indicated via the 
RPL's NIB field. Only available temlinals that have not issued logon requests are 
connected. When ACCEPT is set, a terminal that has issued a logon request for the 
application program is connected. 

OPTCD=CONANY I CONALL 
When CONANY is set and OPNDST (OPTCD=ACQUIRE) is issued, connection is 
made to the first available terminal of the NIB list indicated in the RPL's NIB field. 
When CONALL is set, connection is made to all the available terminals in the list. 

OPTCD=SPEC I ANY 
When SPEC is set, the terminal identified by the NIB's NAME field is connected if 
and when that terminal directs a logon request to the application program. When 
ANY is set, any terminal that has issued a logon request for the application program 
is connected. 

OPTCD=CS I CA 
Specifies the initial setting of the terminal's CS-CA mode. When CA is set, data 
obtained from the terminal can satisfy a READ or RECEIVE (OPTCD=ANy) 
macro instruction. When CS is set, only READ or RECEIVE (OPTCD=SPEC) 
macro instructions can obtain data from the terminal. 

OPTCD=QINQ 
When Q is set, VT AM connects the terminal when it becomes available, no matter 
how long that might take. When NQ is set, VTAM terminates the OPNDST macro 
instruction immediately if the terminal is not immediately available. This option 
applies only when OPTCD= ACCEPT is in effect. 

Note: To avoid obscuring the differences between the basic types ofOPNDST, the 
same technique is used to set the RPL fields in each example (namely, inserting 
RPL-modifiers on the OPNDST macro instruction). RPL fields could just as well 
have been set with the MODeB macro instruction, with assembler instructions, or 
with the RPL macro instruction itself. 

85 



OPNDST 

86 

This is an "ACQUIRE & CONALL" OPNDST: 

ACQALL OPNDST RPL=RPLl,NIB=NIBLIST,ACB=ACBl, 
OPTCD=(ACQUIRE,;CONALL) 

NIBLSTI NIB NAME=TERMl,MODE=BASIC,USTEND=NO 
NIB NAME=TERM2,MODE=BASIC,LISTEND=NO 
NIB NAME=TERM3,MODE=BASIC,USTEND=YES 

ACQALL connects all of the available terminals of NIBLSTI (TERM 1, TERM2, 
and TERM3) to the application program represented by ACBl. 

This is an "ACQUIRE & CONANY" OPNDST! 

ACQANY OPNDST RPL= RPL2,NIB=NIBLST2,ACB= ACBl, 
OPTCD=(ACQUIRE,CONANy) 

NIBLST2 NIB 
NIB 
NIB 

NAME=TERMX,MODE=BASIC,LISTEND=NO 
NAME=TERMY,MODE=BASIC,LISTEND=NO 
NAME=TERMZ,MODE=BASIC,LISTEND=YES 

ACQANY (connects one of the terminals of NIBLST2 (TERMX, TERMY, or 
TERMZ) to the application pr9gram. The CON and CID fields are set in the NIB 
containing the name of the connected terminal. RPL's ARG field also contains the 
CID of the connected terminal. 

This is an "ACQUIRE ONE NIB" OPNDST: 

ACQONE OPNDST RPL= RPL3,NIB=NIB3,ACB= ACBl, 
OPTCD= ACQUIRE 

NIB3 NIB NAME=TERM35,MODE=BASIC 

ACQONE connects TERM35 to the application program if TERM35 is available. 

This is an "ACCEPT & ANY" OPNDST: 

ACPTANY OPNDST RPL=RPlA,NIB=NIB6,ACB=ACBl, 
OPTC~(ACCEPT,ANY,NQ) 

NIB6 NIB MODE=RECORD 

ACPT ANY connects anyone terminal that has issued a logon request to the 
application program. The symbolic name of this terminal (along with its CID) is 
placed in NIB6. Since NQ is specified, the request will be terminated if no terminal 
has issued a logon request. 



Return of Status Information 

OPNDST 

This is an "ACCEPT & SPEC" OPNDST: 

ACPTSPC OPNDST RPL= RPL5 ,NIB=NIB7 ,ACB= ACB 1, 
OPTCD=(ACCEPT,SPEC,Q) 

NIB7 NIB NAME=TERM77,MODE=RECORD 

ACPTSPC connects TERM77 to the application program when a logon request is 
queued from the terminal to the application program. 

After the OPNDST operation is completed, the following NIB fields are set: 

The connected terminal's CID is placed in the CID field. 

The CON field is set to YES if the terminal was in fact connected; otherwise this 
field is not modified. This field can be examined by coding CON=YES on a 
TESTCB macro instruction. 

If the ACCEPT and ANY options were in effect, the symbolic name of the 
connected terminal is placed in the NAME field. 

The characteristics of the connected terminal are indicated in the DEVCHAR 
field. The DEVCHAR codes are explained in Appendix H. 

The following fields are set in the RPL: 

If one (and only one) terminal has been connected, the CID of the connected 
terminal is placed in the ARG field. 

The address of the NIB or NIB list (as supplied by you in the NIB field) is 
returned in the AREA field. The NIB field is overlayed when the CID is placed 
in the ARG field, since the NIB and ARG fields occupy the same physical 
location in the RPL. 

The value 23 (decimal) is set in the REQ field, indicating an OPNDST request. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

The SSENSEI, SSENSMI, and USENSEI fields are set if RTNCD= 16 and 
FDBK2=1 are set in the RPL (OPNDST for a logical unit failed). 

Registers 0 and 15 are also set as indicated in Appendix C. (Note that the 
USERFLD field is not set for OPNDST.) 

87 



READ 

READ-Read Data into Program Storage (Basic-mode only) 

88 

The READ macro instruction obtains data from VTAM buffers and moves it into a 
designated area in program storage. It mayor may not cause physical I/O to be 
performed. If OPTCD= ANY is in effect, the READ operation involves no I/O 
operation, but simply moves data already obtained from a terminal into program 
storage. 

If READ is being used to obtain data from a specific terminal-which means that 
the SPEC option code is in effect in the RPL-and no data from that terminal is 
available, READ first causes data to be solicited. This implied solicit operation 
works in the same manner as the solicit operation explained in the SOLICIT macro 
instruction description. 

As soon as VT AM has moved the data into program storage, it sets the RPL's 
RECLEN field to indicate how many bytes of data were moved. 

If the return code posted in register 15 indicates that the read operation was 
completed successfully, the application program should check the RPL's FDBK 
field to determine whether the data received represents the end of a message or 
transmission. (The read operation may obtain a block of data ending with an 
end-of-transmission indicator, or the indicator may come separately with the next 
read op~ration. In the latter case, the RECLEN field is set to 0 when the next read 
operation is completed.) 

The user of the READ macro instruction codes the address of the RPL that will 
govern the read operation. Various fields in the RPL determine from which 
terminal the data is to be obtained, the location of the area in the program where 
the data is to be placed, and other information regarding how the read request is to 
be handled. The RPL fields can be modified with the READ macro instruction 
itself. The operands used to set these fields are indicated below. 

The TRVNC-KEEP option determines how excess data is to be handled. When 
TRUNC is in effect and there is too much incoming data to fit in the input area, the 
data is truncated and the excess is lost. If KEEP is in effect instead, and there is too 
much data, the excess if held for the time being and moved into the storage area 
when the next READ is issued. Flags set in the RPL's FDBK field (explained in 
Appendix C) indicate when the last of the excess data has been read. 

Name Operation Operands 

[symbol] READ RPL=rpl address 
[, rpl field name=new value] ... 

RPL=rpI address 
Indicates the location of the RPL that governs the read operation. 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VTAM, set the RPL field with MODCB macro 
instructions rather than with the READ macro instruction. 



KhAU 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. ARG can also be coded. 
The new value can be any value that is valid for that operand in the RPL macro 
instruction, or it can indicate a register. The valu supplied for the ARG keyword 
must indicate a register. 

AI though any basic-mode RPL operand can be specified, the following operands 
apply to a READ macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program. 

ARG=( register) 
If data is to be read from a specific terminal, the ARG field of the RPL must 
con tain the CID of that terminal. Register notation is required if the CID is to be 
placed in the ARG field with this READ macro instruction. 

If data is to be read from any terminal, the ARG field's content when the macro is 
issued is irrelevant. After the data has been read, VTAM obtains the CID of the 
terminal from which the data originated and places it in the ARG field. 

AREA=input data area address 
The AREA field must contain the address of the area in the program where the data 
is to be placed. Once the data has been moved, the RPL's RECLEN field is posted 
by VTAM with the number of bytes that were placed there. 

AREALEN=length of input data area 
The AREALEN field must contain the length (in bytes) of the data area pointed to 
by AREA. This value is used by VTAM to determine whether there is too much 
incoming data to fit. If there is too much, the action indicated by the 
TRUNC-KEEP processing option is taken. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASY) 
READ macro instruction is completed. The macro instruction is completed after 
the input data has been moved into the application program's storage area. If EXIT 
is specified, the RPL exit-routine is scheduled. Otherwise the ECB is posted~ and 
CHECK or WAIT is required to determine when the posting occurs. See the RPL 
macro instruction for more information. 

OPTCD=SYN I ASY 
When the SYN option code is set, control is returned to the application program 
when the READ macro instruction has been completed. When ASY is set, control is 
returned as soon as VT AM has accepted the request. Once the macro instruction 
has been completed, the ECB is posted or the RPL exit-routine is scheduled, as 
indicated by the ECB-EXIT field. 

OPTCD=SPEC I ANY 
When the SPEC option code is set, data is obtained from the specific terminal 
identified in the ARG field and placed in program storage. If no previously solicited 
data from that terminal is being held in VTAM buffersa solicit operation is 
perfon:ned and the data is moved into program storage. If data is available in VT AM 
buffers, the READ macro instruction merely moves the data from the buffers to 
program storage. 

89 



READ 

Examples 

Return of Status Information 

90 

When ANY is set, only data already available from a terminal is moved to program 
storage. The user does not identify a terminal; the data can originate from any 
terminal connected to the application program. VT AM obtains the CID of the 
terminal from which the data Originated and places it in the ARG field of the RPL. 

OPTCD=CAICS 
When the CA option code is set, there is no restriction on subsequent retrieval of 
data from the terminal that is the object of this READ macro instruction. 

When CS is set, however, any subsequent input operation will exclude that terminal 
from the group of terminals eligible for input operations. This exclusion applies 
only if the ANY option code is in effect for the subsequent operation. See the RPL 
macro instruction for more information. 

READ 1 

INFO 

READ 

DS 

RPL=RPLI ,AREA=INFO,AREALEN= 132, 
OPTCD=(ANY,SYN) 

CL132 

READI scans VTAM buffers for data previously obtained from any connected 
terminal; and if none has yet been obtained, waits until data arrives. READI then 
places the data into INFO. The CID of the terminal from which the data originated 
is placed into the ARG field of RPLI. Control is not returned to the program until 
the read operation has been completed. 

READ2 

NIBI 
INFO 

READ 

NIB 
DS 

RPL= RPLI ,ARG=(3),AREA=INFO,AREALEN= 132, 
OPTCD=(SPEC,SYN) 

NAME=TERM1,MODE=BASIC 
CL132 

READ2 operates much like READI except that data is being read from a specific 
terminal. When the terminal was originally connected, the CID for that terminal 
was placed both in NIBI and in the RPL used for the connection macro (OPNDST). 
This example assunies that the CID will be in register 3 when READ2 is executed. 

Once the READ operation is completed, the following RPL fields are set: 

The RECLEN field contains the number of bytes of data that were placed in the 
input area. 

The ARG field contains the CID of the terminal from which the data originated. 

The USER field is set. When a NIB is established, the user has the option of 
specifying any value in the USERFLD field of that NIB. When the READ macro 
instruction is subsequently issued for the terminal associated with that NIB, 
whatever had been placed in USERFLD by the user is placed in the USER field 
of the RPL by VT AM. 

The value 29 (decimal) is set in the REQ field, indicating a READ request. 

If READ is completed normally, as indicated by register 15 and the RTNCD 
field, the FDBK field is set indicating various attributes of the data just read. See 
Appendix C. 

The SENSE field is set as indicated in Appendix C. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 



RECEIVE 

RECEIVE-Receive Input from a Logical Unit (Record-mode only) 

The RECEIVE macro instruction obtains a message or a response that has been sent 
to the application program from a logical unit or a record-mode 3270 terminal. If 
data is received, it is placed in the input area designated by the application program. 
If a response or control indicators are received, various RPL fields are set 
accordingly. Figure 7 illustrates the major options for a RECEIVE macro 
instruction. 

A RECEIVE macro instruction can obtain anyone of the following types of input (when the RECEIVE 
is issued, the application program designates the type or types that can satisfy the macro instruction): 

Receive Synchronous Flow Messages. 
RTYPE=DFSYN 

Data Messages Discard excess data 

Cancel Indicators 
OPTCD=TRUNC 

Retain excess data 
Chase Indicators OPTCD=KEEP From any logical unit 

Ouiesce-completed Indicators Discard or retain as OPTCD=ANY 
indicated in NI B From a specific logical 

Ready-to- Receive Indicators OPTCD=NIBTK unit 

Logical-unit-status Indicators OPTCD=SPEC 

Wait until input is 
available 

OPTCD=O 
Receive Asynchronous Flow Messages. Terminate RECEIVE if 

RTYPE=DFASY input not available 

Ouiesce-at-end-of-chain Indicators OPTCD=NO 

Release-quiesce Indicators 

Shutdown-completed Indicators 

Request-shutdown Indicators 

Signal Indicators 

Receive Responses. 
RTYPE=RESP 

Normal Response Exception Response 

FME I RRN FME I RRN 

FME"& RRN FME & RRN 

Figure 7. The Major RECEIVE Options 

-
---

~ 

~ 

91 



RECEIVE 

92 

The application program designates which of the following types of input can cause 
the RECEIVE macro instruction to be completed (any combination can be 
selected): 

• Synchronous flow messages (such as data messages or ready-to-receive, chase, or 
cancel indicators). Input from a 3270 for which MODE=RECORD was specified 
is included in this category. 

• Asynchronous flow messages (such as RELQ, QEC, or signal indicators). 

• Responses to data messages. 

Only one type of input can satisfy the RECEIVE macro instruction. When the 
macro instruction is completed, the RPL's R TYPE field indicates the type actually 
received. If more than one type of input is available to satisfy a RECEIVE, the 
following priorities determine which type of input will satisfy the RECEIVE: 

1. Asynchronous flow messages 

2. Responses 

3. Synchronous flow messages 

Name Operation Operands 

[symbol] I RECEIVE RPL=rpl address 

I [ , rpl field name=new value] ... 

L~ I 
RPL=rpl address 

Indicates the location of the RPL that describes the RECEIVE operation. 

rpl field name =new value 
Indicates an RPL field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VTAM, set the RPL field with MODCB macro 
instructions rather than with this RECEIVE macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. ARG can also be coded. 
The new value can be any value that is valid for that operand in the RPL macro 
instruction, or register notation can be used. 

Although any record-mode RPL operand can be specified, the following operands 
apply to the RECEIVE macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program and through which the 
sending terminal was connected. 

AR(;=(regjster) 
If a specific terminal is to be read (OPTCD=SPEC) the ARG operand specifies the 
register containing the CIn of that terminal. If the ARG field is not modified, the 
CID already·in the RPL's ARC field is used. 

AREA=input data area address 
The AREA field must contain the address of the area in the application program 
where the incoming data is to be placed. If an indicator is received instead of data, 



RECEIVE 

the CONTROL field is posted with a value other than CONTROL=DATA, and the 
input data area is not used. Once the data has been moved, the RPL's RECLEN 
field is set by VT AM with the total number of bytes of received data. The AREA 
field is ignored if AREALEN=O. 

AREALEN=length of input data area 
The AREALEN field contains the length (in bytes) of the data area pointed to by 
AREA. This value is used by VT AM to determine if there is too much incoming 
data to fit. If there is too much, the action indicated by the TRUNC-KEEP-NIBTK 
option code is taken. 

AREALEN=O with OPTCD=KEEP can be used to determine the amount of 
incoming data (the total length is set in RECLEN). A data area can be obtained and 
the RECEIVE macro instruction reissued. AREALEN=O with OPTCD=TRUNC can 
be used to eliminate unwanted data messages that are queued for the application 
program. 

BRANCH=YES INO 
If RECEIVE is to be issued in an application program that is running in privileged 
state under a TCB (OS/VS2 only), BRANCH can be set to YES. See the RPL macro 
instruction for more information. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VT AM when an asynchronous RECEIVE 
request (OPTCD=ASy) is completed. A RECEIVE request is completed when the 
message or response has been received, the data (if any) has been placed in the 
input data area, and the appropriate information has been set in the RPL. If NQ is 
specified and no input is available, RECEIVE is completed immediately. If EXIT is 
specified, the RPL exit-routine is scheduled. Otherwise, the ECB is posted and 
CHECK or WAIT must be used to determine when posting occurs. See the RPL 
macro instruction for more information. 

OPTCD=SYN ! ASY 
When SYN is set, control is returned to the application program when the 
RECEIVE operation is completed. When ASY is set, control is returned as soon as 
VT AM has accepted the RECEIVE request; once the operation has been completed, 
the ECB is posted or the RPL exit-routine is scheduled as indicated by the 
ECB-EXIT field. See the RPL macro instruction for more information. 

OPTCD=CA I CS 
When the RECEIVE operation is completed, the terminal is placed into 
continue-any mode (CA) or into continue-specific mode (CS). This mode 
determines whether the next RECEIVE (OPTCD=ANy) can be satisfied by the 
terminal's next transmission. 

This option code has no effect if OPTCD=NQ and the RECEIVE is completed with 
no input. 

The switch of continue-any and continue-specific modes applies to the type of 
input specified by the RTYPE field which actually satisfies the RECEIVE. 

OPTCD=SPEC I ANY 
Indicates whether the RECEIVE macro instruction can only be satisfied by input 
from a specific terminal (SPEC) or whether it can be satisfied by input from any 
connected terminal that is in continue-any mode (ANY). 

93 



RECEIVE 

Example 

Return of Status Information 

94 

When OPTCD=SPEC is used, the terminal's CID must be in the RPL when the 
macro instruction is executed. When OPTCD=ANY is specified, input from a 
terminal in continue-any mode can satisfy a RECEIVE issued with RTYPE=DFASY 
or RTYPE=RESP only if PROC=NDFASYX or PROC=NRESPX (respectively) was 
specified in the NIB. 

At the completion of the RECEIVE macro instruction, the ARG field contains the 
CID of the terminal whose input satisfied the RECEIVE. 

OPTCD=TRUNCIKEEPINIBTK 
Indicates whether overlength input data is to be truncated (TRUNC), kept (KEEP), 
or whether the PROC=TRUNC I KEEP setting in the terminal's NIB is to be used to 
determine whether the input is to be truncated or kept. 

Overlength input data is data whose length exceeds the value set in the AREALEN 
field of the RECEIVE macro instruction's RPL. When overlength data is truncated, 
the macro instruction is completed and the excess data is lost. 

When overlength data is kept, the macro instruction is completed normally, and 
RECLEN is set to indicate the total amount of data. One or more additional 
RECEIVE macro instructions are required to obtain the excess data. When 
AREALEN=O is set, the entire input is kept. 

OPTCD=Q INQ 
Indicates the action to be taken if no input (of the type specified by the RTYPE 
parameter) is available when the macro instruction is executed. OPTCD=Q means 
that the macro instruction is to be completed when the appropriate input 
eventually arrives. OPTCD=NQ means that the macro instruction is to be completed 
immediately with RTNCD=O and FDBK2=6 if the input is not available. 

RTYPE=DFSYN INDFSYN,DFASY INDFASY,RESP INRESP 
Indicates the types of input that can satisfy this RECEIVE macro instruction. 
DFSYN means that data and other synchronous flow messages can satisfy the 
RECEIVE macro. DFASY means that asynchronous flow messages can satisfy the 
RECEIVE macro. RESP means that responses to data messages can satisfy the 
RECEIVE macro. The negative settings (NDFSYN,NDFASY, and NRESP) indicate 
that the corresponding type of input cannot satisfy the RECEIVE macro. For 
explanations of the synchronous and asynchronous messages, see VT AM Concepts 
and Planning. 

RCVl RECEIVE RPL=RPL1,AREA=INBUF,AREALEN=128, 
RTYPE=(DFSYN,DFASY,NRESP), 
OPTCD=(ANY,Q,NIBTK) 

RCV1 is completed when an incoming message (synchronous or asynchronous 
flow) is available from any logical unit that is in CA mode. Responses cannot cause 
RCV1 to be completed. After RCVl is completed, the application program can 
examine the CONTROL field of RPL 1 to determine the type of message ,received. 
If a data message is received (CONTROL=DATA), the data is placed in INBUF. The 
TRUNC-KEEP processing in the terminal's NIB determines what will be done with 
any data that exceeds 128 bytes. 

Mter the RECEIVE operation is completed, the following RPL fields may be set by 
VTAM: 



RECEIVE 

If RECEIVE was issued with OPTCD=ANY, the ARG field contains the CID of 
the terminal whose input causes the macro instruction to be completed. If 
RECEIVE was issued with OPTCD=SPEC, the ARG field still contains the CID 
that was placed there prior to the execution of the macro instruction. 

The RTYPE field indicates the type of input that satisfied the RECEIVE macro 
instruction. Only one type can satisfy the RECEIVE, even though more than 
one type may be eligible to satisfy the RECEIVE. Other RPL fields may be 
depending on the type of received input, as shown below: 

RTYPE= 

Field DFSYN DFASY RESP 
ARG X X X 
RECLEN X 
SEQNO X X X 
RESPOND X X X 
SWiTCHC X X X 
USER X X X 
REQ X X X 
RTNCD X X X 
FDBK2 X X X 
CHNGDIR X X X 
BRACKET X X X 
CHAIN X 
SIGDATA X 
CONTROL X X 
USENSEI X* X 
SSENSEI X* X 
SSENSMI X* X 

*For exception requests and LUS indicators only. 

The RECLEN field indicates the number of bytes of data received by VT AM. 
VTAM has moved as much of this data as possible into the input data area 
pointed to by the AREA field. If KEEP is in effect and the value in the 
RECLEN field exceeds the value in the AREALEN field, there is excess data 
present that can be obtained with more RECEIVE macro instructions. 

The SEQNO field contains the sequence number of the message or response. 

The RESPOND field indicates either the type of response that has been received 
(if RTYPE=RESP) or the type of response that the terminal expects in reply (if 
RTYPE=DFSYN). 

When a response has been received, the RESPOND field indicates the following: 

RESPOND=EX, FME, RRN 
RESPOND= EX,FME,NRRN 
RESPOND=EX,NFME,RRN 
RESPOND=EX,NFME,NRRN 
RESPOND=NEX,FME,RRN 
RESPOND=NEX,FME,NRRN 
RESPOND=NEX,NFME,RRN 
RESPOND=NEX,NFME,NRRN 

This is an exception FME and RRN response. 
This is an exception FME response. 
This is an exception RRN response. 
Invalid. 
This is a normal FME and RRN response. 
This is a normal FME response. 
This is a normal RRN response. 
Invalid. 

When a message has been received, the RESPOND field indicates the following (the 
value in the RTNCD field indicates whether the message is normal or an exception): 

95 



RECEIVE 

96 

RESPOND=EX,FME,RRN 

RESPOND=EX,FME,NRRN 

RESPOND=EX,NFME,RRN 

RESPOND=EX,NFME,NRRN 
RESPOND=NEX,FME,RRN 

RESPOND=NEX,FME,NRRN 

RESPOND=NEX,NFME,RRN 

RESPOND=NEX,NFME,NRRN 

If this is an exception message, return an 
exception FME and RRN response. 
If this is an exception message, return an 
exception FME response. 
If this in an exception message, return an 
exception RRN response. 
Invalid. 
Return an FME and RRN response, normal or 
exception, as appropriate. 
Return a. normal or exception FME response, as 
appro pria te. 
Return a normal or exception RRN response, as 
appropriate. 
Return no response of any sort. 

The USER field contains the value that was originally set in the USERFLD field of 
the terminal's NIB. 

The value 35 (decimal) is set in the REQ field, indicating a RECEIVE request. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. Registers 0 and 
15 are also set as indicated in Appendix C. 

The CHNGDIR field indicates whether a change-direction-request or a change­
direction-command indicator is present: 

CHNGDIR=(CMD,NREQ) 

CHNGDIR=(NCMD,REQ) 

CHNGDIR=(CMD,REQ) 
CHNGDIR=(NCMD,NREQ) 

A change-direction-command indicator is pres­
ent; the application program can now transmit 
(DFSYN only). 
A change-direction-request indicator is present; 
the application program is being prompted to 
return a change-direction-command indicator 
(RESP or D F ASY only). 
Invalid. 
Neither indicator is present. 

The BRACKET field indicates whether the current bracket is beginning, ending, or 
continuing (DFSYN only): 

BRACKET=(BB,NEB) 
BRACKET=(NBB,NEB) 

BRACKET=(NBB,EB) 
BRACKET=(BB,EB) 

The input is the first of a new bracket. 
The input is a continuation of the current 
bracket. 
The input is the end of the current bracket. 
The input itself constitutes an entire bracket. 

The CHAIN field indicates the message's relative position within the chain being 
sent to the application program (DFSYN only): 

CHAIN=FIRST 
CHAIN=MIDDLE 

CHAIN=LAST 
CHAIN=ONLY 

The message is the first of a new chain. 
The message is a continuation of the current 
chain. 
The message is the last of the current chain. 
The message itself constitutes an en tire chain. 

The SIGDATA field contains 4 bytes of signal information. This field is set when 
the RECEIVE is completed with COJ\1'fROL=SIGNAL. 



The CONTROL field indicates the presence of data or control indicators in the 
message: 

Possible when 
CONTROL= RTYPE= Meaning 

DATA DFSYN A data message has been received. 
QEC DFASY 
RELQ DFASY 
QC DFSYN 
CANCEL DFSYN 
CHASE DFSYN A control indicator has been received. 
LUS DFSYN 
SIGNAL DFASY 
RTR DFSYN 
RSHUTD DFASY 
SHUTC DFASY 

When an exception response or logical-unit-status (LUS) indicator has been 
received, the USENSEI field contains a 2-byte user sense value. This value is tested 
as a 2-byte binary value. 

When an exception response or logical-unit-status (LUS) indicator has been 
received, the SSENSEI field may contain a system sense code or it is set to O. See 
Appendix C for an explanation of the SSENSEI codes. 

SSENSEI=PATH 
SSENSEI=CPM 
SSENSEI=ST ATE 
SSENSEI=FI 
SSENSEI=RR 

An unrecoverable PATH error occurred. 
A CPM error occurred. 
A STATE error occurred. 
A Function Interpreter error occurred. 
A Request Reject error occurred. 

When the SSENSEI field is set, the SSENSMI field may also be set. The SSENSMI 
field contains a system sense modifier value; when combined with the SSENSEI 
code, a specific type of error is indentified. The SSENSMI value is tested as a 1-byte 
binary value. See Appendix C for a list of the SSENSMI values. 

97 



RESET -Cancel an I/O Operation (Basic-mode only) 

98 

The RESET macro instruction can be used to: 

• Cancel an I/O operation that is pending, but is not ye>t in the process of being 
completed (that is, no data transfer activity has yet begun). This form of RESET 
is selected by setting the COND option code. 

• Cancel an I/O operation, whether it is pending or in the process of being 
completed, and in addition reset any error lock that may have been set for the 
terminal. This form of RESET is selected by setting the UNCOND option code. 

• Reset any error lock that may have been set for the terminal, without canceling 
any pending I/O operation. This form of RESET is selected by setting the LOCK 
option code. 

When a request is canceled, VTAM 'completes' the canceled request (that is, 
returns control, posts the ECB, or schedules an RPL exit-routine, as indicated by 
the SYN-ASY option code and the ECB-EXIT field) with a return code 
indicating that a RESET caused the request to be terminated. (The completion 
of the canceled request and the completion of RESET occur independently of 
each other; it is impossible at assembly time to know which will complete first.) 

Name Operation Operands 

[symbol] RESET RPL=rpl address 
[ , rpl field name=new value] ... 

RPL=rpl address 
Indicates the location of the RPL that governs the execution of the RESET macro 
'instruction. 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VTAM, set the RPL field with MODCB macro 
instructions rather than with the RESET macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that correspo1).ds to the RPL field being modified. ARG can also be coded. 
The new value can be any value that is valid for that operand in the RPL macro 
instruction, or it can indicate a register. The value supplied for the ARG keyword 
must indicate a register. 

Although any basic-mode RPL operand (except NIB=) can be specified, the 
following operands apply to a RESET macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program. 

ARG=( register) 
Indicates the register containing the terminal's CID. The· ARG field of RESET's 
RPL must contain the CID of the terminal whose I/O operation is to be canceled or 
whose error lock is to be reset. Register notation is used to place the CID into the 



ARG field with this RESET macro instruction. Note that you do not issue RESET 
for a particular request; you issue RESET for a specific terminal, and let VT AM 
deal with any requests that may be outstanding for that terminal. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASY) 
RESET macro instruction is completed. For OPTCD=LOCK, the macro instruction 
is completed when the error lock has been reset. For OPTCD=COND or 
OPTCD=UNCOND, the macro instruction is completed when all outstanding I/O 
requests to the terminal have been posted complete. If EXIT is specified, the RPL 
exit-routine is scheduled. Otherwise the ECB is posted, and CHECK or WAIT must 
be used to determine when the posting occurs. See the RPL macro instruction for 
more information. 

OPTCD=SYN I ASY 
When the SYN option code is set, control is returned to the application program 
when the macro instruction has been completed. When ASY is set, control is 
returned as soon as VTAM has accepted the request. Once the macro instruction 
has been completed, the ECB is posted or the RPL exit-routine is scheduled, as 
indicated by the ECB-EXIT field. 

OPTCD=CA I CS 
When CA is set, data obtained from the terminal can satisfy a READ macro 
instruction. When CS is set, only READ (OPTCD=SPEC) macro instructions can 
obtain data from the terminal. See the RPL macro instruction for more 
information. 

OPTCD=COND I UNCOND I LOCK 

COND 
RESET cancels any I/O operation that has been initiated, but for which no data has 
been transferred. If data transfer is in progress when RESET is executed, the RPL's 
RTNCD and FDBK2 fields are set to indicate that cancelation did not occur 
(RTNCD=O, FDBK2=1). If an I/O operation is pending, that operation is posted as 
completed (IO=COMPLETE if an internal ECB was used), and the RTNCD and 
FDBK2 fields of that request's RPL indicate that RESET caused the premature 
completion of the operation. The RESET RPL itself is posted to indicate normal 
completion. The RESET RPL is also posted to indicate normal completion if there 
is no I/O in progress to be canceled. 

OPTCD=COND cannot be used if an error lock has been set for the terminal. Use 
one of the other forms of RESET to reset the error lock. (FDBK2 codes returned 
from the I/O request indicate whether the I/O operation failed and, if so, whether 
an error lock was set.) OPTCD=COND is appropriate when the application program 
wants to write to a terminal only if no data is being sent (and can tolerate a 
resulting delay). 

The RESET operation is completed when all of the pending I/O operations for the 
terminal have been canceled (or is completed immediately if VT AM determines that 
I/O is in progress). 

UNCOND 
RESET cancels any I/O operation, pending or otherwise, that is being performed 
with the terminal. If an internal ECB was used, the RPL is set to 10=COMPLETE. 
(If there is no I/O operation to be canceled, RESET completes normally.) Any data 
that a canceled solicit operation has already brought into VTAM storage buffers is 

99 



100 

available for retrieval by the application program. Data that is being sent or is about 
to be sent, however, may be lost. When a solicit, read, or write operation is 
canceled, that operation is posted as completed, and the RTNCD and FDBK2 fields 
of its RPL indicate that RESET caused the premature completion of the operation. 
OPTCD=UNCOND also causes RESET to perform the same resetting operation 
indicated below with OPTCD=LOCK. OPTCD=UNCOND is appropriate when a 
terminal is being solicited for input, but the application program wants to 
immediately write to the terminal without delay (and can tolerate a possible loss of 
data). 

OPTCD=UNCOND causes the communications controller to do the following: For 
start-stop devices with the break feature a reset immediate is sent, and for other 
start-stop devices, a reset ahead-of-command is sent; forBSC devices, a reset orderly 
(RVI) is sent. Any outstanding WRITE operations to the terminal are posted 
completed, with their return codes indicating that the operation was canceled by 
RESET. The OPTCD=UNCOND will not necessarily always perform the reset 
unconditionally when issued to a BSC device the first time. An unsuccessful return 
code may occur. When this occurs, reissue the RESET until it is successful. 

The RESET operation is completed when all of the I/O requests for the terminal 
have been canceled. 

If a read request is pending for a binary synchronous device at the time RESET is 
issued, the application program must continue to issue read requests until an EOT is 
received. (The FDBK field is set upon receipt of an .EOT.) If a read request is 
pending for a start-stop device without the break feature, the application program 
must continue to issue read requests until the amount of data solicited from the 
device has been obtained. That is, ifPROC=TRANS is in effect for SOLICIT, reads 
must be issued until an EOT is received; if PROC=MSG is in effect, reads must be 
issued until EOM is received, and so forth. If a read request is pending for a 
start-stop device with the break feature, the application program must allow that 
read to complete before issuing RESET, but no further reads need be issued. (If 
that read results in excess data being received, a second read to obtain that excess 
data would have to be issued, however, before RESET could be issued.) 

LOCK 
RESET resets an error lock that has been set for the terminal. The RESET 
operation is completed as soon as the error lock is reset. Error locks are set by a 
communications controller when it determines that it should not or cannot 
continue to communicate with a terminal until the application program determines 
the next action to be performed. 

If several WRITE requests have been issued and an error lock is set before all have 
been completed, resetting the error lock restarts, the remaining WRITE operations. 

Note: This type of RESET should not be used if the error lock was set while a DO 
macro instruction involving more than one LDO was being executed. Use RESET 
with OPTCD=UNCOND instead. 

You can determine that an error lock has been set by examining the RTNCD and 
FDBK2 fields of each I/O request's RPL. The error lock is set if any of the 
following RTNCD-FDBK2 codes are returned (see Appendix C): 



Example 

Return of Status Information 

RTNCD 

4 
4 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
12 (X'OC') 
16 (X'10') 
16 (X'10') 
16 (X'10') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 
20 (X'14') 

RESET 1 

ECBWORD 
RPLI 

FDBK2 Type of Error 

0 RVI received 
1 Attention or reverse break received 
0 Error lock set 
1 Terminal not usable 
2 Request canceled by TRM 
6 NCP abended, restart successful 
15 (X'OF') Yielded to contention 
4 VT AM/NCP incompatibility 
11 (X'OB') Dial-out disconnection 
12 (X'OC') Dial-in disconnection 
47 (X'2F') Too many leading graphic characters 
48 (X'30') Invalid LEN field 
49 (X'31') Invalid data area 
50 (X'32') Request invalid for specified device 
51 (X'33') WRITE canceled (input arriving) 
52 (X'34') First I/O not READ or SOLICIT 
53 (X'35') Terminals not attached to same control unit 
54 (X'36') RESET (LOCK) invalid 
55 (X'37') Terminal not connected (copy LDO) 
57 (X'39') Invalid PROC option 

RESET RPL=RPLl,ARG=(3),ECB=ECBWORD, 

DC 
RPL 

OPTCD=(ASY,UNCOND) 

F(O) 
ACB=ACBl,AM=VTAM 

RESETI cancels any I/O operation pending or in progress for the terminal whose 
CID has been loaded into register 3. As soon as the cancellation has been scheduled, 
control is returned to the next instruction after RESETl. To verify that the 
cancellation has been completed, a CHECK macro instruction must be issued to 
determine if ECBWORD has been posted. 

Mter the operation is completed, the following RPL Helds are set: 

The value 18 (decimal) is set in the REQ field, indicating a RESET request. 

The USER field is set. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. Registers 0 
and 15 are also set as indicated in Appendix C. 

101 



RESETSR-Cancel RECEIVE Operations and Switch a Logical Unit's CS-CA Mode 
(Record-mode only) 

Changing CA-CS Mode 

The RESETSR macro instruction is used to change a specified terminal's 
continue-any or continue-specific mode and cancel RECEIVE macro instructions 
that are outstanding for the terminal. Figure 8 summarizes the functions of 
RESETSR and their associated operands. 

RESETSR changes a terminal's continue-any (CA) or continue-specific (CS) mode 
in the same manner as do SEND and RECEIVE macro instructions. 

When the CA-CS option code is set to CA, RESETSR places the terminal into 
continue-any mode if it is not already in that mode. Continue-any mode means that 
RECEIVE macro instructions issued in the any-mode (OPTCD=ANy) as well as in 
the specific-mode (OPTCD=SPEC) can be satisfied by input from the terminal. 

When the CA-CS option code is set to CS, RESETSR places the terminal into 
continue-specific mode, if it is not already in that mode. Continue-specific mode 
means that only RECEIVE macro instructions issued in the specific-mode can be 
satisfied by input from the terminal. 

R ESETSR is used to switch CA -CS mode 

Continue-any mode: OPTCD=CA I 

To what? 

For which type(s) 
of input? 

Synchronous Flow Messages: RTYPE=DFSYN 

Asynchronous Flow Messages: RTYPE=DFASY 

Responses: RTYPE=RESP 

I 

Continue-specific mode: OPTCD=CS I 
For which type(s) 
of input? 

And to cancel RECEIVE macro instructions. 

For which type(s) 
of input? 

Figure 8. The Major RESETSR Options 

102 

Synchronous Flow Messages: RTYPE=DFSYN 

Asynchronous Flow Messages: RTYPE=DFASY 

Responses: RTYPE=RESP 

I 

I 
Synchronous Flow Messages: RTYPE=DFSYN 

Asynchronous Flow Messages: RTYPE=DFASY 

Responses: RTYPE=RESP 

I 



Canceling 
RECEIVE Requests 

RESETSR 

A terminal's CA-CS mode does not apply generally to all input from the terminal, 
but applies individually for the three types of input from the terminal­
synchronous flow messages, asynchronous flow messages, and responses. The 
application program selects the type or types of input by setting the RPL's RTYPE 
field. 

For example, suppose that RESETSR is issued with the CA-CS option set to CS 
(change to CS mode), and the RTYPE field set to DFASY (asynchronous flow 
messages). When the RESETSR macro instruction is completed, the terminal is 
placed in continue-specific mode for asynchronous flow messages. This would mean 
that asynchronous flow messages sent by the terminal could not satisfy a RECEIVE 
issued in the any-mode; they could only satisfy a RECEIVE macro instruction 
issued in the specific-mode for a asynchronous flow messages. 

The RTYPE field of the RESETSR RPL indicates the type or types of RECEIVE 
requests that are canceled. For every RTYPE specified in the RESETSR macro, 
VT AM sets the corresponding RTYPE parameter to its negative value (NDFSYN, 
NDFASY, NRESP) in. each pending RECEIVE. A RECEIVE· is canceled if the 
combination of input types specified in its RPL is included in those specified in lite 
RESETSR macro instruction. 

For example, suppose that these three specific RECEIVE macro instructions are 
pending: 

RCVl RECEIVE 
RCV2 RECEIVE 
RCV3 RECEIVE 

RPL=RPLl,RTYPE=(DFSYN,NDFASY,NRESP) 
RPL=RPL2,RTYPE=(DFSYN,DFASY,NRESP) 
RPL=RPL3,RTYPE=(DFSYN,DFASY,RESP) 

The following RESETSR macro instruction would change all DFSYN values to 
NDFSYN and all DF ASY values to NDF ASY: 

RST RESET RPL=RPlA,RTYPE=(DFSYN,DFASy) 

Since the three RECEIVE macros would in effect now be set as follows, RCVl and 
RCV2 would be canceled (all three RTYPE parameters are negative) but RCV3 
would not be canceled: 

RCVl RECEIVE 
RCV2 RECEIVE 
RCV3 RECEIVE 

RPL= RPLl,RTYPE=(NDFSYN,NDF ASY,NRESP) 
RPL=RPL2,RTYPE=(NDFSYN,NDF ASY,NRESP) 
RPL=RPL3,RTYPE=(NDFSYN,NDFASY,RESP) 

When a RECEIVE is canceled, its RPL is posted complete (that is control is 
returned, its ECB is posted, or its exit-routine is scheduled) with RTNCD=12 and 
FDBK2=lO. The OPTCD=CA I CS setting of each canceled RPL is ignored. 

Name Operation Operands 

[symbol] RESETSR RPL=rpl address 
[ , rpl field name=new value] ... 

103 



K~S~TSK 

104 

RPL=rpl address 
Indicates the location of the RPL that describes the RESETSR operation. 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VT AM, set the RPL field with MODCB macro 
instructions rather than with this RESETSR macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. ARG can also be coded. 
Th"e new value can be any value that is valid for that operand in the RPL macro 
instruction, or register notation may be used. Although any RPL operand can be 
specified, the following operands apply to the RESETSR macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program and was used when the 
terminal was connected. 

AFt<t=(regjster) 
The· RESETSR macro instruction is always directed toward a specific terminal. The 
ARG operand specified the register containing the CID of that terminal. If the ARG 
field is not modified, the CID already in the RPL's ARG field is used. 

ECD I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
RESETSR request is completed. A RESETSR request is completed when the 
appropriate macro instructions have been canceled, and the terminal's CA-CS mode 
has been set. If EXIT is specified, the RPL exit-routine is scheduled. Otherwise the 
ECB is posted and CHECK or WAIT must be used to determine when posting 
occurs. See the RPL macro instruction for more information. 

BFtANCH=YES INO 
If RESETSR is to be issued in an application program that is running in privileged 
state under a TCB (OS/VS2 only), BRANCH can be set to YES. See the RPL macro 
instruction for more information. 

OPTCD=SYN I ASY 
When SYN is set, control is returned to the application program when the 
RESETSR operations have been completed. When ASY is set, control is returned as 
soon as VT AM has accepted the RESETSR request; once the operations have been 
completed, the ECB is posted or the RPL exit-routine is scheduled, as indicated by 
the ECB-EXIT field. See the RPL macro instruction for more information. 

OPTCD=CA I CS 
This option code determines whether the terminal is placed in continue-any (CA) or 
continue-specific (CS) mode. The new CA-CS mode applies to the type of input 
specfied in the RTYPE field. CA-CS mode is explained in the RPL macro 
instruction and in VT AM Concepts and Planning. 

FtTYPE=(DFSYN INDFSYN,DFASY INDFASY,RESP INRESP) 
The RTYPE operand indicates the type of input to be affected by the resetting of 
the terminal's continue-any or continue-specific mode and which outstanding 
RECEIVE macros are to be canceled. (Continue-any mode means that input from 
the terminal can satisfy a RECEIVE issued in the any-mode; continue-specific mode 
means that it cannot.) 



Example 

Return of Status Information 

DFSYN-the terminal's CA-CS mode applies to synchronous flow messages; 
NDFSYN means that synchronous flow messages are not affected. 

DFASY -the terminal's CA-CS mode applies to asynchronous flow messages; 
NDFASY means that asynchronous flow messages are not affected. 

RESP-the terminal's CA-CS mode applied to response units; NRESP means that 
responses are not affected. 

The RTYPE operand also designates the type of pending RECEIVE to be canceled. 
A RECEIVE request is canceled, however, only if all of the input types specified 
for the RECEIVE requests's RTYPE field are also included among those specified 
on the RESETSR request's RTYPE field. When the RECEIVE request is canceled, 
its RPL is posted complete with RTNCD=12 and FDBK2=lO. 

DFSYN-pending RECEIVE requests for data messages or other synchronous flow 
messages are canceled; NDFSYN means that RECEIVE requests for this type of 
input are not canceled. 

DFASY -pending RECEIVE requests for asynchronous flow messages are canceled; 
NDF ASY means that that RECEIVE requests for this type of input are not 
canceled. 

RESP-pending RECEIVE requests for responses are canceled; NRESP means that 
RECEIVE requests for responses are not canceled. 

RSTI RESETSR RPL= RPLI ,OPTCD=CA, 
RTYPE=(DFSYN,NDFASY,NRESP) 

RSTI cancels pending RECEIVE (OPTCD=SPEC) macro instructions for the 
terminal identified in RPLl's ARG field. RSTI also switches the terminal's CA-CS 
mode for synchronous flow messages to continue-any (CA) mode. That is, a 
RECEIVE macro instructions (RTYPE=DFSYN) can obtain synchronous flow 
input from the terminal. The terminal's CA-CS mode for DFASY and RESP input is 
not affected. 

After the RESETSR operation is completed, the following RPL fields are set: 

The value 36 (decimal) is set in the REQ field, indicating a RESETSR request. 

The value originally set in the USERFLD field of the terminal's NIB is set in the 
USER field of the RPL. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 

105 



KPL 

RPL-Create a Request Parameter List 

106 

Every request that an application program makes for connection or for I/O 
operations must refer to an RPL. A request parameter list, or RPL, is a control 
block used by the application program to describe the requests it makes to VT AM. 
The application program may, for example, simply issue a RECEIVE macro and 
indicate an RPL; it is the RPL that shows VT AM which terminal the input is to be 
obtained from, where the input data is to be placed, how the application program is 
to be notified when the operation is completed, and a variety of other options to be 
followed while the request is being processed. If the RPL already contains a request 
code in its REQ field, an EXECRPL macro can be used in place of the RPL-based 
macro indicated in REQ. 

An application program can create many RPLs; a separate RPL can, in fact, be 
created for every connection and I/O request in the application program. Or, at 
the other extreme, one RPL could serve for all connection and I/O requests in the 
program (assuming that all the requests were :synchronous-that is, issued with 
OPTCD=SYN set). This multiple use of an RPL is possible because each connection 
and I/O request can itself modify fields of the RPL to which it points. The RPL can 
thus be thought of as the list form of all of the connection and I/O macros. 

The RPL macro instruction builds an RPL during assembly. The RPL is built on a 
fullword boundary. An RPL can also be generated during program execution with 
the GENCB macro instruction. See GENCB for a description of this facility. 

Requests for RPL modification can be made as part of a connection or I/O macro, 
or by the MODCB macro instruction. Either way involves naming an RPL field and 
specifying its new value. It is useful to keep in mind that every operand of the RPL 
macro represents a field in the RPL it generates. Subsequent requests to modify any 
RPL field use the keyword of the operand corresponding to the field being 
modified. 

Assumed (default) values for most of the RPL fields are set by VTAM when the 
RPL is initially assembled or generated. These assumed values are noted in the 
operand descriptions below. Once an RPL field has been set, however, the field 
is never reset by VT AM to its original value (three exceptions to this rule-the 
SSENSEO, SSENSMO, andUSENSEO fields-are noted below). 

Although all of the RPL operands are optional (with the exception of AM=VT AM), 
all of the RPL-based macro instructions require that various RPL fields be set when 
the macro instruction is executed. These fields are identified in Figure 9 at the end 
of this macro instruction description. 



Name Operation 

[symbol] RPL 

Operands 

AM=VTAM 
[, ACB=acb address] 
[ , NIB=nib address] 
[, AREA=data area address] 
[, AREALEN=data area length] 
[ , RECLEN =data length] 
[ , AAREA =alternate data area address] 
[, AAREALN=alternate data area length] 

[ {
' ECB=event control block address}] 
, EXIT=rpl exit-routine address 

[, BRANCH=YES1INO] 
[, SEQNO=sequence number] 
[, POST=SCHEDIRESP] 
[, RESPOND=(EXINEX, FMEINFME, RRNINRRN)] 
[, CONTROL=(DATA IQEC\RELQIQC\CANCELI 

CHASEISHUTDIBIDILUSISDTI 
CLEARISTSN) ] 

[, CHAIN=FIRSTIMIDDLEILASTIONL Yl 
[, CHNGDIR=(CMDINCMD, REQINREQ)] 
[, BRACKET=(BBINBB, EBINEB)] 
[, RTYPE=(DFSYNINDFSYN, DFASYINDFASY, 

RESPINRESP) ] 
[, STYPE=REQIRESP] 
[, SSENSEO=CPMISTATEIFIIRR] 
[ , SSENSMO=system sense modifier value 1 
[, USENSEO=user sense value] 
[,IBSQAC=SETITESTSETIINVALIDIIGNORE] 
[,OBSQAC=SETITESTSETIINVALIDIIGNORE] 
[ , IBSQV AL=inbound sequence number] 
[, OBSQV AL=outbound sequence number] 

[, NIBTKITRUNCIKEEP] 
[, NFMHDRIFMHDR] 
[, CONALLICONANY] 
[ , ACCEPTIACQUIRE] 
[ , SPEC\ANY] 
[, QUIESCEISTOPISTART] 
[, RELEASE IPASS] 
[, LOGONMSGIDEVCHARI 

COUNTS I TERMS I APPSTAT I 
[,OPTCD=( CIDXLATEITOPLOGONI)] 

BSCID] 
[,SYNIASY] 
[, CAICS] 
[, BLKILBMILBT] 
[, NCONVICONV] 
[, CONDIUNCONDILOCK] 
[, NERASEIERASEIEAU] 
[, RELRQINRELRQ] 
[, QINQ] 

1 The BRANCH=YES operand is valid only in OSjVS2. 

107 



~rL 

108 

AM=VTAM 
Indicates that a VTAM RPL is to be built. This operand is required. 

ACB=acb address 
Associates the request that will use this RPL with an ACB. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

If you omit this operand, the ACB field is set to O. 

NIB=nib address 
Identifies the NIB whose NAME field indicates the terminal that is to be the object 
of an OPNDST, CLSDST, INQUIRE, INTRPRET, or SIMLOGON macro 
instruction. 

Although these macro instructions use a NIB address to indicate a terminal, the 
READ and RECEIVE (OPTCD=SPEC) and the SEND, RESETSR, SESSIONC, 
WRITE, SOLICIT, RESET, and DO macro instructions use a CID to indicate a 
terminal (and CLSDST, along with some forms of INQUIRE, work either way). 
CIDs (communication identifiers) are supplied to the application program upon 
completion of an OPNDST macro instruction. The CID and the NIB address occupy 
the same physical field in the control block. VTAM can distinguish between a NIB 
address and a CID only through a particular bit set in the field. For this reason, the 
field is called the NIB field when a NIB address is being inserted into it, and an 
ARG field when a CID is being inserted into it. When NIB=address appears on a 
CHANGE macro instruction, for example, the bit is set to indicate that the field 
contains a NIB address. When ARG=(register) is coded on a READ macro 
instruction, for example, the bit is set to indicate that the field contains aCID. 
(Note that register notation must be used with ARG, since CIDs are not available 
until program execution.) 

The point to remember when dealing with the NIB-ARG field is this: Since only 
one physical field is involved, always use the NIB keyword to insert a NIB address 
and always use the ARG keyword to insert a CID. This rule also applies to the 
GENCB and MODCB macro instructions. 

If the NIB operand is coded in a READ, RECEIVE, RESETSR, SEND, SESSIONC, 
or WRITE macro instruction, the request will complete with an error code. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

If you omit this operand, the NIB field is set to O. 

AREA=data area address 
When used by a SIMLOGON, INTRPRET, or a CLSDST macro with a PASS option 
code, AREA indicates the address of an area containing a logon message. 

When used by a SEND, RECEIVE, READ, or WRITE macro instruction, AREA 
indicates the address of an area in program storage into which data is to be read or 
from which data is to be written. 

When used by an INQUIRE macro instruction, AREA indicates where the data 
obtained by INQUIRE is to be placed. 



When used by a DO macro instruction, AREA contains the address of an LDO. 

The AREA field is also set upon return from an OPNDST (OPTCD=ACQUlRE) 
macro instruction, indicating the address of a NIB or list of NIBs. The AREA field 
is not set by the application program before OPNDST is issued. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

If you omit this operand, the AREA field is set to O. 

AREALEN=data area length 

Indicates the length (in bytes) of the data area identified by the AREA operand. 
The AREALEN operand is meaningful only for input operations or for the 
INQUIRE macro instruction; VT AM uses this length to determine whether the data 
it is placing in the area is too long to fit. For the RECEIVE macro instruction, 
AREALEN=O means that no input data area is available. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

If you omit this operand, the AREALEN field is set to o. 

RECLEN=data length 
When used by a SIMLOGON or INTRPRET macro instruction, or by a CLSDST 
macro with the PASS option code, RECLEN indicates the length (in bytes) of a 
logon message or sequence contained in the area indicated by the AREA operand. 

When used by a RECEIVE, SEND, READ, or WRITE macro instruction, RECLEN 
indicates the length (in bytes) of the data that begins at the address indicated by 
AREA. For SEND and WRITE operations, RECLEN provides the application 
program a means of telling VTAM how much data is to be transferred. Users of 
SEND should take a particular care to insure that the RECLEN field is not 
improperly set when the macro is issued. The possible consequence of an excessive 
RECLEN value is described in the SEND macro instruction under RECLEN. 

For RECEIVE and READ operations, the RECLEN operand has no meaning; but 
the four-byte field in the RPL corresponding to RECLEN is set by VTAM when the 
input operation is finished to indicate the length of data that VT AM has just placed 
into AREA (for READ) or the total length of available data (for RECEIVE). For a 
conversational WRITE, which includes both an input and an output operation, 
RECLEN indicates the amount of data to be written. VT AM will post the length of 
the incoming data in an RPL field called the ARECLEN field. 

When a RECEIVE operation is completed and excess data is available (that is, 
KEEP is in effect and the message is too long to fit in the input area), RECLEN 
contains the total length of the message. The application program can reissue the 
RECEIVE until the value in RECLEN is less than or equal to the value in 
AREALEN. The RECLEN field is also set upon return from the SETLOGON macro 
instruction, indicating the number of logon requests currently queued for the 
application program. The RECLEN field is not set by the application program 
before SETLOGON is issued. 

The application program can obtain the value in the RECLEN field by issuing a 
SHOWCB macro, or it can test the contents of RECLEN against a flxed value with 
the TESTCB macro instruction. For example: 

109 



ftC L 

110 

SHOWCB RPL=(1 ),AM=VT AM 
FIELDS=RECLEN, 
AREA=WORKAREA, 
LENGTH=4 

OBTAIN THIS RPL'S ... 
... RECLEN FIELD ... 
... AND PLACE IT IN WORKAREA ... 
... WHICH IS FOUR BYTES LONG. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

If you omit this operand, the RECLEN field is set to O. 

AAREA=a1temate data area address 
When used by a CLSDST macro instruction with a PASS option code, AAREA 
indicates the location of an 8-byte area containing the symbolic name of the 
application program to which a logon request is to be directed. The EBCDIC name 
should be left-justified and padded to the right with blanks. This name is the same 
as the name of the application program's APPL entry in the resource defmition 
table. 

When used by an INTRPRET macro instruction, AAREA indicates a work area 
where VT AM places the interpreted data sequence. See the INTRPRET macro 
instruction for details. 

When used by a WRITE macro instruction with a CONY option code, AAREA 
indicates an input area in the application program into which data is to be placed. 
This type of operation is called a conversational write operation and is described in 
the WRITE macro instruction description. 

If you omit this operand, the AAREA field is set to O. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

AAREALN=a1temate data area length (Basic-mode only) 
Indicates the length (in bytes) of the data area identified by the AAREA operand. 
When AAREA is used as an input area for a conversational WRITE macro 
instruction, VT AM will use this length to determine whether the data to be placed 
there is too long to fit. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

If you omit this operand, the AAREALN field is set to O. 

ECB=event control block address 
Indicates the location of an event control block (ECB) to be posted by VT AM 
when the connection or I/O request associated with this RPL is completed. The 
ECB can be any fullword of storage aligned on a fullword boundary. 

Format: Expressions involving registers cannot be used with the RPL macro 
instruction. 

The ECB field and the EXIT field share the same RPL field. If asynchronous 
handling of the request has been specified (ASY option code in the RPL), the 
ECB-EXIT field is used in this manner: 

• If you specify ECB=address, VT AM uses the field as the address of an external 
ECB; you check and clear this ECB yourself (with CHECK, for example}. 



KrL 

• If you specify EXIT=address, VT AM uses the field as the address of the RPL 
exit-routine, and schedules the routine as indicated below (under EXIT 
operand). 

• If you specify neither ECB=address nor EXIT=address, VT AM uses the 
ECB-EXIT field as an internal ECB; you must issue CHECK for the RPL to 
check this ECB. 

If synchronous handling has been specified (SYN option code in the RPL), the 
ECB-EXIT field is used in this manner: 

• If you specify ECB=address, VT AM uses the field as the address of an external 
ECB; VTAM checks and clears this ECB itself. 

• If you specify EXIT=address, VT AM uses the field as an internal ECB, thus 
destroying the exit-routine address; VTAM checks and clears this ECB itself. 

• If you specify neither ECB=address nor EXIT=address (this is the normal 
procedure for synchronous request handling), VTAM uses the ECB-EXIT field as 
an internal ECB; VTAM checks and clears this ECB itself. 

VT AM clears internal ECBs (1) when it begins processing any RPL-based macro, 
and (2) when the RPL is checked. However, VTAM clears external ECBs only when 
the RPL is checked. (RPL checking is done at request completion by VT AM for 
synchronous request handling, and is done by the user issuing CHECK for 
asynchronous request handling.) Users of external ECBs must therefore be sure that 
the external ECB is cleared (with CHECK or with assembler instructions) before the 
next RPL-based macro is issued. 

EXIT=rpl exit-routine address 
Indicates the address of a routine to be scheduled when the request represented by 
this RPL is completed. 

If the SYN option code has been specified, the exit-routine is not used; should you 
specify an address anyway, the address is overwritten before the synchronous 
request completes. (VTAM uses the ECB-EXIT field as an internal ECB in this 
situation-see the ECB operand description above). The RPL exit~routine is 
scheduled only if asychronous handling of the request has been specified. 

When the routine receives control, it is passed the address of the RPL in register 1. 
The RTNCD and FDBK2 fields will indicate the status of the request. 

The RTNCD-FDBK2 examination could reveal that the request was completed with 
a logical or physical error. You should issue CHECK in the RPL exit-routine; this 
will schedule the LERAD or SYNAD exit-routines, if appropriate, as well as set the 
RPL to an inactive state. (LERAD and SYNAD exits are discussed in the EXLST 
macro instruction description.) Never issue the CHECK in your main program 
unless you are sure that CHECK will be executed after the RPL exit-routine is 
scheduled. 

When the RPL exit-routine receives control, these general purpose registers contain 
the following (registers 0 and 2-13 are unpredictable): 

Register 1: the address of the RPL associated with the request whose completion 
has caused the RPL exit-routine to be entered. 

Register 14: the address in VTAM to which the RPL exit-routine must branch 
when it is through processing. (For programs running under OS/VS2 in a 
privileged state, the address is an address in the OS/VS2 dispatcher, not in 
VTAM.) 

111 



RPL 

112 

Register 15: the address of the RPL exit-routine. 

No register save area is provided upon invocation of the RPL exit-routine. 

If the EXIT operand is specified, the EeB operand must not be specified. (The 
EXIT field and the ECB field occupy the same field in the RPL.) 

BRANCH=YES I NO 
For OS/VS2 application programs running in privileged state under a TCB, 
BRANCH indicates the type of processing to be used when a SEND, RECEIVE, or 
RESETSR macro instruction is issued. 

YES(OS/VS2 only) 
When the macro instruction is issued, VT AM processes the macro instruction in an 
optimized high-priority manner. (For OS/VS2 programs running in privileged state 
under an SRB, rather than under a TCB, the macros are processed in this manner 
automatically regardless of the actual setting of the BRANCH field. 

NO 
When the macro instruction is issued, VTAM does not process the macro 
instruction in an optimized high-priority manner. For DOS/VS and OS/VSl 
programs, all requests are handled as though BRANCH=NO had been specified, 
regardless of the actual setting of the BRANCH field. 

SEQNO=sequence number (Record-mode only) 
Indicates the sequence number of a response. When the application program sends a 
response to a terminal, the sequence number of the message being responded to is 
placed in the SEQNO field. This field is also set by VT AM on completion of a 
SEND (STYPE=REQ) and on completion of a RECEIVE. 

POST=SCHED I RESP (Record-mode only) 
This field is set when the application program sends a data message to a terminal 
and requests a normal response. When POST=SCHED is used (scheduled output) 
the SEND is completed as soon as the output data area is free. The application 
program must issue a RECEIVE to obtain the response to the message. When 
POST=RESP is used (responded output) the SEND is not completed until a 
response to the message is returned. The response information is posted in the RPL 
fields of the SEND RPL. 

RESPOND=(EX I NEX,FME I NFME,RRN! NRRN) (Record-mode only) 
When a response is sent, the RESPOND field indicates the type of response-normal 
(NEX) or exception (EX)-and the source of the response-FME, RRN, or both 
FME and RRN. 

When a message is sent, the RESPOND field indicates the expected response­
normal or exception (NEX) or exception only (EX)-and the source of the 
expected response-FME, RRN, or both FME and RRN. 

CONTROL= {DATAl QECI RELQI QCI CANCEL I CHASE I SUUTDI BIDI LUSI SDTI 
CLEAR f STSN} (Record-mode only) 

Indicates the type of message to be sent to a terminal. With the exception of SDT, 
CLEAR, and STSN, all are used by the SEND macro instruction. SDT, CLEAR, and 
STSN are used by the SESSIONC macro instruction. See Chapter 5 ofVT AM 
Concepts and Planning for an explanation of the indicators designated by 
CONTROL. 



RPL 

CHAIN=FIRST I MIDDLE I LAST I ONLY (Record-mode only) 
This field is set when a message is sent to a terminal. It denotes the message's 
relative position within the chain currently being sent. ONLY means that the 
message is the sole element of the chain. 

CHNGDIR=(CMDINCMD,RQI NREQ) (Record-mode only) 
This field is set when a message or response is sent to a terminal. When CMD is set, 
a change-direction-command indicator is included in the message or response. When 
REQ is set, a change-direction-request indicator is included. 

BRACKET=(BBI NBB,EBINEB) (Record-mode only) 
This field is set when a message is sent to a terminal. When BB is set, a 
begin-bracket indicator is included in the message. When EB is set, an end-bracket 
indicator is included. Note that both indicators can be included in one message. 

RTVPE=(DFSYN I NDFSYN ,DF ASY I NDF ASY ,RESP INRESP) (Record-mode only) 
When a RECEIVE macro instruction is issued, the RTYPE field designates the type 
or types of input eligible to satisfy the macro instruction (only one type can 
actually satisfy the RECEIVE). When a SEND or RESETSR macro instruction is 
issued, the RTYPE field indicates the type or types of input for which the 
terminal's CA-CS mode is. to be switched. 

DFSYN 
designates synchronous flow messages. These include data messages and the QC, 
cancel, chase, bid, LUS, and RTR indicators. 

DFASY 
designates asynchronous flow messages. These include the QEC, RELQ, SHUTD, 
RSHUTD, SHUTC, and signal indicators. 

RESP 
designates responses. 

STVPE=REQ I RESP (Record-mode only) 
This field designates the type of output to be sent to a terminal. The application 
program uses STYPE=REQ to request that a message be sent. STYPE=RESP is used 
when a response is to be sent. STYPE=REQ must be set when a SESSIONC macro 
instruction is issued. 

SSENSEO=CPM I STATE I FI I RR (Record-mode only) 
This field is set when an exception response or logical-unit-status indicator is sent to 
a terminal. Its purpose is to tell the terminal the type of error that causes the 
exception condition to be raised. These error types are described in Appendix C. 

CPM 
designates a CPM error condition. 

STATE 
designates a STATE error condition. 

FI 
designates a Function Interpreter error condition. 

RR 
designates a Request Reject error condition. 

113 



RPL 

114 

If this operand is omitted, the SSENSEO field is set to O. 

Note: When an RPL is assembled or generated, and each time the RPL is reset to 
its inactive (that is, after each synchronous request or CHECK macro instruction), 
the SSENSEO field is cleared. . 

SSENSMO=system sense modifier value (Record-mode only) 
This field is set when an exception response or a logical-unit-status indicator is sent' 
to a terminal. The value set in this field is used in conjunction with the SSENSEO 
setting to describe the specific type of error that caused the exception condition to 
be raised. The meanings assigned to the SSENSMO values are described in Appendix 
C. If this operand is omitted, the SSENSMO field is set to O. 

Format: Specify any decimal value that does not exceed 255, specify a register 
(only the low-order byte is used), or specify a I-byte hexadecimal or character 
constant. 

Examples: SSENSMO= 1 
SSENSMO=(7) 
SSENSMO= X'FF' 
SSENSMO=C'A' 

Note: When an RPL is assembled or generated, and each time the RPL is reset to 
its inactive state (that is, after each synchronous request or CHECK macro 
instruction), the SSENSMO field is set to O. 

USENSEO=user sense value (Record-mode only) 
This field is set when an exception response or logical-unit-status indicator is sent to 
a terminal. If this operand is omitted, the USENSEO field is set to O. 

Format: Specify any decimal value that does not exceed 64,535, specify a register 
(only the low-order 2 bytes are used), or specify a 2-byte hexadecimal or character 
constant. 

Examples: USENSEO= 13 
USENSEO=(7) 
USENSEO=X'4F4F' 
USENSEO=C'ZZ' 

Note: When the RPL is assembled or generated, and each time the RPL is reset to 
its inactive state (that is, after each synchronous request or CHECK macro 
instruction), the USENSEO field is set to O. 

IBSQAC=SETITESTSETIINVALIDIIGNORE (Record-mode only) 
OBSQAC=SET I TESTSET I INV ALID I IGNORE (Record-mode only) 

These fields are used by a SESSIONC macro instruction to designate which type of 
STSN indicator is being sent to a terminal. The settip.g of the IBSQAC field relates 
to the inbound sequence number; the OBSQAC field relates to the outbound 
sequence number. See the SESSIONC macro instruction for the responses that can 
be returned for each of the following: 

SET 
The sequence number is reset. The terminal is made aware of the number, but 
possible responses are limited. 



RPL 

TESTSET· 
The sequence number is reset. The logical unit is made aware of the number and 
returns a response regarding the validity of that number. 

INVALID 
The sequence number is not reset (the application program has lost its version of 
the sequence number). The terminal returns the sequence number. 

IGNORE 
The sequence number is not reset. No response is possible. 

IBSQV AL=inbound sequence number (Record-mode only) 
OBSQV AL=outbound sequence number (Record-mode only) 

When SESSIONC is used to send an STSN indicator and SET, TESTSET, or 
IGNORE is set in the IBSQAC or OBSQAC field, these fields contain the sequence 
number being reset or transmitted. 

Format: Specify any decimal value that does not exceed 65,535, or specify a 
register (only the low-order 2 bytes are used). 

OPTCD=option code I (option code, ... ) 
Indicates options that are to affect the connection and I/O requests made using this 
RPL. 

Format: Code as indicated in the assembler format table. If only one option code 
is specified, the parentheses can be omitted. 

RPL ACB= ACB 1 ,OPTCD=(SPEC,SYN ,CS),AM=VT AM 
RPL ACB=ACB 1 ,OPTCD=SPEC,AM=VT AM 

Note: The MODeE macro instruction can be used to change the option codes set 
in the RPL after it has been built. 

TRUNC I KEEP I NIBTK (Record-mode only) 
Indicates the action to be taken when a RECEIVE macro instruction is 
completed with input that is too large to fit in the input data area. TRUNC 
causes the excess data to be discarded. The application program is not notified 
that truncation occurred. KEEP causes the excess data to be saved for 
subsequent RECEIVE macro instructions. The application program can compare 
the value set in the RPL's RECLEN field (the amount of incoming data) with 
the value in the AREALEN field. If the RECLEN field is larger, excess data is 
present. NIBTK allows the TRUNC-KEEP processing option (see the NIB macro 
instruction) to determine whether excess data is to be kept or discarded. 

FMHDRINFMHDR (Record-mode only) 
This option code indicates to VT AM how the "formatted" bit in the Request 
Header (RH) of this data message is to be set. This option applies only to data 
messages (STYPE=REQ, CONTROL=DATA) and should be used to notify the 
terminal that the message contains or does not contain (FMHDR and NFMHDR, 
respectively) a user-defined Function Management Header. If FMHDR is set, the 
"formatted" bit is set on in the Request Header and is delivered to the receiver. 

CONANYICONALL 
When an OPNDST macro instruction (with an ACQUIRE option) is issued and 
the NIB field of its RPL indicates a list of NIBs, this option code indicates the 
following: 

115 



RPL 

116 

CONANY 
Connection is to be made to the first available terminal (if any) of the NIB 
list indicated by the NIB field. The request is completed when one 
connection has been made. 

CON ALL 
Connection is to be made to all the available terminals in the list. The 
connections are made immediately. 

When a SIMLOGON macro instruction is issued and the NIB field of its RPL 
contains the address of a list of NIBs, this option code indicates the 
following: 

CONANY 
A simulated logon request is to be generated for the first available terminal of 
the NIB list. Control is passed to the application program's LOGON 
exit· routine , if one exists, when this one logon request has been generated. 
The parameter list passed to the LOGON exit·routine can be used to 
determine the identity of the terminal for which the logon request was 
generated. (See the EXLST macro instruction description.) The Q·NQ option 
applies. 

CON ALL 
Logon requests are to be generated for all the terminals represented in the 
NIB list. The SIMLOGON operation completes immediately. If Q is set, logon 
requests will be generated as each terminal becomes available. If NQ is set and 
all the terminals are available, the logon requests are generated immediately; 
if all are not available, however, no logon requests are generated. 

ACCEPT I ACQUIRE 
Indicates whether OPNDST is being issued to accept a terminal's logon request 
or whether it is being issued to acquire that terminal. 

ACCEPT 
VTAM connects the application program to a terminal that has issued a logon 
request. If the ANY option code is set and more than one terminal has issued 
a logon request and is waiting to be accepted, the first terminal that issued a 
logon request is connected. The symbolic name of that terminal is placed in 
the NIB pointed to by OPNDST's RPL. If the SPEC option code is in effect, 
the NIB must already contain the symbolic name of a terminal; connection is 
established only if that particular terminal issues a logon request. 

ACQUIRE 
VT AM connects the application program to the terminal represented by this 
NIB if the terminal has not issued a logon request, and is available. The 
CONALL·CONANY option code determines which of the terminals repre· 
sented in the list (that have not issued logon requests) are connected. If 
CONALL is in effect, all of the available terminals represented in the list are 
connected. If CONANY is in effect instead, only the first available terminal 
represented in that list is connected. 

The use of ACQUIRE must be authorized for the application program by the 
installation. 

SPEC I ANY 
When the RPL is used by an OPNDST macro with an ACCEPT option code, 
these option codes indicate the following: 



KI'L 

SPEC 
Connection is to be made to a specific terminal if that terminal issues (or has 
issued) a logon request to the application program. The terminal is identified 
by placing its symbolic name in a NIB and placing the address of that NIB in 
the RPL's NIB field. 

ANY 
Connection is to be made to any terminal that has issued a logon request for 
the application program. 

When the RPL is used by a READ, SOLICIT, or RECEIVE macro instruction, 
these option codes indicate the following: 

SPEC 
Data is to be obtained from the specific terminal whose CID is in the RPL's 
ARG field. 

ANY 
For READ, data already obtained from anyone terminal is to be moved to 
the application program's input area, subject to the setting of the terminal's 
CS-CA option code. For SOLICIT, data is to be obtained from all of the 
terminals connected to the application program, subject to the setting of the 
CS-CA option code. For RECEIVE, data arriving from anyone logical unit is 
to be moved to the application program's input area, subject to the setting of 
the logical unit's CS-CA option code and the RTYPE field of the RECENE 
macro instruction. 

QUIESCE I STOP I START 
Indicates how a SETLOGON request is to affect (1) the queuing of logon 
requests for a given ACB, and (2) the codes returned by INQUIRE 
(OPTCD=APPSTAT) issued by other application programs. This option code 
applies only if the ACB has been opened with MACRF=LOGON specified. 

QUIESCE 
No more logon requests can be directed at the ACB whose address is in the 
RPL's ACB field. Application programs issuing INQUIRE (OPTCD= 
APPSTAT) for the application program will receive a return code indicating 
that the application program cannot accept logon requests, presumably 
because it is about to close the ACB. 

STOP 
Application programs issuing INQUIRE (OPTCD=APPSTAT) for the ACB 
receive a return code indicating that no logon requests should be directed at 
the ACB (but implying that logon requests will be accepted later). The use of 
this option, however, does not prevent logon requests from being queued if 
the other application programs ignore this indicator and issue CLSDST 
(OPTCD=PASS) anyway. SETLOGON (OPTCD=STOP) should be used to 
temporarily halt logon requests; use SET LOGON (OPTCD=QUIESCE) to 
permanently bar logon requests to the ACB. 

START 
Application programs issuing INQUIRE (OPTCD=APPSTAT) receive a return 
code indicating that the application program represented by the ACB is 
accepting logon requests. This version of SETLOGON also causes VTAM to 
commence queuing automatic logon requests if this is the first such 
SETLOGON request since the ACB was opened. SETLOGON (OPTCD= 
START) reverses the effect of a previous SETLOGON (OPTCD=STOP). 

117 



RPL 

118 

PASS I RELEASE 
Indicates whether or not a logon request is to be generated when a CLSDST 
macro instruction is issued. 

PASS 
VT AM generates a simulated logon request on behalf of the terminal being 
disconnected and directs these requests to the application program whose 
symbolic name is pointed to by the RPL's AAREA field. If the RPL's 
AREALEN field contains a value other than 0, VT AM also send a logon 
message with the logon request. VT AM obtains the message from the storage 
area identified in the AREA field, and sends the number of bytes indicated in 
the AREALEN field. The use of CLSDST with PASS must be authorized by 
the installation. 

RELEASE 
No logon request is generated; the terminal is simply disconnected from the 
application program. 

LOGONMSG I DEVCHARI COUNTS I TERMS I APPSTATICIDXLATE I 
TOPLOGON 
Indicates the action VTAM is to take when an INQUIRE macro instruction is 
issued. 

LOGONMSG 
INQUIRE retrieves the logon message of a terminal that has issued a logon 
request for the application program. 

The RPL's NIB field must point to a NIB whose NAME field contains the 
symbolic name of the terminal. The RPL's ACB field must indicate the ACB 
to which the logon request was directed. This information is provided in the 
parameter list passed to the LOGON exit-routine. 

The AREA and AREALEN fields must indicate the location and length of the 
storage area where the logon message is to be placed. 

DEVCHAR 
INQUIRE obtains the device characteristics of a terminal, as they are defined 
by the installation in the resource definition table at the time INQUIRE is 
executed. These device characteristics can be used by the application program 
to determine which processing options the program wants to set in the NIB 
used to connect the terminal. 

The RPL's ARG field must point to a NIB containing the symbolic name of 
the terminal, or the RPL's ARG field must contain the CID of the terminal. 
The device characteristics are placed in the program storage area whose 
location and length are indicated by the AREA and AREALEN fields of the 
RPL. See the INQUIRE macro instruction for details. 

COUNTS 
INQUIRE provides the number of terminals that are connected via a given 
ACB and the number of terminals that have requested logon via that ACB but 
have not yet been connected. These two numbers are placed in a four-byte 
area in program storage whose location and length are indicated by the AREA 
and AREALEN fields of the RPL. VT AM places the number of connected 
terminals in the first two bytes and the number of terminals requesting logon 
in the second two bytes. 



RPL 

The connection and logon requests counted by INQUIRE are those directed 
to the ACB indicated by the ACB field. 

TERMS 
When this operand is specified, node initialization blocks (NIBs) are built by 
INQUIRE. 

The RPL's NIB field must point to a NIB whose NAME field contains the 
name of an entry that exists in the resource definition table at the time 
INQUIRE is issued. This entry must be a GROUP, LINE, CLUSTER, or 
TERMINAL entry that represents several terminals. A NIB is built for each 
terminal represented in the entry. 

Each generated NIB contains the symbolic name of the terminal. The flags for 
the LISTEND field are set to group the NIBs together into a NIB list. In 
addition, device characteristics are supplied in the DEVCHAR field of each 
NIB. These characteristic~ can be used to reset the processing options of the 
NIB to values that are appropriate for the terminal. 

The user must set each NIB's MODE field to BASIC before the NIBs are 
ready to be used for connection. 

APPSTAT 
This type of INQUIRE determines whether a given application program is 
available or unavailable. An available application is one whose ACB is active 
(open) and indicates that logon requests are to be accepted. 

The RPL's NIB field must point to a NIB whose NAME field contains the 
symbolic name of the application program whose status is being checked. A 
value returned in the RPL's FDBK field indicates whether the application 
program is available or not. See the INQUIRE macro instruction description 
for the codes that can be returned. 

CIDXLATE 
INQUIRE provides the symbolic name of the terminal whose CID you 
provide, or provides the CID of the terminal whose symbolic name you 
provide. 

If the RPL's ARG field contains the CID of the terminal, the eight-byte 
symbolic name of that terminal is returned in the data area indicated in the 
AREA field. If the RPL's NIB field contains the address of a NIB, the CID for 
the terminal whose symbolic name is in that NIB is placed in the RPL's ARG 
field. 

TOPLOGON 
For a given ACB, INQUIRE provides the symbolic name of the terminal that 
is currently at the top of the logon request queue for that ACB (that is, the 
terminal that has spent the greatest amount of time waiting for its logon 
request to be satisfied). 

The RPL's ACB field must indicate the ACB whose logon request queue is to 
be used. The eight-byte symbolic name of the terminal is returned in the data 
area indicated in the RPL's AREA field. 

BSCID 
INQUIRE returns the ID verification sequence of the terminal requesting 

119 , 



n.CL 

120 

logon. This form of INQUIRE is appropriate if the terminal's name (as 
provided in the LOGON exit-routine's parameter list) is one of the names 
established during VT AM definition as an unidentified terminal with an ID 
verification feature. 

The RPL's NIB field must point to a NIB whose NAME field contains the 
symbolic name provided in the LOGON parameter list. The sequence is 
placed in the work area defined by the AREA and AREALEN fields (set 
AREALEN to 20). 

SYNIASY 
Indicates whether VT AM should synchronously or asychronously handle any 
request made using this RPL. 

SYN 
Synchronous handling means that when a request is made, control is not 
returned to the application program until the requested operation has been 
completed (successfully or otherwise). The application program should not 
use the CHECK macro instruction for synchronous requests; VT AM 
automatically performs this checking (which includes clearing the ECB). 
When control is returned to the application program, registers 0 and 15 will 
contain completion codes. 

ASY 
Asynchronous handling means that after VT AM schedules the requested 
operation, control is immediately passed back to the application program. 
When the event has been completed, VT AM does one of the following: 

• If the ECB address is specified for the RPL, VTAM posts a completion 
indicator in the event control block indicated by this operand. (If neither 
an ECB nor an EXIT address is specified in the RPL, the ECB field itself is 
used as an event control block.) The application program must issue a 
CHECK (or a system WAIT) macro to determine whether the ECB has 
been posted. 

• If the EXIT operand is in effect for the RPL, VTAM schedules the 
exit-routine indicated by this operand. This exit-routine should issue the 
CHECK macro so that the RPL can be reused, and also to cause automatic 
entry into a LERAD or SYNAD exit-routine if the requested operation 
ends with a logical or other error. CHECK should be issued in the 
exit-routine if the application program has no LERAD or SYNAD routine, 
since CHECK will return a code indicating whether or not a logical or 
other error occurred. 

Note: After an asynchronous request has been accepted and before that 
request has been completed, do not modify the RPL being used by the 
request. This restriction also applies to a NIB during OPNDST processing. A 
modification during this interval could cause VT AM to be unable to complete 
the request in a normal manner, which in turn would cause VT AM to 
terminate the application program. 

CSICA 
The CS ( continue specific) and CA ( continue any) option codes determine which 
type of input request is required to obtain data from the terminal. 

CS 
CS places the terminal into a status wherein only input requests that are 
directed specifically at the terminal can be used to obtain data from the 



RPL 

terminal. These are the RECEIVE, READ, and SOLICIT macro instructions 
with OPTCD=SPEC specified. Looking at CS another way, it "immunizes" a 
terminal from input requests that are not specifically directed at the 
terminal-namely, RECEIVE, READ, or SOLICIT macro instructions issued 
in the any-mode. The status into which the terminal is placed is termed 
"continue-specific" mode. 

For example, while CS is in effect, the arrival of data from a logical unit that 
is in continue-specific mode does not trigger the completion of a RECENE 
(OPTCD=ANY) macro instruction that may have already been issued. 

CA 
CA places the terminal in a status wherein it's data is subject to RECEIVE or 
READ and SOLICIT macro instructions. This status is termed 
"continue-any" mode. 

Although the CS-CA option code affects only RECEIVE, SOLICIT, or READ 
operations, you can switch a terminal from one status to the other by 
specifying the CS or CA option code in any OPNDST, SEND, RECENE, 
RESETSR, SOLICIT, READ, WRITE, or DO macro instruction. The change 
from one status to another is effective for the next I/O operation directed a,t 
the terminal, not when this macro instruction is executed. The terminal that' 
is the object of the macro instruction is the one whose CS-CA status is 
changed. (For RECEIVE or READ with OPTCD=ANY, the terminal whose 
status will be changed is the one whose data is moved by the READ 
operation.) 

Continue-any and continue-specific modes can be set individually for a 
particular type of terminal input. For example, a terminal can be placed in 
continue-specific mode for synchronous flow messages while it is in 
continue-any mode for asynchronous flow messages and for responses. 

BLK I LBM I LBT (Basic-mode only) 
Indicates that the block of data to be transferred on a WRITE operation 
represents a block (BLK), the last block of a message (LBM), or the last block of 
a transmission (LBT). Appendix B shows the line control characters sent when 
each of these three option codes are in effect. BLK is invalid for a 3270 
Information Display System. 

CONY I NCONY (Basic-mode only) 
Indicates whether or not a WRITE macro instruction is to be handled as a 
conversational write request. 

CONY 
Following the output operation, data is obtained from the terminal and 
placed in the area in program stora.ge indicated by the RPL's AAREA field. 

NCONV 
Only the output operation is performed. 

COND I UNCOND I LOCK (Basic-mode only) 
Indicates the action to be taken when a RESET macro instruction is issued. 

COND 
RESET cancels any I/O operation that is pending for a specific terminal, but 
does not affect an I/O operation if data transfer has begun. This form of 
RESET cannot be used if an error lock is set. 

121 



RPL 

122 

UNCOND 
RESET cancels any I/O operation with a specific terminal, whether or not 
data transfer has begun. Any data that has already been brought into VT AM 
buffers is kept by VT AM for subsequent retrieval by the application program 
(with a READ macro). Any data being sent or about to be sent by the 
terminal may be lost. RESET also resets any error lock that has been set for 
the terminal. 

LOCK 
RESET resets any error lock that has been set for the terminal. 

ERASE I EAUI NERASE (Basic-mode only) 
Indicates the action to be taken when a WRITE macro instruction is issued. 

ERASE 
WRITE erases the screen of a display device attached to a 3270 Information 
Display System or a 2770 Data Communication System, and then sends a 
block of data to the device. 

EAU 
WRITE erases only the unprotected portion of the screen of a display device 
attached to a 3270 Information Display System. No data is written. 

NERASE 
WRITE performs an ordinary write operation with no display screen erasure. 
Use this option for all devices other than 3270 and 2770 devices. 

RELRQINRELRQ 
Indicates the action to be taken when a SIMLOGON macro is issued, and the 
terminal that is the object of this connection or simulated logon request is 
already connected to another application program-that is, already connected to 
an ACB other than the one being used for the SIMLOGON macro. 

RELRQ 
If the application program to which the terminal is connected has a RELREQ 
exit-routine, that routine is invoked. 

NRELRQ 
No RELREQ exit-routine is invoked. 

The effect of this option is to determine whether or not the owning 
application program is to be notified of your request. The NRELRQ option, 
for example, allows you to release a terminal to another application program, 
and then immediately request reconnection to assure its eventual return to 
your program. 

Note the difference in spelling between the RELRQ-NRELRQ RPL option, 
and the related exit-routine. The latter is coded in the EXLST macro 
instruction as RELREQ. 

QINQ 
Indicates the action VTAM is to take when the application program issues 
SIMLOGON or OPNDST (ACCEPT) and the terminal that is the object of this 
request is unavailable. 



RPL Fields Set by VT AM 

RPL 

Q 
VT AM is to schedule the LOGON exit-routine when the terminal is finally 
available and complete the OPNDST or SIMLOGON request when it has done 
so. For SIMLOGON, the RELRQ-NRELRQ option code determines if the 
application program to which the terminal is connected is notified of your 
request. 

NQ 
VT AM is to immediately return control to the application program. (Without 
the NQ option, a connection or simulated logon request might remain 
pending indefinitely, until another application program releases the terminal.) 

Also indicates the action VTAM is to take when the application program 
issues a RECEIVE macro instruction and no input that is eligible to satisfy 
the request is at that moment in VTAM's buffers. 

Q 
VT AM is to satisfy the request when the input is finally available and 
complete the RECEIVE when it has done so. 

NQ 
VT AM is to terminate the request and return control to the application 
program immediately without performing any CA-CS mode switching. 

All of the RPL fields described above are fields that are set by the application 
program. The following fields are set by VT AM. Some of the fields described below 
are initially set by the application program and are then (for certain macro 
instructions) reset by VT AM before the macro instruction is completed. Figure 9 
identifies the RPL fields that are so used. 

In some cases, fields set by VT AM prior to the completion of one macro instruction 
will cause erroneous results if the application reuses the same RPL for another 
macro without again initializing the field. (Only the SSENSEO, SSENSMO, 
USENSEO, FDBK2, RTNCD, SIGDATA and SENSE fields are cleared by VTAM, 
and no fields are reset to their original values by VT AM.) 

For example: before a RECEIVE is issued, the RTYPE field is set by the 
application program to indicate the types of input (DFSYN, DFASY, RESP) that 
are eligible to satisfy the RECEIVE. The application program might indicate all 3. 
When the RECEIVE is completed, VT AM uses the same field to indicate the type 
of input that actually satisfied the RECEIVE; if a response was received, for 
instance, VTAM would reset the RTYPE field to RTYPE=(NDFSYN, NDFASY, 
RESP). Should the application program issue another RECEIVE with the same RPL 
and fail to reset the RTYPE field to its intended setting, the second RECENE 
could only receive responses. 

Field Name 

ARECLEN 

RTNCD 

Content 

The number of bytes of data returned by the WRITE (OPTCD= 
CONV) and INTRPRET macro instructions. See WRITE and 
INTRPRET for details. 

A general return code returned by all of the RPL-based macro 
instructions. This field is cleared by VT AM when the processing 
of the macro instruction begins. This is one of the feedback fields 
described in Appendix C. 

123 



RPL 

FDBK2 

FDBK 

SENSE 

REQ 

USER 

ARG 

124 

A specific error return code returned by all RPL-based macro 
instructions that are accepted by VTAM but are not completed 
successfully. This field is cleared by VT AM when the processing 
of the macro instruction begins. This is one of the feedback fields 
described in Appendix C. A DSECT containing labeled. EQU 
instructions for each FDBK2 return code is described in 
Appendix H (ISTUSFBC). These DSECT labels can be used 
instead of the numerical values that are cited for FDBK2 
throughout this manual. 

Status information for INQUIRE, READ, or conversational 
WRITE macro instructions. For example, if the data ended with 
an EOM line-control character, this field is set to indicate this. 
This field is cleared by VTAM when the processing of the macro 
instruction begins. This is one of the feedback fields described in 
Appendix C. 

The SENSE field contains status or sense bytes obtained from 
certain devices. The SENSE field applies only to DO, READ, and 
WRITE macro instructions, and is set following these macro 
instructions only if the RPL's FDBK2 field so indicates. This field 
is cleared by VT AM when the processing of the macro instruction 
begins. There is more information about the SENSE field in 
Appendix C. 

A value returned by all RPL-based macro instructions except 
EXECRPL (and CHECK) that identifies the type of macro 
instruction. This field shows which type of macro instruction last 
used the RPL. These are the values that are set: 

Value 

11 (17) 
12 (18) 
13 (19) 
15 (21) 
16 (22) 
17 (23) 
19 (25) 
1A (26) 
1B (27) 
1D (29) 
IE (30) 
IF (31) 
22 (34) 
23 (35) 
24 (36) 
25 (37) 

Macro Instruction 

WRITE 
RESET 
DO 
SETLOGON 
SIMLOGON 
OPNDST 
CHANGE 
INQUIRE 
INTRPRET 
READ 
SOLICIT 
CLSDST 
SEND 
RECEIVE 
RESETSR 
SESSIONC 

Upon the completion of a SEND, RECEIVE, RESETSR, 
SESSIONC, READ, WRITE, SOLICIT, RESET, or DO macro 
instruction, this field contains whatever value you had previously 
placed in the USERFLD field of the NIB used to connect the 
terminal. See the description of the USERFLD operand of the 
NIB macro instruction for more information. 

A terminal's communication identifier (CID) provided by 
OPNDST. The CID is a 4-byte network-oriented version of the 
terminal's symbolic name. It is generated by VT AM when the 
terminal is connected to the application program, and is used by 



AREA 

RECLEN 

CONTROL 

SEQNO 

RPL 

the application program to indicate identity of the terminals for 
subsequent I/O requests. More information about the CID and its 
use appears above in the description of the NIB operand of this 
macro instruction. 

The address of the NIB list supplied when an OPNDST macro 
instruction is issued. This is the same address that the application 
program supplies in the NIB field (OPNDST overlays the NIB 
address with a CID). If the OPNDST RPL is to be reused for 
subsequent I/O requests, be sure to reset the AREA field (the 
AREA field ·must indicate the I/O data area for I/O requests). 

After an INQUIRE macro instruction is completed RECLEN 
contains the length of the requested information (such as the 
logon message). AFTER a SETLOGON macro instruction is 
completed, RECLEN contains the number of logon requests 
already queued for the application program. After a READ or DO 
macro instruction is completed, RECLEN contains the amount of 
input data. After a RECEIVE, RECLEN contains the total length 
of available data. This value may be greater than AREALEN, 
indicating the presence of excess data (the value in RECLEN 
represents the total length of excess data plus the data in AREA). 

After a RECEIVE macro instruction (RTYPE=DFSYN) is 
completed, CONTROL is set to one of the following values: 

CONTROL=DATA (data message received) 
CONTROL=QC (quiesce-completed indicator received) 
CONTROL=CANCEL (cancel indicator received) 
CONTROL=CHASE (chase indicator received) 
CONTROL=LUS (logical-unit-status indicator received; 

check SSENSEI, SSENSMI, and 
USENSEI) 

CONTROL=RTR (ready-to-receive indicator received) 

After a RECEIVE maGro instruction (RTYPE=DFASY) is 
completed, CONTROL is set to one of the following values: 

CONTROL=QEC 

CONTROL=RELQ 
CONTROL=SHUTC 

CONTROL=RSHUTD 

CONTROL=SIGNAL 

(quiesce-at-end-of-chain indicator 
received) 
(release-quiesce indicator received) 
(shutdown-completed indicator 
received) 
(shutdown-requested indicator 
received) 
(signal indicator received; check 
SIGDATA) 

After a SCIP exit-routine is entered, the CONTROL field of the 
read-only RPL is set to one of the following values: 

CONTROL=RQR (request~recovery indicator received) 

When a SEND (POST= RESP) or a RECEIVE macro instruction 
has received a response, the SEQNO field contains the sequence 
number of the message being responded to. When a SEND 
(POST=SCHED) is used to send a message (STYPE= REQ), the 
SEQNO field contains the VTAM-supplied sequence number of 
the message. 

125 



RPL 

RESPOND 

CHAIN 

CHNGDIR 

BRACKET 

RTYPE 

SSENSEI 

126 

When a SEND (POST= RESP) or a RECEIVE macro instruction 
has received a response, the RESPOND field indicates the type of 
response-normal (NEX) or exception (EX)-and the source of 
the response-FME, RRN, or both. When a SEND (POST= 
SCHED) is completed, the setting of the RESPOND field is 
unpredictable. When a RECEIVE macro instruction has received a 
message, the RESPOND field indicates the expected. type of 
response-normal or exception (NEX) or exception only 
(EX)-and the expected source of the response-FME, RRN, of 
both. 

When a RECEIVE (RTYPE-FSYN) macro instruction has 
received a message, the CHAIN field indicates the message's 
relative position within the chain. The possible settings are 
CHAIN=FIRST, CHAIN=MIDDLE, CHAIN=LAST, and 
CHAIN=ONLY. 

When a message or response is received, the CHNGDIR field 
indicates the presence of change-direction indicators. The possible 
CHNGDIR settings are: 

CHNGDIR=(NCMD ,REQ) (change-direction-request indicator 
present-DFASY or RESP only) 

CHNGDIR=(CMD,NREQ) (change-direction command 
indicator) present-DFSYN only) 

CHNGDIR=(NCMD,NREQ) (neither indicator present) 

When a message is received, the BRACKET field indicates the 
presense of bracket indicators. The possible BRACKET settings 
are: 

BRACKET=(BB ,EB) 

BRACKET=(NBB,EB) 
BRACKET=(BB,NBB) 
BRACKET=(NBB,NEB) 

(begin-bracket and end-bracket 
indicators both present) 
(end-bracket indicator present) 
(begin-bracket indicator present) 
(neither indieator present) 

When a RECEIVE macro instruction is completed, the RTYPE 
field indicates the type of input that caused the completion. The 
possible RTYPE field settings are: 

RTYPE=DFSYN (data or other synchronous flow 

RTYPE=DFASY 
RTYPE=RESP 

message received) 
(asynchronous flow message received) 
(response received) 

When a SEND (POST=RESP), RECEIVE, or SESSIONC macro 
instruction receives an exception message or response, the 
SSENSEI field indicates the presence of a system sense error 
code. The SSENSEI field may also contain a system sense error 
code upon completion of an OPNDST for a logical unit. This field 
is cleared by VT AM when the processing of the macro instruction 
begins. These codes are described in Appendix C. Possible 
SSENSEO settings are: 

SSENSEI=PATH 
SSENSEI =CPM 
SSENSEI=STATE 
SSENSEI=FI 
SSENSEI=RR 
SSENSEI=Q 

(Unrecoverable PATH error condition) 
(CPM error condition) 
(ST ATE error condition) 
(Function Interpreter error condition) 
(Request Reject error condition) 
(no system sense error code) 



SSENSMI 

USENSEI 

SSENSEO 

SSENSMO 

USENSEO 

IBSQAC 

OBSQAC 

IBSQVAL 

OBSQVAL 

SIGDATA 

Examples RPLI 

RPL 

When a SEND (POST=RESP), RECEIVE, or SESSIONC macro 
instruction receives an exception message or response, the 
SSENSMI field indicates the presence of a system sense modifier 
value. The SSENSMI field may also contain a system sense 
modifier value upon completion of an OPNDST for a logical unit. 
The modifier values are described in Appendix C. The value is 
tested as a i-byte quantity. If SHOWCB is used, the value is 
right-adjusted in the 4-byte work area; the other 3 bytes are set to 
O. This field is cleared by VTAM when the processing of the 
macro instruction begins. 

When a SEND (POST=RESP), RECEIVE, or SESSIONC macro 
instruction receives an exception message or response, the 
USENSEI field may contain a user sense value. The USENSEI 
field may also contain a user sense value upon completion of an 
OPNDST for a logical unit. This value is tested as a 2-byte 
quantity. If SHOWCB is used, the value is right-adjusted in the 
4-byte work area; the other 2 bytes are set to O. This field is 
cleared by VT AM when the processing of the macro instruction 
begins. 

This field is always set to o when an RPL-based macro is 
completed. 

This field is always set to 0 when an RPL-based macro is 
completed. 

This field is always set to 0 when an RPL-based macro is 
completed. 

When a SESSIONC macro instruction (CONTROL=STSN) is 
completed, the IBSQAC field contains the terminal's response 
regarding the inbound sequence number. Possible settings are 
TESTPOS, TESTNEG, INVALID, and RESET. See the 
SESSIONC macro instruction for more information. 

When a SESSION macro instruction (CONTROL=STSN) is 
completed, the OBSQAC field contains the terminal's response 
regarding the outbound sequence number. The possible settings 
for OBSQAC are the same as those for IBSQAC. 

When a SESSIONC macro instruction (CONTROL=STSN) is 
completed and IBSQAC is set to TESTPOS or TESTNEG, the 
IBSQVAL field contains the terminal's version of the inbound 
sequence number. 

When a SESSIONC macro instruction (CONTROL=STSN) is 
completed and OBSQAC is set TESTPOS or TESTNEG, the 
OBSQV AL field contains the terminal's version of the outbound 
sequence number. 

When a RECEIVE macro instruction receives a signal indicator 
(CONTROL=SIGNAL), the SIGDATA field contains the signal 
information sent by the terminal. The value in this field is tested 
as a 4-byte quantity. This field is cleared by VT AM when the 
processing of the macro instruction begins. 

RPL ACB=ACB I ,NIB=NIB I ,AM=VT AM 
OPTCD=(SPEC,ASy), 
EXIT= EXITPGM 

127 



RPL 

RPL Fields and RPL-Based 
Macro Instructions 

128 

RPLI can be used by an OPNDST macro instruction to connect the terminal 
represented in NIB 1 to the application program, that is, to ACB 1. When the 
operation is completed, the application program 'will be interrupted, and the 
routine at EXITPGM is invoked. 

RPL2 RPL ACB=ACB1,AM=VTAM,AREA=SOURCE,POST=RESP, 
RECLEN=132,ECB=ECBWORD,OPTCD=ASY 

RPL2 can be used by a SEND macro instruction to write a data message (132 bytes 
from SOURCE) to a terminal. When the request has been accepted, control is 
returned. When the request has been completed, ECBWORD is posted. (The 
CHECK macro instruction used to check the write operation would point to 
RPL2.) 

Figure 9 shows all of the VTAM macro instructions that allow RPL modifications 
to be indicated when the macro instruction is coded. It also shows all of the RPL 
fields, including the option codes of the OPTCD field, that might be modified by 
the application program or by VTAM. The symbols in the table indicate, for a given 
macro instruction, the RPL fields that are set by VTAM or by the application 
program. 

The programmer coding the macro should be aware of that field's effect either by 
checking the the description of that macro instruction or by checking the field's 
description in the RPL macro instruction. The absence of an A or V means that the 
contents of that field can be safely ignored when that macro instruction is issued. 



RPL-modifying macro instructions ::;> #lfdf ~~~g#~&~~~$~~ji~ 
~~~~~~~~~~~~~~~~~~~ 

Applicable RPL fields:

ACB A A A A A A A A A A A A A A A A A A A

,A,RG/NIB (WHEN ARG SPECIFIED) A A A AV A A V V AV A A A A A A A

ARG/NIB (WHEN NIB SPECIFIED) A A A A A A A A A

AREA A A AV A A V A A A A A

AREALEN A A A A

RECLEN A V AV V A V V A V A A

AAREA A V AV A A

AAREALN A A A

ARECLEN V V V

BRANCH A A A A

ECB/EXIT For all macros: If OPTCD=ASY, A; If OPTCD=SYN, AV

REO V V V V V V V V V V V V V V V V V V V

RTNCD 1 V V V V V V V V V V V V V V V V V V V

FDBK21 V V V V V V V V V V V V V V V V V V V

FDBK1 V V V V V

SENSE 1 V V V V V

USER V V V V V V V V V V

SEONO AV V AV

POST A A

RESPOND AV V AV

CONTROL AV V A A

CHAIN AV V AV

CHNGDIR AV V AV

BRACKET AV V AV

RTYPE ~V AV A AV

STYPE A A A

SSENSE02 AV AV V

S~ENSM02 AV AV V

USENSE02 AV AV V

SSENSEI 1 V V V V V V V

SSENSMI1 V V V V V V V

USENSEI 1 V V V V V V V

I BSQAC AV AV

OBSOAC AV AV

IBSOVAL AV AV

OBSOVAL AV AV

SIGDATA 1 V V V

Figure 9 (Part 1 of 2). The RPL Fields Applicable to the Macro Instructions That Can Modify RPLs

129

RPL-modifying macro instructions =!> ~~.y C) ~~O tf Q ~(.q (.q ~~" ~ ~"
~~~o~~~OO~~~~~~~~~ff C)~~Q~~~~~~~~~~~~~~ 

Applicable RPL fields (Cont.): 

OPTCD: A A 

TRUNC-KEEP-NIBTK A A 

FMHDR-NFMHDR A A 

CONANY-CONALL A A A 

ACQUIRE-ACCEPT A A A 

SPEC-ANY A A A A 

QUIESCE-START -STOP A A 

PASS-RELEASE A A A 

LOGONMSG-DEVCHAR-
COUNTS-BSCID-TERMS- A A 
APPSTAT -CIDXLATE-
TOPLOGON 

SYN-ASY A A A A A A A A A A A A A A A A A 

CS-CA A A A A A A A A A 

BLK-LBM-LBT A 

CONV-NCONV A 

COND-UNCOND-LOCK A A 

ERASE-EAU-NERASE A 

RELRQ-NRELRQ A A 

Q-NQ A A A A 

1 These fields are cleared (set to 0) by VTAM when the processing of the macro instruction begins. 

2 These fields are cleared by VTAM on completion of all RPL-based macros that have been accepted. 

The presence of a symbol means that the RPL field or option code is applicable for the macro instruction 
in one of three ways: o The field or option code is set by the application program to supply VT AM information about 

the request. 

~ The field is set by VTAM when the request has been processed. 

~ The field is set by the application program and, then reset by VTAM. Users intending to 
reissue requests that use these fields should reinitialize these fields prior to the reuse of the RPL. 
See the restriction that appears in the EXECRPL macro instruction description and in the RPL 
macro instruction description under "RPL Fields Set by VTAM". 

Figure 9 (part 2 of 2). The RPL Fields Applicable to the Macro Instructions That Can Modify RPLs 

130 

A 

A A 

A A 

A 

A 

A 



The SEND macro instruction is used in three major ways: 

Send A Data Message. 
STVPE=REO, 
CONTROL=DATA 

Send a Nondata Message. 
STVPE=REO, 
CONTROL= 

Responded output: Response included as part of the 
SEND macro instruction. 

POST=RESP 

Scheduled output: SEND macro instruction completed as 
soon as output data area free; response 
(if any) obtained with a RECEIVE 
macro instruction. 

POST=SCHED 

OEC Send a quiesce-at-end-of-chain indicator. 

RELO Send a release-quiesce indicator. 

OC Send a quiesce-completed indicator. 

CANCEL Send a cancel indicator. 

CHASE Send a chase indicator. 

BID Send a bid indicator. 

SHUTD Send a shutdown indicator. 

LUS Send a logical-unit-status indicator. 

Send a Response to a data message or to a cancel. chase, LUS, or OC indicator. 
STVPE=RESP,CONTROL=DATAlcANCEL ICHASE ILUsloc* 

Normal Response 

FME I RRN 

FME & RRN 

Exception Response 

FME I RRN 

FME & RRN 

*Note: RTR cannot be set by the application program; use the RPL that received the RTR indicator. 

Figure 10. The Major SEND Options 

131 



SEND-Send Output to Logical Unit 

132 

The SEND macro instruction transmits a message or a response to a logical unit or 
to a record-mode 3270 terminal. 

The major options for a SEND macro instruction are illustrated in Figure 10. 

Two options '!;re available when data or other synchronous flow messages are sent. 
The first, scheduled output, is completed as soon as the output data area containing 
the message can be reused. This occurs prior to the actual transmission of the 
message. The resulting response (if any) is received via a separate RECEIVE macro 
instruction or in a RESP exit-routine. The second option, responded output, is not 
completed until the record has been transmitted and a response is returned. The 
RPL used for the SEND macro instruction is used to describe the response; no 
separate RECEIVE macro instruction or RESP exit-routine is used. Responded. 
output can be used only when a response is assured. 

The RESPLIM field of a terminal's NIB limits the number of concurrent responded 
output requests. Scheduled output requests cannot be stacked in this manner, 
however. Only one outstanding (uncompleted) scheduled output request is 
permitted at a time. 

Name Operation Operands 

[symbol] SEND RPL=rpl address 
[ , rpl field name=new value] ... 

RPL=rpl address 
Indicates the location of the RPL that describes the SENDopera,tion. 

rpI field name=new value 
Indicates an RPL field to be modified, and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VTAM, set the RPL field with MODCB macro 
instructions rather than with the SEND macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. The new value can be 
any value that is valid for that operand in the RPL macro instruction, or it can 
indicate a register. ARG=(register) can also be coded. 

Although any RPL operand can be specified, the following operands apply to the 
SEND macro instruction: 

ACB=acb address 
lndicates the ACB that identifies the application program and was used when the 
target terminal was connected. 

ARG=( register) 
The SEND macro instruction is always directed at one specific terminal. The ARG 
operand specifies the register containing the CID of the terminal being written to. If 
the ARG field is not modified., the CID that is already in the RPL's ARG field is 
used. 



AREA=output data address 
The data contained at the location designated by AREA is sent to the terminal. 
This storage can be reused as soon as VTAM has transferred the data to its own 
buffers (see POST=SCHED below). This operand is meaningful only if data is being 
sent (CONTROL=DATA). 

RECLEN=output data length 
The number of bytes of data indicated in this field is sent to the terminal. If the 
RECLEN field is set to 0, the AREA field is not examined. 

STYPE=REQ I RESP 
Designates whether a message (STYPE=REQ) or a response (STYPE==RESP) is to be 
sent. The CONTROL field governs the type of message sent, while the RESPOND 
field governs the type of response sent. 

CONTROL=DATA I QEC I RELQ I QC I CANCEL I CHASE I SHUTD I BID I LUS 

CONTROL=DATA 
Sends a data message. 

CONTROL=QEC 
Sends a quiesce-at-end-of-chain indicator. This informs the terminal that when it 
is through transmitting the current chain, it is to stop transmitting and return a 
quiesce-completed (QC) indicator. 

CONTROL=RELQ 
Sends a release-quiesce indicator. This informs the terminal that it can begin 
transmitting messages. 

CONTROL=QC 
Sends a quiesce-completed indicator. This informs the terminal that the 
application program will no longer transmit data and is prepared to receive. Once 
this indicator is sent, no data can again be transmitted to the terminaJ. until the 
terminal returns a release-quiesce (RELQ) indicator. 

CONTROL=CANCEL 
Sends a cancel indicator. The terminal interprets this signal as an indication that 
the terminal should discard the chain that it is receiving. A cancel indicator is 
sent instead of a CHAIN=LAST message when a message chain is canceled. 

CONTROL=CHASE 
Sends a chase indicator. When the application program receives a response to this 
indicator, it can be certain that no messages are in the network for which the 
terminal has failed to return a response. 

CONTROL=SHUTD 
Sends a shutdown indicator. The terminal interprets this as an indication that 
the application program is about to disconnect the terminal. When the terminal 
is ready to accept disconnection, it returns a shutdown-completed (SHUT C) 
indicator. 

CONTROL=BID 
Sends a bid indicator. The terminal interprets this as a request on the part of the 
application program for permission to begin a new bracket. 

133 



134 

CONTROL=LUS 
Sends a logical-unit-status indicator. A logical-unit-status (LUS) indicator 
conveys exactly the same type of information as does an exception response. An 
LUS is sent when the application program wishes to raise an exception 
condition, but cannot do so with an exception response (for example, the 
terminal is sending messages and requesting no responses whatever). The 
SSENSEO, SSENSMO, and USENSEOfields are used for LUS indicators. 

BRACKET=(BB / NBB,EB / NEB) 
This field indicates whether the message forms the beginning, middle, end, or sole 
element of a bracket. This operand is meaningful only when brackets are being used 
by the terminal (see VTAM Concepts and Planning for an explanation of brackets). 

BRACKET=(BB,NEB) 
This is the beginning of a bracket. 

BRACKET=(NBB,NEB) 
This is the middle of a bracket. 

BRACKET=(NBB,EB) 
This is the end of a bracket. 

BRACKET=(BB,EB) 
This message is a bracket. 

CHNGDIR=(CMD /NCMD,REQ /NREQ) 
This operand indicates the type of change-direction indicator to be sent (see VT AM 
Concepts and Planning for an explanation of change-direction indicators): 

CHNGDIR =(CMD,NREQ) 
Send a change-direction-command indicator (valid only for DFSYN). 

CHNGDIR=(NCMD,REQ) 
Send a change-direction-request indicator (valid only for RESP and DFASY). 

CHNGDIR=(NCMD,NREQ) 
Send no change-direction indicator. 

CHAIN=FIRST /MIDDLE /LAST /ONLY 
Indicates the position of the message within the chain currently being transmitted. 

BRANCH=YES /NO 
If SEND is being issued in an application program that is running in privileged state 
under a TCB (OS/VS2 only), BRANCH can be set to YES. See the RPL macro 
instruction for more information. 

POST=SCHED / RESP 
This operand defines at what point in the output operation the SEND macro 
instruction is to be completed. (The OPTCD=SYN /ASY, ECB, and EXIT 
parameters govern the action to be taken when the macro instruction is completed.) 
The POST operand applies only to the transmission of data messages. 

POST=SCHED (scheduled output) 
Indicates that the macro instruction is to be completed as soon as the output 
data area (pointed to by the AREA field) and the RPL are available for reuse. 
This occurs prior to the actual transmission of the data from the CPU. A 



RECEIVE macro instruction (or a RESP exit-routine) is required fo obtain the 
response. Only one SEND with POST=SCHED can be outstanding for a given 
terminal at one time. A second SEND with POST=SCHED issued before the first 
has been completed is rejected by VTAM with a logical error return code. 
POST=SCHED is assumed if the RESPOND field indicates that no response (or 
only an exception response) is expected-that is, if a response is not assured. 

POST=RESP (responded output) 
Indicates that the macro instruction is to be completed when a response unit is 
returned from the terminal. No separate RECEIVE is used to obtain the 
message's response; the response information is posted in the SEND RPL. The 
RESPLIM field of the terminal's NIB limits the number of SEND macro 
instructions with POST=RESP that can be outstanding at one time. POST=RESP 
can only be used when a response is assured-that is, when the RESPOND field 
of the SEND RPL is set to NEX. If EX is used for RESPOND, POST=SCHED is 
assumed by VT AM (the actual setting of the POST field is ignored). ' 

When a response is being sent by the application program (STYPE=RESP) 
posting takes place as though POST=SCHED had been specified (the actual 
setting of the POST field is ignored). The limit of one SEND (POST=SCHED) 
outstanding for a terminal at a time does not apply to the sending of responses. 

When a non-data message is sent (STYPE=REQ, CONTROL set to other than 
DATA), posting takes place as though POST=RESP had been specified; the 
actual setting of the POST field is ignored. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
SEND macro instruction is completed. The actual or implied setting of the POST 
field governs what constitutes the "completion" of the SEND macro instruction. If 
EXIT is specified, the RPL exit-routine is scheduled. Otherwise, the ECB is posted 
and CHECK or WAIT must be used to determine when posting occurs. See the RPL 
macro instruction for more information. 

OPTCD=SYN I ASY 
When SYN is set, control is returned to the application program when the SEND 
operation is completed (see the POST operand above). When ASY is set, control is 
returned as soon as VTAM has accepted the SEND request. Once the operation has 
been completed, the ECB is posted or the RPL exit-routine is scheduled, as 
indicated by the ECB-EXIT field. See the RPL macro instruction for more 
information. 

OPTCD=CAICS 
When the SEND operation is completed, the terminal is placed in continue-any 
mode (OPTCD=CA) or continue-specific mode (OPTCD=CS). 

The switch of continue-any and continue-specific modes applies to the type of 
input specified by the RTYPE field. More than one type of input can be specified. 
VTAM will attempt to switch the modes for all specified types of input. No 
switching occurs if RTYPE=(NDFSYN,NDFASY,NRESP) is in effect for the 
SEND. 

OPTCD=FMHDR INFMHDR 
When OPTCD=FMHDR is used, the receiver is notified that the data contains a 
user-defined header ("Function Management Header"). 

135 



136 

SEQNO=sequence number 
This field is set by the application program only when a response is being sent 
(SrvpE=RESP). The sequence number must be the same as the sequenr>~ number 
of the "oldest" message to which a response is required but to which you have not 
yet responded. (Note-if the RPL used to receive a message is used to send the 
response, the SEQNO field will already be set to the correct value.) 

RESPOND=(EX I NEX,FME ,NFME,RRN I NRRN) 
When a message is being sent (STYPE=REQ), this field indicates the requested 
response: 

RESPOND=EX,FME,RRN 
Only exception FME and RRN responses expected (see note below). 

RESPOND=EX,FME,NRRN 
Only exception FME response expected. 

RESPOND=EX,NFME,RRN 
Only exception RRN response expected. 

RESPOND=EX,NFME,NRRN 
No response expected. 

RESPOND=NEX,FME,RRN 
Normal or exception FME and RRN responses expected (see note below). 

RESPOND=NEX,F·ME,NRR.t~ 

Normal or exception FME response expected. 

RESPOND=NEX,NFME,RRN 
Normal or exception RRN response expected. 

RESPOND=NEX,NFME,NRRN 
No response expected. 

Note: When both FME and RRN responses are returned and POST=RESP for 
the SEND RPL, the first response completes the SEND request. If the two 
responses are returned together, both are received as one response-that is, the 
second response is also reflected if! the completed RPL. If the second response 
does not accompany the first, however, the second response must be received by 
a separate RECEIVE macro instruction or by a RESP exit-routine. 

When a response is being sent (STYPE=RESP), this field indicates the response 
type: 

RESPOND=EX,FME,RRN 
This is an exception FME and RRN response. 

RESPOND=EX,FME,NRRN 
This is an exception F ME response. 

RESPOND=EX,NFME,RRN 
This is an exception RRN response. 

RESPOND=EX,NFME,NRRN 
Invalid. 



Example 

RESPOND=NEX,FME,RRN 
This is a normal FME and RRN response 

RESPOND=NEX,FME,NRRN 
This is a normal FME response. 

RESPOND =NEX,NFME ,RRN 
This is a normal RRN response. 

RESPOND=NEX,NFME,NRRN 
Invalid. 

SSENSEO=CPM I STATE I FI I RR 
This field contains the system sense code that is to be sent to the terminal as part of 
an exception response or logical-unit-status (LUS) indicator. The system sense code 
represents a major class of error and is used in conjunction with the SSENSMO 
(system sense modifier value) to describe a specific type of error. There is more 
information about the SSENSEO and SSENSMO fields near the end of Appendix C. 

Note: When an RPL is assembled or generated, and each time the RPL is reset to 
its inactive (that is, after each synchronous request or CHECK macro instruction), 
the SSENSEO field is cleared. 

SSENSMO=system sense modifier value 
This field, in conjunction with the code in the SSENSEO field, defines a particular 
type of network-defined error. The type of error represented by each system sense 
modifier value is described near the end of Appendix C. Like SSENSEO, SSENSMO 
is meaningful only when an exception response or a logical-unit-status (LUS) 
indicator is sent to the terminal. The system sense modifier value is coded as a 
decimal quantity (maximum of 4096) or as any I-byte framed hexadecimal or 
character constant (such as SSENSMO=X'FF' or SSENSMO=C'A'). Register 
notation can also be used. 

Note: When an RPL is assembled or generated, and each time the RPL is reset to 
its inactive state (that is, after each synchronous request or CHECK macro 
instruction), the SSENSMO field is set to o. 

USENSEO=user sense value 
The value set in this field is sent to the terminal as part of an exception response or 
as part of a logical-unit-status (LUS) indicator. It is used to tell the terminal that 
the exception condition is not being raised because of a network-related error 
(SSENSEO and SSENSMO) but because of an application-related error. The 
meaning attached to the value set in the USENSEO field is defined by the logic in 
the application program and in the customer-coded portion of the terminalJnot by 
IBM. The user sense value is coded as any 2-byte decimal quantity or as any 
two-byte framed hexadecimal or character constant ,(such as U~ENSEO=X'4F4F' 
or USENSEO=C'ZZ'). Register notation can also be used. 

Note: When the RPL is assembled or generated, and each time the RPL is reset to 
its inactive state (that is, after each synchronous request or CHECK macro 
instruction), the USENSEO field is set to O. 

SEND I SEND RPL=RPLI,STYPE=REQ,CONTROL=DATA, 
AREA=OUTBUF ,RECLEN=60,CHAIN=O NLY, 
RESPOND=(EX,FME,NRRN) 

137 



Return of Status Information 

138 

SEND 1 sends a 60~byte data message to the terminal identified in RPLl's ARG 
field. SENDl is completed as soon as VTAM has scheduled the output operation 
and OUTBUF (and RPLl) are available for reuse. The RESPOND field indicates 
that only an exception FME response should be returned; that is, if the message 
arrives normally, no response is to be returned. A separate RECEIVE '(or RESP 
exit-routine) is required to obtain the exception response, if one is returned. 

After the SEND operation is completed, the following RPL fields are set: 

The sequence number is placed in the SEQNO field. 

The USER field contains the value that was set in the USERFLD field of the 
NIB when the terminal was connected. 

If POST=RESP and an exception response has been returned, the SSENSEI field 
may contain a system sense error code. The values that can be set in the 
SSENSEI field are the same· as those that can be set in the SSENSEO field~ 
namely, CPM, STATE, FI, or RR. In addition, PATH can be set when an 
unrecoverable PATH error has occurred. There is more information about these 
codes near the end of Appendix C. 

If POST=RESP and an exception response has been returned, the SSENSMI field 
may contain a system sense modifier value. This field is tested as a quantity 1 
byte in length. There is more information about the SSENSMI codes near the 
end of Appendix C. 

If POST=RESP and an exception response has been returned, the USENSEI field 
may contain a user sense value. This field is tested as a quantity two bytes in 
length. 

The value 34 (decimal) is set in the REQ field, indicating a SEND request. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. Registers 0 
and 15 are also set as indicated in Appendix C. 

In addition to the above fields, the following fields may be set when a response has 
been received (POST= RESP): 

The CHNGDIR field indicates whether a change-direction-command or change­
direction-request indicator is present as part of the response. 

The RESPOND field indicates the type of response unit that has been returned. 
This field is set in exactly the same manner as indicated above for sending a 
response unit. 



SESSIONC-Send an SDT, Clear, or STSN indicator to a Logical Unit (Record Mode only) 

SESSIONC sends start-data-traffic (SDT), clear, and set-and-test-sequence-number 
(STSN) indicators to a specific logical unit (Figure 11). 

The effect of an SDT indicator is to permit the application program to send to the 
terminal and to permit the terminal to send to the application program. 

The effect of a clear indicator is to immediately stop the flow of all messages and 
responses between the terminal and the application program. All pending I/O 
requests for the terminal are canceled and all incoming and outgoing messages and 
responses that have not yet been received are discarded. 

SESSIONC is used in one of three major ways: 

Send a Start-data-traffic indicatior to a logical unit. 

1 CONTROL=SDT 

Allows the flow of messages and responses to begin (or resume). 

Send a Clear indicatior to a logical unit. 

2 CONTROL=CLEAR 

Prevents the flow of messages and responses (but not other SESSIONC indicators). Neither 
the application program nor the logical unit can send. All pending SEND, RECEIVE, and 
RESETSR macro instructions are cancelled with a physical error return code. 
Sequence numbers are reset to O. 

Send a Set-and-test-sequence number indicator to a logical unit. 

3 CONTROL=STSN 

Setti ng of I BSOA L 
or OBSOAC Field Purpose 

SET Reset the sequence number and also 
send it to the logical unit. 

TESTSET Reset the sequence number, send it to the 
logical unit, and obtain reply. 

INVALID Obtain the sequence number from the 
logical unit. 

IGNORE Send the sequence number to the 
logical unit, but do not reset the 
sequence number. 

Figure 11. The Major SESSIONC Options 

139 



140 

When the application program and the terminal discover that their inbound or 
outbound sequence numbers are different, the application program uses STSN 
indicators to communicate with the terminal. The purpose is to establish the 
correct sequence number while traffic flow is suspended. STSN indicators are used 
in conjunction with SDT and clear indicators as described in VT AM 111acro 
Language Guide. 

There are four STSN indicators that the application program can send to the 
terminal: SET, TESTSET, INVALID, and IGNORE. The effects of these STSN 
indicators are discussed below under the IBSQAC and OBSQAC operand 
descriptions. 

A SESSIONC macro instruction can be used to send STSN indicators that apply to 
either the inbound or. the outbound sequence numbers, or that apply to both 
independently. 

When SDT, clear, and STSN indicators are sent to the terminal, a normal or 
exception FME response is returned as part of the SESSIONC operation. T.,hat is, 
the indicator is sent as though POST= RESP and RESPOND=(NEX,FME,NRRN) 
had been specified on a SEND macro instruction. If an exception response is 
returned, the SSENSEI, SSENSMI, and USENSEI fields are set as they would be for 
any other type of response. 

Name Operation Operands 

[symbol] SESSIONC RPL=rpl address 
[ , rpl field name=new value] ... 

RPL=rpl address 
Indicates the location of the RPL that describes the SESSIONC operation. , 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VTAM, set the RPL field with MODCB macro 
instructions rather than with the SESSIONC macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. ARG can also be coded. 
The new value can be any value that is valid for that operand in the RPL macro 
instruction, or it can indicate a register. Register notation must be used if ARG is 
used. Although any RPL operand can be specified, the following apply to a 
SESSIONC macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program and was used when the 
terminal was connected. 

AFt<i=(regjster) 
The SESSIONC macro instruction is always directed at one specific terminal. The 
ARG operand specifies the register containing the CID of that terminal. If the ARG 
field is not modified, the CID already in the RPL's ARG field is used. 



ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
SESSIONC request is completed. A SESSIONC request is completed when the 
SESSIONC indicator has been sent to the terminal and a response to it has been 
returned and posted in the RPL (similar to a SEND request with POST=RESP). If 
EXIT is specified, the RPL exit-routine is scheduled. Otherwise, the ECB is posted 
and CHECK or WAIT must be used to determine when the posting occurs. See the 
RPL macro instruction for more information. 

OPTCD=SYN I ASY 
When SYN is set, control is returned to the application program when the 
SESSIONC request is completed (the request is completed when the indicator has 
been sent and a response has been returned). When ASY is set, control is returned 
as soon as VTAM has accepted the SESSIONC request; once the requested 
operation has been completed, the ECB is posted or the RPL exit-routine is 
scheduled as indicated by the ECB-EXIT field. See the RPL macro instruction for 
more information. 

CONTROL=SDT I CLEAR ISTSN 

CONTROL=SDT 
Sends a start-data-traffic indicator to the terminal. The effect of this indicator is 
to allow the flow of messages and responses to begin (or to resume, if a clear 
indicator has been issued to stop the flow). When SDT=SYSTEM is coded as part 
of the terminal's NIB, VT AM automatically sends a start-data-traffic indicator as 
part of the connection process. If SDT=APPL is coded instead, it is the 
application program's responsibility to send the indicator when data traffic is to 
begin. 

CONTROL=CLEAR 
Sends a clear indicator to the terminal. The effect of this indica tor is to stop the 
flow of messages and responses and to discard data that is still in the network. 
All SEND, RECEIVE, RESETSR, and SESSIONC requests in progress are 
completed normally or with RTNCD=12 and FDBK2=12 (SYNAD entered). All 
subsequent SEND and RESETSR requests will be rejected with a RTNCD=20 
and FDBK2=65 (LERAD entered). Before SESSIONC is completed, VT AM sets 
the inbound and outbound sequence numbers to o. 

CONTROL=STSN 
Sends a set-and-test-sequence-number indicator to the terminal. The effect of the 
STSN indicator depends on its type (as specified in the IBSQAC and OBSQAC 
fields) and the sequence number sent with it (as specified in the IBSQV AL and 
OBSQVAL fields). 

IBSQV A L=inbound sequence number 
Indicates a value that is 1 less than the new value that VT AM is to begin assigning 
to inbound messages. The application program sets this field only if SET or 
TESTSET is also specified in the IBSQAC field. The IBSQVAL field may be 
modified by the STSN response. 

OBSQV AL=outbound sequence number 
Indicates a value that is 1 less than the new value that VTAM is to begin assigning 
to outbound messages. The application program sets this field only if SET or 
TESTSET is also specified in the OBSQAC field. The OBSQV AL field may be 
modified by the STSN response. 

141 



Example 

Return of Status Information 

142 

IBSQAC=SET I TESTSET I INVALID I IGNORE 
OBSQAC=SET I TESTSET I INVALID I IGNORE 
The IBSQAC (inbound sequence number action code) and the OBSQAC (outbound 

. sequence number action code) fields designate the type of STSN indicator sent to 
the terminal. The application program can set either or both of these fields. The 
effect of setting one is identical to the effect of setting the other, except that one 
applies to incoming messages and the other to outgoing messages. Figure 12 
summarizes the STSN indicator types and the responses they can elicit from the 
terminal. 

SET 
Sets the inbound or outbound sequence number to the value specified in the 
IBSQV AL or OBSQV AL field. When SESSIONC is completed, the IBSQAC or 
OBSQAC field contains the terminal's response to the new value: TESTPOS 
(agree) or RESET (set the sequence number again). 

TESTSET 
Sets the inbound or outbound sequence number as does SET, but a wider range 
of responses to the new value are possible: TESTPOS (agree), TESTNEG 
(disagree), INVALID (don't know) or RESET (set the sequence number again). 

INVALID 
Is used to obtain the terminal's version of the appropriate sequence number. 
Unlike SET and TESTSET , INVALID does not set the sequence number 
(INVALID is used when the application program has lost its version of the 
sequence number). The terminal can reply to this type of STSN indicator in 
three ways: TESTNEG (my version enclosed), INVALID (don't know either), or 
RESET (set the sequence number). 

IGNORE 
Is used to send a sequence number to the terminal without setting the sequence 
number. The terminal does not return any action code. 

SESSCI SESSIONC RPL=RPLI ,CONTROL=STSN ,OBSQAC=TESTSET 
OBSQV AL=(3),IBSQAC=IGNORE 

SESSC 1 sends an STSN indicator to a terminal and sets the VT AM-supplied 
outbound sequence number to the value contained in register 3. The terminal, 
noting that the type of STSN indicator is TESTSET, can indicate TESTPOS, 
TESTNEG, INVALID, or RESET with its response. The response information is 
available in RPLI when SESSClis completed. If OBSQAC is found by the 
application program to be set to TESTPOS or TESTNEG, the OBSQVAL field 
contains the terminal's version of the outbound sequence number. 

After the SESSIONC operation is completed, the follOWing RPL fields are set: 

The value 37 (decimal) is set in the REQ field, indicating a SESSIONC request. 

The value originally set in the USERFLD field of the NIB is set in the USER 
field of the RPL. 

TheIBSQAC and/or OBSQAC fields are set to TESTPOS, TESTNEG,INVALID, 
or RESET depending on the codes initially set in these fields when SESSIONC 
was issued. Figure 12 lists the codes that can be returned for each code initially 
set. 



Value of the I BSOAC or OBSOAC field Possible I BSOAC or OBSOAC field 
when SESSIONC issued setting when SESSIONC completed 

SET Sequence number reset to value in TESTPOS Terminal agrees with value. Value 
IBSOVAL or OBSOVAL field. returned in IBSOVAL or OBSOVAL 

field. 

RESET Terminal requests another STSN 
indicator. No value returned. 

TESTSET Sequence number reset to value in TESTPOS Terminal agrees with value. Value 
IBSOVAL or OBSOVAL field. returned in IBSOVAL or OBSOVAL 

field. 

TESTNEG Terminal disagrees with value. 
Terminal's version returned in 
IBSOVAL or OBSOVAL field. 

INVALID Terminal does not know the value. 
No value returned. 

RESET Terminal requests another STSN 
indicator. No value returned. 

INVALID Application program does not know TESTNEG Terminal knows the value. Value 
the sequence number value. returned in IBSOVAL or OBSOVAL 

field. 

INVALID Terminal doesn't know the value 
either. No value returned. 

RESET Terminal requests another STAN 
indicator. No value returned. 

IGNORE Application program is sending a None Terminal receives the sequence 
sequence number (as set in the number value but returns no 
INSOVAL or OBSOVAL field) I BSOAC or OBSOAC code and no 
without resetting the number. IBSOVAL or OBSOVAL value. 

Figure 12. Types of STSN Indicators and Their Possible Responses 

The IBSQVAL and/or OBSQVAL fields contain a sequence number when the 
IBSQAC and/or OBSQAC field is set to TESTPOS or TESTNEG. See Figure 12. 

If an exception response is returned, the SSENSEI field may contain a system 
sense code. The possible codes (PATH, CPM, STATE, FI, or RR) are described 
near the end of Appendix C. 

If an exception response is returned, the SSENSMI field may contain a system 
sense modifier value. This value, combined with the system sense code contained 
in the SSENSEI field, describes the specific type of error that causes the 
exception condition to be raised. See Appendix C. This value is tested as a 
I-byte quantity. 

If an exception response is returned, the USENSEI field may contain a user 
sense value. This value is tested as a 2-byte quantity. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 

143 



~.tlLUGON 

SETLOGON-Reset an ACB's Logon Status 

144 

There are three types of SETLOGON requests: QUIESCE, START, and STOP. The 
QUIESCE-START-STOP option code.in SETLOGON's RPL determines which type 
is used. None of these three versions has any effect unless the ACB was opened with 
MACRF= LOGON set. . 

The START version of SETLOGON causes any application program issuing 
INQUIRE (OPTCD=APPSTAT) to receive a return code indicating that your 
application program is accepting logon requests. The first SETLOGON (OPTCD= 
START) issued after OPEN causes VTAM to begin scheduling the LOGON 
exit-routine for all automatic logon requests, for all new logon requests, and for any 
logon requests already queued. SETLOGON (OPTCD=START) reverses the effect 
of SETLOGON (OPTCD=STOP), but it does not reverse the effect of SETLOGON 
(OPTCD=QUlESCE). 

The STOP version of SETLOGON does not close the logon request queue; any 
CLSDST-initiated logon requests from other application programs cause the 
LOGON exit-routine to be scheduled. However, any application program issuing 
INQUIRE (OPTCD=APPSTAT) for your ACB receives a return code indicating that 
logon requests should not be directed at the ACB. 

The QUIESCE version of SET LOGON causes VT AM to prevent logon request 
queuing. There is no way to reopen the logon request queue short of closing the 
ACB and then reopening it. An application program might want to use this type of 
SET LOGON at the end of a day's work, prior to closing the ACB; this would give 
the application program a chance to handle its current load of logon requests 
without receiving new ones. Any application program issuing INQUIRE (OPTCD= 
APPSTAT) for your ACB will receive a return code indicating that your application 
program is shutting down and cannot receive logon requests. 

The STOP and QUIESCE versions of SETLOGON do not prevent the queuing of 
logon request that originates from logical units. 

To summarize: 

Request 

OPEN ACB's MACRF 
field set 
to NLOGON 

OPEN ACB's MACRF 
field set 
to LOGON 

SET LOGON RPL= RPLl, 
OPTCD=START 

Result 

No logon request of any kind can cause 
the LOGON exit-routine to be scheduled. 
SETLOGON cannot be used to permit 
LOGON exit list routine scheduling; only 
closing the ACB and reovening it with 
MACRF= LOGON will permit this. 

LOGON exit-routine scheduling can be 
started by a subsequent SETLOGON 
(OPTCD=START) 

LOGON exit-routine scheduling begins 
for all queued, new, and automatic logon 
requests. If a LOGON exit-routine is 
available, each logon request causes it to 
be scheduled. If a routine is not available, 
the request is queued awaiting an 
OPNDST (OPTCD=ANY) macro 
instruction. 



SET LOGON 

SET LOGON 

Name 

RPL=RPLl, 
OPTCD=STOP 

RPL=RPLl, 
OPTCD=QUIESCE 

Operation Operands 

SETLO(JON 

Does not stop the scheduling of the 
LOGON exit-routine, but causes applica­
tion programs issuing INQUIRE 
(OPTCD=APPSTAT) to receive a return 
code indicating that logon requests 
should not be issued for your application 
program. 

Logon request permanently closed; it can 
be reopened only by closing and reopen­
ing the ACB. Serves to notify other 
application programs issuing INQUIRE 
that logon requests cannot be accepted. 

[symbol] SETLOGON RPL=rpl address 
[, rpl field name=new value] ... 

RPL=rpl address 
Indicates the location of the RPL that in turn indicates the ACB whose logon status 
is to be changed. 

rpl field name=new value 
Indicates an RPL field to be modified, and the new value that is to be contained or 
represented within it. If you wjsh to avoid the possibility of program reassembly 
following future releases of VT AM, set the RPL field with MODCB macro 
instructions rather than with the SETLOGON macro instruction. 

Format: For rpl field name code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. The new value can be 
any value that is valid for that operand in the RPL macro instruction, or it can 
indicate a register. 

Although any RPL operand can be specified, the following operands apply to a 
SET LOGON macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program whose logon queuing 
status is being changed. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
SETLOGON macro instruction is completed. The macro instruction is completed 
immediately, subject to delays due to possible storage shortages. If EXIT is 
specified, ·the RPL exit-routine is scheduled. Otherwise, the ECB is posted, and 
CHECK or WAIT must be used to determine when posting occurs. See the RPL 
macro instruction for more information. 

OPTCQ=SYN I ASY 
When SYN is set, control is returned to the application program immediately, 
subject to possible delays due to storage shortages. When ASY is set, control is 
immediately returned to the application program, regardless of possible delays in 

145 



SETLOGON 

Example 

146 

the completion of the macro instruction When the macro instruction is completed, 
the ECB is posted or the RPL exit-routine is scheduled, as indicated by the 
ECB-EXIT field. 

OPTCD=QUIESCE I START I STOP 
When QUIESCE is set, no more logon requests can be queued for your application 
program. When START is used, the scheduling of the LOGON exit-routine begins 
for all new, queued, and automatic logon requests. When STOP is used, users of 
INQUIRE (OPTCD=APPSTAT) receive a return code indicating that logon requests 
should not be directed at your application program. If logon requests are directed 
at your application program nonetheless, VT AM will accept them and queue them 
for an eventual OPNDST. 

OPEN ACBl 
BEGIN SETLOGON RPL=RPLl,ACB=ACBl,OPTCD=START 

TOOMANY SETLOGON RPL=RPLl,ACB=ACBl,OPTCD=STOP 

RESUME SET LOGON RPL=RPLl,ACB=ACBl,OPTCD=START 

NOMORE SETLOGON RPL=RPLl,ACB=ACBl,OPTCD=QUIESCE 

ACBl ACB 
APPLNAME DC 

DC 

APPLID=APPLNAME,MACRF=LOGON 
'OS' 
CL5'STOCK' 

Before BEGIN is executed, the application program's LOGON exit-routine cannot 
be scheduled. Once BEGIN has completed however, STOCK's LOGON exit-routine 
is scheduled as each logon request occurs. (If the installation has defined a number 
of automatic logon requests, they will each cause the LOGON exit to be scheduled 
in turn.) 

TOOMANY causes VT AM to flag the application program as temporarily unwilling 
to accept logon requests. It does not prevent logon requests from being queued for 
STOCK. If an application program that wants to direct a logon request at ACBl 
first issues INQUIRE (OPTCD=APPSTAT), it will receive a return code indicating 
that logon requests should not be issued for STOCK. The IBM-supplied network 
solicitor program always issues this type of INQUIRE and honors the flag set by 
TOOMANY. 

RESUME reverses the effect of NOMORE; application programs issuing INQUIRE 
(OPTCD=APPSTAT) will receive a return code indicating that logon requests are 
being accepted (the same return code that results if INQUIRE is issued after BEGIN 
but before TOO MANY). 

NOMORE closes the logon requests queue. An INQUIRE issued by another 
application program would indicate this, and any attempt to direct a logon request 
to STOCK would fail. 



Return of Status Information 

SETLOGON 

After SETLOGON processing is finished the following RPL fields are set: 

If OPTCD=QUIESCE, the number of logon requests queued for the ACB is set in 
the RECLEN field. This quantity can be examined with the SHOWCB macro 
instruction (a four-byte work area is required) or the TESTCB macro 
instruction. 

The value 21 (decimal) is set in the REQ field, indicating a SETLOGON request. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 

147 



SHOWCB 

SHOWCB--Extract the Contents of Control Block Fields 

148 

SHOWCB extracts the contents of one or more ACB, EXLST, RPL, or NIB fields 
and places them into an area designated by the application program. The SHOWCB 
user specifies the address of a control block and the names of the fields whose 
contents are to be extracted. The field names are the same as the keywords of the 
ACB, EXLST, RPL, and NIB macro instructions. Any keyword of these macro 
instructions can be used as a field name in the SHOWCB macro instruction. See 
Appendix E for a list and explanation of the valid formats in which the SHOWCB 
operands can be specified. 

Control block fields that can be operated on by SHOWCB are not limited, however, 
to fields that can be set by the application programmer in the ACB, EXLST, RPL, 
and NIB macros. Several additional fields whose contents are set only by VT AM 
can also be displayed with SHOWCB. All of the fields applicable for SHOWCB are 
shown in Figure 13 at the end of the SHOWCB macro instruction description. 

The user of SHOWCB must use the AREA and LENGTH operands to indicate the 
location and length of the area where the fields will be placed. The content of each 
field is placed there contiguously, in the order indicated by the FIELDS operand. If 
the area is too short to hold all of the fields, SHOWCB returns error codes in 
register 0 and 15. Figure 13 shows the required lengths for all the control block 
fields that can be displayed with SHOWCB. 

List, generate, and execute forms of the SHOWCB macro instruction are available; 
they are designated by the MF operand. 

Name Operation Operands 

[symbol] SHOWCB AM=VTAM [l' ACB=acb oo~~ I] , EXLST=exit list address 
, RPL=rpl address 

. , NIB=nib address 
, FIELDS=field name I (field name, ... ) 
, AREA =data area address 
, LENGTH=data area length 
[, MF=list, generate, or execute form parameters] 

AM=VTAM 
Identifies this macro instruction as a macro instruction capable of manipulating a 
VTAM control block. This operand is required. 

ACB=acb address 
EXLST=exit list address 
RPL=rpl address 
NIB=nib address 

Indicates the type and location of the control block whose fields are to be 
extracted. One of these operands must be specified unless a control block length 
(and only the length) is being extracted. That is, if FIELDS=ACBLEN, FIELDS= 
EXLLEN, FIELDS=RPLLEN, or FIELDS=NIBLEN is specified, no specific control 
block need be specified. 



Examples 

Return of Status Information 

Control Block Fields 
Applicable for SHOWCB 

SHOWCB 

FIELDS=field name I (field name, ... ) 
Indicates the control block field or fields whose contents are to be extracted. 

For field name, code one of the field names that appear in the first column of the 
table that appears at the end of this macro instruction description (Figure 13). Most 
of these field names correspond to keywords of the ACB,. EXLST, RPL, and NIB 
macro instructions. Only those fields associated with one control block can be 
specified (those for the control block whose address is supplied in the first 
operand). 

AREA=work area address 
Indicates the location of the storage area in the application program where the 
contents of the control block field or fields are to be placed. This work area must 
begin on a fullword boundary. 

LENGTH=work area length 
Indicates the length (in bytes) of the storage area designated by the AREA operand. 

If this length is insufficient, SHOWCB returns a value of 4 in register 15 
(unsuccessful completion) and a value of 9 in register 0 (insufficient length). The 
required length for each field is shown in the second column of the table that 
appears at the end of this macro instruction description. 

MF=list, generate, or execute form parameters 
Indicates that a list, generate, or execute form of SHOWCB is to be used. Omitting 
this operand causes the standard form of SHOWCB to be used. See Appendix F for 
a description of the nonstandard forms of SHOWCB. 

SHOW 1 SHOWCB NIB=NIBI,FIELDS=NAME,AREA-NAMEI, 
LENGTH=4,AM=VTAM 

SHOWI extracts the contents ofNIBl's NAME field and places it in NAME!. 

SHOW2 SHoweB 'RPL=RPLI ,FIELDS=(FDBK,ARG ,AREA,RECLEN), 
AREA=(3),LENGTH=1 6,AM=VTAM 

SHOW2 extracts the contents of RPLI 's FDBK, ARG, AREA, and RECLEN 
fields and places them (in that order) in a storage area. The address of this storage 
area must be in register 3 when SHOW2 is executed. Note that LENGTH indicates a 
storage area length great enough to accommodate all four fields. 

After SHOWCB processing is completed, VT AM sets register 15 to indicate 
successful or unsuccessful completion. If the operation is completed successfully, 
register 15 is set to 0 and register 0 contains the total number of bytes that 
SHOWCB extracted and placed in the work area. If the operation completes 
unsuccessfully, register 15 is set to either 4,8, or 12. If it is set to 4 or 12, register 0 
is also set indicating the specific nature of the error (see Appendix D). 

The field names shown in the first column of Figure 13 are the values that can be 
supplied for the FIELDS operand of the SHOWCB macro instruction. The lengths 
shown in the second column are the number of bytes of storage that must be 
reserved for each field; the sum of all the fields to be displayed by SHOWCB should 
be the value for the LENGTH operand. 

149 



SHoweB 

ACB Fields 
Field Name Length (bytes) Description 
APPLID 4 Address of application program's symbolic name 
PASSWD 4 Address of password 
EXLST 4 Address of exit list 
ACBLEN 4 Length of ACB, in bytes 
ERROR 4 OPEN and CLOSE completion code 

EXLST Fields 
Field Name Length (bytes) Description 
LERAD 4 
SYNAD 4 
DFASY 4 
RESP 4 
SCIP 4 

Address of exit-routine TPEND 4 
RELREO 4 
LOGON 4 
LOSTERM 4 
ATTN 4 
EXLLEN 4 Length of exit list, in bytes 

RPL Fields 
Field Name Length (bytes) Description 
ACB 4 Address of ACB 
NIB 4 Address of NIB 
ARG 4 CID of terminal 
AREA 4 Address of I/O work area 
AREALEN 4 Length of AREA work area, in bytes 
RECLEN 4 Length of data in AREA work area, in bytes 
AAREA 4 Address of alternate I/O area 
AAREALN 4 Length of AAREA, in bytes 
ARECLEN 4 Length of data placed in alternate I/O area 
ECB 4 ECB or address of an ECB 
EXIT 4 Address of RPL exit-routine 
RTNCD 4 Recovery return code (1 byte, right-adjusted) 
FDBK2 4 Specific error return code (1 byte, right-adjusted) 
FDBK 4 Status information about successful input 

operations (1 byte, right-adjusted) 
USER 4 The data originally placed in a NIB's USERFLD 

field 
REO 4 Request-type code (1 byte, right-adjusted) 
R.PLLEN 4 Length of RPL, in bytes 
SENSE 4 Device sense and status (2 bytes, right-adjusted) 
SEONO 4 Sequence number 
SSENSMO 4 Outbound system sense modifier (1 byte, right-

adjusted) 
USENSEO 4 Outbound user sense (2 bytes, right-adjusted) 
SSENSMI 4 Inbound system sense modifier (l byte, right-

adjusted) 
USENSEI 4 Inbound user sense (2 bytes, right-adjusted) 
IBSOVAL 4 Inbound sequence number for STSN indicator 
OBSOVAL 4 Outbound sequence number for STSN indicator 
SIGDATA 4 Information included with signal indicator 

NIB Fields 
Field Name Length (bytes) Description 
NAME 8 Symbolic name of terminal 
USERFLD 4 Arbitrary data associated with NAME 
CID 4 Communication 10 
NIBLEN 4 Length of NIB, in bytes 
DEVCHAR 8 Device characteristics (see Appendix H) 
EXLST 4 Add ress of NIB-oriented exit list 
RESPLIM 4 Maximum number of concurrent SEND 

(POST=RESP) macros 

Figure 13. Control Block Fields That Can Be Extracted with SHOWCB 

150 



SIMLOGON 

SIMLOGON-Generate a Simulated Logon Request 

A logon request can be initiated (1) by VTAM, in accordance with VTAM 
definition specifications, (2) by some other application program, which directs the 
logon request toward your application program, (3) by the network operator, (4) 
by the network solicitor or by the terminal itself, or (5) by your own application 
program. The latter is called a simulated logon request, and the program uses the 
SIMLOGON macro instruction to generate it. 

By issuing SIMLOGON, the application program can use its LOGON exit-routine to 
service self-initiated logon requests. The effect of the simulated logon request is to 
schedule the ACB's LOGON exit-routine. It is the OPNDST (OPTCD=ACCEPT) in 
the exit-routine that causes the actual connection to take place. SIMLOGON is 
equivalent to an OPNDST connection request with an ACQUIRE option, except 
that the LOGON exit-routine handles the connection request. 

As is true with OPNDST (OPTCD=ACQUIRE), the terminal may already be 
connected to another application program when you issue SIMLOGON. To cause 
the current owner's RELREQ exit-routine to be scheduled, use the OPTCD=(Q, 
RELREQ) form of SIMLOGON (described below). 

Note: Do not issue SIMLOGON if the ACB was opened with MACRF=NLOGON, 
or if no LOGON exit-routine is available when SIMLOGON is executed. 

The LOGON exit-routine is scheduled as soon as the terminal is available for use by 
the application program. If the terminal is a dial-in terminal, the exit is scheduled 
when the terminal operator dials in. For dial-out terminals, the LOGON 
exit-routine is scheduled as soon as the terminal becomes available, but the terminal 
is not actually dialed until the first I/O request is directed at the terminal. (A 
terminal is available if it has been included as a part of VT AM definition, and is not 
connected to another application program.) 

The SIMLOGON macro is the only way that an application program can acquire a 
dial-in terminal because SIMLOGON is the only form of acquisition that can be 
queued (OPTCD=Q). 

If a terminal has been defined as a dial-in terminal by the installation (CALL=IN 
specified for· the LINE or GROUP definition statement), a SIMLOGON request 
with OPTCD=Q is completed when the terminal operator dials in. For a dial-in BSC 
terminal, the first I/O request following connection must be a SOLICIT or READ 
(OPTCD=SPEC) request. 

If you acquire a dial-in terminal without the ID verification feature, you can 
establish the identity of the terminal only by issuing I/O requests and obtaining 
information from the terminal operator. If the terminal has the ID verification 
feature, INQUIRE (OPTCD=BSCID) can be used to obtain the terminal's 
identification sequence. 

The SIMLOGON macro instruction can optionally be used to send a logon message 
along with the logon request. See the AREA and RECLEN operands below for 
details. 

The use of SIMLOGON must be authorized for the application program by the 
installation. 

151 



SIMLOGON 

152 

Name Operation Operands 

[symbol] SIMLOGON RPL=rpl address 
[ , rpI field name=new value] ... 

RPL=rpl address 
Indicates the location of the RPL to be used during SIMLOGON processing. When 
SIMLOGON is executed, the NIB field of this RPL should contain the address of a 
NIB or list of NIBs whose associated terminals are to be considered as the sources 
of the logon requests. The ACB field of the RPL must contain the address of the 
ACB to which the simulated logon request is to be directed. 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained 
within it. If you wish to avoid the possibility of program reassembly following 
future releases of VT AM, set the RPL field with MODCB macro instructions rather 
than with the SIMLOGON macro instruction. 

Format: For rpl name code the keyword of the RPL macro instruction operand 
that corresponds to the RPL field to be modified. The new value can be any value 
that is valid for that operand in the RPL macro instruction, or it can indicate a 
register. 

Although any RPL operand (except ARG=) can be specified, the following 
operands apply to a SIMLOGON macro instruction: 

ACB=acb add.ress 
Indicates the ACB that identifies the application program to which the simulated 
logon request is to be directed. 

NIB=nib address 
Indicates the NIB whose NAME field identifies the terminal for which the 
simulated logon request is to be generated. If the NIB field contains the address of a 
list of NIBs, logon requests will be generat~d on behalf of all the terminals of that 
list. 

AREA=logon message address 
VT AM passes this data to the application program as a logon message. The other 
application program issues INQUIRE (OPTCD=LOGONMSG) to get this data. 

RECLEN=logon message length 
Indicates how many bytes of data are to be passed as the logon message. If no logon 
message is to be sent, RECLEN should be set to O. 

ECB IEXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
SIMLOGON macro instruction is completed. The request is completed immedi­
ately, subject to delays due to possible storage shortages. If the Q option (described 
below) is used, the completion of the operation (that is, the generation of the logon 
request, as opposed to the SIMLOGON request itself) may occur at a much later 
time. If EXIT is specified, the RPL exit-routine is scheduled. Otherwise the ECB is 
posted, and CHECK or WAIT must be used to determine when the posting occurs. 
See the RPL macro instruction for more information. 



Example 

Return of Status Information 

SlMLU(jUN 

OPTCD=SYN I ASY 
When the SYN option code is set, control is returned to the application program 
when the macro instruction has been completed. When ASY is set, control is 
returned as soon as VT AM has accepted the request. Once the macro instruction 
has been completed, the ECB is posted or the RPL exit-routine is scheduled, as 
indicated by the setting of the ECB-EXIT field. 

OPTCD=CONANYICONALL 
When CONANY is set, a logon request is generated for the first available terminal in 
the NIB list. When CON ALL is set, a logon request is generated for each available 
terminal in the NIB list. If there is only one NIB, the setting of this option code 
does not matter. 

OPTCD=QINQ 
When Q is set, LOGON exit-routine is scheduled as the terminal or terminals 
become available. When NQ is set, the SIMLOGON operatio!1 fails if the terminal or 
terminals are not immediately available. 

OPTCD=RELRQINRELRQ 
This option code is meaningful only if the Q option code is set. When RELRQ is 
set, VTAM invokes the owning application program's RELREQ exit-routine. If 
NRELRQ is set, the owning application program is not notified of your request for 
its terminal. (The owning application program is the application program to which 
the terminal is currently connected.) 

SIMI SIMLOGON 

LGNMSG 
ACBl 
NIBLISTI 

DC 
ACB 
NIB 
NIB 
NIB 

RPL=RPLl,ACB=ACBl,NIB=NIBLISTl, 
. AREA= LGNMSG ,RECLEN=60,EXIT=CHECKPGM 

OPTCD=(ASY,CONALL,NRELRQ,Q) 

CL60'LOGON FROM NIBLISTI STATION' 
MACRF=LOGON 
NAME=STATIONA,MODE=BASIC,LISTEND=NO 
NAME=STATIONB,MODE=BASIC,LISTEND=NO 
NAME=STATIONC,MODE=BASIC,LISTEND=YES 

SIMI generates simulated logon requests for ACBl from all of the terminals 
represented in NIBLISTI. Each request will be accompanied by a 60-byte logon 
message taken from LGNMSG. The CONALL option code indicates that requests 
are to be generated for all the terminals represented in the list. NRELRQ indicates 
that if any of the terminals of NIBLISTI are connected to an ACB other than 
ACBl, that ACB's RELREQ exit-routine is not to be scheduled. After SIMI is 
completed, control is transferred to CHECKPGM. 

When the SIMLOGON operation is completed, the following RPL fields are set: 

The value 22 (decimal) is placed in the REQ field, indicating a SIMLOGON 
request. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 

153 



~ULICIT 

SOLICIT-Obtain Data from a Terminal (Basic-mode only) 

154 

The SOLICIT macro instruction obtains data from one or more connected BSC or 
start-stop terminals. A subsequent READ macro instruction is required to move the 
data from VTAM buffers to the input area provided by the application program. 

SOLICIT performs the preparation or polling required to obtain the data and 
supplies appropriate line-control responses as blocks of data are obtained. 
(SOLICIT does not unlock the keyboard of a 3270 display station; this can be done 
with a WRITE macro instruction if an unlock-keyboard control character is 
included in the data stream.) 

The SOLICIT macro instruction is completed as soon as VT AM has accepted the 
request. The actual solicitation of data continues as indicated by the BLOCK-MSG­
TRANS-CaNT processing option used when the terminal being solicited was 
connected. The effect of these options is summarized below; see the NIB macro 
instruction description (including Figure 5) for more information. 

PROC=BLOCK 
One block of data ending in an EOB line control character (for start-stop devices) 
or an ETB line-control character (for binary synchronous devices) is obtained. 

PROC=MSG 
Blocks of data are continuously obtained until a block containing an EaT character 
(for start-stop devices) or an ETX character (for binary synchronous devices) is 
received. In effect, this means that data is solicited from the terminal until an entire 
message has been received. 

PROC=TRANS 
Blocks of data are continuously obtained until a block containing an EaT character 
is recognized. In effect, this means that data is solicited from the terminal until an 
entire transmission has been received. 

PROC=CONT 
Blocks of data are continuously solicited from the terminal. This solicitation 
continues indefinitely, unless the request is canceled with the RESET macro 
instruction, or the terminal becomes disconnected from the program. 

SOLICIT does not obtain data from a terminal if the application program has not 
read all previously solicited data, or if the CS option code was in effect for the last 
I/O request directed at the terminal. 

Any I/O errors that occur during solicit operations for a given terminal become 
known to the program only when it next issues a READ or WRITE macro for that 
terminal. 

Name Operation Operands 

[symbol] SOLICIT RPL=rpl address 
[ , rpl field name=new value] ... 



SULlt:lT 

RPL=rpl address 
Indicates the location of the RPL that governs the solicit operation. 

rpl keyword=new value 
Indicates an ru>L field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VT AM, set the RPL field with MODCB macro 
instructions rather than with the SOLICIT macro instruction. 

Format: For rpl field name, code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. ARG can also be coded. 
The new value can be any value that is valid for that operand in the RPL macro 
instruction, or it can indicate a register. The value supplied for the ARG keyword 
must indicate a register. 

Although any RPL operand can be specified, the following operands apply to a 
SOLICIT macro instruction: 

ACB=acb address 
Indicates the ACB that identifies the application program. 

ARG=( register) 
If a specific terminal is to be solicited, the ARG field of the RPL must contain the 
CID of that terminal. ARG=(register) is indicated here because register notation 
must be used to place the CID in the RPL with this SOLICIT macro instruction. 
ARG does not apply to SOLICIT when the ANY option code is set. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
SOLICIT macro instruction is completed. The macro instruction is completed 
immediately, subject to delays due to possible storage shortages. If EXIT is speci­
fied, the RPL exit-routine is scheduled. Otherwise the ECB is posted, and CHECK 
or WAIT must be used to determine when posting occurs. See the RPL macro 
instruction for more information. 

OPTCD=SYN I ASY 
When the SYN option code is set, control is returned to the application program 
when the SOLICIT macro instruction has been completed. When ASY is set, 
control is returned when the macro instruction has been accepted. Although a 
SOLICIT macro instruction is usually completed immediately after the macro 
instruction has been accepted, a storage shortage could cause a delay. Upon return 
of control from an asynchronous SOLICIT, the ECB is posted or or the RPL 
exit-routine is scheduled, as indicated by the setting of the ECB-EXIT field. 

OPTCD=CAICS 
When the CA option code is set, the data obtained from the solicit operation is 
available for a subsequent READ (OPTCD=ANY). When CS is set instead, and the 
SPEC option code is also set, only a subsequent READ (OPTCD=SPEC) can be used 
to retrieve the data obtained by the solicit operation. If the ANY option code is set, 
the CA-CS option code is treated as though CA had been specified, regardless of the 
actual setting. 

OPTCD=SPEC I ANY 
When the SPEC option code is set, data is solicited from only one terminal; namely 
the terminal whose CID has been placed in the ARG field of the SOLICIT macro's 
RPL. When ANY is set, data is solicited from all terminals that are connected to the 

ISS 



~ULILIT 

Examples 

Return of Status Information 

156 

program and are not already being solicited. If only one terminal is available for 
solicitation, avoid using SOLICIT (OPTCD=ANY). It will work, but it takes more 
time than SOLICIT (OPTCD=SPEC). 

SLCTI SOLICIT RPL=RPLl,OPTCD=ANY 

RPLI RPL ACB=ACBl 

SLCT 1 causes data to be solicited from any terminal that has been connected 
through ACB 1 and is not currently engaged in communication with the application 
program. 

SLCT2 SOLICIT RPL=RPL2,OPTCD=SPEC,ARG=( 6) 

RPL RPL ACB=ACBl 

SLCT2, which represents a more likely use of SOLICIT, causes data to be solicited 
from the terminal whose CID is in RPL2's ARG field. 

Control is returned to the program when VTAM has accepted the request, not when 
the actual I/O activity is eventually completed. After control has been returned, 
these RPL fields are set: 

If OPTCD=SPEC is specified for in SOLICIT, the USER field is set. When a NIB 
is created, the application program has the option of specifying any value in the 
USERFLD field of that NIB. When the SOLICIT macro instruction is 
subsequently issued for the terminal connected with that NIB, VT AM obtains 
the value that was set in the USERFLD field and places it in the RPL's USER 
field. 

The value 30 (decimal) is set in the REQ field, indicating a SOLICIT request. 

The RTNCD and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 



TESTCB- Test the Contents of a Control Block Field 

TESTCB compares the contents of ~ specified ACB, RPL, EXLST, or NIB field 
with a value supplied with the macro instruction, and sets the PSW condition code 
accordingly. 

The user of the TESTCB macro instruction indicates a particular control block, 
identifies a single field within that control block, and supplies the value against 
which the contents of that field are to be tested. Figure 14 lists the control block 
fields that can be tested. 

The operands for testing control block fields are used in much the same way as 
operands for modifying or setting control block fields in macros like MODCB or 
GENCB. For example, RECLEN=200 in a MODCB macro places the value 200 in 
the RECLEN field of an RPL; if RECLEN=200 is specified in a TESTCB macro 
instruction, the contents of the RECLEN field are compared with the value 200. 
See Appendix E for a list and explanation of the various formats in which the 
TESTCB operands can be coded. 

The test performed by TESTCB is a logical comparison between the field's actual 
content and the specified value. The condition code indicates a high, equal, or low 
result (with the actual content considered as the "A" comparand of the "A:B" 
comparison). The TESTCB macro instruction can be followed by any branching 
instructions that are valid following A compare instruction. 

TESTCB can be used to test any control block field whose content can be set by 
the application program, as well as some of the control block fields whose contents 
are set by VTAM. The explanation below of the field name operand indicates the 
fields that can be tested. 

With the ERET operand of the TESTCB macro instruction, the application program 
can supply the address of an error-handling routine. This routine is invoked if some 
error condition prevents the test from being performed correctly. 

List, generate, and execute forms of TESTCB are available; they are designated by 
the MF operand. 

Name Operation Operands 

[symbol] TESTeB AM=VTAM [ f AC~~b oo~~ l] , EXLST=exit list address 
,RPL=rpl address 
,NIB=nib address 

, field name=test value 
[, ERET=error exit routine address] 
[, MF=list, generate, or execute form parameters] 

AM=VTAM 
Identifies this macro instruction as a VT AM macro instruction. This operand is 
required. 

157 



158 

ACB=acb address 
EXLST=exit list address 
RPL=rpl address 
NIB=nib address 

Indicates the type and location of the control block whose field is to be tested. 

This operand is normally required, but can be omitted if a control block length is 
being tested. (Control block lengths are tested by specifying ACBLEN, EXLLEN, 
RPLLEN, or NIBLEN for the TESTCB macro instruction). Since every control 
block of a given type is the same length for a given operating system, it is not 
necessary for you to indicate which ACB, EXLST, RPL, or NIB you want to know 
the length of. 

field name=test value 
Indicates a control block field and a value that its contents are to be tested against. 
For field name, code one of the field names that appear in the table at the end of 
this macro instruction description (Figure 14). 

The rules for coding test value are defined and summarized in Appendix E. 

Examples: 

Examples: 

TESTCB 
TESTCB 

TESTCB 
TESTCB 

TESTCB 
TESTCB 

ACB=ACB 1 ,PASSWD=( 6),AM=VT AM 
EXLST=EXLST 1 ,SYNAD=SYNADPGM, 
AM=VTAM 
RPL= RPL1 ,AREALEN=64,AM=VT AM 
NIB=NIB1 ,LISTEND=YES,AM=VT AM 

ACB=ACB1,OFLAGS=OPEN,AM=VTAM 
RPL=RPL1 ,RPLLEN=38,AM=VT AM 

RPL option codes or NIB processing options (including combinations of them) can 
also be tested. The test results in an equal condition code if all of the specified 
options are present. The first example below shows how to test for the presence of 
the SPEC, CS, and BLK option codes of an RPL. The second example illustrates 
how to code a similar test for the MSG, CONFTXT, and MONITOR processing 
options of a NIB. 

Examples: TESTCB 
TESTCB 

ERET=error routine address 

RPL=RPL1 ,OPTCD=(SPEC,CS,BLK),AM=VT AM 
NIB=NIB1,PROC=(MSG,CONFTXT,MONITOR),. 
AM=VTAM 

Indicates the location of a routine to be entered if TESTCB processing encounters a 
situation that prevents it from performing the test. 

When the ERET routine receives control, register 15 indicates the nature of the 
error. These return codes are described in Appendix D (and are summarized below). 

Note: If this operand is omitted, the program instructions that follow the TESTeR 
macro instruction should check register 15 to determine whether an error occurred 
(indicating that the PSW condition code is meaningless) or not. To make this check 
without disturbing the condition code, a branching table based on register 15 can 
be used. 

MF=list, generate, or execute form parameters 
Indicates that a list, generate, or execute form of TESTCB is to be used. Omitting 
this operand causes the standard form of TESTCB to be used. See Appendix F for a 
description of the nonstandard forms of TESTCB. 



Return of Status Information 

Control Block Fields 
Applicable for TESTCB 

TESTCB 

After TESTCB processing is finished and control is either passed to the ERET error 
routine or returned to the next sequential instruction, register 15 indicates whether 
or not the test was completed successfully. If the test completed successfully, 
register 15 is set to 0; if it completed unsuccessfully, register 15 is set to either 4, 8, 
or 12. If it is set to 4 or 12, register 0 is also set indicating the specific nature of the 
error (see Appendix D). 

The field names shown in the first column of Figure 14 are the values that can be 
coded for the field name operand of the TESTCB macro instruction. The second 
column indicates the number of bytes that each field occupies. No lengths are 
shown for fields that can only be tested using fixed values (for example, 
MACRF=LOGON or CONTROL=QEC). 

159 



TESTeB 

ACB Fields 
Field Name Length (bytes) Descrip tion 
APPLID 4 Address of application program's symbolic name 
PASSWD 4 Address of password 
EXLST 4 Address of exit list 
ACBLEN 2 Length of ACB, in bytes 
ERROR 1 OPEN and CLOSE completion codes 
OFLAGS ACB open-closed indicator (OFLAGS=OPEN) 
MACRF Logon request status (MACRF=LOGON I NLOGON) 

EXLST Fields 
.d 

Field Name Length (bytes) Descrip tion 
LERAD 4 
SYNAD 4 
DFASY 4 
RESP 4 
SCIP 4 Address of. exit-routine TPEND 4 
RELREO 4 
LOGON 4 
LOSTERM 4 
ATTN 4 
\EXLLEN 2 Length of exit list, in bytes 

RPL Fields 
Field Name Length (bytes) Descrip tion 
ACB 4 Address of ACB 
NIB 4 Address of NIB 
ARG 4 CI D of terminal 
AREA 4 Address of I/O work area 
AREALEN 4 Length of AREA work area, in bytes 
RECLEN 4 Length of data in AREA work area, in bytes 
AAREA 4 Address of alternate I/O work area 
AAREALN 4 Length of AAREA work area, in bytes 
ARECLEN 4 Length of data in AAREA work area, in bytes 
ECB 4 ECB or address of ECB 
EXIT 4 Address of RPL exit-routine 
RTNCD 1 General return code 
FDBK2 1 Specific error return code 
FDBK 1 Additional status information 
DATAFLG Alias for FDBK 
10 RPL inactive flag (lO=COMPLETE) . 
USER 4 USERFLD data 
REO 1 Request type code 
RPLLEN 2 Length of RPL, in bytes 
SENSE 2 Device sense and status information (BSC) 
BRANCH SRB indicator (BRANCH=YESI NO, OS/VS2 only) 
OPTCD RPL option code 
SEONO 4 Sequence number 
SSENSEO Outbound system sense indicator 
SSENSMO 1 Outbound system sense modifier value 
USENSEO 2 Outbound user sense value 
SSENSEI Inbound system sense indicator 
SSENSMI 1 Inbound system sense modifier value 
USENSEI 2 Inbound user sense value 
I BSOAC Inbound 3ction code for STSN indicator 
OBSOAC Outbound action code for STSN indicator 
I BSOVAL 4 Inbound sequence number for STSN indicator 
OBSOVAL 4 Outbound sequence number for STSN indicator 
POST Scheduled or responded output 

(POST=SCHED I RESP) 
RESPOND Response indicator (RESPOND=EX I NEX, 

FMEINFME, RRNI NRRN) 
CONTROL Control indicator (CONTROL=DATAI indicator) 

Figure 14. Control Block Fields That Can Be Tested with TESTCB (Part 1 of 2) 
160 



Field Name 
CHAIN 

CHNGDIR 

BRACKET 
RTYPE 
STYPE 
SIGDATA 

Field Name 
NAME 
USERFLD 
CID 
NIBLEN 
DEVCHAR 
EXLST 
RESPLIM 

MODE 
L1STEND 
SDT 
PROC 
CON , 

Length (bytes) 

4 

Length (bytes) 
8 
4 
4 
2 
8 
4 
4 

.lL..:>.l'-'V 

RPL Fields (Cont.) 
Description 
Chain indicator (CHAIN=FIRSTIMIDDLE ILAST) 
ONLY) 
Change-direction indicator (CHNGDI R=CMD I 
NCMD, REO )NREO) 
Bracket indicator (BRACKET=BB INBB, EB/ NEB) 
Receive-type indicator (DFSYN, DFASY, RESP) 
Send-type indicator (STYPE=REO I RESP) 
Information included with a signal indicator 

NIB Fields 
Description 
Symbolic name of terminal 
Arbitrary data associated with NAME 
Communication I D 
Length of NIB, in bytes 
Device characteristics (see Appendix H) 
Address of NIB-oriented exit list 
Maximum number of concurrent SEND 
(POST=RESP) macros 
Mode indicator (MODE=BASIC I RECORD) 
NIB list termination flag (L1STEND=YESI NO) 
Start-data-traffic flag (SDT=APPLI SYSTEM) 
Processing option codes 
Terminal-connected flag (CON=YES) 

Figure 14. Control Block Fields That Can Be Tested with TESTCB (Part 2 of 2) 

161 



WRITE- Write a Block of Data to a Terminal (Basic-mode only) 

162 

The WRITE macro instruction obtains a block of data from a designated area in 
application program storage and sends it to a specific terminal. 

There are several variations for WRITE: 

• The write operation can be followed automatically by a read operation, as 
though a READ macro instruction had been coded after the WRITE macro. This 
composite operation is called a conversational write operation. 

• The write operation can be preceded by the erasure of the 2265 screen of a 2770 
Data Communication Terminal or a 3270 display device. 

• The unprotected portion of a display screen in a 3270 display device can be 
erased (with no associated write operation performed). 

Note: Following connection, you cannot write to a 3735 Programmable Buffered 
Terminal until you first issue a SOLICIT or READ (OPTCD=SPEC) macro 
instruction for the terminal. 

Should a write operation be pending (or in progress) when another WRITE macro 
instruction is issued, the first operation is completed before the second operation is 
performed. This means that several WRITE macro instructions for a particular 
terminal can be issued serially. If data is being solicited f~om a terminal when the 
write macro instruction is issued, the write operation is suspended until the 
solicitation is completed. Since this may take some time, you may wish to cancel 
the SOLICIT request with a RESET macro instruction. Furthermore, if the 
terminal is a BSC device and data is being received which is not at an ETX 
(message) boundary, the WRITE macro instruction fails and a return code is placed 
in the RPL's FDBK2 field. See the SOLICIT macro instruction for a description of 
what constitutes and controls the completion of a solicit operation. 

The TRUNC-KEEP processing option in the NIB determines how excess input data 
is to be handled for a conversational WRITE macro instruction. When the TRUNC 
processing option is in effect and the CONY option code is set, and there is too 
much incoming data to fit in the area indicated by AAREA, the data is truncated, 
the remainder is lost, and the WRITE macro instruction terminates with an I/O 
error. With KEEP however, the remainder is saved and passed to the program when 
the next READ macro instruction is issued for that terminal. 

Name Operation Operands 

[symbol] WRITE RPL=rpl address 
[, rpl field name=value] ... 

RPL=rpl address 
Indicates the location of the RPL that governs the write operation. 

rpl field name=new value 
Indicates an RPL field to be modified and the new value that is to be contained or 
represented within it. If you wish to avoid the possibility of program reassembly 
following future releases of VTAM, set the RPL field with MODCB macro 
instructions rather than with the WRITE macro instruction. 



"nJ.J. J.j 

Format: For rpl field name, code the keyword of the RPL macro instruction 
operand that corresponds to the RPL field being modified. ARG can also be coded. 
The new value can be any value that is valid for that operand in the RPL macro 
instruction, or it can indicate a register. The value supplied for the ARG keyword 
must indicate a register. 

Although any basic-mode RPL operand can be specified, the following operands 
apply to the WRITE macro instruction: 

ACB=acb address 
Indicates the ACB that was used when the terminal was connected. 

ARG=(register) 
The ARG field of the RPL must contain the CID of the terminal to which the data 
is to be written (see the OPNDST macro instruction for an explanation of the CID). 
ARG=(register) is indicated here because register notation must be used when the 
CID is placed in the ARG field with this WRITE macro instruction. 

AREA=output data address 
The data contained at the location indicated by AREA is sent to the terminal. Since 
the application cannot determine the exact moment that VT AM moves the data 
from this area, the area should not be reused until the WRITE macro instruction is 
completed. 

RECLEN=output data length 
The number of bytes of data indicated in the RECLEN field is sent to the terminal. 
If this field is set to 0 and OPTCD=LBT (explained below), an EOT is sent to the 
terminal. If OPTCD=BLK or OPTCD=LBM, the line control characters shown in 
Appendix B are sent without data. 

AAREA=input data area address 
When the CONY option code is set, the data obtained from the terminal following 
the output operation is placed in the storage area indicated by the AAREA field. 
VT AM also places the length of this data in the ARECLEN field. The AAREA field 
is not used if NCONV is set. 

AAREALN=input data area length 
AAREALN indicates the capacity of the data area pointed to by AAREA. If the 
amount of incoming data exceeds the capacity of this data area, the action 
indicated by the TRUNC-KEEP option code is taken. 

ECB I EXIT=ecb or rpl exit-routine address 
Indicates the action to be taken by VTAM when an asynchronous (OPTCD=ASy) 
WRITE macro instruction is completed .. The macro instruction is completed after 
the data has been received and acknowledged by the terminal (or, for a 
conversational WRITE, as soon as the input data has been moved into the 
application program's storage area). If EXIT is specified, the RPL exit-routine is 
scheduled. Otherwise the ECB is posted, and CHECK or WAIT must be used to 
determine when the posting occurs. See the RPL macro instruction for more 
information. 

OPTCD=SYN I ASY 
When the SYN option code is set, control is returned to the application program 
when the WRITE macro instruction has been completed. When ASY is set, control 
is returned as soon as VT AM has accepted the request. Once the WRITE macro 
instruction has been completed, the ECB is posted or the RPL exit-routine is 
scheduled, as indicated by the setting of the ECB-EXIT field. 

163 



"Kll.r, 

164 

OPTCD=BLKILBMILBT 
These option codes determine whether the line-control characters selected by the 
system for transmission with the data should mark the data as the end of a block, 
the end of a message, or the end of a transmission. 

When the BLK option code is set, the line-control characters indicated in Appendix 
B under "BLK" are sent with the block of data. BLK is invalid for a 3270 
terminal. 

When the LBM option code is set, the line-control characters indicated in Appendix 
B under "LBM" are sent with the block of data. 

When the LBT option code is set, the line-control characters indicated in Appendix 
B under "LBT" are sent with the block of data. After the block of data is 
acknowledged by the terminal an EOT character is sent. The write operation is 
considered complete when the EOT character has been sent. 

OPTCD=CONVINCONV 
When NCONV is set, no read operation follows the write operation. When the 
CONY option code is in effect, an input operation is performed after the block of 
data has been written to the terminal. The data received in response to the write 
operation is placed in the area indicated by the RPL's AAREA field, and the length 
of that data is set in the ARECLEN field. 

Should the terminal merely respond with an acknowledgement and not data, the 
following action is taken: An EOT is sent to the terminal and the terminal is polled 
(or for a point-to-point line, placed in the receive state). The input data eventually 
received from this polling is then placed in the AAREA and ARECLEN fields. The 
operation is not completed until the data is received. 

When a WRITE with OPTCD=CONY is issued, a second WRITE may not be issued 
to the same terminal until the first output operation is completed, unless the first 
operation is canceled with the RESET macro instruction. 

OPTCD=ERASEIEAUINERASE 
The ERASE and EAD option codes indicates that one of two special variations of 
WRITE are to be used; NERASE indicates that an ordinary output operation is 
requested. 

When ERASE is used, the entire display screen of (1) a 2265 display station 
attached to a 2770 Data Communication System or (2) a 3270 display station, is 
erased before the block of data is written to the terminal. ERASE cannot be 
specified for conversational WRITE operations (OPTCD=CONV); use the 
ERASELBM or ERASELBT LDOs followed by a chained READ LDO if a 
combined erase-write-read operation is desired. 

EAD means that the unprotected portion of a 3270 display station screen is to be 
erased, and its keyboard unlocked. No data is sent to the terminal. EAU cannot be 
specified for a conversational WRITE operation; use the EAU LDO followed by a 
chained READ LDO if a combined erase-read operation is desired. 

OPTCD=CS I CA 
When CA is set, data obtained from the terminal can satisfy a READ (OPTCD= 
ANY) macro instruction. When CS is set, only READ (OPTCD=SPEC) macro 
instructions can obtain data from the terminal. See the RPL macro instruction for 
more information. 



Examples 

Return of Status Information 

nn.J.J.L 

WRITE 1 WRITE' RPL=RPL1,AREA=SOURCE,RECLEN=60, 
EXIT=WRTDONE,OPTCD=ASY 

WRITE 1 sends a 60-byte block of data from SOURCE to the terminal. This 
example assumes that the eID for the terminal is already in RPL1's ARG field. 
Control is returned to the instruction following WRITEI as soon as the data has 
been written to the terminal and an acknowledgment has been received. When the 
operation is completed, the program is interrupted and control passed to 
WRTDONE. 

WRITE2 
MODCB 
WRITE 

RPL2,ARG=(3) 
RPL=RPL2 

WRITE2 erases the unprotected part of a 3270 display screen. The MODCB macro 
instruction places the contents of register 3 (the terminal's CID) into RPL2's ARG 
field. 

WRITE 3 WRITE 

RPL3 RPL 

RPL=RPL3 

AREA=OUTGOING,RECLEN=120, 
AAREA=INCOMING ,AAREALN= 132, 
OPTCD=(CONV,LBT) 

WRITE3 requests a conversational WRITE operation. 120 bytes of data from 
OUTGOING are sent to the terminal whose CID is in register 3. Data is then read 
from the terminal and placed into INCOMING. If more than 132 bytes are received, 
the excess will be lost. Because the LBT option code is set, the operation is not 
completed until the terminal responds with data. 

After a WRITE macro instruction has been completed, these RPL fields are set: 

If the CONY option is set, the ARECLEN field indicates the number of bytes of 
data obtained during the input part of the conversational operation. 

When a NIB is used during connection, VT AM associates the contents of the • USERFLD field with the terminal. When the WRITE macro instruction is 
subsequently issued for the terminal, the contents of the USERFLD field is 
placed in the USER field of the RPL by VT AM. 

The value 17 (decimal) is set in the REQ field indicating a WRITE request. 

If the CONV,option code is set, the FDBK field is set: it contains information 
concerning the input portion of the operation. See the FDBK field description in 
Appendix C. 

The SENSE, RTNCD, and FDBK2 fields are set as indicated in Appendix C. 

Registers 0 and 15 are also set as indicated in Appendix C. 

165 





APPENDIX A. SUMMARY OF CONTROL BLOCK FIELD USAGE 

CHANGE 

CHECK 

CLOSE 

After you have become familiar with the workings of the VTAM macro instructions 
described in this book, this appendix can be used as a quick reference. It shows the 
following information about all of the executable macro instructions in this book: 

• The control block fields that are set by the application program when (or 
before) the macro instruction is issued. 

• The control block fields and registers that are set by VTAM during macro 
instruction processing. 

Note: All of the control block fields that apply to the macro instruction are shown, 
but remember that not all fields apply to every possible variation of a macro 
instruction. Refer to the macro instruction descriptions if you are in doubt. 

Throughout this appendix, a pointer (~) indicates that a field contains the address 
of the given item, and an equal-sign indicates that a field contains the item itself. 
You will also note that a horizontal dashed line is used with each macro instruction; 
all information above this line concerns information your application program 
supplies to the macro instruction, and all information shown below this line 
concerns information that the macro instruction passes back to your application 
program. 

~ RPL: ACB field ~ ACB to which terminal is connected 
NIB field ~ modified NIB: 

CID field = CID of terminal 
USERFLD field = new data to be returned during subsequent 

I/O requests 
MODE field = BASIC 
PROC field = new set of processing options 

{
ECB field ~fu1lword work area} 
EXIT field ~ RPL exit-routine 

OPTCD field = (SYNIASY, CAICS) 

Registers 0 and 15 = return codes 
RPL: RTNCD field = recovery action return code 

FDBK2 field = specific error return code 
REQ field = request code 

~ RPL being checked 

RPL set inactive 
Registers 0 and 15 = return codes 

~ ACB being closed 

Register 15 = return code 
ACB: OF LAGS field = opened or not-opened indicator 

ERROR field = specific error return code 

Appendix A: Control Block Field Usage 167 



CLSDST ~ RPL: ACB field ~ ACB 

< disconnected 
(NIB field ~ NIB: NAME field = symbolic name of tenninal to be} 

{ ARG field = CID of tenninal to be disconnected 
AAREA field ~ symbolic name of receiving application program 
AREA field ~ logon message 
RECLEN field = length of logon message 

{ 
ECB field ~ fullword work area} 
EXIT field ~ RPL exit-routine 

OPTCD field = (pASS I RELEASE , SYNIASY) 

Registers 0 and 15 = return codes 
RPL: RTNCD field = recovery action return code 

FDBK2 field = specific error return code 

DO ~ RPL: ACB field -+ ACB 
ARG field = CID of terminal 

{ 
ECB field ~ fullword work area} 
EXIT field ~ RPL exit-rou tine 

OPTCD field = (SYNIASY, CSICA) 
AREA field ~ LDO: 

If CMD field = COPYLBM or COPYLBT, 
ADDR ~ copy control character and sending device's CID 

(ARG field contains receiving device's CID) 
LEN = 3 

IfCMD field = READ or READBUF, 
ADDR ~ input data area 
LEN = length of data area 

If CMD field = ERASELBM or ERASELBT, 
ADDR ~ output data 
LEN = length of data 

IfCMD field = WRITE, WRITELBM, WRITELBT, WRTHDR, 
WRTNRLG, orWRTPRLG, 

ADDR ~ output data 
LEN = length of output data 

Registers 0 and 15 = return codes 
RPL: AAREA field ~ last LDO used 

USER field ~ data from USERFLD field of NIB 
RECLEN field = length of data received 
FDBK field = status information (if CMD field = READ) 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

EXECRPL ~ RPL: All fields appropriate for the request type (indicated in the REQ field) 
are valid. 

GENCB AM = VTAM 

168 

BLK operand = control block type 
control block field name operand = value to be set in field 
COPIES operand = number of copies desired 
WAREA operand ~ work area where blocks will be built 
LENGTH operand = length of work area 
MF operand = list, generate, or execute form parameters 



INQUIRE 

Register 0 = error return code (if register 15 indicates unsuccessful completion) 
Register 0 = length of generated control blocks (if built in dynamically allocated 

storage obtained by VTAM and register 15 indicates successful 
completion) 

Register 1 ~ generated control blocks (if built in dynamically aHocated storage 
obtained by VTAM and register 15 indicates successful completion) 

Register 15 = general return code 

~ RPL: ACB field ~ ACB 

{
ECB field ~ fullword work area} 
EXIT field ~ RPL exit-routine 

OPTCD = (LOGONMSG\DEVCHAR\COUNTS\TERMS\BSCID\APPSTAT\ 
CIDXLATE\TOPLOGON, SYN\ASY) 

If OPTCD = LOGONMSG, 
NIB field ~ NIB: NAME field = symbolic name of terminal 
AREA field ~ input area for logon message 
AREALEN field = length of input area 

If OPTCD = DEVCHAR, 

{
NIB field ~ NIB: NAME field = symbolic name of terminal} 
ARG field = CID of terminal 

AREA field ~ input area for characteristics 
AREALEN field = 8 

If OPTCD = TERMS, 
NIB field ~ NIB: NAME field = symbolic name of terminal (or group, 

as defined by the GROUP definition macro) 
AREA field ~ work area where NIBs will be built 
AREALEN field = length of work area 

If OPTCD = COUNTS, 
AREA field ~ input area for data 
AREALEN field = 4 

If OPTCD = APPSTAT, 
NIB field ~ NIB: NAME field = symbolic name of application program 

If OPTCD = CIDXLATE, 

{
NIB field ~ NIB: NAME field = symbolic name of terminal} 
ARG field = CID to be translated 

AREA field ~ input area for symbolic name 
AREALEN= 8 

If OPTCD = TOPLOGON, 
AREA field ~ input area for symbolic name 
AREALEN = 8 

If OPTCD = BSCID, 
NIB field ~ NIB: NAME field = symbolic name of UTERM terminal 
AREA field ~ work area for ID verification sequence 
AREALEN field = 20 

Registers 0 and 15 = return codes 
RPL: RECLEN field = length of data received (ifRTNCD = 0 and FDBK2 = 5, 

RECLEN = total required length) 
FDBK field = status information (if OPTCD = APPST AT) 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

Appendix A: Control Block Field Usage 169 



INTRPRET ~ RPL: ACB field ~ ACB 

MODCB 

OPEN 

OPNDST 

170 

{
NIB field ~ NIB: NAME field = symbolic name of terminal} 
ARG field = CID of terminal 

AREA field ~ data to be interpreted 
RECLEN field = length of data to be interpreted 
AAREA field ~ work area for interpreted data 
AAREALN field = 8 

{ 
ECB field ~ fullword work area} 
EXIT field ~ RPL exit-routine 

OPTCD field = SYNIASY 

Registers 0 and 15 = return codes 
RPL: ARECLEN field = length of data received (ifRTNCD = 0 and FDBK2 = 5, 

ARECLEN = total required length) 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

AM=VTAM 
control block type operand ~ control block 
control block field name operand = new value to be set 
MF operand = list, generate, or execute form parameters 

Register 0 = error return code (if register 15 indicates unsuccessful completion) 
Register 15 = general return code 

~ ACB being opened 

Register 15 = return code 
ACB: OFLAGS field = opened or not-opened indicator 

ERROR field = specific error status information 

~ RPL: ACB field ~ opened ACB to which terminal is to be connected 

{ 
ECB field ~ fullword work area} 
EXIT field ~ RPL exit-routine 

OPTCD field = (SPECIANY, SYNIASY, CSICA, QINQ, CONANYI 
CONALL, ACQUIREIACCEPT) 

NIB field ~ NIB: 
PROC field = processing options 
MODE field = BASIC or RECORD 
USERFLD field = data to be returned during subsequent 

I/O requests 
IfOPTCD = ACQUIRE, 

NAME field = symbolic name of terminal 
LISTEND field = YES or NO 

If OPTCD = ACCEPT and ANY, 
NAME field not examined 
LISTEND field = YES 

If OPTCD = ACCEPT and SPEC, 
NAME field = symbolic name of terminal 
LISTEND field = YES 



READ 

RECEIVE 

Registers 0 and 15 = return codes 
RPL: ARG field = CID of connected terminal (but ifCONALL in effect and 

more than one connected, unpredictable) 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 
AREA field -+ NIB: 

CID field = CID of connected terminal 
CON field = YES (if terminal connected) 
NAME field = symbolic name of connected terminal 

(when ACCEPT and ANY in effect) 
DEVCHAR field = device characteristics 

-+ RPL: ACB field -+ ACB 
ARG field = CID of source terminal 
AREA field -+ input data area 
AREALEN field = length of input data area 

{ 
ECB field -+ fullword work area} 
EXIT field -+ RPL exit-routine 

OPTCD field = (SPEC\ANY, SYN\ASY, CS\CA) 

Registers 0 and 15 = return codes 
RPL: ARG field = CID of source terminal (if OPTCD = ANY) 

RECLEN field = length of input data 
USER field = data from USERFLD field in NIB 
FDBK field = status information 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

-+ RPL: ACB field -+ ACB to which terminal connected 
ARG field = CID of terminal 
AREA field -+ input data area 
AREALEN field = length of input data area 
BRANCH field = YES or NO 

{ 
ECB field -+ fullword work area} 
EXIT field -+ RPL exit-routine 

OPTCD field = (SYN\ASY,CA\CS, SPEC\ANY, TRUNC\KEEP\ 
NIBTK, Q\NQ) 

RTYPE field = (DFSYN\NDFSYN, DFASY\NDFASY, RESP\NRESP) 

Registers 0 and 15 = return codes 
RPL: ARG field = CID of terminal completing the RECEIVE 

RTYPE field = type of input received 
RECLEN field = length of input data 
SEQNO field = sequence number of input 
RESPOND field = (EX\NEX, FME\NFME, RRN\NRRN) 
USER field = data from USERFLD field of NIB 
REQ field = request code 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
CHNGDIR field = REQ\NREQ (if RTYPE = DF ASY or RESP) 

CMD\NCMD (if RTYPE = DFSYN) 

Appendix A: Control Block Field Usage 171 



RESET 

BRACKET field = (BBINBB, EBINEB) 
CHAIN field = FIRSTIMIDDLEILASTIONL Y 
SIGDATA field = signal value (if CONTROL = SIGNAL) 
CONTROL field = DATAIQECjRELQIQCICANCELICHASEISHUTDI 

BIDILUSISIGNALIRTRIRSHUTDISHUTC 
SSENSEI field = CPMISTATEIFIIRRIPATHIO 
SSENSMI field = system sense modifier value (or 0) 
USENSEI field = user sense value (or 0) 

.~ RPL: ACB field -* ACB 
ARG field = CID of terminal 

{
ECB field -* fullword work area} 
EXIT field -* RPL exit-routine 

OPTCD field = (SYNIASY, CSICA, CONDIUNCONDILOCK) 

Registers 0 and 15 = return codes 
RPL: USER field = data from USERFLD field in NIB 

RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

RESETSR -* RPL: ACB field -* ACB to which terminal connected 
ARG field = CID of receiving terminal 

{ 
ECB field -* full word work area} 
EXIT field -* RPL exit-routine 

BRANCH field = YES or NO 
RTYPE field = (DFSYNINDFSYN, DF ASYINDFASY, RESPINRESP) 
OPTCD field = (SYNIASY, CAICS) 

Registers 0 and 15 = return codes 
RPL: USER field = data from USERFLD field in NIB 

RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

SEND -* RPL: ACB field -* ACB to which terminal connected 

172 

ARG field = CID of receiving terminal 
AREA field -* data to be sent 
RECLEN field = length of data to be sent 
CHNGDIR field = REQINREQ (ifRTYPE = DFASY or RESP) 

CMDINCMD (if RTYPE = DFSYN) 
BRANCH field = YES or NO 

{
ECB field -*fullword work area} 
EXIT field -* RPL exit-routine 

RESPOND field = (EXINEX, FMEINFME, RRNINRRN) 
RTYPE field = (DFSYNINDFSYN, DF ASYINDFASY, RESPINRESP) 
CONTROL field = DATAIQECIRELQIQCICANCEL/CHASEISHUTDI 

BIDILUS 
BRACKET field = (BBINBB, EBINEB) 
STYPE field = REQ or RESP 
If STYPE = RESP, 

SEQNO field = sequence number 



If STYPE = RESP and RESPOND = EX, 
SSENSEO field = CPMISTATEIFIIRR 
SSENSMO field = system sense modifier value 
USENSEO field = user sense value 

IfSTYPE = REQ and CONTROL = DATA, 
CHAIN field = FIRSTIMIDDLEILASTIONLY 
POST field = SCHEDIRESP (SCHED assumed if normal response 

not requested) 

Registers 0 and 15 = return codes 
RPL: USER field = data from USERFLD field of NIB 

RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 
SEQNO field = sequence number 

RESPOND = unpredictable 

If POST = RESP and STYPE = REQ, 
CHNGDIR field = (REQINREQ, CMDINCMD) 
RESPOND field = (EXINEX, FMEINFME, RRNINRRN) 
SSENSEI field = CPMISTATEIFIIRRIPATHIO 
SSENSMI field = system sense modifier value (or 0) 
USENSEI field = user sense value (or 0) 

SESSIONC ~ RPL: ACB field ~ ACB to which terminal connected 
ARG field = CID of terminal 

{ 
ECB field ~ fullword work area} 
EXIT field ~ RPL exit-routine 

OPTCD field = SYNIASY 
CONTROL field = SDTICLEARISTSN 
If CONTROL = STSN, 

IBSQV AL field = inbound sequence number 
IBSQAC field = S:ETITESTSETIINV ALIDIIGNORE 
OBSQV AL field = outbound sequence number 
OBSQAC field = SETITESTSETIINVALIDIIGNORE 

Registers 0 and 15 = return codes 
RPL: USER field = data from USERFLD field of NIB 

RTNCD field = recovery action return codes 
FDBK2 field = specific error return code 
REQ field = request code 
SSENSEI field = CPMISTATEIFIIRRIPATHIO 
SSENSMI field = system sense modifier value (or 0) 
USENSEI field = user sense value (or 0) 
If CONTROL = STSN, 

IBSQV AL field = inbound sequence number 
IBSQAC field = TESTPOSITESTNEGIRESETIINV ALID 
OBSQV AL field = outbound sequence number 
OBSQAC field = TESTPOSITESTNEGIRESETIINVALID 

SIMLOGON ~ RPL: ACB field ~ ACB 
NIB field ~ NIB: 

NAME field = symbolic name of terminal 
LISTEND field = YES or NO 

AREA field ~ logon message 

Appendix A: Control Block Field Usage 173 



SOliCIT 

,·'t 

TESTCB 

WRITE 

174 '" 

RECLEN field = length of logon message 

{ 
ECB field -+ fullword work area} 
EXIT field -+ RPL exit-routine 

OPTCD field = (SYNIASY, QINQ, CONANYICONALL) 

Registers 0 and 15 = return codes 
RPL: RTNCD field = recovery action return code 

FDBK2 field = specific error return code 
REQ field = request code 

-+ RPL: ACB field -+ ACB 
ARG field = CID of source terminal (if OPTCD = SPEC) 

{ 
ECB field -+ fullword work area} 
EXIT field -+ RPL exit-routine 

OPTCD field = (SPECIANY, SYNIASY, CSICA) 

Registers 0 and 15 = return codes 
RPL: USER field = data from USERFLD field of NIB 

RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 

AM=VTAM 
con trol block type operand -+ control block 
field name operand = test value 
ERET operand -+ error exit-routine 
MF operand = list, generate, or execute form parameters 

Register 0 = error return code (if register 15 indicates unsuccessful completion) 
Register 15 = general return code 
PSW condition code = test result 

-+ RPL: ACB field -+ ACB 
ARG field = CID of receiving terminal 
AREA field -+ data to be written 
RECLEN field = length of data to be written 
AAREA field -+ inpu t data area 
AAREALN field = length of input data area 

{ 
ECB field -+ fullword work area} 
EXIT field -+ RPL exit-routine 

OPTCD field = (SYNIASY, CSICA, BLKILBMILBT, CONVINCONV, 
ERASEIEAUINERASE) 

Registers 0 and 15 = return codes 
RPL: ARECLEN field = length of input data 

USER field = data from USERFLD field of NIB 
FDBK field = status information 
RTNCD field = recovery action return code 
FDBK2 field = specific error return code 
REQ field = request code 



APPENDIX B. LINE-CONTROL CHARACTERS RECOGNIZED 
OR SENT BY VTAM MACROS 

This appendix is only for programmers who are concerned with communication 
between the application program and BSC or start-stop terminals. Communication 
with logical units does not involve line-control characters. 

VT AM relieves the application program of the task of inserting line-control 
characters into outgoing data and removing line-control characters from incoming 
data. The application program, however, is not completely line-control independ­
ent. For an output operation, the BLK-LBM-LBT option for the WRITE macro 
instruction governs which line-control characters are inserted in the data. For a 
solicit operation, the BLOCK-MSG-TRANS-CONT option identifies the line-control 
character that causes solicitation to stop when that character is received. The 
application programmer must be aware of the effect of these options. 

The first three columns in Figures B-1 and B-2 show the line-control characters that 
delimit the data obtained by a solicit operation. The first column shows the 
delimiting character when the NIB's BLOCK-MSG-TRANS-CONT processing option 
is set to BLOCK, the second column shows the delimiting character when the 
processing option is set to MSG, and the third shows the delimiting character when 
TRANS is in effect. (There are no delimiting characters for CONT, because 
solicitation continues indefinitely.) 

The last three columns show the line-control characters added to the beginning and 
end of the user-supplied data when a WRITE macro instruction is issued. The first 
of these three columns shows the beginning and ending characters that are inserted 
when the RPL's option code is set to BLK, or if a WRITE LDO is being used by 
DO. The next shows the characters inserted when the LBM option code is in effect 
or a WRITELBM LDO is used. The last column applies to the LBT option code or 
WRITELBT LDO. 

Appendix B: Line-Control Characters 175 



Soliciting Writing 

Specified as PR OC = (b) = inserted at the 
beginning 

I I (e) = inserted at end 
BLOCK TRANS 

Specified as OPTeD = Start-Stop Devices MSG 
BLK LBM lBT 

IBM 1050 Data Communication System EOB EOT EDT EOA(b) EOA(b) EOA(b) 
EOB(e) EOB(e) 1 EOB(e) 1 

IBM 2740 Communication Terminal, Model 1 EDT EOT EDT EOA(b) EOA(b) EOA(b) 
NUL(e) NUL(e) NUL(e) 

IBM 2740 Communication Terminal, Model 1, EOB EDT EOT EOA(b) EOA(b) EOA(b) 
with checking EDB(e) EOB(e) 1 EOB(e) 1 

IBM 2740 Communication Terminal, Model 1, EDB EOT EOT EOA(b) EOA(b) EOA(b) 
with checking and station control EOB(e) EOT(e) EOT(e) 

IBM 2740 Communication Terminal, Model 2 EOT EOT EDT EOA(b) EOA(b) EOA(b) 
EOT(e) 1 EOT(e) 1 EOT(e) 1 

IBM 2741 Communication Terminal EOT EDT EDT EOA(b) EOA(b) EOA(b) 
NUL(e) NUL(e) NUL(e) 

I BM Communication Magnetic Card EOT EOT EOT EDA(b) EOA(b) EOA(b) 
Selectric Typewriter NUL(e) NUL(e) NUL(e) 

I BM World Trade Telegraph Station EDT EOT EOT CCITT CCITT CCITT 
header header header 

IBM SYSTEM/7 EOT EOT EDT EOA(b) EOA(b) EOA(b) 
NUL(e) NUL(e) NUL(e) 

AT&T 83B3 Selective Calling Station EDT EOT EDT none(b) none(b) none(b) 
EDM(e) EOM(e) EOM(e) 

AT&T Teletypewriter Terminal, Models EOT EOT EOT none(b) none(b) none(b) 
33 and 35 EOM(e) EOM(e) EOM(e) 

Western Union Plan 115A Station EOT EOT EOT none(b) none(b) none(b) 
EDM(e) EOM(e) EOM(e) 

1 And an EOT is sent when the block is 
acknowledged by the system with a 
positive response. 

Figure B-l. Line-Control Characters Used With Start-Stop Devices 

176 



Soliciting Writing 

Specified as PROC = (b) = inserted at the 
beginning 

I (e) = inserted at end 
BLOCK TRANS Specified as OPTCD = Binary Synchronous Communication Devices MSG BLK LBM LBT 

IBM 2770 Data Communication System ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e} ETX(e) ETX(e) 1 

IBM 2780 Data Transmission Terminal ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 1 

IBM 2972 General Banking Terminal, ETB ETX EDT STX(b) STX(b} STX(b} 
Models 8 and 11 ETX(e) ETX(e} ETX(e) 1 

IBM 3270 I nformation Display System, 2 EaT EaT 2, 3 3 STX(b) 
remotely attached ETX(e) 3 

IBM 3735 Programmable Buffered Terminal ETB ETX EDT STX(b) STX(b) STX(b} 
ETB(e) ETX(e) ETX(e) 1 

IBM 3740 Data Entry System ETB ETX EaT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 1 

IBM 3780 Data Transmission Terminal ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 1 

IBM SYSTEM/3 ETB ETX EDT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 1 

IBM SYSTEM/370 ETB ETX EaT STX(b) STX(b) STX(b) 
ETB(e) ETX(e) ETX(e) 1 

1 And an EOT is sent when the block 
is acknowledged by the system with 
a positive response. 

2 PROC=BLOCK and OPTCD=BLK are 
invalid for 3270 devices. 

3 No line control characters are sent. 

Figure B-2. Line-Control Characters Used With BSC Devices 

Appendix B: Line-Control Characters 177 





APPENDIX C. RETURN CODES FOR RPL-BASED MACRO INSTRUCTIONS 

Return Code Posting vr AM posts return code information in registers 0 and 15 and in certain fields of 
the request's RPL. These fields are referred to as the feedback fields. The manner in 
which registers 0, 15, and the feedback fields are posted depends on whether 
synchronous request handling, asynchronous request handling (with an ECB), or 
asynchronous request handling (with an RPL exit-routine) is used. Chapter 5 of 
VT AM Concepts and Planning illustrates these three methods of request handling. 
The following three figures parallel those in the Concepts book (although the 
posting of register 15 and feedback fields has been emphasized here). 

In Figure C-l, the application program issues a SEND macro instruction and 
specifies synchronous request handling. Control passes from the application 
program and is not returned until the operation is completed. At that time, registers 
o and 15 are set by VTAM (or, if the LERAD or SYNAD exit-routine is scheduled, 
registers 0 and 15 are set by the exit-routine) to indicate how the operation is 
completed. Feedback fields in the RPL are also set. 

In Figure C-2, the application program issues another SEND, this time specifying 
asynchronous request handling and an ECB. VT AM receives control, screens the 
request, schedules the requested operation (if the request is in order), and returns 
control to the application program. This is the "initial completion" of the 
asynchronous request-that is, the point at which the request is accepted or 
rejected. If the request was unacceptable, vr AM (or the LERAD or SYNAD 
exit-routine, if one was available to be scheduled) indicates this in registers 0 and 
15. No additional return codes are posted in RPL 2's feedback fields, and no 
CHECK macro instruction should be issued for RPL2. (The RPL is not set active if 
the request is not accepted, and CHECK cannot be used to check an inactive RPL.) 

The application program will find a return code of 0 in register 15 if the request 
was accepted. Since an ECB was specified for the request, the application program 
must eventually issue a CHECK macro instruction for RPL2. (A system WAIT 
macro instruction could be used instead, although CHECK would still be required 
eventually to set the RPL inactive.) When the SEND operation is eventually 
completed, the ECB is posted and control is again returned to the application 
program. This time registers 0 and 15 and RPL2's feedback fields are set by VTAM 
(or by the LERAD or SYNAD exit-routine, if one was invoked) to indicate how the 
SEND operation was completed. 

Application Program 

• 
• 
• 

SEND RPL=RPL 1 ,OPTCD=SYN 

VTAM 

'----------------I~~ Request is accepted 
• (LERAD or SYNAD 
• exit-routine scheduled, 
• if not accepted) 

• 
• 
• I SEND is completed 

.... -----------------' (LERAD or SYNAD exit-
• Registers 0 and 15 and routine scheduled, if 
• RPL fields posted by VTAM appropriate) 
• or by exit-routine 

Figure C-l. Posting Return Codes for Synchronous Requests 

Appendix C: Return Codes for RPL-Based Macros 179 



Types of Return Codes 

180 

Application Program VTAM 

SEND 

• 
• 
• 

RPL=RPL2,OPTCD=ASY, 
ECB=FULLWORD 

• 
• 
• 
I Request is accepted 

... ~ ...... _____ "",,--______ --a (LERAD or SYNAD exit-

• Registers 0 and 15 posted by routine scheduled, if not 
• VTAM (or by exit-routine) accepted) 

• 
• 
• 
• 

interruption (if previously accepted) 

• 
• 
• 

SEND is completed 

.... ~ ______________ ~I ECB is posted 

• 
• 
• 

CHECK ECB (LERAD or SYNAD exit-routine 
scheduled, if appropriate) (or WAIT) 

Registers 0 and 15 and 
RPL posted 

Figure C-2. Posting Return Codes for Asynchronous Requests (with CHECK) 

In Figure C-3, the application program again issues an asynchronous SEND request, 
but this time with an RPL exit-routine specified instead of an ECB. As before, a 
zero or non-zero return code is returned to the application program at initial 
completion, indicating that the request has been accepted or rejected. The final 
completion of the SEND operation results in the invocation of the RPL exit-routine 
if the request was accepted. After CHECK has been issued, EXITRTN finds that 
registers 0 and 15 and the feedback fields of RPL3 have been posted. 

VT AM always sets register 15 to 0 if a request has been accepted or has been 
completed normally. Register 0 is also sometimes set for normal completion, as 
noted below. 

When a request is not accepted (Figure C-4) or is completed abnormally (Figure 
C-5), VTAM schedules the LERAD or SYNAD exit-routine. (Figures C-4 and C-5 
indicate which types of errors cause LERAD and which cause SYNAD to be 
scheduled.) If the LERAD or SYNAD exit-routine is executed upon return of 
control to the next sequential instruction registers 0 and 15 contain whatever values 
were placed in them by the exit-routine. If VTAM cannot fmd an exit to schedule 
then it sets registers 0 and 15 and returns control to the next sequential instruction. 



Application Program VTAM 

SEND 

• 
• 
• 

RPL=RPL3,OPTCD=ASY, 
EXIT=EXITRTN 

• 
• 
• 

• Registers Oand 15 posted 

Request is accepted 
(LERAD or SYNAD exit­
routine scheduled if not 
accepted) • by VTAM (orby exit-routine) 

• 
• 
• 
• 

interruption (if previously accepted) 
SEND is completed, 

• RPL exit-routine is 
• scheduled, RPL is posted 

EXITRTN • 
• ~-~.~------------~I 
• 
• 
CHECK 
RPL=RPL3 

• 
• 
• 

(LERAD or SYNAD exit-routine scheduled, if 
appropriate) Registers 0 and 15 posted 

~-------------~ 

• 
• 
• ... ~ _________________________ ---,I Control is returned 

• 
• 
• 

Figure C-3. Posting Return Codes for Asynchronous Requests (with an RPL 
Exit-Routine) 

VTAM uses only two nonzero return codes in register 15: 4 and 32 (decimal). 32 is 
used when a failure of an OPEN is ignored by the application program; neither 
SYNAD nor LERAD are involved. A return code of 4 is used for all other types of 
errors for which a SYNAD or LERAD exit-routine was not available. The register 
15 return code is termed a general re turn code. 

The "other types of errors" are organized into 6 classes according to the program 
recovery action that is appropriate for each error. VTAM generates a recovery 
action return code for each class and places the code in register 0 when control is 
returned to the application program or passed to the LERAD or SYNAD 
exit-routine. VTAM also posts the recovery action return code in the RTNCD field 
of the RPL. The recovery action return codes occur in increments of 4 to facilitate 
their use in branching tables. 

Note: The recovery action return code is posted when the request's ECB is posted,­
if you modify RTNCD before checkfng the request, VTAM does not reset the code. 

Appendix C: Return Codes for RPL-Based Macros 181 



~ "1'j 
00 ~. t-.» 

'"t 
(l) 

~ 

Recommended 
Programmer .Action 

Registers when Registers when RPL (inLERAD, SYNAD, 
Completion SYNAD-LERAD SYNAD-LERAD feedback Applicable or after next 

n Condition Explanation Example !!Q! available !!!. available fields set mClzros sequen-::ia~ in~tr;..:ction) I 
0 
S 
'g. 
(l) 
~ o· 
=:I 
n 
0 
=:I e: 

Request accepted VT AM has accepted the --- Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=O All RPL-
(General return code asynchronous request 0 0 0 0 FDBK2=0 based macros 
= 0, Recovery action and will process it. Com-
return code = 0) pletion information will (LERAD-SYNAD 

again be available when not entered) 
the request is completed. 

~ o· 
=:I 
til 

> 
'e 
'g: 
0 

~ 
(l) 

Request not VT AM has rejected the A temporary Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=8, All RPL- Issue an EXECRPL 
accepted (General asynchronous request storage 4 8 Set by SYNAD FDBK2=0 based macros macro to retry the 
return code = 4), because of a temporary shortage has exit-routine request. 

Retry Appropriate condition. occurred. 
(Recovery action 
return code = 8) 

...... 
0 
'"t Environment Error VT AM has rejected the VTAM not Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=16, All RPL- Request external -e. 
::to 
e:-
n 
0 
S 
'e 

(Recovery action asynchronous request be· active. 4 16 Set by SYNAD FDBK2= based macros intervention (from 
return code = 16) cause of an environment- exit-routine specific the network operator, 

al condition beyond the error for example} or 
control of the application return code suspend processing. 
program. (13 or 14) 

CD 
~ o· 
=:I 
0 ...... 
> 
til 
'< 

Logical Error VT AM has rejected the A READ has Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=20, All RPL- Obtain a program 
( Recovery action asynchronous request be- been issued 4 20 Set by LERAD FDBK2= based macros dump and correct the 
return code = 20) cause the request violates for an output- exit-routine specific error program. 

the requirements defined only device. return code 
in this manual. r ((),2, or 3) 

=:I 
0 ::r Logical Error VTAM has rejected the An attempt Reg 15 Reg 0 Reg 15 Reg 0 RPL not set All RPL- Obtain a program 
'"t 
0 
=:I 
0 
s::: 
til 

~ 
(l) 

.0 
s::: 

with Invalid RPL asynchronous request be- was made to 4 24 Set by LERAD and should based macros dump and correct the I 

(Recovery action cause the RPL address reuse an RPL exit-routine not be program. 
return code = 24) points to an active RPL to which no examined. 

or does not point to any CHECK had i 

RPL. been issued. 
(l) 
til 
~ 
til Request not accepted The RPL points to an --- Reg 15 Reg 0 Reg 15 Reg 0 RPL not All RPL- Obtain a program 

because of a prior ACB that has not been 32 Request 32 Request set. based macros dump and correct the 
failure OPEN properly opened or that code (see code (see program. 
(General return code has been closed. descript- descript-
= 32, no Recovery ion of ion of 
action return code) RPL's RPL's 

REO field} REO field) 
(LERAD-SYNAD 
not entered) 



Recommended 
Programmer Action 

Registers when Registers when RPL (in LERAO, SYNAD, 
Completion SYNAD-LERAD SYNAD-LERAD feedback Applicable or after next 

"T1 Condition 
&Q 

E.xplanation Example not available are available fields set macros sequential instruction 

~ 
1-1 
(t> 

Q 
VI 
,-... 
~ 
e; 
c-t-

0 ....., 

~ 
gg 
O'S 
1-1"t:$ 
(j~ 
::c: ::to 
mO 
(j::S 
~(j 

° 

Normal Completion The request has been INQUIRE Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=O, All RPL- RESET, WRITE, 
(General return code completed successfully. was issued to 0 Additional 0 Additional FDBK2= based macros INQUI RE, INTRPRET, 
=0) For some macros (see obtain a logon informa- informa- Additional OPNDST, RECEIVE, 

right-most column), message, and tion return tion return information and SIMLOGON 
Register 0 contains add- there was code code return code macros can be complet-
itional information. none. ed normally with special 

(LE RAD-SYNAD conditions present. If 
not entered) these conditions are 

meaningful to the appli-
cation program, check 
Register 0 or FDBK2. 
These conditions are 
explained after Fig. C-6. 

Abnormal Completion 
::s e: 
c-t-o· 

(General return code 
= 4), 

::s 
!;I) Special Condition The terminal has re- An exception Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=4, OPNDST, Take whatever action is 
> 

~ 
"t:$ 
"t:$ 

'1:1 t=: 
g (') 

Pl 

~ 
cr' 
~ 

0 0' 

~ 
1-1 
(j 

~ 
0 
S 

= "t:$ 

~ 
~ 
c-t-

~ o· 
v.> ::s 
0' ° ... ....., 

~ 
Cf) 

'< 
~ 

::s 

= 
(') 

~ ~ 
(Tl 0 
j:l.. ::s 
s:: 0 

~ 
~I 

!;I) 

a :;tJ 
v.> (t> 

.0 
~ 

(Recovery action turned a special cond- message has 4 4 Set by SYNAD FDBK2= DO, READ, appropriate for the 
return code = 4) ition indicator for a been received. exit-routine special WRITE, FDBK2 indicator. 

request that would condition SEND, and These indicators are 
otherwise have been indicator RECEIVE explained after Fig. C-6. 
completed normally. 

Retry Appropriate VTAM cannot com- A temporary Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=8, All RPL- Issue an EXECRPL 
(Recovery action plete the request be- storage 4 8 Set by SYNAD FDBK2= based macros macro to retry the 
return code = 8) cause of a temporary shortage has exit-routine specific request. 

condition. occurred. error 
return code. 

Data Integrity VT AM cannot com- A hardware Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=12, OPNDST, Take whatever action is 
Damaged plete the request. Either error occurred 4 12 Set by SYNAD FDBK2= CHANGE, appropriate to the 
(Recovery action the data itself has been during an exit-routine specific and all I/O FDBK2 return code. 
return code = 12) lost and must be resent, output oper- error macros These codes are ex-

or the output medium ation. return code plained after Fig. C-6. 
(the form in a printer, In general, the process 
for example)has been that was interrupted 
overwritten and the should be restarted. 
operation must be 

""'" 
(t> 

00 !;I) 

w c-t-
!;I) 

redone. 



- "!j 
00 OQ .j;>. 

I=! 
'"1 
CD 

Recommended 
Programmer Action 

Q Registers when Registers when RPl On lERAD, SYNAD, 
Vo 
,-., Completion SYNAD-lERAD SYNAD-LERAD feedback Applicable or after next 
'"t:I 
~ 

Condition Explanation Example not available are available fields set macros sequential instruction 
'"1 
M-

N Abnormal Completion 
0 ....., (General return code 
N 
':-' = 4), (Cont.) 

O(J 
'"1 0 

0'9 
'"1"d 
(J(D 
::r:::t 
tr1 0 
(Jl:I 
~(J 

0 
l:I 

Environment Error VT AM cannot complete VTAM not Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=16, All RPL- Take whatever action is 
(Recovery action the request. The prob- active. 4 16 Set by SYNAD FDBK2= based macros appropriate for the 
return code = 16) lem cannot be resolved exit-routine specific FDBK2 return code. 

without external error These codes are ex-
intervention. return code piained after Fig. C-6. 

In general, the terminal 
is unavailable and 

0-
::i: should either be discon-
.... 
0 nected or network oper-
l:I 
CIl ation intervention 
)-
"d 

should be requested. 

'E.. n 
~ 
0' 
(D 

0' 

Logical Error VT AM cannot complete An I/O Reg 15 Reg 0 Reg 15 Reg 0 RTNCD=20, All RPL- Obtain a program dump 
(Recovery action the request because it request is 4 20 Set by LERAD FDBK2= based macros and correct the program. 
retu rn code = 20) violates the requirements issued for a exit-routine specific 

defined in this manual. d iscon nected error 
'"1 

(J terminal. return code 
0 
9 Logical Error with VT AM cannot complete The RPL Reg 15 Reg 0 Reg 15 Reg 0 RPL not set All RPL- Obtain a program dump 
"d 
(D 
M-e 
l:I 

Invalid RPL the request because the address was 4 24 Set by LERAD and should based macros and correct the program. 
(Recovery action RPL address points to destroyed exit-routine not be 
return code = 24) an active RPL or does before the examined. 

0 ....., not point to any RPL. request was 
til 
'< 

executed. 
l:I 
(") 

~ 
0 
l:I 
0 
s:: 
CIl 

~ 
CD 

..0 
s:: 
CD 

Abnormal Completion VT AM cannot complete Reg 15 Reg 0 Reg 15 Reg 0 RPL not All RPL- Obtain a program dump 
because of a prior the request because the 32 Request 32 Request set. based macros and correct the program. 
OPEN failure (Gener- RPL points to an ACB code (see code 
al return code = 32, that has not been prop- description (LE RAD-SYNAD 
no Recovery action erly opened or that has of RPL's not entered) 
return code). been closed. REQ field) 

CIl 
M-
CIl 



Specific Error Return Codes 
(FDBK2) 

VT AM also generates a specific error return code that defines the exact type of 
error within the recovery action category. The specific error return code is placed 
by VT AM into the FDBK2 field of the RPL. 

These return codes do not occur in increments of 4; multiply them by 4 if a 
branching table is to be used. The specific error return codes are described after 
Figure C-6. 

To summarize: 

• There are 3 general return codes: 0 (normal), 4 (abnormal, LERAD or SYNAD 
not accessible to VT AM), and 32 (abnormal, failure to detect prior OPEN 
failure) . 

• There are 6 recovery action return codes that apply for abnormal completion. 
These are posted in the RTNCD field of the RPL and in register O. If LERAD or 
SYNAD are invoked, the exit-routine can return its own register 0 and 15 values 
to the next sequential instruction. 

• There are numerous specific error return codes that apply for abnormal 
completion. These are posted in the FDBK2 field. 

The return code set in the FDBK2 field is meaningful only when it is considered 
together with the recovery action return code in the R TNCD field. 

You can determine the setting of the RTNCD or FDBK2 fields with either the 
SHOWCB or TESTCB macro instructions. For example: 

SHOWCB AM=VTAM,RPL=RPLl,FIELDS=(RTNCD,FDBK2), 
AREA=WORKAREA,LENGTH=8 

Since both RTNCD and FDBK2 have been specified in the FIELDS operand, both 
fields will be copied into WORKAREA. Note that WORKAREA is 8 bytes long. 
SHOWCB right-justifies each field in the fullword that you supply, and sets the first 
3 bytes to O. Since two fields are being used in this example, a 2-fullword work-area 
is required. 

A TESTCB macro instruction might look like this: 

TESTCB AM=VTAM,RPL=RPLl,RTNCD=12 

The feedback fields must be tested serially, since TESTCB works only with one 
control block field at a time. Thus another TESTCB macro instruction would be 
required to test the contents of the FDBK2 field. 

Figure C-6 shows the RTNCD-FDBK2 combinations that are valid for a given macro 
instruction. Only the RPL-based macro instructions are included, since feedback 
posting applies only to RPL-based macro instructions. CHECK and EXECRPL are 
not shown because all of the indicated RTNCD-FDBK2 combinations are possible 
upon return from them. 

Although specific error return codes apply only when RTNCD contains a nonzero 
recovery action code, this figure includes some FDBK2 values for RTNCD=O. These 
are additional information codes that apply to certain normally-completing 
requests. These codes are explained in the text follOWing Figure C-6. 

The horizontal lines in Figure C-6 do not imply any logical grouping; they have 
been inserted simply for legibility. 

Appendix C: Return Codes for RPVBased Macros 185 



186 

~~~C?A;.o.JC.;;o~~~c?~(J,?e:; 
8-~~c)'~~~Q~~r§~~~~~

RTNCD FDBK2

0 (X'OO') x x x x x x x x x x x x x x x X
1 (X'Ol') x x
2 (X'02') x x

o (X'OO') ~
5 (X'05') X X
6 (X'06') X
7 (X'OT) x
8 (X'08') X

, 9 (X'09') X

4 (X'04'){
0 (X'OO') x X
1 (X'Ol') x x X
2 (X'02') x x X
3 (X'03') X
4 (X'04') x x

8 (X'08') { 0 (X'OO') xx x x x x x x x x x x x x x x
,. 0 (X'OO') x x X

1 (X'Ol') x x X
2 (X'02') x x X
3 (X'03') x x X

4 (X'04') x x x X
5 (X'05') x x x x x X

12 (X'OC') 6 (X'06') X X X X
7 (X'OT) x x x X
8 (X'08') x x x X

10 (X'OA') x x x X
11 (X'OB') X x X X X X X X
12 (X'OC') X x X X
13 (X'OD') X
14 (X'OE') X x
15 (X'OF') X x ,
0 (X'OO') x x X
1 (X'Ol') x
2 (X'02') x
3 (X'03') x x
4 (X'04') x x x X

5 (X'05') x x x x x x x x x X
6 (X'06') x x x x x X

16 (X'10') 7 (X'OT) x x x X
8 (X'08') x x X
9 (X'09') x x x X

10 (X'OA') x x x x x X
11 (X'OB') X x X
12 (X'OC') X X X
13 (X'OD') X x X X X X X X X X X X X X X X

"-
14 (X'OE') X x X X X X X X X x xX' XX X X

Figure C-6 (Part 1 of 3). RTNCD-FDBK2 Combinations Possible for
Each Macro Instruction

~ ~~ " " 0" 0 ~W:~~ ~~ r.; ~~~rY~~~Q ~~i'~ ~ ~~ ~ ~
RTNCD FDBK2

;'
0 (X'OO') x x x x x x x x x x x x x x x X
2 (X'02') x x x x x x x x x x x x x x x X
3 (X'03') X X X X X X X X X X X X X X X X
4 (X'04') This code applies only to check.

16 (X'10') X X X X X X X X X X X X X X X X

17 (X'11') X
18 (X'12') X X X X X X X X X X X X X
19 (X'13') X X X X X X X X X X X X X X X
20 (X'14') X
21 (X'15') X

22 (X'16') X X
23 (X'17') X X
24 (X'18') X X
25 (X'19') X X
26 (X'1A') X X

27 (X'1B') X
28 (X'1C') X
29 (X'1D') X
30 (X'1E') X X X X X X X
31 (X'1 F') X

20 (X'14')

35 (X'23') X X X X X X X X X X X X X X X X
36 (X'24') X

37 (X'25') X X

39 (X'27') X
40 (X'28') X X
41 (X'29') X

42 (X'2A') X
43 (X'2B') X X
44 (X'2C') X X X
45 (X'2D') X X
46 (X'2E') X X X

47 (X'2F') X
48 (X'30') X
49 (X'31') X X
50 (X'32') X X X X X
51 (X'33') X X

.....

Figure C-6 (Part 2 of 3). RTNCD-FDBK2 Combinations Possible for
Each Macro Instruction

Appendix C: Return Codes for RPL-Based Macros 187

188

~~~~~~~o~J~~~~~~ 
otJ~~~~~Q"q;o~~~~~" 

RTNCD FDBK2 
, 

52 (X'34') X x X 
53 (X'35') X 
54 (X'36') X X 
55 (X'37') X 

57 (X'39') X X X X X 
59 (X'38') X 
60 (X'3C') X X 
64 (X'40') X x 
65 (X'41') X 

68 (X'44') X 
71 (X'47') X 
72 (X'48') X 
73 (X'49') X 
74 (X'4A') X 

75 (X'48') X 
76 (X'4C') X x 
77 (X'4D') X 
78 (X'4E') X 

20 (X'14') 79 (X'4F') X 

80 (X'50') X X 
81 (X'51 ') X X 
82 (X'52') X X X X X 
83 (X'53') XX X X 
84 (X'54') X 

85 (X'55') X X x 
I 86 (X'56') X 

87 (X'S]') X x 
88 (X'58') X X 
89 (X i 59') X X 

90 (X'5A') X X 
91 (X'58') X X 
92 (X'5C') X X 
93 (X'5D') X X X X X X X X X X X 
94 (X'5E') X 

95 (X'5F') X 
96 (X'60') X 
97 (X'61') X 
98 (X'62') X X X X X X X X X X 

" 
Figure C-6 (Part 3 of 3). RTNCD-FDBK2 Combinations Possible for 

-Each Macro Instruction 



Once you have used Figure C-6 to determine which RTNCD-FDBK2 combinations 
are possible for a particular macro instruction, refer to the return code descriptions 
below for an explanation of each RTNCD-FDBK2 combination. 

Should you detect a return code during program execution other than one 
described in these figures, you should cease attempting to communicate with the 
terminal. You may wish to use SHOWCB macro instructions to extract the contents 
of the RPL fields, and you should obtain a program dump. Save your source listings 
and any program execution output for IBM program systems representatives. 

Conditional Acceptance or Completion: With conditional completion, the RTNCD 
of X'OO' is placed in register 15 and the FDBK2 error return code is placed in 
register O. 

RTNCD 

o 
FDBK2 

o Normal completion or request accepted 

The operation has been completed normally or the request has been accepted. 

o RESET (COND) issued with I/O in progress 

You issued a conditional RESET (OPTCD=COND), and since an I/O operation for 
the terminal had already reached the data transfer stage, the I/O operation has not 
been canceled. 

o 2 Normal completion with data 

A RESET (OPTCD=COND) macro instruction was completed normally, but 
solicited data from the terminal already resides in VTAM's buffers. This data should 
be obtained with READ macro instructions. 

o 5 Input area too small 

You issued INQUIRE or INTRPRT and specified an input work area that is too 
small. VT AM has placed the required length (in bytes) in the RPL's RECLEN 
FIELD. No data has been placed in the work area. 

Obtain a work area that is at least as long as the value set in RECLEN,.place the 
length in the AREALEN field, and reissue INQUIRE or INTRPRT. 

o 6 No input available 

A RECEIVE with OPTCD=NO was issued and there was no input of the specified 
RTVPE available to satisfy the macro instruction. 

o 7 INQUIRE information not available 

You issued INQUIRE (OPTCD=LOGONMSG) to obtain a logon message, and there 
is none, you issued INQUIRE (OPTCD=TERMS) for a particular TERMINAL, 
LINE, or GROUP entry in the resource definition table, and that entry cannot be 
found, you issued INQUIRE (OPTCD=TOPLOGON) for queued logon requests, 
and there are none, or you issued INQUIRE (OPTCD=CIDXLATE) for a terminal 
that has not been connected. 

The problem may be due to an incorrectly set NAME field in the NIB, a failure on 
the part of the installation to create the entry during VTAM definition, or a VARY 
command issued by the network operator that deactivated the entry. 

o 8 OPNDST (ACQUIRE) denied-terminal in use 

You attempted to acquire a terminal; the terminal is connected to another 
application program, and so the request is rejected'. 

Appendix C: Return Codes for RPL-Based Macros 189 



190 

RTNCD FDBK2 

o 9 OPNDST (ACCEPT) denied-no logon requests 

You attempted to accept a terminal, and you indicated that your request should be 
rejected if no terminal is waiting to be accepted (OPTCD=NQ). There is no logon 
request queued for your application program, and so the request is rejected. 

Unsuccessful Acceptance or Completion: When a request is not accepted or 
completed abnormally, the RTNCD is placed in register 0 and a specific error return 
code is placed by VT AM into the FDBK2 field of the RPL. 

4 o RVI received 

The terminal responded to your output operation with an RVI (reverse interrupt) 
response. When this response is received, an error lock is set for the terminal. RVIs 
apply only to binary synchronous devices. 

4 Attention or reverse break received 

The terminal either responded to your output operation with an attention 
interruption or reverse break, or terminated its transmitted data with an attention 
interruption or reverse break. This bit is set only for 2741 Communication 
Terminals and 1050 Data Communication System Terminals. 

When the attention interruption or reverse break is detected, an error lock is set for 
the terminal. 

4 2 SENSE field set 

The RPL's SENSE field has been set because a sense/status message has been 
received from a BSC device. Near the end of this appendix there is a brief 
description of the type of information provided in the SENSE field. You must refer 
to the component description manual of each terminal for an explantion of this 
information. 

4 3 Exception condition for incoming message 

A message has been received for which an exception condition exists. The reason 
for the error is contained in the RPL's SSENSI and SSESNMI fields. All messages in 
the current chain that have already been received by the application program 
should be discarded. Issue RECEIVE macros with OPTCD=TRUNC,AREALEN=O 
until CHAIN=LAST or CONTROL=CANCEL is received. No responses should be 
sent for any element in the rest of the chain. If an exception response has not 

already been sent to an element of this chain, mOve the input sense fields to the 
output sense fields and send an exception response. 

4 4 Incoming response indicates exception 
condition 

The terminal (or some other node in the network) has sent a response indicating 
that an exception condition was detected for one of the messages the application 
program sent. The SEQNO field indicates the sequence number of the message to 
which the exception response applies. The SSENSEI and SSENSMI (or the 
USENSEI) fields indicate the reason for the error condition. 

If the message is part of the chain currently being transmitted to the terminal, the 
application program should terminate the chain by issuing a SEND with 
STYPE=REQ, CONTROL=DATA, and CHAIN=LAST or a SEND with STYPE= 
REQ and CONTROL=CANCEL to indicate where the terminal can stop discarding 



the messages it has been receiving. If chain elements beyond the one in error have 
already been sent, the SEND (POST=RESP) macros for these messages are 
completed with RTNCD=12 and FDBK2=13 ("request canceled by prior exception 
message"). If the sequence numbers need to be reset (back to the beginning of the 
chain, for example) a SESSIONC with CONTROL=STSN should be issued. Use 
SESSIONC with CONTROL=CLEAR or SEND with CONTROL=CHASE before 
resetting the sequence number. 

RTNCD 

8 

FDBK2 

o Temporary storage shortage 

VT AM is temporarily unable to secure enough storage to process the request. The 
request can be reissued (with EXECRPL, for example). 

12 (X'OC') o Error lock set 

An error lock has been set for the device that is the object of the I/O request. The 
SENSE field may contain status/sense information (if it does not, the field will be 
set to 0). 

Error locks are set by the operating system or by the communication controller's 
Network Control Program when an I/O error condition is detected that prevents 
successful completion of the operation. 

When an error lock is set for a terminal, no further I/O can be accomplished until 
the error lock is reset with a RESET macro instruction. If I/O requests are issued 
while the error lock is still set, they will remain pending until RESET is finally 
issued. 

Two forms of RESET (OPTCD=UNCOND and OPTCD=LOCK) cause the error lock 
to be reset. You may prefer to use the LOCK form, which resets the error lock 
without canceling any pending I/O requests you may have issued since the error 
lock was set, or that have been queued since the error lock was set .. 

12 (X'OC') Terminal not usable or powered-off 

This code is set when the communications controller detects either a hardware 
check for the terminal or a modem check for the terminal's modem, or when the 
dial-line disconnection occurs for a dial-in terminal. Hardware and modem checks 
are discussed in IBM 3704 and 3705 Communications Controller Principles of 
Operation, GC30-3004. In general, this return code means that the terminal is no 
longer usable and should be disconnected. 

This code is received when a basic-mode terminal (except a 3270) is polled and is 
found to be powered-off. It is received when a basic-mode or record-mode 3270 
terminal is polled and the 3271 controller to which it is attached is powered-off. If 
the 3271 controller is powered-on but the 3270 terminal i~ 'wered-off, no return 
code is returned until the terminal is powered-on. See the 3~ ,0 device-dependent 
considerations in Appendix 1. 

12 (X'OC') 2 Request canceled by test request message 

This I/O operation has been canceled because the terminal operator requested 
connection to the Teleprocessing Online Test Executive Program (TOLTEP). The 
terminal must be disconnected (CLSDST with OPTCD=RELEASE). Any further 
attempts to communicate with the terminal will be rejected by VT AM. You should 
reestablish connection with the terminal in the same manner in which the 
connection was initially established-either by acquiring the terminal or by 
accepti~g it .. 

Appendix C: Return Codes for RPL-Based Macros 191 



192 

RTNCD 

12 (X'OC') 

FDBK2 

3 Buffer now emptied 

Prior to the receipt of this relum code, VTAM's input buffers for the terminal were 
exhausted. The input request that empties the final block of data from the buffer 
receives this return code. You may now continue communicating normally with the 
terminal. Refer also to the explanation for RTNCD=12 and FDBK2=4 which 
follows. 

12 (X'OC') 4 Buffers filled 

Solicited data has exhausted VTAM's buffers. All I/O operations other than READ 
are invalid until the buffers have been emptied. To empty the buffers, reissue 
READ macro instructions until RTNCD=12 and FDBK2=3 (buffers now emptied) 
is returned; this indicates that the last block of data has been moved into the 
application program. 

It is possible'that you are soliciting too large a unit of data-for example, you are 
soliciting a transmission, but the installation expected that you would never solicit 
more than a block at a time. Even the smallest unit of data (block) may be too 
large, and the only solution is for the installation to enlarge VTAM's buffer size. 

The second general cause of this error is that you are not emptying VTAM's buffers 
at a rate approximately equal to the rate that the data is arriving. You may be 
issuing new SOLICIT requests without first verifying that you have obtained the 
last block of the previously solicited data. 

12 (X'OC') 5 NCP abended, restart successful 

While your request was being processed, the communications controller's Network 
Control Program abnomlally tenninated. It has been successfully restarted, and you 
can reissue your request and continue. All affected requests except the last one 
receive this return code (the last I/O request issued before the NCP abended 
receives a FDBK2=6 return code). 

12 (X'OC') 6 NCP abended, restart successful (final I/O 
request) 

While this request was being processed, the communications controller's NCP 
abended and was successfully restarted. This is the last I/O request to be canceled 
because of the abend. The error lock is set. Any I/O requests issued while the NCP 
is in an abend condition are queued by VTAM until the NCP is restarted. The 
application program should either (1) issue RESET (OPTCD=LOCK) to allow other 
pending I/O requests for this terminal to proceed nonnally, or (2) issue RESET 
(OPTCD=UNCOND) to cancel all other pending I/O requests so that the application 
program can reissue them again in sequence. 

12 (X'OC') 7 Connection recovery in progress 

Contact with the logical unit has been lost. If a LOS TERM exit-routine is available, 
it has been scheduled. No further communication with this terminal is possible until 
the terminal has been reconnected. Reconnection occurs automatically; the 
LOSTERM exit-routine is rescheduled when the reconnection occurs. 

12 (X'OC') 8 Logical unit restarted 

The terminal has experienced a failure but loss of contact has not occurred. 
However, the terminal has in effect been disconnected from your appHcation 



program. Issue CLSDST to complete the disconnection process. No RECEIVE 
macro instructions should be attempted prior to the disconnection. OPNDST may 
be attempted following the CLSDST. The application program is also informed of 
this condition via the LOSTERM exit-routine. 

12 (X'OC') 10 (X'OA') Request canceled by RESET or RESETSR 

This I/O operation has been canceled by a RESET or RESETSR macro instruction 
issued by another part of your application program. 

12 (X'OC') 11 (X'OB') Request canceled by CLSDST 

The I/O operation has been canceled because you disconnected the terminal after 
issuing the I/O request. CLSDST always cancels any pending I/O requests for the 
disconnected terminal, and returns this return code in the I/O requests's RPL. 

12 (X'OC') 12 (X'OC') Request canceled by clear indicator 

While the request was being processed, a clear indicator was sent to the terminal. 
This stops all data flow and cancels all pending I/O requests for the terminal. The 
clear indicator may have beerl sent by your application program (SESSIONC 
macro), or the indicator may have been sent on behalf of your application program 
by VT AM or by the network operator (VARY-deactivate command). 

12 (X'OC') 13 (X'OD') Request canceled by a prior exception message 

A series of chained messages was being sent to the terminal and an exception 
response was returned for one of them. All subsequent SENDs for that chain are 
canceled with this return code. 

12 (X'OC') 14 (X'OE') Yielded to contention 

You attempted to write to a terminal on a point-to-point contention line at the 
same time that the terminal attempted to gain control of the line. The system 
yielded the line to the terminal, and your output operation has been canceled. 

12 ('OC') 15 (X'OF') Yielded to contention (error lock set) 

Following connection, you attempted to write to a terminal on a point-to-point 
contention line at the same time that the terminal attempted to gain control of the 
line. The system yielded the line to the terminal, and your output operation has 
been canceled. The error lock is set; issue RESET before attempting further 
communication. 

., 
16 (X'10') o Terminal or application program not available 

The terminal with which you are attempting to establish connection, or the 
application program to which ·you are attempting to pass a terminal is known to 
VT AM but has been (or is in the process of being) deactivated by the network 
operator. 

If you are attempting to acquire a terminal, the terminal is unavailable, and your 
application program will have to proceed without it. If you are using a NIB list, no 
connections will have been established. If you are attempting to pass a terminal, the 
target application program is unavailable. Your action in the latter case depends on 
why you are attempting to pass the terminal to that application program. For 

Appendix C: Return Codes for RPL-Based Macros 193 



194 

example, if you are doing so in response to a terminal operator's request for 
reconnection, you will probably want to notify the terminal operator that the 
application program is unavailable. 

RTNCD 

16 (X'IO') 

FDBK2 

1 OPNDSt failed for logical unit 

The OPNDST failed because no. network path could be obtained or because the 
logical unit does not exist. The SSENSEI and SSENSMI fields are set (these fields 
are described at the end of this appendix). 

16 (X'10') 2 Application program does not accept logon 
requests 

You attempted to disconnect a terminal and pass it to another application program, 
but logon requests cannot. be queued for that application program. Logon-request 
queuing is not permitted because the application program issued SETLOGON with 
OPTCD=QUIESCE (indicating it no longer accepts logon requests or it opened its 
ACB with MACRF=NLOGON (indicating it never accepts logon requests). 

16 (X'10') 3 HALT (quick) issued 

The network, operator has issued a HALT command, initiating a qUick c1osedown. 
You cannot connect the terminal to your application program. 

A quick closed own means that you can no longer communicate with any terminals, 
and you should close the ACB. If you have a TPEND exit-routine, it was invoked. 

16 (X'10') 4 VT AM/NCP incompatibility 

The I/O macro instruction failed because of incompatibilities between the output 
of the VTAM definition process and the Network Control Program generation 
process. 

This problem can only be resolved by the installation. 

The incompatibility probably exists because of a modification and regeneration of 
the Network Control Program that was accomplished without a corresponding 
redefinition ofVTAM. 

Before you can successfully attempt I/O with the terminal, the installation must 
remove the inconsistency that resulted in this return code. The most straight­
forWard way of accomplishing this is to redefine VT AM, using the same input that 
was used to generate the current Network Control Program. 

16 (X'10') 5 Permanent channel or link failure 

Either a permanent channel failure occurred in the channel that connects VT AM to 
the communications controller or to the control unit of a locally attached 3270 
Information Display System or a permanent link failure occurred on the link that 
connects VT AM to the remotely-attached communications controller. You can no 
longer communicate with this terminal. 

16 (X'lO') 6 Automatic NCP shutdown 

The communications controller's Network Control Program has shut down for one 
of two reasons; either the network operator has manually initiated shutdown from 
the communication controller panel, or the Network Control Program did not 
receive a response from the operating system within the time limit specified during 
Network Control Program generation. You can no longer communicate with this 
terminal. 



RTNCD 

16 (X'10') 

FDBK2 

7 Request canceled by VARY command 

The I/O operation has been canceled because the network operator deactivated the 
terminal while the macro instruction was being processed. If a LOSTERM 
exit-routine is available, it has been scheduled. You can no longer communicate 
with the terminal, and you should issue CLSDST to disconnect it from your 
application program. 

16 (X'10') 8 Dial-line disconnection 

A dial-line disconnection occurred after the macro instruction began execution, but 
before the I/O operation itself was initiated. If a LOSTERM exit-routine is 
available, it has been scheduled. If data is present in VT AM buffers, READ macro 
instructions can be issued to move the data into the application program. 

If the terminal is a dial-out terminal, reissuing the I/O macro instruction may cause 
contact to be reestablished. If the terminal is a dial-in terminal, or if contact cannot 
be established for a dial-out terminal, issue CLSDST for the terminal. 

16 (X'lO') 9 Unconditional Terminate Self received 

The logical unit has sent an unconditional Terminate Self command, which is a 
request for disconnection. No further communication with the terminal is possible. 
CLSDST must be issued. 

16 (X'10') 10 (X'OA') VTAM error 

An error occurred in VTAM itself. No further attempts to connect or disconnect 
the terminal should be made. 

16 (X'10') 11 (X'OB') Dial-line disconnection (dial-out terminal) 

A dial-line disconnection occurred for a dial-out terminal while the I/O request was 
being processed. If reissuing this request does not cause contact to be reestablished, 
CLSDST should be issued for the terminal. 

Note that this return code applies to dial-in disconnections that occur while the I/G 
operation is in progress. When the dial-line disconnection occurs after the macro 
instruction begins execution but before the I/O operation is initiated-that is, while 
VTAM is waiting for a previous I/O operation to be completed-a RTNCD value of 
16 (decimal) and a FDBK2 value of 8 are returned. 

16 (X'10') 12 (X'OC'), Dial-line dsconnection (dial-in terminal) 

A dial-line disconnection occurred for a dial-in terminal while the I/O request was 
being processed. CLSDST should be issued for the terminal. 

16 (X'10') 13 (X'OD') VT AM inactive to your ACB 

The link between VT AM and your application program (ACB) that was established 
with OPEN has been broken. This may have occurred because you have elsewhere 
issued a CLOSE that has not yet completed, or it may have occurred because 
VTAM has become inactive. 

16 (X'10') 14 (X'OE') Abend for program's TCB 

An abend condition occurred for the user's task control block (TCB). The request 
was not accepted, no ECB has been posted, and no RPL exit-routine has been 
scheduled. 

Appendix C: Return Codes for RPL-Based Macros 195 



196 

RTNCD 

20 (X'14') 

FDBK2 

o VSAM request 

The RPL contains a VSAM or other non-VTAM request code. No ECB has been 
posted and no RPL exit-routine has been scheduled. 

20 (X'14') 2 Zero EXIT field 

The RPL indicates that the ECB-EXIT field is being used as an EXIT field, but the 
RPL exit-routine address in it is O. No RPL exit-routine has been scheduled. 

20 (X'14') 3 Zero ECB field 

The RPL indicates that the ECB-EXIT fieJd is being used to point to an external 
ECB, but the address in the field is O. No ECB has been posted. 

20 (X'14') 4 Inactive RPL checked 

CHECK was issued for an inactive RPL (an RPL that had been posted complete and 
for which CHECK has already been issued succesfully). All RPL-based macros must 
use an inactive" RPL. All CHECK macros, however, must use an active RPL; an RPL 
cannot be checked twice. 

20 (X'14') 16 (X'10') Control block invalid 

The RPL's ACB field does not contain the address of a valid ACB. 

This may mean that the ACB field of the RPL was incorrectly set, the ACB has 
been destroyed, or it may mean that the ACB was opened by a task other than your 
own. This return code applies only in OS/VS2. 

20 (X'14') 17 (X'll') RTYPE invalid 

A RECEIVE has been issued with the RTYPE field set to NDFSYN, NDFASY, and 
NRESP. 

20 (X'14') 18 (X'12') CLSDST in progress 

At the time this macro instruction was executed, a CLSDST request was pending 
for the terminal. The CLSDST request takes priority, and the request that caused 
this return code cannot be honored. 

20 (X'14') 19 (X'13') CID invalid 

Either the RPL's ARG field or the NIB's CID field does not contain a valid CID. 

You may have inadvertently modifIed the field or failed to set it in the first place, 
or you may have used the CID of a terminal that is no longer connected to your 
application program. 

Another possibility is that you violated the following rule: When plac.ing a CID into 
the RPL's ARG field, always use the ARG keyword-ARG=(6), for example-and 
when placing a NIB address into the RPL's NIB field, always use the NIB 
keyword-for example, NIB=(6). Since these two fields occupy the same four bytes 
in the RPL, VT AM can distinguish between a NIB address and aCID on]y through 
your use of the ARG or NIB keyword. Thus the presence of this return code could 
mean that you placed a NIB address in the RPL with the ARG keyword, and 
VT AM has rejected your "CID" as invalid. 

If this error code applies to CHANGE or CLSDST, you can reissue the macro 
instruction using the terminal's symbolic name rather than the CID. A new CID can 
be obtained by supplying the terminals's symbolic name to an INQUIRE 
(OPTCD=CIDXLA TE) macro instruction. 



RTNCD 

20 (X'14') 

FDBK2 

20 (X'14') CMD field invalid . 

DO encountered an LDO whose CMD Held does not contain a valid command code. 

Since invalid syntax (such as CMD=WRIET) specified instead of CMD=WRITE) 
would be revealed during program assembly, you either failed to set the CMD field 
before issuing DO, or you modified the CMD field incorrectly before VT AM 
processed the DO macro instruction. 

The RPL's AAREA field contains the address of the faulty LDO. If DO was 
processing a series of LDOs, no I/O for the previous LDOs has been initiated, even 
though those LDOs are valid. 

20 (X'14') 21 (X'15') WRTNRLG or WRTPRLG LDO not chained 
before READ 

You either failed to set the FLAGS field of a WRTNRLG or WRTPRLG LDO when 
you should have, or you used these LDOs with PROC=MSG, TRANS, or CONT 
instead of BLOCK. These LDOs must be command-chained to a READ LDO and 
PROC must be set to BLOCK. See the LDO macro instruction description for more 
information. .. 

20 (X'14') 22 (X'16') SOLICIT issued for an output-only terminal 

You issued SOLICIT (OPTCD=SPEC) for a terminal that the installation has 
defined as an output-only device. 

20 (X'14') 23 (X'l?') READ issued for an output-only terminal 

You issued a READ (OPTCD=SPEC) for a terminal that the installation defined as 
an output-only device. 

20 (X'14') 23 (X'18') WRITE issued for an input-only terminal 

You issued a WRITE macro instruction for a terminal that the installation has 
defined as an input-only device. 

20 (X'14') 25 (X'19') WRITE (ERASE) issued for an invalid terminal 

You issued WRITE (OPTCD=ERASE) for the wrong type of terminal. Use this type 
of WRITE only to erase the screen of a display unit of a 3270 Information Display 
System, or of a 2265 Display Station attached to a 2270 Data Communications 
Terminal. 

20 (X'14') 26 (X'lA') WRITE (EAU) issued for an invalid terminal 

You issued WRITE (OPTCD=EAU) for the wrong type of terminal Use this type of 
WRITE only to erase the unprotected portion of the display unit screen of a 3270 
Infomlation Display System. 

20 (X'14') 27 (X'lB') WRITE (CONY) issued for an output-only 
terminal 

You issued WRITE (OPTCD=CONV) for a terminal that the installation has defined 
as an output-only terminal. This is legitimate for an ordinary WRITE (OPTCD= 
NCONV), but a conversational WRITE includes an input operation. 

q 

Appendix C: Return Codes for RPL-Based Macros 197 



• 

198 

RTNCD 

20 (X'14') 

FDBK2 

28 (X'IC') WRITE (ERASE and CONY) issued 

You issued a WRITE with both the CONV option code and either the ERASE or 
EAU option codes specified. You cannot erase a screen with a conversational 
WRITE macro instruction. 

20 (X'14') 29 (X'ID') COPYLBM or COPYLBT LDO chained 

DO encountered a COPYLBM or COPYLBT LDO that had its FLAGS field set. 
You cannot set the FLAGS field of either of these LDOs (that is, you cannot 
command-chain them to othet LDOs). 

The LDO has not been processed. The RPL's AAREA field contains the address of 
the faulty LDO. If DO was processing a series of LDOs, those preceding the faulty 
LDO have been successfully processed. 

20 (X'14') 30 (X'IE') Invalid data or length 

You requested an input operation and either supplied an input work area address 
that is beyond the addressable range of your application program, or you invalidly 
indicated that the work area length is O. 

Check the work area address and work area length fields in the RPL for an incorrect 
setting. For a DO macro instruction, these are the ADDR and LEN fields. For a 
READ macro instruction, these are the AREA and AREALEN fields. Fora WRITE 
(OPTCD=CONV) macro instruction, these are the AAREA and AAREALN fields. 

20 (X'14') 31 (X'IF') LDO address invalid 

You issued a DO macro instruction, and indicated an LDO address that lies beyond 
the addressable range of the application program. Check the AREA field of DO's 
RPL; you may have incorrectly modified the field, or never set an address in it 
before DO was executed. 

20 (X'14') 3S (X'23') Request type invalid 

When an I/O macro instruction is issued, VT AM sets the REQ field in the RPL to 
indicate the type of macro instruction that is using the RPL. The presence of this 
return code indicates that you modified that code before the requested operation 
completed. To avoid this and other related errors, never modify an RPL while it is 
in use. Compare with "VSAM request" (RTNCD=20, FDBK2=0). 

20 (X'14') 36 (X'24') Invalid FLAGS field for a READ LDO 

You misused the FLAGS field of a READ LDO. The FLAGS field cannot be used 
to command-chain a READ LDO to another LDO. See the description of the 
FLAGS operand in the LDO macro instruction for more information. 

The RPL's AAREA field contains the address of the faulty LDO. 

20 (X'14') 37 (X'2S') WRITE (ERASE and BLK) issued 

You issued a WRITE (OPTCD=ERASE) macro instruction that also had the BLK 
option code specified. For a 3270 display screen, the use of BLK is never permitted 
in a WRITE macro instruction. For a 2770 display screen, the use of BLK together 
with ERASE is not permitted in the same WRITE macro instruction. 

20 (X'14') 39 (X'27') RESET option code invalid 

Before VTAM completed processing the RESET macro instruction, it discovered 
that the COND-UNCOND-LOCK option code was not properly set. Since you 



cannot incorrectly set this option code using VT AM macro instructions (the macro 
instruction would not be assembled), you have probably modified the RPL's 
OPTCD field with assembler instructions and destroyed the bit settings that 
represent COND, UNCOND, or LOCK. 

RTNCD 

20 (X'14') 

FDBK2 

40 (X'28') WRITE (BLK) issued 

You used a WRITE macro instruction (or WRITE LDO) to send data to a display 
screen of a 3270 Information Display System, but the BLK option code is set. 
When writing to a 3270 display station, you can set the BLK-LBM-LBT option code 
to either LBM or LBT, but not to BLK. 

20 (X'14') 41 (X'29') READBUF used with invalid terminal 

You used a READBUF LDO for an ineligible device. Use the READBUF LDO only 
for a display station of a 3270 Information Display System. 

20 (X'14') 42 (X'2A') COPYLBM or COPYLBT used with invalid 
terminal 

A COPYLBM or COPYLBT LDO can only be used with a 3277 display station as 
the "from" device. 

20 (X'14') 43 (X'2B') WRITE (CONV) when data expected 

A WRITE (OPTCD=CONV) was issued to a terminal from which data is already 
expected because of a previous READ, SOLICIT, or conversational WRITE 
operation. 

20 (X'14') 44 (X'2C') Output not preceded by input 

You used a RESET or WRITE macro instruction, or a WRITE LDO, for a 3735 
Programmable Buffered Terminal without first using a SOLICIT or READ 
(OPTCD=SPEC) macro instruction, or a READ LDO. 

The first I/O request directed at this type of terminal following connection must be 
a request that causes data to be solicited from the terminal. 

20 (X'14') 45 (X'2D') RESET (COND) issued-error lock set 

You issued a RESET (OPTCD=COND) macro instruction for a terminal, but an 
error lock is set for that terminal. This form of RESET cannot be used if the error 
lock is set. The UNCOND form of RESET is valid in this situation, however, and 

. the WCK form may be valid as well. See the RESET macro instruction description. 

20 (X'14') 46 (X'2E') BLOCK-MSG-TRANS-CONT invalid 

While processing a solicit request, VTM1 discovered that the BLOCK-MSG­
TRANS-CONT processing option was not properly set in the NIB when OPNDST 
was issued. You may have inadvertently modified this field, or used a processing 
option not valid for the device. See the NIB macro instruction for further 
information. 

20 (X'14') 47 (X'2F') Too many leading graphic characters 

You attempted to send too many leading graphic characters with a positive or 
negative response. 

Appendix C: Return Codes for RPL-Based Macros 199 



200 

When you use the WRTPRLG or WRTNRLG LDOs, the ADDR and LEN fields of 
the LDO must indicate the address and number of leading graphic characters to be 
sent. The maximum number that can be sent is 15; the value you placed in the LEN 
field exceeds this limit. 

The RPL's AAREA field contains the address of the invalid LDO. 

RTNCD 

20 (X'14') 

FDBK2 

48 (X'30') Invalid LEN (COPYLBM or COPYLBT LDOs) 

You failed to properly set the LEN field of a COPYLBM or COPYLBT LDO. 

When you use either of these LDOs, the ADDR field must indicate the address of a 
3-byte data area. Even though the length of this area is fixed, the LEN field must 
nevertheless be set to 3. VTAM found a value in the LEN field that was not 3. 

20 (X'14') 49 (X'31') Invalid data area 

Either all or part of the output data area lies beyond the addressable range of your 
application program. 

20 (X'14') 50 (X'32') Request invalid for specified device 

The I/O request failed because the requested operation is invalid for the particular 
type of terminal to which it is directed. The error lock has been set. 

This return code results when you violate these rules: 

When you establish NIB processing options with OPNDST or CHANGE, do not 
use a processing option tI:_at is not applicable for the particular device that is the 
object of the OPNDST or CHANGE macro instruction. Figure 6 (at the end of 
the NIB macro instruction description) shows which processing options apply to 
each type of terminal. 

Use the READ, WRITE, WRITELBM, WRITELBT, WRTHDR, WRTPRLG, and 
WRTNRLG LDOs only with a System/3 or System/370 CPU. 

20 (X'14') 51 (X'33') WRITE canceled (input data arriving) 

You attempted to send data to a terminal at the same time that data was being 
solicited from it. Normally, this is no problem because the write operation is 
suspended until the solicitation is completed. For a BSC device, however, the write 
operation is canceled unless the terminal has just sent a data block ending with an 
ETX character (that is, has just finished sending a message). 

Thus for a BSC device, the receipt of this return code indicates that when the 
WRITE was issued, the terminal was sending data that was not the last block of a 
message, and the write operation has been canceled. 

20 (X'14') 52 (X'34') First I/O request not READ or SOLICIT 

For a dial-in BSe terminal, the first I/O request following connection must be a 
SOLICIT or READ (OPTCD=SPEC) macro instruction. You have used some other 
macro instruction as your first I/O request. 

20 (X'14') 53 (X'35') Terminals not attached via same control unit 

You attempted to use the COPYLBM or COPYLBT LDO to move data between 
two 3270 terminals that are not part of the same 3270 Information Display 
System. The tenninals that are the objects of these LDOs must be connected to the 
same control unit. 



You have incorrectly specified the identities of the two terminals. The ARG field of 
the DO macro instruction's RPL must contain the CID of the "to" terminal. The 
ADDR field of the LDO must contain the address of a 3-byte data area; the first 
byte of this data area must contain a 3270 copy control character, and the 
remainder of the data area must consist of the right-most two bytes of the "from" 
terminal's CID. 

The error lock is set for the receiving terminal (the terminal whose CID is in the 
ARG field), but not for the "from" terminal. 

RTNCD 

20 (X'14') 

FDBK2 

54 (X'36') RESET (LOCK) invalid 

You attempted to use the LOCK form of RESET in a situation in which you should 
have used the UNCOND form of RESET instead. 

For an explanation of the restrictions that apply to the LOCK form of RESET, see 
the description of the RESET macro instruction (OPTCD=LOCK). 

20 (X'14') 55 (X'37') Terminal not connected 

You attempted to use the COPYLBM or COPYLBT LDO but the "from" terminal 
is not connected to your application program. More precisely, the "from" terminal 
is not connected via the ACB that you indicated in the RPL's ACB field. 

20 (X'14') 57 (X'39') Invalid PROC option 

VTAM completed an OPNDST normally but the setting you supplied in the NIB's 
field is invalid. This error is detected when the first I/O request is issued for the 
terminal. 

20 (X'14') 59 (X'3B') NFMEN-RRN response 

You attempted to send an exception response with the RESPOND field set to 
NFME and NRRN. A response must be identified as FME, RRN, or both; in effect, 
you have identified the response as neither. 

20 (X'14') 60 (X'3C') Previous scheduled output still pending 

You issued a SEND (pOST=SCHED) or SESSIONC macro instruction before a 
previous one had been completed. Only one such macro instruction can be 
outstanding at one time. After the previous macro instruction has been completed, 
this macro instruction can be reissued. 

20 (X'14') 64 (X'40') CONTROL invalid 

You modified the bits in the CONTROL field, or you used a CONTROL value for a 
SESSIONC macro instruction that was not SDT, CLEAR, or STSN. 

20 (X'14') 65 (X'41') No SDT issued 

You attempted to communicate with a terminal to which no start-data-traffic 
(SDT) indicator has been sent. Until a terminal is sent an SDT indicator, no traffic 
flow is possible; only SDT, set-and-test-sequence-numbers (STSN), ready-to-receive 
(RTR), and clear indicators can be exchanged. Every time a clear indicator is sent 
to a terminal (except a 3270), a new SDT indicator is required before traffic flow 
can resume. This error can occur on a SEND if VT AM or the network operator 
disconnects the terminal. 

Appendix D: Return Codes for RPL-Based Macros 201 



202 

RTNCD 

20 (X'14') 

FDBK2 

68 (X'44') RESPLIM exceeded 

The number of outstanding SEND (pOST=RESP) macro instructions for a terminal 
exceeds the RESPLIM value set in the terminal's NIB. 

20 (X'14') 71 (X'47') 3270 SEND option invalid 

The .RPL pointed to by your SEND macro was for a 3270 in record-mode and had 
one or more of the following invalid settings in effect: STYPE=RESP, RESPOND= 
NFME, CHAIN set to other than ONLY, or CONTROL set to other than DATA. 

If the RPL was last used for a RECEIVE for the 3270, check the RESPOND field 
first; you may have failed to reset the field following the RECENE (RECENE sets 
the RESPOND field to NEX, NFME, NRRN in this case). 

20 (X'14') 72 (X'48') Redundant clear indicator 

You attempted to send a clear indicator to the terminal but no start-data-traffic 
indicator has been sent. Since traffic flow is already stopped, the clear indicator is 
redundant. 

20 (X'14') 73 (X'49') Invalid STSN indicator 

You attempted to send a set-and-test-sequence-number (STSN) indicator to the 
terminal and set the IBSQAC and/or OBSQAC fields to some value other than SET, 
TESTSET, IGNORE, or INVALID. See Figure 12 in the SESSIONC macro 
instruction description. 

20 (X'14') 74 (X'4A') Application program name not available 

You issued an INTRPRET macro instruction; VT AM has located the appropriate 
entry in the interpret table, and found that the installation has specified a routine 
to provide the identity. That routine, however, has not been loaded. 

20 (X'14') 75 (X'4B') INTRPRET sequence invalid 

You issued an INTRPRET macro instruction but VT AM cannot locate an entry in 
the interpret table that corresponds to the sequence you provided. 

You may have inadvertently modified the sequence or the address in the RPL's 
AREA field which points to the sequence. Or, the installation may have failed to 
properly define the entry in the interpret table. 

Once your application program has been tested and debugged, and you know that 
none of the foregoing situations exists, you can assume this: the terminal operator 
or program that initiated the logon request must have passed your application 
program an invalid logon sequence. 

20 (X'14') 76 (X'4C') No terminal or application program name 

You issued INQUIRE or INTERPRET, and failed to properly provide VT AM with 
the identity of the terminal or application program: 

• INQUIRE (OPTCD=APPSTAT) was issued and the name was not that of an 
application program. 

• INQUIRE (OPTCD=BSCID) was issued .and the name was not that of a terminal 
con taining a UTERM parameter in its TERMINAL entry. 

• INQUIRE (OPTCD=TERMS) was issued and the name was not that of a cluster, 
component, terminal, line, group, local 3270, logical unit, or UTERM entry. 



• INQUIRE (OPTCD=DEVCHAR) was issued and the name is that of an 
application program. 

• INQUIRE (OPTCD=LOGONMSG) was issued and no logon requests were 
queued for the application program. 

• INQUIRE (OPTCD=LOGONMSG) was issued and the name was not that of a 
terminal, component, local 3270, or logical unit. 

• INTRPRET was issued and the name was not that of a terminal, component, or 
logical unit. 

Assuming that the installation properly defined the entry in the resource definition 
table for the terminal or application program, you have probably done one of the 
following: (1) failed to place a valid CID in the RPL's ARG field; (2) failed to place 
a valid NIB address in the RPL's NIB field, or (3) if you did set the RPL's NIB field 
correctly, you failed to set a valid symbolic name in the NIB's NAME field. 

20 (X'14') 77 (X'4D') No interpret table 

You issued an INTRPRET macro instruction, but there is no interpret table for the 
terminal. The installation may have failed to include an interpret table for this 
terminal during the VTAM definition process. 

20 (X'14') 78 (X'4E') Invalid use of a NIB list 

You attempted to accept a terminal without setting the NIB's LISTEND field to 
YES. 

When OPNDST (OPTCD=ACCEPT) is issued, the NIB pointed to by the RPLmust 
have its LISTEND field set to YES. Since this is the LISTEND setting that is 
assumed unless you specify otherwise, you must have used the LISTEND=NO 
operand when you last modified the NIB. 

20 (X'14') 79 (X'4F') ACQUIRE-ACCEPT option code invalid 

The OPNDST request failed because bits in the OPTCD field have been incorrectly 
set. The particular bits that have been incorrectly set are those that form the 
ACQUIRE-ACCEPT option code. This return code does not mean that the 
ACQUIRE option was erroneously used in place of ACCEPT, or vice versa; it means 
that neither ACCEPT nor ACQUIRE is indicated in the OPTCD field. 

Since you cannot cause the field to be incorrectly set in this manner by using 
VTAM macro instructions, you inadvertently modified the OPTCD field with 
assembler instructions. 

20 (X'14') 80 (X'SO') CONANY-CONALL option code invalid 

The OPNDST failed because the bits in the RPL's OPTCD field have been 
incorrectly set. The particular bits that have been incorrectly set are those that 
form the CONANY-CONALL option code. This return code does not mean that the 
CONANY option was erroneously used in place of CONALL, or vice versa; it means 
that neither CONALL nor CONANY is indicated in the OPTCD field. 

Since you cannot cause the field to be incorrectly set in this manner by using 
VT AM macro instructions, you may have inadvertently modified the OPTCD field 
with assembler instructions. 

20 (X'14') 81 (X'Sl') Application program never accepts 

You attempted to accept a terminal or generate a simulated logon request for a 
terminal, but logon request queuing cannot occur because you opened your ACB 
with MACRF=NLOGON. 

Appendix C: Return Codes for RPL-Based Macros 203 



204 

RTNCD 

20 (X'14') 

FDBK2 

82 (X'52') NIB invalid 

The request failed because there is no NIB at the location indicated in the RPL's 
NIB field. 

20 (X'14') 83 (X'53') Terminal or application program not found ' 

The symbolic name you supplied in the NIB's NAME field or indicated via the 
RPL's AAREA field does not have a corresponding entry in the resource definition 
table. Either you failed to correctly set the NAME field, the installation did not 
include the entry in the resource definition table during VT AM definition or the 
network operator has 110t activated the segment containing the name. If you were 
using a NIB list, no connections have been established. 

20 (X'14') 84 (X'54') Invalid terminal name 

The symbolic name you supplied in the NIB's NAME field corresponds to an entry 
in the resource definition table, but the entry is for a node with which you cannot 
establish connection-such as another application program, or the Network Control 
Program of a communications controller. The only entries you can identify in the 
NAME field for OPNDST are the names of LU, TERMINAL, COMP, or LOCAL 
entries. 

20 (X'14') 85 (X'55') OPNDST (ACQUIRE) not authorized 

You attempted to acquire a terminal (SIMLOGON or OPNDST) but the installation 
has denied you authorization to do so. 

The installation may have specified during VT AM definition that your application 
program is not authorized to acquire any terminals. If you are authorized to acquire 
terminals and you still receive this return code, this means that an installation 
authorization routine has been invoked, and has determined that you cannot 
acquire the specific terminal indicated in your request. . 

20 (X'14') 86 (X'56') Invalid MODE field 

You either specified MODE=BASIC for a logical unit or record-mode 3270, or you 
specified MODE=RECORD for a BSC, start-stop, or basic-mode 3270 terminal. 

20 (X'14') 87 (X'S7') No MODE field 

You issued an OPNDST or CHANGE macro instruction, and failed to set the NIB's 
MODE field to BASIC or RECORD. 

20 (X'14') 91 (X'5B') Invalid logon message address 

The address of the logon message that you supplied in the RPL's AREA field lies 
beyond the addressable range of your application program. 

20 (X'14') 92 (X'5C') Duplicate terminal names 

You supplied a NIB list and attempted to acquire the group of terminals 
represented in that list. VT AM found that at least two of the NIBs contain the same 
symbolic name in their NAME fields. None of the terminals have been connected to 
your application program. 

20 (X'14') 93 (X'5D') OPNDST invalid (terminal not connected) 

The terminal represented by the CID you supplied is not connected to your 
application program. 



The FDBK Field 

This return code applies to CHANGE or CLSDST (either OPTCD=PASS or 
OPTCD=RELEASE) used with a terminal's CID. 

You may have placed the wrong CID into the ARG field, or neglected to place a 
CID there at all (perhaps the field still contains a CID left over from a previous 
CLSDST request). 

RTNCD 

20 (X'14') 

FDBK2 

94 (X'5E) CLSDST (PASS) not authorized 

CLSDST (OPTCD=PASS) is a function whose use is authorized by the installation. 
You attempted to use this function, but the installation has not authorized you to 
pass terminals to other application programs. This CLSDST macro instruction 
should have been issued with RELEASE in affect, not PASS. 

20 (X'14') 95 (X'5F') CLSDST (PASS) invalid 

You attempted to disconnect a terminal that is not connected to your application 
program. This return code applies to CLSDST (OPTCD=PASS) used with a 
terminal's symbolic name. 

(CLSDST with a terminal's symbolic name is implemented by (1) placing the 
address of a NIB in the NIB field of CLSDST's RPL and (2) placing the terminal's 
symbolic name in the NAME field of that NIB.) 

20 (X'14') 96 (X'60') CLSDST (RELEASE) invalid 

You attempted to disconnecr a terminal that is not connected to your application 
program, or had no logon request queued for your application program. This return 
code applies to CLSDST (OPTCD=RELEASE) used with a terminal's symbolic 
name. 

The explanation provided for the previous return code (RTNCD value of 20 and 
FDBK2 value of95) also applies to this return code. 

20 (X'14') 97 (X'61') Invalid SETLOGON 

You issued SETLOGON but the ACB's logon request queue cannot be opened. 

Either you opened the ACB with its MACRF field set to NLOGON or you already 
issued SETLOGON (OPTCD=QUIESCE) and permanently closed the logon request 
queue. All forms of SETLOGON are thus invalid, since you are either attempting to 
open a logon request queue that cannot be opened, or you are attempting to close a 
logon request that is already closed. 

20 (X'14') 98 (X'62') Wrong mode 

You either attempted to issue a basic-mode macro for a terminal that was 
connected with MODE=RECORD, or you attempted to use a record-mode macro 
for a terminal that was connected with MODE=BASIC. See the MODE operand of 
the NIB macro instruction. 

The FDBK field is set when a READ, WRITE, 00, OJ INQUIRE (OPTC]):: 
APPST AT) macro instruction is completed successfully. 

For READ, WRITE, and DO, any combination of the bits shown below may be set 
in the FDBK field. Although you can test the FDBK field by coding FDBK=value 
on a TESTCB macro instruction, a Simpler method is available: You can code 

Appendix C: Return Codes for RPL-Based Macros 205 



206 

DATAFLG=UNSOL, EOB, EOM, EOT, LG, or SOH on a TESTCB macro 
instruction. For example: 

TESTCB RPL=RPL1,DATAFLG::::SOH 

An equal PSW condition code indicates that the corresponding bit is set on. The 
following table indicates the appropriate operand for each bit. 

You may wish to use SHOWCB to examine the FDBK field. As is true with the 
RTNCD and FDBK2 fields, SHOWCB places the FDBK field in the right-most byte 
of your fullword area, and sets the high-order three bytes to zero. Thus for 
purposes of SHOWCB, the bit positions shown below (0, 1, 2 ... 7) become bit 
positions 24, 25, 26 ... 31. 

For the INQUIRE macro instruction (OPTCD=APPSTAT), one of the values shown 
below is returned in the FDBK field. You can use either TESTCB or SHOWCB to 
determine the contents of FDBK. Note that although combinations of bits are set 
for READ, WRITE, and DO, a single numerical value is set in FDBK for INQUIRE. 

FDBK codes for READ, WRITE, and DO are as follows: 

Bit Position TESTCB Operand 

0: x... .... DATAFLG=UNSOL 

1: . x. . None 

2: .. x. DATAFLG=EOB 

3: ... x .... DATAFLG=EOM 

4: .... x. . . DATAFLG::::EOT 

Explanation 

Unsolicited input. For READ (or DO, 
with CMD=READ), this indicates that the 
data was not solicited from the terminal 
by your application program. For WRITE 
(or DO, with CMD=WRITE LDO), this 
indicates that data was received instead of 
an acknowledgment, or that leading 
graphic characters were received with the 
acknowledgment. 

Reserved. 

End of block. For a READ or conversa­
tional WRITE, this indicates that the 
input data block ended with an EOB. 
This bit is not set if overlength data is 
present (which is possible if the KEEP 
option code is in effect). This bit is set 
for the READ that obtains the last 
portion of the overlength data, however. 
If this bit is set on, you will probably 
want to next determine if the EOM 
indicator is set. 

End of message. For a READ or conversa­
tional WRITE, this indicates that the 
input data block ended with an ETX. 
This bit setting applies only to BSC 
devices. If this bit is set on, you will 
probably want to next determine if the 
EOT indicator is set. 

End of transmission. For a READ or 
conversational WRITE, this indicates that 
the last block of a transmission was 
received. The RPL's RECLEN field must 
be checked; if it is set to 0, the EOT 



arrived unaccompanied by data. If 
RECLEN contains a non-zero value, a 
block of data (of the length indicated by 
RECLEN) accompanied by an EOT was 
received. 

5: 

6: 

.x.. None Reserved. 

.. x . DATAFLG=LG Leading graphic characters received. This 
bit is set only for READ, and indicates 
that leading graphic characters have been 
received (without data). This code is only 
set on for binary synchronous terminals. 

7: ....... x DATAFLG=SOH Heading block received. For a READ, this 
indicates a heading block was received 
and placed in your input area. If RTNCD 
is set to 0 the data block associated with 
the heading block can be obtained with 
another READ macro instruction. If 
RTNCD is set to 12 (decimal), there is no 
associated data block-that is, the heading 
block arrived unacompanied by data. This 
code is only set on for binary synchro­
nous terminals. 

FDBK codes for INQUIRE are as follows: 

FDNK Value 

o 

4 

8 

C 

10 

Explanation 

Application Program active: 
The application program is accepting logon requests. 

Application program inactive: 
The application program has not yet opened its ACB. 

Application program never accepts: 
The application program never accepts logon requests. That is, 
the application program opened its ACB with MACRF= 
NLOGON specified. 

Application program temporarily not accepting: 
The application program normally accepts logon requests, but 
it has indicated that logon requests are not to be directed at it 
for the time being. That is, the application program opened its 
ACB with MACRF= LOGON specified, but has subsequently 
issued SETLOGON (OPTCD=STOP). Since the use of this type 
of SETLOGON implies a temporary closing of the logon 
request queue, you can periodically reissue INQUIRE to 
determine when the application program reopens its logon 
request queue. You will know that logon requests can again be 
directed at the application program when INQUIRE returns a 
value of 0 in FDBK. 

Application program no longer accepting: 
The application program normally accepts logon requests, but 
it has permanently closed its logon request queue. That is, it 
has issued SETLOGON (OPTCD=QUIESCE). No more logon 
requests can be directed. at the application program. Presum­
ably, it is about to close its ACB. 

Appendix C: Return Codes for RPL-Based Macros 207 



The SENSE Field 
(Basic-mode only) 

The Logical Unit Sense Fields 

208 

The SENSE field is set following READ, WRITE, and DO macro instructions when 
the device returns error status information. The first two bytes of the SENSE field 
contain the BSC status/sense information as received from a 3270 or 3740 terminal. 

The SENSE field can be tested directly with the TESTCR macro instruction, or the 
field can be extracted with the SHOWCB macro instruction or examined with 
assembler instructions. SHOWCR requires that you provide a fullword work area in 
your application program for the SENSE field. The SENSE Held contains two 
meaningful bytes of information; for SHOWCB, this information is right-justified in 
the fullword work area, and the unused portion is set to O. The specific bits that are 
set in the SENSE field are identified and explained in the component description 
manual for the particular terminal or system. The second half of the SENSE field 
(the NCP return code~) cannot be examined with SHOWell or TESTCB macro 
instructions; the RPL DSECT must be used (see Figure H-8). 

The third and fourth bytes of the SENSE field contain the response and extended 
response bytes (also called NCr return codes) that are forwarded by the NCP for 
the following terminals: 

2770 Data Communication System 
2780 Data Transmission Terminal 
3270 Information Display System (basic-mode) 
3740 Data Entry System 
3780 Data Transmission Terminal 

For a description of the NCP return codes, consult IBM 3704 nnd 3705 
Communication Controller Programmer's Reference Handbook, GY30-3012. 

When the application program or a logical unit receives an exception response or a 
logical-unH-status (LUS) indicator, the response or indicator includes information 
regarding the reason for the exception condition. There are three types of 
infomlation that describe the exception condition: 

• Sysj:em sense information 

• System sense modifier information 

• User sense information 

System sense information indicates one of five major classes of system-defined 
error. 

System sense modifier information indicates one of many specific causes of the 
error indicated by the system sense information. Like RTNCD and FDBK2, the 
system sense and system sense modifier information together form a specific type 
of error condition within a general class of error conditions. These error conditions 
are described below and in the RPL DSECT (Figure H-8). 

User sense information is used when the error condition is detected by the 
customer-written program itself. No particular codes or values are deflned by IBM 
to indicates types of errors. The node must generate its own user sense information 
that will be understood by the other node. 

These three types of sense information-system, system modifier, and user-are set 
in RPL fields. Three fields (one for each type of sense infonnation) are set by the 
application program when it sends an exception response or LUS indicator to the 
logical unit. Three other fields are set by VT A.\1 when the application program 



receives an exception response or LUS indicator from the logical unit. These are the 
names of the sL"{ fields, as they would be used on a manipulative or RPL macro 
instruction: 

Input to the 
Application Program 

Output from 
the Application 
Program 

System sense information SSESNSEI 
SSENSMI 

SSENSEO 
SSENSMO 
USENSEO 

System sense modifier information 
User sense information USESNEI 

The values that are set in the system sense and system sense modifier fields are 
fIxed pre-defined codes established by IBM. The values for the system sense field 
are as follows (the operands shown here are those used on a MODCB or TESTCB 
macro instruction): 

SSENSEI=PATH 

SSENSEI =CPM 
SSENSEO=CPM 

SSENSEI=STATE 
SSENSEO=ST ATE 

SSENSEI=FI 
SSENSEO=FI 

SSENSEI=RR 
SSENSEO=RR 

An unrecoverable PATH error occurred. The message could 
not be delivered to the intended receiver due to a physical 
problem in the network path. No recovery action is 
possible. Disconnect the terminal. 

An unrecoverable error occurred. Disconnect the terminal. 

An error occurred in the node's use of sequence numbers, 
chaining indicators, bracket indicators, or change-direction 
indicators. This error is recoverable; use clear, STSN, and 
SDT indicators. 

A Function Interpreter error occurred; the node cannot 
handle the message because the message itself is invalid. 
This error mayor may not be recoverable. 

A Request Reject error occurred; the node cannot handle 
the message because of some external condition (the 
message itself is invalid). This error is recoverable. 

The following values in the system sense modifier field define the specific type of 
error (the ope!'ands shown here are those used on a MODeB or TESTeB macro 
instruction) : 

When the system 
sense field is set to: 

SSENSEI:;P ATH 

SSENSEI =CPM 
SSENSEO=CPM 

SSENSEI =STATE 
SSENSEO=STATE 

The system sense 
modifier field 
can be set to 

Unpredictable 

Un predictab Ie 

SSENSMI=l 
SSENSMO=l 

SSENSMI=2 
SSNESMO=2 

SSENSMI=3 
SSENSMO=3 

Meaning 

A sequence number error 
occurred (the number received 
for a DFSYN message was not 1 
greater than the previous 
DFSYN message). 

A chaining error occurred. 

A bracket error OCCUlTed (such 
as an attempt to end a bracket 
before one has been started). 

Appendix C: Return Codes for RPL-Based Macros 209 



210 

SSENSEI=STATE 
SSENSEO=STATE 
(Continued) 

SSENSEI=FI 
SSENSEO=FI 

SSENSEI=RR 
SSENSEO=RR 

SSENSMI=4 
SSENSMI=4 

SSENSMI=6 
SSENSMO=6 

SSENSMI=2 
SSENSMO=2 

SSENSMI=3 
SSENSMO=3 

SSENSMI=5 
SSENSMO=5 

SSENSMI=7 
SSENSMO=7 

SSENSMI=8 
SSENSMO=8 

SSENSMI=2 
SSENSMO=2 

SSENSMI=IO 
SSENSMO=IO 

SSENSMI=17 
SSENSMO=17 

SSENSMI=19 
SSENSMO=19 

SSENSMI=20 
SSENSMO=20 

SSENSMI=25 
SSENSMO=25 

SSENSMI=27 
SSENSMO=27 

SSENSMI=28 
SSENSMO=28 

A change-direction error 
occurred. 

A DFSYN message was received 
from a logical unit that has 
previously sent a 
quiesce-completed indicator and 
has not yet responded to a 
reI e a se-q uiesce indicator. 

Length error; the message is too 
long or too short. 

The indicator in the message is 
not used by the node. 

The indicator in the message is 
used by the node, but a 
parameter modifying that 
indicator is invalid. 

The category of indicator in the 
message is not used by the node. 

The Function Management 
Header is not understood· or is 
not translatable by the node. 

Operator intervention is required 
(for example, the device may be 
temporarily in local mode, or 
forms or cards may be required.) 

The receiver has denied an 
implicit or explicit request of 
the sender. 

The current chain should be 
terminated with CHAIN=LAST 
or with a cancel indicator. 

Both nodes attempted to begin a 
bracket at the same time. The 
message to which this response 
a p p lies did not begin the 
bracket. 

Both nodes attempted to begin a 
bracket at the same time. The 
message to which this response 
applies began the bracket. 

The receiver of a 
ready-to-receive (RTR) indicator 
has nothing to send. 

The receiver of a message is not 
handling input and so has 
rejected the message. 

The indicator in the message is 
normally used by the node, but 
some external condition is 
temporarily preventing its use. 



APPENDIX D: RETURN CODES FOR MANIPULATIVE MACRO INSTRUCTIONS 

Value 

GENCB 

X 

2 X 

3 X 

4 

5 

6 

When the application program receives control from any of the manipulative macro 
instructions (GENCB, MODCB, TESTCB, or SHOWCB), register 15 is set to one of 
the values shown below. 

o The macro instruction was completed successfully. 

If the macro instruction is GENCB, and the control block (or blocks) have 
been built in dynamically allocated storage, register 1 contains the address 
of the control blocks and register 0 contains their total length (in bytes). 

4 An error occurred. A return code is placed in register 0 indicating the 
cause of the error (see Figure 0-1). 

8 An error occurred. Specifically, an attempt has been made to use the 
execute form of the macro instruction to enter a new item in the 
parameter list. (Only modifications to existing parameters lists are allowed, 
as explained in Appendix F.) Register 0 is not set. 

12 A DOS/VS system control error occurred. These errors involve the READ 
and SIZE operands of the EXEC statement used to initiate the application 
program (the EXEC statement is described in DOS/VS System Control 
Statements, GC33-5376). A return code indicating the cause of the error is 
placed in register 0 (see Figure 0-2). 

When a return code of 4 or 12 is placed in register 15, an error return code is placed 
in register O. Figures 0-1 and 0-2 explain these error return codes, and indicates 
which manipulative macro instructions are capable of returning each code. 

Applicable Macro Instructions Explanation 

MODCB SHOWCB TESTCB 

X X X Invalid request type: parameter list. When the access 
method processed the execute form, it found that the 
part of the parameter list that indicates the type of 
request (MODCB, SHOWCB, TESTCB, or GENCB) 
had been destroyed. 

X X X Invalid block type: You modified the list form's 
parameter list. When the access method processed the 
execute form, it found that the part of the parameter 
list which indicates the type of control block (ACB, 
EXIST, RPL, or NIB) had been destroyed. 

X X X Invalid keyword: You modified the list form's param-
eter list. When the access method processed the 
execute form, it found that part of the parameter list 
representing keyword types (FIELDS=, ERET=, etc.) 
had been destroyed. 

X X X Invalid block: The address specified with the ACB, 
EXIST, RPL, or NIB keyword did not indicate a 
valid ACB, EXLST, RPL, or NIB control block, 
respectively. 

X X Reserved (VSAM only) 

X X Reserved (VSAM only) 

Figure D-l (Part 1 of 2). Register 0 Returns for Manipulative Macros When Register 15 is Set to 4 

Appendix D: Return Codes for Manipulative Macros 211 



Value Applicable Macro Instructions 

GENCB MOOCB SHOWCD TESTCB 

7 X X 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

X 

X 

x 

X 

X 

X 

X 

x 

X 

X 

X 

X 

X X X 

X 

Explanation 

Field nonexistent: You attempted to modify or 
extract a field from an exit list, but the specified field 
does not exist. For example, you may have specified 
MODCB EXLST=EXLSTl,LERAD=LERADPGM in 
order to place a valid address (LERADPGM) in 
EXLSTl's LERAD field. The receipt of this retUnl 
code means that EXLSTI has no LERAD field; you 
never specified one on an EXLST or GENCB macro 
instruction. 

Insufficient main storage: There is not enough main 
storage in which to build the control block or blocks. 

Insufficient program storage: The work area length 
you indicated with the LENGTH operand was not 
large enough to build the control blocks (GENCB) or 
to hold the control block fields (SHOWCB). 

No address supplied (GENCB,MODCB): You 
attempted to generate an EXLST entry without 
specifying an address. For example, coding TPEND= 
is invalid. 

RPL active: You attempted to modify an RPL that 
was active (it must be inactive). 

ACB open: You attempted to modify an ACB after it 
had been opened (the ACB must not be opened when 
you modify it). 

Reserved (VSAM only). 

Invalid parameter list: You modified the list form's 
parameter list. When the access method processed the 
execute form, it found that the parameter list now 
indicates mutually exclusive keywords (as though you 
had, for example, specified 
BLK=RPL,ECB=ECBl,EXIT=PGM on a GENCB 
macro instruction). 

Invalid alignment: The work area in your application 
program does not begin on a fullword boundary. 

Invalid control block (access method invalid): You 
coded AM=VTAM on the macro instruction and 
included one or more parameters that are valid only 
forVSAM. 

No internal ECB: TESTCB (IO=COMPLETE) failed 
because there is no internal ECB in the RPL. 

Figure D-1. Register 0 Return Codes for Manipulative Macros When Register 15 is Set to 4 

212 



Value 

4 

8 

12 

GENCB 

X 

X 

X 

Applicable Macro Instructions 

MOOCB SHOWCB 

X X 

X X 

x X 

TESTCB 

X 

X 

X 

Explanation 

DOS/VS system control error: The SIZE operand was 
omitted from the application program's EXEC 
statement. 

DOS/VS system control error: An attempt was made 
to run in real mode. 

DOS/VS system control error: The value of the SIZE 
operand does not allow enough space for VT AM 
modules. 

Figure D-2. Register 0 Return Codes for Manipulative Macros When Register 15 is Set to 12 (DOS/VS only) 

Appendix D: Return Codes for Manipulative Macros 213 





APPENDIX E. SUMMARY OF OPERAND SPECIFICATIONS FOR THE 
MANIPULATIVE MACRO INSTRUCTIONS 

Operand 
Keyword GENCB 

ACB 

AM X 

AREA 

BLK X 

COPIES X 

ERET 

EXLST 

FIELDS 

LENGTH X 

MF X 

NIB 

RPL 

WAREA X 

The first figure in the appendix (Figure E-1) deals with all of the operands of the 
manipulative macro instructions (GENCB, MODCB, SHOWCB, and TESTCB) that 
do not involve a particular control block field. The remaining figures deal 
exclusively with the operands you use to select the control block field or fields to 
be set, moved, or tested. These figures indicate which manipulative macro 
instructions apply for each operand and the types of values that can be coded with 
each operand. 

For example, suppose you are interested in examining an ACB's OF LAGS field. 
Turning to Figure E-2, you locate the OFLAGS entry and note that TESTCB (but 
not SHOWCB) can be used to examine this field. Checking the OFLAGS entry 
further, you will note that this operand is coded in a fixed form-in this case, 
OFLAGS=OPEN. 

The "Notation Category" and "Example" columns in Figures E-2 through E-5 do 
not apply to the SHOWCB macro instruction, where the control block field name is 
always coded after the FIELDS keyword (for example, FIELDS=PASSWD). 

There are many different ways that a given operand might be coded, but the 
number of valid combinations is small. The valid coding combinations for each 
operand have been grouped under the heading "Notation Category" in Figures E-I 
through E-5. Three of these categories, called the address, quantity, and fixed value 
categories, encompass almost all of the operands. A few operands fall into 
categories identified as the name, register-indirect value and indirect value 
categories. 

Valid for Notation Category Example 
MODCB SHOWCB TESTCB 

X X X Address ACB=ACB1 

X X X Fixed Value AM=VTAM 

X Address AREA=WORKAREA 

Fixed Value BLK=RPL 

Quantity COPIES=7 

X Address ERET=ERRPGM 

X X X Address EXLST=EXLST1 

X Fixed Value FIELDS=(ARG,ECB) 

X Quantity LENGTH=132 

X X X See Appendix F MF=(E,PARMLlST) 

X X X Address NIB=NIB1 

X X X Address RPL=RPL 1 

Address WAREA=WORKAREA 

Figure E-l. Manipulative Macro Instruction Operands Exclusive of Control Block Field Operands 

Appendix E: Operand Specifications for Manipulative Macros 215 



Operand Valid for 
Keyword GENeB MODCB SHOWCB TESTCB 

Notation Category Example 

ACBLEN X X Quantity ACBLEN=(7) 

AM X Fixed Value AM=VTAM 

APPLID X X X X Address APPLI D=AR EA 

ERROR X X Quantity ERROR=13 

EXLST X X X X Address EX LST=EX LST2 

MACRF X X X Fixed Value MACRF=LOGON 

OF LAGS X Fixed Value OFLAGS=OPEN 

PASSWD X X X X Address PASSWD=PASSWD 1 

Figure E-2. Manipulative Macro Instruction Operands for ACB Fields 

Operand Valid for 
Notation Category Example 

Keyword GENCB MODCB SHOWCB TESTCS 

DFASY X X X X Address DfASY=(3) 

RESP X X X X Address RESP=RESPEXIT 

SCIP X X X X Address SCIP=(* ,SCIPADR) 

ATTN X X X X Address ATTN=ATTNRTN 

LERAD X X X X Address LERAD=LERTN 

LOGON X X X X Address LOGON= LGN RTN 

LOSTERM X X X X Address LOSTERM=(6) 

RELREQ X X X X Address RELREQ=(S,AREA 1) 

SYNAD X X X X Address SYNAD=(* ,AREA2) 

TPEND X X X X Address TPEND=(S,4(7)) 

EXLLEN X X Quantity EXLLEN=(3) 

Figure E-3. Manipulative Macro Instruction Operands for EXLST Fields 

Address 

216 

These notation categories are to be interpreted as follows: 

You can code any of the following expressions after the keyword and equal-sign: 

• Any expression that is valid for an A-type address constant. For example: 

NAME 

MOOCB 

DC 
DC 

ACB=ACBl ,APPLID=NAMEI ,AM=VT AM 

X'D7' 
CL7'INQUIRY' 



Operand Valid for 

Keyword GENCS MODCS SHOWCB TESTCS 
Notation Category Example 

AAREA X X X X Address AAREA=INAHEA 

AAREALN X X X X Quantity AAREALN=100 

ACB X X X X Address ACB=ACB1 

AREA X X X X Address AREA=(*,FLWORD) 

AREALEN X X X X Quantity AREALEN=13,2 

ARECLEN X X X X Quantity ARECLEN=(S"QUANT1 ) 

ARG X X X X Register-Indirect Value ARG=(7) 

BRACKET X X X Fixed Value BRACKET=(BB,NEB) 

BRANCH X X X Fixed Value BRANCH=YES 

CHAIN X X X Fixed Value CHAIN=LAST 

CHNGDIR X X X Fixed Value CHNGDI R=(CMD,N REQ) 

CONTROL X X X Fixed Value CONTROL=QEC 

DATAFLG X Fixed Value DATAFLG=EOM 

ECB X X X X Address ECB=FULLWORD 

EXIT X X X X Address EXIT=EXITRTN 

FDBI< X X Quantity FDBK=(4) 

FDBK2 X X Quantity FDBK2=128 

I BSQAC X X X Fixed Value I BSQAC=TESTPOS 

IBSQVAL X X X X Quantity I BSQVAL=O 

10 X Fixed Value 10=COMPLETE 

NIB X X X X Address NIB=NIB6 

OBSQAC X X X Fixed Value OBSQAC=INVALID 

OBSQVAL X X X X Quantity OBSQVAL=(4) 

OPTeD X X X Fixed Value OPTCD=(SYN"SPEC) 

POST X X X Fixed Value POST=SCHED 

RECLEN X X X X Quantity RECLEN=32 

RESPOND X X X Fixed Value RESPOND={NEX,FME) 

REQ X X Quantity REQ=VAL23 

RPLLEN X X Quantity RPLLEN=(7) 

RTNCD X X Quantity RTNCD=(* ,0(:3)) 

RTYPE X X X Fixed Value RTYPE=(NDFSYN,DFASY) 

SENSE X X Quantity SENSE=(R EG3) 

SEQNO X X X X Quantity SEQNO=(10) 

SIGDATA X X Quantity SIGDATA=32,767 

SSENSEI X Fixed Value SSENSEI=CPM 

SSENSEO X X X Fixed Value SSENSEO=ST ATE 

SSENSMI X X Quantity SSENSMI=25fj 

SSENSMO X X X X Quantity SSENSMO=(* ,0(12)) 

STYPE X X X Fixed Value STYPE=REQ 

USENSEI X X Quantity USENSE 1=40H5 

USENSEO X X X X Quantity USE NSEO=(4 ,I 

USER X X QuaRtity USER=1024 

Figure E-4. Manipulative Macro Instruction Operands for RPL Fields 

AppendixE: Operand Specifications for Manipulative Macros 217 



Operand Valid for 
Notation Category Example 

Keyword GENCB MODCB SHOWCB TESTCB 

CID X X Register-Indirect Value CID=(7) 

CON X Fixed Value CON=YES 

DEVCHAR X X Indirect Value DEVCHAR=(* ,0(5)) 

EXLST X X X X Address EXLST=(*, EXLSTADR) 

LlSTEND X X X Fixed Value LlSTEND=NO 

MODE X X X X Fixed Value MODE=RECORD 

NAME X X X X Name NAME=NYCTERM 

NIBLEN X X Quantity NIBLEN=(8) 

PROC X X X Fixed Value PROC=(EIB, ELC) 

RESPLIM X X X X Quantity RESPLlM=10 

SDT X X X Fixed Value SDT=SYSTEM 

USERFLD X X X X Quantity USERFLD=(9) 

Figure £-5. Manipulative Macro Instruction Operands for NIB Fields 

218 

e A register number or the label of an EQU instruction for the register, enclosed in 
parentheses. For example: 

L 
MODCB 

ADRNAME DC 

3,ADRNAME 
ACB=ACBl,APPLID=(3),AM=VTAM 

A(NAMEl) 

Note: This fonn is prohibited if you are using the "simple" list [onn of the 
macro instrnction (MF=L). List fonns are explained in Appendix F . 

• An expression of the form (S,expr) where expr is any expression valid for an 
S-type address constant. This form of operand specification is especially useful 
for gaining access to a control block field via a DSECT. For example, the 
program has used GENCB to build an ACB in dynamically allocated storage, and 
has placed the address of the ACB in register 5: 

APPLI 

ACBMAP 

USING 
MODCB 

DC 
DC 
DSECT 
ACB 

ACBMAP,5 
ACB=( 5),APPLID=(S,APPLl ),AM=VTAM 

X'08' 
CLS'STOKQUOT' 

Note: This fonn is prohibited if you are using the "simple" list [onn of the 
macro instrnction (MF=L). 



Quantity 

• An expression of the form (* ,expr) where expr is any expression valid for an 
S-type address constant. The address specified by expr is indirect; that is, it is 
the address of a fullword that contains the operand. For example, the program 
has determined which APPLID address is to be used, and has primed register 5 
with the appropriate displacement into APPLIST: 

APPLIST 

L 
MODCB 

EQU 
DC 
DC 

7,APPLIST(S) 
ACB=ACBl,APPLID=(*,,(7)),AM=VTAM 

* 
A(APPLl) 
A(APPL2) 

You can code any of the following expressions after the keyword and equals sign: 

• A decimal number, or an expression that you have equated to a decimal number. 
For example: 

TESTCB ACB=ACBl ,ERROR=13,AM=VT AM 

• A register number, or the label of an EQU instruction for the register number, 
enclosed in parentheses. For example: 

TESTVAL 

L 
TESTCB 

DS 

S,TESTVAL 
ACB=ACBl,ERROR=(S) 

F (TESTV AL SET DURING PROGRAM 
EXECUTION) 

Note This form is prohibited if you are using the "simple" list form of the 
macro instruction (MF=L). 

• An expression of the form (S,expr ) where expr is any expression valid for an 
S-type address constant. This form is especially useful for gaining access to a 
control block field via a DSECT. For example, the program has used GENCB to 
build an ACB in dynamically allocated storage, and has placed the address of the 
ACB in register 5: 

ACBMAP 

USING 
TESTCB 

DSECT 
ACB 

ACBMAP,S 
ACB=(S),ERROR=(S.lS2),AM=VTAM 

Note: This form is prohibited if you are using the "simple" list form of the 
macro instruction (MF=L). 

• An expression of the form (* ,expr) where expr is any expression valid for an 
S-type address constant. The address specified by expr is indirect; that is, it is 
the address of a fullword that contains the quantity for the operand. For 
example, the program has determined which ERROR value is to be tested and 
has primed register 5 with the appropriate displacement into ERRORLST: 

Appendix E: Operand Specifications for Mmripulative Macros 219 



Fixed Value 

Name 

Register·.Jndirect Value 

220 

L 
TESTCB 

ERRORLST EQU 
BADNAME DC 
BADPSWD DC 

7,ERRORLST(S) 
ACH=ACBl ,ERROR=(* ,ERRORLST(S)),i 
AM=VTAM 

* 
F'90' 
F'lS2' 

You can code only the expressions that are specified in the macro instruction 
descriptions. For example: 

GENCB BLK= ACB,MACRF=NLOGON,AM=VTAlV1 

You can code any of the following expressions: 

• One to eight EBCDIC characters. For example: 

TESTCB NIB=NIB 1 ,NA.1Y.1E=TERM0003 ,AM=VTAM 

• An expression of the form (* ,expr) as explained above. The address specified by 
expr is indirect; that is, it is the address of a doubleword containing the name. 
The name must be left-justified and padded to the right with blanks if it does 
not occupy the entire doubleword. For example: 

L 
ST 
MODCB 

NEWNAME DC 
NAMEPOOL DC 

7,NAMEPOOL 
7,NEWNAME+4 
NIB=NIBI ,NAME(* ,NEWNA.\1E),AM~=VTAM 

CLS'TERM' 
CLA'OOOl' 

You can code any of the following expressions: 

• A register number or label of an EQU instruction for the register number, 
enclosed in parentheses. For example: 

MODCB RPL=RPLl,ARG=(REGS) 

REGS EQU 5 

Note: T7zis form is prohibited if you are using the "simple" list f01m of the 
macro instrnction (MF=L). 

• An expression of the fonn (* ,expr) as explained above. The address specified by 
expr is indirect; that is, it is the address of a fullword that contains the value. 
For example: 



Indirect Value 

MOOCB 

NEWCID DS 

RPL=RPLI ,ARG=(* ,NEWCID),AM=VT AM 

F (NEWCID SET DURING PROGRAM 
EXECUTION) 

You can code only the following expression: 

• An expression of the fonn (* ,expr) as explained above. The address specified by 
expr is indirect; that is, it is the address of a fullword that contains the value. 
F or example: 

TESTCB 

DEVMASK DS 

NIB=NIB 1 ,DEVCHAR=(* ,DEVMASK), 
AM=VTAM 

D (DEVMASK SET DURING PROGRAM 
EXECUTION) 

Appendix E: Operand Specifications for Manipulative Macros 221 





APPENDIX F. LIST, GENERATE, AND EXECUTE FORMS OF THE 
MANIPULATIVE MACRO INSTRUCTIONS 

Form During Assembly 

Standard Parameter list built 
where macro appears 
in soUrce code 

"Simple" Parameter list built 
List where macro appears 

in sou rce code 

"Remote" Code assembled to 
List build parameter list at a 

location you specify 

Generate Code assembled to 
(1) build parameter list 
at a location you 
specify, and (2) enter 
the access method 

Execute Code assembled (where 
macro appears in the 
source code) to modify 
the parameter list 
whose address you 
supply 

The standard form of a manipulative macro instruction expands at assembly time 
into (1) nonexecutable code that represents the parameters you specified on the 
macro instruction, and (2) executable code that causes the access method to be 
entered when the macro instruction is executed. The nonexecutable code, called 
the parameter list, is assembled at the point in your application program where the 
macro instruction appears. 

Various nonstandard forms of the manipulative macro instructions cause the 
assembler to: 

• Build the parameter list where the macro instruction appears in your source code 
but assemble no executable code ("simple" list form) 

• Assemble code that will build the parameter list at a location of your selection 
but assemble no executable code that causes the access method to be entered 
("remote" list form) 

• Assemble code that will build the parameter list at a location of your selection 
and assemble the code that causes the access method to be entered (generate 
form) 

• Assemble code that will modify a parameter list and cause the access method to 
be entered during program execution (execute form) 

Figure F-l summarizes the actions of these various forms. It also indicates the types 
of programs that would use each form, and shows how the MF operand is used for 
each form. 

As indicated in Figure F -1, the various nonstandard forms of the manipulative 
macro instructions are designated with the MF operand. 

During Execution Useful for Coded with 

Access method entered Nonreenterable programs No M F operand 
that are not sharing or 
modifying parameter lists 

No executable code Nonreenterable programs MF=L 
(execute form required) that ~re sharing or 

modifying parameter lists 

Parameter list built, but Reenterable programs that MF=(L,address[,label] ) 
access method not are sharing or modifying 
entered (execute form parameter lists 
required) 

Parameter list built and Reenterable programs that MF=(G,address [,Iabel]) 
access method entered are not sharing or 

modifying parameter lists 

Parameter list Programs using the list MF=(E,address) 
modified and the access form 
method entered 

FIgure F-l. The Forms of the MampulatIve Macro InstructIOns 

Appendix F: Nonstandard Forms of Manipulative Macros 223 



The MF operand for the list form of any manipulative macro instruction is coded as 
follows: 

MF= {L I (L,address[ ,label] )} 

L L 
Indicates that this is the list form of the macro instruction. If you code just MF=L 
("simple" list form), the parameter list is assembled in place. If you modify the 
parameter list during program execution, your program is not reenterable. 

address 
Indicates the location where you want the parameter list to be built during program 
execution. This area must begin on a fullword boundary and i.f your program is to 
be reenterable, must be in dynamically allocated storage. Since the assembler will 
build executable code that will in turn build the parameter list, the macro 
instruction must be in the executable portion of your program-that is, not treated 
as a program constant. 

You can code this address in any of the forms of the "address" notation category 
(described in Appendix E). The notes there stating that register expressions are 
prohibited for the list form do not however apply to the MF operand; this 
restriction is true only for all the other operands of the macro instruction's list 
form. For example, MF=(L,(6)) is valid. 

label 
This is a unique name that is used as a label for an assembled EQU instruction. 
During program assembly, the assembler equates this label to the length (in bytes) 
of the parameter list that will be built during program execution. You can use this 
label to assure that you are obtaining enough dynamically allocated storage to hold 
the parameter list. 

When coding label foll(')w the same rules that apply to any label for an assembler 
instruction. 

List form example: 

LA lO,PLISTLEN OBTAIN LENGTH OF PARAMETER LIST 
GETMAIN R,LV=(lO) OBTAIN STORAGE FOR PARAMETER LIST 
LR 5,1 SAVE STORAGE ADDRESS 
TESTCB RPL=RPLI ,DATAFLG= EOM,AM=VTAM, 

MF=(L,(5),PLISTLEN) 

The MF operand for the generate form of any of the manipulative macro 
instructions is coded as follows: 

MF=(G,address[ ,label]) 

224 

G 
Indicates that this is the generate form of the macro instruction. 

address 
Indicates the location where you want the parameter list to be built during program 
execution. Presumably, this will be in dynamically allocated storage. In both 
manner of use and manner of coding, this address is identical to the address 
described above for the list form. 



Optional and Required 
Operands 

label 
Indicates the label to be used on an EQU instruction for the length of the 
parameter list. The function of the label operand and its rules for coding are 
identical to those described above for the list form. 

Generate form example: 

LA 10,PLISTLEN OBTAIN LENGTH OF PARAMETER LIST 
GETMAIN R,LV=(10) OBTAIN STORAGE FOR PARAMETER LIST 
GENCB BLK=RPL,AM=VTAM 

MF=(G ,(5),PLISTLEN) 

The MF operand for the execute form of any of the manipulative macro 
instructions is coded as follows: 

MF=(E ,address) 

E 
Indicates that this is the execute form of the macro instruction. 

address 
Indicates the location of the parameter list to be used by the access method. 

The execute form allows you to modify the parameter list between the generation 
of that parameter list and the invocation of the access method routines that use the 
parameter list. Only the generate form provides a means for you to modify the 
parameter list after it has been built. 

The optional operands you specify on the generate form of a particular macro 
instruction are converted by the assembler into code that will modify a parameter 
list during execution. This code can only modify-and not expand-the parameter 
list. If the parameter list is actually a list form (as is typically the case), never refer 
to a control block field in a generate form that you did not specify in the list form. 
If you fail to observe this rule, and thereby attempt to expand the parameter list, 
the execute form will not be processed successfully, and a return code of 8 will be 
posted in register 15. 

Execute form example: 

EFORM MODCB 

LFORM MODCB 

EXLST=EXLSTl,LERAD=(3),AM=VTAM 
MF=(E,LFORM) 

EXLST=O,LERAD=O,MF= L,AM=VT AM 

Operands that are required in the standard form of the manipulative macro 
instructions may be optional in the list, generate, or execute forms or may be 
prohibited in the execute form. The meaning of the operands, however, and the 
notation used to express them, are the same. The following assembler format tables 
indicate which operands are required and which are optional for each form of each 
manipulative macro instruction. Any operand that does not appear in an assembler 
format table for a particular form is prohibited. 

Appendix F: Nonstandard Forms of Manipulative Macros 225 



226 

Name Operation Operands 

[symbol] GENCB BLK= { ACBIEXLSTIRPLINIB } 
,AM=VTAM 

List [ , keyword=value] ... 
Form [, COPIES= {llquantity}] 

[, WAREA :;:work. area addreSS] 
, LENGTH=work area length 

, MF= { LI(L, address [, label]) } 

[symbol] GENCB BLK={ ACBIEXLSTIRPLINIB} 
,AM=VTAM 

Generate [, COPIES= { 11 quantity } ] 
Form [ , keyword=value] ... 

[ , WAREA =work area addreSs] 
, LENGTH=work area length. 

,MF=(G, address [, label]) 

[symbol] GENCB AM=VTAM 
[ , keyword=value] ... 

Execute [, COPIES= { 11 quantity } ] 
Form [ , W AREA =work area addreSS] 

, LENGTH=work area length 
,MF=(E, parameter list address) 

Figure F-2. Optional and Required Operands for the Nonstandard Forms 
ofGENCB 



Name Operation Operands 

[symbol] MODCB AM=VTAM I' ACB=acb address l List , EXLST=exit list address 
Form , RPL=rpl address 

, NIB=nib address . 
{ , field name=new value} ... 
, MF= { LI(L, address [, label])} 

[symbol] MODCB AM=VTAM 

{,ACB=aCb address } 
Generate , EXLST=exit list address 
Form , RPL=rpl address 

,NIB=nib address 
{ , field name=new value} ... 
, MF=(G, address [, label]) 

[symbol] MODCB AM=VTAM 

{' ACB=acb address l 
Execute , EXLST=exit list address 
Form , RPL=rpl address 

,NIB=nib address 
[ { , field name= new value} ... ] 
,MF=(E, parameter list address) 

Figure F-3. Optional and Required Operands for the Nonstandard Forms 
MODCB 

Appendix F: Nonstandard Forms of Manipulative Macros 227 



228 

-
Name Operation Operands 

[symbol] SHOWeB AM:::VTAM 

[l'ACB=aCb addre~ IJ List , EXLST=exit list address 
Form , RPL=rpl address 

, NIB=nib address 
I ,FIELDS= { field namel(field name, ... ) } 

, AREA =data area address 
,LENGTH=data area length 
,MF= {LI(L, address [, label])} 

[symbol] SHOWCR I AM=VTAM 

I [1' ACB=acb oodress IJ Generate , EXLST=exit list address 
Form ,RPL=rpl address 

, NIB=nib address 
, FIELDS= { field namel(field name, ... ) } 
, AREA =data area address 
,LENGTH=data area length 
, MF=(G, address [, label]) 

[symbol] SHOWCB AM=VTAM [f ACB=acb admess IJ Execute , EXLST=exit list address 
Form , RPL=rpI address 

, NIB= nib address 
[ , AREA =da ta area address] 
, MF=(E, parameter list address) 

Figure F-4. Optional and Required Operands for the Nonstandard Forms 
ofSHOWCB 

~ 



Name Operation Operands 
~-

[symbol] TESTCB AM=VTAM f ACB=acb address I 
List , EXLST=exit list address 
.Fonn ,RPL=rpl address 

, NIB=nib address 
, field name=test value 
[, ERET=error routine address] 
, MF= {L!(L, address [, label])} 

[symbol] TESTCB AM=VTAM [f ACB=~b address I] Generate , EXLST=exit list address 
Form , RPL=rpl address 

,NIB=nib address 
, field name=test value 
[, ERET=error routine address] 
, MF=( G, address [ , label] ) 

[symbol] TESTeB AM=VTAM 

I [l' ACB=acb addr~ lJ Execute , EXLST=exit list address 
Form ,RPL=rpl address ) 

,NIB=nib address 
[, field name=test value] 
[ , ERET=error routine address] 
,MF=(E, parameter list address) 

Figure F-S. Optional and Required Operands for the Nonstandard Forms 
ofTESTCB 

J 

Appendix F: Nonstandard Fonns of Manipulative Macros 229 





APPENDIX G. SUMMARY OF REGISTER USAGE 

Upon return from 
OPEN and CLOSE 
macros 

Upon return from 
RPL-based macros, 
including CHECK 

Upon return from 
GENCS 

Upon return from 
SHOWCS 

Upon return from 
MODCS or 
TESTCS 

Upon invocation 
of the LERAD or 
SYNAD exit-
routine 

Upon invocation 
of the other exit-
routine 

Register 0 

The following table shows what VT AM does with the general-purpose registers 
before it returns control to the application program at the next sequential 
instruction. It indicates which registers are left unchanged by the VT AM macro 
instructions and which ones may be modified between the timl~ the macro 
instruction is executed and control is returned to the application program. The 
table also shows the disposition of the registers when any of the exit-routines 
receives control. 

Register 1 Registers 2-12 Register 13 Register 14 Register 15 

Unpredictable Unpredictable Unmodified Unmodified 1 Unpredictable Return 
code 

2 Address of Unmodified Unmodified 1 Unpredictable 2 

RPL 

Error return Control block Unmodified Unmodified 1 Unpredictable General 
code or address 3 return 
control block code 

length 3 

Error return Unpredictable Unmodified Unmodified 1 Unpredictable General 
code return 

code 

Error return Unpredictable Unmodified Unmodified 1 Unpredictable General 

code4 return 
code 

Recovery Address of Unmodified Return Address 
action return RPL since request address of exit-
code issued routine 

Unpredictable Address of Unpredictable Return Address 
VTAM- address of exit-
supplied routine 
parameter list 

Register 13 must indicate the address of an 18-word save area when the macro instruction is executed. 

2 
If the operation completed normally, register 15 is set to O. (For some macros completing normally but with a special 
condition, register 0 is also set - - see Appendix C.) If an error occurred and the LERAD or SYNAD exit-routine has 
been invoked, registers 0 and 15 contain the values set in them by the exit-routine. If an error occurred and no LERAD 
or SYNAD exit-routine exists, VTAM sets register 15 to 4 or 32 (decimal) and places a recovery action return 
code in register O. 

3 When GENCB is used to build control blocks in dynamically allocated storage and GENCB is completed successfullv 
(register 15 set to 0), register 1 contains the address of the generated control blocks and register 0 contains the length 
of the control blocks, in bytes. If GENCB is completed unsuccessfully (register 15 set to 4), register 0 contains an 
error return code and register 1 is unpredictable. If GENCB is completed unsuccessfully (register 15 set to 8), no error 
return code is set in register O. 

4 If SHOWCB, MODCB, or TESTCB is completed unsuccessfully (with register 15 set to 4), register 0 contains an error 
return code. If the macro instruction is completed unsuccessfully (with register 15 set to 8), no error return code is set 
in register O. If the macro instruction is completed successfully (with register 15 set to 0)' no particular value is set in 
register 0 (although it may have been modified by the macro instruction). 

Figure G-l. Register Contents Upon Return of Control 

Appendix G: Register Usage 231 





C"ot:i VI. U\.,...L",I-Y7.J..;1-.a. ..I..~~U,",_ .....,_ ... ...,-_ ...... _, ..... _ ... -,J _______ _ 

APPENDIX H. CONTROL BLOCK FORMATS AND DSECTs 

The ACB, EXLST, RPL, and NIB can be initialized, modified, and examined either 
with manipulative macro instructions (GENCB, MODCB, SHOWCB, TESTCB) or 
with assembler instructions. Manipulation via assembler instructions requires access 
to the internal structure of the control block, because displacements and bit 
settings must be incorporated into the assembler instructions. However, bit settings 
and displacements are subject to change from release to release; to avoid recoding 
assembler instructions when such changes occur, a DSECT should be used. 
IBM-supplied DSECTs are provided as part of the system macro library (source 
statement library in DOS/VS, SYSl.MACLIB in OS/VS). They are described in this 
appendix. 

A DSECT is an overlay (map) containing labels that correspond to field 
displacements, bit settings, and byte values. 

A field displacement is the displacement of a field from the beginning of the 
control block, as defined by the DS (or ORG) instructions in the DSECT. A bit 
setting is an assembler EQU instruction (such as LABELl EQU X'80') that 
identifies a particular bit or bits. The label could be used as the immediate data 
byte in a TM instruction, for example. A byte value is also an assembler EQU 
instruction (such as LABEL2 EQU X'23') that identifies a particular value in a 
byte. The label could be used as the immediate data byte of a CLI instruction, for 
example. 

The general manner in which DSECTs are used (register preparation, USING 
instructions, etc.) is described in "The DSECT Instruction" in OSjVS and DOSjVS 
Assembler Language, GC33401O. 

The figures in this appendix show the format of the control blocks. They provide a 
means by which a dump of the control block can be interpreted and they make the 
DSECT descriptions that accompany them more easily understood. The following 
formats and DSECTs are described: 

Control Block 

DOS/VS ACB 
OS/VS ACB 

EXLST 

DOS(VS RPL 

OS/VS RPL 

NIB 

DSECT NAME and Operands* 

IFGACB 
IFGACB 

IFGEXLST 

IFGRPL 

TFGRPL 

ISTUSFBC 

ISTDNIB 

AM=VTAM 
AM=VTAM 

AM=VTAM 

AM-=VTAM 

AM=VTAM 

(This is a separate DSECT for the RPL's 
RTNCD, FDBK, and FDBK2 fields.) 

ISTDVCHR ** (This is a separate DSECT for the NIB's 
DEVCHAR field.) 

ISTDPROC** (This is a separate DSECT for the NIB's 
PROC field.) 

*This is what you code in your program to assemble the DSECT. 
**If the DSECT for the entire NIB is used (ISTDNIB), the DSECT for this field is 

included automatically and should not be specified. 

The format maps and the DSECT descriptions identify both the external field name 
(the declarative or manipulative macro keyword as used throughout this manual) 
and the internal field name (DSECT label) for each control block field. The DSECT 
descriptions are arranged in alphabetical order according to the external field name. 

Appendix H: Control Block Fonnats and DSECTs 233 



.L ACe VI. U,",~'-O~n:l-llSSUea Uctober 18,1974 by TNL GN27-14S0 

234 

To avoid the risk of duplicating DSECT ··labels, avoid using any label in your 
program that begins with the following characters: ACB, EXL, RPL, NIB, PRO, 
DEV, or USF. Users of these DSECTs must be very careful to set all relevant bits 
and fields. Mutually exclusive settings are indicated by indentations in the 
"Meaning" column. Related settings all appear under the same external name in 
the "Field" column. 

If you compare listings of the actual DSECTs with the DSECT descriptions 
provided here, you will note that the actual DSECTs are more extensive. The fields 
that have been eliminated here are primarily fields that are set and used by VT AM, 
not by the application program. The control block fields that you set or examine 
should be limited to those fields that are included in the DSECT descriptions in this 
manual. (For this reason, you should not use a DSECT to initialize a control block; 
use GENCB or the appropriate ACB, EXLST, RPL, or NIB macro instruction 
instead.) 

Displacement 

Dec Hex 
o 0 

4 4 

16 10 

20 14 

36 24 

48 30 

AM I (ACBAM) 

Control Block: ACB 

I ACBLEN 
(ACBLENG) 

APPLID 
(ACBAPID) 

MACRF 
(ACBMACR2) 

OFLAGS I ERROR 
(ACBOFLGS) (ACBERFLG) 

PASSWD 
(ACBPASSW) 

EXLST 
(ACBUEL) 

The names in parentheses are the labels for the ACB's DSECT (I FGACB) 

Figure H-l. The Format of the DOS/VS ACB 



Displacement 
Dec Hex 
o 0 

12 C 

32 20 

36 24 

40 28 

48 30 

72 48 

Control Block: ACB 

I ACBLEN 
(ACBLENG) 

I MACRF I (ACBMACR2) 

PASSWD 
{ACBPASSW) 

EXLST 
(ACBUEL) 

I AM 
(ACBAM) 

OFLAGS I 
(ACBOFLGS) 

ERROR I 
(ACBERFLG) 

APPLID 
(ACBAPID) 

The names in parentheses are the labels for the ACB/s DSECT (IFGACB) 

Figure H-2. The Format of the OSjVS ACB 

Appendix H: Control Block Formats and DSECTs 235 



ACB DSECT: IFGACB 

DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit settingis on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

ACBLEN ACBLENG - - ACB length 2 2 2 2 
AM ACBAM ACBVTAM X'60' AM=VTAM (after OPEN) 20 14 43 2B 
APPLID ACBAPID - - APPLID address 4 4 72 48 
ERROR ACBERFLG ACBOALR X'04' Already open (OPEN) 23 17 49 31 

X'04' Already closed (CLOSE) 
X'14' Not enough storage (OPEN) 

" 

X'24' Incorrect password (OPEN) i ACBCDSNR X'42' Some connections not released (CLOSE) 
X'46' OPEN/CLOSE not in mainline ~ 

X'48' OPEN/CLOSE not in Release 3.1 I 
OS/VS1 job step task if nonprivileged 

I 
user; OPEN/CLOSE issued and another 
task already has an open ACB if 
privileged or OS/VS2 user; CLOSE 

I issued in a task other than the task 
that issued the OPEN 

I 
ACBOANAT X'50' VTAM not active (OPEN/CLOSE) 
ACBOAHLT X'52' VTAM is halting (OPEN) 
ACBOAVFY X'54' APPLID is invalid (OPEN) 
ACBOANSN X'56' APPLID is name of non-APPL (OPEN) I 

ACBOAPAA X"58' APPL is already active (OPEN) I 
ACBOAPNM X'5A' No matching APPL found (OPEN) 
ACBOVINA X'5C' VT AM in system but inactive 

X'5E' APPLID not in requestor's space 
ACBOUNDF X'60' Undefined system error i 
ACBOAPLE X'62' APPLID length too small ! 
ACBOPWSE X'64' Password not in requestor's space i 

ACBOPWLE X'66' Password length invalid I 

ACBABNDP X'70' CLOSE rejected'; program is being 
ABENDed ! 

EXLST ACBUEL - - EXLST address i 48 30 36 24 
MACRF ACBMACR2 ACBLOGON X'08' MACRF=NLOGON i 19 13 13 D 
OFLAGS ACBOFLGS ACBOPEN X'10' OFLAGS=OPEN 21 15 48 30 
PASSWD ACBPASSW - - Password value 36 24 32 20 

Figure H-3. The DOS/VS and OS/VS ACB DSECT (IFGACB) 

236 



Displacement 

Dec Hex 

0 0 

4 4 

8 8 

12 C 

16 10 

20 14 SCIP 
attributes 

24 18 
(EXLSCIPF) 

28 1C 

32 20 

36 24 

40 28 LOSTERM 
attributes 

44 2C 
(EXLNLGNF) 

48 30 

52 34 

56 38 

60 3C 
TPEND 
attributes 

64 40 
(EXL TPNDF) 

Control Block: EXLST 

EXLLEN 
(EX~LEN2) 

SYNAD SYNAD 
attributes address 
(EXLSYNF) (EXLSYNP) 

LERAD 
attributes 
(EXLLERF) 

LERAD address 
(EXLLERP) 

~ 

SC I P add ress 
(EXLSCIPP) 

LOGON LOGON address attributes (EXLLGNP) (EXLLGNF) 
DFASY DFASY attributes address (EXLDFASF) 

RESP 
(EXLDFASP) attributes 

(EXLRESPF) 

RESP address 
(EXLRESPP) 

LOSTERM address 
(EXLNLGNP) 

RELREO RELREO address attributes (EXLRLROP) (i;XLRLROF) 

ATTN 
attributes 
(EXLATTNF) 

ATTN address 
(EXLATTNP) 

TPEND address 
(EXLTPNOP) 

The names in parentheses are the labels for the EXLST's DSECT (I FGEXLST) 

Figure H4. The Format of the DOS/VS and OS/VS EXLST 

Appendix H: Control Block Formats and DSECTs 237 



EXLST DSECT: I FGEXLST 

DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSor ORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

ATIN EXLATTNF EXLATTNS X'80' ATIN exit present 55 37 55 37 
EXLATTNP - - ATTN exit address 56 38 56 38 

DFASY EXLDFASF EXLDFASS X'80' DF ASY exit present 30 IE 30 IE 
EXLDFASP - - DF ASY exit address 31 IF 31 IF 

EXLLEN EXLLEN2 - - EXLST length 2 2 2 2 

LERAD EXLLERF EXLLERS X'80' LERAD exit present 15 F 15 F 
EXLLERP - - LERAD exit address 16 10 16 10 • 

LOGON EXLLGNF EXLLGNS X'80' LOGON exit present 25 19 25 19 
EXLLGNP - - LOGON exit address 26 lA 26 lA 

LOSTERM EXLNLGNF EXLNLGNS X'80' LOS TERM exit present 40 28 40 28 
EXLNLGNP - - LOS TERM exit address 41 29 41 29 

RELREQ EXLRLRQF EXLRLRQS X'80' RELREQ exit present 45 2D 45 2D 
EXLRLRQP - - RELREQ exit address 46 2E 46 2E 

RESP EXLRESPF EXLRESPS X'80' RESP exit present 35 23 35 23 
EXLRESPP - - RESP exit address 36 24 36 24 

I 

SCIP EXLSCIPF EXLSCIPS X'80' SCIP exit present 20 14 20 14 
EXLSCIPP - - SCIP exit address 21 15 21 15 

SYNAD EXLSYNF EXLSYNS X'80' SYNAD exit present 10 A 10 A 
EXLSYNP - - SYNAD exit address 11 B 11 B 

TPEND EXLTPNDF EXLTPNDS X'80' TPEND exit present 60 3C 60 3C 
EXLTPNDP - - TPEND exit address 61 3D 61 3D 

Figure H-S. The DOS/VS and OS/VS EXLST DSECT (IFGEXLST) 

238 



UI:iPli:l~III~IIL 

Dec Hex 
o 0 

RPLLEN 
(RPLLEN2) 

4 4 

8 8 
NIB-ARG 
(RPLARG) 

12 C 
AREA 
(RPLAREA) 

16 10 
RECLEN 
(RPLRLEN) 

20 14 
AREALEN 

24 18 
(RPLBUFL) 

ACB 
(RPLDACB) 

28 1C 
REO 
(RPLREO) 

32 20 

36 24 

40 28 

OPTCD EXIT 
attributes 

(RPLOPT1) (RPLEXTDS) 

RTNCD FDBK2 DATAFLG-
FDBK (RPLRTNCD) (RPLFDB2) (RPLFDB3) 

AAREA 
(RPLAAREA) 

44 2C 
ECB-EXIT 
(RPLECB) 

48 30 
AAREALN 
(RPLAARLN) 

52 34 
ARECLEN 
(RPLARCLN) 

56 38 ... SENSE·SIGDATA (RPLFDBK2·RPLSIGDA) .. 
SSENSEI SSENSMI USENSEI 

60 3C 
(RPLSSEI) J (RPLSSMI) 1 (RPLUSNSI) 

USER 
(RPLUSFLD) 

64 40 
OPTCD OPTCD OPTCD OPTCD 
(RPLOPT5) (RPLOPT6) (RPLOPT 7) (RPLOPT8) 

68 44 
OPTCD OPTCD OPTCD OPTCD 
(RPLOPT9) (RPLOPT10) (RPLOPT11 ) (RPLOPT12) 

72 48 

76 4C 

BRACKET· STYPE- POST-
CHNGDIR RTYPE RESPOND 
(RPLRH3) (RPLSRTYP) (RPLVTFL2) 

CHAIN CONTROL(1) CONTROL(2) CONTROL(3) 
(RPLCHN) (RPLCNTPF) (RPLCNTDC) (RPLCNTSC) 

80 50 
OBSOVAL IBSOVAL 
(RPLOBSOV) (RPLIBSOV) 

84 54 
OBSOAC I BSOAC SEONO 
(RPLOBSO) (RPLIBSO) (RPLSEONO) 

88 58 
SSENSEO SSENSMO USENSEO 
(RPLSSEO) (RPLSSMO) (RPLUSNSO) 

92 5C 
CHECK 

96 60 
(RPLACTIV) 

The names in parentheses are the labels for the RPL's DSECT (I FGRPL) 

Figure H-6. The Format of the DOS/VS RPL 

Appendix H: Control Block Formats and DSECTs 239 



240 

Displacement 
Dec Hex 

Control Block: R P L 

o 0 

4 4 

8 8 

12 C 

16 10 

20 14 

24 18 

28 1C 

32 20 

36 24 

40 28 

44 2C 

48 30 

ECB-EXIT 
(RPLECB) 

REQ 
(RPLREO) 

RPLLEN 
(RPLLEN2) 

~TNCD (~~~~BK) DATAFLG-FDBk 
(RPLRTNCD) (RPLFDB2) (RPLFDB3) 

I--::B:"-:R=-A~C::'-:K-=-:E=T:::----t--":;:SR=TTy:"7yP~pE=-E----'-'-t- CH AI N 
CHNGDIR 
(RPLRH3) (RPLSRTYP) (RPLCHN) ~ 

I-P .... OL..:.,;S;.;...T_.::.R.;..:.E.:...:.S.=..;PO~N-D-+-.d~.....;; . CONTROL (RPLCNTRL) • 

(RPLVTFL2) (RPLCNTDF) I (RPLCHTDC) , (~LCNTSC) 

ACB 
(RPLDACB) 

AREA 
(RPLAREA) 

NIB-ARG 
(RPLARG) 

OPTeD 1"-----­
(RPLOPTI) I 

RECLEN 
(RPLRLEN) 

52 34 ~.-----------------------l 
AREALEN 

56 38 

60 3C 

64 40 

68 44 

72 48 

76 4C 

80 50 

84 54 

88 58 

(RPLBUFL) 

OPTCD 
(RPLOPT5) 

OPTCD 
(RPLOPT6) 

OPTCD 
{RPLOPT7) 

OPTCD 
(RPLOPT8) 

OBSOVAL 
(RPLOBSOV) 

OBSQAC 
(RPLOBSO) 

EXIT 
attributes 
(RPLEXTDS) 

I BSOAC 
(RPLIBSO) 

CHECK 
(RPLACTIV) 

AAREA 
(RPLAAREA) 

AAREALN 
(RPLAARLN) 

ARECLEN 
(RPLARCLN) 

IBSOVAL 
(RPLlBSQV) 

SEQNO 
(RPLSEQNO) 

- SENSE-SIGDATA (RPLSIGDA-RPLFD8K2)--~ 
SSENSEI I SSENSMI I 
(RPLSSEI) (RPLSSMI) USENSEI (RPLUSNSI) 

Figure H-7 (Part 1 of 2). The Format of the OS/VS RPL 



Displacement 
Dec Hex 
92 5C 

96 60 
OPTCD I (RPLOPT9) 

100 64 ~ 

SSENSEO 1 
(RPLSSEO) . 

Control Block: RPL (Cont.) 

USER 
(RPLUSFLD) 

I OPTCD 
(RPLOPT11 ) 

I OPTCD 
(RPLOPT12) 

(RPLOSENS) 
.;,: ... 

SSENSMO J 
(RPLSSMO) USENSEO(RPLUSNSO) 

The names in parentheses are the labels for the RPL's DSECT (I FG RPL) 

Figure H-7 (Part 2 of 2). The Format of the OS/VS RPL 

Appendix H: Control Block Fonnats and DSECTs 241 



RPL DSECT: I FGRPL 

DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSor ORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

AAREA RPLAAREA - - AAREA address 40 28 76 4C 
AAREALN RPLAARLN - - AAREALEN value 48 30 80 50 
ACB RPLDACB - - ACB address 24 18 24 18 
AREA RPLAREA - - AREA address 12 C 32 20 
AREALEN RPLBUFL - - AREALEN value 20 14 52 34 
ARECLEN RPLARCLN - - ARECLEN value 52 34 84 54 

ARG-NIB RPLEXTDS RPLNIB X'04' RPLARG points to a NIB 34 22 68 44 
RPLARG - - NIB address or CID 8 8 36 24 

BRACKET RPLRH3 RPLBB X'80' BRACKET=BB 72 48 16 10 
RPLEB X'40' BRACKET=EB 

BRANCH RPLEXTDS RPLBRANC X'02' BRANCH=YES 34 22 68 44 
CHAIN RPLCHN RPLFIRST X'80' CHAIN=FIRST 76 4C 18 12 

RPLMIDLE X'40' =MIDDLE 
RPLLAST X'20' =LAST 
RPLONLY X'lO' =ONLY 

CHECK RPLEXTDS RPLEXSCH X'80' RPL exit has been entered 34 22 68 44 
RPLACTIV - X'FF' RPL is active 92 5C 69 45 
RPLECB RPLPOST X'40' Internal ECB has been posted - - 8 8 
RPLECB+2 RPLPOST X'80' Internal ECB has been posted 46 2E - -

CHNGDIR RPLRH3 RPLCMD X'20' CHNGDIR=CMD 72 48 16 10 
RPLCHREQ X'lO' CHNGDIR=REQ 

CONTROL RPLCNTDF RPLDATA X'80' CONTROL=DATA 77 4D 21 15 
(all settings RPLCNCEL X'40' =CANCEL 
mutually RPLQC X'20' =QC 
exclusive) RPLQEC X'lO' =QEC 

RPLCHASE X'08' =CHASE 
RPLRELQ X'04' =RELQ 

RPLCNTDC RPLBID X'80' =BID 78 4E 22 16 
RPLRTR X'40' =RTR 
RPLLUS X'20' =LUS 
RPLSIGNL X'lO' =SIGNAL 

RPLCNTSC RPLSDT X'80' =SDT 79 4F 23 17 
RPLCLEAR X'40' =CLEAR 
RPLSTSN X'20' =STSN 
RPLSHUTD X'lO' =SHUTD 
RPLSHUTC X'08' =SHUTC 
RPLRQR X'04' =RQR 
RPLRSHUT X'02' =RSHUTD 

ECB RPLOPTI RPLECBIN X'Ol' ECB is external to the RPL 32 20 40 28 
ECB-EXIT RPLECB - - ECB, ECB address, or EXIT address 44 2C 8 8 
EXIT RPLEXTDS RPLNEXIT X'40' No RPL exit specified 34 22 68 44 

RPLEXIT X'20' RPL exit specified 
FDBK2 RPLFDB2 FDBK2 return code 38 26 14 E 

(see Figure H-9) 
FDBK- RPLFDB3 RPLUINPT X'80' DATAFLG=UNSOL 39 27 15 F 
DATAFLG RPLREOB X'20' =EOB 

RPLREOM X'lO' =EOM 
RPLREOT X'08' =EOT 
RPLRLG X'02' =LG 
RPLRDSOH X'Ol' =SOH 

IBSQAC RPLIBSQ RPLISET X'80' IBSQAC=SET 85 55 65 41 
RPLITST X'40' =TESTSET 
RPLIRSET X'20' =RESET 
RPLIIGN X'lO' =IGNORE 
RPLIPOS X'08' =TESTPOS 
RPLINEG X'04' =TESTNEG 
RPLIINV X'02' =INVALID 

Figure H-8 (Part 1 of 4). The DOS/VS and OS/VS RPL DSECT (lFGRPL) 

242 



DSHCT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

IBSQVAL RPLIBSQV - - IBSQV AL value 82 52 68 3E 
OBSQAC RPLOBSQ RPLOSET X'80' OBSQAC=SET 84 54 64 40 

RPLOTST X'40' =TESTSET 
RPLORSET X'20' =RESET 
RPLOIGN X'lO' =IGNORE 
RPLOPOS X'08' =TESTPOS 
RPLONEG X'04' =TESTNEG 
RPLOINV X'02' =INVALID 

OBSQVAL RPLOBSQV - - OBSQVAL value 80 50 60 3C 
OPTCD RPLOPTI RPLASY X'08' OPTCD=ASY 32 20 40 28 

RPLOPT5 RPLDLGIN X'80' OPTCD=CS 64 40 56 38 
RPLPSOPf X'20' OPTCD=PASS 
RPLNERAS X'lO' OPTCD=NERASE 
RPLEAU X'08' =EAU 
RPLERACE X'04' =ERASE 
RPLNODE X'02' OPfCD=ANY 
RPLWROPT X'Ol' OPTCD=CONV 

RPLOPf6 RPLEOB X'80' OprCD=EOB 65 41 57 39 
RPLEOM X'40' =EOM 
RPLEOT X'20' =EOT 
RPLCOND X'lO' OPfCD=COND 
RPLNCOND X'08' =UNCOND 
RPLLOCK X'04' =LOCK 

RPLOPT7 RPLCNALL X'80' OPfCD=CONALL 66 42 58 3A 
RPLCNANY X'40' =CONANY 
RPLQOPf X'lO' OPfCD=Q 
RPLRLSOP X'04' OPfCD=RELRQ 

RPLOPT8 RPLODACQ X'80' OPTCD=ACQUIRE 67 43 59 3B 
RPLODACP X'40' =ACCEPT 

RPLOPf9 RPLLOGON X'80' OPfCD=LOGONMSG 68 44 96 60 
RPLDEVCH X'40' =DEVCHAR 
RPLTERMS X'20' =TERMS 
RPLCOUNT X'lO' =COUNTS 
RPLAPPST X'08' =APPSTAT 
RPLCIDE X'02' =CIDXLATE 
RPLTOPL X'Ol' :;:TOPLOGON 

RPLOPTlO RPLBSCID X'80' OPTCD=BSCID 69 45 
RPLDSPLY X'40' =DISPLAY 

RPLOPTll RPLQUIES X'80' OPfCD=QUIESCE 70 46 98 62 
RPLSTART X'40' =START 
RPLSTOP X'20' =STOP 

RPLOPT12 RPLKEEP X'40' OPfCD=KEEP 71 47 99 63 
RPLTRUNC X'20' =TRUNC 
RPLNIBTK X'lO' =NIBTK 
RPLFMHDR X'01' =FMHDR 

POST RPLVTFL2 RPLSCHED X'80' POST=SCHED 75 4B 20 14 
RECLEN RPLRLEN - - RECLEN value 16 10 48 30 
REQ RPLREQ RPLWRITE X'll' WRITE 29 lD 2 2 

RPLRESET X'12' RESET 
RPLDO X'13' DO 
RPLQUISE X'lS' SETLOGON 
RPLSMLGO X'16' SIMLOGON 
RPLOPNDS X'lT OPNDST 
RPLCHNG X'19' CHANGE 
RPLINQIR X'lA' INQUIRE 

Figure H-8 (Part 2 of 4). The DOS/VS and OS/VS RPL DSECT (IFGRPL) 

Appendix H: Control Block Formats and DSECTs 243 



DSECT DSECT Meaning (For EQU, meaning DOSjVS osjvs 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

REQ RPLREQ RPLINTPT X'Of INTkPRET 29 lD 2 2 
RPLREAD X'ID' READ 
RPLSLICT X~iE' SOLlCIT 
RPLCLOSE X'lF' CLSDST 
kFLSN1:>CD X'22' SEND 
RPLRCVCD X'23' RECEIVE 
RPLRSRCD X'24' RESETSR 
RPLSSCCD X'25' SESSIONC 

RESPOND RPLVTFL2 RPLEX X'04' RESPOND=£X 75 4B 20 14 
RP.LNFME X'02' RESPOND=NFME 
RPLRRN X'Ol' RESPOND=RRN 

RPLLEN RPLLEN2 - - RPL length 3 3 3 3 

RTNCD RPLRTNCD RPLNOERR X'OO' normal or conditional completion 37 25 13 D 

RPLCBLKE X'04' Invalid request or control block 

RPLLOGIC X'08' Logic error 

RPLPHYSC X'OC' Physical error 

RPLNGRCC X'lO' negative response to conditional 
command 

RPLSPECC X'14' special condi tion 

RPLCMDRT X'lB' command reset 
RPLPURGE X'lC' command purged 

RPLVTMNA X'20' VT AM not active 
RPLSYERR X'24' system error 

RPLDEVDC X'28' device disconnected 

RPLLIMEX X'2C' NIB RESPLIM exceeded 
RPLEXRQ X'30' exception request received 

RPLEXRS X'34' exception response received 

RPLNOIN X'38' no input available 

RTYPE RPLSRTYP RPLRRESP X'08' RTYPE=RESP 73 49 17 11 

RPLNFSYN X'04' RTYPE=NDFSYN 
RPLDFASY X'02' RTYPE=DFASY 

SENSE RPLFDBK2 - - BASIC mode input sense (BSC SIS) 56 38 88 58 
RPLFDBK2+2 - - NCP return codes (2 bytes) 58 3A 90 SA 

SEQNO RPLSEQNO - - SEQNO value 86 56 66 42 

SIGDATA RPLSIGDA - - CONTROV=SIGNAL 56 38 88 58 

SSENSEI RPLSSEI RPLPATHI X'80' SSENSEI=PA TH 56 38 88 . 58 
RPLCPMI X'40' =CPM 

RPLSTATI X'20' =STATE 

RPLFII X'lO' =FI 

RPLRRI X'OS' =RR 

SSENSEO RPLSSEO RPLCPMO X'40' SSENSEO=CPM 88 58 100 64 

RPLSTATO X'20' =STATE 

RPLFIO X'lO' =FI 

RPLRRO X'OS' =RR 

SSENSMI RPLSSMI System sense modifier value 57 39 89 59 

SSENSMO RPLSSMO System sense modifier value (outgoing) 89 59 101 65 

Figure H-8 (part 3 of 4). The DOS/VS and OS/VS RPL DSECT (IFGRPL) 

244 



DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

RR RPLSMRIX X'lB' Receiver in transmit mode 
RPLSMFNX X'lC' Function not executable 

STYPE RPLSRTYP RPLSRESP X'80' STYPE=RESP 73 49 17 11 
USENSEI RPLUSNSI - - USENSEI value 58 3A 90 SA 
USENSEO RPLUSNSO - - USENSEO value 90 SA 102 66 
USER RPLUSFLD - - USER value 60 3C 92 5C 

Figure H-8 (Part 4 of 4). The DOS/VS and OS/VS RPL DSECT (IFGRPL) 

Appendix H: Control Block Fonnats and DSECTs 245 



RTNCD-FDBK-FDBK2DSECT: ISTUSFBC 

DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

The following byte values apply to the 
RTNCD field (RPLRTNCD in the 
IFGRPL DSECT): 

USFAOK X'OO' Normal or conditional completion 
USFXORDC X'04' Extraordinary completion 
USFRESSU X'08' Retriable-Reissue 
USFDAMGE X'OC' Damage 
USFENVER X'lO' Environment error I 

USFLOGIC X'l4' User logic error 
USFRLGIC X'l8' (Should not occur) 

The following byte values apply to the 
FDBK2 field (RPLFDBK2 in the 
IFGRPL DSECT) when RTNCD is set 
to X'OO': 

USFAOOK X'OO' Normal completion 
USFRCWNP X'Ol' RESET (COND) issued with I/O in 

progress 
USFRCD~R X'02' Normal completion with data 
USFYTCTN X'03' Yielded to contention 
USFYTCTL X'04' Yielded to contention, error lock set 
USFATSFI X'OS' Input area too small 
USFNOIN X'06' No input available 
USFIIINA X'OT INQUIRE information not available 
USFDSTIV X'08' Terminal in use 
USFIVLGFA X'09' No logon requests 

The following byte values apply when 
RTNCD is set to X'04': 

USFRVIRC X'OO' RVI received 
USFATNRC X'Ol' A ttention or reverse break received 
USFBSCSM X'02' SENSE field set 
USFEXRQ X'03' Exception condition for incoming 

message 
USFEXRS X'04' Incoming response indicates exception 

condition 

The following byte value applies when 
R TNCD is set to X'08'; 

USFSTALF X'OO' Temporary storage shortage 

The following byte values apply when 
RTNCD is set to X'OC': 

USFIOEDU X'OO' Error lock set 
USFDVUNS X'Ol' Terminal not usable 
USFUNTRM X'02' Request canceled by TRM 
USFBTHEX X'03' Buffers now emptied 
USFBTEOR X'04' Buffers filled 
USFNCPAO X'OS' NCP abended, restart successful 
USFLIORP X'06' NCP abended, restart successful 

(Final I/O request) 
USFRECIP X'OT Connection recovery in progress 
USFRTRAF X'08' Logical unit restarted 
USFUSRES X'OA' Request canceled by RESET or 

RESETSR 

Figure H-9 (Part 1 of 4). The RPL's R TNCD-FDBK-FDBK2 DSECT (ISTUSFBC) 

246 



DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

USFCLOCC X'OB' Request canceled by CLSDST 
USFCLRED X'OC' Request canceled by clear indicator 
USFPREXC1 X'OD' SEND canceled due to prior exception 

condition 

The following byte values apply when 
RTNCD is set to X'IO' 

USFTANAV X'OO' Terminal or APPL not available 
USFSBFAL X'OI' OPNDST failed for logical unit 
USFTAPUA X'02' APPL does not accept logon requests 
USFVTHAL X'03' HALT (quick) issued 
USFILRS X'04' VTAM/NCP incom pa tibility 
USFPCF X'OS' Permanent channel failure 
US FANS X'06' Automatic NCP shutdown 
USFVOFOC X'07' Request canceled by VARY command 
USFDISCO X'08' Dial-line disconnection 
USFUTSCR X'09' Unconditional terminate self received 
USFSYERR X'OA' VTAM error 
USFDIDOL X'OB' Dial-out disconnection 
USFDIDIL X'OC' Dial-in disconnection 
USFVTMNA X'OD' VTAM inactive for APPL 
USFABNDO X'OE' Abend for APPL's TCB 

The following byte values apply when 
RTNCD is set to X'14': 

USFNONVR X'OO' VSAM request 
USFNOTAS X'OI' Reserved 
USFEXTAZ X'02' Zero EXIT field 
USFEXTEZ X'03' Zero ECB field 
USFCRPLN X'04' Inactive RPL checked 
USFCBERR X'IO' Control block invalid 
USFRNORT X'll' R TYPE invalid for RECEIVE 
USFCLSIP X'12' CLSDST in progress 
USFCIDNG X'13' CID invalid 
USFILDOP X'14' CMD field invalid 
USFWANCR X'IS' READ LDO not chained 
USFSTOOD X'16' SOLICIT for output-only terminal 
USFRTOOD X'I7' READ for output-only terminal 
USFWTOI X'18' WRITE for input-only terminal 
USFEWNS X'19' WRITE ERASE for invalid terminal 
USFEWAU3 X'IA' WRITE EAU for invalid terminal 
USFCWTOO X'IB' WRITE CONY for output-only terminal 
USFCWB X'IC' WRITE ERASE and CONY 
USFCCCPY X'ID' COPYLBM or COPYLBT chained 
USFIDA X'IE' Invalid data or length 
USFILDOA X'IF' LDO address invalid 
USFJTOJ X'20' Reserved 
USFMTIOO X'21' Reserved 
USFRILCP X'22' Reserved 
USFCRIRT X'23' Request type invalid 
USFRIOCC X'24' Invalid FLAGS for a READ LDO 
USFEWBLK X'2S' WRITE ERASE and BLK 
USFCRSDC X'26' Reserved 
USFIREST X'27' RESET option invalid 
USFWBT32 X'28' WRITE option invalid 

1 This EQU label does not appear in DOS/VS Release 30 or OS/VS Release 3.0. Users must provide their own EQU statements. 

Figure H-9 (Part 2 of 4). The RPL's RTNCD-FDBK-FDBK2 DSECT (ISTUSFBC) 

Appendix H: Control Block Fonnats and DSECTs 247 



DSECT DSECT I Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

USFRMD32 X'29' READBUF fur non-3270 terminal 
USFCTN32 X'2A' COPY operation to non-3270 terminal 
USFWCNVR X'2B' WRITE CONY when data expected 
USFRNFT3 X'2C' Output not preceded by input 
USFRCINV X'2D' RESET COND with error lock set 
USFINVRM X'2E' BLOCK-MSG-TRANS-CONT invalid 
USFLGCNT X'2F' Too many leading graphic characters 
USFCPCNT X'30' Invalid COPYLBM or COPYLBT LEN 
USFIDAEL X'31' Invalid data area 
USFUSELE X'32' Request invalid for specified area 
USFCRNF X'33' WRITE CONY reply not possible 
USFNORD X'34' First I/O not READ or SOLICIT 
USFCPYE2 X'3S' Terminals not on same control unit 
USFRELNP X'36' RESET LOCK invalid 
USFCPYEI X'37' Terminal not connected 
USFDFIBH X'38' Reserved 
USFDFIPO X'39' Invalid PROC option 
USFQSCIE X'3A' Reserved 
USFREXAL X'3B' NFME-NRRN response 
USFSDNP X'3C' SEND SCHED still pending 
USFSCEM X'3D' Reserved 
USFSCEF X'3E' Reserved 
USFSNQC X'3F' Reserved 
USFSINVC X'40' CONTROL invalid 
USFSDFR X'41' No SDT issued 
USFSNOS X'42' Reserved 
USFSNOUT X'43' Reserved 
USFLIMEX X'44' RESPLIM exceeded 
USFSSEQ X'4S' Reserved 
USFSINVS X'46' Reserved 
USFSINVR X'47' Invalid SEND for 3270 
USFINVRT X'48' Redundant clear indicator 
USFACINV X'49' Invalid STSN indicator 
USFICNDN X'4A' APPL name not available 
USFILSIN X'4B' INTRPRET sequence invalid 
USFIICBE X'4C' No terminal or APPL name 
USFINTNA X'4D' No interpret table 
USFILNBL X'4E' Invalid use of a NIB list 
USFINVOT X'4F' ACQUIRE-ACCEPT invalid 
USFINVAP X'SO' CON ANY -CON ALL invalid 
USFAPNAC X'Sl' APPL never accepts 
USFINVNB X'S2' NIB invalid 
USFSYMNU X'S3' Terminal or APPL name not found 
USFDSTUO X'S4' Invalid terminal name 
USFNOPAU X'SS' OPNDST ACQUIRE not authorized 
USFMPINC X'S6' Invalid MODE 
USFINVMD X'S7' No MODE 
USFBHSUN X'S8' Reserved 
USFMDNAU X'S9' Reserved 
USFMBHSS X'SA' Reserved 
USFINVLA X'SB' Invalid logon message address 
USFDUPND X'SC' Duplicate terminal names 
USFDSTNO X'SD' Terminal not connected 
USFNPSAU X'SE' CLSDST PASS not authorized 
USFRSCNO X'SF' CLSDST PASS invalid 

Figure H-9 (Part 3 of 4). The RPL's RTNCD-FDBK-FDBK2 DSECT (ISTUSFBC) 

248 



DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

USFRSCNC X'60' CLSDST RELEASE invalid 
USFINVSL X'6l' SETLOGON invalid 
USFMCNVD X'62' Invalid request for MODE 

The following byte values apply to the 
FDBK field (RPLFDB3 in the IFGRPL 
DSECT): 

USFTACT X'OO' APPL is active 
USFIINA X'04' APPL is inactive 
USFINA X'OS' APPL never accepts logon requests 
USFITNA X'OC' APPL temporarily not accepting logon 

requests 
USFIQUIE X'lO' APPL no longer accepts logon requests 

Figure H-9 (Part 4 of 4). The RPL's RTNCD-FDBK-FDBK2 DSECT (lSTUSFBC) 

Appendix H: Control Block Formats and DSEcrs 249 



See ISTDVCHR 
(Figure H12) 

See ISTDPROC 
(Figure H13) 

Displacement 

Dec Hex 

o 0 

4 4 

8 8 

12 C 

20 14 

28 1C 
General 
characteristics 

32 20 
Physical 
device 

36 24 address 
~ 

PROC1 
40 28 

NIB 
attributes 

44 2C 
(NIBFLGS) 

Control Block: NIB 

NIBLEN 
(NIBLEN) 

CID 
(NIBCID) 

USERFLD 
(NIBUSER) 

NAME 
(NIBSYM) 

MODE 
(NIBMODE) 

Device Type T Model Additional 
characteristics 

DEVCHAR 
(NIBDEVCH) 

I 
PROC (NIBPROCD) .. 

~ 

PROC2 PROC3 I PROC4 

RESPLIM 
(NIBLIMIT) 

EXLST 
(NIBEXLST) 

The names in parentheses are the labels for the NIB's DSECT (lSTDNIB) 

Figure H-IO. The Format of the DOS/VS and OSjVS NIB 

250 



NIB DSECT: ISTDNIB 

DSECT DSECT Meaning (For EQU, meaning DOSjVS osjvs 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

CID NIBCID - - Communication ID 4 4 4 4 

CON NIBFLGI NIBCON X'40' CON=YES 40 28 40 28 

DEVCHAR NIBDEVCH (See ISTDVCHR, Figure H-12) 28 lC 28 lC 

EXLST NIBEXLST - - EXLST address 44 2C 44 2C 

LISTEND NIBFLGI NIBLAST X'80' LISTEND=NO 40 28 40 28 

MODE NIB MODE - - MODE value 20 14 20 14 

NAME NIBSYM - - NAME value 12 C 12 C 

NIB LEN NIB LEN - - NIB length 3 3 3 3 

PROC NIBPROCD (See ISTDPROC, Figure H-13) 36 24 36 24 

RESPLIM NIB LIM IT - - RESPLIM value 42 2A 42 2A 

SDT NIBFLGI NIBSDAPP X'20' SDT=APPL 40 28 40 28 

USERFLD NIBUSER - - USERFLD value 8 8 8 8 

Figure H-ll. The DOS/VS and OS/VS NIB DSECT (ISTDNIB) 

Appendix IL Control Block Fonnats and DSECTs 251 



UI:; V\,;HAK U::il:\,; I: I:STIJVCH R 

DSECT DSECT Meaning (For EQU, meaning 

Field DSor ORG EQU Value when bit setting is on or 
label label when byte value is set) 

DEVCHAR DEVSHCH Device scheduling characteristics: 
DEVINPUT X"80' The device is an input device; it is 

capable of sending data to the applica-
tion program. 

DEVOTPUT X'40' The device is an output device; it is 
capable of receiving data sent to it 
from the application program. 

DEVCONVR X'20' The device is equipped with the Conver-
sational Mode feature. This means that 
the device can receive data instead of 
the usual positive response to the block 
of data just sent from the device. 

DEVSUBND X'lO' The device has schedulable Sub-Nodes 
DEVSPS X'08' The device is a 3275 Display Station 

with a printer attached. 
DEVNNSPT X'04' The device is a dial-in terminal. 
DEVCCTL X'02' Additional information is contained in 

the first half of the fourth byte 
(DEVFLAGS) 

DEVRSV01 X'Ol' Reserved 

DEVTCODE The device is: 
DEV2740 X'Ol' a 2740 Communication Termin~. 

DEV2741 X'02' a 2741 Communication Terminal. 

DEVl050 X'03' a 1050 Data Communication System. 

DEVTWX X'04' a CPT-TWX Teletypewriter Terminal. 

DEVWTTY X'05' a World Trade Telegraph Station. 

DEV83B3 X'07' an AT&T 83B3 Selective Calling. 
Station. 

DEV2715 X'08' a 2715 Transmission Control Unit. 

DEV277 0 X'09' a 2770 Data Communication Terminal. 

DEV2780 X'OA' a 2780 Data Transmisssion Terminal. 

DEV3735 X'OB' a 3735 Programmable Buffered 
Terminal. 

DEV3780 X'OC' a 3780 Data Transmission Terminal. 

DEVl130 X'OD' an 1130 CPU. 

DEV1800 X'O£" a 1800. 

DEV3l25 X'll' a 370 CPU Model 125. 

DEV3135 X'12' a 370 CPU Model 135. 

DEVSYS3 X'13' a System/3 CPU. 

DEV3704 X'16' a 3704 Communications Controller. 

DEV3705 X'l7' a 3705 Communications Controller. 

DEV2980 X'18' a 2980 General Banking Terminal. 

DEV3277 X'19' a 3277 Display Station. 

DEV3284 X'IA' a 3284 Printer. 

DEV3286 X'IB' a 3286 Printer. 

DEV3275 X'le' a 3275 Display Station. 

DEV3741 X'lD' a 3741 Data Station (of a 3740). 

DEV3747 X'lE' a 3747 Data Converter (ofa 3740). 

DEVMTA X'28' a Multiple Terminal Access (MTA) 
terminal. MT A terminals are explained 
in Network Control Program Genera-

I I tion and Utilities. 

DEV2972 X'33' a 2972 Station Control Unit. 

DEV3271 X'34' a 3271 Control Unit. 

DEVCC X'35' a Cluster Controller. 

DEV3272 X'36' a 3272 Control Unit. 

DEVI052 X'64' a 1052 Printer-keyboard. 

DEVl053 X'65' a 1053 Printer. 

DEVI054 X'66' a 1054 Paper Tape Reader. 

DEV1055 X'67' a 1055 Paper Tape Punch. 

Figure H-12 (part 1 of 2). The NIB's DEVCHAR DSECT (ISTDVCHR) 

252 

DOS/VS OS/VS 
Displacement Displacement 
Dec Hex Hec Hex 

28 1C 28 lC 

29 ID 29 ID 



DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

DEVCHAR DEVTCODE The device is: 29 ID 29 ID 
DEVI056 X'68' a 1056 Card Reader. 
DEV1057 X'69' a 1057 Card Punch. 
DEVI058 X'6A' a 1058 Printing Card Punch. 
DEV1092 X'6B' a 1092 Programmed Keyboard. 
DEV1093 X'6C' a 1093 Programmed Keyboard. 
DEVLU X'6D' a Logical Unit (use record-mode). 
DEV545 X'78' a 545 Output Punch (of a 2770). 
DEV1017 X'79' a 1017 Paper Tape Reader (requires 

a 2772). 
DEV1018 X'7A' a 1018 Paper Tape Punch (requires 

a 2772). 
DEV2203 X'7B' a 2203 Printer (ofa 2770). 
DEV2213 X'7C' a 2213 Printer (of a 2770). 
DEV2265 X'7D' a 2265 Display Station. 
DEV2502 X'7E' a 2502 Card Reader. 
DEV50 X'7F' a 50 Magnetic Data Inscriber (of a 

2770). 
DEV1255 X'80' a 1255 Magnetic Character Reader. 
DEV5496 X'81' a 5496 Data Recorder. 

DEVMCODE Device model code: 30 IE 30 IE 

DEVMOD1 X'OO' Device is designated as Model 1 
DEVMOD2 X'Ol' Device is designated as Model 2 

DEVFLAGS 31 IF 31 IF 
DEVFCCTL X'FO' used if device requires connection 

control. 
DEVCBSC X'80' The device uses BSC line control. 
DEVCSSL X'40' The device uses start-stop line control, 

but has no Transmit Interrupt feature. 
DEVCRVB X'20' The device has the Transmit Interrupt 

feature; this means that the applica-
tion program can interrupt a trans-
mission from the device by issuing a 
RESET macro instruction. 

DEVCSWL X'IO' The terminal is connected via a 
switched line, rather than a leased 
line. I DEVCHAR3 X'OF' Compatibility existing code. 

DEVCATTN X'08' The terminal can interrupt the applica-

tion program (and cause its A TIN 
exit-routine to be scheduled). 

DEVCCHEK X'04' The terminal has the Checking feature. 
DEVCSTCL X'02' The terminal has the Station Control 

feature. 
DEVCSLPN X'OI' The terminal has the Selector Pen 

feature. 

'DEVPHYSA - - Physical device address e.g., 3270 32 20 32 20 
"from" terminal for COPY operation. 

Figure H··12 (Part 2 of 2). The NIB's DEVCHAR DSECT (ISTDVCHR) 

Appendix II: Control Block Fonnats and DSECTs 253 



PROC DSECT: ISTDPROC 

DSECT DSECT Meaning (For EQU, meaning DOS/VS OS/VS 
Field DSorORG EQU Value when bit setting is on or Displacement Displacement 

label label when byte value is set) Dec Hex Dec Hex 

PROC PROPROCI PROTRUNC X'40' PROC=TRUNC 36 24 36 24 
PROXPOPT X'20' =BINARY 
PRODFASY X'lO' =DFASYX 
PRORESPX X'08' =RESPX 

PROPROC2 PROERPO X'40' PROC=NERPOUT 37 25 37 25 
PROLGOT X'20' =NLGOUT 
PRONTFL X'04' =NTMFLL 
PROEMLC X'02' =ELC 
PROCFTX X'Ol' =CONFTXT 

PROPROC3 PROERPI X'40' PROC=NERPIN 38 26 38 26 
PROLGIN X'20' =NLGIN 
PRONTO X'lO' =NTIMEOUT 
PROMONIT X'04' =MONITOR 

PROPROC4 PROEIB X'80' PROC=EIB 39 27 39 27 
PROMODB X'08' =BLOCK 
PROMODM X'04' =MSG 
PROMODT X'02' =TRANS 
PROMO DC X'Ol' =CONT 

Figure H-13. The NIB's PROC DSECT (ISTDPROC) 

254 



APPENDIX I. DEVICE CONSIDERATIONS 

This appendix lists various device-dependent aspects of programming with VT AM. 
There is a separate section for each supported type of terminal. Much of this 
information can be found elsewhere in this publication; it is repeated here for your 
convenience. 

IBM 1050 Data Communication System 

If FEATURE=ATTN is specified on the TERMINAL macro instruction during 
VTAM definition, the MONITOR processing option should be s',et in the NIB used 
for connection so that an ATTN exit list routine can be used to handle the 
attention interruptions. 

If FEATURE=TOSUPPR is specified on the TERMINAL macro, the NTIMEOUT 
processing option should be set in the NIB used for connection. 

INQUIRE (OPTCD=DEVCHAR) can be issued to determine the device type in the 
1050 system only if the DEVICE operand is coded for the TERMINAL macro 
instruction during VT AM definition. 

The KEEP processing option should be set if the application program's input area is 
too small to hold the data arriving from the communications controller. (The 
amount of incoming data is affected by the TRANSFER operand of the LINE 
macro and the CUTOFF operand of the GROUP macro. 

Translation from lowercase to uppercase is not provided. 

Idle characters are inserted by the communications controller (as specified with the 
LINESIZ and CRRATE operands of the LINE macro instruction). If the Auto-fIll 
character generation feature is present, specify PROC=NTMFLL in the NIB used 
for connection; this will suppress the insertion of idle characters by the 
communica tions con troller. 

If you are using the 1050 in group mode, you will have one symbolic terminal name 
for issuing OPNDST and I/O requests. If you are using the 1050 in specific mode, 
Figure 1-1 describes the handling for different types of lines under DOS/VS and 
OS/VSl. 

When a 1050 dial-in device exceeds the negative response to polling limit, the NCP 
terminates the input operation and sets the error lock (first bilt in FDBK2 set on). 
The error lock can be reset and the input operation retried. If the error persists, 
CLSDST should be issued. 

The MSG, LGIN, LGOUT, BINARY, and EIB processing options are invalid for 
1050 devices. 

For a description of this system, see IBM 1050 Reference Digest, GA24-3020 . 

. Appendix I: Devicl~ Considerations 255 



-

iA Multi-Point Point-to-Point Switched 
System 

DOS/VS You. define the 1050 and each You define the 1050 and each You can define only the 1050 
of its components with unique of its components with unique with a unique symbolic name 
symbolic names. To connect symbolic names. To connect as a terminal. To connect with 
with a component, you with a component, you a component, you OPNDST the 
OPNDST it. OPNDST the terminal first and terminal and then supply it with 

then the component. the component selection char-
The system handles scheduling acter in the data stream. 
in connections to more than one You handling scheduling to more 
component. than one component by You handle scheduling in con-

OPNDST terminal and then nections to more than one com-
OPNDST / requests/CLSDST for ponent by varying the selection 
one component at a time. character. 

OS/VSl You define the 1050 and each You detlne the 1050 and each You can define only the 1050 
of its. components with unique of its components with unique with a unique ~ymbolic name 

symbolic names. To connect symbolic names. To connect as a terminal. To connect with 

with a component, you with a component, you a component, you OPNDST the 

OPNDSTit. OPNDST it. terminal and then supply it with 
the component selection charac-

The s,ystem handles scheduling The system handles scheduling 
ter in the data stream. 

in connections to more than one in connections to more than one You handle scheduling in COll-

component. component. nections to more than one com-
ponent by varying the selection 
character. 

Figure 1-1. Handling Input/Output for 1050 Components Under DOS/VS and OS/VSl 

256 



IBM 2740 Communication Terminal, Modell 

Translation from lowercase to, uppercase is not provided. 

If the terminal has no station control or transmit control feature, data can be 
entered by the terminal operator when the BID key is presse:d, even though no 
READ or SOLICIT is pending for the terminal. The communications controller 
ignores the data. To avoid losing the data, verify that the installation has defined 
the terminal as convirsational (CONV=YES on the TERMINAL macro ) and obtain 
all data with WRITE (OPTCD=CONV) or READ (PROC=CO:~T) macro instruc­
tions. 

If you are using the 2740 in group mode, you issue OPNDST and I/O requests for a 
single symbolic terminal name. If you are using the 2740 in specific mode, you 
issue OPNDST and I/O requests for symbolic terminal name:;; representing each 
component of the system that you are addressing in spedfic mode. If the 
installation has provided you with the capability of using the 2740 in either mode, 
you should issue OPNDST for both the symbolic terminal name representing the 
entire 2740 system, and for the symbolic terminal name of the component. (If 
more than one component is on the same point-to-point line, you should establish 
connection with only one component at a time.) 

The MSG, LGIN, LGOUT, EIB, BINARY, and MONITOR processing options are 
invalid. for 2740-1 devices. BLOCK, NERPIN, and NERPOUT are valid only if the 
terminal has the checking feature. 

For a description of the 2740, see IBM 2740 Communication Terminals Models 1 
and 2 Component Description, GA24-3403. 

Appendix. I: Device Considerations 257 



IBM 2740 Comn1unication Terminal, Model 2 

258 

Regardless of the setting of the BLK-LBM-LBT option code when WRITE is issued, 
the output operation is done as though LBT had been set (that is, an EOT is sent to 
the terminal after the terminal receives the block of data and sends a positive 
response). 

If a block of data sent to the terminal is too large to fit in the terminal's buffer, the 
application program is not notified of this fact. 

" 
If a terminal is addressed after a Bid key has been pressed, leading graphic 
characters are returned to the application program indicating that the output 
operation could not be completed normally. If the LGOUT processing option is in 
effect, the leading graphic characters are placed in the WRITE RPL's SENSE field. 

Translation from lowercase to uppercase is not provided. 

If you are using the 2740 in group mode, issue OPNDST and I/O requests for a 
single symbolic terminal name. If you are using the 2740 in specific mode, issue 
OPNDST and I/O requests for the symbolic terminal names representing each 
component of the system that you are addressing in specific mode. If the 
installation has provided the capability of using the 2740 in either mode, you 
should issue OPNDST for both the symbolic terminal name representing the entire 
2740 system, and for the symbolic terminal name of the component. (If more than 
one component is on the same point-to-point line, you should establish connection 
with only one component at a time.) 

The MSG, NTMFLL, EIB, NTIMEOUT, MONITOR, ELC, and BINARY processing 
options are invalid for 2740-2 devices. BLOCK is valid only if the terminal has the 
checking feature. 

For a description of the 2740, see IBM 2740 Communication Terminals Models 1 
and 2 Component Description, GA24-3403. 



IBM 2741 Communication Terminal 

If FEATURE= ATTN is specified on the TERMINAL macro during VT AM 
definition, the MONITOR processing option should be set in the NIB used for 
connection so that an ATTN exit-routine can be used to handle the attention 
interruptions. 

No text timeout limitation is provided for the terminal (that is, once EOA has been 
sent from the terminal, no time limit between successive data characters exists). 
The NTIMEOUT processing option should be specified. 

SOLICIT (pROC=CONT) causes an EOA and an EOT to be sent to the terminal, 
placing it in a transmit state. Before issuing WRITE while soliciting data with CONT 
set, RESET (OPTCD=COND) must be issued. 

Conversational output (WRITE with OPTCD=CONV) is valid for 2741 terminals, 
even though the terminal cannot be specified during VTAM definition as 
conversational. 

If the terminal has no break feature, the first I/O request following concection 
should be READ or SOLICIT. The READ or SOLICIT may be completed in error if 
the terminal was powered on before the communications controller became active; 
if this occurs, issue RESET followed by WRITE to maintain the conversational 
mode of the 2741 terminal. 

The LGIN, LGOUT, EIB, NERPIN, NERPOUT, and BINARY processing options 
are invalid for a 2741 terminal. 

For a description of the 2741, see IBM 2741 Communication Terminal, 
GA24-3415. 

Appendix I: Device Considerations 259 



IBM Communicating Magnetic Card Selectric Typewriter 

260 

If FEATURE=ATTN is specified on the TERMINAL macro during VTAM 
definition, the MONITOR processing option should be set so that an ATTN 
exit-routine can be used to handle the attention interruptions. 

If the terminal has no break feature, the first I/O request following connection 
should be READ or SOLICIT. The READ or SOLICIT may be completed in error if 
the terminal was powered on before the communications controller became active; 
if this occurs, issue RESET followed by WRITE to maintain the conversational 
mode of the terminal. 

Text time outs can be suppressed with the NTIMOUT processing option. 

The LGIN, LGOUT, EIB, and BINARY processing options are invalid for this 
terminal. 



IBM World Trade Telegraph Station (U'TTYj 

If FEATURE=ATTN is specified on the TERMINAL macro during VTAM 
definition, an ATTN exit-routine can be used to handle the attention interruptions. 
The MONITOR processing option must be set in order for the ATTN exit-routine 
to be scheduled. 

If the MSG processing option is used for solicitation, the end-of-block sequence 
must be defined by the installation (with the GROUP macro). If TRANS is used, 
the end-of-transmission sequence must be defined by the installation (GROUP 
macro). CONT (continuous solicitation) can be used, but should be avoided if 
output for the terminal occurs frequently. If CONT is used, RESET must be issued 
before WRITE can be issued. 

No terminal ID verification is provided. 

Conversational writing (WRITE with OPTCD=COND) is valid for this terminal. 

Text time outs can be suppressed by setting the NTIMEOUT processing option for 
the terminal. 

The LGIN, LGOUT, NTMFLL, EIB, NERPIN, NERPOUT, and BINARY processing 
options are invalid for this terminal. 

Appendix I: Device Considerations 261 



IBM System/7 CPU 

IPL on a Start-Stop Line 

IPL on a BSC Line 

262 

The System/7 is supported as a 2740 (Modell with checking) on a switched or 
nonswitched point-to-point start-stop line or as a System/3 on a BSC line. 

The BLOCK, MSG, LGIN, LGOUT, NTMFLL, EIB, NERPIN, NERPOUT, 
MONITOR, and BINARY processing options are invalid for the System/7. 

A remote IPL of the System/7 is implemented by issuing a series of WRITE macro 
instructions to send the IPL object program text to the device. The ELC-NELC 
processing option must be set to ELC, and idle characters must not be used. 

On a start-stop line, format the output data like this: 

E E U D L E 
First WRITE: 0 0 C E C object program text 0 

T A L B 

E E 
Successive WRITEs: 0 object program text 0 

A B 

E E 
Last WRITE: 0 object program text 0 

A T 

(The EOT in the first WRITE is used to place the System/7 in stand-by mode in 
case it is not prepared to receive data.) 

On a BSC line, format the output data like this: 



D D E 
First WRITE: C C N 

1 Q 

A 
System/? Response: C 

K 
0 

D S D E E 
Second WRITE: L T $UBIPL code L T or T 

S X E X B 

A 
System/? Response: C 

K 

D S D E E 
Successive WRITEs: L T object program text L T or T 

E X E X B 

A A 
System/? Response: C or C 

K K 
0 

E 
Last WRITE: 0 

T 

Infonnation Reference For additional information, consult the System/7 publication MSP/7 Macro 
Library / Relocatable: Coding the Input/Output Macros, GC34-0020, for further 
information. 

Appendix I: Device Considerations 263 



AT&T 83B3 Selective Calling Station 

264 

Conversational output (WRITE with OPTCD=CONV) is valid for this terminal. 

Solicitation with BLOCK or MSG is handled by VTAM as though TRANS had been 
specified. If the CONT processing option is used, all WRITE requests must be 
preceded by RESET. Avoid CONT if WRITE requests are to be issued frequently. 

If you are using the terminal in group mode, issue OPNDST and I/O requests to the 
symbolic terminal name representing the terminal. If you are using the terminal in 
specific mode, issue OPNDST and I/O requests to the various symbolic terminal 
names assigned to each component of the terminal. If the installation has provided 
the capability for using the terminal in either mode, you should issue OPNDST for 
the symbolic terminal name that represents the terminal, and for the symbolic 
terminal name that represents the terminal component. (If more than one 
component is on the same point~to-point line, you should establish connection with 
only one component at a time.) 

The LGIN, LGOUT, NTMFLL, EIB, NTIMEOUT, NERPIN, NERPOUT, 
MONITOR, and BINARY processing options are invalid for this device. 



CPT-TWX, Models 33 and 35 (TWX) 

If FEATURE=ATTN is specified on the TERMINAL macro during VTAM 
definition, an ATTN exit-routine can be used to handle the attention interruptions. 
The MONITOR processing option must be set if the ATTN exit-routine is to be 
scheduled. 

Text time outs can be suppressed by setting the NTIMEOUT processing option. 

Solicitation with BLOCK or MSG is handled as though TRANS had been specified. 
If the CONT processing option is used, all WRITE requests must be preceded by 
RESET. Avoid CONT if WRITE requests are to be issued frequently. 

Conversational output (WRITE with OPTCD=CONV) is valid for this terminal. 

The LGIN, LGOUT, EIB, NERPIN, NERPOUT, and BINARY processing options 
are invalid for this device. 

Appendix I: Device Considerations 265 



WESTERN UNION PLAN lISA Station 

266 

Solicitation with BLOCK or MSG is handled by VTAM as though TRANS had been 
specified. If the CONT processing option is used, all WRITE requests must be 
preceded by RESET. Avoid CONT if WRITEs are to be issued frequently. 

Conversational output (WRITE with OPTCD=CONV) is valid for this terminal. 

If you are using the terminal in group mode, issue OPNDST and I/O requests to the 
symbolic terminal name representing the terminal. If you are using the terminal in 
specific mode, issue OPNDST and I/O requests for the symbolic terminal names 
representing each terminal component with which you wish to communicate. If the 
installation has provided the capability of using the terminal in either mode, you 
should issue OPNDST for both the symbolic terminal name that represents the 
terminal, and for the symbolic terminal name that represents the terminal 
component. (If more than one component is on the same point-to-point line, you 
should establish connection with only one component at a time.) 

The LGIN, LGOUT, NTMFLL. EIB, NTIMEOUT, NERPIN, NERPOUT, 
MONITOR, and BINARY processing options are invalid for this device. 



IBM 2770 Data Communication System 

By setting the ERASE-EAU-NERASE option code to ERASE, a WRITE macro 
instruction causes a ERASE/WRITE command to be sent to the system's 2265 
terminal. ERASELBM or ERASELBT LDOs can also be used. 

To send a WRITE at line Address command to a 2265 terminal, include the WLA 
escape sequence in the data stream that is to be written to the terminal. 

Error recovery messages from the 2770 system in the form of 

S 
o 
H 

% S 
S 
T 
X 

text 
E 
T 
X 

are not recognized as such by VTAM or the communications controller, but are 
handled by VT AM as a text message with header. The communications controller 
removes the imbedded STX and passes the remainder to the application program as 
two blocks: 

First block: % S Second block: text 

When the application program receives the first block, bit 7 (DATAFLG=SOH) is 
set on, indicating header data. Another READ is required to receive the second 
block. 

Test Request Messages (which begin SOH % /) are intercepted by the communica­
tions controller. The READ macro instruction that would have moved the message 
into program storage had the interception not occurred is canceled with 
RTNCD=12 and FDBK2=2. 

Request for Test messages of the form 

S 
o 
H 

% XYN addr 
S 
T 
X 

text 
E 
X 
X 

are not intercepted, but are passed on to the application program in the same 
manner that any text message with header data would be passed: the application 
program's READ obtains the header portion, with the SOH removed and with bit 7 
(DATAFLG=SOH) set on in the RPL's FDBK field; a second READ is required for 
the text portion. 

If you are using the 2770 in group mode, you will have one symbolic name for 
issuing OPNDST and I/O requests. If you are using the 2770 in specific mode, 
input/output is handled as it is described for the 1050 Data Communications 
System in this appendix. 

Data sent from the device in transparent text mode is placed in the application 
program's input area unaltered. The application program can check the NCP return 
codes in the extended response byte of the SENSE field to determine whether the 
data was sent in transparent text mode. 

VT AM does not compress output data or expand input data; this must be done by 
the application program. 

The LGIN, LGOUT, NTMFLL, NTIMEOUT, and MONITOR processing options are 
invalid for the 2770. 

For a description of the 2770, see System Components: IBM 2770 Data 
Communication System, GA27-3013. 

Appendix I: Device Considerations 267 



IBM 2780 Data Transmission Terminal 

268 

Device-control characters required for Vertical Forms Control must be supplied by 
the application program. The application program must likewise supply the control 
characters for Printer Horizontal Format Control (including the escape sequence 
ESC HT ... ). 

Test Request Messages (which begin SOH % /) are intercepted by the communica­
tions controller. The READ macro instruciton that would have moved the message 
into program storage had the interception not occurred is canceled with 
RTNCD= 12 and FDBK2=2. 

Request for Test messages of the form 

S 
o 
H 

% XYN addr 
S 
T 
X 

text 
E 
X 
X 

are not intercepted, but are passed on to the application program in the same 
manner that any text message with header data would be passed: the application 
program's READ obtains the header portion, with the SOH removed and with bit 7 
(DATAFLG=SOH) set on in the RPL's FDBK field; a second READ is required for 
the text portion. 

If you are using the 2780 in group mode, you will have one symbolic name for 
issuing OPNDST and I/O requests. If you are using the 2780 in specific mode, 
input/output is handled as it is described for the 1050 Data Communications 
System in this appendix. 

Data sent from the device in transparent text mode is placed in the application 
program's input area unaltered. The application program can check the NCP return 
codes in the extended response byte of the SENSE field to determine whether the 
data was sent in transparent text mode. 

The LGIN, LGOUT, NTMFLL, NTIMEOUT, and MONITOR processing options are 
invalid for 2780 devices. 

For a description of the 2780, see Component Description: IBM 2780 Data 
Transmission Terminal 



IBM 2972 General Banking Terminal System (Models 8 and 11) 

Request for Test message of the form 

s 
o 
H 

% XYN addr 
S 
T 
X 

text 
E 
X 
X 

are not intercepted by the communications controller. Instead, VT AM passes the 
message to the application program in the same manner that any text message with 
header data is passed: the application program's READ obtains the header portion, 
with the SOH removed and with bit 7 (DATAFLG=SOH) set on in the RPL's 
FDBK field; a second READ is required for the text portion. 

The Batched Message feature is not supported by VTAM. 

VT AM removes the I-byte station address from the input data before moving the 
data into the application program's input area. 

If a 2980 (Model I or 4) Teller Station includes a passbook printer or a 2980 
(Model 2) Administrative Station includes an auditor key, VTAM assigns a symbolic 
name to the passbook printer or auditor key. VTAM forms the name by prefixing a 
dollar sign ($) to the name of the 2980's TERMINAL entry and deleting the last 
character of the name. When the application program issues INQUIRE 
(OPTCD=TERMS) using the 2980's TERMINAL entry name, VTAM places the 
passbook printer or auditor key name in the NIB generated by INQUIRE. 

The BLOCK, MSG, LGIN, LGOUT, NTMFLL, NTIMEOUT, and MONITOR 
processing options are invalid for 2972 devices. 

For a description of the 2972 system, see Component Description: IBM 2972 
Models 8 and 11 General Banking Tenninal Systems, GL27-3020. 

Appendix I: Device Considerations 269 



IBM 3270 Information Display System (Record-mode) 

270 

The application program can communicate with a 3270 as a BSC or locally attached 
terminal or as though it were a logical unit. The application program can be 
independent of the mode of attachment (local vs. remote) of a record-mode 3270. 
The terminal is treated as a logical unit by setting the NIB's MODE field to 
RECORD when the terminal is connected, and by exchanging messages and 
responses with SEND and RECEIVE macro instructions. None of the basic-mode 
macro instructions can be used. 

afferent devices on the same control unit may be used in different modes at the 
same time. A 3270 can be disconnected in one mode and reconnected in another. 

Since the 3270 is not a logical unit and has no programmable capabilities, VTAM 
cannot make a 3270 appear exactly like a logical unit to the application program. 
Consequently, restrictions apply to all SEND, RECEIVE, and SESSIONC communi­
cation with the 3270 terminal. These restrictions are described below. All aspects of 
communication (and connection) not mentioned apply as though the 3270 were a 
logical unit. 

All commands and orders for the 3270 must be placed in the output data by the 
application program in the format expected by a BSC 3270 (that is, everything that 
follows the ESC line control character is used as though the 3270 were a BSC 
3270). 

A SEND macro instruction may point to a data area containing a Read Modified 
command to be sent to the device. The data retreived from the device is placed in 
the application program's storage area in this format: 

AID CURl CUR2 device control characters, orders, text 

where AID is the Attention Identification and CURl and CUR2 form the two-byte 
cursor address. If the terminal operator causes a "short read" to occur at the· 
terminal (by pressing the CLEAR key or a Program Access key, for example), the 
input data consists of the AID only. 

Note that an exception response with SSENSEI=PATH will be generated if there 
are not enough buffers available to VT AM to read the full buffer or to assemble all 
the input for a RECEIVE. 

When a Copy command is placed in the data stream, the application program must 
include the physical device address of the "from" device. This address can be 
obtained by issuing INQUIRE (OPTCD=DEVCHAR). See Appendix H for the 
location of the physical device address in DEVCHAR. Note that a Copy operation 
is not valid for a locally attached 3270 terminal and should not be used in an 
application program that is intended to be attachment-independent. 

No responses may be sent to the 3270. All incoming messages indicate that no 
response of any type is expected (RESPOND=(NEX;NFME,NRRN)). 

Messages sent to the 3270 should contain only data. No quiesce, change-direction, 
bid, chase, or cancel indicators should be sent (that is, only CONTROL=DATA is 
allowed). If the application program attempts to send one of these indicators, the 
SEND is completed with RTNCD=20 and FDBK2=71. Bracket indicators are used 
as described below. Chaining indicators must always mark the message as the sole 
element of a chain-that is, CHAIN=ONLY (all incoming messages are so marked). 



No SESSIONC indicators can be received from the 3270 terminal. Only the clear 
indicator can be sent to it. The effect of the clear indicator is to reset both 
incoming and outgoing sequence numbers to 0, terminate any current bracket, and 
allow data traffic to continue. 

The brackets convention must be used so that the application program and the 
terminal operator can resolve attempts to send messages simultaneously. If the 
application program has no use for brackets, the entire interval between the first 
I/O request (following connection, which must begin a bracket) and disconnection 
can be considered to be one bracket. Both the application program and the 3270 
can begin a bracket, but only the application program can end one. 

The first input from a 3270 that begins an NCP session is marked as the beginning 
of a bracket. This includes any power-on device end that is passed to the 
application program as an exception message after OPNDST. All subsequent 
messages received from the 3270 during the NCP session indicate that the bracket is 
being continued. The 3270 cannot end a bracket; this can only be done by the 
application program. The application program can begin and end a bracket with the 
same message-that is, BRACKET=(BB,EB) can be specified for the SEND RPL. 

If both the application program and the 3270 attempt to begin a bracket at the 
same time, or if the application program attempts to begin a new bracket without 
ending the current one, the response to the application program's SEND indicates 
Request Reject (SSENSEI=RR). If the application program sends an EB or NBB 
bracket indicator while not in a bracket, a STATE error (SSENSEI=STATE) is 
returned. 

When the SEND data stream contains a Read command, the resulting input is 
received as a separate message, not as a response to the SEND operation. The 
application program should not begin or end a bracket when the data being sent 
con tains a Read command. The application program must request normal and 
exception FME responses for each message sent to the 3270 that begins or ends a 
bracket. Normal and exeption FME responses are requested by setting 
RESPOND=(NEX,FME,NRRN) for the SEND RPL. FME responses should also be 
requested when a message is sent to a printer. All other output can indicate that 
either exception responses only-RESPOND=(EX,FME,NRRN)-or normal or 
exception responses-RESPOND=(NEX,FME,NRRN)-are expected. RRN 
responses are not used. 

Status and sense information may be available in the RPL's USENSEI field when an 
exception message or response is received. The format of the information (shown 
below) is the same as the 2-byte combined sense and status (S/S) format returned 
from a BSC 3270 except that the 2 high-order bits of each byte are set to 0 (this 
makes it easier to design the application program to be independent of the 
local-remote attachment mode of the termiIlal). 

First Second 
byte byte Meaning 

00 04 Data check or bus-out check 
00 10 Intervention requried 
00 20 Command rejected 
00 01 Operation check 
00 02 Control check 

Appendix I: Device Considerations 271 



272 

First 
Byte 

04 
00 
06 
02 
06 

06 
02 
02 
02 

Second 
Byte 

04 
08 
04 
10 
18 

08 
04 
01 
02 

Meaning 

Data check with unit specifyl 
Equipment check2 

Data check, unit specify, and device end2 

Intervention required and device end2 

Equipment check, unit specify, device end, and intervention 
required2 

Equipment check, unit specify, and device end 
Data check and device end 
Operation check and device end 
Control check and device end 

lPor locally attached devices, attention status may also accompany this condition 
2 Por locally attached devices, attention status always accompanies this condition 

Note that unit check occurs in the status of locally attached devices for all of the 
above conditions. 

The SSENSEI (system sense) field is set following the receipt of exception 
responses, but the SSENSMI (system sense modifier) field is always set to O. The 
SSENSEI field can be set to indicate a PATH error (SSENSEI=PATH), a STATE 
error (SSENSEI=STATE) a Request Reject error (SSENSEI=RR) or no error 
(SSENSEI=O). See the description of the SSENSEI field near-the end of Appendix 
C. In the case of SSENSE1 =0, the USENSE1 field should be used to determine the 
cause of the exception condition. 

Logon requests for the 3270 cannot originate from the 3270 terminal itself (unlike 
a logical unit) except via the network solicitor. 

If a 3270 device is polled and the 3271 controller is not powered-on, an X'OC 01' 
return code will be received (see Appendix C). This will cause the terminal to be 
disconnected. When the 3270 device and 3271 controller are powered-on, the user 
must call up the network operator and request connection with NETSOL via a 
VARY LOGON. 

If a 3270 device is polled while it is powered-off and the 3271 controller is 
powered-on, a device end status will be returned when the device is powered-on. 
When this occurs, reissue the request. 

Test Request Messages from locally attached terminals are intercepted by VT AM 
Test Request Messages from remotely attached terminals are intercepted by the 
communication& controller. The arrival of the Test Request Message may cause a 
RECEIVE macro instruction to be completed with an error return code 
(RTNCD=12, FDBK2=2). A clear operation is performed (as though the application 
program had sent a clear indicator):. the user's LOSTERM exit-routine (if available) 
is scheduled with a parameter list of 12, and all pending communication is canceled. 
The application program should disconnect the terminal. Connection is established 
in the same manner as it was initially--either by the ACQUIRE or by the ACCEPT 
form of OPNDST. 

For a description of the 3270 system, see IBM 3270 Information Display System 
Component Description, GA27-2749. 



IBM 3270 Information Display Systenl (Basic-mode) 

The application program can communicate with a 3270 as a BSC terminal or as 
though it were a logical unit. The terminal is handled as a BSC or locally attached 
terminal by setting the NIB's MODE field to BASIC when the terminal is 
connected, and by exchanging data with READ and WRITE macro instructions. 
None of the record-mode macro instructions can then be used. Different devices on 
the same control unit may be used in different modes at the same time. A 3270 
device can be disconnected and reconnected in the other mode. 

When the terminal sends sense and status information in response to a READ, 
WRITE, or DO macro instruction, VT AM places the information in the RPL's 
SENSE field. VTAM also sets the RPVs RTNCD field to 4 and sets the FDBK2 
field to 2 to signal that the SENSE field has been set. The SENSE field codes are 
described below. 

If the SENSE field indicates that an error arose because operator intervention was 
required at the device, the failed operation may be retried after execution of a 
RESET macro instruction with OPTCD set to UNCOND or LOCK. 

If a 3270 device is polled and the 3271 controller is not powered-on, a X'OC 01' 
return code will be received (see Appendix C). This will cause the terminal to be 
disconnected. When the 3270 device and 3271 controller are powered-on, the user 
must call up the network operator and request connection with NETSOL via a 
VARY LOGON. 

If a 3270 device is polled while it is powered-off and the 3271 controller is 
powered-on, a device end status will be returned when the device is powered-on. 
When this occurs, reissue the request. 

To unlock the keyboard of a 3270 display station, issue a WRITE macro instruction 
with an unlock-keyboard control character included in the data stream. 

Test Request Messages (which begin SOH % /) from locally attached terminals are 
intercepted by VT AM. Test Request Messages from remotely attached terminals are 
intercepted by the communkations controller. Any READ macro that would have 
received the message had the interception not occurred completes with a 
RTNCD= 12, FDBK2=2 error return code. The terminal must then be disconnected. 
In addition, the user's LOSTERM exit-routine (if one is available) is scheduled with 
a parameter list code of 12. 

The BLOCK, MSG, CONT, LGIN, LGOUT, NTMFLL, EIB, NTIMEOUT, ELC, and 
MONITOR processing options are invalid for 3270 devices. BINARY is invalid for l> 

locally attached devices. 

The BLK-LBM-LBT option code (applicable for output) should be set to LBT; BLK 
is invalid, and LBM requires that you be aware of whether the device is locally or 
remotely attached (because no line control characters are sent regardless of the 
attachment mode-see Appendix B). 

When data is sent to a 3270, any message containing an X'FF' embedded in it will 
fail. The X'FF' will result in a Path Error. 

Appendjx I: Device Considerations 273 



Input Considerations 

Output Considerations 

Copy Considerations 

274 

Since VTAM deletes all line-control characters arriving from remotely attached 
devices, your input processing need not take into account whether the device is 
locally or remotely attached. 

To avoid losing incoming data when the input area is too small, specify the KEEP 
processing option in the NIB used to connect the device. Then if the data is too 
long to fit, VTAM will fill the input area to capacity, set the second bit 
(DATAFLG=EOB) of the FDBK field off, and hold the remaining data for the next 
read request. See the KEEP-TRUNC processing in the NIB macro instruciton for 
further details. 

A READBUF LDO can be used to send a Read Buffer command to a terminal. See 
the LDO macro instruction (CMD=READBUF) for an explanation of how this is 
accomplished. The data in the application program's input area upon completion of 
the DO macro instruction is arranged like this: 

AID CURl CUR2 SF ATTN text 

where AID is the Attention Identification and CUR land CUR2form the 2-byte 
cursor address. The SF (Start Field) and ATTR (Attribute Byte) are present only if 
the device buffer is formatted. 

If a Read with OPTCD=SPEC or a SOLICIT is issued after 3270 input has already 
arrived, the SOLICIT or READ ... SPEC remains queued, and any subsequent 
WRITE is suspended and unable to execute. A RESET before the WRITE can 
prevent this problem. 

There are three different output operations available; they are selected by setting 
the ERASE-EAU-NERASE option code in the RPL of a WRITE macro instruction. 

WRITE (OPTCD=ERASE) is a two-part operation; it first clears the device's entire 
buffer, and then it sends the output data that you provide via the RPL's AREA 
field. In the beginning of that data you must provide the Write Control Character 
(WCC) followed by the appropriate device control characters, orders, and text. If 
you set the BLK-LBM-LBT option code to LBT, you need not include line control 
characters; VTAM will include them for remotely attached devices, and omit them 
for locally attached devices. 

WRITE (OPTCD=EAU) sends an Erase All Unprotected command to the device. 
Since no output data is involved with this form of WRITE, set the RPL's RECLEN 
field to O. 

WRITE (OPTCD=NERASE) sends a Write command to the device. You must 
prepare the output data in exactly the same manner as is specified above for 
OPTCD=ERASE: begin the output data with WCC, followed by the appropriate 
device-control characters and orders. 

With the COPYLBM LDO, an application program can send a "copy" command to 
copy the contents of a remotely attached 3277 Display Station to any other display 
station or printer connected to the same control unit. The COPYLBT LDO works 
like COPYLBM, except that after the data has been copied, VT AM waits for the 
"to" device's response and sends an EOT when the response is detected. 

Note: Since this facility is available only for remotely attached devices, you may 
wish to simulate a copy operation with READ and WRITE macro instructions. 
Using READ and WRITE macros allows you to use the same program code to 
handle copy operations for both locally and remotely attached devices. 



Sense Infonnation 

Specific information about using these LDOs is given in the DO and LDO macro 
instruciton descriptions. Briefly, the procedure is this: The LDO is built and its 
ADDR field set to point to a 3-byte area containing (1) a copy control character, 
and (2) the second 2 bytes of the "from" device's CID (in that order). A COPYLBT 
LDO must be used if the Start Print bit (bit 4) in the copy control character is set 
on. The LDO's LEN field must be set to 3. The address of the LDO is placed in the 
RPL's AREA field and the CID of the "to" device is placed in the ARG field. The 
RPL's ACB field must indicate the same ACB that was indicated by the RPL used 
to connect the "from" and "to" devices. 

Note: The operation will not work if the ''from'' device's buffer is locked against a 
copy operation. An application program can lock a ''from'' device's buffer by 
placing an attribute of Protected/Alphameric (hexadecimal 60) in buffer location 0, 
and setting the byte at buffer location 1 to zeros. 

When a READ, WRITE, or DO macro instruction is completed, the SENSE field 
may contain 2 bytes of status and sense information. If the SENSE field is 
extracted with SHOWCB, the 2 bytes are right-adjusted in the fullword work area. 
The possible hexadecimal values of the 2 bytes are: 

First Second 
byte byte 

40 C4 
40 50 
40 60 
40 Cl 
40 C2 
C4 C4 
40 C8 
C6 C4 
C2 50 
C6 D8 

C6 C8 
C2 C4 
C2 Cl 
C2 C2 
C2 40 

Meaning 

Data check or bus-out check 
Intervention required 
Command rejected 
Operation check 
Control check 
Data check with unit specifyl 
Equipment check2 
Data check, unit specify, and device end 1 

Intervention required and device end 1 

Equipment check, unit specify, device end, and intervention 
required l 

Equipment check, unit specify, and device end 
Data check and device end 
Operation check and device end 
Control check and device end 
Device end. This condition is reported if a powered-off 
3270 display is powered on and a SOLICIT or READ with 
OPTCD=SPEC is outstanding for the terminal. The 
SOLICIT or READ should be reissued. 

lPor locally attached devices, attention status may also accompany this condition. 
2Por locally attached devices, attention status always accompanies this condition. 

Note that unit check occurs in the status of locally attached devices for all of the 
above conditions. 

For a description of the 3270 system, see IBM 3270 Information Display System 
Component Description, GA27-2749. 

Appendix I: Device Considerations 275 



IBM 3600 Finance Communication System 

276 

The application program establishes connection with a 3600 terminal (that is, the 
application program in the controller) in the same manner as with a BSC or 
start-stop terminal. A logon request, however, can originate from the terminal itself 
(Initiate Self). The 3601 controller contain~ one or more logical units, and 
record-mode macro instructions are used to communicate with them. The unique 
aspects of communication with a 3600 terminal are described in the SEND, 
RECEIVE, RESETSR, and SESSIONC macro instructions. For a general descrip­
tion of the 3600 system, see IBM 3600 System Summary, GC27-0001. 



IBM 3735 Progranlmable Buffered Terminal 

Data to be sent to the 3735 should be formatted in this manner: 

Form Description Program message: 

Preliminary message: 

Data block: 

Ending message: 

Selectric message: 

Terminate Communication Mode: 

Inquiry:, 

Power down: 

CPU ID list: 

N N 
U F U 
L L 

Unpacked FDP data block 

N N 
U E U 
L L 

N 
U 
L 

N 
U 
L 

M 

T 

N 
U 
L 

N 
U 
L 

N N 
U 
L 

I U 
L 

N N 
U 
L 

P U 
L 

N N 
U 
L 

L U 
L 

text 

text 

ID list 

Each entry in the ID list contains the CPU ID of all CPUs that may 
communicate with the 3735 over switched lines. The CPU ID is dermed by 
the installation in the CUID operand of the BUILD macro instruction. 

Status messages reporting abort conditions are sent from the terminal as 

S N N E 
T U S U S1 S2 T 
X L L X 

but when the block is placed in the application program's input area, the 
line-con tro1 characters are deleted: 

N N 
U S U S1 S2 

L L 

When sending Form Description Program (FDP) data blocks to the terminal in 
ASCII transmission code, the last 6 bytes of the block must each be changed from 
FF to 7F or else deleted entirely. To remove your dependency on the transmission 
code used, it is recommended that you always remove the last 6 bytes (the sector 
flags) from FDP data blocks. You can accomplish this by specifying RECLEN=470 
instead of RECLEN=476 in the RPL used for WRITE. 

Appendix I: Device Considerations 277 



278 

A READ macro instruction must be the first I/O request issued for a 3735 terminal 
following connection. All other requests will be rejected until a READ is issued. 

The NTMFLL, NTIMEOUT, and MONITOR processing options are invalid for the 
3735 terminal. 

For a description of the 3735 terminal, see IBM 3735 Programmer's Guide, 
GC30-3001. 



IBM 3740 Data Entry System 

When the 3740 system sends sense data in response to READ, WRITE, or DO 
macro instructions, VT AM places the sense data in the RPL's SENSE field. 

Request for Test messages of the form 

S 
o 
H 

% XYN addr 
S 
T 
X 

text 
E 
T 
X 

are not intercepted by VTAM, but are passed to the application program in the 
same manner as any text message with header data: the application program's 
READ obtains the header portion, with the SOH removed and with bit 7 
(DATAFLG=SOH) set on in the RPL's FDBK field; a second READ is required for 
the text portion. 

Data may be sent to the terminal in transparent text mode by specifying 
PROC=BINARY for the NIB used to connect the terminal. Data sent from the 
terminal in transparent text mode is placed in the application program's input area 
unaltered. The application program can determine that the data was sent in 
transparent text mode by examining the NCP return code in the extended response 
byte of the SENSE field. 

The LGIN, LGOUT, NTMFLL, NTIMEOUT, and MONITOR processing options are 
invalid for 3740 devices. 

For a description of the 3740 system, see IBM 3740 Data Entry System Summary, 
GA21-9152 (the order numbers of the 3741 and 3742 reference manuals are 
GA21-9183 and GA21-9184, respectively). 

Appendix I: Device Considerations 279 



IBM 3780 Data Transmission Terminal 

280 

Data may be sent to the 3780 in transparent text mode by specifying 
PROC=BINARY for the NIB used to connect the terminal. Before sending the 
transparent text blocks on a point-to-point line, the communications controller first 
obtains the component selection character and inserts it into a block which it sends 
in nontransparent text mode. The component selection character is supplied by the 
installation in the ADDR operand of the CON'J.P macro instruction. 

Data sent from the device in transparent text mode is placed in the application 
program's input area unaltered. The application program can determine that the 
data was sent in transparent text mode by examining the NCP return code in the 
extended response byte of the SENSE field. 

The application program must supply the control sequences required for Horizontal 
Format Control and Vertical Forms Control. 

VT AM does not compress output data or expand input data. 

Test Request Messages (which begin SOH % /) are intercepted by the communi­
cations controller. The READ macro instruction that would have moved the 
message into program storage had the interception not occurred is canceled with 
RTNCD=12 and FDBK2=2. The terminal must then be disconnected. 

Request for Test messages of the form 

s 
o 
H 

% XYN addr 
S 
T 
X 

text 
E 
T 
X 

are not intercepted, but are passed on to the application program in the same 
manner that any text message with header data is passed: the application program's 
READ obtains the header portion, with the SOH removed and with bit 7 
(DATAFLG=SOH) set on in the RPL's FDBK field; a second READ is required for 
the text portion. 

Error recovery messages of the form 

S 
o 
H 

% s 
S 
T 
X 

text 
E 
T 
X 

are likewise passed on to the application program as two blocks-the first is the 
header portion with the SOH removed, the second is the text portion? with the STX 
and ETX removed. 

The LGIN, LGOUT, NTMFLL, NTIMEOUT, and MONITOR processing options are 
invalid for 3780 devices. 

For a description of the 3780, see Component Information for the IBM 3780 Data 
Communication Terminal, GA27 -3063. 



IBM System/3 CPU 

The System/3 is supported as a BSC station on switched lines, and on both 
point-to-poiht and multipoint nonswitched lines. The EBCDIC and ASCII trans­
mission codes are supported. 

Data blocks received from the System/3 that contain both header data and text are 
handled as two blocks: the application program's READ obtains the header 
portion, with the SOH removed and with bit 7 (DATAFLG=SOH) set on in the 
RPL's FDBK field; a second READ is required for the text portion. 

When the System/3's Continuous Conversation function is active, the CPU engages 
in a continuous exchange of write operations and conversational replies. To 
communicate with the System/3 in this manner, you must: 

1. Specify PROC=MSG for the NIB used to connect the application program to the 
System/3 CPU 

2. Specify OPTCD=CONV for all WRITE macro instructions 

3. Issue WRITE with RECLEN=O if no data is ready to be sent to the System/3 
CPU 

4. Be prepared to receive a reply of zero length 

The READ, WRITE, WRITELBM, WRITELBT, WRTHDR, WRTPRLG, and 
WRTNRLG LDOs can be used with the System/3. See the description of the LDO 
macro instruction. 

If leading graphic characters are received as a response to a WRITE macro 
instruction, the FDBK field is set to indicate this (DATAFLG=LG). The next 
READ macro instruction directed at the device will obtain the leading graphic 
characters. If leading graphic characters are received in response to a conversational 
WRITE (OPTCD=CONV), the leading graphic characters are placed in the data area 
indicated by the AAREA field of the RPL. 

The NTMFLL and MONITOR processing options cannot be used with the 
System/3. 

Appendix I: Device Considerations 281 



IBM System/370 CPU 

282 

The System/370 is supported on switched or nonswitched point-to-point BSC lines. 
The EBCDIC and ASCII transmission codes are supported. 

Data blocks received from the System/370 that contain both header data and text 
are handled as two blocks: the application program's READ obtains the header 
portion, with the SOH removed and with bit 7 (DATAFLG=SOH) set on in the 
RPL's FDBK field; a second read is required for the text portion. 

The READ, WRITE, WRITELBM, WRITELBT, WRTHDR, WRTPRLG, and 
WRTNRLG LDOs can be used with the System/370. See the description of the 
LDO macro instruction. 

If leading graphic characters are received as a response to a WRITE macro 
instruction, the FDBK field is set to indicate this (DAT AFLG= LG). The next 
READ macro instruction directed at the device will obtain the leading graphic 
characters. If leading graphic characters are received in response to a conversational 
WRITE (OPTCD=CONV), the leading graphic characters are placed in the data area 
indicated by the AAREA field of the RPL. 

The NTMFLL and MONITOR processing options cannot be used with the 
System/370. 



GLOSSARY 

If you cannot find a term, first check the index, and then 
consult the Data Processing Glossary, GC20-1699. 

A 

Acceptance of RPL-based requests: The point in the processing 
of an RPL-based request in which VTAM determines that a 
request appears to be valid. If the request is being handled 
asynchronously (OPTCD=ASY), it is at this point that initial 
completion of the request occurs; VTAM returns control to the 
application program with registers 0 and 15 set to indicate that 
the request has been accepted. (If the request is not accepted, 
VT AM returns error return codes; if a LERAD or SYNAD 
exit-routine is available, the appropriate exit-routine is 
scheduled.) See Figures CI-C5. 

ACB: Access method control block. 

acceptance: The process of connecting a node in response to a 
logon request from that node. A node is "accepted" with an 
OPNDST macro instruction having the ACCEPT option code set 
in its RPL. 

access method control block: In VT AM, a control block that 
links an application program to VT AM. Abbreviated ACB. 

acquisition: The process of initiating and securing connection to 
another node. A node is "acquired" with an OPNDST macro 
instruction having the ACQUIRE option code set in its RPL or 
with a SIMLOGON macro followed by OPNDST (ACCEPT). 

any-mode: (1) The form of READ or RECEIVE operation that 
obtains data from any single terminal, (2) the form of SOLICIT 
operation that solicits data from all eligible connected terminals, 
or (3) the form of OPNDST operation that establishes con­
nection with any single eligible terminal from which a logon 
request has been received. The any-mode is established by 
specifying OPTCD= ANY for the RPL used by the READ, 
RECEIVE, SOLICIT, or OPNDST macro instruction. 

application program: The request and control blocks that refer 
to a given ACB, or are pointed to by that ACB. 

application program identification: In VT AM, the symbolic 
name by which a teleprocessing program is identified to VT AM 
and the rest of the teleprocessing network. This name is pointed 
to by the ACB's APPLID field. 

asynchronous flow messages: Messages that are received ahead 
of any synchronous flow messages that may be queued for the 
application program or terminal. 

For example: If an application program were to issue a 
RECEIVE macro instruction indicating that either synchronous 
or asynchronous flow messages could satisfy the macro instruc­
tion, VTAM would not satisfy the RECEIVE macro with 
synchronous flow messages until it had determined that no 
asynchronous flow messages were available. 

asynchronous request: A request that causes control to be 
returned to the application program as soon as possible after the 
request has been accepted by VTAM. When the operation is 
completed, VTAM either invokes the RPL exit-routine, or posts 
an ECB. A request is made asynchronous by setting the ASY 
option code in its RPL. Contrast with synchronous request. 

automatic logon request: A logon request to a specified applica­
tion program, generated by VT AM (rather than by the terminal 
itself) when the terminal becomes available for connection and 
the application program has opened its ACB and issued 
SETLOGON (OPTCD=START). Automatic logon requests are 
specified by the installation during VT AM definition. 

B 

basic-mode: A set of facilities (including the macro instructions 
needed to use them) that enable the application program to 
communicate with BSC and start-stop terminals, including the 
locally attached 3270 Information· Display System. READ, 
WRITE, SOLICIT, RESET, DO, and LDO macro instructions are 
basic-mode macro instructions. 

bid indicator: An indicator used to determine if a new bracket 
can be started. The node receiving the bid indicator sends a 
normal response if a new bracket can be started or sends an 
exception response if a new bracket cannot be started. A bid 
indicator is sent when a SEND macro instruction is issued with 
CONTROL=BID set in its RPL. 

block: In VTAM, the smallest unit of data that may be 
transmitted between an application program and a terminal 
connected in basic-mode. The maximum size of a block is 
determined by the characteristics of the device that is sending or 
receiving the data. Por start-stop devices, a block is a unit of data 
beginning with an EOA or EOB character, and ending with an 
EOT or EOB character; for BSC devices, a block is a unit of data 
between an STX or SOH character and an ETB or ETX 
character. Contrast with message and transmission. 

bracket: An exchange of data between an application program 
and a logical unit which accomplishes some task. 

bracket communication: A method of communication in which 
a node does not begin a new bracket until the current bracket 
has been completed. 

BSC: Binary synchronous communications. 

c 

CA mode: See continue-any mode. 

cancel indicator: An indicator that signifies to its receiver that 
the current chain being received should be discarded. A cancel 
indicator is sent when a SEND macro instruction is issued with 
CONTROL=CANCEL set in its RPL. 

change-direction-command indicator: An indicator sent by one 
node to another indicating that the sending node has finished 
transmitting and is prepared to receive. 

change-direction communication: A method of communication 
in which the transmitting node ceases transmitting on its own 
initiative, signals this fact to the other node, and prepares to 
receive. 

change-direction-request indicator: An indicator sent by one 
node to another requesting that a change-direction-command 
indicator be returned. 

chase indicator: An indicator that when returned to its origina­
tor, signifies all responses have transmitted. A chase indicator is 
sent by issuing a SEND macro instruction with CONTROL= 
CHASE set in its RPL. 

aD: Communications Identifier. 

clear indicator: A SESSIONC indicator sent by a VTAM 
application program that resets the sequence number to 0 and 
prevents the exchange of messages and responses. 

closedown: The process of deactivating VT AM and the tele­
communication network. See also quick closedown and orderly 
closedown. 

Glossary 283 



cluster control unit: A device that can control the input/output 
operations of more than one device. A remote cluster ·control 
unit can be attached to a host CPU only via a communications 
controller. A cluster control unit may be controlled by a 
program stored and executed in the unit; for example, the IBM 
3601 Finance Communications Controller. Or it may be 
controlled entirely by hardware; for example, the IBM 2972 
Station Control Unit. See also communications controller and 
SDLC cluster controller. 

communications controller: A type of communication control 
unit whose operations are controlled by a program stored and 
executed in the unit. 

Communications Identifier: A VTAM-assigned network-oriented 
equivalent for a terminal's symbolic name. The installation 
assigns a symbolic name to each terminal (or dial-up line) in its 
network configuration. When the application program requests 
connection to the terminal-by placing the terminal's symbolic 
name into a NIB and issuing an OPNDST macro instruction­
VTAM converts this eight-byte symbolic name into a four-byte 
identifier. The application program must use this identifier for 
all subsequent communication with the terminal. Abbreviated 
CID. 

connection: In VTAM, in response to a request from an 
application program (OPNDST), the linking of VTAM control 
blocks in such a way that the program can communicate with a 
particular terminal. The connection process includes establishing 
and preparing the network path between the program and the 
terminal. Contrast with queued for logon. 

continue-any (CA) mode: A state into which a terminal is 
placed that allows its input to satisfy an input request issued in 
the any-mode. While this state exists, input from the terminal 
can also satisfy input requests issued in the specific-mode. 
(Contrast with continue-specific mode, where input from the 
terminal can satisfy only input requests issued in the specific­
mode.) Continue-any mode is established by specifying 
OPTCD=CA for the RPL used by an OPNDST or any I/O macro 
instruction. 

continue-specific (CS) mode: A state into which a terminal is 
placed that allows its input to satisfy only input requests issued 
in the specific-mode. Continue-specific mode is established by 
specifying OPTCD=CS for the RPL used by an OPNDST or any 
I/O macro instruction. 

conversational write operation: A composite operation wherein 
data is first sent to a terminal, and data is then read from that 
terminal. It is implemented with a WRITE macro instruction 
having the CONY option code set in its RPL. 

CS mode: See continue-specific mode. 

o 

data transfer: In telecommunications, the sending of data from 
one node to another. 

definition statement: The means of describing an element of 
thetelecommunication system to VT AM. 

device-control character: A control character that is embedded 
in a data stream to control mechanical and format operations at 
a terminal (for example, a line-feed character or carriage-return 
character). Contrast with line-control character. 

device-dependent: A characteristic of VT AM such that the 
application program is responsible for controlling the terminal to 
which it is connected. The application program is not responsible 
for controlling the use of the line by which the terminal is 
attached. 

284 

disconnection: In VTAM, the disassociation of VTAM control 
blocks in such a way as to end communication between the 
program and a connected terminal. The disconnection process 
includes suspending the use of the netwwork path between the 
program and the terminal. It is implemented with the CLSDST 
macro instruction. 

E 

error lock: A condition established by the communications 
controller wherein communication with the terminal is 
suspended. The RESET macro instruction is used to reset the 
error lock. 

exception message: A message that represents another message 
that never arrived, or for which a transmission error occurred. 
Exception messages are not sent by VTAM application programs 
or terminals; messages are sent which either arrive as normal 
messages or are replaced with exception messages. Upon 
receiving an exception message, the application program or 
terminal usually returns an exception response. 

exception response: A response sent by a terminal or applica­
tion program indicating that a particular message did not arrive 
normally. 

exit list: In VTAM, a control block that contains the names of 
routines that receive control when specified events occur during 
VTAM execution. For example, programs named in the exit list 
handle such conditions as logon processing and I/O errors. 
Abbreviated EXLST. 

EXLST: Exit list. 

exit-routine: A routine whose address has been placed in an exit 
list (EXLST) control block. The addresses are placed there with 
the EXLST macro instruction, and the routines are named 
according to their corresponding operand; hence DF ASY exit­
routine, TPEND exit-routine, RELREQ exit-routine, and so 
forth. All exit-routines are coded by the application program­
mer. Contrast with RPL exit-routine. 

F 

Final completion of RPL-based requests: The point in the 
processing of an RPL-based request in which VTAM schedules 
the RPL exit-routine (for asynchronous request handling with an 
RPL exit-routine), posts the requests ECB (for asynchronous 
request handling with an ECB), or returns control to the 
application program or to the LERAD or SYNAD exit-routine 
(for synchronous request handling). Final request completion is 
not necessarily the same as the ultimate completion of the 
requested operation. For a SEND (pOST=SCHED) request, for 
example, final request completion occurs as soon as the output is 
scheduled for transmission; the ultimate completion of the 
transmission occurs at a later time. Also see acceptance of 
RPL-based requests. . 

FME response: A response that indicates whether its associated 
message was or was not successfully forwarded to its final 
destination (such as the display screen of an output device). 

inactive: Pertaining to a node that is neither connected to nor 
available for connection to another node. Contrast with active. 

initial request completion: See acceptance of RPL-based 
requests. of RPL-based requests. 

interpret table: In VTAM, an installation-defined correlation list 
that translates an argument into a string of eight characters. 
Interpret tables can be used to translate a logon message into the 



name of an application program for which the logon request is 
intended. 

input operation: In VT AM, an operation that obtains input 
from a terminal connected to the application program. Input 
operations are implemented by RECEIVE, READ, and SOLICIT 
macro instructions, and by the conversational variation of 
WRITE macro instructions. 

L 

leading graphics: From one to seven graphic characters that may 
accompany an acknowledgment sent to or from a BSC terminal 
in response to the receipt of a block of data. 

line: The communication medium linking a communication 
control unit to another communication control unit, or linking a 
communication control unit to one or more terminals. 

line-control character: A character in a data stream that controls 
the transmission of data over a network path; for example, 
line-control characters delimit messages and indicate whether a 
node has data to send or is ready to receive data. 

line-control discipline: A general term for the set of rules, 
requirements, and procedures for transmitting information to 
and from a particular type of terminal in a telecommunication 
system. 

line group: A set of one or more lines of the same type. 

local: Pertaining to terminals and communication control units 
that are attached directly by channels to a central computer. 

logical device order: In VT AM, a set of parameters that specify 
a data-transfer or data-control operation. Abbreviated LDO. 

logical error: An error that results from an invalid request. 

logical unit: The combination of programming and hardware of 
a teleprocessing subsystem that comprises a terminal for VT AM. 

logoff request: A request by a terminal user to be disconnected 
from an application program. 

logon message: In VT AM, the data that can accompany a logon 
request received by the application program to which the request 
is directed. 

logon request: A request for connection between a terminal and 
an application program that is' initiated by or on behalf of the 
terminal. 

M 

message: (1) For logical units, the unit of information (data or 
indicators) that is sent by an application program or logical unit 
on its own initiative. Contrast with responses, which are sent 
only in reply to messages that have been received. (2) For BSC 
devices, the data unit from the beginning of a transmission to the 
ftrst ETX character, or between two ETX characters. For 
start/stop devices, "message" and "transmission" have the same 
meaning. 

N 

NCP: See network control program. 

NCP generation: See network control program generation. 

negative polling limit: The maximum number of consecutive 
negative responses to polling that the communications controller 
will accept before suspending polling operations. 

network control program: A program, transmitted to and stored 
in a communications controller, that controls the operation of 
the communications controller. Abbreviated NCP. 

network control program generation: The process, performed in 
a central processing unit, of assembling and link-editing a macro 
instruction program to produce a network control program. 

network operator: The person responsible for controlling the 
operation of the telecommunication network. 

NIB: Node Initialization Block. 

NIB list: In VT AM, a series of contiguous NIBs (node initializa­
tion blocks). 

node: In VT AM, an addressable point in a telecommunication 
system. Nodes include terminal components, terminal control 
units, teleprocessing programs, and remote computers. 

node initialization block: A control block, associated with a 
particular node that contains information used by the applica­
tion program to identify a node and indicate how communica­
tion requests directed at the node are to be implemented. 
Abbreviated NIB. 

node name: In VTAM, the symbolic name associated with a 
specific node and assigned during network deftnition. 

o 
ordinary closedown: In a telecommunications system, the 
orderly deactivation of a telecommunication access method and 
network. In VT AM, an ordinary closed own does not take effect 
until all application programs have disconnected their terminals 
and closed their ACBs. Until then, all data-transfer operations 
continue, but VTAM rejects any further attempts to open ACBs. 
Contrast with quick closedown. 

option code: One of the indicators set by the OPTCD operand 
of the RPL macro instruction. These indicate how a given 
request is to be implemented by VTAM. 

p 

physical error: An error that is not the result of an error in the 
design of the application program. 

processing option: One of the indicators set by PROC operand 
of the NIB macro instruction. These indicate how communica­
tion requests are to be implemented for a given terminal. 

a 

QC indicator: See quiesce-completed indicator. 

QEC indicator: See quiesce-at-end-of-chain indicator. 

queued for logon: In VT AM, the state of a terminal that has 
logged on to an application program but has not yet been 
accepted for connection by that application program. Contrast 
with connection. 

queued logon request: A logon request that has been directed at 
an application program but not yet accepted by that application 
program. Logon requests are queued with the OPNDST 
(OPTCD=ACCEPT) and SIMLOGON macro instructions. 

quick closedown: In VT AM, a closedown in· which current 
data-transfer operations are completed, while pending 
data-transfer requests and new connection and data-transfer 
requests are canceled. Contrast with ordinary closedown. 

Glossary 285 



quiesce-at-end-of-chain (QEC) indicator: An indicator sent by 
one node to another indicating that the other node should stop 
transmitting synchronous-flow messages after it has sent the last 
record of the chain being transmitted. 

"\\-'hen the other node returns a QC indicator, it cannot again 
transmit synchronous-flow messages until a RELQ indicator is 
received from the first node. A QEC indicator is sent when a 
SEND macro instruction is issued with CONTROL=QEC set in 
its RPL. 

quiesce-cornpleted (QC) indicator: An indicator sent by a node 
indicating that it will not transmit synchronous-flow messages 
again until it receives a RELQ indicator from the other node. A 
QC indicator is sent when a SEND macro instruction is issued 
with CONTROL=QC set in its RPL. 

quiesce communication: A method of communicating in one 
direction at a time. Using this method, either node can assume 
the exclusive right to send synchronous-flow messages by getting 
the other node to a!ITee not to send such messages. When the 
q uiescing node wants to receive, it can release the other node 
from its quiesced state, allowing that node to send. 

quiescing: In a VTAM application program, a way for one node 
to stop another node from sending synchronous-flow messages. 
Quiescing requires the sending of a quiesce-at-end-of-chain 
(QEC) indicator and can include the receiving of a 
quiesce-completed (QC) indicator. Sending by the quiesced node 
can be restarted by the quiesclng node sending a release­
indicator. Among other reasons, quiescing can be used to: (1) 
ensure a communication pattern in which only one node can 
send at a time, (2)· stop the continuous sending of data by one 
node because a buffer in the other node is about to overflow, or 
(3) occasionally interrupt continuous sending of data by one 
node so that output can be sent by the other node. 

R 

RDT: Resource definition table. 

read operation: The transfer of data from VTAM buffers to 
program storage. 

read request: Any request for a read operation. Read requests 
are implemented with RECEIVE or READ macro instructions, 
WRITE macro instructions if OPTCD=CONV is used, or DO 
macro instructions if READ LDOs are used. 

record: The unit of data transmission for record-mode. A record 
represents whatever amount of data the transmitting node 
chooses to send. 

record-mode: A set of facilities (and the macro instructions 
needed to use them) that enable the application program to 
-communicate with logical units or with the locally or remotely 
attached 3270 Information Display System. SEND, RECEIVE, 
and RESETSR are record-mode macro instructions. 

release-quiesce (RELQ) indicator: An indicator sent by a node 
indicating that the other node can begin transmitting 
synchronous-flow messages. A RELQ indicator is sent when a 
SEND macro instruction is issued with CONTROL=RELQ set in 
its RPL. 

RELQ indicator: See release-quiesce indicator. 

remote: Pertaining to terminals and communication control 
units that are attached to a central computer through a 
communication control unit. 

request parameter list: A control block that contains the 
parameters necessary for processing a request for data transfer or 
a request for connecting or disconnecting a node. Abbreviated 
RPL. 

286 

resource definition table: In VT AM, a table that describes the 
characteristics of each node available to VTAM and associates 
each node with an address. The resource definition table is built 
during VTAM definition with APPL, LINE, GROUP, LV, and 
TERMINAL macro instructions, but it can be modified by the 
network operator while VTAM is running. Abbreviated RDT. 

responded output: A type of output request that is completed 
when the logical unit receives the message and returns a response 
(if one is called for) for it. Responded output occurs if 
POST=RESP is specified for the RPL used by a SEND macro 
instruction. 

response: The unit of information that is sent by an application 
program or terminal in reply to a message that has been received. 

RPL: Reque!;t parameter list. 

RPL-based macro instruction: A macro instruction whose para­
meters are specified by the user in an RPL. For all RPL-based 
macro instructions, the user must specify the address of the 
RPL. All RPL-based macro instructions except CHECK permit 
RPL-modifying operands to be specified with the macro instruc­
tion. Figure I lists the RPL-based macro instructions. 

RPL exit-routine: A routine whose address has been placed in 
the EXIT field of an RPL. For asynchronous requests, this 
routine is automatically invoked by VTAM when the request 
associated with the RPL is completed. Contrast with 
exit-routine. 

RRN response: A response that indicates that the node sending 
the response has accpeted recovery responsibility for the 
associated message. 

s 
scheduled output: A type of output request that is completed 
(as far as the application program is concerned) when its output 
data area is free. Contrast with responded output. Scheduled 
output occurs if POST=SCHED is specified for the RPL used by 
a SEND macro instruction. 

SDT indicator: See start-data-tra/fic indicator. 

sequence number: A numerical value assigned by VTAM to each 
message exchanged between two nodes. The value (one for 
messages sent from the application program to the logical unit, 
another for messages sent from the logical unit to the application 
program) increases by one for each successive message trans­
mitted. The value increases by one throughout the life of the 
connection unless reset by the application program with an 
STSN signal. 

session: In the communication controlle~'s Network Control 
Program, , series of command and data interchanges between the 
host processor and a teleprocessing device. 

session limit: In the communication controller's Network 
Control Program, the maximum number of concurrent sessions 
that can be initiated on a multipoint line. 

SESSIONC indicators: Indicators that can be sent from one 
node to another without using SEND or RECEIVE macro 
instructions. SDT, clear, and STSN are SESSIONC indicators. All 
SESSIONC indicators are sent with a SESSIONC macro 
instruction. 

set-and-test-sequence-nurnber (STSN) indicators: A set of 
SESSIONC indicators sent by one node to another to establish 
the proper sequence number. 

shared: (1) Pertaining to communication control units and 
communications lines that may be used concurrently by several 



teleprocessing programs to communicate with different nodes. 
(2) Pertaining to terminals that may be used by more than one 
teleprocessing program; only one teleprocessing program may be 
connected to a shared terminal at anyone time. 

simulated logon request: A request initiated by a program (via 
the SIMLOGON macro instruction) on behalf of a device, for 
connection between the device and a program. Contrast with 
logon request and automatic logon request. 

solicit operation: The process of obtaining (or attempting to 
obtain) data from a device and moving that data into VTAM 
buffers. 

solicit request: Any request for a solicit operation. There are 
three such requests: (1) A SOLICIT macro instruction; (2) a 
READ macro instruction, if the SPEC option is in effect and if 
VT AM buffers hold no data from the device being read from; 
and (3) a WRITE macro instruction with the CONY option code 
set. 

specific-mode: (1) The form of READ, RECEIVE, or SOLICIT 
operation that obtains data from one specific terminal, or (2) the 
form of OPNDST operation that establishes connection with one 
specified terminal if (or when) a logon request is received from 
that terminaL Specific-mode is established by specifying 
OPTCD=SPEC for the RPL used by the READ, RECEIVE, 
SOLICIT, or OPNDST macro instructions. 

start-data-traffic (SDT) indicator: SESSIONC indicator sent by 
one node to another that enables data flow between them. 

STSN indicator: See set-and-test-number indicators. 

synchronous-flow message: Messages that can satisfy a RE­
CEIVE macro instruction only if no asynchronous-flow messages 
are available to satisfy the macro instruction. (The RECEIVE 
macro instruction in this definition is one which can be satisfied 
by either type of message.) 

synchronous request: A request that causes control to be 
returned to the application program only after the requested 
operation has been completed. A request is made synchronous 
by setting the SYN option code in its RPL. Contrast with 
asynchronousreques~ 

T 

telecommunication network: In a telecommunication system, 
the combination of all terminals and other telecommunication 
devices and the lines that connect them. 

telecommunication system: In a teleprocessing system, those 
devices and functions concerned with the transmission of data 
between the central processing system and the remotely located 
users. In VT AM, the telecommunication system includes the 
host CPU, application programs using VT AM, VT AM, the 
telecommunication network, and the channels that link the host 
CPU and the network. 

teleprocessing subsystem: In VT AM, a secondary or subordinate 
network (and set of programs) that is part of a larger 
teleprocessing system; for example, the combination consisting 
of SDLC cluster controller, its stored program, and its attached 
input/output devices. 

An example of a teleprocessing subsystem is the IBM 3600 
Finance Communication System. 

teleprocessing system: The devices and functions of a data 
processing system that enable users at remote locations to access 
the data processing capabilities of a centrally located computer. 
A teleprocessing system has two major functions: the trans­
mission of data between the central computer and the remote 
locations (performed by the telecommunication system) and the 
actual processing of the data in the central computer. 

terminal: A node in a telecommunication network at which .data 
can enter or leave the network. A terminal can be an 
input/output device, a terminal control unit to which one or 
more input/output devices (terminal components) are attached, 
a logical unit, or a remote station. ("Terminal" is generally used 
when its context applies to both BSC and start-stop terminals 
and to logical units.) 

terminal component: A separately addressable part of a terminal 
that performs an input or output function. 

terminal-initiated logon request: A logon request that originates 
from the terminal 

transmission: In telecommunications, a logical group of one or 
more blocks or messages. For BSC and start-stop devices, a 
transmission is terminated by an EOT character. Contrast with 
block and message. 

transmission limit: The number of transmissions that can be 
sent to or received from a teleprocessing device during the 
servicing of one session on a multipoint line (or point-to-point 
line where the terminal has multiple components) before the 
Network Control Program suspends the session to service other 
sessions on the line. 

transparent text mode: A mode of binary synchronous trans­
mission in which only line control characters preceded by DLE 
are acted upon as line control characters. All other bit patterns 
that happen to be line control characters are transmitted as data. 

v 

Virtual Telecommunications Access Method: A set of IBM 
programs that control communication between terminals and 
application programs running under DOS/VS, OS/VSl, and 
OS/VS2. 

VI'AM: Virtual Telecommunications Access Method. 

VI' AM definition: The process of (1) including VT AM in the 
operating system generation (SYSGEN), (2) defining the tele­
processing network to VT AM and communication controller's 
Network Control Program, and (3) modifying lBM-defined 
VT AM characteristics to suit the needs of the installation. 
VTAM dermition is implemented by the installation with 
dermition macro instructions and operator commands. 

w 
write operation: The transfer of data from program storage to a 
device. A write operation is implemented with a SEND, WRITE, 
or DO macro instruction. 

Glossary 287 





INDEX 

{} 9 
[ ] 9 

9 

AAREA operand 110 
AAREALN operand 110 
ACB 

DSECT (IFGACB) 236 
format (DOS/VS) 234 
format (OS/VS) 235 
macro instruction 12 

ACB address operand 
of the CLOSE macro instruction 19 
of the OPEN macro instruction 79 

ACB operand 
of the MODCB macro instruction 64 
of the RPL macro instruction 108 
of the SHOWCB macro instruction 148 
of the TESTCB macro instruction 158 

ACB-oriented exit-routines 68 
ACBLEN operand value 160,45 
ACCEPT, explanation of 82 
ACCEPT operand value 116 
acceptance of logon requests (by application programs) 82 
acceptance of RPL-based requests (by VTAM) 283 
access method control block (ACB) 

definition of 283 
DSECT (IFGACB) 236 
explanation of 12 
format (DOS/VS) 234 
format (OS/VS) 235 

ACQUIRE, explanation of 82 
ACQUIRE operand value 116 
acq uiring terminals 82 
action code 

for inbound sequence number 142 
for outbound sequence number 142· 

active application program, testing for 50 
ADDR operand 60 
"address" notation category 216 
AID (attention identification) 270 
allowing LOGON exit-routine scheduling to begin 144 
allowing LOGON exit-routine scheduling to resume 144 
AM operand 

of the ACB macro instruction 12 
of the EXLST macro instruction 31 
of the MODCB macro instruction 63 
of the RPL macro instruction 108 
of the SHOWCB macro instruction 148 
of the TESTCB macro instruction 157 

ANY operand value 116 
any-mode 283 
application program 

availability of 47 
definition of 283 
determining logon queuing status of 47 
opening of 78 
termination of 19 

APPL entry 12 
APPL operand value (for SDT=) 68 
APPLID operand 12 
APPST AT operand value 50 
AREA operand 

of the RPL macro instruction 108 
of the SHOWCB macro instruction 149 

AREAL EN operand 109 
ARECLEN field 123 
ARECLEN operand value 150,160 
ARG field 124 
assembler format tables, explanation of 7 

ASY operand value 120 
asynchronous request handling 179 
attention interruption 

handling 40 
monitoring 72 

ATTN operand 40 
AT&T 83B3 Selective Calling Station 264 
au thorization 

to acquire a terminal 82 
to pass a connection 22 
to use the BLOCK processing option 70 

automatic logon requests 277,37 
available application program 47 

BASIC operand value 67 
basic-mode macro instructions 

CHANGE 15 
DO 26 
LDO 56 
READ 88 
RESET 98 
SOLICIT 154 
WRITE 162 

BB operand value 
following RECEIVE 96 
for SEND 134 

bid indicator, sending 133 
BID operand value 133 
BINARY operand value 75 
bit setting (DSECT definition) 233 
BLK operand of the GENCB macro instruction 
BLK operand value of the RPL macro instruction 
BLOCK operand value 

explanation of 71 
illustration of use of 72 

block of data 
sent 162 
solicited 154 

braces, use of (as notational symbols) 9 
brackets, use of (as notational symbols) 9 
bracket indicators 

receiving 96 
sending 134 

BRACKET field 
following RECEIVE 96 
for SEND 134 

BRANCH operand 112 
branching table, use of with 

recovery action (RTNCD) return codes 181 
specific error (FDBK2) return codes 185 
TESTCB return codes 158 

BSCID operand value 52 
byte value (DSECT definition) 233 

C operand value (LDO) 61 
CA operand value 120 
CA processing option 68 

43 
164 

CALL (VTAM defmition parameter), effect of during 
connection 82,151 

cancel indicator 
receiving 97 
sending 133 

CANCEL field 
following RECEIVE 97 -
for SEND 133 

canceling basic-mode I/O requests 98 
canceling RECEIVE requests 103 
categories of macro instructions 3 

Index 289 



CHAIN field 
for RECEIVE 96 
for SEND 134 

chaining LDOs 61 
change-direction indica tors 

receiving 96 
sending 134 

CHANGE macro instruction 15 
changing CA-CS mode 121 
changing NIB fields 15 
chase indicator 

receiving 97 
sending 134 

CHASE operand value 
following RECEIVE 97 
for SEND 133 

CHECK macro instruction 17 
checking event completion status 

by using the CHECK macro instruction 17 
by using the feedback fields 185 

CHNGDIR operand 
following RECEIVE 96 
for SEND 134 

CID field 
definition of 283 
explanation of 65 

CID operand value 150 
CIDXLATE operand value 51 
clear indicator 

definition 283 
sending 141 

CLEAR operand value 141 
clearing RPLs 17 
CLOSE macro instruction 19 
closedown 37 
closing an ACB 19 
closing a logon queue 144 
CLSDST macro instruction 22 
CMD operand (for LDO) 57 
CMD operand value 

following RECEIVE 96 
for SEND 134 

commands, LDO 57 
comments, coding 10 
Communicating Magnetic Card Selectric Typewriter 260 
communicating with terminals 

by reading 88 
by receiving (logical units) 91 
by sending (logical units) 132 
by soliciting 154 
by writing 162 

COMPLETE operand value 160 
component, communication with 

AT&T 83B3 Selective Calling Station 264 
Western Union Plan U5A Station 266 
1050 Data Communication System 255 
2740 Communication Terminal 257,258 

component, terminals: handling I/O 
1050 255 
2770 267 
2780 268 

CON field 75 
CONALL operand value 115 
CONANY operand value 115 
COND operand value 99 
condition code 157 
conditional cancelation of basic-mode I/O operations 98 
conditional connection request (Q-NQ) 122 
confidential data handling 70 
CONFTXT operand value 70 
connected terminals, determining number of 47,50 
connecting terminals 82 
CONT operand value 

explanation of 73 
illustration of 72 

290 

continuation lines, how to code 10 
continue-any mode 120 
continue-specific mode 120 
continuous solicitation 71-73 
control block DSECTs 

IFGACB (ACB) 236 
IFGEXLST (EXLST) 238 
IFGRPL (RPL) 242 
ISTDNIB (NIB) 251 
ISTDPROC (PROC field) 254 
ISTDVCHR (DEVCHAR field) 252 
ISTUSFBC (FDBK2 field) 246 

control block field lengths 150 
control block field testing 157 
control block formats 

ACB (DOS/VS) 234 
ACB (OS/VS) 235 
EXLST 237 
LDO 56 
NIB 250 
RPL (DOS/VS) 239 
RPL (OS/VS) 240 

control block generation 
during INQUIRE processing 47 
during program execution 43 
with the ACB macro instruction 12 
with the EXLST macro instruction 30 
with the GENCB macro instruction 43 
with the LDO macro instruction 56 
with the NIB macro instruction 65 
with the RPL macro instruction 106 

control block lengths (see Appendix H) 
control block manipulation 

general 5 
with DSECTs 233 
with the GENCB macro instruction 
with the MODCB macro instruction 
with the SHOWCB macro instruction 
with the TESTCB macro instruction 

control block usage, table of 167 
CONTROL field 

for RECEIVE 97 
for SEND 133 
for SESSIONC 141 

CONY operand value 164 
conversational write operation 162 

43 
63 

148 
157 

converting a CID to a symbolic name 51 
converting a symbolic name to aCID 51 
COPIES operand 42 
copy control character 57 
COPYLBM operand value 57 
COPYLBT operand value 57 
COUNTS operand value 50 
CPM error 209 
CPT-TWX, Models 33 and 35 265 
CS operand value 120 
CS processing option 68 

D operand value (LDO) 61 
DA TA operand value 

following RECEIVE 97 
for SEND 133 

data security 70 
DATAFLG return codes 206-207 
DCBs (data control blocks) 

closing 19 
opening 79 

DEVCHAR field DSECT (lSTDVCHR) 252 
DEVCHAR field format 250 
DEVCHAR operand value 49 
device characteristics 255-282 
devices supported by VT AM 255-282 
DF ASY exit-routine 33 
DF ASY input, applicable RPL fields for 95 



DF ASY operand value 
for RECEIVE 94 
for RESETSR 104 

DFASYX processing option 70 
DFSYN input, applicable RPL fields for 95 
DFSYN operand value 

for RECEIVE 94 
for RESETSR 104 

dial-in terminals, connecting 
dial-line terminals, connecting 
dial-line disconnection 40 
dial-out terminals, connecting 
DISCONCT LDO 60 
disconnecting terminals 22 
DO macro instruction 26 
DSECTs 

general 233 
IFGACB (ACB) 236 
IFGEXLST (EXLST) 238 
IFGRPL (RPL) 242 
ISTDNIB (NIB) 251 

151 
151,82 

82 

ISTDPROC (PROC field) 254 
ISTDVCHR (DEVCHAR field) 252 
ISTUSFBC (FDBK2 field) 246 

DTFs (define-the-ftle control blocks) 
closing 19 
opening 99 

EAULDO 60 
EAU operand value 164 
EB operand value 

following RECEIVE 96 
for SEND 134 

ECB operand 110 
ECB posting 179 
EIB operand value 73 
ELC operand value 74 
ellipsis, use of 9 
end of intermediate transmission block 73 
ERASE operand value 164 
ERASELBM LDO 60 
ERASELBT LDO 60 
erasing a display screen 164,60 
erasing unprotected data 164,58 
ERET operand 158 
ERPIN operand value 74 
ERPOUT operand value 74 
ERROR field 

use of after CLOSE processing 20 
use of after OPEN processing 80 

error handling 
by exit-routines 31-33 
using the FDBK2 field 186-205 

error information byte (EIB) 73 
error lock 

defmition 284 
resetting 98 

ERROR operand value 130,160 
error recovery messages 

. 2770 Data Communication Terminal 267 
3780 Data Transmission Terminal 280 

error recovery procedures, suppression of 74 
error return information (see return codes) 
event control block (ECB) 110 
EX operand value 

following RECEIVE 95 
for SEND 136 

exception message 190 
exception response 

receiving 190 
sending 136 

excess data, saving 70,115 
EXECRPL macro instruction 28 

execute form 
'""laJ. 223 
of the GENe. macro instruction 226 
of the MODeB macro instruction 227 
of the SHOWCB macro instruction 228 
of tbe TESTCJ macro instruction 229 

executing RPLs 28 
exit list 

creation 30 
defmition 284 

exit-routine 
ATTN 41 
definition of 284 
DFASY )3 
LERAD 31 
LOGON 3-8 
LOSTEJlM 40 
IlELREQ )7 
RESP 35 
RPL 111 
SCI}' 35 
SYNAP 32 
TPEND 37 

EXIT operand 111 
EXLLEN operand value 45 
EXLST control block 30 
EXLST DSECT (lFGEXLST) 238 
EXLST format 237 
EXLST macro instruction 30 
EXLST operand 

of the ACB l'lUCro instruction 13 
of the MOOCB macro instruction 64 
of the NIl macro instruction 68 
of the SHOWCIl mwro instruction 148 
of the TESTe, macro instruction 158 

extracting coo,trol Wock fields 148 

FDBK return codes 
for INQUIRE (OPTCD=APPSTAT) 205 
for READ, WRITE, and DO 205 

FDBK operand value 217 
FDBK.2 OSECT (lSTUSFBC) 246 
FDBK2 operand value 217 
FDJK2 ~t\l~ ~ 189-205 
f*back raelOs <_ Appendix C) 
field di~t (llSECT definition) 233 
field rurwte ~_ (fQf TESTCD) 158 
F1ELDS 0.,.,,_ 149 
FUlST opered vlhe 
follewiulll~~VE 96 
for SEKD J :M 

"flXe4 vali." ftOt~tieIl ee.teaory 220 
FLAGS oper_ 61 
FME operand vatu 136,95 
FME response sending 136 
FMHDR o.ption code 115 
Form Desc.tiptipn Program (FDP) data blocks 277 
"from" device 27 S 
Function In.p.-etcr error 209 
FunctiOft ~eftt Header 115 

GE:MC. lft8f;lJO_*rvctioD 43 JIMf- pol 114 
~~rtt.nule4e(~er 15) 181 
generate form 

general 223 
of the GENeB macro instruction 
of the MODCB macro instruction 
of the SHOWC. macro instruction 
of the TESTCD macro instruction 

genetatm, control blocks 

226 
227 

228 
229 

4urinJPIQ.,.m assembly (see ACB, EXLST, RPL, NIB, 

Index 291 



and LDO) 
during program execution 43 

GETMAIN facility 43 
GETVIS facility 43 
graphic characters, leading 

defInition of 285 
receiving 73 
sending 59 

group mode 
AT&T 83B3 Selective Calling Station 264 
Western Union Plan lISA Station 266 
1050 Data Communication System 255 
2740 Communication Terminal 257,258 

HAL T command 37 
Header, Function Management 115 
heading block 59 
high-priority I/O request handling (OS/VS2) 112 

IBSQAC operand 142 
IBSQVAL operand 141 
ID verification 52 
IFGACB DSECT 236 
IFGEXLST DSECT 238 
IFGRPL DSECT 242 
implicit solicitation 88 
inactive application program 50 
inactive RPL 17 
inbound sequence number 141 .' 
inbound sequence number action code 
inbound STSN indicators 142 
indicators, sending 133 
INQUIRE macro instruction 47 
input area 108 
input area too small 
input operations 

reading 88 
receiving 91 
soliciting 154 

189 

installation authorization 
to acquire a terminal 82 
to pass a connection request 22 

142 

to use the BLOCK processing option 71 
intermediate transmission block (ITB) 73 
interpret table 53 
interpreting an input sequence 53 
interpreting the feedback fields (see Appendix C) 
INTRPRET macro instruction 53 
10 operand 160 
I/O operations 

cancelation of (basic-mode) 
cancelation of (record-mode) 
conversational 164 
input (basic-mode) 88,154 
input (record-mode) 91 
output (basic-mode) 162 
output (record-mode) 132 

IPL, remote (System/?) 262 

98 
102 

isolating terminals from READ requests 120 
ISTDNIB DSECT 251 
ISTDPROC DSECT 254 
ISTDVCHR DSECT 252 
lSTUSFBC DSECT 246 
ITB 73 

KEEP operand value 
keyword operands 

LAST operand value 

70,115 
7 

following RECEIVE 96 
for SEND 134 

292 

LBM operand value 164 
LBT operand value 164 
LDO commands 

COPYLBM 
COPYLBT 
DISCONCT 
ERASELBM 
ERASELBT 
EAU 60 
READ 57 

57 
57 
60 
60 
60 

READBUF 58 
WRITE 58 
WRITELBM 58 
WRITELBT 59 
WRTHDR 59 
WRTNRLG 59 
WRTPRLG 59 

LDO control block 66 
LDO macro instruction 66 
leading graphic characters, 

receiving 73 
sending 59 

LEN operand 60 
length of control block fields 150 
length of control blocks (see Appendix H) 
LENGTH operand 

of the GENCB macro instruction 44 
of the SHOWCB macro instruction 149 

LERAD exit-routine 31 
LERAD operand 31 
LGIN operand value 73 
LGOUT operand value 73 
limits for operand values 10 
line control characters 

generated or recognized by VT AM 175 
suppression of 74 

list form 
general 223 
of the GENCB macro instruction 226 
of the MODCB macro instruction 227 
of the SHOWCB macro instruction 228 
of the TESTCB macro instruction 229 

LlSTEND operand 67 
lists of NIBs 

creation of 67,50 
explanation of 65 

LOCK operand value 100 
logical device order (LDO) 

definition of 285 
description of 56 

logical errors 
definition of 285 
routine to handle (LERAD) 31 

logical unit macro instructions (see RECEIVE, RESETSR, SEND, 
and SESSIONC) 

logical unit sense fields 208 
logical-unit-status (LUS) indicator 

receiving 97 
sending 134 

LOGON exit-routine scheduling 
initiating 144 
terminating 144 

LOGON operand of the EXLST macro instruction 38 
LOGON operand value (ACB) 13 
LOGONMSG operand value 49 
logon messages 

receiving 47 
sending 24 

logon requests 
determining the number of 47 
handling of 38 
queuing of 122 

logon status modification 144 
LOSTERM operand 40 
LUS operand value 



following RECEIVE 97 
for SEND 134 

MACRF operand 13 
macro instruction categories 3 
macro instruction descriptions 

ACB 12 
CHANGE 15 
CHECK. 17 
CLOSE 19 
CLSDST 22 
00 26 
EXECRPL 28 
EXLST 30 
explanation of 7 
GENCB 43 
INQUIRE 47 
INTRPRET 53 
LOO 56 
MODCB 63 
NIB 65 
OPEN 78 
OPNOST 82 
READ 88 
RECEIVE 90 
RESET 98 
RESETSR 102 
RPL 106 
SEND 132 
SESSIONC 139 
SETLOGON 144 
SHOWCB 148 
SIMLOGON 151 
SOLICIT 154 
TESTCB 157 
WRITE 162 

manipulating control blocks 
general 5 
with DSECTs 233 
with the GENCB macro instruction 43 
with the MODCB macro instruction 63 
with the SHOWCB macro instruction 148 
with the TESTCB macro instruction 157 

messages 
sending 164 
soliciting 71-73 

MF operand 
of the GENCB macro instruction 45 
of the MODCB macro instruction 64 
of the SHOWCB macro instruction 149 
of the TESTCB macro instruction 158 

MIDDLE operand values 
following RECEIVE 96 
for SEND 134 

MODCB macro instructions 63 
MODE operand 67 
modifying control blocks 5 
MONITOR operand value 74 
monitoring attention interruptions 74 
MSG operand value 71 
MSG option, illustration of 72 
multiple control block generation 44 
multiple request parameter lists (RPLs) 106 

NAME operand 66 
NBB operand value 

following RECEIVE 96 
for SEND 134 

NBINARY operand value 75 
NCMD operand value 

following RECEIVE 96 
for SEND 134 

NCONFTXT operand value 70 

NCONV operand value 164 
NCP failure 41,192 
NCP return codes 208 
NDF ASY operand value 

for RECEIVE 94 
for RESETSR 104 

NDF ASYX processing option 70 
NDFSYN operand value 

for RECEIVE 94 
for RESETSR 104 

NEB operand value 
following RECEIVE 96 
for SEND 134 

negative response, sending (record-mode) 136 
negative response with leading graphics (basic-mode) 59 
NEIB operand value 73 
NELC operand value 74 
NERASE operand value 164 
NERPIN operand value 74 
NERPOUT operand value 74 
Network Control Program (NCP) failure 41,192 
NEX operand value 136,95 
NFME operand value 136,95 
NFMHDR operand value 115 
NIB DSECT (ISTDNIB) 251 
NIB field, contrasted with ARG field 108 
NIB format 250 
NIB generation for terminal groups 50 
NIB lists 

creation of 67,50 
explanation of 65 

NIB macro instruction 65 
NIB modifications after OPNDST 15 
NIB operand 

of the MODCB macro instruction 64 
of the RPL macro instruction 108 
of the SHOWCB macro instruction 148 
of the TESTCB macro instruction 158 

NIB-oriented exit-routines 68 
NIB LEN operand value 45 
NIBTK option code 45 
.NLGIN operand value 73 
NLGOUT operand value 73 
NLOGON operand value 13 
NMONITOR operand value 74 
no input available 189 
node initialization block (NIB) 

defmition of 285 
explanation of 65 

NQ operand value 123 
NRELRQ operand value 153 
NRELRQ used for the RELREQ exit-routine 153 
NREQ operand value 

following RECEIVE 96 
for SEND 134 

NRESP operand value 
for RECEIVE 94 
for RESETSR 104 

NRESPX processing option 70 
NRRN operand value 136,95 
NTIMEOUT operand value 74 
NTMFLL operand value 73 

OBSQAC operand 142 
OBSQVAL operand 141 
OFLAGS field testing 20,79 
OFLAGS operand 160 
ONL Y operand value 

following RECEIVE 96 
for SEND 134 

open destination 82 
OPEN macro instruction 78 
OPEN operand value of the TESTCB macro instruction 160 
opening ACBs 78 

Index 293 



opening a logon queue 144 RECLEN field or operand 109 
operand limits 10 RECORD operand value 67 
operand specifications 10 record-mode macro instructions 
OPNDST macro instruction 82 RECEIVE 91 
OPTCD operand 115 RESETSR 102 
option codes 115-123 SEND 132 
options, processing 68-75 SESSIONC 139 
outbound sequence number 141 recovery action return code 181 
outbound sequence number action code 142 data integrity damaged 183 
outbound STSN indicators 142 environment error 182,184 
output area 108 logical error 182,184 
output operation 132,162 retry appropriate 182,183 

special condition 183 
register 0 and 15 return codes 180 

parameter lists for exit-routines ~ register flotation 112 
PASS operand value 24 register usage 231 
passing terminal connections 22 registers, permitted 10 
PASSWD operand 13 release independence 5 
password protection 13 RELEASE operand value 24 
PATH error 209 release-quiesce (RELQ) indicator 
pending logon requests, determining the number of 50 receiving 97 
physical errors sending 133 

listing of 189-196 releasing terminals in the RELREQ exit-rou tine 37 
routine to handle 32 releasing terminals, method of 22 

polling, general 154 RELQ operand value 
positional operands 9 following RECEIVE 97 
positive response, sending (record-mode) 1~ for SEND 133 
positive response with leading graphics (b*~) 59 RELREQ operand value of the RPL macro instruction 153 
POS T operand 134 RELREQ operand of the EXLST macro instruction 37 
preventing logon request queuing "remote" list form (manipulative macro instructions) 223-224 

after OPEN processing 144 REQ field 124 
during OPEN processing 13 REQ operand value (CHNGDIR=) 

PROC field DSECT (ISTDPROC) 254 following RECEIVE 96 
PROC operand 68 for SEND 134 
processing options request acceptance 283 

applicability of (per device) 77 request code 124 
definition of 285 request completion, fmal 284 
modification of 15 request for test messages 
specification of 68 2770 Data Communication System 267 

protection of data 70 2780 Data Transmission Terminal 268 
PSW condition code 157 2972 General Banking Terminal System 269 

3740 Data Entry System 279 
3780 Data Transmission Terminal 280 

Q operand value 122 request parameter list (RPL) 
QC operand value definiti6n of 286 

following RECEIVE 97 description of 106 
for SEND 133 request-recovery (RQR) indicator 35 

QEC operand value Request Reject error 209 
following RECEIVE 97 request-shutdown (RSHUTD) indicator, receiving 97 
for SEND 133 requests (RPL-based): acceptance of defmed 283 

"quantity" address category 219 RESET macro instruction 98 
quick closedown 37 RESETSR macro instruction 102 
quiesce-at-endoo()f-chain (QEC) indicator resetting 

receiving 97 an ACB's logon queuing status 144 
sending 133 an error lock 98 

quiesce-completed (QC) indicator an I/O request 98 
receiving 97 a terminal's CA-CS mode 102 
sending 133 RECEIVE macro instructions 102 

QUIESCE operand value 144 resource defmition table (RDT) 
queuing of logon requests 144 definition of 286 
queuing of connection requests 122 use of 12,66 

RESP exit-routine 35 
RESP input, applicable RPL fields for 95 

read buffer 58 RESP operand value 
READ macro instruction 88 for POST operand 135 
READ operand value (LDO) 57 for RECEIVE macro 94 
read operation 88 for RESETSR macro 104 
read request, defmition of 286 for STYPE operand (SEND) 133 
READBUF operand value (LDO) 58 RESPLIM operand 68 
ready-to-receive (R TR) indicator, receiving 97 RESPOND field 
reason code (FDBK2) 186-205 for RECEIVE 95 
reassembly, freedom from 5 for SEND 136 
RECEIVE macro instruction 91 responded output 135 
receiving data blocks 88 response limit 68 
receiving messages and responses 91 R.ESPX processing option 70 

294 



resumption of LOGON exit-routine scheduling 144 shutdown (SHUTD) indicator 133 
retrying RPL-based requests 28 SIGDATA field 127 
return codes signal indicator 97 

for CLOSE macro instruction 20 SIMLOGON macro instruction 151 
for manipulative macro instructions 211 "simple" list form (manipulative macro instructions) 223-224 
for OPEN macro instruction 80 simulated logon requests 151 
for RPL-based macro instructions SOLICIT macro instruction 

FDBK2 186-205 described 154 
FDBK(DATAFLG) 205 WRITE, inhibition of on 3270 272 
posting of 179 solicitation 
register 0 182 definition of 287 
register 15 181 explanation of 154 
RTNCD 186-205 interruption of 98 
SENSE 208 specifying extent of 71,72 
types of 180 solicited data received 
reuse of RPLs 123 from a specific terminal 155 

RPL from any terminal 155 
control block 106 SPEC operand value 116 
DSECT (IFGRPL) 232 special conditions (indicated in FDBK field) 205-207 
exit-routine 111 special conditions (indicated in FDBK2 field) 186-205 .. 't 
FDBK2 DSECT (ISTUSFBC) 246 specific error return code explanations 186-205 
fields, applicability of (per macro instruction) 129 specific component mode 
fields set by VT AM 123 AT&T 83B3 Selective Calling Station 264 
format (DOS/VS) 239 Western Union Plan 115A Station' 266 
format (OS/VS) 240 1050 Data Communication System 255 
macro instruction 106 2740 Communication Terminal 257,258 
operand specific terminal, request directed at 117 

of the MODCB macro instruction 64 specifications for operands 10 
of the SHOWCB macro instruction 148 SSENSEI field 126 
of the TESTCB macro instruction 158 SSENSEO field 137 

RPL-based requests, acceptance of defined 283 SSENSMI field 127 
RPLC processing option 68 SSENSMO field 137 
RPLLEN operand value 45 start-data-traffic (SDT) indicator 141 
RRN operand value 136,95 START operand value 144 
RRN response, sending an 136 STATE error 209 
RTNCD field 123,181,246 STOP operand value 144 
RTYPE field, applicable RPL fields, when set 95 stopping logon request queuing 144 
RTYPE operand storage shortage, temporary 191 

for RECEIVE 94 STSN indicators 
for RESETSR 104 possible responses to 143 

RVI received 190 receiving 36 
sending 141 

STSN operand value 141 
save area, requirement for 231,30 STYPE operand 133 
SCHED operand value 134 suppression of line control characters 74 
scheduled output 135 switched-line (dial-line) disconnection 
scheduling priority ofI/O requests 112 caused by CLSDST 22 
SCIP exit-routine 35 exit-routine invoked 40 
SDT indicator switched-line terminals, 

sent after OPNDST 139 connecting 82,151 
sent with OPNDST 68 disconnecting 22 

SDT operand 68 symbolic name of an application program 12 
SDT operand value (for CONTROL=) 141 symbolic name of a terminal 66 
security of data 70 SYN operand value 120 
selection 154 SYNAD exit-routine 32 
self-initiated logon requests 151 SYNAD operand 32 
SEND macro instruction 132 synchronous request handling 179 
sending data blocks 162 SYSTEM operand value 68 
sending messages and responses 13 2 system sense information 
SENSE field 208 explanation of 208-210 
sense information receiving 97 

for a basic-mode terminal 208 sending 137 
for a logical unit 208-210 system sense modifier information 
for a 3270 device 271,275 explanation of 208-210 

SEQNO field receiving 97 
for RECEIVE 95 sending 137 
for SEND 136 System/3 281 

sequence numbers 112,124 System/7 262 
sequence numbers for STSN indicators 142 System/370 282 
SESSIONC macro instruction 139 
set-and-test-sequence-number (STSN) indicators 143 
SETLOGON macro instruction 144 Teleprocessing On-line Test Executive Program (TOLTEP) 
SHOWCB macro instruction 148 notification of in LOS TERM exit-routine (TRM) 41 
SHUTD operand value 133 notification of in RELREQ exit-routine 37 
shutdown-completed (SHUTC) indicator 97 notification of via RPL return code 191 

Index 295 



temporary storage shortage 191 
terminal components; handling I/O 

1050 255 
2770 267 
2780 268 

TERMS operand value 50 
TESTCB macro instruction 157 
test request n:~ssages 41,191 

2770 Data Communication System 267 
2780 Data Transmission Terminal 268 
3270 Information Display System 271,272 
3780 Data Transmission Terminal 280 

testing 
control bloGk fields 157 
multiple field values 158 
processing options or option codes 158 

timefill characters, suppression of 73 
timeout limit, suppression of 74 
TIMEOUT operand value 74 
TMFLL operand value 74 
"to" device 274 
TOLTEP 

notification of in LOSTERM exit-routine (TRM) 41 
notification of in RELREQ exit-routine 37 
notification of via RPL return code 191 

TOPLOGON operand value 51 
TPEND operand 37 
TRANS operand value 

illustration of use of 72 
specification of 73 

translating 
aCID 47 
an input sequence 53 
a logon message 53 

transmissions 
sending 164 
soliciting 71 

transparent text mode 75 
2770 Data Communication System 267 
2780 Data Transmission Terminal 268 
3740 Data Entry System 279 
3780 Data Transmission Terminal 280 

TRUNC operand value 70,115 
truncating input data 70,115 
TWX 265 

unavailable application program 47 
UNCOND operand value 99 
underscores, use of 9 
undersize input area 109,189 
USENSEI field 127 
USENSEO field 137 
USER field 124 
USER operand value 124 
USERFLD operand 66 
user sense information 

explanation of 208 
receiving 97 
sending 137 

vertical bar, use of 9 
VSAM-VTAM similarities 4 

WAREA operand 44 
Western Union Plan 1I5A Station 266 
World Trade Telegraph Station 261 
WRITE 

LDO 58 
macro instruction 162 
operand value 58 

WRITELBM operand value 58 
WRITELBT operand value 59 

296 

writing 
conversational 164 
output only 162 

WRTHDR operand value 59 
WRTNRLG operand value 59 
WRTPRLG operand value 59 
WTTY 261 

1050 Data Communication System 255 
2740 Communication Terminal, Modell 257 
2740 Communication Terminal, Model 2 258 
2741 Communication Terminal 259 
2770 Data Communication System 267 
2780 Data Transmission System 268 
2972 General Banking Terminal System 269 
3270 Information Display System 

basic-mode 272 
record-mode 270 

3600 Finance Communication System 276 
3735 Programmable Buffered Terminal 277 
3740 Data Entry System 279 
3780 Data Transmission Terminal 280 





GC27-6995-2 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

< 
):l 
s 
s 
Q) 
(") ..., 
o 
r 
Q) 

::J 
CO 
c: 
Q) 

CO en 
:c 
en -en ..., 
en 
::J 
(") 
en 


